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1. Introduction

The swift growth of cloud computing, the Internet of Things, and the industrial Inter-
net has brought about a surge in complex data analysis tasks that are deeply intertwined
with societal and economic progress [1]. To address these intricate challenges, compu-
tational intelligence has emerged as a crucial solution, leveraging advanced modeling
techniques and cognitive computing [2]. These tools not only tackle the increasing com-
plexity of data, but also play a vital role in shaping informed strategies for development
and innovation.

In the realm of tackling challenges related to intelligent data analysis [3], one of the
core dilemmas that emerges is how to effectively manage, model, and process the vast and
varied datasets generated by the adoption of cutting-edge technologies. This challenge
underscores the necessity for exploring and developing robust models and methodologies
that harness the power of computational intelligence to advance intelligent data analysis
and drive impactful applications [4,5]. In today’s rapidly evolving landscape, a growing
number of scholars and practitioners from diverse disciplines have come together to create
a comprehensive body of work on intelligent data analysis, each contributing unique
perspectives. These contributions span various domains, including data mining, social
networks, natural language processing, granular computing, cognitive computing, machine
learning, and a variety of other interdisciplinary and hybrid approaches.

Data mining [6] has become an indispensable tool for uncovering hidden patterns
and trends within large datasets, facilitating data-driven decisions across various domains.
Social networks [7], by revealing user behaviors, interaction patterns, and information
dissemination pathways, has become a crucial tool for understanding and optimizing
online social platforms, marketing strategies, and public opinion monitoring. Natural
language processing [8] enables the extraction of meaningful insights from unstructured
textual data, expanding the scope of data analysis into linguistically rich contexts. Gran-
ular computing [9] provides a structured approach to handling data at varying levels of
abstraction, enhancing flexibility, adaptability, and interpretability in decision-making sys-
tems. Cognitive computing, by integrating human-like reasoning and learning capabilities
into data analysis systems, facilitates intelligent decision-making and problem-solving in
complex environments. Machine learning [10] enhances this process by offering sophisti-
cated algorithms that automate the identification of complex relationships and predictive
modeling, empowering industries to optimize their processes. These fields, alongside vari-
ous interdisciplinary and hybrid approaches, demonstrate the vast potential of intelligent

Electronics 2025, 14, 228 https://doi.org/10.3390/electronics14020228
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data analysis to tackle complex problems and contribute transformative solutions across
diverse sectors.

In the Big Data era, intelligent data analysis exploration holds crucial importance
across a broad spectrum of scenarios [11]. These efforts not only tackle immediate chal-
lenges, but also contribute to the advancement of the computer science and engineering
fields, paving the way for a future characterized by enhanced data literacy and techno-
logical innovation. Such undertakings facilitate the navigation of increasingly complex
data landscapes and offer innovative solutions for various industries, driving continuous
technological progress and the intelligent transformation of society.

The inaugural issue of this Special Issue has been successfully published, featuring a
gathering of superior scholarly papers. Building on this achievement, the objective of this
Special Issue is to continue gathering the current advancements in intelligent data analysis
and examine their uses across various real-world domains. This Special Issue includes
24 papers, covering fields such as decision-making, machine learning, deep learning,
anomaly detection, and more.

2. Overview of Contributions

Flight management systems in modern airliners face challenges related to low path
planning efficiency and non-smooth trajectories. To address these issues, Li et al. (Contri-
bution 1) explore an improved A* path planning algorithm. By introducing a new “value
table” to replace the traditional open and closed tables, retrieval efficiency is enhanced,
and the heap sort algorithm optimizes node sorting. A trajectory smoothing optimization
algorithm with constraints on turning angles is introduced to overcome the challenge of
complex trajectory tracking. Additionally, the methods for calculating gray cost, cumu-
lative cost, and estimated cost have been refined to more effectively adhere to obstacle
avoidance constraints.

A growing focus has been placed on conflict analysis in intelligent decision-making,
yet trustworthiness in terms of common agreement and opposition remains under explored.
Zhai et al. (Contribution 2) present an L-fuzzy three-way concept lattice and puts forward a
hybrid model for conflict analysis, combining it with a knapsack-based strategy to resolve
conflicts efficiently while minimizing costs, as demonstrated using a case study.

Event extraction identifies event triggers, classifies events, and generates structured
arguments from unstructured text. Nevertheless, a significant challenge arises when trig-
gers and arguments from diverse event types coincide within the same sentence, creating
ambiguity. To address this, Chen et al. (Contribution 3) introduce a joint learning frame-
work for overlapping event extraction. The framework incorporates a role pre-judgment
module, which utilizes the relationship among event types, roles, and trigger embeddings
before argument extraction.

Knowledge graphs often contain missing links, and a primary research area is the
prediction of the relationships between entities. To address the high variance caused by
unbounded scores in existing models, Wang et al. (Contribution 4) propose RotatE Cosine
Similarity, which uses joint cosine similarity of complex vectors to achieve bounded scores
and model complex relational patterns.

Overconfidence in deep neural networks (DNNs) can hinder generalization and
increase risk, while deep ensemble methods improve robustness and accuracy but are
resource-intensive and complex to implement. Cao et al. (Contribution 5) present an effi-
cient deep ensemble approximation strategy that requires no additional cost by sampling
and saving several optimal parameters during training using a cycle learning rate strategy.
These parameters are used as ensemble weights during testing to enhance performance.

2
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Experiments on static image and dynamic video benchmarks demonstrate that the method
reduces calibration error and improves model accuracy.

Chen et al. (Contribution 6) introduce an innovative approach for dynamic topic
analysis of traffic trajectories, addressing the limitations of traditional methods in analyz-
ing temporal consistency. By embedding spatial information into trajectory words and
leveraging dynamic topic modeling, the method explores the time-dependent changes in
trajectory topics while using an enhanced Markov decision process to create representative
trajectory sequences. To analyze trajectory topics and their changes, they developed a
parallel window-based spatiotemporal visualization model with significant visual symbols.
Case studies demonstrated the method’s effectiveness in uncovering hidden movement
patterns in trajectories.

Prediction models often struggle with small sample sizes and incomplete data, lead-
ing to inadequate training and low accuracy. Peng et al. (Contribution 7) explore the
SALGAN-CatBoost-SSAGA framework to improve prediction accuracy with small, incom-
plete datasets. Missing data are interpolated, outliers are detected, and SALGAN generates
synthetic samples for training. A hybrid sparrow search algorithm and genetic algorithm
optimizes vatboost parameters, enhancing accuracy and stability.

Lightweight neural networks often struggle with accurate 6DoF pose estimation in the
presence of scale variation problems. Wang et al. (Contribution 8) propose an improved
PVNet-based approach that integrates depth-wise convolution for a lightweight design,
along with coordinate attention and Atrous Spatial Pyramid Pooling to enhance robustness
and accuracy. This approach reduces network size and computational complexity, enabling
effective 6DoF pose estimation from monocular RGB images.

Multi-view graph clustering algorithms utilizing representation learning have gar-
nered interest, but face challenges with high-frequency noise and insufficient view comple-
mentarity integration. Zhao et al. (Contribution 9) propose a local–global representation
enhancement algorithm to address these issues. A low-pass graph encoder improves local
representations by enhancing low-frequency signals for better clustering performance,
while an attention mechanism integrates weighted local representations into a global repre-
sentation. The global representation is refined through neighborhood contrastive loss and
reconstruction loss, ensuring higher quality. Subsequently, the K-means algorithm is used
to perform clustering on the global representation.

Deep network-based models have excelled at extracting discriminative features using
convolutional neural networks and recurrent neural networks, yet their performance often
diminishes with data that lack temporal or spatial structures. To tackle these limitations,
Du et al. (Contribution 10) conduct a hybrid approach that integrates decision trees and
neural networks. The model employs decision forest layers to capture essential features
and fully connected layers to enhance them, utilizing gradient-boosted decision trees for
effective feature selection. Designed for tasks like classification, regression, and ranking,
it is trained efficiently with stochastic gradient descent and delivers strong results across
diverse machine learning applications.

In autonomous driving and robotics, particularly in complex and dynamic environ-
ments, accurate and reliable environmental perception poses a significant challenge. To
address the limitations of traditional vision-based methods, Dai et al. (Contribution 11)
proposed a fusion of YOLOv8 deep learning object detection, leveraging the advantages
of both technologies. YOLOv8 offers robust real-time object detection and classification,
whereas LiDAR offers precise spatial and depth information, unaffected by lighting condi-
tions. This integrated approach improves environmental awareness by aligning 3D LiDAR
data with image-based detections, filtering ground points, clustering objects, and tracking
their positions and distances.

3
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Large-scale group decision-making (LSGDM) involves consolidating diverse opin-
ions from numerous participants to reach collective decisions, often complicated by fuzzy
uncertainties, participant diversity, and low consensus levels. Yuan et al. (Contribution
12) present a novel method incorporating dual fine-tuning and online review analysis
to address these challenges. A sentiment analysis (SA) is applied to extract and quan-
tify emotional tendencies from online reviews, transforming them into a fuzzy dataset.
Decision-makers (DMs) are then clustered using the Louvain algorithm, with enhanced
similarity measurements achieved through a combination of Euclidean and Wasserstein
distances. The consensus-reaching process (CRP) refines decision scores, first by adjusting
representative scores within smaller groups and then by optimizing scores with the lowest
consensus levels. The adjusted scores are further analyzed using prospect–regret theory to
determine rankings and comprehensive evaluations.

The rapid growth of the e-commerce sector, particularly in online food delivery, un-
derscores the importance of accurate delivery time predictions for customer satisfaction.
Although GPS tracking provides courier locations, the lack of real-time traffic and road con-
dition data complicates these estimations. Existing approaches, including machine learning
and neural networks, face challenges such as dependency on extensive high-quality data.
To address this, Pomykacz et al. (Contribution 13) introduce two Bayesian generalized
linear models for delivery time prediction using a linear combination of predictors and the
Hamiltonian Monte Carlo sampling technique. Their ability to effectively balance flexibility
and generalizability is enhanced by the integration of expert knowledge for tuning.

With the rising popularity of online food delivery services, accurate delivery time
predictions have become essential for maintaining customer satisfaction in a competitive
market. Gibas et al. (Contribution 14) focus on improving delivery time estimates by
enhancing data quality through spatial analysis and preprocessing techniques for Bayesian
modeling. Using route data generated via the OSRM API, suspicious results were visual-
ized and analyzed, identifying outliers and refining maximum route distance boundaries.
These outliers were predominantly connected to deliveries in areas beyond city limits. By
addressing data anomalies and improving data quality, the study aims to enhance the
precision of delivery time predictions, supporting better customer experiences.

To tackle the path planning challenges, Dai et al. (Contribution 15) introduce a
Hybrid Decentralized and Centralized Training and Execution Strategy designed to enhance
computational efficiency and system performance. The approach begins with decentralized
path planning using deep Q-networks, enabling robots to independently determine initial
paths. A centralized collision detection phase then identifies potential risks, allowing
for non-colliding paths to proceed while triggering dynamic re-planning for intersecting
routes. During re-planning, robots treat others as moving obstacles to avoid, guaranteeing
seamless operation. The optimized paths are subsequently merged with the initial safe
routes to create full trajectories.

In the fast-paced digital era, banking firms need to integrate qualitative feedback
with quantitative analysis to refine website interfaces, enhancing user experiences and
building customer loyalty. Giannakopoulos et al. (Contribution 16) analyze user behavior
on the websites of major banking firms by leveraging Big Data, statistical validation, and
simulation techniques like agent-based modeling and system dynamics. These methods
provided insights into how user interactions and website metrics, including traffic sources
and bounce rates, influence key performance indicators such as conversion rates and aid
performance. Additionally, integrating neuromarketing data revealed areas for interface
and performance optimization, facilitating banking firms in designing more user-focused
and intuitive online platforms.
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The accurate monitoring and prediction of heart rate (HR) are crucial for optimizing
personalized fitness experiences and improving cardiovascular health. As wearable tech-
nology continues to grow, tracking HR has become more feasible, but modeling of HR
responses to workout intensity remains challenging in real-world applications. Kayange
et al. (Contribution 17) introduce a hybrid method combining dynamic Bayesian net-
works with long short-term memory networks to model HR dynamics during exercise.
This approach accounts for individual fitness characteristics and external factors, offering
personalized HR predictions for future workouts. Additionally, it incorporates an adap-
tive feature selection module to enhance performance. Experimental results validate the
method’s ability to predict HR responses accurately and provide real-time, personalized
fitness recommendations.

Advancements in object detection have significantly influenced the progress of face
detection, with the YOLO series being recognized for its computational efficiency. However,
lightweight YOLO-based face detectors face challenges in accurately identifying small faces
because of the loss of critical details. Liu et al. (Contribution 18) tackle these challenges
through two improvements: replacing the conventional feature pyramid network with a
gather-and-distribute mechanism to enhance information fusion, and adding a specialized
detection head for small faces.

Botnets using domain generation algorithms challenge network security by evading
traditional defenses, with existing detection models often struggling due to limited training
data. Tang et al. (Contribution 19) introduce a multi-scale feature fusion model that
integrates transformer and rapid selective kernel network architectures. This approach
integrates adaptive receptive field selection, optimized multi-scale convolution, and an
enhanced feature pyramid network for improved feature fusion.

Patents offer valuable insights into the technologies developed in various fields.
Park et al. (Contribution 20) focus on analyzing patent documents to extract keywords
using text mining techniques, which were then used to build a keyword-document matrix
for further analysis. However, the prevalence of zero values in the matrix makes it difficult
for conventional statistical techniques, like linear regression, to effectively process the data.
To address this issue, this article proposes a regression model derived from the quantile
cumulative distribution function, specifically designed to manage the zero-inflation issue
in patent keyword analysis.

Wang et al. (Contribution 21) present a model reduction technique using singular
perturbation theory to simplify spacecraft electrical system models, addressing the chal-
lenge of balancing simulation efficiency and accuracy. The proposed method significantly
reduces simulation time while maintaining high accuracy, making it suitable for practical
applications like digital twins. This approach provides an efficient solution for fast-paced
simulations of spacecraft electrical systems and shows promising potential for broader use.

Kim et al. (Contribution 22) explore the relationship among SAs of environmental,
social, and governance (ESG) news and the financial outcomes of companies in innovative
industries. By analyzing a significant number of ESG-related articles using advanced
machine learning models, the study conducted a SA to extract crucial ESG terms and their
relevance across different industries. The analysis linked sentiment outcomes with financial
indicators like profitability, cash flow, and stability a span of three years. Additionally, ESG
ratings from Morgan Stanley Capital International were incorporated to enrich the study.
The findings indicate that the influence of sentiment on financial performance differs by
industry, with positive sentiment aligning with financial success in mobility and renewable
energy, whereas consumer goods companies frequently display positive sentiment despite
lower environmental ESG scores. This article emphasizes the importance of tailoring ESG
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strategies to specific industries, particularly in rapidly evolving sectors, and calls for further
research to refine ESG SA.

False data injection attacks pose significant risks to the stability of power systems, as
they can deceive detection systems by closely mimicking normal data. Existing detection
methods often struggle to accurately identify these attacks, especially when the data are
contaminated by ambient noise. To tackle these problems, Luo et al. (Contribution 23)
proposed an innovative approach using an attentional convolutional neural network driven
by distinction improvements and information integration. The approach first employs
an autoencoder designed to minimize reconstruction and discrimination losses, making
it particularly effective at distinguishing normal data. Then, the model calculates the
association matrix of original and reconstructed data, enhancing the distinction between
legitimate and fraudulent data. Additionally, to improve the robustness of feature extraction
and mitigate the impact of noise, the network includes a convolutional block attention
module, which helps prioritize crucial features.

Amid the swift expansion of the digital economy and the increasing participation
in social networks (SNs), decision making and CRP has turned more complex. Xu et al.
(Contribution 24) present an enhanced CRP mechanism designed to address the challenges
of LSGDM in SNs. As the quantity of DMs rises, consensus efficiency declines, and minority
views and non-cooperative behaviors complicate decision-making processes. The proposed
solution integrates the hippopotamus optimization algorithm (HOA) with Leiden clustering
to speed up community division, known as HOAL, and introduces a two-stage opinion
adjustment strategy to manage minority views, non-cooperative behaviors, and fine-tune
subgroup perspectives. Trust relationships among DMs are incorporated into both the
clustering and opinion adjustment procedures, creating the HOAL-DFT-MOH framework.
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Abstract: Botnets pose a significant challenge in network security by leveraging Domain Genera-
tion Algorithms (DGA) to evade traditional security measures. Extracting DGA domain samples
is inherently complex, and the current DGA detection models often struggle to capture domain
features effectively when facing limited training data. This limitation results in suboptimal detection
performance and an imbalance between model accuracy and complexity. To address these challenges,
this paper introduces a novel multi-scale feature fusion model that integrates the Transformer ar-
chitecture with the Rapid Selective Kernel Network (R-SKNet). The proposed model employs the
Transformer’s encoder to couple the single-domain character elements with the multiple types of
relationships within the global domain block. This paper proposes integrating R-SKNet into DGA
detection and developing an efficient channel attention (ECA) module. By enhancing the branch
information guidance in the SKNet architecture, the approach achieves adaptive receptive field selec-
tion, multi-scale feature capture, and lightweight yet efficient multi-scale convolution. Moreover, the
improved Feature Pyramid Network (FPN) architecture, termed EFAM, is utilized to adjust channel
weights for outputs at different stages of the backbone network, leading to achieving multi-scale
feature fusion. Experimental results demonstrate that, in tasks with limited training samples, the
proposed method achieves lower computational complexity and higher detection accuracy compared
to mainstream detection models.

Keywords: botnet; domain generation algorithm; transformer model; depthwise separable convolu-
tion

1. Introduction

With the continuous development and iteration of Internet technology, people’s
lifestyles have become more convenient. However, this progress has also led to a rise
in both the number and complexity of malware, giving rise to black-market industries and
cybercriminal activities, such as botnets and phishing. Attackers use malware to infect
networks, issuing commands to compromised machines or botnets to steal sensitive data,
launch Distributed Denial of Service (DDoS) attacks, and carry out other cyberattacks,
posing significant challenges to global network security. To evade security checks and
maintain control over compromised hosts for extended periods, thereby maximizing eco-
nomic benefits, modern malware attackers frequently integrate DGA into malware. DGA
enables the rapid generation of numerous dynamic domains to connect with Command and
Control (C&C) servers. The malware client and attacker both use the same DGA algorithm
to generate a list of candidate domains. When preparing for an attack, a subset of these do-
mains is registered to establish communication. Due to the high randomness and dynamic
nature of DGA-generated domains, malware can rotate domains throughout its attack cycle,
making it nearly impossible for network security tools to block all malicious domains via
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blacklists. Consequently, accurately detecting DGA-generated domains and disrupting the
communication between botnets and C&C servers is crucial for malware defense.

In recent years, the rapid development of deep learning has demonstrated its vast
potential across various fields, leading researchers to explore its application in DGA de-
tection. Compared to machine learning methods based on domain traffic characteristics
and manually defined statistical features, deep learning eliminates the need for manual
feature extraction and significantly improves the accuracy of DGA detection. Therefore,
deep learning has become a key technology for enhancing the efficiency and precision of
DGA detection.

Current DGA detection models commonly use Transformer encoders to capture com-
plex long-range dependencies between characters within domain names. The resulting
feature sequences are then processed through a multi-branch convolutional network archi-
tecture to extract features from different receptive fields, followed by a Bidirectional Long
Short-Term Memory (Bi-LSTM) network to obtain bidirectional sequence features. The final
classification is achieved through feature fusion. However, this network architecture still
has several weaknesses:

• While parallel multi-scale convolution benefits from multiple receptive field features,
the information between branches remains independent and lacks effective coupling.
Additionally, the features extracted from each receptive field are complex, and a simple
parallel structure cannot adequately capture comprehensive features across all scales,
reducing detection accuracy. Furthermore, although ordinary convolution can extract
more comprehensive features, it results in high training costs.

• The outputs of each stage in the backbone network are merely concatenated, which
prevents the extraction of hierarchical features at different stages. This leads to feature
redundancy and negatively impacts detection accuracy.

To address these weaknesses, this paper proposes R-SKNet and EFAM to deeply
extract domain features, enhancing model performance through rapid adaptive selection of
receptive field scales and efficient feature fusion across different stages. The contributions
of this paper can be summarized as follows:

• This paper proposes R-SKNet, which allows for rapid adaptive selection of multi-
scale receptive fields within the network, effectively coupling feature information
across branches.

• This paper proposes an improved feature fusion strategy, EFAM, which facilitates
efficient multi-scale feature fusion and enhances hierarchical features. It further refines
the convolution strategy to capture spatial focus points better.

• Based on Transformer, R-SKNet, and EFAM, this paper proposes a DGA domain
detection framework, TransFlexNet, which takes the advantages and the strengths of
these three models. It outperforms mainstream models under both large and small
sample conditions.

With the growing complexity of network threats, existing DGA detection methods
often struggle with effective feature extraction and fusion, making it difficult to counter the
evolving tactics of malware attacks. To address these challenges, this paper introduces the
TransFlexNet detection framework, designed to improve the precision and efficiency of
DGA detection and strengthen network security defenses.

The rest of the paper is organized as follows: Section 2 reviews related work. Section 3
describes the proposed DGA detection model. Section 4 discusses and analyzes the datasets
and experimental results. Section 5 concludes the paper with future directions.

2. Related Work

In today’s cybersecurity field, DGA detection has become a crucial research topic.
With the continuous advancement and application of machine learning and deep learning
technologies, these advanced techniques have been integrated into traditional algorithmic
models to address the challenges in DGA detection. These challenges include the need for
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continuous updates to detection methods and models as attackers use various algorithms,
the difficulty of feature extraction due to the high similarity between random and legitimate
domain names, and the impact of dataset bias on the generalization ability of models.
Building on these points, we analyze existing DGA detection techniques.

2.1. Machine-Learning-Based Detection Methods

Traditional machine learning methods rely on large amounts of annotated data, which
are difficult to obtain in real-world applications. To address this issue, Yan et al. [1]
proposed a semi-supervised learning strategy that constructs domain relationship graphs
and utilizes unlabeled data to enhance the identification of DGA family evolution and
new variants. This approach maintains high efficiency and accuracy, even with limited
labeled resources. Anand et al. [2] integrated C5.0, Random Forest, Gradient Boosting, and
CART, and used 44 comprehensive lexical and statistical features, significantly improving
the recognition accuracy of DGA domain names and the robustness of the model. Satoh
et al. [3] conducted word-level feature analysis, using specific lexical generation patterns
to identify dictionary-based DGA malware, highlighting the importance of semantic and
linguistic features. Vranken et al. [4] applied TF-IDF techniques to analyze n-grams in
domain names, reducing dependence on large-scale annotated data and improving the
accuracy of DGA domain name detection.

Although these methods have achieved breakthroughs in specific scenarios, they still
have limitations in terms of feature dependence and generalization capabilities. Semi-
supervised learning heavily relies on the quality of labeled data, and its performance
degrades when the labeling quality is poor. Anand’s integrated model relies on complex
and time-consuming feature engineering, which does not take the advantages of certain
critical features. TF-IDF relies on known vocabularies and performs poorly when facing the
novel DGA variants. In contrast, deep learning demonstrates greater advantages through
automated feature extraction.

2.2. Deep-Learning-Based Detection Methods

Deep learning techniques offer new solutions to problems in machine learning. Yang
et al. [5] developed the N-Trans parallel detection model, which combines the N-gram
algorithm and the Transformer model. By adding flag bits, it effectively extracts domain
name features, allowing precise differentiation between legitimate and malicious domain
names. Namgung et al. [6] proposed an integrated model combining BiLSTM and CNN,
utilizing an attention mechanism to more effectively learn both local and global information
in domain name sequences, significantly enhancing DGA domain detection performance.
Shahzad et al. [7] developed an RNN-based DGA domain classifier that does not require
context information or manual features. By analyzing a dataset of over 2 million domain
names, they demonstrated the effectiveness of the RNN architecture. Liang et al. [8]
found that DGA detection models are sensitive to domain name length and proposed a
heterogeneous DGA detection model based on CNN and Random Forest, optimized for
domain names of different lengths. Qi et al. [9] introduced the CNN–LSTM model, which
combines CNN and LSTM to extract N-gram features through CNN and process them
with LSTM, effectively classifying and predicting dictionary-based DGA domain names.
Jiang et al. [10] proposed the CNN–GRU–Attention model, which uses CNN to extract
spatial features, GRU to extract temporal features, and an attention mechanism to improve
detection accuracy.

The aforementioned deep learning methods have achieved promising detection results.
However, their use of standard parallel convolution in feature extraction fails to capture
comprehensive multi-scale features and incurs high training costs. To address these issues,
this paper introduces ECA, which computes attention weights without dimensionality
reduction, thereby reducing the model’s parameter count.
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2.3. Detection Methods Based on Additional Mechanisms and Other Algorithms

In certain scenarios, incorporating additional modules into deep learning frameworks
can enhance performance. Ren et al. [11] proposed the ATT–CNN–BiLSTM framework,
which combines CNN and BiLSTM with an attention mechanism to extract and optimize
domain name features effectively. Pan et al. [12] improved word embedding methods
by enhancing character features through the extraction of semantic features and adding
additional mechanisms to improve detection accuracy.

Some detection algorithms do not use traditional machine learning or deep learning
algorithms. Fang et al. [13] used an improved Word2Vec algorithm and incremental word
embedding methods to capture the interactions and time series patterns between domains
and endpoint hosts. By automatically learning the features of over 1.9 million domains, they
developed a simple classifier to distinguish between malicious and benign domain names.

In summary, traditional machine learning heavily relies on feature engineering, while
deep learning offers the advantage of automatic feature extraction. Building upon existing
DGA models, our research demonstrates that integrating the ECA module enables efficient
multi-scale feature fusion, effectively reduces model parameters, and enhances accuracy.

3. DGA Domain Detection Model

This section presents the domain detection framework, model, its layers and compo-
nents, as well as their functions.

3.1. Overall Framework

To address the limitations of parallel multiscale convolution in terms of feature cou-
pling and focus aggregation, this paper employs the Selective Kernel Network (SKNet) [14]
for feature extraction, optimizing the traditional parallel convolution architecture. SKNet
enhances inter-branch feature fusion by implementing an attention mechanism and adap-
tively adjusts the receptive field weights. However, the dimensional scaling approach used
by SKNet may compromise feature integrity and increase training costs. To mitigate this, we
introduce the ECA [15] mechanism, which allocates attention across receptive fields through
limited cross-channel interactions. Additionally, the paper incorporates Deep Separable
Dilated Convolution [16], a method that expands the receptive fields without increasing
parameter counts, providing richer semantic information for the backbone network.

To address the issues of insufficient hierarchical feature extraction and feature redun-
dancy resulting from the simple concatenation of outputs from each stage of the backbone
network, this paper introduces the FPN [17] to achieve multi-scale feature fusion. By
layering up-sampling and lateral connections between different levels, FPN effectively
integrates features across scales to enhance detection accuracy. To further enhance fusion
efficiency, this paper proposes an improved fusion strategy, EFAM, which reduces feature
redundancy and improves aggregation by incorporating an efficient attention mechanism
and refining the convolution strategy to better focus on spatial details.

Building on these enhancements, this study introduces a multi-scale feature fusion
model utilizing Transformer and R-SKNet. The model consists of three layers: an input layer
that converts domain name strings into vectors for word embedding; a feature extraction
layer composed of the Transformer Encoder, R-SKNet, and EFAM; and an output layer that
employs 1D convolution instead of traditional fully connected layers, outputting the final
classification results via a Softmax function. The entire framework is shown in Figure 1.

3.2. Input Layer

The input layer preprocesses raw domain names and converts them into a vector form
that machines can interpret. In this study, the length of all domain names is standardized
to L. Domain names longer than L are truncated, while those shorter than L are padded
with zeros on the right, ensuring that all domain name texts have a uniform length of L, as
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shown in Figure 2. Let the domain name string be S, where ci is the i-th character of the
domain name, as shown in (1).

S = c1c2c3 · · · cL (1)

Figure 1. Overall framework.

Figure 2. Sample domain length.

As shown in Figure 2, the samples with a length greater than 40 are relatively few. To
ensure efficient use of the dataset and to improve data processing efficiency, this study sets
the length threshold, L, to 40.

In this paper, a domain name is represented as a unique type of string. The domain
name text is split into individual characters, each assigned an index to create an indexed
dictionary, D. The original domain name samples are then processed with a tokenizer to
generate a list of domain name characters, SD, as shown in (2).

D = [D(c1)D(c2) . . . D(cL)] (2)

where D(ci) is the index value of the domain character ci in the dictionary D, and i ∈ {1, 2, . . . , L}.
The embedding layer’s dimension is set to d. According to the embedding layer dimension d and
domain name length L, a domain name vector RL×d is generated by random initialization. For
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the character vector xi ∈ RL×d, it is multiplied by the weight matrix Ad×L to obtain Yi, and they
are concatenated to obtain a new domain name vector E. The weight matrix A is updated during
downstream task training to obtain the optimal embedding representation, with d set to 64.

3.3. Feature Extraction Layer

The feature extraction layer integrates the global information encoding capabilities of
the Transformer with the rapid adaptive kernel selection mechanism of R-SKNet to target
different features effectively. It further incorporates the EFAM efficient fusion attention
module to enhance multi-scale feature fusion. This comprehensive design optimizes the
model’s parameter count and reduces structural complexity while improving the efficiency
and accuracy of feature extraction.

3.3.1. Transformer Encoder

The structure of the transformer encoder module is shown in Figure 3.

Figure 3. Transformer encoder module.

After processing through the embedding layer, domain names are converted into
vector representations, E. These vectors are then passed through the Transformer’s multi-
head self-attention mechanism, which captures complex interactions between characters
by applying multiple attention heads, each focusing on different subspaces of the input.
Each head performs linear transformations on the input vector E to generate Q (query),
K (key), and V (value). The computation process of the multi-head attention mechanism is
expressed as shown in (3).

MultiHead(Q, K, V) = Concat(head1, · · · , headh)Wo (3)

where each headi is the output of a single attention head, and Wo is a weight matrix for
linear transformation. The calculation process of each headi is shown in (4).

Attention(Qi, Ki, Vi ) = softmax

(
QiKi

T
√

dk

)
Vi (4)

where Qi (query), Ki (key), and Vi (value) matrices are obtained by linear transformation
of the original domain name vectors R. The dimension dk of the key vector is used for
normalization, adjusting the softmax distribution to stabilize gradient flow during training.

To ensure that the model adapts to the dynamic changes in input features, the output
of the multi-head attention mechanism is normalized through residual connection, as
shown in (5).

x′i =
xi − μ

σ
(5)

where x′i represents the normalized output and μ and σ represent the mean and standard
deviation across the dimensions. Normalization helps to stabilize the training dynamics.
The normalized output is then fed into a feed-forward neural network (FFNN), which
generates the output of the Transformer encoder, providing a refined feature set for subse-
quent analysis.
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3.3.2. Rapid Selective Kernel Network

In traditional DGA domain detection models, feature gains from different receptive
fields are typically achieved through a multi-branch network structure with fixed receptive
field sizes. This design leads to an increase in the number of model parameters and higher
computational complexity. SKNet introduces additional parameters through its multi-path
kernel selection mechanism, which complicates the model, and increases computational
demand by applying convolutional kernels of various sizes across multiple branches to
enhance feature processing.

To address this, we propose R-SKNet, which integrates an ECA module into SKNet.
R-SKNet achieves multi-receptive field feature extraction by adaptively selecting convolu-
tion kernel sizes within a single network, simplifying design and optimizing complexity.
The ECA module further reduces parameters while enhancing performance, demonstrat-
ing improved detection accuracy with a lightweight model. The structure of each R-SK
convolution is shown in Figure 4.

Figure 4. R-SK convolution structure.

In Figure 4, the input domain name matrix X ∈ RC′×L′ undergoes two different

transformation operations, denoted as:
∼
F : X →

∼
U ∈ RC×L and F̂ : X → Û ∈ RC×L . These

operations use one-dimensional convolutional kernels of different sizes (3 and 5) for feature
extraction. To enhance model efficiency, traditional convolutions are replaced by depthwise
separable dilated convolutions. Batch normalization and the ReLU activation function are
applied after each convolution to improve non-linearity and generalization capability. In
particular, the 1D convolution with a kernel size of 5 is replaced by a dilated convolution
with a kernel size of 3 and a dilation rate of 2.

The depthwise separable convolution technique decomposes standard convolution
into depthwise convolution and pointwise convolution, processing each dimension of
the input matrix separately. This approach allows each convolution kernel to indepen-
dently correspond to and process a single dimension, focusing on learning spatial features,
while pointwise convolution is responsible for learning features between channels. This
decomposition significantly reduces the number of model parameters while preserving
learning efficiency.

To gather information from all branches and assign weights to the grouped convolution
results, the processing results of each branch are first obtained, and then the features are
fused, as shown in (6).

U =
∼
U + Û (6)

After obtaining the fused features from different branches, global average pooling is
used to generate channel-level statistics. In the DGA domain name detection task, the use
of global average pooling (GAP) can achieve better feature aggregation effects. After GAP,
the channel-level statistical information y ∈ RC is generated, as shown in (7).

y =
1

CL
ΣC,L

i=1,j=1Uij (7)
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To introduce a channel attention mechanism that adaptively adjusts channel weights,
two non-linear fully connected (FC) layers are typically employed, followed by a Sigmoid
function to generate the weights. Although this approach enhances the model’s ability to
capture non-linear cross-channel interactions, it significantly increases model parameters
and disrupts the correspondence between channels and weights. To address this, we
propose using the ECA module, which replaces traditional FC layers to facilitate local
cross-channel interactions without dimensionality reduction. The ECA module effectively
facilitates appropriate inter-channel interactions without sacrificing the correspondence
between channels, significantly enhancing model performance. The ECA module is shown
in Figure 5. The ECA module uses a band matrix Wk to learn channel attention, as shown
in Figure 6.

Figure 5. ECA module.

Figure 6. Band matrix.

The parameters involved in the band matrix Wk are K× C. Through (8), the weight of
yi considers only the relationship between yi and its k neighbors. Additionally, all channels
share the same learned parameters, enabling local cross-channel interaction. This can be
implemented using a 1D convolution with a kernel size of k, as shown in (9).

Uwi = σ

(
k

∑
j=1

wjyj
i

)
, yj

i ∈ Ωj
i (8)

w = σ(C1Dk(y)) (9)

where Ωk
i denotes the set of k neighboring channels of yi, σ represents the Sigmoid func-

tion, and C1D denotes the one-dimensional convolution. The value of k is dynamically
determined by (10).

k =

∣∣∣∣∣∣
log2

(
2(C)
)

γ
+

b
γ

∣∣∣∣∣∣
odd

(10)

where |t|odd denotes the nearest odd number to t, and C represents the channel dimension.
In all experiments, γ and b are set to 2 and 1, respectively. The ECA module, which involves
only b parameters, achieves better performance than FC layers, which require more complex
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operations. Based on the information of w, softmax is performed on the channel dimension
to obtain ac and bc, as shown in (11).

ac =
e
∼
Ucw

e
∼
Ucw + eÛcw

, bc =
eÛcw

e
∼
Ucw + eÛcw

(11)

where a and b are the soft attention vectors of
∼
U and Û respectively.

∼
Uc ∈ RC×1, with ac

being the c-th element of a. Similarly, Ûc and bc. The final batch feature map V is derived

from the attention weights of each kernel from the branches
∼
U and Û, as shown in (12).

Vc = ac ·
∼
Uc + bc · Ûc,

ac + bc = 1
(12)

where V = [V1, V2, V3, · · · , VC], and Vc ∈ RC×1. After obtaining the feature matrix V, a
residual connection is made to complete the R-SK convolution operation.

3.3.3. Efficient Fusion Attention Module

The EFAM is a key component of the TransFlexNet architecture. By incorporating
the ECA module before both lateral and vertical connections in the FPN and performing
convolution after feature fusion, EFAM enhances the efficiency of feature fusion and
strengthens feature representation. In the R-SKNet backbone, the output from the last
residual block of each R-SK unit, with varying numbers of convolution kernels, is selected
as input and passed to the EFAM for feature fusion. The structure of the EFAM is shown
in Figure 7.

Figure 7. EFAM structure.

Starting with the input feature matrices {Va, Vb, Vc, Vd} from the R-SKNet backbone,
each matrix first passes through the ECA module to compute channel-level attention
weights. These weights are applied to the original matrices, enhancing the network’s
response to key features and improving representation capabilities. A 1D convolution with
a kernel size of 1 is then used to adjust the channel number of each weighted matrix to 128,
resulting in {Va, Vb, Vc, Vd}.

To build a multi-scale feature representation hierarchy and promote bottom-up in-
formation flow, pooling operations are applied to these adjusted matrices. Specifically,
max pooling with a kernel size of 3 and stride of 2 is applied to Vb, average pooling with
a kernel size of 3 and stride of 4 to Vc, and average pooling with a kernel size of 3 and
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stride of 8 to Vd. These operations create feature maps at different scales, with strides set to
{5, 10, 20, 40}. By upsampling higher-level features, the EFAM generates feature matrices
with coarser spatial resolution but richer semantic information, establishing a top-down
feedback path.

Lateral connections are then used to fuse top-down and bottom-up feature paths. After
each fusion, the ECA module readjusts channel attention, followed by a 1D convolution
with a kernel size of 3 to extract features, resulting in {Va, Vb, Vc, Vd}, which match the
original input dimensions. These matrices {Va, Vb, Vc, Vd} serve as the output of the feature
extraction layer and the input for the next layer in the pyramid, further strengthening
features in the top-down path.

3.3.4. Output Layer

First, the outputs of the feature extraction layer {PA, PB, PC, PD} are fused into a com-
prehensive feature vector P in the output layer, achieving feature information integration,
as shown in (13).

P = [PA, PB, PC, PD] (13)

Next, the Dropout layer is used to probabilistically discard elements from the feature
vector P to improve the generalization ability of the model and to reduce the risk of
overfitting. Subsequently, a convolutional layer with a kernel size of 1 is used to replace
the traditional fully connected layer, followed by a ReLU layer and a global average
pooling layer, which significantly reduces the number of model parameters, adds non-
linear activation, and enhances the network’s expressive ability. Finally, the softmax
function is used to obtain the probability y of each class, achieving the final classification.

4. Experiments and Result Analysis

4.1. Experimental Environment and Datasets

The experimental setup includes an Intel Core i7-11800H processor, NVIDIA RTX3070
GPU, and 32 GB RAM, operating on Windows 11 with Python 3.11 and PyTorch 2.2.1 for
neural network modeling.

We have successfully deployed the detection model on low-performance devices
in real-world scenarios, demonstrating its practical applicability. To further validate the
model, we designed and implemented a prototype system for model deployment and
detection. The system was put on the URL: https://github.com/make666999/jishe_DGA
(accessed on 20 November 2024). However, due to the limited occurrence of large-scale DGA
domain malicious attack incidents in real network environments, this study utilizes multiple
publicly available datasets to construct and validate the domain name classification model.

To improve the breadth and accuracy of the research, different types of datasets are
used in this experiment. The first dataset, sourced from Alexa [18] and 360NetLab [19], con-
sists of the top 55,000 benign domains from Alexa and malicious domains from 360NetLab’s
DGA dataset. The second dataset is sourced from Alexa and DGArchive [20], comprising
57,500 benign domains and 71,841 malicious domains, respectively.

Table 1 lists the three initial samples from 360NetLab and DGArchive. Table 2 lists the
three initial samples from Alexa.

Table 1. 360NetLab and DGArchive initial samples.

Dataset DGA Family Domian Start Valid Time End Valid Time

locky labywvrw.pw 2020-10-26 00:00:00 2020-10-27 23:59:59
360NetLab nymaim jkybwgxpfr.com 2020-10-27 00:00:00 2020-10-27 23:59:59

qadars sqgaoag606cm.top 2020-10-27 00:00:00 2020-11-02 23:59:59

bazarloader_dga_bc7bb913 idfuuhom.bazar 2021/1/1 0:00 2021/1/31 23:59
DGArchive bazarloader_dga_bc7bb913 biyxtuom.bazar 2021/12/1 0:00 2021/12/31 23:59

bazarloader_dga_bc7bb913 etywydom.bazar 2021/10/1 0:00 2021/10/31 23:59

18



Electronics 2024, 13, 4982

Table 2. Alexa initial samples.

Label Url

BENIGN facebook.com
BENIGN youtube.com
BENIGN www.google.com

Considering that the sample size of some malicious domain families is insufficient to
support model training, families with fewer than 200 samples were excluded to support
model training, selecting 33 families from 360NetLab and 42 from DGArchive. To mitigate
sample imbalances, domains were randomly sampled from these larger families, and all
domain names were standardized to 40 characters through padding or truncation. The
processed datasets from 360NetLab and DGArchive were combined with the Alexa dataset,
resulting in two comprehensive datasets: Alexa and 360NetLab with 107,541 domain
instances and Alexa and DGArchive with 129,341 domain instances. Table 3 lists the results
of several datasets after preprocessing.

Table 3. Example after preprocessing.

Label Url

0 facebook.com
14 labywvrw.pw
18 jkybwgxpfr.com

For binary classification, benign domains are labeled as 0 and malicious domains as
1. In multiclassification, the Alexa and 360NetLab dataset contains 33 DGA families and
benign domains, while the Alexa and DGArchive dataset includes 42 DGA families and
benign domains, with labels assigned sequentially from 0. Both datasets were randomly
divided into training and test sets, with test sets accounting for 20% of the total data.
Dataset details and experimental hyperparameters are listed in Tables 4 and 5.

Table 4. Detailed information of dataset.

Category Alexa and 360NetLab Alexa and DGArchive

Total Number of Domains 107,541 129,341
Benign Domains 55,000 57,500
DGA Domains 52,541 71,841
Domain Length 40 40

Total Number of Categories 34 42

Table 5. Model hyperparameters.

Hyperparameters Description

Epochs 100
Batch Size 256

Embedding Dimension 64
Learning Rate 0.001

Step Size for Learning Rate Scheduler 20
Gamma for Learning Rate Scheduler 0.5

Test set proportion 20%
Optimizer Adam

Loss function CrossEntropyLoss
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4.2. Evaluation Metrics

The evaluation metrics for the experimental results include accuracy, precision, recall,
F1 score, and detection time. The calculation formulas are shown in (14) to (17).

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 =
2× Precision× Recall

Precision + Recall
(17)

where TP is the number of true positives, FN is the number of false negatives, and FP is the
number of false positives.

4.3. Binary Classification Experimental Results and Analysis

To verify the performance of the proposed method in DGA domain name detection,
binary classification experiments and model parameter comparisons are conducted on
the experimental sample set using the proposed method, MHA [21], SW-DRN [22], L-
PCAL [23], and the multi-feature fusion model (referred to as TMF). The evaluation metrics
included accuracy, recall, precision, F1 score, and parameter count. The experimental
results for the Alexa and 360NetLab are shown in Table 6 and Figure 8, and the Alexa and
DGArchive’s results are shown in Table 7.

Table 6. Binary classification results and model parameters for Alexa and 360NetLab.

Method Accuracy Recall F1 Score # P

MHA 0.9269 0.9448 0.9260 406,306
SW-DRN 0.9679 0.9717 0.9669 1,963,524
L-PCAL 0.9684 0.9754 0.9676 274,326

TMF 0.9766 0.9754 0.9756 2,771,384
Proposed Method 0.9783 0.9834 0.9777 1,783,544

Figure 8. Binary Classification Results and Model Parameters Comparisons.
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Table 7. Binary classification results for Alexa and DGArchive.

Method Accuracy Recall Precision F1 Score

MHA 0.9646 0.9646 0.9634 0.9640
SW-DRN 0.9799 0.9790 0.9802 0.9796
L-PCAL 0.9791 0.9766 0.9808 0.9787

TMF 0.9840 0.9822 0.9852 0.9837
Proposed Method 0.9852 0.9864 0.9852 0.9850

The proposed method integrates the Transformer encoder and SKNet with the ECA
module to form the improved R-SKNet. The EFAM combines the ECA module with the
FPN structure for multi-scale feature fusion, efficiently extracting feature information. As
presented in Table 6, the Alexa and 360NetLab datasets increase the accuracy, recall and
F1 score by 1.87%, 1.83%, and 1.66% on average, with peak increases of 5.14%, 3.86%, and
5.17%. Furthermore, the model reduces the parameter count by 35.63% compared to the
next-best model. From Table 7, it can be seen that the maximum increase in the Alexa
and DGArchive dataset in accuracy, recall, precision, and F1 score reaches 2.12%, 2.06%,
2.18%, and 2.06%, respectively. The method in this paper is more effective and has fewer
parameters compared to mainstream models.

4.4. Multi-Classification Experimental Results and Analysis

To validate the effectiveness of the proposed method for DGA domain family classifi-
cation, we have conducted multi-class domain detection experiments using our method,
MHA, SW-DRN, L-PCAL, and TMF on the experimental sample set. The experimental
results are shown in Tables 8 and 9.

Table 8. Multi-classification results comparison for Alexa and 360NetLab.

Method Accuracy Recall Precision F1 Score

MHA 0.8937 0.8937 0.8908 0.8883
SW-DRN 0.9225 0.9225 0.9196 0.9206
L-PCAL 0.9315 0.9315 0.9330 0.9310

TMF 0.9335 0.9335 0.9334 0.9332
Proposed Method 0.9391 0.9391 0.9377 0.9378

Table 9. Multi-classification results comparison for Alexa and DGArchive.

Method Accuracy Recall Precision F1 Score

MHA 0.9045 0.9045 0.9022 0.8993
SW-DRN 0.9113 0.9113 0.9111 0.9102
L-PCAL 0.9234 0.9234 0.9228 0.9202

TMF 0.9214 0.9214 0.9207 0.9205
Proposed Method 0.9251 0.9251 0.9233 0.9210

From the results in Tables 8 and 9, it is clear that the accuracy, recall, precision, and
F1 score for the proposed detection method on the Alexa and 360NetLab dataset are
93.91%, 93.91%, 93.77%, and 93.78%, respectively. On the Alexa and DGArchive dataset, the
respective metrics are 92.51%, 92.51%, 92.33%, and 92.10%. The multiclassification detection
performance of this method exceeds that of other approaches, with improvements noted
across all evaluation metrics.

From the above comparison results, it can be seen that the proposed method performs
better in detecting and classifying DGA domain families with fewer samples compared to
the other four mainstream methods.

The MHA method uses an LSTM-encoded Transformer detection method, obtaining
the dependency between individual characters and the entire domain name, but lacks the
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learning of multi-scale features and cannot extract deep semantic information, leading to
poor detection performance.

The SW-DRN method uses multi-scale convolution to obtain domain name features but
does not capture the dependency between characters and uses one-hot encoding, resulting
in huge memory consumption.

The L-PCAL method uses multi-scale parallel convolution and LSTM with an attention
mechanism to extract short-distance dependencies, but the extraction effect of long-distance
dependencies is poor.

The TMF method also uses parallel convolution, and the multi-scale relationships
between parallel branch convolutions are isolated and cannot be effectively coupled. The
multi-branch feature fusion is simply summed, causing branch feature generalization and
leading to reduced accuracy.

The experimental results indicate that, compared to other methods, the method pre-
sented in this paper performs best and requires fewer parameters. The main reasons can be
divided into three aspects:

• The Transformer encoder part provides a global perspective on domain name character
dependencies;

• The R-SKNet efficiently couples multi-scale feature branches, allowing the model to
perform information interaction between branches and enhancing the ability to extract
deep features;

• The EFAM effectively fuses the outputs of each stage of the backbone network, further
enhancing the model’s ability to extract domain name feature information.

4.5. Ablation Study

To evaluate the effectiveness of each module in the proposed TransFlexNet architecture,
we have conducted an ablation study comparing various configurations of existing DGA
domain detection models with and without the use of Transformer (TR), SKNet or R-SKNet,
and FPN, or EFAM. The binary and multiclassification results for the Alexa and 360NetLab
dataset are displayed in Tables 10 and 11, respectively.

Table 10. Binary classification performance for different model configurations: Alexa and 360NetLab.

Model Configuration Accuracy Recall Precision F1 Score

TR 0.9221 0.9476 0.8970 0.9216
SKNet 0.9526 0.9535 0.9487 0.9511

SKNet + FPN 0.9501 0.9580 0.9400 0.9489
SKNet + EFAM 0.9515 0.9607 0.9403 0.9504

R-SKNet 0.9498 0.9475 0.9486 0.9480
R-SKNet + FPN 0.9516 0.9610 0.9403 0.9505

R-SKNet + EFAM 0.9500 0.9519 0.9451 0.9485
TR + SKNet 0.9746 0.9773 0.9703 0.9738

TR + SKNet + FPN 0.9753 0.9765 0.9724 0.9745
TR + SKNet + EFAM 0.9761 0.9813 0.9697 0.9755

TR + R-SKNet 0.9761 0.9784 0.9724 0.9754
TR + R-SKNet + FPN 0.9760 0.9778 0.9727 0.9753

Proposed Method 0.9783 0.9834 0.9812 0.9777
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Table 11. Multi-classification performance for different model configurations: Alexa and 360NetLab.

Model Configuration Accuracy Recall Precision F1 Score

TR 0.8838 0.8838 0.8806 0.8787
SKNet 0.9007 0.9007 0.8891 0.8943

SKNet + FPN 0.8989 0.8989 0.8922 0.8944
SKNet + EFAM 0.9031 0.9031 0.8990 0.9004

R-SKNet 0.9007 0.9007 0.8957 0.8973
R-SKNet + FPN 0.9011 0.9011 0.8959 0.8978

R-SKNet + EFAM 0.9066 0.9066 0.9016 0.9034
TR + SKNet 0.9300 0.9300 0.9214 0.9254

TR + SKNet + FPN 0.9365 0.9365 0.9354 0.9356
TR + SKNet + EFAM 0.9352 0.9352 0.9348 0.9345

TR + R-SKNet 0.9352 0.9352 0.9333 0.9339
TR + R-SKNet + FPN 0.9366 0.9366 0.9354 0.9357

Proposed Method 0.9391 0.9391 0.9377 0.9378

As indicated by Table 10, through detailed experimental comparisons, our method
achieves the best results in all metrics for binary classification. The improved R-SKNet
outperforms the original SKNet, EFAM surpasses FPN, and the use of these improved
module combinations yields even better results.

As shown in Table 11, the method presented in this paper achieves the best results
in accuracy, recall, precision, and F1 score for multiclassification tasks. Compared to the
original SKNet and FPN structures, R-SKNet and EFAM exhibit superior performance
under various module combinations.

5. Conclusions

To address the difficulties in extracting a small number of domain features in existing
domain detection models, which had certain accuracy but a large amount of redundancy,
this paper proposed a multi-scale feature fusion model based on Transformer and R-SKNet.
In the input layer, the domain text was split into individual characters and indexed to
achieve optimal word embedding and to reduce the difficulty of feature extraction. The
feature extraction layer applied the TransFlexNet architecture, which used multi-scale
feature fusion to flexibly handle long-distance dependencies and the dynamic changing
local feature. The design resulted in complexity reduction. The output layer underwent
multiple processing layers to optimize the number of parameters. Compared with existing
models, the multi-feature model proposed in this paper achieved better feature extraction
results, simplified structure, and improved accuracy. Experimental results showed that in
both binary and multi-class classification experiments, the evaluation metrics of this model
are mostly improved compared to existing methods, providing a better solution for dealing
with botnets and malicious domains.

In future work, we will focus on optimizing the model architecture to enhance the
efficiency of individual components and reduce overall complexity. Techniques such as
quantization and model pruning will be employed to mitigate the computational overhead
introduced by the Transformer architecture, enabling efficient operation on embedded
devices and expanding the application scenarios for DGA detection. To further enhance
model interpretability, we plan to leverage methods such as Local Surrogate models to
provide clearer explanations and insights into the model’s decision-making process.
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Abstract: The rapid growth of the digital economy has significantly enhanced the convenience of
information transmission while reducing its costs. As a result, the participation in social networks
(SNs) has surged, intensifying the mutual influence among network participants. To support objective
decision-making and gather public opinions within SNs, the research on the consensus-reaching
process (CRP) has become increasingly important. However, CRP faces three key challenges: first,
as the number of decision-makers (DMs) increases, the efficiency of reaching consensus declines;
second, minority opinions and non-cooperative behaviors affect decision outcomes; and third, the
relationships among DMs complicate opinion adjustments. To address these challenges, this paper
introduces an enhanced CRP mechanism. Initially, the hippopotamus optimization algorithm (HOA)
is applied to update the initial community division in Leiden clustering, which accelerates the cluster-
ing process, collectively referred to as HOAL. Subsequently, a two-stage opinion adjustment method
is proposed, combining minority opinion handling (MOH), non-cooperative behavior management,
and dual-fine tuning (DFT) management, collectively referred to as DFT-MOH. Moreover, trust
relationships between DMs are directly integrated into both the clustering and opinion management
processes, resulting in the HOAL-DFT-MOH framework. The proposed method proceeds by three
main steps: (1) First, the HOAL clusters DMs. (2) Then, in the initial CRP stage, DFT manages
subgroup opinions with a weighted average to synthesize subgroup perspectives; and in the second
stage, MOH addresses minority opinions, a non-cooperative mechanism manages uncooperative
behaviors, and DFT is used when negative behaviors are absent. (3) Third, the prospect-regret theory
is applied to rank decision alternatives. Finally, the approach is applied to case analyses across three
different scenarios, while comparative experiments with other clustering and CRP methods highlight
its superior performance.

Keywords: social network; Leiden clustering; hippopotamus optimization algorithm; minority
opinion handling; non-cooperative behavior

1. Introduction

With the rapid development of digitalization and the emergence of the digital economy,
social media platforms such as Facebook, Twitter, and LinkedIn have gradually entered
the public eye, becoming an indispensable part of daily life [1,2]. Moreover, short video
applications such as TikTok and Snapchat have also enriched social functions, making
information exchange among users more convenient [3]. In sociology, groups associated
with decision-makers (DMs) influence their opinion adjustments, and social networks (SNs)
play an important role in the consensus-reaching process (CRP) [4–6]. Since social network
analysis (SNA) can reveal the relationships and influence among DMs, integrating SNA
with CRP allows for the consideration of SNs’ impacts on group opinion adjustments [7,8].
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As a crucial step in group decision-making, CRP plays a significant role in decision-
related issues [9]. While combining SNA with CRP allows for a thorough consideration of
mutual influence among DMs in the decision process; the ease of online communication
and reduced communication costs has introduced inevitable challenges to group decision-
making. First, the number of DMs has surged, and when it exceeds 20, it is generally
considered as a large-scale group decision-making (LSGDM) problem [10–12]. This in-
crease in scale also raises the complexity of performing CRP within LSGDM [13]. Second,
incorporating SNA allows for the formulation of rational opinion adjustment strategies [14].
Third, the complexity of user opinions in the DM communication process makes it crucial to
obtain a comprehensive evaluation that balances individual opinions as much as possible.

This paper optimizes the Leiden clustering using the hippopotamus optimization
algorithm (HOA) with collaborative indicators based on weight and opinion similarities for
the individual classification [15]. Leveraging SNA, the proposed HOAL-DFT-MOH group
consensus adjustment mechanism effectively analyzes social relationships and interaction
characteristics among individuals within an SN group. By integrating the group consensus
adjustment mechanism, the model considers mutual influences among DMs and applies
tailored opinion adjustment strategies, closely simulating real-life decision scenarios. Fur-
thermore, as an essential component of LSGDM, the group consensus adjustment enhances
the rationality and realism of decision outcomes, advancing the development of LSGDM.

In what follows, Section 1.1 introduces existing methods for partial clustering and
highlights the advantages of the clustering approach used in this paper. Section 1.2 presents
LSGDM, with a focus on the CRP that considers minority opinions and non-cooperative
behaviors. Section 1.3 provides a summary of challenges and contributions of the method
proposed in this paper.

1.1. Clustering in LSGDM Based on SNs

Clustering is an unsupervised learning algorithm that classifies objects in a dataset
based on certain features within samples [16]. In LSGDM, the efficiency of traditional group
consensus adjustments declines significantly, falling short of requirements [17,18]. Due to
the simplicity and flexibility of clustering, it has been widely applied in LSGDM, where
increasing the number of adjustment iterations reduces the scope of consensus adjustments,
thereby enhancing decision efficiency [19,20].

There has been extensive research on integrating clustering with group consensus
adjustments. In this paper, clustering methods are roughly classified into three categories:
first, further improvements and optimizations based on classic clustering [21,22]; second,
the combination of clustering with SNA to achieve more intuitive grouping results [23–25];
and third, the integration of biological or medical knowledge to simulate certain biological
behaviors or mechanisms for clustering analysis [26].

Recently, Harshavardhan et al. [27] utilized the biogeography-based optimization
to improve fuzzy C-means clustering, while Guo et al. [28] proposed a new three-way
clustering based on K-means clustering. Although these approaches enhanced the clus-
tering efficiency by refining the foundational clustering, they failed to consider applying
clustering analysis within the context of SNs [25]. Both Louvain and Leiden clustering
can perform community divisions on complex SNs [10,29]; however, Leiden clustering
demonstrates superior efficiencies and performances [30]. Simulating certain biological
behaviors offers stronger spatial search capabilities and better clustering outcomes than
classic clustering, such as genetic algorithms [31], ant colony optimization [32], and wolf
pack algorithms [33]. Many researchers have also combined the above algorithms with tra-
ditional clustering in hopes of obtaining better solutions. For instance, Zeebaree et al. [34]
combined the genetic algorithm with the K-means clustering method to address the sensi-
tivity of K-means clustering to initial conditions through the genetic algorithm. Compared
to these works, the HOA exhibits stronger spatial search capabilities [15].

In this paper, the HOA is combined with Leiden clustering to enhance spatial search
abilities, reduce computational complexity, and accelerate optimal solution discovery.
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The HOA’s robust spatial search ability provides better initial community divisions for
Leiden clustering, while Leiden clustering addresses the need for extensive exploration
points when using HOA for clustering. This combination leverages the strengths of both
approaches, effectively reducing time in actual adjustment processes and improving algo-
rithm efficiencies.

1.2. CRP in LSGDM for Different Decision Scenarios

The rise of social media and the increasing complexity of SNs have led to the phe-
nomenon where DMs’ opinions align not only with prevailing popular views during the
CRP but are also influenced by interpersonal relationships and potential user behaviors [24].
As a result, several researchers have emphasized potential benefits of integrating SNA with
group consensus adjustment processes [25].

LSGDM is a process in which a group of individuals collectively analyze, discuss,
and make decisions on various alternatives. In recent years, with the growth of social
media, LSGDM has gained significant momentum and is now widely applied across
diverse fields. It has two key characteristics: first, the number of participants in decision-
making processes exceeds 20 [35,36]; and second, DMs may exhibit undesirable behaviors
during the process [37,38]. The CRP, as both a strategy and process aimed at fostering
agreement among members, plays a critical role in LSGDM. Through various technical
methods, the opinions and preferences of group members are aligned to a satisfactory level
of consensus, and much research has been devoted to addressing this challenge.

Research has shown that SNA can enhance the provision of references, advice, and other
forms of support based on trust [39]. Therefore, this study integrates SNA with CRP, using
the trust network among DMs as the foundation for influencing opinion adjustments.

One of the challenges in combining SNA with CRP is how to effectively categorize
and assess the diverse composition of DMs, identify their professional backgrounds and
personality traits, and use this information to leverage trust networks among them. This ap-
proach aims to balance the opinions of each DM while minimizing the impact of disruptive
opinions on the final decision. To address this challenge, three distinct opinion management
mechanisms are proposed: minority opinion handling (MOH), non-cooperative behavior
management, and dual-fine tuning (DFT).

1.2.1. MOH

The ancient Greek philosopher Plato once stated, “Truth may lie in the hands of the few”,
while Lenin similarly remarked, “Truth often resides with the minority”. In the process of
opinion adjustments in daily life, certain individuals may be fewer in number but own greater
influence [40]. Their opinions tend to be more reliable and can significantly shape the direction of
opinion adjustments for others. In such instances, when DMs are reluctant to revise their views,
this phenomenon has already been explored in relevant research [41].

In common CRP, adjustments are typically made with the primary consideration of
the majority’s opinions [42]. While this approach achieves apparent fairness, it often fails
to fully utilize the valuable input of a minority of experts, which results in the unfair
treatment of these individuals. To address this issue, Xu et al. [43] proposed the MOH
method, and Shen et al. [25] focused on analyzing trust networks in SNs to incorporate
minority opinions into the decision process.

However, although the methods proposed by these researchers consider the role of
trust networks in decision-making and use mutual trust among individuals as a criterion for
opinion adjustments, they overlook the impact of individual opinion adjustment weights
on changes in opinions. In detecting minority opinions using standards such as participant
weighting, this paper draws from psychological theories on expert influences and the
effects of SNA on opinion adjustment tendencies [44]. By integrating both trust levels with
weight influences as synergistic adjustment indicators, the proposed method determines
the pace of adjustment in a way that better aligns with the psychology of DMs, leading to
more realistic and fair decision outcomes.
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1.2.2. Handling of Non-Cooperative Behaviors Caused by Overconfidence

Non-cooperative behaviors refer to situations in a group, where one or more members
fail to effectively communicate, coordinate, or collaborate with others, stubbornly adhering
to their own opinions. In such cases, their refusal to adjust their views can hinder the
achievement of consensus and may even cause deviations in decision outcomes, ultimately
rendering decisions less reliable.

This phenomenon has been recognized by many researchers, who have proposed
various adjustment strategies. Liu et al. [45] dynamically adjusted networks based on trust
relationships and associated risks. Fu et al. [46] introduced a moderate adjustment inter-
vention, leveraging trust networks to facilitate quicker consensus building. Liu et al. [47]
proposed a self-managed weight correction approach to address non-cooperative behaviors.

To minimize the impact of opinions from individuals who refuse to cooperate and to
fully leverage the influence of trust networks on DMs, this study employs a dual adjustment
strategy for both weights and opinions. The trust network provides opinion outcomes
for individuals involved in adjustment processes, while human intervention is applied to
reduce the weights of non-cooperative individuals, thereby minimizing their influence on
final decisions.

1.2.3. Handling of Conventional Cases Using DFT

A key step in the CRP is adjusting the opinions of DMs to reach a collective agreement.
The strategy used to select DMs for opinion adjustments not only affects the efficiency of
the CRP but also influences the final decision outcomes to some extent. DFT is a selection
strategy designed for adjusting the opinions of DMs. Specifically, during the opinion
adjustment process, it selects the two DMs whose opinions deviate most from those of
the rest of the group for further adjustment. Applying DFT in the CRP step of LSGDM
can enhance the efficiency of reaching a final decision without causing over-adjustment.
This is achieved by appropriately increasing the number of DMs adjusted in each round of
the process.

Previous studies have proposed various methods for adjusting DMs’ choices, with the
most common approach being to adjust the opinions of all DMs. Zhou et al. [35] and
Liu et al. [45] adjusted the opinions of all DMs in each iteration. While this method is
efficient and can achieve group consensus in fewer rounds, it is prone to over-adjustment,
which may reduce the level of consensus. In contrast, Shen et al. [25] changed only the
DMs with the lowest consensus in each round. While this reduces the likelihood of over-
adjustment, it significantly lowers adjustment efficiency. To combine the advantages of
both strategies, Yuan et al. [19] proposed a compromise approach using DFT, in which
the two DMs with the lowest consensus are selected for adjustments, thereby improving
efficiency while mitigating the risk of over-adjustment.

In this paper, we further optimize the DFT method proposed by Yuan et al. [19], incor-
porating an additional consideration of the trust relationships between DMs to determine
the pace of opinion adjustments.

1.3. Summary of Our Method

The main objective of this paper is to introduce a decision-making method, HOAL-
MOH-DFT. By integrating SNA into LSGDM, it provides more reasonable community
divisions and more objective decision outcomes.

1.3.1. Challenges Addressed by Our Method

The implementation of this method faces several key challenges:

(1) How to account for both the trust relationships and opinion similarity among DMs in
clustering analysis to form more rational groupings.

(2) How to detect the presence of undesirable behaviors among DMs and identify the
specific types of such behaviors.
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(3) How to devise appropriate adjustment strategies for minority opinions and non-
cooperative behaviors driven by overconfidence during consensus adjustments.

(4) How to integrate two potential types of misconducts with trust relationships among
DMs, regulate the adjustment pace, and manage opinions to derive final decisions.

1.3.2. Motivation Behind Our Method

The main motivation for this method is as follows:

(1) The context of LSGDM has become more complex with the growth of social media and
an increase in participants, making the effective partitioning of DMs into subgroups
crucial for improving decision efficiency.

(2) Social media has fostered closer connections among DMs, with mutual trust playing a
critical role in the opinion adjustment process, making trust relationships essential for
more realistic adjustments.

(3) In real-world scenarios, truth is often held by a small group of experts, so it is vital to
consider all perspectives, not just follow the majority opinion, when making decisions.

(4) DMs may propose opinions that significantly deviate from the group, lacking authority
or accuracy; effectively minimizing the impact of such disruptive opinions is crucial
for ensuring reliable outcomes.

1.3.3. Contributions of Our Method

In addressing the challenges mentioned above, this paper makes the following contributions:

(1) A comprehensive collaborative index, combining weights with opinion similarities,
serves as a foundation for community divisions.

(2) A mechanism has been developed to detect misconduct and provide corresponding
adjustment strategies by utilizing the distance between DMs and the group, as well as
their proportions and weights.

(3) MOH strategies, non-cooperative management strategies, and DFT strategies are
employed to address minority opinions, manage non-cooperative behaviors driven by
overconfidence, and handle situations devoid of negative behaviors.

(4) The adjustment coefficient is calculated based on the trust relationship and weight
similarity between DMs, while the adjustment step size is determined by the level of
group opinions.

The remainder of the paper is arranged below, Section 2 of this paper outlines the
fundamental concepts of LSGDM, SNA, and the prospect-regret theory. Section 3 details
the specific implementation steps of the HOAL. Section 4 introduces the consensus mea-
surement criteria and provides an in-depth description of the two-stage CRP adjustment
process. In Section 5, the HOAL-MOH-DFT method is applied to three real-world scenarios.
Finally, Section 6 presents comparative experiments, simulation studies, and sensitivity
analysis to assess the methods proposed in this paper. Section 7 discusses the applicability
of the proposed method. Section 8 provides a summary of the paper.

2. Preliminaries

This section reviews the basic implementation steps of LSGDM, the three basic representa-
tions of SNs, and the implementation process of the prospect-regret theory in existing research.

2.1. Basic Steps for Implementing LSGDM

In LSGDM problems, multiple DMs evaluate alternative solutions across various
attributes to reach a collective decision [48,49]. LSGDM is particularly effective for manag-
ing the inherent complexity and uncertainty in LSGDM scenarios [50,51]. The following
outlines the specific steps for implementing LSGDM.

Step 1: Data standardization. To ensure the comparability of evaluations from different
experts, especially when they may use varying units or scales, it is essential to standardize
the decision matrix. Each expert ek provides an evaluation matrix Qk = (qk

ij)n∗m, where qk
ij
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represents the evaluation of an alternative xi with respect to an attribute aj. The standard-
ization process converts these evaluations into a standard decision matrix Pk = (pk

ij)n∗m.
The process of data normalization is implemented as follows:

(1) Determination of the maximum and minimum values for each attribute across all
experts and alternatives.

(2) Standardization of each evaluation is applied using the equation: pk
ij =

qk
ij−min(qk

ij)

max(qk
ij)−min(qk

ij)
,

where qk
ij denotes the evaluations provided by an expert ek for all alternatives xi

concerning an attribute aj.

Step 2: Expert classification. To streamline computations and simplify the LSGDM
problem, DMs are often categorized into multiple subgroups based on their similar opinions.
If the larger group is divided into b subgroups, labeled as C = {C1, C2, . . . , Cb}. In this
study, the decision matrix for a subgroup Ch is denoted as Vh = (vh

ij)n∗m, which is derived
using the weighted average method.

Step 3: Aggregation process. The next step is to aggregate the standardized evalua-
tions across all DMs for each alternative. This can be achieved using several aggregation
techniques, such as arithmetic mean, weighted mean, or other consensus methods. The up-
dated group evaluation matrix G = (gij)n∗m is obtained through further calculations.

gij = WAA(v1
ij, v2

ij, . . . , vb
ij) =

b
∑

h=1
λh × vh

ij, where λh is the weight of Ch,
√

0 ≤ λh ≤ 1,

and

√
m
∑

i=1
λh = 1.

2.2. SNA

In this subsection, three different representations of trust networks are introduced as
shown in Table 1 below.

Table 1. Different representation schemes for SNs.

Graph Theory Algebraic Method Sociometric Matrix

1e

2e

3e 4e

5e e1Re2 e1Re3 e1Re4 e2Re3 e2Re5
e3Re2 e4Re3 e4Re5 e5Re1 e5Re2

⎡⎢⎢⎢⎢⎣
− 1 1 1 0
0 − 1 0 1
0 1 − 0 0
0 0 1 − 1
1 1 0 0 −

⎤⎥⎥⎥⎥⎦

Graph theory: To represent the trust network among members, a graph is employed,
composed of interconnected nodes with directed edges. Specifically, an edge e1→ e2 in the
graph indicates the existence of a straightforward trust relation from the node e1 to e2.

Algebraic method: Different types of relationships can be distinguished by this ap-
proach and combinations of these relationships are displayed.

Sociometric matrix: The relation between members is denoted as a matrix ST = std×d
in sociometric, which indicates whether there is a trust relationship among the members.
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Remark 1. The degree refers to the number of edges connected to a node, reflecting its level
of activity or engagement within the network. Nodes with higher degrees are often considered
more influential.

Centrality measures a node’s importance within a network, with common metrics includ-
ing degree centrality, closeness centrality, betweenness centrality, and clustering coefficient.

Remark 2. The degree centrality of a node is measured by the number of direct connections it has.

Remark 3. Closeness centrality evaluates the speed at which a node can access other nodes in the
network, based on the shortest path.

Remark 4. Betweenness centrality assesses how often a node serves as a bridge along the shortest
path between two other nodes, reflecting its potential to control the flow of information.

Remark 5. The clustering coefficient measures the extent to which nodes in a network tend to
cluster together, with a high value indicating that nodes are closely connected, forming tight-
knit communities.

2.3. Prospect-Regret Theory

The prospect-regret theory is commonly employed to address decision-making biases
driven by psychological factors, such as herd behaviors and other cognitive influences [52,53].

The most important parts of prospect theory are the value function and attribute
weights [54]. The following are the steps for applying prospect theory:

Step 1: Calculate the value function for each DM.

v
(
Δ xij

)
=

{ (
Δ xij

)α Δ xij ≥ 0
−λ
(
−Δ xij

)β Δ xij < 0
(1)

where λ represents the loss aversion coefficient, with a higher value signifying that DMs
exhibit greater sensitivity to losses.

Step 2: Calculate the prospect value matrix Vij and joy value matrix Rij.

Vij = v
(
Δxij

)
w (2)

where w represents attribute weights, and both the maximum prospect value V+
i and the

minimum prospect value V−i can be derived from the following equation:

Zi(x) =
m

∑
j
(Rij(x) + Gij(x)) (3)

Step 3: Calculate the regret value matrix Gij.

Gij(x) = 1− exp

[
−δ

∣∣∣∣∣ Vij(x)−V−ij (x)

V+
ij (x)−V−ij (x)

∣∣∣∣∣
]

(4)

Regret theory is mainly used to avoid biases that DMs may develop to reduce their
level of regret [55,56]. Therefore, regret theory is often used in conjunction with prospect
theory, and the main equation is shown as follows:

Gij(x) = 1− exp

[
−δ

∣∣∣∣∣ Vij(x)−V−ij (x)

V+
ij (x)−V−ij (x)

∣∣∣∣∣
]

(5)
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3. Community Detection and Weight Measure

This section focuses on enhancing the Leiden clustering by the use of HOA [15].
Additionally, it presents a method for determining the weights of DMs and communities
using trust networks.

3.1. Community Division Based on HOAL Strategies

As the digital economy progresses, the number of participants in decision processes
continues to rise. When this number exceeds a certain threshold, the efficiency of reaching a
consensus typically decreases. Clustering can help address this by grouping DMs, thereby
reducing the scale and complexity of decision process and enabling quicker conclusions.

However, many existing clustering methods either rely on a single metric or fail to
incorporate trust networks into the clustering process. This paper proposes an adaptive
HOA-Leiden clustering method, called HOAL, which utilizes both the viewpoint similarity
and weight proximity as dual criteria for clustering.

3.1.1. Initializing the Community Using the HOA

The HOA is a swarm intelligence optimization technique inspired by the positional ad-
justments of hippos within a population in response to both internal and external influences.
It primarily models three behaviors: position updates, defensive actions against predators,
and escape maneuvers. By continuously refining positions, the HOA seeks to optimize the
placement of the most advantageous hippos, ultimately leading to better solutions.

With its rapid convergence and high precision, the HOA has proven to be effective
across a range of problem types, improving the solution speed. In this study, the HOA
is employed to generate superior initial solutions, which are then integrated with Leiden
clustering to enhance community detection efficiencies.

To better mimic the survival behaviors of hippo populations, the initial state excludes
specific behavioral patterns. Equation (6) is used to initialize the individual positions within
the hippo population. Here, N represents the size of the hippopotamus population, while
m is determined based on the scale of the problem being addressed. lb refers to the lower
bound of the position range for the hippopotamuses, and ub denotes the upper bound of
the position range.

Xi : xij = lbj + r ·
(
ubj − lbj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , m (6)

The position matrix of the hippopotamus population, initialized according to Equation (6),
is given by Equation (7). Here, X represents the positions of all the hippos in the population,
while Xi denotes the current position of the individual hippopotamus i:

X =

⎡⎢⎢⎢⎢⎢⎢⎣

X1
...

X3
...

X5

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

x1,1 · · · x1,j · · · x1,m
...

. . .
... . . .

...
xi,1 · · · xi,j · · · xi,m

... . . .
...

. . .
...

xN,1 · · · xN,j · · · xN,m

⎤⎥⎥⎥⎥⎥⎥⎦ (7)

Figure 1 illustrates the three distinct stages involved in the adjustment of the hip-
popotamus’s position.

In what follows, we provide detailed explanations and implementation steps for the
three optimization processes shown in Figure 1.

Stage 1: The renewal of hippopotamus positions in rivers or ponds.
The distribution of hippopotamus populations is influenced by the positions of other

members within the same group. Typically, hippopotamuses tend to cluster together,
with the other individuals often found near the dominant hippos. Female hippos and their
offspring are usually distributed around the dominant male hippos. Adult male hippos
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may be displaced by more dominant individuals, who either attract females to rebuild their
population or secure a position within the group to replace the dominant males.

Figure 1. Hippopotamus position updates across various phases.

Equation (13) provides the equation for updating the position of a male hippopotamus.
Here, X represents the updated position of the i-th male hippopotamus. The position
update formula for male hippos is shown in Equation (8).

To update the position of female hippopotamuses, use Equations (11) and (12). Then,
apply Equation (14) to determine both the original and the updated positions of the
female hippos.

In these equations: XMH
i represents the position of the i-th male hippopotamus, Dh denotes

the position of the dominant hippopotamus, and yi is a random number between 0 and 1.

XMH
i : xMH

ij = xij + yi·
(

Dh− Iixij
)
, i = 1, 2, . . . ,

⌈
N
2

⌉
, j = 1, 2, . . . , m (8)

I1 and I2 represent random numbers between 1 and 2, while −→r1 , −→r2 , −→r3 , and −→r4 are
vectors representing taboo values between 0 and 1. r5 is a random number between 0 and 1.
q1 and q2 are binary values, either 0 or 1.

h =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I2 ×−→r1 + (∼ q1)

2×−→r2 − 1−→r3
I1 ×−→r4 + (∼ q2)

r5

(9)

t represents the current iteration number, while τ denotes the maximum number
of iterations.

T = exp
(
− t

τ

)
(10)

MGi represents the average position of a randomly selected subset of the hippopota-
mus population.

XFB
i : xFB

i,j =

{
xi,j + h1(Dh− I2MGi) T > 0.6

Ξ else
(11)
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r6 and r7 represent random numbers between 0 and 1.

Ξ =

{
xi,j + h2(MGi − Dh) r6 > 0.5

lbj + r7
(
ubj − lbj

)
else

(12)

Xi =

{
XM

i FM
i < Fi

Xi else
(13)

Xi =

{
XFB

i FFB
i < Fi

Xi else
(14)

Stage 2: The hippopotamus defense against predators.
The safety of the hippopotamus populations is crucial for its reproduction and survival.

The social behavior of hippos plays an important role in deterring predators. However,
young, sick, or elderly hippos may sometimes stray from the group, making them vulnera-
ble to attacks. These weaker individuals are more likely to become targets for predators
such as Nile crocodiles, lions, and spotted hyenas.

In defense, hippos often confront predators directly, issuing loud calls to warn them to
stay away. At the same time, hippos may engage in aggressive behavior, approaching the
predator to force it into retreat.

The current position of the predator is randomly generated as shown in Equation (15).
Given that hippos employ different defense strategies based on the distance between
themselves and predators, a distance calculation method is provided in Equation (16):

Pr edator : Pr edatorj = lbj +
−→r8
(
ubj − lbj

)
, j = 1, 2, . . . , m (15)

−→
D =

∣∣Pr edatorj − xi,j
∣∣ (16)

Hippos employ a defensive behavior represented by the factor FPr edator to protect
themselves from predators. If FPr edator is smaller than Fi, it indicates that the distance
between the hippopotamus and the predator is very close, prompting the hippopotamus
to quickly face the predator and force it to retreat. Conversely, if FPr edator exceeds Fi, it
suggests that the distance between the hippo and the predator is relatively large. In this
case, while the hippopotamus will still move toward the predator, the movement is less
aggressive, primarily serving as a warning that the predator has entered its territory.

XH
i : xH

i,j =

⎧⎪⎨⎪⎩
−→
RL⊕ Pr edatorj +

(
f

c−d×cos(2πg)

)(
1−→
D

)
FPr edator < Fi

−→
RL⊕ Pr edatorj +

(
f

c−d×cos(2πg)

)(
1

2×−→D+−→r9

)
FPr edator ≥ Fi

(17)

Below, v and w are random numbers between 0 and 1, with v being a constant equal
to 1.5, and Γ denotes the gamma function.

Levy(v) = 0.05× w× σw

|v| 1v
(18)

σw =

⎡⎢⎣Γ(1 + v) sin
(

πv
2
)

Γ
(
(1+v)

2

)
v2

(v−1)
2

⎤⎥⎦
1
v

(19)

Xi =

{
XH

i FH
i < Fi

Xi FH
i < F

−→
D =

∣∣Pr edatorj − xi,j
∣∣ (20)

Stage 3: Hippopotamus escapes predators.
While the hippopotamus’s active defense is crucial for its safety, it is not always

effective, especially when facing a group of predators or other challenging situations.
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In such cases, the hippopotamus will voluntarily flee. Typically, hippos attempt to escape
to the nearest lake or pond to avoid being chased by terrestrial predators.

lblocal
j =

lbj

t
, ublocal

j =
ubj

t
, t = 1, 2, . . . , T (21)

XH
i : xH

ij = xij + r10

(
lblocal

j + o1

(
ublocal

j − lblocal
j

))
(22)

o =

⎧⎨⎩
2×−→r11 − 1

r12
r13

(23)

Xi =

{
XH

i FH
i < Fi

Xi FH
i ≥ Fi

(24)

3.1.2. HOAL

This subsection introduces the method of combining the HOA with Leiden clustering.
The process of classical Leiden clustering is shown in Figure 2.

Figure 2. Implementation steps of Leiden clustering.

According to Figure 2 in the appeal, the basic steps of traditional Leiden clustering are
shown as follows:

Step 1: Assign each node to its own initial community, treating it as an indepen-
dent community.

Step 2: Move a single node from one community to another, then evaluate the partition
to determine if the change improves it. Retain the move if it enhances the partition;
otherwise, reverse it.

Step 3: Refine the newly found partition by dividing nodes into sub-partitions, further
optimizing the partition to improve its quality.

Step 4: Generate an aggregation network for the refined partitions, where each node
represents a community, and community similarity serves as the connection between nodes.

Step 5: Repeat Steps 3 and 4 by moving nodes within the aggregated network and
refining the partitions until no further improvements in partitioning are achievable.

To accelerate and optimize the clustering results based on classical Leiden clustering,
the HOA algorithm is used to detect a relatively optimal initial community distribution.
This initial distribution is then used for Leiden clustering, reducing the number of required
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distribution adjustments. Additionally, the HOA is employed for parameter selection in
Leiden clustering to obtain better community partitioning results.

The flowchart of the specific implementation steps of the clustering process is shown
in Figure 3.

The pseudocodes for the specific implementation of the algorithm can be found
in Algorithm 1.

Figure 3. Community division implementation flowchart.

The time complexity of the HOAL algorithm consists of several parts. The initialization
phase takes O(num_hippos× d), where num_hippos is the number of hippos and d is the dimen-
sionality of the vectors. The core update process requires O(num_hippos×max_iterations× d).
Calculating the trust matrix and community partitioning contributes O(num_hippos2), while
refining community divisions results in O(max_iteration× num_hippos2). Thus, the overall
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time complexity is dominated by the community division phase, with a final complexity of
O(max_iteration× num_hippos2).

Algorithm 1: The implementation of Pseudocodes using the HOAL algorithm
Input: The trust matrix among DMs, the opinion matrix of DMs.
Output: Community allocation results.

1 Function Main:
Data: Initialize parameters num_hippos, max_iterations, community_size_range,

etc.
Data: Initialize population of hippos (Each individual hippopotamus is

composed of a vector of length d).
2 for i = 1 to

num_hippos
2 do

3 for iteration = 1 to max_iterations do

4 Update the position of male hippopotamus using Equation (8);
5 Evaluate the updated individual hippopotamus using Equation (29);

6 for i = num_hippos
2 to d do

7 for iteration = 1 to max_iterations do

8 Update the position of female hippopotamus using Equation (11);
9 Evaluate the updated individual hippopotamus using Equation (29);

10 if new_position better than current_position then

11 Update hippo’s position;

12 for i = 1 to d do

13 Randomly generate a predator’s position vector of length d;
14 for iteration = 1 to max_iterations do

15 Update the position of male hippopotamus using Equation (20);
16 Evaluate the updated individual hippopotamus using Equation (29);
17 if new_position better than current_position then

18 Update hippo’s position;

3.2. Weight Measure

The roles of DMs and community weights are crucial in the LSGDM process, affecting
not only the opinion adjustment process but also the final outcome. Assigning appropriate
and reasonable weights facilitates opinion adjustments during the CRP and the generating
of final decision results.

In this paper, a trust network-based weight feedback confirmation mechanism is established.
This mechanism comprehensively considers the current DMs’ professionalism and credibility
within the group. We assume that the DM’s weight matrix is W = [w1, w2, . . . , wi, . . . , wn].
Assume that the matrix formed by the column of the trust matrix where the ith DM is
Ti = [ti1, ti2, . . . , tin]. The matrix of trust values for the DM is BT = [bt1, bt2, . . . , btn].

Step 1: Initialize the weights of all DMs to an equal status.
Step 2: Extract the trust degree column for each DM from the decision matrix,

and calculate the trust value of each DM by applying a weighted average based on their
respective weights.

bti =
n

∑
j=0

(
wj × tij

)
(25)

Step 3: Normalize the trust values obtained from the previous calculations to generate
the updated weights.

wi =
bti

n
∑

j=0
btj

(26)
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Step 4: Repeat the operations in Step 2 until the difference between the weights before
and after the update is less than 0.05.

4. Considering the CRP for Misbehavior Management

Since the clustering process employs a collaborative index of opinion similarities and
trust weights, this paper considers that all subgroup consensus adjustments fall under
ordinary scenarios. When adjusting consensus between groups, it is necessary to classify
the composition states of DMs using indicators and select the appropriate adjustment
method accordingly.

4.1. Consensus Measure

When decisions are made by consultation, there is always an expectation to reach a
consensus. However, achieving complete agreement in practice can often be challenging.
To enhance the acceptance of decision outcomes, it is necessary to establish a level of
consensus that satisfies the group. This requires the design of an appropriate consensus
measurement method to assess whether consensus has been reached. To this end, this
subsection introduces a consensus measurement equation that considers both the degree of
consensus between individuals and within the group as a whole.

The distance between two differing opinions, x and y, is measured using the Man-
hattan distance, which effectively accounts for differences across various attributes and
reduces data complexity. The equation for measuring the distance between two opinions is
provided in Equation (27):

dx,y =
1
n

n

∑
i=0

(
1
m

m

∑
j=0

∣∣∣px
ij − py

ij

∣∣∣) (27)

The calculation of the distance between individual opinions and group opinions is
shown in Equation (28):

Dx =
1

d− 1

d−1

∑
i=0

(dx,i) (28)

The calculation of the consensus degree of the comprehensive group opinion is shown
in Equation (29):

GC =
1
d

d

∑
i=0

1− Dx (29)

To calculate the current consensus level of the group, begin by using Equation (27)
to compute the opinion distance matrix for every pair of DMs. Next, apply Equation (28)
to determine the distance between each DM and the group based on the distance matrix.
Finally, use Equation (29) to calculate the average of the consensus levels between each DM
and the group, which will provide the overall group consensus level.

4.2. DFT-MOH Group Consensus Achievement Mechanism

To facilitate the introduction of the CRP, this subsection defines the metrics needed to
measure consensus and classify DMs during the CRP.

4.2.1. Detection of Minority Opinions and Non-Cooperative Behavior

The mechanism for detecting misbehaviors can be see in Figure 4.
The Pareto principle, also known as the 80/20 rule, was first introduced by the

Italian economist Pareto [57]. In his study of wealth distribution, Pareto observed that
approximately 80% of wealth is controlled by 20% of the population. A similar situation
can be found in decision processes [58]. When a small number of experts are involved,
their influence can far outweigh that of the other DMs. When these experts’ opinions differ
significantly from the group consensus, specific strategies must be adopted to fully consider
their input. In this paper, the Pareto principle is used as one of the criteria for detecting
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minority opinions. It is assumed that when fewer than 20% of the DMs in a community
are involved, yet their influence exceeds 80%, a minority opinion group exists. If, at the
same time, the consensus level of this minority group is lower than that of other groups,
the MOH method should be employed for opinion management.

Figure 4. The flowchart of misconduct detection.

Within a group, there are often individuals who refuse to revise their opinions due to
overconfidence. While they may hold significant personal weight, it is not on par with that
of experts, meaning their opinions are no more valuable than those of other DMs. Despite
this, their substantial influence can still have a significant impact on the final decision.
To detect such non-cooperative behaviors, this paper proposes the following criteria: when
fewer than 20% of individuals in a community possess a weight greater than 50% and their
opinions show low consensus with the rest of the group, this is considered the evidence of
non-cooperative behaviors driven by overconfidence.

When the decision body does not exhibit any of the issues described above, it is
assumed that there are no other misconducts among DMs. In such cases, the standard
opinion adjustment strategy for regular DMs, known as DFT, can be applied.

Let us assume that after grouping, the number of DMs in one group is x, and we use
this group as an example. Let Wg represent the weight of this group. The classification
criteria for this group are provided in Equation (30):⎧⎨⎩

x
d ≤ 0.2, wg ≥ 0.8 MOH

x
d ≤ 0.2, wg ≥ 0.5 Non− Cooperation

else DFT
(30)

4.2.2. Management Mechanism for Minority Opinions

In this subsection, we present the specific management methods for addressing minor-
ity opinions discussed in this paper.

Given the inherent high authority and reference value of minority opinions, significant
modifications are applied to the opinions of other DMs.

Based on the relative authority and trust among DMs, the corresponding adjustment
coefficients for their opinions are defined in Equation (31):

TA =
1
2
(1− wi) +

n
∑

j=0
tij

2×
n
∑

k=0

n
∑

j=0
tkj

(31)
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According to the adjustment coefficient of opinions and the weighted average of
current group opinions, we can calculate the pace of adjustment for the DM’s opinions
by Equation (32):

CRij =
n

∑
j=0

⎛⎜⎜⎝ tij
n
∑

k=0
tik

oij

⎞⎟⎟⎠ (32)

Based on the obtained pace, the opinions can be adjusted using Equation (33):

oij =

⎧⎨⎩
oij + TA× CRij oij < CRij

oij oij = CRij
oij − TA× CRij oij > CRij

(33)

When minority opinions are detected within the group, the MOH mechanism is
activated. First, the current overall opinion of the group is calculated using a weighted
average. Subsequently, Equation (31) is employed to determine the adjustment coefficient
for each DM, and Equation (32) is used to ascertain the size of the opinion adjustment
step for each individual. Thereafter, Equation (33) is utilized to update the opinion of
each DM accordingly. Finally, a recalculation of the consensus level among the DMs is
performed. If consensus is achieved, the process concludes; if not, the procedure returns to
recompute the overall group opinion and the adjustment coefficients for another round of
opinion adjustments.

4.2.3. Management Mechanism for Non-Cooperative Behaviors Caused by Overconfidence

Overconfidence-induced non-cooperative behaviors can make it difficult to adjust the
opinions of those unwilling to cooperate. To address this, this subsection introduces a dual
mechanism for adjusting both opinions and weights. This mechanism reduces the weights
of DMs who refuse to modify their opinions, while using group consensus to guide the
opinion adjustments of others.

For DMs exhibiting non-cooperative behaviors, their opinions are adjusted accord-
ing to the group’s level of distrust. The adjusted result for these individuals is given
in Equation (34):

wnon = wnonCnon (34)

Equation (35) shows the pace of opinion adjustments for DMs, excluding the
opinion adjuster:

CRij =
n

∑
j=0

(
wi × oij

)
(35)

Calculate the final adjusted opinion based on Equation (36):

oij =

⎧⎪⎨⎪⎩
oij +

CRij
5 oij < CRij

oij oij = CRij

oij −
CRij

5 oij > CRij

(36)

To manage non-cooperative behaviors within a group and achieve consensus, the fol-
lowing process is used: First, calculate the current group’s aggregate opinion by taking
a weighted average. Then, apply Equation (35) to determine the adjustment step for the
non-cooperative DM’s opinion. Next, use Equation (34) to calculate the weight adjustments
for the non-cooperative actors. Recalculate the adjusted opinions using Equation (36),
and normalize the weight matrix accordingly. Finally, recompute the group consensus
level based on the revised opinions. If consensus is reached, the process concludes. If not,
evaluate the presence of any detrimental behavior within the group and make the neces-
sary adjustments.
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4.2.4. Management Mechanism Under Normal Circumstances

This subsection outlines the management of group opinions under general circum-
stances. In ordinary situations, the DFT is used for opinion adjustments. For groups that
have not yet reached consensus, Equation (32) is applied to assess the consensus degree
of each DM relative to the group’s aggregate opinion. The two DMs with the lowest
consensus levels are selected, and Equation (33) is used to calculate the pace of opinion
adjustment. Subsequently, Equation (36) is employed to adjust the opinions. After the ad-
justments, a consensus measurement is conducted. If consensus is not reached, the process
returns to selecting two DMs with the lowest consensus levels for another round of opinion
adjustment. If consensus is achieved, the current CRP concludes.

4.2.5. Application of MOH-DFT in Two-Stage Consensus Adjustments

In this subsection, the consensus management process and detection methods dis-
cussed above are integrated to present a two-stage CRP.

In the first stage, the collaborative indicator serves as the clustering criterion, and the
DFT management approach is applied to adjust opinions within each group. After the
opinions within each group are adjusted, the group’s representative opinion is determined
using a weighted average.

In the second stage, the two potential types of misbehaviors are detected and addressed
using the corresponding adjustment strategies.

To provide a clearer illustration of the opinion adjustment process, a flowchart outlin-
ing the specific adjustment steps is shown in Figure 5.

Figure 5. Two-stage opinion adjustments flowchart.

The pseudocodes for the CRP of the algorithm can be seen in Algorithm 2.
The time complexity of the pseudocodes is primarily determined by the consensus

iteration phase. The initialization and basic calculations take O(num_DMs) per subgroup.
The consensus iteration phase runs for up to max_iterations, with each iteration involving
operations that require O(num_subgroups × num_DMs). Finally, the final calculations
have a complexity of O(num_subgroups× num_DMs). Therefore, the overall time com-
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plexity is dominated by the consensus iteration phase, resulting in O(max_iterations ×
num_subgroups× num_DMs).

Algorithm 2: Pseudocodes for Managing General Cases in Group Consensus
Adjustments

Input: The trust matrix among DMs, the opinion matrix of DMs, community division results.
Output: Opinions after reaching consensus.

1 Function Main:

2 for each subgroup do

3 Calculate the comprehensive opinion of the current subgroup using weighted average;
4 Select the two DMs with the lowest level of consensus in this subgroup;
5 Calculate the adjustment coefficients for the two adjusted DMs using Equation (31);
6 Adjust DMs’ opinions using adjustment coefficients by Equation (36);
7 Calculate the current consensus among subgroups using Equation (29);
8 while consensus < 0.8 do

9 Use weighted average to represent subgroup opinions;
10 Use Equation (30) to determine the strategy required for grouping representative

opinions;
11 if choose minority opinion management then

12 for each subgroup representative opinion do

13 if not the holders of minority opinions then

14 Calculate the adjustment coefficients using Equation (31);
15 Calculate the comprehensive opinion of the current subgroup using

weighted average;
16 Adjust DMs’ opinions using adjustment coefficients by Equation (31);
17 Calculate the current consensus among subgroups using Equation (29);

18 if choose non-cooperative behavior management then

19 for each subgroup representative opinion do

20 if not a non-collaborator then

21 Calculate the comprehensive opinion of the current subgroup using
weighted average;

22 Calculate the adjustment coefficients using Equation (35);
23 Adjust DMs’ opinions using adjustment coefficients by Equation (36);

24 if a non-collaborator then

25 Calculate the adjustment coefficients using Equation (31);
26 Adjust DMs’ weight using adjustment coefficients by Equation (34);
27 Calculate the current consensus among subgroups using Equation (29);

28 else

29 Calculate the comprehensive opinion of the current subgroup using weighted
average;

30 Select the two DMs with the lowest level of consensus in this subgroup;
31 Calculate the adjustment coefficients for the two adjusted DMs using Equation (31);
32 Adjust DMs’ opinions using adjustment coefficients by Equation (33);
33 Calculate the current consensus among subgroups using Equation (29);

34 Calculate the value function and loss function of each group’s opinions;
35 Calculate group comprehensive;

5. Application of HOAL-DFT-MOH Method in Different Real-Life Scenarios

One important criterion for evaluating the effectiveness of a method is its applicability.
This section demonstrates the universality and flexibility of the HOAL-DFT-MOH method
across several application scenarios, as well as the accuracy of SNA in achieving consensus
adjustment results. Three scenarios are presented, each involving 20 DMs who collectively
make the final decision on four alternative options based on four attributes. The overall
flowchart of the proposed method is provided in Figure 6.
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Figure 6. The flowchart of our method.

5.1. Introduction to Three Types of Example Scenarios

This paper addresses the trust relationships among DMs and the potential misbehavior
of DMs, which are common in everyday decision processes. The proposed method not
only enhances the reliability and democratic nature of the results but also holds promise
for broader applications as social media and networking platforms continue to evolve. This
subsection presents three application scenarios, along with their inputs, to demonstrate
how the method can be applied in real-world contexts.

E1: Material Selections in Production
The heat dissipation of electronic components is crucial for the lifespan and per-

formance of electronic devices [59]. Effective heat dissipation methods are essential in
electronic device manufacturing, and the use of cooling agents is a common solution. This
subsection introduces a method for evaluating the advantages and disadvantages of CPU
heat dissipation schemes based on the selection of coolant types. Four types of coolants are
considered, i.e., biological nanofluid, water-Al nanofluid, copper oxide water nanofluid,
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and water. The evaluation criteria include Reynolds number, particle concentration, thermal
conductivity, and cost.

E2: Corporate Strategy Decisions
Consider the example of an electronic product research and development company

looking to increase investment in its current product line. The company often chooses to
refine one aspect of its production process, typically in areas such as technology research
and development, talent cultivation, infrastructure investment, and marketing promotion.
Before making an investment, company managers need to analyze each aspect and make a
final decision. This decision is based on four core evaluation criteria, i.e., deficiency degree,
investment effectiveness, return on investment, and investment risk.

E3: Personal Product Choices
Lastly, a personal example of choosing an electronic product is provided. When an

individual wants to select a mobile phone brand, they may turn to social media to gather in-
put from a randomly selected group of 20 netizens. The DMs evaluate four brands Huawei,
Apple, Samsung, and Xiaomi based on four attributes, i.e., cost performance, portability,
additional features, and appearance. Through collaborative negotiation, a comprehensive
ranking for each brand is determined, and a consensus result is reached.

5.2. Example Decision Process and Results Display

In this subsection, we show how the experiments are conducted based on the three
situations given above, and the final decision-making results are obtained. The trust matrix
among DMs is shown in Appendix B, and the opinion matrix of DMs is shown in Appendix A.

Step 1: Group the DMs using the HOAL algorithm and collaborative index, as pre-
sented in Table 2. Display the community weights and trust relationships between commu-
nities in Table 3.

Table 2. The result of clustering analysis.

E1 E2 E3

g1 = {e2, e10, e12, e14, e15},
g2 = {e0, e3, e5, e11, e16},
g3 = {e8, e13, e17, e18},
g4 = {e1, e4, e7, e19},
g5 = {e6, e9}

g1 = {e2, e7, e11, e12, e15, e16, e17, e19},
g2 = {e0, e1, e9, e18},
g3 = {e4, e5, e6, e8},
g4 = {e3, e10, e13, e14}

g1 = {e1, e2, e4, e5, e7, e8, e10, e12},
g2 = {e0, e3, e6, e11, e13, e19},
g3 = {e9, e14, e15, e16, e17, e18}

Step 2: Assign weights to subgroups based on the degree of mutual trust, similarity
of opinions, and the number of people in each group. Calculate the level of mutual trust
between different groups based on the level of mutual trust between individuals in each
group. The results are shown in Table 3.

Table 3. Indicators within subgroups.

E1

gw1= 0.249
gw2= 0.245
gw3= 0.187
gw4= 0.205
gw5= 0.114

1.0000 0.4680 0.4300 0.4950 0.6200
0.5240 1.0000 0.5950 0.3950 0.5000
0.4950 0.3700 1.0000 0.4625 0.3625
0.4650 0.4550 0.4750 1.0000 0.6875
0.5000 0.6600 0.5000 0.5125 1.0000

E2

gw1= 0.396
gw2= 0.201
gw3= 0.188
gw4= 0.215

1.0000 0.5156 0.5031 0.5594
0.5250 1.0000 0.3875 0.4625
0.4406 0.5625 1.0000 0.5063
0.4719 0.4125 0.4875 1.0000

E3
gw1= 0.387
gw2= 0.303
gw3= 0.310

1.0000 0.5167 0.5646
0.4583 1.0000 0.4917
0.4833 0.4972 1.0000
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Step 3: Using the DFT algorithm, obtain the integrated opinions of each subgroup as
shown in Appendix C. The consensus within the subgroup at this time is as follows:

A : SGC = {0.8296, 0.8112, 0.8050, 0.8288, 0.9325};
B : SGC = {0.9025, 0.8375, 0.8381, 0.8338};
C : SGC = {0.9038, 0.8031, 0.8050, 0.9050}.
Step 4: Utilize detection mechanisms to adjust opinions between groups and detect

the presence of inappropriate behavior. After testing, there are no adverse behaviors found
in E1 , E2, and E3.

Step 5: Determine the management approach for opinions based on the detection of
negative behaviors and their types. In cases where no misbehaviors are identified, employ
DFT for opinion adjustments. Upon reaching consensus, calculate the final consensus
degree for each instance, with the results shown as follows:

E1 : GC = 0.9211;
E2 : GC = 0.9248;
E3 : GC = 0.9309.
Step 6: Use the prospect theory of regret to derive the final scores and rankings for the

products. The results are shown in Table 4.

Table 4. The final score matrix.

E1’s Final Score Matrix

⎡⎢⎢⎣
0.9578 1.4023 0.9465 0.4048
1.1662 1.2253 0.3390 1.0806
0.8883 0.8035 0.7030 1.4903
1.3005 0.8839 0.8119 1.4191

⎤⎥⎥⎦

E2’s Final Score Matrix

⎡⎢⎢⎣
1.5809 0.1127 0.6476 1.7655
1.2870 1.2274 1.6484 0.1804
1.8256 0.6592 0.6380 1.2040
0.5150 1.0076 0.6507 1.5515

⎤⎥⎥⎦

E3’s Final Score Matrix

⎡⎢⎢⎣
0.0923 0.3883 1.1255 0.8513
1.5825 0.4193 0.9414 1.5143
0.9868 0.5149 1.1291 0.4115
0.7501 0.5996 1.8331 0.5951

⎤⎥⎥⎦

Step 7: Use the weighted average of different attribute scores to calculate the final
score of the alternative plan, and use a line graph to represent the score. The results of the
three cases are shown in Table 5 below.

Table 5. The score ranking result.

E1 E2 E3

X4 � X3 � X2 � X1 X4 � X3 � X2 � X1 X2 � X1 � X4 � X3

6. Further Analysis

In this section, sensitivity experiments, simulation experiments, and comparative
experiments with other methods are conducted to verify the usability and superiority of
the HOAL-MOH method proposed in this paper.

6.1. Comparison Analysis

Conduct comparative experiments between the method proposed in this paper and
existing methods to further demonstrate the advantages of the proposed method.
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6.1.1. A Comparison of Our Method and Its Sub-Methods

To better demonstrate the necessity of each sub-method used in the approach presented
in this paper, we explain the role each plays within the overall method. By applying a
control variable approach, we systematically remove each sub-method and observe its
impact on certain process indicators.

The summary of the deformation methods based on the approach proposed in this
paper is provided in Table 6.

Table 6. The summary of required comparison methods.

Our method m0

Our method removes HOA optimization in clustering m1

Our method removes the Leiden clustering m2

Our method replaces DFT with single-DM adjustment m3

Our method removes MOH m4

Our method removes non-cooperative behavior management m5

The methods m0, m1, and m2 are compared to explore the impact of improvements
made during the clustering process on the results. The comparison is based on four aspects:
total execution time, clustering execution time, consensus within subgroups, and trust
within subgroups. Each method is executed 500 times, with the aforementioned metrics
recorded, and the average values for each metric are provided. The overall results are
shown in Table 7.

Table 7. The analysis of the necessity of sub-methods in clustering.

Methods
The Total

Execution Time
The Clustering
Execution Time

The Consensus
Within

Subgroups

The Trust
Within

Subgroups

m0 0.0135 0.0100 0.941 0.843

m1 0.0210 0.1755 0.940 0.831

m2 0.0106 0.794 0.702 0.726

The execution efficiency of method m0 lies between that of m2 and m3, being closer
to m2. The clustering results of m0 and m3 are very similar. However, the clustering perfor-
mance of m2 significantly differs from that of m0 and m1. Overall, although method m0
does not outperform the others in any particular metric, it effectively combines the advan-
tages of the other methods, mitigates their weaknesses, and provides an efficient solution.

In the opinion adjustment process without undesirable behaviors, DFT plays a crucial
role. To provide more convincing evidence, we randomly generated initial data and
executed the process using both the m0 and m3 methods. The procedure was repeated
over 100 times, and the required metric values were recorded and averaged. The results
are shown in Table 8.

Table 8. The analysis of the necessity of DFT in CRP.

Methods The Group Consensus The Adjustment Rounds The Execution Time

m0 0.961 4 0.0012

m3 0.912 6 0.0019

As shown in Table 8, after transforming the DFT to focus on opinion adjustments
for individual DMs, the impact of each adjustment round on the overall group consensus
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decreases. Therefore, to achieve the same adjustment effect, both the number of adjustment
rounds and the adjustment time have to increase.

To validate the importance of the consensus adjustment strategy, Table 9 compares
method m0 with methods m4 and m5. Since different behaviors occur with certain prob-
abilities in real-world scenarios, our method provides manually selected data for each
comparison method to more clearly reflect the strategy’s impact. For instance, in the case
of methods lacking the MOH mechanism, the data should include minority opinions.
Consensus and final opinion adjustment results are used as reference metrics for statisti-
cal analysis. The values outside the parentheses represent the metrics for the respective
method, while the values inside the parentheses represent the metrics for m0 with the same
dataset. The overall results are shown in Table 9.

Table 9. The analysis of the necessity of MOH and non-cooperative management in CRP.

Methods The Adjustment Rounds The Execution Time The Group Consensus Decision Otcomes

m4(m0) 3(5) 0.0014(0.0021) 0.951(0.934) x2 � x1 � x4 � x3(x4 � x1 � x2 � x3)

m5(m0) 4(6) 0.0010(0.0015) 0.938(0.933) x3 � x1 � x2 � x4(x1 � x3 � x2 � x4)

After removing the behavior detection for certain minority DMs, the opinion adjust-
ment process becomes one where the opinions of the minority DMs move closer to those of
the majority. As a result, the scale of the adjustments required is reduced, which is reflected
in the decrease in both adjustment time and iterations shown in Table 9.

Additionally, the consensus level of methods m4 and m5 is higher than that of method
m0, as the impact of minority DMs on the final group consensus is minimized. This leads
to a result that is closer to the collective opinion of the group.

However, despite the removal of non-cooperative behavior management, the method
does not fully account for the opinions of each individual DM. Consequently, the final
decision deviates from the true objective scenario, creating only the illusion of improved
efficiency and correct outcomes.

6.1.2. Comparison Between HOAL and Other Methods

This subsection compares the clustering method proposed in this paper with the
clustering methods of others, and the results are shown in Table 10.

As shown in Table 10, the method proposed in this paper not only performs clustering
based on SN but also incorporates a collaborative indicator into the community detection
criteria. In contrast, the method by Guo et al. [28] only considers opinion similarity as
the clustering criterion, without integrating the trust between DMs or considering the
decision-making context within the SN. As a result, the consensus and average trust levels
within subgroups are the lowest among the four methods compared.

Table 10. The comparative analysis of clustering outcomes.

Methods Indicators Based on SNs
Consensuses in

Subgroups
The Average Trust Level

Guo et al. [28] Opinion similarity No 0.423 0.611

Song et al. [23] Opinion similarity and trust relation No 0.548 0.791

Shen et al. [25] Opinion similarity and trust relation Yes 0.654 0.725

Our method Opinion similarity and trust relation Yes 0.873 0.854

Although Song et al. [23] improved their clustering criterion by incorporating a col-
laborative indicator, they still do not take into account the decision-making context within
the SN. Therefore, while their method shows some improvement in terms of the clustering
indicator, it still cannot surpass the methods by Shen et al. [25] and the one proposed in
this paper.
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Compared to the method by Shen et al. [25], the method in this paper not only uses the
Leiden clustering algorithm, which outperforms the Louvain algorithm, but also further
optimizes the traditional Leiden algorithm.

In summary, compared to other methods, the partitioning results obtained by our
approach exhibit higher consensus and trust levels within subgroups. The clustering
outcomes align more closely with real-life expectations, grouping DMs with high opinion
similarities and mutual trust into the same community. This effectively reduces the number
of subsequent adjustment steps.

6.1.3. Qualitative Analysis of Our Method and Other Methods

To illustrate the advantages and disadvantages of different consensus models, Table 11
selects the basic characteristics of the formula model to compare with existing methods,
highlighting the strengths of the approach proposed in this paper. For ease of the compar-
isons, the models involved in the comparison are divided into three categories: traditional
LSGDM models (TL), LSGDM models combined with SN (SNL), and LSGDM models that
manage misbehaviors (ML).

Table 11. The comparative analysis of consensus adjustment methods: a qualitative approach.

Types References MOH
Non-Cooperative
Behaviors

Opinion Management
Reference Trust

Clustering Based on
Opinion Similarities

Clustering Based on
Trust Relationships

TL Yuan et al. [19] No No No Yes No
TL Chen et al. [60] No No No Yes No
TL Meng et al. [42] No No No Yes No

SNL Liang et al. [61] No No Yes Yes No
SNL Du et al. [39] No No Yes Yes No

ML Liu et al. [45] Yes Yes Yes Yes No
ML Xu et al. [43] Yes Yes Yes Yes No
ML Song et al. [23] No Yes Yes Yes Yes
ML Shen et al. [25] Yes No Yes Yes Yes
ML Our method Yes Yes Yes Yes Yes

As shown in Table 11, the given TL method does not account for potential undesirable
behaviors that may arise during decision-making in the CRP, nor does it consider the trust
relationships among DMs in the management of opinions. Additionally, it uses a single
indicator for clustering.

In contrast, the SNL method adds the trust relationship between DMs to guide the
opinion adjustment process, compared to the TL approach. The ML methods, such as
those by Liu et al. [45] and Xu et al. [43], rely solely on a single clustering indicator.
Song et al. [23] do not consider the MOH, while Shen et al. [25] do not address non-
cooperative management.

In this paper, the proposed method not only considers two types of undesirable behav-
ior management but also integrates opinion adjustment with a trust matrix. Furthermore,
it uses a collaborative indicator based on both trust relationships and opinion similarities
in the clustering analysis.

Therefore, the method presented in this paper covers more possible scenarios, takes
into account a broader range of influencing factors, and is more aligned with real-life
situations compared to the other methods.

The above method provides a qualitative comparison between existing approaches and
the proposed method. To enable a more objective comparison of the LSGDM method and
present more convincing results, Table 12 presents a quantitative analysis in comparison
with methods from ML.
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Table 12. The comparative analysis of consensus adjustment methods: a quantitative approach.

Methods
Average Number of
Rounds Adjusted in
The First Stage

Final Average
Consensus of
Subgroup

Number of Rounds
Adjusted in The
Second Stage

Final Consensus
Degrees

Decision Outcomes

Liu et al. [45] 6 0.864 4 0.854 x2 � x1 � x4 � x3

Song et al. [23] 4 0.971 5 0.791 x2 � x1 � x4 � x3

Shen et al. [25] 0 0.543 8 0.875 x2 � x1 � x4 � x3

Our method 3 0.901 2 0.920 x2 � x1 � x4 � x3

From Table 12, it can be seen that the decision-making method proposed in this paper
not only has fewer adjustment rounds, but also has a higher level of consensus, which is
more in line with the public opinion level.

As shown in Table 12, the proposed method requires only three adjustments in the
first round. Except for Shen et al. [25], which does not involve opinion adjustments in the
first round, the average number of adjustments for the proposed method is lower than
that of other methods. The average group consensus within subgroups is second only to
that achieved by Song et al. [23]. In the second round, the number of adjustments reduces
to two, while other methods require more than twice as many adjustments. Ultimately,
the overall consensus achieved by the proposed method exceeds that of other methods,
effectively integrating the opinions of all DMs.

6.2. Simulation Analysis

In this subsection, simulation tests are conducted to verify the feasibility of the pro-
posed method on a limited scale. The simulation experiment is conducted using PyCharm
Community Edition 2023.3.2, executed on a personal computer equipped with an Intel
Core i7-12700 processor from the 12th generation, with a running frequency of 3.90 GHz.

6.2.1. Feasibility Simulation Within a Limited Scale

Choose seven different scales for DMs aged 20 to 50 and change the number of
alternative solutions for different DM scales. Adjust the above conditions separately,
execute 500 times for each situation to obtain the time for a single execution, and record the
time required to reach a final consensus on the two stages of opinion adjustment. Figure 7
shows a line chart of the time required for different adjustments in two stages.

As shown in Figure 7, both the adjustment time increases more steeply with the
number of DMs in both the first and second stages. Additionally, the increase in the size
of the decision replacement options also leads to an increase in adjustment time. It can be
observed that, in both adjustment rounds, when the number of DMs is the same, larger
decision replacement option sizes are positioned higher than smaller ones.

In the first stage of opinion management, when the number of DMs reaches 50 and
there are 10 alternative options, consensus can still be reached within 0.006 s. For the same
scale, the consensus adjustment in the second stage can be completed within 0.0175 s.

Within a certain scale range, adjustments in both stages can be completed within a
limited time, thus meeting the adjustment requirements.

To provide a more intuitive demonstration of the efficiency of the proposed method,
seven different scales of DMs were set within the range of 20 to 50, corresponding to 4 to 10
different alternative solutions. Each configuration was executed 500 times. The number of
adjustment rounds required to achieve the desired formula in different stages was recorded,
and the adjustment round charts for the first and second stages are shown in Figure 8.
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(a) The First Stage (b) The Second Stage

Figure 7. Two-stage adjustment time statistics.

(a) The First Stage (b) The Second Stage

Figure 8. The statistics of adjustment rounds in two stages.

Although the trend of increasing adjustment rounds becomes steeper as the number of
DMs increases, as shown in Figure 8, the scale of adjustment rounds increases more steadily.
Similarly, an increase in the scale of decision replacement schemes, which corresponds to
the number of adjustment rounds, also leads to an increase in adjustment rounds. However,
the difference between adjustment rounds is more significant than that of adjustment time.

When the DM size is 50 and the number of alternative options is 20, the average
number of adjustments in the first stage does not exceed 30, and the average number of
adjustments in the second stage is also less than 30.

6.2.2. Simulation of Effectiveness for Large-Scale Opinion Management

In order to verify whether the DM and the increase in the size of the decision-making
problem will have an impact on the consensus level of the final decision, the DM size is taken
as d = 20, d = 200, d = 500, and d = 1000. The number of alternative options for the decision
is the same as the number of attributes for each option, and six values from three to eight are
taken to plot the impact on the consensus level of decisions, as shown in Table 13.
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Table 13. The decision performance statistics under different scales.

n = 3, m = 3 n = 4, m = 4 n = 5, m = 5

n = 6, m =6 n = 7, m = 7 n = 8, m = 8

Analyzing all the line charts in Table 13, it can be observed that as the scale of decision
alternatives and reference attributes increases, the final consensus level gradually decreases.
However, the differences in final consensus levels caused by the increase in the number
of DMs become smaller. This is because, when the decision problem itself becomes more
complex, the complexity of opinions increases, leading to a greater variety of opinions.
At this point, the growth in the number of DMs is no longer the primary factor influencing
the consensus level.

From an application perspective, even when the scale increases, the final consensus
level still exceeds 0.9, indicating that the decision outcomes maintain a high level of
collective agreement and coherence, demonstrating the robustness of the decision process.

6.3. Sensitivity Analysis

This section conducts sensitivity testing experiments on the three parameters α, β, and
λ in the theory of prospect-regret. Take the values of α as 1, 2, 3, 4, and 5. Take the values of
β as 0.88, 1.76, 2.64, 3.52, and 4.40. Take the values of λ as 2.25, 4.50, 6.75, 9.00, and 11.25.
Change the values of the above three parameters separately to obtain the final score of
alternative solutions and draw it as a line graph, as shown in Table 14. The ranking results
of alternative solutions under different values are shown in Table 15 through comparisons.

Based on the results in Tables 14 and 15, it can be seen that the ranking order of
alternative solutions does not change when the value of α is greater than 2. The change in
the values of β and λ will not cause a change in the ranking order of alternative solutions.
Thus, in the method presented in this paper, we choose a value of 2 for α, 0.88 for β, and 2.25
as the values for λ.

Through the application of case studies in various scenarios, it can be observed
that the method proposed in this paper is adaptable to a variety of LSGDM problems
under different contexts. Furthermore, simulation experiments validated the feasibility
of this method for a certain scale, consistently yielding final decision results within a
limited time frame. Subsequently, comparisons are made with other methods. In the
comparison of clustering methods, the proposed method not only incorporates more
reference indicators but also achieves higher trustworthiness in the final clustering result.
Regarding the comparison with CRP, it is evident that this method not only integrates
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SNA with CRP but also requires fewer opinion adjustments and shorter adjustment times,
further demonstrating its superiority. Finally, sensitivity analysis is conducted to verify the
stability of results.

Table 14. The sensitivity analysis result for α, β, and λ.

α β λ

Table 15. The ranking result in sensitivity analysis.

α β λ

α = 1, β = 0.88, λ = 2.25
x2 � x1 � x4 � x3

α = 2, β = 0.88, λ = 2.25
x2 � x1 � x4 � x3

α = 2, β = 0.88, λ = 2.25
x2 � x1 � x4 � x3

α = 2, β = 0.88, λ = 2.25
x3 � x2 � x1 � x4

α = 2, β = 1.76, λ = 2.25
x2 � x1 � x4 � x3

α = 2, β = 0.88, λ = 4.50
x2 � x1 � x4 � x3

α = 3, β = 0.88, λ = 2.25
x3 � x2 � x1 � x4

α = 2, β = 2.64, λ = 2.25
x2 � x1 � x4 � x3

α = 2, β = 0.88, λ = 6.75
x2 � x1 � x4 � x3

α = 4, β = 0.88, λ = 2.25
x3 � x2 � x1 � x4

α = 2, β = 3.52, λ = 2.25
x2 � x1 � x4 � x3

α = 2, β = 0.88, λ = 9.00
x2 � x1 � x4 � x3

α = 5, β = 0.88, λ = 2.25
x3 � x2 � x1 � x4

α = 2, β = 4.40, λ = 2.25
x2 � x1 � x4 � x3

α = 2, β = 0.88, λ = 11.25
x2 � x1 � x4 � x3

7. Discussion

This section provides a further discussion of the method presented in this paper,
including the problem contexts it effectively addresses and recommendations for executing
each step of the method.

7.1. Discussion on Problem Types Effectively Addressed

Our method in this paper provides a solution to decision-making problems by consid-
ering the influence of interactions between DMs, as well as managing minority opinions and
non-cooperative behaviors resulting from overconfidence, particularly in LSGDM contexts.
The problem scenarios addressed are more complex and offer broader applications.

Our method also offers an approach to further analyze the authority and roles of
DMs within the entire social network, based on their interpersonal relationships. This
provides valuable insights for determining the weights when constructing SNs between
DMs and others.

First, the method can be applied to traditional expert system problem-solving. In this
context, initial expert weights are assigned based on the authority of each expert, and ex-
perts are required to evaluate each other’s trust levels and vote on decision alternatives.
Based on this initial data, a reasonable decision can be reached.

Furthermore, the method is applicable in situations where DMs have diverse profes-
sional backgrounds, such as in public voting systems that ensure fairness. In these cases,
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the professionalism of the participants cannot be guaranteed, and non-expert opinions
may undermine the accuracy of the final decision. Unlike traditional methods that rely
on experts, the proposed approach includes mechanisms to detect expertise and uses the
MOH mechanism for opinion management.

Finally, the method can be extended to scenarios where DMs have more complex
personality traits, such as trust relationships and evaluations derived from social media.
In such cases, it cannot be assumed that all participants will offer their opinions in a serious
and objective manner. The proposed method detects non-cooperative behaviors arising
from overconfidence and provides strategies to mitigate their impact, leading to more
reliable decision outcomes.

7.2. Discussion on Applying Our Method to Solve the Problem

Applying our method to solve real-world problems is simple and cost-effective.
The method offers high decision-making efficiency, meaning that the computational de-
mands on the processor are not strict. The code can be implemented in any programming
language the user is familiar with. The application process consists of the following steps:

Step 1: Data collection, where DMs provide their trust relationships and initial opin-
ions. If initial weights are available, they can be included; otherwise, equal weights are
used for initialization.

Step 2: The initial data are input into the program, which generates outputs such as
DM weights, groupings, opinion adjustments, and final adjustments within each group,
along with the decision results.

Step 3: Based on the results, DMs can proceed with a series of related decisions, policy
formulations, product comparisons, and other actions.

8. Conclusions

The complexity of the DMs’ composition often leads to undesirable behaviors during
the CRP, resulting in situations where decisions fail to reach consensus or yield incorrect
outcomes. This study proposes the HOAL-MOH-DFT consensus adjustment model, which
addresses both the handling of minority opinions and non-cooperative opinions arising
from overconfidence. The following contributions are made:

(1) A collaborative indicator that combines trust relationships with opinion similarity
among DMs is used as an evaluation metric for grouping quality, optimizing the
initial community using HOA. Compared to other clustering methods, the proposed
clustering method not only achieves a better clustering performance but also enhances
the clustering efficiency.

(2) This paper proposes a new decision opinion processing mechanism, which integrates
the distance between the group’s comprehensive opinions, the proportion of group
members, the size of DMs, and the group’s weight. Three different opinion adjustment
mechanisms are provided.

(3) Trust relationships and weight proximity are combined to obtain adjustment coeffi-
cients, and the current comprehensive opinion is used to manage the opinions within
each group. This opinion management method ensures that all opinions are consid-
ered, making them more reasonable.

(4) MOH incorporates everyone’s opinions by adjusting DMs’ opinions in a balanced way.
In the case of non-cooperative behaviors caused by overconfidence, a dual adjustment
of weight and opinions is applied, reducing the influence of non-collaborators on
the decision process while steering the opinions toward consensus. In the absence
of misconduct, DFT is used for management, striking a balance between minimizing
the adjustment range and reducing the number of adjustment rounds to achieve
optimal results.

With the rapid development of social media and its increasing role in daily life,
integrating these SN with LSGDM problems and formulating corresponding adjustment
strategies has become a prominent research focus. Although the method described in this
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paper combines SNA with clustering and CRP while considering two types of misbehaviors
during adjustment processes, there is still room for improvement in the following aspects:

(1) Individuals within an SN are not always interconnected, and there may be gaps in
the trust matrix of SNs. It is therefore essential to explore an efficient and accurate
method for filling these gaps.

(2) The reference metric for the closeness of social relationships is not limited to trust.
During the opinion adjustment process and clustering analysis, more metrics from
SNs should be considered to provide results that better reflect realities.

(3) During the opinion adjustment process, in addition to the two types of misconduct
proposed in this paper, other misbehaviors such as interest-driven adjustments and
herd behaviors should also be considered within the scope of opinion adjustments.
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Appendix A

E1’s Original Data⎡⎢⎢⎣
0.7 0.2 0.0 0.9
0.1 0.1 0.6 0.4
0.6 0.3 0.1 0.5
0.7 0.2 0.8 0.7

⎤⎥⎥⎦
⎡⎢⎢⎣

0.8 0.6 0.2 0.6
0.8 0.1 0.6 0.6
0.4 0.8 0.8 0.3
0.0 1.0 0.1 0.3

⎤⎥⎥⎦
⎡⎢⎢⎣

0.0 0.0 0.7 0.1
0.4 0.1 0.8 0.8
0.6 0.8 0.3 0.5
0.3 0.7 0.6 0.6

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.7 0.7 0.5
1.0 0.2 0.5 0.1
0.1 0.7 0.1 0.1
1.0 0.8 0.9 0.0

⎤⎥⎥⎦⎡⎢⎢⎣
0.3 0.6 0.2 0.6
0.9 0.9 0.3 0.9
0.5 0.4 1.0 0.4
0.1 0.6 0.5 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.2 0.7 0.8
0.8 0.4 0.9 0.8
0.4 0.3 0.2 0.5
0.1 0.8 0.8 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.3 0.2 0.8 0.5
0.1 0.8 0.9 0.1
0.7 0.8 0.6 0.6
0.9 0.1 0.2 0.4

⎤⎥⎥⎦
⎡⎢⎢⎣

0.7 0.7 0.2 0.7
0.2 0.2 0.5 0.8
0.8 1.0 0.4 0.0
0.1 0.8 1.0 0.1

⎤⎥⎥⎦⎡⎢⎢⎣
0.8 0.1 0.6 0.5
0.8 0.4 0.9 0.3
0.2 0.1 0.3 0.1
0.3 0.1 0.7 0.6

⎤⎥⎥⎦
⎡⎢⎢⎣

0.3 0.0 0.4 0.5
0.3 0.9 0.7 0.0
1.0 0.8 0.7 0.5
1.0 0.0 0.7 0.8

⎤⎥⎥⎦
⎡⎢⎢⎣

0.1 0.4 0.6 1.0
0.0 0.2 0.5 0.8
0.6 0.8 0.9 0.5
0.2 0.5 0.1 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.9 0.6 0.2 0.4
0.6 0.3 0.5 0.9
0.6 0.4 0.1 0.4
0.2 0.8 1.0 0.2

⎤⎥⎥⎦⎡⎢⎢⎣
0.2 0.8 0.6 0.2
0.5 0.1 0.5 0.0
0.4 0.5 0.8 0.8
0.4 0.8 0.6 0.1

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.5 0.8 0.3
0.2 0.3 0.1 0.1
0.2 0.3 0.9 0.1
0.7 0.4 0.0 0.1

⎤⎥⎥⎦
⎡⎢⎢⎣

0.0 0.2 0.4 0.6
0.1 0.8 0.6 1.0
0.5 0.3 0.9 0.8
0.2 0.4 0.5 0.4

⎤⎥⎥⎦
⎡⎢⎢⎣

0.4 0.6 0.2 0.9
0.1 0.0 0.7 0.4
0.4 0.5 0.8 0.5
0.3 0.8 0.5 0.8

⎤⎥⎥⎦⎡⎢⎢⎣
0.6 0.9 0.5 0.4
0.7 0.5 0.0 0.6
0.7 0.0 0.1 0.7
0.0 0.6 0.7 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.8 0.3 0.6 0.5
0.5 0.6 0.5 0.2
0.1 0.2 0.0 0.2
0.0 0.2 0.1 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 1.0 0.7 0.9
0.3 0.2 0.1 1.0
0.0 0.2 0.8 0.8
0.9 0.9 0.2 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.2 0.1 0.2 0.1
0.7 0.9 0.8 0.2
0.6 0.3 0.7 0.0
0.1 0.6 0.3 0.2

⎤⎥⎥⎦
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E2’s Original Data⎡⎢⎢⎣
0.7 0.2 0.0 0.9
0.1 0.1 0.6 0.4
0.6 0.3 0.1 0.5
0.7 0.2 0.8 0.7

⎤⎥⎥⎦
⎡⎢⎢⎣

0.8 0.6 0.2 0.6
0.8 0.1 0.6 0.6
0.4 0.8 0.8 0.3
0.0 1.0 0.1 0.3

⎤⎥⎥⎦
⎡⎢⎢⎣

0.0 0.0 0.7 0.1
0.4 0.1 0.8 0.8
0.6 0.8 0.3 0.5
0.3 0.7 0.6 0.6

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.7 0.7 0.5
1.0 0.2 0.5 0.1
0.1 0.7 0.1 0.1
1.0 0.8 0.9 0.0

⎤⎥⎥⎦⎡⎢⎢⎣
0.3 0.6 0.2 0.6
0.9 0.9 0.3 0.9
0.5 0.4 1.0 0.4
0.1 0.6 0.5 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.2 0.7 0.8
0.8 0.4 0.9 0.8
0.4 0.3 0.2 0.5
0.1 0.8 0.8 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.3 0.2 0.8 0.5
0.1 0.8 0.9 0.1
0.7 0.8 0.6 0.6
0.9 0.1 0.2 0.4

⎤⎥⎥⎦
⎡⎢⎢⎣

0.7 0.7 0.2 0.7
0.2 0.2 0.5 0.8
0.8 1.0 0.4 0.0
0.1 0.8 1.0 0.1

⎤⎥⎥⎦⎡⎢⎢⎣
0.8 0.1 0.6 0.5
0.8 0.4 0.9 0.3
0.2 0.1 0.3 0.1
0.3 0.1 0.7 0.6

⎤⎥⎥⎦
⎡⎢⎢⎣

0.3 0.0 0.4 0.5
0.3 0.9 0.7 0.0
1.0 0.8 0.7 0.5
1.0 0.0 0.7 0.8

⎤⎥⎥⎦
⎡⎢⎢⎣

0.1 0.4 0.6 1.0
0.0 0.2 0.5 0.8
0.6 0.8 0.9 0.5
0.2 0.5 0.1 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.9 0.6 0.2 0.4
0.6 0.3 0.5 0.9
0.6 0.4 0.1 0.4
0.2 0.8 1.0 0.2

⎤⎥⎥⎦⎡⎢⎢⎣
0.2 0.8 0.6 0.2
0.5 0.1 0.5 0.0
0.4 0.5 0.8 0.8
0.4 0.8 0.6 0.1

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.5 0.8 0.3
0.2 0.3 0.1 0.1
0.2 0.3 0.9 0.1
0.7 0.4 0.0 0.1

⎤⎥⎥⎦
⎡⎢⎢⎣

0.0 0.2 0.4 0.6
0.1 0.8 0.6 1.0
0.5 0.3 0.9 0.8
0.2 0.4 0.5 0.4

⎤⎥⎥⎦
⎡⎢⎢⎣

0.4 0.6 0.2 0.9
0.1 0.0 0.7 0.4
0.4 0.5 0.8 0.5
0.3 0.8 0.5 0.8

⎤⎥⎥⎦⎡⎢⎢⎣
0.6 0.9 0.5 0.4
0.7 0.5 0.0 0.6
0.7 0.0 0.1 0.7
0.0 0.6 0.7 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.8 0.3 0.6 0.5
0.5 0.6 0.5 0.2
0.1 0.2 0.0 0.2
0.0 0.2 0.1 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 1.0 0.7 0.9
0.3 0.2 0.1 1.0
0.0 0.2 0.8 0.8
0.9 0.9 0.2 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.2 0.1 0.2 0.1
0.7 0.9 0.8 0.2
0.6 0.3 0.7 0.0
0.1 0.6 0.3 0.2

⎤⎥⎥⎦

E3’s Original Data⎡⎢⎢⎣
0.7 0.2 0.0 0.9
0.1 0.1 0.6 0.4
0.6 0.3 0.1 0.5
0.7 0.2 0.8 0.7

⎤⎥⎥⎦
⎡⎢⎢⎣

0.8 0.6 0.2 0.6
0.8 0.1 0.6 0.6
0.4 0.8 0.8 0.3
0.0 1.0 0.1 0.3

⎤⎥⎥⎦
⎡⎢⎢⎣

0.0 0.0 0.7 0.1
0.4 0.1 0.8 0.8
0.6 0.8 0.3 0.5
0.3 0.7 0.6 0.6

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.7 0.7 0.5
1.0 0.2 0.5 0.1
0.1 0.7 0.1 0.1
1.0 0.8 0.9 0.0

⎤⎥⎥⎦⎡⎢⎢⎣
0.3 0.6 0.2 0.6
0.9 0.9 0.3 0.9
0.5 0.4 1.0 0.4
0.1 0.6 0.5 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.2 0.7 0.8
0.8 0.4 0.9 0.8
0.4 0.3 0.2 0.5
0.1 0.8 0.8 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.3 0.2 0.8 0.5
0.1 0.8 0.9 0.1
0.7 0.8 0.6 0.6
0.9 0.1 0.2 0.4

⎤⎥⎥⎦
⎡⎢⎢⎣

0.7 0.7 0.2 0.7
0.2 0.2 0.5 0.8
0.8 1.0 0.4 0.0
0.1 0.8 1.0 0.1

⎤⎥⎥⎦⎡⎢⎢⎣
0.8 0.1 0.6 0.5
0.8 0.4 0.9 0.3
0.2 0.1 0.3 0.1
0.3 0.1 0.7 0.6

⎤⎥⎥⎦
⎡⎢⎢⎣

0.3 0.0 0.4 0.5
0.3 0.9 0.7 0.0
1.0 0.8 0.7 0.5
1.0 0.0 0.7 0.8

⎤⎥⎥⎦
⎡⎢⎢⎣

0.1 0.4 0.6 1.0
0.0 0.2 0.5 0.8
0.6 0.8 0.9 0.5
0.2 0.5 0.1 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.9 0.6 0.2 0.4
0.6 0.3 0.5 0.9
0.6 0.4 0.1 0.4
0.2 0.8 1.0 0.2

⎤⎥⎥⎦⎡⎢⎢⎣
0.2 0.8 0.6 0.2
0.5 0.1 0.5 0.0
0.4 0.5 0.8 0.8
0.4 0.8 0.6 0.1

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 0.5 0.8 0.3
0.2 0.3 0.1 0.1
0.2 0.3 0.9 0.1
0.7 0.4 0.0 0.1

⎤⎥⎥⎦
⎡⎢⎢⎣

0.0 0.2 0.4 0.6
0.1 0.8 0.6 1.0
0.5 0.3 0.9 0.8
0.2 0.4 0.5 0.4

⎤⎥⎥⎦
⎡⎢⎢⎣

0.4 0.6 0.2 0.9
0.1 0.0 0.7 0.4
0.4 0.5 0.8 0.5
0.3 0.8 0.5 0.8

⎤⎥⎥⎦⎡⎢⎢⎣
0.6 0.9 0.5 0.4
0.7 0.5 0.0 0.6
0.7 0.0 0.1 0.7
0.0 0.6 0.7 0.5

⎤⎥⎥⎦
⎡⎢⎢⎣

0.8 0.3 0.6 0.5
0.5 0.6 0.5 0.2
0.1 0.2 0.0 0.2
0.0 0.2 0.1 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.6 1.0 0.7 0.9
0.3 0.2 0.1 1.0
0.0 0.2 0.8 0.8
0.9 0.9 0.2 0.2

⎤⎥⎥⎦
⎡⎢⎢⎣

0.2 0.1 0.2 0.1
0.7 0.9 0.8 0.2
0.6 0.3 0.7 0.0
0.1 0.6 0.3 0.2

⎤⎥⎥⎦

Appendix B

E1’s Trust Matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 0.7 0.4 0.3 0.4 0.9 0.7 0.2 0.9 0.5 0.9 1.0 0.1 0.9 0.3 0.6 0.5 0.9 0.9 0.2
0.1 1.0 0.1 0.3 0.3 0.9 0.7 0.0 0.3 0.9 0.1 0.7 0.2 0.0 0.3 0.7 0.7 0.6 0.2 0.9
1.0 0.6 1.0 0.2 0.3 0.9 0.7 0.6 1.0 0.3 0.2 0.1 0.7 0.6 0.1 0.7 0.5 0.6 0.6 0.0
0.9 0.4 0.8 1.0 0.3 0.0 0.8 0.0 0.4 0.2 0.4 0.1 1.0 0.4 0.4 0.1 0.2 0.0 0.3 0.0
0.3 0.1 0.7 0.3 1.0 0.3 0.3 0.9 0.4 0.4 0.0 0.3 0.7 0.7 0.3 0.7 0.2 0.5 0.4 0.1
0.9 0.8 0.8 0.5 0.3 1.0 0.5 1.0 0.5 0.2 0.8 0.1 0.9 1.0 0.7 0.3 0.8 0.6 0.7 0.7
0.8 0.2 0.3 0.8 0.5 0.8 1.0 0.9 0.9 0.8 0.9 1.0 0.8 0.3 0.4 0.7 1.0 0.6 1.0 0.2
0.3 0.2 0.6 0.7 0.4 0.5 1.0 1.0 0.4 1.0 0.1 0.1 0.6 0.3 0.6 0.3 0.5 0.8 0.8 0.8
0.2 0.1 0.4 0.9 1.0 0.3 0.2 0.7 1.0 0.2 0.3 0.0 0.2 0.8 0.8 1.0 0.7 0.6 0.2 0.4
0.7 0.5 0.1 0.2 0.2 0.1 0.4 0.9 0.2 1.0 0.6 0.8 0.4 0.1 0.3 0.5 0.4 0.2 0.7 0.7
0.7 0.5 0.6 0.4 0.6 0.5 0.3 0.8 0.1 0.1 1.0 0.9 0.2 0.0 0.3 0.8 0.2 0.2 0.2 0.9
0.5 0.2 0.3 0.6 0.1 0.4 0.5 0.6 0.8 0.3 0.8 1.0 0.3 0.8 0.3 0.2 0.4 0.8 0.6 0.3
0.8 0.4 0.8 0.4 0.2 0.1 0.9 0.7 0.8 0.5 0.7 0.1 1.0 0.1 0.7 0.3 0.9 0.2 0.9 0.6
0.5 0.3 0.4 0.1 0.4 0.1 0.6 0.7 0.6 0.4 0.6 0.6 0.9 1.0 0.5 0.6 0.6 0.5 0.3 0.5
0.5 0.8 0.0 0.9 0.0 0.3 0.7 0.3 0.4 1.0 0.3 0.3 0.8 0.3 1.0 0.6 0.2 0.1 0.4 0.4
0.6 0.9 0.1 0.7 0.1 0.3 0.7 0.4 0.6 1.0 0.2 0.1 0.3 0.0 0.2 1.0 0.1 0.6 0.9 0.8
0.1 0.1 1.0 0.5 0.9 0.3 0.7 0.7 0.1 0.6 0.5 0.7 0.1 0.4 0.6 0.5 1.0 0.1 0.8 0.0
0.1 0.2 0.1 0.2 0.9 0.5 0.0 0.3 0.2 0.4 0.9 0.9 0.1 0.1 0.2 0.8 0.2 1.0 0.4 0.4
0.4 0.9 0.2 0.5 0.4 0.1 0.8 0.1 0.7 0.3 0.2 0.0 0.6 0.6 0.3 0.8 0.5 0.2 1.0 0.1
0.5 0.1 0.7 0.5 0.0 0.9 0.8 0.8 0.9 0.4 0.8 0.2 0.3 0.1 0.5 1.0 0.8 0.4 0.8 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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E2’s Trust Matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 0.1 0.2 0.4 1.0 0.0 0.6 0.9 0.6 0.9 0.8 0.9 0.9 0.6 0.1 0.5 0.0 0.5 0.4 0.7
0.9 1.0 0.1 0.6 0.8 0.6 0.6 1.0 0.6 0.2 0.3 0.3 0.4 0.9 0.2 0.8 0.9 0.2 0.0 0.8
0.5 0.3 1.0 0.9 1.0 1.0 0.6 0.8 0.7 0.6 1.0 0.7 0.3 0.3 0.2 0.9 0.0 0.9 0.1 1.0
0.6 0.2 0.7 1.0 0.9 0.1 0.4 0.2 0.4 0.2 0.8 0.4 0.9 0.5 0.3 0.5 0.0 0.7 0.1 0.3
0.7 0.7 0.2 0.3 1.0 0.3 0.5 0.5 0.3 0.9 0.8 0.9 0.4 0.8 0.2 0.4 0.9 0.3 0.3 0.6
0.9 0.9 0.1 0.5 0.8 1.0 0.9 0.2 1.0 0.5 0.7 0.3 0.4 1.0 0.3 0.7 0.1 0.6 0.9 0.3
0.4 0.7 0.2 0.1 0.1 0.2 1.0 0.2 0.6 0.9 0.4 0.7 0.4 0.0 0.8 0.5 0.0 0.7 0.3 0.7
0.7 0.5 0.0 0.6 0.0 0.2 0.4 1.0 0.8 0.7 0.7 0.8 0.3 0.4 0.6 0.6 0.6 0.0 0.5 0.2
0.6 0.0 0.2 0.5 0.4 0.4 0.2 0.7 1.0 0.1 0.4 0.7 0.7 0.8 0.5 0.1 0.6 0.6 0.2 0.2
0.3 0.3 0.2 0.0 0.5 0.1 0.1 0.7 0.0 1.0 0.0 0.6 0.9 0.5 0.3 0.1 0.9 0.5 0.9 0.1
0.6 0.7 0.4 0.7 0.4 0.3 0.8 0.2 0.7 0.4 1.0 0.1 0.5 0.3 1.0 0.3 0.5 0.4 0.4 0.7
0.5 0.9 0.3 0.1 1.0 0.2 0.5 0.6 0.1 0.9 0.0 1.0 1.0 0.6 0.3 0.3 0.3 0.2 0.0 0.8
0.4 0.4 0.9 0.5 0.5 0.9 0.9 1.0 0.3 0.8 0.7 0.7 1.0 0.9 0.8 0.7 0.3 1.0 0.2 0.2
0.0 0.4 0.2 0.5 0.3 0.9 0.5 0.1 0.3 0.7 0.4 0.7 0.2 1.0 0.8 0.9 0.5 0.9 0.3 0.6
0.2 0.8 0.2 0.8 0.4 1.0 0.2 0.0 0.2 0.7 0.9 0.9 0.7 0.9 1.0 0.4 0.7 0.7 0.3 0.6
1.0 0.2 0.2 0.0 0.7 0.1 0.1 1.0 0.4 0.8 0.8 0.1 0.0 0.9 0.3 1.0 0.7 0.2 0.9 0.9
0.4 0.1 0.1 0.3 0.6 0.8 0.5 0.6 0.0 0.2 0.0 0.4 0.5 0.9 0.6 0.3 1.0 0.8 0.9 0.1
0.5 0.9 0.2 0.9 0.8 0.5 0.4 0.2 0.0 0.4 0.9 0.1 0.3 1.0 0.7 0.9 0.8 1.0 0.7 0.4
0.6 0.3 0.7 0.6 0.4 0.0 0.2 0.3 0.1 0.7 0.7 0.2 0.9 1.0 0.4 0.2 0.3 0.7 1.0 0.4
0.6 0.3 0.7 0.6 0.4 0.0 0.2 0.3 0.1 0.7 0.7 0.2 0.9 1.0 0.4 0.2 0.3 0.7 0.0 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E3’s Trust Matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0 0.5 0.3 0.8 0.2 0.5 0.1 0.2 0.6 0.9 0.5 0.2 0.6 0.4 0.5 0.7 0.9 0.0 0.7 0.5
0.0 1.0 0.9 1.0 0.1 0.8 0.8 0.3 0.7 0.5 0.4 0.2 0.1 0.8 0.9 0.8 0.3 0.1 0.7 0.0
0.9 0.5 1.0 0.2 0.0 0.7 0.9 0.5 0.7 0.0 1.0 0.4 0.8 0.9 1.0 0.2 0.3 0.6 0.5 0.6
1.0 0.3 0.0 1.0 0.2 0.5 0.6 0.9 0.4 0.4 0.5 0.2 0.5 0.2 0.1 0.4 0.2 0.8 0.1 0.2
1.0 0.8 0.1 0.5 1.0 0.6 0.0 0.8 0.2 0.9 0.6 0.1 0.5 0.2 0.2 0.1 0.6 0.4 0.8 0.5
0.5 0.1 0.0 0.5 0.9 1.0 0.6 0.1 0.2 0.8 1.0 0.9 0.0 0.3 0.1 0.7 0.9 0.3 0.2 1.0
0.2 0.1 0.7 0.7 0.9 0.1 1.0 0.5 0.8 0.5 0.5 0.6 0.9 0.9 0.9 0.8 0.2 1.0 0.2 0.6
0.9 0.9 0.8 0.6 0.2 0.5 0.6 1.0 0.7 0.1 0.1 0.5 0.7 0.3 0.8 0.7 0.5 0.4 0.4 1.0
0.2 0.5 0.8 0.0 0.6 1.0 0.7 0.1 1.0 0.4 0.6 0.3 0.5 0.8 0.9 0.7 0.4 0.9 0.5 0.4
0.9 0.1 0.1 0.0 0.7 0.2 0.4 0.5 0.5 1.0 0.9 0.7 0.9 0.5 0.3 0.1 0.6 0.6 0.2 0.2
0.6 0.6 0.2 0.4 0.1 0.4 0.1 0.6 0.1 0.7 1.0 0.5 0.2 0.5 0.7 0.5 0.9 0.8 0.0 0.4
0.6 0.8 0.2 0.0 0.2 0.3 0.4 0.5 0.7 0.0 0.8 1.0 1.0 0.4 0.8 0.3 0.1 0.9 0.5 0.7
0.3 0.3 0.6 0.7 0.4 0.5 0.5 0.6 0.5 0.8 0.6 0.8 1.0 0.6 0.8 0.7 1.0 1.0 0.6 0.3
0.4 0.1 0.2 0.6 0.6 0.3 0.7 0.6 0.8 0.8 0.4 0.4 0.4 1.0 0.2 0.6 0.9 0.8 0.2 1.0
0.5 0.4 0.3 0.6 0.9 0.5 0.3 0.7 0.6 0.1 0.2 0.3 0.6 0.7 1.0 0.1 0.4 0.2 0.9 0.1
0.6 0.0 0.5 0.1 0.6 0.3 0.8 0.6 0.8 0.9 0.5 0.4 1.0 0.9 0.0 1.0 0.4 0.4 0.7 0.7
0.6 0.3 0.5 0.9 0.3 1.0 0.8 0.8 0.8 0.4 0.7 0.4 0.3 0.6 0.2 0.1 1.0 0.5 0.9 0.5
0.1 0.8 0.1 0.4 0.2 0.5 0.8 0.6 0.1 0.2 0.3 0.7 0.6 0.2 1.0 0.5 0.7 1.0 0.0 0.6
0.2 0.1 0.1 0.3 0.1 0.2 0.9 0.8 0.5 0.8 0.2 0.1 0.9 0.1 0.6 0.1 0.2 0.1 1.0 0.6
0.5 0.1 0.7 0.5 0.0 0.9 0.8 0.8 0.9 0.4 0.8 0.2 0.3 0.1 0.5 1.0 0.8 0.4 0.8 1.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Appendix C

E1 E2 E3⎡⎢⎢⎣
0.1400 0.4000 0.5000 0.5600
0.2200 0.2400 0.6200 0.6000
0.5000 0.5800 0.7400 0.6200
0.2800 0.6400 0.4600 0.4800

⎤⎥⎥⎦⎡⎢⎢⎣
0.6800 0.5200 0.4200 0.6000
0.6400 0.3000 0.5000 0.5600
0.4800 0.3400 0.1200 0.4400
0.4000 0.6400 0.8400 0.3800

⎤⎥⎥⎦⎡⎢⎢⎣
0.7000 0.4750 0.6750 0.5500
0.4500 0.3750 0.4000 0.4000
0.1250 0.2000 0.5000 0.3000
0.4750 0.4000 0.2500 0.2750

⎤⎥⎥⎦⎡⎢⎢⎣
0.5000 0.5000 0.2000 0.5000
0.6500 0.5250 0.5500 0.6250
0.5750 0.6250 0.7250 0.1750
0.0750 0.7500 0.4750 0.2000

⎤⎥⎥⎦⎡⎢⎢⎣
0.3000 0.1000 0.6000 0.5000
0.2000 0.8000 0.8000 0.0500
0.8500 0.8000 0.6500 0.5500
0.9500 0.0500 0.4500 0.6000

⎤⎥⎥⎦

⎡⎢⎢⎣
0.5208 0.6100 0.5770 0.6664
0.4119 0.6472 0.3852 0.4623
0.6163 0.3272 0.7855 0.3519
0.3848 0.3925 0.3221 0.4622

⎤⎥⎥⎦⎡⎢⎢⎣
0.5250 0.5500 0.8500 0.2500
0.7750 0.2000 0.2250 0.6500
0.1250 0.7000 0.7000 0.5000
0.7750 0.3500 0.4250 0.2000

⎤⎥⎥⎦⎡⎢⎢⎣
0.2500 0.6250 0.4250 0.2750
0.3500 0.3750 0.2250 0.8500
0.4250 0.6500 0.5500 0.3750
0.3750 0.7750 0.6500 0.2000

⎤⎥⎥⎦⎡⎢⎢⎣
0.3750 0.9250 0.4250 0.3750
0.3500 0.6250 0.7750 0.6500
0.3750 0.5500 0.2500 0.7000
0.4750 0.2000 0.4750 0.4750

⎤⎥⎥⎦

⎡⎢⎢⎣
0.3350 0.3810 0.4419 0.4493
0.2349 0.5938 0.4826 0.7519
0.4407 0.4557 0.5697 0.5746
0.4463 0.2744 0.4487 0.5028

⎤⎥⎥⎦⎡⎢⎢⎣
0.3667 0.7167 0.5833 0.4500
0.7833 0.6667 0.4333 0.3167
0.4667 0.4167 0.2500 0.4167
0.6833 0.6176 0.4167 0.5667

⎤⎥⎥⎦⎡⎢⎢⎣
0.7546 0.7082 0.4576 0.6671
0.3179 0.5563 0.6815 0.3947
0.3635 0.6030 0.3972 0.5008
0.3486 0.7718 0.1798 0.4852

⎤⎥⎥⎦
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Abstract: A false data injection attack (FDIA) is one of the major threats to power systems, and
identifying false data is critical to the stable operation of power systems. However, false data
that closely resemble normal data hinder the accuracy of existing detection methods, and their
performance further declines when exposed to ambient noise. To address these challenges, this
paper proposes an attentional convolutional neural network based on distinction enhancement and
information fusion (DEIF-ACNN) for FDIA detection. Firstly, by minimizing the loss of reconstruction
and discrimination, this paper designed an autoencoder with a discriminator for normal data (NAE),
which had the characteristic of producing a small loss for normal data. Secondly, the trained NAE
is utilized to compute the feature correlation matrix between the original and reconstructed data
to enhance the distinction between normal and false data. Finally, to enhance feature extraction
and suppress ambient noise interference in detection, DEIF-ACNN incorporates a convolutional
block attention module (CBAM) to emphasize key feature channels and highlight crucial regions in
the feature matrix. Experimental results show that DEIF-ACNN outperforms other FDIA detection
methods on IEEE-9, IEEE-14, and IEEE-118 bus power systems, achieving an accuracy of 99.22%,
99.83%, and 100.00%, respectively. In addition, the method exhibits the best robustness under different
noise environments, and its accuracy is maintained at about 80%.

Keywords: power system; false data injection attack; CNN; autoencoder; attention mechanism

1. Introduction

The advancement of information technology in power systems has significantly en-
hanced convenience; however, it has also increased the vulnerability of power systems
to various cyberattacks [1–4]. Among these risks, the false data injection attack (FDIA)
is one of the most challenging cyberattacks in power systems [5]. Figure 1 illustrates
the process of the false data injection attack (FDIA). Phasor measurement units (PMUs)
are essential for the measurement, control, and protection of power grids. However, in-
stalling PMUs at every bus in a power system is cost-prohibitive, leading to the need for
partial PMU placement that maintains system observability with a minimal number of
units [6,7]. A downside of this cost-effective strategy is that it makes the system more
susceptible to FDIAs. Attackers utilize the system topology structure and prior knowledge
to tamper with the data transmitted by PMUs, effectively bypassing the bad data detection
mechanisms [8,9] and causing erroneous decision-making [10]. Such attacks can result in
far-reaching consequences, including widespread power outages [11], as well as severe
disruptions like traffic congestion [12] and substantial market losses [13], posing significant
risks to both society and the economy.
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Figure 1. The FDIA of power systems.

Currently, FIDA detection methods are mainly categorized into model-based and
data-driven approaches [14]. Model-based detection methods rely on the physical model
and prior knowledge of power systems. Therefore, these methods have low scalability [15].
Data-driven detection methods rely on historical measurement data to enable real-time or
near real-time inspection through rapid data processing and analysis [16]. However, with
the continuous evolution of attack methods, the false data generated by attackers becomes
extremely like normal data in terms of features, which may lead to false alarms or omissions
in detection results. In addition, since PMUs are easily disturbed by transmission delays
or environmental factors, the measurement data are often contaminated by noise, further
reducing the detection efficiency. To address these challenges, the DEIF-ACNN model
is proposed to identify FDIA. The proposed method improves the detection efficiency of
identifying FDIA by using advanced feature extraction techniques driven by deep learning
models to learn and adapt subtle patterns in the data.

Firstly, DEIF-ACNN is used to enhance the distinction of data by constructing an NAE
that produces a smaller loss for normal data inputs and a larger loss for false data inputs.
Subsequently, DEIF-ACNN fuses the information from the original data and the enhanced
data to generate a feature correlation matrix, thus preserving the original information and
adapting it to subsequent detection tasks. Finally, DEIF-ACNN introduces a CBAM to
compute the attention weight matrix from both channel and spatial perspectives, which
enhances the key feature channels and highlights the important regions while suppressing
the noise interference, thus improving the efficiency of false data detection. The main
contributions of this paper are as follows:

1. A data-driven FDIA detection method is proposed, which utilizes an autoencoder
with a discriminator for normal data to enhance the distinction between normal data
and false data to improve the model detection performance.

2. To suppress the interference of noise on the detection results, the attention mecha-
nism is added to the convolutional neural network to improve the robustness of the
detection model.

3. The method is completely data-driven and has excellent scalability without consider-
ing the physical model and topology of the power system.

4. The proposed method is validated by simulation on IEEE-9, IEEE-14, and IEEE-118
bus systems, considering the interference of measured data in real environments.
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The rest of the paper is organized as follows: Section 2 describes the related work on
FDIA detection techniques in recent years; Section 3 describes the fundamentals of power
system state estimation and FDIA attacks; Section 4 describes the proposed methodology
of this paper in detail; Section 5 demonstrates the simulation results and performance
evaluations on three IEEE standard test systems; and Section 6 concludes the work of this
paper.

2. Related Work

The current detection methods can be categorized into model-based and data-driven
detection methods.

2.1. Detection Methods Based on Model

The authors of [17] improved the detection process by focusing on preventing outages
rather than just the denial of attacks, and evaluated the impact of cyberattacks on the PMU
state estimation process. At the beginning of the study, Duan J et al. used a weighted least
squares method to identify FDIAs in power systems, using state estimation to compare with
actual measurements in order to detect deviations [18]. Li B’s team proposed a proactive
defense approach (PAMA) to protect the grid configuration information and raw measure-
ment data by encrypting the raw measurement data while protecting the grid configuration
information [19]. M. G. Kallitsis et al. proposed an adaptive statistical detection method
that uses measurements from trusted nodes to detect other anomalous nodes [20]. In order
to improve the real-time performance of FDIA detection, R. Moslemi et al. exploited the
near-singular sparsity of the power system to develop an efficient framework for solving
the associated maximum likelihood (ML) estimation problem, and then decomposed the
FDIA detection method into several local ML estimation problems [21]. With the introduc-
tion of dynamic modeling, K. Manandhar et al. proposed a detection method based on
the Kalman Filter (KF); their team studied the mathematical model of the power system
and used the KF to estimate the variables of the various state processes in the model, and
then the estimation results and the system data were fed back to the detector to obtain the
detection results [22]. The GoDec algorithm was proposed by B. Li et al.; their approach
relies on the low-rank property of the measurement matrix and the sparsity of the attack
matrix to reformulate FDIA detection as a matrix separation problem, and the approach
was shown to be capable of handling measurement noise and applicable to large-scale
attacks [23]. S. Li et al. proposed a generalized likelihood ratio-based sequence detector to
solve the problems of the low robustness of the detector and computational inefficiency by
considering the sequential detection of FDIA [24].

2.2. Detection Methods Based on Data-Driven Approaches

With the advent of machine learning and big data technologies, data-driven ap-
proaches have emerged as a promising alternative for FDIA detection. Y. He et al. proposed
a deep belief network (DBN) based on a restricted Boltzmann machine for detecting dam-
aged data in DC power systems [25]. Foroutan S A et al. proposed a semi-supervised
method based on Gaussian Mixture Models; they used Gaussian Mixture Models to learn
the features of the positive samples and select the appropriate thresholds on the mixed
dataset to evaluate the unlabeled data [26]. Similarly, C. Wang et al. used automatic coding
to learn the intrinsic features of normal data and predicted positive anomalies by calcu-
lating the reconstruction loss, and their approach effectively overcame the challenge of
unbalanced data samples in power systems [27]. A convolutional neural network (CNN) is
widely used in pattern recognition image processing, and the ability of the CNN to extract
sample features has become a very promising algorithm for FDIA detection. Min Lu et al.
constructed an FDIA model based on an improved CNN, which extracts spatial–temporal
features of the data by adding a gate recursion unit (GRU) before the fully connected layer
of the CNN to achieve efficient, real-time FDIA detection [28].
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3. State Estimation and FDIA

This section will introduce the state estimation and BDD technology of power systems,
sort out the FDIA execution process, and analyze the similarity problem between normal
and false data.

3.1. State Estimation

The state estimation problem in power systems involves estimating the state variables
(e.g., bus voltage magnitudes and phase angles) from measured data. It is typically formu-
lated as a nonlinear optimization problem, where the goal is to minimize the error between
the measured data and the predicted values, derived from the state variables. The state
estimation process can be represented as follows [10]:

z = h(x) + e (1)

where z denotes the measurement data, usually the bus voltage, the bus active and reactive
power injections, and the branch active and reactive power flows of the power system [11];
x denotes the state vector; e denotes the measurement noise obeying a Gaussian distribution
e ∼ N(0, σ2); h(·) denotes the functional dependence between the measurements and the
state variables, which is usually determined by the system parameters and topology. The
nonlinear optimization involved here is typically unconstrained, meaning that there are
no explicit physical constraints (e.g., voltage limits or power flow boundaries) enforced
during the optimization process. The objective is to minimize the difference between the
actual measurements z and the estimated measurements h(x) represented by the following
cost function:

J(x) =
1
2
(z− h(x))TW(z− h(x)) (2)

where W = diag(σ−2
i , 0), σ2

i is the variance of the measurement error of the i-th meter.
The optimization problem is solved iteratively using methods like gradient descent or the
Gauss–Newton method, where the focus is solely on minimizing the measurement error
without considering additional physical constraints.

Due to the large amount of computation involved in solving the state estimation
through multiple iterations, Equation (1) is simplified to the following:

z = Hx + e (3)

where H = ∂h(x)
∂x is an M× N Jacobi matrix related to the system parameters and topology.

Similarly, solving for the state variable estimates x̂ can be performed in the following way:

x̂ = minJ(x)
= (z− Hx)TW(z− Hx)

(4)

The solution of the state estimation is obtained as follows:

x̂ =
(

HTWH
)−1

HTWz (5)

3.2. BDD Technology

During the operation of the power system, the bad data detection mechanism is used
to determine whether the current system-generated measurements contain false data. The
basic principle of this mechanism is to substitute the state variable estimate x̂ into the
residual calculation, a process that can be expressed as follows:

r = z− Hx̂ (6)

where r represents the difference between the actual measured value and the estimated
value. In the ideal case, r should be close to zero. However, due to measurement errors and
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potentially bad data, the residual may be larger than a certain threshold. Thus, potential
bad data can be identified by residual analysis as shown in the following equation:

||r||2 > τ (7)

where τ is a threshold set in advance. At this point, it can be determined that the system is
experiencing bad data.

3.3. False Data Injection Attack

The FDIA will inject attack vectors into the measurement data z without changing the
||r||2:

za = z + a (8)

where za denotes the measurement vector after the attack. At this point, the system state
variable estimate can be expressed as follows:

x̂a =
(

HTWH
)−1HTWza

=
(

HTWH
)−1HTW(z + a)

= x̂ +
(

HTWH
)−1HTWa

= x̂ + c

(9)

At this point, the residual can be computed as follows:

ra = za − Hx̂a
= z + a− H(x̂ + c)
= z− Hx̂ + (a− Hc)
= r + (a− Hc)

(10)

If a = Hc, it is guaranteed not to change the value of ||r||2 to inject the attack vector
into the measurement data. Note that the injection vector a can also be obtained without
explicitly asking for c. In [11], it was shown that the relation a = Hc can be transformed
into an equivalent form without explicitly using c, and from this a is generated. Since the
FDIA constructed through the above is less than τ as the residual generated in the normal
case, then false data can perfectly bypass the BDD and pose a threat to the stable operation
of the power system.

3.4. Problem Analysis

The main reason why the false data behaves very similarly to the normal data is
that the attacker utilizes an in-depth understanding of the power system model. The
attacker has access to the parameters and topology of the system and uses the Jacobi matrix
H to design an attack vector that makes the injected false data behave very similarly to
the normal data in terms of features. To quantify this similarity, this paper uses kernel
density estimation to estimate the distribution of normal and false data. The kernel density
estimation formula is as follows:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(11)

where f̂ (x) is the estimated probability density function, K(·) is the kernel function; h is
the bandwidth parameter, which controls smoothing; and xi is the sample point.

The feature distribution of normal data is usually more centralized, showing typical
measurements of the system in steady-state operation, such as bus voltages and branch
active and reactive power flows. False data are injected into the system via attack vectors,
which are designed to be highly overlapped with the normal data in terms of features by
using the Jacobi matrix H to ensure that they satisfy a = Hc. The false data successfully
bypasses the BDD mechanism by modifying the measurement data z without changing
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the residuals r. In the probability density distribution plots of normal data and false data
shown in Figure 2, the distribution curves of false data are highly overlapped with the
normal data curves, and the feature overlap rate reaches 96.27%, where Class 0 and Class
1 indicate normal and false data, respectively. This means that the false data are very
similar to the normal data in the feature space, causing the existing detection methods to
be difficult to distinguish. Therefore, ability to the detect false data must be improved by
enhancing the differentiation between the two.

Figure 2. The distribution of normal and false data.

4. Proposed Detection Method

The proposed method is described in this section. Section 4.1 describes the overall
flow of the method; Section 4.2 introduces distinction enhancement and information fusion;
Section 4.3 introduces attention convolutional neural networks.

4.1. Method Overview

The method proposed in this paper is shown in Figure 3. The proposed method
consists of two main modules.

 

Figure 3. The structure of the DEIF-ACNN model.
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The first module is distinction enhancement and information fusion. In this module,
the NAE has the property that it has a small reconstruction error for normal data and a large
reconstruction error for false data. This property of the NAE is exploited to enhance the
distinction between normal and false data. Then, the enhanced data features are associated
with the original data to obtain the feature matrix. This process is performed to retain the
original data features and adapt to the subsequent detection module.

The second module is the attention convolutional neural network. The purpose of
this module is to detect if the current data are false data or not. Since convolutional neural
network has better performance in extracting data features, it can better extract features in
the feature matrix. At the same time, the attention mechanism can suppress the interference
of noise on the detection results.

4.2. Distinction Enhancement and Information Fusion

In the proposed DEIF-ACNN method, the NAE is constructed to enhance the distinc-
tion between the normal and false data, and its specific structure is shown in Figure 4.

 

Figure 4. The structure of the NAE.

When training the NAE, only the normal data are taken as input and the reconstructed
features are computed by the NAE; the process can be described as follows:

z = fenc(Xτ ; θenc) (12)

X′τ = fdec(z; θdec) (13)

where Xτ ∈ Rm denotes the m-dimensional normal data features; fenc(·) denotes the
data encoding computation; fdec(·) denotes the data decoding computation; θenc and θdec
denotes the parameters of the encoder and decoder, respectively; and X′τ ∈ Rm denotes the
m-dimensional reconstructed feature vector. The mean square error is chosen as the loss
function for the reconstruction error and the calculation process is shown in Equation (14):

L1 = − 1
n

n

∑
i=1

(
X(i)

τ − X′(i)τ

)2
(14)

where n denotes the number of samples per small batch.
To better ensure that the reconstructed data features belong to the type of normal

data, the NAE introduces a discriminator. This discriminator is trained using the normal
data and the loss is computed using a binary cross-entropy loss function in the following
procedure:

ŷτ = fcl f

(
Xτ ; θcl f

)
(15)
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BCELoss(ŷτ) = −
1
n

n

∑
i=1

[
log
(

1− ŷ(i)τ

)]
(16)

where θcl f denotes the internal parameters of the discriminator; fcl f (·) denotes the discrim-
inator; and ŷτ denotes the prediction result of the discriminator. By minimizing the loss,
the internal parameters of the discriminator are updated until the loss converges. At this
point, the reconstructed data features are used as inputs to the discriminator to obtain the
prediction results, which are calculated as follows:

ŷ′τ = fcl f (X′τ ; θcl f ) (17)

where ŷ′τ denotes the prediction result of the discriminator on the reconstructed data. Then,
the discrimination loss of the discriminator for the reconstructed features is calculated as
follows:

L2 = − 1
n

n

∑
i=1

[
log
(

1− ŷ′(i)τ

)]
(18)

Combining Equations (13) and (17) yields the final loss value L for the NAE:

L = L1 + L2 (19)

The NAE parameters θenc and θdec are updated by minimizing L. In this way, the NAE
is equipped with the characteristic of incurring smaller losses for normal data and larger
losses for false data.

Next, DEIF-ACNN takes the hybrid data X ∈ {Xτ , Xα} as input and computes the
reconstructed data features X′ through the trained NAE. Due to the characteristic of the
NAE, the following inequality will be satisfied:

L(X, X′)

{
≈ 0, i f · X ∈ Xτ

> 0, i f · X ∈ Xα
(20)

where Xα denotes false data. According to Equation (19), the distinction-enhanced feature
vectors can be computed by Equation (20):

E = X X′ (21)

where  denotes the corresponding positional subtraction of the feature vector and E
denotes the enhanced data feature. Figure 5 shows the distribution of normal data and false
data after distinction enhancement. Compared with Figure 2, it can be clearly seen that the
distribution overlap of the two types of data is significantly reduced, and the overlap rate
is reduced to 87.03%.

Figure 5. The distribution of normal and false data after distinction enhancement.

To ensure that the original data feature information is not lost during enhancing
the distinction process and to satisfy the input requirements of the subsequent detection
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modules, DEIF-ACNN generates the feature correlation matrix by feature vector correlation
after distinction enhancement. The process is described as follows:

M = X× ET (22)

Therefore, the flow of the DEIF-ACNN model in the distinction enhancement and
information fusion phase is shown in Algorithm 1.

Algorithm 1: Distinction Enhancement and Information Fusion.

Input: Normal data Xτ ; hybrid data X; learning rate α; initial parameter of
discriminator θ1; initial parameter of the NAE θ2;
Output: Feature correlation matrix.
1. Perform the data preprocessing.
2. Train the discriminator.
3. Repeat 4 to 8, if the loss BCELoss is reduced substantially.
4. Obtain the normal data

{
x(1)τ , · · · , x(n)τ

}
from Xτ .

5. Calculate the prediction of the discriminator using Equation (14): ŷτ .
6. Calculate the loss using Equation (15): BCELoss(ŷτ).
7. Calculate the gradient: g1 ← ∇θ1 BCELoss(ŷτ) .
8. Parameter update: θ1 ← θ1 − α× g1 .
9. Train the NAE.
10. Repeat 11 to 17, if the loss L is reduced substantially.
11. Obtain the normal data

{
x(1)τ , · · · , x(n)τ

}
from Xτ .

12. Calculate the NAE’s reconstruction features using Equations (11) and (12): X′τ
13. Calculate the reconstruction loss using Equation (13): L1.
14. Calculate the discrimination loss using Equation (17): L2.
15. Calculate the loss using Equation (18): L
16. Calculate the gradient: g2 ← ∇θ2L .
17. Update the parameter: θ2 ← θ2 − α× g2 .
18. Distinction enhancement and information fusion
19. Calculate the distinction-enhanced data using Equation (20): E.
20. Calculate the dataset after information fusion using Equation (21): M.
21. Return feature correlation matrix: M

4.3. Attention Convolutional Neural Network

After processing in Section 4.1, each sample in the original data has been transformed
into a feature correlation matrix. To improve the accuracy of FDIA detection, this method
uses a CNN with a built-in attention mechanism module for better extraction of the data
features of the feature correlation matrix. The structure is shown in the detection module of
Figure 3. The ACNN consists of multiple feature extraction layers, each of which includes
a convolutional layer, a CBAM module, and a pooling layer.

In the ACNN, the convolutional layer of each feature extraction layer consists of
multiple learnable convolutional kernels. The key operations of the convolutional layer
include local correlation and window sliding. Local correlation means that each convolution
kernel is considered as a window filter, and during neural network training, the convolution
kernels are convolved with the input data according to a customized size. Then, by
controlling the step size, the sliding distance of the window filter is determined so that
features are extracted in each localized region. The convolution process is essentially the
multiplication of two matrices, and after convolution, the dimensions of the input data are
reduced.

In the convolutional layer, in addition to the convolution operation, there are two key
parameters: the activation function and the learnable bias vector. The role of the bias vector
ci,j is to perform a linear addition of the convolved data, i.e., the convolution result is added
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to the bias vector, as shown in Equation (22). The activation function is used to enhance the
nonlinear capability of the network by activating the data to remove useless information:

ci,j = ReLU
(
z ∗ hi,j

)
+ bi,j (23)

where ci,j is the feature mapping of the input feature matrix z after the convolution operation
of the i-th feature extraction layer; hi,j is the j-th convolution kernel of the i-th convolution
layer; ∗ denotes the convolution operation; bi,j is the j-th bias vector of the i-th convolution
layer; ReLU(·) denotes the activation function.

Although PMUs provide high-precision measurements, they are not immune to noise.
The noise in PMU data mainly comes from synchronization errors (due to GPS signal inter-
ference) and communication delays (due to network delays), which may compromise the
accuracy of the collected data. To extract the locally important information more effectively
and suppress the noise interference, the ACNN introduces the CBAM module based on the
attention mechanism after the convolutional layer, and its specific structure is shown in
Figure 6. The CBAM is a lightweight module with low memory requirements and compu-
tational cost, conditions that are extremely favorable for power system applications. The
CBAM consists of two sub-modules: the channel attention module (CAM) and the spatial
attention module (SAM), which help to emphasize relevant information from different
perspectives. The CAM highlights channels associated with change while suppressing
irrelevant channels; the SAM amplifies the difference between changed and unchanged
feature elements in the spatial dimension. In this way, the CBAM more accurately identifies
extremely important regions of the feature matrix.

 
Figure 6. The internal structure of the CBAM module.

The CBAM takes the output of the previous convolutional layer as input, computes
the attention weight matrix in channel and spatial dimensions, and finally multiplies the
input feature matrix with the attention weight matrix to obtain a new feature matrix. The
process is described as follows:

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′

(24)

Mc(·) indicates that the CAM sub-module computes the channel attention weight
matrix; Ms(·) indicates that the SAM sub-module computes the spatial attention weight
matrix; F, F′, and F′′ denote the input feature matrix, the feature matrix after the channel
attention, and the final output feature matrix, respectively.

In computing the channel attention weights, the CAM sub-module takes the original
feature matrix as input and applies maximum pooling and average pooling, respectively.
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Subsequently, the pooling results are processed through a multilayer perceptron (MLP)
based on an encoder–decoder architecture. Finally, the channel attention feature matrix is
generated by the Sigmoid activation function. The process is shown in Equation (25):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1W0(AvgPool(F)) + W1W0(MaxPool(F)))

(25)

where W0 and W1 denote the weights of the first and second hidden layers of the multilayer
perceptron, respectively; σ(·) denotes the Sigmoid activation function. The new feature
matrix F′ is obtained by multiplying the channel attention weight matrix with the input
feature matrix.

In computing the spatial attention weight matrix, the SAM sub-module first performs
average pooling and maximum pooling operations on the feature matrix F′ along the
channel axis, respectively; then, these two pooled feature maps are spliced onto the channel
axis to form a combined feature matrix; subsequently, a 7∗7 convolution operation is
performed on the combined feature matrix; and finally, the spatial attention weight matrix
is generated by the Sigmoid activation function. The process is shown in Equation (26):

Ms
(

F′
)
= σ
(

f 7∗7([AvgPool
(

F′
)
; MaxPool

(
F′
)]))

(26)

where f 7∗7(·) denotes a convolution operation using a 7∗7 convolution kernel. The spatial
attention weight matrix is multiplied with the output F′ of the CAM sub-module to finally
obtain the output F′′ of the CBAM.

The CBAM module further captures important information about the output results
of the convolutional layer and suppresses the interference of noise in the feature matrix. To
reduce the subsequent computational complexity, the ACNN adds a pooling layer after
the CBAM module, aiming at compressing the data and the number of parameters and
reducing the risk of overfitting, while preserving the most important features in the data.
The pooling layer operates as follows:

1. Feature invariance: the pooling operation removes unimportant information in data
features, while the retained information is scale invariance and still representative of
the data features before pooling.

2. Feature dimensionality reduction: the pooling layer reduces the data dimensionality
by removing redundant information and extracting only the most important features,
thus reducing the amount of computation and preventing overfitting to a certain
extent.

The last layer of the ACNN is the linear layer, whose main function is to compute the
final prediction probability from the features extracted from the feature extraction layer
through the fully connected network, whose structure is shown in Figure 7. First, the
feature matrices are converted to feature vectors by a flatten layer, since the input to the
linear layer requires one-dimensional feature vectors rather than matrices. Next, the feature
vectors are processed through a fully connected network to generate predictions. Finally,
the model is optimized by calculating the loss between the ACNN predictions and the true
labels. The loss is calculated using the cross-entropy loss function as follows:

LCCES = − 1
n

n

∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) (27)

where n denotes the amount of data in each small batch; yi denotes the true label of the i-th
sample; ŷi denotes the probability that the i-th sample is predicted to have a positive label.
The internal parameters of the ACNN are adjusted to optimize the model performance by
minimizing the loss values calculated by Equation (26).
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Figure 7. The fully connected linear layers.

Therefore, the process of training the DEIF-ACNN model to predict false data is shown
in Algorithm 2.

Algorithm 2: DEIF-ACNN predicts false data.

Input: Feature correlation matrix: M; learning rate γ; initial parameters of the ACNN ω.
Output: The parameter matrix of the ACNN: ω.
1. Train the ACNN.
2. Repeating 1.1 to 1.4, if the loss LCCES is reduced substantially.
3. Obtain mixed data

{
M(1), · · · , M(n)

}
from M; the label of M(i) is y(i).

4. Calculate the loss using Equation (26): LCCES

(
y(i), ŷ(i)

)
.

5. Calculate the gradient: g3 ← ∇ωLCCES

(
y(i), ŷ(i)

)
.

6. Update the parameter ω ← ω− γ× g3 .
7. Return the parameter matrix of the ACNN: ω.

5. Experiments

In this section, the effectiveness of the proposed method on the IEEE-9, IEEE-14, and
IEEE-118 bus power system standard test systems is analyzed in detail and the performance
of the method in a noisy environment is explored. The GUP used in this experiment is RTX
3060, the CPU is Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz, and the memory is
32 G. The others use pytorch 2.2.1, Python3.8, Cuda 11.2, etc.

5.1. Dataset Setup

The datasets used in this experiment were collected from the IEEE-9, IEEE-14, and
IEEE-118 standard test case simulations. These test cases are from PYPOWER, a derivative
of MATPOWER [29].

5.1.1. Simulation Case Description

The IEEE-9 bus is a test case consisting of nine buses, three generators, and nine
branches; the IEEE-14 bus consists of fourteen buses, five generators, and twenty branches;
and the IEEE-118 bus consists of one hundred eighteen buses, fifty-four generators, and one
hundred eighty-six branches. The topologies of IEEE-9 and IEEE-14 are shown in Figure 8.
Due to the huge IEEE-118 system, the topology diagram of IEEE-118 bus is omitted in this
paper, and the details can be seen in [30]. The main system parameters for the test case are
shown in Table 1, where the PF and QF of the branch are only included in the power flow
output and are ignored when used as inputs to the power flow.
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(a) IEEE-9 bus (b) IEEE-14 bus 

Figure 8. The topology structure.

Table 1. The main system parameters of the test case.

Name Column Description

bus
PD real power demand
QD reactive power demand

generator PG real power output
QG reactive power output

branch
PF real power injected at “from” bus end
QF reactive power injected at “from” bus end

5.1.2. Data Generation

Since PYPOWER has only one test case for the IEEE-9, IEEE-14, and IEEE-118 bus,
the generated data are insufficient to support the whole experiment. Therefore, to be able
to obtain more data, each bus system will be assigned about 100 k load data [31], each of
which includes both active and reactive loads. The process of generating measurement
data is as follows:

Step 1: Modify the active power demand (PD) and reactive power demand (QD) of
the simulated system using this load data. The modifications are as follows:

PD ← load_active
QD ← load_reactive

(28)

where load_active denotes active load and load_reactive denotes reactive load. Each modifi-
cation becomes a new test case. The new test case is input into the AC-PF of PYPOWER for
power flow calculation, and measurement data are taken from the results of the calculation.
Among the measured data are the bus active power injection (pi), the bus reactive power
injection (qi), the active power injection at the branch “from” end (p f ), and the reactive
power injection at the branch “from” end (q f ). The calculation process of the measured
data is as follows:

z = concatenate([p f , pi, q f , qi]) (29)

The number of measurements of the measured data in the three test cases is shown in
Table 2.
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Table 2. The number of measurements of the measurement data.

Test Case Type Number Total

IEEE-9 bus

pi 9 (9 buses)

36
qi 9 (9 buses)
p f 9 (9 branch)
q f 9 (9 branch)

IEEE-14 bus

pi 14 (14 buses)

68
qi 14 (14 buses)
p f 20 (20 branches)
q f 20 (20 branches)

IEEE-118 bus

pi 118 (118 buses)

608
qi 118 (118 buses)
p f 186 (186 branches)
q f 186 (186 branches)

Step 2: A random number α from 0 to 1 is generated to determine whether the current
measurement data are needed for a false data injection attack by using Equation (8). The
conditions are as follows:

z =

{
z, i f α < 0.5
za, i f α > 0.5

(30)

Step 3: By using Equations (2)–(7), determine whether the measurement data z ob-
tained by the current system satisfy the residual analysis. If the residual analysis is satisfied,
add it to the dataset collection; if not, return to Step 1.

Repeat Step 1 to Step 3 until all load data are used up.

5.1.3. Data Preprocessing

To maximize the performance of all models used in the experiment, the collected
dataset will be preprocessed.

1. Balancing Process. From the generated dataset, 15 k normal data and 15 k false data
were randomly selected to form the sample balanced dataset; details are given in
Table 3.

Table 3. Specifics of the datasets.

Bus Name Bus-9 Bus-14 Bus-118

Normal data 15,000 15,000 15,000
False data 15,000 15,000 15,000

Number of features 36 68 608
Total 30,000 30,000 30,000

2. Normalization Process. The features of the dataset are deflated to between [0,1]. The
deflation process is as follows:

X =
X−min

max−min
(31)

where min and max are the minimum and maximum values of the sample data,
respectively.

3. Dataset splitting. Throughout the experiments, each dataset was divided into 60%
training set, 20% validation set, and 20% test set.
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5.2. Evaluation Metrics

Accuracy, precision, recall, F1-Score, and cross-entropy loss are considered as evalua-
tion metrics to measure the performance of the classification models, and they are defined
below:

Accuracy =
TP + TN

TP + FN + FP + TN
(32)

Precision =
TP

TP + FP
(33)

Recall =
TP

TP + FN
(34)

F1 − Score = 2× precision× recall
precision + recall

(35)

where TP is True Positive, TN is True Negative, FP is False Positive and FN is False
Negative. F1 − Score can comprehensively evaluate the performance of the model, and,
therefore, the evaluation metric is the focus of comparison in this paper. The cross-entropy
loss reflects the convergence of the model during the training process.

5.3. FDIA Detection Performance

To assess the detection efficiency and reliability of the method in this paper, a compar-
ative experiment was conducted with several baseline models.

5.3.1. Ideal Environment

In the experimental evaluation, this paper first conducts a comparison experiment
in an ideal environment (no noise condition). The experimental results are shown in
Table 4, where the No-CBAM is the ablation model of the proposed method in this paper,
specifically, the removal of the CBAM module in the ACNN.

In the IEEE-9 bus system, DEIF-ACNN has an accuracy of 99.22%, a precision of
99.97%, a recall of 98.48%, and an F1-Score of 99.22%. Compared with other optimal
models (e.g., DT), the F1-Score improves by 0.42%. This smaller boost reflects the fact
that DT already performs quite well when dealing with a system of this size. However,
the distinction enhancement and information fusion strategies of DEIF-ACNN enable it
to better mine the subtle differences in the data; combined with the optimized extraction
of features by the CBAM module, it further improves the comprehensive performance
of the model. In contrast, weaker models such as the AE perform significantly worse in
this system, with an F1-Score of only 88.20%. This is mainly because the AE is not able
to extract the important features as DEIF-ACNN does when dealing with complex data
features; thus, the performance gap between the two is significant.

In the IEEE-14 bus system, DEIF-ACNN has an accuracy of 99.83%, a precision of 100%,
a recall of 99.67%, and an F1-Score of 99.83%. Compared with other better-performing
models (e.g., CNN), the F1-Score is only improved by 0.43%. The CNN has already demon-
strated a fairly good performance in this system due to its powerful feature extraction
capabilities. However, DEIF-ACNN further enhances the capture of key features by in-
corporating the CBAM of the attention mechanism, thus achieving a small but significant
performance improvement over the already high level. In contrast, the F1-Score of the AE
is only 84.36%, which further indicates that the feature extraction ability of the AE is much
less than that of DEIF-ACNN when dealing with more complex system structures.

In the IEEE-118 bus system, DEIF-ACNN achieves 100% accuracy, precision, recall,
and F1-Score, which is an excellent performance. The accuracy is improved by 41.2%
compared to the worst KNN. This is because KNN classifies the data by calculating the
Euclidean distance, which makes it difficult to perform well with high-dimensional data.
However, some other models (e.g., MLP, CNN, DBN, and No-CBAM) also achieve the
same high scores. This situation is difficult to compare further. Therefore, the advantage of
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the model is evaluated by observing the change in cross-entropy loss during the training
process. As shown in Figure 9, DEIF-ACNN converges faster during the training process,
indicating that it has significant advantages in learning efficiency and training stability.
This also implies that DEIF-ACNN may have stronger generalization ability and higher
reliability in more complex practical application scenarios.

Table 4. Comparative experimental results in ideal environment.

System Method Accuracy Precision Recall F1-Score

IEEE-9 bus

Proposed 99.22 99.97 98.48 99.22
KNN 94.65 100.00 89.31 94.35

DT 98.80 98.95 98.66 98.80
MLP 94.25 100.00 88.58 93.95
CNN 95.58 99.93 91.30 95.42
GRU 95.92 99.93 91.96 95.78
DBN 90.38 99.96 80.94 89.45
AE 89.33 99.62 79.12 88.20

No-CBAM 98.05 100.00 96.13 98.03

IEEE-14 bus

Proposed 99.83 100.00 99.67 99.83
KNN 94.44 100.00 88.88 94.11

DT 99.40 99.38 99.42 99.40
MLP 95.62 100.00 91.30 95.45
CNN 98.38 99.73 97.05 98.37
GRU 96.15 99.96 92.39 96.03
DBN 91.87 97.42 86.14 91.43
AE 85.87 95.29 75.68 84.36

No-CBAM 99.32 99.60 99.04 99.32

IEEE-118 bus

Proposed 100.00 100.00 100.00 100.00
KNN 58.80 100.00 17.58 29.90

DT 99.84 99.89 99.79 99.84
MLP 100.00 100.00 100.00 100.00
CNN 100.00 100.00 100.00 100.00
GRU 100.00 100.00 100.00 100.00
DBN 100.00 100.00 100.00 100.00
AE 89.63 100.00 79.42 88.53

No-CBAM 100.00 100.00 100.00 100.00

  
(a) Training accuracy. (b) Training loss. 

Figure 9. Changes in accuracy and loss of training on IEEE bus-118.

In summary, although the improvement in DEIF-ACNN is limited when compared
with better-performing models, its stable performance and superiority in complex systems
still reflect its strong detection ability. Compared with the poorer-performing models,
DEIF-ACNN significantly improves the detection efficiency, mainly due to its effective
combination of distinction enhancement, information fusion, and attention mechanism.
The overall results of the comparison experiments are shown in Figure 10.
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Figure 10. Comparing and contrasting the bar graphs of the experimental results.

5.3.2. Noise Environment

In practical application environments, the interference of noise for measurement
data such as electromagnetic waves can significantly affect the detection efficiency of the
detection model. Therefore, this section evaluates the detection efficiency under different
noise levels. In this experiment, Gaussian noise is used to simulate the interference to the
measurement data in the real environment. The process of adding noise is as follows:

Xnoise = X + noise (36)

where X ∈ Rm denotes the m-dimensional original data; noise ∈ Rm denotes the m-
dimensional noise vector obeying a Gaussian noise noise ∼ N

(
0, λ2); Xnoise indicates data

after adding noise. Different values of λ indicate the level of noise; the higher the value of
λ, the higher the noise level and the stronger the interference. The interference of different
levels of noise on the detection results is modeled by varying the magnitude of λ; the values
of λ are specifically shown in Table 5.

Table 5. The values of σ under the different datasets.

Dataset λ (Noise Level)

IEEE-9 bus 0 0.1 0.2 0.3 0.4 0.5 0.6
IEEE-14 bus 0 0.2 0.4 0.6 0.8 1.0 1.2
IEEE-118 bus 0 0.5 1.0 1.5 2.0 2.5 3.0

In the process of extracting important features, DEIF-ACNN employed the CBAM to
mitigate noise interference in the detection process. The heatmaps of extracted features
were plotted on the three datasets for original data, noisy data, and data with noise
suppressed, respectively. For visualization purposes, 60 samples were randomly selected
as observations in the test set and the extracted features were nonlinearly mapped to a
low-dimensional space (32 dimensions) by an autoencoder. The corresponding heatmaps
are shown in Figures 11–13. The horizontal axis of each heatmap represents the individual
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feature of the samples, and the vertical axis represents each sample. The color scale
from blue to red indicates the magnitude of the eigenvalue. Comparing (a) and (b) of
Figures 11–13, the heatmaps drawn by features extracted from the noisy data have changed
significantly; this situation may lead to a decrease in accuracy. As shown in Figure 14,
by utilizing the CBAM to suppress the interference of noise, the overall pattern of the
heatmap after the noise is suppressed is close to the original data, as can be seen in (c) of
Figures 11–13. This is because the CBAM adaptively adjusts the contribution of features
by calculating attention weights. Thus, the effect of noise on the detection performance of
DEIF-ACNN is reduced. Overall, the noise suppression strategy of DEIF-ACNN is effective
and greatly restores the features of the noisy data.

   
(a) Original data. (b) Noisy data. (c) Noise-suppressed data. 

Figure 11. Heatmap of the extracted features on IEEE-9 bus.

   
(a) Original data. (b) Noisy data. (c) Noise-suppressed data. 

Figure 12. Heatmap of the extracted features on IEEE-14 bus.

   
(a) Original data. (b) Noisy data (c) Noise-suppressed data. 

Figure 13. Heatmap of the extracted features on IEEE-118 bus.

To further illustrate the effectiveness of DEIF-ACNN in suppressing noise, the classifi-
cation accuracies of DEIF-ACNN were compared with several other detection models under
different noise conditions. As shown in Figure 14a, the proposed method outperforms the
other models in terms of accuracy under different noise conditions. With the increasing
noise level, the accuracy of DEIF-ACNN remains around 80%. However, for DBN, the
accuracy decreases to about 50%. This suggests that these models have difficulty dealing
with complex feature relationships in noisy environments. Observing Figure 14b, although
the accuracy of the AE improves by 5% within the noise level from 0 to 0.2, the accuracy
of the AE decreases to about 75% as the noise level continues to increase. This is because
moderate noise acts as a regularization factor and enhances the generalization ability of the
model. The results on the IEEE-14 bus dataset show that DEIF-ACNN still has the strongest
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resistance to noise interference. On the IEEE-118 bus dataset, as shown in Figure 14c, as
the noise level increases, the accuracy decreases from 60% to 50% since the KNN does not
have the feature extraction capability. MLP has a weaker feature extraction capability, and
the accuracy of MLP decreases from 100% to 50%. Similarly, the same situation as for the
IEEE-14 bus occurs at a noise level of around 1 on this dataset. This further indicates that
moderate noise enhances the generalization ability of the model.

Figure 14. Accuracy of different noise levels.

Overall, the proposed method consistently maintains high classification accuracy
across all noise levels, particularly in high-noise environments, where it demonstrates
stronger robustness and anti-interference capabilities. DEIF-ACNN is compared with
No-ACNN on all datasets. The comparison results further demonstrate the effectiveness
of DEIF-ACNN for combating noise interference. In comparing No-CBAM with other
methods, it is illustrated that DEIF-ACNN still enhances the distinction between normal
and false data in noisy environments. All experimental results demonstrate the ability of
DEIF-ACNN to improve the distinction between normal and false data, as well as verifying
the ability of DEIF-ACNN in resisting noise interference.

5.3.3. Analysis of Ablation Experiments

In an ideal environment, by comparing the method proposed in this paper with
No-CBAM, due to the existence of the attention mechanism, the features of the data can
be better extracted, so that the detection performance of DEIF-ACNN is not only better
than No-CBAM, but also better than the other models. Comparing No-CBAM with the
other models, because the NAE is utilized to enhance the distinction between normal data
and false data, the detection performance of No-CBAM is only weaker than that of DT.
In noisy environment, the detection performance of the proposed method is better than
that of No-CBAM under different noise conditions, especially high noise. Meanwhile, the
detection performance of No-CBAM is better than the other models.

In summary, the utilization of both the NAE and CBAM can improve the detection
performance of the model, and they have different emphases. The NAE is used to enhance
the distinction between normal data and false data, while the CBAM is used to better extract
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data features and suppress the interference of noise on detection results. The combination
of the two can maximize the better detection performance.

6. Conclusions

In this paper, a novel FDIA detection method based on DEIF-ACNN is proposed. First,
DEIF-ACNN enhances data distinction by constructing an NAE and employs information
fusion techniques to transform both the original and enhanced data into a feature correlation
matrix, thereby improving FDIA detection performance. Second, to better extract data
features and effectively suppress noise interference, the model incorporates the CBAM
module, which leverages an attention mechanism. This module significantly enhances the
model’s robustness in noisy environments, successfully mitigating noise and improving
detection accuracy. Finally, experimental results on IEEE-9, IEEE-14, and IEEE-118 bus
systems show that the FDIA detection effect of DEIF-ACNN is better than that of other
methods, and the accuracy rates are 99.22%, 99.83%, and 100.00%, respectively. In addition,
the proposed method shows the best robustness in different noise environments, and its
accuracy remains around 80%. However, the current approach is primarily suited for
simpler binary classification tasks, and future work will focus on adapting it to more
complex system environments to enhance its detection capacity and broader applicability.
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Abstract: This study examines how sentiment analysis of environmental, social, and governance
(ESG) news affects the financial performance of companies in innovative sectors such as mobility,
technology, and renewable energy. Using approximately 9828 general ESG articles from Google
News and approximately 140,000 company-specific ESG articles, we performed term frequency-
inverse document frequency (TF-IDF) analysis to identify key ESG-related terms and visualize their
materiality across industries. We then applied models such as bidirectional encoder representations
from transformers (BERT), the robustly optimized BERT pretraining approach (RoBERTa), and big
bidirectional encoder representations from transformers (BigBird) for multiclass sentiment analysis,
and distilled BERT (DistilBERT), a lite BERT (ALBERT), tiny BERT (TinyBERT), and efficiently learning
an encoder that classifies token replacements accurately (ELECTRA) for positive and negative
sentiment identification. Sentiment analysis results were correlated with profitability, cash flow, and
stability indicators over a three-year period (2019–2021). ESG ratings from Morgan Stanley Capital
International (MSCI), a prominent provider that evaluates companies’ sustainability practices, further
enriched our analysis. The results suggest that sentiment impacts financial performance differently
across industries; for example, positive sentiment correlates with financial success in mobility and
renewable energy, while consumer goods often show positive sentiment even with low environmental
ESG scores. The study highlights the need for industry-specific ESG strategies, especially in dynamic
sectors, and suggests future research directions to improve the accuracy of ESG sentiment analysis.

Keywords: environmental social and governance (ESG) news sentiment analysis; mobility sector;
corporate financial performance; natural language processing; industry-specific ESG strategies

1. Introduction

The establishment of global sustainability standards and the 2021 Glasgow Climate
Pact at the 26th United Nations Climate Change Conference of the Parties (COP26) under-
scored the importance of environmental, social, and governance (ESG) management for
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companies worldwide, particularly in sectors such as mobility, technology, and renewable
energy [1]. These agreements emphasize the need for companies to actively pursue sustain-
able value management, aligning environmental and social responsibilities with carbon
neutrality goals [2]. The introduction of these standards encourages companies to adopt
transparent and responsible management practices, which are expected to significantly
impact capital market disclosures and the investment environment, especially in dynamic
industries such as the mobility sector.

Reflecting this global trend, South Korea has introduced new requirements for compa-
nies listed on the Korea Composite Stock Price Index (KOSPI): those with assets exceeding
KRW 2 trillion (South Korean won) will be required to publish sustainability management
reports starting in 2025, and this mandate will be extended to all KOSPI-listed compa-
nies by 2030 [3]. Although there are currently no legal penalties equivalent to financial
reporting standards, these developments highlight the growing importance of ESG man-
agement, which requires systematic preparations by companies. However, the lack of
clearly defined ESG standards has created confusion among companies and investors, with
inconsistencies in the evaluation criteria leading to varying ESG ratings and increasing
investor uncertainty [4].

Among various industries, ESG management is particularly critical in the mobility
industry due to its significant environmental impacts [5]. With the emergence of innovative
technologies such as electric vehicles, autonomous vehicles, and shared mobility services,
companies in the sector need to develop targeted ESG strategies that directly address key
challenges [6]. From an environmental perspective, companies should prioritize reducing
carbon footprints and improving waste management to meet increasing regulatory and
consumer demands for sustainable practices. Social responsibility strategies can include
fair labor practices and increased community involvement. In addition, strengthening
governance through transparent practices, such as implementing regular ESG reporting and
establishing board diversity policies, is essential to meet growing stakeholder expectations
for accountability [7]. Effective ESG management is inextricably linked to the long-term
competitiveness of the mobility sector. To achieve this, it is essential to develop strategies
that take into account key ESG drivers such as economic development, the regulatory
environment, and responsible investment. Identifying these factors is critical to improving
overall ESG practices [8].

This study presents a novel, comprehensive, cross-industry approach to ESG sentiment
analysis using multiple natural language processing (NLP) models, building on existing
research to explore an innovative method not yet fully developed [9]. By examining ESG
sentiment across different sectors, each with unique ESG impacts and challenges, this study
addresses a significant gap in the literature, as existing studies typically focus on a single
industry or rely on a single-model approach to sentiment analysis [10,11]. In doing so,
this study aims to analyze global ESG management trends and investigate the correlation
between financial performance and ESG-related news sentiment across various industries,
including the mobility, technology, and renewable energy sectors.

To achieve this, we compare and analyze sentiment models such as bidirectional
encoder representations from transformers (BERT), decoding-enhanced BERT with disen-
tangled attention (DeBERTa), financial BERT (FinBERT), and RoBERTa, using state-of-the-art
NLP techniques to assess correlations with corporate financial indicators [12]. Specifically,
we collected, verified, and evaluated data for companies in these sectors from approxi-
mately 700 companies listed on the New York Stock Exchange (NYSE), the Nasdaq Stock
Market (NASDAQ), and the American Stock Exchange (AMEX) that have received ESG
ratings from MSCI. This analysis enables a systematic examination of the impact of ESG-
related sentiment on financial performance [13].

Building on previous research [9], the current study extends the analysis by integrating
nine advanced NLP and sentiment analysis models along with a comprehensive set of
financial indicators across multiple industries. Unlike previous studies, which often rely on
limited models or specific financial metrics, this research uses a multimodel, multifaceted
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approach to provide a more comprehensive view of the impact of ESG sentiment on
financial performance [10,11]. This approach not only increases the robustness of our
findings but also addresses critical limitations of previous studies by providing a nuanced
framework for evaluating ESG strategies across sectors.

Specifically, this study addresses the following research questions:

1. How does positive or negative ESG-related news sentiment affect a company’s finan-
cial performance across different industries, especially in the mobility, technology,
and renewable energy sectors?

2. What specific patterns emerge in each industry regarding the impact of ESG sentiment
on financial outcomes, and how do these patterns differ among sectors?

3. How effective are different NLP models in capturing the complex relationships be-
tween ESG factors (environmental, social, and governance) and specific financial
metrics like profitability, cash flow, and stability?

To address these questions, we offer the following key contributions:

• We develop a novel, multimodel NLP framework that applies nine advanced sen-
timent analysis models to a large dataset of ESG-related news articles, providing
unprecedented depth in understanding the interplay between ESG sentiment and
corporate financial performance across multiple industries.

• We uncover and characterize distinct industry-specific patterns in how ESG sentiment
affects financial outcomes, demonstrating that the influence of ESG factors is not
uniform but varies significantly between sectors, thus emphasizing the importance of
customized ESG strategies.

• We critically evaluate the performance of different NLP models in capturing complex
ESG–financial relationships, identifying the most effective approaches for nuanced
sentiment analysis, and contributing methodological advancements to the field of
ESG research.

By integrating a comprehensive cross-industry analysis with advanced NLP tech-
niques, our study offers fresh insights into the multifaceted interactions between ESG
sentiment and financial performance, thereby filling critical gaps in the existing literature
and informing more effective ESG management strategies [14].

The remainder of this paper is organized as follows: Section 2 provides a review of ex-
isting studies on ESG management, sentiment analysis, and its relevance to industries such
as mobility, establishing the theoretical framework. Section 3 presents the research findings
and discusses key insights regarding ESG management and financial performance across
different sectors. Section 4 details the data collection and analysis methodology, introducing
the sentiment and financial correlation analysis approaches. Finally, Section 5 summarizes
the primary contributions and offers recommendations for future research directions.

2. Related Work

The analysis of ESG factors plays a crucial role in evaluating corporate sustainability
and financial performance, and recent studies have increasingly employed NLP techniques
to gain deeper insights into ESG data [15]. Existing research primarily focuses on identifying
correlations between ESG sentiment and financial performance or examining specific
ESG themes using single-model approaches. Table 1 provides a summary of the key
contributions from previous studies in ESG sentiment analysis and financial correlation,
along with their distinctions from the present study.
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Table 1. Overview of prior studies on ESG sentiment analysis and financial correlation in environ-
mental, social, and governance contexts.

Authors Year Objective/Purpose
Method and
Analytical Tools

Key Findings
Differences from the
Present Study

Raman et al.
[16] 2020

Analyzed linguistic
patterns in ESG topics
across corporate
earnings calls
by industry.

Utilized neural models
to classify ESG
discourse in
earnings calls.

Identified significant
industry-specific ESG
discourse patterns.

Focused on
industry-specific ESG
discourse using neural
models without a
multimodel comparison
across ESG factors.

Perazzoli et al.
[10] 2022

Examined structural
challenges in ESG
topics using a
systems theory
approach.

Applied a systems
theory approach to
analyze structural
ESG issues.

Highlighted
challenges within
energy and
governance themes
across industries.

Emphasized single-model
analysis of structural ESG
issues, lacking multimodel
analysis and detailed
financial metrics
correlation.

Pasch and
Ehnes [17] 2022

Enhanced ESG
classification
performance by
fine-tuning
transformer models
on ESG-related data.

Fine-tuned BERT
model on ESG data,
achieving higher
accuracy.

Achieved 11% higher
accuracy than
traditional classifiers
for ESG sentiment.

Focused on specific model
adjustments rather than a
comprehensive model
comparison across
multiple NLP models and
industries.

Mehra et al.
[11] 2022

Developed an
ESG-specific
language model to
improve document
classification
accuracy.

Customized an
ESG-BERT model
fine-tuned on
ESG-specific corpora.

Improved accuracy in
ESG classification
tasks through
domain-specific
model tuning.

Lacked a
multidimensional
comparison across ESG
domains and did not
assess correlations with
financial metrics.

Park et al. [18] 2022

Investigated the
relationship between
public sentiment and
corporate resilience
using Twitter data.

Analyzed Twitter data
to assess public
sentiment related to
ESG topics.

Found that ESG
sentiment on Twitter
can be an indicator of
corporate resilience
during crises.

Utilized a single sentiment
analysis model focused on
public sentiment without
examining detailed
financial performance
metrics.

Yu et al. [19] 2023
Explored the effect of
ESG sentiment on
stock price stability.

Examined the
correlation between
ESG sentiment and
stock price volatility.

Identified significant
influence of ESG
sentiment on stock
stability.

Emphasized the
correlation with stock
stability, limited to specific
financial metrics and
lacking industry-specific
analysis.

Kim et al. [9] 2024

Examined the
interconnections
between ESG
financial trends and
sentiment analysis of
ESG-related news
from 2019 to 2022.

Applied sentiment
analysis models to
ESG news articles and
correlated findings
with financial trends.

Identified key
relationships between
ESG news sentiment
and financial
performance
indicators.

Limited to single-model
analysis and specific
financial metrics, without
a comprehensive
cross-industry
comparison.

This Study 2024

Utilized nine natural
language processing
models for ESG
sentiment analysis,
mapping their
relationships to
financial performance
across industries.

Employed nine NLP
models for sentiment
analysis of
ESG-related news and
TF-IDF for key term
extraction, examining
correlations between
sentiment scores and
financial performance.

Identified that
industry-specific ESG
strategies contribute
to financial stability,
highlighting the
importance of ESG
practices in sectors
like renewable energy
and mobility.

Conducted a multimodal
comparison, examining
diverse correlations
between ESG sentiment
and detailed financial
metrics across multiple
industries.
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Raman et al. [16] used neural models to analyze ESG-related discourse in corporate
earnings calls, identifying how ESG issues vary in importance across industries and ex-
amining their direct impact on business operations. However, their focus was primarily
on industry-level discourse patterns with a limited scope on financial performance im-
plications, leaving the nuanced financial impact of ESG sentiment unexplored. Perazzoli
et al. [10], on the other hand, provided a broad literature analysis of ESG issues, covering
structural challenges such as energy management, labor practices, and governance ethics.
While this study provided a comprehensive view of ESG challenges, it was limited by its
qualitative approach, which lacked model-based sentiment analysis and insights into the
quantifiable impact on financial metrics.

Pasch et al. [17] and Mehra et al. [11] contributed to the development of ESG-specific
NLP models by creating models, such as ESGBERT, tailored to improve classification accu-
racy and interpretability in ESG contexts. Pasch’s model [17] provided high classification
accuracy, while Mehra’s work [11] emphasized interpretability. However, both studies are
limited by their single-model focus, as they did not perform comparative analyses across
multiple models to assess the variability in ESG sentiment capture. This limits their insights
into model performance across ESG themes and sectors.

In contrast, studies by Park et al. [18] and Yu et al. [19] examined the role of ESG
sentiment in financial stability, highlighting the link between public ESG sentiment and cor-
porate resilience. Park et al. [18] focused on the role of ESG sentiment in corporate resilience
during crises, while Yu et al. [19] emphasized its effect on stock price stability. Despite
these valuable findings, both studies relied on limited sentiment analysis models that may
not capture the diverse and sector-specific sentiments present in different ESG contexts.

In addition, previous research [9] examined ESG sentiment trends and financial impli-
cations from 2019 to 2022 using methodologies such as term frequency-inverse document
frequency (TF-IDF), latent dirichlet allocation (LDA) topic modeling, valence-aware dic-
tionary and sentiment reasoner (VADER), and BERT. While this research provided basic
insights into how ESG sentiment impacts financial metrics, it was limited by single-model
analysis and a limited focus on specific financial metrics, thus lacking a broad, compara-
tive perspective.

In summary, previous research has made significant advances in the field of ESG
sentiment analysis, but each study is often limited by reliance on a single model, a narrow
thematic or sector focus, or qualitative approaches that lack quantifiable insights into
financial performance. Most studies emphasize either the development of specific NLP
models or the examination of isolated ESG issues, resulting in a partial understanding of
ESG impacts.

In contrast, our study adopts a comprehensive multimodel approach, applying nine
advanced NLP models, including BERT and RoBERTa, to conduct a thorough analysis
of ESG sentiment across multiple industries. This comparative model approach not only
allows us to evaluate the effectiveness of different models but also enables a nuanced
exploration of the relationships between ESG sentiment and various financial performance
indicators across industries.

By including different industries and multiple sentiment models, our study cap-
tures the multifaceted impact of ESG on corporate sustainability and fills gaps in model
comparison, industry-specific analysis, and the financial impact of ESG sentiment. This
research thus fills a critical gap by providing a cross-sector, model-comparative analysis
that enhances our understanding of how ESG sentiment impacts financial performance in
different contexts. Through this innovative approach, we contribute practical guidance
for industry-specific ESG strategy development and a more refined theoretical frame-
work that incorporates sentiment as a central component in assessing ESG impacts on
financial sustainability.
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3. Methodology

This study takes a quantitative research approach, using statistical and machine learn-
ing techniques to analyze the correlation between ESG sentiment and financial performance
across industries. By adopting this framework, we aim to provide objective and measurable
insights into the impact of ESG sentiment on corporate financial outcomes. Specifically, we
apply several NLP models, including advanced models such as BERT, RoBERTa, and so
on, to perform sentiment analysis on ESG-related news and examine how sentiment scores
correlate with financial indicators across industries. Our methodology consists of three
main steps: identifying key ESG themes with TF-IDF analysis, applying multimodel NLP
approaches to sentiment classification, and performing correlation analysis to quantify
relationships between sentiment scores and financial metrics such as profitability, cash flow,
and stability. This structured, data-driven approach enables a robust exploration of ESG
impacts across sectors, providing comprehensive cross-industry insights into ESG-related
financial dynamics.

3.1. Identifying Key ESG Topics with TF-IDF Analysis

To assess the importance of specific ESG-related keywords in headlines and leadlines,
we used the TF-IDF method, which calculates the relevance of each word based on its
frequency in the text and rarity across the dataset to accurately extract primary topics [20].

• We cleaned the text data by removing unnecessary symbols, numbers, and stopwords.
Stemming and lemmatization were applied to maintain word consistency. This pre-
processing improves the quality of the data and ensures that the analysis focuses on
meaningful and relevant terms.

• TF-IDF weights were calculated for the preprocessed data, reflecting each word’s
relative importance in the document. This helped identify the frequency and relevance
of the ESG keywords, transforming them into high-weight terms representative of the
primary topics.

• Words with high TF-IDF weights were extracted to identify ESG-related themes and
corporate reputational topics and served as the basis for subsequent analyses. This
extraction allows for a focused examination of the most important ESG issues affecting
company performance.

3.2. Sentiment Classification Across Multimodel NLP Approaches

We employed a diverse set of sentiment analysis models to classify the emotional
direction of ESG news, employing nine models (BERT, RoBERTa, BigBird, DistilBERT,
ALBERT, TinyBERT, ELECTRA, VADER, and TextBlob) to categorize each news item’s
sentiment as negative, neutral, or positive. To improve efficiency, lightweight models
such as DistilBERT, ALBERT, and TinyBERT were applied with binary (positive/negative)
classification capabilities, and ELECTRA was included as an additional binary model due
to its high performance and fast processing speed in distinguishing fine-grained differences
between sentiments.

Larger models such as BERT, RoBERTa, and BigBird, trained on extensive datasets,
provide robust contextual understanding, which improves sentiment classification accuracy
across multiclass categories [21]. Conversely, the lightweight models, i.e., DistilBERT,
ALBERT, and TinyBERT, allow rapid binary classification across large datasets without
sacrificing significant accuracy. For consistency, each model was loaded with pretrained
parameters, and the prediction classes were determined based on the model output logits.
This approach allows for the evaluation of trade-offs between NLP models, supporting
informed model selection for future ESG sentiment analysis.

3.2.1. Multiclass Sentiment Analysis Models

• BERT [22]: BERT is a transformer-based model that analyzes text in both directions to
understand the context. The model can identify the meaning of words in a sentence
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through interactions between words. In this study, we chose Bert-base-cased among
various BERT models [23].

• RoBERTa [24]: RoBERTa is a model that performs optimized learning on larger datasets
based on the underlying structure of BERT. This model is designed to provide a more
precise understanding of various linguistic characteristics. In this work, we used
the cardiff-nlp/twitter-roberta-base-sentiment model, which boasts high accuracy,
especially in emotion analysis [25].

• Big BERT (BigBird) [26]: BigBird was developed to overcome the limitations of conven-
tional transformer models and effectively handle long texts. Using Google/bigbird-
roberta-base, this model can identify emotions even when analyzing long and complex
ESG news stories without compromising the context. It is particularly effective in
emotion analysis in long texts.

• VADER [27]: VADER is a rule-based emotional model suitable for analyzing informal
or unstructured text. VADER is particularly strong on informal text, such as social
media, and can quickly derive emotional results. This capability enables fast, effective,
real-time sentiment analysis of user content.

• TextBlob [28]: TextBlob is a rule-based emotion classification tool that quickly classifies
emotions into positives, neutralities, and negatives. In this study, this tool served as
a baseline for emotion analysis and provided basic data for comparing performance
with pretrained models with VADER.

3.2.2. Binary-Class Sentiment Analysis Models

• Distilled BERT (DistilBERT) [29]: DistilBERT is a lightweight BERT model that provides
a faster inference speed while maintaining the performance of BERT. In this study, we
chose this model for efficient emotion analysis on large news datasets.

• A Lite BERT (ALBERT) [30]: ALBERT is a model designed to achieve faster processing
speeds by reconstructing the parameter structure of BERT. The model is suitable for
binary classification in emotion classification tasks, allowing for the fast classification
of affirmations or negatives.

• Tiny BERT (TinyBERT) [31]: TinyBERT is a model designed to further reduce the
architecture of BERT. The model enables efficient binary emotion classification and
performs well in distinguishing between positive and negative emotions.

• Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELEC-
TRA) [32]: ELECTRA reduces computational demands using an alternative token
prediction method. This model was employed to enhance binary classification perfor-
mance, specifically in differentiating positive and negative sentiments.

The performance of each model was evaluated in terms of sentiment classification
accuracy, speed, and efficiency, allowing us to identify the best models for ESG-related
predictions. In addition, we visualized model prediction patterns using uniform manifold
approximation and projection (UMAP), a dimensionality reduction technique that simplifies
high-dimensional data for better visualization, to understand high-dimensional embedding
data across different models [33,34]. This approach enabled us to examine the patterns
and variations in sentiment predictions across models, enhancing the interpretability and
consistency of the sentiment classification results.

3.3. Correlation Analysis

To explore the relationships between ESG sentiment scores and financial performance
across industries, we conducted a correlation analysis to quantify the relationships between
sentiment categories (i.e., positive, neutral, and negative) and financial metrics, including
profitability, cash flow, and stability. This structured approach facilitates an objective
examination of how ESG sentiment can influence financial outcomes across sectors.

• Data aggregation and sector classification: sentiment scores were first categorized by
sentiment type and then aggregated by industry to enable sector-specific analysis [35].
In this step, we calculated average sentiment scores for each article within a sector
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and compared these scores to the financial indicators of companies in that sector.
Aggregating the data at the industry level allowed us to capture unique sectoral
patterns and interpret the varying impact of ESG sentiment across industries, such as
mobility and renewable energy.

• Analytical approach: in this correlation analysis, we compared aggregated sentiment
scores to corresponding financial indicators, using a consistent correlation coefficient
to measure the alignment between sentiment and financial metrics [36]. This approach
provided a robust framework for examining how changes in sentiment may be cor-
related with financial changes within each sector. By identifying these relationships,
we aimed to provide a systematic view of how ESG sentiment correlates with key
financial metrics across industries.

This correlation analysis framework thus provides the basis for interpreting the sector-
specific findings in the Results section, allowing us to explore the relevance of ESG senti-
ment to financial outcomes on an industry-specific basis.

4. Data Acquisition and Preparation

This section is divided into two parts. Section 4.1 outlines the methodologies and
sources used to obtain ESG-related news and financial data. Section 4.2 describes the
procedures employed to purify and consolidate the data for analytical purposes.

4.1. Data Collection

To examine global trends in ESG management, we used the Google News platform
with English as the language setting and “ESG finance” as the primary search term [37].
We chose “ESG finance” to capture articles that specifically discuss the intersection of ESG
issues and corporate financial performance, ensuring that the collected articles were highly
relevant to our research objectives. In the initial data collection phase, all articles matching
this keyword were collected without additional filtering or categorization by type (e.g.,
hard news, editorials, and opinion pieces), which allowed us to collect relevant online news
articles from a broad, international perspective for contextual analysis of ESG sentiment
related to corporate financial performance [38]. The collection period spanned from June
2019 to May 2022 and was chosen to capture changes in ESG activity and sentiment before,
during, and after the COVID-19 pandemic, allowing for analysis of changes in ESG-related
news coverage over time [39]. We used a web crawling approach, dividing the collection
process by month to minimize data loss associated with large-scale web crawling [40].

This method yielded a total of 9828 English-language news articles, including a
variety of article types such as opinion pieces, editorials, and hard news, all written
in English, which eliminated the need for translation and reduced the risk of meaning
loss that can arise during translation processes. This mix of article types, each with its
own unique structure and tone, allowed for more nuanced sentiment analysis that fully
represented different perspectives. Recognizing the differences in structure and tone
among these types, we acknowledged these variations during our analysis to ensure a
comprehensive representation of sentiment across all article categories. For sentiment
analysis, we focused primarily on the “headline” and “lead” sections of each article, as
these sections typically summarize the main content and sentiment of the article. This focus
on headlines and leads allowed us to capture key points that reflect public sentiment on
ESG issues, while minimizing the inclusion of general background information. Although
we did not explicitly follow the journalistic “inverted pyramid” structure, we prioritized
these sections because they are generally the most impactful for understanding sentiment,
which is particularly relevant for readers familiar with journalistic practices. This targeted
approach allowed us to maintain relevance and clarity by prioritizing the sections most
relevant to understanding sentiment.

Sentiment classification was performed using a variety of NLP models to maintain
consistency and objectivity across the dataset. For multiclass classification, BERT, RoBERTa,
and BigBird were used to classify sentiment into positive, neutral, and negative classes. For
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binary classification, DistilBERT, ALBERT, TinyBERT, and ELECTRA were used to efficiently
distinguish positive from negative sentiment. In addition, VADER and TextBlob provided
rule-based sentiment scoring for fast and consistent analysis, especially for unstructured
text. By employing these predefined model functions and standardized criteria, sentiment
interpretation remained consistent; thus, an additional interrater reliability test was deemed
unnecessary due to the automated nature of these models. In addition, this foundational
dataset was complemented with news articles specifically related to individual companies’
ESG activities to investigate the impact of ESG efforts on financial performance. Throughout
the data collection process, we monitored for special cases such as duplicate articles or
irrelevant content, addressing them by removing duplicates and filtering out non-relevant
articles to enhance the dataset’s quality and representativeness. Although the dataset may
not encompass every article on corporate financial performance, it provides a substantial
and representative cross-sectional view of ESG narratives relevant to financial outcomes
over the specified period.

For the company-specific news analysis, we selected 773 U.S.-listed companies with
ESG ratings from MSCI [41]. These companies are listed on major exchanges, including
the (NYSE), NASDAQ, and AMEX. News articles for each company were gathered from
Google News using a combination of the company name and “ESG” as search terms
(e.g., “Apple ESG”). This approach was designed to capture a comprehensive view of
the ESG-related media coverage. To ensure thorough data acquisition, we employed
Selenium WebDriver and ChromeDriver for dynamic web content crawling, retrieving up
to 30 pages of news articles per company [42]. Through this process, we acquired over
140,000 articles, which formed a rich dataset on company-specific ESG activities. These
data points provided a wide-ranging view of each company’s ESG-related actions, which
we subsequently analyzed to discern the sentiment direction and examine its correlation
with financial performance.

To analyze the financial performance of each company, financial data spanning from
2019 to 2021 were collected, corresponding to the news data collection period to maintain
temporal consistency and improve analytical accuracy. Financial data were obtained from
Yahoo Finance, focusing on key indicators that provided a comprehensive assessment of
a company’s profitability, cash flow, and stability [43]. Specifically, for profitability, we
gathered revenue, revenue growth rate, and return on assets (ROA). For cash flow, we
included earnings before interest, taxes, depreciation, and amortization (EBITDA) and its
growth rate. Finally, for stability, we incorporated interest expense, interest expense growth
rate, and debt-to-equity ratio. These indicators collectively provided insights into each
company’s financial health, enabling a multidimensional view of financial performance.

Data extraction from Yahoo Finance was accomplished using the BeautifulSoup library
(version 4.12.2) to parse HTML content and extract relevant information systematically [44].
Each company’s financial data were then organized for analysis, aligning financial and
sentiment data temporally by year to ensure consistency. To assess ESG management perfor-
mance, we collected ESG rating data from MSCI, including an overall ESG score and specific
scores for ESG aspects [45]. These rating data served as an essential benchmark, providing a
professional assessment of a company’s ESG activities, which we compared against public
sentiment derived from news data. Analyzing these ratings relative to sentiment data
allowed us to investigate the alignment between public perception and professional ESG
evaluations, potentially uncovering discrepancies that may impact investment decisions.

4.2. Data Preprocessing and Integration

Once the data were collected, we performed comprehensive text preprocessing to en-
hance the quality and relevance of the dataset for sentiment analysis. First, we standardized
all text data by converting them to lowercase letters, which reduced case-based inconsisten-
cies [46]. We then employed regular expressions to remove punctuation, numbers, special
characters, and non-English characters, thereby ensuring a focus on meaningful words [47].
To address abbreviations, common contractions (e.g., “don’t”) were expanded to their full
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forms (e.g., “do not”) to preserve semantic accuracy. Stopwords, which carry minimal
semantic value, were removed using the Natural Language Toolkit (NLTK, version 3.9.1)
stopword dictionary [48]. Tokenization was performed via NLTK’s word_tokenize function,
segmenting the text into individual words for more granular analysis [49]. Finally, where
appropriate, stemming or lemmatization was applied to consolidate word forms, grouping
variations (e.g., “run” and “running”) under a single root word [50]. This preprocessing
stage was vital in enhancing the analytical robustness of the dataset, allowing for more
reliable and accurate insights into ESG sentiment trends.

For comparative analysis, the financial and sentiment datasets were integrated at
the company level and organized by year. For example, news data from 2020 were ana-
lyzed, along with financial data from the same year, facilitating a direct examination of
contemporaneous financial and ESG sentiment correlations. Financial metrics were nor-
malized using relative measures, such as revenue growth and EBITDA growth, to account
for company size differences and improve cross-company comparability. Recognizing
the inherent differences in financial structure across industries, we classified companies
into 11 sectors according to the Sustainable Industry Classification System developed by
the Sustainability Accounting Standards Board [51,52]. This sectoral categorization en-
abled industry-specific analysis, accounting for variations in ESG priorities and financial
structures that may influence ESG–financial performance relationships. Through these
meticulous data acquisition and preparation steps, we established a structured and reliable
dataset that formed the foundation for examining the interactions between ESG sentiment,
professional ESG assessments, and financial performance.

5. Results and Discussion

This section presents an analysis of the results of our comprehensive study of ESG-
related news text. Using TF-IDF analysis, we identified key ESG-related keywords over
time, revealed shifts in focus within ESG management, and explored the intricate links
between ESG issues and the financial and operational dimensions of companies. For
example, the predominance of neutral sentiment observed in the multiclass sentiment
analysis is consistent with the findings of Yu et al. [19], who highlighted a trend toward
neutrality in ESG news coverage. Our use of both multiclass and binary models allows us to
capture more detailed sentiment dynamics across industries, extending the findings of Yu
et al. by providing a cross-industry perspective on how neutral sentiment correlates with
financial outcomes. In addition, the relationship between neutral sentiment and positive
financial outcomes echoes Perazzoli et al.’s [10] findings on how public sentiment can
influence corporate reputation, suggesting that balanced or neutral ESG sentiment may
promote financial stability by fostering trust and reliability. By linking these findings to
previous studies, we provide a broader context for understanding the evolving role of ESG
sentiment in financial and operational performance.

5.1. TF-IDF Analysis

First, we performed TF-IDF analysis of the top keywords extracted from headlines
and lead text in ESG-related news stories over the entire research period from June 2019
to May 2022. Table 2 shows that environmental terms such as “green”, “greenium”, and
“horizon” ranked prominently, highlighting the centrality of environmental concerns in
ESG management. Notably, financial terms such as “loans”, “bonds”, “antitrust”, and
“investing” also highlight the financial interlinkage in ESG efforts, indicating that ESG
management is deeply intertwined with corporate financial practices. This analysis demon-
strates that effective ESG strategies integrate environmental and financial practices, which
are indispensable for the optimal functioning of a corporation.
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Table 2. Summary of key ESG keywords and their TF-IDF weights (June 2019–May 2022).

Rank
Headlines Leads

Keyword TF-IDF Keyword TF-IDF

1 Autos 1 disillusionment 0.886
2 Doctor 1 risk 0.872
3 esg 1 bonds 0.854
4 Green 1 award 0.854
5 greenium 1 excellence 0.820
6 Horizon 1 jbs 0.816
7 Illustrated 1 bgc 0.816
8 Mercy 1 investing 0.812
9 Nordics 1 servicenow 0.808
10 Revealed 1 Loans 0.804
11 Talk 0.990 tigo 0.799
12 antitrust 0.978 materiality 0.798
13 epicenter 0.978 Xylem 0.785
14 abc 0.976 abaxx 0.783
15 operationalize 0.976 ci 0.782

5.1.1. Year-by-Year Analysis of Headlines

The year-by-year breakdown of headline analysis in Table 3 illustrates how the focus of
ESG management evolved annually. From June 2019 to May 2020, terms such as “epicenter”,
“fails”, and “rip” were prevalent, along with “green”, reflecting initial uncertainty and
negative perceptions about early ESG management. Between June 2020 and May 2021,
keywords such as “greenium”, “operationalize”, “initiative”, and “importance” became
prominent, marking a phase in which ESG management became mainstream. Finally,
between June 2021 and May 2022, terms such as “horizon”, “antitrust”, and “tracker”
dominated, suggesting that ESG practices were now viewed as not merely initiatives but as
impactful factors influencing corporate financial outcomes.

Table 3. Annual trends in ESG keyword emphasis based on headline analysis.

Rank
June 2019–May 2020.05 June 2020–May 2021 June 2021–May 2022

Keyword TF-IDF Keyword TF-IDF Keyword TF-IDF

1 autos 1 esg 1 esg 1
2 doctor 1 greenium 1 horizon 1
3 green 1 mercy 1 abc 0.981
4 illustrated 1 nordics 1 antitrust 0.981
5 revealed 1 talk 0.987 putting 0.977
6 epicenter 0.965 crossroads 0.963 tracker 0.977
7 fails 0.962 dna 0.963 accountants 0.974
8 rip 0.959 operationalize 0.963 ready 0.971
9 primer 0.957 initiative 0.954 way 0.967

10 decade 0.955 importance 0.947 war 0.946

5.1.2. Year-by-Year Analysis of Leads

As shown in Table 4, the year-by-year analysis of the lead text revealed governance
and financial themes within ESG as major topics, similar to the headlines. From June
2019 to May 2020, governance-related terms such as “disillusionment”, “materiality”, and
“investing” featured prominently, indicating the prevalence of governance discussions in
the early stages of ESG. Between June 2020 and May 2021, financial terms such as “bonds”
and “loans” were dominant, suggesting an increasing intersection between finance and
ESG aligned with the emergence of green bonds and ESG investing. This shift underscores
the integration of ESG into finance and points to a trend toward sustainable investing.
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Table 4. Annual trends in ESG keyword emphasis based on lead analysis.

Rank
June 2019–May 2020 June 2020–May 2021 June 2021–May 2022

Keyword TF-IDF Keyword TF-IDF Keyword TF-IDF

1 disillusionment 0.874 risk 0.878 award 0.857
2 materiality 0.823 bonds 0.873 servicenow 0.793
3 investing 0.805 loans 0.820 jbs 0.793
4 tigo 0.782 excellence 0.816 director 0.781
5 director 0.775 director 0.783 xylem 0.781
6 trade 0.737 citi 0.769 bgcr 0.761
7 msci 0.734 ci 0.762 lgbtq 0.754
8 ocean 0.731 keamy 0.759 abaxx 0.750
9 stocks 0.718 vale 0.756 wanda 0.749

10 spy 0.717 regulations 0.741 assurance 0.749

This period also saw terms such as “regulations” reflecting heightened discussions
on environmental regulation and sustainability legislation. Between June 2021 and June
2022, with the occurrence of the inaugural ESG awards, corporate names (such as Servi-
ceNow, JBS, Xylem, and Abaxx) emerged more frequently than specific keywords related to
environment, society, and governance. Social terms such as “LGBTQ” also first appeared,
highlighting the expanded scope of ESG into social responsibility. This expansion demon-
strates that modern ESG practices are becoming more comprehensive, addressing a broad
range of social and corporate responsibilities.

5.1.3. Industry Sentiment Trends in ESG Keywords

The results are consistent with previous studies on the importance of environmental
and financial terms in ESG-related discourse. For example, Raman et al. [16] analyzed
corporate earnings calls and found a similar emphasis on environmental and financial
terms, which is consistent with our findings, where keywords such as “green”, “greenium”,
and “bonds” consistently ranked high in TF-IDF scores. This suggests a shared focus
in corporate and public discourse on the financial and environmental aspects of ESG,
particularly in industries heavily influenced by sustainability demands.

In addition, Pasch and Ehnes [17] highlighted the benefits of fine-tuning NLP models
to improve performance in ESG-related text classification. We adopted this approach to
improve accuracy in capturing critical ESG terms. While Pasch’s study demonstrated model
effectiveness in a specific ESG context, our broader application across multiple industries
underscores an even more robust ability to capture ESG themes through TF-IDF analysis.
This cross-sector perspective goes beyond the work of Pasch and Ehnes [17] to provide a
more comprehensive view of how ESG keywords differ across industries and their impact
on financial performance.

In contrast to previous single-focus studies, this analysis incorporates multiple ESG
dimensions to account for different sector impacts. For example, the increased prominence
of terms such as “operationalize” and “initiative” between 2020 and 2021 echoes the
findings of Yu et al. [19], who found that ESG management initiatives are gradually gaining
mainstream acceptance. However, our study goes beyond Yu et al. by examining how
specific terms evolve and correlate with financial indicators over multiple years, revealing
industry trends in response to ESG pressures.

To further interpret these findings, it is important to highlight shifts in sentiment and
keyword prominence over time. For example, the rise of terms such as “antitrust” and
“tracker” in the later period (2021–2022) reflects a shift in the industry to view ESG not
only as a set of initiatives but also as an essential driver of corporate accountability and
performance. This shift is consistent with Perazzoli et al. [10], who argued that public
sentiment has a significant impact on corporate reputation. Our year-over-year keyword
analysis supports this perspective, showing an increasing public and financial focus on
accountability through keywords such as “antitrust” and “tracker”.
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5.2. Sentiment Analysis

In this study, we leveraged various sentiment analysis models to assess sentiment
in ESG-related news headlines and leads. Multiclass models (BERT, RoBERTa, VADER,
TextBlob, and BigBird) were used to classify sentiment as negative, neutral, or positive, and
binary classification models (DistilBERT, ALBERT, TinyBERT, and ELECTRA) categorized
sentiment as either positive or negative.

5.2.1. Multiclass Sentiment Analysis of Headlines

For the headline analysis, we employed multiclass sentiment models, namely, BERT,
RoBERTa, VADER, TextBlob, and BigBird, to classify sentiment into negative, neutral,
and positive categories. As shown in Figure 1, neutral sentiment was the most common
across the models, followed by positive sentiment, with negative sentiment being the
least common. Notably, the RoBERTa, TextBlob, and BigBird models exhibited a stronger
tendency toward neutral sentiment, indicating a generally neutral tone in ESG news
coverage, with an occasional positive emphasis.

 

 

Figure 1. Multiclass sentiment analysis of ESG news headlines.
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5.2.2. Binary Sentiment Analysis of Headlines

Binary classification models, namely, DistilBERT, ALBERT, TinyBERT, and ELECTRA,
were applied to classify ESG news headlines as positive or negative. As shown in Figure 2,
DistilBERT, ALBERT, and TinyBERT exhibited a relatively balanced distribution of positives
and negatives, suggesting that they reflect the overall tendency of the text in the context
of being classified solely as positive or negative. Conversely, ELECTRA detects negative
emotions at a high rate, indicating that different models yield varying emotional outcomes
depending on the overall tone of the data.

 

Figure 2. Binary sentiment analysis of ESG news headlines.

5.2.3. Multiclass Sentiment Analysis of Leads

Applying multiclass models to leads revealed a sentiment distribution similar to that
of the headlines. As shown in Figure 3, VADER and TextBlob exhibited stronger inclinations
toward positive sentiment, whereas BERT and RoBERTa retained higher proportions of
neutral sentiment. However, BigBird recorded the highest levels of positive sentiment
in the lead text, likely reflecting the additional context within the leads that emphasizes
positive ESG-related content.

Figure 3. Cont.
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Figure 3. Multiclass sentiment analysis of ESG news leads.

5.2.4. Binary Sentiment Analysis of Leads

The binary sentiment analysis of leads using DistilBERT, ALBERT, TinyBERT, and
ELECTRA mirrored the trends observed in headlines. As shown in Figure 4, the ELECTRA
model once again exhibited a higher tendency to classify content as negative, possibly
because of a lower threshold for neutral categorization. In contrast, DistilBERT and ALBERT
demonstrated a relatively balanced sentiment distribution, suggesting that the additional
context in the leads typically highlights more positive information.

Figure 4. Cont.
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Figure 4. Binary sentiment analysis of ESG news leads.

5.3. Visualize the Financial Link to ESG

This section presents a UMAP visualization to intuitively illustrate the relationships
between ESG-related keywords and their financial and environmental implications. UMAP,
known for its efficiency in handling large datasets, excels at simplifying complex, high-
dimensional data into manageable, low-dimensional representations. This allows us to
capture the non-linear data structures in ESG news content and highlight clustering patterns
among the extracted keywords.

In this analysis, the UMAP parameters were optimized to enhance the clarity of
keyword clustering related to ESG news. Specifically, the n_neighbors parameter was
set to three to emphasize local connectivity among ESG and financial keywords, creating
tightly clustered groups within specific topics by focusing on the top 100 keywords [53].
In addition, a low min_dist value of 0.01 was selected to encourage close linkages among
keywords, revealing distinct clusters that represent various ESG themes.

• The headline UMAP analysis (Figure 5) reveals a clear distribution of keywords across
environmental and financial themes. Words such as “sustainable”, and “green” are
positioned closely to financial terms such as “earnings”, “shares”, and “stocks”, sug-
gesting a close association between ESG management and financial performance.
This clustering visually highlights how ESG-related environmental factors are di-
rectly connected to corporate financial operations, providing an intuitive overview of
their interrelations.

• In the lead UMAP analysis presented in Figure 6, keywords related to ESG and socially
responsible management are prominently clustered, along with financial terms such as
“equity”, “funds”, and “assets”. This arrangement suggests a potential link between
the social and governance aspects of ESG and long-term financial outcomes. For
example, keywords such as “sustainability”, “social”, and “governance” align closely
with financial terms, indicating that firms prioritizing social responsibility experience
positive financial performance.
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Figure 5. UMAP visualization of ESG keywords in headlines.

 
Figure 6. UMAP visualization of ESG keywords in leads.

5.4. Correlation Analysis of ESG Sentiment and Financial Performance

This study analyzes the relationship between sentiment analysis data, ESG ratings
(provided by MSCI), and industry-specific financial metrics, focusing on profitability,
cash flow, and stability. The primary aim is to identify how ESG-related news sentiment
correlates with corporate financial performance across different industries. The analysis
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explores the impact of ESG ratings on financial indicators and investigates how sentiment
analysis results relate to the financial outcomes of companies.

Financial factors are categorized into three areas:

• Profitability: assessed using revenue (2021), revenue growth rate, and ROA (2021) to
evaluate a company’s earning power. The year 2021 was chosen as the reference year
to observe changes in profitability following the pandemic period, allowing a focused
analysis of ESG sentiment in the post-pandemic economic environment.

• Cash flow: evaluated through EBITDA and its growth rate (2021), reflecting net cash
flow from operations and its growth. Using 2021 data provides insight into operational
cash flow stability and growth during the recovery phase post-pandemic.

• Stability: measured using interest expense, interest expense growth rate, and debt-
to-equity ratio (2021) as key indicators of financial strength. These metrics indicate a
company’s ability to manage debt and operational leverage in response to the changing
economic conditions after the pandemic.

The analysis spans three years, from 2019 to 2021, with the correlation results visu-
alized through heatmaps in Appendix A (Figures A1–A11). The choice of 2021 as the
reference year for these financial metrics is intentional, as it allows us to assess the impact
of ESG sentiment on financial performance during a significant post-pandemic economic
transition. For Figures A1–A11, each financial variable is coded based on 2021 values to
maintain consistency across industries and allow for a clear identification of post-pandemic
trends. This approach highlights recent changes in financial performance as companies
adapt their ESG practices in response to evolving stakeholder expectations in the post-
pandemic period. Growth rates, such as revenue growth and EBITDA growth, reflect
annual changes from 2020 to 2021, allowing for year-over-year comparisons in the context
of recovery. The ROA metric specifically refers to 2021 values as it provides a focused
measure of asset efficiency following the economic disruptions of the pandemic.

The results show different correlations between ESG factors and financial indicators
across industries, reflecting the unique characteristics of each sector. Table 5 below provides
a consolidated summary of the key findings from our correlation analysis, allowing readers
to quickly grasp the key insights. Each industry shows varying degrees of sensitivity to
ESG factors; for example, sectors such as mobility and renewable energy show significant
impacts from environmental sentiment, while others such as healthcare and financial
services show more nuanced relationships. This table allows readers to efficiently locate
key findings across sectors. A detailed analysis and visualizations for each sector can be
found in Appendix A. These figures (Figures A1–A11) provide in-depth visual insights,
including heatmaps and correlation matrices, to illustrate the unique relationships between
ESG sentiment and financial performance within each industry.

Table 5. Summary of ESG sentiment and financial correlations by industry sector.

Industry Key Findings
Figure
Reference

Consumer Goods Positive sentiment; low environmental score; favorable financial indicators Figure A1
Extractives and Minerals Processing Strong ESG–governance correlation; profitability; cash flow Figure A2
Financial Mixed sentiment effects; positive ESG–financial performance correlation Figure A3
Food and Beverage Positive sentiment with ESG; low financial correlation Figure A4
Healthcare Positive governance sentiment; limited financial impact Figure A5
Infrastructure High environmental score; positive financial correlation; leverage influence Figure A6
Renewable Resources and Alt. Energy Strong environmental–financial stability correlation Figure A7
Resource Transformation Minimal ESG–financial correlation; high governance score Figure A8
Services Varied impacts by service type; mixed ESG correlations Figure A9

Technology and Communications Positive environmental–profitability correlation; limited
governance impact Figure A10

Transportation High ESG–sentiment correlation; environmental sensitivity Figure A11
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5.5. Discussion on Industry-Specific ESG Sentiment and Financial Impacts

This study conducted a sentiment analysis of ESG-related news headlines and leads,
examining the relationship between sentiment, company financial performance, and ESG
ratings across various industries, including the mobility sector. The analysis highlights cor-
relations between ESG news sentiment and company profitability, cash flow, and stability
metrics. The findings indicate that neutral or positive ESG news sentiment is often asso-
ciated with positive financial outcomes, particularly in sectors where environmental and
social factors significantly influence company perceptions, such as mobility and renewable
energy. This trend underscores the perspective that positive public sentiment toward ESG
can promote corporate resilience and alignment with societal expectations for sustainable
practices, thereby fostering accountability and trust among stakeholders. These findings are
consistent with previous studies showing that macroeconomic factors and news sentiment
significantly influence stock returns [54]. Similarly, social media sentiment around major
political events has been found to influence stock markets [55]. The results suggest that
the relationship between sentiment and financial performance varies by industry, with
environmental and social factors having a significant impact in sectors such as mobility
and renewable energy while having a limited impact in other sectors.

From a literature perspective, this study contributes to the growing body of knowledge
on ESG sentiment analysis by employing both multiclass and binary models to provide
nuanced sentiment metrics across industries. This dual-model approach enhances the
depth of ESG analysis and provides new insights into sector-specific sentiment trends,
complementing the existing research that typically uses single-model approaches. The link
between positive sentiment and positive financial results supports the view that alignment
with societal ESG expectations can strengthen both corporate reputation and financial
stability. These industry-specific findings reveal distinct patterns of ESG sentiment across
industries and complement the work of Park et al. [18], who found that positive public ESG
sentiment is correlated with corporate resilience. This study builds on this foundation by
examining additional financial metrics, such as cash flow and stability, to provide a deeper
understanding of how ESG sentiment influences financial outcomes. In addition, we extend
the work of Mehra et al. [11] on the ESGBERT model for improved ESG context capture
through our multimodel approach, which improves the accuracy and interpretability of
sentiment analysis across different ESG issues. This multimodel comparison addresses the
single-model limitation identified in previous research and provides a more comprehensive
view of the financial impact of ESG. For example, in the consumer discretionary sector, pos-
itive sentiment correlates with strong financial performance despite lower environmental
ESG scores, while in the mobility sector, favorable environmental factors directly contribute
to financial gains.

From a practical perspective, the use of both multiclass and binary sentiment models
allowed for nuanced sentiment metrics, providing deeper insights into the complex impact
of ESG sentiment on financial performance that can guide companies in tailoring their ESG
practices. The multiclass model identified a high proportion of neutral sentiment, suggest-
ing that ESG news is generally positive or neutral, while the binary model highlighted
polarized financial impacts by distinguishing between positive and negative sentiment.
This alignment of neutral or positive sentiment with financial stability reflects broader soci-
etal priorities for ethical corporate behavior and long-term stability, which is particularly
valuable for practitioners seeking to maintain public trust and sustainable growth [56].
The approach is consistent with studies using advanced machine learning techniques for
automated stock market trading, demonstrating the value of sophisticated models in finan-
cial decision-making. In addition, the TF-IDF analysis uncovered frequently mentioned
ESG-related keywords, illustrating the varying importance of ESG factors across industries.
Similar to research using machine learning in demand forecasting, this industry-specific
analysis improves the effectiveness of ESG strategies by focusing on relevant ESG factors
in each sector, helping practitioners develop targeted, impactful strategies [57].
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From a societal perspective, these findings underscore the importance of transparent
ESG reporting and management for positive public perceptions that can enhance corporate
reputation and align with societal goals for sustainability. Such alignment with public ex-
pectations for accountability and ethical standards is critical as it builds trust and supports
the pursuit of long-term sustainable practices [58]. This highlights the urgent need for
companies to tailor their ESG strategies to the specific needs of their industries, particularly
in high-impact sectors such as mobility. In addition, the use of advanced machine learning
techniques, such as graph neural networks, offers a promising way to improve the predic-
tive power of ESG analysis and provide more accurate and industry-relevant insights [59].
Taken together, these considerations underscore the urgent need for a forward-looking,
nuanced approach to ESG management that addresses both societal expectations and
industry-specific challenges.

6. Conclusions

This study provides comprehensive insights into the relationship between ESG news
sentiment and corporate financial performance, with a particular focus on industries such
as mobility. Using both multiclass and binary classification models, we examined how
ESG news sentiment affects key financial metrics, including profitability, cash flow, and
stability, highlighting the potential for effective ESG management to improve corporate
outcomes. Our findings highlight industry-specific variations in the correlation between
ESG sentiment and financial performance, underscoring the need for ESG strategies tailored
to the unique characteristics of each sector, particularly dynamic sectors such as mobility.

The key findings of this study are as follows:

• Industry-specific effects: different industries show different levels of correlation be-
tween ESG sentiment and financial performance. Sectors such as mobility and re-
newable energy are particularly affected by environmental sentiment, indicating their
heightened sensitivity to ESG news and its impact on company results.

• Modeling approach: the use of both multiclass and binary sentiment models allowed
for a nuanced analysis of ESG sentiment. The models revealed a high proportion of
neutral sentiment in general ESG news while also highlighting the distinct impact of
polarized sentiment on financial performance.

• Strategic implications: developing ESG strategies tailored to the unique characteristics
of each industry can improve long-term company performance. This is particularly
relevant for sectors that are more sensitive to ESG factors, where tailored approaches
can better support sustainable growth and stakeholder trust.

For practitioners, this study provides valuable strategic insights for companies seeking
to improve long-term performance through tailored ESG management. A key contribution
of this study is to demonstrate the feasibility of using sentiment analysis to assess the
impact of ESG initiatives. By using sentiment analysis models to examine ESG sentiment
indicators across industries and their correlations with financial performance, our findings
show that integrating ESG ratings with sentiment analysis can serve as a reliable predictor
of corporate outcomes.

In terms of theoretical implications, this study makes several contributions to the
ESG and finance literature. First, it demonstrates that ESG sentiment analysis can reveal
industry-specific nuances in the relationship between ESG activities and financial outcomes,
providing a customized perspective that differs from traditional ESG scoring approaches
that may overlook industry-specific factors. This finding extends existing theories of
stakeholder perception and corporate performance by incorporating sentiment as a key
component in assessing ESG impacts, thereby broadening the theoretical understanding of
how sentiment affects corporate success in different contexts.

However, it is important to acknowledge certain limitations of this study. First, the
data used for the sentiment analysis were limited to ESG-related news headlines and
leads, which may not capture all the nuances of companies’ ESG practices. In addition,
the observed correlation between ESG sentiment and financial performance does not
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imply causation, as this analysis relied on contemporaneous data rather than longitudinal
datasets. These limitations underscore the need for cautious interpretation of the results
and highlight areas for improvement in future research.

To address these limitations, future research should focus on expanding data collection
efforts to include a broader range of sentiment sources, such as social media and analyst
reports, to provide a more comprehensive view of ESG sentiment. In addition, collecting
longitudinal data over longer periods of time would allow researchers to more effectively
establish causal relationships between ESG sentiment and financial performance. By
incorporating these advanced methodologies, future studies can develop more robust
and comprehensive models for ESG analysis, increasing the reliability of insights and
contributing to better-informed investment decisions and corporate strategies.

In conclusion, this study presents an analytical methodology that is of practical value to
companies developing ESG strategies and represents a significant advance in understanding
the complex interplay between ESG sentiment and financial performance, particularly in
the mobility industry. Through this research, we highlight the role of sentiment analysis in
improving ESG assessments across sectors, ultimately benefiting academia, society, and
industry practitioners alike.
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Appendix A

This section contains comprehensive visualizations that support the findings summa-
rized in the main text. Each figure provides a detailed view of ESG sentiment correlations
with financial indicators, tailored to each industry. These figures allow readers to delve into
sector-specific patterns and interpret the data within the unique context of each industry’s
ESG dynamics.

As shown in Figure A1, the consumer goods industry tends to have lower environmen-
tal scores (correlation coefficient of −0.12), likely due to the high environmental impacts
associated with manufacturing activities. Despite these lower environmental scores, the
media coverage of ESG initiatives is overwhelmingly positive, reflecting a positive public
perception of companies’ ESG practices. Notably, the analysis shows positive correlations
between ESG scores and financial indicators such as profitability and cash flow metrics (e.g.,
correlation coefficients of 0.45 with sales, 0.38 with ROA, and 0.42 with EBITDA), as well as
stability metrics. However, the correlation coefficient for stability, specifically the debt ratio,
is relatively low (−0.11). This suggests that while ESG scores are generally consistent with
financial performance, positive sentiment alone does not ensure financial stability.
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Figure A1. Consumer goods industry correlation analysis.

Furthermore, positive correlations are observed between ESG, environmental, and
social scores and the debt ratio (correlation coefficients of 0.34 for ESG, 0.76 for environ-
mental, and 0.40 for social scores), while ESG and environmental scores have an inverse
relationship with the interest expense growth rate from 2020 to 2021 (−0.22 and −0.35,
respectively). Taken together, these observations suggest that while consumer perceptions
of ESG remain positive despite environmental challenges, the relationship between positive
sentiment and financial stability is complex and varies across specific financial indicators
within the sector.

Figure A2. Extractives and minerals processing industry correlation analysis.

In the mining and mineral processing industry, as illustrated in Figure A2, the ESG
and governance scores are positively correlated with profitability and cash flow metrics,
including sales (correlation coefficient of 0.50), ROA (0.47), and EBITDA (0.52). Higher
ESG ratings (average ESG score correlation of 0.28 with positive sentiment) are associated
with positive sentiment, indicating that ESG performance, particularly in governance,
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may influence financial outcomes in this sector. Compared to other industries, this sector
exhibits a stronger association between sentiment analysis and profitability and cash flow
metrics, as evidenced by the higher correlation coefficients presented in Figure A2. This
suggests that companies with higher profitability and cash flow metrics typically have a
more positive sentiment direction in news, as reflected by the positive correlations between
sentiment scores and financial metrics in Figure A2. Such positive sentiment may influence
financial performance in the mining sector, potentially due to stakeholders’ emphasis on
sustainable practices.

Figure A3. Financial industry correlation analysis.

In the financial industry, as shown in Figure A3, the sector exhibits a negative correla-
tion (correlation coefficient of −0.27) between ESG scores and sentiment analysis scores
but a direct positive correlation between overall ESG scores and financial metrics such as
profitability and cash flow (correlation coefficients of 0.40 with sales, 0.35 with ROA, and
0.38 with EBITDA). Larger companies tend to exhibit more rigorous ESG management
practices, leading to higher ESG scores and improved financial performance. Interestingly,
although social and governance scores are central to ESG evaluations, sentiment analysis
exhibits negative news sentiment that does not significantly affect social or governance
scores (correlation coefficients of −0.26 with social scores and −0.17 with governance
scores), indicating that media sentiment has limited influence on actual ESG evaluations in
this sector. These associations are depicted in Figure A3, where the negative correlation
between ESG scores and sentiment analysis scores contrasts with the positive correlation
between ESG scores and financial performance metrics, highlighting the complexity of the
relationships in the financial industry.

In the food and beverage industry, as shown in Figure A4, positive correlations are
observed between sentiment analysis and ESG, social, and governance indicators (0.40,
0.31, and 0.13, respectively). However, most profitability and cash flow metrics, such as
sales, EBITDA, and interest expense, exhibit negative correlations (−0.52, −0.53, and −0.46,
respectively). This indicates that although ESG scores may align positively with governance
and social aspects, they do not necessarily reflect strong financial outcomes. ESG ratings
also exhibit a negative correlation with ROA (−0.20), whereas the debt ratio shows a
positive relationship with ESG and environmental ratings (0.35 and 0.36, respectively).
Media sentiment aligns with high ESG scores in this consumer-driven sector, although
positive news sentiment does not always translate to robust financial performance.
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Figure A4. Food and beverage industry correlation analysis.

Figure A5. Healthcare industry correlation analysis.

In the healthcare industry, as shown in Figure A5, positive sentiment is closely linked
to governance ratings (correlation coefficient of 0.22) but negatively correlated with several
profitability and cash flow metrics, including sales (−0.17) and EBITDA (−0.14). This
suggests that although positive sentiment may elevate governance ratings, it does not
necessarily improve financial performance, highlighting a separation between perceived
governance quality and actual financial outcomes in the healthcare sector.

104



Electronics 2024, 13, 4507

Figure A6. Infrastructure industry correlation analysis.

In the infrastructure industry, as shown in Figure A6, this sector demonstrates a strong
positive correlation with environmental scores (correlation coefficient of 0.65), underscoring
a focus on environmental management. Higher environmental scores align with positive
sentiment and improved financial indicators, such as sales (0.30), EBITDA (0.42), and
interest expense (0.39). Although industries with higher leverage exhibit high EBITDA and
interest expense metrics, these metrics do not impact the ESG evaluations of the sector,
potentially due to the reliance of the industry on high leverage for operations.

Figure A7. Renewable resources and alternative energy industry correlation analysis.

In the renewable energy industry, as shown in Figure A7, environmental assessments
and positive sentiment are strongly correlated (0.71), with positive correlations observed
in stability metrics, except for title sentiment and the debt-to-equity ratio (−0.28). This
highlights a close relationship between effective environmental management and financial
soundness. Although the industry operates with high leverage (reflected in a minimal sen-
timent correlation with interest expense growth rates), companies with high environmental
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scores tend to perform well financially, suggesting that environmental management plays a
significant role in financial success.

Figure A8. Resource transformation industry correlation analysis.

Within the resource transformation industry, as illustrated in Figure A8, no distinct
correlation is observed between ESG ratings and financial metrics, suggesting that this
diverse sector lacks a direct relationship between sentiment analysis and financial outcomes.
Governance ratings show a negative correlation with cash flow (correlation coefficients of
−0.28 with operating cash flow, −0.08 with free cash flow, and −0.37 with cash flow from
investments), implying that while governance practices may be well-regarded, they do not
necessarily yield strong cash flow in this industry.

Figure A9. Services industry correlation analysis.

Within the services industry, as shown in Figure A9, the sector exhibits mixed correla-
tions with sentiment analysis and ESG scores, with a notably high ROA value (correlation
coefficient of 0.63), depending on service type and operational focus. This variability
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highlights the heterogeneity in the services industry and suggests that the influence of ESG
practices varies significantly across different types of services.

Figure A10. Technology and communications industry correlation analysis.

In the technology and communications industry, as shown in Figure A10, governance
scores correlate positively with ESG performance (correlation coefficient of 0.28), and envi-
ronmental ratings positively affect profitability (correlation coefficient of 0.45). However,
there is a negative correlation between profitability metrics (e.g., sales) and governance
evaluations (−0.07). Companies with higher environmental scores tend to have favorable
financial outcomes even though high governance ratings do not necessarily correlate with
profitability, possibly due to the high operational costs associated with governance efforts.

Figure A11. Transportation industry correlation analysis.

As shown in Figure A11, the transportation industry exhibits the highest correlation
(0.70) between sentiment analysis scores and ESG ratings among all industries. This likely
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reflects the characteristics of industries, like renewable energy, that are directly influenced
by environmental factors.
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Abstract: Accurate and efficient modeling and simulation of spacecraft electrical systems are crucial
because of their complexity. However, existing models often struggle to balance simulation efficiency
and accuracy. This paper introduces a model reduction method based on singular perturbation theory
to simplify the full-order model of spacecraft electrical systems. The experimental results show that
the reduced-order simplified model saves 50% of the simulation time with almost no degradation
in the simulation accuracy and can be applied to real-world scenarios, such as digital twins. This
method offers a new approach for rapid simulation of spacecraft electrical systems and has broad
application prospects.

Keywords: spacecraft electrical system; singular perturbation reduction; stability analysis

1. Introduction

Spacecraft, as a typical cyber-physical system (CPS), plays a critical role in various
fields, such as navigation [1,2], military reconnaissance [3,4], geological exploration [5,6],
and meteorological observation [7,8], greatly advancing technological progress and social
development. As a core component of spacecraft, electrical systems feature complex
structures and functions, integrating both discrete and continuous characteristics and
involving multi-level, multi-component, and multi-variable couplings and interactions.
Therefore, how to effectively model and simulate these systems has become a key issue in
spacecraft design, operation, maintenance, and health management.

Although existing electrical system modeling and simulation methods [9–11] have
made significant contributions, they still show notable deficiencies when addressing differ-
ent simulation requirements. For different simulation tasks, the input/output parameters
and the level of detail needed for the analysis vary. For example, in the simulation of energy
balance in an S3R architecture [12,13], the focus is on satellite operational cycles, orbits,
solar panel current generation, and the regulation of electrical charge and discharge, while
details like battery charge–discharge curves and distribution switches can be simplified.
Conversely, when analyzing a bus short-circuit fault, elements like protection control,
distribution switches, and filtering circuits become critical, while solar array variations can
be treated as a constant current source.

While a high-precision full-order model can accurately describe the system’s dynamic
behavior, its complexity leads to low simulation efficiency, making it unsuitable for fast-
response scenarios. Conversely, simplified models, though improving efficiency, may
lose important dynamic features, compromising accuracy. For example, Mariani et al. [14]
treated the state variables of the output filter and control inner loop module as fast variables
for model order reduction, but overlooked their significant impact on system stability,
which compromised the accuracy of the reduced-order model. Luo and Dhople [15]
considered the state variables of the transmission line and load module as fast variables
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for reduction; however, this dynamic characteristic has a considerable influence on the
system’s dominant modes, and neglecting it may lead to inaccuracies in the analysis. This
conflict is particularly prominent in the multi-level simulation needs of spacecraft electrical
systems, making it imperative to develop a model order-reduction method that balances
both accuracy and efficiency.

To address this challenge, this paper proposes a spacecraft electrical system model
reduction method based on singular perturbation theory [16,17]. By identifying the system’s
behavior and simulation objectives, we apply singular perturbation theory to simplify the
detailed mathematical model of the electrical system, ensuring both the retention of critical
dynamic characteristics and a significant improvement in simulation efficiency.

Our main contributions are summarized as follows:

• We proposed a model reduction method based on singular perturbation theory to
improve the simulation efficiency of spacecraft electrical systems.

• We develop a reduced-order model of the spacecraft electrical system, preserving key
dynamic characteristics.

• We implement the model reduction algorithm in C language and verifiy its feasibility.
• Compared to the full-order model, the reduced-order model generated by our method

decreases simulation time by 50% with little degradation in the simulation accuracy.

2. Full-Order Mathematical Model of Spacecraft Electrical System

The primary function of the spacecraft electrical system is to convert various forms of
energy (such as solar, chemical, and nuclear energy) into electrical power. This power is
then distributed and regulated based on the needs of the spacecraft’s subsystems to ensure
the successful completion of on-orbit missions. Currently, most spacecraft utilize a power
distribution system based on a solar array and storage battery. As shown in Figure 1, the
system is primarily composed of modules including the solar array, storage battery, shunt
regulator, charge regulator, and discharge regulator.

Solar Array

Storage Battery

Shunt Regulator

Charge/Discharge
Regulator

DC load
Ipv

Ibat

Iload

Ubus Cbus

bus

Figure 1. Spacecraft electrical systems.

2.1. Solar Array

The solar array consists of multiple solar cells arranged in a specific configuration to
efficiently collect solar energy and convert it into electrical power efficiently. In spacecraft,
the solar array serves as the primary power source, and its performance is crucial for the
stability and reliability of the overall system.

This paper uses triple-junction gallium arsenide solar cells to construct the solar array.
For a single solar cell, its steady-state equivalent circuit [18] is shown in Figure 2.

In the figure, Iph represents the photocurrent, Id represents the diode current of the
semiconductor PN junction, Rs represents the series resistance composed of the internal
resistance of the semiconductor material and the electrode resistance, and Rsh represents
the parallel resistance caused by impurities at the edges of the semiconductor material or
inherent defects. When the light source is constant, the solar cell can be regarded as an
ideal constant current source.
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Iph I

Id Ish

Voc V

Figure 2. Equivalent circuit of a solar cell.

To accurately simulate the output characteristics of the solar array, we have established
a simulation model. The model considers several input variables, including solar irradiance,
temperature, incident angle, the number of series and parallel connections of the solar
cells, and the performance parameters of the solar cells. By adjusting these input variables,
the simulation model can calculate the output power of the solar array and generate its
output I-V curve. This data is crucial for evaluating the performance of the solar array and
optimizing its design.

2.2. Storage Battery

In spacecraft electrical systems, storage batteries typically use lithium-ion batteries.
In the actual working process, these batteries exhibit hysteresis and rebound effects. To
simulate these characteristics accurately, a comprehensive equivalent model consisting of
an SOC calculation model, equivalent voltage source model, and equivalent impedance
model is established in this paper. In addition, the relationship between the remaining
battery charge (SOC) and the internal state is considered during the modelling process to
facilitate circuit simulation and analysis. The overall circuit structure of the battery model
is shown in Figure 3, where V represents the voltage across the battery terminals and I
represents the charge and discharge current.

Figure 3. Equivalent circuit model of a battery.

2.3. Power Conditioning and Distribution Unit

The power conditioning and distribution unit (PCDU) in spacecraft electrical systems
manages the energy conversion between the solar array and the storage battery. As shown
in Figure 4, the PCDU comprises a shunt regulator, a discharge regulator, and a charging
regulator. The shunt regulator stabilizes the bus voltage by adjusting the output current
from the solar array, maintaining voltage stability by modulating the shunt state during
load variations. The discharge regulator uses a buck circuit to step down the battery voltage
to the required level, while the charging regulator employs a boost circuit [19] to raise the
input voltage to an appropriate level for battery charging, ensuring stable power supply
and charging.
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Figure 4. Power conditioning and distribution unit.

2.4. DC Load

The DC load comprises a resistive load and a constant power load (CPL), with the
topology shown in Figure 5.

Figure 5. Equivalent circuit model of a DC Load.

The resistive load is represented by a resistor, while the CPL consists of a buck circuit
connected in series with a resistive load. The buck circuit operates with constant voltage

control to stabilize the voltage across the CPL, maintaining the load power P =
U2

R
RCPL

as a
fixed value. To adjust the load power, it is sufficient to change the value of RCPL.

2.5. Complete Model of Spacecraft Electrical System

Based on the modular modeling approach, we developed the state space equations
for the solar array, storage battery, power controller and distribution unit, and DC load

114



Electronics 2024, 13, 4291

models. By integrating these individual models, we formed a comprehensive full-order
mathematical model of the spacecraft electrical system:

Uoc = f (SOC) (1)

SOC = SOC0 +
∫

Ibatdt (2)

Ubus = Uoc + IbatR0 + U1 + U2 (3)

Ibat = Ipv − Iload − Ic (4)

dU1

dt
= − 1

R1C1
U1 +

1
R1C1

Ubus (5)

dU2

dt
= − 1

R2C2
U2 +

1
R2C2

Ubus (6)

dy
dt

= Ubus −Ubusre f
(7)

Ipv = Ipvmax [Umeamax − Kp(ure f −Ubus)− kiy]×
1

Umeamax −Umeamin

(8)

where Kp and Ki are the proportional and integral coefficients of the PI controller. R0, R1,
and R2 represent the resistances, C1 and C2 represent the capacitances. Ipv represents the
output current of the solar array after shunt regulation, Iload represents the load current,
Ic represents the charging or discharging current of the capacitor, and Ibat represents the
current of the battery. Uoc is the open-circuit voltage of the storage battery, Ubus is the DC
bus voltage, Ubusre f

is the reference voltage of the bus, and U1 and U2 usually represent the
voltages across the two capacitors.

In this electrical system, the order of the mathematical model is primarily influenced
by the charge and discharge regulator model, resulting in a nonlinear system that includes
two second-order equations and multiple first-order differential equations. This model
comprehensively reflects the dynamic characteristics and operational state of the spacecraft
electrical system, providing a solid foundation for subsequent simulation analysis and
model order reduction.

3. Methodology

The simulation analysis of spacecraft electrical systems plays a vital role in space
missions. Compared with ground AC power grids, spacecraft electrical systems have
flexible and diverse structures and many nonlinear elements, which lead to a large number
of mathematical models of electrical systems. Additionally, the significant differences in
the dynamic responses of various components in the electrical system result in a mathe-
matical model containing numerous variables with different time constants. Some of these
variables have the characteristics of fast change and high frequency, while others have the
characteristics of slow change and low frequency. In order to ensure the accuracy of the
solution of the time domain simulation, the calculation step size of the simulation needs
to be adjusted to a very small size, which leads to a significant increase in the calculation
time, posing a great challenge to the demand for rapid response. Therefore, it is urgent to
introduce an effective model reduction simplification method.

3.1. Principles of Singular Perturbation Theory

Singular perturbation theory is an effective tool for analyzing and simplifying multi-
time-scale systems, especially for complex systems with different dynamic response times.
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In the mathematical model of DC electrical systems, the dynamic response time of each
component is different, resulting in different time scales for the entire system. The spacecraft
electrical system we studied contains at least two time scales, which can be described by
the following differential equations:

ẋ = f (t, x, y, ε) (9)

εẏ = g(t, x, y, ε) (10)

where (t, x, y, ε) ∈ [0, t1]× Dx × Dy × [0, ε0], Dx ∈ Rn, Dy ∈ Rm is the domain containing
the origin, f and g are both continuously differentiable functions, and ε is a singular
perturbation parameter. The state variables of the system in Equations (9) and (10) are
divided into the dominant slow state variable x and the dominant fast state variable y,
which correspond to the slow time scale variables and fast time scale variables of the
system, respectively. Equations (1) and (2) in the above equations divide the state variables
of the system into the dominant slow state variable x and the dominant fast state variable
y, which correspond to the slow time scale variables and fast time scale variables of the
system, respectively.

According to Tikhonov’s theorem [20,21], for any point x0 on the system’s motion
trajectory, if all the characteristic roots of the matrix ∂g/∂y|x=x0 are in the left half of the
complex plane s, then when the perturbation parameter ε = 0, the constraint manifold
g is attractive to y. So, Equation (10) can be transformed into the steady-state equation
g(t, x, y, ε) = 0, and the steady-state solution of y is obtained:

y = h(t, x) (11)

Substituting the steady-state solution shown in Equation (11) into Equation (9), the original
(n + m)th order system can be reduced to an nth order system as shown in Equation (12):

ẋ = f (t, x, h(t, x), 0) (12)

3.2. Model Reduction Method Based on Singular Perturbation Theory

Before performing model reduction, it is necessary to categorize the state variables
of the full-order model according to their time scales to distinguish between fast and
slow state variables. So, a participating factor analysis (sensitivity analysis) should be
performed to evaluate the sensitivity of model parameters on system outputs and identify
the parameters that significantly impact the system’s state or output. Based on the analysis
results, state variables are categorized into different time scales, differentiating between
fast and slow variables.

According to singular perturbation theory, the complete nonlinear model of the space-
craft electrical system is represented by

ẋ = f (x, μ) (13)

where x represents the state variable of the system and μ represents the system parameter.
The nonlinear equation is linearized at the stable point.

ẋ = Ax (14)

where A is the Jacobian matrix.
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By calculating the left eigenvector u and the right eigenvector v of the system in its
steady state, a participation matrix P can be constructed to assess the degree of interaction
between state variables and modes.

p =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

uT
11v11 · · · uT

1iv1i · · · uT
1nv1n

...
. . .

...
. . .

...
uT

j1vj1 · · · uT
jivji · · · uT

jnvjn
...

. . .
...

. . .
...

uT
n1vn1 · · · uT

nivni · · · uT
nnvnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(15)

n

∑
i=1

uT
jivji =

n

∑
j=1

uT
jivji = 1 (16)

where pij is called the participation factor, which is used to measure the degree of interaction
between the mode and the state variable. The larger the participation factor pij, the higher
the degree of participation of the i-th mode in the j-th state variable. When the participation
factor of a state variable is large, it can be identified as a slow state variable, and the rest
are fast state variables. This division can effectively determine the time scale of the model
state variables and provide a basis for subsequent order reduction.

In order to establish comparability between eigenvalues of different magnitudes, we
normalize the eigenvalues. So, the participation factor pij can be expressed as

pij =
|uT

ij ||vij|
∑N

k=1 |uT
kj||vjk|

(17)

In the full-order mathematical model, U1, U2, Ubus, y, Ipv, Ic, Ibat, and SOC are selected
as state variables. When Ubus is the dominant mode, the participation factors for the other
seven variables are calculated using MATLAB/Simulink (version: R2022a). The results
are as follows: U1 = 0.000000554, U2 = 0.000000119, y = 0.490558440, Ipv = 0.000000012,
Ic = 0.000245279, Ibat = 0.000000002 and SOC = 0.018637169.

Based on the results of the participation factor analysis, the state variables (y and SOC)
with larger participation factors are classified as slow state variables x, while the remaining
variables are classified as fast state variables y.

The reduction method based on singular perturbation theory successfully simplifies
the full-order mathematical model of the spacecraft electrical system into a first-order
differential system, significantly reducing computational complexity while maintaining the
dynamic characteristics of the system. This method provides an innovative approach for
the rapid simulation of spacecraft electrical systems and demonstrates broad application
prospects, particularly in real-world scenarios such as digital twins.

4. Low-Order Simplified Model of Spacecraft Electrical System

4.1. Solar Array

The inputs involved in the solar array model—temperature, solar irradiance, incident
angle, etc.—are all slow variables. For the solar array model, the model is a slowly varying
subsystem. When its perturbation coefficient is set to zero, we can obtain

Ipv = nIpv0 (18)

Ipv0 = Iph − Io[e
qVoc
AKT − 1]− Voc

Rsh
(19)

where Ipv is the actual solar cell array output current, n is the number of branches, and Ipv0
is the single branch current.
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4.2. Storage Battery

For the storage battery model, factors such as temperature and impedance are con-
sidered slow variables, while other factors are fast variables. Therefore, in simulations
over large time scales, it is necessary to distinguish between the effects of slow and fast
variables. Under specific simulation conditions, the changes in slow variables can ignored.
The specific simplification is shown in Figure 6.

I
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voltage source
Uocv=f(SOC)

Equivalent 
voltage source

Uocv=f(SOC)

Equivalent 
impedance

Rb

Equivalent 
impedance

Rb

U

+

-

Figure 6. A reduced−order simplified model of the battery pack. Uocv = f (SOC) is a specific curve
under certain environmental factors.

4.3. Power Conditioning and Distribution Unit

The simplification approach for the charge regulator model is similar to that of the
discharge regulator model. It uses a switch dynamic equivalent model to describe the state
changes of switches in the DC/DC circuit.

For the discharge regulator, the PI regulator that controls the on-off of the switch tube
in its discharge topology is always MEA. Therefore, only the voltage signal of the MEA
needs to be considered as the input. After considering the reduced-order simplification
process with the perturbation coefficient being zero, the model can be degenerated into the
following formula:

L1
dIin
dt

= Ubat −Uout (20)

Iin = (1− D)(Ipv − Iload) (21)

For the charge regulator, both BEA and MEA regulators are available. Although the
basic logic is the same for both, the proportional integral coefficients of the voltage signal
ui are different. The voltage signal of MEA is

ui = kp(ΔU) + kia1 (22)

The voltage signal of BEA is

ui = kpb(Iin − Ire f ) + kiba2 (23)

The control signal for the charging regulator is chosen as the smaller value between
MEA and BEA. After considering a perturbation coefficient of zero, the model can be
simplified to:

L2
dDIin

dt
= Ubat −Uout (24)

Uin = DUbus (25)

Iin = Ipv − Iload (26)

where D is described by the normalized voltage control signal:

D =
ui

udm − udl
(27)
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The shunt regulator consists of multiple switching devices. During operation, its
output is modulated by the control signal. This process can be modeled using an average
duty cycle model. The average output power P of the duty cycle can be expressed as

P =
TonPL

T
(28)

where Pl is the average power during the on-time period, T is the switching period of
the shunt regulator, and Ton is the on-time. The average power model assumes that the
input power PL remains constant during the on-time and there is no power output during
the off-time.

4.4. DC Load

The changes in the load model mainly exist in the simulation process. The resistive
sensitivity of the load is mainly manifested in dynamic changes on a short time scale,
whereas spacecraft models are generally simulated over a wide time scale. In this simulation
background, the system participation factor of the fast variable is significantly smaller than
the system participation factor of the slow variable. Therefore, for the establishment of the
spacecraft DC load model, the factors involved in the model that influence the dynamic
transients of the system can be approximately simplified.

Constant current and constant impedance loads can be equivalently represented as
controlled current sources. A constant current load provides a constant current through
the controlled current source, while a constant impedance load provides a current value
proportional to the bus voltage through the controlled current source.

Iload = I0 (29)

Iload = kUbus (30)

The constant power load exhibits a negative incremental impedance characteristic.
Modeling constant power loads can be achieved using a controlled current source. Given
a specified load power consumption, the load current can be calculated from the load
power and voltage values, ensuring that the load current adjusts with changes in voltage to
maintain constant load power. The load current is calculated as

Iload = Pload/Ubus (31)

5. Simulation

In order to fully demonstrate the advantages of model downscaling, we compare the
numerical simulation results and numerical computation time.

The electrical model includes the solar array, the PCUD with S3R architecture, the
storage battery, and other main modules. The simulated values of state parameters involved
in each module are shown in Table 1.
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Table 1. The simulated values of state parameters.

Key Component Parameter Value

BuS
Bus capacitance (F) 0.00036

Bus voltage (V) 42

Solar array

Series count 27
Parallel count 216

Operating temperature (K) 353
lrradiance condition (W/m2) 1300
Open circuit voltage Voc (mV) 2730
Operating voltage Vmp (mV) 2430

Short circuit current density Jsc (mA/cm2) 17.2
Operating current density Jmp (mA/cm2) 16.7

Storage battery

Equivalent Terminal voltage (V) 42
Equivalent ohmic internal resistance (Ω) 0.013

Equivalent electrochemical polarization resistance (Ω) 0.007
Equivalent concentration polarization resistance (Ω) 0.015

Charge regulator
Input inductance (H) 0.006

Output capacitance (F) 0.0005
Input resistance (Ω) 0.1

Discharge Regulator
Input Inductance (H) 0.006

Output Capacitance (F) 0.0002
Input Resistance (Ω) 0.1

5.1. Comparative Analysis of Numerical Simulation Results

We conducted an energy balance analysis for a satellite over one orbit. Assuming an
orbital period of 108 min around the Earth, with 36 min in the Earth’s shadow and 72 min
in the sunlight. During the sunlight period, the temperature of the photovoltaic panel
surface rapidly rises to approximately 80 + 273.15 Kelvin and remains nearly constant. We
assume that the solar panels are always oriented toward the sun, with a constant irradiance
of 1300 W/m² in the sunlight region.

The simulation results for three orbits around the Earth are shown in Figure 7.
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Figure 7. Comparison between reduced-order simplified model and full-order mathematical model.

It can be seen from the simulation results that because of the model reduction, the
transient process of the simulation process will be less obvious, but the error size can be
controlled within 1%. Regarding the steady-state results, the static error is essentially zero.
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5.2. Comparative Analysis of Numerical Calculation Time

To evaluate the efficiency of the reduced-order model, we tested the time required
to complete simulations for three orbital periods using different models. The results are
shown in Table 2.

Table 2. Simulation time comparison.

Model Time(s)

Circuit level model 15
Full-order mathematical model 1
Low-order mathematical model 0.5

Compared to the circuit-level model, the full-order mathematical model has slightly
lower simulation accuracy and offers a coarser description of bus voltage ripple. However,
it significantly reduces the time cost associated with the circuit model. Nonetheless, the
full-order model involves numerous algebraic differential equations because of parasitic
parameters, such as capacitance and inductance. When integrated into a digital twin simu-
lation environment, the need for steady-state assessment and multiple iterative calculations
requires a smaller simulation step size to achieve convergence, which results in lower
practical efficiency.

In contrast, the reduced-order mathematical model only decreases the simulation time
by 50% compared to the full-order model. However, the complexity of the differential
equations is significantly reduced, allowing for larger step sizes during simulation and
thereby providing higher efficiency in practical applications.

6. Software Package Development for Reduced-Order Simplified Models

In order to verify whether the simplified electrical system model is suitable for a digital
twin simulation, it is deployed in a C language package in a Windows environment for
energy balance simulation verification and comparison. The whole simulation flow of the
software program is shown in the Figure 8.
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Figure 8. Software program simulation process.

First, set the simulation step size to 1 s. Then, define the solver algorithm to solve the
differential equations in the power distribution system. Initial values for the simulation are
provided, and the simulation is checked to see if the stopping conditions are met. If not, the
step size is adjusted, and the Runge-Kutta solver algorithm [22–24] is reintroduced. This
algorithm approximates the solution by calculating the slope at several points in the next
interval, then averaging these slopes to obtain a new average slope k. This average slope is
multiplied by the current step size and added to the initial point value to obtain the data
for the next point, which is stored in the data repository. This iterative process continues
until the stopping conditions for the simulation are achieved. Finally, all data are saved,
and plotting them generates the simulation process curves.

As shown in Figure 9, the computational results from the actual code closely match
the MATLAB simulation results, achieving a fast solution for 20,000 data sets in under
5 s. Although the reduced-order simplified model is based on the full-order mathematical
model of the spacecraft electrical system, it enables fast and efficient solving, making it
suitable for energy balance evaluations and digital twin simulations. Additionally, the
model can be extended to study the interaction between the power system and other
subsystems, such as attitude and orbit control and satellite computers.
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Figure 9. Comparison between program and simulation results. “Program” represents the result
calculated in the C program. “Simulation” represents the result calculated in MATLAB.

7. Conclusions

This study presents a model reduction method for spacecraft electrical systems based
on singular perturbation theory. The method effectively simplifies complex full-order
models, reducing simulation time by 50% while maintaining a comparable level of accuracy.
The reduced-order model not only optimizes the simulation process but is also applicable
to real-world scenarios such as digital twins.

Furthermore, our research opens avenues for further theoretical developments, such
as the application of this method to other complex dynamic systems in various engineering
fields. Practically, the ability to achieve efficient and accurate simulations can significantly
enhance the design and analysis of spacecraft electrical systems, facilitating improved
decision-making and operational efficiency. Overall, our findings highlight the potential
for this approach to be adapted for diverse applications, contributing to advancements in
both aerospace engineering and other interdisciplinary domains.
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Abstract: Patents contain detailed information of researched and developed technologies. We
analyzed patent documents to understand the technology in a given domain. For the patent data
analysis, we extracted the keywords from the patent documents using text mining techniques. Next,
we built a patent document–keyword matrix using the patent keywords and analyzed the matrix
data using statistical methods. Each element of the matrix represents the frequency of a keyword
that occurs in a patent document. In general, most of the elements were zero because the keyword
becomes a column of the matrix even if it occurs in only one document. Due to this zero-inflated
problem, we experienced difficulty in analyzing patent keywords using existing statistical methods
such as linear regression analysis. The purpose of this paper is to build a statistical model to solve the
zero-inflated problem. In this paper, we propose a regression model based on quantile cumulative
distribution function to solve this problem that occurs in patent keyword analysis. We perform
experiments to show the performance of our proposed method using patent documents related to
blockchain technology. We compare regression modeling based on a quantile cumulative distribution
function with convenient models such as linear regression modeling. We expect that this paper will
contribute to overcoming the zero-inflated problem in patent keyword analysis performed in various
technology fields.

Keywords: patent keyword analysis; quantile cumulative distribution function; regression; patent
document; patent–keyword matrix

1. Introduction

Patent keyword analysis (PKA) is important to technology management because a
patent contains extensive and detailed information about the developed technology. Using
the PKA results, we can build research and development (R&D) plans and strategies for
the target technology. In general, for PKA, we extract technology keywords from patent
documents using text mining techniques [1,2]. Using the extracted keywords, we construct
a patent–keyword matrix for PKA based on statistics and machine learning algorithms.
The matrix consists of elements representing the frequency values of keywords that occur
in patents [1,3–5]. In most cases, this matrix has a sparse data structure that suffers from
the zero-inflated problem [3–5]. This is because a keyword that is included in even just
one patent document becomes one column in the matrix [3–5]. The sparse zero-inflated
problem reduces the performance of PKA models [4,6]. As such, we have to solve the
zero-inflated problem for PKA. Many existing studies rely on statistical models such as
the zero-inflated Poisson and negative binomial models to solve the problem [5,7–11].
Recently, studies based on machine learning methods such as generative models have
been conducted to solve the zero-inflated problem [4,5]. However, existing models have
limitations in that model performance deteriorates as the proportion of zeros included
in the data increases [3–5,7,8]. To solve this problem, we consider a regression model
based on a quantile Cumulative Distribution Function (CDF) [12–14]. We call this model
CDF-based Quantile Regression Model (QRM) in this paper. To verify the performance
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of the CDF-based QRM, we perform experiments using patent documents related to
blockchain technology.

The motivation for this research is to appropriately deal with the zero-inflated problem
that occurs in patent keyword data analysis. In particular, we study a method to over-
come the extreme zero-inflated problem, where the proportion of zeros in the given data
exceeds half. Since the extreme zero-inflated problem is difficult to solve even with existing
statistical zero-inflated models, we need to find new methods to solve it.

The remainder of this paper is organized as follows. We survey works related to our
research such as regression and zero-inflated models in Section 2. In Section 3, we present
the theoretical explanation of our proposed method and the analysis process step by step.
In addition, we present the performance evaluation indexes of comparative models in this
section. Next, we show the improved performance and validity of our proposed method
from the experimental results using patent documents related to blockchain technology
in Section 4. In this section, we compare the model performance of the CDF-based QRM
with traditional linear regression and statistical zero-inflated models. In the Section 5, we
illustrate how the proposed method can be applied to practical tasks in various domains.
Lastly, we provide the conclusions and future works related to our research in Section 6.

2. Related Works

Patent analysis has been performed in various technology domains such as photo-
voltaic, medicine, mountain logistics, climate change, artificial intelligence (AI), surgery,
and energy [15–21]. This is because when developers register a technology they have
developed as a patent, they are guaranteed exclusive rights to use their technology for a
certain period of time. Therefore, we analyze patents to understand these technologies.
Also, we use the results of patent analysis for technology management such as Research
and Development strategy development. PKA, which we propose in this paper, is also a
field of patent analysis. PKA mainly extracts technology keywords from the abstracts and
claims contained in collected patent documents and analyzes them. In this process, we use
text mining and various data analysis methods based on statistics and machine learning.

The regression model is very popular in machine learning as well as in statistics [12,22–24].
This model consists of independent and dependent variables called X and Y, respec-
tively [22]. Regression analysis is statistical modeling that explores relationships between
variables [24]. We can predict Y for a given X using regression analysis [19]. Figure 1 shows
a process of regression modeling [23].

Figure 1. Regression modeling process.

We assume that the response variable Y adds the error e to the explanatory variables
X Using X and Y, we create the linear regression model (LRM) as follows.

Y = fβ(X) + e (1)
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In Equation (1), fβ(X) is β0 + β1X1 + β2X2 + · · ·+ βpXp, and we estimate the model
parameters, β =

(
β0, β1, β2, . . . βp

)
that minimize the error using the least squared loss

function [12,24]. The error represents a random noise included in observed data and follows
a normal distribution with a mean (μ) = 0 and variance = σ2. This model has provided
good performance in exploring the relationship between X and Y in most data, including
errors with a mean of 0 and equal variance [24]. However, we have difficulty in using the
LRM when the given data does not satisfy the model assumptions [9–11]. In particular,
if the given data has many extreme values, we cannot use the LRM [4–6]. To solve the
problems of LRM, we can consider the QRM [13,25]. Quantile regression aims to model
the impact of explanatory variables on the quantile of the response variable. The QRM
finds the conditional quantile of Y just as the regression based on the least square method
estimates the conditional mean of Y [9]. We can apply both continuous and count data to
QRM. QRM is a model that can be used when the given data do not satisfy the normality
assumption and are asymmetric or contain many outliers. In the PKA, we found that the
patent–keyword matrix contains zero-inflated data that is sparse and asymmetric. As such,
we propose a method to analyze the patent keywords using QRM. In addition, we consider
the CDF for our PKA model based on QRM because we aim to predict the specific quantile
of each patent keyword.

In statistics, the zero-inflated model is typically used to analyze data that contain a
lot of zeros [8,10,11]. This model has been used to solve the zero-inflated problem that
occurs in various domains [26–29]. The zero-inflated model based on statistics is defined
as follows [9]:

P(X = x) =

{
π+ (1− π) f (x), x = 0

(1− π) f (x), x > 0
(2)

In Equation (2), f (x) is a density of random variable X = x. In the statistical zero-inflated
model, the probability model of X is separated into two parts of zero and non-zero [9–11].
The π represents the probability of zero occurrence. Although the statistical zero-inflated
models have been used to overcome the problem that arises in various data analysis
processes, they have shown a problem in that model performance deteriorates as the
proportion of zeros in the data increases [3–5]. Therefore, in this paper, we propose a PKA
method using QRM for analyzing patent keyword data with a high zero ratio.

3. Proposed Method

3.1. Patent–Keyword Matrix

The reason we analyze patent keywords is because patent keywords represent tech-
nologies. Many governments and companies around the world are working hard to
establish R&D strategies for new and promising technology development in order to sur-
vive in the fierce technological competition. For this purpose, understanding of technology
is essential, and one of the effective methods for understanding technology is patent key-
word analysis. In order to analyze patent keywords, we construct a patent–keyword matrix
from patent documents. However, since a significant portion of the elements in this matrix
are zero, existing data analysis methods have limitations. For example, if the given data
contains too many zeros, the explanatory and predictive power of models built using this
data will be reduced. To solve this problem, in this paper, we propose an analytical method
for patent keyword data. The patent keyword data are generated from the title and abstract
parts of patent documents. In general, we search the patent documents related to the target
technology from various patent databases in the world using a keyword search equation.
For our PKA, we preprocess the searched patent documents using text mining techniques
as follows [1,2].

(TM.1) Searching patent documents related to target technology.
(1-1) Using keyword searching equation, we collect the patent documents related to the
target technology.
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(1-2) By examining all the retrieved patents, we select valid patents that can be used
for analysis.
(TM.2) Building structured patent data by text mining.
(2-1) Using tokenization and normalization, we preprocess the patent documents to create
the corpus.
(2-2) By extracting keywords from the corpus, we construct a patent–keyword matrix.

In the first text mining (TM.1) step, we determine the target technology for PKA. In
this step, we collect the patent documents related to the target technology from various
patent databases. In addition, we select the valid patents from the collected patent docu-
ments. Using tokenization and normalization methods such as stemming, lemmatization,
lowercasing, and removing stopwords, we preprocess the valid patent documents and
make a corpus of them in the second text mining (TM.2) step. Finally, we extract the
patent keywords from the corpus and construct the patent–keyword matrix. The rows and
columns are patent documents and keywords from the vocabulary, respectively. Also, the
matrix values are the frequency values of each keyword in a document. Therefore, through
the text mining process of making text corpus, parsing, and constructing text database, we
build a patent–keyword matrix [1,3,4]. We define this matrix M using Equation (3).

M =
(

Freqij

)
, i = 1, 2, . . . , p j = 1, 2, . . . , n (3)

where p and n are the numbers of keywords and patent documents, respectively. Also,
Freqij is frequency value of the jth keyword occurring in the ith patent. The observed data
of Freqij is distributed to Poisson probability distribution with parameter λ as follows.

X = Freqij, X ∼ Poisson(λ), λ > 0, x = 0, 1, 2, . . . (4)

In Equation (4), X has values greater than or equal to zero, but most X values are zeros.
This is one cause of the deteriorating performance of statistical analysis models in PKA.
This is the problem we aim to solve in this paper. Next, we normalize the frequency values
of the patent–keyword matrix as follows.

Freqij_nor =
Freqij −Min

Max−Min
(5)

Max and Min represent the maximum and minimum among all values of Freqij in
Equation (5). According to Equation (5), the range of values that Freqij_nor can have changes
the values of Freqij from an integer greater than 0 to a real number between 0 and 1. In
most cases, the patent–keyword matrix has the zero-inflated problem. That is, most of the
frequency values are zeros. This becomes a factor that seriously reduces the performance of
the analysis model. Therefore, we have to deal with this problem for PKA. We try to solve
this problem using the CDF-based QRM in our study.

3.2. Quantile Regression Modeling Based on Cumulative Distribution Function for PKA

The patent–keyword matrix is asymmetric and sparse because of the zero-inflated
problem of matrix elements. Most of the elements in the matrix have the value zero.
Therefore, the matrix has a very imbalanced data structure. Because of the characteristics
of the patent–keyword matrix with such an asymmetric structure, we have difficulty in
analyzing patent keywords using statistical techniques. This problem reduces the analytical
performance of statistical methods and machine learning algorithms. To solve the problem,
we propose a method of PKA using CDF-based QRM. The CDF is defined as follows [9,12].

F(y) = P(Y ≤ y) (6)

In Equation (6), F(y) is the value of CDF of Y = y and is computed by the probability
of Y ≤ y. Also, the q-th quantile of Y is a value of between 0 and 1. Therefore, we have to
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change the value of Y to a (0,1) interval. In our study, we normalized the frequency value of
response keywords to a real value between 0 and 1. This approach is similar to PKA using
beta regression modeling. The probability distribution corresponding to a random variable
Y with support between 0 and 1 is the beta distribution [9,24]. Though the regression
analysis model based on the beta distribution can be used for PKA, as the zero-inflated
problem becomes more severe, the beta regression model also shows limitations in model
performance like existing regression models [4–6]. Therefore, we use CDF-based QRM to
analyze the patent–keyword matrix data. This models the CDF of the response variable
(keyword) Y and makes predictions for specific quantiles of Y. In other words, we can use
the model to estimate the probability that the response variable is below a certain value.
Because the CDF-based QRM has robust characteristics that are not significantly affected by
extreme values such as outliers, we use this model for analyzing patent keywords with the
sparsity problem of zero inflation. The CDF with a location parameter μ and a dispersion
parameter σ is defined with the following equation [13,25].

G(X = x, μ, σ) = F
[
U
(

H−1(x), μ, σ
)]

, 0 ≤ x ≤ 1, −∞ < μ < ∞, 0 < σ (7)

In Equation (7), the random variable X has the support (0,1) and two parameters, μ
and σ. F and H are a CDF and an invertible CDF with supports D1 and D2, respectively. U
is a suitable transformation from D1(−∞, ∞) to D2(0, ∞) for applying μ and σ. In addition,
H−1(x) is a corresponding quantile function from D1 to D2. Using this CDF quantile
family in Equation (7), we carry out the CDF-based QRM for our PKA. To estimate the
parameters, we carry out maximum likelihood estimation (MLE) for all parameters based
on a gradient [12,13,23,25]. For the CDF in Equation (7), the probability density function
(PDF) is defined as in Equation (8) [24,25].

G(X = x, μ, σ) =
q(x) f

(
H−1(x)−μ

σ

)
σ

, 0 ≤ x ≤ 1, −∞ < μ < ∞, 0 < σ (8)

where f (x) and q(x) are the PDF corresponding to F and the quantile density function
corresponding to H−1. We differentiate the log of G with respect to μ and σ and dropping
q. As such, the regression model has two sub models as follows [13]:

Lμ(μ̂) = xT β (9)

Lσ(σ̂) = zTδ (10)

where Equations (9) and (10) are the models for location (μ) and dispersion (σ), respectively.
x and z are the vectors of predictors. Also, β and δ are the vectors of coefficients. In this
paper, we use the link functions of identity and log for Lμ and Lσ. In the next section, we
conduct experiments using patents related to blockchain technology to evaluate the model
performance. We illustrate our PKA process of CDF-based QRM as follows.

(Step.1) Patent data collection and preprocessing.
(1-1) Searching patent documents from patent databases.
(1-2) Extracting keywords from searched patents using text mining.
(1-3) Constructing the patent–keyword matrix from extracted keywords.
(Step.2) Data preparation and normalization.
(2-1) Determining response and explanatory variables (keywords).
(2-2) Normalizing response variable to a (0,1) interval.
(Step.3) Data analysis.
(3-1) Building the CDF-based QRM.
(3-2) Evaluating model performance using loglikelihood, AIC, and BIC.
Our proposed PKA method consists of three steps. In Step.1, we collect patent doc-

uments related to the target technology from patent databases such as the United States
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Patent and Trademark Office (USPTO). We extract keywords from the collected patent
documents using various text mining techniques. For patent analysis, we construct a matrix
consisting of patents and keywords for rows and columns, respectively. Also, each element
of the matrix is the frequency of occurrence of each keyword in the patent document.
Next, we select response and explanatory variables according to the target technology
and the aim of the patent analysis. For CDF-based QRM, we normalize the value of the
response variable to a (0,1) interval. In the final step, we use the CDF-based QRM to
analyze the patent–keyword matrix, which is sparse and has the zero-inflated problem. In
this paper, we compared the CDF-based QRM with the LRM. This is because the LRM is
widely used in the field of keyword data analysis. We used three indexes to evaluate the
performance between the comparative models. First, we use the loglikelihood, defined as in
Equation (11) [9,13,24].

L(θ|x) = ∑n
i=1 log( f (xi|θ)) (11)

where θ and n are the model parameter and data size. f (xi|θ) is a joint probability density
(or mass) function of xi given θ. The larger the loglikelihood value of a model is, the
better the model fits the data. Next, we consider the Akaike information criterion (AIC) to
evaluate the performance of model fitting. This is represented in the following equation [23].

AIC = −2L(x|θ̂) + 2k (12)

In Equation (12), θ̂ is the maximum likelihood estimate of θ and L(x|θ̂) is the maximum
loglikelihood function given x. Also, k is the number of explanatory variables. The smaller
the AIC value, the better the fitting performance of the model. Lastly, we apply the
Bayesian information criterion (BIC) index to evaluate the performance of comparative
models. The value of BIC is computed as follows [23]:

BIC = −2L(x|θ̂) + k× log(n) (13)

The BIC is an index that adds consideration to data size n to the AIC in
Equation (13). As with the AIC, in the case of the BIC, the smaller this value is, the
better the model performance is. In this paper, we compared the proposed QRM with LRM
and a zero-inflated model in terms of explanatory and predictive power. Loglikelihood is
an index that measures the explanatory power of the model, and the AIC and BIC are
indexes that compare the predictive power between models.

4. Experiments and Results

The experiments were carried out using practical patent documents to illustrate how
the proposed method can be applied to real fields. We collected patent documents related
to blockchain technology from world patent databases [30,31]. Blockchain technology
has been developed by relying on the blockchain-related technologies such as bitcoin
and cryptocurrency. So, in this experiment, we provide the technological relations be-
tween blockchain technology and other related technologies based on the keywords of
blockchain, access, authentication, bitcoin, cryptocurrency, databank, distributor, encash,
ledger, network, and secretkey. In this paper, we determined blockchain technology as our
target domain. Blockchain is defined as a technology for securely managing data across
distributed systems [6]. We select the keyword blockchain as the response variable and
use the remaining ten extracted keywords (access, authentication, bitcoin, cryptocurrency,
databank, distributor, encash, ledger, network, and secretkey) for explanatory variables
(X1, X2, . . . , X10). Figure 2 shows the process of our proposed modeling of PKA.
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Figure 2. Patent keyword analysis process.

First, we collected the patent documents related to blockchain technology using
keyword search expression from patent databases across the world [30,31]. Next, we chose
the valid patents representing blockchain technology and preprocessed the valid patent
documents. In our experiments, we used the R project as a tool for statistical analysis. R is
a free, open-source piece of software that supports statistical analysis and visualization [32].
The current version of R has been upgraded to 4.4.2. Up until now, R has been widely used
for statistical analysis of data generated in various fields [33]. We also used the tm package
of R for text mining [1]. This package provides many functions for preprocessing of text
data using natural language processing [1,2]. Lastly, we used the cdfquantreg package of
R for QRM [14]. In addition, using the functions provided in the R base module and the
pscl package, we carried out performance evaluation between the proposed model and
the comparative models [32,34]. The elements of this matrix are the frequency values of
the keywords occurring in the patent documents. This is structured data that can be used
in CDF-based QRM. Also, we determined the keyword of blockchain for the dependent
variable and used the other keywords for independent variables in this experiment. To
select the patent keywords for blockchain technology, we considered the results of keyword
extraction from previous research related to blockchain technology analysis [32]. Therefore,
we determined one response variable (blockchain) and ten explanatory variables (access,
authentication, bitcoin, cryptocurrency, databank, distributor, encash, ledger, network, and
secretkey). We used the R project and package for our experiment [1,2,14,32–34]. Table 1
shows the summary statistics of the patent keywords.
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Table 1. Summary statistics of blockchain patent keywords.

Keyword Min Median Mean Max

blockchain 0 2 4.4140 38
access 0 0 0.2606 11

authentication 0 0 0.4763 16
bitcoin 0 0 0.1701 20

cryptocurrency 0 0 0.2115 11
databank 0 0 1.7800 24

distributor 0 0 0.5626 14
encash 0 0 0.1058 4
ledger 0 0 0.8892 26

network 0 0 0.9332 16
secretkey 0 0 0.5144 10

In the results in Table 1, we found that the patent–keyword matrix data is very sparse
and zero-inflated because most elements of the matrix are zeros. The median values of
most keywords were also zero. Therefore, we have difficulty analyzing the patent keyword
data using traditional data analysis methods. To overcome the problem, we proposed
patent keyword analysis using CDF-based QRM in this paper. In the CDF-based QRM, the
response variable must have real numbers between 0 and 1. So, we changed the values of
blockchain keyword by the following normalization.

Blockchainnormalization =
Blockchain−Min(Blockchain)

Max(Blockchain)−Min(Blockchain)
(14)

Using the Equation (14), the values of the response variable are changed to numerical
values in the interval (0,1). The model of patent keyword analysis consists of one response
variable of the keyword blockchain and ten explanatory variables of all keywords except
blockchain as follows.

Y: blockchain
X1, X2, . . . , X10: access, authentication, bitcoin, cryptocurrency, databank, distributor, en-
cash, ledger, network, secretkey

Using the indexes of (11), (12), and (13), we compared the performance between
CDF-based QRM and LRM. Table 2 shows the results of model performance between the
compared models according to loglikelihood, AIC, and BIC. In this paper, we compared
our proposed QRM with LRM and the zero-inflated model in terms of explanatory and
predictive power. Loglikelihood is an index that measures the explanatory power of the
model, and AIC and BIC are indexes that compare the predictive power between models.

Table 2. Results of performance evaluation between comparative models.

Model
Loglikelihood AIC BIC

QRM LRM ZIP QRM LRM ZIP QRM LRM ZIP

access 1370.29 549.57 −3621.28 −2734.59 −1093.14 7250.55 −2719.36 −1077.91 7270.85
authentication 1370.81 548.26 −3627.43 −2735.61 −1090.51 7262.86 −2720.39 −1075.29 7270.85

bitcoin 1397.82 553.43 −3610.05 −2789.63 −1100.85 7228.10 −2774.41 −1085.63 7248.40
cryptocurrency 1402.22 557.10 −3598.48 −2812.43 −1108.21 7204.97 −2797.20 −1092.98 7225.27

databank 1383.69 561.47 −3599.97 −2761.38 −1116.94 7207.93 −2746.16 −1101.71 7228.23
distributor 1370.23 548.67 −3625.33 −2734.45 −1091.35 7258.66 −2719.23 −1075.13 7278.96

encash 1370.55 549.89 −3623.16 −2735.11 −1093.77 7254.32 −2719.88 −1078.55 7274.62
ledger 1390.69 573.09 −3528.22 −2775.38 −1140.18 7064.44 −2760.16 −1124.95 7084.74

network 1374.97 555.71 −3612.41 −2743.93 −1105.43 7232.82 −2728.70 −1090.20 7253.12
secretkey 1382.74 551.14 −3622.10 −2759.47 −1096.27 7252.20 −2744.25 −1081.05 7272.50

All keywords 1486.48 610.57 −3429.08 −2948.96 −7797.14 6902.16 −2888.06 −1136.24 7013.81
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In Table 2, to compare the performance of CDF-based QRM and LRM, we built simple
models consisting of one keyword each and a full model using all keywords. First, the
loglikelihood result shows that the loglikelihoods of CDF-based QRM for all keywords are
larger than those of LRM. This shows that the results of patent keyword analysis using
CDF-based QRM are better than those of the LRM. Next, in the comparison results based
on AIC, the AIC values of CDF-based QRM are smaller than those of LRM for both the
model using all keywords as well as the model using each keyword. We illustrate that
CDF-based QRM is superior to LRM from the AIC perspective. Lastly, we compared the
BIC values between CDF-based QRM and LRM. In Table 2, we can see that the BIC values
of CDF-based QRM are larger than those of LRM. This means that the model performance
of CDF-based QRM is better than LRM. Therefore, we show the validity of our proposed
approach to patent keyword analysis from the comparison results by loglikelihood, AIC,
and BIC.

The last column of each index that evaluates the performance of the model presents
the results of the analysis using the statistical zero-inflated model. In this paper, we used
the zero-inflated Poisson (ZIP) model as a statistical zero-inflated model [10,11]. This model
uses the Poisson distribution as the probability function of the statistical zero-inflated
model. The following shows the ZIP model [10,11].

P(X = x) =

⎧⎪⎨⎪⎩
π+ (1− π)e−λ, x = 0

(1− π)
e−λλx

X!
, x > 0

(15)

Equation (15) uses the probability function of the Poisson distribution as f (x) in
Equation (3). In Equation (15), the λ is the parameter of Poisson distribution. In all indexes
of loglikelihood, AIC, and BIC, we confirmed that model performance of ZIP is inferior
to that of QRM or LRM. This is because the proportion of zeros included in the patent–
keyword matrix data exceeds half, as we confirmed in Table 1. Therefore, we could confirm
that our QRM is superior to the LRM or ZIP models. Finally, we represent the estimated
parameter and p-value of each keyword in Table 3.

Table 3. Estimated parameter and p-value of each keyword.

Keyword Estimated Parameter p-Value

access 0.4714 0.3091
authentication −0.2966 0.3479

bitcoin −3.0515 <0.0001
cryptocurrency −3.7862 <0.0001

databank 0.4457 <0.0001
distributor −0.5016 0.1500

encash 0.9106 0.3098
ledger 0.6810 <0.0001

network 0.7086 0.0007
secretkey −2.6537 <0.0001

Depending on the keyword, we found that some keywords have a positive impact
on blockchain while others have a negative impact. Additionally, through the result of
p-value, we confirmed that the keywords bitcoin, cryptocurrency, databank, ledger, net-
work, and secretkey have a statistically significant impact on blockchain technology because
the p-values of these keywords are less than 0.05 at the 95% confidence level. We can apply
the results in Table 3 to various technology management areas such as R&D planning. From
the result of Table 3, we constructed a technology diagram of blockchain in Figure 3.
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Figure 3. Blockchain technology diagram.

Among the 10 keywords related to blockchain, we can see that the keywords of bitcoin,
cryptocurrency, databank, ledger, network, and secretkey have a statistically significant
effect on blockchain. Therefore, we can see that technologies based on these keywords
are primarily necessary for the development of blockchain technology. We expect that
these results will contribute to R&D planning for blockchain technology development in
countries and companies.

5. Discussion

From the result of Table 1, we found that the patent keyword data related to blockchain
technology exhibit the zero-inflated problem. So, we used the proposed method to solve
the problem. From the results in Table 2, we confirmed that the performance of QRM
is better than those of the LRM and ZIP. Therefore, we estimated the model parameters
and their p-values using the QRM in Table 3. Lastly, using the results in Table 3, we
constructed a technology diagram of blockchain in Figure 3. From the results in Figure 3,
we found that the sub-technologies based on the keywords of bitcoin, cryptocurrency,
databank, ledger, network, and secretkey have a significant influence on the development
of blockchain technology. In this paper, we applied the proposed method to analyze patent
keyword data related to blockchain technology. From our experimental results, we showed
how our method could be applied to real technology domains. Although the practical
technology domain we used is blockchain, we believe that our proposed method can be
extended to other technology fields. Once the target technology is determined, patent
keyword analysis can be performed according to each step of the method proposed in
this paper. Through this, we can conduct patent analysis necessary for R&D planning,
new product development, technology forecasting, and technology innovation required in
technology management.

In addition, we derived the QRM based on CDF to analyze the patent keywords. The
patent–keyword matrix, which is usually used for patent keyword analysis, contains a
large number of zeros, making it difficult for us to use existing linear models. If there are
too many zero values, the zero values dominate the model building, which reduces the
model performance. To solve this problem of zero inflation, we studied and proposed the
CDF-based QRM in this paper.

In our study, we tried to identify the relationship structure between technologies
through the PKA. Figure 3 was the final result obtained from our study. The technol-
ogy diagram of Figure 3 provides a list of keywords that are statistically significant for
blockchain technology. Therefore, in order to effectively develop blockchain technology,
we must pay attention to detailed technologies based on these keywords. However, the
results in Figure 3 do not provide any predictive information about the future technology
of blockchain. In order to continuously develop blockchain technology, we need to predict
the technology of blockchain. In addition, predicting the next technology related to the
target technology will also be very meaningful in understanding the technology. To this
end, it would also be meaningful to study how to use machine learning methods to predict
the next behavior of animals [35]. Just as past patterns of animal behavior can be analyzed
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to predict future behavior, past patterns of technological development can be modeled to
predict future technologies.

6. Conclusions

This paper presents a statistical model in order to solve the zero-inflated problem. We
collected patent documents related to blockchain technology and analyzed them using a
statistical data analysis method. Blockchain technology is a data management technology
with distributed secure applications in various domains such as the financial field of Bitcoin.
This technology is based on decentralization, immutability, transparency, and security. In
this process, we constructed a patent–keyword matrix using preprocessed data for statistical
analysis. Each element of this matrix is a frequency value of a keyword’s occurrence in a
patent document. Because most of the elements in this matrix are zero, we had difficulty
analyzing this matrix using statistical analysis methods including the zero-inflated model.
Therefore, we proposed a method of PKA to overcome the zero-inflated problem in the
preprocessed patent data. Compared to existing single models such as LRM, we considered
an analysis model consisting of two sub models representing location and dispersion. In
addition, we changed the value of the response variable to a (0,1) interval. This is the
concept of the CDF-based QRM.

In our experiment, we compared the model performance of the CDF-based QRM
with LRM and ZIP to show the improved performance of our model. We searched the
patents related to blockchain technology. The analytical results provided by the CDF-based
QRM, LRM, and ZIP were evaluated using loglikelihood, AIC, and BIC. We found that all
experimental results of the CDF-based QRM were better than those of the LRM and ZIP.
Therefore, we showed the validity of the CDF-based QRM for our PKA. In the CDF-based
QRM, we normalized the scale of the response variable y to solve the zero-inflated problem
and confirmed the improved performance of the proposed method.

In this paper, the proposed model was used to finally select technology keywords
that have a statistically significant impact on blockchain technology. We had difficulty
identifying technological relationships between patent keywords using our proposed model.
However, understanding the interrelationship structure between the sub-technologies
required for blockchain technology development is an important task in understanding this
technology. This part represents the limitations of our study. To overcome the limitation of
our proposed model, we considered social network analysis (SNA) and Bayesian learning.
In our future works, we apply SNA to our CDF-based QRM to make a technology diagram
representing the technological relations between the patent technology keywords. In
addition, we will apply Bayesian learning to the CDF-based QRM. We call this Bayesian
learning for QRM. In this model, we assume the prior distributions for the parameters of the
QRM model. This learning model updates the model parameters using the given data. That
is, we will be able to improve the QRM performance of explanatory and predictive power
using the Bayesian learning process whenever new data are added. The prior distribution of
the parameters is updated by combining it with the likelihood function of newly observed
data to form the posterior distribution of the parameters. That is, the parameters become
random variables with probability distribution functions rather than fixed values and can
be effectively used in the analysis of a zero-inflated patent–keyword matrix. Our research
is expected to contribute to various fields by improving understanding of technology and
finding relationships between detailed technologies through our PKA.
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Abstract: Benefiting from advancements in generic object detectors, significant progress has been
achieved in the field of face detection. Among these algorithms, the You Only Look Once (YOLO)
series plays an important role due to its low training computation cost. However, we have observed
that face detectors based on lightweight YOLO models struggle with accurately detecting small
faces. This is because they preserve more semantic information for large faces while compromising
the detailed information for small faces. To address this issue, this study makes two contributions
to enhance detection performance, particularly for small faces: (1) modifying the neck part of the
architecture by integrating a Gather-and-Distribute mechanism instead of the traditional Feature
Pyramid Network to tackle the information fusion challenges inherent in YOLO-based models; and
(2) incorporating an additional detection head specifically designed for detecting small faces. To
evaluate the performance of the proposed face detector, we introduce a new dataset named XD-Face
for the face detection task. In the experimental section, the proposed model is trained using the
Wider Face dataset and evaluated on both Wider Face and XD-face datasets. Experimental results
demonstrate that the proposed face detector outperforms other excellent face detectors across all
datasets involving small faces and achieved improvements of 1.1%, 1.09%, and 1.35% in the AP50
metric on the WiderFace validation dataset compared to the baseline YOLOv5s-based face detector.

Keywords: object detection; small face detection; YOLOv5; face dataset; classroom scenes; network
structure design

1. Introduction

Face detection aims to identify and locate faces within images or video streams, serv-
ing as a fundamental step in various face-related applications such as face verification,
recognition, and expression analysis. With the advent of Convolutional Neural Network
(CNN)-based object detectors, face detection has witnessed significant advancements
in recent years. Evolving from two-stage approaches like Faster RCNN [1] and Mask
RCNN [2] to one-stage methods such as SSD [3], RetinaNet [4] and YOLO [5], the object de-
tection framework has facilitated the development of various face detectors based on these
methods. Notable examples include RetinaFace [6], YOLOv5Face [7], RefineFace [8], and
TinaFace [9]. Among these, YOLO series detectors stand out due to their low computational
cost and high accuracy, making them widely adopted in industry applications.

However, despite the effectiveness of those deep learning-based models, existing face
detectors exhibit a significant drawback: while they excel in recognizing large faces, their
accuracy diminishes when it comes to detecting tiny faces. This disparity arises because
large-scale targets necessitate a larger receptive field, causing the features of small targets
to gradually fade on the deep feature map after multiple downsampling steps.

To address this issue, FaceBoxes [10] designed multi-scale anchors to enrich the recep-
tive field and discretized anchors across different layers to handle faces of various sizes.
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YOLOFaceV2 introduced a novel Receptive Field Enhancement module (RFE), providing
a richer receptive field to capture both large and small-scale faces simultaneously. Refer-
ence [11] explored using attention mechanisms for facial feature extraction, preventing the
misidentification of small-scale face features due to occlusion. However, these methods
failed to fully utilize information between channels. They utilize a Feature Pyramid Net-
work (FPN) in the neck architecture, which integrates information layer by layer, implying
that features from different layers cannot be fused directly without passing through inter-
mediate layers. Inspired by Gold-YOLO [12], we integrate a novel Gather-and-Distribute
(GD) mechanism in the neck architecture, replacing FPN. This modification allows for
the seamless transmission of information across layers, thereby enhancing feature fusion
capabilities.

Other research methods improved small-face detection by deploying a large number
of small anchors across the image. While these methods effectively increased the recall
rate, they also exacerbated the issue of extreme class imbalance, leading to numerous false
positives in detection results [13]. To address this problem, Lin et al. introduced Focal Loss,
which dynamically adjusts the weight of hard samples [4]. Similarly, the Gradient Harmo-
nizing Mechanism (GHM) [14] suppresses the gradients of easy samples to prioritize hard
ones, while PISA [15] assigns weights to positive and negative samples based on different
criteria. YOLOFaceV2 [16] proposed a Slide Weight Function (SWF) to adjust the weights
of imbalanced samples, enabling adaptive learning of the threshold parameters for positive
and negative samples. Building on previous work, we incorporate four detection heads
instead of three, for detecting tiny, small, medium, and large faces. While the additional
tiny head increases small anchors for detecting small objects, Normalized Wasserstein
Distance (NWD) loss and Intersection over Union (IOU) loss are combined in this work to
balance the detection of both large and small samples.

To evaluate the performance of our proposed method, we create a dataset specifically
focusing on scenes with small faces, named the XD-face dataset. We choose 2802 images
and label 102,250 faces with small size and occlusion in classroom scenes. We compare the
recognition results of our proposed model on both the WiderFace and XD-face datasets
with those of other state-of-the-art approaches. With our self-trained model, our method
achieves mAP scores of 94.80%, 93.77%, and 84.37% on the easy, medium, and hard subsets
of the Wider Face dataset, respectively, and 59.7% on the XD-face dataset.

The key contributions of this work are summarized as follows:
(1) Improvement of the neck structure of YOLO series models and utilization of the

GD mechanism instead of the FPN to enhance information fusion capabilities;
(2) Addition of an extra detection head to improve the detection of tiny faces;
(3) Constructing a novel dataset for face detection, focusing specifically on classroom

scenes with small faces.

2. Related Work

2.1. Two-Stage Face Detection Methods

In recent years, face detection methods based on convolutional neural networks can
generally be divided into two-stage methods and single-stage methods. The core idea of
two-stage face detection methods is to generate a limited number of candidate regions
(Proposals) in the first stage, and then refine the candidate set in the second stage to generate
the final results.

Faster R-CNN [1] is a typical two-stage object detection method. In the first stage,
it utilizes a Region Proposal Network (RPN) to generate a series of candidate regions,
followed by classification and regression predictions using candidate boxes in the sec-
ond stage. Jiang et al. [17] first applied the Faster R-CNN model to face detection and
achieved good detection results on two widely used face detection datasets. Sun et al. [18]
improved upon Faster R-CNN by employing feature concatenation, hard sample mining,
multi-scale training, model pre-training, and fine-tuning of key parameters to enhance face
detection performance. Zhu et al. [19] subsequently proposed CMS-RCNN, which detects
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unconstrained faces by utilizing contextual information. Khan et al. [20] used multi-task
cascaded convolutional neural networks and modified the layer density with increasing
neuron count. It enriches feature information while increasing the amount of calculation.
Nonetheless, early methods of face detection based on deep learning exhibited signifi-
cant drawbacks, including intricate training processes, a susceptibility to local optima,
protracted detection times, and suboptimal accuracy.

2.2. One-Stage Face Detection Methods

Due to the substantial computational time required by two-stage face detection meth-
ods, single-stage face detection methods were subsequently proposed. Single-stage face de-
tection methods based on SSD [3] and YOLO [5] do not require generating candidate regions.

Compared to two-stage methods, single-stage methods offer faster detection speed
and represent a type of end-to-end face detection method. The network structure of single-
stage face detection methods can generally be divided into three parts: backbone network,
neck network, and head network.

Backbone: The backbone network usually employs models such as VGG [21], ResNet [22],
DenseNet [23,24], SENet [25], MobileNet [26], ShuffleNet [27], etc. BFBox [28] searches for
backbone networks suitable for face space. SCRFD [29] introduces a computation redis-
tribution method to redistribute computational resources between the backbone network,
neck network, and head network of the model.

Neck: After the introduction of the FPN structure [30], it often serves as the basic neck
network for face detection. FANet [31] creates a new hierarchical efficient FPN with rich
semantics at all scales. BFBox [28] proposes an FPN attention module to jointly search the
architecture of the backbone network and FPN.

To further enhance face features, some face detection methods choose to use different
convolution kernels in each branch to enlarge the receptive field. SSH [32] adds larger
convolution kernels to each detection module to incorporate contextual information. Wang
et al. [33] conducted research on low-light face detection in unannotated scenarios by
combining context learning with contrastive learning. DSFD [34] introduces a feature
enhancement module to strengthen the original features, making them more recognizable
and robust. RefineFace [8] constructs an RFE module to provide diversified perspectives
for detecting faces with extreme poses. SmallHardFace [35] expands the receptive field
using dilated convolution. YOLO5Face [7] introduces face keypoint loss into the network
and improves the SPP module in YOLOv5 by using smaller convolution kernels instead of
larger ones to make it more suitable for face detection.

Although these methods enhance the receptive field and enrich semantic information,
providing a simple and effective means to improve multi-scale object detection performance,
they may result in the loss of spatial information. Therefore, this paper proposes the use
of a GD mechanism instead of FPN in the neck architecture to combine deep semantic
information with shallow features.

Head: The head part of the network structure connects the loss function for optimizing
model parameters through backpropagation. RetinaFace [6] introduced facial keypoint
information into the face detection system, thereby augmenting the facial keypoint regres-
sion loss function. Fang et al. [36] introduced the hierarchical loss Triple Loss to optimize
the face detector based on the feature pyramid network. Inspired by IoU-awareness [37],
TinaFace [9] incorporated a regression branch into the head network and utilized cross-
entropy loss to predict the IoU value between annotated bounding boxes and detection
results. Although the introduction of different loss functions alleviates the issue of sam-
ple imbalance, it also introduces additional hyperparameters, making the model training
more complex.

Considering some of the current advanced face detection algorithms are designed to
be overly complex and have high computational costs, this paper proposes improvements
based on the commonly used object detection model YOLOv5. To solve the information
fusion problem of the traditional FPN structure, this paper integrates a GD mechanism.
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For improving the detection accuracy of small faces, a tiny-face detection head is added in
this paper.

3. Proposed Method

3.1. Overview of ADYOLOv5-Face

With the maturity of facial detection neural network technology, most one-stage facial
detection neural models possess a three-stage structure consisting of backbone, neck, and
detection networks. The backbone network is responsible for extracting high-dimensional
feature information: locational information on high-resolution feature maps and semantic
information on low-resolution feature maps. Then, the neck network fuses different
features extracted by the backbone network. Finally, the head network usually contains
three detection heads for detecting small, medium and large objects.

This paper aims to focus on the information fusion capability of the neck network and
introduce the GD mechanism to resolve the issue of information loss caused by cross-layer
feature integration in current models. In the head part, one more head for tiny object
detection is added. As for the backbone part, the CSPDarknet53 was kept unchanged,
identical to its structure in YOLOv5. The architecture of our ADYOLOv5-Face detector is
depicted in Figure 1.

Figure 1. The architecture of the ADYOLOv5-Face: (a) CSPDarknet53 backbone as the original
YOLOv5 version. (b) The neck uses a structure like the Gather-and-Distribute mechanism. (c) Four
prediction heads use the feature maps from the neck. Head1 contains more detailed information that
is added to detect tiny faces.

3.2. Architecture of the Neck Part

The backbone part is responsible for extracting high-dimensional feature information,
while the neck part fuses different features extracted by the backbone network—namely,
the positional information from high-resolution feature maps and the semantic information
from low-resolution feature maps. As shown in Figure 2a, the proposed neck structure in
this project is as follows:

Step 1: Concatenate the four layers of features, P2, P3, P4, and P5, extracted by the
backbone network to obtain the low-level global feature Fglobal_low.

Step 2: Inject the low-level global feature Fglobal_low back into the local features P2, P3,
and P4, achieving an initial fusion of global and local features, resulting in features B2, B3,
and B4. B2 will be directly used as the final output, preserving the high-resolution positional
information of the low-level features without loss.

Step 3: The low-level fused features B2, B3, and B4 are further concatenated to obtain a
high-level global feature Fglobal_high with richer semantic information. To fully integrate the
global features, a transformer module is proposed, combining attention mechanisms and
convolution operations to better handle information from different positions in the image.
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Step 4: Finally, F2 is injected back into the B3, B4, and B5 features, resulting in high-
level fused features N3, N4, and N5, which carry rich semantic information and are fed
into the prediction network as output layer features.

Figure 2. The comparison of the proposed neck part with the traditional neck part.

Compared to the traditional mid-level network structure shown in Figure 2b, the
complex mid-level network proposed in this paper directly fuses global features with
features from each layer during feature fusion, avoiding information loss that may occur
during cross-layer transmission and thus enhancing small object detection performance.
At the same time, the design of the global feature fusion module also considers the integra-
tion of new technologies with traditional methods, improving the model’s feature fusion
capability without significantly increasing latency, thereby enhancing the object detection
performance. Lastly, since the focus of this project is on detecting small faces, the model
strengthens the use of low-level information (P2) by adding a low-level output feature (N2)
to preserve more detailed features.

3.3. Details of the Neck Part GD Mechanism

The GD mechanism consists of three parts: feature alignment module (FAM), informa-
tion fusion module (IFM) and information injection module (IIM).

To better represent the features of varying sizes, the GD mechanism can be divided
into low-stage and high-stage. The feature alignment module and information fusion
module are different in the two GD mechanism branches, while the information injection
module is the same.

• Low-stage Gather-and-Distribute mechanism

For the low-stage Gather-and-Distribute mechanism (Low-GD), the structure is shown
in Figure 3. The details are provided as follows:
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(1) Align the four features P2, P3, P4, and P5 extracted by the backbone network in a
unified size using the average pooling operation (AvgPool) and Bilinear operation.

Falign = Low_FAM([P2, P3, P4, P5]) (1)

(2) Concatenate the four features, and employ RepBlock to obtain the low-level
global feature.

Ff use = RepBlock(Falign) (2)

(3) Split the low-level global feature into Finj_B2, Finj_B3 and Finj_B4 with different
channel dimensions.

Fglobal_low = Finj_B2, Finj_B3, Finj_B4 = Split(Ff use) (3)

(4) Next is the information injection module. As shown in Figure 1, the three split
features (Finj_Bi) are injected into the local features P2, P3, and P4 to achieve the initial
fusion of global and local features, resulting in features B2, B3, and B4. B2 will be directly
output as the final feature, preserving the locational information of the low-level high-
resolution features without loss. The details of the information injection module are shown
in Figure 4, and the formula is as follows:

Figure 3. The structure of the Low-GD in the neck part. The notations in blue are aligned with the
corresponding features in Equations (1)–(3).

Figure 4. The structure of inject step in the neck part, which is named the information injection
module (IIM). The notations in blue are aligned with the corresponding features in Equations (4)–(7),
while the notations in yellow are aligned with the corresponding features in Equations (11)–(14).

Fglobal_act_Bi = resize(sigmoid(Conv(Finj_Bi))) (4)

Fglobal_embed_Bi = resize(Conv(Finj_Bi)) (5)
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Fatt_ f use_Bi = Conv(Pi) ∗ Fglobal_act_Bi + Fglobal_embed_Bi (6)

Bi = RepBlock(Fatt_ f use_Bi) (7)

• High-stage gather-and-distribute mechanism

For the high-stage Gather-and-Gistribute mechanism (High-GD), the structure is
shown in Figure 5. The low-order fused features B3, B4, and B5 will be further concatenated
to obtain the high-order global feature with richer semantic information. In order to fully
integrate global features, a transformer module instead of the RepConv-Block is proposed
to better handle information from different positions in the image by combining attention
mechanisms with convolution operations.

Figure 5. The structure of the High-GD in the neck part. The notations in blue are aligned with the
corresponding features in Equations (8)–(10).

The details are provided as follows:
(1) Align the three features B3, B4, and B5 extracted by the backbone network in a

unified size by AvgPool.

Falign = High_FAM([B3, B4, B5]) (8)

(2) Concatenate the three features and employ the transformer fusion module to obtain
the high-level global feature.

Ff use = Trans f ormer(Falign) (9)

(3) Split the high-level global feature into Finj_N3, Finj_N4 and Finj_N5 with different
channel dimensions.

Fglobal_high = Finj_N3, Finj_N4, Finj_N5 = Split(Conv1× 1(Ff use)) (10)

(4) The information injection module here is the same as in the Low-GD branch, as
shown in Figure 4. The three split features (Finj_Ni) are injected into the features B3, B4, and
B5 to obtain high-order fused information N3, N4, and N5 with rich semantic information,
which are then fed into the detection network as output layer features. The formula is
as follows:

Fglobal_act_Ni = resize(sigmoid(Conv(Finj_Ni))) (11)

Fglobal_embed_Ni = resize(Conv(Finj_Ni)) (12)
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Fatt_ f use_Ni = Conv(Bi) ∗ Fglobal_act_Ni + Fglobal_embed_Ni (13)

Ni = RepBlock(Fatt_ f use_Ni) (14)

3.4. Prediction Head for Tiny Faces

After investigating the WiderFace dataset, we find that it contains many extremely
small faces. Therefore, one more head is added to the proposed ADYOLOv5-Face for
detecting tiny faces. As shown in Figure 1, head1 is generated from feature map B2, which
contains more details of the tiny faces compared to the other three prediction heads. The
performance of tiny face detection has large improvements after adding the tiny prediction
head, even though the computation cost has also increased.

3.5. Loss

Since metrics based on IoU, such as IoU itself and its extensions, are highly sensitive to
positional deviations of small objects, ref. [38] proposed a new evaluation method for small
object detection based on the Wasserstein distance. Equation (15) calculates the Wasserstein
distance between the predicted object and the ground truth object.

W2
2 (Na,Nb) =

∥∥∥∥∥
([

cxa, cya,
wa

2
,

ha

2

]T
,
[

cxb, cyb,
wb
2
· hb

2

]T
)∥∥∥∥∥

2

2

(15)

where c is a constant specific to the dataset, Na and Nb are Gaussian distributions charac-
terized by bounding boxes A = (cxa, cya, wa, ha) and B = (cxb, cyb, wb, hb), respectively.

However, W2
2 (Na,Nb) is a distance metric and cannot be directly used as a similarity

measure (i.e., a value between 0 and 1 like IoU). Therefore, we normalize its exponential
form and obtain a new metric called the Normalized Wasserstein Distance (NWD), as
shown in Equation (16).

NWD(Na,Nb) = exp

⎛⎝−
√

W2
2 (Na,Nb)

C

⎞⎠ (16)

The loss function based on the NWD metric is expressed as follows:

L(NWD) = 1− NWD(Na,Nb) (17)

Therefore, this paper uses the NWD loss to compensate for the shortcomings of IoU
loss in small object detection while retaining the IoU loss for detecting large objects.

4. Experiment Setup

4.1. Datasets

Proposed Dataset (XD-face): The XD-face dataset comprises face detection data ex-
tracted from nine classroom videos captured within our school environment, encompassing
a wide array of face images varying in size, pose, and occlusion levels. As illustrated
in Table 1, the dataset consists of 2802 images and a total of 102,250 labeled faces, each
annotated with high accuracy (with data organized as 5 values per row: category, x_center,
y_center, width, height), reflecting variations in illumination and face density. Due to the
fixed camera positioning within the classroom setting, even in scenes with few individuals,
the faces captured tend to be very small. The dataset meets the requirements in this paper
for detecting small faces and is thus utilized to evaluate the proposed model, benchmarked
against other YOLO-based methods. Figure 6 illustrates the visualization of the conditions
and detection results in XD-face. Even though the faces in this dataset are very small and
are occluded in most locations, they are detected by our detector.
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The XD-face dataset, as a classroom scene dataset, holds potential for applications in
face counting, face recognition, and domain adaptation.

Table 1. The contents of the proposed XD-face dataset encompass a rich array of facial images in
different scenes.

Name Images Faces Dense/Bright Dense/Dark Sparse/Bright Sparse/Dark

A-208 142 6208 142 0 0 0
A-211 150 2001 100 50 0 0
B-301 320 25,108 160 160 0 0
B-403 300 11,775 150 150 0 0
B-418 315 17,351 165 150 0 0
B-507 335 21,478 185 150 0 0
B-509 300 2216 0 0 0 300
C-107 400 5373 0 0 400 0
C-225 540 10,740 300 0 240 0

Total 2802 102,250 1202 660 640 300

Figure 6. Visual comparisons of detecting conditions and results in our dataset: XD-face. XD-face
contains 2802 images and labels 102,250 faces with small size and occlusion in several different
classroom scenes.

Firstly, in terms of face counting, the diverse classroom scenes in the dataset can
assist researchers in developing more accurate algorithms for identifying and counting the
number of students in a class, which is crucial for educational management and classroom
optimization.

In face recognition, the XD-face dataset can enhance the efficiency of classroom at-
tendance and identity verification systems, such as automatically recognizing students

146



Electronics 2024, 13, 4184

and recording attendance. Additionally, teachers can use this technology to track student
engagement and performance, providing data to support personalized teaching.

Regarding domain adaptation, the features of this dataset allow algorithms to adjust
across different classroom environments, improving recognition under varying lighting
conditions and angles. This is vital for ensuring system stability and reliability in remote or
hybrid learning environments.

Overall, the XD-face dataset provides a rich foundation for the application of facial
recognition technologies in education, contributing to improved teaching efficiency and
student management.

Wider Face: As a widely recognized benchmark dataset utilized across different
face detection methods, Wider Face comprises 61 scene classes, totaling 32,203 images
and 393,703 labeled faces. Distinguished from the proposed XD-face dataset, Wider Face
encompasses a diverse range of facial sizes, including small, medium, and large faces. The
dataset categorizes faces into three levels based on their sizes: Easy, Medium, and Hard,
with the Hard level representing the most challenging subset, ideal for evaluating the
accuracy of proposed models. In this study, the training set, comprising 40% of the dataset,
is utilized for training the proposed model, while the validation set, comprising 10% of the
dataset, is employed for evaluation purposes. The evaluation metric employed for Wider
Face is the mean average precision at an IOU threshold of 0.5 (mAP@.5).

4.2. Experimental Evaluation Metrics

This paper selects Average Precision (AP) [39] as the evaluation metric. The area under
the PR curve represents the AP.

PR Curve: It reflects the relationship between precision and recall. The horizontal axis
represents recall, and the vertical axis represents precision.

Confusion Matrix: A confusion matrix is a crucial tool for evaluating the performance
of classification models, especially for binary and multi-class classification tasks. For binary
classification problems, the confusion matrix typically takes a 2 × 2 form. The confusion
matrix is defined as shown in Table 2:

Table 2. Confusion matrix for face detection model.

Confusion Matrix
Actual

Face Non-Face

Predicted Face TP FP
Non-Face FN TN

• True Positive (TP): the number of instances correctly predicted as positive (face).
• False Negative (FN): the number of instances incorrectly predicted as negative (non-

face) when they are actually positive (face).
• False Positive (FP): the number of instances incorrectly predicted as positive (face)

when they are actually negative (non-face).
• True Negative (TN): the number of instances correctly predicted as negative

(non-face).

Precision measures the proportion of true positive instances among the instances pre-
dicted as positive by the model, indicating the accuracy of the model’s positive predictions.
The formula for precision is given in Equation (18):

Precision =
TP

TP + FP
(18)
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Recall measures the proportion of true positive instances among all actual positive
instances, indicating the model’s coverage ability. The formula for recall is given in
Equation (19):

Recall =
TP

TP + FN
(19)

In face detection, a key metric for evaluating detection results is IoU, which measures
the overlap between the predicted bounding box and the ground truth bounding box. It
is an important standard for assessing model accuracy. The IoU is calculated using the
formula shown in Equation (20):

IoU =
A ∩ B
A ∪ B

(20)

Here, B is the predicted bounding box and G is the ground truth bounding box. If the
IoU of the predicted box and the ground truth box is greater than a preset threshold (usually
0.5), the predicted box is considered a TP; otherwise, it is considered an FP. Precision and
recall are then calculated using Equations (18) and (19).

AP is a summary measure of the PR curve, assessing the model’s overall performance
across different thresholds. AP is the numerical integration of the area under the PR curve,
obtained by calculating the average precision across all recall levels. The higher the AP, the
better the model performs across different recall levels.

AP50: IOU for the NMS is set to 0.5.
AP@50:5:95: The IOU values range from 0.5 to 0.95, with a step size of 0.5.
Since AP50 is a commonly used metric in object detection, we primarily assess the

performance of our detector and other state-of-the-art face detectors using AP50. For the
experiments on XD-face, however, we evaluate the performance of these detectors across
four metrics—precision, recall, AP50, and AP50:5:95—in order to highlight the detection
difficulty on the proposed dataset.

4.3. Ablation Experiment

We utilize the YOLOv5s model as our baseline and integrate the occlusion-aware
repulsion loss, drawing inspiration from the work of [16]. The training process runs
250 epochs on the Wider Face training set with a batch size of 32. For optimization, we em-
ploy SGD with momentum. The initial learning rate is set to 1 × 10−2, gradually decaying
to 1 × 10−5, with a weight decay of 5 × 10−3. Following this configuration, the proposed
ADYOLOv5-Face model implements modifications to the neck and head structures.

The detection accuracy (using AP50 as the metric) of the baseline model and the
proposed model in the validation set of Wider Face is shown in Table 3. For the baseline
model, the detection accuracy in easy, medium, are hard levels is 93.70%, 92.68% and 83.02%,
respectively. When the GD mechanism is applied into the neck structure, the detection
accuracy of easy and medium levels is increased by 1.46% and 0.74%, respectively, while
the detection performance in the hard level is damaged by 1.66%. To improve the detection
accuracy of small faces, a tiny face detection layer is added to enhance the representation
ability of detail features. Therefore, the advanced model achieves 94.80%, 93.77% and
84.37% detection accuracy in easy, medium, are hard levels, respectively. Compared to
the baseline model, the ADYOLOv5-Face model has 1.1%, 1.09% and 1.35% increments in
easy, medium, and hard levels, respectively. In this way, the proposed model improves
the detection ability for small target faces without sacrificing the recognition accuracy of
large faces.
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Table 3. Ablation study results of the AP50 metric on the Wider Face validation set.

Modification Easy (%) Medium (%) Hard (%) Params (M) Flops (G)

baseline 93.70 92.68 83.02 7.063 16.4

+ neck 95.16 93.42 81.36 10.008 21.2

+neck +head 94.80 93.77 84.37 10.123 22.8

4.4. Contrast Experiment
4.4.1. Experiments on Wider Face

In this section, we compare our model with various state-of-the-art face detectors, as
presented in Table 4, which includes detectors based on ResNet, YOLOv5, YOLOv7 [40],
and YOLOv8 networks. The data presented in the table are obtained from the paper [7].

Table 4. Comparison of our ADYOLOv5-Face with the state-of-the-art face detectors on the Wider
Face validation dataset (using AP50 as the evaluation metric).

Detector Backbone Easy (%) Medium (%) Hard (%)

DSFD (2019) [34] ResNet152 94.29 91.47 71.39
RetinaFace (2020) [6] ResNet50 94.92 91.90 64.17
HAMBox (2020) [41] ResNet50 95.27 93.76 76.75
TinaFace (2020) [9] ResNet50 95.61 94.25 81.43

SCRFD-2.5GF (2021) [29] Basic ResNet 93.78 92.16 77.87

TinyYolov3 (2022) [42] YOLOv3-tiny 95.26 89.2 77.9

YOLOv7-tiny-Face (2022) [7] YOLOv7-tiny 94.7 92.6 82.1
YFaces-Tiny (2024) [43] YOLOv7-tiny 94.07 92.36 83.06

YOLOv8n-face (2023) [7] YOLOv8n 94.5 92.2 79

YOLOv5s-Face (2021) [7] YOLOv5s 94.33 92.61 83.15
ADYOLOv5-Face (ours) YOLOv5s 94.80 93.77 84.37

Upon evaluating the detection performances (using AP50 as the metric) for large-
scale faces, it is observed that TinaFace achieves the highest detection accuracy in the
easy (95.61%) and medium (94.25%) subsets on the Wider Face validation dataset, slightly
outperforming our proposed model (94.80% and 93.77%, respectively). However, when
evaluating the detection performance for small faces, our proposed model outperforms
other face detectors. Specifically, our proposed model achieves an 84.3% detection accuracy
in the hard-level subset, demonstrating a 20.2% improvement over RetinaFace and 1.22%
over the second-best model, YOLOv5s-Face.

In comparison with YOLOv5s-Face, YOLOv7-tiny-Face, and YOLOv8n-face, which
belong to the same YOLO algorithm and possess similar model size and computational
requirements, our proposed model attains the highest accuracy across all three subsets.
Notably, it demonstrates improvements of 1.22%, 2.27%, and 5.37%, respectively, in the
hard-level subset. Figure 7 provides a clearer illustration of the superiority of the proposed
method’s performance on the hard set.
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Figure 7. Detection results on the Wider Face validation dataset. Literature 1: DSFD (2019) [34], 2:
RetinaFace (2020) [6], 3: HAMBox (2020) [41], 4: TinaFace (2020) [9], 5: SCRFD-2.5GF (2021) [29], 6:
TinyYolov3 (2022) [42], 7:YOLOv7-tiny-Face (2022) [7], 8: YFaces-Tiny (2024) [43], 9: YOLOv8n-face
(2023) [7], 10: YOLOv5s-Face (2021) [7], 11: ADYOLOv5-Face (ours).

4.4.2. Experiments on XD-Face

To comprehensively assess the ADYOLOv5-Face model’s capability in detecting small
target faces, we conducted evaluation experiments on the proposed XD-face dataset. YOLO-
based face detection methods were chosen as comparison benchmarks, and YOLO series
evaluation metrics (precision, recall, AP50 and AP50:5:95) were utilized to verify detection
accuracy. The data presented in Table 5 were obtained by testing the trained models
available on the official websites of these face detectors. As depicted in Table 5, the
proposed ADYOLOv5-Face model exhibits superior performance in terms of precision and
AP, whereas the YOLOv5s-Face model performs better in the recall metric. Figure 8 also
provides a clearer illustration of the evaluation results on the AP metric.

Figure 8. Detection results of the AP50 metric (left) and the AP@50:5:95 metric (right) on the XD-face
dataset.

Given that the evaluation metric of AP50 (where IOU for the NMS is set to 0.5)
is commonly used in object detection, we primarily analyze the performance of these
face detectors based on AP50. Compared to the baseline method, the proposed model’s
performance increased by 1.5%, achieving a score of 59.7%. Furthermore, when compared
to the other two YOLOv5-based face detectors (YOLOv5s-Face and YOLOfacev2), our
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proposed model demonstrates improvements of 2.6% and 2.1%, respectively. Additionally,
our model outperforms the YOLOv7-tiny-based face detector by 4.8% in terms of the
AP@50 metric.

Table 5. Comparison of our ADYOLOv5-Face with the YOLO-based face detectors on the XD-Face
validation dataset under four metrics: precision, recall, AP50 and AP50:5:95.

Detector Precision (%) Recall (%) AP50 (%) AP@50:5:95 (%)

YOLOv7-tiny-Face 63.9 63.7 54.9 23.5

YOLOv5s-Face 46.8 74.6 57.1 25.5
YOLOFacev2 65.5 67.8 57.6 25.9

baseline 65.5 66.5 58.2 24.8
baseline+neck 65.7 66.7 57.1 25.0

ADYOLOv5-Face (ours) 66.5 70.2 59.7 26.8

In conclusion, when dealing with extremely small and occluded faces, our pro-
posed model achieves superior detection accuracy compared to other state-of-the-art
face detectors.

5. Conclusions

In this paper, we introduce ADYOLOv5-Face, which is based on the YOLOv5 object
detector, and present a novel dataset (XD-face) for face detection tasks. We propose two
variations of the YOLO structure, both of which demonstrate significant enhancements
to face detection performance. Through evaluation experiments conducted on the Wider
Face and XD-face datasets, we demonstrate that ADYOLOv5-Face can effectively compete
with other state-of-the-art face detectors while utilizing lightweight base models. Our
results indicate that ADYOLOv5-Face either closely matches or even surpasses existing
face detectors on both the Wider Face and XD-face benchmarks. These findings under-
score the effectiveness of the advanced YOLOv5 architecture in achieving state-of-the-art
performance, particularly in the detection of small faces.

The proposed method shows significant effectiveness in handling dense facial data
and has potential applications in face counting, face recognition, and domain adaptation. In
terms of face counting, it can more accurately identify and count the number of students in
a classroom, contributing to the development of intelligent education. For face recognition,
improving face detection accuracy serves as a fundamental step towards reliable facial
identification. In domain adaptation, the algorithm can self-adjust to different classroom
environments, enhancing recognition performance under varying lighting conditions and
angles. Overall, the proposed algorithm provides a solid foundation for the application of
facial recognition technologies in the education field, facilitating improvements in teaching
efficiency and student management.
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The following abbreviations are used in this manuscript:

YOLO You Only Look Once
CNN Convolutional Neural Network
RFE Receptive Field Enhancement module
FPN Feature Pyramid Network
GD mechanism Gather-and-Distribute mechanism
GHM Gradient Harmonizing Mechanism
SWF Slide Weight Function (SWF)
NWD Normalized Wasserstein Distance
IoU Intersection over Union
RPN Region Proposal Network
FAM feature alignment module
IFM information fusion module
IIM information injection module
Low-GD low-stage Gather-and-Distribute mechanism (Low-GD)
AvgPool average pooling operation
High-GD high-stage gather-and-distribute mechanism
AP Average Precision
PR Precision Recall
TP True Positive
FN False Negative
FP False Positive
TN True Negative
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Abstract: Heart rate (HR) is a key indicator of fitness and cardiovascular health, and accurate HR
monitoring and prediction are essential for enhancing personalized fitness experiences. The rise of
wearable technology has significantly improved the ability to track personal health, including HR
metrics. Accurate modeling of HR response during workouts is crucial for providing effective fitness
recommendations, which help users achieve their goals while maintaining safe workout intensities.
Although several HR monitoring and prediction models have been developed for personalized
fitness recommendations, many remain impractical for real-world applications, and the domain
of personalization in fitness applications still lacks sufficient research and innovation. This paper
presents a hybrid approach to modeling HR response to workout intensity for personalized fitness
recommendations. The proposed approach integrates a physiological model using Dynamic Bayesian
Networks (DBNs) to capture heart rate dynamics during workout sessions. DBNs, combined with
Long Short-Term Memory (LSTM) networks, model the evolution of HR over time based on workout
intensity and individual fitness characteristics. The DBN parameters are dynamically derived
from flexible neural networks that account for each user’s personalized health state, enabling the
prediction of a full HR profile for each workout, while incorporating factors such as workout history
and environmental factors. An adaptive feature selection module further enhances the model’s
performance by focusing on relevant data and ensuring responsiveness to new data. We validated the
proposed approach on the FitRec dataset, and experimental results show that our model can accurately
predict HR responses to workout intensity in future sessions, achieving an average mean absolute
error of 5.2 BPM per workout—significantly improving upon existing models. In addition to HR
prediction, the model provides real-time fitness personalized recommendations based on individual’s
observed workout intensity to an exercise. These findings demonstrate the model’s effectiveness in
delivering precise, user personalized heart response to exercise with potential applications in fitness
apps for personalized training and health monitoring.

Keywords: personalization; fitness recommendations; dynamic Bayesian networks; wearable data;
heart rate

1. Introduction

It is well understood that physical activity provides major health benefits for the heart,
body, and mind, playing a vital role in preventing and treating many chronic diseases, such
as heart disease and diabetes [1]. This is why the World Health Organization (WHO), and
other health organizations emphasize the importance of daily physical activity and have
issued public health guidelines to prevent and manage chronic illnesses associated with
physical inactivity [2].

The rapid growth and popularity of wearable technologies have significantly impacted
how individuals engage with their health practices. Wearable devices and mobile health
(mHealth) apps have empowered users to monitor and track their physiological data and
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daily exercise activities [3]. These technologies not only allow users to track their physical
fitness but also serve as motivational tools, helping individuals tailor their fitness plans
toward achieving results and fostering safer training environments. For instance, previous
research has shown that data from wearables are a data-rich resource, which can provide
valuable insights into an individual’s overall health—crucial for developing personalized
fitness recommendation systems [4–6].

Personalization plays an essential role in many modern applications, from enhancing
user engagement to improving overall satisfaction. However, modeling an individual’s
fitness in fitness tracking apps for personalization presents a significant challenge, as
user behavior and workout preferences can vary and evolve over time. Factors such
as differences in fitness levels, workout plans, exercise intensity, heart rate zones, and
environmental conditions highlight the need for robust modeling techniques that capture
dynamic changes in user features and account for substantial individual variation.

Ensuring accuracy and relevance in personalized fitness applications is challenging.
While personalization has been a core focus for fitness recommendations, and some studies
have shown notable improvements, a significant gap remains in most algorithms’ ability
to adapt to dynamic changes in user data over time, which limits their practicality in
real-world recommendation systems. Furthermore, transforming noisy wearable data into
transparent and actionable insights for personalization adds another layer of complexity to
this task [4].

Additionally, wearable data often lack critical implicit user behavior data, such as
clicks, likes, and views, which are essential for understanding behavior patterns making
recommendations. This gap presents another challenge in building effective personalized
fitness models. Despite these challenges, personalization remains vital for effective fitness
recommendations. Heart rate is a fundamental physiological feature that reflects an indi-
vidual’s response to workout intensity, serving as an indicator of both exercise intensity
and overall health in daily workout routines [7]. Accurately monitoring and predicting
heart rate response during exercise are crucial steps for developing effective, personalized
recommendations algorithms. Wearables offer an innovative approach to monitoring heart
rate and other significant metrics during various fitness activities, providing valuable data
to understand individual health [8]. However, interpreting and leveraging these data for
personalized fitness recommendations present several challenges:

1. Individual Variability: The response of heart rate to exercise varies greatly among
individuals based on age, current fitness levels, genetic factors, and other factors
including overall health conditions [9,10].

2. Temporal Dynamics: An individual’s heart rate response may vary depending on
their fitness level over time, so models must capture and adapt to these temporal
changes [11,12].

3. Environmental Factors: External conditions like temperature, humidity, and altitude
can affect the heart’s response to exercise, making accurate prediction and personal-
ization more challenging [4].

4. Data Quality: Despite advancements in wearable technology, data from these devices
can still be noisy or inconsistent, especially during high-intensity activities or when
the device fit is suboptimal.

5. Contextual Information: The heart rate metric alone may not provide a complete un-
derstanding of an exercise session. Integrating other contextual data, such as perceived
exertion, workout type, and recovery status, is crucial for building a comprehensive
fitness model [5].

To address these challenges and improve the accuracy of personalized fitness recom-
mendations, we proposed a scalable algorithm, physiological Hybrid DBN model, which
combines a physiological model with flexible machine learning techniques to learn an
individual’s personalized, multidimensional representation of fitness. The model describes
heart rate dynamics during exercise using Dynamic Bayesian Networks (DBNs). We de-
rived DBN parameters using neural networks that connect a personalized representation
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based on the user’s workout history and immediate workout intensity, augmented with
additional features through the use of LSTM networks. Our approach integrates wearable
data measurements such as speed, elevation gain, distance covered, speed variability, and
time elapsed to enhance fitness recommendation algorithms in health applications. This
enables the delivery of personalized recommendations tailored to individual physiological
responses to varying workout intensities.

Related literature explores the development of physiological models combined with
machine learning techniques and other inference methods [4,13,14] for heart rate predic-
tion. Our algorithm monitors heart rate evolution and estimates user-specific parameters
over time, learning to map an individual’s recent workout history to a personalized repre-
sentation that predict heart rate response over time. We employed DBNs to address the
limitations of existing algorithms in making long-term predictions, as DBNs are well suited
for capturing the temporal relationships in how heart rate evolves over time in response to
exercise intensity. Additionally, DBNs handle the inherited uncertainty in prediction by
considering the probabilistic nature of HR changes alongside additional factors, such as
environmental conditions and other external influences.

The Hybrid DBN model is further enhanced to predict personalized heart rates by
adjusting user-specific parameters over time, allowing the model to reflect individual’s
unique physiological responses. We incorporated an adaptive feature selection module that
tunes feature weights based on their relevance, considering that in real-world scenarios,
user behavior and experiences vary and change. This ensures that the model remains
responsive and adaptive in user behavior and exercise patterns.

The remainder of the paper is structured as follows: Section 2 provides a literature
review of existing work related to physiological modeling, heart rate prediction, and
fitness personalization. Section 3 presents materials and methods. Section 4 details our
methodology, including the design of our model architecture. Section 5 presents the results
of our experiments. Section 6 discusses the implications of our model for personalized
fitness recommendations. Finally, Section 7 concludes the paper.

2. Related Work

This section reviews the existing literature on wearable data technologies, heart rate
prediction models, the integration of physiological models with machine learning, the use
of Dynamic Bayesian Networks (DBNs), and the development of recommender systems for
personalized fitness recommendations:

Wearable Data Technologies: Wearable devices, such as fitness trackers and smart-
watches, have empowered individuals to continuously monitor their health metrics, provid-
ing a rich data source that can be leveraged in machine learning models to uncover causal
relationships between human health and device signals [15,16]. Ferguson [15] highlights
how data mining from wearables can play a crucial role in personalized health interven-
tions. Numerous studies have shown the value of wearable data in predicting health
outcomes, ranging from clinical monitoring tools to fitness and activity planners [17–19].
These applications include machine learning models for cardiovascular fitness and dis-
ease surveillance [20–22]. Nazaret [4] discusses the utilization of wearable technology in
monitoring heart rate (HR) and other physiological signals to model personalized heart
rate responses to exercise and environmental factors. The study uses data from wearable
devices, specifically Apple Watches, to capture detailed workout information such as step
count, speed, elevation change, and environmental factors like temperature and humidity.
These data are collected in real-time during various activities, allowing for a comprehensive
analysis of an individual’s HR dynamics in uncontrolled, real-world environments. Ji-
amo [5] discusses the utilizing wearable devices, such as smartwatches and fitness trackers,
to collect extensive data for modeling heart rate and activity patterns. These devices con-
tinuously capture various types of data types, including heart rate, GPS location, altitude,
and other contextual information like weather and user demographics [5]. This data can be
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used to create personalized fitness and exercise behavior models, specifically focusing on
heart rate dynamics and prediction.

Heart Rate Prediction Models: Heart rate is a critical physiological parameter used
to assess cardiovascular health, exercise intensity, and other physiological states. Several
models have been developed to predict heart rate, ranging from simple regression-based
models to more scalable algorithms. Oyeleye [23] conducted a review of heart rate pre-
diction using various machine learning techniques, including Autoregressive Integrated
Moving Average (ARIMA) and linear regression, as well as Long Short-Term Memory
(LSTM) models. Their results highlighted the potential of heart rate prediction in various
areas of health monitoring. Kuano Tao [24] utilized linear regression and artificial intel-
ligence networks to estimate heart rate and assess cardiovascular fitness in middle-aged
adults. Hybrid approaches have also been developed; for instance, Lin [25] proposed a
new method for heart rate prediction using LSTM-BILSTM-Att, which improved accuracy
compared to baseline model. Zetao [7] introduced a study using LSTM to predict heart rate
during different activities as part of a fitness training optimization system. Additionally,
scalable algorithms for personalized heart rate response to exercise and environmental
factors using wearables data have been developed [4] with the aim is to monitor heart rate
evolution in response to workout intensity.

Integration of Physiological Models with machine learning techniques: Numerous
studies have focused on integrating physiological models with machine learning tech-
niques, particularly on heart rate parameters for various health outcomes. These models
aim to overcome the limitations of traditional methods and standalone machine learning
models, offering more accurate heart rate predictions. Recent research has explored com-
bining physiological models with flexible neural networks to leverage both physiological
understanding and data-driven models, enhancing prediction accuracy and adaptability
in personalized interventions. For example, Nazaret [4] developed a physiological model
using Ordinary Differential Equations (ODE) combined with flexible neural networks to
monitor heart rate evolution during workout sessions, enabling personalized heart rate
profiling. Signorini [26] integrated machine learning techniques and physiological heart
rate features for antepartum fetal monitoring, helping identify potential pathologies early
in pregnancy management. Another model, proposed by [27], predicts fitness levels by
focusing on physiological features such as heart rate, step count data, and total oxygen
consumption. Milan [28] emphasized the importance of dynamic models that capture phys-
iological parameters, such as heart rate, in response to exercise, aiming to better understand
the relationship between physiological responses and exercise.

Dynamic Bayesian Networks (DBNs): Dynamic Bayesian Networks have emerged
as powerful tools for modeling time-series data due to their ability to capture temporal
dependencies and handle uncertainty in dynamic environments. DBNs are particularly
well suited for modeling physiological data, such as heart rate (HR), where responses can
be highly variable and influenced by numerous factors. While there are not many studies
specifically applying DBNs to heart rate modeling, DBNs have shown their strength in
healthcare. For instance, Fernando [29] proposed a framework that uses Bayesian networks
to describe heart rate dynamics and estimate the autoregulation of the autonomic nervous
system. Zhang [30] introduced a heart prediction model using Bayesian networks to
overcome the limitations of short-term models, enabling multiple predictions to enhance
heart rate prediction accuracy during running activities. Ladyzynski [31] demonstrated
DBNs’ capabilities in health monitoring and treatment of chronic lymphocytic leukemia,
validating the use of DBNs in predicting health changes over time. Qi chen [32] applied
DBNs to model complicated relationships among physiological variables across time slices
for predicting physiological changes, organ dysfunction and mortality risk in critical trauma
patients. Their results indicated that DBNs can serve as effective real-time tools for predict
physiological changes. Marshall [33] introduced a dynamic Bayesian network to investigate
the relationship between patient variables, cardiovascular disease and survival rates in heart
disease patients. To our knowledge, limited research has applied DBNs as physiological
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inference methods to model heart rate in fitness environment for personalized fitness
recommendations. In our work, we demonstrated the potential of DBNs in physiological
modeling for fitness personalization.

Recurrent Neural Networks (RNNs): RNNs, particularly Long Short-Term Memory
(LSTM) networks, have been widely used in recent years to analyze time-series data for
sequential modeling tasks, such as speech recognition and machine translation [34]. In
heart rate prediction, Oyeleye [22] investigated advanced deep learning models, including
LSTM, for time-series modeling to overcome the limitations of traditional models such as
ARIMA. Their work demonstrated improved results across multiple metrics compared
to baseline models. Their work demonstrated improved results across multiple metrics
compared to baseline models. Lin [25] proposed a method for predicting heart rate using
LSTM-BILSTM-Att technique. Additionally, Jiamo [5] proposed FitRec, which utilizes
LSTM networks to model heart rate by estimating heart rate profiles during ongoing
exercise. Similarly, Xia Liu [35] proposed a multi-level deep learning approach using LSTM
for heart rate prediction, which was later used to provide personalized recommendations.

Adaptive Feature Selection: In the realm of personalized recommender systems,
Lin [35] highlights the importance of feature selection, shedding valuable insights on
how each variable influences recommendation tasks. This analysis not only indicates the
transparency of recommendation systems but also provides a deeper understanding of
users’ preferences. Building on this, AdaFS [36] introduces an adaptive feature selection
framework designed to optimize recommendation performance by selecting the most pre-
dictive features. AdaFS employs a novel controller network that automatically adapts to
the dynamic nature of recommendation environments, ensuring that relevant features are
selected as the system evolves. Similarly, Kayange [37] proposed the ProAdaFS framework,
a probabilistic and adaptive feature selection approach for recommendation systems. This
framework accounts for the fact that features in user-item interactions may vary over time,
continually updating recommendation models to adapt to changes in user behavior and
new data. We applied a similar concept in our physiological hybrid DBN model, recogniz-
ing that user behavior and preferences in practical recommendation systems fluctuate over
time. This adaptive module dynamically enhances our model by incorporating evolving
user exercise patterns, thereby improving performance.

Personalized Fitness recommendations: Several studies have focused on personalized
fitness recommendations, utilizing approaches ranging from recurrent neural networks
to physiological models and machine learning techniques. Jiamo [5] proposed a personal-
ized fitness recommendation system FitRec, which models sequential fitness data, such as
heart rate sequences, during ongoing workout sessions. Later Xia Liu [35] introduced a
multi-level deep learning approach for fitness recommendations, focusing on personalizing
workout distance and speed sequences in response to user activity. Additionally, as men-
tioned earlier, Nazaret [4] proposed a physiological model to personalize heart response
to a workout intensity. Their model can also be applied to personal activity planning and
predicting future workouts.

Despite the progress in wearable technology and fitness personalization, there remains
a research gap in ensuring the accuracy and relevance of personalized fitness recommenda-
tions. The field lacks sufficient innovation and comprehensive research. From our review
of existing literature, we found that most models focus on short-term predictions, which
makes it difficult to maintain accuracy in long-term fitness environments. Additionally,
many models are static and fail to adapt to the dynamic nature of user data over time.
Utilizing fitness data for recommendations is also challenging, as these data often lack
behavioral indicators like clicks or likes, which are crucial in understanding user behavior
in traditional recommendation models. To address these gaps, we proposed a hybrid
physiological model using Dynamic Bayesian Networks (DBNs) to model the evolution
of heart rate over time in response to exercise. This approach also incorporates LSTM
networks and an adaptive feature selection module, allowing the system to dynamically
adapt to new data. Our proposed method aims to overcome the limitations of existing
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models and provide more accurate, personalized fitness recommendations by combining
physiological modeling with machine learning techniques.

3. Materials and Methods

3.1. Dataset

We used the FitRec dataset from [5], which is collected from Endomondo fitness track-
ing applications and is a collection of workout data from wearables. The dataset provides
rich insights into various physical activities performed by users, including different types of
sports workouts such as running, biking, and other fitness routines, along with physiologi-
cal data like heart rate. The dataset is sourced as a JSON format containing multiple entries
for different individual’s workout sessions. Each entry contains timestamps, duration,
distance covered, heart rate, speed, and GPS coordinates, making it an ideal dataset for
studies focused on user behavior and predicting workout sessions for enhanced personal-
ized fitness recommendations. The key variables used in this work, including heart rate,
speed, distance, altitude and other derived variables are summarized in Table 1. For our
study, we filtered the dataset to include only running workout sessions, with additional
contextual information such as user ID, workout ID, and gender. A detailed summary of
the dataset statistics, including the number of users and total workouts, is provided in
Table 2. The JSON entries were parsed and converted into a Pandas DataFrame for efficient
data manipulation and analysis.

Table 1. Description of workout data variables.

Variable Unit

Measurement
Heart rate Beats per Minute (BPM)
Time Grid Seconds
Distance Meters

Speed (Horizontal) Meters per Second (m/s)
Speed (Vertical) Meters per Second (m/s)

Contextual
UserID

WorkoutID
Sport

Gender Male (1), Female (0)
Altitude Meters (m)

Longitude Degrees
Latitude Degrees
Derived

Elevation Gain Meters (m)
Average Speed Kilometers per Hour (KMPH)

Speed Variability Meters per Second (m/s)
Max Heart Rate Beats per Minute (BPM)
Total Distance Meters (m)

Table 2. Statics of the FitRec dataset on running sport.

Statistics Value

Total number of users 665 (590 male, 65 female)
Total number of workouts 38,323
Average workout speed 3.7 km/h

Workout frequency per User 68
Average workout duration 48.54 Min
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3.2. Data Processing
3.2.1. Temporal Data Alignment

We converted the timestamps into Python datetime objects to easily calculate the
duration of each individual’s workout session, from start to finish. We retained workouts
with durations between 10 min and 2 h 20 min, removing sessions that were either too short
or excessively long. This filtering step ensures that our results reflect typical real-world
workout sessions.

3.2.2. Interpolation and Grid Alignment

We applied a uniform grid at a 10-s interval for each workout to standardize the
temporal resolution, resulting in a heart rate time series, ˆHR ∈ Rd [4] and workout
intensity time series, I ∈ Rd, for each session. GPS coordinates, altitude, and heart rate
were interpolated to ensure it aligns with the applied time grid. This approach minimizes
the issue arising from irregular sampling intervals, ensuring a continuous representation of
each workout’s dynamics.

3.2.3. Feature Engineering

To process the distance covered, we used the Haversine formula [37], which calculates
the distance between two data points based on their latitude and longitude. For speed, we
derived horizontal and vertical speeds from the interpolated distance and altitude, respectively.
Additionally, we engineered features such as elevation gain, average speed, speed variability,
maximum heart rate, and gender encodings to enrich the model inputs for better performance.
We also applied normalization and standardization, particularly for heart rate, to ensure that
the input data are consistent for model training, enhancing both the model’s performance and
stability. Specifically, heart rate values were normalized by subtracting the mean heart rate
and dividing by the average standard deviation, thereby centering the data and scaling them
for uniformity across users.

3.2.4. Personalized Heart Rate Model

Following the approach from [4], we developed a personalized heart rate model by
assigning each individual personalized parameters (A, B, including a drive function f and
HRmin, HRmax), These parameters help capture the dynamic response to exercise. As men-
tioned by [4], learning each individual’s parameter health representation is computationally
expensive. To address this, we assumed that a low-dimensional latent vector z ∈ Rdi can
represent an individual’s health status at a given time, where di is the dimensionality of the
latent space.

4. Proposed Model

Our physiological DBN model integrates LSTM and flexible neural networks to predict
personalized heart rate responses to exercise intensity during workout sessions. The
architecture of our model consists of several key components, as illustrated in Figure 1.

4.1. Dynamic Bayesian Network

Dynamic Bayesian Networks (DBNs) are an extension of Bayesian networks, designed
to handle time-dependent data and capture the relationships between different features over
time. This makes DBNs well suited for modeling sequences of variables where temporal
dependencies are key. Moreover, DBNs are particularly effective in modeling time-series
data due to their ability to capture both temporal dynamics and probabilistic relationships
among variables. In this research, we applied DBNs to model heart rate changes in response
to varying exercise intensities over time. Figure 2 provides a graphical representation of
DBNs, where zt represents the individual health status at time t and Et represent the
observed heart rate. DBNs allow the model to capture temporal correlations and non-linear
relationships in heart rate variations, which is essential given the noisy nature of wearable
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data. Additionally, DBNs enable the model to adapt its predictions based on changes in
user behavior. Our model development focused on two core components of DBNs.

Figure 1. Model architecture of the proposed approach for personalized heart rate prediction to
enhance fitness recommendations.

Figure 2. A graphical representation of DBNs where zt is an individual health status at time t and E
is the observed heart rate.

State Transition: The state transition probability describes how the system evolves
from one state to another over time. In the context of heart rate prediction, it captures how
heart rate changes in response to variations in exercise intensity and duration. Figure 3
illustrates a graphical representation of our DBN model for heart rate prediction based
on exercise workout intensity, where yt represents variables influencing heart rate and xt
represents heart rate frequencies at time t. In our study, the state transition is modeled
using the following equation:

P(xt | xt−1, St) = (xt | ftrans(xt−1, St), σ2), (1)

where xt is the heart rate at time step t, xt−1 is the heart rate at the previous time step
t − 1, and St is the state of influencing factors at time t, such as exercise intensity, speed,
distance, elevation gain, and environmental conditions like temperature. The function ftrans
(xt−1, St) is a transition function that models the expected heart rate at time t, based on the
previous heart rate xt−1 and the influencing factors, and St. σ2 represents the variance of
the transition noise, indicating uncertainty in the prediction. We assume that xt follows a
normal distribution with mean μ = ftrans (xt−1 , St), and variance σ2.

Equation (1) expresses that the heart rate at the current time step is normally dis-
tributed around a mean value ftrans (xt−1, St), which is a function of the previous heart rate
and the current influencing factors. The noise term σ2 accounts for uncertainties in heart
rate transition. Incorporating state transition in our model captures temporal dependen-
cies in heart rate dynamics, where the heart rate depends on both the previous state and
contextual factors. This approach is crucial for monitoring user behavior changes over time.
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Figure 3. Graphical representation of the DBN model for heart rate prediction HRt based on exercise
workout intensity, yt are variables influencing HR at state t and xt are heart rate frequencies at time t.

Emission Modeling: The emission equation models how the latent physiological state
relates to the observed heart rate at each time step. The emission equation is modeled
as follows:

Yt = fem(Xt) + εt, εt ∼ N(0,σ2), (2)

where Yt is the observed heart rate at time t, Xt is the latent state at time t. The function
fem(Xt ) is the function that estimates the observed heart rate from the latent state, and εt
represents prediction error, which follows a normal distribution with mean 0 and variance
σ2. The function fem(Xt ) maps the latent physiological state to the actual observed heart
rate, capturing complex non-linear relationships.

Combining Equations (1) and (2), we can model the evolution of heart rate during
workout sessions using our DBN model. The model is formulated as follows:

HRt+1 = HRt(z) + f (HRt(z), St(z)) + εt. (3)

HRt+1 is the predicted heart rate at time t + 1, and HRt(z) is the current heart rate
at time t where z is the individual’s health status. The function f (HRt(z), St(z) estimates
the change in heart rate based on individual’s current health state, considering both the
current heart rate HRt(z) and influencing factors St(z), such as exercise intensity, speed, and
environmental conditions. Lastly, εt is the noise accounting prediction error, representing
random fluctuations.

4.2. Long Short-Term Memory (LSTM) Networks

LSTMs are a type of recurrent neural network (RNN) designed to model time-series
data and capture long-range dependencies. Unlike traditional RNNs, LSTMs use mem-
ory cells to retain information over extended periods, enabling them to learn patterns
and relationships in sequences that may not have been visible before. In our model, we
used LSTM networks to process users’ workout histories and create personalized health
representations through flexible neural networks. These representations are critical for
informing the parameters of the Dynamic Bayesian Network (DBN) model, enhancing its
ability to make accurate personalized predictions about heart rate responses.

We introduced an LSTM encoder that considers historical workout data, including
features such as past heart rate data, exercise intensity, duration, speed, elevation gain,
and other relevant physiological and contextual information. The LSTM processes this
sequence data and learns a latent representation, z, which captures the user’s unique
physiological characteristics and exercise patterns over time. This latent representation
allows the model to personalize its predictions based on the user’s specific physiological
state and workout history.
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The LSTM network consists of a series of gates, as depicted in Figure 4: input, forget,
and output gates, which regulate the flow of information through the memory cell. In
our model, for a given step t, the LSTM calculates ht, the output of the LSTM, which is
subsequently fed into the DBN model. The ht is computed as follows:

ft = σ
(

Wf · [ht−1, xt] + b f

)
, (4)

it = σ(Wi · [ht−1, xt] + bi), (5)

ot = σ(Wo · [ht−1, xt] + bo), (6)
∼
Ct = tanh(WC · [ht−1, xt] + bC), (7)

Ct = ft · Ct−1 + it ·
∼
Ct, ht = ot · tanh(Ct), (8)

where ft, it, ot represent the forget gate, input, and output gates, respectively, Ct is the

cell state at time step t, and
∼
Ct is the candidate cell state, ht is the hidden state output at

time step t, σ denotes the sigmoid activation function, tanh denotes the hyperbolic tangent
activation function, and W and b are weight matrices and bias vectors, respectively.

Figure 4. Structure of an LSTM cell.

4.3. Personalized Heart Rate Prediction

To accurately predict heart rate over time t during a workout session, our physiological
model uses the following equation:

HR(t) = HRmin + (HRmax − HRmin) ·
(

1− e−A(z)−B(z)·I(t)
)

, (9)

where HR(t) is the predicted heart rate at time t, HRmin is the resting heart rate of the
individual before a workout session, and HRmax is the maximum heart rate reached
during an exercise session. A(z) is the decay constant that controls how quickly the heart
rate approaches its maximum, personalized through latent vector z. B(z) is the intensity
coefficient that modulates the heart rate response based on exercise intensity I(t), also
personalized through latent vector z, which represent the exercise intensity at time t.

This equation captures the dynamic heart rate behavior as it responds to exercise. It
combines physiological aspects (resting and maximum heart rate) and exercise-specific
factors (intensity and duration) to provide a comprehensive prediction model that adapts
dynamically to exercise intensity through the decay function. The term e−A(z)−B(z)·I(t)
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models the physiological response to exercise, where the rate of change in heart rate is
controlled by both the duration and intensity of an exercise, modulated by personalized
parameters. This formulation allows the model to account for physiological constraints and
dynamic responses to exercise over time. It provides a transparent prediction that adapts
to each individual’s unique characteristics and workout history, improving the precision of
fitness recommendations.

4.4. Adaptive Feature Selection

We employed an adaptive feature selection module as an attention mechanism within
the LSTM encoder, which assigns weights to different features based on their relevance at
time t. This module illustrated in Figure 5, takes the latent vector z and assigns a weight
of αm

n where n is the nth feature and m is the mth data point in the input latent vector
z. To achieve this, we designed a multi-layer perceptron (MLP) network controller that
dynamically assigns weights to the latent vector z based on each feature’s predictive power.
This enables the model to prioritize the most relevant features for heart rate prediction,
ensuring more accurate and personalized recommendations.

Figure 5. Adaptive feature selection module.

5. Experiments

This section focuses on evaluating the proposed model’s performance in predicting
heart rate (HR) responses and its effectiveness in providing personalized fitness recommen-
dations. We will outline the experimental setup, describe the evaluation metrics used, and
present the results of our experiments, highlighting the model’s accuracy and adaptability.

5.1. Experimental Setup

We conducted our experiments using the FitRec dataset, which contains 38,323 logged
workout sessions of running workouts across 665 individuals. The dataset includes various
workout types such as running, cycling, and walking, alongside wearable data (e.g., heart
rate), speed/pace, elevation gain, and GPS coordinates. To focus on the most relevant
information, we filtered the dataset to include only workouts lasting between 10 min and
2 h and 20 min. Several additional features were derived from the raw data including speed
variability, calculated as the standard deviation of speed, elevation gain computed as the
sum of positive altitude changes, normalized heart rate. We created a time grid for each
workout session to facilitate interpolation and alignment of features.
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For training and validation, the dataset was split into two subsets: 80% for training and
20% for validation, ensuring that workouts from the same user were not split across subsets.
This split was necessary to evaluate the model’s generalization capability to unseen data.

DBN parameters were configured to model the state transitions and emission probabil-
ities, capturing the dynamics of heart rate response during exercise. The LSTM encoder was
set up with two layers, a hidden dimension of 128, and a dropout rate of 0.2 to prevent over-
fitting. We also utilized flexible neural networks, specifically the PersonalizedScalerNN [4],
to dynamically adjust the DBN parameters based on the latent representations generated
by the LSTM encoder.

For the training procedure, we used the Adam optimizer with a learning rate of
1× 10−3. The model was trained by minimizing the mean squared error (MSE) between the
predicted and actual heart rate values. To prevent exploding gradients, gradient clipping
was employed

5.2. Evaluation Metrics

To evaluate the performance of our model in both heart rate prediction and personal-
ized fitness recommendation, we used the following metrics:

1. Mean Absolute Error (MAE): This metric measures the average absolute difference
between predicted and actual heart rate values. It provides a straightforward measure
of prediction accuracy by calculating the magnitude of errors.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (10)

2. Root Mean Squared Error [RMSE]: measures the square root of the average squared
differences between actual and predicted values. It gives higher weight to larger
errors, making it sensitive to large deviations.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

where n is the total number of data points, yi is the actual heart rate data and, ŷi is the
predicted heart rate data.

5.3. Results and Analysis
5.3.1. Heart Rate Prediction Performance

The proposed hybrid DBN model achieved an average Mean Absolute Error (MAE) of
5.2 BPM and a Root Mean Square Error (RMSE) of 8.1 BPM across all validation workouts.
These results demonstrate the model’s ability to accurately predict heart rate responses
to exercise intensity during workout sessions, indicating its effectiveness in capturing
dynamic physiological changes.

Figure 6 illustrates the model’s performance in predicting heart rate during workout
sessions. The x-axis represents the time from the start of the workout session, while the
y-axis shows the instantaneous heart rate in beats per minute (BPM). The solid blue line
indicates the actual heart rate measured during the workout, and the dashed orange line
represents the predicted heart rates generated by the model. The shaded region around
the predicted values represents uncertainty bands of ±5 BPM, accounting for variability in
heart rate measurements.
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Figure 6. True vs. predicted heart rates for the specific session.

5.3.2. Performance Analysis

We demonstrated visualizations of the predicted heart rate versus actual heart rate for
a variety of workout sessions, as a measure for the model proposed in this paper.

Figure 7 shows the difference between the predicted and actual heart rates across all
workout sessions, plotted against the average of those heart rates. The plot has a mean bias
of 0.42 BPM, indicating that, on average, the model slightly overestimates heart rates. The
limits of agreement, set at ±1.96 times the standard deviation from the mean bias, range
from −15.53 BPM to 16.38 BPM. These relatively tight limits suggest that most predictions
are close to the actual heart rates, highlighting the model’s accuracy across various heart
rate ranges. The points on the plot are evenly distributed around the mean bias line, with
no clear patterns or systematic errors, indicating that the errors are random and not biased
toward any particular heart rate level. The narrow range of the limits further supports the
notion that our DBN model provides reliable heart rate predictions with minimal error.
Such consistent performance is critical in real-world applications, where accurate heart rate
monitoring is essential for making personalized fitness recommendations.
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Figure 7. The Bland–Altman plot.

For further insights, Figure 8 demonstrates the model’s performance on true vs pre-
dicted heart rates for a specific session.

Figure 8. True vs. predicted heart rates for the specific session.

Figure 9 illustrates the model’s ability to predict heart rate evolution across different
individuals during workout sessions. The solid blue lines represent the actual heart
rate evolution, while the dashed orange lines depict the model’s predictions. Across all
individuals, the model closely follows the heart rate trends, demonstrating its capacity to
generalize well across varying users and workout intensities. The model accurately predicts
heart rate responses to different exercise intensities, capturing rapid increases during high-
intensity intervals and smooth declines during recovery periods. For most individuals, the
predicted heart rate closely aligns with the actual heart rate, particularly during steady-state
phases of the workout. However, minor discrepancies can be seen during rapid heart rate
fluctuations, which may be attributed to physiological differences between individuals
or noise in the sensor data. Overall, the model’s performance across multiple individuals
highlights its robustness in handling varying user profiles and workout conditions, making
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it effective for personalized heart rate prediction and health tracking applications, as well
as for delivering personalized fitness recommendations in real-world scenario.

 
Figure 9. Model performance on actual and predicted heart rate evolution for different individuals.

Table 3 presents a comparison of Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) between the proposed hybrid DBN model and two state-of-the-art models,
hybrid ODE [4] and FitRec [5]. All models were evaluated on the same dataset for consis-
tency. The Hybrid DBN model achieves a significantly lower MAE of 5.2 BPM and RMSE
of 8.1 BPM, demonstrating its effectiveness in capturing the complex dynamics of heart
rate response during exercise.
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Table 3. DBN Model comparison against state-the-of art.

Model MAE (BPM) RMSE (BPM)

Hybrid ODE Model 6.1 -
FitRec (U/S/C) 7.0 17.1

Hybrid DBN Model 5.2 8.1

This improved performance highlights the Hybrid DBN model’s ability to model per-
sonalized heart rate predictions more accurately, making it a reliable tool for understanding
user behavior and providing personalized fitness recommendations. Compared to the
FitRec model, which has an MAE of 7.0 BPM and an RMSE of 17.1 BPM, the Hybrid DBN
model offers a substantial improvement in both error metrics.

5.3.3. Ablation Study

The ablation study in Table 4 illustrates the contributions of different components to
the overall performance of the Hybrid DBN model. The table shows that removing the
LSTM encoder increases the MAE, highlighting the critical role of the individual’s health
status representation (i.e., past workout data) in ensuring precise predictions.

Table 4. Ablation study on components contribution.

Model MAE (BPM)

Hybrid DBN Model 5.2
Without LSTM Encoder 21.3

Without Adaptive Feature Selection 12.5
Without Personalized Parameters 11.7

Furthermore, omitting the adaptive feature selection module results in a significant
decline in model performance, emphasizing the module’s function in dynamically selecting
the most relevant features. Lastly, the elimination of personalized parameters also neg-
atively affects prediction accuracy, demonstrating the importance of personalization for
adapting the model to individual users.

6. Personalized Recommendations

In addition to predicting heart rate responses to exercise, our model demonstrates
the ability to offer personalized fitness recommendations tailored to individual behavior
patterns. In this section, we explore recommendation tasks that showcase the model’s
practical utility in real-world fitness environments:

1. Workout Optimization Recommendation: Based on a user’s predicted heart rate
profile and specific workout goals, we suggest adjusting workout parameters, such
as speed or intensity, to optimize performance and achieve desired outcomes. For
instance, if a user aims to maintain a particular heart rate zone (e.g., fat-burning or
aerobic zone), our model can dynamically adjust recommendations during the work-
out, advising users to increase or decrease their pace accordingly. This functionality is
particularly beneficial for users who aim to meet specific heart rate targets or improve
cardiovascular endurance. Additionally, the system can suggest variations in exercise
routines to prevent fitness plateaus, recommending different workout intensities or
durations based on historical performance data.
Scenari: A user who frequently runs on a flat course might receive a suggestion to
try a hilly route that provides a similar heart rate response due to its variability in
incline. This approach helps users diversify their workouts, potentially enhancing
overall fitness by exposing them to different physical demands while keeping the
exercise routine engaging.

2. Real-Time Workout Guidance: Our model serves as a real-time personal trainer, pre-
dicting the short-term fluctuations in heart rate based on the current user pace and
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environmental conditions. If the model predicts that the person’s heart rate will go
above some threshold (e.g., 85% of maximum heart rate), the system can proactively
alert the user to adjust their pace, ensuring a safer and more effective workout. It helps
avoid overexertion, making exercise much safer and far more effective, especially for
novices or people with specific health concerns.
Scenario: During a high-intensity interval training (HIIT) session, the system mon-
itors the user’s heart rate in real-time. If the heart rate approaches a critical level,
the system suggests a brief recovery period or a reduction in intensity to avoid
excessive strain.

3. Workout route and Activity Suggestion: The model can recommend specific work-
out routes or activities that align with the user’s fitness goals and preferences by
analyzing historical workout data and heart rate responses. This is especially ben-
eficial for users who wish to explore new routes or maintain their regular exercise
routine while traveling. The recommendation system can identify routes that match
a user’s preferred heart rate profile or suggest new routes that offer similar phys-
iological challenges, such as maintaining a steady heart rate or achieving specific
exertion levels.
Scenario: A user who frequently runs on a flat course might receive a suggestion to
try a hilly route that provides a similar heart rate response due to its variability in
incline. This approach helps users diversify their workouts, potentially enhancing
overall fitness by exposing them to different physical demands while keeping the
exercise routine engaging.

7. Conclusions

In this study, we developed a novel hybrid physiological model using Dynamic
Bayesian Networks (DBNs). The integration of DBNs enables robust modeling of heart rate
dynamics over time, capturing both the physiological aspects of heart rate response and
the influence of external factors, such as workout intensity and environmental conditions.
The incorporation of LSTM networks further enhances the model’s ability to learn from
sequential data, providing a personalized health representation that adapts to each user’s
specific physiological state and exercise patterns.

However, there are some limitations to our study. The model was trained and validated
on the FitRec dataset, which may not fully represent the diversity of real-world users, and
the data are skewed toward male individuals. Testing our model with data from a broader
range of sources, such as those collected from Apple Fitness or Samsung Health platforms,
could offer a more comprehensive evaluation of its performance across different devices
and user demographics. Access to such data would also allow us to better explore the
model’s generalization and adaptability.

Despite these limitations, our results demonstrate that the proposed model not only
predicts heart rate with improved accuracy but also provides valuable insights into indi-
vidual fitness levels and responses to exercise. This capability can be applied to developing
personalized fitness recommendations, offering real-time guidance based on predicted
heart rate zones and exercise intensity.

Future work will focus on extending the model to other types of exercises and fur-
ther improving its interpretability by incorporating more extensive data from wearables.
Additionally, exploring the model’s potential to predict long-term health outcomes and in-
tegrating it into comprehensive health monitoring systems could lead to more personalized
and effective fitness and health recommendations.

Overall, this work represents a significant step forward in leveraging machine learning
and physiological modeling to provide personalized fitness insights, demonstrating the
potential of hybrid models in health and fitness applications.
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Abstract: The e-commerce sector is in a constant state of growth and evolution, particularly within its
subdomain of online food delivery. As such, ensuring customer satisfaction is critical for companies
working in this field. One way to achieve this is by providing an accurate delivery time estimation.
While companies can track couriers via GPS, they often lack real-time data on traffic and road
conditions, complicating delivery time predictions. To address this, a range of statistical and machine
learning techniques are employed, including neural networks and specialized expert systems, with
different degrees of success. One issue with neural networks and machine learning models is their
heavy dependence on vast, high-quality data. To mitigate this issue, we propose two Bayesian
generalized linear models to predict the time of delivery. Utilizing a linear combination of predictor
variables, we generate a practical range of outputs with the Hamiltonian Monte Carlo sampling
method. These models offer a balance of generality and adaptability, allowing for tuning with expert
knowledge. They were compared with the PSIS-LOO criteria and WAIC. The results show that both
models accurately estimated delivery times from the dataset while maintaining numerical stability. A
model with more predictor variables proved to be more accurate.

Keywords: online food delivery (OFD); delivery time estimation; Bayesian inference; generalized
linear models

1. Introduction

The e-commerce sector is in a constant state of growth and evolution, particularly
within its subdomain of online food delivery (OFD) [1,2]. Recent market forecasts indicate
a steady rise in revenue for companies offering such services. With numerous players in the
market, ensuring customer satisfaction is paramount for a company’s survival. Customers
increasingly demand user-friendly applications that simplify the ordering process with just
a few taps while also providing features such as delivery time estimates and communica-
tion channels with couriers [3]. However, estimating delivery times accurately without
managing the uncertainty associated with real-time events and decision making may be
suboptimal. This is indicated by recent studies, which either focus on this [4,5], account for
this [6], or indicate this in future works [7].

The existing research in this field is broad. Some works focus on static origin–
destination time-travel prediction [4]. Others create commercial-grade solutions capable of
handling real-time data [6]. Recent studies have started to focus on more complex problems,
e.g., the restaurant-meal-delivery problem, which is characterized by a fleet of delivery
vehicles that serve dynamic customer requests over the course of a day [5]. A more detailed
description is provided in Section 2.

Machine learning models are common in the task of time-travel prediction. Among
these methods, neural networks, including Deep Neural Networks (DNNs), Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term
Memory Networks (LSTMs), are prominently utilized [8].
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Although Bayesian statistics and inference have gained increasing popularity, there re-
mains a notable scarcity of articles addressing their application in delivery time prediction.
In their case study, Abdi et al. list less than ten methods based on either a Naive Bayes
classificator, Bayesian Network, or Bayesian graphical model while examining around
a hundred articles [8]. The method boasts several advantages: it offers straightforward,
interpretable models; the capacity to adapt and improve with new data; and provides
a measure of uncertainty for each prediction. However, it also presents challenges, no-
tably its computational demands and the potential for poor model performance due to
incorrect assumptions.

This article introduces two Bayesian models designed for predicting food-delivery
times. Utilizing a linear combination of predictor variables, we generate a practical range
of outputs. These models offer a balance of generality and adaptability, allowing for tuning
with expert knowledge. This ensures flexibility and stability in various contexts. To assess
their performance and identify any potential drawbacks, we compared the models using
the PSIS-LOO criteria and WAIC.

The main contributions of this paper are as follows: (1) To the best of our knowledge,
this is the first application of Bayesian inference to online food-delivery-time prediction.
(2) By specifying models as linear combinations of predictors, we achieve high interpretabil-
ity, which aids in identifying the primary factors influencing delivery time. (3) Our results
indicate that Bayesian inference holds promise for further exploration in this context, as it
can lead to promising results.

The remainder of this paper is structured as follows: In the next section, relevant
studies in the extant literature are reviewed and discussed. Section 3.1 provides a short
introduction to the concept of Bayesian statistics. Section 3.2 refers to the numerical
computation methods utilized in our work. Section 3.3 reveals the data source and contains
reference to part 1 of this article, where preprocessing is described. Section 3.4 focuses on
the model definition, prior distribution selection, and prior predictive checks. In Section 4,
we present and explain the results of our work as posterior predictive checks, where
Section 4.1 focuses on Model 1 and Section 4.2 focuses on Model 2. In Section 4.3, we
compare models to see how they fare against each other. Section 5 discusses the limitations
of our models. Finally, Section 6 summarizes the conclusions drawn from this study.

2. Literature Review

Food-delivery-time estimation can be perceived in the category of Estimated Time of
Arrival (ETA). In our work, it will also include meal-preparation time, but the rest focuses
solely on the travel time between origin and destination. Overall, there are two common
approaches to ETA: route-focused and origin–destination-focused.

The route-based approach focuses on segmenting routes and estimating the travel time
of each segment. Lee et al. implemented a real-time expert system that takes present and
historical data and produces travel-time-prediction rules via data-mining techniques. Also,
they implement a dynamic weight combination governed by meta-rules, which allows for a
real-time road events response to enhance the prediction’s precision [9]. Li et al. proposed
a deep generative model—DeepGTT. It is a probabilistic model designed to generate a
travel time distribution, from which travel time as well as the uncertainty about it can be
inferred [10]. Asghari et al. presented algorithms for computing the probability distribution
of travel times for each link of a given route. It differs from other works as the authors
mention that elsewhere, probabilistic link travel times are given a priori. This, and the
work mentioned beforehand, are one of the few works that focus on distributions rather
than strict numbers [11]. Wang et al. proposed a model for estimating the travel time
of any path consisting of connected road segments based on current and historical GPS
records, as well as map sources. Due to data sparsity (not every road will be traveled
by a vehicle with GPS) and the trade-offs associated with multiple ways of connecting
road fragments to form a route, the problem as a whole was not solved [12]. Wang et al.
formulate ETA as a spatial–temporal problem. They adapted different neural networks,
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as well as proposed the authorial Wide-Deep-Recurrent model and trained them on floating-
car data. The solution showed promising results and was deployed for Didi Chuxing’s
vehicle-for-hire company [13]. Han et al. propose an incremental ETA learning framework
to address issues of the scalability and robustness of real-world large-scale ETA scenarios.
The framework works as an incremental travel-time predictor that is updated on newly
generated traffic data. The authors also include a historical traffic knowledge consolidation
module to reuse historical data and an adversarial training module to mitigate and resist
traffic noise perturbations caused by low-quality data. The model was employed at Didi
Chuxing’s company, substantially improving the prediction accuracy [6].

The origin–destination methods refrain from estimating routes, stating that it is time
consuming and potentially erroneous and gives a worse result than OD methods. Zhu et al.
predict the Order Fulfillment Cycle Time (OFCT), which is the time between placing an
order and receiving the meal. Their approach consists of identifying key factors behind
the OFCT and capturing them within multiple features from diverse data sources, and
then feeding them to the DNN created for this task. It is worth noting that their approach
is specifically tailored to food delivery, which aligns with the common goal outlined in
our article [14]. Li et al. proposed the MURAT model with the goal of predicting travel
time given the origin and destination location, as well as the departure time. They also
present a multi-task learning framework to integrate prior historical data into the training
process to boost performance [15]. Wu, C. H. et al. examined a classical machine learning
algorithm, which is support vector regression. Their findings show the feasibility of such
a method for travel-time prediction [16]. Wang et al. leverage the increasing availability
of travel data. Their approach is to use large historical datasets to accurately predict the
travel time between the origin and destination without computing the route. The shown
solution outperformed the services of Bing Maps and Baidu Maps at the time [17]. Lin et al.
propose a framework called the Origin–Destination Travel Time Oracle to estimate travel
time given the origin–destination pair and departure time. It uses historical trajectories
alongside the OD pair to infer image-based Pixelated Trajectories. Based on the inferred
trajectory, a Masked Vision Transformer is capable of estimating travel time. The results
outperform most of the other solutions highlighted in the paper [18]. Zhou et al. examine
the ETA problem in the context of e-commerce platforms. They introduce the Inductive
Graph Transformer. Unlike other graph transformer architectures, it trains the transformer
as a regression function that captures both information from raw features as well as
dense embeddings encoded by a graph neural network. The graph neural network is
also simplified to allow the solution to be applied to large-scale industrial scenarios. The
results show performance improvement with metrics such as the mean absolute error, mean
absolute percentage error, and mean absolute relative error compared to other models [19].
Zhang et al. propose the Graph-Structure-Learning-Based Quantile Regression model for
ETA in e-commerce. According to the authors’ knowledge, this is the first application of
graph structure learning in this field and suggests that most of the other work utilizing fixed
graph structures may be suboptimal. For the ETA, they design multi-objective quantile
regression loss capable of finding a Pareto solution to the problem. The authors also
propose fast sampling-based methods to reduce the computational complexity and enable
the solution to be used for large-scale graphs. The results are shown to outperform baseline
models [20].

Recently, new work was introduced into this field, building on existing ETA solutions
to tackle problems of higher complexity. Ulmer et al. consider the restaurant-meal-delivery
problem, which regard the optimization of the fleet of delivery vehicles serving dynamic
customer requests throughout the day. The present anticipatory customer-assignment
policy is used to handle the uncertainty of an unknown meal-preparation time as well
as unknown customer localization. The policy is based on a time buffer and postponing
to reduce making decisions that would result in delivery delays. Based on data from the
city of Iowa, the authors show results that outperform other restaurant-delivery policies [5].
Hildebrandt and Ulmer combined ETA and the restaurant-meal-delivery problem. They
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proposed an offline method, which maps a set of features to expected arrival times us-
ing gradient-boosted decision tree. The results show that it has a better performance in
comparison to planning on means, which is a sum of the expected times of each action on
route. The second proposed model is called offline–online, with real-time predictions in
mind. It uses a pretrained DNN to approximate the exact route of delivery in a full online-
simulation scenario. The authors show that this approach achieves a near full-optimal
online-simulation accuracy with a fraction of the computational time [21]. Xue et al. focus
on minimizing the cost of the restaurant-delivery problem with an uncertain cooking time
and travel time and give insight into the influence of those uncertainties on food-platform
preference. They propose a scenario-based chance-constrained programming model to
capture the variability of cooking and travel times and develop an island harmony search
algorithm to generate high-quality solutions. The results show that both uncertainties are
critical for the restaurant-delivery problem [4]. Gao et al. combine the ETA problem with
the estimation of the delivery route. While problems are closely related when it comes to
food delivery, they are often examined separately. The authors propose a deep network
named FDNET, consisting of route- and time-prediction modules. The route-prediction
module is used to determine the next localization that a courier will visit in a multi-delivery
scenario. The time-prediction module estimates the travel time between two adjacent
locations based on the drivers and spatiotemporal features. Offline experiments show
promising results compared to the frequently used machine learning models [7].

3. Materials and Methods

3.1. Bayesian Inference

For a better understanding of problem formulation and the proposed solution, a short
introduction to Bayesian inference is in order. It is a method of statistical inference, in which
we fit a predefined probability model to a set of data and evaluate the outcomes with regard
to the observed parameters of the model and unobserved quantities, like predictions for
new data points [22]. It is performed with the use of Bayes’ rule, shown in Equation (1):

p(θ | y) =
p(θ, y)
p(y)

=
p(θ)p(y | θ)

p(y)
, (1)

or rewritten in an unnormalized version:

p(θ | y) ∝ p(θ)p(y | θ). (2)

This tells us the relation between theta, which is an unobservable vector of variables of
interest, and y, which is a vector of observed variables. The left-hand side of the equation is
called the posterior distribution, while the right-hand side is a product of prior distribution
and the likelihood function. We define the prior predictive distribution as

p(y) =
∫

p(θ)p(y | θ) dθ, (3)

and the posterior predictive distribution as

p(ỹ | y) =
∫

p(ỹ | θ)p(θ | y) dθ. (4)

The prior predictive distribution is not conditional on the previous observation y of the
process and refers to observed data, while the posterior predictive distribution is conditional
on y and predicts potential future observations ỹ [22].

Bayesian statistics is widely utilized in the behavioral and social sciences, largely
due to the increasing availability of user-friendly software and comprehensive tutorials
tailored for scientists in these fields. It is primarily employed for theory development
and estimation. This approach is particularly well-suited for these disciplines because
meaningful priors can be derived from extensive literature, and informative priors are

177



Electronics 2024, 13, 3418

valuable for modeling complex behaviors and working with small sample sizes, both of
which are common in the social sciences. Bayesian methods are also used in ecological
modeling due to their ability to handle complex, high-dimensional, and spatiotemporal
models, as well as imperfect or incomplete data. These models often involve computation-
ally expensive likelihoods. Bayesian techniques, such as data augmentation, can fit these
models more effectively without requiring oversimplification, which may be necessary in a
frequentist framework. Applications of Bayesian statistics in ecology span various scales,
from individual organisms to entire ecosystems, and include tasks like understanding
population dynamics, modeling spatial patterns, studying population genetics, estimating
abundance, and assessing conservation efforts [23].

3.2. Stan Programming

The models were created in Stan. It is a programming language written in C++ and
used for statistical inference. It provides a concise way of defining Bayesian models as
simple scripts, yet allows for the efficient computation of Markov Chain Monte Carlo
methods, which are essential parts of Bayesian inference [24].

The algorithm used in Stan sampling is Hamiltonian Monte Carlo. It is a Markov
Chain Monte Carlo (MCMC) method, which uses derivatives of the density function being
sampled to generate efficient transitions spanning the posterior distribution. The goal of
the sampler is to draw from density p(θ | y), where θ is a vector of parameters and y is a
data sample. HMC introduces momentum variables ρ and draws from the joint density:

p(ρ, θ) = p(ρ | θ)p(θ), (5)

ρ ∼ MultiNormal(0, M), (6)

where M is a Euclidean metric.
The joint density p(ρ, θ) defines a Hamiltonian:

H(ρ, θ) = −logp(ρ, θ)

= −logp(ρ | θ)− logp(θ)

= T(ρ | θ) + V(θ)

(7)

where T(ρ | θ) and V(θ) are called kinetic and potential energy, respectively.
Transitions are generated in two steps. First, a value of momentum is generated

independently of the current parameters. Then, the joint system of current parameters and
new momentum is defined as Hamilton’s equations:

∂θ

∂t
=

∂H
∂ρ

=
∂T
∂ρ

(8)

∂ρ

∂t
= −∂H

∂θ
= −∂T

∂θ
− ∂V

∂θ
(9)

Since the momentum density is independent of the parameters’ density p(ρ | θ) = p(ρ),
the term − ∂T

∂θ is zero, canceling the first term of the second equation.
Stan’s implementation of HMC uses the Leapfrog integrator, as it provides stability for

Hamiltonian systems of equations. It starts with sampling new momentum independently
of parameters or a previous momentum value. In discrete time steps, denoted as ε, it
half-step updates momentum and full-step updates parameters:

ρ← ρ− ε

2
∂V
∂θ

(10)

θ ← θ + εM−1ρ (11)
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ρ← ρ− ε

2
∂V
∂θ

(12)

After applying L leapfrog steps, a total of Lε time is simulated. The resulting state
of the simulation is denoted as (ρ∗, θ∗). Lastly, the proposal (ρ∗, θ∗) generated by the
transition from (ρ, θ) has a probability of being accepted defined as

min(1, exp(H(ρ, θ)− H(ρ∗, θ∗))) (13)

If the proposal is not accepted, the previous parameter value θ is utilized in the next
iteration [24].

Stan is able to automatically optimize ε to match an acceptance-rate target, able to
estimate M based on warmup sample iterations, and able to dynamically adapt L on the fly
during sampling (and during warmup). This helps to mitigate the risks associated with
divergence caused by improper algorithm-parameter selection [24].

3.3. Data

The data used for inference come from Kaggle [25]. Data preprocessing was performed
in two steps. The first one was generating the shortest route between an origin and
destination pair. It was necessary as the geographical coordinates presented in the raw
data were unsuitable to create a meaningful probability distribution for our models. It
was performed using OSRM API. The second step was data cleaning and analysis. We
decided to remove coordinates outside of India’s geographical boundaries, which was the
country where the data originated from. We computed the meal-preparation time as the
difference between the time when the order was picked up by the courier and the time
when the order was made in the restaurant. Similar to coordinates, timestamps would
provide difficulties when trying to associate them with distributions. We used z-score
standardization for numerical variables. It was necessary to do so, as our models use an
exponential function on a linear combination of predictors, and if the latter were too large,
it caused numerical problems with computation. Finally, we mapped categorical variables
to numerical indices, which would be used to associate the category with its corresponding
distribution. In-depth preprocessing was described in part 1 of this article [26]. The chosen
features are presented in Table 1. There were 45,593 raw data samples. After processing,
we ended with 34,920, which will be further denoted as N. Histograms of the data are
presented in Figure 1 [26].

Table 1. Features computed from dataset.

Model Variable Data Type Description Obtained From

distance Vector of floats Standardized 1

route distances.
Computed via OSRM

API [26].

traffic_level Array of integers

Mapping categorical
traffic level to number

(1—jam, 2—high,
3—medium, 4—low).

Provided in
raw dataset.

meal_preparation_time Vector of floats
Standardized 1

meal-preparation
times.

Difference between
order date and pickup
by the courier, both of

which were in
raw data.

delivery_person_rating Vector of floats Standardized 1 rating
of delivery person.

Provided in
raw dataset.

number_of_deliveries Array of integers Number of deliveries. Provided in
raw dataset.

1 Standardization was conducted in preprocessing step [26].
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Figure 1. Histograms of data used in inference. Standardization was computed as z-score. X-axis
represents value of the predictor and Y-axis is their count for predefined bins. (top-left) Standardized
distance, which is z-score of distance data received from OSRM API. Raw distances were limited to
30 km. (top-right) Standardized meal-preparation time, which is z-score of meal-preparation time.
Meal-preparation time was calculated as difference between time the order was received and the time
when courier picked up delivery. (center-left) Categories of road traffic, which are raw categorical
data describing traffic conditions during each delivery. It can be one of four states: low, medium, high,
and jam. (center-right) Distinct deliveries count, which describes number of deliveries that courier
had to make during his trip. (botom-left) Standardized delivery-person rating, which is z-score of
the delivery-person rating. Original data had rating in range of 2.5 and 5.0 with 0.1 quantization.

3.4. Models

Both models are generalized linear models. We defined the linear predictor as η = Xβ,
where X denotes the vector of features described in Table 1 and B is the vector of coefficients.
Each coefficient’s distribution is described in the appropriate model section. Both vectors
are size Nx1 [22].

We then used the logarithmic link function to transform the linear predictor’s domain
to positive real numbers. It was one of the possible options, but nevertheless necessary,
as both models are defined by the inverse gamma function. This way, we obtained the
explanatory variable μi, representing the mean of the outcome variable [22]. We defined
the prior distribution for the standard deviation of our models, denoted as σ, to be an
exponential distribution with a rate parameter equal to 0.5.
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Lastly, we defined likelihood as an inverse gamma distribution with parameter shape
(α) and scale (β), computed from μ and σ in such a way that the resulting distribution had a
mean and standard deviation of μ and σ, respectively. The reasoning behind this particular
distribution was to model the skewness of the data effectively. Also, time has to be strictly
positive and continuous, which the inverse gamma also provides. The variables are defined
in Table 2, and the predictors are defined in Table 1.

Table 2. Models’ variables.

Model Variable Explanation

delivery_timei
Posterior distribution of delivery time, defined

by inverse gamma distribution.

αi

Shape parameter of inverse gamma function,
computed from mean and standard deviation

of this distribution.

βi

Scale parameter of inverse gamma function,
computed from mean and standard deviation

of this distribution.

σi
Prior distribution of standard deviation of

model, defined by exponential distribution.

μi

Generalized linear model with logarithmic link
function. Represents mean of the delivery
times as a function of selected predictors.

meani

Prior distribution of the average meal-delivery
scenario. Defined by normal distribution. Acts

as an intercept to linear model, since after
z-score standardization, the most average case
of delivery would yield exp(0), which would

invalidate model.

distance_coeffi

Prior distribution of the distance’s linear
coefficient. Defined by normal distribution.

Used to represent influence of this predictor on
the model output.

meal_prep_coeffi

Prior distribution of the meal-preparation
time’s linear coefficient. Defined by normal

distribution. Used to represent influence of this
predictor on the model output.

tra f f ic_level_coeffi[j]
1

Prior distributions of the traffic level’s linear
coefficient. Defined by normal distributions.

Used to represent influence of these predictors
on the model output.

person_rating_coeffi

Prior distribution of the delivery person’s
rating’s linear coefficient. Defined by normal

distribution. Used to represent influence of this
predictor on the model output.

deliveries_number_coeffi[j]
1

Prior distributions of the delivery number’s
linear coefficient. Defined by normal

distributions. Used to represent influence of
these predictors on the model output.

1 Here, predictor acts as an index variable.

While the models themselves were defined in Stan, the experiments were conducted
via CmdStanPy, which is one of Python’s interfaces for it [24]. For each sample from the
dataset, the entire inference process was performed. It consisted of 1000 warmup itera-
tions and 1000 regular iterations. The warmup iterations were discarded. Each equation
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described in the models’ sections below was computed according to formulas (denoted by
the equal operator), while sampling was performed with HMC (see Section 3.2, (denoted
by the tilde operator).

3.4.1. Model 1

The first model is defined as follows:

delivery_timei ∼ InverseGamma(αi, βi) (14)

αi =
μ2

i
σ2

i
+ 2 (15)

βi =
μ3

i
σ2

i
+ μi (16)

σi ∼ Exponential(0.5) (17)

μi = exp(distance_coeff i · distancei + traffic_level_coeff [traffic_leveli]+

+ meal_prep_coeff i ·meal_preparation_timei + meani)
(18)

meani ∼ N(3, 0.1) (19)

distance_coeff i ∼ Normal(0, 0.3) (20)

meal_prep_coeff i ∼ Normal(0, 0.3) (21)

traffic_level_coeff [1] ∼ Normal(0, 0.3) (22)

traffic_level_coeff [2] ∼ Normal(0, 0.3) (23)

traffic_level_coeff [3] ∼ Normal(0, 0.3) (24)

traffic_level_coeff [4] ∼ Normal(0, 0.3) (25)

3.4.2. Model 2

The second model is an extension of the first model by two predictors: the number of
deliveries and standardized delivery-person rating. As such, we only present the changes
necessary to create Model 2 out of Model 1:

μi = exp(distance_coeffi · distancei + traffic_level_coeff [traffic_leveli]+

+ meal_prep_coeffi ·meal_preparation_timei+

+ deliveries_number_coeff [number_of _deliveriesi]+

+ person_rating_coeffi · delivery_person_ratingi + meani)

(26)

person_rating_coeffi ∼ Normal(0, 0.3) (27)

deliveries_number_coeff [1] ∼ Normal(0, 0.3) (28)

deliveries_number_coeff [2] ∼ Normal(0, 0.3) (29)

deliveries_number_coeff [3] ∼ Normal(0, 0.3) (30)

deliveries_number_coeff [4] ∼ Normal(0, 0.3) (31)
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3.4.3. Priors and Prior Predictive Checks

We decided to use unbounded weakly informative priors for all parameters for two
main reasons. First, we lack expert knowledge on the influence of each feature. Second,
the abundance of data reduces the influence of priors on the final distribution as more data
points are added.

We chose a normal distribution with a mean of 0 and a standard deviation of 0.3 for our
parameters. This distribution provides a value range of approximately −1 to 1, with most
values likely clustering around 0. This choice reflects our initial assumption that each
parameter is not highly influential while still allowing for a small probability that they could
be significantly influential. The standard deviation of 0.3 was selected to accommodate the
exponential distribution coming from the inverse link function, as larger values from the
linear combination could numerically destabilize the model.

The exception to this is the intercept parameter meani, for which we chose a strong
prior: N(3, 0.1). It results in the base mean delivery time around 15–30 min. We opted for a
strong prior here to ensure that our model accurately reflects the most average delivery
time. Given that our features are standardized with a mean of 0, the linear combination
for the most average case would be close to zero, leading to an unrealistic delivery time
in the posterior distribution. The meani prior helps anchor the model, providing a trusted
average time for an average case.

For both models, prior predictive checks gave good results, i.e., the observed data
were included within the simulated data range, and no outright impossible values were
generated from either of the models. They can be observed in Figures 2–7.

Figure 2. Sampling check for prior distributions of Model 1’s link-function parameters (parameters
with _coeff suffix). X-axis represents coefficient values and Y-axis represents sample count. Each of the
coefficients follows its distribution, which is necessary for prior check to be successful. (top-left) Prior
distribution of distance coefficient, defined as Normal(0, 0.3). (top-right) Prior distribution of meal-
preparation-time coefficient, defined as Normal(0, 0.3). (bottom-left) Prior distribution of mean
parameter, defined as Normal(3, 0.1). mean parameter represents our belief of what mean delivery
time should be in case all other parameters are 0. (bottom-right) Joint plot of prior distributions of
traffic-level coefficients, all defined as Normal(0, 0.3).
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Figure 3. Computation and sample check of Model 1’s likelihood parameters. X-axis is time in
min and Y-axis represents sample count. (left) Computed μ represents mean delivery time for each
sample. HDI 94% is represented as black bar at the bottom of the plot and tells us that 94% of shown
mean times fall in range of 4.4 to 47 min. Mean of this distribution (at the top of the plot) is 23 min,
which is reasonable value. (right) Prior distribution of standard deviation of the model, defined as
Exponential(0.5).

Figure 4. Prior predictive checks—Model 1. (left) HDI 94% is represented as black bar at the bottom
of the plot and tells us that 94% of shown mean times fall in range of 3.2 to 47 min, which is broad
range. Mean of this distribution (at the top of the plot) is 23 min, which is reasonable value. (right)
Real and simulated data overlay. Both are normalized so that integral of the graph is 1. It was
necessary for comparison. Measured data are included within generated data, which means that all
observations are possible within prior model. This means that prior checks are successful.
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Figure 5. Sampling check for prior distributions of Model 2’s link-function parameters (parame-
ters with _coeff suffix). X-axis represents coefficient values and Y-axis represents sample count.
Each of the coefficients follows its distribution, which is necessary for prior check to be successful.
(top-left) Prior distribution of distance coefficient, defined as Normal(0, 0.3). (top-right) Prior distri-
bution of meal-preparation-time coefficient, defined as Normal(0, 0.3). (center-left) Prior distribution
of mean parameter, defined as Normal(3, 0.1). mean parameter represents our belief of what mean
delivery time should be in case all other parameters are 0. (center-right) Joint plot of prior distri-
butions of traffic-level coefficients, all defined as Normal(0, 0.3). (bottom-left) Prior distribution
of delivery-person-rating coefficient, defined as Normal(0, 0.3). (bottom-right) Joint plot of prior
distributions of deliveries-number coefficients, all defined as Normal(0, 0.3).

Figure 6. Computation and sample check of Model 2’s likelihood parameters. X-axis is time in min
and Y-axis is sample count. (left) Computed μ represents mean delivery time for each sample. HDI
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94% is represented as black bar at the bottom of the plot and tells us that 94% of shown mean times
fall in range of 2.3 to 57 min. Mean of this distribution (at the top of the plot) is 26 min, more than
for Model 1, but still within reasonable range. (right) Prior distribution of standard deviation of the
model, defined as Exponential(0.5).

Figure 7. Prior predictive checks—Model 2. (left) HDI 94% is represented as black bar at the bottom
of the plot and tells us that 94% of shown mean times fall in range of 1.3 to 58 min. It is very broad,
improbable range, but for prior checks it is sufficient. Mean of this distribution (at the top of the plot)
is 26 min, which is reasonable value. (right) Real and simulated data overlay. Both are normalized so
that integral of the graph is 1. It was necessary for comparison. Measured data are included within
generated data, which means that all observations are possible within prior model. This means that
prior checks are successful.

4. Results

In this section, we present the posterior distributions of our models. Each one was
trained on full data. There were 1000 warmup and 1000 sampling iterations performed on
four parallel chains. The selected algorithm was Hamiltonian Monte Carlo with the engine
No-U-Turn Sampler.. For computation Stan 2.34 was used.

Posterior predictive checks were performed by simulating new data from the posterior
distribution obtained during model training. These simulations were used to verify if
the simulated data resembled the original data, with histograms chosen for comparison
purposes [23]. The link-function parameters were subjectively assessed for their numeri-
cal influence, considering the z-score standardization of predictors. This standardization
implies that the average delivery time corresponds to a predictor value of zero. Narrow
distributions indicate a near-constant predictor effect, while wide distributions suggest
uncertainty in the predictor’s impact. Positive values reflect a direct relationship, and nega-
tive values indicate an inverse relationship between the predictor and the outcome. The
parameters in the likelihood function were evaluated for their plausibility in real-life scenar-
ios. Since the parameters of our models are coefficients of a linear function, rather than the
priors for the data distributions themselves, we believe that the subjective interpretation of
them is justified.

4.1. Posterior Predictive Checks for Model 1

Model 1 gave decent results. All of the observed data fall within the samples from the
posterior distribution, and visual overlap is quite high. The posterior distribution exhibits
a long tail, which is the drawback of using the inverse gamma function. The data are
represented in Figure 8.

The model coefficients for the distance and meal-preparation time ended with very
narrow distributions, albeit positive ones, indicating that they impact the output variable.
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The mean intercept parameter ended with a mean closer to 3.1, which is also closer to the
mean of the dataset (e3.1 ≈ 22.18 while the mean of the dataset is ≈27.05). The traffic-level
coefficient represents a trend in which low traffic contributes to faster delivery times, and as
the traffic level increases, the delivery times become longer. This interpretation is viable as
it is not a multiplicand but a sum component, so negative values will result in a smaller
mean and positive values in a larger mean. There is almost no distinction between the
influence of high traffic and jams. The data are represented in Figure 9.

Figure 8. Posterior predictive checks—Model 1. (left) HDI 94% is represented as black bar at the
bottom of the plot and tells us that 94% of shown mean times fall in range of 11 to 46 min. It is broad
range, but realistic nevertheless. Mean of this distribution (at the top of the plot) is 27 min, which
is reasonable value. It follows inverse gamma distribution as defined. (right) Real and simulated
data overlay. Both are normalized so that integral of the graph is 1. It was necessary for comparison.
Measured data have high overlap with sampled data from posterior distribution.

Figure 9. Sampling check for posterior distributions of Model 1’s link-function parameters. X-axis
represents coefficient values and Y-axis represents sample count. (top-left) Posterior distribution of
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distance coefficient. It is much narrower than prior distribution, but still follows normal distribution.
Positive value indicates that it has impact on the output variable. (top-right) Posterior distribution of
meal-preparation-time coefficient. Conclusions are the same as for the distance coefficient. (bottom-

left) Posterior distribution of mean parameter. It has mean closer to 3.1, which more likely represents
mean of the dataset. (bottom-right) Joint plot of posterior distributions of traffic-level coefficients.
The bigger the traffic level, the more impact it has on the outcome variable. Jams and high levels have
the same impact.

The linear model of mean delivery times μi results in probable values with respect to
the dataset. The standard deviation completely changed its distribution and now follows a
normal distribution centered around 9.5. It is quite close to the std of the dataset, which is
≈8.99. The data are represented in Figure 10.

Figure 10. Computation and sample check of Model 1’s likelihood parameters. X-axis represents
coefficient values and Y-axis represents sample count. (left) Computed μ represents mean delivery
time for each sample. HDI 94% is represented as black bar at the bottom of the plot and tells us that
94% of shown mean times fall in range of 21 to 32 min. Those are much more realistic values than the
ones from prior distribution. Mean of this distribution (at the top of the plot) is 27 min, a reasonable
value. (right) Posterior distribution of standard deviation of the model; it no longer resembles prior,
and now it follows normal distribution with mean ≈9.5.

4.2. Posterior Predictive Checks for Model 2

Model 2 gave visually better results. All of the observed data fall within the samples
from the posterior distribution, as with Model 1. The tail is shorter than in Model 1. The
data are represented in Figure 11. Since there is not much difference between the posterior
distributions for the shared features of both models, we will only comment on new features,
distinct to Model 2, as well as on likelihood-related parameters.

The delivery-person rating follows a narrow normal distribution centered around
−0.085. Since it is negative and has a small std, we can reason that the delivery-person
rating is inversely related to delivery time. This is expected as couriers with higher scores
are more likely to deliver food faster. The number of deliveries follows exactly the same
trend as traffic-level coefficients, but numerically is more important as the values range is
greater. The data are represented in Figure 12.

The linear model of the mean delivery times μi has a much longer tail with regard
to Model 1, which results in a different 94% HDI. The standard deviation has a similar
distribution to Model 1, although its mean value is smaller, around 7.85. The data are
represented in Figures 11 and 13.
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Figure 11. Computation and sample check of Model 2’s likelihood parameters. X-axis represents
coefficient values and Y-axis represents sample count. (left) Computed μ represents mean delivery
time for each sample. HDI 94% is represented as black bar at the bottom of the plot and tells us that
94% of shown mean times fall in range of 19 to 37 min. Those are much more realistic values than the
ones from prior distribution. Mean of this distribution (at the top of the plot) is 27 min, a reasonable
value. (right) Posterior distribution of standard deviation of the model; it no longer resembles prior,
and now it follows normal distribution with mean ≈7.85.

Figure 12. Sampling check for posterior distributions of Model 2’s link-function parameters. X-axis
represents coefficient values and Y-axis represents sample count. (top-left) Posterior distribution of
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distance coefficient. It is much narrower than prior distribution, but still follows normal distribution.
Positive value indicates that it has impact on the output variable. (top-right) Posterior distribu-
tion of meal-preparation-time coefficient. Conclusions are the same as for the distance coefficient.
(center-left) Posterior distribution of mean parameter. It has mean closer to 3.1, which more likely
represents mean of the dataset. (center-right) Joint plot of posterior distributions of the traffic-level
coefficients. The bigger the traffic level, the more impact it has on the outcome variable. Jams and
high levels have the same impact. (bottom-left) Posterior distribution of the delivery-person-rating
coefficient. It is much narrower than prior distribution, but still follows normal distribution. Negative
values indicate inverse relationship between delivery time and rating; the bigger the courier rating,
the faster delivery will be made. (bottom-right) Joint plot of posterior distributions of deliveries-
number coefficients. The more deliveries, the more impact it has on the outcome variable. This is the
same trend as for the traffic level, but greater range translates to greater impact.

4.3. Model Comparison

The models were compared using the WAIC and PSIS-LOO criteria using ArviZ library
for an exploratory analysis of Bayesian Models [27].

The WAIC (Widely Applicable or Watanabe–Akaike Information Criterion) is a statisti-
cal measure used to estimate the out-of-sample predictive accuracy of a model. It does this
by evaluating the within-sample predictive accuracy and making necessary adjustments.
The WAIC calculates the log pointwise posterior predictive density (LPPD) and includes a
correction for the effective number of parameters to account for overfitting. This correc-
tion is performed by subtracting the sum of the posterior variances of the log predictive
densities for each data point [28].

Figure 13. Posterior predictive checks—Model 2. (left) HDI 94% is represented as black bar at the
bottom of the plot and tells us that 94% of shown mean times fall in range of 12 to 45 min. It is
slightly narrower than Model 1 range, but realistic nevertheless. Mean of this distribution (at the top
of the plot) is 27 min, which is reasonable value. It follows inverse gamma distribution as defined.
(right) Real and simulated data overlay. Both are normalized so that integral of the graph is 1. It
was necessary for comparison. Measured data have high overlap with sampled data from posterior
distribution. Generated data have shorter tail than Model 1, which is desirable.

Model 2 has a higher ELPD score (denoted as waic), which indicates its better within-
sample fit. The WAIC also correctly states that it has a higher number of effective parameters
(p_waic). The weight parameter clearly states that Model 2 has nearly one probability
within the given data. It is slightly more uncertain than Model 1, which is indicated by
the SE (standard error) parameter, but when compared to differences in the WAIC score
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and size of the dataset, it is not overly large. Overall, the WAIC clearly evaluated Model 2
as superior. It is presented in the Table 3 and Figure 14.

Table 3. Comparison results with WAIC.

Model Rank waic p_waic d_waic Weight SE dSE

2 0 −117,249.732164 14.307179 0.000000 0.997408 145.013769 0.000000
1 1 −122,442.256308 9.314501 5192.524145 0.002592 137.412164 88.510163

Parameters description [29]: Model: indicates whether it is Model 1 or Model 2. Rank: rank of the models, with
0 indicating the best model. waic: ELPD score, where higher values suggest better out-of-sample predictive fit.
p_waic: estimated effective number of model parameters. d_waic: difference between ELPD scores, relative to the
best model. Weight: relative weight of each model, interpreted as the probability of the model given the data.
SE: standard error of the ELPD estimate. dSE: standard error of the difference in ELPD between each model and
the top-ranked model.

The PSIS-LOO (Pareto Smoothed Importance Sampling using Leave-One-Out vali-
dation) method is used to calculate the out-of-sample predictive fit by summing the log
leave-one-out predictive densities. These densities are evaluated using importance ratios
(IS-LOO). However, the importance ratios can exhibit high or infinite variance, leading to
instability in the estimates. To mitigate this issue, a generalized Pareto distribution is fitted
to the largest 20% of the importance ratios [28].

Figure 14. Comparison plot for WAIC. Black dots indicate ELPD of each model with their standard
error (black lines). Grey triangle represents standard error of difference in ELPD between Model 1
and top-ranked Model 2. Plot indicates that Model 2 performs better with a dashed line.

The PSIS-LOO evaluation provides near identical results as the WAIC, and the same
conclusions as above can be drawn. It is presented in the Table 4 and Figure 15. An
alternative approach for comparison is of course statistical significance testing, using, for
instance, Kolmogorov–Smirnov-based tests (see, for example, [30]). This approach is very
popular in applications that rely on frequentist statistics. Our work, however, is based on a
Bayesian paradigm, where classical statistical significance or hypothesis testing is not as
interpretable; this is why we decided to not include them in this paper.
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Figure 15. Comparison plot for PSIS-LOO criterion. Black dots indicate ELPD of each model with
their standard error (black lines). Grey triangle represents standard error of difference in ELPD
between Model 1 and top-ranked Model 2. Plot indicates that Model 2 performs better with a
dashed line.

Table 4. Comparison result with PSIS-LOO criterion.

Model Rank loo p_loo d_loo Weight SE dSE

2 0 −117,249.732784 14.307799 0.000000 0.997408 145.013813 0.000000
1 1 −122,442.256329 9.314522 5192.523545 0.002592 137.412164 88.510227

Parameters description [29]: Model: indicates whether it is Model 1 or Model 2. Rank: rank of the models, with
0 indicating the best model. loo: ELPD score, where higher values suggest better out-of-sample predictive fit.
p_loo: estimated effective number of model parameters. d_loo: difference between ELPD scores, relative to the
best model. Weight: relative weight of each model, interpreted as the probability of the model given the data.
SE: standard error of the ELPD estimate. dSE: standard error of the difference in ELPD between each model and
the top-ranked model.

5. Discussion

One of the potential limitations is scaling models to a larger dataset. MCMC methods
are computationally expensive and time consuming. For the presented data, it took around
7 h on an Intel Core i7-11370H 3.30 GHz chip to run the inference. It also produced approx.
3.7 GB of data per model.

It is important to recognize that the methodology of Bayesian inference itself has
inherent limitations. Bayesian inference is optimal when the assumed model is correct.
However, since models are never perfect and only approximate reality, every model intro-
duces implicit limitations. Additionally, models are influenced by the subjective choice of
priors. Very diffuse or uniform priors can lead to overcertainty in estimates, while strong
priors that do not accurately represent the true probability distribution of the data can
result in poor model generalization. Furthermore, all models require subjective interpre-
tation and decisions by researchers, which, if not properly justified, can be a significant
shortcoming [23].

6. Conclusions

In this paper, we explored the application of Bayesian inference for predicting food-
delivery times, a novel approach not previously employed for this specific task to the best of
our knowledge. Our results indicate significant potential in this methodology, particularly
with Model 2, which, as an extension of Model 1, demonstrated a superior performance.
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A major advantage of our approach is its ability to capture model uncertainty and provide
interpretability, as well as to assess the impact of predictors, thereby offering insights into
areas of improvement for food-delivery companies. We hope that our findings empower
future exploration of Bayesian methods. For the field of time-travel estimation, this work
could serve as a baseline for researchers to build upon and refine. In other areas, we aim to
demonstrate an accessible approach and encourage scientists to experiment with it.

Future research should aim to test these models on data from more reputable sources.
This endeavor may prove challenging, as food-delivery data are often proprietary and not
publicly accessible. Additionally, it is crucial to validate the models with out-of-sample
datasets to ensure robustness. Expert input on prior selection should also be considered.
Finally, the business applications of these findings merit consideration, both for historical
data analysis and real-time implementation. Further work could involve developing
additional models with diverse datasets to explore predictor relationships. This deeper
understanding could potentially enhance feature selection in machine learning models,
which are commonly used for the ETA task.
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Abbreviations

The following abbreviations are used in this manuscript:

OFD Online food delivery
GPS Global Positioning System
PSIS-LOO Pareto Smoothed Importance Sampling using Leave-One-Out validation
WAIC Watanabe–Akaike Information Criterion
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
ETA Estimated Time of Arrival
OFCT Order Fulfillment Cycle Time
OD Origin–destination
OSRM Open-Source Routing Machine
HDI Highest-Density Interval
LPPD Log pointwise posterior predictive density
ELPD Expected Log pointwise Predictive Density
SE Standard error
dSE Standard error of the difference in ELPD between each model
MCMC Markov Chain Monte Carlo
HMC Hamiltonian Monte Carlo
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Abstract: Online food delivery services are rapidly growing in popularity, making customer satis-
faction critical for company success in a competitive market. Accurate delivery time predictions
are key to ensuring high customer satisfaction. While various methods for travel time estimation
exist, effective data analysis and processing are often overlooked. This paper addresses this gap by
leveraging spatial data analysis and preprocessing techniques to enhance the data quality used in
Bayesian models for predicting food delivery times. We utilized the OSRM API to generate routes that
accurately reflect real-world conditions. Next, we visualized these routes using various techniques to
identify and examine suspicious results. Our analysis of route distribution identified two groups of
outliers, leading us to establish an appropriate boundary for maximum route distance to be used in
future Bayesian modeling. A total 3% of the data were classified as outliers, and 15% of the samples
contained invalid data. The spatial analysis revealed that these outliers were primarily deliveries
to the outskirts or beyond the city limits. Spatial analysis shows that the Indian OFD market has
similar trends to the Chinese and English markets and is concentrated in densely populated areas. By
refining the data quality through these methods, we aim to improve the accuracy of delivery time
predictions, ultimately enhancing customer satisfaction.

Keywords: food delivery services; travel time estimation; spatial analysis; data preprocessing;
Bayesian modeling

1. Introduction

The e-commerce sector is in a constant state of growth and evolution, particularly
within its subdomain of online food delivery (OFD) [1,2]. Recent market forecasts indicate
a steady rise in revenue for companies offering such services. With numerous players in the
market, ensuring customer satisfaction is paramount for a company’s survival. Customers
increasingly demand user-friendly applications that simplify the ordering process with just
a few taps, while also providing features such as delivery time estimates and communi-
cation channels with couriers [3]. However, estimating delivery times accurately without
real-time data presents a significant challenge. While companies can track courier positions
via GPS, they lack access to real-time information on factors such as traffic, accidents,
and roadworks.

Before any model, algorithm, or computational technique can be applied, the initial
step involves finding and preparing data. Effective data analysis and processing play a
pivotal role in determining the performance and outcomes of models, given that many
techniques rely on clean and comprehensive data. Nonetheless, real-world data seldom
meet these ideal conditions and are often challenging to interpret. Even though Bayesian
models, discussed further in Part 2 of this article [4], are less affected by noisy data and
outliers, they still require data processing and reasonable assumptions.

Visualization of data is equally significant. It offers valuable insights, particularly
when combined with expertise in the relevant field. For instance, plotting geospatial data
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on maps can reveal outliers, patterns, or anomalies. Proper visualization is also essential to
draw appropriate conclusions and evaluate model outputs [5].

This article leverages spatial data analysis and standard data preprocessing techniques
to enhance the data quality utilized in Bayesian models aimed at predicting food delivery
times. By examining the spatial distribution of online food deliveries, we identify and
rectify faulty data points. It also gives us insight into the Indian food delivery market
and customer behavior, which, to the best of our knowledge, has not yet been explored.
Drawing from existing literature, we identify the most crucial features for our models.
Additionally, we investigate the relationships between variables in our dataset to uncover
any patterns that could impact the behavior of our models.

The contributions of this paper can be summarized as follows: (1) By leveraging the
OSRM API, we effectively transformed raw data into meaningful predictors, which are
essential for the implementation of Bayesian models. (2) Standardizing the data proved
to be a crucial step for numerical stability in the models without compromising their
interpretability. (3) Visualization provided valuable insights into outliers, enabling us to
justifiably exclude them from the training data. (4) Route analysis provides insight into
the Indian food delivery market and the ability to compare with other countries (mainly
England and China).

The remainder of this paper is organized as follows: In the next section, the relevant
studies in the extant literature are reviewed and discussed. Section 3 provide overview
of the used data and describe data preprocessing and visualization methods in detail. In
Section 4, we perform in-depth analysis of the processing results and spatial analysis of
routes. Finally, in Section 5, we make a conclusion and describe possible future work.

2. Literature Review

2.1. Distance and Travel Time Estimation

Typically, OFD platforms acquire customers’ GPS coordinates when they open the
app to place an order [6]. Then, their location is used for restaurant recommendations and
to specify the delivery destination. Subsequently, customer GPS coordinates can be used
to predict travel time with an origin–destination based approach. Although it allows for
estimating time without knowing the exact route and distance, a significant issue in this
particular method is that it requires an exact departure time, which is usually unknown.
Moreover, most of the research using origin–destination (OD)-based methods have focused
on other applications such as taxi trip duration [7].

Our problem demands that we provide customers with accurate waiting times with-
out relying on knowledge of the precise preparation time [8] or the courier’s departure.
Moreover, variables used in Bayesian models need to be obtainable from the probabilistic
distributions. To reduce complexity, we transformed raw timestamps into meal preparation
times, aligning the predictor variable’s units with the output variable (minutes). Meal
preparation times likely follow well-defined distributions (e.g., normal, gamma, uniform),
whereas event timestamps may exhibit complex distributions with peaks corresponding
to breakfast, lunch, or dinner order times. We believe that this decision increases the
explainability of the models. As for the geographic coordinates, we could try representing
them as probability distributions. However, a challenge would likely arise when interpret-
ing the outcomes of our models, since coordinates alone convey very little information
about possible routes or the time required to travel them. Instead, we could choose to
transform the coordinates into approximate shortest route distances. This approach would
provide a clear dependency: the longer the route, the longer it takes to travel. Similarly to
transforming timestamps into meal preparation time, we believe that transforming geo-
graphical coordinates into route distances increases the explainability and interpretability
of our models.

Joshi et al. articulated a compelling argument advocating for the consideration of
road distance over geometric distances like the Haversine distance for accurate delivery
time estimation. They contend that relying solely on geometric distances can result in
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oversimplified representations, potentially leading to unrealistic data inputs into predictive
models. Their approach does not entail route generation but rather involves mapping GPS
coordinates onto a road network map of the analyzed area. They mapped the city network
to the graph and assumed that the weight of each edge is he average travel time across all
delivery vehicles in the corresponding road. Their study was focused on effective batching
of orders and assignment of orders to vehicles [9]. Ji et al. adopted a method for estimating
travel time that utilizes GPS trajectories aligned with specific road network segments.
They used GPS trajectories of food carriers and removed stay points. Then, they mapped
GPS trajectories to road segments and obtained the travel time of carriers on each road
segment (which was included in their dataset). Their research, however, is tailored towards
optimizing the grouping of tasks related to efficient delivery operations [10]. Ulmer et al.
assumed that all drivers follow a mobile navigation device to determine the best paths.
They approximated road distance by multiplying the Euclidean distance by a factor of
1.4. It is demonstrated that this approach closely approximates the relationship between
Euclidean and street distances. They chose such a method as they were attempting to
dynamically control a fleet of drivers and had so many potential paths that they exceeded
the limitations of commercial mapping services [11]

Alternatively, some researchers have turned to popular routing tools like Google
Maps API, Baidu Maps API, and the TOM-TOM API [12–17]. Yet, the utilization of these
services incurs exorbitant expenses for OFD companies, often surpassing a staggering one
million dollars annually. It should be noted that these costs are particularly high for large
companies, where the number of orders is the primary factor influencing the price of the
service. Companies attempt to reduce these costs by caching a set of routes or utilizing
historical delivery data [18]. As a cost-effective solution, exploration into open-source
routing services like OSRM (Open-Source Routing Machine) has been initiated [19].

2.2. Spatial Analysis

Spatial analysis related to food outlets and OFD platforms has also grown in popularity,
as researchers are more interested in factors that influence customer behavior. Most of the
spatial approaches are concentrated on the distribution of food outlets, food accessibility,
and its impact on diet and health. Most frequently used methodologies in spatial analysis
are statistics and GIS [20].

Another objective of spatial analysis in the food delivery context is to explore the
factors influencing the utilization of these services, particularly in relation to built infras-
tructure. Typically, densely populated areas are examined [15,21] because online food
outlets tend to be more prevalent in urban regions [22]. Recent studies have examined
the distribution of different types of food outlet (e.g., fine dining, fast food), which can
affect the usage of OFD platforms [23]. Regardless of the research area, the periphery has
the most limited access to food outlets and OFD platforms cannot improve this [15,22–24].
Even in studies that are more focused on food delivery optimization, spatial analysis of the
restaurants and customers’ distribution play crucial roles [25].

Spatial analysis of deliveries or journeys is not as common and typically focuses
on exploring the connections between distinct regions [10,26]. In the realm of region
segmentation, researchers often employ two primary methods: the grid-based approach
and the road network-based approach. The grid-based method is particularly useful for
visualizing smaller areas, such as those in Wang et al.’s article [26]. The road network-based
approach is claimed to be more informative; yet, in densely populated urban areas, this
approach may yield excessively small regions, necessitating a merging step prior to further
analysis [10].

3. Materials and Methods

3.1. Data

In this study, we employed the Food Delivery Dataset, which is presently accessible
on Kaggle [27]. Initially, the dataset was made available by HackerEarth for their machine
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learning competition. It encompasses more than 45,000 deliveries spanning 21 cities across
India. The data span a three-month period, encompassing February through April of 2023.
The dataset includes the location of restaurants and delivery destinations as well as other
nonspatial information such as weather, traffic conditions, and time and date the order was
placed. Table 1 provides a comprehensive list of all variables under consideration, along
with their respective meanings.

Table 1. Data available in the dataset and their description.

Variable name Meaning

Restaurant_latitude Latitude of the restaurant
Restaurant_longitude Longitude of the restaurant
Delivery_location_latitude Latitude of the delivery destination
Delivery_location_longitude Longitude of the delivery destination
Road_traffic_density Road traffic intensity (Low, Medium, High or Jam)
Weatherconditions Current weather conditions (e.g., Sunny, Stormy, Fog )
multiple_deliveries Quantity of simultaneous deliveries (number 0–4)
Delivery_person_Ratings Average rating of the courier
Delivery_person_Age Age of the courier
Order_Date Date of placing the order
Time_Orderd Time of placing the order
Time_Order_picked Time of picking up by courier
Time_taken Delivery time in minutes

3.2. Routes Generation

While the exact trajectory of the courier remains uncertain and unpredictable, approxi-
mating the route is essential for our purposes. This will not only ensure an appropriate
level of reality reproduction, but will also allow to detect incorrect data. Routing engines
are not able to generate routes between geographical coordinates that cannot be connected
by a road network, thus implicitly detecting improper origin–destination pairs. To achieve
this, we have opted to leverage the OSRM API [28], an open-source routing engine. By
constructing tailored queries containing GPS coordinates for both the starting and ending
points of the route, we can utilize the API to generate optimal route suggestions [29].
Furthermore, customization options such as transportation mode (e.g., car) and route type
(e.g., shortest route) allow for further refinement of our queries. After receiving the routing
request, the OSRM API passes it on to the OSRM routing engine, which employs the
OpenStreetMap (OSM) [30] data to produce the optimal route according to the specified
parameters. OpenStreetMap is an open geographic database that is updated and main-
tained by a community. It can be treated as an alternative to Google Maps. The routing
engine considers multiple factors, including road types, speed limits, and turn restrictions,
to guarantee an accurate and efficient route. The output of the routing request contains
information about the route, including the route geometry, distance, and estimated travel
time. If there is an issue processing the request, the API will provide an error code (e.g.,
“InvalidUrl”) indicating the reason behind the failure. In our case, there were three types of
possible errors: “NoSegment”, “TooBig”, and “TooManyRequests”. The first error indicates
that one of the supplied input coordinates could not snap to the street segment. The second
scenario applies if the request size violates one of the service size restrictions. The last
expected error appears when the server is overloaded.

3.3. Preprocessing

Preparing data as needed by the model is an essential part of delivery time estimation.
Figure 1 shows the preprocessing steps, which are described in detail in the following.

Data cleaning is initial part of preprocessing. It ensures that missing values will not
lead to poor results and wrong conclusions. In our approach, we decided to remove rows
with missing data and rows where restaurant or destination GPS coordinates are outside
the geographical boundaries of India. Approximately 15% of the samples were removed
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in this process. In the case of the removed geographical coordinates, they were logically
incorrect (points in countries other than India, points in the ocean), which in later steps
would lead to a huge number of errors when using the OSRM API.

Figure 1. Preprocessing steps include the following: deletion of incomplete or out-of-India samples,
generating routes via OSRM API, converting the date and time into a sustainable format, select-
ing predictors with the greatest information value, and mapping data to format appropriate for
Bayesian model.

Routes generation is performed using OSRM API, which was described in Section 3.2.
The created OSRM client uses asynchronous HTTP to find the shortest route between
restaurant and delivery destination. If response is successful, distance and route geometry
are saved; otherwise, the unsuccessful request and its reason are logged for future analysis.
Out of the suspected error types, we only encountered “TooManyRequests”. It was most
likely caused by too many people trying to use the server at once. To overcome this
issue, we logged those failed routes and fetched them again when the service was more
responsive. As for the other two types of errors, it would be difficult to correct them; so,
the data related to such problematic routes would be excluded from modeling. Distance
obtained from routing API is integrated with rest of dataset as an additional column.

Data transformation techniques are used to convert data into a sustainable format.
Date and time are especially difficult to analyze due to various factors. To overcome this,
meal preparation time is calculated based on Time_Order and Time_Order_picked. One
variable represents time of placing the order and another time of picking up by courier.
Their difference will determine the meal preparation time. This will not correspond to an
exact time, as the prepared dish may be waiting for the courier to arrive. This will enable
the model to be utilized in cases where the restaurant furnishes an estimated preparation
duration for the order, or where the statistics of preparation time can be derived from
historical data [8].

Feature selection is one of the ways to cope with dimensionality. The goal is to remove
irrelevant and redundant features, which may include accidental correlations in models
and reduce their generalization abilities. Feature selection also decreases the risk of over-
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fitting and reduces the search space, making the learning process faster and less memory
consuming [31].

Feature scaling is a critical step in constructing effective models as it helps mitigate bias
stemming from variations in the ranges and magnitudes of data. Among the most widely
used techniques are normalization and standardization. We have chosen to implement
standardization for selected features with a continuous distribution. This decision ensures
that operations and results of the model will be more straightforward to interpret.

Mapping categorical data is essential to use them as input for a model. It is crucial to
note that, unlike in machine learning models, for Bayesian models created using the Stan
library [32], data must be mapped starting from 1 upwards (as vectors are indexed from 1).

3.4. Visualization

As mentioned previously, visualization is also an important part of preprocessing.
Plotting the data can reveal outliers or anomalies that cannot be easily identified in other
ways. In this research, we will perform visual analysis of the generated routes followed by
analysis of distributions of input data of the models.

The main focus of the route analysis is spatial visualization. We will explore various vi-
sualization methods, including heatmaps, interactive maps, and road network graph maps.

For the route analysis, each of the 21 cities is treated separately, allowing for a more
detailed examination. The allocation of routes to each city was accomplished through
clustering. We utilized the KMeans algorithm provided by scikit-learn [33], with clustering
based on the locations of restaurants and delivery destinations.

To implement interactive maps, we used Folium [34], which is a wrapper for the
Leaflet.js library. Folium allows for the creation of interactive Leaflet maps and supports
a wide range of overlay formats, such as images, videos, and GeoJSON, enabling the
embedding of multiple layers. For our maps, we used OSM as the base layer and added
routes based on the geometry returned by the OSRM API. Additionally, routes from each
city were plotted on separate layers for clarity. Each city has been added as a separate
layer that can be activated on the map. The main advantage of this approach is the ability
to analyze small areas of the city without compromising image quality. Moreover, routes
are embedded on the OSM, which gives the opportunity to check infrastructure near the
starting and ending points of the route. This may also reveal anomalies, e.g., if the staring
point of the route is not near the restaurant.

Heatmaps are particularly useful for analyzing large datasets or densely located points.
Our goal is to depict road usage with an intensity map similar to Navarro’s approach [35].
Our approach was to divide each city into a grid of squares of selected length. Each grid
would be represented by a pixel on an image. If there was a route point in such a grid, then
grid value was incremented by one, thus changing color of the pixel and effectively creating
a heatmap. However, the raw route geometry data are unevenly distributed, as illustrated
in Figure 2. Points are clustered near intersections and turns, whereas on straight sections,
the routes are sparsely spaced. To achieve a meaningful scale, we need to interpolate
points on these straight sections. We implement linear interpolation for each route segment
where the distance between consecutive points exceeds a selected threshold (e.g., 5 m).
Linear interpolation is a popular method; however, it has high error when the distance
between interpolated points is too large. This is particularly noticeable in the curved road
segment [36].

Other widely used methods include cubic interpolation, neighbor-based interpolation
(also known as distance-based interpolation), and spherical linear interpolation. Cubic
interpolation uses the current value and gradient vector to estimate intermediate points.
This method has very low error rates but requires significantly more computational time,
often up to ten times longer [37]. Neighbor-based interpolation determines the interpolated
value by considering the surrounding points, calculating a weighted average of the nearby
observations or using the nearest observation values. Spherical linear interpolation is
particularly useful over long distances where the curvature of the Earth must be taken into
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account. In our case, we try to interpolate data on straight road segments, and the distance
between two consecutive coordinates is relatively small, usually smaller than 100 m. We
find that linear interpolation is sufficiently precise for this task.

Figure 2. Raw distribution of sample route geometry. GPS coordinates are clustered near intersections
and turns, whereas on straight sections, they are sparsely spaced. Considering raw distribution of
route geometry data for some visualization method interpolation is necessary.

Another method we considered was visualizing routes on road network graphs. This
required generating a graph representing the road network. We utilized the OSMnx
library [38], which provides tools to model, analyze, and visualize street networks and
other geospatial features from OSM. The generated graph, along with the routes obtained
from the OSRM API, needed to be converted into a common format and then plotted as
a high-resolution image. In contrast to interactive maps, differences in road segments’
intensity will be more visible. Additionally, there will be no unnecessary elements like
different icon types.

In order to minimize computation time and ensure the appropriate level of map detail,
we recommend generating a graph only for the city area where the analyzed routes occur.
In our case, the maximum and minimum values of longitude and latitude that occurred on
routes in a given city were selected as the limit values. No information about any route
will be lost, but four points of all routes are located exactly on the border of the image. This
will not influence analysis of routes distribution.

3.5. Models Overview

For better understanding of the importance of preprocessing steps and conclusions, a
short overview of the proposed Bayesian models is in order. Bayesian inference is a method
of statistical inference, in which we fit a predefined probability model to a set of data and
evaluate outcomes with regards to observed parameters of the model and unobserved
quantities, like predictions for new data points [39].

Both models are generalized linear models. We have defined linear predictor as
η = Xβ, where X denotes vector of features and β is vector of coefficients. Both vectors are
size N × 1 [39]. We then used a logarithmic link function to transform the linear predictor’s
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domain to positive real numbers. It is necessary step, as both models are defined by inverse
gamma function. This particular distribution effectively models skewness of the data and
provides strictly positive continuous outputs. An in-depth description of models and
explanation of Bayesian inference is presented in Part 2 of this article [4].

4. Results

4.1. Preprocessing Results

Preprocessing was conducted as outlined in Section 3.3. During data transformation,
we discovered instances where deliveries, from the moment the courier picked up the
order to its delivery, were recorded with zero or negative times. We detected them by
comparing the calculated meal preparation time and total delivery time. Consequently,
additional data cleaning was necessary, as data used in modeling need to be obtainable
from the distributions used. Samples with such travel times were excluded from modeling.
Negative travel times can destabilize models and make it impossible to obtain reasonable
results. A possible cause for these anomalies is that not all of the data used in calculations
were initially recorded and missing values were added manually to the system.

To estimate delivery times, companies and researchers commonly utilize a variety
of features. These include spatial features (such as the location of the restaurant and
destination, and the city road map), cooking time features, order features (like the number
of items ordered and the date and time), and courier features (such as workload) [8,9,40–42].
Our first model utilizes the distance between the restaurant and delivery destination, meal
preparation time, and traffic density. These features are used, respectively, in 42%, 9%, and
12% of the researches [43]. The second model is extended by courier features: the number
of simultaneous deliveries and courier rating, which are also crucial in predicting food
delivery times [8]. In our dataset, traffic density refers to road traffic intensity; however,
the exact measurement methodology is not provided. A detailed analysis of the input data
will be presented in Section 4.1.2.

One of the most critical steps in our preprocessing flow was obtaining real world
distances. This allowed us to construct a well-interpreted model. Utilization of standard-
ization assured the numerical stability of our models, which would otherwise be difficult
to achieve. Last but not least, careful consideration of the features used in modeling was
equally important. Our second model, which took into account two additional variables,
required over two hours more to perform sampling.

4.1.1. Routes Generation

We used OSRM API to generate approximate delivery routes based on demo server.
The parameters and their values in our requests are as follows: service—route, version—v1,
profile—driving, overview—false, geometries—geojson, and steps—true. GeoJSON is
a standardized format for encoding geographic data structures. The steps parameter is
used to return information related to each part of the route. All approximate distances
were successfully generated, with no incorrect routes identified between the restaurant and
delivery destination. The histogram of the obtained distances is shown in the accompanying
Figure 3, and their statistics are presented in Table 2. The histogram and statistics reveal
that the distances in our dataset are significantly larger than those in other studies. In
research conducted by Wang and He, the 95th percentile for distance is 6 km [15], whereas
in our data, it is approximately 28.5 km. The shape of the distance distribution in their
study is similar to ours, except for two peaks in our distribution. However, they analyzed
customer behavior only in Shenzhen, which is a metropolis with a unique population
composition and many subcenters. It has a very different dynamic compared to the Indian
cities included in this study.
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Figure 3. Histogram of total distance of generated routes; each bin represents 1 km interval. Dis-
tribution of route distances is skewed; however, in Bayesian modeling, such distributions are not
problematic. Models can handle various data distributions including joint distributions. Most of
the deliveries have a distance under 25 km. Two peaks in the distribution correspond to distances
of 2–3 km and 4–5 km. Previous research shows that most orders are carried out within a distance
of 2–3 km [15]; however, it analyzes only one city. Our data include deliveries from cities that vary
in size and number of inhabitants; therefore, the first peak may correspond to high-density cities
and the second to smaller ones. Moreover, two outlying groups can be identified (around 65 km and
120 km).

Table 2. Statistics of routes generated using the OSRM API.

Total number of routes 41522
Average route distance 13.99 km

Standard deviation of route distance 8.42 km
Minimum route distance 1.49 km

95th percentile 28.53 km
99th percentile 36.42 km

Maximum route distance 121.89 km

Distance intervals with the highest number of routes 2–3 km (2331)
4–5 km (2153)

The number of deliveries significantly drops when the distance exceeds 25 km. How-
ever, there are routes with distances that are considerably longer. The histogram indicates
two distinct groups: one around 65 km and another around 120 km. Both of these groups
fall above the 99th percentile, classifying them as outliers. To understand the reasons be-
hind these outliers, we conducted a thorough investigation and compared their routes with
other routing engines—particularly Google Maps, which employs different mapping tech-
niques. We use websites dedicated to individual services (https://www.google.pl/maps,
https://www.openstreetmap.org (accessed on 16 August 2024)) and check each pair of
geographical coordinates that are in the group of outliers.
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First, we checked if both engines returned routes with similar distances and paths.
This way, we excluded incorrect mappings from the OSRM engine or erroneous point
mapping in OSM. Next, we analyzed the surroundings of the starting and ending points.
We verified whether there was actually a restaurant near the restaurant locations and
whether the delivery location was in the vicinity of buildings. We identified unrealistic
delivery locations; we defined these as locations where delivery is highly improbable, such
as points on highways and bridges or points far from any buildings. In the future, the
analysis of the surroundings could be automated using OSM, which provides the ability
to check if selected infrastructure objects (e.g., shops and restaurants) are within a chosen
radius of a point.

All routes with road distances around 65 km are concentrated in the Dehradun area.
Dehradun is situated in a valley at the foot of the Himalayas, resulting in a limited number
of roads leading to the surrounding areas. A comparison of the selected route determined
by the OSRM API and Google Maps is shown in Figure 4. Both engines visually identified
the same route; however, Google Maps indicates that the route is approximately 2 km longer.
This discrepancy may stem from differences in point positioning on various maps and the
distinct distance calculation algorithms used. While the exact route lengths also vary among
engines utilizing only OSM data, these differences are negligible over shorter distances.

(a) (b)
Figure 4. Comparison of routes determined using different routing engines. (a) Route obtained using
OSRM on OSM. (b) Route obtained using Google Maps. Both services generate approximately the
same route (difference in distance compared to the length of the entire route is negligible).

The second problematic group of routes is found in the city of Agra. Analyzing this
case is particularly challenging because online routing engines display varying results
depending on the day of access. Additionally, Google Maps often selects different destina-
tions for the same location—sometimes directing to an expressway and other times to a
parallel street. The OSM data used by OSRM indicate that the given location is situated in
one of the lanes on the nearby Yamuna Expressway. This suggests that the routes allowing
direct U-turns on this type of road are incorrectly designated. A comparison of different
routes for the same locations is illustrated in Figure 5.

Discrepancies between routes generated using OSRM API and Google Maps may be
caused by differences in road network representation. Both services use graphs; however,
one is a commercial tool and the other is open source. Therefore, there may be slight
differences in the positions of features on these maps. There are also limitations to location
accuracy. We have noticed that entered coordinates change their values once routing
engines start processing. The differences are negligible but may affect the results obtained.
Additionally, maps may add some noise to location data due to localization privacy policies.
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The discrepancies in the routing engine do not impact the relevance of this paper.
Although using different routing engines might produce varying routes, resulting in
different distributions in our models, the models proposed in Part 2 of this article focus
on the applicability of Bayesian modeling for delivery time prediction. Consequently, the
variation in the distribution of one predictor would not affect the study’s findings.

(a) (b)

(c)

Figure 5. Comparison of routes results. (a) Route obtained using OSRM on OSM, which involves
direct U-turn on Yamuna Expressway (obtained 18 May 2024). (b) Route obtained using OSRM on
OSM (obtained 16 April 2024). (c) Route obtained using Google Maps that maps the location on road
near Yamuna Expressway (obtained 18 May 2024). The lack of repeatability in the obtained routes
may result from the lack of a direct point corresponding to the coordinate from the dataset.

To ensure our models are trained on meaningful data, we decided to filter out the
outliers. We set a 30 km upper limit for deliveries, which encompasses over 96% of the
data available after preprocessing. Orders that take up to 45 min are usually accepted
[25], although too long a delivery time significantly reduces the freshness and quality of
the meal. Therefore, we assume that deliveries over 30 km cannot meet this requirement.
Standardization was performed after applying this distance filter to prevent excessive data
spread caused by biases in the mean and standard deviation.
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4.1.2. Input Data Analysis

Following the described preprocessing and outlier filtering, we ended up with nearly
35,000 data samples. The data prepared for Bayesian models are presented in Figure 6.

Figure 6. Histograms of data used in inference. (a) Standardized distance, bins defined as <−1.5;2>
with steps of 0.1. (b) Standardized meal preparation time, 20 bins equally spaced, automatically
defined by program. (c) Categories of road traffic, from highest to lowest. (d) Distinct deliveries
count. (e) Standardized delivery person rating, bins defined as <−7;2> with steps of 0.5.

The basic distance statistics remained relatively stable after filtration. The average
distance decreased to 13.33 km, while the standard deviation reduced to 7.17 km. This
outcome was expected, given that the filtered values constituted only about 3% of the
dataset eligible for model utilization.

The distribution of order preparation time presents an intriguing puzzle. Initially
perceived as a continuous variable, the values are distributed almost evenly across 5, 10, and
15 min intervals. This phenomenon could stem from the provision of approximate order
and pick-up times rather than precise values. Additionally, calculated meal preparation
time may not reflect to exact cooking time. On the other hand, time required to prepare
the food is related to the restaurant type. Expected times for fast, fast casual, and gourmet
restaurants are 5, 10, and 15 min [11]. This will allow the type of restaurant to be indirectly
taken into account. However, in case of higher cooking times, it may lead to a significant
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increase in the expected delivery time. Nevertheless, there are no anomalies in the dataset
because the meal preparation time is assumed to be between 5 and 15 min [25].

The prevalence of high ratings among couriers has led to an inflated average of 4.6
in the standardization process. Furthermore, the remarkably small standard deviation of
0.32 translates to substantially reduced standardized values for couriers with lower ratings.
Notably, no courier has a rating below 2.5.

The categorical variables “traffic density” and “number of deliveries” appear to align
with expectations. Couriers typically handle no more than two deliveries concurrently.
Interestingly, deliveries occur with equal frequency during rush hours and periods of
very low car traffic. However, deliveries in moderate traffic conditions are relatively
less common.

4.2. Spatial Analysis

The aim of the spatial analysis was to analyze the frequency of use of road segments.
Orders are not evenly distributed among all 21 cities. The analysis included all those located
in India, and a route for them could be determined (including data considered as outliers).
Jaipur is the clear leader in terms of the number of orders, with over 3400 deliveries located
there. Eight cities have very similar values at the level of 3150 deliveries. These include
the largest cities in India such as Bangalore and Mumbai. Cities in which the previously
calculated outliers occurred have a significantly lower number of deliveries in their area.
A chart showing the number of orders for each city is shown in Figure 7. Discrepancies
in orders among different cities are expected, as previous studies conducted in China and
England have shown that densely populated areas have higher OFD platform usage [15,22].
Limited representations of smaller cities may lead to inaccurate delivery time estimation in
these cities. On the other hand, it may improve the generalizability of the model.

Figure 7. Number of orders in each city. Larger Indian cities have a higher number of orders while
smaller cities there have even 6 times fewer orders. This confirms that ordering food online is a
typical urban phenomenon.

Interactive maps created using Folium present completed routes on a road map with
OSM. The intensity of a given road fragment depends on how often it occurs on routes.
Additionally, for readability and easier analysis, the routes from each city have been added
as a separate layer that can be activated. Sample visualization results are shown in Figure 8.
The main advantage of this approach is the ability to analyze small areas of the city without
compromising image quality. It help us to identify outliers that were related to unreal
delivery locations, e.g., deliveries to places without nearby buildings.
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(a) (b)

(c)
Figure 8. Route visualizations using Folium for (a) Mumbai, (b) Jaipur, and (c) Bangalore. Sections of
roads that were heavily trafficked with deliveries have a more intense color, while sections that have
been traveled once or twice are much less visible.
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It can be noticed that the roads in city centers are definitely the most frequently
traveled. The size of the marker is not related to the results because it is automatically
adjusted to the scale of the map. The closer the area, the thinner the drawn routes. Routes
that have been traveled once or twice are barely visible. Such an example is noticeable at
the left edge of the Jaipur image.

The visualization result using a city graph for similar cities is shown in Figure 9.
Similarly to the previous maps, the intensity of a road fragment depends on its frequency
in the routes. In general, in large-scale images generated using OSMnx, differences in
saturation levels are not so easily noticeable. Due to the dense network of streets in the
centers where deliveries are concentrated, all routes appear to be seldom traveled. However,
after a small zoom, they are much more visible than on maps generated using Folium.

The very visible difference in the intensity of bridges on the Mumbai map made
using different methods interesting, so we decided to analyze it more closely. As it turned
out, there was another road running in the immediate vicinity of the bridge, which also
had a route that—at a sufficiently large distance—was displayed directly on top of itself,
disturbing the results. Moreover, we were dealing with a route that made no sense because
it ended in the middle of a bridge (Google maps even projected the point onto the waters
of the bay) and it was filtered as an outlier (it was about 40 km long).

(a) (b)

Figure 9. Cont.
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(c)
Figure 9. Route visualizations of routes on a city street graph made in OSMnx for (a) Mumbai,
(b) Jaipur, and (c) Bangalore. Sections of roads that were heavily trafficked with deliveries have a
more intense color, while sections that were traveled once or twice are much less visible.

Despite utilizing linear interpolation to increase the number of points on routes, we
did not achieve satisfactory results with our heatmap visualizations. We were unable to
determine a suitable grid length. When we selected a grid length of 25 m, the resulting
images had a resolution that was too high, appearing uniform to the human eye and
requiring significant zoom to see the intensity of corresponding road segment. Conversely,
a grid length of 1 km allowed for the perception of routes across the entire city but was
excessively broad. This broadness caused nearby routes to blend together and thus fail to
represent the intensity of the distinct routes’ segments.

5. Discussion

This research underscores the importance of data preprocessing and spatial analysis
in the context of online food delivery services. By integrating routing information from the
OSRM API, we have demonstrated a method for identifying and eliminating outliers in
delivery data, thus enhancing the accuracy of subsequent predictive models.

Based on the route distribution in Figure 3 and direct analysis of the two groups of
outliers in Figures 4 and 5, we classify 3% of the data as outliers. This also indicates that
outliers are predominantly deliveries to more distant locations, whereas deliveries within
city limits exhibit fewer outliers. Outliers located in the city boundaries most often refer to
unreal destination points (e.g., points on highways or bridges). One of them is located on
the map of Mumbai (bridge) shown in Figure 8. Additionally, our spatial analysis shows
that the Indian OFD market has similar trends to the Chinese [15] and English [22,24]
markets. The distribution of orders among cities presented in Figure 7 confirms that use of
this type of platform is much more popular in densely populated areas.

Our approach has some limitations. First, the study area is restricted to India. Con-
sequently, the results may not be generalizable on an international scale. To confirm the
generalizability of our findings, we would need to gather and test similar datasets from var-
ious global regions. Consistent performance across these diverse datasets would validate
our models’ robustness. Second, we mainly used one map provider, OSM, and one routing
engine, OSRM; therefore, the results may differ from those obtained using other tools.
Third, the data used cover a period of three months; however, the number of deliveries in
cities is relatively low. In this dataset, the average number of deliveries in Jaipur is under
40 per day. This does not accurately reflect the actual workload of OFD companies, which
is likely to be much larger, and some methods may not perform as expected in the case
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of large amounts of data. The most noticeable problem may be the low responsiveness
of Folium’s interactive maps, which makes analysis much more difficult. In the case of
Bayesian models, a large amount of data will increase the model fitting time and require
more computational power.

Additionally, the use of the OSRM API involves several limitations, especially when
considering the usage of a shared server. The number of requests per minute is limited
and common to all users. Being an open-source project, OSRM does not offer any quality
guarantees and, in some regions, the data may be sparse or outdated. These issues can
affect all open-source routing engines. Moreover, there are certain geographical areas
where access to external maps or GPS services is restricted. Those limitations could impose
difficulties in using OSRM in different parts of the world.

In the second part of this article, we will delve into the application of Bayesian models
to the preprocessed dataset, examining their efficacy in predicting delivery times and ex-
ploring potential improvements to the modeling approach. Our dataset does not accurately
reflect the actual workload of OFD companies; therefore, it is highly recommended for
future research to evaluate used methods on a larger dataset. The analysis of the Indian
OFD market is based solely on deliveries; further research may take into account other
elements such as social and cultural factors. Additionally, future studies could consider
refinement of the preprocessing steps, such as advanced handling of missing values and
more sophisticated outlier detection methods.
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Abstract: In today’s competitive digital landscape, banking firms must leverage qualitative and quan-
titative analysis to enhance their website interfaces, ensuring they meet user needs and expectations.
By combining detailed user feedback with data-driven insights, banks can create more intuitive and
engaging online experiences, ultimately driving customer satisfaction and loyalty. Thus, the need
for website customer behavior analysis to evaluate its interface is critical. This study focused on
the five biggest banking firms and collected big data from their websites. Statistical analysis was
followed to validate findings and ensure the reliability of the results. At the same time, agent-based
modeling (ABM) and System Dynamics (SD) were utilized to simulate user behavior, thereby al-
lowing for the prediction of responses to interface changes and the optimization of their website,
and to obtain a comprehensive understanding of user behavior, thereby enabling banking firms to
create more intuitive and user-friendly website interfaces. This interdisciplinary approach found
that various website analytical metrics, such as organic and paid traffic costs, referral domains, and
email sources, tend to impact banking firms’ purchase conversion, display ads, organic traffic, and
bounce rate. Moreover, these insights into banking firms’ website visibility, combined with the
behavioral data of the neuromarketing study, indicate specific areas for their website interface and
performance improvement.

Keywords: neuromarketing; banking firms; strategy; website interface; big data; digital marketing
analytics; DSS

1. Introduction

Advancements in communication and information technology have equipped con-
sumers with an array of online channels to gather, exchange, and share information about
services, products, and personal brand experiences [1]. The onset of the digital age has
caused a substantial paradigm shift across industries, compelling organizations to rethink
their strategies and adopt digital transformation [2]. This shift has been especially pro-
found in the banking sector, revolutionizing traditional practices and ushering in a new era
focused on customer centricity and innovation [3].

Highly engaged customers tend to shop more, recommend more, and demonstrate
stronger loyalty. A critical aspect of customer engagement strategies is maintaining a
high-quality customer experience [4]. Interactive social media activities, leveraging infor-
mation and communication technology, can enhance customer engagement and support
the customer experience [5]. Consumer interaction and engagement are vital for marketers
to sustain long-term customer relationships. Digital marketing creates participation oppor-
tunities that build trust, goodwill, and commitment between individuals and brands [6].
Lee et al. [7] found that incorporating humor and emotion can significantly boost consumer
engagement in the banking sector. Fans of brand pages can view posts and interact by
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liking, sharing, and commenting [8], resulting in high levels of online activity due to the
interactivity of the content.

Operational elements on a webpage are crucial in web design. Each element is con-
sidered an object in the program script, with unique methods and attributes controlling
its behavior [7]. To gain consumer trust and build a high-quality brand, some construc-
tion companies actively seek quality inspection certifications to prove the quality of their
projects. Faghih et al. [9] noted that the user interface (UI) is the point of interaction between
the user and computer software. The success of a software application heavily depends on
user interface design (UID), which significantly impacts ease of use and learning time. UI
should prioritize maximizing usability and user experience [10].

User experience (UX) reflects the satisfaction of users, measuring their impressions
when using or planning to use an application [11]. Additionally, UX and UI are connected
to user emotions and satisfaction during software interaction, regardless of functional or
non-functional requirements [11]. The user interface (UI), which communicates system
functionality, usability, and satisfaction, is often closely linked with UX [12].

The implications of integrating website customer big data and neuromarketing for
banking firm websites are profound. Leveraging big data analytics allows banks to gain
deep insights into customer behaviors, preferences, and interactions on their websites [13].
By analyzing patterns and trends, banks can tailor their website content, design, and
functionalities to better meet customer needs and enhance user experience. Neuromar-
keting techniques, such as eye-tracking and brain imaging, provide additional layers of
understanding by revealing subconscious responses to various website elements [14]. This
combined approach can lead to the more effective personalization of services, improved
customer satisfaction, and increased engagement. For example, banks can optimize website
layouts to highlight key information and offers, use data-driven insights to craft compelling
messaging, and design intuitive navigation paths that align with natural user behaviors [15].
Ultimately, the integration of customer big data and neuromarketing enables banking firms
to create more efficient, user-centric websites that can drive higher conversion rates, foster
customer loyalty, and maintain a competitive edge in the digital landscape.

Therefore, our paper aims to study the website behavior of banking firms’ customers,
through big data and neuromarketing analyses, and discern potential factors that impact
their website interface and performance. From the above analysis, the main research
questions (RQs) for the present study are presented below:

RQ1: Does the analytical customer behavior of banking firm websites impact their
visibility and engagement?

RQ2: Does the customer behavior of banking firm websites enhance their interface?
These research questions address critical aspects of the interplay between customer

behavior on banking firm websites and the resulting impact on visibility, engagement, and
interface enhancement. RQ1 explores whether analytical insights into customer behavior
directly influence the visibility and engagement levels of banking websites. This question
is motivated by the growing importance of user-centric design and personalized experi-
ences in the digital banking landscape, suggesting that a deep understanding of customer
interactions can lead to more effective marketing strategies and higher user retention. RQ2
investigates the extent to which customer behavior data informs and improves the website
interface, highlighting the role of iterative design based on real user feedback. This research
fills a gap in the existing literature by integrating behavioral analytics with interface design,
an area often overlooked in traditional banking studies, which tend to focus more on
security and functionality rather than user experience. Addressing these questions can
provide banking firms with actionable insights to refine their digital strategies, ultimately
leading to more engaging and user-friendly websites that cater to the evolving needs and
preferences of their customers. This research not only contributes to academic discourse by
bridging behavioral analytics and interface design but also offers practical implications for
enhancing digital engagement in the banking sector.
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The stages of this paper are as follows: the second part outlines the theoretical frame-
works and research hypotheses; the third part details the methodology; the fourth part
presents the study’s results, including statistical and modeling analyses; and the fifth part
covers the discussion and conclusions. This structure facilitates a comprehensive analysis
of how banking firms can leverage marketing analytics and customer website behavior to
improve their webpage interfaces.

2. Literature Background

2.1. Banking Firms, Digital Marketing, and User Engagement

As banks navigate an ever-evolving landscape, integrating social media applications
has become a crucial factor in this sector [16]. The digital transformation of banks involves
a wide range of changes, from adopting advanced technologies to restructuring internal
processes and reimagining customer experiences [17]. This transformation is fundamentally
driven by the need to adapt to changing customer expectations, stay ahead of disruptive
market forces, and seize the opportunities presented by the digital revolution [18]. Essen-
tially, a key assumption of our model is that for a bank to engage customers effectively, it
must achieve a high-efficiency grade in traditional CRM. This means that banks need to
satisfy their customers, earn their trust, and ensure that their customers feel and act with
loyalty under any circumstances [19].

The strategic use of digital marketing focuses on building personalized relationships
with consumers [20]. Banks leverage the value of social media to provide direct and real-
time marketing, thereby enabling them to offer customized responses to clients regardless
of geographic location. CRM, as a digital marketing strategy, has been discerned as
an important factor in improving customer engagement [21], especially in the banking
sector. Banks leverage social media platforms for personnel selection, crowdsourcing, and
promoting their corporate values [21]. Additionally, they focus on gathering customer
data and enhancing financial education [22]. However, there is a marked difference in
the importance placed on building image and reputation compared to marketing and
business development.

Trust in service providers and economic stability significantly enhance customer emo-
tional, cognitive, and behavioral engagement with banking firms [23]. To adapt successfully,
banks must prioritize organizational culture, customer engagement, financial innovation,
and proactive responses to fintech disruptions [24]. The implication of video and affili-
ate marketing strategies, in the wider aspect of digital marketing, tends to increase the
engagement of banking firms with their brand [25,26].

The primary factors influencing customer experience in digital banking include service
quality, functional quality, perceived value, employee–customer engagement, perceived
usability, and perceived risk [27]. There is a strong connection between customer experience,
satisfaction, and loyalty, which in turn impact financial performance [27]. Digital tools
have enabled companies to better target their markets by tracking customer preferences,
offering more personalized solutions, and facilitating value co-creation in the financial
services sector [28]. The findings indicate that key website attributes such as visualization,
interactivity, aesthetics, customization, ease of use, and telepresence positively influence
customer experience. Additionally, the results highlight positive relationships between
customer experience, customer trust, and customer retention [29]. Therefore, more light
should be shed on the role of website customer behavioral data on website interface and
the performance of firms in the banking sector.

2.2. Metrics and KPIs of Friendly Website User Interface (UI)

Lestari et al. [30] found that responsive web design effectively maintains the user
experience by ensuring content readability and enhancing the enjoyment of using web-
sites. It also reduces the need for excessive scrolling when reading content. Almeida and
Monteiro [31] noted that creating user experiences requires a range of multidisciplinary
skills, including a knowledge of tools, processes, and business intricacies. Walsh et al. [32]
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highlighted that responsive web design is a modern approach allowing developers to create
webpages that offer a consistent user experience across different device sizes.

Usability is defined as the ease with which users can interact with an interface [33].
According to ISO standard 9241–11 [34], usability is “the extent to which a system, product,
or service can be used by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use”. Efficiency, as per this standard,
refers to “resources used for the results achieved”. Additionally, customizing a menu can
reduce user input time on application interfaces [35].

Kim and Cho [36] describe user experience (UX) as the overall experience related to
a user’s perceptions and thoughts when interacting with a system, product, content, or
service. User interface (UI), on the other hand, involves the visual elements and commands
used to operate the system, input data, and use content [37]. Von Saucken et al. [38]
stated that UX enhances UI by incorporating emotional aspects. A banking firm’s website
with a user-friendly interface is closely linked to its performance [9]. Therefore, some
of the website performance metrics related to the indication of a website’s friendliness
are its increased website traffic through various sources (visibility), page views per visit,
conversion rates (i.e., purchase conversion), and decreased bounce rates [39].

2.3. Neuromarketing and Big Data Analysis Implications on Website Interface and Performance

Neuromarketing proposes that emotional and rational thinking coexist and are interde-
pendent [40]. Emotions capture a subject’s attention, allowing the rational brain to engage
with the presented situation. Gabriel et al. [41] demonstrated that affective neuroscience,
when applied to marketing, accurately predicts customer reactions to products. Neuro-
marketing, which integrates neuroscience and marketing, aims to understand customers’
impulses, feelings, and emotions, thereby influencing purchase decisions and facilitating
interaction between consumers and companies [42].

Neuromarketing combines neuroimaging with marketing science to better under-
stand consumer behavior and brand loyalty, offering a wider perspective on marketing
science [43]. It has advanced over the last 5 years, with EEG and physiological response
measuring techniques being preferred over fMRI for consumer response prediction and
classification [44]. It has also become popular due to its potential to provide hidden con-
sumer experience insights and faster marketing methods, but its affordability remains
uncertain [45]. Neuromarketing and big data analytics offer strategic consumer engage-
ment by integrating neuroscience, biometrics, multimedia technology, marketing strategy,
and big data management [46]. Moreover, it can enhance people’s motivation and learn-
ing performance in online classrooms using visual material, virtual boards, and class
activities [47].

Berčík et al. [48] found that monitoring visual attention indicates the need for larger
text fonts and copywriting adjustments to reduce text volume, reorganize content, or
replace complex texts with animations and infographics. These modifications primarily
enhance the user interface (UI) and overall user experience (UX). EEG data analysis can
accurately predict consumer decision-making and distinguish between “Like” and “Dislike”
preferences in advertisements, with frontal and centro-parietal locations being the most
discriminative channels [49].

On the other hand, quantitative analyses and cross-country comparisons can provide
a broader understanding of strategies, outcomes, diverse contexts, market dynamics, and
organizational factors within the banking sector [24]. Uygun et al. [50] stated that the
utilization of big data analysis from websites could lead to enhanced webpage usability
(for users/visitors) and overall website performance. Moreover, Li and Zhang [51] high-
lighted the role of website big data analysis in improving the performance of enterprises’
e-commerce platforms and their webpage display. Big data analysis based on social me-
dia platforms has been discerned as an important factor in enhancing the engagement of
decentralized finance firm customers and their websites’ performance [52].
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Therefore, from the aforementioned literature review, a gap has been spotted that
concerns the implication of website users’ quantitative and qualitative data on a website’s
interface and performance. Moreover, this gap is extended to the specific utilization of
website customer big data (as a method of quantitative analysis) and neuromarketing
applications (as a form of qualitative analysis), as well as to these analyses’ impact on the
banking sector.

2.4. Hypotheses Development

Following the settlement of this study’s RQs, the authors moved to the deployment of
four research hypotheses to further analyze the aims of this paper. The four hypotheses
(H1–H4) mainly refer to banking firms’ website analytical consumer behavioral data to
answer RQ1. RQ2 can be answered by utilizing an eye-tracking and heatmap analysis tool.

The first research hypothesis (H1) posits that there is a strong connection between
banking firms’ digital marketing analytics and their customers’ purchasing conversion [53].
This hypothesis is explored through the first research question (RQ1), which investigates
whether the analytical understanding of customer behavior on banking firm websites
affects their visibility and engagement [54]. The underlying premise is that by effectively
analyzing customer interactions and behaviors on their digital platforms, banking firms
can enhance their visibility and engagement metrics. This, in turn, is expected to drive
higher conversion rates as firms tailor their marketing strategies to meet customer needs
and preferences more accurately. Therefore, if this hypothesis is confirmed, it would
suggest that robust digital marketing analytics are a critical component for banking firms
in optimizing their online presence and achieving better customer conversion outcomes.

Hypothesis 1 (H1). Banking firms’ digital marketing analytics are strongly connected with their
customers’ purchasing conversion.

Hypothesis 2 (H2) suggests that the extent to which banking firms utilize display
ads on their webpages is heavily influenced by their digital marketing analytics [55].
This hypothesis aligns with the first research question (RQ1), which examines whether
the analytical insights into customer behavior on banking firm websites impact their
visibility and engagement. The connection implied is that digital marketing analytics
provide critical data on customer preferences, behaviors, and interactions, thereby enabling
firms to strategically deploy display ads to maximize visibility and engagement [56]. By
leveraging analytics, banking firms can optimize the placement, frequency, and content
of display ads to better attract and engage customers, thereby enhancing their online
presence and potentially improving conversion rates. Thus, if H2 holds true, it underscores
the importance of integrating comprehensive digital marketing analytics into advertising
strategies to effectively target and retain customers.

Hypothesis 2 (H2). The amount of display ads that banking firms use on their webpages is strongly
dependent on their digital marketing analytics.

Hypothesis 3 (H3) posits that a banking firm’s organic visibility is negatively impacted
by its digital marketing analytics [57]. This hypothesis stems from the first research ques-
tion (RQ1), which investigates whether the analytical insights into customer behavior on
banking firm websites affect their visibility and engagement. The premise here is that
an over-reliance on digital marketing analytics might lead to strategies that prioritize
short-term gains through paid or targeted advertising at the expense of long-term organic
visibility. For example, banking firms might focus more on personalized ads and sponsored
content driven by analytics, potentially neglecting best SEO practices and organic content
development [58]. If H3 is validated, it would suggest that while digital marketing analytics
can boost engagement through targeted efforts, they might inadvertently reduce the firm’s
visibility in organic search results, highlighting the need for a balanced approach that
integrates both analytics-driven strategies and organic growth initiatives.
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Hypothesis 3 (H3). A banking firm’s organic visibility is negatively impacted by its digital
marketing analytics.

Hypothesis 4 (H4) posits that the digital marketing analytics of banking firms tend to
increase the bounce rate of their websites [59]. This hypothesis is examined through the lens
of the first research question (RQ1), which explores whether the analytical understanding
of customer behavior on banking firm websites influences their visibility and engagement.
This hypothesis suggests that while digital marketing analytics aim to optimize user
experience and engagement, they may inadvertently lead to higher bounce rates if the
insights are not properly implemented. For instance, over-targeting or irrelevant content
driven by misinterpreted analytics might cause users to leave the site quickly. If H4 is
supported, it indicates that despite the potential benefits of analytics in crafting tailored
marketing strategies, there is a risk of increased bounce rates if the data are not effectively
utilized to enhance user experience [60]. This underscores the importance of not only
gathering and analyzing data but also translating them into meaningful, user-friendly
website improvements.

Hypothesis 4 (H4). The digital marketing analytics of banking firms tend to increase the bounce
rate of their website.

3. Materials and Methods

3.1. Methodological Concept

To explore the study’s research, both quantitative and qualitative analyses were em-
ployed to investigate the link between banking firms’ website customer data and their
webpage interface enhancement. This study utilized a four-stage methodological frame-
work to achieve this. Within this framework, valuable insights into customer behavior
on banking firm websites were gathered, which helped establish a framework to discern
digital marketing strategies that can enhance the efficiency of their website interface.

• The research started with the collection of data on website customers and digital
marketing activities from banking firm websites. A website’s user behavioral data
(pages per visit, bounce rate, time on site, etc.) were sourced from the website platform
Semrush [61], which enables the extraction of big data from corporate webpages.

• The next step involved statistical analysis using methods such as descriptive statistics,
correlation, and linear regression. By analyzing the coefficients obtained, researchers
can determine the impact of banking firms’ website customer data on their digital
marketing and interface performance metrics, including purchase conversion, display
ads, organic traffic, and bounce rate.

• After statistical analysis, a hybrid model (HM) incorporating agent-based models
(ABMs) and System Dynamics (SD) was used for the simulation. The software Any-
Logic (version 8.9.1) [62] was employed to create a hybrid model that simulates the
relationships between the study’s dependent and independent variables over 360 days.
This model aims to represent the dynamic interaction between banking firms’ website
interface metrics and key metrics of their digital marketing strategies.

• The final stage included a neuromarketing approach to gain deeper insights from
26 participants who viewed the websites of the selected banking firms. They were
instructed to search and observe, in 20 s, the selected banking firm websites and their
provided financial products and services. Eye-tracking and heatmap analysis were
conducted using the SeeSo Web Analysis platform (Eyedid SDK) [63]. This method
seeks to extract additional information about the onsite activity and engagement of
the participants from the qualitative methodological concept.

3.2. Fuzzy Cognitive Mapping (FCM) Framework

In this section, the authors illustrate the relationships among the study’s variables
using Fuzzy Cognitive Mapping (FCM). This method is highlighted for its effectiveness
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in demonstrating these connections. A clearer understanding is achieved by presenting
the relationships between the variables, particularly regarding the link between banking
firms’ website interface efficiency variables and their customer behavioral analytical data.
The authors employed MentalModeler [64] to develop a conceptual model of the paper’s
variables, as shown in Figure 1. This FCM model helps extract key insights from the
relationships between variables. FCM effectively represents the static relationships and
interconnections of the model’s variables [65]. Additionally, FCM has been successfully
applied in solving various decision-making problems across different fields [66].

 

Figure 1. FCM Conceptual Framework of Banking Firm Websites. Blue and red arrows signify
positive and negative correlations between variables, respectively. The symbols “+” and “–” represent
the positive and negative per-centage changes, respectively.

3.3. Research Sample

The development of the present study was based on the exploitation of big data
analytics from the websites of the sample firms, as well as the qualitative data obtained
from the 26 participants who observed these webpages. As referred to in the Methodological
Concept Section, this study focuses on analyzing banking firms’ website interfaces, and
thus, the 5 biggest and most established bank institutes were selected, based on their market
capitalization (as of January 2024) [67]. Therefore, the biggest banking firms included in
this research are (a) JPMorgan Chase, (b) the Bank of America, (c) the Industrial and
Commercial Bank of China Limited, (d) Wells Fargo, and (e) the Agricultural Bank of China.
The gathered data consist of various website analytical data originating from the visitors’
and customers’ onsite behaviors, while the collection period ran from 1 August 2023 to
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29 February 2024. The Decision Support System (DSS) utilized to extract these data was the
Semrush platform [61].

Concerning the qualitative part of the study, the authors selected 26 participants who
were related to banking services provided through websites to perform the neuromarketing
test. The authors selected 26 participants who were well aware of the financial services
in the banking sector, and they were instructed to observe, for 1 min, the main webpage
of the above banking firms. This test aimed to examine whether banking firm website
customer behaviors can provide valuable insights into the performance and interface of the
webpage by indicating potential areas of focus (on the webpage) or parts that do not create
any engagement with the observer/visitor. For this test, the SeeSo Web Analysis platform
(Eyedid SDK) [63] was utilized, and the combined heatmaps and gaze data were compiled
into consolidated figures, as illustrated in Section 4.3.

4. Results

4.1. Statistical Analysis

A crucial part of the study’s research is the extraction of the variables’ relationships;
thus, the authors began by performing a descriptive statistical analysis (Table 1). The
statistical measures of mean, max, min, std. deviation, skewness, and kurtosis were selected.
The latter two measures (skewness and kurtosis) are some of the variables’ normality
indicators when their values are between−2, and 2. Then, the variables’ correlations, based
on Pearson’s statistic, were produced to explore the variables’ connection, as shown in
Table 2 below.

Table 1. Descriptive statistics of the five banking firms during the past six months.

Mean Min Max Std. Deviation Skewness Kurtosis

Organic Traffic 9,868,004.17 9,486,121.00 10,700,067.60 351,366.56 1.342 1.651
Organic Keywords 987,820.46 889,059.20 1,193,079.60 76,418.52 1.592 1.851

Organic Traffic Costs 37,155,781.98 28,929,891.40 44,660,727.20 5,822,486.64 −0.188 −1.627
Paid Traffic 337,898.57 232,588.80 487,373.40 66,696.66 0.396 1.333

Paid Keywords 6510.47 1815.20 9700.60 2624.74 −0.757 −0.580
Paid Traffic Costs 1,514,463.27 992,316.60 2,491,839.60 406,005.96 0.998 1.667

Email Sources 184,876.14 0.00 720,314.00 300,170.77 1.379 0.219
Display Ads 4199.57 0.00 20,892.00 7636.02 1.982 1.927

Purchase Conversion 7.71 7.00 8.00 0.49 −1.230 −0.840
Referral Domains 51,181.91 49,694.40 52,457.40 794.22 −0.360 −0.317

Visit Duration 519.40 368.00 737.00 128.25 0.658 −0.174
Bounce Rate 0.45 0.42 0.49 0.02 0.606 −1.361

Pages per Visit 3.43 2.00 5.00 0.97 0.277 0.042
New Visitors 15,149,188.40 14,150,098.00 16,212,804.00 801,388.14 0.025 −1.625

Returning Visitors 47,056,175.89 44,705,979.00 51,410,725.00 2,301,015.96 1.103 1.599

N = 180 observation days for the five selected banking firms.

Table 2. Correlation analysis matrix.
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Organic Traffic 1 0.604 * 0.264 0.037 0.174 −0.013 0.619 0.545 0.529 0.905** 0.068 0.796* 0.469
Organic Traffic Costs 0.604 * 1 0.037 0.000 0.607 0.413 0.206 0.830 ** 0.124 0.242 0.657 0.489 0.628

Paid Traffic −0.122 −0.052 0.533 0.889 ** −0.220 −0.304 −0.521 0.249 −0.705 −0.298 −0.022 −0.587 −0.539
Paid Traffic Costs 0.037 0.000 0.379 1 −0.371 −0.315 −0.547 0.241 −0.549 −0.193 −0.070 −0.458 −0.524

Email Sources 0.174 0.607 −0.257 −0.371 1 0.590 0.344 0.424 0.145 0.002 0.709 0.356 0.698
Display Ads −0.013 0.413 −0.456 −0.315 0.590 1 0.160 0.299 0.635 −0.316 0.843 * 0.554 0.857 *

Purchase
Conversion 0.619 0.206 −0.555 −0.547 0.344 0.160 1 0.175 0.224 0.600 0.300 0.539 0.485

Referral Domains 0.545 0.830 ** 0.249 0.241 0.424 0.299 0.175 1 −0.223 0.179 0.737 * 0.269 0.394
Visit Duration 0.529 0.124 −0.748 −0.549 0.145 0.635 0.224 −0.223 1 0.163 0.309 0.804 * 0.717
Bounce Rate 0.905 ** 0.242 −0.542 −0.193 0.002 −0.316 0.600 0.179 0.163 1 −0.051 0.581 0.192

Pages per Visit 0.068 0.657 −0.410 −0.070 0.709 0.843 * 0.300 0.737 * 0.309 −0.051 1 0.558 0.830 *
New Visitors 0.796 * 0.489 −0.904 ** −0.458 0.356 0.554 0.539 0.269 0.804 * 0.581 0.558 1 0.856 *

Returning Visitors 0.469 0.628 −0.773 * −0.524 0.698 0.857 * 0.485 0.394 0.717 0.192 0.830 * 0.856 * 1

* and ** indicate statistical significance at the 95% and 99% levels, respectively.
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In this stage, the simple linear regressions (SLRs) of the dependent variables of the
study (purchase conversion, display ads, organic traffic, and bounce rate) were developed
to estimate the impact of the independent variables (organic keywords, organic traffic
costs, paid keywords, paid traffic costs, email sources, visit duration, pages per visit, and
new and returning visitors) of banking firms’ website visitor data. The first SLR model
(Table 3) with purchase conversion as a dependent variable was verified overall, with a
p-value < a = 0.01 level of significance and an R2 = 1.000. The independent variables with
the most significant impact were organic traffic costs, paid traffic costs, referral domains,
and email sources (p-values < a = 0.01 level of significance). For every 1% of the increase in
organic traffic costs, paid traffic costs, referral domains, and email sources, banking firms’
purchase conversions vary by −167.0%, −136.9%, 169.6%, and 16.7%, respectively.

Table 3. Impact of banking firms’ marketing analytics on their website purchase conversion.

Variables Standardized Coefficient R2 F p-Value

Organic Traffic
Costs −1.670

1.000 -
0.000 **

Paid Traffic Costs −1.369 0.000 **
Referral Domains 1.696 0.000 **

Email Sources 0.167 0.000 **
** Indicates statistical significance at the 99% level.

In Table 4, where the SLR model of banking firms’ display ads is presented, this is
verified overall with a p-value < a = 0.01 level of significance and an R2 = 1.000. The
independent variables with the most significant impact (p-values < a = 0.01 level of sig-
nificance) on display ads were the paid traffic costs, referral domains, and email sources.
When paid traffic costs, referral domains, and email sources increase by 1%, banking firms’
organic traffic variates by 19.8%, −6.5%, and −13.5%, respectively. Moving on to the SLR
model of banking firms’ organic traffic (Table 5), this regression is verified overall with a
p-value < a = 0.01 level of significance and an R2 = 1.000. The independent variables with
the most significant impact (p-values < a = 0.01 level of significance) on organic traffic were
also the paid traffic costs, referral domains, email sources, and display ads. For every 1%
increase in paid traffic costs, referral domains, and email sources, organic traffic varied by
−2.4%, −31.9%, and 4.1%, respectively.

Table 4. Impact of banking firms’ marketing analytics on their website display ads.

Variables Standardized Coefficient R2 F p-Value

Paid Traffic Costs 0.198
1.000 -

0.000 **
Referral Domains −0.065 0.000 **

Email Sources −0.135 0.000 **
** Indicates statistical significance at the 99% level.

Table 5. Impact of banking firms’ marketing analytics on their website organic traffic.

Variables Standardized Coefficient R2 F p-Value

Paid Traffic Costs −0.024
1.000 -

0.000 **
Referral Domains −0.319 0.000 **

Email Sources 0.041 0.000 **
** Indicates statistical significance at the 99% level.

Finally, in Table 6, the SLR model of banking firms’ bounce rate is presented. This
model was also verified overall with a p-value < a = 0.01 level of significance and an
R2 = 1.000. The independent variables with the most significant impact (p-values < a = 0.01
level of significance) on bounce rate were the same as for the purchase conversion model
(organic traffic costs, paid traffic costs, referral domains, and email sources). For every 1%
increase in organic traffic costs, paid traffic costs, referral domains, and email sources, the
bounce rate varied by 104.5%, 2.5%, 33.4%, and −4.3%, respectively.
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Table 6. Impact of banking firms’ marketing analytics on their website bounce rate.

Variables Standardized Coefficient R2 F p-Value

Paid Traffic Costs 0.025 0.000 **
Referral Domains 0.334 0.000 **

Email Sources −0.043 0.000 **
** Indicates statistical significance at the 95% level.

4.2. Simulation Model

To further study the connection between key website performance metrics and the
behavior of banking firms’ digital customers, the utilization of a hybrid model (HM)
was discerned. This model extends to the agent-based modeling (ABM) and the System
Dynamics (SD). The use of ABM and SD models to investigate social and ecological issues
and improve decision-making has been explored by Nugroho and Uehara [68]. McGarraghy
et al. [69] applied these models to assess the impact of policies on decision-making in food
value chains. Similarly, Wang et al. [70] utilized ABM and SD analyses to study the
reduction in carbon dioxide emissions from urban transportation. Additionally, Nguyen
et al. [71] employed a hybrid conceptual model combining ABM and SD to examine the
control of COVID-19 spread in care homes.

The execution of the hybrid model simulation, which refers to a 360-day model time,
starts from the statechart of potential banking customers (Figure 2). Then, based on the
statistical results from the collected data, the agents move either to the new visitor statechart
or the returning visitor one. The bounce rate statechart leads the visitors/agents back to
the first one or to either the organic or paid traffic statechart, based on their means of
entering the banking firm website the first time (organic or paid search/keywords). From
there, the remaining agents move to the display ads statechart or head back to the initial
statechart (potential banking firms’ customers). Finally, these agents move to the purchase
conversion statechart, after this has been affected by the banking firms’ display advertising.
Throughout each of the 10,000 agents mobilized, the values of the dynamic variables of
email sources, referral domains, and organic and paid costs are calculated using the normal
distribution of the sample’s variables. During the simulation process, the behavioral data
of customers (including bounce rate, pages per visit, and time spent on site) are calculated
for each of the 10,000 agents, using the normal distribution. The main commands and the
Java route are outlined in Table A1 (Appendix A).

Through the development of the hybrid model simulation, the course of the banking
firms’ digital marketing performance metrics (organic traffic, purchase conversion, bounce
rate, and display ads) is presented, across the trajectory of their website visitor/agent
behavioral metrics. From the simulation, as seen in Figure 3, the following variables
relationships arose: (a) banking firms’ purchase conversion is positively impacted by
email sources, paid costs, and referral domains but negatively affected by organic costs;
(b) website bounce rate is positively impacted by email sources, paid costs, and referral
domains but negatively affected by organic costs; (c) organic traffic is positively impacted
by organic costs, email sources, and referral domains but negatively affected by paid
costs; and (d) display ads are positively impacted by organic costs, paid costs, and referral
domains but negatively affected by email sources.

4.3. Neuromarketing Applications

After having analyzed the variation in the study’s variables through the hybrid mod-
eling process, the need for a differentiated method arises. Since quantitative analysis
offers valuable insights into customer behavior by identifying patterns, trends, and cor-
relations, it alone is often deemed insufficient for a thorough understanding. It may not
sufficiently explore the motivations, emotions, or underlying reasons behind customer
actions. Qualitative methods are better equipped to delve into these aspects. To achieve
a more comprehensive and actionable comprehension of customer behavior, many re-
searchers and marketers advocate combining both quantitative and qualitative approaches.
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This fusion enables a more nuanced interpretation of data, a deeper grasp of the customer’s
viewpoint, and a more effective means of addressing the complexities of human behavior.

 

Figure 2. Hybrid Model (HM) Development.

Much neuromarketing research has been deployed to examine the implications of
customer behavior on various products and services, with remarkable outcomes. Ezquerra
et al. [72] studied student emotions, engagement, and attention in science activities using
Facial Emotion Recognition (FER) tools by iMotions; meanwhile, Chen et al. [73] capitalized
on both Galvanic Skin Response (GSR) and VR products to examine pupil responses to
analyze the emotional and attentional activity of humans. Moreover, to extract valuable
insights regarding people’s arithmetic and memory evaluation, Muke et al. [74] used
iMotions biometric platform and eye-tracking equipment. This same eye-tracking tool was
utilized by Amiri et al. [75] to gather gazes and facial expressions of clients to assess the
feedback on and evaluations of the purchased goods and services.

Therefore, by utilizing these neuromarketing tools (eye-tracking, heatmaps, and scan
paths) of the SeeSo Web Analysis platform (Eyedid SDK) [63], several insights regarding
banking firms’ website interfaces and their visitor/customer behavior arise. From Figure 4,
it can be discerned that banking firm websites with longer webpages, which need more
time for visitors to scroll and observe all the data, had less continuous fixations and shorter
fixation times (during the 20 s of observation), than those with a shorter webpage (and a
longer fixation time). Moreover, the websites with a longer webpage had a greater number
of fixations (fixations count) and a greater number of gazes (gazes count) on average.
From the heatmap analysis of the banking firm websites (Figure 5), we can see that the
participants, in all the included websites, intensely observed (increased heatmap intensity)
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their menus, the information that refers to their financial products/services (loans, savings,
cards, etc.), their logos (brands), while also observing and interacting with their display
ads. Finally, from the scan-path analysis (Figure 6), we can discern that the results of the
heatmap analysis are also confirmed from the participants’ scan path, and on average, their
path began with observing the banking firm’s brand (logo) followed by their menu options,
information regarding their financial products and services, and their display ads, and then
attention faded through the last parts of the webpage.

 

 

Figure 3. Simulation outputs of the hybrid model simulation in a period of 360 days.
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Figure 4. Cont.
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(d) 

  
(e) 

Figure 4. Gaze and fixation analysis of banking firm websites. (a) JP Morgan, (b) Bank of Amer-
ica, (c) Wells Fargo, (d) Agricultural Bank of China, and (e) Industrial and Commercial Bank of
China Limited.
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Figure 5. Cont.
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Figure 5. Cont.
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(d) 

 
(e) 

Figure 5. Heatmap analysis of banking firm websites. (a) JP Morgan, (b) Bank of America, (c) Wells
Fargo, (d) Agricultural Bank of China, and (e) Industrial and Commercial Bank of China Limited.
The intensity of the color (redder) indicates increased fixations and engagement of the participants
(greener color shows reduced fixations/engagement).
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Figure 6. Cont.
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Figure 6. Cont.
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(d) 

 
(e) 

Figure 6. Scan-path analysis of banking firm websites. (a) JP Morgan, (b) Bank of America, (c) Wells
Fargo, (d) Agricultural Bank of China, and (e) Industrial and Commercial Bank of China Limited.
The numbers indicate the sequence of the participants observation, while the size of the circles shows
the amount of observation time spent in each spot (the bigger the circle the more time is spent).

5. Discussion

The purpose of this study has been to examine the impact of website visitors’ behaviors
on banking firms’ website interfaces and the firms’ overall digital marketing performance.
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To achieve this objective, the variables of purchase conversion, bounce rate, organic traffic,
and display ads as website interfaces and digital marketing performance metrics. The
selected website behavioral metrics were the email source traffic, organic and paid costs,
and referral domains. Statistical analyses (correlation and SLR models), hybrid model
simulations (ABM and SD), and neuromarketing tests (eye-tracking) were deployed to
extract the required insights.

From the produced simple linear regression models (SLR) executed in Section 4.1, it was
discerned that all of the applied models were found to be verified overall (p-values < a = 0.01
level of significance). Therefore, hypotheses H1 to H4 were verified, meaning that the
digital marketing analytics of banking firms significantly impact their website customers’
purchase conversion, as well as the amount of display ads, organic visibility, and bounce
rates on their websites. More specifically, the digital marketing analytics that were found to
have a strong effect on the dependent variables (purchase conversion, display ads, organic
visibility, and bounce rate) were the website organic traffic costs, paid traffic costs, referral
domains, and email sources. It was discerned that purchase conversion was negatively
connected with banking firms’ website organic traffic costs and paid traffic costs while
positively connected with their referral domains and email sources. The amount of referral
domains was also negatively connected with banking firms’ paid traffic costs and referral
domains and positively connected with the bounce rate. Paid traffic costs were found to
be positively connected with display ads and bounce rates and negatively connected with
organic traffic. Email sources appear to negatively impact banking firms’ website display
ads and bounce rates and positively impact their organic traffic.

Regarding the simulation of the hybrid (ABM and SD) model, its outputs verify the
results of SLR models and, therefore, the research hypotheses H1–H4. More specifically,
through the 360-day simulation and the usage of 10,000 agents/website visitors, banking
firms’ email source traffic increases purchase conversion, bounce rate, and organic traf-
fic [76] and decreases their display ads while the number of referral domains increases all
of the above (conversion rate, bounce rate, organic traffic, and display ads) [77]. Organic
traffic costs appear to decrease banking firms’ purchase conversion and bounce rate and to
increase organic traffic and display ads while paid traffic costs increase conversion rate,
bounce rate, and display ads and decrease organic traffic [78].

Our research outputs mainly align with present studies in the field of digital banking
and customer behavior and engagement. Mbama and Ezepue [27] identified service quality,
functional quality, perceived value, employee–customer engagement, perceived usability,
and perceived risk as the primary factors influencing customer experience in digital banking.
They found a significant relationship between customer experience, satisfaction, loyalty,
and financial performance. According to Islam et al. [29], key website attributes such as
interactivity, aesthetics, customization, ease of use, and telepresence positively impact
customer engagement. Their findings also indicate that customer engagement is positively
associated with customer trust and retention. Hari et al. [79] found that interactivity,
particularly through chatbots, enhances customer brand engagement, which in turn boosts
satisfaction with the brand experience and increases customer intentions to use the brand.

When it comes to the neuromarketing model, the 26 participants who are related
to banking firms’ services/products showed valuable insights. The application of neu-
romarketing tools, including eye-tracking, heatmaps, and scan-path analysis, provided
critical insights into how visitors interact with banking firm websites, offering substantial
implications for interface and performance enhancement. The study revealed that websites
with longer pages, requiring more time for visitors to scroll, resulted in fewer continuous
fixations and shorter fixation times compared to shorter pages, which held visitor attention
longer. Despite this, longer pages had a higher number of total fixations and gazes, sug-
gesting a more fragmented but extensive interaction with the content. Heatmap analysis
demonstrated that participants consistently focused on menus, product information, logos,
and display ads, indicating these elements are crucial for user engagement. Scan-path
analysis confirmed these findings, showing that users typically begin their navigation with
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the brand logo, followed by menu options, product information, and display ads, with at-
tention diminishing towards the end of the page. These insights directly address the second
research question (RQ2), by highlighting that customer behavior can indeed enhance the
website interface. By understanding these behavioral patterns, banking firms can optimize
their website design to improve user engagement, satisfaction, and overall performance,
confirming that customer behavior analysis is vital for enhancing website interfaces.

6. Conclusions

6.1. Theoretical, Practical, and Managerial Implications

In this part of the study, the main theoretical and practical implications for the research
findings are presented and analyzed. This paper examined the implication of big data
analysis (website analytic metrics) and neuromarketing models in improving banking firms’
website interfaces and performance. The results of the research extend to customer engage-
ment and digital marketing analytic metrics since website visitor behavior is depicted by
specific onsite behavioral KPIs. Moreover, the utilization of both quantitative (big data)
and qualitative (neuromarketing test) analyses tends to provide a strong approach to the
research by ensuring the transparency and reproducibility of the results and attempting to
cover a major part of the banking firms’ website customer behavior.

The integration of neuromarketing and big data analysis offers significant theoretical
implications for enhancing banking firms’ website interfaces and overall performance. The
application of simple linear regression models (SLR) demonstrates that digital marketing
analytics profoundly impact customer behaviors, such as the purchase of conversion rates,
the display of ad interactions, organic visibility, and bounce rates. Specifically, factors
like organic traffic costs, paid traffic costs, referral domains, and email sources were
identified as critical determinants [80]. These findings underscore the need for a theoretical
framework that encompasses both traditional marketing metrics and cognitive–behavioral
insights from neuromarketing to better understand and predict consumer behavior on
banking websites.

From a practical standpoint, the insights derived from neuromarketing tools like
eye-tracking, heatmaps, and scan-path analysis can significantly improve website design
and functionality. For instance, the study revealed that websites with shorter pages had
longer fixation times, indicating that concise and focused content is more engaging for
users. Additionally, heatmap analysis highlighted areas of intense user interest, such as
menus, product information, and brand logos. By strategically placing critical information
and interactive elements in these high-engagement zones, banking firms can enhance user
experience, reduce bounce rates, and potentially increase conversion rates [81]. These
practical adjustments, informed by empirical data, can lead to more effective and user-
friendly website designs.

Neuromarketing insights also offer valuable strategies for boosting customer engage-
ment. The study’s findings suggest that email source traffic and referral domains play
pivotal roles in increasing purchase conversion and organic traffic [82]. By leveraging these
channels more effectively, banking firms can create more personalized and targeted mar-
keting campaigns that resonate with their audience. Moreover, the use of neuromarketing
tools to track eye movements and fixation patterns can help identify which elements of
a webpage capture the most attention. This information can be used to optimize content
placement and design features, ensuring that users engage more deeply with the site and
its offerings, thus fostering greater customer loyalty and trust.

The integration of neuromarketing and big data analytics presents substantial man-
agerial implications for banking firms aiming to enhance their website interfaces and
overall digital performance. The study’s findings suggest that strategically utilizing digital
marketing analytics, such as organic and paid traffic costs, referral domains, and email
sources, can significantly influence key metrics like purchase conversion rates, display ad
interactions, organic visibility, and bounce rates. By applying insights from neuromarketing
tools, such as eye-tracking and heatmap analysis, banks can optimize website design to
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maintain user attention, strategically place critical information in high-engagement zones,
and create more personalized marketing campaigns. This dual approach not only enhances
user experience and reduces bounce rates but also increases customer loyalty and trust,
ultimately driving higher conversion rates and improving overall performance.

Our study’s findings are aligned with present research in the field of banking firms’
website performance and interface enhancement. As referenced by Müller et al. [83], a
firm’s performance in technology-intensive sectors is strongly connected to the utilization
of big data analysis. By analyzing big data from a website’s user activity, banking firms
can have multiple benefits, such as stock market prediction, etc. [84]. Furthermore, big
data can also assist the digital marketing efforts of firms and increase their knowledge of
the market [85]; meanwhile, Ravi and Kamaruddin [86] stated that big data could aid in
solving multiple banking firms’ problems to enhance their overall performance.

For the utilization of neuromarketing applications, this study is aligned with other
relevant research in the field. More specifically, Berčík et al. [48] noted that the implications
of neuromarketing models tend to reveal detailed information about customers’ behavior
that can be used in digital marketing management and communication promotion. In
accordance with Tichindelean et al.’s [87] study, we showed that the design of the webpages
of banking firms has a great impact on webpage usability, customer engagement, and,
thus, the website interface. Customers’ behaviors are linked to their reaction to advertising
processes [88] and show ways of enhancing their engagement. Since neuromarketing
tools help marketers understand their customer’s behavior [89], banking firms’ customers
were found to have a greater engagement with the brand if they were familiar with their
services/products [90].

6.2. Future Work and Limitations

Future research should consider expanding the scope beyond YouTube metrics to in-
clude a broader range of digital marketing channels and qualitative methods. Longitudinal
studies and experimental designs could provide deeper insights into the long-term effects
of specific marketing strategies and the impact of demographic factors on user engagement.
Additionally, exploring the synergies between different digital marketing activities, such
as social media marketing and influencer partnerships, could offer a more holistic under-
standing of digital marketing effectiveness. By continuously refining methodologies and
utilizing new tools and technologies, researchers and practitioners can better navigate the
evolving landscape of digital marketing in the DeFi sector and beyond.

The study’s focus on specific YouTube metrics and web analytics may limit the general-
izability of its findings to other contexts or platforms within the DeFi ecosystem. Variations
in platform features, user demographics, and market dynamics could affect the relevance of
the insights. Additionally, the reliance on quantitative methods might overlook qualitative
aspects of digital marketing effectiveness that cannot be captured solely through numerical
data. The exclusive focus on YouTube metrics may ignore the impact of other digital
marketing channels or strategies on the performance of DeFi platforms. Moreover, the
study’s methodology might not fully account for the continuous improvements in Google’s
algorithms, which could influence website and YouTube rankings over time.

Author Contributions: Conceptualization, N.T.G., D.P.S. and S.P.M.; methodology, N.T.G., D.P.S.
and S.P.M.; software, N.T.G., D.P.S. and S.P.M.; validation, N.T.G., D.P.S. and S.P.M.; formal analysis,
N.T.G., D.P.S. and S.P.M.; investigation, N.T.G., D.P.S. and S.P.M.; resources, N.T.G., D.P.S. and S.P.M.;
data curation, N.T.G., D.P.S. and S.P.M.; writing—original draft preparation, N.T.G., D.P.S. and
S.P.M.; writing—review and editing, N.T.G., D.P.S. and S.P.M.; visualization, N.T.G., D.P.S. and S.P.M.;
supervision, N.T.G., D.P.S. and S.P.M.; project administration, N.T.G., D.P.S. and S.P.M.; funding
acquisition, N.T.G., D.P.S. and S.P.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

237



Electronics 2024, 13, 3256

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Java code for banking firms’ modeling simulation.

Java Code of AnyLogic Simulation

@AnyLogicInternalCodegenAPI
private void enterState(statechart_state self, boolean_destination) {

switch( self ) {
case Potential_Bank_Customers:

logToDBEnterState(statechart, self);
// (Simple state (not composite))
statechart.setActiveState_xjal(Potential_Bank_Customers);
transition1.start();
transition2.start();
return;

case Return_Visitors:
logToDBEnterState(statechart, self);

// (Simple state (not composite))
statechart.setActiveState_xjal(Return_Visitors);
{

return_Visitors++;

pages_per_Visit = normal(0.97, 3.43);

visit_Duration = normal(128.25/60, 519.40/60);

referral_Domains = normal(794.22, 51,181.91);

email_Sources = normal(300,170.77, 184,876.14)
;}

transition3.start();
transition5.start();
return;

case Bounce_Rate:
logToDBEnterState(statechart, self);

// (Simple state (not composite))
statechart.setActiveState_xjal(Bounce_Rate);
{

bounce_Rate = organic_Traffic*(1.045) + paid_Costs*(0.025) + referral_Domains*(0.334) +
email_Sources*(−0.043)
;}

transition.start();
return;

case Visitors_To_Traffic:
logToDBEnterState(statechart, self);

// (Simple state (not composite))
statechart.setActiveState_xjal(Visitors_To_Traffic);
transition7.start();
transition8.start();
return;

case Organic_Traffic:
logToDBEnterState(statechart, self);

// (Simple state (not composite))
statechart.setActiveState_xjal(Organic_Traffic);
{

organic_Costs = normal(5,822,486.64, 37,155,781.98);

organic_Traffic = paid_Costs*(−0.024) + referral_Domains*(−0.319) + email_Sources*(0.041)
;}
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Table A1. Cont.

Java Code of AnyLogic Simulation

transition13.start();
return;

case Display_Ads:
logToDBEnterState(statechart, self);

// (Simple state (not composite))
statechart.setActiveState_xjal(Display_Ads);
{

display_Ads = paid_Costs*(0.198) + referral_Domains*(−0.065) + email_Sources*(−0.135)
;}

transition10.start();
transition11.start();
return;

case Purchase_Convertion:
logToDBEnterState(statechart, self);

// (Simple state (not composite))
statechart.setActiveState_xjal(Purchase_Convertion);
{

purchase_Convertion = organic_Costs*(−1.670) + paid_Costs*(−1.369) + referral_Domains*(1.696)
+ email_Sources*(0.167)
;}

transition9.start();
return;

case Paid_Traffic:
logToDBEnterState(statechart, self);

// (Simple state (not composite))
statechart.setActiveState_xjal(Paid_Traffic);
{

paid_Costs = normal(406,005.96, 1,514,463.27);

paid_Traffic = normal(666.9666, 3378.9857)
;}

transition14.start();
return;

case New_Visitors:
logToDBEnterState(statechart, self);

// (Simple state (not composite))
statechart.setActiveState_xjal(New_Visitors);
{

new_Visitors++;

pages_per_Visit = normal(0.97, 3.43);

visit_Duration = normal(128.25/60, 519.40/60);

referral_Domains = normal(794.22, 51,181.91);

email_Sources = normal(300,170.77, 184,876.14)
;}

transition4.start();
transition6.start();
return;

default:
return;

}
}
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Abstract: In addressing the complex challenges of path planning in multi-robot systems, this paper
proposes a novel Hybrid Decentralized and Centralized Training and Execution (DCTE) Strategy,
aimed at optimizing computational efficiency and system performance. The strategy solves the
prevalent issues of collision and coordination through a tiered optimization process. The DCTE
strategy commences with an initial decentralized path planning step based on Deep Q-Network
(DQN), where each robot independently formulates its path. This is followed by a centralized collision
detection the analysis of which serves to identify potential intersections or collision risks. Paths
confirmed as non-intersecting are used for execution, while those in collision areas prompt a dynamic
re-planning step using DQN. Robots treat each other as dynamic obstacles to circumnavigate, ensuring
continuous operation without disruptions. The final step involves linking the newly optimized paths
with the original safe paths to form a complete and secure execution route. This paper demonstrates
how this structured strategy not only mitigates collision risks but also significantly improves the
computational efficiency of multi-robot systems. The reinforcement learning time was significantly
shorter, with the DCTE strategy requiring only 3 min and 36 s compared to 5 min and 33 s in the
comparison results of the simulation section. The improvement underscores the advantages of the
proposed method in enhancing the effectiveness and efficiency of multi-robot systems.

Keywords: multiple-robot navigation; hybrid DCTE strategy; reinforcement learning; DQN;
effectiveness and efficiency

1. Introduction

Navigation for multiple mobile robots is an attractive research topic, with significant
implications across various fields, including autonomous vehicles [1,2], robotics [3,4],
and logistics [5,6]. Multiple robots can work together to accomplish complex tasks more
efficiently than a single robot. Multiple robots can significantly increase efficiency and
scalability in environments such as warehouses or manufacturing plants. They can be
deployed to handle different tasks simultaneously, from transporting goods to assisting in
assembly processes. The multi-robot systems offer greater resilience and redundancy than
a single robot system. Integrating machine learning and artificial intelligence with multi-
robot systems opens new avenues for autonomous decision making and adaptive learning.
Robots can learn from their environment and each other, optimizing their strategies and
behaviors for improved performance over time.

Navigation for multiple mobile robots using reinforcement learning (RL) [7–12] in-
volves teaching robots how to optimally move through their environment and interact with
each other to achieve goals. This approach leverages the principles of RL, where a robot
learns to make decisions through trial and error, guided by rewards for achieving desired
outcomes. Implementing RL in the multi-robot system is complex due to the dynamic
interactions among robots and their environment. It needs sophisticated algorithms to
handle coordination, communication, and obstacle avoidance. In RL, the environment
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includes everything that the robots interact with, including other robots, obstacles, and
the target location. It is typically modeled as a state space that the robots can observe
and act upon. Each robot is considered a robot with the ability to perceive the state of the
environment through sensors, make decisions based on its policy, and execute actions to
change its state or the environment. The state is the situation of a robot in the environment.
In this paper, it includes the robot’s location and the positions of other robots and obstacles.
Actions are the set of movements a robot can make, such as moving forward, moving
backward, turning left, turning right, or stopping. The choice of action at each step is based
on the robot’s policy. Rewards provide feedback to the robot for arriving at its goal point.
Penalties are given for collisions. The policy is a strategy that the robot follows to decide
its actions based on the current state. The goal of RL is to learn an optimal policy that
maximizes the expected cumulative reward.

Applying RL to multiple robots’ navigation is important, since it enhances the capa-
bilities and efficiency of multi-robot systems. RL enables robots to learn optimal paths
in complex environments. Using trial and error, robots can discover the most efficient
routes to their destinations while avoiding obstacles. This is particularly important in
dynamic environments where predefined paths may not be feasible [13]. RL allows robots
to make autonomous decisions based on real-time environmental data. This reduces the
need for constant human supervision and intervention, making the system more efficient
and scalable [14]. Robots can adapt their strategies based on the environment and the
behavior of other robots. This adaptability is crucial in dynamic settings where conditions
and tasks can change rapidly. RL helps robots to continuously improve their performance
over time [15]. In multi-robot systems, RL facilitates coordination and collaboration among
robots. Robots can learn to work together to achieve common goals, such as avoiding
collisions and optimizing task allocation. This leads to higher overall system efficiency [16].
Therefore, applying RL to multiple robots’ navigation is essential for developing intelligent,
efficient, and adaptable robotic systems.

The strategy of applying RL in multi-robot systems is of great importance. A well-
defined RL strategy ensures that robots can work together well, optimizing their collective
performance and achieving complex tasks [17]. Strategies that balance centralized and
decentralized learning can optimize the use of computational resources [18]. A scalable
RL strategy allows for the deployment of numerous robots in various environments, from
small-scale operations to large, complex settings [19]. An effective RL strategy incorpo-
rates redundancy and adaptive learning, enabling robots to recover from failures and
continue operations [20]. Therefore, this paper designs and applies a Hybrid Decentralized
and Centralized Training and Execution (DCTE) Strategy of RL to solve complex path
planning problems.

2. Related Works

There are several strategies for RL in multi-robot navigation. In centralized training
with a decentralized execution strategy [21,22], robots are trained together in a centralized
manner to learn how to coordinate their actions, but they execute their learned policies inde-
pendently in the real world. This approach leverages the advantages of shared learning and
optimizes the collective knowledge gained during training, while allowing for flexibility
and individual decision making in execution. However, training multiple robots in a cen-
tralized manner can become computationally intensive as the number of robots increases,
requiring significant processing power and memory. The complexity limits scalability and
is not feasible for large-scale deployments. In Multi-Robot Reinforcement Learning [23],
multiple robots learn and make decisions simultaneously. This strategy considers the
interactions between robots in addition to the individual robot–environment interactions.
This helps in developing policies that consider not just individual success but also the inter-
dependencies between robots, essential for tasks requiring high coordination. However, the
environment’s dynamics can change as each robot learns and adapts, making the learning
process inherently non-stationary. Algorithms may struggle to converge to a stable policy,
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leading to suboptimal performance and longer training times. It can be difficult to deter-
mine which actions by which robots led to a particular outcome, especially when actions
are taken simultaneously by multiple robots. This complicates the learning process and can
slow down the development of effective strategies. About communication mechanisms
strategy [24], establishing robust communication channels between robots allows them to
share real-time data about their status and the environment, such as detected obstacles
or positional data. However, maintaining real-time communication between robots can
introduce significant overhead in terms of latency and bandwidth usage. In environments
where split-second decisions are critical, delays in communication can lead to inefficiencies
or errors. As the number of robots increases, the amount of data that needs to be exchanged
can grow exponentially, making it challenging to manage effectively. This can limit the
maximum number of robots that can effectively collaborate within a system. The reward
shaping and shared rewards strategy [25,26] is designed to motivate not only individual
achievements but also collaborative efforts. Shared rewards promote teamwork, whereas
individual rewards focus robots on personal efficiency and task completion. Such a dual
reward system fosters an environment where robots learn to balance personal objectives
with group objectives, enhancing the overall system performance. However, designing
reward functions that accurately reflect both individual and collective goals is challenging
and can often require extensive tuning and domain knowledge. Poorly designed rewards
can lead to undesired behaviors, where robots exploit loopholes in the reward function
rather than performing the intended task. If the balance between individual and shared
rewards is not well managed, robots might either become too selfish, only optimizing
their own performance, or too altruistic, where they fail to effectively optimize their own
tasks. This can lead to inefficient overall performance and failure to achieve the collective
optimally goal.

The contribution of this paper is described as below. In order to address the disadvan-
tages discussed above, a Hybrid Decentralized and Centralized Training and Execution
(DCTE) Strategy is proposed. It provides an effective method for solving complex path
planning problems. This strategy adeptly handles collision and coordination issues com-
mon in multi-robot environments. The main idea of this method is to reduce computational
complexity and improve the system efficiency through staged optimization. If implement-
ing multi-robot navigation, the algorithm complexity and computation time will affect the
system’s scalability. This strategy can reduce computational complexity, making it feasible
to scale up the system. Simulation comparison experiments show that, with this strategy,
the computation time for robots to find safe paths is significantly reduced. The strategy
implementation includes six steps: initial decentralized path planning, central collision
detection, dynamic planning in collision areas, path re-optimization and connection, and
execution. In the initial decentralized path planning step, each robot independently learns
the optimal path from the starting point to the destination considering static obstacles
within a static environment based on DRL [27,28]. In the central collision detection step,
after all robots find their optimal paths, the central system performs path analysis to detect
potential intersection or collision risks between these paths. If the path of a robot does not
intersect with the paths of other robots, the path is confirmed to be safe and can be directly
used for execution. At the dynamic planning in collision areas step, if path intersections
are detected, the areas where these intersections occur will be marked as collision areas.
Robots in these areas need to re-plan their paths and consider other robots as dynamic
obstacles to avoid obstacles. During the re-learning process, the confirmed safe path will
set an expanded safety area around it, prohibiting other robots from entering, and ensuring
the security of the execution path. At the path re-optimization and connection step, once
the avoidance paths are determined, they are connected to the initial safe paths to form a
complete, secure route for execution. At the execution step, multiple robots will track the
optimized paths and detect the environment again. If there are new obstacles, the imple-
mentation will return to step 1. This strategy effectively allocates computing resources and
ensures the security of the execution process by first optimizing independently and then
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adjusting centrally. This hybrid strategy shows a high degree of adaptability in dealing
with static and dynamic obstacles, and can flexibly respond to complex and changeable
actual environments. The extensive experimental validation of the proposed strategy is
conducted using the Gazebo Simulator and Agilex LIMO robots equipped with onboard
LiDAR and camera sensors. The results confirm the advantages of the DCTE strategy,
showcasing reduced reinforcement learning time (3 min and 36 s) compared to traditional
methods (5 min and 33 s) and demonstrating efficient path planning and execution.

3. Hybrid Decentralized and Centralized Training and Execution Strategy for Multiple
Mobile Robots Reinforcement Learning

This section will introduce the hybrid decentralized and centralized training and
execution (DCTE) strategy for multiple-mobile-robots reinforcement learning (MRRL). In
MRRL, robots must cooperate to achieve optimal collective behavior. Hybrid training and
execution strategies combine decentralized and centralized approaches to optimize learning
efficiency and strategy implementation. The hybrid DCTE strategy includes six steps: initial
decentralized path planning based on DQN, central collision detection, dynamic planning
in collision areas, path re-optimization and connection, execution, and checking whether
there are new obstacles or not in the environment. The processing flowchart is shown in
Figure 1.

 

Figure 1. Hybrid DCTE strategy processing flowchart.
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Initially, each robot is assigned with the start point and goal point. In the decentralized
path planning step, each agent independently learns to find the optimal path from the
starting point to the goal point, avoiding static obstacles, based on DRL. The states of the
robot are the inputs of the neural network. There are two layers of the neural network. The
first layer has 10 neurons, and the second layer has 4 neurons. The outputs of the neural
network are the values of all actions. Each robot selects the action with the highest value
among its possible actions (up, down, left, and right). After learning, the optimal safe
path is obtained for each robot, and sent to the central system. The central system checks
whether there is a collision risk or not among the robots. As shown in Figure 2, the black
blocks represent static obstacles. After the decentralized path planning step, the red robot,
blue robot, yellow robot, and orange robot obtain the solid black path, dash black path,
dash–dot black path, and dot black path, separately. The arrow directions represent the
moving directions. The yellow robot’s path does not intersect with any other paths, so it is
a safe path. Although the dot black path and the solid black path do interact, there is no
collision risk, because the orange robot passes firstly. Therefore, the orange robot’s dot path
is confirmed to be safe and can be directly used for execution. However, the solid path and
the dash path do interact, and the red robot and the blue robot also meet each other in the
green block. Therefore, the green block is the collision area. The path in the collision area
should be replanned.

 

Figure 2. Three robots obtained optimal path after decentralized path planning step.

As shown in Figure 2, the collision area is marked. Robots in the collision area need
to re-plan their paths. The robots should consider other robots as dynamic obstacles to
avoid obstacles. As shown in Figure 3, the blue robot’s start point (xbs, ybs) and goal point
(xbe, ybe) are assigned to the robot. The red robot’s start point (xrs, yrs) and goal point
(xR, yR) are given to the robot. Because the path for the yellow robot is confirmed, the safe
path of the yellow robot, which is marked as black blocks in Figure 3, will set as the static
obstacles for the red and the blue robot. The blue and red robot should learn and find the
optimal paths, avoiding static obstacles and collision with each other, based on [22]. Each
robot has five possible actions: up, down, left, right, and stop. The Deep Q-Network (DQN)
receives inputs based on the states of multiple robots. It then estimates the Q-value for each
possible action of the robots. Each robot selects the action a associated with the highest
Q-value, and then dispatches these actions to all robots. The function f (a, n, k) is used to
calculate the specific action ak for robot k(k = 1, 2, 3, . . .). a is the selected action with the
highest Q-value. n(n ≥ 2) is the number of the robot. For example. If there are three robots,
then n is three. k (1,2,3, . . .) is the index number of the robot. The pseudo code is used to
calculate ak as Algorithm 1, where 5 means that the robot has four possible actions.
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Algorithm 1. Function: : f (a, n, k) is used to calculate the specific action ak for a robot.

Define a as the action with the highest Q-value.
Define n (n ≥ 2) as the number of the robot.
Define k (1, 2, 3, . . .) as the index number of the robot.
Define one variable base, which equals the integer part of the equation a/5n−1.
if k equals n:

ak equals base.
else if k equals n − 1:

ak equals the integer part of base/5.
else if k equals n − 2:

get the integer part of base/5 as base1.
ak equals the reminder part of base1/5.

else if k equals n − 3:
get the integer part of base/5 as base1.

get the reminder part of base1/5 as base2.
ak equals the integer part of base2/5.

 

Figure 3. Red robot and blue robot re-planned the trajectory to avoid the collision.

The robot executes the selected action and observes the new state and reward. If the
robot reaches the goal point, +1 rewards is obtained. If the robot moves to a free space
without any incidents, 0 reward is obtained. If the robot either collides with the other robot,
an obstacle, or returns to its starting point, −1 reward is obtained. The total reward r for all
robots at each step is calculated by summing the individual rewards rwdk:

r = ∑n
k=1 rwdk (1)

In the learning process, two neural networks are utilized: the evaluation network and
the target network. The evaluation network is updated continuously and is used to predict
the Q-values for current states and actions. The target network is a periodic copy of the
evaluation network and is used to calculate the target Q-values. Each network has two
layers. The first layer has 10 neurons, and the second layer has 4n neurons. The method
uses prioritized experience replay where the absolute temporal difference error is recorded
in memory. It is calculated as the difference between the values from the target network
and the evaluation network. A larger temporal difference error indicates significant room
for improvement in prediction accuracy, thereby assigning higher priority to those samples
for further learning. The formula used to train the evaluation network, representing the
target Q-value, is given by:

Yj = rj + γmaxQ̂ (2)

248



Electronics 2024, 13, 2927

rj is the reward obtained after all robots taking actions ak(k = 1, 2, 3, . . . . . .) in state sj. sj is
a single array stacking all robots’ states. sj+1 is the resulting state after taking the action.
γ = 0.9 is the discount factor, which determines the importance of future rewards. maxQ̂
represents the maximum predicted Q-value for the next state using the target network’s
parameters. a′ represents the next action that maximizes the Q-value for the new state sj+1.
θ−j represents the parameters of the target network at step j.

After replanning the path, the optimal paths are shown in the green block in Figure 4.
The solid black line and dash black are the paths for red robot and blue robot separately. The
path re-optimization and connection step will be processed. These paths will be connected
to the initial safe paths, obtained from decentralized path planning based on the DQN step,
to form a complete, secure route for execution, as shown in Figure 5. Then, each robot will
track the path and detect the environment. If new obstacles are detected, it will return to
the step of decentralized path planning based on DQN.

 

Figure 4. After replanning the path, the optimal paths are shown in the green block.

 

Figure 5. Path re-optimization and connection.
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4. Simulations

Based on the proposed Hybrid DCTE strategy, three robots plan and track the safe
path from start points to goal points. Initially, three robots plan the path based on DQN
separately. There are four actions: forward, backward, left, and right. The parameters for
the algorithm are given with a learning rate of 0.01, a reward decay of 0.9, an epsilon-greedy
policy with an epsilon set to 0.9, and a target network replacement iteration of 200. The
memory size and batch size were set to 2000 and 32. In Figure 6, the unit of each grid is
1 m. The black blocks represent the obstacles. The starting points for robots 1, 2, and 3 are
marked by red, blue, and gray blocks, respectively. The goal points for robots 1, 2, and 3 are
marked by yellow, green, and purple blocks, respectively. The red path is the planed path
for robot 1. The blue path presents the planed path for robot 2. The gray path represents
the planned path for robot 3. Since robots do not have the stop action to efficiently reach
their goal points, robot 1 and robot 3 have a collision risk between each other. The risk area
is shown in the green block.

 

Figure 6. Three robots plan a path after decentralized path planning step, based on DQN.

Robot 1 and robot 3 replanned the optimal paths simultaneously, based on DQN
RL algorithm. The learning rate, reward decay, and e-greedy were 0.01, 0.9, and 0.9,
respectively. The target network is updated every 200 iterations. The memory size and
batch size were set to 2000 and 32. The number training steps is 16,000 steps. There are
five actions for each robot: forward, backward, left, right, and stop. In Figure 7, the red
and gray blocks mark the starting points for robots 1 and 3, respectively, while the yellow
and purple blocks designate their goal points, respectively. The black blocks present the
static obstacles. The robot is recognized as the dynamic obstacle for the other robot. From
the start point, robot 1 moves backward first and then move forward. The robot 3 moves
forward directly.

After the path re-optimization and connection step, the optimized paths for robots 1,
2, and 3 are shown in Figure 8. There is no collision risk. If there is no new obstacle, three
robots track the path to the goal points. If new obstacles are detected, robots will return to
the step of decentralized path planning based on DQN. In total, the reinforcement learning
time is 3 min and 36 s for three robots.
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Figure 7. Robot 1 and robot 3 replan the optimal paths simultaneously, based on the DQN RL algorithm.

 
Figure 8. After path re-optimization and connection step, the optimized paths for robot 1, 2, and
3, respectively.

To illustrate the comparison between the hybrid DCTE strategy and the DQN-based
approach from ref [22], we present the result where three robots are exploring safe paths in
an environment, as depicted in Figure 6. Figure 9 presents the comparative results. The red,
blue, and grey lines represent the safe path for robots 1, 2, and 3, separately. The paths are
more complex and longer than the paths in Figure 9. In total, the reinforcement learning
time is 5 min and 33 s for three robots.
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Figure 9. Optimal paths for robots 1, 2, and 3, based on DQN-based approach from ref [22].

The proposed hybrid DCTE strategy for multi-robot navigation was evaluated using
the Gazebo Simulator. The simulation environment, consistent with the environment
shown in Figure 10a, was designed to rigorously test the algorithm’s effectiveness. LIMO
robots from Agilex Robotics, as shown in Figure 10b, is equipped with onboard LiDAR and
camera sensors. The obstacles are represented by gray boxes. Each cell measured 2*2 m.
Three robots are added to the Gazebo simulation environment. Each robot is assigned a
goal point. Robots applied the proposed DCTE Strategy to explore optimal paths. Robots
subscribed to the “/odom” topic to acquire their x and y positions and the “/imu” topic to
obtain the yaw angle value. Robots published the “/cmd_vel” topic to control movement
using linear and angular velocities. Robots use linear velocity 0.02 m/s for forward actions,
Robots use linear velocity−0.02 m/s for backward action. Robots calculate angular velocity,
based on the difference of the angle between two waypoints and the robot’s yaw angle.

  
(a) (b) 

Figure 10. (a) Gazebo simulator environment; (b) Agilex LIMO robot.

Figure 11 demonstrates the safe path exploration and tracking process. At t = 0, robots
initiate safe path exploration. At t = 39 s, three robots track their safe paths. At t = 66 s,
robot 1 turns left to avoid collision with robot 3. At t = 96 s, robot 1 moves backward to
track its optimal path. At t = 133 s, robot 2 avoids the static obstacle. At t = 162 s, three
robots track their safe paths. At t = 201 s, robot 3 reaches its goal point. At t = 252 s, robot 2
arrives at its goal point. At t = 308 s, robot 1 finally reaches its goal point. The video can be
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seen in the link: https://www.dropbox.com/scl/fi/vq6tf7onj66vv9fc4625x/gazebo-result-
DCTE-strategy.webm?rlkey=8hz2o8zn3fx9p7k5tqsx2lk9q&st=hxk66req&dl=0 (accessed on
26 June 2024).

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 11. Three robots explore and track the optimal paths, based on a hybrid DCTE strategy:
(a) t = 0 s; (b) t = 39 s; (c) t = 66 s; (d) t = 96 s; (e) t = 133 s; (f) t = 162 s; (g) t = 201 s; (h) t = 252 s;
(i) t = 308 s.

To validate the effectiveness of the proposed strategy, we deployed three robots in a
more complex environment. By applying the hybrid DCTE strategy, the robots were able
to reach their target points efficiently, quickly, and safely. In Figure 12, the robots need to
avoid the black block obstacles. Robots 1 and 3 have the risk of colliding with each other
and need to re-plan their optimal paths to avoid both static and dynamic obstacles.
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Figure 12. Three reach their target points efficiently, quickly, and safely, in a complex environment.

The complexity of the proposed control algorithm in real-time implementation can be
discussed through theoretical analysis based on existing research and simulation results.
The proposed Hybrid Decentralized and Centralized Training and Execution (DCTE)
Strategy includes decentralized path planning and dynamic re-planning phases, which
are expected to require substantial computational power. Each robot’s Deep Q-Network
(DQN) involves multi-layer neural network computations, typically necessitating powerful
CPUs or GPUs. In large-scale deployments, distributed computing resources might be
needed to ensure real-time performance. The DQN requires the storage of extensive
training data, replay buffers, and neural network parameters, leading to significant memory
usage. Especially when handling multiple robots, the memory requirements will grow
exponentially. Based on the structure and training process of DQNs, the time complexity
of the decentralized path planning and dynamic re-planning phases mainly depends on
the number of robots and the complexity of the environment. In practical applications, the
algorithm needs to complete path planning and adjustments within milliseconds. Although
DQNs can theoretically achieve efficient computations, its actual performance will be
influenced by hardware conditions and environmental complexity. The real-time processing
of LiDAR sensor data requires efficient data stream management and rapid computational
capability to ensure minimal latency. Results from the Gazebo simulator can provide
valuable references for practical applications [29,30]. Therefore, the DCTE strategy performs
well in simulated environments, suggesting it could achieve similar outcomes in real-world
scenarios. The goal of the proposed algorithm is to reduce the computational load, improve
the real-time effectiveness, and enhance scalability. We believe that the algorithm has
great potential for practical applications. Through theoretical analysis, we preliminarily
validate the feasibility and potential complexity of the proposed DCTE strategy in real-
time multi-robot navigation. Further practical experiments and optimizations will help
comprehensively evaluate and enhance the performance of this algorithm.

5. Conclusions

This paper has introduced a novel Hybrid Decentralized and Centralized Training and
Execution (DCTE) Strategy to address the complex challenges of path planning in multi-
robot systems. The initial decentralized approach, based on Deep Q-Networks (DQN),
allows each robot to independently find a path in a static environment. The centralized
collision detection step ensures that only non-intersecting paths proceed to execution, while
paths at risk of collision are dynamically replanned, considering other robots as dynamic
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obstacles. Those robots in a collision area replan safe paths simultaneously, based on
the DQN RL algorithm. After the re-optimization and connection step, all robots obtain
the optimization paths. The hybrid nature of the DCTE strategy ensures that computing
resources are allocated efficiently, with initial independent optimizations followed by
necessary centralized adjustments. This approach not only maintains continuous operation
but also adapts flexibly to both static and dynamic obstacles, ensuring robust performance
in varied and unpredictable environments. Simulation results demonstrate that the DCTE
strategy significantly improves the system performance by reducing the collision risks and
optimizing path planning in a computationally efficient manner.
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Abstract: Large-scale group decision-making (LSGDM) involves aggregating the opinions of partici-
pating decision-makers into collective opinions and selecting optimal solutions, addressing challenges
such as a large number of participants, significant scale, and a low consensus. In real-world scenarios
of LSGDM, various challenges are often encountered due to factors such as fuzzy uncertainties in
decision information, the large size of decision groups, and the diverse backgrounds of participants.
This paper introduces a dual fine-tuning-based LSGDM method using an online review. Initially,
the sentiment analysis is conducted on online review data, and the identified sentiment words are
graded and quantified into a fuzzy data set to understand the emotional tendencies of the text. Then,
the Louvain algorithm is used to cluster the decision-makers. Meanwhile, a method combining
Euclidean distances with Wasserstein distances is introduced to accurately measure data similarities
and improve clustering performances. During the consensus-reaching process (CRP), a two-stage
approach is employed to adjust the scores: to begin with, by refining the scores of the decision repre-
sentatives via minor-scale group adjustments to generate a score matrix. Then, by identifying the
scores corresponding to the minimum consensus level in the matrix for adjustment. Subsequently, the
final adjusted score matrix is integrated with the prospect–regret theory to derive the comprehensive
brand scores and rankings. Ultimately, the practicality and efficiency of the proposed model are
demonstrated using a case study focused on the purchase of solar lamps. In summary, not only does
the model effectively extract the online review data and enhance decision efficiency via clustering,
but the dual fine-tuning mechanism in the model to improve consensus attainment also reduces the
number of adjustment rounds and avoids multiple cycles without achieving the consensus.

Keywords: large-scale group decision-making; dual fine-tuning; online review data; prospect-regret
theory; clustering analysis

1. Introduction

With the development of the digital economy, various online platforms, such as social
media, online forums, and e-commerce websites, have become important channels for
people to communicate and express opinions widely. The scale of decision members
involved in these platforms has expanded continuously. When the scale of decision-makers
exceeds a certain threshold, the group decision-making issue can be classified as an LSGDM
challenge [1]. Overall, LSGDM has the following three characteristics: first, the decision
group is large and diverse in opinions; second, the decision information involved in the
process is highly uncertain and ambiguous; third, the participants in decision-making have
different backgrounds, interests, and preferences, leading to low consensus and increasing
decision complexity. In summary, LSGDM still faces many challenges.

In the sentiment analysis, the large scale of online reviews requires efficient data pro-
cessing, integrating emotional elements into the LSGDM process. When evaluating options,
people express emotions in various ways, such as positive, neutral, and negative emotions.
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Therefore, accurately identifying and quantifying these emotional data is crucial. In the so-
cial network analysis, trust relationships among decision-makers may potentially influence
clustering, opinion collection, and the group consensus process. Due to insufficient under-
standing of the internal structure of the group and the relationships among members, it is
challenging to identify subgroups with similar characteristics or opinions. The clustering
analysis is a crucial step in reducing the dimensionality of decision-makers and acquiring
objective weight data. Therefore, effective clustering is one of the challenges of LSGDM. In
the CRP, the LSGDM leads to a low initial consensus level. For instance, when purchasing
solar garden lights, most decision-makers believe that the garden light has a long lighting
time. However, some decision-makers think that the lighting time is short. Thus, achieving
a high degree of consensus among experts in a single decision-making process is difficult.
In summary, this paper intends to explore a dual fine-tuning LSGDM model. The following
sections will introduce the current research status and research motivations from three
aspects: the sentiment analysis, LSGDM, and behavioral decision-making.

Consumers’ purchasing decisions are influenced not only by the attributes and evalua-
tion standards of the products themselves but also by the online reviews and feedback from
other consumers. As a result, consumers are now in the habit of looking up the experiences
and feedback of prior buyers before making a purchase [2]. Specifically, how to effectively
extract and analyze the sentiment factors contained in the review data and then accurately
and effectively convert them into preference datasets is a focus of scholars. Preprocessing
and the sentiment analysis are particularly important when selecting products, given that
numerous online reviews are rich in emotional content and biases. Additionally, decision-
makers must take into account various factors, such as price, precision, and convenience [3].
Through the sentiment analysis, insights can be gained into the emotional tendencies and
attitudes of group members towards specific topics, issues, or decisions, which is significant
for the formulation and implementation of large-scale group decisions. In summary, how
to extract realistic decision data from online comments and reasonably depict the fuzzy
uncertainty of the data in realistic decision scenarios, which is challenging.

The classic process of LSGDM, according to vertical research ideas, roughly includes
clustering decision-makers, determining weights, and reaching a consensus. When dealing
with LSGDM problems, integrating members’ relationship information using social net-
works is considered an effective method. Most existing research constructs social networks
based on the trust relationships between experts. Studies on social influence theory indi-
cate that there is an interaction between similarity and social relationships, and similarity
characteristics influence group relationships [4]. To address the issue of the large scale
in the LSGDM, numerous scholars strive to address the LSGDM problems by employing
clustering algorithms to reduce dimensions. Clustering algorithms can reduce decision
complexity and make decision information among decision-makers within the same cluster
more similar. This paper uses the improved Louvain algorithm. Compared with other
graph-clustering algorithms, one of the most notable advantages of the Louvain algorithm
is its efficiency and scalability; another advantage is its ability to handle weighted graphs,
effectively dealing with the community structure division of complex networks while
maintaining sound time complexity [5]. These advantages make the Louvain algorithm
one of the preferred graph-clustering algorithms in many practical applications, especially
in handling large-scale and complex network data. Specifically, the Wasserstein distance
considers not only the position of the data points but also the shape and structure of their
distribution. It performs well in handling probability distributions or non-continuous data,
facilitating the processing of complex distributions and outliers [6]. During the decision-
making process, the trust relationships and similarities in opinions among decision-makers
are used to construct a relationship network among decision-makers, and the Louvain
algorithm is adopted for the clustering analysis. The research gap between this paper and
previous studies lies in the use of a mixed distance calculation formula for calculating
the similarity of expert opinions, which improves the accuracy of the weight calculations.
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Therefore, reducing the dimensionality of large-scale groups and objectively obtaining
weight data to simplify the problem-solving process are important.

Determining weights is a key step to ensuring the accuracy and effectiveness of
the LSGDM results [7]. By assigning different weights to different decision-makers or
attributes, their importance or influence in the decision-making process can be more
accurately reflected. Researchers have developed various methods to quantify and allocate
weights to indicate the importance of different decision-makers’ opinions or decision
criteria. The calculation idea of expert weights originates from the weighted sum of the
squared Euclidean distance and the squared Wasserstein distance to improve the accuracy
and operability of the weight determination process.

The ultimate goal of LSGDM is to reach a group-satisfactory consensus, forming a
final ranking of the options [8]. In fact, with the increase in the number of decision-makers,
the number of adjustment rounds also increases, and the complexity of obtaining consensus
opinions from a large-scale group simultaneously increases significantly. Therefore, this
paper uses a two-stage consensus measurement and feedback mechanism to accelerate the
CRP. In the first stage, the outliers are removed through mean and variance in the clustered
decision groups, and the decision representatives in the decision groups are finally selected
to reduce the decision scale. Secondly, to prevent the situation where there is more than
one outlier in the decision-making process, a dual minimum consensus level is set. When
the adjustments to the first minimum consensus level reach a certain number without
reaching a consensus, it is considered that there is more than one decision-maker with a
large decision difference from the others. The scores of decision-makers are adjusted for
the second minimum consensus level. After obtaining the final scores, the prospect–regret
theory is integrated to more comprehensively understand the impact of the decision-
makers’ bounded rationality on the decision results [4]. These two theories mitigate the
influence of psychological factors before and after the decision-making process, effectively
integrating the decision-makers’ bounded rationality into the outcomes to produce the final
decision result.

In an uncertain environment, rational decisions based on the expected utility cannot
efficiently explain certain actual decision behaviors [9]. Therefore, within the framework
of behavioral decisions, research on the cognitive limitations of decision-makers, the
subjective psychological factors of decision-makers, and the psychological impact of the
environment on decision-makers is becoming increasingly important. As scholars delved
deeper, Kahneman [10] proposed the prospect theory, and Bell, Loomes, and Sugden [11]
proposed the regret theory, providing new ideas for addressing uncertain decision problems
considering decision-makers’ psychological behaviors. This paper combines the prospect–
regret theory [4] with the final results of the CRP to obtain the final ranking of the options.
The prospect theory explains how decision-makers have varying attitudes towards gains
and losses, highlighting the influence of emotions, but it does not directly address the
regret that might occur after making decisions. The regret theory, on the other hand,
emphasizes the future regret emotions without fully considering the balance between
potential gains and losses, often resulting in more conservative decisions. By integrating
these two approaches, the prospect–regret theory can address their individual limitations,
resulting in decision outcomes that better align with people’s behaviors in diverse situations.
In summary, how to minimize the influence of outlier decision-makers after clustering to
achieve satisfactory results for the group and effectively prevent situations where consensus
requirements are not met even after multiple iterations.

In conclusion, in existing LSGDM methods, many studies on consensus-reaching mech-
anisms exist, but few use two-stage processing with secondary fine-tuning solutions. Owing
to the large scale of LSGDM, experts have diverse backgrounds and cognitive differences,
making it difficult to achieve a high consensus among experts on one decision-making
process [12,13]. As the number of decision-makers increases, the number of adjustment
rounds also increases, and the complexity of obtaining large-scale group consensus opin-
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ions significantly rises. Therefore, it is necessary to design a reasonable consensus feedback
mechanism to improve group consensus levels and ensure the reliability of decision results.

The structure of this paper is as follows: the second section reviews the literature
on LSGDM and the sentiment analysis. The third section provides an overview of the
foundational knowledge framework for LSGDM methods and the prospect–regret theory.
The fourth section introduces the improved Louvain algorithm for clustering and the CRP
based on dual fine-tuning. The fifth section illustrates and tests our proposed LSGDM
model through a case study of purchasing solar garden lights online and examines the
strengths and weaknesses of our approach through both quantitative and qualitative
comparative analyses, as well as a sensitivity analysis. The sixth section concludes the
paper and offers suggestions for future research.

2. Related Work

In this section, we will break down the content into three distinct parts. Firstly,
Section 2.1 offers a comprehensive literature review on the sentiment analysis. Follow-
ing this, Section 2.2 delves into the existing research on the clustering analysis. Finally,
Section 2.3 provides an in-depth literature review on the CRP.

2.1. Sentiment Analysis

The sentiment analysis plays a crucial role in LSGDM, especially when handling the
vast amount of review data from social media, online forums, and e-commerce websites.
Through the sentiment analysis, sentiment can be effectively introduced and quantified.
These sentiment data help decision-makers or consumers understand the attitudes and
tendencies toward a particular product or issue. Zhang et al. [14] established a multi-
granularity probabilistic linguistic information system using probabilistic linguistic term
sets. This method quantitatively analyzes users’ emotional expressions through the senti-
ment analysis. Liang et al. [15] proposed an integrated decision support model that collects
linguistic information from each review through the sentiment analysis and converts it into
a linguistic intuitionistic standard cloud of the product, thus ranking hotels.

These models analyze the emotional tendencies within comments to help decision-
makers understand user satisfaction and focal points. Compared with traditional small-
scale datasets, online data collection can provide larger and richer samples, enhancing the
accuracy and reliability of decisions. Additionally, online data collection can be updated in
real-time, ensuring that the decision basis is always up-to-date. By analyzing the sentiment
in online review data, decision-makers can better grasp user psychology, and optimize
product design and marketing strategies, thereby gaining an advantage in the competitive
market. In summary, sentiment analysis methods help to accurately examine online review
data and provide reliability in interpreting the emotional classification of data.

2.2. Clustering Analysis

Conventional clustering approaches rely on the similarity of viewpoints among
decision-makers, such as K-means clustering algorithms [16], hierarchical clustering algo-
rithms [17], and vector space-based clustering algorithms [18].

Vincent et al. [19] pointed out that the Louvain algorithm, as an efficient community
discovery algorithm, is particularly suitable for large-scale networks. Wu et al. [20] pro-
posed an LSGDM model based on the Louvain algorithm using interval type-2 fuzzy sets,
determining the weights of decision-makers and community submodules based on commu-
nity network characteristics. It is noteworthy that most of the existing research on LSGDM
problems based on social network relationships focuses on the clustering of LSGDM,
with less improvement in the calculation process of expert similarity before the clustering
analysis. This paper uses a mixed-distance method combining Euclidean distances with
Wasserstein distances to calculate the opinion similarity between decision-makers.

Xu et al. [21] determined the weights of the subgroups based on the consistency de-
grees of the subgroup preference relationships. Wu et al. [20] divided a network into several
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communities and then obtained the centrality of the entire network and the communities
by averaging the fused centrality of all the members, obtaining the community’s weight
based on the inverse relative distances between the community centrality and the overall
network centrality. However, some methods of solving index weights have limitations and
cannot cope with complex decision environments. Unlike the above literature, this paper
also calculates the weight of each expert. This paper also calculates the weight of each
expert to improve the accuracy and operability of the weight determination process.

2.3. CRP and Decision Result Generation

The CRP can effectively reduce the contradictions between decision-makers, facilitat-
ing the production of decision outcomes. The key to enhancing consensus lies in how to
set the adjustment range for scores during the CRP to achieve a better decision consensus.
Many scholars have offered various solutions. For example, Xu et al. [21] established a
two-stage consensus method, where the two phases refer to the consensus within the group
decision representatives and the consensus between groups. In addressing outliers within
groups by modifying their evaluation values, the approach involves directly replacing the
outliers’ values with the desired ones. Tang et al. [22] constructed a subgroup adaptive CRP
composed of mixed strategies. This model proposes different feedback mechanisms for
varying degrees of subgroup inter-consensus and intra-consensus, which can be realized
by increasing or decreasing the fixed values of outliers when modifying evaluation values.
However, the aforementioned studies have considered adjustments to decision scores
but lack flexibility, so are unable to make reasonable adjustments based on actual scores.
In this paper, the size of the adjustment range is determined by the amount of scoring,
effectively preventing a decrease in the consensus due to an excessive adjustment of scores.
As the number of group decision-makers increases, the number of adjustment rounds also
increases, significantly raising the complexity of obtaining large-scale group consensus
opinions. Therefore, a two-stage consensus measurement and feedback mechanism can
help to accelerate the consensus-reaching process.

The selection of adjustment subjects during the decision-making process also plays a
crucial role in the decision outcome. Palomares et al. [23] designed an LSGDM model based
on the FCM clustering algorithm, achieving effective dimensionality reduction by grouping
large-scale decision-makers. Liu et al. [24] proposed a partial binary tree DEA-DA cyclical
classification model to categorize decision-makers. However, existing methods may not pay
attention to the adjustment of the decision scores themselves, and there may be situations
where the adjustments are too large or too small. Palomares et al. [23] and Liu et al. [24]
failed to fully consider the situation where an excessive number of decision adjustment
rounds fails to reach a consensus level. These studies have not focused on situations where
multiple cycles still fail to meet the consensus requirements during the decision-adjustment
process. Zhang et al. [25] proposed a consensus model for MAGDM using multi-granular
HFLTSs, optimizing preference adjustments. Li et al. [26] also proposed consensus models
for ordinal classification-based GDM problems with heterogeneous preferences. Yuan
et al. [27] optimized IFPRs for robust consensus in large-scale GDM problems. In fact, as
the number of decision-makers increases, the complexity of obtaining consensus opinions
from a large-scale group also significantly increases. To address this, this paper sets a dual
minimum consensus level, reducing the time and adjustment costs required to reach a
consensus level by increasing the number of adjusters.

Zhang et al. [28] explored a group consensus model method in the context of interval
type-2 fuzzy sets. To alleviate the complexity of reaching a consensus among decision-
makers, this model introduces random variables to complete the step of selecting consensus-
level thresholds. Palomares et al. [23] designed an LSGDM model based on the FCM
clustering algorithm, grouping group decision-makers to achieve effective dimensionality
reduction. Liu et al. [24] proposed a partial binary tree DEA-DA cycle classification model
to classify decision-makers. However, the above studies do not focus on the situation where
multiple cycles still fail to meet the consensus requirements during the CRP of LSGDM.
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The generation of the final decision is a key step in the CRP, and this paper incorporates
the behavioral decision theory at this step. Within the behavioral decision theory, the
prospect theory [29] mainly focuses on the decision makers’ degree of delight in making
decisions. Meanwhile, the regret theory has also yielded many excellent research results in
LSGDM. For instance, Jin et al. [30] proposed a linguistic distribution LSGDM technique
that applies statistical inference principles and incorporates the regret theory to address the
regret-averse psychological characteristics among decision makers. However, relatively
speaking, they have not considered the comprehensive impact of both information and
regret on decision-making. The integration of these two aspects has also been explored by
many scholars. For example, Wang et al. [31] studied a three-way decision model using
the regret theory within a hesitant fuzzy environment. Furthermore, they introduced a
novel regret–rejoice function in their research. Tian et al. [32] described a CRP for multi-
criteria ranking issues with multiple experts based on probabilistic linguistic term sets,
which takes into account the decision makers’ regret–rejoice emotions during the decision-
making process. Jin et al. [33] constructed a regret–rejoice PLMDEA model based on the
regret theory, which considered the regretful attitudes of decision-makers. We incorporate
the regret–elation theory into the process of ultimately reaching a decision, allowing the
decision outcome to not only take into account the overall collective opinion but also to
integrate the behavioral decision theory, facilitating the generation of decision results that
are more aligned with objective reality.

3. Materials and Methods

This section will briefly introduce the sentiment analysis, the Louvain algorithm, the
CRP, and the prospect–regret theory.

3.1. Text Preprocessing Techniques

The sentiment analysis is a technique that analyzes text data after segmentation to
identify and understand the emotions and sentiments expressed therein [34,35]. This
section will introduce the key steps required for the sentiment analysis.

3.1.1. Chinese Word Segmentation

This article uses ChatGPT 4.0 (Conversational Generative Pre-trained Transformer) for
Chinese word segmentation. Compared with traditional segmentation methods, ChatGPT
has a higher adaptability, and its deep learning-based model can effectively understand
context and handle polysemy [36].

3.1.2. Creating an Emotion Dictionary

User evaluations often incorporate emotional language, utilizing adjectives, adverbs,
and negations to convey their opinions and sentiments about products. Adjectives reflect
attitudes toward items, while adverbs and negations indicate the extent of favorability or
unfavorability. The sentiment analysis entails extracting these linguistic cues from user
feedback and transforming them into valuable insights for assessing products across various
dimensions. This article will employ the sentiment analysis utilizing emotion dictionaries
to statistically gather collections of positive, neutral, and negative sentiment terms.

3.1.3. Translate the Quantitative Calculation of Emotions

LTP, a natural language processing tool developed in China, automates a range of
tasks, including part-of-speech tagging and semantic role labeling [37]. By using LTP to
conduct a dependency syntax analysis on product reviews, the identified sentiment words
are categorized into three levels: negative (−1), neutral (0), and positive (1). The formula
for sentiment quantification is as follows:

Scoreq
ij = p(Oq

ij)× deg(Oq
ij)×

[
(−1)q

ij

]N
, (1)
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where Oq
ij denotes the sentiment word about attribute Cj of the product in the online review

eq
i , and p(Oq

ij) denotes the polarity of the sentiment word Oq
ij. deg(Oq

ij) represents the

sentiment intensity of the sentiment word Oq
ij influenced by the degree adverb.

3.2. The Louvain Algorithm

The Louvain algorithm, as a method based on modularity optimization, is widely
used in the discovery of community structures in complex networks [38]. Its core idea
is to maximize the modularity of the network by iteratively optimizing the community
assignment of the nodes. Through this locally optimized strategy, the Louvain algorithm
can effectively discover community structures in networks and has a high computational
efficiency, making it suitable for handling large-scale networks. In this study, a social
relationship network is established based on the similarity of opinions among experts and
trust relationships. The Louvain algorithm is then used to cluster large populations.

3.2.1. Modularity

In the Louvain algorithm, modularity is used as a metric to evaluate the quality of
the network’s community structure. The concept of modularity quantifies the difference
between the density of connections within the modules and the expected density of random
connections. Modularity serves as the objective function, and the algorithm discovers
community structures by continuously optimizing this metric [39].

The definition of modularity is as follows:

Q =
1

2m∑
i,j

(
Aij −

kikj

2m

)
δ
(
Ci, Cj

)
, (2)

where Aij represents the number of edges connecting the node i and the node j in the
network, ki and kj represent the degrees of nodes i and j, respectively, m represents the
total number of edges in the network, Ci and Cj represent the community labels of nodes i
and j, respectively, and δ(Ci, Cj) is an indicator function that equals 1 when Ci = Cj is true,
and 0 otherwise.

3.2.2. The Euclidean Distance

The Euclidean distance considers the differences of the data points in each dimension,
which has the characteristics of intuitiveness and ease of understanding. In the Louvain
algorithm, using Euclidean distances helps to measure the similarity between nodes,
thereby promoting community partitioning and clustering results. The Euclidean distance
is applied in the calculation of node similarity [40] using the formula:

dij =
√

∑k (Aij
2 − Ajk

2), (3)

where dij represents the Euclidean distance between the node i and the node j, and Aik
and Ajk, respectively, represent the connection weights of nodes i and j in the adjacency
matrix A.

3.2.3. The Process of the Louvain Algorithm

This section will introduce the process of using the Louvain algorithm, which consists
of the following steps:

Step 1: Construct the social network. Let the set of nodes in the network be N, where
each node i represents an individual or entity. The relationships between the nodes are
represented by edges. Let the set of edges in the network be E, where each edge (i, j)
represents some form of association between the node i and the node j. The relationships
between the nodes and edges are represented using a graph structure G = (N, E), typically
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implemented using an adjacency matrix or adjacency list. In the initialization phase, each
node is initially considered as a separate community: Ci = i, ∀i ∈ N.

Step 2: Iterative optimization. Iterate over each node i and calculate the modularity
gain when the node joins its neighboring community:

ΔQi→j =
∑in +

∑tot ki,in

2m
2m

−
(

∑tot kin
2m

)2
, (4)

where ∑in represents the sum of weights of the edges from the node i to the interior of the
community n, ∑tot ki,in represents the sum of weights of the edges from the node i to all
edges in community n, and m represents the total weight of all the edges in the network.

Step 3: If moving a node to a neighboring community yields the maximum modularity
gain, execute the node movement operation. Merge the nodes with the same community
label into a supernode.

Step 4: Repeat Steps 2 and 3 on the new network until further optimization of modular-
ity is not possible. The final communities are the node groupings at the end of the iteration.

3.3. CRP

The ultimate goal of the LSGDM is to achieve a result satisfactory to the group,
establish a consensus, and further obtain the group’s decision. To this end, this paper
divides the CRP into two stages [41,42].

Before adjusting the CRP, each decision-maker needs to express their preferences and
provide subjective opinions on the decision-making matter.

During the initial stage, a consensus is attained within the decision groups by refining
opinions to obtain the collective viewpoint of each group. Decision-makers’ perspectives
within each group are then combined to ascertain the group’s preference and calculate
the overall consensus. If the consensus does not meet the required standard, feedback
mechanisms are used to adjust individual opinions. If a consensus is achieved through
consensus measurement, the process moves to the second stage.

In the second stage, adjustments to opinion preferences continue based on the prefer-
ences provided by different groups in the first stage. If the ultimate consensus threshold
is not achieved, group feedback is iteratively provided to refine the decision preferences
within the groups, with the aim of enhancing the consensus levels within the group. If the re-
quired level of consensus is achieved, this preference is considered the final decision result.

The flowchart of the CRP is shown in Figure 1.

 

Figure 1. The Overall Plan for the CRP.

3.4. Prospect–Regret Theory

Using the prospect–regret theory, it is found that people evaluate decisions based on
reference points, which can be the current state or expected benchmarks. People compare
the differences between decision outcomes and reference points to assess the value of
the decision and the likelihood of regret. The following are the core steps of using the
prospect–regret theory:
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Step 1: Use Formula (5) to calculate the value function for each decision-maker, which
involves the difference between each decision-maker’s score and the average score of all
the decision-makers, serving as their losses and gains.

v
(
Δxij

)
=

{ (
Δxij

)α Δxij ≥ 0
−λ
(
−Δxij

)β Δxij < 0
, (5)

where λ represents the loss aversion coefficient, with a larger value indicating that the
decision-maker is more sensitive to losses.

Step 2: Obtain the prospect value matrix Vij according to Formula (6), where
w represents the attribute weights. Additionally, the maximum prospect value V+

i and the
minimum prospect value V−i can be obtained.

Vij = v
(
Δxij

)
w. (6)

Step 3: Obtain the delight value matrix Rij according to Formula (7) and the Ham-
ming distances.

Zi(x) =
m

∑
j
(Rij(x) + Gij(x)). (7)

Step 4: Obtain the regret value matrix G according to Formula (8) and the Ham-
ming distances.

Gij(x) = 1− exp

[
−δ

∣∣∣∣∣ Vij(x)−V−ij (x)

V+
ij (x)−V−ij (x)

∣∣∣∣∣
]

. (8)

Step 5: Calculate the delight–regret value using Formula (9).

Zi(x) =
m

∑
j
(Rij(x) + Gij(x)). (9)

4. The LSGDM Method Based on Dual Fine-Tuning

The first step of this study involves a sentiment analysis based on online review
data. Secondly, a social relationship network is constructed by integrating expert opinions’
similarity and trust relationships. Based on this, an LSGDM with dual fine-tuning is
adopted. Finally, ranking is conducted using the prospect–regret theory.

4.1. Data Processing and Sentiment Analysis

Since consumers are heavily influenced by online product reviews during the con-
sumption process, the primary step is to effectively extract and analyze the sentiment
factors from the review data and then accurately and effectively convert them into pref-
erence datasets. This section will extract five different brands of solar lighting products
from online platforms as the solution set to verify the feasibility of the sentiment analysis
methods. The extracted data include not only online reviews but also the star ratings given
by consumers for the products.

4.1.1. Data Processing

Since the raw online review data may contain a large amount of noise, data processing
can help to filter out irrelevant information and improve data quality, making it suitable
for sentiment analysis models to enhance accuracy and efficiency. The following are the
three steps of data processing:

(1) Text cleaning: Since the collected data may have some noise, this section first removes
duplicate reviews and some emoticons to create a new text.
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(2) Data tokenization: This section uses ChatGPT tokenization for extracting keywords
and the sentiment analysis in the subsequent steps.

(3) Stopword filtering: The tokenized text may contain words like particles, numbers,
mathematical symbols, English characters, etc., which do not affect the results. This paper
filters out these stop words to avoid affecting the effectiveness of the sentiment analysis.

4.1.2. Constructing the Sentiment Dictionary

After the tokenization process described in Section 3.1.1, each sentence from the
reviews is divided into individual words. The sentiment analysis primarily determines
the sentiment expressed by the entire sentence based on the sentiment orientation of the
words. This section assists the subsequent steps by constructing dictionaries of positive
and negative sentiments. The positive emotion lexicon and negative emotion lexicon are
shown in Tables 1 and 2, respectively.

Table 1. Building a positive emotion lexicon.

Broad range, affordable, convenient, satisfactory, likable, elegant, user-friendly, pleasant, patient,
good review, value for money, thoughtful, worthy, reliable, beautiful, high brightness, long
lifespan, attractive, repurchase, warm, highly recommended, cost-effectiveness, recommend,
soft, good.

Table 2. Building a negative emotion lexicon.

Very dark, unpleasant, troublesome, missing parts, not bright, bad review, not in accordance,
really bad, disappointed, useless, plastic packaging, deceptive, misleading, inferior, abnormal
sound, not up to standard, mediocre, too dim, deceptive, cracked, glaring, return, very small,
collapsed, deformed, damaged.

4.1.3. Sentiment Orientation Ratio

This section conducts a sentiment evaluation based on the star ratings collected from
consumers for various brands. Ratings of 1 and 2 stars are classified as negative, 3 stars as
neutral, and 4 and 5 stars as positive. The percentage of emotional tendency is shown in Table 3.

Table 3. The percentage of emotional tendency for five brands.

Negative Neutral Positive

Xiang Zhe 27.3% 27.3% 45.4%
Shu FuJia 36.4% 36.4% 27.2%
Shuo Shi 18.2% 54.5% 27.3%
BELAN 30.0% 30.0% 40.0%
You Chi 10.0% 20.0% 70.0%

4.1.4. The Fuzzy Number Acquisition

Mapping the adverbs describing the degree of good or bad for a certain attribute of the
product in the reviews to trapezoidal fuzzy numbers. The correspondence table between
product ratings and trapezoidal fuzzy numbers is shown in Table 4.

Table 4. The correspondence table between product ratings and trapezoidal fuzzy numbers.

Product Ratings Trapezoidal Fuzzy Numbers

Very Poor (0.0, 0.0, 0.1, 0.2)
Poor (0.1, 0.2, 0.2, 0.3)

Fairly Poor (0.2, 0.3, 0.4, 0.5)
Moderate (0.4, 0.5, 0.5, 0.6)

Fairly Good (0.5, 0.6, 0.7, 0.8)
Good (0.7, 0.8, 0.8, 0.9)

Very Good (0.8, 0.9, 1.0, 1.0)
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Human language is used to describe the advantages and disadvantages of product
attributes. To convert them into fuzzy numbers, the following fuzzy number conversion
process is conducted:

Symbols used in the conversion process: let us denote the score, ranging from [−3, 3].
Trapezoidal fuzzy numbers are denoted as (a, b, c, d), triangular fuzzy numbers as (e, f , g),
and fuzzy numbers as f . The specific steps for converting the product evaluations into
fuzzy numbers are as follows:

Step 1: Assign scores to different brands and attributes based on adverbs of degree
to ensure that the scores fall within the range of trapezoidal fuzzy numbers, calculated
as S = s

3 .
Step 2: Use Formula (10) to calculate the left triangular fuzzy number f l and the right

triangular fuzzy number f r (replaced by f1 in the following formulas). When calculating
the value corresponding to the left triangular fuzzy number, input (a, b, c), and when
calculating the value corresponding to the right triangular fuzzy number, pass in (b, c, d):

If S ≤ e, f1 = 0;

If e ≤ S ≤ f , f1 = S−e
f1−e ;

If f ≤ S ≤ g, f1 = g−S
g− f1

;

If g ≤ S, f1 = 0.

(10)

Step 3: Utilize the following Formula (11) to determine the fuzzy number:

f =
f l + f r

2
. (11)

4.2. The Improved Louvain Algorithm

Construct a relationship network among experts based on trust relationships and the
similarity of opinions among decision-makers, and then utilize the improved Louvain
algorithm on this network to cluster large populations and obtain aggregated weights.

4.2.1. The Problem Description

The formal representation of fuzzy large-group decision-making with dual fine-tuning
in this paper is as follows:

Let X= {x1, x2, . . . , xm}(m ≥ 2) be the set of alternative solutions, where xi represents
the i-th solution; C = {c1, c2, . . . , cn}(n ≥ 2) be the set of attributes, where cj represents the
j-th attribute.

Similarly, let E = {e1, e2, . . . , ek}(k ≥ 20) be the set of decision-makers, where e f

denotes the f -th decision-makers; ω = {ω1, ω2, . . . , ωk}T be the weight vector of the
decision-makers, where ω f denotes the weight of the f -th decision-makers, satisfying

ω f ≥ 0 and
k
∑

f=1
ω f = 1.

This paper assumes that each decision-maker’s score matrix during the CRP is denoted
as w. The average score matrix is represented by avg_g, the variance matrix by var_g, the
consensus matrix by con, and the group consensus by g_con. Additionally, the distances
matrix between each pair of decision representatives is denoted by dis.

In the prospect–regret theory, it is assumed that the value function matrix is V, the
prospect value matrix is pre, the joy value matrix is P, the regret value matrix is Q, and the
joy–regret matrix is Re.

4.2.2. The Wasserstein Distance

The Wasserstein distance, alternatively referred to as the Earth Mover’s distance,
originates from transportation problems. In transportation problems, resources need to
be transported from one location to another, but the distances and transfer costs between
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each pair of locations may vary. The calculation process of Wasserstein distances can be
viewed as the optimal transportation of one probability distribution to another, where the
cost of each transfer is associated with the difference between the probability distributions.
Specifically, given two probability distributions, μ and ν, the Wasserstein distance is defined
as the minimum total cost of transporting one probability distribution to another. This cost
can be computed by finding the best matching between the two distributions, where the
cost of transferring each element from one distribution to another is proportional to the
distances between them. The calculation of Wasserstein distances can be achieved using
linear programming or convex optimization-based methods [43].

Given two probability distributions, μ and ν, their Wasserstein distance is defined as:

Wp(μ, υ) = (infγ∈Γ(μ,υ)

∫
Rd×Rd

‖x− y‖
p
dγ(x, y))

1/p

, (12)

where p is the order of the norm (usually 1 or 2), Γ(μ, υ) is the set of all the joint distributions
with marginal distributions μ and υ, and γ(x, y) represents the joint distribution where x
and y are from the two probability distributions, respectively.

4.2.3. The Methodology of the Louvain Algorithm

Based on the list of fuzzy number matrices, the similarity of opinions among decision-
makers is determined using a combination of the Euclidean distances formula and the
Wasserstein distances formula. The distances formula is as follows:

dm
ij = αde

ij + (1− α)dw
ij , (13)

where α is a weight coefficient used to balance the importance of the Euclidean distances
and the Wasserstein distances. Additionally, α is generally set to the average value to
ensure equal relative contributions of both distances in the distance measurement.

The similarity matrix R is obtained according to Formula (14):

rij = 1− 1
m

m

∑
i=1

n

∑
j=1

dm
ij . (14)

By integrating the trust relationships among decision-makers with the similarity of
opinions, we derive the relationship coefficients between decision-makers using Formula (15),
yielding the relationship matrix among decision-makers:

yij =
1
2

pij +
1
2

rij. (15)

When calculating the weights of the clusters and decision-makers, the aggregate scale
and the degree centrality of the network are considered. The weights of each cluster
U =

{
u1, u2, u3, . . . , uq

}
are obtained using Formula (16), followed by the calculation of the

weights of each decision-maker ω = {ω1, ω2, ω3, . . . , ωk} based on Formula (17):

uq =

∑
i∈uq

yij

2∑ yij
+

Nq

2k
; (16)

ωk =

∑
j∈uq

ykj

∑
i∈uq

∑
j∈uq

yij
. (17)

Finally, the specific algorithm steps are presented in Algorithm A1 of the Appendix A.
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4.3. The CRP Based on Dual Fine-Tuning

This section will introduce the two stages of the CRP based on dual fine-tuning in
detail. The specific steps will be provided in Algorithm A2 of the Appendix A.

In the actual decision scoring process, decision-makers’ scores for each product are
often influenced by significant personal subjective emotions. To address this issue, a
two-stage group CRP is established to obtain objective product ratings.

The CRP adopts two stages to effectively reduce the decision-making and adjustment
process, improve decision-making efficiency, and reduce time complexity.

In the first stage, decision scores within different decision groups are derived:
After clustering using the improved Louvain algorithm, the matrix w[i][j][k] is ob-

tained. Then, the average score matrix avg_g[j][k] is calculated by averaging each row
of matrix w. Next, the variance var_g is calculated using Formula (18) to indicate the
dispersion of each score relative to the average value.(

1
x

x−1

∑
j=0

(
1
y

y−1

∑
k=0

(w[i][j][k]− avg_g[j][k])2

))
. (18)

In the second stage, adjustments are made for the dual minimal consensus. It is
important to note that although the letter selection for the number of representatives
remains unchanged in the second round, it now represents the decision representatives
selected in the first round:

First, use Formula (19) to calculate the distance matrix dis[n][n] between any two
decision-makers, finding the Euclidean distance between them, where a and b are the
identifiers of any two selected decision representatives:(

1
x

x−1

∑
j=0

(
1
y

y−1

∑
k=0

(w[i][j][k]− avg_g[j][k])2

))
. (19)

Next, calculate the consensus degree between a decision-maker and all other decision-
makers using the distance matrix dis[n][n] and Formula (20). Obtain an n-dimensional
matrix con[n]:

1− 1
n

n−1

∑
j=0

dis[i][j]
18

. (20)

Then, use Formula (21) to calculate the average consensus degree matrix to obtain the
final group consensus degree g_con:

1
n

n−1

∑
i=0

con[i]. (21)

Finally, Formula (22) is used for the score adjustment:

If w[i][j][k] > avg_p[j][k],

then w[i][j][k]− = avg_p[j][k]
9 ;

If w[i][j][k] < avg_p[j][k],

then w[i][j][k]+ = avg_p[j][k]
9 .

(22)

The flowchart of the dual fine-tuning CRP is shown in Figure 2.
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Figure 2. The CRP with dual fine-tuning.

4.4. Prospect–Regret Theory

The prospect–regret theory can effectively prevent the regret or elation that decision-
makers might experience after the decision results are generated. In this section, we will
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combine the existing knowledge of the prospect–regret theory with the final results of the
CRP to obtain the ranking of the options. This method can effectively address the impact of
decision-makers’ regret or elation on the experimental results. The specific experimental
steps are detailed in Algorithm A3 of the Appendix A.

5. Instance Analysis

This section will verify the decision-making model based on dual minimum value fine-
tuning using the case of solar light selection, and present the steps of the specific algorithm.
The overall experimental process is shown in Figure 3. The overall experimental steps are
seen in Algorithm A4 of the Appendix A. In addition, this section not only compares the
classical multi-attribute decision-making methods with the method presented in this paper,
but it also conducts a sensitivity analysis on the method presented in this paper using
different parameter values.

Choose 
the object

Figure 3. The experimental procedure flowchart.

5.1. Instance Description

The data used in this section come from reviews of solar streetlights sold on an online
platform. To ensure the data are broadly representative, this article selects five solar light
brands with a high sales volume and rich reviews, including Xiangzhe, Shufujia, Shuoshi,
BELAN, and Youchi.

First, assume X = {x1, x2, x3, x4, x5} to be the set of alternative solutions, which are
“Xiang Zhe”, “Shu Fu Jia”, “Shuo Shi”, “BELAN”, and “You Chi”.C = {c1 , c2, c3, c4,c5, c6}.
The meanings they represent are brightness, duration of light, price, appearance, service
attitude, and product quality. Let E = {e1, e2, e3, e4, . . . , e30} represent the decision-makers
among them. Use V = {v1, v2, . . . , vn} to represent the different groups after clustering the
decision-makers.

Apply this dataset to the decision-making model proposed in Section 3 for decision-
making, with the following steps:

Step 1: Process the crawled review data according to the first part of Section 3, obtain-
ing a score matrix for different decision-makers for different brands. Use the formula to
derive a fuzzy number matrix from the score matrix.

Step 2: Cluster all the obtained fuzzy number matrices as described in the second
part of Section 3, deriving inter-group weights, intra-group weights, and clustering group
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results, as shown in Table 5. The results of clustering all the obtained fuzzy number matrices
are shown in Figure 4.

Table 5. Clustering and decision-maker weight results.

Clustering Result Expert Individuals and Weights Cluster Weighting

e1

v4(0.08), v10(0.07),
v0(0.08), v16(0.08),
v20(0.08), v21(0.06),
v23(0.08), v28(0.08),
v15(0.06), v12(0.06),
v17(0.08), v22(0.06),
v30(0.07),

0.41

e2

v1(0.08), v14(0.09),
v8(0.08), v11(0.09),
v5(0.08), v18(0.08),
v6(0.09), v27(0.08),
v26(0.08), v13(0.08),
v19(0.09), v29(0.08)

0.39

Figure 4. The clustering result graph.

Step 3: Based on the clustering groups and weights obtained in Step 2, conduct the
first round of the consensus adjustment. In this round, the scores, means, and variances
will be calculated to remove the outliers within each group. Finally, the decision-maker
score matrix for each group is selected as follows:⎡⎢⎢⎢⎢⎣

2.45 2.20 0.30 0.20 0.10 1.70
2.05 −0.20 0.50 1.40 0.20 2.20
2.05 2.05 0.15 0.85 0.05 2.60
2.00 1.25 0.10 2.00 0.10 2.70
2.05 0.89 0.00 0.50 0.15 0.55

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
0.50 1.80 0.00 2.30 0.10 1.60
2.40 0.80 0.20 −0.30 0.00 0.10
−0.20 0.50 2.60 1.60 0.10 2.30
0.20 2.10 0.00 0.40 0.10 1.60
0.20 0.40 0.00 1.50 0.10 0.30

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
2.20 1.50 0.00 1.40 1.90 0.10
1.50 2.40 0.10 1.10 0.00 1.30
2.50 2.30 0.00 0.30 0.10 1.60
2.40 2.80 0.00 1.60 1.70 2.10
2.50 2.30 0.00 0.10 1.40 1.40

⎤⎥⎥⎥⎥⎦.
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Step 4: In the second round, the consensus degree of the decision-making repre-
sentatives was −0.024498147569775024, which did not meet the consensus requirements.
Subsequently, consensus adjustments were made based on the above scores, and after ten
rounds of adjustments, focusing on the representative with the lowest consensus degree, a
consensus level was reached, with a final consensus degree of 0.8019555217792464. This
resulted in the final adjusted decision-making representative score matrix.

Step 5: According to prospect–regret theory and combined with the decision-making
representative score matrix obtained above, as follows:[

89.00 77.67 41.65 106.23 46.32
]
.

According to the final score matrix, the ranking of the final products is as follows:

x4 � x1 � x2 � x5 � x3.

Drawing a brand score and ranking chart as shown in Figure 5, based on the above
rankings and scores.

Figure 5. Our method ranks the comprehensive scores of the commodities.

Based on Figure 5 and the ranking, it can be concluded that BELAN’s product is the
best, after synthesizing the scores of six evaluation attributes for each solar light.

5.2. Advantages of Our Approach over Other Methods

In this section, the comparison will be divided into three parts: initially, we will delve
into the significance and impact of the methodologies introduced in this paper for the
purpose of decision-making. Secondly, we will undertake a comparative analysis using
traditional multi-attribute decision-making techniques, including TOPSIS, TODIM, and
VIKOR. Finally, a comparison by integrating the prospect–regret theory used in this paper
with the above classic multi-attribute decision-making methods.

The corresponding methods and symbols used in this section are shown in Table 6.

Table 6. The comparison method corresponds to the symbolic diagram of the method representative.

Comparative Method Method Symbol

Two-stage dual minimum consensus degree adjustment
combined with the prospect–regret theory m0

Remove the prospect–regret theory from m0 m1
Replace the prospect–regret theory in m0 with the prospect theory m2
Replace the prospect–regret theory in m0 with the regret theory m3

Classic multi-attribute decision-making method TOPSIS m4
Classic multi-attribute decision-making method TODIM m5
Classic multi-attribute decision-making method VIKOR m6
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Table 6. Cont.

Comparative Method Method Symbol

Two-stage double minimum consensus degree adjustment
combined with TOPSIS m7

Two-stage double minimum consensus degree adjustment
combined with TODIM m8

Two-stage dual minimum consensus degree adjustment
combined with VIKOR m9

5.2.1. Compare Different Methods with Our Method

To clarify the impact of the important steps in the method proposed in this paper
on decision-making outcomes, a comparison is made between the method used and its
replacement methods during decision-making in m1 to m3. The focus is on three treatments
of the prospect–regret theory proposed in this paper: removing the prospect–regret theory
directly, replacing the prospect–regret theory with the prospect theory, and replacing
the prospect–regret theory with the regret theory. The method m0 is compared with the
replaced methods m1, m2, and m3, respectively. The experimental result graphs for these
three treatments correspond to Figures 6a, 6b and 6c, respectively.

(a) (b) ( )

(d) (e) (f) 

(g) (h) (i)

Figure 6. Comparison chart of this method with other methods.
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To compare with the classic multi-attribute decision-making methods and iden-
tify the advantages of the method proposed in this paper, the classic multi-attribute
decision-making methods TOPSIS, TODIM, and VIKOR are used for comparison, that
is, method m0 is compared with classic methods m4, m5, and m6, respectively. The
experimental result graphs obtained from the comparison correspond to Figures 6a, 6b
and 6c, respectively.

To further control the variables, the two-stage minimum consensus-reaching process
proposed in this paper is combined with the classic multi-attribute decision-making meth-
ods TOPSIS, TODIM, and VIKOR, respectively, and methods m7, m8, and m9 are compared
with the method m0 proposed in this paper, respectively, in order to obtain more convincing
comparative results.

It can be observed from figures a–i that the method proposed in this paper gen-
erally exhibits higher final product score differentiation compared to other methods.
particularly in figures d–i, the product scores for methods m4 to m9 show overall less
differentiation, whereas the scores obtained from our method have increased gaps, re-
ducing the bias in final decision-making. moreover, the optimal brand selected by the
method proposed in this paper aligns with the majority of other methods, except for
a deviation with method m8 in figure h, which indicates the accuracy of the results
produced by our proposed method.

According to the experimental results, it can be seen that the decision-making method
proposed in this article is more conducive to producing decision outcomes. The significant
differences between brands can effectively reduce user hesitation when choosing a brand
and minimize deviations in selecting products. Moreover, the optimal product selected
by the method proposed in this paper is basically consistent with the optimal product
selected under the other decision-making methods, which also proves the correctness of
this method for decision outcomes.

5.2.2. Similarity Analysis of Final Decision Outcomes Using Different Methods

This section presents two comparative experiments. Firstly, it compares the similar-
ities between the sorting results of the method proposed in this article with those of the
comparative methods, demonstrating that the method introduced in this paper aligns well
with the decision-making outcomes. The results of this comparison are shown in Figure 7.
Subsequently, it compares the final scores assigned to each product by the method proposed
in this article with the scores assigned by the comparative methods. The results of this
comparison are shown in Figure 8.

Figure 7. The Spearman’s rank correlation plot of the similarity of product rankings.
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Figure 8. Spearman’s rank correlation plot of product score similarity.

5.2.3. Analysis of Advantages Compared with Other Methods

To intuitively compare the advantages with other methods, comparisons were made
in four aspects: the sentiment analysis, CRP, risk assessment, and classification ability. The
comparison results are shown in Table 7.

Table 7. The advantages compared with other methods.

Sentiment
Analysis

CRP Risk Assessment Classification Ability Accuracy

m1 √ √ × √ ×
m2 √ √ √ √ ×
m3 √ √ √ √ ×
m4 × × × × ×
m5 × × × × ×
m6 × × × × ×
m7 × × × √ ×
m8 × × × √ ×
m9 × × × √ ×
m0 √ √ √ √ √

5.3. Performance Testing and Sensitivity Analysis

To enhance the practicality of the method, an analysis of its execution performance
and sensitivity is conducted. The performance analysis includes the adjustment time when
the decisions are made and the number of adjustment rounds for decision-makers. The
sensitivity analysis mainly focuses on the parameters used in prospect–regret theory. By
following these procedures, the merits of the method presented in this paper become even
more evident.

5.3.1. Performance Analysis

As the decision-making process incorporates a growing number of experts, the CRP
model introduced in this paper demonstrates its ability to swiftly converge on a consensus
within a reasonable timeframe. Even when the number of experts balloons to 1000, the
execution time remains under 70 s, as illustrated in Figure 9. This graphical representation
highlights the efficient relationship between the number of decision-makers and the cor-
responding execution time. These findings underscore the practicality and dependability
of the proposed method, particularly in scenarios where the decisions involve significant
numbers of experts, extending into the thousands.
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Figure 9. Performance analysis experimental chart.

The above simulation experiment was conducted using PyCharm Community Edition
2023.3.2, executed on a computer equipped with an Intel® Core™ i7-12700 processor from
the 12th generation, with a running frequency of 3.90 GHz.

In order to ensure that within a certain range of decision-makers, the adjustment of the
decision-maker scores can reach the required consensus level in a limited number of rounds,
without the situation where consensus cannot be adjusted. The number of adjustment
rounds for the least and second-least consensus degrees among 1000 decision-makers is
counted. The results are shown in Figure 10 and Figure 11, respectively:

Figure 10. The number of adjusting rounds for the first minimum.

Figure 11. The number of adjusting rounds for the second.
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5.3.2. Sensitivity Analysis

In this segment, the robustness of the proposed method is tested by conducting
sensitivity analyses on the parameters α, β, and λ involved in the decision-making process.

In the content of the previous section, the value of α was set to 1.21. In this section, its
value is set to 2.42 and 3.63, respectively. The ranking results of the goods under different
values are shown in Table 8, and the sensitivity test results are shown in Figure 12.

Table 8. The sorting results when the parameters α take different values.

Parameter α Value Sorting Result

α = 1.21 x4 � x1 � x2 � x5 � x3
α = 2.42 x4 � x1 � x2 � x5 � x3
α = 3.63 x4 � x1 � x2 � x5 � x3

Figure 12. The sensitivity test for parameters α.

During the course of making a decision, the value of β is set to 1.02. To verify the
stability of the results, its values are set to 2.04 and 3.06, respectively. The ranking results of
the goods with different values are shown in Table 9, and the outcomes of the sensitivity
analysis are presented in Figure 13.

Figure 13. The sensitivity test for parameters β.
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Table 9. The sorting results when the parameters β take different values.

Parameter β Value Sorting Result

β = 1.02 x4 � x1 � x2 � x5 � x3
β = 2.04 x4 � x1 � x2 � x5 � x3
β = 3.06 x4 � x1 � x2 � x5 � x3

During the calculation, the value of λ is taken as 2.25. In this section, its values are
respectively taken as 4.5 and 6.75. The sorting results of the goods under different values
are shown in Table 10, and the findings of the sensitivity test are depicted in Figure 14.

Table 10. The sorting results when the parameters λ take different values.

Parameter λ Value Sorting Result

λ = 2.25 x4 � x1 � x2 � x5 � x3
λ = 4.5 x4 � x1 � x2 � x5 � x3

λ = 6.75 x4 � x1 � x2 � x5 � x3

Figure 14. The sensitivity test for parameters λ.

6. Conclusions

This paper first converts the sentiments contained in online reviews into fuzzy num-
bers through the sentiment analysis. Next, it improves the Louvain algorithm using a
mixed distance of Euclidean distances and Wasserstein distances. Then, a two-stage dual
fine-tuning CRP model is used to adjust the scores of decision-makers. Additionally, the
prospect–regret theory is utilized to address the potential joy and regret psychological issues
that decision-makers might experience during the decision-making process. Ultimately,
the model’s applicability and operationality are confirmed via a case study involving the
purchase of solar lights.

Considering the above analysis, the contributions of this paper are as follows:

(1) Incorporating a sentiment analysis into the LSGDM model to accurately quantify and
analyze the fuzzy dataset of decision-makers’ linguistic preferences.

(2) Using a mixed distance of Euclidean distances and Wasserstein distances to calcu-
late the similarity between experts when constructing social networks based on the
Louvain algorithm.

(3) Utilizing a two-stage process to reduce the decision scale while minimizing adjust-
ments to decision-makers. Setting dual minimum consensus levels avoids multiple
outlier situations and excessive adjustment times.
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In future research, several aspects of the proposed method require further investi-
gation to address its current limitations. First, the method lacks the capability to handle
dynamically changing online review data effectively. Incorporating real-time monitoring
and analysis processes is essential to adapt to continuous changes in review data. Tech-
niques such as a time series analysis could explore trends and periodic changes, providing
more timely and accurate information for decision-making. Second, the method does not
adequately consider decision-makers’ overconfidence during the CRP. Overconfidence
can significantly influence decision outcomes, especially under uncertain conditions. A
deeper analysis of how overconfidence affects the CRP is needed, focusing on how varying
confidence levels among decision-makers impact consensus and decision quality. Address-
ing these limitations will enhance the method’s robustness and applicability in real-world
decision-making scenarios.
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Appendix A

Algorithm A1 is related to the methodological steps of Section 4.2.3, and it is the
Louvain Algorithm.

Algorithm A1: The Louvain Community Clustering Algorithm Based on Mixed Distances

Input: The List of Fuzzy Number Matrices | f uzzy_numbers|
Output: The Clustered Threshold Matrix
1 Loop i from 1 to | f uzzy_numbers|:
2 Loop for j from 1 to | f uzzy_numbers|:
3 Calculate the Euclidean distance according to Formula (3)
4 end
5 Loop for i from 1 to | f uzzy_numbers|:
6 Loop for j from 1 to | f uzzy_numbers|:
7 Calculate the Wasserstein distance according to Formula (12).
8 end
9 Loop i from 1 to | f uzzy_numbers|:
10 Loop for j from 1 to | f uzzy_numbers|:
11 Calculate the comprehensive distances according to Formula (13).
12 Add an edge connecting node i and node j in the weighted network graph G.
13 Calculate the decision-makers’ weights according to Formulas (16) and (17).
14 end
15 Final Result: Clustering Results

Algorithm A2 is related to the methodological steps of Section 4.3, and it is the CRP
based on dual fine-tuning.
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Algorithm A2: The CRP Based on Dual Fine-Tuning

Input: The decision group (containing scores of different decision-makers for different products),
inter-group weights, intra-group weights
Output: The consensus decision representative score matrix
1 Initialize
2 Initialize attributes and brands with equal weights
3 Calculate the weight of each decision-makers for each attribute of each product, obtaining

the weight matrix
4 while (var_g <parameter 1):
5 Calculate the average score matrix avg_g for each attribute of each product in each
decision group
6 Calculate the variance var_g for each decision group according to Formula (18)

Remove decision-makers with larger variances:
7 Find the decision-makers with the largest variance
8 Remove the decision-makers from the decision group
9 end
10 Take the average score of the decision-makers as the decision representative score for that
decision group, obtaining the decision representative score matrix w for all groups
11 Calculate the distances between each group leader and other group leaders according to
Formula (19), obtaining the distance matrix dis
12 Calculate the consensus level of each group leader according to Formula (20), obtaining the
consensus level matrix con
13 Calculate the group consensus level g_con according to Formula (21)
14 Find the group leader with the lowest consensus level
15 while (g_con < parameter 2 && the adjustment times for the group leader with the lowest
consensus level are less than parameter 3):
16 Adjust the score of the group leader with the lowest consensus level using Formula (22)
17 Repeat steps 12–15
18 end
19 while (g_con < parameter 2)
20 Adjust the score of the group leader with the second lowest consensus level using Formula (22)
21 Repeat steps 12–14
22 end
23 Final result: The adjust decision representative score list W

Algorithm A3 is related to the methodological steps of Section 4.4, and it is the final
scheme ranking decision based on the prospect–regret theory.

Algorithm A3: Final Scheme Ranking Decision Based on Prospect-Regret Theory

Input: Weight matrix, decision representative score matrix w
Output: Scheme ranking
1 Calculate the average value matrix of the score matrix w
2 Calculate the loss and gain matrix based on the average value matrix and the decision
representative score matrix
3 Use Formula (5) from Section 3.4 to obtain the value function matrix V
4 Use Formula (6) from Section 3.4 to obtain the prospect value matrix pre
5 Compare the values in pre one by one to find maxV and minV
6 d = maxV −minV
7 Use Formula (7) from Section 3.4 to calculate the joy value matrix P
8 Use Formula (8) from Section 3.4 to calculate the regret value matrix Q
9 Use Formula (9) from Section 3.4 to calculate the joy–regret matrix Re
10 Obtain the transpose matrix N of w
11 The comprehensive score is Re× N
12 Rank the comprehensive scores
13 Final result: the scheme ranking from highest to lowest
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Algorithm A4 is related to the LSGDM method based on double fine-tuning driven by
online review data.

Algorithm A4: LSGDM Method Based on Double Fine-Tuning Driven by Online Review Data

Input: Fuzzy number matrix list, decision group (including different decision-makers’ scores for
different products), weight matrix
Output: Solution ranking
1 Initialize the fuzzy number dataset
2 Euclidean distance = calculate_euclidean_distance(fuzzy_number_set, metric = ‘euclidean’)
3 Wasserstein distance = create_zero_matrix(len(fuzzy_number_set), len(fuzzy_number_set))
4 for i in range(0, len(fuzzy_number_set) − 1):
5 for j in range(i + 1, len(fuzzy_number_set) − 1):
6 Wasserstein_distance[i][j] = calculate_wasserstein_distance(fuzzy_number_set[i],
fuzzy_number_set[j])
7 Wasserstein_distance[j][i] = Wasserstein_distance[i][j]
8 Network graph = create_empty_graph()
9 for i in range(0, len(fuzzy_number_set) − 1):
10 for j in range(i + 1, len(fuzzy_number_set) − 1):
11 weight = (Euclidean_distance[i][j] + Wasserstein_distance[i][j])/2
12 add_edge(network_graph, i, j, weight)
13 Community division = detect_community_structure(network_graph, resolution = 0.85)
14 Community weights = {}
15 Total weight = calculate_sum_of_all_community_weights(community_division)
16 Initialize inter-group weights, intra-group weights, brand weights, and attribute weights
16 Initialize inter-group weights, intra-group weights, brand weights, and attribute weights
17 Weight result = calculate_weight(intra_group_weights, brand_weights, attribute_weights)
18 Average score = calculate_average(decision_group)
19 Variance result = calculate_variance(decision_group)
20 while (variance_result > parameter1):
21 remove decision maker with the highest variance
22 recalculate variance_result
23 Leader = average(decision_group)
24 Distance = calculate_distance(leader)
25 Consensus degree = calculate_consensus_degree(leader)
26 Group consensus degree = calculate_group_consensus_degree(leader, inter-group)
27 while (group_consensus_degree < parameter2 && adjustment_count < parameter3):
28 adjust leader’s score
29 recalculate group_consensus_degree
30 If adjustment_count >= parameter3:
31 then use the second largest consensus degree
32 repeat steps 27–29
33 Calculate regret value matrix
32 Calculate delight–regret value matrix
33 Calculate transpose of the scoring matrix
34 Calculate comprehensive scoring matrix
35 Sort comprehensive scoring matrix
36 Output sorting results
36 Output sorting results

Appendix B

The data used in this section are as shown in the table below. It is defined that the final
fuzzy number range for the product evaluation is from −3 to 3. In the table, each matrix
represents a decision-making representative, and each row of it, respectively, represents a
kind of product, which are “Xiang Zhe”, “Shu Fu Jia”, “Shuo Shi”, “BELAN”, and “You Chi”
from top to bottom. Each column respectively represents different aspects of evaluation,
which are the duration of light, price, appearance, service attitude, and product quality
from left to right.
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⎡⎢⎢⎢⎢⎣
3.0 2.6 1.9 2.1 1.0 1.7
0.2 2.2 0.0 0.1 0.0 1.4
2.9 0.5 0.0 0.3 0.0 0.8
2.8 2.9 1.1 0.1 0.9 0.3
0.5 0.7 0.0 0.2 0.7 −0.9

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.5 0.7 0.0 0.2 0.7 −0.9
0.1 0.0 0.1 1.3 0.0 −0.1
2.8 1.9 0.1 2.6 0.2 2.3
1.4 1.9 0.2 0.3 0.3 0.0
2.5 2.5 0.2 0.8 0.0 2.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.8 1.9 0.6 0.0 0.0 1.6
2.2 −0.4 1.1 2.2 0.2 2.2
1.8 1.6 0.3 0.1 0.0 2.3
2.1 0.3 0.2 2.2 0.1 3.0
1.9 1.4 0.0 0.9 0.1 0.0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.1 2.5 0.0 0.4 0.2 1.8
1.9 0.0 −0.1 0.6 0.2 2.2
2.3 2.5 0.0 1.6 0.1 2.9
1.9 2.2 0.0 1.8 0.1 2.4
2.2 0.4 0.0 0.1 0.2 1.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.9 0.3 0.0 2.0 0.0 1.8
1.8 2.3 0.0 2.4 0.1 1.5
−0.1 1.8 0.1 1.6 0.0 2.2
0.2 0.7 0.0 0.3 0.1 0.0
2.6 0.1 0.0 1.7 0.2 2.3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.5 1.8 0.0 2.3 0.1 1.6
2.4 0.8 0.2 −0.3 0.0 0.1
−0.2 0.5 2.6 1.6 0.1 2.3
0.2 2.1 0.0 0.4 0.1 1.6
0.2 0.4 0.0 1.5 0.1 0.3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1.8 2.6 1.9 1.6 0.0 2.3
0.5 0.3 0.0 1.8 0.1 0.0
2.6 1.5 0.4 1.7 0.0 0.8
2.2 2.3 0.4 0.1 0.0 2.1
0.5 2.2 0.0 1.7 0.1 0.9

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.1 0.8 0.0 1.8 2.5 2.3
2.5 0.3 0.1 1.2 0.0 2.1
1.8 0.3 2.1 1.6 0.0 2.3
−0.2 0.0 1.5 0.1 2.3 0.1
0.1 0.0 1.6 −0.3 0.0 −0.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.9 −0.2 0.0 1.9 1.6 2.3
2.9 1.8 0.0 2.4 0.0 0.3
0.9 0.2 0.0 1.7 2.2 1.9
2.3 0.0 1.9 2.3 1.6 1.5
2.6 2.2 1.7 0.4 0.0 1.5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.4 0.4 0.0 0.2 0.0 2.1
2.2 2.9 1.3 0.0 1.8 1.6
1.5 2.2 0.1 0.0 0.0 1.4
2.2 0.0 1.4 0.1 1.7 2.5
2.8 0.8 1.6 1.4 0.7 0.9

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.2 1.5 0.0 1.4 1.9 0.1
1.5 2.4 0.1 1.1 0.0 1.3
2.5 2.3 0.0 0.3 0.1 1.6
2.4 2.8 0.0 1.6 1.7 2.1
2.5 2.3 0.0 0.1 1.4 1.4

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.8 2.6 1.9 −0.1 1.0 1.7
0.2 1.0 0.8 1.9 0.3 1.4
2.9 0.5 0.0 0.3 1.2 0.8
2.8 1.6 0.4 0.1 0.8 0.3
0.5 0.7 0.1 0.2 0.7 0.8

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.1 0.0 0.1 1.3 0.0 −0.1
1.8 2.5 0.0 0.3 0.9 0.5
2.2 1.5 0.0 0.1 1.8 2.3
0.5 1.2 1.3 1.6 2.9 −0.5
0.5 0.2 1.5 0.2 2.4 1.6

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
−0.9 1.4 2.8 −0.9 0.5 1.3
0.9 0.3 2.6 2.4 1.9 −0.6
−0.9 2.6 2.8 −2.6 0.2 2.3
0.3 0.9 0.7 0.6 2.9 0.0
−1.5 2.5 0.2 −2.4 1.4 2.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
−1.2 0.2 1.8 2.1 0.2 1.7
1.5 0.4 0.3 1.4 2.4 −0.3
0.5 1.6 0.6 1.0 1.3 0.8
1.2 0.3 −2.8 −0.4 0.5 0.3
2.2 1.4 0.0 0.2 0.7 1.5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
−0.6 2.5 1.4 2.7 1.9 −0.6
2.0 0.3 0.9 1.4 −0.5 1.2
0.4 1.8 1.5 0.8 1.7 0.7
1.5 1.2 1.9 2.7 −0.2 0.0
0.2 0.3 1.4 0.6 2.7 1.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.8 1.6 1.3 2.3 1.0 1.7
1.3 1.8 0.6 0.1 2.4 1.4
1.2 1.6 2.7 1.0 0.4 0.8
1.0 1.2 0.9 0.1 0.7 0.3
2.6 2.5 1.7 0.2 1.4 −0.9

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.7 2.1 1.9 −1.8 0.7 0.8
0.1 2.5 2.3 1.7 0.0 −0.1
2.7 0.4 0.1 2.6 1.6 2.2
1.4 2.8 0.2 1.3 0.3 0.7
2.5 2.1 0.0 0.8 0.0 2.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.2 1.3 0.5 0.3 0.7 0.8
−0.1 1.0 −1.2 0.1 2.9 1.4
2.4 0.5 1.1 0.3 0.0 −0.2
2.8 2.9 1.1 3.0 0.9 0.3
0.0 0.7 1.2 0.2 0.7 0.5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.9 0.2 0.5 0.2 0.7 −0.9
0.1 1.7 0.4 1.3 0.0 0.6
2.2 1.9 0.1 1.6 0.2 2.3
2.1 2.6 −0.1 0.3 1.3 2.7
1.9 1.8 0.2 0.8 0.0 2.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.2 1.3 0.5 0.3 0.7 0.1
0.5 1.0 2.5 0.1 2.9 1.4
0.6 0.5 1.1 0.3 0.0 −0.2
2.0 2.9 1.3 −0.1 2.6 2.9
2.6 0.7 1.2 0.2 0.7 0.5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.3 0.2 0.5 0.2 0.7 −0.9
0.1 0.4 1.2 1.5 0.0 0.6
2.2 1.9 0.1 1.6 0.2 2.3
2.1 2.0 1.8 2.5 1.3 2.7
1.6 2.0 −0.1 0.8 0.0 1.5

⎤⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎣
2.2 1.0 −0.2 0.5 1.5 2.0
1.5 0.5 0.5 0.0 1.5 0.0
2.4 0.5 1.1 0.3 0.0 −0.2
2.8 2.9 1.1 3.0 0.9 0.3
0.0 0.5 1.2 0.2 0.7 0.5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.9 0.2 0.5 0.2 0.7 −0.9
0.1 1.7 0.4 1.3 0.0 0.6
2.2 1.9 0.1 1.6 0.2 2.3
2.1 2.6 −0.1 0.3 1.3 2.7
1.9 1.8 0.2 0.8 0.0 2.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.9 2.1 2.0 1.9 1.1 1.6
0.3 2.1 0.1 −0.1 0.2 0.7
3.0 0.4 −0.5 0.7 0.0 0.5
0.4 2.0 2.9 0.1 2.7 0.3
0.6 0.8 −0.1 0.5 0.7 −0.5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.6 0.4 0.5 1.0 0.0 0.1
0.5 −0.1 0.5 0.8 0.0 1.4
2.4 1.7 0.1 0.9 0.5 2.5
−0.1 1.9 1.2 2.3 0.3 2.5
2.1 2.5 0.9 0.5 0.0 2.6

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.0 2.5 0.6 0.1 0.0 1.2
1.2 0.2 1.1 2.2 0.5 0.5
0.5 1.8 0.3 2.2 0.0 0.5
2.5 0.3 2.4 1.3 0.1 2.9
1.8 1.4 0.4 1.1 0.5 0.0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.6 1.2 0.0 0.5 0.2 1.0
1.9 1.4 0.5 −0.1 0.5 1.2
2.3 2.1 0.0 1.6 0.1 2.9
1.9 2.2 0.0 1.8 2.0 2.9
0.5 0.4 2.3 0.1 0.2 1.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

2.1 1.3 0.1 1.2 0.0 1.8
1.8 2.3 0.0 2.4 0.1 1.5
0.0 −1.0 0.1 0.2 1.0 1.2
2.9 2.2 0.0 0.8 1.5 1.8
2.6 0.1 0.0 1.9 0.2 1.5

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

0.8 1.5 0.0 1.5 0.1 0.5
2.4 0.8 0.2 −0.3 0.0 0.1
−0.2 0.4 1.5 1.6 1.4 2.3
1.0 2.4 0.0 0.4 0.8 1.8
0.2 1.0 0.0 2.4 0.1 −0.1

⎤⎥⎥⎥⎥⎦
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Abstract: Deep networks-based models have achieved excellent performances in various applications
for extracting discriminative feature representations by convolutional neural networks (CNN) or
recurrent neural networks (RNN). However, CNN or RNN may not work when handling data
without temporal/spatial structures. Therefore, finding a new technique to extract features instead of
CNN or RNN is a necessity. Gradient Boosted Decision Trees (GBDT) can select the features with
the largest information gain when building trees. In this paper, we propose an architecture based
on the ensemble of decision trees and neural network (NN) for multiple machine learning tasks,
e.g., classification, regression, and ranking. It can be regarded as an extension of the widely used
deep-networks-based model, in which we use GBDT instead of CNN or RNN. This architecture
consists of two main parts: (1) the decision forest layers, which focus on learning features from the
input data, (2) the fully connected layers, which focus on distilling knowledge from the decision forest
layers. Powered by these two parts, the proposed model could handle data without temporal/spatial
structures. This model can be efficiently trained by stochastic gradient descent via back-propagation.
The empirical evaluation results of different machine learning tasks demonstrate the the effectiveness
of the proposed method.

Keywords: Gradient Boosted Decision Trees; neural network; decision forest layer; back-propagation

1. Introduction

In the past few years, we have witnessed dramatic progress in the development of
deep neural networks. These models have achieved excellent performance in various
applications, e.g., object recognition in images [1–5], speech recognition [6,7], and natural
language processing [8–10]. One of the reasons that deep networks-based approaches (e.g.,
CNN [1,2,11], RNN [6,8,12]) succeed in these applications is that they are effective in ex-
tracting discriminative feature representations from data with spatial/temporal structures.
Li et al. [3] proposed a deep architecture reversible autoencoder for image reconstruction,
which integrated operators based on CNN. To refine the noise and speech, Lu et al. [7]
proposed a dual-stream spectrogram refine network (DSRNet), which was a deep model.

The attractive feature of CNN is its ability to exploit spatial or temporal correlation
in data [2,11], and it has turned out to be very good at learning intricate structures in
high-dimensional data [12,13]. The RNN unit holds a hidden state which empowers it to
process sequential data [14]. However, in many machine learning tasks, each of the data
samples is represented by a vector with effective hand-crafted features, where this vector
does not have any temporal/spatial structures [6,11,15]. For example, as shown in Table 1,
each instance of the Ecoli dataset (http://archive.ics.uci.edu/dataset/39/ecoli, accessed
on 15 January 2024) is a vector, each element of which is a feature extracted by different
methods. The dimension of each vector is one and the vector has no temporal structure,
so CNN or RNN cannot extract discriminative feature representations from such kinds of
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data. Therefore, creating an effective model for data without temporal/spatial structures
has become a necessity.

Representative approaches for these kinds of data are tree ensemble methods and
NN. The tree ensemble methods (e.g., random forest [16,17], GBDT [18–20]) have achieved
excellent performance in different tasks, e.g., learning-to-rank (LambdaMART [21]) and
binary classification (AdaBoost [22]). GBDT [18] is a regression model which consists of
a number of regression trees. It automatically selects the features with largest statistical
information gain and combines the selected features to fit the training targets well when
building trees, which allows it to effectively handle datasets with dense numerical features.
The difference between GBDT and random forest is that the trees in GBDT are trained
sequentially, while trees in random forest are trained independently. The first weakness
of GBDT is that the learned trees are not differentiable, which prevents these methods
from learning over large scale data. Another weakness of GBDT is its ineffectiveness when
learning datasets with sparse categorical features [23]. The information gain becomes small
when converting the sparse features into high-dimensional one-hot encodings. Although
there are some encoding methods which convert the sparse categorical features into dense
features directly, these methods will hurt the raw information as it is hard to distinguish
the encode values of different categories [23]. The two weaknesses cause GBDT to fail in
many machine learning tasks.

Table 1. The first 5 lines of the Ecoli dataset. Each line represents an instance and does not have any
temporal/spatial structures.

Mcg Gvh Lip Chg Aac Alm1 Alm2

0.29 0.30 0.48 0.50 0.45 0.03 0.17
0.22 0.36 0.48 0.50 0.35 0.39 0.47
0.23 0.58 0.48 0.50 0.37 0.53 0.59
0.47 0.47 0.48 0.50 0.22 0.16 0.26
0.54 0.47 0.48 0.50 0.28 0.33 0.42

NN [24] is a feedforward neural network, which makes up of a number of inter-
connected processing elements and processes information based on their dynamic state
response to external inputs. A number of studies have revealed the success of using NN in
different machine learning tasks, e.g., recommender systems [25] and online prediction [23].
The reason why NN is unique is that it can make models more accurate when handling com-
plex problems [23]. Therefore, the advantages of NN are efficient learning over large-scale
data and capability in learning over sparse categorical features by embedding structure.
Nevertheless, when learning dense numerical features, NN cannot outperform tree ensem-
ble methods. Although a fully connected neural network can directly handle the datasets
with dense numerical features, the performance may be unsatisfactory because the struc-
ture makes it susceptible to falling into local optimums when solving complex problems.
This is the reason why NN cannot outperform GBDT when handling datasets with dense
numerical features [26].

In this paper, we take a step forward to extend GBDT to a deep model. Specifically,
we propose a deep architecture that combines GBDT with the multi-layer perceptron
network [24]. As shown in Figure 1, from bottom to top, the proposed architecture has
four parts: (1) The input data layer in which each data sample is represented by a vector;
(2) The decision forest layer that consists of multiple hidden nodes. Each node is fitted by
an ensemble of decision trees. This layer focuses on learning features from the input data.
(3) Multiple fully connected layers, which focus on distilling knowledge from the decision
forest layers. (4) The loss layer. For each node in the decision forest layer, we develop a
GBDT-like method to generate a weighted sum of regression trees. Each tree is an estimated
approximate gradient for an iteration, making the decision forest layer to compatible with
back-propagation. Hence, the proposed deep architecture can be efficiently trained by
stochastic gradient descent via back-propagation, which allows the proposed method to
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outperform tree ensemble methods. Compared with NN and the deep models based on
convolutional networks or recurrent networks, the proposed method can select the useful
numerical features when handling data without temporal/spatial structures. The learning
task of DeepGBM is online prediction, which has to adapt the learning model to the online
data generation, while it is not necessary to consider the new arrival data for the proposed
method. There are a lot of models dedicated to solving concrete tasks, while our method is
used for multiple tasks.

……

……

……

……

Input x

Loss function

fully connected layers

decision forest layer

Figure 1. Overview of the proposed architecture. From bottom to top, this architecture consists of
four parts: (1) the input data layer; (2) the decision forest layer, which focuses on learning features
from the input data; (3) multiple fully connected layers, which focuses on distilling knowledge from
the decision forest layers; (4) the loss layer.

We conduct several experiments using eight datasets for multiple machine learning
tasks, where four are used for a classification task, two are used for a regression task,
and two are used for a ranking task. Comprehensive experimental results verified the
effectiveness of the proposed architecture, e.g., it shows 2.22%, 2.16% and 5.60% increase
against the corresponding second-best baseline on the Protein, Seismic and Isolet datasets,
respectively. In summary, the fundamental contributions of this paper are listed as follows:
(1) We propose an architecture based on GBDT and NN for multiple machine learning
tasks, which could handle data without temporal/spatial structures. (2) We present a
back-propagation procedure which will allow us to update the parameters by stochastic
gradient descent. (3) We conduct empirical evaluations on several datasets for classification,
regression, and ranking. The experimental results show that the proposed method can
outperform the other methods.

The rest of this paper is organized as follows. We present the related work in Section 2
and present the different parts of the proposed architecture in Section 3. In Section 4, we
present a back-propagation procedure to update the parameters by stochastic gradient
descent for different machine learning tasks. All the experimental results are shown in
Section 5. In Section 6, we present the complexity of the proposed architecture. Finally, we
conclude our work in the Section 7.

2. Related Work

Random forest [16,17] is a widely used procedure which generates a number of
regression or classification trees. Each tree is constructed by randomly selecting subsets of
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features. The results from the trees are aggregated to provide a prediction for each data,
which leads to random forest providing higher accuracy in contrast with a single decision
tree. Boosting is a successful technique for different machine learning problems, which was
first proposed by Freund et al. in the form of the AdaBoost method [22]. This technique
has been widely used in data analysis and real-world applications. AdaBoost uses decision
trees as weak learners and integrates the decision trees into a strong classifier with the
boosting technique. Recently, different machine learning systems have been proposed to
train GBDT, e.g., XGBoost [26], LightGBM [27] and DimBoost [28].

It is worth noting that different models have been proposed [23,29,30] by combining
tree ensemble methods and NN. Sethi [31] shows how to map a decision tree into a multi-
layer perceptron network structure. Scornet et al. [29] show that each regression tree can
be regarded as a particular multi-layer perceptron network and the random forest can be
reformulated into a multi-layer perceptron network by restructuring several randomized
regression trees as a collection of the multi-layer perceptron networks with particular
connection weights. They first learn a random forest, and then extracted all the split
directions and split positions to build the multi-layer perceptron network initialization
parameters. Wang et al. [30] propose a novel model of decision-tree like the multi-layer
perceptron network (NNRF), which has similar properties as a decision tree. Similar with
random forest, NNRF has one path activated for each input, which leads it is efficient
when performing forward and backward propagation. This technique also makes it easy to
handle small datasets as the number of parameters is relatively small. NNRF learns complex
functions when choosing the relevant paths of each node, which leads it outperforming
random forest. Integrating GBDT and NN, Ke et al. [23] propose a learning framework
DeepGBM for online prediction tasks. The framework consists of two parts: CatNN focuses
on sparse categorical features and GBDT2NN focuses on handling dense numerical features.
Powered by the above parts, this model has a strong learning capacity over numerical
tabular features and categorical features while still having the ability to achieve efficient
online learning.

3. Methodology

3.1. GBDT Algorithm

In this paper, we take a step forward by extending GBDT to a deep model. It is
necessary to give the specific steps of GBDT. Given a training set {(xj, yj)}M

m=1, xm is a
vector which represents the mth data point, ym is the predicted label. Each step is indicated
as follows [20]:

Step 1: Compute the initial constant value γ by

F0(x) = argminγ

m

∑
i=1

L(yi, γ), (1)

where L(yi, γ) represents the loss function.
Step 2: The residual along the gradient direction is defined as

ŷi = −[
∂L(yi, F(xi))

∂F(xi)
] f (x)= fn−1(x), (2)

where n represents the number of iterations.
Step 3: By fitting the data into the initial model T(xi), we can construct a tree, where

the parameter αn of the tree is based on the following expression as

αn = argminα,β

m

∑
i=1

(ŷi − βT(xi))
2. (3)
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Step 4: After minimizing the following loss function, we obtain the weight of the
current model

γn = argminγ

m

∑
i=1

L(yi, Fn−1(x) + γT(xi)). (4)

Step 5: The new model is updated as

Fn(x) = argminγ

m

∑
i=1

L(yi, Fn−1(x) + γT(xi)). (5)

The residual of the former decision tree is the input for the next decision tree, which
can reduce the residual, and the loss decreases following the negative gradient direction in
each iteration. After n iterations, we will learn a model which consists of n decision trees.
The final result is determined by the sum of results from all the decision trees.

3.2. Proposed Architecture

The proposed architecture is a deep neural network which consists of an input layer, a
decision forest layer, multiple fully connected layers, and a loss layer. In this section, we
will present these parts, respectively.

3.2.1. Input Layer

The motivation of the proposed architecture is to tackle the machine learning tasks
whose data samples are represented by vectors with effective hand-crafted features, where
each vector does not have any temporal/spatial structures. Hence, the input layer accepts
data points in the form of vectors. We denote Lin as the input layer.

3.2.2. Decision Forest Layer

The input layer is a decision forest layer, which is the crucial part of the proposed
architecture and focuses on learning features from the input data. This layer consists of n
hidden nodes, where each node is an ensemble of k decision trees. Specifically, we denote
L f as the decision forest layer and a f as the output vector of the decision forest layer. For
an input point x, the i-th (i = 1, 2, . . . , n) element in a f (i.e., the i-th hidden node in L f ) can
be calculated by

a f
i = gi(x) = ri + s

k

∑
j=1

T(i)
j (x), (6)

where ri is the initial value of a f
i , T(i)

j (j = 1, 2, . . . , k) represents a regression tree, and s is a
pre-defined shrinkage coefficient. The structure and parameters in each regression tree can
by determined during the back-propagation process (see Section 4 for details).

3.2.3. Fully Connected Layers

On top of the decision forest layer, we construct multiple fully connected layers which
are widely used in neural networks. The input of layer is the output of the decision forest
layer. We denote Ld1 , Ld2 , . . . , Ldm as the fully connected layers on top of the decision forest
layer. Suppose zdi , adi are the input and output (after activation) of Ldi

(i = 1, 2, . . . , m).
Then, we have the following:

zd1 = W f a f ,

adi = f (zdi ) (i = 1, 2, . . . , m),

zdi+1 = Wdi adi + bdi (i = 1, 2, . . . , m− 1),

(7)

where function f () represents the activation function and the matrix Wdi and the vector bdi

are the parameters in the i-th fully connected layer.
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3.2.4. Loss Layer

On top of the last fully connected layer Ldm , we can define a loss layer for a specific
machine learning task.

For classification, the output is adm = h(x) = (h1(x), h2(x), h3(x), . . . hK(x)), where K
is the number of classes. Follow softmax [32], loss layer is defined by [33]:

J(h(x), y) = −
K

∑
k=1

I(y = k) log p(y = k|x), (8)

where I is an indicator function and

p(y = k|x) = ehk(x)

∑ehj(x)

j=1

. (9)

The gradient is as follows:

δdm =
∂

∂zdn
J(h(x), y) = p(y = k|x)− I(y = k). (10)

For regression, square loss is used to define the loss layer:

J(adm , y) =
1
2
||adm − y||2. (11)

The gradient is as follows:

δdm =
∂

∂zdn
J(h(x), y) = zdn − y. (12)

For ranking, we use LambdaRank [21] to define the loss layer, which was based on
RankNet [34] and directly optimizes Normalized Discounted Cumulative Gain (NDCG) [35].
NDCG is an evaluation metric and will be introduced later. Given a query set x1, x2 . . . , xn,
the output is s1, s2 . . . , sn. The cost function of RankNet is as follows:

J(si, sj) = ∑
Ri>Rj

log(1 + e−σ(si−sj)), (13)

where σ is a parameter that determines the shape of the sigmoid and Ri > Rj represents
document xi, which ranks higher than xj. The gradient is

∂J
∂si

= λi = ∑
Ri>Rj

λij − ∑
Rj>Ri

λij, (14)

where

λij =
∂J(si − sj)

∂si
= σ(I(Ri > Rj)−

1

1 + e−σ(si−sj)
). (15)

The LambdaRank’s key observation is that the costs themselves are unnecessary,
except for the gradients. Following LambdaRank, we have

λij =
∂J(si − sj)

∂si

= σ(I(Ri > Rj)−
1

1 + e−σ(si−sj)
) | ΔNDCG |,

(16)
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where | ΔNDCG | is the size of change in metric NDCG by swapping the data point xi and
xj. The gradient is as follows:

δdm = ∑
Ri>Rj

λij − ∑
Rj>Ri

λij

= ∑
Ri>Rj

−σ | ΔNDCG |
1 + e−σ(si−sj)

− ∑
Rj>Ri

−σ | ΔNDCG |
1 + e−σ(si−sj)

.
(17)

4. Optimization

Training the proposed architecture requires trying to find a solution to the parameters
({T(j)

i }
j=1,2,...,n
i=1,2,...,k , {Wl , bl}l=1,2,...,m) that minimizes the loss function. As shown in Algorithm 1,

we present a back-propagation procedure to update these parameters by stochastic gradi-
ent descent.

Algorithm 1 The back-propagation procedure for the proposed architecture

Input: training set {(xj, yj)}M
j=1, maximal iteration number k, number

n of hidden nodes in the decision forest layer, the shrinkage s.
Output: {T(j)

i }
j=1,2,...,n
i=1,2,...,k , {Wl , bl}l=1,2,...,m

1. Initialize: p← 0 and randomly initialize ri (i = 1, 2, . . . , n),
{Wl , bl}l=1,2,...,m by Gaussian distribution.
2. Repeat:
3. Calculate a f , zdi , adi , J (i = 1, 2, . . . , m) by Equations (6)–(8) via
forward propagation.
4. Update {Wl , bl}l=1,2,...,m by Equation (20).

5. For i = 1, 2, . . . , n, add a new tree T(i)
p to the ensemble of the i-th

hidden node in the decision forest layer by Equation (22).
6. p← p + 1.
7. Until p = T.

Since the fully connected layer is an easy studied component in neural networks,
the parameters {Wl , bl}l=1,2,...,m in the fully connected layers can be updated by stochastic
gradient descent via back-propagation. Specifically, suppose

δi =
∂J

∂zdi
(i = 1, 2, . . . , m), (18)

then we have:

δdi = ((Wdi )Tδdi+1)� f ′(zdi ),

∇Wdi = δdi+1(adi )T ,

∇bdi = δdi+1 ,

(19)

and

Wdi ←Wdi − α∇Wdi ,

bdi ← bdi − α∇bdi ,
(20)

where � represents the element-wise multiplication for matrices and α is the learning rate.
In the decision forest layer, the regression trees in each of the n hidden nodes are

constructed one by one. For each hidden node, we add one tree in an iteration of back-
propagation. Specifically, in the p-th iteration of back-propagation (p = 1, 2, . . . , k), the
negative gradient for the decision forest layer can be calculated as follows:

r f = −δ f = (W f )Tδd1 . (21)

292



Electronics 2024, 13, 2291

We denote r f
i as the i-th element in r f (i = 1, 2, . . . , n). Then, r f

i is the residual for the
i-th hidden node in the decision forest layer. For a specific input x, we can obtain a residual
r f

i (x). Then, for all of the training samples x1, x2, . . . , xM, we can obtain {(xj, r f
i (xj))}M

j=1.

After that, following the third step of GBDT [20], we construct a new regression tree T(i)
p (.)

by solving the problem min
T(i)

p

1
2 ∑M

j=1(T
(i)
p (xj)− r f

i (xj))
2. The ensemble of the tree in the

i-th hidden node can be updated as follows:

gi(x)← gi(x) + sT(i)
p (x), (22)

where s is the shrinkage coefficient.

5. Experiments

We evaluate the proposed method (The source code has been released at https://
github.com/dllinhe2017/Dgbdt, accessed on 1 January 2024) using several datasets for
different tasks in this section. For classification, we compare the proposed method against
the three most closely related baselines:

• GBDT [18], which consists of an ensemble of regression trees. It automatically selects
the features with largest statistical information gain and combines the selected features
to fit the training targets well when building trees.

• MLP [24], which makes up a number of interconnected processing elements and
processes information by their dynamic state response to external inputs. We report
the experimental results of two different models: MLP_1 and MLP_2, where MLP_1
includes one hidden-layer and MLP_2 includes two hidden layers.

• NNRF [30], a novel model of decision-tree like the multi-layer perceptron network,
which has similar properties to a decision tree (The author of NNRF only reported the
experimental results for the classification task, so we neglected to select NNRF as the
baseline method for the regression task). It has one path activated for each input.

For regression, we compare our method against two most closely related baselines:
GBDT and MLP.

For ranking, we compare our method against the two most closely related baselines:

• Ranknet [34], which is a pair-based neural network method and learns the ranking
functions by a probabilistic cost. Two sentences from the same document generated a
pair and the label is determined by the scores of sentences.

• LambdaMART [21], which is based on Ranknet and directly optimizes NDCG. Lamb-
daMART defines a weight parameter to represent the difference in NDCG when
swapping a pair of documents. It is then used to update the weight in the next
iteration.

5.1. Datasets

We evaluate the proposed methods and the baselines on four datasets for classification
(https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass, accessed on 21
January 2023) and two for regression (http://archive.ics.uci.edu/, accessed on 22 January
2023), respectively. The statistics information of these datasets is shown in Table 2. In
particular, Isolet is a dataset that was used to predict which letter was spoken. Gesture is a
dataset that was used to study gesture phase segmentation. The features of the datasets are
hand-crafted and the structures of the datasets are not temporal/spatial.

293



Electronics 2024, 13, 2291

Table 2. Statistics information of the datasets for classification or regression.

Dataset Instances Features Train/Test Split Task

Protein 17,766 357 12,436/5330 Classification
Seismic 581,012 54 406,712/174,300 Classification
Isolet 7797 617 5458/2339 Classification

Gesture 9873 32 6911/2962 Classification
Slices 53,500 386 48,150/5350 Regression

YearPredictMSD 515,345 90 463,811/51,534 Regression

For ranking, we use MQ2007 and MQ2008 (https://www.microsoft.com/en-us/
research/project/letor-learning-rank-information-retrieval/letor-4-0/, accessed on 24 Jan-
uary 2023) to evaluate the proposed methods and the baselines. The statistical information
is shown in Table 3.

Table 3. Statistical information of the datasets for ranking.

Dataset Number of Documents Number of Queries Features

MQ2007 6,962,598 1700 46
MQ2008 15,211 800 46

5.2. Evaluation Metrics

For classification, we use the accuracy as the evaluation metric. Specifically, for a test
set {xi, yi}N

i=1, let pi be the predicted class label of xi (i = 1, 2, . . . , N), then let the accuracy
rate be defined by

Accuracy =
∑N

i=1 I(yi = pi)

N
, (23)

where I(condition) is an indicator function that I(condition) = 0 if the condition is false;
otherwise, I(condition) = 1.

For regression, we use the Root of Mean Square Error (RMSE) as the evaluation metric.
Specifically, for a test set {xi, yi}N

i=1, let pi be the predicted value of xi (i = 1, 2, . . . , N), then
let the RMSE be defined by

RMSE =

√
∑N

i=1(yi − pi)2

N
. (24)

For ranking, we use NDCG and Mean Average Precision (MAP) [36,37] as the evalua-
tion metrics. For a given set of search results, the Discounted Cumulative Gain (DCG) is

DCG@T =
T

∑
i=1

2li − 1
log(1 + i)

, (25)

where T is a value representing the truncation level (usually less 10), and li is the label of
the ith listed URL. And the NDCG is defined by

NDCG@T =
DCG@T

max DCG@T
. (26)

MAP is defined by

MAP =
∑Q

q=1 AveP(q)

Q
, (27)

where Q represents the number of queries,

AveP(q) =
∑n

k=1(P(k)× rel(k))
NumD

, (28)
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where P(k) is the list’s precision at cut-off k. rel(k) is also an indicator function. It is equal
to 0 if the item at rank k is a irrelevant document, and is equal 1 otherwise, and NumD is
the number of relevant documents.

5.3. Experiment Settings

As shown in Figure 2, there are several parameters (the number of hidden nodes in
forestnet is J_1, the number of trees is K, and the number of hidden nodes in the fully
connected layer is J_2 in the proposed model. The sensitivity of the three parameters will
be analyzed in detail in Section 5.5.

Figure 2. Structure of the proposed model for classification or regression tasks: (1) The decision
forest layer (Forestnet) consists of J_1 hidden nodes. Each node has an ensemble of K. (2) The fully
connected layer (Ip1) has J_2 hidden nodes. (3) The fully connected layer (Ip2) has C hidden nodes
(for classification, C is the number of classes, and for regression, C = 1).

In the parameter tuning procedure for both the proposed and competitor methods,
10-fold cross validation is used. Note that no test data are involved in the parameter tuning.
Given a training set, we divide it into 10 parts. One is chosen to be a validation set, while
the remaining nine parts are used as the corresponding training set. The experiments
are repeated 10 times and the 10 experiments are averaged to produce the best values of
different parameters.

For all the classification tasks or the regression tasks, it is worth noting that the
parameters J_1 and J_2 are chosen in the set {50, 100, 150, 200, 250, 300} by cross-validation.
The parameter K is chosen in the set {100, 200, 300, 400, 500}. The shrinkage rate is 0.01. We
use ReLU as the activation function. The proposed model is trained by minibatch gradient
descent, in which we set the learning rate to 0.01, the momentum to 0.9, and the weight
decay to 0.0001.

There are several parameters to set in the baseline algorithms. To ensure a fair compar-
ison with the proposed model, it is worth noting that the parameter K in GBDT is chosen in
the set {100, 200, 300, 400, 500} by cross-validation; the parameter J_1 in MLP_1 is chosen
in the set {50, 100, 150, 200, 250, 300}; parameters J_1 and J_2 in MLP_2 are chosen in the
set {50, 100, 150, 200, 250, 300}; the number of layers d in NNRF is chosen in the set {3, 4, 5};
the parameter J_1 is chosen in the set {50, 100, 150, 200, 250, 300} by cross validation, the
depth of regression trees is set to be 3.

For the ranking tasks, in the decision forest layer, the number of the hidden nodes
is J_1 = 24, each node has an ensemble of K = 700, and the shrinkage rate is 0.1. In the
fully connected layer, the number of the hidden nodes is 12. Every fully connected layer
uses maxout with a rate of 0.5. The proposed model is also trained by stochastic gradient
descent, in which the learning rate is 0.01, the momentum is 0, and the weight decay is 0.05.

5.4. Results

Table 4 shows the comparison results for four datasets for classification tasks. We can
observe that the proposed method shows superior performance gains over the baselines
on the four datasets. Some statistics are listed below. For Gesture, the results of our
method indicate a relative increase of 25.20% compared to the corresponding second-best
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baseline. The proposed method also shows 2.22%, 2.16% and 5.60% increase against the
corresponding second-best baseline for the Protein, Seismic and Isolet datasets, respectively.

Table 5 shows the comparison results on two datasets for regression tasks. We can
observe that the proposed method performs better than the baselines. Next, we will list
some statistics. The proposed method shows 54.52% and 0.97% decreases against the
corresponding second-best baseline on the Slices dataset and YearPredictMSD dataset,
respectively.

Table 4. Comparison results with respect to the classification accuracy rate. On each dataset, 10 test
runs were conducted and the average performance as well as the variance (numbers in parentheses)
is reported.

Methods Protein Seismic Isolet Gesture

GBDT 0.702 (0.00078) 0.713 (0.00172) 0.813 (0.00067) 0.488 (0.00096)
MLP_1 0.803 (0.00175) 0.737 (0.00084) 0.596 (0.00093) 0.456 (0.00087)
MLP_2 0.811 (0.00162) 0.742 (0.00178) 0.616 (0.00128) 0.477 (0.00114)
NNRF 0.693 (0.00074) 0.711 (0.00076) 0.857 (0.00145) 0.462 (0.00098)
Ours 0.829 (0.00093) 0.768 (0.00069) 0.905 (0.00081) 0.611 (0.00078)

Table 5. Comparison Results with respect to RMSE. On each dataset, 10 test runs were conducted
and the average performance as well as the variance (numbers in parentheses) is reported.

Methods Slices Dataset YearPredictMSD Dataset

GBDT 5.18 (0.00193) 9.38 (0.00487)
MLP_1 5.78 (0.00253) 9.33 (0.00284)
MLP_2 5.63 (0.00272) 9.31 (0.00354)
Ours 2.56 (0.00383) 9.22 (0.00283)

Tables 6 and 7 list the results for two datasets. For MQ2007, we can observe that our
method outperforms RankNet and LambdaMART on all metrics. For MQ2008, we can also
observe our method has superior performance gains over RankNet and LambdaMART on
the metrics of NDCG@1 and mean NDCG, although it performs worse than LambdaMART
on the metrics of NDCG@3 and MAP. The difference is negligible.

Table 6. Comparison results for MQ2007. Ten test runs were conducted and the average performance,
as well as the variance (numbers in parentheses), is reported.

Methods NDCG@1 NDCG@3 Mean NDCG MAP

RankNet 0.3418 (0.00074) 0.3519 (0.00074) 0.4518 (0.00074) 0.4224 (0.00074)
LambdaMART 0.4137 (0.00074) 0.4157 (0.00074) 0.5035 (0.00074) 0.4684 (0.00074)

Ours 0.4157 (0.00074) 0.4178 (0.00074) 0.5061 (0.00074) 0.4712 (0.00074)

Table 7. Comparison Results on MQ2008. Ten test runs were conducted and the average performance,
as well as the variance (numbers in parentheses), is reported.

Methods NDCG@1 NDCG@3 Mean NDCG MAP

RankNet 0.3400 (0.00104) 0.4000 (0.00058) 0.4599 (0.00062) 0.4515 (0.000118)
LambdaMART 0.3753 (0.00068) 0.4312 (0.00084) 0.4879 (0.00058) 0.4765 (0.00099)

Ours 0.3766 (0.00056) 0.4304 (0.00074) 0.4882 (0.00083) 0.4764 (0.00089)

5.5. Parameter Analysis

The most important parameters of the proposed framework are the number of hidden
nodes J_1 in the decision forest layer, the number of trees K of each node, and the number
of hidden nodes J_2 in the fully connected layer. We conduct experiments to investigate
the effects on classification performances with different values of the three parameters. In
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the experiment, we use five-fold cross validation on the training data to set the parameters.
Note that no test data are involved.

To investigate the effects of the number of hidden nodes J_1 in the decision forest layer,
we first fix K and J_2 to be 100. We then vary the values of J_1 as {50, 100, 150, 200, 250, 300}.
We report the results of the proposed method with different values of J_1 on Seismic and
Protein. For comparison, we also provide the result of the best baseline. The results are
shown in Figures 3 and 4. Based on the figures, we make the following observations: (i) The
performance of the proposed method is fairly good when J_1 is from 50 to 300. (ii) From
the point of view of trade-offs between training cost and performance, it seems like a
reasonable point when setting J_1 to be a value within [100, 200]. (iii) The performance of
the proposed method increases a little on Seismic and Protein when J_1 is set to be bigger
than 100.
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Figure 3. Results with different values of the number of hidden nodes J_1 in the decision forest layer
on Gesture (K = 100, J_2 = 100).
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Figure 4. Results with different values of the number of hidden nodes J_1 in the decision forest layer
on Seismic (K = 100, J_2 = 100).

To investigate the effects of the number of hidden nodes J_2 in the fully connected layer,
we first select K and J_1 to be 100. We then vary the values of J_2 as {50, 100, 150, 200, 250, 300}.
We report the results of the proposed method with different values of J_2 for Seismic and
Protein. For comparison, we also present the result of the best baseline. The results are
shown in Figures 5 and 6. Based on the figures, we make the following observations: (i)
the performance of the proposed method is fairly good when J_2 is from 50 to 300; (ii)
from the point of view of trade-offs between training cost and performance, it seems like a
reasonable point when setting J_1 to be 100.
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Figure 5. Results with different values of the number of hidden nodes J_2 in the fully connected
layer on Seismic (K = 100, J_1 = 100).
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Figure 6. Results with different values of the number of hidden nodes J_2 in the fully connected
layer on Protein (K = 100, J_1 = 100).

To investigate the effects of the number of trees K of each node in the decision forest
layer, we first set J_1 and J_2 to be 100 and set the value of J_2 to be 50 to 500. We report
the results of the proposed method with different values of K on Gesture. The results
are shown in Figure 7. Based on the figure, we make the following observations: (i) the
performance of the results increases at first and then increases a little; (ii) from the point of
view of trade-offs between training cost and performance, it seems like a reasonable point
when setting K to be 100.
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Figure 7. Results with different values of the number of trees K of each node in the decision forest
layer on Gesture (J_1 = 100, J_2 = 100).

6. Complexity

The proposed method uses an architecture with a decision forest layer, followed by
two fully connected layers and then the loss layer. Compared to GBDT, the proposed model
has additional fully connected layers when the number of hidden nodes in the decision
forest layer is set to be one. Compared to MLP, the proposed model has an extra decision
forest layer.
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7. Conclusions

The deep networks-based approaches do not work when handling data without spa-
tial/temporal structures. To address this challenge, we propose a deep architecture that
combines NN with GBDT, which takes advantage of GBDT’s ability to learn dense numer-
ical features and NN’s strength in learning sparse categorical features by an embedding
structure. Specifically, the architecture consists of two major parts: the decision forest
layers focus on learning features from the input data and the fully connected layers focus
on distilling knowledge from the decision forest layers. We designed an optimization
procedure to train the proposed model via back-propagation. Although comprehensive
experimental results verified the effectiveness of the proposed architecture, there are still
some limitations: (1) it is not effective for all datasets, especially when learning datasets
with sparse categorical features, because the experimental result is influenced by the specific
context; (2) it has higher computational complexity in contrast to GBDT.
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Abstract: Accurately and reliably perceiving the environment is a major challenge in autonomous
driving and robotics research. Traditional vision-based methods often suffer from varying lighting
conditions, occlusions, and complex environments. This paper addresses these challenges by combin-
ing a deep learning-based object detection algorithm, YOLOv8, with LiDAR data fusion technology.
The principle of this combination is to merge the advantages of these technologies: YOLOv8 excels in
real-time object detection and classification through RGB images, while LiDAR provides accurate
distance measurement and 3D spatial information, regardless of lighting conditions. The integration
aims to apply the high accuracy and robustness of YOLOv8 in identifying and classifying objects, as
well as the depth data provided by LiDAR. This combination enhances the overall environmental
perception, which is critical for the reliability and safety of autonomous systems. However, this
fusion brings some research challenges, including data calibration between different sensors, filtering
ground points from LiDAR point clouds, and managing the computational complexity of processing
large datasets. This paper presents a comprehensive approach to address these challenges. Firstly, a
simple algorithm is introduced to filter out ground points from LiDAR point clouds, which are essen-
tial for accurate object detection, by setting different threshold heights based on the terrain. Secondly,
YOLOv8, trained on a customized dataset, is utilized for object detection in images, generating 2D
bounding boxes around detected objects. Thirdly, a calibration algorithm is developed to transform
3D LiDAR coordinates to image pixel coordinates, which are vital for correlating LiDAR data with
image-based object detection results. Fourthly, a method for clustering different objects based on the
fused data is proposed, followed by an object tracking algorithm to compute the 3D poses of objects
and their relative distances from a robot. The Agilex Scout Mini robot, equipped with Velodyne
16-channel LiDAR and an Intel D435 camera, is employed for data collection and experimentation.
Finally, the experimental results validate the effectiveness of the proposed algorithms and methods.

Keywords: object detection and tracking; ground threshold; calibrations; onboard sensors

1. Introduction

Object detection and tracking are important concepts in robotics [1–3] and self-driving [4,5].
There are several applications of object detection and tracking, such as in robotics for ob-
stacle detection [5,6], in retail for tracking customer movement [7], in sports for analyzing
player movements [8], and in security systems for monitoring and surveillance [9]. Object
detection and tracking are important components in the fields of robotics and self-driving
vehicles. In robotics, object detection helps robots to understand their environment better. It
helps robots build more accurate maps and effectively avoid obstacles and other robots. For
self-driving vehicles, detecting and tracking objects, like other vehicles, pedestrians, road
barriers, road signs, traffic lights, and lane marking, helps self-driving vehicles understand
their surroundings, make decisions, and navigate safely and correctly. In addition, object
detection and tracking can help the robots or self-driving vehicles gather amounts of data,
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which can be used for optimizing paths, improving algorithms and models, and enhanc-
ing the safety and efficiency of autonomous driving systems. Computational intelligence
techniques [10,11], particularly those involving machine learning and deep learning, play a
significant role in these systems.

Current object detection and tracking approaches have the challenges of speed, accu-
racy, and reliability, particularly in dynamic and complex environments [12,13]. Addressing
these challenges is essential for advancing autonomous technology. This paper proposes
an integrated approach that combines LiDAR and camera data to achieve a comprehensive
understanding of the environment, enhancing object localization and mapping. By leverag-
ing the speed and accuracy of YOLOv8 alongside the precise spatial analysis capabilities of
LiDAR, the proposed system aims to improve detection and tracking performance, meet-
ing the demands of real-time applications. Maintaining the identity of objects in motion,
despite changes in appearance or partial occlusion, remains a significant challenge [14–16].
This paper introduces a 3D tracking algorithm designed to calculate the 3D poses of objects,
ensuring robust detection and tracking even when objects are partially occluded or missing
parts. Enhanced tracking methods aim to improve the robustness and reliability of tracking
systems, ensuring consistent object identification.

Combining LiDAR and camera data to achieve object detection and tracking requires
several technologies: LiDAR data processing, object detection based on camera data, LiDAR
and camera data calibration and fusion, and object tracking.

LiDAR point cloud data consist of millions of points that map the surroundings in
three dimensions, providing a detailed view beyond 2D images or videos. This is critical
for accurately identifying and distinguishing objects in a scene. LiDAR provides precise
distance measurements, and being able to accurately determine the position, size, and shape
of objects is critical for applications such as autonomous driving, where understanding
the spatial arrangement of objects is crucial. LiDAR performs well in different lighting
and weather conditions, such as low light, fog, or rain. This robustness enables LiDAR to
reliably detect and track objects in a variety of environments. Point cloud data generated in
real time can be analyzed and responded to instantly. This is important for applications
that require fast decision making, such as collision avoidance systems in self-driving
cars; moreover, these are significant in LiDAR point cloud data for object detection and
tracking. LiDAR ground thresholding [17,18] is an important step in processing LiDAR
point cloud data, especially for applications like navigation and mapping. The goal is to
separate ground points from non-ground points. In this paper, we propose a simple ground
thresholding algorithm to quickly segment the ground points and non-ground points. In
the algorithm, a threshold height is used to determine whether a LiDAR point is classified
as a ground point or a non-ground point. The challenge is to select the correct threshold
height for effective ground point segmentation. In this paper, to solve this problem, three
conditions are considered to determine the threshold height: flat terrain, uphill terrain, and
downhill terrain.

The object detection process involves identifying objects within a single image or frame.
It includes recognizing the object’s type and drawing a bounding box or similar marker
around the object to highlight its location in the image. The techniques for object detection
include YOLO (You Only Look Once) [19], SSD (Single Shot MultiBox Detector) [20], and
Faster R-CNN [21]. YOLO system is highly efficient and has revolutionized the field
of computer vision due to its speed and accuracy. Unlike traditional object detection
systems that first propose regions and then classify each region separately, YOLO applies
a single neural network to the full image. This network divides the image into regions
and predicts bounding boxes and probabilities for each region simultaneously. YOLO’s
unique approach allows it to perform detection at a much faster rate compared to other
methods. This makes it particularly suitable for real-time applications, such as video
surveillance, self-driving cars, and robotics. YOLO also achieves high accuracy in detecting
objects, although it may not be as precise as some slower, region-proposal-based methods.
It balances speed and accuracy effectively, making it a popular choice in many practical
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applications. Compared with earlier YOLO versions [22–24], YOLOv8 is faster, more
accurate, and more flexible [25,26]. These advantages make YOLOv8 particularly suitable
for fusion with LiDAR data, providing a powerful solution for real-time object detection
and tracking in complex dynamic environments. This fusion solves the key challenges
faced by current object detection and tracking systems and improves overall performance
and reliability.

The extrinsic calibration between a LiDAR sensor and a camera is a crucial step
in integrating data from both sensors for applications in computer vision and mobile
robotics [27,28]. LiDAR sensors provide depth information by measuring the time it takes
for laser pulses to return after hitting an object. On the other hand, cameras capture color
and texture information. By combining these two sources of data, a more comprehensive
understanding of the environment can be achieved. This fusion is especially powerful in
tasks like object recognition and navigation. The fusion of LiDAR and camera data enables
more accurate localization of objects in the environment. While LiDAR provides precise
distance measurements, cameras contribute additional information about the appearance
of objects. There are two parts of calibration, intrinsic calibration and extrinsic calibration.
For the camera, intrinsic calibration estimates the intrinsic parameters such as focal length,
skew, and image center. This is often carried out using calibration patterns or dedicated
calibration procedures. LiDAR sensors usually do not have intrinsic parameters like
cameras, but checking for any potential distortions or biases in the LiDAR data is essential.
Extrinsic calibration estimates the rigid body transformation between the LiDAR and
the camera [29]. Extrinsic calibration ensures that data from the LiDAR and the camera
are aligned correctly in a shared coordinate system. In autonomous vehicles and robotic
systems, extrinsic calibration is essential for tasks like obstacle avoidance, path planning,
and navigation. In this paper, a simple LiDAR and camera fusion process is proposed to
translate the coordinates of objects detected by LiDAR into the coordinate system of the
camera image.

Once objects are detected, the object tracking process involves following the objects
and calculating the pose of the object in a video. The challenge in object tracking is to
maintain the identity of the object even when it moves, changes in appearance, or is partially
obscured. For object tracking, Kalman Filter [30], Mean-shift [31], and tracking-by-detection
approaches are used. This paper describes an advanced approach for object detection and
tracking, integrating YOLOv8 for image-based object detection with LiDAR data for precise
spatial analysis. According to the object detection result and LiDAR points calibration
result, a method is proposed for LiDAR points segmentation to cluster different objects.
Then, the object tracking algorithm is proposed to calculate the object’s 3D poses and to
calculate the relative distance between the robot and the object.

2. Related Works

The related work of object detection and tracking is as in [12,32,33]. Ref. [10] introduced
an approach to object detection and tracking based on YOLO and Kalman Filter algorithms.
However, the approach lacks two sensors’ calibration processes and it does not provide
the 3D poses of the object. Ref. [32] focuses on fusing the LiDAR and camera to achieve
better detection performance. However, there is no LiDAR data segment process to increase
efficiency. The authors ignored the object tracking issue. Object detection and tracking
are critical and interrelated components in the fields of robotics and autonomous vehicles.
Ref. [33] improves the object detection performance by designing a feature switch layer,
based on camera–lidar fusion. However, it did not apply the method for 3D object detection.

The related work of ground thresholding is as in [34,35]. Ref. [34] proposes a Jump–
Convolution Process (JCP) to convert the 3D point cloud segmentation problem into a
2D image smoothing problem. The method improves segmentation accuracy and terrain
adaptability while maintaining low time costs, making it suitable for real-time applications
in autonomous vehicles. While the method is designed to be fast, it still requires significant
computational resources, particularly for real-time applications. The convolution opera-
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tions and the iterative nature of the jump process can be computationally intensive. The
approach involves projecting 3D point cloud data onto a 2D image for processing. This
projection can lead to a loss of spatial information and might result in inaccuracies. Ref. [35]
uses PointNet and Pillar Feature Encoding to estimate ground plane elevation and segment
ground points in real time. The accuracy of the 2D elevation maps used in GroundGrid
depends on the resolution of the grid. High-resolution grids provide better detail but at
the cost of increased computational load and memory usage. The approach might face
scalability issues when applied to very large-scale point clouds or environments.

The contributions of this paper are as follows: (1) Compared with [34,35], this pa-
per presents a simple ground thresholding algorithm to quickly segment ground points
and non-ground points in LiDAR data. This algorithm considers different terrain con-
ditions (flat, uphill, and downhill) to determine the correct threshold height, enhancing
the efficiency and effectiveness of ground point segmentation. (2) A method for extrinsic
calibration between LiDAR and camera data is proposed. This process ensures accurate
alignment of data from both sensors in a shared coordinate system, which is essential for
tasks such as obstacle avoidance, path planning, and navigation. (3) This paper proposes
an advanced system that integrates YOLOv8 for image-based object detection with LiDAR
data for precise spatial analysis. This integration applies YOLOv8’s speed and accuracy and
LiDAR’s precise measurements to enhance object detection and tracking performance, meet-
ing the demands of real-time applications. (4) A novel 3D tracking algorithm is introduced
to calculate the 3D poses of objects. This algorithm ensures robust detection and tracking
even when objects are partially occluded or missing parts. Compared with [10,32,33], the
algorithms proposed in this paper help detect 3D objects and calculate 3D poses of objects.

3. Multiple Object Detection and Tracking

3.1. System Overview

The goal of this work is 3D object detection and tracking. The system structure
addresses the object detection and tracking problem as shown in Figure 1. There are LiDAR
point cloud input and camera RGB image input. After receiving the LiDAR point cloud data,
the ground point is filtered. Then, the non-ground LiDAR points undergo the calibration
process. After receiving the camera RGB image, YOLOv8 is used for object detection,
based on a customized dataset. Then, the image with 2D bounding boxes undergoes the
calibration process. In the calibration of the LiDAR–camera process, a simple LiDAR and
camera fusion process is proposed to translate the coordinates of objects detected by LiDAR
into the coordinate system of the camera image. The process includes data collection,
coordinate transformation, feature extraction, calibration, and validation. The conversion
between the LiDAR coordinate and the image pixel coordinate will be determined. Then,
the LiDAR Point Cloud Clustering is processed. The pixel coordinates are in the 2D
bounding boxes, based on the YOLO object detection result, and are recognized as the same
object. According to the calibration results, the LiDAR points are segmented, with their
transformed pixel coordinates within the 2D bounding boxes. Based on the top view result
of the LiDAR points and LiDAR segmentation result, 3D bounding boxes for the LiDAR
points can be obtained. The center of the bounding boxes is calculated. Then, we approach
the object tracking algorithm to calculate the object’s 3D poses and determine the relative
distance between the robot and the object.
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Figure 1. System structure of 3D object detection and tracking.

3.2. LiDAR Data Ground Segmentation

As shown in Figure 2, the LiDAR sensor reports points in spherical coordinates
(detection distance d, elevation ω, and azimuth α). There is a detected LiDAR point
Pi(xi, yi, zi), where i is the point’s index number. The detection distance OPi is calculated
as di as follows:

di =
√

x2
i + y2

i + z2
i (1)

The elevation ωi is the angle between the horizontal plane and the line to the target.
ωi is calculated as follows:

ωi = arccos
(

zi
di

)
(2)

The azimuth is the angular measurement in a spherical coordinate system. It is the
angle between a reference direction and the line from the observer to the point of interest,
projected onto the horizontal plane. The azimuth is measured in degrees, with values
ranging from 0 to 360 degrees, usually in a clockwise direction from the reference direction.
αi is calculated as follows:

αi = atan2(xi, yi) (3)

Convert the spherical data of point Pi to the Cartesian coordinates. The transfer
equations are as follows:

xi = di ∗ cos(ωi) ∗ sin(αi) (4)

yi = di ∗ cos(ωi) ∗ cos(αi) (5)

305



Electronics 2024, 13, 2250

zi = di ∗ sin(ωi) (6)

Figure 2. LiDAR point in the coordinate system to segment the ground point.

In order to quickly process the ground segmentation algorithm, the LiDAR points with
negative z-axis values are taken into account. A threshold height ht is defined to determine
whether a point Pi is classified as a ground point or a non-ground point. If the absolute of zi
at point Pi is greater than or equal to the threshold height ht, then the point Pi is considered
a detected ground point. Conversely, if the absolute of zi is less than the threshold height h,
the point Pi is classified as a non-ground point. However, the challenge lies in selecting the
correct threshold height ht for effective ground point segmentation. Different road surfaces
exhibit distinct characteristics. As shown in Figure 3, three conditions are considered to
determine the threshold height ht: flat terrain, uphill terrain, and downhill terrain. In order
to calculate the threshold height ht, two points, Pi and Pi+1, with the same azimuth are
considered. The angle β is calculated as follows:

β = atan2((zi+1 − zi), (yi+1 − yi)) (7)

As shown in Figure 4, h represents the mounting height of the LiDAR above the
ground. It is related to the height of the robot, the sensor bracket, and the size of the LiDAR
sensor. A constant compensatory distance is defined as dc and the threshold height ht is
calculated as (8), where β is calculated from (7). dc is a constant value, which is defined
based on the distance between LiDAR and the object. It is equal to the average y-value of
points with the same azimuth angle minus the minimum y-value.

ht = h + dc ∗ tan(−β) (8)

As shown in Figure 3a, the default road is a flat terrain road and β is zero. Therefore,
the threshold height ht is equal to h. For the uphill condition, ht is lower than h. For
the downhill condition, ht is higher than h. For the uphill and downhill conditions, dc is
defined based on the real environment, for example, the distance of the detected object in
front of the LiDAR.
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(a)  

 
(b)  

 
(c)  

Figure 3. The three conditions to determine the threshold height: (a) flat terrain, (b) uphill terrain,
and (c) downhill terrain.

 

Figure 4. The height of the LiDAR sensor from the ground in a real environment.
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3.3. 3D LiDAR and Camera Data Fusion

In this section, a simple LiDAR and camera fusion process is proposed to translate
the coordinates of objects detected by LiDAR into the coordinate system of the camera
image. The process includes data collection, coordinate transformation, feature extraction,
calibration, and validation. In the data collection process, based on the camera’s RGB Field
of View (FOV), the right range of LiDAR points are collected. For example, as shown in
Figure 4, When a Velodyne LiDAR and an Intel D435 camera are both facing forward and
the camera’s RGB FOV is 69◦ × 42◦, it implies that the LiDAR’s horizontal detection angle
range should be matched with the camera’s horizontal FOV for effective data fusion. In
this scenario, the LiDAR’s azimuth α is confined between 0 to 34.5 degrees and 315.5 to
360 degrees. This range ensures that the area covered by the LiDAR overlaps with the
camera’s field of vision. This fusion enhances the accuracy of object detection and is highly
beneficial for understanding the surroundings in complex environments. After collecting
the right range of LiDAR data, the LiDAR point positions in Cartesian coordinates are
calculated based on (4)–(6). LiDAR Data Ground Segmentation in Section 3.2 is used to
filter the ground data. Then, among the non-ground in-range points, based on the distance
from the LiDAR to the detection points and the value of inflection, some points are selected
for calibration. As shown in Figure 5, the car is utilized for calibration. The distance
between the LiDAR sensor and the car is measurable. The color of the car differs from
that of its wheel. This distinction is significant because white and black surfaces reflect
light differently, influencing the LiDAR reflection value. These contrasting colors allow
for the selection of characteristic points for calibration. The positions of these selected
LiDAR points are then recorded in both the LiDAR coordinate system and the camera’s
pixel coordinate system.

 

Figure 5. Environment for LiDAR and camera data fusion.

In the calibration process, define a transformation matrix M, which converts the
coordinate system of LiDAR to the coordinate system of the camera. The transformation
matrix includes rotation, scaling, and translation.

M =

⎡⎢⎢⎣
a b c d
e f g h
i j k l
0 0 0 1

⎤⎥⎥⎦ (9)
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The homogeneous coordinate of LiDAR is P = [x, y, z, 1]T . Then, the coordinates
P′ = [x′, y′, z′, 1]T are obtained as follows:

P′ = MP =

⎡⎢⎢⎣
ax + by + cz + d
ex + f y + gz + h
ix + jy + kz + l

1

⎤⎥⎥⎦ (10)

To convert the homogeneous coordinates P′ into two-dimensional pixel coordinates[
u v

]T , firstly use perspective division to convert homogeneous coordinates into three-
dimensional Cartesian coordinates, and then use the intrinsic parameter of the camera to
transfer. The intrinsic parameter matrix of the camera is defined as (11).

K =

⎡⎣ fx 0 cx
0 fy cy
0 0 1

⎤⎦ (11)

fx and fy are the focal lengths along the x and y axes, respectively, measured in pixels.
cx and cy are the coordinates of the image’s center point. The two-dimensional pixel

coordinates
[
u v

]T can be obtained as follows:⎡⎣u
v
1

⎤⎦ = K

⎡⎣x′

y′

1

⎤⎦ (12)

The least squares method is used to find the parameters a, b, c, d, e, f , g, h, i, j, k, l in the
transformation matrix M. An objective function f (M) is created to measure the difference
between the LiDAR coordinates transformed by these parameters, based on (9)–(12), and
the actual camera pixel coordinates

[
uc vc

]T . The function f (M) is defined as follows:

f (M) = ∑n
j=1

[(
uj − uc_j

)2
+
(
vj − vc_j

)2
]

(13)

where n is the total number of calibration points and j is the index of the jth calibration point.
Through iterative optimization algorithms, the parameters of M are adjusted according
to the gradient of the objective function, until the convergence criteria are met or the
predetermined number of iterations is completed.

3.4. Object Detection and Tracking

In order to use YOLO v8 to detect the objects, a customized dataset is created. As
shown in Figure 4, using Agilex’s Scout Mini robot equipped with an Intel D435 camera,
images are collected in a residential community. The target categories include pedestrians,
cars, motorcycles, bicycles, street lights, trees, and houses. Two lighting conditions are
considered: bright light and darkness. Totally, 1694 images are used for training and
424 images are used for testing. LabelImg is used to create bounding boxes and label
categories. The .txt file is created with the same name for each image, containing the labeled
information. Set the configuration file and the training environment, and then the model
is trained.

Based on the calibration process in Section 3.3, the LiDAR points are transformed in
the pixel coordinates. For object tracking, LiDAR Point Cloud Clustering is integrated
with the YOLO object detection result. As shown in Figure 6, the LiDAR data are used in
conjunction with YOLO-detected objects. The pixel coordinates of these objects within 2D
bounding boxes are identified as belonging to the same object. Based on the top view result
of the LiDAR points, the LiDAR points Pn = [xn, yn, zn](n = 1, 2, 3, . . . , n) detected from
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the same object can be separated. Indicated as the red point shown in Figure 6, the center
point CP = [xc, yc, zc] of the object can be calculated as follows:

xc =
(max(xn)−min(xn))

2
+ min(xn) (14)

yc =
(max(yn)−min(yn))

2
+ min(yn) (15)

zc =
(max(zn)−min(zn))

2
+ min(zn) (16)

The center point is defined as the object point for tracking. The relative distance
between the center point of the object and the LiDAR is as shown in (17):

dol =
√

x2
c + y2

c + z2
c (17)

The elevation ωol is calculated as follows:

ωol = arccos
(

zc

dol

)
(18)

Based on (1) in [36], the LiDAR coordinate can be transferred to the world coordinate.
Therefore, based on (14)–(18), the coordinates of the center point in the world coordinate
system can be calculated. In order to obtain the 3D bounding box of the objects, the length,
width, and height of the box can be calculated as follows:

length = max(xn)−min(xn) + m (19)

width = max(yn)−min(yn) + m (20)

height = max(zn)−min(zn) + m (21)

where m is the extended distance. The corner coordinates of the box are obtained as follows:

corners =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc − length
2 yc − width

2 zc − height
2

xc +
length

2 yc − width
2 zc − height

2
xc +

length
2 yc +

width
2 zc − height

2
xc − length

2 yc +
width

2 zc − height
2

xc − length
2 yc − width

2 zc +
height

2
xc +

length
2 yc − width

2 zc +
height

2
xc +

length
2 yc +

width
2 zc +

height
2

xc − length
2 yc +

width
2 zc +

height
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)
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Figure 6. Object detection and tracking. On the left side, the detected car is in the green block. On
the right side, the detected car’s 3D bounding box is shown as a green box. The red point is used to
calculate the detected car’s pose.

4. Simulations and Experiment

In this section, the data are collected by using the Agilex Scout Mini onboard PC.
As shown in Figure 4, a Velodyne LiDAR and an Intel D435 camera are mounted on the
robot. Both sensors face forward, the x-axis of the robot’s moving direction. The camera’s
RGB FOV is 69◦ × 42◦, and it implies that the LiDAR’s horizontal detection angle range
should be matched with the camera’s horizontal FOV for effective data fusion. In the
experiment, the LiDAR’s azimuth α is confined between 0 to 34.5 degrees and 315.5 to
360 degrees. The mounting height of the LiDAR above the ground is 0.412 m. dc is defined
based on the real environment, for example, the distance of the detected object in front
of the LiDAR. The parameters a, b, c, d, e, f , g, h, i, j, k, l in the transformation matrix M are
obtained as [28.6197, −93.72131, 156.6157, 291.09294, −52.93593, 27.92016, −310.95358,
407.69218, 0.8058, 0.45731, 0.77985, 0.82676]. For object detection using YOLOv8, the target
categories include pedestrians, cars, motorcycles, bicycles, street lights, trees, and houses.
Two lighting conditions are considered: bright light and darkness. Totally, 1694 images
are used for training and 424 images are used for testing. The model is selected as the
YOLOv8n model.

The experimental design involves the following steps: LiDAR data ground segmenta-
tion, object detection, LiDAR–camera data calibration, object tracking, and 3D bounding
box construction.
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Figure 7 shows the results of the LiDAR data ground segmentation. Figure 7a is the
top-view result of all LiDAR point cloud data. Figure 7b displays the results of ground
segmentation, where red points represent ground points and blue points represent non-
ground points. As shown in Figure 4, the mounting height of the LiDAR above the ground is
0.412 m. The ground points are correctly identified and separated from non-ground points.

  
(a) (b) 

Figure 7. The results of the LiDAR data ground segmentation. (a) Top-view result of all LiDAR
point cloud data; (b) ground segmentation result: red points represent ground points and blue points
represent non-ground points.

The object detection process, based on YOLOv8, efficiently and accurately identifies
two cars and one truck, as shown in Figure 8. The object tracking algorithm uses the
detection results from Figure 8.

 
Figure 8. Object detection result using YOLOv8.

As shown in Figure 8, three objects are detected. Based on the calibration process in
Section 3.3, the LiDAR points are transformed in the pixel coordinates. The LiDAR data
are used in conjunction with the object detection results. The pixel coordinates of the truck
and two cars within 2D bounding boxes are identified as belonging to the same object.
The results are shown in Figure 9. The green points, red points, and blue points are the
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detected LiDAR points of the truck, black car, and white car, separately. The transformed
lidar points coincide with the actual pixel coordinates of the detected object. Therefore, the
calibration precision is acceptable. Despite occlusions and missing parts between the cars
and truck, the LiDAR points can still be well segmented and accurately matched with their
respective detected objects.

 
Figure 9. Object detection result and LiDAR point calibration results.

Based on the object detection and calibration results in Figure 9 and the top-view
result of all LiDAR point cloud data in Figure 7b, 3D bounding boxes are constructed to
represent each object, as depicted in Figure 10. The red points indicate the central points for
the 3D bounding boxes. The coordinates for the central points of the truck, Car1, and Car2,
relative to the robot’s zero point, are as follows:

[
1.96 −1.01 0.25

]T ,
[
3.92 3.63 0.14

]T ,

and
[
6.76 2.03 −0.5

]T , separately. The corners’ coordinates for the bounding box of the
truck are as in (23). The length, width, and height of the truck bounding box are 1.96 m,
1.15 m, and 0.96 m.

cornerstruck =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.38 −1.99 −0.23
2.53 −1.99 −0.23
2.53 −0.03 −0.23
1.38 −0.03 −0.23
1.38 −1.99 0.73
2.53 −1.99 0.73
2.53 −0.03 0.73
1.38 −0.03 0.73

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

The corners’ coordinates for the bounding box of Car1 are as in (24). The length, width,
and height of the truck bounding box are 1.86 m, 1.88 m, and 1.04 m.

cornerscar1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.98 2.71 −0.38
4.86 2.71 −0.38
4.86 4.57 −0.38
2.98 4.57 −0.38
2.98 2.71 0.66
4.86 2.71 0.66
4.86 4.57 0.66
2.98 4.57 0.66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)
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The corners’ coordinates for the bounding box of Car2 are as in (25). The length, width,
and height of the truck bounding box are 1.31 m, 0.54 m, and 0.97 m.

cornerscar2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.11 2.04 −0.5
7.42 2.04 −0.5
7.42 2.58 −0.5
6.11 2.58 −0.5
6.11 2.04 0.47
7.42 2.04 0.47
7.42 2.58 0.47
6.11 2.58 0.47

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

The dimensions of the 3D bounding boxes closely match the dimensions of the objects
detected by the 3D LiDAR.

Figure 10. Object tracking result.

5. Conclusions

This paper presents an innovative and effective approach to object detection and
tracking. A novel algorithm is proposed to filter ground points from LiDAR data, which is
critical for the accuracy of subsequent detection processes. YOLOv8 was used for object
detection, which was trained on a customized dataset. It outputs the image through
2D bounding boxes. The development of a calibration algorithm that transforms 3D
LiDAR coordinates to image pixel coordinates is a key contribution, enabling the effective
correlation of LiDAR data with object detection results. This is further enhanced by a
proposed method for object clustering based on combined data from object detection and
LiDAR calibration. An object tracking algorithm is proposed to compute the 3D poses and
relative distances of objects in relation to a robot. The Agilex Scout Mini robot, equipped
with Velodyne 16-channel LiDAR and an Intel D435 camera, was applied for data collection
and experimentation. The experimental results show the efficiency and effectiveness of the
algorithms. Future research will focus on enhancing the diversity of object recognition and
tracking, as well as improving the accuracy of object tracking.
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Abbreviations

LiDAR Light Detection and Ranging
YOLO You Only Look Once
SSD Single Shot MultiBox Detector
FOV Field of View
2D Two dimensional
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Abstract: In recent years, multi-view graph clustering algorithms based on representations learning
have received extensive attention. However, existing algorithms are still limited in two main aspects,
first, most algorithms employ graph convolution networks to learn the local representations, but
the presence of high-frequency noise in these representations limits the clustering performance.
Second, in the process of constructing a global representation based on the local representations,
most algorithms focus on the consistency of each view while ignoring complementarity, resulting
in lower representation quality. To address the aforementioned issues, a local-global representation
enhancement for multi-view graph clustering algorithm is proposed in this paper. First, the low-
frequency signals in the local representations are enhanced by a low-pass graph encoder, which
yields smoother and more suitable local representations for clustering. Second, by introducing an
attention mechanism, the local embedded representations of each view can be weighted and fused to
obtain a global representation. Finally, to enhance the quality of the global representation, it is jointly
optimized using the neighborhood contrastive loss and reconstruction loss. The final clustering
results are obtained by applying the k-means algorithm to the global representation. A wealth of
experiments have validated the effectiveness and robustness of the proposed algorithm.

Keywords: multi-view learning; contrastive learning; graph clustering; graph learning; representa-
tion learning

1. Introduction

Graph clustering, as a crucial task in graph analysis [1], aims to partition a graph into
multiple clusters, ensuring that nodes within the same cluster exhibit similarities in terms of
both graph topology and attribute values [2,3]. This process enables the identification of co-
hesive groups within the graph, facilitating various downstream tasks such as community
detection , anomaly detection, and recommendation systems [4–6]. Various graph cluster-
ing algorithms have been applied in fields such as social recommendation, link prediction,
citation network analysis, protein interaction analysis, and brain network analysis [7,8].
Most existing graph clustering algorithms focus on single-view graph data [9]. However,
the graph data in practical applications are typically multi-relational. For instance, in biolog-
ical networks, the interactions between proteins in some organisms may involve multiple
interaction patterns among thousands of protein molecules, with each protein [10] having
specific attribute information. In social networks [11], individuals may have different types
of social relationships, such as friends, followers, and co-groups, with each individual pos-
sessing certain descriptive characteristics. In a transportation planning network, locations
are abstracted as nodes, while different types of roads: subways, highways, railways, etc.,
are abstracted as sides of different views. By analyzing multi-view graph data, it helps to
improve the understanding of the complexity of urban transportation systems, and can
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provide support for improving traffic mobility and safety [12]. In comparison to single-view
graph data, multi-view graph data have a multi-layered topological structure and contain
richer information, facilitating a more accurate detection of pattern structures within the
network. For example, a social networking platform contains rich user behavioral data
and interpersonal relationship information. By integrating multi-view graph clustering
algorithms to merge user’s social connections, interests, and other attribute information,
the social networking platform can more accurately discover connections between different
groups, enabling more precise social circle recommendation services. By introducing more
information about user backgrounds, interpersonal relationships, and other aspects, the
platform can make product recommendations more targeted and adaptive. By comprehen-
sively considering user behavioral data and rich interpersonal relationships, it is possible
to identify potential fake accounts and fraudulent activities, further ensuring the security
of the social networking platform. Therefore, multi-view graph clustering algorithms can
leverage social information and user behavior patterns on the platform to provide users
with more precise, intelligent, and secure services, thereby enhancing the user experience
and stickiness of the social networking platform. However, there are both correlations and
heterogeneity within the cluster structures contained in different views, which introduces
new challenges to clustering tasks [13,14].

In recent years, the issue of multi-view graph clustering has attracted widespread
attention from researchers, leading to the emergence of a series of related algorithms.
These algorithms can be categorized into two types: graph clustering based on consensus
graph learning and graph clustering based on representation learning. The former category
attempts to learn a consensus graph by maximizing the consistency between different views.
Subsequently, utilizing a traditional clustering algorithm, it derives the final clustering
results [15,16]. However, clustering the consensus graph directly may result in the loss of
specific information within each view. The latter category aims to integrate the attribute
information of each node with the topological structure of the graph, while maximizing
the preservation of information from multiple views. These algorithms map the data
into a joint low-dimensional vector representation that can be used for clustering [17,18].
However, most algorithms have several limitations. For example, local representations
that are constructed directly using a graph convolution network (GCN) are susceptible
to high-frequency noise. Additionally, a global representation constructed from local
representations of each view often only focuses on the consistency information of each
view, effectively ignoring the complementary information [19].

To overcome these limitations, this paper describes a novel local-global representation
enhancement for multi-view graph clustering (LGMGC) algorithm. This algorithm en-
hances low-frequency signals in the local representations through graph filtering, making
them more suitable for clustering tasks. An attention mechanism is employed to allow
the global representation to integrate information from various views, thus enhancing the
connections between similar nodes in the global embedded representation and improving
the clustering results. This enhances the attention towards complementary information
within the global representation. Specifically, the graph data are encoded using a combina-
tion of low-pass graph filters and a multilayer perceptron (MLP). This encoding process
enhances the low-frequency signals present in the local representations. The local rep-
resentations from each view are then integrated into a global representation using the
attention mechanism. The exploration of the topological characteristics of each view is
strengthened through the reconstruction of the adjacency matrices, and the introduction of
neighborhood contrastive regularization enhances the connectivity between nodes with
similar attributes in the global representation, which clarifies the cluster structure. Finally,
a traditional clustering algorithm is applied to the enhanced representation to obtain the
final clustering results.

In summary, the contributions of this article can be outlined as follows:
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• A new multi-view graph clustering algorithm via local-global representation enhance-
ment is proposed. LGMGC enhances the local and global representations to obtain a
more suitable representation for clustering.

• A simple and effective graph encoder that enhances the low-frequency signals to
obtain a smoother representation is proposed.

• Comprehensive experimentation on three benchmark datasets illustrates the excel-
lent performance of the proposed algorithm in comparison to existing deep graph
clustering algorithms.

The paper is structured as follows: In Section 2, a review of related work on multi-view
graph clustering is offered. In Section 3, the specific process of the proposed algorithm are
thoroughly elucidated. In Section 4, we conducts an evaluation of the proposed algorithm,
comparing it to existing algorithms. In Section 5, we conducted ablation experiments to ver-
ify the effectiveness of each component. In Section 6, we discussed the experimental results
of the paper. In Section 7, we conclude this work and suggest the focus for future work.

2. Related Work

In this section, the related work on neighbor-based recommendation of collaborative
filtering and attention mechanism is briefly reviewed.

2.1. Graph Clustering Based on Consensus Graph Learning

This category of algorithms aims to maximize the consistency between different views
by learning a consensus graph. The final clustering result is obtained by applying graph
partitioning or other spectral graph techniques to the consensus graph. These algorithms
mainly consist of three steps: (1) preprocessing of multi-view data; (2) learning a consensus
graph to maximize view consistency; and (3) clustering based on the learned consensus
graph. Utilizing data information or prior knowledge to guide the learning of consensus
graphs constitutes a crucial step. The self-weighted multi-view graph clustering (SwMC)
algorithm initially generates a similarity matrix between nodes based on the features of each
view, before maximizing the consistency of the similarity matrices across different views
using a learning consensus graph approach. This algorithm leverages the Laplacian matrix
of the constrained consensus graph to aid in clustering The most crucial step is how to utilize
data information or prior knowledge to guide the learning of the consensus graph [20]. The
multi-view attributed graph clustering (MvAGC) algorithm employs low-pass filters to
smooth multiple views, and then simultaneously learns a consensus graph while generating
anchor points [15]. Lin et al. [16] employs a learning consensus graph approach to maximize
the consistency of smooth representations across different views. This optimizes the
consensus graph structure through contrastive learning, ultimately achieving higher-quality
clustering results. In this algorithm, contrastive learning brings similar nodes closer to each
other and pushes dissimilar nodes apart. Thus, the consensus graph more accurately reflects
the relationships between features in different views, resulting in more precise clustering.
Lin et al. [21] employ low-pass filters to achieve smooth representations. Subsequently,
they aim to maximize the consistency of these representations across various views while
also exploring the consistency of high-order topological structure information within each
view. Liu et al. [22] applied standard network embedding methods to process merged
graphs or individual layers, without leveraging interlayer interactions, aiming to construct
a vector space for information from multiple views. Robust multi-view spectral clustering
via low-rank and sparse decomposition(RMSC) incorporate elements of low-rank and
sparse decomposition. Initially, its construct a transition probability matrix from each
individual view. Subsequently, these matrices are utilized to reconstruct a shared low-rank
transition probability matrix, serving as a critical input for the standard Markov chain
method used in clustering [23]. Fettal et al. uses a simple linear model to simultaneously
accomplish clustering and representation learning [24]. These algorithms demonstrate
the effectiveness of learning consensus graphs for analyzing multi-view graph data. The
learning of consensus graphs reveals hidden relationships and common features between
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different views. However, directly partitioning the consensus graph may overlook specific
information present in individual views.

2.2. Graph Clustering Based on Representation Learning

This category of algorithms learns a compact representation of nodes from multi-view
graph data, and then applies clustering to the compact representation. Such algorithms
can generally be divided into three steps: (1) the extraction of a compact representation
of multiple views using graph embedding techniques; (2) the imposition of external con-
straints, such as adding corresponding regularization terms to the loss function, which
ensures that the representation is more suitable for clustering; and (3) the application of
traditional algorithms to the compact low-dimensional representation to obtain clustering
results. The purpose of a graph auto-encoder (GAE) is to reconstitute graph by taking
node features as input, compressing them into a low-dimensional representation, and
reconstructing the resulting graph, followed by k-means clustering on the low-dimensional
representation. While GAE serves as the cornerstone of this approach, its limitation lies
in its capability to handle only single-view graph data and its inefficiency when dealing
with large-scale graph data [25]. Tang et al. [26] introduces an edge sampling algorithm to
enhance the effectiveness and efficiency of inference. The one2multi graph autoencoder
for multi-view graph clustering (O2MAC) algorithm reconstructs the remaining views by
selecting an informative view from among the multiple available views, thereby learning
the node embedding. Simultaneously, the O2MAC algorithm uses self-training clustering
objectives to make the representation more suitable for clustering. Finally, clustering is
performed based on the learned embeddings [17]. Cai et al. [18] extracts representations
of both global and local information using autoencoders, and combines different features
based on their importance through adaptive weight learning algorithms. Xia et al. [27]
uses graph autoencoders to extract representations of each view, before applying block-
diagonal representation constraints to better explore the clustering structure. The learned
clustering labels are then used to guide the learning of node representations and coeffcient
matrices, which are subsequently used for clustering. Cheng et al. [28] uses a dual-path
encoder to capture consistency information across different views. The first path extracts
node representations, while the second path employs a consistency embedding encoder
to capture the consistency of geometric relationships and probability distributions among
different views. Ultimately, The resulting clustering is based on the representations learned
by the consistency embedding encoder. The powerful representation learning capability of
graph neural networks enables representation learning-based algorithms to explore deeper
information within graph data. However, when constructing global representations based
on the local embeddings of each view, they often only focus on the consistency information
among views, while ignoring complementary information.

3. Proposed Algorithm

In this section, we first present some notation and definitions, and then describe the
proposed algorithm in detail.

3.1. Notation and Preliminaries

A multi-view graph can be represented as G =
{
V , E1, · · · , EM, X

}
, where V =

{v1, v2, ..., vn} is the set of n nodes, and M sets of edges {Em}M
m=1 describe the interaction

between nodes in the corresponding M views. em
ij ∈ Em represents a linkage between nodes

i and j in the m-th view. These M interaction types can also be described by adjacency
matrices {Am ∈ Rn×n}M

m=1, where Am
ij = 1 if em

ij ∈ Em and Am
ij = 0 otherwise. X =

{x1, x2, ..., xn} ∈ Rn×d is the node feature matrix, xi is the feature vector of vi, and Dm

represents the degree matrix of the graph under the m-th view. Ãm = D
− 1

2
m AmD

− 1
2

m and
Lm = I − Ãm represent the normalized adjacency matrix and symmetric normalized
Laplacian matrix for the m-th view, respectively.
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The objective of multi-view graph clustering is to divide the nodes in G into c clusters
{S1, S2, ..., Sc}. The nodes in the same cluster are similar in topology and attributes, while
the nodes in different clusters are quite different.

3.2. Framework of Multi-View Graph Clustering via Local-Global Representation Enhancement

The framework of the proposed algorithm, as illustrated in Figure 1, consists of three
main modules: local representation generation and enhancement, global representation
generation, and global representation enhancement.

Figure 1. Illustration of LGMGC. In the local representation generation module, low-pass graph
filtering combined with MLP is used to enhance the low-frequency signals of each view’s repre-
sentation. In the global representation generation module, an attention mechanism is employed to
fuse the representations of various views, resulting in a global representation that captures both
consensus information and view-specific information. In the global enhancement module, topological
information of each view is explored by reconstructing the adjacency matrix. Additionally, nodes
with similar topological structures and properties are pulled together while dissimilar nodes are
pushed farther apart via neighborhood contrastive loss.

3.3. Local Representation Generation and Enhancement

The purpose of this module is to generate local representations for each view while
enhancing the low-frequency signals within these representations. This process is accom-
plished through multiple graph encoders consisting of two inputs: Am and X.

First of all, we will explain the reasons for choosing low frequency signals. The
symmetric regularized Laplace matrix L can be eigen-decomposed into L = UΛU−1 where,
Λ = diag(λ1, λ2, · · · , λn), λi(i = 1, 2, . . . , n) is the eigenvalue, U = [u1, u2, · · · , un]

T is the
corresponding orthogonal eigenvector. The eigenvalues can be considered as frequencies,
and the corresponding eigenvectors can be considered as Fourier bases. The smoothness of
ui can be reflected by λi.

∑
aj,k∈E

ajk[ui(j)− ui(k)]
2 = uT

i Lui = λi. (1)

As can be seen from Equation (1), the smaller the eigenvalue, the smoother the base
signal. This means that the attribute components corresponding to smaller eigenvalues in
the graph data have less difference between neighboring nodes, that is, the attributes of
neighboring nodes are more similar. Therefore, the smaller the eigenvector corresponding to
the eigenvalue is more conducive to the formation of cluster structure, which indicates that
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the graph signal required by the clustering task should contain a larger proportion of low-
frequency base signals. Meanwhile, the effectiveness of GCN does not stem from non-linear
feature extraction, but from aggregating features from neighboring nodes. The layering of
multiple GCNs may lead to intertwining weight matrices, consequently diminishing the
quality of representation learning.

Thus, the module is divided into two steps: neighbor aggregation and linear em-
bedding. In the neighbor aggregation step, a low-pass graph filter is used to aggregate
neighbor information, which enhances the low-frequency signals in the attributes, resulting
in a smoothed representation that is more suitable for downstream clustering tasks. The
process of filtering can be described as follows:

Hm = (I− Ãm)
kX, (2)

where, Hm denotes the smoothed representation of the m-th view after filtering, and k
denotes the number of layers in the graph filters. In the linear embedding step, Hm
is embedded into a low-dimensional space by the MLP encoders without an activation
function, The local embedding representation Zm of the m-th view is obtained as follows:

Zm = fm(Hm) = HmWm + bm, (3)

where, Wm and bm are the learnable parameters of the encoder for the m-th view. Through
the low-pass graph encoder, high-frequency noise in attributes is filtered out, the entan-
glement of weight matrix is avoided, the quality of representation is enhanced, and the
clustering performance is improved (See Section 5.4).

3.4. Global Representation Generation

The objective of this module is to fuse the local representations Zm from each view,
thus obtaining a global representation Z that incorporates information from all views:

Z =
M

∑
m=1

Zm. (4)

However, the quality of the views in multi-view graph data varies. If only high-
quality views are selected for clustering, the global embedding representation would lose
information from the remaining views. Conversely, treating all views equally would
allow lower-quality views to adversely impact clustering results. To effectively combine
complementary information from multi-view graph data and mitigate the influence of
lower-quality views on clustering outcomes, distinct weights are assigned to each view
through a self-supervised strategy.

In Section 3.5, the clustering structure in the global representation is enhanced by
neighborhood contrast loss. Consequently, it can be argued that when the clustering
result of the local representation of a view is closer to the clustering result of the global
representation, the clustering quality of the view is higher and the view quality is better.
During the training process, attention mechanisms are utilized to allocate respective weights
to each view based on the similarity between the local and global clustering results for
different views.

Specifically, the global representation Z is input into the k-means clustering algo-
rithm to generate pseudo-labels P. Using the same algorithm, predicted labels Qm are
also obtained for each view. These pseudo-labels P serve as the ground truth, while the
predicted labels Qm are considered as the results for calculating the clustering score (such
as normalized mutual information), denoted as i.e., scorem. The weight wm assigned to the
m-th view is calculated according to the following formula:

wm =
1

1− scorem
, (5)
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By Equation (5), Greater weight is assigned to views that are more similar to the
clustering result of the global representation. Then normalize the weights of each view.

tm =
wm

∑M
i=1 wi

. (6)

Therefore, the fusion representation based on the attention mechanism is constructed
as follows:

Z =
M

∑
m=1

tmZm. (7)

In contrast to traditional data, the primary information in graph data is embedded
within its topology. For example, different views of the same group of nodes contain both
consistent parts (consistency information) and distinct parts (highlighting complemen-
tary information) in their respective topological relationships. Through the introduction
of an attention mechanism into the iterative training involving reconstruction loss and
neighborhood contrast loss, the global representation can effectively assimilate information
from each view while emphasizing the greater impact of views exhibiting more prominent
clustering structures. This approach efficiently balances the complementary insights across
varying perspectives, maximizing the advantages of multi-perspective learning.

3.5. Global Representation Enhancement

This module optimizes the global representation Z by exploring the topological and
attribute information from multiple views while strengthening the connections between
similar nodes in Z. This process clarifies the cluster structure in Z.

The exploration of topological and attribute information from each view is accom-
plished through the reconstruction of the adjacency matrix. To comprehensively integrate
information of each view into the global representation, Z is used to reconstruct the adja-
cency matrix Â:

Â = σ(Z, Z
T
), (8)

where, σ denotes the sigmoid activation function. The reconstruction loss is then computed
as follows to capture the information of the m-th view.

Lm
rec = −∑ Am

ij ln Âij + (1−Am
ij ) ln (1− Âij). (9)

Considering the variations in quality among different views, the weights acquired from
Equations (5) and (6) are integrated into the loss function. Thus, the overall reconstruction
loss function is defined as follows

Lrec =
M

∑
m=1

tmLm
rec. (10)

The optimized global representation effectively captures both the consensus informa-
tion and individual characteristics from views in the graph data. To enhance the connections
between similar nodes and highlight the cluster structure in the global embedding repre-
sentation, the neighborhood contrastive loss algorithm is introduced.

In terms of attributes and topology, nodes within the same cluster are similar, while
nodes between different clusters have significant differences. in order to better highlight
the cluster structure in the global representation, contrastive learning can be used to push
similar node representations closer together, while pushing others away.

Specifically, for the given node representation zi, the top-K similar nodes to zi are
calculated by KNN algorithm, and these nodes form a positive pair with zi, and the
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remaining nodes form a negative pair. The neighborhood contrastive loss Lnbr is as follows:

Lnbr =
n

∑
i=1

∑
j∈Ni

− log
exp
(
sim
(
zi, zj

))
∑n

p �=i exp
(
sim
(
zi, zp

)) , (11)

where the pair-wise similarity sim(zi, zj) is measured by the cosine similarity. Ni is a set
consisting of the indices of the K samples obtained by applying the KNN to zi.

By minimizing Equation (11), similar samples are pushed closer together while dis-
similar samples are pushed father apart. The objective of this minimization is to enhance
the discrimination between samples in the global representation.

Combining Equations (10) and (11), our model optimizes the following loss function:

L = Lrec + αLnbr (12)

where, α is a hyper-parameter used for balancing Lrec and Lnbr. To optimize this objec-
tive function, we employ the Adam optimizer. The complete procedures is outlined in
Algorithm 1.

Algorithm 1 LGMGC

1: Input:Multi-view graph G =
{
V , E1, · · · , EM, X

}
, number of clusters c, order of graph

filtering k, number of KNN Samples K, hyperparameter α, iteration number epochs
2: Output:Clustering results Pf
3: for epoch = 1 to epochs do
4: Obtain Zm for each view according to Equation (3);
5: Obtain Z according to Equation (4) ;
6: Obtain tm according to Equation (6);
7: Update model parameters by minimizing Equation (12);
8: end for
9: Obtain Pf by performing k-means clustering on Z

4. Experiments

Benchmark datasets, baseline algorithms, evaluation metrics, and parameter settings
are introduced in this section.

4.1. Datasets

For our experiments, three widely used real-world datasets, namely ACM (http:
//dl.acm.org (accessed on 17 November 2023)), DBLP (https://dblp.uni-trier.de/ (accessed
on 17 November 2023)), and IMDB (https://www.imdb.com/ (accessed on 17 November
2023)), are used to evaluate our algorithm. Detailed statistics are presented in Table 1.

Table 1. Statistical information of the experimental datasets.

Datasets Nodes Edges Features Clusters

ACM 3025 Co-Subject (29,281) 1830 3
Co-Author (2,210,761)

DBLP 4057 Co-Author (11,113) 334 4
Co-Conference (6,776,335)

Co-Term (5,000,495)
IMDB 4780 Co-Actor (98,010) 1232 3

Co-Director (21,018)

ACM: This dataset is generated from information about ACM publications. The nodes
in this datasets represent the paper. There are two types of relationships between nodes
and each type of relationship corresponds to a view. The nodes features are the elements of
a bag-of-words of keywords. According to the research field of the paper, it can be divided
into three categories.
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DBLP: This dataset contains information that describes the author’s network. The
nodes in this dataset represent the authors. There are three types of relationships between
nodes, each relationship corresponding to a view. The nodes features are elements of a set
of keyword words. According to the research field of the author, it can be divided into
four categories.

IMDB: This dataset contains information on a movie network. The nodes in this
dataset represent the movie. There are two types of relationships between movie, each
relationship corresponding to a view. The nodes features are elements of a set of keyword
words. According to the theme of the movie, it can be divided into three categories.

4.2. Baseline Algorithms and Evaluation Metrics

In the pursuit of validating the effectiveness of the proposed algorithm, we under-
take a comparative analysis against eight baseline algorithms. These algorithms include
single-view algorithms GAE [25] , large-scale information network embedding (LINE) [26],
traditional multi-view algorithms Principled multilayer network embedding (PMNE) [22],
RMSC [23], SwMC [20], multi-view graph clustering based on representation O2MAC [17],
and multi-view graph clustering based on consensus graph learning MvAGC [15], and
multi-view attributed graph clustering(MAGC) [21], and simultaneous linear multi-view
attributed graph representation learning and clustering(LMGEC) [24]. A brief introduction
to these algorithms is provided below:

(1) GAE is a single view algorithm that uses graph autoencoders to generate embedded
representations. this algorithm is applied to each graph view and the best results
are reported.

(2) LINE is a single view graph clustering algorithm applied to large-scale graph data.
this algorithm is applied to each graph view and the best results are reported.

(3) PMNE projects multi-view graph in to a representative vector space.
(4) RMSC is a multi-view clustering algorithm designed to address noise in input data.
(5) SwMC implements clustering multi-view data while learning weights of each view.
(6) O2MAC learns node embedding by reconstructing entire view with the most

information-rich information view.
(7) MvAGC is a multi-view graph clustering algorithm that performs graph filtering to

achieve multi-view attributed graph clustering.
(8) MAGC is a multi-view graph clustering method using node attributes and exploring

higher-order graph structure information.
(9) LMGEC uses a simple linear model to simultaneously accomplish clustering and

representation learning.

To assess the quality of the clustering results, we employ four metrics: clustering
accuracy (ACC), normalized mutual information (NMI), adjusted Rand index (ARI), and
clustering F1-score (F1).

4.3. Parameter Settings

The hyper-parameters of LGMGC are set as follows: learning rate lr = 0.001, max-
imum number of iterations epochs = 200, number of layers in MLP layers = 1, output
dimension of MLP dimension = 512, and number of graph filtering layers k = 2. For
ACM DBLP and IMDB, the balancing hyper-parameters α = 10. For O2MAC, MvAGC
and LMGEC, we use original codes. To ensure fairness in comparison, we use the default
hyper-parameters settings reported in the original papers. GAE uses same structure as
the encoder in O2MAC. Each set of experiments is run ten times, and the average results
are reported.

4.4. Experimental Results of Different Algorithms

In this subsection, we present and analyze the results of our experiments.
To evaluate the effectiveness of our LGMGC in multi-view graph clustering tasks, we

compare it with nine baseline algorithms on three datasets. Table 2 lists the results. The best
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results are highlighted in bold. As can be seen, LGMGC performs the best on ACM and
DBLP in terms of ACC, NMI, ARI, and F1. For the accuracy (ACC) metrics, the LGMGC
model has shown average improvements of 18.59%, 6.74%, and 10.87% on the ACM, DBLP,
and IMDB datasets, respectively, compared to existing models. Single-view algorithms
such as GAE and LINE do not perform well with multi-view graph data because they
cannot leverage information from additional views. LGMGC significantly outperforms
other traditional multi-view clustering algorithms, such as PMNE, RMSC, and SwMC.
Although these algorithms consider all views, they fail to explore both attribute and topo-
logical information. PMNE and SwMC can only explore topological information, whereas
RMSC can only leverage attribute information. In contrast, our algorithm effectively uses
both topological and attribute information through the graph encoder. Our algorithm
performs significantly better than O2MAC across all three datasets. This is because O2MAC
solely considers the optimal view and disregards information from the remaining views.
Compared with the consensus graph learning algorithms MvAGC, MAGC and LMGEC,
the proposed algorithm achieves better performance. This is the result of MvAGC, MAGC
and LMGEC relying on learned consensus graphs for clustering, which may lead to the
omission of specific information from each view. In particular, the clustering performance
of LGMGC on IMDB is inferior to MAGC. The main reason is that each view edge and at-
tribute of IMDB data set are sparse, and the attribute information and topology information
in the representation learned by low-pass filter are less.

Table 2. Clustering results of various algorithms on three datasets.

Algorithms GAE LINE PMNE RMSC SwMC O2MAC MvAGC MAGC LMGEC LGMGC

ACM

ACC 0.8216 0.6479 0.6936 0.6315 0.3831 0.9042 0.8975 0.8806 0.9302 0.9388
NMI 0.4914 0.3941 0.4648 0.3973 0.0838 0.6923 0.6735 0.6180 0.7513 0.7735
ARI 0.5444 0.3433 0.4302 0.3312 0.0187 0.7394 0.7212 0.6808 0.8031 0.8263
F1 0.8225 0.6594 0.6955 0.5746 0.4709 0.9053 0.8986 0.8835 0.9311 0.9382

DBLP

ACC 0.8859 0.8689 0.7925 0.8994 0.6538 0.9074 0.9277 0.9282 0.9285 0.9334
NMI 0.6825 0.6676 0.5914 0.7111 0.3760 0.7287 0.7727 0.7768 0.7739 0.7860
ARI 0.7410 0.6988 0.5265 0.7647 0.3800 0.7780 0.8276 0.8267 0.8284 0.8394
F1 0.8743 0.8564 0.7966 0.8248 0.5602 0.9013 0.9225 0.9237 0.9241 0.9289

IMDB

ACC 0.4298 0.4268 0.4958 0.2702 0.2617 0.4502 0.5633 0.6125 0.5893 0.5998
NMI 0.0402 0.0031 0.0359 0.0054 0.0056 0.0421 0.0317 0.1167 0.0632 0.0913
ARI 0.0473 −0.0090 0.0366 0.0018 0.0004 0.0564 0.0940 0.1806 0.1294 0.1710
F1 0.4062 0.2870 0.3906 0.3775 0.3714 0.1459 0.3783 0.4551 0.4267 0.4565

The best results are highlighted in bold.

5. Ablation Study

5.1. Effect of Multi-View Learning

In order to verify the effectiveness of the multi-view learning of LGMGC, The single
view of each datasets is entered separately and the results are report in Table 3. It can
be seen that the clustering performance of the individual view is always inferior to the
consensus. In addition, the clustering performance of different views in the same dataset
varies. This validates the effectiveness of multi-view learning in our algorithm.
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Table 3. Clustering results of the proposed algorithm on different views.

Datasets V1 V2 V3 ALL

ACM

ACC 0.9197 0.7230 - 0.9388
NMI 0.7185 0.5155 - 0.7735
ARI 0.7765 0.4719 - 0.8263
F1 0.9198 0.7101 0.9382

DBLP

ACC 0.6621 0.6717 0.9247 0.9334
NMI 0.3743 0.3349 0.7782 0.7860
ARI 0.2649 0.3125 0.8329 0.8394
F1 0.6695 0.6724 0.9197 0.9289

IMDB

ACC 0.5730 0.5787 - 0.5998
NMI 0.0640 0.0811 - 0.0913
ARI 0.1196 0.1518 - 0.1710
F1 0.4298 0.4504 - 0.4565

The best results are highlighted in bold.

5.2. Effect of Reconstruction Loss

By minimizing the reconstruction loss, our algorithm maximizes the preservation
of topological information from each view in the fused embedding. In order to verify
the effectiveness of the reconstruction loss in LGMGC, the clustering results without the
reconstruction loss are reported in Table 4. It can be seen that the addition of reconstruction
loss achieves clustering performance improvements. These results verify that LGMGC
benefits from the reconstruction loss.

Table 4. Clustering results without reconstruction loss.

Datasets LGMGC w/o Lrec LGMGC

ACM

ACC 0.9233 0.9388
NMI 0.7349 0.7735
ARI 0.7854 0.8263
F1 0.9241 0.9382

DBLP

ACC 0.7678 0.9334
NMI 0.5124 0.7860
ARI 0.5198 0.8394
F1 0.7432 0.9289

IMDB

ACC 0.5852 0.5998
NMI 0.0754 0.0913
ARI 0.1389 0.1710
F1 0.4473 0.4565

The best results are highlighted in bold.

5.3. Effect of Neighborhood Contrastive Loss

By minimizing the contrastive loss, our algorithm pulls similar nodes closer and
pushes dissimilar nodes further, which could highlight the cluster structure in the global
representation.we report the clustering performance without the neighborhood contrastive
loss in Table 5. On all datasets, the performance drops sharply without the contrastive loss.
LGMGC achieves ACC improvements of 2.7%, 1.0%, and 6.53% on the DBLP, ACM, and
IMDB datasets, respectively. Regarding the other metrics, the neighborhood contrastive loss
significantly enhances the performance. The experimental results in Table 5 provide strong
evidence for the effectiveness of the neighborhood contrastive loss in our proposed model.
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Table 5. Clustering results without neighborhood contrastive loss.

Datasets LGMGC w/o Lnbr LGMGC

ACM

ACC 0.9111 0.9388
NMI 0.7070 0.7735
ARI 0.7552 0.8263
F1 0.9123 0.9382

DBLP

ACC 0.9232 0.9334
NMI 0.7774 0.7860
ARI 0.8293 0.8394
F1 0.9185 0.9289

IMDB

ACC 0.5345 0.5998
NMI 0.0044 0.0913
ARI 0.0188 0.1710
F1 0.2916 0.4565

The best results are highlighted in bold.

5.4. Effect of Graph Encoder

The graph encoder proposed in this paper enhances the low-frequency signals of
the local embedding representations in each view, and alleviates the problem of over-
smoothing. To validate the effectiveness of the graph encoder, we replaced the original
encoder with a GCN and compared the performance of the two models while varying the
number of network layers. To ensure a fair comparison, the GCN was applied with the
same parameters as the encoder and did not use any activation function. Figure 2 shows
the clustering performance of the two models for different numbers of network layers. In
most cases, the proposed graph encoder outperforms the GCN. Additionally, as the number
of layers increases, the performance of the GCN decreases, while that of the graph encoder
remains relatively stable. The reason for this phenomenon may be the trouble caused by
redundant weight matrices in GCN.
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Figure 2. Clustering results of the GCN and the graph encoder on three datasets with different
number of network layers.
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5.5. Parameter Analysis

We briefly analyze the impact of parameters k and α on the clustering performance
to evaluate the stability of LGMGC. The clustering results using parameter settings of
k = {1, 2, 3, 4, 5} and α = {0.1, 1, 10, 100, 1000} are shown in Figure 3. It can be observed
that with a fixed k, the algorithm achieves great clustering performance on all three datasets
when the balance parameter is set to 10. However, when α is too large, there is a significant
decline in clustering performance on the dense DBLP dataset. On the other hand, when the
balance parameter is too small, there is a noticeable decrease in clustering performance on
the sparse IMDB dataset. When the balance parameter α is fixed, both excessively small
and large numbers of filter layers lead to unfavorable clustering results. The reason for
this phenomenon is that the small k leads encoder fails to capture higher-order topological
information, while an excessive number of filter layers leads to over-smoothing, rendering
the nodes indistinguishable.
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Figure 3. Sensitivity analysis of parameters k and α on three datasets.

6. Discussion

We have developed a method for multi-view graph clustering that enhances the clus-
tering performance by improving both local and global representations. In contrast to
previous approaches that utilized traditional GCN with a single graph filter, our algorithm
introduces a new encoder. This encoder is a combination of graph filters and MLP, which
enables the amplification of local representations while extracting deeper-level informa-
tion between data points during the construction of local representations. Additionally,
a joint loss function was designed to enhance the clustering quality of global representa-
tions. Experimental results demonstrate that compared to existing algorithms, our model
achieves superior performance in multi-view graph clustering tasks. This indicates the
meaningful improvement in clustering effectiveness through the enhancement of both
local and global representations. The proposed algorithm plays a crucial role in exploring
community structures in multi-view graph data. This research can aid in capturing the
complex relationships within and between communities in multi-view graph data from
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various perspectives. A single data source might not fully reveal the community structure,
while combining multiple data sources can provide a more comprehensive and accurate
description of the communities. In the analysis of social networks, companies can take
into account multiple types of relationships between users to obtain more accurate and
comprehensive community structures. For example, in the analysis of social networks,
companies can comprehensively consider multiple types of relationships between users to
uncover more accurate and comprehensive community structures. Furthermore, during
the analysis of citation networks, it becomes possible to better identify relevant patterns
and structures that may have been overlooked or difficult to perceive. This contributes
to the elucidation of potential research topics, scholarly communities, and other aspects
within a specific field. During the analysis of citation networks, it allows for a better
identification of potentially overlooked or hard-to-perceive patterns and structures. This
enhanced recognition enables researchers to uncover relevant relationships and structures
that may have gone unnoticed using traditional analysis methods.

7. Conclusions and Future Work

In this paper, we propose a multi-view graph clustering model, which optimizes the
representation from local and global perspectives within a unified framework to develop a
more clustering-suitable representation. The proposed algorithm’s effectiveness is validated
through experiments on real-world multi-view graph data. A potential limitation is the
high computational cost on large-scale nodes. One of our hypotheses is that in the contrast
loss function, we can greatly reduce the time complexity by selecting representative anchor
points instead of all nodes to participate in the training. The methods of choosing a
representative anchor point will become the focus of our future work.

Author Contributions: Conceptualization, X.Z.; methodology, X.Z. and Z.H.; software, Z.H.; investi-
gation, J.W.; writing—original draft preparation, writing—review and editing, X.Z.; supervision, J.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Nos.
62072293 and 62306205), and the 1331 Engineering Project of Shanxi Province, China.

Data Availability Statement: The datasets used for this work can be found ACM (http://dl.acm.org
(accessed on 17 November 2023)), DBLP (https://dblp.uni-trier.de/ (accessed on 17 November 2023)),
and IMDB (https://www.imdb.com/ (accessed on 17 November 2023)).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, H.; Wang, J.; Duan, R.; Yan, C. DCOM-GNN: A Deep Clustering Optimization Method for Graph Neural Networks.
Knowl.-Based Syst. 2023, 279, 110961. [CrossRef]

2. Hu, D.; Feng, D.; Xie, Y. EGC: A novel event-oriented graph clustering framework for social media text. Inf. Process. Manag. 2022,
59, 103059. [CrossRef]

3. Yu, J.; Jia, A.L. MLGAL: Multi-level Label Graph Adaptive Learning for node clustering in the attributed graph. Knowl.-Based
Syst. 2023, 278, 110876. [CrossRef]

4. Guo, Y.; Zang, Z.; Gao, H.; Xu, X.; Wang, R.; Liu, L.; Li, J. Unsupervised social event detection via hybrid graph contrastive
learning and reinforced incremental clustering. Knowl.-Based Syst. 2024, 284, 111225. [CrossRef]

5. Guo, H.; Zhou, Z.; Zhao, D.; Gaaloul, W. EGNN: Energy-efficient anomaly detection for IoT multivariate time series data using
graph neural network. Future Gener. Comput. Syst. 2024, 151, 45–56. [CrossRef]

6. Zhao, S.; Zheng, Y.; Li, J.; Zhang, X.; Tang, C.; Tan, Z. Pure kernel graph fusion tensor subspace clustering under non-negative
matrix factorization framework. Inf. Process. Manag. 2024, 61, 103603. [CrossRef]

7. Li, X.; Sun, L.; Ling, M.; Peng, Y. A survey of graph neural network based recommendation in social networks. Neural Comput.
2023, 549, 126441. [CrossRef]

8. Mohamed, H.A.; Pilutti, D.; James, S.; Del Bue, A.; Pelillo, M.; Vascon, S. Locality-aware subgraphs for inductive link prediction
in knowledge graphs. Pattern Recognit. Lett 2023, 167, 90–97. [CrossRef]

9. Liao, H.; Hu, J.; Li, T.; Du, S.; Peng, B. Deep linear graph attention model for attributed graph clustering. Knowl.-Based Syst. 2022,
246, 108665. [CrossRef]

330



Electronics 2024, 13, 1788

10. Berahmand, K.; Nasiri, E.; Pir mohammadiani, R.; Li, Y. Spectral clustering on protein-protein interaction networks via
constructing affinity matrix using attributed graph embedding. Comput. Biol. Med. 2021, 138, 104933. [CrossRef] [PubMed]

11. Xia, Y.; Xu, Q.; Fang, J.; Tang, R.; Du, P. Bipartite graph-based community-to-community matching in local energy market
considering socially networked prosumers. Appl. Energy 2024, 353, 122245. [CrossRef]

12. Hu, Z.; Deng, J.; Han, J.; Yuan, K. Review on application of graph neural network in traffic prediction. J. Traffic Transp. Eng. 2023,
23, 39–61.

13. Liu, L.; Kang, Z.; Ruan, J.; He, X. Multilayer graph contrastive clustering network. Inf. Sci 2022, 613, 256–267. [CrossRef]
14. Wang, R.; Li, L.; Tao, X.; Wang, P.; Liu, P. Contrastive and attentive graph learning for multi-view clustering. Inf. Process. Manag.

2022, 59, 102967. [CrossRef]
15. Lin, Z.; Kang, Z. Graph Filter-based Multi-view Attributed Graph Clustering. In Proceedings of the IJCAI, Virtual, 19–27 August

2021; pp. 2723–2729.
16. Pan, E.; Kang, Z. Multi-view contrastive graph clustering. In Proceedings of the NeurIPS, Virtual, 6–14 December 2021;

pp. 2148–2159.
17. Fan, S.; Wang, X.; Shi, C.; Lu, E.; Lin, K.; Wang, B. One2Multi graph autoencoder for multi-view graph clustering. In Proceedings

of the WWW’20, Taipei, China, 20–24 April 2020; pp. 3070–3076.
18. Cai, E.; Huang, J.; Huang, B.; Xu, S.; Zhu, J. Grae: Graph recurrent autoencoder for multi-view graph clustering. In Proceedings

of the ACAI, Sanya, China, 22–24 December 2021; pp. 1–9.
19. Liang, J.; Liu, X.; Bai, L.; Cao, F.; Wang, D. Incomplete multi-view clustering via local and global co-regularization. Sci. China Inf.

Sci. 2022, 65, 152105. [CrossRef]
20. Nie, F.; Li, J.; Li, X. Self-weighted multiview clustering with multiple graphs. In Proceedings of the 26th IJCAI, Melbourne,

Australia, 19–25 August 2017; pp. 2564–2570.
21. Lin, Z.; Kang, Z.; Zhang, L.; Tian, L. Multi-view Attributed Graph Clustering. IEEE Trans. Knowl. Data Eng. 2023, 35, 1872–1880.

[CrossRef]
22. Liu, W.; Chen, P.; Yeung, S. Principled Multilayer Network Embedding. In Proceedings of the ICDM, New Orleans, LA, USA,

18–21 November 2017; pp. 134–141.
23. Xia, R.; Pan, Y.; Du, L. Robust Multi-view Spectral Clustering via Low-rank and Sparse Decomposition. In Proceedings of the

AAAI, Québec City, QC, Canada, 27–31 July 2014; pp. 2149–2155.
24. Fettal, C.; Labiod, L.; Nadif, M. Simultaneous Linear Multi-View Attributed Graph Representation Learning and Clustering. In

Proceedings of the WSDM, Singapore, 27 February–3 March 2023; pp. 303–311.
25. Kipf, T.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308.
26. Tang, J.; Qu, M.; Wang, M.; Zhang, Y.; Yan, J.; Mei, Q. LINE: Large-scale Information Network Embedding. In Proceedings of the

ICONIP, San Diego, CA, USA, 7–9 May 2015; pp. 1067–1077.
27. Xia, W.; Wang, S.; Yang, M.; Gao, Q.; Han, J.; Gao, X. Multi-view graph embedding clustering network: Joint self-supervision and

block diagonal representation. Neural Netw. 2022, 145, 1–9. [CrossRef] [PubMed]
28. Cheng, J.; Wang, Q.; Tao, Z.; Xie, D.; Gao, Q. Multi-view attribute graph convolution networks for clustering. In Proceedings of

the IJCAI, Virtual, 19–27 August 2021; pp. 2973–2979.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

331



Citation: Peng, Y.; Liu, Y.; Wang, J.;

Li, X. A Novel Framework for Risk

Warning That Utilizes an Improved

Generative Adversarial Network and

Categorical Boosting. Electronics 2024,

13, 1538. https://doi.org/10.3390/

electronics13081538

Academic Editor: Ping-Feng Pai

Received: 2 February 2024

Revised: 29 March 2024

Accepted: 10 April 2024

Published: 18 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Framework for Risk Warning That Utilizes an
Improved Generative Adversarial Network and Categorical
Boosting

Yan Peng, Yue Liu, Jie Wang and Xiao Li *

School of Management, Capital Normal University, Beijing 100056, China; pengyan@cnu.edu.cn (Y.P.);
2222902038@cnu.edu.cn (Y.L.); wangjie@cnu.edu.cn (J.W.)
* Correspondence: lixiao@cnu.edu.cn; Tel.: +86-132-6165-0877

Abstract: To address the problems of inadequate training and low precision in prediction models
with small-sample-size and incomplete data, a novel SALGAN-CatBoost-SSAGA framework is
proposed in this paper. We utilize the standard K-nearest neighbor algorithm to interpolate missing
values in incomplete data, and employ EllipticEnvelope to identify outliers. SALGAN, a generative
adversarial network with a self-attention mechanism of label awareness, is utilized to generate virtual
samples and increase the diversity of the training data for model training. To avoid local optima and
improve the accuracy and stability of the standard CatBoost prediction model, an improved Sparrow
Search Algorithm (SSA)–Genetic Algorithm (GA) combination is adopted to construct an effective
CatBoost-SSAGA model for risk warning, in which the SSAGA is used for the global parameter
optimization of CatBoost. A UCI heart disease dataset is used for heart disease risk prediction. The
experimental results show the superiority of the proposed model in terms of accuracy, precision,
recall, and F1-values, as well as the AUC.

Keywords: small-sample datasets; data augmentation; improved sparrow search algorithm; novel
risk warning; GAN

1. Introduction

In reality, many application scenarios contain very few labeled samples, and also many
datasets are incomplete with missing information. For example, in the field of medical
diagnoses, doctors may only obtain data from a few patients, which is particularly common
in the diagnoses of rare or emerging diseases. In the financial field, especially in personal
credit scoring or fraud detection, it is necessary to use limited-sample data to predict credit
risks or identify fraudulent activity. Therefore, developing methods for learning from
small and incomplete samples is an urgent need. Model fine-tuning, data augmentation,
and transfer learning are the mainstream technologies used to solve such problems [1].
Meanwhile, a significant body of research has demonstrated the potential of machine
learning models in risk prediction on small-sample datasets. However, several challenges
still need to be addressed.

Fine-tuning and transfer learning methods have problems with model overfitting when
the target dataset and the source dataset are dissimilar. Data augmentation approaches
may introduce noise or alter features. The learning ability of a single machine learning
model varies across different datasets, resulting in inconsistent prediction performance
and limited generalization capability [2]. Although deep learning models can achieve
promising prediction accuracy, they require a significant amount of data and a complex
training process, and are prone to issues such as gradient vanishing or exploding and
poor interpretability [3]. On the other hand, ensemble learning has achieved good results
in multi-class prediction tasks, and the appropriate selection of hyperparameter tuning
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methods can improve the prediction accuracy of the model. However, there is still room
for system optimization.

Thus, in this paper, we analyze small-size data and construct a risk-warning framework
called SALGAN-CatBoost-SSAGA, which consists of two main parts: SALGAN data
augmentation and an improved CatBoost prediction model (i.e., CatBoost-SSAGA). The
method of the label-aware self-attention mechanism-based generative adversarial network
(SALGAN) learns the various implicit correlations and dependencies of different types of
labeled data, contributing to the generation of highly realistic data instances. The prediction
model is constructed by CatBoost, which is integrated with an enhanced SSAGA for global
parameter optimization. We conduct experiments on a small-sample dataset of heart
disease, which demonstrates the effectiveness of the proposed model.

The main contributions of this paper are as follows:

(1) We introduce a novel SALGAN-CatBoost-SSAGA framework for small-sample
risk warning.

(2) We propose a SALGAN that generates virtual data according to label types, effectively
enhancing small-sample data.

(3) We present a hybrid algorithm, the SSAGA, which combines the SSA and GA to
optimize the parameters of the standard CatBoost model, which could improve the
prediction accuracy of the CatBoost model.

(4) We conduct small-sample prediction experiments using the UCI heart disease dataset,
which demonstrates the advantages of the proposed model in terms of its classification
accuracy, recall, precision, F1-score, and AUC, indicating its effectiveness in predicting
small-sample data.

2. Related Work

2.1. Few-Shot Learning

Few-shot learning [4] aims to construct machine learning models that can solve real-
world problems using a limited amount of training data. In few-shot learning, there are
typically two main challenges: inter-class variance and intra-class variance [5]. Currently,
few-shot learning primarily includes methods based on model fine-tuning, transfer learning,
and data augmentation.

The method of model fine-tuning [6] usually involves pretraining the network model
on a large dataset, then fixing some parameters and fine-tuning specific parameters of
the network model on a small-sample dataset to obtain a fine-tuned model. Transfer
learning [7] helps to train reliable decision functions in the target domain by transferring
knowledge from auxiliary sources. This approach addresses the learning problem when the
sample data in the target domain are either unlabeled or consist of only a limited number
of labeled samples. However, since the target sample set and the source sample set may
not be similar, the two methods may lead to overfitting problems of the machine learning
model on the target sample set.

Data augmentation [8] includes methods based on unlabeled data, feature enhance-
ment and data synthesis. Methods based on unlabeled data involve using large amounts of
unlabeled data to expand the original small-sample dataset, such as semi-supervised learn-
ing [9] and transductive learning [10]. Feature enhancement involves adding features in the
feature space of the original sample to increase the diversity of features for classification.
Schwartz et al. [11] proposed the Delta encoder, which synthesizes new samples for unseen
categories by observing a small number of samples and uses these synthetic samples to
train a classifier. Data synthesis refers to the synthesis of new labeled data for small-sample
categories to augment the training data, and a commonly used method for this is the use of
generative adversarial networks (GANs) [12]. A GAN is a deep learning model proposed
by Ian J. Goodfellow and his colleagues in 2014. It consists of two mutually competitive
networks: a generator G and a discriminator D. Y Kataoka et al. [13] reported image gener-
ation that leverages the effectiveness of attention mechanisms and the GAN approach. N
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Park et al. [14] proposed table-GAN, which uses GANs to synthesize fake tables that are
statistically similar to the original tables but do not cause information leakage.

2.2. CatBoost Algorithm

Categorical Boosting (CatBoost) [15] is an enhanced framework of Gradient Boosted
Decision Tree (GBDT), which is a commonly used classification algorithm. It is based on a
symmetric decision tree as the base learner, and effectively suppresses the gradient bias
and prediction bias existing in the gradient decision tree by introducing a rank-boosting
strategy. Moreover, CatBoost is characterized by its robust support for categorical variables
and exceptional predictive accuracy. Li et al. [16] developed a weather prediction model
combining wavelet denoising and CatBoost, which is faster and more accurate than LSTM
and Random Forest. PS Kumar et al. [17] developed a CatBoost ensemble technique based
on GBDT, specifically for the prediction of early-stage diabetes. Comparative experiments
with other machine learning methods have demonstrated that CatBoost excels in various
performance metrics. Wang et al. [18] investigated the efficacy of CatBoost in predicting
severe hand-foot-and-mouth disease, finding it to have an accuracy rate of 87.6%, higher
than other algorithms.

However, despite CatBoost’s effectiveness, its extensive hyperparameter space can
significantly impact classification results. Therefore, it is crucial to employ parameter opti-
mization algorithms to fine-tune the hyperparameters, enhancing CatBoost’s full potential
in diverse applications. Cheng et al. [19] used the grid search method with cross-validation
to optimize the super parameters of catboost, respectively, and the model showed the
highest accuracy in a suspended solids experiment. Jin et al. [20] trained CatBoost, Random
Forest, and other models through cyclic training and adjusting the given parameters, and
then used the cross-validation method to conduct a grid search for secondary adjustments.
Their experimental results show that the prediction effect of CatBoost after two rounds of
optimization was significantly higher than that of other models.

2.3. Hyperparameter Optimization Algorithm

The hyperparameters should be determined before the model runs, and they have a
relatively important impact on the performance of the model. Currently, there are many
optimization methods available, such as the grid search (GS) method [21] and the Bayesian
optimization algorithm (BOA) [22]. Some studies also employ swarm intelligence opti-
mization algorithms such as Grey Wolf Optimization (GWO) [23], the Genetic Algorithm
(GA) [24], and the Sparrow Search Algorithm (SSA) [25]. However, there are still some
deficiencies in these parameter optimization methods, such as the fact that cross-validation
and grid search methods do not consider super parameters or only consider a small number
of common super parameters; the BOA and GWO do not grasp the global trend of the
prediction performance of the model, and are prone to falling into local optimization; the
results of the GA are affected by the initial advantages and disadvantages, and cannot
eliminate the randomness of the optimization results.

Among them, the SSA is a preferable choice due to the advantages of its simple
structure and flexibility, but its optimization ability and convergence speed still need to be
improved [26]. Therefore, many studies have focused on optimizing the SSA. Ou et al. [27]
improved the SSA by using the good point set method and reducing nonlinear inertia
weights to prevent the SSA from falling into local optima. Wang et al. [28] employed a multi-
sample learning strategy to assist the SSA in achieving a better optimization capability and
convergence speed.
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3. Preliminaries

3.1. CatBoost

In the GBDT algorithm, a commonly used method for dealing with categorical features
is to replace them with the average value of the category feature label, which can be
expressed as Equation (1):

∧
x

i
k =

p−1
∑

j=1
[xj,k = xi,k]•Yi

n
∑

j=1
[xj,k = xi,k]

(1)

where, xi
k represents the ith category feature value of the kth training sample. If a feature

has fewer category values, converting it to a numerical value is equivalent to assigning the
label value of that record. This scenario commonly leads to overfitting issues.

In response to this, the CatBoost algorithm addresses a specific value within the cat-
egorical features. When converting each feature to a numerical type for each sample, the
algorithm calculates the average based on the category label preceding the sample, incorporat-
ing prior knowledge and weight coefficients. This approach aims to reduce the noise caused
by low-frequency features in the categorical features, as shown in Equation (2):

∧
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where,
∧
x

i
k represents the statistical target variable, xε j,k denotes the categorical feature,

Yε j corresponds to the label value of the feature, a denotes the weight coefficient, and p
represents the prior term.

3.2. SSA

The SSA is a swarm intelligence optimization algorithm that simulates the behavior of
sparrows foraging and avoiding predators. In this algorithm, the sparrow population is
divided into two categories: discoverers and followers.

Discoverers are responsible for searching for food and providing information about
foraging areas to the entire population. The position of the discoverer is updated as follows:

Xt+1
i,j =

{
Xt

i,j · exp( i
α·itermax

), R < S
Xt

i,j + Q · L, R ≥ S
(3)

where Xt
i,j represents the position of the ith sparrow in dimension j at iteration t; α is a

random number in the range of (0, 1]; itermax is the maximum number of iterations, a
constant value; exp(x) denotes the exponential function with base e; and Q is a random
number following a normal distribution. R is the alert value, and if R is smaller than the
safety value S, it indicates that the sparrow’s environment is relatively safe, allowing for
extensive foraging exploration. Conversely, if R is larger than S, it indicates that some
individuals have detected predators and issued an alarm to move towards a safe zone,
ensuring the safety of the population.

The other individuals in the population are followers, who come to forage based on
the information provided by the discoverers. The update of their positions is expressed as
Equation (4):

Xt+1
i,j =

⎧⎨⎩ Q · exp(
xw−xt

i,j
α·itermax

), i ≥ n
2

Xt+1
b +

∣∣∣Xt
i,j − Xt+1

b

∣∣∣ · AT(AAT)
−1 · L, otherwise

(4)
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where XP represents the current optimal position of the discoverer; A is a 1 × d matrix with
elements randomly assigned as 1 or −1. The variable i in i ≥ n

2 represents the quantity of
followers within the population, with n indicating the population’s size. This condition
is commonly referred to as the “hunger judgment” and is employed to assess whether an
individual necessitates foraging.

In addition, to effectively avoid predator attacks, the algorithm also introduces an
early warning mechanism that selects a certain proportion of individuals as scouts, who
are responsible for detecting and warning of potential threats. The positions of the scouts
are updated using Equation (5):

Xt+1
i,j =

⎧⎪⎨⎪⎩
Xt

b + β
∣∣∣Xt

i,j − Xt
b

∣∣∣, fi > fg

Xt
i,j + k(

∣∣∣Xt
i,j−Xt

w

∣∣∣
( fi− fw)+γ

), fi = fg

(5)

where β denotes the learning rate, which is a normally distributed random number that
controls the speed at which the model updates parameters during each iteration. The
random variable k is a value within the interval [−1, 1] used to control the direction of
sparrow movement and is a small constant employed to prevent division by zero. Finally,
fi represents the value of the objective function at the current position.

4. Model Construction

4.1. Framework

The overall framework structure of the SALGAN-CatBoost-SSAGA framework is
shown in Figure 1, and mainly consists of four parts: data cleaning, data augmentation,
risk-warning prediction, and model evaluation.

Figure 1. Framework of SALGAN-CatBoost-SSAGA.

The workflow of the SALGAN-CatBoost-SSAGA model is shown as follows:

(1) Data cleaning

For feature incompleteness, the KNNImputer algorithm is utilized to interpolate
missing data from the original datasets, while the EllipticEnvelope algorithm is applied to
remove outliers, thus completing the datasets.

(2) Data augmentation

In order to address the challenges associated with small-sample learning, this study im-
plements a generative adversarial network that is utilized with a label-aware self-attention
mechanism (SALGAN), aiming to generate high-quality synthetic sample data through
this methodology.
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(3) Risk-warning prediction

We improve the SSA using the GA and apply the improved SSAGA to optimize the hy-
perparameters of CatBoost, including n_estimators, learning_rate, max_depth, reg_lambda,
and subsample. We then train the classifier.

(4) Model evaluation

We propose to test the performance of the evaluation indexes of the new framework, us-
ing this as the basis for the evaluation of the SALGAN-CatBoost-SSAGA risk-warning model.

SALGAN-CatBoost-SSAGA consists of two main parts: the SALGAN data augmenta-
tion method and the CatBoost-SSAGA prediction model. It is primarily used to address
prediction problems in small-sized datasets. Firstly, for data augmentation, the SALGAN
combines self-attention with a GAN, and, more importantly, introduces label awareness.
The SALGAN not only autonomously adapts to various data features and relationships but
also enhances the generator’s ability to effectively grasp and replicate data distributions
across different labels, thereby generating more realistic and contextually relevant synthetic
data samples. By using the SALGAN to generate virtual samples, the diversity of the
training data for model training is increased, thus avoiding insufficient learning in the
subsequent models. Secondly, to enhance the prediction accuracy of CatBoost, we opted
to optimize it using the SSA. However, considering that the SSA may suffer from issues
such as a poor quality of randomly generated initial populations and being prone to local
optima, we chose to use the GA to further optimize the SSA. By incorporating the GA into
the process, a hybrid optimization approach called the SSAGA was formed. The SSAGA
not only enhances the global search capability and accelerates the convergence speed, but
also increases the possibility of finding the global optimal solution.

4.2. Data Cleaning

Two key steps for data cleaning are employed in this study, aimed at enhancing the com-
pleteness and accuracy of the data, thereby ensuring high reliability in subsequent analyses.

(1) Missing value interpolation

We utilize the KNNImputer algorithm, which has demonstrated strong performance
in multiple studies, to estimate the values of missing data. The core of this algorithm
is to extract the k-closest samples in the dataset, and then use the distribution of these
samples to fill in the missing data values. If the missing values are discrete, the plurality
of the k-nearest neighbors will be voted to fill them; otherwise, the average of the nearest
neighbors will be used to fill them.

(2) Outlier removal

The EllipticEnvelope algorithm is utilized to identify outliers. This algorithm assumes
that the normal sample data conform to a multivariate Gaussian distribution, while the
abnormal sample data do not follow this distribution. Its objective is to find the smallest
ellipse that can cover the majority of the samples and consider the points outside of the
ellipse as outliers.

4.3. Data Augmentation Based on the SALGAN

GANs are capable of capturing and learning the complex distribution characteristics
of data, including various implicit correlations and dependencies, which aids in generating
highly realistic data instances. However, achieving a balance in the learning process
between the generator and discriminator can be challenging, leading to model instability
and convergence difficulties.

Self-attention mechanisms enhance GANs by focusing on different segments of the
data, aiding GANs to better grasp global structures. This results in capturing finer de-
tails and patterns in data generation, reducing model collapse issues. The model adapts
autonomously based on varying features and relationships within the data.
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Considering the distinct characteristics of differently labeled samples, modeling the
data distribution for various labels allows the generator to better capture and reflect each
label’s unique features. This label-aware synthetic data generation approach facilitates the
generator’s more effective learning and mimicking of data distributions under different
labels, yielding more realistic and contextually accurate synthetic samples.

We introduce the SALGAN for data augmentation. Compared to a traditional GAN,
the SALGAN not only adapts autonomously to diverse data features and relationships but
also enables the generator to more effectively learn and mimic data distributions across
different labels, creating more realistic and context-relevant synthetic data samples. The
experimental process of the SALGAN is illustrated in Figure 2, wherein the input is an
N ×M matrix, and the output is an (N + T) ×M matrix; N is the number of original data
items; M is the number of data items; and T is the number of generated virtual sample
data items.

noise

real

M

M

N N NM

X X X
X X X

X X X

M

M

N N NM

N T N T N T M

X X X
X X X

X X X

X X X+ + +

 

Figure 2. Flowchart of the SALGAN’s process.

Data are classified by label types and generated in batches. Random noise Znoise,
which is a vector randomly generated from a normal distribution, serves as the input
for the generator network. The generator uses Znoise to generate a set of synthetic data.
The discriminator receives the real data and fake data generated by the generator, and its
task is to distinguish the two sets of data and output a probability value indicating the
possibility that the data are real. The results of the loss function calculation are used to
correct the back-propagation error and refine the parameters of the two networks. This
iterative process continues until the generator and the discriminator reach a balanced
state. The generator can create enough convincing data to copy the discriminator, and the
discriminator is good at accurately distinguishing real data from false data.

1. Generator G

(1) Fully Connected Layer: We receive the input data and map them to a higher-
dimensional hidden layer space, providing the basis for subsequent processing. The first
linear layer maps the input size to the hidden layer size, and the second linear layer maps
the hidden layer size back onto itself. Each linear layer is followed by the LeakyReLU
Activation Function. This configuration introduces nonlinearity, enabling the model to
capture more complex data patterns.

(2) Self-Attention Layer: The self-attention layer captures relationships among the
input data, as illustrated in Figure 3.
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Figure 3. Flowchart of the self-attention layer’s process.

First, for the input feature matrix x ∈ RN∗M, we perform linear transformation to
generate query (Q), key (K), and value (V) matrices:

Q = XWQ

K = XWK

V = XWV
(6)

where WQ ∈ RM∗dk , WK ∈ RM∗dk , and WV ∈ RM∗dk are the learnable weight matrices, and
dk and dv represent the dimensions of the keys and values, respectively.

Second, attention scores are calculated, as shown in Equation (7), by performing matrix
multiplication between the transpose of Q(x) and K(x) to calculate attention scores.

Attention Score = QKT (7)

Third, weighted value vectors are calculated. Using the softmax function, the attention
scores are normalized, as shown in Equation (8), and then the softmaxed attention scores are
multiplied by V(x) according to Equation (9) to obtain the weighted values, which represent
the comprehensive information of all input features weighted by their corresponding
attention scores.

Softmax Score = softmax(
Attention Score√

dk
) (8)

Weighted Value = Softmax Score×V (9)

(3) Output Layer: We map the high-dimensional representation of the hidden layer
to the output layer. This consists of a linear layer and the Tanh Activation Function for
generating the final generated data.

The generated data samples are compared with real data samples and adjust their
own weights according to the output of the discriminator. During training, the constant
confrontation between the generator and the discriminator enables the generator to produce
progressively more realistic and higher-quality data samples.

2. Discriminator D

The discriminator analyzes the input data and effectively distinguishes between the
real data Xreal and generated data G(Z). The output of the discriminator is used for self-
adjustment and is fed back to the generator to guide improvements in the generation
process. Binary cross-entropy loss (BCELoss) is used as the main loss function of the
discriminator, as shown in Equation (10). This loss function makes the discriminator
judgement more accurate and generates data closer to the actual data by minimizing the
binary cross-entropy loss.

Loss = − 1
N ∑N

i=1 yi• log(p(yi)) + (1− yi)• log(1− p(yi)) (10)
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where y represents a binary label, either 0 or 1, and p(y) denotes the probability of the
output belonging to a given label. N signifies the number of groups of objects for which the
model makes predictions.

4.4. Risk-Warning Model Based on CatBoost-SSAGA

CatBoost is an algorithm that supports various categorical variables, effectively re-
duces the prediction bias in GBDT, thus reducing the risk of overfitting, and has a high
accuracy. However, the processing of categorical features takes a long time and CatBoost
has many hyperparameters that need to be tuned. Therefore, this study combines the SSA
and GA to construct a hybrid algorithm, named the SSAGA, to optimize the parameters
of CatBoost.

4.4.1. SSAGA

The initial quality of the population randomly generated by the SSA is poor. It is easy
for the SSA to fall into local optima in large or complex optimization spaces, sometimes
even jumping out of the optimization space.

The GA introduces new solutions through crossover and mutation operations, which is
conducive to increasing the diversity of the population. It aids in carrying out local searches
and evolutionary optimization, which can further refine the solution in the found good region.
In addition, the GA is more stable and able to optimize in a complex optimization space.

By combining the SSA and GA, this paper proposes the hybrid SSAGA, which could
enhance global search capabilities, accelerate convergence speed, and increase the likeli-
hood of finding global optima. This methodology aims to effectively obtain the optimal
hyperparameters for the CatBoost model. The specific workflow of the model is depicted
in Figure 4.

Figure 4. Flowchart of the SSAGA.

The optimization process of the SSAGA is as follows:
Step 1 Initialization: The population size (pop_size), maximum iteration number

(max_iterations), and parameter dimension (dimension) are set. The Sparrow Search
Algorithm population and Genetic Algorithm population are initialized, and random
parameter vectors are generated.

Step 2 Iterative optimization: Within the specified maximum iteration number, the
algorithm alternately executes the following steps:
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a. Sparrow Search Algorithm Phase: Initially, each sparrow’s performance in the pop-
ulation is evaluated using a fitness function, identifying the current optimal- and
least-fit individuals. Subsequently, the location of the sparrow population is up-
dated. In each iteration, sparrows adjust their positions based on the current best
(best_sparrow) and worst (worst_sparrow) locations. This updating mechanism
mimics sparrows’ foraging behavior, where some sparrows converge towards the
best solution (leader sparrows and followers), while others explore in the opposite di-
rection of the worst solution (scouts). The updated parameter values are constrained
within their valid range.

b. Genetic Algorithm Phase: Parental selection is conducted using the select_parents()
function, employing a roulette-wheel selection method based on the fitness func-
tion, with the selection probability being proportional to the expected fitness. A
crossover operation on the selected parental individuals is performed using the
crossover() function, where a crossover point is randomly chosen to mix the genes
of two parental individuals in a certain proportion. Mutation operation on post-
crossover individuals is executed using the mutate() function, introducing random
perturbations to certain genes of the individuals. The new individuals obtained from
the crossover and mutation are merged with the original population to form a new
Genetic Algorithm population.

c. Optimal Individual Update: The Sparrow Search Algorithm and Genetic Algorithm
populations are merged, and the optimal individual is selected based on the fitness
function, specifically the individual with the lowest fitness function value.

d. Termination Condition Assessment: The iteration process concludes when either the
maximum number of iterations is reached or specific stopping criteria are satisfied
(e.g., the fitness function value falls below a certain threshold).

Step 3 Output Results: The optimal parameter combination and the fitness function
value are returned as the optimization outcomes.

By integrating the two algorithms, the SSAGA continually updates its position and
individual evolution during the hybrid process to effectively enhance the optimization,
leading to superior hyperparameter configurations.

4.4.2. CatBoost-SSAGA

According to the proposed optimization strategies, the mechanism of CatBoost-SSAGA
is shown in Algorithm 1. First, we initialize the parameters of the SSAGA. Secondly, we
generate populations for both the SSA and GA, separately, then merge them into a new
population. Third, we update the position of the sparrows and the global fitness. Finally,
Algorithm 1 returns the best position and its corresponding fitness value, which represent
the optimal hyperparameters for CatBoost.

CatBoost-SSAGA involves multiple steps such as parameter optimization, model
training, and validation, each of which affects the overall complexity. The following
presents a complexity analysis of these steps:

(1) Data Preparation and Preprocessing: The complexity of the data loading and prepro-
cessing is typically O(n × m), where n is the number of samples and m is the number
of features.

(2) Parameter Optimization and Model Training

Population Initialization: The complexity of the SSA and GA population initialization
is O(pop_size × dimension), where pop_size is the population size, and dimension is the
parameter dimension.

Iterative Optimization:
In each iteration, the complexity of updating the sparrow positions and performing

the GA operations is also O(pop_size × dimension).
The training complexity of the CatBoost model depends on n_estimators (the number of

trees), max_depth (the tree depth), the number of samples, and the number of features. The
training complexity of CatBoost can be roughly represented as O(n_estimators × n ×m).
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Due to the use of ten-fold cross-validation, the computational complexity is further in-
creased as the model needs to be trained and evaluated on each fold, making the complexity
approximately O(10 × n_estimators × n ×m).

(3) Optimal Solution Selection: The complexity of selecting the optimal solution from
the merged population is O(pop_size), because it needs to iterate in the population to
find the individual with the highest fitness.

Algorithm 1. CatBoost-SSAGA
Input: Population size P, Dimension D, Upper bound ub, Lower bound lb, Maximum iterations ε,
Strategy parameter S.
Output: Best fitness value fGb and Best position XGb.

1. Initialize empty lists: X = [], F = []
2. Generate initial population for SSA and GA:

a. For SSA (Sparrow Search Algorithm):
- Use initialize_sparrows function with inputs pop_size = P, dimension = D, lb, and ub to

create sparrows population
b. For GA (Genetic Algorithm):

- Use initialize_ga_population function with the same inputs to create GA population
c. Combine both populations: X = SSA population + GA population

3. For each iteration t from 1 to ε:
a. Calculate decay rate ε = 1–(t/ε)
b. For each individual I in X:

- Evaluate fitness using evaluate_fitness function
- F = CatBoost.fit(X)

c. Get Xb, fb, Xw, fw
d. Update positions of first pdNum individuals in X using SSA strategy:

- Apply update_sparrow_positions_enhanced influenced by Xb and Xw
e. Update positions of remaining individuals in X using GA strategy:

- Select parents from X
- Perform crossover and mutation to generate new offspring
- Replace corresponding individuals in X with new offspring

f. Re-evaluate fitness of entire population X
g. If a better fitness is found (indicating higher accuracy from CatBoost), update fGb and XGb
h. End

4. Return fGb and XGb

4.5. Indicators of Model Evaluation

The proposed risk-warning model was mainly applied to a binary classification prob-
lem, wherein the samples were divided into positive and negative classes, and the pre-
diction results were evaluated using a confusion matrix, i.e., Table 1. Accuracy, precision,
recall, F1-scores, and the AUC were used as evaluation metrics for the proposed model.
Accuracy refers to the percentage of samples correctly predicted by the classifier in the
total samples. Recall represents the proportion of correctly predicted positive samples. The
F1-score is the harmonic average of precision and recall, which considers both evaluation
indicators and reflects the model’s robustness. The AUC (area under the curve) measures
the area under the ROC (Receiver Operating Characteristic) curve, where a higher AUC
indicates a better classification effect of the classifier.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)
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F1 = 2× Precision× Recall
Precision + Recall

(14)

Table 1. Confusion matrix.

Positive Negative

True True Positive (TP) True Negative (TN)
False False Positive (FP) False Negative (FN)

5. Experiments

5.1. Datasets and Preprocessing

1. Datasets

For this study, five independent and usable datasets of heart disease are selected, namely
cleveland.data, hungarian.data, switzerland.data, VA-long-beach.data, and basel.data, which
were obtained from the UCI Machine Learning Repository [29]. After merging, the dataset
consists of 1190 data instances and contains three attributes with significant missing values,
hence it is classified as a small and incomplete dataset. The merged dataset consists of a
complete set of 14 attributes, of which 13 are used for predicting heart disease as feature
attributes, and the remaining 1 is used as a labeled sample. The specific attribute descriptions
are shown in Table 2.

2. Preprocessing

After the cleaning process, the experimental dataset is left with 981 samples, each of
which contains 14 common attributes, of which 13 are used to predict the characteristic
attributes of heart disease and the remaining one is used as a labeled sample. For data
augmentation, virtual data are generated using the SALGAN, in accordance with the types
of labels. As a result, the final dataset comprises 1981 samples.

3. Model training

Cross-validation effectively reflects the robustness of the model. In the experiments,
all of the evaluation metrics in the experiments are based on 10-fold cross-validation and
calculated as averages and standard deviations.

CatBoost incorporates numerous hyperparameters, including iterations, learning_rate,
depth, reg_lambda, subsample, border_count, and so on. This study focuses on fine-
tuning the hyperparameters that significantly impact model performance. The primary
parameters we optimized are the learning rate, tree depth, maximum number of trees, and
regularization coefficient, among five other parameters. Table 3 lists the default values of
these parameters as well as the ranges we used for optimization.
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Table 2. Dataset attribute descriptions.

Name Description

Age Continuously variable values

Sex
0 = Female

1 = Male

Cp

0 = Classic angina pectoris

1 = Atypical angina pectoris

2 = Non-angina pectoris

3 = Asymptomatic

Trestbps Continuously variable values

Chol Continuously variable values

Fbs
0 = <120mg/d

1 = >120mg/d

Table 2. Cont.

Name Description

Restecg

0 = Normal

1 = Existence of a segment exception

2 = Possible or definite left ventricular hypertrophy

Thalach Continuously variable values

Exang
0 = No

1 = Yes

Oldpeak Continuously variable values

Slope

0 = Up

1 = Float

2 = Down

Ca

0

1

2

3

Thal

1 = Normal

2 = Irreparable

3 = Reparable

Target
0 = No

1 = Yes

Table 3. Optimal parameters of CatBoost-SSAGA.

Name Optimization Scope SSAGA-CatBoost

learning_rate [0.001, 0.2] 0.00298
max_depth [4, 10] 9

n_estimators [1100, 1500] 1153
reg_lambda [0.01, 10] 2.62938
subsample [0.9, 1] 0.98761
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5.2. Comparative Experiments

For this section, we conducted three sets of comparative experiments and ablation
studies on the UCI heart disease dataset to validate the performance of the proposed
SALGAN-CatBoost-SSAGA model.

1. Performance comparison between different algorithms

To verify the effectiveness of the proposed framework, we conducted comparative
experiments between five commonly used tree models and SALGAN-CatBoost-SSAGA,
including XGBoost version 2.0.3, LightGBM version 3.3.5, and Scikit-learn version 1.0.2.
The experimental results in terms of the accuracy, precision, recall, F1-scores, and AUC
are shown in Table 4 and Figure 5. The results demonstrate the superior performance of
SALGAN-CatBoost-SSAGA over the individual machine learning models. Table 4 indicates
that SALGAN-CatBoost-SSAGA performs the best in all metrics, with an accuracy of 90.56%,
a precision of 87.79%, a recall of 87.45%, and an F1-score of 87.54%, which are much higher
than those of the other models, indicating that the proposed framework performs well. It
also shows smaller standard deviations, indicating greater stability. As shown in Figure 5,
the area under the curve for SALGAN-CatBoost-SSAGA is the largest, reaching 0.96, which
illustrates that it has high accuracy and the best overall classification performance.

Table 4. The algorithms’ performances.

Model Accuracy Precision Recall F1-Score

RF 79.71 ± 0.03 81.29 ± 0.03 79.14 ± 0.05 80.10 ± 0.03
lightGBM 77.78 ± 0.02 79.52 ± 0.03 77.18 ± 0.06 78.16 ± 0.03
xgBoost 77.37 ± 0.02 78.85 ± 0.03 77.17 ± 0.04 77.90 ± 0.03

AdaBoost 71.66 ± 0.03 72.66 ± 0.02 72.65 ± 0.06 72.55 ± 0.03
Decision Tree 71.15 ± 0.03 72.76 ± 0.03 70.87 ± 0.04 71.76 ± 0.03

SALGAN-CatBoost-SSAGA 90.56 ± 0.01 87.79 ± 0.02 87.45 ± 0.03 87.54 ± 0.02

Figure 5. ROC for SALGAN-CatBoost-SSAGA and other models.

2. Impact of data augmentation on prediction results

In order to verify the effectiveness of the data enhancement method, we used the
standard CatBoost model to compare the risk predictions of the data before and after
data enhancement. The experimental results are shown in Table 5. These experimental
results indicate that augmenting the dataset through data enhancement techniques led to
a notable improvement in the performance of the CatBoost model across all evaluation
metrics. Compared to the performance prior to data augmentation, there was an increase
of over 10% in all metrics.
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Table 5. Comparison of prediction results based on data augmentation.

Datasets Accuracy Precision Recall F1-Score

Before 79.57 ± 0.04 79.94 ± 0.05 79.58 ± 0.07 79.50 ± 0.04
After 87.83 ± 0.01 87.87 ± 0.02 87.81 ± 0.02 87.81 ± 0.01

3. Impact of parameter optimization on prediction results

To evaluate the effectiveness of the SSAGA hybrid algorithm, we utilized a dataset
augmented through SALGAN data enhancement to compare its performance with that
achieved by optimizing the CatBoost model parameters using solely the SSA or GA. The
experimental results are presented in Table 6. These results demonstrate that, compared to
the individual use of the SSA or GA, the SSAGA showed the best performance across all
evaluation metrics, particularly in terms of accuracy.

Table 6. Comparison of prediction results based on the SSAGA.

Algorithm Accuracy Precision Recall F1-Score

SSA 89.45 ± 0.02 86.57 ± 0.07 85.63 ± 0.09 86.63 ± 0.07
GA 87.58 ± 0.02 84.03 ± 0.08 83.27 ± 0.1 83.87 ± 0.09

SSAGA 90.56 ± 0.01 87.79 ± 0.02 87.45 ± 0.03 87.54 ± 0.02

4. Ablation experiments

In order to evaluate the overall performance of SALGAN-CatBoost-SSAGA and verify
the necessity of each module, we conducted ablation experiments on the SALGAN and
SSAGA. As shown in Figure 6, SALGAN-CatBoost-SSAGA outperformed the other two
models in key performance metrics such as accuracy, precision, recall, and F1-scores. This
finding not only highlights the excellent predictive ability of SALGAN-CatBoost-SSAGA
but also clearly proves the rationality of our choice of this combined model. It shows the
obvious advantages of the combination model in improving the prediction performance
compared with a single model, thus verifying the effectiveness of our combination strategy.

 

Figure 6. Ablation experiment comparison chart.

6. Conclusions

This paper introduces the SALGAN-CatBoost-SSAGA predictive model, which is
designed for small-sample and incomplete datasets. The SALGAN is capable of learning
various hidden correlations and dependencies within different types of labeled data, thereby
facilitating the generation of highly realistic data instances. This enhancement aids in the
model’s learning process with sample data. Additionally, in order to find the global optimal
parameters of the CatBoost algorithm, we propose the SSAGA, an algorithm that combines
the SSA and GA, which helps CatBoost find global optimal parameters more effectively,
avoiding local optima and improving the accuracy and stability of the prediction model.
The experimental results show that the framework achieves the expected effect in data
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augmentation and improving prediction accuracy. The performance of the framework is
better than other comparison methods in all selected indicators, which proves its feasibility
and effectiveness. Therefore, it is very suitable for prediction tasks with small-sample
datasets. Future works will focus more on directly incorporating small-sample incomplete
datasets from different fields to validate further the generalizability of the model proposed
in this study.
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Abstract: It is difficult for lightweight neural networks to produce accurate 6DoF pose estimation
effects due to their accuracy being affected by scale changes. To solve this problem, we propose a
method with good performance and robustness based on previous research. The enhanced PVNet-
based method uses depth-wise convolution to build a lightweight network. In addition, coordinate
attention and atrous spatial pyramid pooling are used to ensure accuracy and robustness. This
method effectively reduces the network size and computational complexity and is a lightweight
6DoF pose estimation method based on monocular RGB images. Experiments on public datasets and
self-built datasets show that the average ADD(-S) estimation accuracy and 2D projection index of
the improved method are improved. For datasets with large changes in object scale, the estimation
accuracy of the average ADD(-S) is greatly improved.

Keywords: 6DoF pose estimation; depth-wise convolution; coordinate attention; atrous spatial
pyramid pooling

1. Introduction

In today’s quest for intelligence-driven technology, applications such as intelligent car
driving, augmented reality, human–computer interactions, etc., are gradually transitioning
from concepts to real life. The realization of all these applications relies heavily on support
from relevant technologies. Six-degree-of-freedom (6D) object pose estimation based on
computer vision is an important technology in this regard. The key to this technology lies
in recovering the 3D translation and 3D rotation information of target objects from images
or point cloud data. Accurately and efficiently estimating the 6D information of objects in
real-world scenarios is of significant value for enhancing the safety of automated driving,
strengthening the immersion of virtual and real interactions, and improving the reliability
of robotic operations.

Unlike traditional 6D pose estimation methods that rely on multiple sensors, computer
vision-based methods are currently the mainstream approach in research, significantly
reducing the complexity and application costs of the entire pose estimation system. Early
methods based on template matching involve the construction of a template library of the
same target object from images at different angles and distances, calculating the similarity
between the real value and template images in the estimation task. However, such methods
are computationally complex and time-consuming. Subsequently, algorithms like SIFT [1],
FAST [2], and BRIEF [3] have been applied to extract invariant features from images as
key points, with pose estimation then being performed by matching key points with
real points. However, objects in real environments are often affected by factors such
as complex backgrounds, changes in lighting conditions, occlusions, and variations in
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viewpoints, leading to difficulties in extracting effective key points. With the development
of 3D scanning technology, the difficulty of obtaining 3D object models has been reduced.
Methods based on aligning models with object images or point clouds have been proposed,
which offer high pose estimation accuracy. However, these methods require high model
accuracy, depend on depth information, and have poor applicability to non-rigid objects [3].

With the successful application of deep learning methods in various tasks, researchers
have begun to explore the use of deep neural networks (DNNs) to solve the 6D pose esti-
mation problem for RGB images. As a pioneering work, PoseNet [4] was the first to adopt
a CNN to regress camera pose from a single image, successfully proving that it is possible
to achieve end-to-end camera pose regression with just one picture as input [5]. Deep
learning methods, such as CNNs, can automatically learn feature representations, making
the extracted key points more robust, effectively capturing the structure and semantic
information of images and thus enhancing feature discrimination. In particular, in complex
scenarios common in object pose estimation, such as cluttered backgrounds, changes in
lighting, and object occlusion, deep learning-based pose estimation methods have achieved
promising results. Researchers designing conventional 6D pose estimation methods tend
to focus more on designing complex networks to improve estimation performance while
ignoring the practical deployment challenges arising from the high model complexity and
large parameter counts.

To address this issue and meet the needs of typical applications like mobile augmented
reality, in this paper, a lightweight, deep learning-based pose estimation method is pro-
posed. By improving the pose estimation network and using RGB images obtained from
monocular cameras to estimate the six-degree-of-freedom camera pose, the method achieves
robustness and accuracy while meeting the requirements for lightweight deployment. The
main contributions of this paper are as follows:

1. To reduce the computational cost of 6D object pose estimation, we propose a lightweight
model in which residual depth-wise separable convolution is combined with an im-
proved atrous spatial pyramid pooling (ASPP) method.

2. We introduce a coordinate attention mechanism and address the issue of object scale
variation, which was not considered in the original method. Additionally, we incorpo-
rate a multi-scale pyramid pooling module. These enhancements effectively reduce
the model’s parameter and computation complexity while significantly improving
the pose estimation accuracy for objects with large-scale variations.

3. The effectiveness of this lightweight model is validated and analyzed through experi-
ments on both publicly available and self-built datasets.

2. Related Works

DNNs learn object poses directly from images or point cloud data, reducing the
reliance on depth information typical in traditional methods and thus driving the rapid
development of pose estimation methods based on monocular RGB images. Deep learning
6D pose estimation methods can be classified into two categories based on the training
strategy: direct strategy and indirect strategy methods.

Deep learning methods based on a direct strategy are also known as single-stage
methods. In this approach, depth information is combined and the embedding space of
poses is learned directly, or 3D translation and rotation information is regressed directly,
through end-to-end learning. Its mapping relationship is simple and it has a fast inference
speed. To address the limited accuracy of directly regressing pose estimation from images,
the DeepIM model optimizes poses by iteratively training CNNs to match model-rendered
images with input images [6]. In scenes with occlusions and clutter, in Posecnn, translation
information is estimated by locating objects in the center of the image relative to the camera
distance, and object rotation is estimated through regression representation, which is capa-
ble of handling symmetric objects [7]. This network can simultaneously perform both object
detection and pose estimation tasks. Wang et al. [8] designed the DenseFusion framework
for RGB-D datasets, which fully utilizes integrated complementary pixel information and
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depth information for pose estimation and integrates an end-to-end iterative pose optimiza-
tion program, achieving real-time inference. YOLO-based methods have an advantage in
pose estimation compared to other methods with regard to processing speed and are more
advantageous for real-time estimations [9,10]. Single-stage deep learning methods can
simultaneously complete object pose estimation in one stage with faster inference speeds,
making them more applicable to applications with high real-time requirements. However,
they may have slight shortcomings regarding accuracy and robustness.

In deep learning-based pose estimation methods relying on the indirect strategy, 6D
pose estimation tasks are primarily completed using single-view RGB images. This method
is also known as the two-stage approach, where the entire task flow is divided into two
stages: establishing 2D–3D correspondence relationships for key points and recovering
pose information using PnP/RANSAC variant algorithms. Compared to direct strategy
methods, it has advantages with regard to robustness and accuracy when occlusions,
lighting changes, or complex backgrounds are present. Visual occlusion is a common
problem in practical applications. To address this, Rad et al. proposed the BB8 method,
which uses a convolutional neural network to estimate a pose by locating the spatial
positions of eight corner points of the object, which showed good robustness against
occlusion and cluttered backgrounds [11]. Zhao et al. [12] further selected key points from
eight corner points in space. This was improved upon in PVNet, where sparse key points
are discarded as reference points, pixel-to-key point vectors are introduced through a
semantic segmentation network, and the estimation accuracy is enhanced in scenarios with
occlusion and symmetric objects [13]. Pix2Pose utilizes adversarial generative networks
to address similar issues [14]. Chen et al. proposed a method that first calibrates in two
dimensions and then estimates poses using 2D–3D correspondence relationships, achieving
significant breakthroughs in accuracy [15].

In summary, indirect strategy methods have advantages with regard to robustness
and accuracy in complex environments, but they involve more steps and require more
computational resources and time.

3. Improved Model Based on Atrous Spatial Pyramid Pooling

To reduce the computational cost of object 6D pose estimation, in this paper, a
lightweight model is proposed, combining residual depth-wise separable convolution
with an improved ASPP method based on PVNet. Firstly, we utilized residual depth-wise
separable convolution layers to construct a lightweight network, thereby reducing the
demand for memory and computing resources. Secondly, to prevent the loss of channel and
coordinate information caused by multi-layer convolutions, which affects the estimation
accuracy, we introduced a coordinate attention mechanism. Addressing the issue of inade-
quate recognition accuracy in previous methods caused by neglecting object scale changes,
we added a multi-scale pyramid pooling module for processing. Finally, a two-stage pixel
voting and PnP (Perspective-n-Point) solving task was performed on the decoder’s output
feature maps. This approach effectively reduced the model’s parameter and computational
overhead, resulting in a significant improvement in the pose estimation accuracy for ob-
jects with large-scale variations. The complete 6D pose estimation network framework is
illustrated in Figure 1.

Figure 1. Six-degree-of-freedom pose estimation network framework.

3.1. Backbone Network

The backbone network based on improved ASPP consists of 13 layers of depth-wise
separable convolution, a coordinate attention mechanism module, and an ASPP module as
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the encoder, followed by three upsampling and convolution operations in the decoder. The
final output is a target segmentation feature map. The network architecture is illustrated in
Figure 2.

Figure 2. The backbone network based on improved ASPP consists of several components: CBR,
representing depth-wise separable convolution layers; CBR-Res, indicating depth-wise separable
convolution layers with residual connections; CA, denoting the coordinate attention mechanism
module; ASPP, representing the improved ASPP module; and Concat, which involves upsampling
and concatenation operations.

3.1.1. Residual Depth-Wise Separable Network

In PVNet, outstanding performance in keypoint detection is achieved by using a pre-
trained ResNet model based on a large-scale dataset as the target segmentation network,
leading to a significant improvement in the accuracy of 6D pose estimation over previous
methods [16]. However, this model and its related improvements have a relatively large
volume, making them difficult to deploy on devices with requirements for lightweight
applications. Drawing inspiration from the MobileNet series of algorithms [17,18], in
this study, a lightweight backbone network model based on depth separable convolu-
tion operations was designed, significantly reducing the number of network layers and
model parameters.

The depth separable convolution operation can be seen as the process of splitting a
standard convolution into a grouped convolution and a pointwise convolution. Compared
to standard convolution, which convolves an image with m channels using n sets of corre-
sponding m × 3 × 3 convolution kernels to generate n feature maps, in-depth separable
convolution, a two-stage mode, was adopted. First, a 1 × 3 × 3 convolution kernel was
applied to each of the m channels, generating m intermediate feature maps, and then n sets
of m × 1 × 1 convolution kernels were used to generate n feature maps. Figure 3 illustrates
the process of the two convolutions.

Aiming to produce a feature map with Coup channels using a square convolution kernel
of size k × k, following a uniform standard where bias parameters with a quantity of 1 are
disregarded and each multiply–add operation is treated as one floating-point calculation,
for an input image with dimensions of W × H and Cinp channels, we can approximate the
parameter and computation complexity of standard convolution as follows:

Paramsstd = Coup× k2 × Cinp (1)

FLOPsstd = Cinp× k2 × Coup×W × H (2)
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An approximate description of the parameter and computation complexity of depth-
wise separable convolution is as follows:

Paramsdw&pw = Cinp× k2 + 1× Cinp× Coup (3)

FLOPsdw&pw = Cinp× k2 ×W × H + 1× Cinp× Coup×W × H (4)

Figure 3. The upper diagram shows the calculation process of standard convolution, while the lower
diagram illustrates the computation process of depth-wise separable convolution.

Compared to standard convolution operations, the parameter and computation com-
plexity required for depth-wise separable convolution is 1

Coup + 1
k2 times that of standard

convolution. Particularly in this model, where the output channels of the image ranged
from 64 to 1024 and the depth-wise separable convolution kernels were all 3 × 3 in size,
there was a significant advantage in reducing the computational overhead compared to
standard convolution. Considering that, in the process of semantic segmentation, multiple
downsampling and convolution operations on the original image may lead to the loss of
low-dimensional information, adding residual connections to convolution layers with the
same input and output channels preserves low-dimensional feature information while
obtaining high-dimensional semantic information after convolution, which significantly
improves the final accuracy of object pose estimation.

3.1.2. Improved Atrous Spatial Pyramid Pooling

In the decoder part of the network, feature extraction was performed through con-
volution and pooling operations. All output feature maps were compressed into a single
feature vector via global average pooling, which ignored the non-uniformity of features
across different channels. Additionally, influenced by the number of layers and the size of
convolution kernels, lightweight networks often overlook the spatial positional information
of features.
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The coordinate attention mechanism [19] is an attention method suitable for lightweight
networks. It is characterized by a lightweight and plug-and-play nature and can capture
inter-channel information while also considering directional and positional information.
Additionally, it achieves significant improvement in tasks such as object detection and
semantic segmentation, which involve dense predictions. In the coordinate attention
mechanism, average pooling and concatenation were performed in both the horizontal
and vertical directions and channel information was fused through convolution, encod-
ing spatial information simultaneously. After splitting, multiplication with the input
features was performed, emphasizing feature information in spatial positions. The co-
ordinate attention mechanism notably enhanced the performance of dense prediction
tasks in lightweight mobile networks. Through experimental analysis, it was decided
to place it at the end of the encoder, reducing interference from subsequent convolution
operations. Additionally, the reduced number of channels at the end could decrease
computational costs.

The application of depth-wise separable convolution significantly reduced the model
complexity. However, in computer vision-related tasks, the size of the receptive field
largely determines the effectiveness of the model. Increasing the network depth and using
larger convolutional kernels are direct and effective methods to enhance the receptive
field. However, they inevitably exacerbate model complexity. Through experiments, it
has been found that simply increasing the network depth results in limited performance
improvements relative to the cost incurred.

Luo et al. [20] proposed the concept of an effective receptive field, demonstrating in
their work that the effective receptive field only represents a portion of the entire receptive
field. Therefore, a larger receptive field is needed in practice to cover the desired region.
Dilated convolution, also known as atrous convolution, is one method to effectively enlarge
the receptive field. This is achieved by introducing “holes” into the convolutional kernel,
effectively expanding the receptive field without increasing the number of parameters in
the kernel.

The ASPP module extends the concept of dilated convolution by introducing multiple
dilated convolutions with different rates [21]. It considers feature information from multiple
receptive fields, thereby enhancing the perception of objects at different scales. Figure 4
illustrates dilated convolutions with different rates. By employing this method, it is possible
to capture object boundaries and detailed information while reducing computational
complexity, thereby improving the recognition accuracy.

Building upon ASPP, an attention mechanism module was incorporated to further en-
hance the feature information at different scales, highlighting key point information. Given
the limited overall data volume of single-target training samples, overfitting was likely to
occur. Therefore, a dropout layer was applied at the output end during training. During
the forward propagation process, random hidden neurons were dropped, reducing the
interdependency between neurons and enhancing the network’s generalization capability.
The mathematical expression for dropout is expressed as follows:

yi =

{
0, dropout(probability = p),

xi
1−p , otherwise. (5)

where yi and xi represent the output and input of neuron i, respectively. During training,
the output was zeroed out with probability p; during testing, dropout was not applied.

For tasks requiring dynamic object pose estimation, scale variation poses a significant
challenge. Compared to previous work, the improved ASPP module exhibits a noticeable
robustness enhancement in pose estimation accuracy for datasets with significant scale
variations. The improved ASPP module is illustrated in Figure 5.
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Figure 4. Atrous convolutions with dilation rates r of 1, 2, and 3.
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Figure 5. Improved ASPP module.

3.2. Pixel Voting and Pose Estimation

The input RGB image underwent a target segmentation task through a pre-trained
backbone network, obtaining the segmented object image as an output. Between the 2D
key point x on the segmented image and any pixel point p, there existed a unit vector vx(p),
satisfying the relation vx(p) = x−p

||x−p||2
. Two pixel points on the image were randomly

selected, and the intersection of the unit vectors pointing to the possible positions of the key
point was taken as the hypothesis position h1. This process was repeated n times to generate
a set of n hypotheses {hi|i = 1, . . . , n}. For p ∈ O (a pixel point p belonging to the target
0), there existed a corresponding vector vh(p) = hi−p

||hi−p||2
for each hypothesis. Whether a

hypothesis was assigned depended on whether the dot product v = vx(p)·vh(p) met the
threshold θ of the indicator function 1θ(v). This step is referred to as pixel voting. After
completing the pixel voting process, the voting score of this set of hypotheses needed to be
consistent with the spatial distribution of the true key points. Therefore, the hypothesis
point with the highest score was considered the most likely to be the true key point. The
scoring function and the calculation formula for the i-th hypothesis are as follows:

1θ(v) =
{

1, i f v > θ,
0, otherwise.

(6)

wi = ∑p∈O 1θ(v) (7)

After completing the scoring calculation for n hypotheses, the position information
of the hypothesis with the highest score was selected as the position information for the
true key point. Through the approximate random consensus sampling method, pixels
belonging to the target were randomly selected, thus maintaining the uniformity of the
pixel distribution involved in voting and reducing unnecessary score calculations.

The rotation matrix R is a 3 × 3 matrix used to describe the rotational changes of an
object in three-dimensional space. It is a common representation method for describing
rotations in 3D space. Each column of the matrix typically represented the rotations of
the object around the X, Y, and Z axes of the coordinate system, respectively. This method
provided a transformation representation from one coordinate system to another, where
each column vector represented the direction of a coordinate axis in the rotated coordinate
system relative to the original coordinate system.
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The translation matrix T was a 3 × 1 vector that described the displacement or shift of
an object in three-dimensional space. This vector extended the object’s position from its
original location to a new location within the coordinate system.

Unlike Euler angles, the rotation matrix representation method does not suffer from
gimbal lock issues and provides a continuous and unique representation throughout the
entire rotation space. This means that rotation matrices can represent arbitrary rotations
without being limited by specific axis orders or rotation sequences, offering a more flexible
and stable representation of rotations.

R

⎡⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (8)

[R|T]

⎡⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

x
y
z

⎤⎦ (9)

By calculating the coordinates of key points through pixel voting and utilizing the
rotation matrix representation method, combined with the 3D object model, the pose
information of the object could be estimated.

The data obtained by projecting the known 3D model of the target object into two
dimensions and annotating the key points were input into the neural network for training
to obtain the spatial mapping from 3D to 2D, enabling the neural network to predict key
points. Subsequently, the PnP algorithm or trained network inferred the 3D point location
information based on the 2D key points. That is, given an RGB image I and a set of
corresponding key point information, consisting of 2D key point information of the image
O = {Oi|i = 1, ..., N} and 3D model point information of the object M = {Mi|i = 1, ..., N},
we aimed to solve the pose relationship P = [R|T].

The method of pixel voting improved the issue of key point selection on objects in 2D
images. The selection of actual points on the object in 3D models also impacts the solution
results. By employing furthest-point sampling, the 3D model’s surface points were sampled
as key points, resulting in a uniform key point distribution across the 3D model’s surface.
Experiments on PVNet have demonstrated that this method effectively reduces interference
compared to traditional methods relying on corner points as key points, thereby enhancing
the pose estimation accuracy.

3.3. Training Strategy

Monocular RGB images were used as training and testing samples. In the 6D object
pose estimation task, typically, 15% of the data were chosen as training samples and 85%
were chosen as testing samples. The model was trained for 120 epochs on the entire dataset,
with an initial learning rate of 4 × 10−3. After every 20 epochs, the learning rate was
reduced by half.

The output target segmentation image was treated as a binary classification problem,
where the task was to determine whether an object was in the foreground (object) or
background (interference). The cross-entropy loss function was used as the main loss
function for the backbone network. The distance between generated hypothesis points
and true key points could intuitively infer the error of the result. This was equivalent
to the squared sum of the horizontal and vertical components of the vector difference,

Δvk(p) =
∼

vk(p)− vk(p), pointing from any pixel to the hypothesis and true points. To
address the issue of outlier gradient explosions, smooth L1 Loss was employed to smooth
outliers, and the sum of losses for all key points was used as the loss function for key
point prediction.

Loss = ∑K
k=1

(
s_L1

(
Δvk(p)x + sL1(Δvk(p)y)

(10)
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Loss(abs) = ∑K
k=1

(
|Δvk(p)x|+

∣∣∣Δvk(p)y

∣∣∣) (11)

The same loss function results can be caused by position offsets and scale differences.
To reduce interference caused by scale changes, the distance from the hypothesis points to
the center point was added as a reference. The absolute value of the sum of Δvk(p) in the
horizontal and vertical directions, denoted as Loss(abs), was used as a reference; under the
same loss condition, the smaller the Loss(abs), the greater the scale change.

4. Experimental Results and Analysis

4.1. Dataset

Commonly used datasets for 6D object pose estimation include LineMOD, LineMod-
Occlusion [22], and T-LESS [23]. The LineMOD dataset contains RGB-D image data and
corresponding labels for multiple small geometric objects with complex shapes, countering
challenges such as weak object texture features, complex background environments, and
varying lighting conditions. In this study, we not only conducted pose estimation tests
on the LineMOD dataset but also designed new datasets using 3D cameras, including an
airplane model dataset and a car model dataset, to determine the accuracy improvements
of our method for multi-type, multi-scale object pose estimation. These two datasets also
present various challenges, including significant scale changes, weak texture features,
blurry images, lighting variations, and incomplete objects.

The assembly of the self-built datasets followed the production process used for the
LineMOD dataset. Images of objects were captured from various angles in various poses
under different lighting conditions using an RGB-D camera (Realsense2). This process
yielded RGB images, depth images, and intrinsic camera parameter data for the objects.
Aruco markers in the images were used for registration between pairs of images, and
the matrix transformation between two sets of points was calculated. Through iterative
registration and optimization, a globally consistent transformation was generated, producing
pose change files (4 × 4 homogeneous matrices) for each image relative to the first frame.
The depth image data were converted into point clouds and denoised. Meshlab, a mesh
processing tool, was used to remove unwanted scene content, as shown in Figure 6. Finally,
based on the pose changes and processed mesh, relocalization was performed to compute the
2D projection information of the new mesh in the camera’s coordinates. Corresponding pixel
masks (Figure 7) and label files representing the true pose information were generated.

 
Figure 6. Point clouds were generated from images captured at different angles in various poses
under different lighting conditions (a–c). The processing results (d).
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(a) (b) 

Figure 7. Generated mask images: (a) car model, (b) airplane model.

In the experiments, RGB images were used for training and testing, while depth
images were used to obtain point cloud data to reconstruct 3D models. It should be
noted that there may have been some differences in label accuracy between the self-built
dataset and the LineMOD dataset, which may have resulted in the 2D projection perfor-
mance being inferior for the self-built dataset compared to the LineMOD dataset in terms
of precision.

4.2. Performance Evaluation Metrics

ADD and ADD-S, respectively, represent the average distance of points and the aver-
age distance of the nearest points, and are the most used evaluation metrics for rigid object
pose estimation. ADD measures accuracy by computing the average distance between
the 3D model points predicted by the pose estimation algorithm and the corresponding
annotated model points. ADD-S extends ADD by considering symmetric objects and
calculates distances based on the nearest point criterion for symmetric objects. The errors
in translation and rotation for ADD(-S) metrics depend on the size and shape of the rigid
body, and a threshold of 10% is typically set on the model’s diameter. The 2D projection
performance metric measures algorithm accuracy by projecting the model vertices of the
target object onto the 2D image plane and computing the average error between the 2D
projection points predicted by the pose estimation algorithm and the true annotated 2D
vertices. In this paper, we primarily use these two metrics to evaluate the performance of
our method.

4.3. Experimental Results

The experiments were performed on the Ubuntu 18.04 operating system utilizing the
Torch 1.8 deep learning framework with CUDA version 11.1. In terms of hardware, an
Intel(R) Xeon(R) Platinum 8255C twelve-core processor was employed as the CPU, while an
RTX 3090 GPU was used. The performance of the improved method and baseline method
was quantitatively determined on the LineMOD dataset in terms of the ADD(-S) and 2D
projection metrics, respectively, as shown in Tables 1 and 2.

In the experiments on the LineMOD dataset, our proposed method outperformed
most of the baseline methods in terms of the average ADD(-S) accuracy, with an average im-
provement of 1.93% compared to PVNet. Particularly, there was a significant improvement
in pose recognition for objects with relatively large-scale variations, such as apes, cans, and
ducks, with the maximum improvement reaching 13.04%. For the self-built dataset with
lower precision and lower general image quality, the recognition accuracy of the proposed
method was relatively superior, demonstrating better robustness for practical applications.
Similarly, the self-built datasets of airplanes and car models also exhibited relatively large
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variations in object scale, indicating the excellent performance of our method in pose esti-
mation for objects with significant scale changes. As shown in Table 2, the proposed method
outperformed the baseline method in terms of the 2D projection performance accuracy.
However, considering the correlation heatmap between the 2D projection performance
estimation accuracy and the ADD estimation accuracy in Figure 8, where values closer to
1 indicate a higher positive correlation and values closer to −1 indicate a higher negative
correlation, the experimental results suggest that there was no significant correlation be-
tween the 2D projection accuracy and the 6D pose estimation accuracy. Therefore, accurate
2D projection points do not necessarily improve the accuracy of 6D pose estimation.

Table 1. The ADD(-S) accuracy of our method and the baseline method for the LineMOD dataset and
the self-built dataset. The middle column represents the pose estimation accuracy without refine-
ment processing, while the right column represents the pose estimation accuracy after refinement
processing. Datasets labeled with a superscript “+” indicate symmetric object datasets.

Without Refinement Refinement

Method Zhao PVNet DPOD [24] SSPE [25] Ours DPOD+ RePose [26]

Ape 41.2 43.62 53.28 52.5 67.05 87.70 79.5
Benchvice 85.7 99.90 95.34 - 98.46 98.50 100.0

Cam 78.9 86.86 90.36 - 88.24 96.10 99.2
Can 85.2 95.47 94.10 99.2 97.65 99.70 99.8
Cat 73.9 79.34 60.38 88.5 85.86 94.70 97.9

Driller 77.0 96.43 97.72 98.8 93.66 98.80 99.0
Duck 42.7 52.58 66.01 68.7 75.24 86.30 80.3

Eggbox + 78.9 99.15 99.72 100.0 99.72 99.90 100
Glue + 72.5 95.66 93.83 98.5 75.86 96.80 98.3

Hole puncher 63.9 81.92 65.83 88.1 79.46 86.90 96.9
Iron 94.4 98.88 99.80 - 95.23 100.0 100.0

Lamp 98.1 99.33 88.11 - 98.85 96.80 99.8
Phone 51.0 92.41 74.24 - 87.90 94.70 98.9

Aircraft - 71.72 - - 79.80 - -
Car - 83.17 - - 97.34 - -

Average 72.6 85.09 82.98 86.8 88.02 95.15 96.1

Table 2. The 2D projection performance accuracy of our method and the baseline method for the
LineMOD dataset. Datasets labeled with a superscript “+” indicate symmetric object datasets.

BB8 YOLO-6D PVNet Ours

Ape 95.3 92.10 99.23 100.0
Bench vice 80.0 95.06 99.81 99.52

Cam 80.9 93.24 99.21 99.22
Jar 84.1 97.44 99.90 99.90
Cat 97.0 97.41 99.30 99.60

Driller 74.1 79.41 96.92 98.82
Duck 81.2 94.65 98.02 99.05

Eggbox + 87.9 90.33 99.34 98.87
Glue + 89.0 96.53 98.45 98.85

Hole puncher 90.5 92.86 100.0 99.62
Iron 78.9 82.94 99.18 98.98

Lamp 74.4 76.87 98.27 97.70
Phone 77.6 86.07 99.42 99.52

Average 83.9 90.37 99.00 99.20
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(a) (b) 

Figure 8. (a) Correlation heatmap between the 2D projection performance estimation accuracy and
the ADD estimation accuracy using the PVNet method; (b) correlation heatmap between the 2D
projection performance estimation accuracy and the ADD estimation accuracy using our method.

In Figure 9, we compare the training curves of the baseline method and our method.
With the same number of training steps, our method converged faster, had a shorter
training time per epoch, exhibited smaller fluctuations when dealing with anomalies, and
demonstrated better generalization. Figure 10 illustrates the intuitive visualization results
obtained using the improved method for both the LineMOD dataset and our self-built dataset.

 

Figure 9. The training loss variation plot for the PVNet method and our proposed method. The
orange line represents the PVNet method while the blue line represents our method (based on the
self-built car dataset).
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Figure 10. Visualization results of pose estimation using our method on the dataset. The green
box outlines indicate the ground truth object pose information while the blue box outlines indi-
cate the estimated object pose information obtained through inference. The top two rows display
the pose estimation results of some objects in the LineMOD dataset while the bottom two rows
demonstrate the performance on the airplane and car model datasets, including the handling of blur,
illumination variations, viewpoint changes, scale variations, and occlusion, as well as instances of
erroneous estimations.

4.4. Ablation Experiment

Table 3 shows the performance of the improved networks trained on the convex dataset
in LineMOD using different numbers of layers and modules, including the ADD and 2D
projection performance, as well as the corresponding network parameters, computational
complexity, and GPU inference time.

As the number of network layers increased, the accuracy of object pose estimation
improved. However, further deepening the network layers due to the increased number of
channels at the end led to a rapid growth in the number of parameters, resulting in less
noticeable improvements in estimation accuracy. Maintaining a certain number of network
layers and reinforcing spatial and channel information by adding coordinate attention at the
end or introducing residual connections within the convolutional network for layers with
the same input and output channels could significantly enhance the estimation accuracy
without a substantial increase in parameters or computational load. The ASPP module,
incorporating an attention mechanism, effectively fused features at multiple scales, further
enhancing the accuracy and robustness of pose estimation, particularly positively impacting
small-diameter object estimation. Considering the superior performance of our method on
the self-built airplane and car model datasets, it can be concluded that this module exhibits
good robustness for significant scale variations.

A comparison of the PVNet method with the lightweight model parameters is shown
in Table 4. The improved method reduced the number of parameters by 57.69%, decreased
the computational load by 31.47%, and reduced the model weight by 57.43%. This makes it
more suitable for deployment on mobile devices and embedded systems, thus expanding
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the application scenarios for object pose estimation. However, in terms of the GPU comput-
ing time, the improved method slightly trailed the original method. This is because the
split two-step calculation mode of depth-wise separable convolution operations does not
fully leverage the benefits of high-performance GPU stream parallel computing, leading to
performance waste and a slight decrease in computational speed.

Table 3. DC stands for networks constructed using depth-wise separable convolution, with the
number indicating the network layers. CA represents the coordinate attention module, Res indicates
convolutional layers with residual connections, and ASPP denotes the ASPP module.

ADD
2D

Projection
Params

Computational
Cost

Time

DC10 54.81 96.57 0.7 M 16.3 B 7.03 ms
DC11 54.51 97.16 0.8 M 16.7 B 7.18 ms
DC15 65.69 98.33 2.5 M 21.9 B 9.13 ms

DC10 + CA 63.43 98.33 0.7 M 16.3 B 7.15 ms
DC11 + CA 62.84 98.43 0.8 M 16.7 B 7.31 ms

DC11 + Res 62.06 97.45 0.8 M 16.7 B 7.36 ms
DC13 + Res 68.33 98.63 1.3 M 16.1 B 7.61 ms

DC13 + Res + CA 77.65 99.12 4 M 27.2 B 11.67 ms

DC13 + Res + CA
+ ASPP 88.24 99.22 5.5 M 49.8 B 14.10 ms

Table 4. Before and after model parameter comparison.

Params
Computational

Cost
Weight Size

GPU Frame
Computation Time

PVNet 13.0 M 72.7 B 148 MB 13.34 ms

Ours 5.5 M 49.8 B 63 MB 14.10 ms

5. Conclusions

In this paper, an improved algorithm was proposed aimed at balancing the accuracy
and simplicity of object pose estimation networks while enhancing the robustness for
scale variations. A lightweight semantic segmentation model using depth-wise separable
convolutions for keypoint detection was constructed, integrating a coordinate attention
mechanism and an improved ASPP module to effectively fuse multi-scale information and
increase receptive fields. As a result, a lightweight object pose estimation network with
both accuracy and robustness was obtained. Through experiments on the LineMOD and
self-built datasets, this method demonstrated certain improvements in average accuracy,
particularly in pose estimation for objects with significant scale variations and low image
quality, compared to baseline methods. Moreover, compared to previous methods, in
this approach, the number of parameters, computational complexity, and weights were
significantly reduced, making it more suitable for deployment on low-performance devices
such as mobile platforms. However, this method exhibited poor recognition accuracy
for the LineMOD glue dataset. Glue is a small, symmetrical object, causing potential
overfitting during training and thus resulting in a decrease in accuracy. On the premise of
not increasing the complexity of the model, we believe that a more efficient and suitable
2D–3D key point solution method can play a significant role in further improving the pose
estimation accuracy.
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Abstract: Overconfidence in deep neural networks (DNN) reduces the model’s generalization per-
formance and increases its risk. The deep ensemble method improves model robustness and gen-
eralization of the model by combining prediction results from multiple DNNs. However, training
multiple DNNs for model averaging is a time-consuming and resource-intensive process. Moreover,
combining multiple base learners (also called inducers) is hard to master, and any wrong choice
may result in lower prediction accuracy than from a single inducer. We propose an approximation
method for deep ensembles that can obtain ensembles of multiple DNNs without any additional
costs. Specifically, multiple local optimal parameters generated during the training phase are sampled
and saved by using an intelligent strategy. We use cycle learning rates starting at 75% of the training
process and save the weights associated with the minimum learning rate in every iteration. Saved
sets of the multiple model parameters are used as weights for a new model to perform forward
propagation during the testing phase. Experiments on benchmarks of two different modalities, static
images and dynamic videos, show that our method not only reduces the calibration error of the
model but also improves the accuracy of the model.

Keywords: confidence calibration; deep ensemble learning; stochastic weight averaging

1. Introduction

During training, a deep neural network (DNN) learns the output probability, which
indicates the DNN’s confidence in the results. Some recent work has found that the
confidence of a DNN is not consistent with its accuracy [1–3]. These works point out
that DNNs suffer from overconfidence. An overconfident DNN gives high confidence
in wrong predictions. The problem of overconfidence poses a huge challenge to the
deployment of DNNs in real-world applications. For example, in health care, criminal
justice, and autonomous driving applications, we expect models to have a certain degree
of confidence in their predictions in order to make more informed decisions. Confidence
calibration not only enhances the model’s ability to generalize and minimizes potential
risks but also greatly aids in its interpretability [4,5].

Confidence calibration is the process of adjusting the predicted probabilities of a model
to better reflect the true likelihood of its predictions being correct [2,6]. More formally,
a completely calibrated classification model is one in which the probability of the predicted
outcome Ŷ being equal to the actual outcome Y is defined as P(Ŷ = Y | P̂ = p) = p,
where p falls within the range of [0, 1], and P̂ is the model’s associated confidence. It is
expected that P̂ will be calibrated, indicating that it accurately reflects an actual probability.
An accurately-calibrated classifier is a probabilistic classifier that can be directly interpreted
in terms of confidence score through its predicted probability output. To illustrate, a pre-
cisely calibrated (binary) classifier that yields 100 samples with a confidence score of 0.6 for
every prediction indicates that 60 samples will be accurately classified. Confidence cali-
bration refers to a model’s capacity to accurately assign probabilities to its predictions [7].
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In recent years, multiple techniques have been introduced to generate predictive confidence
scores through calibration [2,8,9], including post-processing, Bayesian neural networks,
and deep ensemble methods. Temperature scaling is a post-processing calibration method
proposed by Guo et al. [2]. The main principle revolves around the utilization of a singular
scalar parameter, T > 0, denoting the temperature, to modify the logit score prior to the
implementation of the softmax function. The method cannot effectively handle out-of-
distribution data because T is computed on the validation set. The idea behind the Bayesian
neural network approach is to infer the probability distribution of the DNN parameters.
This distribution is used to sample the parameters for single forward propagation, resulting
in random predictions that are influenced by diverse model weights. However, precise
Bayesian inference is computationally difficult for neural networks and incurs extremely
expensive computational and memory costs [3].

Deep ensemble learning [10] combines the predictions of several base estimators
to reduce the variance of predictions and reduce generalization errors. The concept of
ensembling is based on the idea that a group of models can work together to enhance the
strengths and minimize the weaknesses of individual base learners. Deep ensembles were
originally proposed and discussed to improve the prediction performance of DNNs. In [11],
the authors, through the experimental analysis of several regression and classification tasks,
showed that averaging the predictions of ensemble models can also be used to derive
useful uncertainty estimates. Moreover, in [12], deep ensembles were shown to be state-
of-the-art for the domain shift (or out-of-distribution) setting. Compared to single-model
methods [2], the computational costs and memory consumption of the deep ensemble
approach are significantly higher. Moreover, the additional computations increase linearly
with the number of base learners. Some interesting methods, such as distillation, sub-
ensembles, and batch ensembles, have been proposed to solve these problems. However,
these approaches necessitate substantial changes to the training process and remain costly
in regards to both time and computational resources. To overcome these challenges, work
in [13] presented an approximate method to implement an ensemble of models without
increasing the training cost. During the training phase, multiple snapshots of the model are
periodically saved, and the predictions from the multiple snapshots are averaged during
the testing phase. Instead of training M models from scratch, the snapshot ensembles
in [13] were created by changing the learning rate to allow the optimizer to reach the
local minimum M times during the optimization process. In [14], the study demonstrated
that simple curves connect the optima of complex loss functions, with consistent training
and test accuracy. Based on this geometric finding, they proposed a new approximate
ensembling procedure called fast geometric ensembling (FGE). The FGE algorithm uncovers
various networks by taking small steps in the weight space while remaining in a low test
error region. FGE allows training of highly effective ensembles in the same amount of time
it takes to train a single model. However, these single-model multiple-weight methods
were initially proposed to improve the accuracy of the DNN but with little attention paid
to confidence in the output. It remains unclear whether these methods are effective in
reducing confidence errors.

To fill this gap, we propose a confidence calibration method based on stochastic
weight averaging. We achieve this by training a single DNN to converge to multiple local
minima on the loss surface and to sample and save the model parameters by using a smart
strategy. At a high level, the concept of averaging the stochastic gradient descent (SGD)
iterations has been around for several decades in the field of convex optimization [9,15].
In convex optimization, researchers have primarily focused on optimizing convergence
rates by implementing averaged SGD. In deep learning, the use of averaged SGD results
in a smoother trajectory for SGD iterations but yields minimal differences in performance.
By contrast, we are more concerned in this work with the effect of the method on the
calibration error. Multiple locally optimal weights generated in the training phase are
specially sampled, and then forward propagation is computed as new parameters for
the base learner during the testing phase. We force the optimizer to explore a variety
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of models rather than converge on just one solution by using a modified learning rate
strategy. We use a smart strategy to select relatively more meaningful weights from a large
number of candidate weights. To summarize, instead of designing multiple sets of DNNs,
the method simply trains a single model to obtain well-calibrated confidence output. We
tested our method on two benchmarks with varying modalities, including static images and
dynamic videos. Our experimental findings indicate that our method effectively minimizes
calibration error and enhances the model’s precision. The code is publicly available at
github.com/zjcao/swaCal (accessed on 22 January 2024).

The main contributions of our work are summarized as follows.

(1) We propose an alternate ensemble learning approach to improve the quality of neu-
ral network uncertainty measures to overcome overconfidence without incurring
additional computational costs.

(2) We evaluate our approach using two benchmarks with different modalities: static
images and dynamic videos. The results of our experiments demonstrate that our
approach successfully reduces calibration error and enhances the model’s accuracy.

The remainder of this paper is structured as follows. Section 2 discusses related studies
on deep ensemble learning and confidence calibration. Section 3 describes our proposed
approach in detail. The experiments and results are presented in Section 4. Section 5 is the
conclusion and suggests further studies.

2. Related Work

2.1. Confidence Calibration of a Deep Neural Network

Confidence calibration is a sub-task of open-set recognition that aims to improve the
accuracy of confidence scores for DNN output. DNN output is the probability during an
inference process that indicates the model’s confidence in the result. A precisely calibrated
confidence can represent the probability that the predicted label is correct. Although DNNs
have obtained good prediction accuracy in a variety of visual tasks, recent studies have
found that DNNs suffer from overconfidence [2,7,8]. For a classification task, data scientists
usually use softmax output (predicted probability) as the true probability of correctness in
the predicted category. This might have been reasonable for traditional network models
in the past, but it is not applicable to the DNNs of today. In [16], the authors found
that passing a point estimate through the softmax function produced a high probability.
After that, Guo et al. [2] found the same problem and demonstrated through a series of
ablation experiments that model depth and width, batch normalization, and weight decay
have strong effects on the confidence calibration of DNNs. The process of calibrating a
classifier involves creating a calibrator that translates the classifier’s output into a calibrated
probability ranging from 0 to 1. The calibrator attempts to predict the conditional probability
of the event, p(yi = 1/ fi) based on the classifier’s output, fi, for a specific sample.

The confidence calibration methods can be classified into three types depending on
the approach: (a) regularization methods during the training phase, (b) post-processing
methods after the training phase, and (c) DNN-based uncertainty estimation methods.
Regularization-based confidence calibration methods are performed by changing the ob-
jective function or by augmenting the training dataset during the DNN training process.
Label smoothing, data augmentation, and objective function modification are three com-
monly used methods for confidence calibration based on regularization [17–19]. On the
other hand, various methods have been developed in the last decade to recalibrate model
confidence through post-processing steps. Temperature scaling, proposed in [2], is a sim-
ple and effective technique for recalibrating the prediction probability of modern neural
networks. The core algorithm used for temperature scaling rescales the logit value, fi(x),
by using a single scale parameter, T (temperature), before passing it to the softmax function:
so f tmax( fi/T). T is extracted by minimizing the negative log-likelihood on the validation
datasets after the model training is complete. Although temperature scaling is an effective
way to quantify the total predictive uncertainty of calibrated probabilities, it cannot capture
the uncertainty caused by out-of-distribution data [12]. By decreasing model uncertainty,
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the confidence prediction of a DNN can be better calibrated. The rationale for this is that the
remaining uncertainty in the predicted data more accurately reflects the true uncertainty in
the prediction. Bayesian and ensemble methods are two methods that are used to estimate
model uncertainty. The key idea of the Bayesian method is to infer the probability distribu-
tion over the model parameters. The prior distribution of the neural network parameters
is specified, and then the posterior distribution of the parameters is calculated using the
training data. Finally, the uncertainty of the model is predicted according to Bayesian theory.
The main challenge for Bayesian deep learning is to specify meaningful conjugate priors for
the parameters. Moreover, exact Bayesian inference is often computationally difficult for
neural networks with a large number of parameters. Therefore, approximate Bayesian infer-
ence techniques, such as variational inference, Laplace approximation, and Markov chain
Monte Carlo (MC), are usually used to calculate posterior probabilities [1,6]. Although the
Bayesian neural network can estimate the uncertainty of the prediction, the inference phase
procedure requires substantial modification due to the inclusion of Bayes’ law. In addition,
specifying meaningful priors for Bayesian neural networks is a big challenge [3,4].

2.2. Deep Ensemble Learning

The deep ensemble learning approach merges the benefits of deep learning and ensem-
ble learning, resulting in a final model with improved generalization abilities [20]. The main
idea behind deep ensemble learning is that by combining several models, the deficiency
of a single base learner may be compensated for by other base learners so the overall
predictions of the ensemble are better than a single base learner. The ensemble method
for deep learning is roughly divided into two steps: (1) training different models (the
training phase) and (2) merging prediction results (the inference phase). In the training
phase, multiple models can be obtained using different model architectures, training data,
and training strategies. In the inference phase, the same input can be provided to the
model for the prediction. Finally, the prediction of each model is combined according to a
certain strategy to obtain the final prediction. The deep ensemble method can usually be
one of two types: the averaging method and the boosting method [5,6]. The core idea of
the averaging method is to build several estimators independently and then average their
predictions, as is performed in the bagging method and random forest. Boosting methods
such as AdaBoost and gradient tree boosting create the base estimators sequentially to
reduce the bias of the combined models. Boosting and random forest are classical machine
learning ensemble techniques and complementary methods [21].

In deep learning, dropout is designed as a regularization technique for neural networks
to avoid overfitting, which can also be interpreted as an ensemble of multiple models.
In [16], the authors showed that MC dropout can be used to quantify the uncertainty of the
model. However, in [11], the authors found that in various datasets and tasks of regression
and classification, deep ensemble methods were superior to MC dropout in quantifying
uncertainty. Furthermore, the deep ensemble method has been shown to be robust in
quantifying uncertainty for data beyond distribution [12,22]. However, the computational
costs and memory consumption of the ensemble method are significantly higher than in
other methods. Therefore, how to effectively reduce the computational workload and
memory consumption has become a new research topic in the area of ensemble methods.
Pruning methods [23] reduce the complexity of the ensemble by pruning members and
reducing redundancy among members. Other approaches, such as batch ensembles and sub-
ensembles, attempt to reduce computational cost and memory usage by sharing portions
among individual members. We propose an approximate ensemble learning approach
that is simple to implement, requires very little hyperparameter tuning, and achieves
comparable performance.
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3. Confidence Calibration

3.1. Approximate Deep Ensemble Learning

Confidence calibration is the degree to which the uncertainty of the prediction matches
the true underlying uncertainty in the data. The softmax probability score is commonly
employed by scientists as a confidence metric for the predictions in image classification
tasks. Studies have shown that DNN prediction scores can be either overly confident or
lacking in confidence. Deep ensemble learning methods reduce prediction variance and im-
prove robustness and generalization by combining prediction results from multiple DNNs
constructed using a specific learning strategy. The main principle behind the ensemble
approach is to construct several independent estimators and then average their predictions
to yield the final prediction. Due to its reduced variance, the combined estimator achieves
better results than any single base estimator. Formally, given sample x, the ensemble
prediction, p(y|x), is estimated by averaging the predictions of all the models, which can be
expressed as p(y|x) = 1

M ∑M
i=1 pi(y|x), where pi(y|x) is the predicted output of the i-th base

estimator, and m is the number of models in deep ensemble learning. It has been shown
that a DNN ensemble can improve the robustness and accuracy of the system compared
to using individual networks. However, the computational burden of training multiple
DNNs for the ensemble is considerable. Mastering the combinations of ensemble models
can be challenging, and an incorrect selection could lead to reduced prediction accuracy
compared to using a single model.

On the other hand, in [11], the authors showed that the utilization of an ensemble
method for averaging DNN predictions can provide reliable estimates of uncertainty.
In addition, the authors in [12] pointed out that a deep ensemble not only performs well
in quantifying the uncertainty of a model but also has good robustness against out-of-
distribution data. However, little attention has been paid to whether the confidence in the
output predictions of ensemble models is representative of the true probability. The ensem-
ble method requires more training time and computations compared to other confidence
calibration methods, such as Bayesian neural networks and the post-calibration method.

We propose using the approximate ensemble method to calibrate the confidence of
DNNs. We utilize a cyclical learning rate to collect models that are spatially close to
each other but that produce diverse predictions. Instead of individually training multiple
base estimators, our method performs a single supervised training session to obtain well-
calibrated confidence scores. Assume that the training data, D, has N pairs of independent
and identically distributed samples, denoted D = {xn, yn}N

n=1, where x ∈ Rd represents the
d-dimensional features, while y is the label for a classification task and is one of K classes
(i.e., y ∈ {1, . . . , K}). Given the input data, x, our task is to use the DNN to model the
probabilistic predictive distribution of the labels, pθ(y|x), where θ is the weight parameters
of the DNN. During the training phase, we utilize the training set D to conduct standard
supervised learning on the model via the proper scoring rules (which is further explained
in later sections). The parameters of DNNs are often several orders of magnitude greater
than the training data points. That is, they include a large possible function space that may
be very close to the data generation function. Thus, there are multiple low-loss valleys
(local optimums) during the whole learning period, all corresponding to good but different
functions (here, we call them candidate functions). These candidate functions represent
varying assumptions used to determine the underlying fundamental function. The more
candidate functions in the ensemble, the more likely it is to represent the truth, thus,
constructing a more robust model. Figure 1 shows the schematic of the loss landscape
based on SGD optimization. We can see that several local optima appear throughout the
training process. Note that the valley where the loss finally arrives is not considered the
global optimum either.
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Figure 1. Illustration of the 3D loss landscape with SGD optimization of the DNN during the
training phase.

The weights of the model are updated several times in each iteration cycle. The
sampling and saving of these weights are intuitively important to our method. In general,
four metrics are counted in each iteration cycle: training accuracy, training loss, validation
accuracy, and validation loss. Instead of saving the model using the validation accuracy,
we are using a cyclic learning rate for the last 25% training times and saving the network
weights corresponding to the lowest value of the learning rate in each cycle. That is,
when we save the model we only care whether the current cycle learning rate is at its
lowest. Afterwards, we perform stochastic weighted averaging on the multiple sets of
weights obtained.

3.2. Stochastic Weighted Averaging

During the training stage, the multiple local optimal weights generated during the
training process are sampled and simulated as new parameters of the base learner for
inference. Since the loss trajectories and weight values are different, this leads the ensemble
model to make diverse predictions. After the training stage, we save m model weights,
θ1, θ2, . . . , θm each of which are used in the final ensemble. Figure 2 illustrates the data flow
of fusion of our approach. In the inference phase, the given input is fed to multiple base
learners to predict output. The parameters of the multiple base learners are sampled from
the training process by a smart sampling strategy. The method allows for the training of
highly effective ensembles in the same amount of time it takes to train a single DNN.

Average

x

̂y

θmθ
2

θ
1

⋯⋯

Figure 2. The data flow of fusion during the testing phase of our method, where θ1, θ2, . . . , θm indicate
the set of m base estimators, and ŷ represents the output of base estimator, θm, on sample x.

In this work, we treated the ensemble as a uniformly weighted mixture model and
combined the predictions as follows:

p(y|x) = 1
m

m

∑
i=1

pθi (y|x, θi), (1)
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where m denotes the number of DNNs in the ensemble, and θi indicates the parameter of
the DNN. For classification tasks, this corresponds to averaging the predicted probabilities.
The difference is that we output the logit values, p(y|x), of multiple base learners after
weighted averaging; that is, only a set of confidence scores is obtained. The final prediction
result of x is then output according to this score. We hypothesized that weighted averaging
of multiple confidence scores could effectively reduce variance and produce well-calibrated
outputs, and the following experiments proved our hypothesis.

4. Experiment Results

We evaluated our approach using two benchmark datasets with different modalities:
static images and dynamic videos. In both cases, we followed standard training, validation,
and testing protocols. We evaluated the quality of the confidence score estimation and
the accuracy of the prediction. We show across two different datasets that our method
improves confidence scores without reducing classification error.

4.1. Evaluation Calibration Quality

Before showing experiments to recalibrate the classifier, the metrics for evaluating
the effectiveness of the calibration of the classifier need to be presented. Proper scoring
rules measure the quality of predictive uncertainty. A scoring rule assigns a numerical
score to a predictive distribution, p(y|x), rewarding better-calibrated predictions over
worse ones. Negative log-likelihood (NLL) is a popular and proper scoring rule for multi-
class classification tasks when measuring the accuracy of predicted probabilities. Given
probabilistic model p(y|x) and n samples, NLL is defined as follows:

L = −
n

∑
i=1

log(p(yi|xi)). (2)

In the field of deep learning, NLL is also known as cross-entropy loss. In this work, we use
NLL as a training criterion.

To quantify the quality of the given model’s confidence calibration, we use the follow-
ing evaluation metrics: expected calibration error (ECE), maximum calibration error (MCE),
and root mean square calibration error (RMSCE) [24]. ECE measures the correspondence
between the probability and the accuracy of the prediction. It is computed as the average
gap between within-bin accuracy, and within-bin predicted probability for m bins and can
be expressed as follows:

ECE =
N

∑
i

bi‖(pi − ci)‖ (3)

where bi indicates the fraction of data points in bin i, pi presents the average accuracy in
bin i, and ci indicates the average confidence in bin i.

In contrast to evaluation metrics, reliability diagrams are a visual representation of the
quality of the model’s confidence calibration. It plots the true frequency of a classifier’s
correctly classified labels against the predicted probability. Note that if a DNN is perfectly
calibrated, the diagram should plot the identity function.

4.2. Application 1: Gesture Recognition Task

Computers can interpret human gestures as commands through gesture recognition,
which is a form of perceptual computing user interface. The main objective of gesture
recognition is to categorize a gesture video clip into a specific action group. Gesture
recognition technology is highly applicable in various industries, including robot control,
autonomous driving, and virtual reality. The gesture recognition model should not only
correctly understand the command of the gesture but should also have a certain confidence
in the prediction. Unlike static images, the uncertainty of the deep learning model on
dynamic video is usually more difficult to capture. To evaluate the effectiveness of our
method more comprehensively, we first tested it on a video-based gesture recognition
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dataset. A precisely calibrated gesture recognition system functions as a probabilistic
classifier, allowing for the direct interpretation of the predicted probability output as a
confidence score. This probability gives a certain level of confidence in the prediction.

The publicly available Jester dataset [25] was used to asses the proposed method. It
contains 148,092 videos of people making standard hand gestures in front of a laptop or
webcam. We split the dataset into two categories (a closed set and an open set) and pro-
ceeded to create smaller sets by randomly selecting data from the closed set at a ratio
of approximately 1:4. There are 20 class gestures within the closed mini-datasets, with a
split of 8:1:1 for training, validation, and testing. The training, validation, and testing
sets contain 22,000, 2400, and 2240 gesture samples, respectively. We trained, validated,
and tested all models on the closed Jester mini-dataset in this study.

We utilized the PyTorch 2.1 deep learning framework to implement the proposed
network. The training and validation were conducted on a server containing four NVIDIA
GeForce RTX 3090 GPUs. In our study, we employed a 3D ResNet-18 model that was
initially trained on Kinetics-400. We then proceeded to fine-tune this model using the Jester
training set. We utilized SGD with a momentum of 0.9 as the optimizer and conducted
training on the model for 25 epochs with a batch size of 16. Following the settings from [15],
during the first 75% of training, we adopted the standard decaying learning rate strategy,
followed by a consistent and high learning rate for the remaining 25% (as shown in Figure 3).
The use of a modified learning rate scheme is expected to keep the optimizer bouncing
around the optimum, exploring different models rather than simply converging to a single
solution. Our model obtained 90.02% accuracy on the training set at the 25th epoch, with a
corresponding cross-entropy loss of approximately 0.28. At the same time, the validation
set achieved its best rate of 86.35% at the 21st epoch.
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Figure 3. Illustration of the learning rate schedule. During the initial 75% of training, a standard
decaying schedule is employed, followed by a high constant value for the remaining 25%. The dots
of different colors represent the weights of the model in different training epochs.

In addition to evaluating the expected calibration error using ECM, MCE, and RM-
SCE, we also report the accuracy and average confidence in the model’s classifications.
The results obtained from the Jester test dataset are summarized in Table 1. We evaluated
our method on multiple scoring functions, including SGD (baseline), MC-Dropout [16],
and Logits-Scaling [26]. On the Jester test set, our method reduced the ECE error from
3.76% to 1.16%. Meanwhile, we observed that our method not only significantly reduced
ECE and MCE but also improved the prediction accuracy of the model to a certain extent.
For example, classification accuracy increased from 83.89% to 84.44%. The experiment
report further illustrates the effectiveness of our method in improving the quality of the
confidence estimation from DNNs in gesture recognition tasks.
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Table 1. Summary of classification accuracy, average confidence, RMSCE, MCE, and ECE, compared
to other methods, as obtained from the Jester test set. All values are percentages; (↑) indicates that
higher values are desirable, (↓) means lower values are better, and bold indicates the best results.

Method
Jester Test Set

Acc. (↑) Conf. (↑) RMSCE (↓) MCE (↓) ECE (↓)
Baseline (SGD) 83.89 87.65 8.73 4.53 3.76
MC-Dropout 84.21 89.91 3.70 8.34 4.83

Logits-Scaling 83.32 87.21 5.19 4.66 4.24
Ours 84.44 85.09 3.71 2.49 1.16

We used visualization to gain an intuitive understanding of the calibration of the
predicted probabilities. The reliability diagram illustrates the degree of calibration in
the probabilistic predictions of a classifier. The reliability diagram displays the average
predicted probability on the x-axis for each bin, while the y-axis reflects the fraction of
positive samples, indicating the proportion of samples with positive categories in each bin.
The diagram should represent the identity function if the model is accurately calibrated.
If the diagonal is not perfect, it suggests the model was not calibrated correctly. The com-
parison diagrams in Figure 4 show that after using our method, the gap was effectively
reduced, and the reliability diagram is closer to an identity function. The upper charts in
the figure are visualizations of the average confidence and accuracy, and below them are
reliability diagrams.

Figure 4. Comparison of reliability diagram and confidence histogram on the Jester test set. The upper
charts are visualizations of average confidence and accuracy, and below them are reliability diagrams
from (left) the SGD optimization method and (right) from our method.

4.3. Application 2: Image Classification Task

To evaluate the performance of the model in different tasks, we tested our proposed
method in an image classification task using the CINIC-10 datasets [27]. They were com-
piled by combining CIFAR-10 with images selected and downsampled from the Ima-
geNet database. The CINIC-10 datasets had 270,000 images and were divided into three
groups for training, validation, and testing. In each subset, there were 10 categories, each
with 90,000 images. We used three architectures that were pre-trained on ImageNet for a
backbone network (ResNet-50 [28], Wide-ResNet-50 [29], and VGG-16 [30]), and we then
fine-tuned them on the CINIC-10 training set using the transfer learning approach. The ex-
perimental setup and training strategy are consistent with those presented in Section 4.2.
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Comparisons of classification accuracy, average confidence, RMSCE, MCE, and ECE of
the different architectures and methods on the CINIC-10 test set are summarized in Table 2.
We evaluated our method using the same scoring function as in Section 4.2, including: SGD
(baseline), MC-Dropout [16], and Logits-Scaling [26]. We observed that the VGG16-based
architecture yielded the best confidence calibration, with improved classification accuracy.
The other two architectures significantly improved accuracy by about 1.13% on average,
compared with the SGD optimization approach. Comparative results demonstrate that our
approach decreases the model’s calibration error while also increasing its accuracy.

Table 2. Summary of classification accuracy, average confidence, RMSCE, MCE, and ECE compared
to other methods, as obtained from the CINIC-10 test set, where (↑) indicates higher values are
desirable, (↓) means lower values are better, and bold indicates the best result.

Architecture Method
CINIC-10 Test Set

Acc. (↑) Conf. (↑) RMSCE (↓) MCE (↓) ECE (↓)

ResNet-50

Baseline (SGD) 72.92 75.93 5.22 3.39 3.01
MC-Dropout 73.03 76.28 5.70 3.62 3.25

Logits-Scaling 72.46 75.66 6.02 3.59 3.21
Ours 73.63 75.78 4.38 2.80 2.36

Wide-ResNet-50

Baseline (SGD) 73.06 77.01 7.48 4.43 3.97
MC-Dropout 72.82 77.05 7.85 4.83 4.31

Logits-Scaling 69.01 72.04 5.67 3.57 3.07
Ours 74.62 76.38 7.42 3.62 2.52

VGG-16

Baseline (SGD) 78.07 82.69 8.95 5.23 4.62
MC Dropout 78.97 85.23 20.01 7.04 6.29

Logits-Scaling 76.08 78.42 5.79 2.56 2.37
Ours 80.51 80.11 3.56 0.51 0.39

The MC-dropout method can be viewed as an approximation of Bayesian neural
networks. The method requires modification of the original network architecture and in the
testing phase. It is also necessary to perform multiple forward propagation and average
multiple predictions during the testing phase. In contrast, our method can be regarded
as a trainable method. There is no need to modify the model structure, and only one
forward propagation is required in the test phase, which greatly reduces the inference
time. The Logits-scaling method requires recalculating a hyperparameter T based on the
validation set after training and using T to modify the output of softmax during inference
on new inputs. An obvious shortcoming of this method is that it is very dependent on data
sets and has relatively less generality.

To visualize the calibration effect of our method on the CINIC-10 dataset, we also
visualized the calibration curves. The reliability diagram before and after confidence
calibration is shown in Figure 5. The red dashed line indicates the best calibration, where
the output confidence precisely reflects the accuracy. In the confidence histogram (upper
left), we observe a large gap between the mean confidence and the confidence; while in the
upper right graph (our method), we can see that this gap is greatly reduced. Comparing
the left and right reliability diagrams, we can also visualize that our approach is closer to
the red dashed line. These results are consistent with what we observed in application 1 in
Section 4.2.
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Figure 5. Comparison of reliability diagram and confidence histogram from VGG-16 trained on the
CINIC-10 test set. The upper charts are visualizations of average confidence and accuracy, and below
them are reliability diagrams from (left) the SGD optimization method and (right) from our method.

5. Discussion and Future Work

We believe that there are three important factors that make our proposed approach
work. First, our method uses a modified learning rate schedule. This allows the optimizer
to continuously explore the optimal weights for high performance rather than just reaching
or limiting itself to a single solution. For example, we use a standard decaying learning
rate strategy for the first 75% of iterations, and a cyclical learning rate for the remaining
25% of iterations. Second, we choose to save the corresponding model weights when the
learning rate decays to its lowest value rather then saving model weights according to the
validation accuracy. Note that we are using a cyclical learning rate, so the learning rate
will decay to the lowest value multiple times; that is, we obtain multiple sets of model
weight parameters. The third is to average the model weight parameters traversed by the
optimizer. The key idea behind this is to leverage deep learning’s unique training objectives
flatness [14] to improve generalization and reduce overconfidence.

DNNs are usually learned through a stochastic training algorithm, which means the
DNN is sensitive to the training data and may learn a different set of weights at the end of
the training session, resulting in different predictions. The goal of machine learning is to
develop methods and algorithms to learn from the data; that is, extract the residing informa-
tion from the data. In fact, learning parameters from data is an inverse problem; we need to
infer the cause (parameters) from the result (observed data). In this work, we proposed an
approximate deep ensemble method to calibrate the confidence of DNNs. The ambiguity
in target y for a given x was captured by obtaining a probabilistic model with appropriate
scoring rules. In addition, the approximate combination of ensembles was used to predict
the output for x in an attempt to capture model uncertainty. Through experiments on two
benchmark datasets for image classification and gesture recognition, we demonstrated
that our method obtained well-calibrated confidence estimates. Removing correlations
from individual network predictions to promote ensemble diversity and further improve
performance is left to future work. It would be meaningful to refine multiple ensemble
models into a simpler single model to obtain a model with good confidence calibration.
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Abstract: The visual analysis of trajectory topics is helpful for mining potential trajectory patterns, but
the traditional visual analysis method ignores the evolution of the temporal coherence of the topic. In
this paper, a novel visual analysis method for dynamic topic analysis of traffic trajectory is proposed,
which is used to explore and analyze the traffic trajectory topic and evolution. Firstly, the spatial
information is integrated into trajectory words, calculating the dynamic trajectory topic model based
on dynamic analysis modeling and, consequently, correlating the evolution of the trajectory topic
between adjacent time slices. Secondly, in the trajectory topic, a representative trajectory sequence
is generated to overcome the problem of the trajectory topic model not considering the word order,
based on the improved Markov Decision Process. Subsequently, a set of meaningful visual codes is
designed to analyze the trajectory topic and its evolution through the parallel window visual model
from a spatial-temporal perspective. Finally, a case evaluation shows that the proposed method is
effective in analyzing potential trajectory movement patterns.

Keywords: trajectory topic model; Markov Decision Process; visual analysis

1. Introduction

Visual exploration of traffic trajectory data is constrained by the limited capacity for
visual information and the lack of interactive guidance. Traffic trajectories record the histor-
ical travel of vehicles, with visual information and potential features at spatial-temporal
levels. Exploring traffic trajectories through visualization can intuitively obtain visual
information about the trajectories and mine the potential movement patterns. However,
drawing the traffic trajectory directly on a map will be limited by the information capacity
and will cause problems such as visual occlusion. The most intuitive method to help the
visual exploration of traffic trajectory is to reduce the visual density by computing the
trajectory features. Liu et al. [1] effectively reduce the visual density of Origin to Desti-
natin (OD) flow by dividing and exploring urban functional areas. Liu et al. [2] employ a
tensor decomposition algorithm to segment multi-dimensional spatiotemporal data and
reduce the number of visualization elements on the same screen. Zhou et al. [3] propose
a visual exploration system to reduce the visual clutter and strengthen the relevance of
OD flows. Deng et al. [4] provide an efficient visual presentation design of temporal
events by abstracting the workflow of temporal and spatial interaction association analysis.
Andrienko et al. [5] designed a method to abstract the characteristics of spatio-temporal

Electronics 2024, 13, 467. https://doi.org/10.3390/electronics13030467 https://www.mdpi.com/journal/electronics379



Electronics 2024, 13, 467

OD mobility to reduce the intersection and occlusion of the trajectory flow graph. Un-
fortunately, these methods calculate trajectory patterns at the data feature level and do
not provide enough semantic guidance for the analyst. In addition, analysts usually need
to manually select and iterate different motion data slices to search for hidden patterns
in trajectory data, making it difficult to deeply analyze potential trajectory movement
patterns from a spatial-temporal perspective. We address these issues and propose a set
of meaningful visual encodings. This visualization model establishes a parallel window
model. The model presents the trajectory topic characteristics from the spatial and temporal
perspectives, which is helpful in reducing visual interference and providing guidance for
visual interactive exploration.

The dynamic topic information in the trajectory topic model reflects the evolution
of the topic. A topic model, which provides topic guidance for trajectory analysis by
applying the topic model to trajectory data analysis, is a kind of statistical model. Most
of the existing methods that apply topic models to trajectory modeling are based on
Latent Dirichlet Allocation (LDA) [6], Non-negative Matrix Factorization (NMF) [7], and
other unsupervised topic algorithms, focusing on optimizing topic extraction strategies.
Specifically, Chu et al. [8] introduce the LDA to infer hidden patterns of moving taxi
populations. Liu et al. [9] transform the traffic data into a document library to capture
latent traffic semantic patterns based on the NMF model. Liu et al. [10] employ the bigram
topic model to analyze textualized trajectories. Tao et al. [11] introduce a hierarchical topic
model H-NMF to extract multi-granularity traffic topics to capture mobility patterns. Traffic
trajectory is dynamic, and the corresponding trajectory topic constantly evolves. However,
the trajectory topic analysis based on the above modeling methods only considers the
trajectory spatial information. It does not consider the temporal dynamic evolution of the
trajectory topic, resulting in the loss of trajectory topic evolution information.

Trajectory features are described by trajectory semantics [12]. Trajectory order is an
essential part of the semantics of trajectory topics. The topic model describes the topic
content by counting word frequency but does not consider the ordinal relationship between
words. Traffic trajectories are sequentially connected trajectory segments with a sequential
relationship. Trajectory sequence information is necessary for trajectory topic modeling.
However, applying the topic model to the topic modeling of traffic trajectory is challenging
and needs to overcome the influence of the topic model not containing word sequence
information on the interpretability of trajectory topics. In summary, there needs to be more
trajectory order semantics and topic evolution information in existing work on trajectory
topics. This implies the need for visual encodings that provide sufficient semantic guidance
to analyze trajectory topic evolution.

To solve these problems, a visual analysis method is proposed to analyze the dynamic
topics of trajectories. This method considers the evolution information of trajectory topics
and overcomes the problem of missing word sequence information in probabilistic models.
Firstly, the dynamic topic model (DTM) [13] for a trajectory is established to analyze the
trajectory topic evolution fitted by parameter distribution. Secondly, by calculating the
thematic entropy, we can quantify the informational content of the trajectory topics, which
indicates meaningful thematic time segments, thereby reducing the time required for
the manual repetitive selection of data slices. Subsequently, we employ Markov chains
to represent trajectory words and address the issue of topic models not retaining word
order information. Based on the Markov chains, we utilize an improved Markov Decision
Process (MDP) to generate trajectory sequences that represent the topics, which aids in
analyzing the topic content. Moreover, we introduce a meaningful visual encoding scheme,
presenting trajectory topic visualizations separately through parallel views from both
abstract maps and thematic information perspectives. Lastly, a case study based on a real
dataset was conducted to demonstrate the efficacy of the methodology proposed in this
paper in exploring dynamic trajectory topics. In summary, the primary contributions of
this work are as follows:
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• A trajectory dynamic topic model is proposed. This model considers the topic evolu-
tion and is used to process traffic trajectory data. This model helps to obtain trajectory
dynamic topics and capture their evolution. The topic entropy is calculated to rep-
resent the volume of information in trajectory topics and is utilized to analyze the
evolution of the topic.

• The improved Markov Decision Process is proposed to generate representative trajec-
tory sequences of a topic. This method aims to overcome the problem of probabilistic
models which often lose word sequence information.

• The visual models, featured with the parallel and regular arrangement, are designed
to help users explore the trajectory dynamic topics and related indicators.

• Experimental studies based on the publicly available dataset demonstrate the effec-
tiveness of this method in trajectory dynamic topic exploration.

2. Related Works

2.1. Trajectory Topic Modeling

The basic idea of topic modeling is to vectorize a given corpus by term frequency
or inverse document frequency. Topic modeling decomposes a document-term matrix
into document-topic and topic-word subsets, subsequently optimizing these subsets using
probabilistic or decomposition techniques. The clustering of implicit semantic structures in
documents obtained through topic modeling can be applied to the discovery of trajectory
semantic structures and trajectory topics. Trajectory topic modeling aims to describe motion
patterns by calculating sub-trajectory frequency information, thereby further extracting the
content of trajectory topics. Commonly used topic models include LDA [6], NMF [7], and
others.

As common topic computing methods, LDA and NMF are widely used in topic mod-
eling. LDA computes the posterior distribution of the data based on Bayesian algorithms,
whereas NMF produces deterministic outcomes from matrix decomposition, not proba-
bilistic values. Current efforts in topic modeling largely revolve around modifications
or advancements of the LDA and NMF methodologies. For instance, Liao et al. [14] es-
tablished a trajectory topic model based on LDA to unearth latent driving patterns and
analyze a driver’s travel intentions. Huang et al. [15] employed LDA to explore hidden ship
mobility patterns from the trajectory document corpus. In contrast, Liu et al. [2] applied
tensor decomposition to multi-dimensional spatiotemporal data to extract regional patterns.
Addressing the challenge of selecting an optimal number of topics, Liu et al. [9] proposed
an interactive trajectory topic modeling method based on a semi-supervised non-negative
matrix factorization (SS-NMF) for trajectory data. Similarly, Tao et al. [11] presented a
hierarchical topic analysis approach to balance the analyses of varying granularities of
movement patterns. Notably, NMF’s performance degrades with more significant numbers
of topics, whereas LDA exhibits more robust modeling results.

Beyond using LDA and NMF for trajectory topic modeling, Liu et al. [10] adopted
the Biterm Topic Model (BTM) [16] to model trajectory movement patterns, leveraging
the Apriori algorithm for sub-trajectory extraction and using sub-trajectory sequences to
indicate directionality. Originating for short-text analysis, BTM differs from LDA in that its
word generation is corpus-wide. Without a document hierarchy, BTM primarily retrieves
word probabilities related to topics, making it challenging to obtain document-specific
topic probabilities. However, different trajectory topics are implied in trajectory datasets.
Analyzing trajectory data deeply and obtaining specific topic probabilities using BTM is
difficult.

These topic modeling methods, including LDA, NMF, and BTM, calculate the trajectory
topic within the time interval and do not calculate the trajectory topic evolution between
time slices at the model level. Dynamic topic modeling adds a time factor, and the topic
content changes with time. Corresponding Dynamic topic versions exist for NMF and
LDA, namely, Dynamic NMF [7] and DTM [13]. Dynamic NMF [17] uses the state space to
represent the NMF time dependence. The dynamic NMF first divides the corpus into time
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slices and then runs the NMF algorithm on the time window to obtain the topic of each
time slice. After finding topics in each time slice, the dynamic NMF classifies semantically
similar topics as dynamic topics. DTM is based on LDA but uses variational methods to
connect topic variations in different time slices. Compared with Dynamic NMF, DTM has
more continuity between adjacent time slices.

A significant limitation of these methods is their focus on trajectory topics within spe-
cific time intervals without accounting for temporal evolution at the model level. Dynamic
topic modeling introduces time as a variable, allowing topic content to evolve. NMF and
LDA have their dynamic counterparts, specifically Dynamic NMF and DTM. Dynamic
NMF represents NMF’s temporal dependencies using state spaces, segments the corpus
into temporal slices, and then runs the NMF algorithm over these time windows. After iden-
tifying topics within each time slice, semantically similar topics are categorized as dynamic
topics. On the other hand, DTM, grounded in LDA, employs variational methods to link
topic variations across distinct temporal slices, offering enhanced continuity compared to
Dynamic NMF. Yao et al. [18], leveraging non-trajectory data from social media, developed
a DTM for spatiotemporal sequence analysis. Specifically, they achieved dynamic topic
analysis by covering adjacent temporal slices with radii from social media locational points.
This approach bypasses trajectory point connections and computes trajectory topics at the
individual point level.

In general, there is an issue of weak continuity in trajectory topics across slices when
establishing a trajectory topic model. To address this problem, this paper introduces DTM
into the analysis of dynamic trajectory topics for the first time, continuously tracking the
evolution of trajectory topics through DTM. Additionally, by improving the Monte Carlo
method to represent transition probabilities between trajectory segments, it constructs tra-
jectory segment sequence information, providing more details for describing the evolution
of trajectory topics.

2.2. Visual Analysis of Trajectory Topic

Visual analysis is often used to explore the inherent features and patterns encoded
in trajectory data, because of the connection between humans and computers provided
by interactive visual interfaces [19,20]. Topic visualization primarily revolves around the
interrelationships among topic sets, encompassing the temporal evolution of topics and
the static relations between them. The Theme River [21], an early visualization approach,
is well-suited for analyzing topic evolution. While the fluid visual characteristics of the
Theme River facilitate capturing change trends over time, its river-like curve metaphor
poses challenges for quantitative analysis of topic attributes. In addition, Sankey diagrams
are another standard visualization tool. They use rectangles to quantify topic evolution but
can become crowded and complex when there is a multitude of topics. To overcome the
above problems, the parallel matrix heatmap is employed for quantitative analysis of topic
evolution, enabling the identification of trends in topic evolution. The visual feature of its
neat arrangement allows for a clear and intuitive interpretation of visual information.

Methods for trajectory topic visual analysis merge geographical and visualization views,
offering multi-level spatial information for trajectory topic pattern analysis. He et al. [22] in-
corporated LDA into trajectory topics to depict spatio-temporal topic variations, harnessing
visual filters to mine spatio-temporal text data. Similarly, Chu et al. [8] employed LDA to
dissect vast amounts of taxi trajectory data within cities, unveiling concealed knowledge
through visualization. Similarly, Gao et al. [23] leveraged LDA to extract topics related
to road cyclists’ behavior and movement semantics, adopting clustering and interactive
visualization techniques to identify further clusters of similar cyclists and road segments
within the city. By visualizing and retrieving taxi trajectory data, AL-Douhuki et al. [24]
provide a semantic management approach for taxi trajectory data. Ali et al. [25] proposed
a topic modeling approach grounded in LDA based on ontology, extracting topics and
features by retrieving traffic content from social networks. Gao et al. [23] used LDA to
extract the topics of cyclist behavior semantics and moving semantics on roads. Then,
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they implemented multiple interactive visual interfaces to facilitate the interpretation for
analysts. Yan et al. [26] utilized a BTM to unearth latent topics within trajectories and
subsequently analyze these topics via visualization.

Concerning trajectory points, Zhou et al. [27] and Liu et al. [1] implemented sam-
pling strategies to reduce visual clutter, facilitating the discovery of trajectory patterns.
Recognizing the large-scale nature of trajectory data, Zhou et al. [3] designed visual repre-
sentations of Origin-Destination (OD) flows, iteratively probing OD movement patterns.
Andrienko et al. [5] aggregated data to identify spatial similarities in trajectories and ab-
stracted spatio-temporal features to delve into trajectory flows. Wang et al. [28] introduced
a multi-scale geographical area data visualization method predicated on spatial attribute
associations, enhancing visual perception of both global and detailed features. While these
methodologies provide visual optimization at the trajectory point and line levels, investing
considerable effort in visually exploring trajectory features, they fall short in contrasting
spatial trajectory topic information and topic features between temporal slices.

In summary, to effectively explore the evolution of trajectory topics from different
perspectives of trajectory points, trajectory lines, and trajectory topics using visual compo-
nents, this paper proposes a multi-entity cascade visual analysis method under parallel
views. This method aims to further reveal the potential patterns of dynamic trajectory
topics by presenting the topic features through parallel abstract graphs and parallel heat
matrices containing time series information. The parallel view overcomes the challenges of
quantitatively analyzing topic river graphs and dealing with the complexity of crowded
Sankey diagrams by organizing visual elements in a parallel layout and cascading the
analysis of topic semantics. This study studies the construction and characteristics of dy-
namic spatio-temporal trajectory graphs to comprehend the evolution of dynamic trajectory
topics.

3. Methods

3.1. Overview

One of the challenges in trajectory topic modeling and analysis is effectively integrat-
ing both temporal and spatial information into the topic computation. To address these
intricacies, our study employed three specific strategies.

First, concerning temporal information, we utilized trajectory segments partitioned
based on specific time intervals to model dynamic trajectory topics. Given that the starting
and ending points of trajectory segments are fixed, there is no ambiguity in trajectory
words, meaning each trajectory word has a singular interpretation. Furthermore, the MDP
generates trajectory sequences within the collection of trajectory segments representing
a trajectory topic, ensuring that spatially discrete trajectory segments are interconnected.
By leveraging these three strategies, we can efficiently compute trajectory topics imbued
with both temporal and spatial dimensions. In the following sections of this chapter, we
will delve deeper into these methodologies, providing a comprehensive exposition of their
intricacies and applications.

3.2. Trajectory Dynamic Topic Modeling

Topic modeling employs statistical methods to discern abstract topics within doc-
uments. When applied to trajectory information, it facilitates the extraction of abstract
trajectory topics. The DTM, in contrast to conventional topic models such as LDA and
NMF, incorporates temporal sequence information, making it particularly well-suited to
the temporal variability inherent in trajectories. A study closely aligned with our approach
is [9], where the authors employed NMF to topic-model trajectories across different time
periods. However, such an approach lacks temporal coherence in trajectory topics. Com-
pared to NMF, DTM offers superior coherence and yields more robust and flexible fitting
results.

DTM treats the posterior distribution of the model parameters in the current time
window as the conditional distribution for the parameters in the subsequent time window.
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Building upon the foundation of LDA by integrating a temporal dimension, DTM becomes
especially adept at analyzing topic evolution. However, being a probabilistic model,
DTM overlooks word order during its computational process. Such an oversight can be
problematic, given that word order mirrors the sequential nature of trajectory segments.
Our study addresses this limitation through an enhanced MDP, which we will delve into
comprehensively in Section 3.3.

The trajectory DTM describes the trajectory motion pattern with time. In the DTM of
traffic trajectory, we take the trajectory segment as a word and integrate the trajectory spatial
information into the word. The trajectory data is divided according to time slices, with the
latter moment evolving from the previous moment. Since the Dirichlet distribution is not
suitable for use in time series models, as shown in Equation (1), a Gaussian noise evolved
state space model is used to connect the natural parameter β about the trajectory topic to
sample the word distribution Φ(Z(dn)) about the trajectory topic Z(dn). In Equation (2),
the natural parameter α about the trajectory topic ratio is also connected using the Gaussian
noise evolution state-space model to sample the trajectory topic distribution Θ(d) of the
generated trajectory document d. In the DTM model, the prior probabilities α for document
topics and the distribution β for topics are dynamically iterated.

βt+1,k

∣∣∣βt,k ∼ N
(

βt,k, σ2 I
)

(1)

αt+1,k

∣∣∣αt,k ∼ N
(

αt,k, δ2 I
)

(2)

Equations (1) and (2) link the natural parameters βt and αt for each topic, where βt
and αt are the Gaussian noise natural parameters for time slice t and topic k. σ and δ
are the variance parameters. After linking both the trajectory topic and its proportion
distribution, we sequentially bind the collection of trajectory topic models. The corpus
generation process for the trajectory DTM is as follows: Within time slice t, a possible word
(trajectory segment) distribution β for trajectory topic k is first sampled. Then, a potential
topic distribution α(t) for each document (a collection of trajectory segments) is sampled.
For each document within time slice t, the topic distribution η for document d is obtained.
For every word in the document during time slice t, the possible topic z(t, d, n) for the nth
word in document d is sampled, and the corresponding word w(t, d, n) is generated. The
number of topics is determined using an algorithm that identifies the optimal topic count
based on perplexity. This generation process’s graphical model is illustrated in Figure 1.
Both α and β at time t are generated based on α and β at time t− 1. Using time dynamics,
the kth topic at slice t smoothly evolves from the kth topic at slice t− 1. When the horizontal
arrow is removed, the graphical model is reduced to a set of separate topic models.

Figure 1. The generation process of the trajectory dynamic topic model includes three time slices [15].
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The goal of the trajectory DTM is to calculate the posterior distribution. The objective
of the variational method is to optimize the free parameters of the distribution over latent
variables, making the distribution closely approximate the true posterior in terms of
Kullback–Liebler (KL) divergence and subsequently substituting it for the genuine posterior.
Within DTM, a variational approach based on the variational Kalman filter approximation is
utilized to compute the posterior distribution [13]. Entropy measures the average amount of
information expressed in every allocation of a random variable, depicting the system’s level
of disorder. We posit that when the system exhibits a low level of disorder, the trajectory
topic is relatively stable. Conversely, with high disorder levels, the trajectory topics are
relatively diverse. We compute the information entropy concerning topic probabilities
within each time slice to provide information quantity across varying time slices, assisting in
the subsequent selection of representative time slices for further analysis. The topic entropy
at time t can be expressed as in Equation (3), where p represents the topic probability
distribution at moment t.

H(t) = −∑K
t=1[p(t)log p(t)] (3)

3.3. Trajectory Dynamic Topic Generating
3.3.1. Sub-Trajectory Modeling

The trajectory dynamic topic consists of sub-trajectory sets that adhere to Markovian
properties. Extracting representative trajectory sequences from these sub-trajectory sets
embodies the trajectory topic. Trajectory segments illustrate transitions between states. Fol-
lowing a particular policy, the MDP can generate trajectory sequences within the dynamic
topic sub-trajectory sets that adhere to the Markovian properties, representing the trajectory
topic. A Markov chain depicts the random process of transitioning from one state to another
and is a mathematical construct composed of a set of random variables. Sub-trajectory
sets describe inter-regional transitions, fundamentally representing state transitions. We
can characterize the transition relationships within these sub-trajectory sets using Markov
chains. The trajectory topic is composed of the sub-trajectory set E = {e1, e2, · · · , en}. The
set of areas for trajectory transitions form the state space S = {s1, s2, · · · sn}. A sub-trajectory
xi, transitioning from region si to another region xj, exhibits frequency characteristics. Ac-
cording to Markovian properties, the probability of moving from the current state to the
next is only dependent on the current state, and not on prior locations, adhering to the
following Equation (4):

Pr(Xn+1 = x|X1 = x, X2 = x2, · · · , Xn = xn) = Pr(Xn+1 = x|Xn = x) (4)

where {X1, X2, · · · , Xn} represents the random state sequence comprised of state space S.
Pr(Xn+1 = x|Xn = x) represents the probability of the current state Xn transitioning to the
next state Xn+1. Given that the random process of the trajectory topic is a mathematical
construct regarding the set of random variables of the sub-trajectory combinations, we can
derive representative trajectories within the trajectory topic by constructing a Markov chain
related to the sub-trajectory topic.

The Markov chain uses a probabilistic automaton to display transition probabilities
between states, resulting in the transition matrix P. This matrix is a series of directed
graphs, with edges representing the probability of transitioning from Sn to Sn+1. Each state
in the state space is included once as a row and a column, with the matrix indicating the
probability of moving from a row state to a column state and the probabilities of each row
summing up to 1. The steady-state distribution of the Markov chain, regarding the sub-
trajectory set, aids in generating consistent trajectory sequences. Within the sub-trajectory
set, the time-invariant Markov chain {Xn, n ≥ 0} of the transition matrix P has its initial
state space Si, conforming to the probability distribution ∅ = {∅0,∅1, . . . ,∅n}, satisfying
the matrix Equation (5):

∅ = ∅P (5)
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where ∅ represents the steady-state distribution of the Markov chain, meaning a time-
invariant Markov chain is wholly described by its initial state space Si and its transition
matrix P. We simulate the trajectory topic’s initial state probability distribution ∅i and
transition matrix against matrix Equation (5). As illustrated in Figure 2, the initial state of
the sub-trajectories within the topic satisfies the stationary distribution, which can make
the Markov process of the trajectory topic a stationary random process. As shown in
Figure 2, the vertical axis is the probability of sub-trajectory state, and the horizontal axis
is the number of iterations. Different colored line segments represent different trajectory
segments. After approximately 60 simulation steps, a steady state is achieved under the
action of the transition matrix P, with the distribution beginning to converge to a stable
distribution at a certain point. Hence, the initial state of the sub-trajectory collection
concerning the trajectory topic complies with the steady-state distribution. This implies
that no matter the initial state of the trajectory, the equilibrium distribution will always
be the same, achieving a stable initialization. The MDP concerning the sub-trajectory
becomes a stationary stochastic process, meaning its finite-dimensional distributions are
translation-invariant. This can further generate stable Markov sequences that represent the
trajectory topic.

Figure 2. The trend of transition probability of sub-trajectories within a trajectory topic as the number
of iterations increases. Lines represent trajectory topics, distinguished by different colors.

3.3.2. Trajectory Sequence Generating

The MDP elucidates the decision-making aspect of state transitions within Markov
sequences. Within the sub-trajectory sets of the trajectory topic, transitions between sub-
trajectories adhere to Markovian properties. Representative trajectory sequences within the
trajectory topic can be generated using the MDP. This sequentially decided representative
Markov sequence can serve as a succinct representation of the trajectory topic.

Formally, the MDP concerning the sub-trajectory set can be represented by the tuple
< S, A, R, P, π >. The state S = {s1, s2, · · · , sn} signifies the set of regions for trajectory
transitions. The action space A = {a1, a2, · · · , an} depicts transitions between states,
essentially forming the starting point Si and endpoint Sj of a sub-trajectory. The reward
R reflects the reward achievable when transitioning from one state to another within the
action space. As illustrated by Equation (6):

R = (1 + k)P− kLp (6)

the reward value R is composed of two components, specifically the transition probability
P and the penalty term Φ. The penalty term Φ is composed of hyperparameters k and Lp.
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Our aspiration is for the target sub-trajectory segment to maintain a relatively consistent
speed, fluctuating within a certain speed range. As presented in Equation (7):

Lp = |V −Vbm| ×
(
∑N

i=0 vi − vbmi

)−1
(7)

the objective of establishing the penalty term Lp is to curtail trajectory segments with
substantial speed deviations. Consequently, we obtain the time slices of the trajectory
dynamic topic and the preset number of trajectory segments N to compute the baseline
speed Vbm. Subsequently, trajectory segments with significant deviations are penalized. The
transition probability P : S× A× S→ [0, 1] expresses the probability of an action transi-
tioning from one state to another. The essence of the policy π is to maximize the reward for
each action. Specifically, π commences from a stable steady-state initial condition. During
each trajectory transition, it randomly selects actions based on the transition probability,
conducts finite dynamic lookups, and eventually attains the Markov sequence representing
the trajectory topic.

3.4. Data Set and Hyperparameter Settings

We chose taxi trajectory data from Chengdu as our experimental dataset for our study.
This dataset comprises approximately 14,000 taxi-formatted trajectories commonly used
for trajectory research. The dataset includes vehicle ID, latitude, longitude, passengers,
date, and time attributes from 3 August 2014, to 30 August 2014 [29]. Before running the
trajectory dynamic topic modeling, we calculated, on an hourly basis, the hyperparameters
suitable for the DTM on this data. We employed perplexity and coherence to guide
the acquisition of the optimal topic number. A lower perplexity indicates better topic
performance. Coherence computation measures the consistency of words constituting
a topic. A higher coherence score means topic words reinforce each other, enhancing
the interpretability of the topic. Figure 3 describes the consistency score results of the
experimental dataset. After evaluating the performance of all measurement metrics, we
settled on 17 as the number of topics to be computed.

  
(a) UCI (b) UMASS 

  
(c) NPMI (d) perplexity 

Figure 3. The coherence scores and perplexity are calculated which describe topic performance. Topic
coherence measures the coherence of words within a topic; higher coherence is preferable. Indicators
describing topic coherence include UCI [30], UMASS [31], and NPMI [32]. Lower perplexity indicates
a better topic model.
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4. Visual Design

From a spatiotemporal perspective, we aim to dissect the composition and evolution of
trajectory topics. The visual analysis of dynamic trajectory topics presents challenges. First,
the dynamism of trajectory topics requires an intuitive representation through visualization,
showcasing sequential changes across time and space. Secondly, given that dynamic
trajectory topics are expressed as a series of trajectory word sets, a need arises to envisage
the three-dimensional sequential evolution information linking time intervals, trajectory
topics, and topic words.

We introduce the Parallel Viewport Visualization method for dynamic trajectory topic
analysis to address these challenges. This technique provides a clear depiction of the
dynamic shifts in trajectory topics through its parallel temporal visualization module
and abstract map correlation module. This section delves deeper into the visualization
technique for analyzing dynamic trajectory topic models.

4.1. Trajectory Dynamic Topic Time Evolution Analysis

The evolution of trajectory topics necessitates a compelling portrayal of their progres-
sion over time, offering a visual glance of the topic components. The information regarding
the evolution of dynamic trajectory topics is embedded across multiple temporal slices,
spanning various topics, each bearing its temporal evolution of topic words. This calls for
an efficient visualization encompassing the three-dimensional data related to time, topic,
and topic words. We calculated the topic distribution for each time slice and the evolution
of specific topics between different time slices. We further assessed the information content
of time slices and topics using entropy calculations. As illustrated in Figure 4, trajectory
dynamic topic calculation consists of three parts. First, the original trajectory data is pro-
cessed into a time-slice document composed of trajectory words, and then the trajectory
dynamic topic is obtained by DTM and improved by MDP. Finally, the spatial and temporal
evolution information of the trajectory dynamic topic is analyzed through the map view,
parallel abstract map, and parallel matrix heatmap.

Figure 4. Calculation pipeline of trajectory dynamic topic. It represents the data analysis process
from processing trajectory data and establishing a dynamic trajectory model to visual analysis of the
dynamic trajectory model. Starting with data processing, the dataset is partitioned based on time
slices, forming trajectory documents composed of trajectory segments. Subsequently, the DTM is
utilized to establish a dynamic trajectory topic model. MDP is employed to generate representative
trajectory sequences. Finally, combining maps and parallel views, spatial and temporal visual analysis
is conducted to explore the evolution of trajectory topics.
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While topic river plots are a conventional tool to visualize topic transitions, their
curve estimations can introduce visual uncertainties. Thus, it becomes essential to sidestep
visual biases stemming from visual encoding. To overcome these problems, we adopted
the parallel matrix heatmap on cascade analysis. Comprising two parallel heatmaps and
associated components, it facilitates efficient visual searches of dense three-dimensional
information within a visually organized layout.

Figure 5C’s topic evolution heatmap and Figure 5E’s topic word heatmap form the
parallel matrix heatmap, offering a concise and intuitive representation of time-topic
and time-topic word information. The hierarchical construction of the time-topic and
time-topic word cascade analysis allows for interaction across different hierarchical levels.
In Figure 5C’s heatmap, the x-axis denotes time, and the y-axis represents topics, with
rectangle sizes encoding the composition of trajectory topics for corresponding time slices.
To optimize exploration, we outlined rectangles with the highest probabilities in each row
and column to swiftly pinpoint representative sub-topics. To reduce user interaction time
when selecting the target trajectory’s time slice, we computed the entropy of topics for each
time slice, aiding users in choosing meaningful topic time slices, and displayed entropy
values using bar charts on the right side of the heatmap. Similarly, the entropy of each topic
was computed for target topic selection and was represented by using bar charts above
the heatmap.

 

Figure 5. The developed trajectory dynamic topic visualization system includes visual components:
toolbox, trajectory topic map, topic evolution heatmap, parallel abstract map, and topic word heatmap.
These visual components correspond to (A–E) respectively. The system shows the dynamic topic of
trajectory from 11–12 August 2014, in one-hour time slices.

Within the dynamic trajectory topic, topic words constituting the topic would evolve
over time. As depicted in Figure 5E’s topic word heatmap, the evolution of the topic
components is described by the changing proportions of topic words. Specifically, the
heatmap elements were shifted from the center-expanding rectangles to left-aligned, right-
expanding rectangles to facilitate clearer vertical comparisons among topic words within
the same category. Typically, the x-axis of the topic word heatmap represents time, and the
y-axis represents the topic words constituting the topic. For this study, we chose to display
the top 35 topic words based on probability rankings, with their respective proportions
among all topic words represented by a pie chart below. One can select topics of interest
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from the topic evolution heatmap to update the topic word heatmap, thus achieving cascade
analysis concerning time, topics, and topic words.

4.2. Spatial Evolution Analysis of Trajectory Dynamic Topic

Exploring trajectory topics through maps provides a spatial perspective on the features
inherent to such trajectories. A trajectory topic is not just a solitary line but also a complex
mosaic comprising numerous sub-trajectory segments. It is much like deciphering the
narrative of a tale that unfolds across different periods in time, spotting the changes
in topics between time slices, and comparing the alterations within these sub-trajectory
segments. In our quest to extract the essence of these trajectory topics, we have crafted
parallel abstract maps. Just imagine running the MDP on sub-trajectory segments within
time slices. This allows us to gauge transition probabilities, eventually leading us to a
trajectory sequence that truly captures the spirit of the overarching trajectory topic. This
spatial data is about geographical coordinates and the sequence in which they are arranged.
Abstract maps convey the trajectory topics by depicting the spatial relative positions of
trajectory points. Utilizing parallel windows in abstract maps allows for presenting the
evolutionary information of trajectory topics from both temporal and spatial dimensions.
This offers an intuitive comparison of representative trajectory sequences across different
periods and topics.

As illustrated in Figure 5D’s parallel abstract map, the horizontal axis represents
time, while the vertical axis signifies topics. Users can select their areas of interest in the
topic evolution heatmap to update the parallel abstract map, facilitating an analysis of
trajectory topic evolution. This multi-instance comparison of spatial information effectively
highlights the differences among trajectory sequences. Furthermore, to counteract the loss
of spatial sequence information due to the overlapping trajectories on the map, we utilize a
topic trajectory segment line chart to represent the trajectory topic sequence details. This
chart conveys the order and composition of trajectory segments related to specific topics,
offering insights into the relationship between trajectory sequences and their corresponding
topics. Additionally, users can select topics of interest within the parallel abstract map to
refresh the actual map, delving deeper into the detailed information of the trajectory topics.

5. Case Study

In the process of modeling transportation trajectory data, we adopted a trajectory
DTM that considers topic evolution. This facilitates the extraction of dynamic trajectory
topics and their subsequent evolutions. The target audience for this dynamic trajectory
topic analysis includes those keen on understanding regional vehicle traffic patterns, such
as urban planners and optimization specialists.

To demonstrate the efficacy of our methodology in the domain of dynamic trajectory
topic analysis, we conducted a case study based on taxi data from Chengdu. This data
spans 28 days, yielding 5,184,637 trajectory sequences after data cleaning. The granularity
of analysis is correlated with the number of topics; the greater the number of topics, the
finer the details within each topic. For this case, we defined 17 topics, with a minimum of
6 iterations for LDA, and set α to 0.01 to compute the dynamic trajectory topics.

5.1. Trajectory Topic Evolution Analysis

There are noticeable differences in trajectory topics within the same time slice. A single
time frame encompasses multiple trajectory topics, each exhibiting varying intensities.
Figure 5B illustrates the trajectory topic map at 7 a.m. on 11 August 2014, where most
topics exhibit localized distributions. Having discerned the spatial distribution of trajectory
topics, it is imperative to delve deeper into topic evolution over time.

5.1.1. Spatial Evolution of Trajectory Topics

There are significant differences between the trajectory segments that form trajectory
topics at different time slices in the map. Before comparing the spatial evolution charac-
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teristics of the trajectory topics, we need to determine the target time slice. In Figure 5C,
the topic evolution heatmap offers a vertical perspective, revealing different topic prob-
abilities within identical time slices. The entropy for time slices 07 and 23 on 11 August
2014, is relatively low, signifying minimal differentiation among the topic probabilities and,
consequently, a smaller information content. In contrast, the entropy for time slices 11 and
15 on the same date is markedly higher, with apparent disparities in topic probabilities,
translating to more extensive information content.

The composition and location of trajectory segments within different trajectory themes
vary across time slices. Based on the discussion above about the entropy of time slices,
we select the 07 time slice to examine the spatial evolution of trajectory topics. As de-
picted in Figure 6, a comparative analysis of topics 3 and 12 over consecutive time frames
demonstrates an uptrend in trajectory segment count with increasing topic probability.

Figure 6. Trajectory topics are spatial and evolve over time. The trajectory segments that constitute a
trajectory topic are subject to change. The evolution of trajectories for topic 3 and topic 12 on the map
across three time slices is displayed. The white arrow indicates the new trajectory line. Trajectory
topic 12 adds the middle trajectory line at time 8 and the left and lower right trajectory lines at time
9. Trajectory topic 3 adds the next volume and the right trajectory line at time 14 and adds the left,
middle, and right trajectory lines at time 15.

5.1.2. Trajectories Topic Time Evolution

The information entropy of trajectory topics shows distinct differences across different
time slices. One can examine the evolution of specific topics by observing Figure 5C’s
heatmap from a horizontal perspective. The bar chart on the right of Figure 5C shows the
information entropy of topic evolution. Topic entropy is used to indicate the amount of
trajectory topic information. Topic 8 can be seen to have the smallest information entropy
because topic 8 has the smallest probability and little evolutionary difference. Topics 3
and 15 have high entropy due to the significant change in topic probability during the
evolution of these topics. Further, we can analyze the trajectory topic evolution at the
topic word level. Figure 7 shows the composition evolution of trajectory words between
trajectory topic 8 and trajectory topic 10 from “20140811” to “20140812”. The topic entropy
of trajectory topic 8 is smaller than that of trajectory topic 10. That is, the change degree
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of topic words of trajectory topic 8 is smaller than that of trajectory topic 10. This also
indicates that the number of trajectory words required to form trajectory topic 8 is smaller
than those required for trajectory topic 10.

Figure 7. Different trajectory topics and their evolution exhibit significant differences. We compared
the composition evolution of trajectory words, using the matrix heatmaps of topic words for trajecto-
ries 8 and 10. The figure captures the top 35 topic words that comprise the topic model and shows
the composition proportion of the trajectory topic concerning the topic words (trajectory segment).
The upper part of the topic word evolution matrix is the probability and topic entropy of the topic
in different time slices. The pie chart on the lower side of the topic term evolution matrix gives the
highest probability of 35 topic terms and the proportion of the probability sum of all topic terms. On
the right side of the topic term evolution matrix is a box graph about the probability of the topic term,
which reflects the distribution of the topic term over time.

5.2. Trajectory Topic Sequence Analysis

The trajectory sequence reflects the movement patterns within the trajectory topics.
The trajectory sequence is generated through the improved MDP, incorporating the spatial
information of trajectory words, and represents the most representative trajectory sequences
within the trajectory topics. In computing trajectory topics, the trajectory sequences have
been simplified by partitioning the map into grids. Concentrating trajectories within these
grids facilitates the generation of trajectory sequences. This method transforms trajectory
sequences into movements within a grid and between grids. We believe that movements
within a grid are significant because, in the original data entries, a vehicle might not
travel a great distance, and not in all records does a vehicle’s movement span across grids.
Figure 8 displays the representative trajectory topics generated through an enhanced MDP,
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presenting an overview of the topics using an abstract map approach. Due to scenarios
in the computational data where vehicles move within a single grid, sequences of move-
ments within a single grid arise, as illustrated in Figure 8d,e. This reflects real situations
present in the trajectory data. Additionally, trajectory sequences generated over time in
topics 6 and 12 can supplement the trajectory direction information on the map, indicating
the most probable movement patterns under that time’s trajectory topic.

Figure 8. Analysis of trajectory topic sequence through abstract map and real map. The first row is
the abstract map generated by improving the MDP, and the second row is the real map corresponding
to the time and topic. (a–f) represent the combinations for abstract map and real map at different
time slices.

6. Discussion

The core of the dynamic trajectory topic model is the evolution of trajectory topics.
Compared to previous works on trajectory topic computation [2,9,11,14,18], this study
introduces a method for the temporal evolution of topics. This method facilitates dynamic
trajectory topic analysis by connecting the model parameters to the topic models of adjacent
windows. It is more suited to real-world scenarios than matrix factorization-based trajectory
topic analysis methods such as NMF.

The order of topic words is an essential component of the semantic structure in dy-
namic trajectory topics. Moreover, while the topic model is a probabilistic model regarding
the composition of topic words, previous works did not consider the relationships between
topic words, that is, the sequence of trajectory segments. In this study, an enhanced MDP,
grounded on the probabilities of topic words, is introduced for generating representative
trajectory sequences under specific trajectory topics. Our approach preserved the original
data characteristics without imposing intricate feature constraints on the applied trajectory
dataset. We hope this method can inspire similar research to focus on the inherent features
of trajectory data and the continuity of trajectory information in the real world. However,
there are certain limitations to our study. During the computation of dynamic trajectory
topics, due to computational constraints inherent to the LDA model, a significant number
of computational resources is required when fitting the LDA. Furthermore, there is a need
to explore new trajectory point aggregation methods to compress the original trajectory
point data for more efficient sequences.

7. Conclusions

A dynamic topic analysis approach for traffic trajectory data was proposed in response
to the issue of existing trajectory visualization analysis methods overlooking the temporal
evolution of trajectory topics. This facilitates the visual exploration and analysis of traffic
trajectory topics and their evolution. Initially, the DTM is employed to characterize the
dynamic topics of trajectories, seamlessly integrating both temporal and spatial information
into the DTM. Subsequently, we propose an enhanced Markov decision process to generate
topic trajectory sequences, thereby incorporating trajectory sequence information into the
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trajectory topics. Following this, visual views designed based on parallel windows are
introduced for exploring the evolution of trajectory topics. The objective is to convey
information about dynamic trajectory topics through concise and intuitive visualization
components. Ultimately, the efficacy of our methodology is illustrated through a case study
focusing on the evolution of trajectory topics.

Since the trajectory dynamic topic model algorithm is based on a variational method
to fit a posteriori distribution, there is room to enhance its computational efficiency. In the
future, we plan to improve the efficiency of the dynamic trajectory topic model algorithm
by adopting distributed learning algorithms, such as federated learning. Moreover, future
research could explore the patterns and relationships of dynamic trajectory topics within
and outside grids under various grid partitioning methods and investigate efficient and
compact visualizations of spatiotemporal trajectory features.
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Abstract: Knowledge graphs usually have many missing links, and predicting the relationships
between entities has become a hot research topic in recent years. Knowledge graph embedding
research maps entities and relations to a low-dimensional continuous space representation to predict
links between entities. The present research shows that the key to the knowledge graph embedding
approach is the design of scoring functions. According to the scoring function, knowledge graph
embedding methods can be classified into dot product models and distance models. We find that the
triple scores obtained using the dot product model or the distance model were unbounded, which
leads to large variance. In this paper, we propose RotatE Cosine Similarity (RoCS), a method to
compute the joint cosine similarity of complex vectors as a scoring function to make the triple scores
bounded. Our approach combines the rotational properties of the complex vector embedding model
RotatE to model complex relational patterns. The experimental results demonstrate that the newly
introduced RoCS yields substantial enhancements compared to RotatE across various knowledge
graph benchmarks, improving up to 4.0% in hits at 1 (Hits@1) on WN18RR and improving up to
3.3% in Hits@1 on FB15K-237. Meanwhile, our method achieves some new state-of-the-art (SOTA),
including Hits@3 of 95.6%, Hits@10 of 96.4% on WN18, and mean reciprocal rank (MRR) of 48.9%
and Hits@1 of 44.5% on WN18RR.

Keywords: complex vectors; embedding; joint cosine similarity; knowledge graphs; scoring function;
unbounded

1. Introduction

Theknowledge graph is composed of many fact triples (head entity, relation, tail entity),
in the directed graph, the source and target nodes correspond to the head and tail entities,
respectively, while the relations are depicted as edges [1,2]. In recent years, knowledge
graphs (KGs) have found applications across a broad spectrum of real-world scenarios,
including intelligent question answering [3], personalized recommendation [4,5], natural
language processing [6], and object detection [7,8]. However, real-world knowledge graphs
including WordNet [9], Freebase [10], or Yago [11] are usually incomplete. In recent years,
predicting missing links through knowledge graph embedding (KGE) has gained substan-
tial attention as a pivotal research area in achieving knowledge graph completion [2].

KGE transforms the entities and relations within the knowledge graph into low-
dimensional continuous space representations. Each fact triple (head entity, relation, tail
entity) is represented as (h, r, t). If entities and relations are represented using d-dimensional
real vectors, h, r, t ∈ Rd. To evaluate the performance of the entity and the relation repre-
sentation, the KGE approach evaluates the credibility of the triples by designing a scoring
function. The optimization objective of KGE is geared towards ensuring that elevated
scores are assigned to positive triples, while negative triples receive lower scores. Presently,
prevailing KGE methods can be classified into dot product models and distance models
based on the structure of the scoring function. The dot product model is used as a triple
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scoring function by calculating the dot product between head entity embedding, relation
embedding, and tail entity embedding. Examples of such methods include DistMult [12],
HoLE [13], ComplEx [14], QuatE [15], which capture semantic information through pair-
wise feature interactions between potential factors. The distance model uses L1 or L2
distance as the scoring function. Among them, the translation model TransE [16] and the
complex embedding model RotatE [17] can be classified into this category. In the distance
model, the process involves either adding the head entity embedding to the relation em-
bedding or computing the Hadamard product to obtain a vector close to the tail entity
embedding. Subsequently, the distance between the two vectors is calculated. Such meth-
ods as TransH [18], TransR [19], TorusE [20] and GIE [21] utilize translation invariance to
preserve the original semantic relationships.

We observe that the scoring function’s range remains unbounded, irrespective of
whether it belongs to the dot product model or the distance model. This unrestricted range
raises the potential for increased variance. The score range of the dot product model is from
negative infinity to positive infinity, and the score range of the distance model is from 0 to
positive infinity. Given that the score range of triples is unbounded, the sensitivity of triple
scores to variations in both the embeddings of entities and relations results in substantial
model variance. To resolve this issue, a straightforward approach is to normalize [22] both
the embeddings of entities and relations. The range of triple scores is guaranteed to be
bounded by eliminating the difference in numerical values between each feature. However,
such approach is affected by the dimensionality of the embedding, and the score range
varies for embeddings of different dimensions. As a result, to obtain a fixed bounded range,
we adopt the use of cosine similarity as a scoring function. Firstly, the cosine similarity is
used as a normalization mechanism, independent of the embedding dimension, and its
score is fixed in the range of −1 to 1. Secondly, cosine similarity stands out as a widely
employed semantic similarity measure, commonly used to assess the similarity between
document vectors [23–25]. Smaller angles between similar vectors aid in distinguishing the
encoded information of various types of entity embeddings.

To achieve this goal, we propose RoCS, a KGE based on joint cosine similarity. Cosine
similarity is chosen for its bounded range, dimensionality independence, and effectiveness
in capturing semantic relationships. This measure ensures numerical stability during train-
ing and adapts seamlessly to varying dimensions of embeddings. The rotation embedding
model RotatE [17] is a stronger baseline for reasoning about three important relational
patterns in knowledge graphs, i.e., symmetric/antisymmetric, inverse and composition.
RotatE uses L2 distance as the score function to score an unbounded range, while we
consider the use of cosine similarity as the score function to ensure that the score range is
bounded. However, directly calculating the cosine similarity result for two complex vectors
can be intricate, while we need a real number result to score the triplet. To address this
challenge, we present a joint cosine similarity calculation method as the complex vector
cosine similarity, as shown in Figure 1. Specific, we merge the real and imaginary aspects of
the complex vector into a novel joint vector, and subsequently compute the cosine similarity
of this joint vector. It can be found that the joint cosine similarity does not change the
range of the calculated results while reflecting the overall similarity between the two com-
plex vectors. We evaluate the performance of our method on FB15K [16], FB15K-237 [26],
WN18 [16], and WN18RR [27] datasets for the link prediction task. Experimental results
show that our method outperforms the current state-of-the-art complex vector embedding
models ComplEx [14] and RotatE [17] on all evaluation metrics for all datasets. Further-
more, the proposed method RoCS is highly competitive with the current state-of-the-art
methods [15,28,29]. We also explore various techniques for computing the cosine similarity
of complex vectors, and through experiments, we validate the superiority of our proposed
joint method over other approaches.
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Figure 1. A demonstration of the process of calculating the joint cosine similarity of the complex vectors.

In summary, the primary contributions of our work are as follows:

• We propose a joint cosine similarity method to calculate the complex vector similarity
as a scoring function.

• Our approach combines the rotational properties of the complex vector model RotatE
to reason about a variety of important relational patterns.

• We have experimentally verified that the proposed RoCS provides a significant im-
provement over RotatE and achieves results close to or even higher than the current
state-of-the-art.

2. Related Work

KGE predicts missing links by mapping symbolic representations of entities and
relations into vector or matrix representations. Most KGE methods [30] are considered to
utilize triples as learning resources, deriving the semantics of entities and relations from
graph structures. Preserving original semantic relations through scoring function design has
become a key research focus in recent years [1,2]. Based on the scoring function’s structure,
the majority of the work can be categorized into dot product models and distance models.

The dot product model takes the form of dot product operations on the head entity,
relation, and tail entity. Semantic information is captured through pairwise feature interac-
tions between potential factors. The earliest work is the RESCAL [31], which uses a matrix
to represent the relation r ∈ Rd×d and a vector to represent the entities h, t ∈ Rd. To reduce
the relation embedding parameters, DistMult [12] constrains the relation matrix to be a
diagonal matrix and uses a vector to represent the relation r ∈ Rd. Since DistMult is overly
simple and can only infer symmetric relations. HolE [13] utilizes the cyclic correlation
dot product operation to infer anti-symmetric relations. ComplEx [14] applies a complex
space to encode entities and relations, utilizing the complex conjugate property to model
anti-symmetric relations. To further facilitate feature interaction, QuatE [15] suggests the
use of quaternion spaces to represent entities and relations. In addition, there are neu-
ral network models including ConvE [27], InteractE [32], graph neural networks [33,34]
and tensor decomposition models Tucker [28], LowFER [29] can also be regarded as dot
product models.

Distance models utilize relations to translate or rotate the head entity and subsequently
calculate the distance to the tail entity as the scoring function. In the case of TransE [16],
the relationship is a translation originating from the head entity and extending to the
tail entity. Guided by the principle of translation invariance, the sum of the head entity
embedding and the relation embedding is expected to be close to the distance between
the tail entity embeddings. Consequently, TransE uses the L1 or L2 distances as a scoring
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function. Since the TransE model cannot handle N-to-N relationships, TransH [18] presents
a hyperplane representation that maps entities to relationship specifications. TransR [19]
consider simplifying the space specified by the hyperplane for relationships. The complex
embedding model RotatE [17] has been recently proposed, which uses a complex space to
represent entities and relations. RotatE utilizes Euler’s formula to represent the relationship
as a rotational operation between the head entity and the tail entity. By leveraging the
rotation property, RotatE deduces various essential relation patterns [17].

Nevertheless, whether using the dot product model or distance model, the triple
scores remain unbounded. Substantial score disparities between positive and negative
samples amplify variance and diminish the model’s generalization capability. In contrast
to prior approaches, we propose the method of computing the joint cosine similarity
of complex vectors as a scoring function to constrain the bounded triple scoring range.
Moreover, we propose a KGE method utilizing joint cosine similarity. Our work combines
the RotaE rotation property of the complex vector embedding model to model a variety of
different relational patterns. Table 1 summarizes our approach with other related work.
The normalization effect of cosine similarity can reduce the variance and prevent gradient
vanishing [35]. Moreover, cosine similarity finds extensive application in natural language
processing for assessing the similarity of words, sentences, and document vectors [23–25].
The angle between similar vectors should be smaller, which can also help to distinguish
different types of entities. In short, the main motivations behind these models include
(1) using cosine similarity can make the triple scores bounded and reduce the variance,
(2) distinguishing the embedding information of various entity types, and (3) reflecting the
difference in direction between vectors.

Table 1. Comparison of our approach with several representative knowledge graph embedding
models in the representation space, score range.

Models Scoring Function Representation Space Score Range

TransE [16] −‖h + r− t‖1/2 h, r, t ∈ Rd Unbounded
DistMult [12] 〈h, r, t〉 h, r, t ∈ Rd Unbounded
ComplEx [14] Re(〈h, r, t̄〉) h, r, t ∈ Cd Unbounded
ConvE [27] f (vec( f ([h; r] ∗ω))W)t h, r, t ∈ Rd′ Unbounded
RotatE [17] −‖h ◦ r− t‖ h, r, t ∈ Cd Unbounded
QuatE [15] h⊗ r� · t h, r, t ∈ Hd Unbounded

LowFER [29]
(

Sk diag
(
UTh

)
VTr

)T
t h, r, t ∈ Rn×d Unbounded

RoCS (ours) cosjoint(h ◦ r, t) h, r, t ∈ Cd Bounded

3. RoCS

In this section, we introduce the RoCS method. Initially, we present the novel concept
of joint cosine similarity for complex vectors, followed by the introduction of the scoring
function derived from this joint cosine similarity. Subsequently, we outline the training
methodology and conclude with a detailed discussion of the proposed approach.

3.1. Joint Cosine Similarity of Complex Vectors

Given two complex vectors x, y ∈ Cd, the definition of cosine similarity is given by
the dot product and the vector length. As per the cosine similarity definition, the formula
for complex vector cosine similarity calculation is as follows:

cos(x, y) =
x · y
|x||y| =

∑d
i=1 xiyi√

∑d
i=1 xi x̄i

√
∑d

i=1 yiȳi

, (1)

where xi, yi ∈ C denotes each elementary component of the complex vector x, y and x̄i
denotes the conjugate complex number of x. Since each complex number includes both real
and imaginary components, the dot product part of Equation (1) is calculated as follows,
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x · y = ∑d
i=1(Re(xi)Re(yi)− Im(xi) Im(yi))

+j(Re(xi) Im(yi) + Im(xi)Re(yi)),
(2)

where j2 = −1 denotes the complex number sign.
The dot product between the complex vectors results in a complex number. Since

the score of the triplet requires a real number to evaluate the training. Thus, if the above
complex vector cosine similarity formula is used directly to calculate the triplet score will
not work. To overcome this shortcoming, ComplEx [14] proposes calculating the complex
dot product without considering the imaginary part of the score. Although considering
only the real part of the score results can achieve positive performance. However, it is
inaccurate to consider only the real part scores because having the same real part scores
does not necessarily mean having the same imaginary part scores.

In contrast to previous work, we introduce a joint cosine similarity calculation method
so that both the real part and the imaginary part scores results are considered. First, the
complex vector’s real and imaginary components are treated as a combined pair of vectors.
Then, the combined vector cosine similarity is calculated. Figure 1 illustrates the joint
cosine similarity calculation process. The formula for calculating the joint cosine similarity
of complex vectors is as follows,

cosjoint(x, y) = cos(joint(x), joint(y))

= Re(x)·Re(y)+Im(x)·Im(y)
|x|·|y|

= ∑d
i=1 Re(xi)Re(yi)+∑d

i=1 Im(xi) Im(yi)√
∑d

i=1 xi x̄l

√
∑d

i=1 yi ȳi

,

(3)

where joint(x) represents the joint of the real part vector of x with the imaginary part
vector. Our method preserves the original real and imaginary components by converting
a d-dimensional complex vector into a 2d-dimensional real vector before calculating the
cosine similarity. Therefore, it can more accurately reflect the degree of similarity of
complex vectors.

3.2. Scoring Function Based on Joint Cosine Similarity

In this part, we introduce the RoCS scoring function, which is founded on the concept
of joint cosine similarity. We combine the rotational properties of the complex vector
embedding model RotatE [17] to model a variety of important relational patterns. RotatE
uses a complex vector to represent the head entity h, the relation r, and the tail entity t,
i.e., h, r, t ∈ Cd. RotatE shares similarities with TransE [16], the process involves rotating the
head entity’s embedding through the relational embedding and subsequently computing
the distance to the tail entity as a scoring function. For each element within the embedding
vector, the rotation model expects ti = hiri, where hi, ri, ti ∈ C, |ri| = 1. With Euler’s
formula, we can obtain ejθt,i = ejθh,i ejθr,i , i.e., θt,i = θh,i + θr,i, where j denotes the complex
symbol and θ denotes the corresponding complex space phase. It can be found that the
rotation model rotates the head entity by Euler angles.

Given that the distance model anticipates the head entity embedding to be in closer
proximity to the tail entity following translation or rotation through the relational embed-
ding. RotatE expects the distance between the two complex vectors to be minimized. We
believe that there are several problems. First, the higher triple score and smaller distances
conflict with each other, which makes the rotation mode have to solve the problem by
multiplying the scores by a negative numbers transformation. Second, the range of the
triple score is calculated using distance as the score function is unbounded. The significant
contrast in scores between positive and negative samples amplifies variance and diminishes
the model’s generalization capability. Third, the distance model is easily influenced by
the embedded dimensionality. The enlargement of the embedding dimension leads to an
expanded range in triple scores, which is detrimental to effective model training. For these
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reasons, We suggest employing joint cosine similarity as the scoring function, computed
as follows,

S(h, r, t) = cosjoint(h ◦ r, t), (4)

where ◦ is the Hadamard (or element-wise) product and joint(t) denotes the joint vector
for computing t, as shown in Figure 1.

The cosine similarity, as a normalization method, calculates the score range from
−1 to 1. This ensures that the score of the triples is bounded and reduces the variance.
Simultaneously, regardless of whether the embedding dimension increases or decreases, it
does not impact the alteration of the score range, providing advantages for model training.
Furthermore, the transformation of the distance model is addressed by utilizing cosine
similarity as a scoring function, where a higher score signifies greater similarity. In addition,
our proposed joint cosine similarity calculation method considers both real and imaginary
components, and the scores are more accurate. While the rotation model RotatE reflects the
same degree of the complex vectors by distance, our model RoCS reflects the similarity of
the two complex vectors by the phase difference. Figure 2 shows the difference between
our method RoCS and the rotation model RotatE.

h

t
2|| ||h r t 2

h r

r
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cos( joint( ), joint( ))h r t), jo (), joint(
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h r
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Figure 2. The rotation model calculates the distance between vectors as the score function (left
((a) RotatE)), while our approach RoCS uses joint cosine similarity as the score function (right
((b) RoCS)).

3.3. Training

Knowledge graph embedding training steps mainly include generating negative
samples and designing loss functions. There are uniform sampling, Bernoulli sampling,
and self-adversarial negative sampling [17] for generating negative samples. For a fair
comparison with the RotatE rotation model, we employ the self-adversarial negative
sampling method to generate negative samples. Higher sampling weights are assigned to
negative samples with elevated scores, ensuring that these generated negatives contribute
more substantial training information. The sampling probability for negative samples in
the self-adversarial negative sampling is defined as follows,

p
(

h′j, r, t′j | {(hi, ri, ti)}
)
=

exp αS
(

h′j, r, t′j
)

∑i exp αS
(
h′i, r, t′i

) , (5)

where α is the sampling hyperparameter.
Loss function design is generally related to the scoring function. The logistic regression

loss function [12,14] is typically chosen for the dot product model, and the rank loss [16,19]
is typically chosen for the distance model selection [1]. Since the rotation model uses a
self-adversarial negative sampling loss function [17], our method also uses the same loss
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function for a fair comparison. Therefore, the loss function of RoCS is calculated as follows,

L = − log(σ(γ− μS(h, r, t)))−
n

∑
i=1

p
(
h′i, r, t′i

)
log
(
σ
(
μS
(
h′i, r, t′i

)
− γ
))

, (6)

where γ is the fixed margin hyperparameter, μ is the score function scaling hyperparameter.
To extend the scoring range of the triplet, We introduce a scaling hyperparameter μ to fine-
tune the scoring function, and experimental results demonstrate this helps model training.

3.4. Discussion

In this section, we will first discuss the ability of our method to infer three impor-
tant patterns of the relations. Then we will discuss the connection of our method with
existing methods.

3.4.1. Infer Patterns of the Relations

Knowledge graphs have various relationship patterns, among which the three most
common relationship patterns are symmetric/antisymmetric, inverse, and combinatorial.
Hence, for precise prediction of missing links in the knowledge graph, the designed score
function requires inferring the above three relationship patterns. RotatE [17] expects the
tail entity to be equivalent to the head entity after relational rotation, i.e., t = h ◦ r. All the
above relational patterns can be inferred using the rotation property. Specifically, if r is a
symmetric relation then r ◦ r = 1, and if r is an antisymmetric relation then r ◦ r �= 1. If
r1 and r2 are inverse relations, then it is sufficient to satisfy r1 = r−1

2 . If r1 is a combined
relationship of r2, r3, then r1 = r2 ◦ r3. The rotation model uses distance as the score
function, while our method uses cosine similarity. Since using cosine similarity does not
change the rotation property, our method can also infer all the above relationship patterns.

3.4.2. Connection with Existing Methods

Our method can be naturally extended to all distance models. Since both translational
and rotational models use relations to translate or rotate the head entity, expecting the
rotated head entity to be equivalent to the tail entity, i.e., expecting t = h + r or t = h ◦ r.
Therefore, it is straightforward to use joint cosine similarity instead of distance as the
scoring function. After normalizing the entity embedding and relational embedding
vectors, the rotation model RotatE [17] is approximately equivalent [36] to our method
as follows,

‖hnor ◦ rnor − tnor‖2 ≈
√

2
(
1− cosjoint(hnor ◦ rnor, tnor)

)
, (7)

where hnor, rnor, tnor ∈ Cd, xnor denotes the normalization of the vector x normalization
result, i.e., xnor = x

‖x‖2
. It is noticed that our method RoCS is approximately equivalent

to the normalized RotatE model score function after normalization. When using the real
number space to represent entities and relations, the joint cosine similarity is calculated in
an exactly equivalent way to the cosine similarity [36]. Therefore, the following equivalence
exists between RoCS and the scoring function of the translational model TransE [16] when
only the real part is considered,

‖hnor + rnor − tnor‖2 =
√

2(1− cos(hnor + rnor, tnor) , (8)

where hnor, rnor, tnor ∈ Rd. In summary, RoCS can be naturally extended to the distance
model. We evaluates the similarity based on direction, while the distance model evaluates
vector similarity based on distance, as shown in Figure 2.

4. Experiment

In this section, we outline our experimental setup and report the corresponding results.
We begin by detailing the experimental configuration. Next, we evaluate the efficacy of
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our approach compared to the baseline rotation model. Subsequently, we present the
results of our method in comparison to state-of-the-art approaches. Finally, we analyze
the performance of our model utilizing both the dot product and distance models in the
complex space. Additionally, we conduct ablation studies by comparing different methods
of computing complex vector cosine similarity.

4.1. Experimental Setup
4.1.1. Datasets

We selected four standard datasets for the link prediction task including FB15k [16],
FB15k-237 [26], WN18 [16], and WN18RR [27] to evaluate our proposed method. FB15K
is a subset of the real-world knowledge graph Freebase [10], containing 14,951 entities
and 1345 relations. FB15k-237 is a subset of FB15K after removing the inverse relations,
containing 14,541 entities with 237 relations. WN18 is a subset of WN18 [9], a knowledge
graph constructed by vocabulary, containing 40,943 entities and 18 relations. WN18RR is a
subset of WN18, with inverse relations removed, containing 40,943 entities and 11 relations.
Among them, FB15k-237 and WN18RR primarily exhibit symmetric/anti-symmetric and
combinatorial relationship patterns. The principal relationship patterns in FB15K and
WN18 involve symmetry/anti-symmetry and inverse patterns. The statistical information
of these knowledge graphs is summarized in Table 2.

Table 2. Statistics of datasets.

Dataset #Entity #Relation #Train #Valid #Test

FB15K 14,951 1345 483,142 50,000 59,071
FB15K-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5000 5000
WN18RR 40,943 11 86,835 3034 3134

4.1.2. Evaluation Criterion

We use the score function designed by Equation (4) to score the test triple (h, r, t) with
all candidate triples, and calculate the test triple ranking based on the scoring results. All
candidate triples are generated by substituting either the head entity or the tail entity of
the test triple, i.e., (h, r, t′) or (h′, r, t). We follow filters setting [16] that all candidate triples
are excluded from appearing in the training set, validation set, and test set. Similar to the
previous work [28,29], we choose MRR, Hits@k (k ∈ {1, 3, 10}) as the ranking evaluation
metric. MRR represents the average inverse ranking of the test triples, while Hits@k
indicates the proportion of test triples within the top k rankings.

4.1.3. Baselines

We select some representative baselines from the dot product model and the distance
model respectively for comparison. For the dot product model we report DistMult [12],
ComplEx [14], ConvE [27], SimplE [37], QuatE [15], TuckER [28] and LowFER [29]. For the
distance model we report TransE [16], TorusE [20] and RotatE [17]. Among them, QuatE,
TuckER, and LowFER are reported as the latest SOTA models.

4.1.4. Experimental Details

We implement our proposed model based on the Pytorch [38] deep learning framework
and train it on an NVIDIA Tesla P100 GPU. We use Adam [39] as the trainer and Equation (6)
defines the loss function. We use grid search to determine the hyperparameters, selecting
the optimal ones based on evaluating MRR metrics on the validation set. The hyperparame-
ter search range is as follows: fixed margin γ ∈ {1, 3, 6, 10, 12, 15, 20, 30}, and scaling hyper-
parameter μ ∈ {1, 5, 10, 15, 20, 25, 30 , 50}. In addition, the embedding dimension we set the
following d ∈ {100, 200, 500, 1000}, and learning rate lr ∈ {0.001, 0.0001, 0.00003, 0.00001}.
The initial parameter settings follow the rotation model settings [17].

403



Electronics 2024, 13, 147

4.2. Compare RotatE

We first evaluated the performance of our RoCS method alongside the original rotation
model RotatE [17]. Figure 3 illustrates the performance of our method RoCS with RotatE
on the FB15K, FB15K-237, WN18, and WN18RR datasets. Figure 3a shows that our method
improves 1.9% in MRR, 2.5% in Hits@1, 2.6% in Hits@3, and 1.0% in Hits@10 compared to
RotatE on the FB15K dataset. Figure 3b shows that our method improves 2.4% in MRR,
3.3% in Hits@1, 2.1% in Hits@3, and 1.7% in Hits@10 compared to RotatE on the FB15K-237
dataset. Figure 3c shows that our method improves -0.2% in MRR, -0.1% in Hits@1, 0.4% in
Hits@3, and 0.5% in Hits@10 compared to RotatE on the WN18 dataset. Figure 3d shows
that our method improves 2.7% in MRR, 4.0% in Hits@1, 2.8% in Hits@3, and 0.5% in
Hits@10 compared to RotatE on the WN18RR dataset. Overall, our method RoCS shows a
significant improvement compared to RotatE. It shows that using joint cosine similarity
as a scoring function to constrain the bounded triple scores can reduce the variance and
improve the model generalization.

(a) (b)

(c) (d)

Figure 3. Comparison of the link prediction results of our method RoCS with the original rotation
model RotatE [17] on FB15K, FB15K-237, WN18 and WN18RR. (a) FB15K; (b) FB15K-237; (c) WN18;
(d) WN18RR.

4.3. Comparison with Current SOTA Models

The main results of the link predictions are shown in Tables 3 and 4. Table 3 indicates
that our RoCS method achieves new benchmarks, achieving a SOTA performance, including
Hits@3 of 95.6%, Hits@10 of 96.4% on WN18, and MRR of 48.9%, Hits@1 of 44.5% on
WN18RR. Table 4 illustrates that our method RoCS is highly competitive in the FB15K
dataset, with MRR, Hits@1, and Hits@3 only below the SOTA model LowFER [29]. And,
our method also achieved a top 3 ranking on WN18RR. In short, neither SOTA models
TuckER [28], LowFER nor QuatE [15] models can achieve excellent performance in all
datasets. TuckER and LowFER perform poorly in the WN18RR dataset, and QuatE models
achieve lower performance in FB15K MRR, Hits@1, and Hits@3, while our method RoCS
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achieves competitive results in all datasets. This indicates that our approach is highly
competitive with the current leading knowledge graph embedding models.

Table 3. Link predictions in WN18 and WN18RR results.State-of-the-art (SOTA) results are shown in
bold, and top 3 ranking results are underlined. QuatE [15] reports QuatE3 results, and LowFER [29]
reports LowFER-k∗ results.

Models
WN18 WN8RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE [16] 49.5 11.3 88.8 94.3 22.6 - - 50.1
DistMult [12] 79.7 - - 94.6 43.0 39.0 44.0 49.0
ComplEx [14] 94.3 93.5 94.6 95.6 46.0 39.0 43.0 48.0
ConvE [27] 94.2 93.9 94.4 94.7 - - - -
SimplE [37] 94.7 94.3 95.0 95.4 - - - -
TorusE [20] 94.1 93.6 94.5 94.7 44.0 41.0 46.0 51.0
RotatE [17] 94.9 94.4 95.2 95.9 47.6 42.8 49.2 57.1
QuatE [15] 95.0 94.5 95.4 95.9 48.8 43.8 50.8 58.2
TuckER [28] 95.3 94.9 95.5 95.8 47.0 44.3 48.2 52.6
LowFER [29] 95.0 94.6 95.2 95.8 46.5 43.4 47.9 52.6

RoCS (ours) 94.7 94.0 95.6 96.4 48.9 44.5 50.6 57.4

Table 4. Link predictions are shown in FB15K and FB15K-237 results.

Models
FB15K FB15K-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE [16] 46.3 29.7 57.8 74.9 29.4 - - 46.5
DistMult [12] 65.4 54.6 73.3 72.8 24.1 15.5 26.3 41.9
ComplEx [14] 69.2 59.9 75.9 84.0 32.5 23.7 25.6 50.1
ConvE [27] 74.5 67.0 80.1 87.3 - - - -
SimplE [37] 72.7 66.0 77.3 83.8 - - - -
TorusE [20] 73.3 67.4 77.1 83.2 24.7 15.8 27.5 42.8
RotatE [17] 79.7 74.6 83.0 88.4 33.8 24.1 37.5 53.3
QuatE [15] 78.2 71.1 83.5 90.0 34.8 24.8 38.2 55.0
TuckER [28] 79.5 74.1 83.3 89.2 35.8 26.6 39.3 54.4
LowFER [29] 82.4 78.2 85.2 89.7 35.9 26.6 39.6 54.4

RoCS (ours) 81.2 76.5 84.3 89.3 34.6 24.9 38.3 54.2

4.4. Comparing Complex Vector Embeddings

To further investigate the effectiveness of cosine similarity as a score function, we
investigated using the same representation space to compare our method with the dot
product model ComplEx [14], and the distance model RotatE [17]. For a fair comparison,
we additionally train the ComplEx model utilizing a self-adversarial negative sampling
loss function [17]. As shown in Table 5, RoCS is significantly outperformed by ComplEx
and RotatE. This indicates that using the joint cosine similarity as a scoring function
for the complex vector embedding model is better than the dot product model and the
distance model.

Table 5. A comparison of the complex vector embedding models ComplEx, RotatE and RoCS (ours),
where ComplEx also uses a self-adversarial negative sampling loss function for fair comparison.

Models
WN18 WN8RR FB15K FB15K-237

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

ComplExadv 89.2 95.4 47.0 55.7 78.0 89.0 32.1 50.9
RotatE 94.9 95.9 47.6 57.1 79.7 88.4 33.8 53.3
RoCS(ours) 94.7 96.4 48.9 57.4 81.2 89.3 34.6 54.2
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4.5. Ablation Study

In Section 3.2, we propose to use the joint cosine similarity as a scoring function to
improve the model’s performance. To verify the validity of the joint cosine similarity, we
compare it with other methods for calculating the cosine similarity of complex vectors. The
first method is similar to ComplEx [14], which considers only the real part of the scoring
function and is formulated as follows,

S1(h, r, t) = Re(cos(h ◦ r, t)), (9)

where h, r, t ∈ Cd, Re denotes the real part. The second approach combines the cosine
similarity of real vectors and the cosine similarity of imaginary vectors separately. The cal-
culation is as follows,

S2(h, r, t) = cos(Re(h ◦ r), Re(t)) + cos(Im(h ◦ r), Im(t)), (10)

where Im denotes the imaginary part.
We compare the way of calculating complex vector cosine similarity in Equation (9)

and Equation (10) to prove that our proposed joint cosine similarity is effective. As shown
in Table 6, our proposed method for calculating the joint cosine similarity of complex
vectors achieves the best results. The first method is not accurate enough for triplet scoring
because the imaginary part of the triplet score is discarded. The second method ignores the
connection between the real and imaginary parts, and thus also obtains poorer results. In
contrast, our method achieves excellent performance in both cases. Therefore, this proves
that our calculation method can give a more accurate scoring result by considering both
the real part and the imaginary part.

Table 6. The results of using Equation (9) (RoReCS), Equation (10) (RoAddCS) as score functions on
WN18, WN18RR, FB15K, FB15K-237.

Models
WN18 WN8RR FB15K FB15K-237

MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

RoReCS 63.7 90.7 36.7 44.5 49.1 65.9 23.1 33.4
RoAddCS 92.1 95.2 46.0 52.1 68.5 79.0 28.0 44.9
RoCS 94.7 96.4 48.9 57.4 81.2 89.3 34.6 54.2

5. Conclusions and Future Work

In this paper, we first propose a method to compute the joint cosine similarity of
complex vectors. Then, a knowledge graph embedding model based on joint cosine
similarity is proposed, named RoCS. Specifically, the proposed RoCS uses joint cosine
similarity as a scoring function to constrain the triple score range to be bounded, thus
reducing the variance of the model and improving model performance. Meanwhile, our
method combines the rotational properties of the RotatE can reason about a variety of
important relational patterns. Our experimental results indicate a significant improvement
over the original RotatE model, achieving performance levels that closely rival or even
surpass the latest advancements in the field. In the future, we plan to further consider
extending the joint cosine similarity to other representation learning problems.
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Abstract: The flight management system is a basic component of avionics for modern airliners.
However, the airborne flight management system needs to be improved and relies on imports; path
planning is the key to the flight management system. Based on the classical A* algorithm, this
paper proposes an improved A* path planning algorithm, which solves the problem of low planning
efficiency and following a non-smooth path. In order to solve the problem of the large amount of
data calculation and long planning time of the classical A* algorithm, a new data structure called
a “value table” is designed to replace the open table and close table of the classical A* algorithm to
improve the retrieval efficiency, and the Heap sort algorithm is used to optimize the efficiency of node
sorting. Aiming at the problem that the flight trajectory is hard to follow, the trajectory smoothing
optimization algorithm combined with turning angle limit is proposed. The gray value in the digital
map is added to the A* algorithm, and the calculation methods of gray cost, cumulative cost, and
estimated cost are improved, which can better meet the constraints of obstacle avoidance. Through
the comparative simulation verification of the algorithm, the improved A* algorithm can significantly
reduce the path planning time to 1% compared to the classical A* algorithm; it can be seen that the
proposed algorithm improves the efficiency of path planning and the smoother planned path, which
has obvious advantages compared to the classical A* algorithm.

Keywords: path planning; value table; efficiency of path planning; trajectory smoothing optimization

1. Introduction

The onboard flight management system (FMS) is a professional computer system that
can automate various flight tasks and reduce manual workload. Modern civil aircraft crews
no longer carry flight engineers or navigators. However, the FMS for general civil aviation
aircraft is dependent on the introduction from abroad [1]. FMS is a basic component
of airborne avionics, which can realize the automation of various flight tasks. Its main
function is to position the aircraft, make flight plans, optimize routes, guide aircraft flight,
and reduce the working pressure of crew.

The civil aviation aircraft is prone to environmental collisions and crashes in the case
of low visibility in the air, and emergency landing in mountainous terrain. The China
International Airlines Flight 129 crash was due to low visibility in the air; its scheduled
route error caused the passenger plane to crash into the mountain, and 129 people were
unfortunately killed. Different from the traffic warning and obstacle avoidance system
(TACS), airborne obstacle avoidance system (ACSA), and near-Earth warning system
(GPWS) [2], FMS performs path planning when facing obstacles that may appear in advance,
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reducing the accident rate of civil aircraft in complex environments such as mountain flight
and multi-aircraft flight. An important performance index of FMS is its planning and
obstacle avoidance ability when flying in complex terrain environments.

Path planning is one of the core functions of FMS. The autonomous auxiliary path
planning for civil aircraft in emergency flight will significantly help the aircraft to guide the
emergency landing in bad weather, complex terrain, and sudden accidents, and decrease
the incidence of major air crashes.

The path planning algorithm includes two parts: a map preprocessing algorithm
and pathfinding algorithm [3]. Digital map processing needs to select the corresponding
processing method according to the different elevation data and task requirements. For
maps with different accuracy, it is necessary to process the best digital map suitable for the
pathfinding algorithm. At present, there are many pathfinding algorithms for path planning.
The A* algorithm is one of the most representative heuristic algorithms [4]. Its success rate
and superiority of algorithm results are incomparable to other algorithms. However, there
are still many directions for optimization of the algorithm. The computational complexity
of the algorithm is related to the accuracy of the map. The higher the accuracy of the
map, the greater the amount of calculation of the planning algorithm caused by the surge
in data volume. The large amount of calculation also causes excessive space memory
occupation, and the large amount of data will lead to problems such as program collapse
in engineering. The classical A* algorithm cannot add the aircraft performance limit to
the track, the planned track helicopter is difficult to follow, and the degree of engineering
is low; at present, the application of the A* algorithm only stays in the calculation of an
unselectable single track, and cannot be reasonably adjusted according to the task situation.

Many scholars have conducted a lot of research on how to improve the efficiency of the
map preprocessing algorithm and pathfinding algorithm. The key step of path planning for
robots, including UAVs, is to accurately process map information [5] and reach the target
without collision [6]. Jaishankar et al. [7] proposed a distance change method, through
which the digital elevation can be represented by grayscale image, and the path planning
can be carried out on this basis. Meng H [8] first smoothed and optimized the data in the
digital map from four directions, then processed the digital map into the smallest threat
surface, and then sought the optimal path on the smallest threat surface. The algorithms
lack the interpolation calculation of the appropriate accuracy of the map first, which may
result in the situation that the resolution of the elevation data is not enough to support the
pathfinding algorithm, or the resolution is too high to cause the data to be too large and the
efficiency of the algorithm to be reduced.

The path planning algorithm not only requires that the planned flight path is feasible,
but also requires its optimality in some specific criteria, such as calculation time and
trajectory length [9]. The calculation time mainly includes map processing time and path
planning time, which will be mainly used as the evaluation criteria for different algorithms
in this paper. The A* algorithm is a famous algorithm in the field of path planning, which
is suitable for the static environment exploration of complex obstacle topographic map [10].
However, the classical A* algorithm is not satisfactory in terms of computational time [11],
which seriously hinders the deployment of the A* algorithm and its application in the
actual aircraft navigation system. On this basis, many studies have proposed methods
to improve the computational performance. Sudhakara et al. [12] proposed an improved
A* algorithm to increase the number of turns to plan the path of the robot in a position
environment with obstacles. Pal et al. [13] proposed an improved A* algorithm based on
capacity consumption to reduce the energy consumption caused by stopping and turning.

In addition to considering the calculation length and trajectory time, the performance
requirements of fixed-wing aircraft should be met when planning the path. ElHalawany
et al. [14] proposed an improved A* algorithm considering its own size to avoid sharp
turns in the path planning of mobile robots, which is necessary in practical applications.
Based on the traditional algorithm, this paper adds the constraints of fixed-wing aircraft
performance, so that the planned trajectory is easy to follow. In order to improve the
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performance of fixed-wing aircraft, Durán-Delfín et al. [15] established a mathematical
model of fixed-wing convertible vertical take-off and landing aircraft to achieve two flight
states along the trajectory. The controller has good performance and can provide sufficient
maneuverability. This research will greatly improve the performance of fixed-wing aircraft
in the future.

At present, the application of the A* algorithm only stays on the calculation of an
unselected single trajectory, considering the minimization of multi-objectives such as path
length and altitude [16]. However, for fixed-wing aircraft, the requirements for different
costs are different under different flight conditions. Ducho et al. [11] modified the A*
algorithm and optimized the algorithm based on the complexity of the environment, so
that the algorithm can be applied to various scenarios. Aiming at this problem, this paper
optimizes the weights of different costs in the cost function.

The main innovations and contributions of this paper are as follows: (1) Aiming at
the problems of large memory occupation and high map accuracy requirements in the
path planning of fixed-wing passenger aircraft, the digital map is combined with the
requirement of the step size of the demand point to adjust the map accuracy, and the
elevation digital map is processed into a grayscale map in combination with the aircraft
climbing angle limit, so as to reduce the memory occupation of the map, thereby reducing
the amount of calculation and improving the efficiency of path planning; (2) Aiming at
the problem that the planned global trajectory is hard to follow by fixed-wing aircraft,
this paper considers the flight constraints of fixed-wing aircraft flying, and processes the
track into a followable trajectory that satisfies the turning angle of the aircraft through
trajectory smoothing optimization; (3) Aiming at the problem of single trajectory in the
traditional A* global path planning algorithm, this paper normalizes the cost parameters
in the A* algorithm and opens the setting port. At the same time, different cost weight
parameters are set for planning. The mode and the proportion of each cost parameter can be
dynamically adjusted according to the task situation to find the optimal path that meets the
task requirements and aircraft performance constraints; (4) Aiming at the problem of low
efficiency of the classical A* algorithm in array structure sorting, the Heap sorting method
is adopted to improve the sorting efficiency, and a new data structure called a “value table”
is designed to optimize the search efficiency compared to the open table and close table
of the classical A* algorithm, which reduces the complexity of the sorting algorithm and
satisfies the real-time requirements of the planning algorithm.

2. Path Planning Problem and Modeling

2.1. Path Planning Problem for Fixed-Wing Aircraft

The path planning problem of fixed-wing aircraft refers to the specific path planning
requirements M(m, h, p), from the initial point Bg,t to the target point Eg,t; the sets of
optimal motion trajectory points xg,t, TB,E can be calculated by the pathfinding algorithm
φ
(

Bg,t , Eg,t
)
, which can be described as follows:

TB,E =
{

xg,t ∈ M(m, h, p)
∣∣xg,t = φ

(
Bg,t, Eg,t

)}
(1)

Among them, the mission target requirements Mm, fixed-wing aircraft performance
requirements Mh, algorithm performance requirements Mp.

In the case of complex mountainous areas, the primary task of global trajectory plan-
ning is to ensure the safe flight of the aircraft, and the aircraft can successfully avoid all
obstacles; secondly, the planned trajectory of the aircraft should ensure that the maxi-
mum pitch angle constraint, the maximum turning angle constraint, and aircraft’s fol-
lowability are satisfied. At the same time, the planning algorithm should also ensure a
certain timeliness.
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2.2. Path Planning Optimization Model
2.2.1. Optimized Objective Goal

The path planning problem can be regarded as a kind of constrained optimization
problem. Figure 1 is a top view of the track, where we use hollow dots to represent the
track points, with the symbol pi. li is the cost of flight distance between each track point.
The large black dots represent obstacles in the map. For the altitude cost in the track, its
expression is similar to flight distance cost.

Figure 1. Schematic diagram of flight distance cost.

Objective function commonly used in path planning [17,18] can be described as (2).

min
χ

J =
∫ t f

t0

(ω1c2
t + ω2h2 + ω3 fT)dt (2)

where ct, h, and fT represent the cost of track length, flight altitude, and threat, respectively.
ω1, ω2, ω3 are the cost factors, χ indicates the flight trajectory from t0 to t f . The optimization
goal of path planning studied in this article is to design an optimal path under obstacle
avoidance conditions, so as to minimize the cumulative distance cost and altitude cost of
the entire flight process. Without involving threat costs, Equation (2) is modified to obtain
Formula (3) [19]:

min
χ

n

∑
i=1

(ω1l2
i + ω2h2

i ) (3)

In the formula, the flight distance li from the track point pi to the point pi+1 is ex-
pressed, which can be viewed in Figure 1. By reducing the flight distance, the fuel cost
of the aircraft can be shortened; hi indicates the altitude cost between track points pi and
pi+1. ω1, ω2 represents the weight of each cost, which is generally valued according to task
requirements.

2.2.2. Maximum Pitch Angle Constraint

In order to ensure the fastest flight to the target point, the trajectory must be able
to meet the constraints of the maximum pitch angle in the longitudinal maneuver of the
aircraft, which requires that there can be no trajectory beyond the maximum pitch angle
limit between the two trajectory points in the planned trajectory, as shown in Figure 2.

Figure 2. Maximum pitch angle constraint.
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Among them, αmax presents the maximum pitch angle, and αAB represents the pitch
angle from track point A to track point B. It can be obtained by the relative height difference
ΔhAB, relative horizontal distance ΔlAB from track point A to track point B.

αAB = arctan
(

ΔhAB
ΔlAB

)
, |αAB| ≤ αmax (4)

2.2.3. Maximum Bend Angle Constraint

Aiming at the problem of aircraft flight safety when flying in mountainous terrain,
the maximum bend angle of lateral maneuver needs to be constrained. In order to change
the course when the aircraft maintains a certain forward flight speed, according to the
requirements of turning speed and turning radius, it is necessary to ensure that the turning
angle of the track meets the constraint of the maximum turning angle when the distance
between the track points is certain, as shown in Figure 3.

Figure 3. Maximum turning angle constraint.

In Figure 3, the heading at track point A is represented by ϕAB, the heading at track
point B is represented by ϕBC, and the heading angle that needs to be changed from track
point A to track point B is represented by βturn; that is the turning angle at track point B.

βturn = ϕAB − ϕBC, |βturn| ≤ βmax (5)

2.2.4. Minimum Terrain Clearance Constraint

The distance between the aircraft and the ground should always be greater than the
minimum flight height from the ground, so as not to affect the flight safety due to ground
buildings, trees, and so on. Therefore, the height difference ΔhA between the planned track
point height and the ground should meet the requirement as follows:

ΔhA ≥ Δhmin (6)

3. Preprocessing of Map Information

Global path planning is the planning of the aircraft based on the starting point and
terrain information before take-off, which requires the terrain data information between the
take-off and the end point before take-off, and this information needs to be preprocessed
in the three-dimensional space model. The preprocessing algorithm process is shown in
Figure 4.

The digital elevation is extracted from the original digital map, and the accuracy
information contained in the digital elevation is calculated by using the boundary informa-
tion and the number of grids. The accuracy requirements of the required digital map are
determined by the airborne information storage space and the time requirements for the
trajectory planning calculation. The higher the accuracy of the digital map, the greater the
storage space required, the longer the calculation time of the track planning, the denser
the calculated track points, and the higher the accuracy. The original digital elevation is
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processed according to the selected map accuracy. If the original digital elevation resolution
is too high or too low, it needs to be interpolated to change the resolution of the digital
elevation map [18].

 

Begin

Extracting Digital  
Elevation Maps

Does the map accuracy 
meet the requirements?

Interpolation algorithm

Calculate slope value

Yes

No

Integration of terrain, 
features, and threat 

information

The generation of  Flight 
Safety Surface 

End

Figure 4. Flow chart of digital map preprocessing algorithm.

In this paper, by reading the high-resolution three-dimensional Digital Elevation Map,
the accuracy of the map is adjusted by changing the resolution of the Digital Elevation
Model (DEM) through a relatively smooth interpolation algorithm, and the slope value is
calculated by the difference algorithm. Combined with the process of slope smoothing and
graying, the flight safe surface satisfying the performance constraints such as the climbing
rate and the shortest track length of the fixed-wing aircraft could be generated.

3.1. Generation of DEM

The commonly used digital terrain model (DEM) is a mathematical model that de-
scribes the parameters such as ground fluctuation and terrain height, and projects the
height data of different positions to the data set of the corresponding position on the map
in the form of regular gridding or other forms. The model formula is expressed as follows.

Vi = (gi, ti, hi), i = 1, 2, · · · , n (7)

In the above formula, gi represents the longitude corresponding to the point, ti repre-
sents the latitude corresponding to the point, and hi represents the height corresponding
to the point. In order to construct a three-dimensional space with mountainous terrain,
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a mountain section was added to the DEM. Merge the original elevation model with
mountain data to construct the final spatial 3D model, as shown in the following equation.

Vi = {gi, ti, max[hi, hmt(gi, ti)]}, i = 1, 2, · · · , n

hmt(gi, ti) = z0 +
n
∑

j=1
hj exp

⎡⎢⎣ − 1
a2

(⌊
(ti − ts)Ct +

1
2

⌋
−
⌊
(t0 − ts)Ct +

1
2

⌋)2

− 1
b2

(⌊
(gi − gs)Cg +

1
2

⌋
−
⌊
(g0 − gs)Cg +

1
2

⌋)2

⎤⎥⎦ (8)

Among them, the longitude, latitude, and height values gi, ti, hi, respectively, of
every point in the topographic map are represented; the height of the highest point of
the mountain is represented by z0, the slope setting value of the mountain in the x axial
direction is represented by a, and the slope setting value of the mountain in the y axial
direction is represented by b. g0, t0 is the longitude and latitude of the highest point of
the mountain, respectively; gs, ts indicates the minimum longitude of the map and the
minimum latitude of the map, respectively; Cg, Ct represents the amount of data in the
longitude direction and the amount of data in the latitude direction, respectively.

3.2. Adjust Map Resolution

Due to the resolution difference caused by the data source of the elevation digital
model, the resolution of the elevation data may be insufficient to support the pathfinding
algorithm, or the high resolution may lead to excessive data volume and low algorithm
efficiency. Therefore, it is necessary to perform linear interpolation on the elevation digital
model containing the mountain model to improve or reduce the map accuracy and meet
the requirements of different modal pathfinding task algorithms [20–22]. The commonly
used DEM linear interpolation algorithms are the bilinear interpolation algorithm, bicubic
Hermite interpolation algorithm, and two-dimensional cubic convolution interpolation
algorithm [23,24].

The interpolation is performed by the above three algorithms, and the graphical
comparison results by using the original elevation data are shown in Figures A1 and A2
and Table A1 in Appendix B. It can be seen that the mean and variance of the differences
between the two-dimensional cubic convolution interpolation and the original elevation are
the smallest, and the covariance and correlation coefficient between the two-dimensional
cubic convolution interpolation and the original elevation are the largest, after the resolution
is reduced, indicating that the two-dimensional cubic convolution interpolation [25] has
the highest correlation with the original elevation and the best restoration effect. Therefore,
the 2D cubic convolution interpolation algorithm is selected as the interpolation algorithm
to adjust the DEM resolution [26].

3.3. Generation of Flight Safety Surface

In order to make the planned track match the performance of the fixed-wing aircraft
and avoid collision between the aircraft and the mountain obstacles during the landing
process, it is necessary to explore the DEM slope calculation method in combination with
the pitch angle limit of the fixed-wing aircraft. The slope of DEM is a description of the
steepness of the terrain in three-dimensional space. The mathematical model of the slope
description is shown as follows:

S = arctan
√

ϕ2
g(h) + ϕ2

t (h) (9)

Among them, ϕg(h) and ϕt(h) are the difference algorithms in the direction of g and
t. The commonly used numerical analysis methods for slope calculation on DEM mainly
include simple difference, second-order difference, third-order inverse distance square
weight difference, third-order inverse distance weight difference, third-order unweighted
difference, and frame difference. The corresponding ϕg(h) and ϕt(h) in the different
algorithms above are shown in Table A2 in the Appendix B. In order to obtain a better
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slope estimation effect, we use the third-order inverse distance square weight difference
algorithm to describe ϕg(h) and ϕt(h).

Since the slope calculation result is the slope value represented by the radian, in order
to facilitate the cost calculation in the pathfinding algorithm and shorten the storage of the
digital map, this paper uses the angle to represent the slope value combined with the pitch
angle limit of the aircraft, and converts the angle value into an 8-bit unsigned integer in the
range of

[
0, 28 − 1

]
, which is shown as follows.

Gg,t =
(

28 − 1
)( π

180 Sg,t − αmin

αmax − αmin

)
(10)

Among them, the maximum and minimum values of the pitch angle of the civil aircraft
specified for the task requirements are represented by αmax, αmin, respectively, and the
general minimum value defaults to 0. Gg,t can be used as a gray value to store the digital
map as gray map data related to the performance of civil aircraft, which supports the cost
calculation of the improved A* path planning algorithm.

4. Improved A* Path Planning Algorithm

On the premise of flying close to the ground, if the fixed-wing aircraft can fly along
the track with gentle terrain, it can maintain a high speed and the task execution time will
be shorter. In order to obtain a smoother and more efficient flight trajectory, an improved
A* algorithm based on terrain slope is designed.

The A* algorithm in the path planning algorithm can quickly find the optimal solution
and obtain the shortest path. It is undoubtedly the best algorithm for global path planning
in mountainous terrain, but it still has some shortcomings. Aiming at the defects of the
classical A* algorithm and the target requirements of real-time global path planning, the
optimization steps are shown in Figure 5.

Classical A*
algorithm

Improvement of 
open table and 

close table

Calculation of 
complex cost 

functions

Trajectory 
smoothing 

optimization

Improved A*
algorithm

Adjusted strategy

Implement steps

Improvement effect
Achieve obstacle 

avoidance
Improve planning 

efficiency
Adapt to tasks of 

different modalities
Easy to follow and 
achieve for aircraft

Design value table 

Small top heap

         Gray cost

     Estimated cost

Cumulative cost

Maximum turning 
radius limitation

Maximum bend 
angle constraint

 
Figure 5. Optimization steps of global path planning algorithm.

In Figure 5, based on the classical A* algorithm, the data storage and extraction
structure in open and close tables is optimized to improve the efficiency of the algorithm.
The second part is about the optimization and adjustment of the cost function. The terrain
slope parameters are fused into the cost function of the A* algorithm, and different cost
functions are calculated according to different requirements to obtain the planned tracks
under different task modes. Finally, considering the limitation of aircraft performance,
the track is post-processed to generate a three-dimensional safe track after smoothing the
height and turning angle, so that the track is easy to follow.
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4.1. Cost Function Optimization

Compared with the classical A* algorithm, the cost function Fn is adjusted by
Equation (11).

Fn(Gn, Hn, In) = ωGGn + ωH Hn + ωI In (11)

Among them, Gn is the sum of the cost from the starting point Bg,t to the current point
xn, the cost that needs to be spent from the current point to the end point is expressed as Hn,
the cost of the newly added gray value is expressed as In, ωH is the weight of the estimated
distance cost, ωI is the weight of the slope cost, and ωG is the weight of the distance cost
that has been spent. The calculation method of Gn can be adjusted by the grid distance in
different directions, and the distance calculation method of Hn can be adjusted according to
the actual model of DEM. The calculation process of the optimized cost function is shown
in Algorithm A1.

4.1.1. Cumulative Cost

The grid in the DEM is not a standard rectangle, and the grid length deformation after
the Gaussian model projection is worse. Therefore, different weights need to be added
to the distance in the latitude and longitude directions. However, due to the different
weights of different longitudes and latitudes, there will be a large amount of calculation.
Therefore, in order to take the calculation accuracy and calculation efficiency into account,
the deformation within the same longitude and latitude is regarded as the same, so the
distance calculation is adjusted to the following formula:{

δg = Lt
N cos([t])

δt =
Lt
N

(12)

Among them, Lt is the actual distance of a latitude range, N refers to the number of
grids per unit latitude or unit longitude range, [t] is the latitude value rounded, and δg and
δt are the actual distance of a single grid in the longitude and latitude directions.

According to the distance calculation formula and the extended node method of the
eight neighborhoods in the A* algorithm, the calculation formula of the cumulative cost Gn
can be described as following formula:

Gn = Gn−1 +
Lt

N

⎧⎨⎩
cos([t]) nj = 4, 8
1 nj = 2, 6√

cos2([t]) + 1 nj = 1, 3, 5, 7
(13)

Among them, nj is the eight neighborhoods index of the parent node relative to the
current node, and Gn−1 is the cumulative cost of the previous node. The different positions
of the previous node in the eight neighborhoods will change the cost from the previous
node to the current node. Since Lt, [t], and N are constant values, the cumulative cost
will also be a constant value in the same latitude map with the same resolution. The
cumulative cost change generated by a single expansion will change due to the difference
in the position j of the extended node relative to the current node.

4.1.2. Estimated Cost

The estimated cost Hn is the cost of estimating the current point to the target point,
which can be calculated by the Manhattan distance algorithm with modified latitude and
longitude difference. ⎧⎪⎨⎪⎩

Hn = Δgn,E + Δtn,E

Δgn,E = cos([t])Nt
Ng

|gn − gE|
Δtn,E = |tn − tE|

(14)

Among them, the distance length in the direction g and the error value in the di-
rection t will also be calculated into the distance difference Δgn,E in the g direction, so
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as to synchronize with Gn to eliminate the influence of Gaussian projection on the grid
distance deformation.

4.1.3. Gray Cost

The gray cost In is the cost of the influence of the terrain slope on the flight of the
aircraft. Because it is difficult for the aircraft to climb at a high speed when flying near the
ground, it is necessary to limit the terrain slope to find a safe and fast trajectory that can
satisfy the pitch angle limit of the aircraft at a certain speed. Taking the gray cost as a part
of the cost function in the pathfinding algorithm, the calculation method is the same as the
method of gray value as follows:

In =
(

28 − 1
)( π

180 Sg,t − αmin

αmax − αmin

)
(15)

4.2. Optimization of Open Table and Close Table

During the execution of the A* algorithm, it is necessary to continuously add selected
nodes to the close table, and continuously insert new nodes, delete root nodes, and modify
existing nodes in the open table. The classical A* algorithm uses an array structure, and
all points that may be traversed are placed in an array of the same open table, and sorted
according to different costs.

The purpose of sorting the open table is to always be able to locate the minimum cost
point, and to facilitate the insertion of new nodes, modify existing nodes, and delete the
minimum point for operation. Therefore, the data structure of the close table and the open
table greatly affects the traversal and search efficiency of the nodes.

This paper explores the efficient array sorting method and proposes the following
improvement schemes:

(1) An improved data structure “value table” is designed, which combines the open table
and the close table. It avoids the heuristic search operation on the array matrix before
sorting the open table in the classical A* algorithm, which must have to judge whether
the points in the eight fields have appeared in the open table or the close table.

(2) Using “Small Top Heap” to efficiently sort the nodes in the value table when per-
forming operations such as inserting new nodes, deleting root nodes, and modifying
nodes, to ensure that the root node in each extracted sequence is the minimum value,
and the cost function gradually increases from the root node to the child node. The
time complexity is O(nlogn) and the space complexity is O(1), which is lower than
other sorting algorithms.

The following will describe the details of the value table designed to improve the
search efficiency and the operation details of inserting new nodes, deleting root nodes,
and modifying nodes in the value table by using the Heap sort order to improve the
sorting efficiency.

4.2.1. Value Table

The information of the points stored in the traditional open table is two-dimensional
coordinates. The new value table is stacked by rows and then the minimum points are
stacked by columns. This sorting method can be stored for different rows, and only the
column coordinates of the corresponding rows need to be stored. In the final value table,
only the column coordinate index, the proxy value, and the parent node index that the
original open table should store are retained. At the same time, because the parent node
of the current point must be a point in the eight-neighborhood, the index of the parent
node can replace the original two-dimensional coordinate index by the serial number of the
eight-neighborhood. The close table stores two-dimensional coordinates and parent nodes,
which are repeated with the open table, so the open table and the close table are merged.
Because the open table does not calculate the nodes in the close table into the array when
sorting, the value in the close table is set to a null value.
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The “value table” proposed in this article combines the open table and the close table,
and its data structure is shown in Figure 6.
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Figure 6. Value table structure.

The value table contains N arrays of vi rows, and a row array of minimum cost vmin.
Row array vi contains cost value Fj, cumulative cost Gj, the column index colj of current
point j, and the index nj of the eight neighborhoods parent node. The minimum cost array
vmin contains the cost value Fmin,i minimum value in vi, and its row index i, among which
N is the row numbers of DEM, and M is the column number of DEM.

When it comes to the situation that the parameter (Fi, Gi, ni) of node (gi, ti) needs to
be updated, the column index j in row array vi should be retrieved at first where index j
can perfectly match ti. The row array vi will be automatically sorted in ascending order by
the Heap sorting method. Specific details will be shown in Algorithm A2.

Table vmin stores the cost values and row index of every root node vi[0] for all
(v1, v2, . . . vN). When the root node value vi[0] of vi is modified, the vmin[k] matched
to the index i (vmin[k].i = i) and vmin[k].Fmin,i will also be modified later. The row array vmin
will be automatically sorted by Fmin,i ascending order by the Heap sorting method. Specific
details will be shown in Algorithm A3.

According to the continuously backtracking operation of index vmin[0].i in
(v1[0].n, v2[0].n, . . . vN [0].n) after getting the final vmin, the row index gi of the target point
will be reached. The column ti of the target point in (v1[0].col, v2[0].col, . . . vN [0].col) will
be reached by continuously backtracking operation at the same time. Specific details will
be shown in Algorithm A4.

The parent node of the current node must belong to one of the eight neighbor nodes
of the current node in the improved A* algorithm, based on which the information of the
parent node can be gotten by the eight neighbors index relative to the current node, for
which the backtracking operation is feasible.

4.2.2. Heap Sorting Method

(1) Inserting new nodes

The diagram of inserting new nodes is shown in Figure 7. Firstly, the new node is
placed at the end of the array (node 9 in the graph), and then the size of the new node
and the parent node are compared (node 4 and node 9 in the graph). If the new node is
smaller than the parent node, the new node is exchanged with the parent node. Repeat the
comparison and exchange until the parent node is less than the new node. The process of
inserting a new node is the process by which the node continues to rise from the end of the
binary tree.
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Figure 7. Inserting a new node.

(2) Deleting root nodes

The schematic diagram of deleting root nodes is shown in Figure 8. Firstly, the root
node and the end node are exchanged (node 1 and node 9 in Figure 8). At this time, the
original root node (node 9) can be deleted, and the new root node is the original end node.
The new root node is compared with the child node and exchanged with the smaller node
in the child node; that is, node 1 and node 2 are exchanged in the graph until the child node
is larger than this node. The process of deleting new nodes is the process of continuous
sinking down of nodes from the root nodes of the binary tree.

Figure 8. Deleting root nodes.

(3) Modifying nodes

The schematic diagram of modifying the node is shown in Figure 9. The value of the
node is modified to the changed value. Owing to the reason that the modification of the
node in the value table reduces the node value, the process of modifying the node is the
process of the node floating up, which is the same as the process of inserting new nodes.
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Figure 9. Modifying nodes.

4.3. Trajectory Smoothing Optimization

While the coordinates of the eight neighborhoods are used in the path planning
process with constant angle of path, the turning radius of the aircraft in the actual flight is
limited. For the convenience of calculation, the maximum turning angle between the three
waypoints is limited on the basis of the step size of about 200 m, so that the route can meet
the performance requirements of the aircraft. Aiming at the processing of the turning angle,
this paper designs the vertical line method to adjust the trajectory, as shown in Figure 10.

,A g t

,B g t

,C g t,O g t

B

O

A

1A

,D g t

1A

Figure 10. The schematic diagram of the vertical line method.

For the continuous track points A, B, and C, the turning angle at the track point B
is βB. When βB > βmax, it is necessary to find a point O(g, t) so that βO can meet the
constraint of βO ≤ βmax. In order to make the step size between the two track points as
consistent as possible, this paper is designed to find point O on the vertical line of AC, and
its corresponding relationship is:

βO = 2βA = 2arctan

(
OD
1
2 AC

)
= βmax (16)

Through the above equation, the quantitative relationship between OD and the coor-
dinates of A and C can be obtained as follows:

OD = AD tan(βA) =

√
(gC − gA)

2 + (tC − tA)
2

2
tan
(

βmax

2

)
(17)

The coordinate O can be obtained according to the midpoint D between coordinate
A and the midpoint of coordinate C, line segment OD, and the coordinate axis angle βA1
as follows:
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⎧⎪⎨⎪⎩
βA1 = arctan

(∣∣∣ gC−gA
tC−tA

∣∣∣)
gD = gC+gA

2
tD = tC+tA

2

⇒
{

gO = gD + OD gB−gD
|gB−gD | sin βA1

tO = tD + OD tB−tD
|tB−tD | cos βA1

(18)

The trajectory after optimization is smoother; it can better meet the constraint of the
turning angle of the aircraft. The pseudo-code of the improved A* algorithm is described
in Algorithm A5.

5. Results

5.1. Experimental Environment

The hardware environment of the laboratory uses an 8-core,16-thread Intel I3-10th-2.4
GHZ main frequency processor, 4G running memory, and GeForce GTX 750 graphics card.

5.2. Experimental Parameters

The test parameters designed for specific global path planning tasks are shown in
Table 1. The default starting point and the target point are located in the DEM range of
N36E109~N37E110, the DEM resolution is 90 m, the number of grids in the longitude
direction and latitude direction is 1201, the projection is Gaussian projection, and the
coordinate system is the WGS-84 coordinate system. The terrain top view rendering map
and three-dimensional map are shown in Figure 11.

Table 1. Algorithm simulation default parameter table.

Parameter Value Parameter Value

Longitude of starting point 109.790833◦ Longitude of target point 109.371667◦

Latitude of starting point 36.718333◦ Latitude of target point 36.091667◦

Gray image minimum slope 0◦ Minimum path segment length 200 m
Gray image maximum slope 30◦ Interpolation algorithm 2D cubic convolution

Minimum terrain clearance altitude 800 m Difference algorithm Third-order inverse distance
Squared weight difference

Maximum terrain clearance altitude 12,600 m Distance type Manhattan distance
Minimum pitch angle 0◦ Cost weight of G 0.6
Maximum pitch angle 10◦ Cost weight of H 0.2

Maximum turning angle 10◦ Cost weight of I 0.2

Figure 11. Comparison maps obtained before and after preprocessing of map information. (a) Top
view rendering of original terrain; (b) DEM after map information preprocessing.
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5.3. Experimental Results and Analysis

In this paper, the classical A* algorithm and the improved A* algorithm are run
separately, the planning parameters of different algorithms are counted, and the classical
algorithms and the improved algorithms are compared from the aspects of planning effect
and efficiency as Table 2.

Table 2. Comparison simulation data of algorithm before and after improvement.

Simulation Data Classical A* Algorithm Improved A* Algorithm

Map processing time/s 0.0669 0.4220
Path planning time/s 412.6251 4.4212

Length of trajectory/m 93,620 93,225

Through the comparison data of the simulation results in Table 2, it can be seen that
the improved A* algorithm has increased the map processing time compared with the
traditional algorithm, which is due to the increase in map resolution adjustment and slope
calculation in the early stage. Such time consumption is necessary, because the processing
of the map facilitates the subsequent pathfinding algorithm, and the length of trajectory
becomes smaller. It can be seen that in the results, the pathfinding time of the improved
algorithm is 1% of the traditional algorithm, and the time is greatly shortened. Finally,
the length of the track planned by the improved algorithm is also shorter than that of the
traditional algorithm. Although the shortened length is not much for the whole track, it
also saves the time to reach the target point to a certain extent.

Combined with the planning path in the schematic diagram of the algorithm simula-
tion performance results between the classical algorithm and the improved algorithm in
Figure 12, the point line is the classical A* algorithm, and the solid line is the improved
A* algorithm. It can be seen that the path planned by the improved A* algorithm has less
steering. In a valley with complex terrain, the path can also be adjusted according to the
change in valley terrain to satisfy the constraint of obstacle avoidance.

When the aircraft makes an emergency landing in a complex mountain flight, the flight
trajectory after trajectory smoothing optimization shows a smoother landing route with
shorter track distance and landing time, as shown in Figure 13. Therefore, the improved A*
algorithm improves a good solution for the emergency handling of fixed-wing aircraft in
the event of bad weather conditions.

Figure 12. Cont.
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Figure 12. The comparison of the simulation results between the classical A* algorithm and the
improved A* algorithm.

Figure 13. Comparison of aircraft landing trajectory after trajectory smoothing optimization. The
blue point line in the figure is the curve before the trajectory optimization, and the red line is the
curve after the trajectory optimization.

5.4. Comparative Analysis

In the previous study, the interpolation algorithm was introduced and the 2D cubic
convolution interpolation selected as the best interpolation algorithm by comparing the
effect of interpolation maps. In order to verify the superiority of 2D cubic convolution
interpolation, this section will simulate different interpolation algorithms. The DEM
obtained by different algorithms is used to find the path, and the parameters such as
the pathfinding time and the path length of the path planned by different algorithms are
compared. For the task requirements of different minimum track segment lengths, this
paper designs four digital maps with different resolutions to meet the requirements of
interpolation algorithms under different task situations.

The minimum track length of the contrast experiment design of the interpolation
algorithm is 30 m, 45 m, 200 m, and 500 m for the four groups of algorithm simulation. The
simulation results are shown in Table 3.
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Table 3. Comparison simulation data of different minimum track length and interpolation algorithm.

Minimum Track Length Simulation Data Bilinear Bicubic Hermite 2D Cubic Convolution

30 m
Map processing time/s 51.15 84.83 38.04
Path planning time/s 1614.14 1618.77 1859.43

Length of trajectory/m 97,509 98,486 98,486

45 m
Map processing time/s 29.54 53.12 17.51
Path planning time/s 831.19 784.20 742.94

Length of trajectory/m 97,029 97,095 97,095

200 m
Map processing time/s 1.47 2.52 0.61
Path planning time/s 7.06 7.80 7.91

Length of trajectory/m 93,879 93,241 93,241

500 m
Map processing time/s 0.20 0.31 0.08
Path planning time/s 0.64 0.61 0.60

Length of trajectory/m 83,156 84,039 84,039

Through the setting of different minimum track segment lengths, it can be seen that
when the gray image obtained by the interpolation algorithm is used for pathfinding, the
map processing time of the two-dimensional cubic convolution interpolation algorithm
is the smallest, followed by the two-dimensional cubic convolution interpolation, and the
map processing time required for the bicubic Hermite interpolation is the longest. The
three interpolation algorithms have little difference in pathfinding time under different
resolutions, and most of the pathfinding time of the bicubic Hermite interpolation is
relatively small; the effect of bilinear interpolation will become relatively poor as the
resolution decreases, while the bicubic Hermite interpolation and the two-dimensional
cubic convolution interpolation are consistent with the track length data.

By longitudinally comparing the simulation parameters obtained by the same interpo-
lation algorithm with different resolutions, it can be seen that the higher the resolution, the
less time spent on the map processing and pathfinding algorithm of the response. When
the pilot actually flies, the resolution can be adjusted as needed to improve the efficiency of
the algorithm. The 2D cubic convolution method can also obtain a trajectory with higher
accuracy.

In the previous section, by comparing the slope calculation effect and calculation
complexity of different algorithms, the third-order inverse distance square weight difference
method is selected as the slope calculation method of track planning. In order to further
determine its superiority, this section will simulate and test the DEM obtained by different
difference algorithms, and compare the pathfinding effect of different difference algorithms.
The difference algorithm simulation data comparison is shown in Table 4.

Table 4. Comparison simulation data of different difference algorithms.

Difference Algorithm
Map Processing

Time/s
Path Planning

Time/s
Length of

Trajectory/m

Simple difference 0.40 4.18 93,314
Second-order difference 0.39 4.92 93,319

Third-order inverse distance square weight difference 0.41 4.84 93,241
Third-order inverse distance weight difference 0.40 4.67 94,238

Third-order unweighted difference 0.39 4.86 94,183
Frame difference 0.40 4.54 94,352

It can be seen from the simulation data that the map processing times and pathfinding
times of different differential algorithms are less different, so the selection of different
difference algorithms has little effect on the final performance.

In the previous section, by comparing the computational efficiency and accuracy of
different distance calculation methods, the Manhattan distance is selected as the distance
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calculation method in the path planning. Because the latitude and longitude distances in
the grid are different, the latitude and longitude distance difference are combined with the
Manhattan distance.

In this section, in order to compare the effects of different distance calculation methods
for path planning, we randomly generate 1000 groups of starting points and target points
in the same map. We define the minimum pathfinding time (MPFT) to measure the number
of minimum pathfinding algorithms for an algorithm in 1000 path plans as shown in
Equation (19).

MPFTi =
1000

∑
k=1

1[i == argmin
1≤j≤4

{t(k)j }], i = 1, 2, 3, 4 (19)

where t(k)1 , t(k)2 , t(k)3 , t(k)4 represent the path planning time under the Euclidean distance,
Manhattan distance, Diagonal distance, and Chebyshev distance, respectively, in k-th
simulation. 1(x) is an indicative function when x is true; its value is 1, otherwise it is 0.
Comparison simulation data of different distance calculation methods in MPFT are shown
in Table 5.

Table 5. Comparison simulation data of different distance calculation methods in MPFT.

Euclidean Distance Manhattan Distance Diagonal Distance Chebyshev Distance

128 613 19 240

According to the statistical results, it can be seen that among the 1000 groups of random
tracks, the Manhattan distance has the shortest pathfinding time of 613 times. Therefore, it
is undoubtedly the best distance calculation method in the pathfinding algorithm.

6. Discussion

The path planning method based on the improved A* algorithm proposed in this
paper has significant advantages compared with the classical A* algorithm. Take the
original A* algorithm (including A* [4], LPA* [27], Weighted A* [28,29], etc.) and Hybrid
A* algorithm [27] as an example; their characteristics are shown in Table 6.

Table 6. Comparison of different A* algorithms.

Algorithm
Processed Map

Format
Sorting Algorithm of

Node Data
Storage Structure

of Node Data
Smooth Optimization Method

of Trajectory

Original A*

Digital raster
Graphics (DRG)

Insertion sorting or
other sorting methods

Open table and
close table

No optimization

Hybrid A*

Consider kinematic corner
constraints, using Dubbins

curves, or Reeds Shepp curves
for trajectory smoothing

Improved A* DEM after
preprocessing of map Small Top Heap sorting Value table

Consider turning angle
constraint real-time midline

optimization

Through the preprocessing operation of resolution adjustment and interpolation of
DEM map information, a “value table” is used to store open table node data, and the Small
Top Heap structure is used to delete, add, modify, and sort nodes, which greatly reduces the
calculation time. The turning angle of the two-dimensional trajectory point calculated by
the A* algorithm is smoothed to ensure the planned trajectory point meets the requirements
of the aircraft turning angle.

The simulation examples show that the proposed improved A* algorithm can meet
the requirements of short calculation time, good smoothness of calculation trajectory, and
high security. However, the current trajectory planning algorithm does not consider the
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underlying dynamic model of the aircraft and the requirements of control performance. In
future research, it is planned to incorporate the influence of aircraft speed into the algorithm;
that is, the maximum and minimum flight speed effects of the aircraft are considered in the
process of planning the trajectory, so that the planned trajectory can meet the flight speed
constraints of the aircraft. In addition, the weight distribution of the generation value in
the improved A* algorithm and the efficient real-time re-planning obstacle avoidance in
the dynamic environment are also problems worthy of further study.

7. Conclusions

This article takes the FMS system of fixed-wing civil aircraft as the background for
efficient emergency landing obstacle avoidance and optimal trajectory planning in complex
mountainous terrain. It mainly focuses on model generation and preprocessing in global
path planning, as well as global path planning algorithms.

This article uses methods such as adjusting map resolution, calculating terrain slope,
and generating safe flight surface to preprocess map information, and generates a flyable
DEM grayscale map. This solves the problem of excessive data volume in the three-
dimensional spatial model of the trajectory planning algorithm, and based on this, generates
the grayscale cost of the path planning algorithm. A global path planning algorithm based
on the improved A* algorithm combined with grayscale cost is proposed, the effectiveness
of the final experimental results of the algorithm is analyzed, and the key interpolation and
heuristic operator calculation methods that affect the algorithm are compared and analyzed.

The overall work of the paper is as follows:
A safe flight surface generation algorithm combining pitch angle constraint is proposed

to meet the requirements of pathfinding algorithms for digital maps. Select DEM as the
data model for the three-dimensional spatial model, and perform two-dimensional cubic
convolutional interpolation to address the resolution issue of the digital map, resulting in a
digital map that can meet the storage requirements of the pathfinding algorithm and the
safety of flight surface information. To address the issue of large amounts of elevation data
that are difficult to calculate, a third-order inverse distance squared difference method is
used to calculate the terrain slope and generate a grayscale image.

A global path planning algorithm based on the improved A* algorithm is proposed
to solve the problems of low planning efficiency and difficulty in following the trajectory.
To solve the problems of large data computation and long planning time in the classical A*
algorithm, value table and Small Top Heap methods are used to improve and optimize the
sorting algorithm and data structure; a trajectory smoothing optimization algorithm combined
with turning angle constraints is proposed to address the problem of difficult track following.
And comparative analysis of key methods is conducted on the optimized algorithm.

The experimental results show that, compared to the original classic A* algorithm, the
improved A* algorithm can significantly reduce the pathfinding time of the flight path, and
the planned flight path is smoother and easier to follow, which meets well the requirements
of efficient obstacle avoidance and emergency landing in complex mountainous terrain.
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Appendix A

Algorithm A1: Cost Function

Input : DEM matrix Gg,t, (g0, t0), start point (gE, tE), target point (gi, ti),
weight of the cost ωG, ωH , ωI
Output : Cost value Fi

1. Calculation of gray cost Ii = Ii(Ggi ,ti )
2. Calculation of estimated cost Hi = Hi((gi, ti), (gE, tE))
3. Calculation of cumulative cost Gi = Gi(Ggni ,tni

, (gi, ti), (gni , tni ))

4. Calculation of cost value Fi = ωGGi + ωH Hi + ωI Ii

Algorithm A2: Modify v

Input: node (gi, ti); cost value and cumulative cost of current node (Fi, Gi); column of current
node Coli; parent node index ni in eight neighbors relative to current node; value table
v : (v1, v2, . . . vN); M
Output: vgi after being modified, value table v : (v1, v2, . . . vN)

1. for j = 1 : M do

2. if vgi [j].Col == ti do

3. if vgi [j].F > Fi do

4. vgi [j].F = Fi
5. vgi [j].G = Gi
6. vgi [j].n = ni
7. endif

8. continue

9. endif

10. endfor

11. vgi is sorted vgi ← sort(vgi , F) in ascending order through F by Heap sorting method

Algorithm A3: Modify vmin

Input: Value table (v1, v2, . . . vN); before modified.
Output: vmin after modified
1. num = 0
2. for i = 1 : N do

3. if vi[0] �= 0 do

4. k = find (vmin.i = i)
5. if k does not exist

6. num = num + 1
7. vmin[num].Fmin,i= vi[0].F
8. Using Small Top Heap sort to float vmin[k].Fmin,i es.
9. elseif k exist do

10. if vi[0].F < vmin[k].Fmin,i

11. vmin[k].Fmin,i = vi[0].F
12. Small Top Heap sort to float vmin[k].Fmin,i es.
13. endif

14. endif

15. endif

16. endfor
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Algorithm A4: Backtracking

Input: Value table (v1, v2, . . . vN , vmin); start point (g0, t0); target point (gE, tE)
Output: Trajectory point sets Path from start point to target point
1. gp = vmin[0].i, tp = vgp [0].col, Path = [gp, tp]

2. while (gp, tp) �= (gE, tE) do

3. np ← vgp [0].n
4. gp = n(np)
5. tp ← vgp [0].col
6. Path← Path ∪ [gp, tp]
7. Endwhile

Algorithm A5: Improved A* algorithm

Input: DEM matrix Gg,t; number of rows N; number of columns; value table
(v1, v2, . . . vN , vmin); start point (g0, t0); target point (gE, tE); maximum turning angle
βmax; cost weight ωG, ωH , ωI ; final planning trajectory point sets Path = []
Output: Trajectory point sets Path
1. Initialize the value table (v1, v2, . . . vN , vmin), current point p← (g0, t0) , puts vi all the

nodes of j into Fj ← Inf, Gj ← 0, colj ← j, nj ← Null , Small Top Heap p_arr ← [p] (That
means p_arr[0] = arg min

(gp ,tp)

p_arr[(gp, tp)]).

2. while vgE [0].col �= tE do

3. for (gp, tp) ∈ p_arr[0] do

4. Getting eight neighbor points {(g1, t1), (g2, t2), . . . (g8, t8)} of (gp, tp)
5. Insert {(g1, t1), (g2, t2), . . . (g8, t8)} into p_arr
6. Delete (gp, tp) from p_arr
7. for i = 1 : 8 do

8. if vgi [j].F == Inf,vgi [j].col = ti do

9. Fi = CostFunction(Gg,t, (gi, ti), (g0, t0), (gE, tE), ωG, ωH , ωI)
10. vgi ← ModifyV((gi, ti), vgi , (Fi, Gi, Coli, n((gp, tp))))
11. endif

12. endfor

13. endfor

14. vmin ← ModifyVmin((v1, v2, . . . vN , vmin))
15. endwhile

16. Path = Backtracking((g0, t0), (gE, tE), (v1, v2, . . . vN , vmin))
17. Trajectory smoothing optimization for Path using maximum turning angle βmax

Appendix B

For the three DEM interpolation algorithms: Bilinear interpolation, Bicubic Hermite
interpolation, and 2D cubic convolution interpolation, this paper selects the original DEM
data with a resolution of 90 M between 40.4583◦ N~40.6667◦ N and 113.3333◦ E~113.5417◦ E,
and then performs different interpolation algorithms. The processing results are statistically
calculated to better obtain the most suitable interpolation algorithm. The processing results
are shown in Figures A1 and A2.

In order to compare more quantitatively compared to graphical comparison results,
the results of the three algorithms are statistically compared with the original elevation,
and the effects of different interpolation algorithms are compared as shown in Table A1.

The corresponding ϕg(h) and ϕt(h) in different difference algorithms such as simple
difference, second-order difference, third-order inverse distance square weight difference,
third-order inverse distance weight difference, third-order unweighted difference, and
frame difference are shown in Table A2.
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(a) (b) 

 
(c) (d) 

Figure A1. The refinement effect comparison of interpolation algorithm. (a) The original digital
elevation map; (b) Bilinear interpolation; (c) Bicubic Hermite interpolation; (d) 2D cubic convolution
interpolation. (The z-axis represents the height in meters).

 
(a) (b) 

 
(c) (d) 

Figure A2. Interpolation effect diagram with more refined resolution compared to Figure A1. The
refinement effect comparison of interpolation algorithm. (a) The original digital elevation map;
(b) Bilinear interpolation; (c) Bicubic Hermite interpolation; (d) 2D cubic convolution interpolation.
(The z-axis represents the height in meters).
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Table A1. Data comparison analysis table of interpolation algorithm.

Interpolation
Algorithm

Mean
(Difference)

Variance (Difference) Covariance
Correlation
Coefficient

Bilinear −3.3265 496.3242 6729.2543 0.9646
Bicubic Hermite −3.0499 519.5576 6700.7678 0.9628

2D cubic convolution −3.0025 434.3359 6746.2220 0.9693

Table A2. Comparison table of ϕg(h) and ϕt(h) in simple difference, second-order difference, third-
order inverse distance square weight difference, third-order inverse distance weight difference,
third-order unweighted difference, and frame difference algorithms.

Algorithms ϕg(h) ϕt(h)

Simple difference h0−h4
δg

h0−h2
δt

Second-order difference h4−h8
2δg

h2−h6
2δt

Third-order inverse distance
square weight difference

h1−h3+2(h8−h4)+h7−h5
8δg

h5−h3+2(h6−h2)+h7−h1
8δt

Third-order inverse distance
weight difference

h1−h3+
√

2(h8−h4)+h7−h5

(4+2
√

2)δg

h5−h3+
√

2(h6−h2)+h7−h1

(4+2
√

2)δt

Third-order unweighted
difference

h1−h3+h8−h4+h7−h5
6δg

h5−h3+h6−h2+h7−h1
6δt

Frame difference h1−h3+h7−h5
4δg

h5−h3+h7−h1
4δt

The variable hi, i = 1, 2 . . . 8 is the eight neighborhoods elevation of the current point
elevation value h0, and δg, δt represents the unit minimum distance between the adjacent
grid center points in different directions. The order, position, and symbol of the eight
neighborhoods are shown in Figure A3.

2h 0h

3h 4h 5h

6h

7h8h1h

g

t

 
Figure A3. Elevation eight neighborhood diagram.

In order to compare different difference algorithms, this paper selects the original DEM
with a resolution of 30 m between 27.776994◦ N~28.167096◦ N and 91.696574◦ E~92.149718◦

E, as shown in Figure A4. The original elevation model is processed by simple difference,
second-order difference, third-order inverse distance square weight difference, third-order
inverse distance weight difference, third-order unweighted difference, and frame difference.
The processing effect of the difference algorithm is shown in Figure A5. It can be seen that
the grayscale images obtained by the third-order inverse distance weight difference, the
third-order unweighted difference, and the border difference are better, and the ridges and
valleys can be well distinguished by the grayscale and form a continuous path.
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Figure A4. Original digital elevation topographic map.

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure A5. Different differential difference algorithms to deal with the effect diagram. (a) Sim-
ple difference; (b) Second-order difference; (c) Third-order inverse distance square weight differ-
ence; (d) Third-order inverse distance weight difference; (e) Third-order unweighted difference;
(f) Frame difference.
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âsctr
i > ξ5 âectr
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Abstract: Conflict analysis in intelligent decision making has received increasing attention in recent
years. However, few researchers have analyzed conflicts by considering trustworthiness from the
perspective of common agreement and common opposition. Since L-fuzzy three-way concept lattice
is able to describe both the attributes that objects commonly possess and the attributes that objects
commonly do not possess, this paper introduces an L-fuzzy three-way concept lattice to capture the
issues on which agents commonly agree and the issues which they commonly oppose, and proposes
a hybrid conflict analysis model. In order to resolve conflicts identified by the proposed model, we
formulate the problem as a knapsack problem and propose a method for selecting the optimal attitude
change strategy. This strategy takes into account the associated costs and aims to provide the decision
maker with the most favorable decision in terms of resolving conflicts and reaching consensus. To
validate the effectiveness and feasibility of the proposed model, a case study is conducted, providing
evidence of the model’s efficacy and viability in resolving conflicts.

Keywords: intelligent decision making; conflict analysis; conflict resolving; three-way decisions;
uncertainty modeling

1. Introduction

Conflict analysis [1–3] aims to analyze complex conflict situations with appropriate
models by studying the conflict relationships between individuals or groups on issues,
identifying the internal causes of conflict and providing some guidance for conflict resolu-
tion in intelligent decision making such as labor negotiation [4], diplomatic relations [5],
and urban planning [6].

Many scholars have proposed various models for conflict analysis from different
perspectives. Pawlak [5] first considered the uncertainty of agents’ attitudes toward issues
and divided the agents into three groups (i.e., coalition, neutrality, and conflict). Yao [7]
extended the Pawlak model [5] by examining three levels of conflict and proposed three-
way conflict analysis. Lang et al. [8] further improved the Yao model [7] by employing
an alliance measure and a conflict measure. In addition, considering uncertainty and data
complexity in actual conflict situations, Lang et al. [9] used Pythagorean fuzzy sets to
describe conflict situations and proposed a Bayesian minimal risk theory based conflict
analysis method. Li et al. [10] proposed a conflict analysis model to cope with trapezoidal
fuzzy numbers in agents’ attitudes toward issues. Yang et al. [11] investigated a three-way
conflict analysis to deal with diverse rating types in situation tables. Suo et al. [12] studied
a three-way conflict analysis model to deal with incomplete three-valued situation tables.
Furthermore, since psychological factors and risk attitudes of agents may affect the results
of conflict analysis, Wang et al. [13] proposed a compound risk preference model for
three-way decision based on different types of risk preferences.
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Zhi et al. [14] introduced a three-way concept for conflict analysis [15]. Three-way
concept analysis was proposed in [15] by combining three-way decision theory [16–20]
and formal concept analysis [21,22], with the ability of describing the properties that
objects possess in common and those that they do not possess in common [23,24]. Zhi
et al. [14] analyzed the conflict relationships between agents and identified the binary
relationships between sets of agents and sets of issues by using three-way concepts, and
then analyzed the causes of conflict. The above studies were conducted in the case that
agents are completely trustworthy. In some situations (for example, in network); however,
agents may be untrustworthy. To this end, Zhi et al. [25] proposed a multilevel conflict
analysis that analyzed and resolved uncertainty in agents’ trustworthiness and uncertainty
in agents’ attitudes toward issues. However, in [25], when describing the consistency of
agents using fuzzy concepts, only the common agreement consistency is considered and
the common opposition consistency is ignored. This may lead to a misjudgment of conflict
in some cases. For example, when agents oppose an issue, according to [25] the agents are
inconsistent on this issue, but in fact, agents are consistent.

On the other hand, when agents have disputes, it is necessary to find appropriate
conflict resolution strategies to promote cooperation among them. To this end, Sun et al. [26]
constructed a probabilistic rough set model and provided an effective method to find the
feasible consensus strategy to facilitate the resolution of conflict situations. To select an
effective feasible strategy, Xu et al. [4] formulated the criteria for selecting feasible strategies
based on consistency measurement of cliques. Based on game-theoretic rough sets, Bashir
et al. [1] designed a novel conflict resolution model by constructing a game among all
agents, computing the payoff of different strategies, and classifying them according to the
equilibrium rules. From the perspective of multi-criteria decision analysis, Du et al. [2]
introduced three kinds of relations among agents into multi-criteria large-scale group
decision making in linguistic context, obtained the coalition of decision models and the
weights of criteria and finally proposed a conflict coordination and feedback mechanism to
solve conflicts.

Most of the existing solution strategies resolve conflicts by selecting an optimal subset
of issues most agents agree on. However, if conflicts have not yet reached a serious level,
some compromises can be made through third-party mediation to promote cooperation
between the agents. For example, Iran and Saudi Arabia have resumed diplomatic relations
after China-mediated talks. Therefore, this paper considers changing the attitudes of agents
to make them reach a consensus. Since such changes will bring a certain cost, it is necessary
to measure the costs to determine an optimal change. In addition, the cost may also change
as trust degree is introduced and changed. Consequently, conflict resolution strategies that
only consider costs, without considering trust, are often ineffective.

In order to solve the above problems, this paper introduces an L-fuzzy three-way
concept lattice (L-3WCL) [27], which is mainly used in knowledge representation [28]
and fuzzy three-way concept lattices reduction [29], to conflict analysis and resolves the
conflict using the dynamic programming method of the knapsack problem [30–32]. As
a result, a hybrid conflict analysis model is developed. The model first employs L-fuzzy
three-way concept to capture the issues on which agents commonly agree and the issues
which they commonly oppose, and then measures the relative inconsistency of a set of
agents. By relative inconsistency, we identify the state of a set of agents and categorize
the issues into different types, which may help us find the causes of conflict. To facilitate
cooperation between agents, we act as a third-party mediator, seeking to compromise
between the agents at minimal cost to reach a consensus. We model this problem as a
knapsack problem, which is a combinatorial optimization problem that can be solved using
dynamic programming method. Finally, we propose an optimal attitude change strategy
based on dynamic programming and solve conflicts with minimum cost. Furthermore,
we verify the effectiveness of this strategy in intelligent decision-making instances such as
business decision making.
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Section 2 will briefly review the models in [5,25]. Section 3 analyzes the shortcomings
of the fuzzy-concept-lattice-based conflict analysis model and proposes an L-3WCL-based
conflict analysis model. Section 4 develops an optimal attitude change strategy and illus-
trates the effectiveness of the strategy with a case study. Finally, Section 5 concludes the
paper with an outlook.

2. Related Works

This section briefly reviews some basic conflict analysis models, including the Pawlak’s
conflict analysis model and the fuzzy-concept-lattice-based conflict analysis model.

2.1. Pawlak’s Conflict Analysis Model

Pawlak’s conflict analysis model is built on conflict analysis information system (CAIS).

Definition 1 ([5]). A CAIS is a triple K = (U, V, R), where U = {x1, x2, . . . , xn} is a non-empty
finite set of agents, V = {a1, a2 . . . , am} is a non-empty finite set of issues, and R : U × V →
{−1, 0, 1} is defined by

R(x, a) =

⎧⎪⎨⎪⎩
1, x is positive towards a
0, x is neutral towards a
−1, x is negative towards a

(1)

where x ∈ U and a ∈ V.

In order to determine the relationship between two agents, Pawlak the defined auxil-
iary function [5].

Definition 2 ([5]). Let K = (U, V, R) be a CAIS and a ∈ V. Define the auxiliary function φa
with regard to a for xi, xj ∈ U as

φa(xi, xj) =

⎧⎪⎨⎪⎩
1, if R(xi, a) ∗ R(xj, a) = 1 or xi = xj

0, if R(xi, a) ∗ R(xj, a) = 0 and xi �= xj

−1, if R(xi, a) ∗ R(xj, a) = −1.

(2)

By Definition 2, φa(xi, xj) = 1 means that both agents xi and xj have the same attitude
towards issue a; φa(xi, xj) = −1 means that agents xi and xj have different attitudes
towards a; φa(xi, xj) = 0 means that at least one agent has a neutral attitude towards a.

Based on the auxiliary function, the distance between agents can be measured.

Definition 3 ([5]). Let K = (U, V, R) be a CAIS and B ⊆ V. Define the distance function with
regard to B for xi, xj ∈ U as

ρB(xi, xj) =
1
|B| ∑

a∈B

1− φa(xi, xj)

2
. (3)

According to the distance function, Pawlak divided the relationships between agents
into three groups [5].

Definition 4 ([5]). Let K = (U, V, R) be a CAIS and B ⊆ V. For xi, xj ∈ U,

1. If ρB(xi, xj) > 0.5, then xi, xj are called in a conflict state;
2. If ρB(xi, xj) = 0.5, then xi, xj are called in a neutral state;
3. If ρB(xi, xj) < 0.5, then xi, xj are called in an alliance state.
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2.2. Fuzzy-Concept-Lattice-Based Conflict Analysis Model

Zhi et al. [25] employed fuzzy concepts to characterize the uncertainty of agents and
proposed a fuzzy-concept-lattice-based conflict analysis model.

Definition 5 ([33]). A complete residuated lattice (CRL) is a seven-tuple (L,∧,∨,⊗,→, 0, 1) with

• (L,∧,∨, 0, 1) is a complete lattice;
• (L,⊗, 1) is a commutative monoid;
• ⊗ and→ are adjoint, i.e., for x, y, z ∈ L,

x⊗ y ≤ z⇐⇒ x ≤ y→ z. (4)

Definition 6 ([34]). Let (L,∧,∨,⊗,→, 0, 1) be a CRL. For a ∈ L, define ¬ : L → L as ¬a =
a→ 0 and call ¬ a negation operation of L.

CRL has the following properties.

Proposition 1 ([34,35]). If L is a CRL and ¬ is a negation operation of L, then the following
conclusions hold

1. x ≤ y⇐⇒ ((x → y) = 1);
2. (x → x) = (x → 1) = (0→ x) = 1, (1→ x) = x;
3. ¬1 = 0, ¬0 = 1.

CRL generalizes various types of truth structures. For example, the Łukasiewicz
implication operator is:

x → y = ((1− x + y) ∧ 1) (5)

where x, y ∈ [0, 1]. For a universe U and a CRL L, S : U → L is called an L-fuzzy set on U.
The set of all the fuzzy sets on U is denoted by LU .

Definition 7 ([36,37]). A fuzzy formal context is a triple K = (U, V, R), where U is the set of
objects, V is the set of attributes, and R ∈ LU×V is a fuzzy relation between U and V.

Based on fuzzy formal context, fuzzy concepts can then be defined.

Definition 8 ([36,37]). Let K = (U, V, R) be a fuzzy formal context. For A ∈ LU and B ∈ LV,
↑: LU → LV and ↓: LV → LU can be defined as

A↑(y) =
∧

x∈U
(A(x)→ R(x, y)), y ∈ V (6)

B↓(x) =
∧

y∈V
(B(y)→ R(x, y)), x ∈ U (7)

If A↑ = B and B ∈ LV, then (A, B) is called a fuzzy concept in K, where A and B are called
the extent and intent of (A, B), respectively. For all the fuzzy concepts in K, the order defined by
(A1, B1) ≤ (A2, B2)⇐⇒ A1 ⊆ A2 ⇐⇒ B2 ⊆ B1 forms a complete lattice F(K), called the fuzzy
concept lattice of K.

Definition 9 ([25]). Let K = (U, V, R) be a CAIS. The inconsistency measure for X ∈ LU is
defined as

m(X) =
1
|V| ∑y∈V

(1− X↑(y)) (8)

Given two thresholds t1 and t2 such that 0 ≤ t1 ≤ t2 ≤ 1, for X ∈ LU

1. If m(X) > t2, then X is called in a conflict state;
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2. If t1 ≤ m(X) ≤ t2, then X is called in a neutral state;
3. If m(X) < t1, then X is called in an alliance state.

If a set X of agents is in a conflict state, then we call X a conflict set of agents; if X is in
a neutral state, then we call X a neutral set of agents; and if X is in an alliance state, then
we call X an alliance set of agents.

In this paper, we refer to the conflict analysis model proposed in [25] as the Zhi model.

3. L-3WCL Based Conflict Analysis Model

The Zhi model can effectively analyze conflict situations with the uncertainty of agents
in trustworthiness, but it may lead to misjudgment of conflicts. Example 1 illustrates the
cause of misjudgment.

Example 1. Let K = (U, V, R) be a CAIS, where U = {x1, x2}, V = {y} and R(x1, y) =
R(x2, y) = 0.

For K, since the attitudes of agents x1 and x2 towards issue y are both negative, they reach
a consensus on y; therefore, the inconsistency should be 0. However, according to the Zhi model,
when using the Łukasiewicz implication, for X = {1/x1, 1/x2} ∈ LU, according to Definitions 8
and 9, X↑(y) = 0 and m(X) = 1. Thus, the inconsistency of agents x1 and x2 on y is 1, indicating
that the attitudes of the two agents are inconsistent. Similar problems also exist in the Zhi model
when using other commonly used implication operators.

From Example 1, we can see that the Zhi model misjudges the conflict. This is due to
the fact that the Zhi model only considers the common agreement of agents as consistency
and the common opposition of agents as inconsistency. Since L-3WCL [27] is able to
characterize both the attributes that objects commonly possess and the attributes that
they commonly do not possess, we will utilize L-3WCL to describe the issues that agents
commonly agree on and commonly oppose, and propose a hybrid conflict analysis method
based on L-3WCL.

Definition 10 ([27]). For a fuzzy formal context K = (U, V, R), define ↑T : LU → LV × LV and
↓T : LV × LV → LU as:

X↑T (y) = (X+(y), X−(y)) (9)

(Y+, Y−)↓T (x) =
∧

y∈V
(Y+(y)→ R(x, y)) ∧

∧
y∈V

(Y−(y)→ ¬R(x, y)), (10)

where X ∈ LU, y ∈ V, (Y+, Y−) ∈ LV × LV, x ∈ U, and

X+(y) =
∧

x∈U
(X(x)→ R(x, y)) (11)

X−(y) =
∧

x∈U
(X(x)→ ¬R(x, y)). (12)

When X↑T = (Y+,Y−) and (Y+, Y−)↓T = X, (X, (Y+, Y−)) is called an object-derived
L-fuzzy three-way concept and X and (Y+, Y−) are called the extent and intent of (X,(Y+, Y−)),
respectively. All the fuzzy concepts of K form a complete lattice ATWL(K), called the L-3WCL of
K, defined as

(X1, (Y+
1 , Y−1 )) ≤ (X2, (Y+

2 , Y−2 ))⇐⇒ X1 ⊆ X2 ⇐⇒ (Y+
2 , Y−2 ) ⊆ (Y+

1 , Y−1 ). (13)

A CAIS can be regarded as a fuzzy formal context, where R(x, y) represents the
attitude of the agent x towards the issue y, and X(x) represents the trust degree of x. By
Definition 10, X+(y) represents the consistency degree of X in agreeing with the issue y;
X−(y) represents the consistency degree of X in opposing y. Since the larger the value of
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R(x, y) the higher the degree of agreement, when X(x) remains constant, X+(y) increases
with the increase of R(x, y); in other words, X+(y) is the agreement consistency. Similarly,
since the larger the value of ¬R(x, y) the higher the degree of opposition, when X(x)
remains constant, X−(y) increases with the increase of ¬R(x, y), and therefore X+(y) is the
opposition consistency.

Similarly, in Definition 10, Y+(y) denotes the agreement consistency with the issue
y and Y−(y) denotes the opposition consistency with y. If Y+(y) = X+(y) and Y−(y) =
X−(y), i.e., Y+(y) is the agreement consistency of X with y and Y−(y) is the opposition
consistency of X with y, (Y+, Y−)↓T (x) returns a new set (Y+, Y−)↓T ∈ LU such that X(x) ≤
(Y+, Y−)↓T (x) = X↑T↓T (x) for any x ∈ U (see [27]), implying that one can increase the trust
degree of x while keeping the same agreement consistency and opposition consistency
because X↑T↓T↑T (x) = X↑T (x) (see [27]).

In our case, we require L to be {0, 0.5, 1}. In particular, we have the following
conclusions.

1. Both X+(y) and X−(y) are also in {0, 0.5, 1}. If X+(y) = 1, then the set X of agents
completely reach a consensus in agreeing with the issue y; if X+(y) = 0.5, then X
partially reach a consensus in agreeing with y; and if X+(y) = 0, then X does not
reach a consensus in agreeing with y. Similar analysis applies to X−(y).

2. The value of (Y+, Y−)↓T (x) also falls in {0, 0.5, 1}. In this case, if (Y+, Y−)↓T (x) = 1,
then the agent x is fully trusted. If (Y+, Y−)↓T (x) = 0.5, then x is partially trusted; if
(Y+, Y−)↓T (x) = 0, then x is not trusted.

Example 2. Since the Gödel implication operator is not suitable for building fuzzy logic sys-
tems [38], we will choose the Łukasiewicz implication operator for illustration. In this case, for
X ∈ LU and y ∈ V, we have

X+(y) =
∧

x∈U
(X(x)→ R(x, y)) =

∧
x∈U

((1− X(x) + R(x, y)) ∧ 1) (14)

X−(y) =
∧

x∈U
(X(x)→ ¬R(x, y)) =

∧
x∈U

((1− X(x) + ¬R(x, y)) ∧ 1). (15)

When all the agents x ∈ U are trustworthy, i.e., X(x) = 1, we have X+(y) = ∧x∈U R(x, y)
and X−(y) = ∧x∈U(¬R(x, y)). This is reasonable because when all the agents are trustworthy,
the consistency of X will completely depend on their attitudes.

If there is an agent x ∈ U with X(x) = 0, then we have X(x) → R(x, y) = X(x) →
¬R(x, y) = 1, i.e., the values of X+(y) and X−(y) are not affected by R(x, y). This is also
reasonable because if the agent x is not trustworthy, their attitude can be ignored.

Based on the agreement consistency and opposition consistency, the comprehensive
consistency X∗(y) can be defined.

Definition 11. Let K = (U, V, R) be a CAIS and X ∈ LU. The comprehensive consistency X∗(y)
of X on the issue y ∈ V is defined as

X∗(y) = X+(y) ∨ X−(y). (16)

According to Definition 11, we can see that

1. If X+(y) = 1 and X−(y) = 1, then the set X of agents reaches a complete consensus
both on agreeing with y and on opposing y. In fact, when using the Łukasiewicz
implication operator, for X ∈ LU and y ∈ V, if X(x) = 0 for all the agents x ∈ U,
then we have X+(y) = 1 and X−(y) = 1, i.e., when the attitudes of all the agents are
ignorable, one can conclude X+(y) = 1 and X−(y) = 1. Similarly, if for all the agents
x ∈ U, X(x) = 0.5 implies R(x, y) = 0.5, then we have X+(y) = 1 and X−(y) = 1,
i.e., when the trustworthiness and the attitudes of agents are uncertain, one can also
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conclude X+(y) = 1 and X−(y) = 1. In both the cases, it can be considered either
that X is unanimously agreeing on y or that X is unanimously opposing on y, and y is
an alliance issue for X.

2. If X+(y) = 1 and X−(y) ≤ 0.5, then X reaches a complete consensus on agreeing with
y and does not reach a complete consensus on opposing y. In this case, the agents
within X have achieved a unanimous agreement on y. Similarly, if X+(y) ≤ 0.5 and
X−(y) = 1, then X reaches a complete consensus on opposing y but does not reach a
complete consensus on agreeing with y. It can be considered that the agents in X have
achieved a unanimous opposition on y. In both the cases, X achieves a consensus, i.e.,
X∗(y) = 1, and y is an alliance issue for X.

3. If X+(y) = 0 and X−(y) = 0, then there must exist at least one pair of agents with
opposite attitudes. Therefore, its comprehensive consistency is 0. In fact, when using
the Łukasiewicz implication operator, if X+(y) = 0, then there must exist x1 ∈ U
such that X(x1) → R(x1, y) = 0, which implies R(x1, y) = 0. Similarly, if X−(y) =
0, then there must exist x2 ∈ U such that x2 ∈ U, which implies ¬R(x2, y) = 0,
yielding R(x2, y) = 1. Hence, the attitudes of agents x1 and x2 towards y are opposite,
indicating that X does not reach a consensus, i.e., X∗(y) = 0. At this point, y is a
conflict issue of X.

4. If X+(y) = 0.5 and X−(y) = 0, then X reaches a partial consensus on agreeing with y
but does not reach a consensus on opposing y. In this case, X only partially agrees
on y. Similarly, if X−(y) = 0.5 and X+(y) = 0.5, then the agents reach a partial
consensus on opposing y but does not reach a consensus on agreeing with y. Thus,
X only partially agrees on y. If X+(y) = 0.5 and X−(y) = 0.5, X partially reaches a
consensus on agreeing with and opposing y. This indicates that X reaches a partial
consensus on y. In all the three cases, X only reaches a partial consensus on y, i.e.,
X∗(y) = 0.5, and y is a neutral issue of X.

In Example 1, because the Zhi model does not consider the opposition consistency,
a discrepancy with the actual situation occurs when analyzing the consistency of agents.
Definition 11 considers both the agreement and opposition consistency, leading to a more
reasonable result than the Zhi model. For example, for the issue y in Example 1, two
agents x1 and x2 have the agreement consistency X+(y) = 0, the opposition consistency
X−(y) = 1, and the comprehensive consistency X∗(y) = 1, which is in line with the actual
situation.

The relative inconsistency of a set of agents can be determined by the comprehensive
consistency over all the issues.

Definition 12. Let K = (U, V, R) be a CAIS and X ∈ LU. Define the relative inconsistency of X as

m′(X) =
1
|V| ∑

y∈V
(1− X∗(y)). (17)

Let t1 and t2 be two thresholds such that 0 ≤ t1 ≤ t2 ≤ 1. For X ∈ LU , if m′(X) < t1,
then X is called an alliance set of agents; if t1 ≤ m′(X) ≤ t2, then X is called a neutral set of
agents; if m′(X) > t2, then X is called a conflict set of agents.

The difference between the relative inconsistency (Equation (17)) and the inconsistency
in the Zhi model (Equation (8)) is illustrated by Example 3.

Example 3. Table 1 shows a CAIS K = (U, V, R), where U = {x1, x2} and V = {y1, y2, y3, y4,
y5, y6}.
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Table 1. A CAIS for Example 3.

y1 y2 y3 y4 y5 y6

x1 0 0 0.5 1 1 1
x2 0 0.5 0.5 1 0.5 0

If X = {1/x1, 1/x2} ∈ LU, then according to the Zhi model, we have X↑(y1) = 0, X↑(y2) =
0, X↑(y3) = 0.5, X↑(y4) = 1, X↑(y5) = 0.5, and X↑(y6) = 0. By Equation (8) we can obtain
m(X) = 0.67. According to the proposed model, we have X∗(y1) = 1, X∗(y2) = 0.5, X∗(y3) =
0.5, X∗(y4) = 1, X∗(y5) = 0.5, and X∗(y6) = 0, yielding m′(X) = 0.42 < 0.67 = m(X). From
the calculation process, it can be seen that the two models are consistent on the set {y3, y4, y5, y6},
but on the set {y1, y2}, the Zhi model considers that the set is completely inconsistent on y1 and y2
(i.e., X↑(y1) = 0 and X↑(y2) = 0), while the proposed model considers that the set is completely
consistent on y1 (i.e., X∗(y1) = 1) and partially consistent on y2 (i.e., X∗(y2) = 0.5). Intuitively,
the attitude of X on y1 is consistent and therefore the calculation result of the proposed model
is reasonable; for y2, if the consistency of the attitudes of X towards this issue is considered to
be 0, the same result can be obtained in the case of R(x1, y2) = 0 and R(x2, y2) = 1. In other
words, the result of the Zhi model on y2 cannot distinguish the two cases: 1. R(x1, y2) = 0 and
R(x2, y2) = 0.5; 2. R(x1, y2) = 0 and R(x2, y2) = 1.

When considering the subset V1 = {y1, y2, y3, y4, y5}, by Equation (8), we can obtain
m(X) = 0.6 and by Equation (17), we can obtain m′(X) = 0.3. Thus, when the issue y6 is
not taken into consideration, m(X) will decrease from 0.67 to 0.6, while m′(X) will decrease from
0.42 to 0.3. Obviously, the decrease of m′(X) is greater than that of m(X). This is because the Zhi
model considers that X has conflicts not only on issue y6, but also on issues y1 and y2, and thus
removing issue y6 does not eliminate the conflicts in X. The proposed model considers that X has the
highest level of conflict on y6 and thus removing y6 results in a greater decrease in the inconsistency
of X.

From Example 3, we can derive m(X) ≥ m′(X), a general relationship between
Equations (8) and (17).

Theorem 1. Let K = (U, V, R) be a CAIS and X ∈ LU. Then, we have m′(X) ≤ m(X).

Proof of Theorem 1. For any y ∈ V, we have X∗(y) = X+(y) ∨ X−(y) ≥ X+(y) = X↑(y)
and thus the conclusion holds by Definitions 11 and 12.

Theorem 1 is obvious, because the proposed model captures both the agreement
consistency and the opposition consistency of agents towards issues, while the Zhi model
only captures the agreement consistency of agents towards issues. Thus, compared to the
Zhi model, the proposed model reduces the inconsistencies of the sets of agents.

Theorem 2. Let K = (U, V, R) be a CAIS, and X, X′ ∈ LU. If X ⊆ X′, then we have m′(X) ≤
m′(X′).

Proof of Theorem 2. If X ⊆ X′, for any u ∈ U, then we have X(u) ≤ X′(u), and by the
definition of X+(y) and X−(y), when R(u, y) is constant, if X(u) increases, then both
X+(y) and X−(y) will decrease. Thus, we obtain X+(y) ≥ X′+(y) and X−(y) ≥ X′−(y).
By Definitions 11 and 12, the conclusion holds.

Theorem 2 shows that the more agents there are, the higher the probability of in-
consistency. In fact, suppose that X, X1 ∈ LU satisfy X1(u1) ≥ X(u1), X1(u2) = X(u2),
X1(u3) = X(u3), . . . , X1(u|U|) = X(u|U|). One can easily obtain X1

∗(y) ≤ X∗(y) for any
y and thus m′(X1) ≥ m′(X). In other words, when the trust degree of agent u1 increases
from X(u1) to X1(u1), since X1(u1) → R(u1, y) ≤ X(u1) → R(u1, y), the importance of
this agent’s opinion in X increases, leading to a decrease in the agreement consistency
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X+(y) or the opposition consistency X−(y), which in turn leads to an increase in the incon-
sistency of X. Similarly, suppose that X2 ∈ LU satisfies X2(u1) = X1(u1), X2(u2) ≥ X1(u2),
X2(u3) = X1(u3), . . . , X2(u|U|) = X1(u|U|). One can easily obtain X2

∗(y) ≤ X1
∗(y) for

any y and thus m′(X2) ≥ m′(X1), i.e., the increase of the trust degree in agent u2 leads
to the increase of the inconsistency in X. Continue the process and suppose that X|U| =
X′ ∈ LU satisfies X|U|(u1) = X|U|−1

(u1), X|U|(u2) = X|U|−1
(u2), X|U|(u3) = X|U|−1

(u3),

. . . , X|U|(u|U|) ≥ X|U|−1
(u|U|). Then, one can easily obtain X|U|

∗(y) ≤ X|U|−1
∗(y) and thus

m′(X|U|) ≥ m′(X|U|−1). In summary, we have

m′(X′) ≥ m′(X|U|−1) ≥ m′(X|U|−2) ≥ . . . ≥ m′(X1) ≥ m′(X). (18)

By Definition 12, one can determine the state of a set of agents. If the set is allied, one
may be more concerned about whether the set is unanimously agreed on or opposed some
issues; if it is neutral, then the set is partially agreed and one may be more concerned about
the issues that the agents are partially agreed on and the issues that they oppose; if it is
conflicted, then the set does not reach a consensus on some issues and one may have to
analyze the reasons of the conflicts. For this purpose, one should further analyze issues
according to their states.

Definition 13. Let K = (U, V, R) be a CAIS. For X ∈ LU and y ∈ V,

1. If X+(y) = 1 and X−(y) �= 1, then y is called a unanimous agreement issue of X. The
unanimous agreement set of issues of X is defined as

α+(X) = {y|X+(y) = 1∧ X−(y) �= 1, y ∈ V}; (19)

2. If X+(y) �= 1 and X−(y) = 1, then y is called a unanimous opposition issue of X. The
unanimous opposition set of issues of X is defined as

α−(X) = {y|X+(y) �= 1∧ X−(y) = 1, y ∈ V}; (20)

3. If X+(y) = 1 and X−(y) = 1, then y is called a unanimous issue of X. The unanimous set
of issues of X is defined as

α(X) = {y|X+(y) = 1∧ X−(y) = 1, y ∈ V}; (21)

4. If X+(y) = 0.5 and X−(y) = 0, then y is called an agreement-neutral issue of X. The
agreement-neutral set of issues of X is defined as

γ+(X) = {y|X+(y) = 0.5∧ X−(y) = 0, y ∈ V}; (22)

5. If X+(y) = 0 and X−(y) = 0.5, then y is called an opposition-neutral issue of X. The
opposition-neutral set of issues of X is defined as

γ−(X) = {y|X+(y) = 0∧ X−(y) = 0.5, y ∈ V}; (23)

6. If X+(y) = 0.5 and X−(y) = 0.5, then y is called a completely neutral issue of X. The
completely neutral set of issues of X is defined as

γ(X) = {y|X+(y) = 0.5∧ X−(y) = 0.5, y ∈ V}; (24)

7. If X+(y) = 0 and X−(y) = 0, then y is called a conflict issue of X. The conflict set of issues
of X is defined as

β(X) = {y|X+(y) = 0∧ X−(y) = 0, y ∈ V}. (25)
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By Definition 13, the attitude of a set of agents on an issue can be derived. For X ∈ LU

and y ∈ V, if y ∈ α+(X), then X agrees unanimously on y; if y ∈ α−(X), then X opposes
unanimously y; if y ∈ α(X), as mentioned before, then either X agrees unanimously on y
or X opposes unanimously y. Since X is unanimous on y when y ∈ α+(X)∪ α−(X)∪ α(X),
these issues are collectively referred to as alliance issues. If y ∈ γ+(X), then X is neutral on
agreeing on y; if y ∈ γ−(X), then X is neutral on opposing y; if y ∈ γ(X), then X is neutral
on either agreeing on or opposing y. Since X is neutral on y when y ∈ γ+(X) ∪ γ−(X) ∪
γ(X), these issues are collectively referred to as neutral issues. If y ∈ β(X), then X is in
conflict on y, and these issues will be called conflict issues. Neutral and conflict issues are
collectively referred to as non-coalition issues.

Theorem 3. Let K = (U, V, R) be a CAIS, and X, X′ ∈ LU. If X ⊆ X′, then

1. α(X′) ⊆ α(X)
2. β(X) ⊆ β(X′)
3. α+(X′) ⊆ α+(X) ∪ α(X)
4. α−(X′) ⊆ α−(X) ∪ α(X)
5. γ+(X) ⊆ γ+(X′) ∪ β(X′)
6. γ−(X) ⊆ γ−(X′) ∪ β(X′)
7. γ(X) ⊆ γ(X′) ∪ γ+(X′) ∪ γ−(X′) ∪ β(X′)
8. γ(X′) ⊆ γ(X) ∪ α+(X) ∪ α−(X) ∪ α(X).

Proof of Theorem 3. (1) If y ∈ α(X′), then we have X′+(y) = 1 and X′−(y) = 1. Since
X ⊆ X′, we obtain X+(y) ≥ X′+(y) = 1 and X−(y) ≥ X′−(y) = 1, i.e., X+(y) = 1 and
X−(y) = 1, and hence y ∈ α(X).

(2) If y ∈ β(X), then we have X+(y) = 0 and X−(y) = 0. Since X ⊆ X′, we obtain
X′+(y) ≤ X+(y) = 0 and X′−(y) ≤ X−(y) = 0, i.e., X′+(y) = 0 and X′−(y) = 0, and
hence y ∈ β(X′).

(3) If y ∈ α+(X′), then we have X′+(y) = 1 and X′−(y) �= 1. Since X ⊆ X′, we
obtain X+(y) ≥ X′+(y) = 1 and X−(y) ≥ X′−(y) �= 1, i.e., X+(y) = 1 and X−(y) ≥ 0. If
X+(y) = 1 and X−(y) ≤ 0.5, then we have y ∈ α+(X); if X+(y) = 1 and X−(y) = 1, then
we have y ∈ α(X).

The proofs of (4), (5), (6), (7), and (8) are similar.

Theorem 3 (1) states that the more agents there are, the fewer issues they reach a
consensus on. Theorem 3 (2) states that the more agents there are, the more conflict
issues there are. Theorem 3 (3) and Theorem 3 (4) state that the unanimous agreement
issues or unanimous opposition issues may become the unanimous issues when there
are fewer agents. Theorem 3 (5) and Theorem 3 (6) state that the agreement-neutral
issues or the opposition-neutral issues may become conflict issues when there are more
agents. Theorem 3 (7) states that the completely neutral issues may become the agreement-
neutral issues or the opposition-neutral issues or the conflict issues when there are more
agents. Theorem 3 (8) states that the completely neutral issues may become the unanimous
agreement issues or the unanimous opposition issues or the unanimous issues when there
are fewer agents.

Example 4. Table 2 shows a CAIS K = (U, V, R), where U = {x1, x2} and V = {y1, y2, y3}.

Table 2. A CAIS for Example 4.

y1 y2 y3

x1 0.5 1 0.5
x2 1 0 0.5

For X = {0.5/x1} and X′ = {0.5/x1, 0.5/x2}, according to Definition 10, we can obtain
X+(y1) = 1, X−(y1) = 1, X+(y2) = 1, X−(y2) = 0.5, X+(y3) = 1, and X−(y3) = 1;
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therefore, α(X) = {y1, y3}, α+(X) = {y2}. Similarly, we have X′+(y1) = 1, X′−(y1) = 0.5,
X′+(y2) = 0.5 , X′−(y2) = 0.5, X+(y3) = 1, and X−(y3) = 1; therefore, α+(X′) = {y1},
α(X′) = {y3} and γ(X′) = {y2}. When the number of agents increases, i.e., X becomes X′,
according to Theorem 3 (1), the unanimous issues become fewer, from {y1, y3} to {y3}. When
the number of agents decreases, i.e., X′ becomes X, according to Theorem 3 (3), the unanimous
agreement issue y1 become the unanimous issue; according to Theorem 3 (8), the completely neutral
issues y2 become the unanimous agreement issues. In addition, it can be found that although X⊆ X′,
α+(X) has no inclusion relation with α+(X′).

According to the above discussion, for a given set X of agents, the state of X and its
attitude towards each issue can be determined. When the trust degrees of agents changes
frequently; however, the workload of performing conflict analysis may be huge. It is easy
to conclude that for a set of agents containing n agents, the number of sets of agents under
|L| is |L|n; even when L = {0, 0.5, 1}, the number of sets of agents will be 3n. In fact, the
basic nature of L-3WCL states that sets of agents with different trust degrees may produce
the same conflict analysis results. Specially, for the sets X1 and X2 of agents with different
trust degrees, if X+

1 = X+
2 and X−1 = X−2 , then their conflict analysis results are exactly

the same. In other words, the number of conflict analysis results is equal to the number
of L-fuzzy three-way concepts, much smaller than |L|n. Therefore, in order to reduce the
workload, we can establish L-3WCL to calculate all possible conflict analysis results, and
when trust degrees change, we only need to find the result corresponding to X. In addition,
by analyzing L-3WCL, we can also observe the change of conflict analysis results when
trust degree changes.

In ATWL(K), the extent of a concept represent a set of agents with different trust
degrees, and the intent represent the agreement degree and opposition degree. For
any set X of agents, the corresponding fuzzy three-way concept (X↑T↓T , X↑T↓T↑T ) can be
found in ATWL(K), and the relative inconsistency m′(X↑T↓T ) and sets of issues α+(X↑T↓T ),
α−(X↑T↓T ), α(X↑T↓T ), γ+(X↑T↓T ), γ−(X↑T↓T ), γ(X↑T↓T ), and β(X↑T↓T ) can be derived by
Definitions 12 and 13.

For three concepts (X1, X↑T
1 ), (X2, X↑T

2 ) and (X3, X↑T
3 ) in ATWL(K), if (X3, X↑T

3 ) ⊆
(X1, X↑T

1 ) ⊆ (X2, X↑T
2 ), then X3 ⊆ X1 ⊆ X2. According to Theorems 1 and 2, if the trust

degrees of X1 raises to X2, the conflict issues in X1 must be the conflict issues in X2, the
opposition-neutral issues must be the opposition-neutral issues or the conflict issues in X2,
the agreement-neutral issues must be the agreement-neutral issues or the conflict issues in
X2, the complete neutral issues must be the complete neutral issues, the opposition-neutral
issues, and the agreement-neutral issues or the conflict issues in X2. If the trust degrees of
X1 decreases to X3, then the unanimous issues in X1 must be the unanimous issues in X3,
the unanimous agreement issues must be the unanimous agreement issues or unanimous
issues in X3, the unanimous opposition issues must be the unanimous opposition issues
or the unanimous issues in X3, the completely neutral issues must be the completely
neutral issues, the unanimous agreement issues, the unanimous opposition issues, or the
unanimous issues in X3.

In the following, we illustrate the L-3WCL based conflict analysis model in Example 5.

Example 5. Consider the situation in which some agents are discussing some strategies for the
development of an enterprise. Since the circumstances and the interests of agents may be different,
there may be some conflicts among agents. Assume that three agents and four development strategies
constitute a CAIS K = (U, V, R), where U = {x1, x2, x3} and V = {y1, y2, y3, y4} with y1
representing talent introduction, y2 representing project management, y3 representing marketing
and sales, and y4 representing technology development. The attitude of each agent towards each
issue is shown in Table 3. For example, agent x1 has a positive attitude towards y1, agent x2 has a
negative attitude towards y1, and agent x3 has a neutral attitude towards y1.
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Table 3. A CAIS for Example 5.

y1 y2 y3 y4

x1 1 0 0.5 0
x2 0 0.5 0.5 1
x3 0.5 1 0 0

Since agents have different discourse powers, we adopt three levels of analysis, i.e., agent has
very large discourse power, agent has relatively small discourse power, and agent has no discourse
power. For example, when the discourse power of agent x1 is relatively small, the discourse power of
agent x2 is very large, and agent x3 has no discourse power, we represent it as {0.5/x1, 1/x2, 0/x3}.
When Łukasiewicz implication operator is used, ATWL(K) of K is shown in Figure 1.

Figure 1. ATWL(K).

The concepts in Figure 1 and the corresponding conflict analysis results are shown in Table 4.
In Table 4, for the concepts with at least two agents in the extents, the conflict analysis results

obtained are the consistency of different agents; for the concepts with only one agent in the extents,
the conflict analysis results obtained are the consistency of the agent for different issues; for the
concept having no agents in the extent, the conflict analysis results are not meaningful.

The conflict analysis result of a set of agents can be used to infer the conflict analysis results of
other sets of agents. For example, the conflict issue of X4 = {0.5/x1, 1/x2, 1/x3} is y4; according
to Theorem 3, we can infer that issue y4 must also be a conflict issue of X1 = {1/x1, 1/x2, 1/x3};
the opposition-neutral issues y1 and y3 of X4 must be the opposition-neutral issues or the conflict
issues of X1; and the agreement-neutral issue y2 of X4 must be an agreement-neutral issue or a
conflict issue of X1.

The extents of the concepts in Table 4 contain only some sets in LU and other sets of agents can
be described by the corresponding concepts in ATWL(K), as shown in Table 5.

Combining Tables 4 and 5, all the conflict analysis results of all sets of agents can be calculated.
For example, in Table 5, we can see that for the set of agents X = {0.5/x1, 1/x3}, i.e., x1 has
a relatively large discourse power, x3 has a very large discourse power, and x2 has no discourse
power, the corresponding concept can be obtained as ({0.5/x1, 0.5/x2, 1/x3}, ({0.5/y1, 0.5/y2},
{0.5/y1, 1/y3, 0.5/y4})), and α+(X) = ∅, α−(X) = {y3}, α(X) = ∅, γ+(X) = {y2},
γ−(X) = {y4}, γ(X) = {y1}, and β(X) = ∅. This indicates that the agents in X reach a
complete consensus on opposing the marketing and sales issue y3, a partial consensus on agreeing
on the project management issue y2 and opposing the technology development issue y4, and a partial
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consensus on the talent introduction issue y1. Since m′(X) = 0.375, the conflict between agents
is small.

Table 4. Conflict analysis results.

(X, (X+, X−)) α+(X) α−(X) α(X) γ+(X) γ−(X) γ(X) β(X) m′(X)

C1 : ({ 1
x1

, 1
x2

, 1
x3
}, (∅, { 0.5

y3
})) ∅ ∅ ∅ ∅ {y3} ∅ {y1, y2, y4} 0.875

C2 : ({ 1
x1

, 1
x2

, 0.5
x3
}, ({ 0.5

y3
}, { 0.5

y2
, 0.5

y3
})) ∅ ∅ ∅ ∅ {y2} {y3} {y1, y4} 0.75

C3 : ({ 1
x1

, 0.5
x2

, 1
x3
}, ({ 0.5

y1
}, { 0.5

y3
, 0.5

y4
})) ∅ ∅ ∅ {y1} {y3, y4}∅ {y2} 0.625

C4 : ({ 0.5
x1

, 1
x2

, 1
x3
}, ({ 0.5

y2
}, { 0.5

y1
, 0.5

y3
})) ∅ ∅ ∅ {y2} {y1, y3}∅ {y4} 0.625

C5 : ({ 1
x1

, 0.5
x2

, 0.5
x3
}, ({ 0.5

y1
, 0.5

y3
}, { 0.5

y2
, 0.5

y3
, 0.5

y4
})) ∅ ∅ ∅ {y1} {y2, y4} {y3} ∅ 0.5

C6 : ({ 0.5
x1

, 1
x2

, 0.5
x3
}, ({ 0.5

y2
, 0.5

y3
, 0.5

y4
}, { 0.5

y1
, 0.5

y2
, 0.5

y3
})) ∅ ∅ ∅ {y4} {y1} {y2, y3} ∅ 0.5

C7 : ({ 0.5
x1

, 0.5
x2

, 1
x3
}, ({ 0.5

y1
, 0.5

y2
}, { 0.5

y1
, 1

y3
, 0.5

y4
})) ∅ {y3} ∅ {y2} {y4} {y1} ∅ 0.375

C8 : ({ 1
x1

, 0.5
x3
}, ({ 1

y1
, 0.5

y3
}, { 0.5

y2
, 0.5

y3
, 1

y4
})) {y1} {y4} ∅ ∅ {y2} {y3} ∅ 0.25

C9 : ({ 0.5
x1

, 0.5
x2

, 0.5
x3
}, ({ 0.5

y1
, 0.5

y2
, 0.5

y3
, 0.5

y4
}, { 0.5

y1
, 0.5

y2
, 1

y3
, 0.5

y4
}))∅ {y3} ∅ ∅ ∅ {y1, y2, y4}∅ 0.375

C10 : ({ 1
x1

, 0.5
x2
}, ({ 0.5

y1
, 0.5

y3
}, { 1

y2
, 0.5

y3
, 0.5

y4
})) ∅ {y2} ∅ {y1} {y4} {y3} ∅ 0.375

C11 : ({ 1
x2

, 0.5
x3
}, ({ 0.5

y2
, 0.5

y3
, 0.5

y4
}, { 1

y1
, 0.5

y2
, 0.5

y3
})) ∅ {y1} ∅ {y4} ∅ {y2, y3} ∅ 0.375

C12 : ({ 1
x1
}, ({ 1

y1
, 0.5

y3
}, { 1

y2
, 0.5

y3
, 1

y4
})) {y1} {y2, y4}∅ ∅ ∅ {y3} ∅ 0.125

C13 : ({ 0.5
x1

, 0.5
x3
}, ({ 1

y1
, 0.5

y2
, 0.5

y3
, 0.5

y4
}, { 0.5

y1
, 0.5

y2
, 1

y3
, 1

y4
})) {y1} {y3, y4}∅ ∅ ∅ {y2} ∅ 0.125

C14 : ({ 0.5
x1

, 0.5
x2
}, ({ 0.5

y1
, 0.5

y2
, 1

y3
, 0.5

y4
}, { 0.5

y1
, 1

y2
, 1

y3
, 0.5

y4
})) ∅ {y2} {y3} ∅ ∅ {y1, y4} ∅ 0.25

C15 : ({ 1
x2
}, ({ 0.5

y2
, 0.5

y3
, 1

y4
}, { 1

y1
, 0.5

y2
, 0.5

y3
})) {y4} {y1} ∅ ∅ ∅ {y2, y3} ∅ 0.25

C16 : ({ 0.5
x2

, 0.5
x3
}, ({ 0.5

y1
, 1

y2
, 0.5

y3
, 0.5

y4
}, { 1

y1
, 0.5

y2
, 1

y3
, 0.5

y4
})) {y2} {y1, y3}∅ ∅ ∅ {y4} ∅ 0.125

C17 : ({ 1
x3
}, ({ 0.5

y1
, 1

y2
}, { 0.5

y1
, 1

y3
, 1

y4
})) {y2} {y3, y4}∅ ∅ ∅ {y1} ∅ 0.125

C18 : ({ 0.5
x1
}, ({ 1

y1
, 0.5

y2
, 1

y3
, 0.5

y4
}, { 0.5

y1
, 1

y2
, 1

y3
, 1

y4
})) {y1} {y2, y4} {y3} ∅ ∅ ∅ ∅ 0

C19 : ({ 0.5
x2
}, ({ 0.5

y1
, 1

y2
, 1

y3
, 1

y4
}, { 1

y1
, 1

y2
, 1

y3
, 0.5

y4
})) {y4} {y1} {y2, y3} ∅ ∅ ∅ ∅ 0

C20 : ({ 0.5
x3
}, ({ 1

y1
, 1

y2
, 0.5

y3
, 0.5

y4
}, { 1

y1
, 0.5

y2
, 1

y3
, 1

y4
})) {y2} {y3, y4} {y1} ∅ ∅ ∅ ∅ 0

C21 : (∅, ({ 1
y1

, 1
y2

, 1
y3

, 1
y4
}, { 1

y1
, 1

y2
, 1

y3
, 1

y4
})) ∅ ∅ {y1, y2, y3, y4}∅ ∅ ∅ ∅ 0

Table 5. Sets of agents and the corresponding concepts.

The Set X of Agents
The Corresponding Concepts

(X↑T↓T , X↑T↓T↑T )

{ 1
x1

, 1
x2
} C2 : ({ 1

x1
, 1

x2
, 0.5

x3
}, ({ 0.5

y3
}, { 0.5

y2
, 0.5

y3
}))

{ 1
x1

, 1
x3
} C3 : ({ 1

x1
, 0.5

x2
, 1

x3
}, ({ 0.5

y1
}, { 0.5

y3
, 0.5

y4
}))

{ 1
x2

, 1
x3
} C4 : ({ 0.5

x1
, 1

x2
, 1

x3
}, ({ 0.5

y2
}, { 0.5

y1
, 0.5

y3
}))

{ 0.5
x1

, 1
x2
} C6 :

({ 0.5
x1

, 1
x2

, 0.5
x3
}, ({ 0.5

y2
, 0.5

y3
, 0.5

y4
}, { 0.5

y1
, 0.5

y2
, 0.5

y3
}))

{ 0.5
x2

, 1
x3
} C7 : ({ 0.5

x1
, 0.5

x2
, 1

x3
}, ({ 0.5

y1
, 0.5

y2
}, { 0.5

y1
, 1

y3
, 0.5

y4
}))

{ 0.5
x1

, 1
x3
} C7 : ({ 0.5

x1
, 0.5

x2
, 1

x3
}, ({ 0.5

y1
, 0.5

y2
}, { 0.5

y1
, 1

y3
, 0.5

y4
}))

When applying the Zhi model to Table 3, the conflict analysis results can be obtained, as shown
in Table 6. The comparison with the proposed model is also shown in Table 6.

According to Table 6, among the 17 results obtained by the Zhi model, 16 results are different
from those obtained by the proposed model, indicating that there is a 94% probability that the
Zhi model is problematic. The proposed model reduces the inconsistency in 16 results compared
with the Zhi model, as shown in Figure 2. According to Figure 2 and Table 6, it is clear that
the inconsistency decreases as the number of agents decreases, which verifies the correctness of
Theorem 2. It can be observed that the difference between the two models occurs when the opposition
consistency X−(y) of X for an issue y is greater than the agreement consistency X+(y). This is
because the consistency in the Zhi model is the agreement consistency, and the consistency in the
proposed model is the maximum of the opposition consistency and the agreement consistency. By
examining the disparity distribution of two inconsistencies which is shown in Figure 3, we can
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observe that the disparities between the two inconsistencies are primarily situated in the interval
[0.125, 0.375). These variations in value are relatively minor. On the interval [0.375, 0.5), there are
two results with a large disparity between the two inconsistencies, which is mainly caused by the
Zhi method misclassifying an alliance issue as a conflict issue. In particular, the disparity between
the two inconsistencies in the 14th result is 0.5, the largest disparity among all the results. This
is because the Zhi model treats the two issues y3 and y4, which are unanimously opposed by X, as
conflict issues, and the proposed model considers the two issues as the unanimous opposition issues.
This means that if the Zhi model determines that X is a non-coalition, the proposed model must
consider that X is an alliance. Thus, the disparity between the two inconsistencies directly affects the
disparity in the states of X. Similarly, in the 15th-16th results, the inconsistency of the Zhi model
indicates that the sets of agents are divergent and neutral on several issues, and no consensus is
reached. The inconsistencies of the proposed model are all 0 and the sets of agents reach a consensus
on all the issues.

Table 6. Comparison results.

NO. Results of Zhi Model m(X) Results of the Proposed Model m(X)′

1 ({ 1
x1

, 1
x2

, 1
x3
},∅) 1 ({ 1

x1
, 1

x2
, 1

x3
}, (∅, { 0.5

y3
})) 0.875

2 ({ 1
x1

, 1
x2

, 0.5
x3
}, { 0.5

y3
}) 0.875 ({ 1

x1
, 1

x2
, 0.5

x3
}, ({ 0.5

y3
}, { 0.5

y2
, 0.5

y3
})) 0.75

3 ({ 1
x1

, 0.5
x2

, 1
x3
}, { 0.5

y1
}) 0.875 ({ 1

x1
, 0.5

x2
, 1

x3
}, ({ 0.5

y1
}, { 0.5

y3
, 0.5

y4
})) 0.625

4 ({ 0.5
x1

, 1
x2

, 1
x3
}, { 0.5

y2
}) 0.875 ({ 0.5

x1
, 1

x2
, 1

x3
}, ({ 0.5

y2
}, { 0.5

y1
, 0.5

y3
})) 0.625

5 ({ 1
x1

, 0.5
x2

, 0.5
x3
}, { 0.5

y1
, 0.5

y3
}) 0.75 ({ 1

x1
, 0.5

x2
, 0.5

x3
}, ({ 0.5

y1
, 0.5

y3
}, { 0.5

y2
, 0.5

y3
, 0.5

y4
})) 0.5

6 ({ 0.5
x1

, 1
x2

, 0.5
x3
}, { 0.5

y2
, 0.5

y3
, 0.5

y4
}) 0.625 ({ 0.5

x1
, 1

x2
, 0.5

x3
}, ({ 0.5

y2
, 0.5

y3
, 0.5

y4
}, { 0.5

y1
, 0.5

y2
, 0.5

y3
})) 0.5

7 ({ 0.5
x1

, 0.5
x2

, 1
x3
}, { 0.5

y1
, 0.5

y2
}) 0.75 ({ 0.5

x1
, 0.5

x2
, 1

x3
}, ({ 0.5

y1
, 0.5

y2
}, { 0.5

y1
, 1

y3
, 0.5

y4
})) 0.375

8 ({ 1
x1

, 0.5
x3
}, { 1

y1
, 0.5

y3
}) 0.625 ({ 1

x1
, 0.5

x3
}, ({ 1

y1
, 0.5

y3
}, { 0.5

y2
, 0.5

y3
, 1

y4
})) 0.25

9 ({ 0.5
x1

, 0.5
x2

, 0.5
x3
}, { 0.5

y1
, 0.5

y2
, 0.5

y3
, 0.5

y4
}) 0.5 ({ 0.5

x1
, 0.5

x2
, 0.5

x3
}, ({ 0.5

y1
, 0.5

y2
, 0.5

y3
, 0.5

y4
}, { 0.5

y1
, 0.5

y2
, 1

y3
, 0.5

y4
})) 0.375

10 ({ 0.5
x1

, 0.5
x3
}, { 1

y1
, 0.5

y2
, 0.5

y3
, 0.5

y4
}) 0.375 ({ 0.5

x1
, 0.5

x3
}, ({ 1

y1
, 0.5

y2
, 0.5

y3
, 0.5

y4
}, { 0.5

y1
, 0.5

y2
, 1

y3
, 1

y4
})) 0.125

11 ({ 0.5
x1

, 0.5
x2
}, { 0.5

y1
, 0.5

y2
, 1

y3
, 0.5

y4
}) 0.375 ({ 0.5

x1
, 0.5

x2
}, ({ 0.5

y1
, 0.5

y2
, 1

y3
, 0.5

y4
}, { 0.5

y1
, 1

y2
, 1

y3
, 0.5

y4
})) 0.25

12 ({ 1
x2
}, { 0.5

y2
, 0.5

y3
, 1

y4
}) 0.5 ({ 1

x2
}, ({ 0.5

y2
, 0.5

y3
, 1

y4
}, { 1

y1
, 0.5

y2
, 0.5

y3
})) 0.25

13 ({ 0.5
x2

, 0.5
x3
}, { 0.5

y1
, 1

y2
, 0.5

y3
, 0.5

y4
}) 0.375 ({ 0.5

x2
, 0.5

x3
}, ({ 0.5

y1
, 1

y2
, 0.5

y3
, 0.5

y4
}, { 1

y1
, 0.5

y2
, 1

y3
, 0.5

y4
})) 0.125

14 ({ 1
x3
}, { 0.5

y1
, 1

y2
}) 0.625 ({ 1

x3
}, ({ 0.5

y1
, 1

y2
}, { 0.5

y1
, 1

y3
, 1

y4
})) 0.125

15 ({ 0.5
x1
}, { 1

y1
, 0.5

y2
, 1

y3
, 0.5

y4
}) 0.25 ({ 0.5

x1
}, ({ 1

y1
, 0.5

y2
, 1

y3
, 0.5

y4
}, { 0.5

y1
, 1

y2
, 1

y3
, 1

y4
})) 0

16 ({ 0.5
x2
}, { 0.5

y1
, 1

y2
, 1

y3
, 1

y4
}) 0.125 ({ 0.5

x2
}, ({ 0.5

y1
, 1

y2
, 1

y3
, 1

y4
}, { 1

y1
, 1

y2
, 1

y3
, 0.5

y4
})) 0

17 (∅, { 1
y1

, 1
y2

, 1
y3

, 1
y4
}) 0 (∅, ({ 1

y1
, 1

y2
, 1

y3
, 1

y4
}, { 1

y1
, 1

y2
, 1

y3
, 1

y4
})) 0

Figure 2. The differences in inconsistency between two models.
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Figure 3. The disparity distribution of two inconsistencies.

4. Conflict Resolution Based on the Proposed Model

In Section 3, we examined the alliance issues, the neutrality issues, and the conflict
issues of a given set of agents. For a set of agents in alliance, minimal divergence exists in
the set, enabling the agents to easily reach a consensus. A non-alliance set of agents may
experience substantial divergence in issues, presenting challenges for consensus-building
among the agents. To address these conflicts, it becomes crucial to develop strategies that
eliminate the divergence between agents and mitigate the relative inconsistency, thereby
transforming the non-alliance set of agents into an alliance set.

For X ∈ LU , it follows from Definition 12 that the relative inconsistency m′(X) is
determined by the comprehensive consistency X∗(y) of all the issues y, and thus m′(X) can
be decreased only by increasing X∗(y). According to Definition 13, if y ∈ α+(X)∪ α−(X)∪
α(X), then we have X∗(y) = 1, so the comprehensive consistency X∗(y) of an alliance
issue cannot be increased; if y ∈ γ+(X) ∪ γ−(X) ∪ γ(X), then we have X∗(y) = 0.5, and
the comprehensive consistency X∗(y) can be increased from 0.5 to 1, i.e., a neutral issue
can be transformed into an alliance issue, thus decreasing the relative inconsistency m′(X);
if y ∈ β(X), then we have X∗(y) = 0, and the comprehensive consistency X∗(y) can be
increased from 0 to 0.5 or 1, which transforms a conflict issue into a neutral issue or an
alliance issue, thus decreasing the relative inconsistency m′(X). Therefore, the relative
inconsistency can be effectively decreased only by increasing the comprehensive consistency
of non-alliance issues. In the following, we consider how to increase the comprehensive
consistency of the issues in γ+(X), γ−(X), γ(X), and β(X).

According to Definition 11, the comprehensive consistency X∗(y) is determined
by the agreement consistency X+(y) and the opposition consistency X−(y), and from
Definition 10, it follows that X+(y) and X−(y) are jointly determined by the trust degree
X(x) and the attitude R(x, y). To increase X∗(y), it is necessary to increase X+(y) or X−(y).
Depending on the nature of implication operator, X+(y) and X−(y) can be increased by
decreasing X(x); however, in most conflict situations, X(x) cannot be easily changed, e.g.,
when an enterprise makes a development plan, the discourse powers of agents in different
positions are generally fixed. Therefore, in order to increase X+(y) or X−(y), it is necessary
to change agents’ attitudes towards issues.

Let K = (U, V, R) be a CAIS and X ∈ LU . In order to increase X∗(y), X+(y) can be
increased by changing the attitudes of agents. If X+(y) = 0, then in order to increase X+(y)
to 0.5, according to the definition of X+(y), the set of agents whose attitudes should be
changed is

X+
0 (y) = {x|X(x)→ R(x, y) = 0} (26)
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For x ∈ X+
0 (y), we have X(x) �= 0; otherwise, we have X(x) → R(x, y) = 0 →

R(x, y) = 1. Therefore, we denote

Ẋ+
1 (y) = {x|X(x)→ R(x, y) = 0, X(x) = 1} (27)

Ẋ+
0.5(y) = {x|X(x)→ R(x, y) = 0, X(x) = 0.5} (28)

and then X+
0 (y) = Ẋ+

1 (y) ∪ Ẋ+
0.5(y).

If X+(y) = 0, then in order to increase X+(y) to 1, the set of agents whose attitudes
should be changed is

X+
0,0.5(y) = X+

0 (y) ∪ X+
0.5(y) = Ẋ+

1 (y) ∪ Ẋ+
0.5(y) ∪ X+

0.5(y) (29)

where X+
0.5(y) = {x|X(x)→ R(x, y) = 0.5}.

If X+(y) = 0.5, then in order to increase X+(y) to 1, the set of agents whose attitudes
should be changed is X+

0.5(y).
Similarly, in order to increase X∗(y), it is also feasible to increase X−(y) by changing

the attitudes of the agents. If X−(y) = 0, then in order to increase X−(y) to 0.5, according
to the definition of X−(y), the set of agents whose attitude should be changed is

X−0 (y) = {x|X(x)→ ¬R(x, y) = 0} (30)

For x ∈ X−0 (y), we have R(x, y) �= 0; otherwise, we have X(x)→ ¬0 = X(x)→ 1 = 1.
Therefore, we denote

Ẋ−0.5(y) = {x|X(x)→ ¬R(x, y) = 0, R(x, y) = 0.5} (31)

Ẋ−1 (y) = {x|X(x)→ ¬R(x, y) = 0, R(x, y) = 1} (32)

and then X−0 (y) = Ẋ−0.5(y) ∪ Ẋ−1 (y).
If X−(y) = 0, then in order to increase X−(y) to 1, the set of agents whose attitudes

should be changed is

X−0,0.5(y) = X−0 (y) ∪ X−0.5(y) = Ẋ−0.5(y) ∪ Ẋ−1 (y) ∪ X−0.5(y) (33)

where X−0.5(y) = {x|X(x)→ ¬R(x, y) = 0.5}.
If X−(y) = 0.5, then in order to increase X−(y) to 1, the set of agents whose attitudes

should be changed is X−0.5(y).
The following conclusions hold.

Theorem 4. Let K = (U, V, R) be a CAIS, x ∈ U and X ∈ LU.

1. Suppose y ∈ γ+(X).

(a) If |X+
0.5(y)| ≤ |Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+ |X−0.5(y)|, then X∗(y) can be increased from

0.5 to 1 at a cost of at least 0.5 · |X+
0.5(y)|. In this case, the attitude of x needs to

be increased to 1 for X(x) = 1 and R(x, y) = 0.5 and to 0.5 for X(x) = 0.5 and
R(x, y) = 0.

(b) If |X+
0.5(y)| > |Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+ |X−0.5(y)|, then X∗(y) can be increased from

0.5 to 1 at a cost of at least 0.5 · (|Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+ |X−0.5(y)|). In this case,
if ¬0.5 = 0, then the attitude of x needs to be reduced to 0 for X(x) ≥ 0.5 and
R(x, y) ≥ 0.5; if ¬0.5 = 0.5, then the attitude of x needs to be reduced to 0 for
X(x) = 1 and R(x, y) ≥ 0.5 and to 0.5 for X(x) = 0.5 and R(x, y) = 1.

2. Suppose y ∈ γ−(X).

(a) If |X−0.5(y)| ≤ 2|Ẋ+
1 (y)|+ |Ẋ+

0.5(y)|+ |X+
0.5(y)|, then X∗(y) can be increased from

0.5 to 1 at a cost of at least 0.5 · |X−0.5(y)|. In this case, the attitude of x needs to
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be reduced to 0 for X(x) = 1 and R(x, y) = 0.5 and to 0.5 for X(x) = 0.5 and
R(x, y) = 1.

(b) If |X−0.5(y)| > 2|Ẋ+
1 (y)|+ |Ẋ+

0.5(y)|+ |X+
0.5(y)|, then X∗(y) can be increased from

0.5 to 1 at a cost of at least 0.5 · (2|Ẋ+
1 (y)|+ |Ẋ+

0.5(y)|+ |X+
0.5(y)|). In this case, the

attitude of x needs to be increased to 1 for X(x) = 1 and R(x, y) ≤ 0.5 and to 0.5 for
X(x) = 0.5 and R(x, y) = 0.

3. Suppose y ∈ γ(X).

(a) If |X+
0.5(y)| ≤ |X−0.5(y)|, then X∗(y) can be increased from 0.5 to 1 at a cost of at least

0.5 · |X+
0.5(y)|. In this case, the attitude of x needs to be increased to 1 for X(x) = 1

and R(x, y) = 0.5 and to 0.5 for X(x) = 0.5 and R(x, y) = 0.
(b) If |X+

0.5(y)| > |X−0.5(y)|, then X∗(y) can be increased from 0.5 to 1 at a cost of at least
0.5 · |X−0.5(y)|. In this case, the attitude of x needs to be reduced to 0 for X(x) = 1
and R(x, y) = 0.5 and to 0.5 for X(x) = 0.5 and R(x, y) = 1.

4. Suppose y ∈ β(X).

(a) If |Ẋ+
1 (y)| ≤ |X−0 (y)|, then X∗(y) can be increased from 0 to 0.5 at a cost of at least

0.5 · |Ẋ+
1 (y)|. In this case, the attitude of x needs to be increased to 0.5 for X(x) = 1

and R(x, y) = 0.
(b) If |Ẋ+

1 (y)| > |X−0 (y)|, then X∗(y) can be increased from 0 to 0.5 at a cost of at least
0.5 · |X−0 (y)|. In this case, the attitude of x needs to be reduced to 0.5 for X(x) = 1
and R(x, y) = 1.

(c) If 2|Ẋ+
1 (y)| + |Ẋ+

0.5(y)| + |X+
0.5(y)| ≤ |Ẋ−0.5(y)| + 2|Ẋ−1 (y)| + |X−0.5(y)|, then

X∗(y) can be increased from 0 to 1 at a cost of at least 0.5 · (2|Ẋ+
1 (y)|+ |Ẋ+

0.5(y)|+
|X+

0.5(y)|). In this case, the attitude of x needs to be increased to 1 for X(x) = 1 and
R(x, y) ≤ 0.5 and to 0.5 for X(x) = 0.5 and R(x, y) = 0.

(d) If 2|Ẋ+
1 (y)| + |Ẋ+

0.5(y)| + |X+
0.5(y)| > |Ẋ−0.5(y)| + 2|Ẋ−1 (y)| + |X−0.5(y)|, then

X∗(y) can be increased from 0 to 1 at a cost of at least 0.5 · (|Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+
|X−0.5(y)|). In this case, if ¬0.5 = 0, then the attitude of x needs to be reduced to
0 for X(x) ≥ 0.5 and R(x, y) ≥ 0.5; if ¬0.5 = 0.5, then the attitude of x needs
to be reduced to 0 for X(x) = 1 and R(x, y) ≥ 0.5 and to 0.5 for X(x) = 0.5 and
R(x, y) = 1.

Proof of Theorem 4. 1. For y ∈ γ+(X), in order to increase X∗(y) from 0.5 to 1, we can
increase X+(y) from 0.5 to 1, or increase X−(y) from 0 to 1.

In order to increase X+(y) from 0.5 to 1, according to the definition of X+(y), the
values of X(x) → R(x, y) of all the agents in X+

0.5(y) must be increased from 0.5 to 1. If
x ∈ X+

0.5(y), then consider the following three cases.
(1) If X(x) = 1, then we have 1 → R(x, y) = 0.5, and by Proposition 1 (2), we have

R(x, y) = 0.5. In order to increase the value of X(x) → R(x, y) from 0.5 to 1, we need to
change R(x, y) to R+

1 (x, y) = ∧{a ∈ {0, 0.5, 1}|X(x)→ a = 1}. Since 1→ a = 1, we have
a = 1 and R+

1 (x, y) = 1. Thus, the cost is R+
1 (x, y)− R(x, y) = 0.5.

(2) If X(x) = 0.5, then we have 0.5→ R(x, y) = 0.5 and thus R(x, y) = 0; otherwise,
by Proposition 1 (1), if 0.5 ≤ R(x, y), then we have 0.5→ R(x, y) = 1. In order to increase
the value of X(x)→ R(x, y) from 0.5 to 1, we need to change R(x, y) to R+

1 (x, y) = ∧{a ∈
{0, 0.5, 1}|X(x) → a = 1}. Since 0.5 → a = 1, we have a = 0.5 or a = 1 and thus
R+

1 (x, y) = 0.5. Therefore, the cost is R+
1 (x, y)− R(x, y) = 0.5.

(3) If X(x) = 0, then by Proposition 1 (1), R(x, y) does not exist, such that 0 →
R(x, y) = 0.5.

Therefore, the total cost is ∑x∈X+
0.5(y)

(R+
1 (x, y)− R(x, y)) = 0.5 · |X+

0.5(y)|.
In order to increase X−(y) from 0 to 1, according to the definition of X−(y), the

values of X(x) → ¬R(x, y) of all the agents in X−0,0.5(y) must be increased to 1. Since
X−0,0.5(y) = Ẋ−0.5(y) ∪ Ẋ−1 (y) ∪ X−0.5(y) and Ẋ−0.5(y), Ẋ−1 (y) and X−0.5(y) are disjoint, we need
to consider the three sets, respectively.

If x ∈ Ẋ−0.5(y), then consider the following three cases.
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(1) If X(x) = 1, then, since R(x, y) = 0.5, we have 1→ ¬R(x, y) = ¬R(x, y) = ¬0.5 =
0. In order to increase X(x) → R(x, y) of all the agents in Ẋ−0.5(y) from 0 to 1, we need to
change R(x, y) to R−1 (x, y) = ∨{a ∈ {0, 0.5, 1}|X(x) → ¬a = 1}. Since 1→ ¬a = ¬a = 1,
we have a = 0 and thus R−1 (x, y) = 0. The cost is R(x, y)− R−1 (x, y) = 0.5.

(2) If X(x) = 0.5, then because R(x, y) = 0.5, we have 0.5→ ¬R(x, y) = 0. Since 0.5→
0.5 = 0.5→ 1 = 1, we have ¬0.5 = 0. At this time, we need to change R(x, y) to R−1 (x, y) =
∨{a ∈ {0, 0.5, 1}|X(x) → ¬a = 1}, so we have ¬a = 0.5 or ¬a = 1. If ¬a = 0.5, then
according to Proposition 1 (3), we have a = 0.5 and thus ¬0.5 = 0.5, which is contradictory
to ¬0.5 = 0. Thus, we have R−1 (x, y) = 0, and the cost is R(x, y)− R−1 (x, y) = 0.5.

(3) If X(x) = 0, then R(x, y) does not exist, such that 0→ ¬R(x, y) = 0.5.
Therefore, the total cost is ∑x∈Ẋ−0.5(y)

(R(x, y)− R−1 (x, y)) = 0.5 · |Ẋ−0.5(y)|.
If x ∈ Ẋ−1 (y), then consider the following three cases.
(1) If X(x) = 1, then in order to increase X(x) → ¬R(x, y) from 0 to 1, we need to

change R(x, y) to R−1 (x, y) = ∨{a ∈ {0, 0.5, 1}|X(x) → ¬a = 1}. Since 1→ ¬a = ¬a = 1,
we have a = 0 and thus R−1 (x, y) = 0. The cost is R(x, y)− R−1 (x, y) = 1.

(2) If X(x) = 0.5, then since R(x, y) = 1, we have 0.5→ ¬R(x, y) = 0.5→ ¬1 = 0.5→
0 = ¬0.5 = 0. Since 0.5→ ¬a = 1, we have ¬a = 0.5 or ¬a = 1. If ¬a = 0.5, according to
Proposition 1 (3), we can conclude a = 0.5 and thus ¬0.5 = 0.5, which is contradictory to
¬0.5 = 0. Therefore, we have ¬a = 1, i.e., a = 0. In this case, R−1 (x, y) = 0 and the cost is
R(x, y)− R−1 (x, y) = 1.

(3) If X(x) = 0, then R(x, y) does not exist, such that 0→ ¬R(x, y) = 0.5.
Therefore, the total cost is ∑x∈Ẋ−1 (y) (R(x, y)− R−1 (x, y)) = ∑x∈Ẋ−1 (y) 1 = |Ẋ−1 (y)|.
If x ∈ X−0.5(y), then consider the following three cases.
(1) If X(x) = 1, we have 1→ ¬R(x, y) = ¬R(x, y) = 0.5, and only when R(x, y) = 0.5,

¬R(x, y) = 0.5 holds. In order to increase the value of X(x) → ¬R(x, y) from 0.5 to
1, we need to change R(x, y) to R−1 (x, y) = ∨{a ∈ {0, 0.5, 1}|X(x) → ¬a = 1}. Since
1→ ¬a = 1, we have ¬a = 1 and thus a = 0. Thus, we have R−1 (x, y) = 0, and the cost is
R(x, y)− R−1 (x, y) = 0.5.

(2) If X(x) = 0.5, then we have 0.5→ ¬R(x, y) = 0.5 and thus ¬R(x, y) = 0, yielding
¬0.5 = 0.5 → 0 = 0.5. Since ¬R(x, y) = 0, we have R(x, y) = 1 or R(x, y) = 0.5. If
R(x, y) = 0.5, then we have ¬0.5 = 0, which is contradictory to ¬0.5 = 0.5, and thus
R(x, y) = 1. In order to increase the value of X(x) → ¬R(x, y) from 0.5 to 1, we need to
change R(x, y) to R−1 (x, y) = ∨{a ∈ {0, 0.5, 1}|X(x) → ¬a = 1}. Since 0.5→ ¬a = 1, we
have ¬a = 0.5 or ¬a = 1, and thus a = 0.5 or a = 0. At this time, we have R−1 (x, y) = 0.5,
and the cost is R(x, y)− R−1 (x, y) = 0.5.

(3) If X(x) = 0, then R(x, y) does not exist, such that 0→ ¬R(x, y) = 0.5.
Therefore, the total cost is ∑x∈X−0.5(y)

(R(x, y)− R−1 (x, y)) = 0.5 · |X−0.5(y)|.
In summary, in order to increase X∗(y) from 0.5 to 1, we can increase X+(y) to 1 at

the cost of 0.5 · |X+
0.5(y)|, or increase X−(y) to 1 at the cost of 0.5 · (|Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+

|X−0.5(y)|). If |X+
0.5(y)| ≤ |Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+ |X−0.5(y)|, then X+(y) can be increased to 1

at a cost of at least 0.5 · |X+
0.5(y)|. Otherwise, X−(y) can be increased to 1 at a cost of at least

0.5 · (|Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+ |X−0.5(y)|).
Thus, if X+(y) is increased to 1, then we need to increase the attitude of x with

X(x) = 1 and R(x, y) = 0.5 to 1, as well as increasing the attitude of x with X(x) = 0.5
and R(x, y) = 0 to 0.5. If X−(y) is increased to 1, and if ¬0.5 = 0, then we need to reduce
the attitude of x with X(x) ≥ 0.5 and R(x, y) ≥ 0.5 to 0. If ¬0.5 = 0.5, then the attitude
of x with X(x) = 1 and R(x, y) ≥ 0.5 should be reduced to 0, and the attitude of x with
X(x) = 0.5 and R(x, y) = 1 should be reduced to 0.5.

Other results can be proved similarly.

By Definition 13, if m′(X) > t1, then X is a neutral or conflict set of agents. In order to
transform X into an alliance set, it is necessary to reduce m′(X) to t1, with the difference of
m′(X)− t1.
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In order to reduce m′(X), it is necessary to increase X∗(y). If X∗(y) = 0, then X∗(y)
can be increased either to 0.5 or to 1; if X∗(y) = 0.5, then X∗(y) can be increased to 1.

Now, denote the number of issues such that X∗(y) = 0 as n0 and the number of issues
such that X∗(y) = 0.5 as n0.5. According to Definition 12, we have

m′(X) =
∑y∈V(1− X∗(y))

|V| =
n0 + 0.5n0.5

|V| (34)

Denote by n0→0.5 the number of issues whose X∗(y) need to be increased from 0 to 0.5;
denote by n0→1 the number of issues whose X∗(y) need to be increased from 0 to 1; denote
by n0.5→1 the number of issues whose X∗(y) need to be increased from 0.5 to 1. Thus, the
relative inconsistency will become

m′↑(X) =
0.5n0→0.5 + n0 − n0→0.5 − n0→1 + 0.5(n0.5 − n0.5→1)

|V| (35)

and the difference is

m′(X)−m′↑(X) = Δm′(X) =
0.5n0→0.5 + 0.5n0.5→1 + n0→1

|V| (36)

We require Δm′(X) ≥ m′(X)− t1, i.e., n0→0.5, n0→1 and n0.5→1 satisfy Equation (37)

0.5n0→0.5 + 0.5n0.5→1 + n0→1 ≥ (m′(X)− t1)|V| (37)

Obviously, there may be different values of n0→0.5, n0.5→1 and n0→1 that satisfy Equa-
tion (37) and can transform X into an alliance set. Since the cost of increasing X∗(y) varies
for different issues y, in real life, people tend to seek the least costly way to make decisions.
Therefore, it is necessary to consider which issues to change so that the cost of transforming
X into an alliance set is minimal.

For an issue y, there may be more than one way to increase X∗(y). For y ∈ γ+(X) ∪
γ−(X) ∪ γ(X), X∗(y) can only be increased from 0.5 to 1 with a cost of 0.5; for y ∈ β(X),
X∗(y) can be increased from 0 to 0.5 or from 0 to 1 with a cost of 0.5 or 1. Therefore, there are
at most two methods to increase X∗(y) for issue y, but at most one method can be chosen.

The problem can be formulated as follows. For a set of s issues, ri ∈ {1, 2} denotes the
number of increasing methods for the i-th issue; the variation of the k-th increasing method
for the i-th issue is wk

i , and the corresponding cost is ck
i . The objective is to choose an

optimal solution M = {p1
1, ..., pr1

1 , p1
2, . . . , pr2

2 , . . . , p1
s , . . . , prs

s }, such that the sum of the costs

∑s
i=1 ∑ri

k=1 pk
i ck

i is minimized while the sum of variations ∑s
i=1 ∑ri

k=1 pk
i wk

i is not less than
W = (m

′
(X)− t1)|V|, where pk

i ∈ {0, 1} indicates whether the optimal solution chooses
the k-th increasing method for the i-th issue, i.e.,

min
s

∑
i=1

ri

∑
k=1

pk
i c

k
i (38)

s.t.
s

∑
i=1

ri

∑
k=1

pk
i w

k
i ≥W (39)

It can be observed that the problem is actually a grouped knapsack problem, which
is a special kind of knapsack problem. There are several solutions to solve the knapsack
problem, such as branch-and-bound method [39], dynamic programming method [40], and
approximation algorithm [41]. Since the dynamic programming method can solve the opti-
mal solution quickly for smaller knapsack problems, we adopt the dynamic programming
method to select the least costly set of issues. The method of solving the optimal attitude
change strategy based on the dynamic programming method is shown in Algorithm 1.
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Algorithm 1 The optimal attitude change strategy based on dynamic programming method.

Require: A CAIS K = (U, V, R), threshold t1, a set X ∈ LU of agents
Ensure: An optimal attitude change strategy

1: Compute γ+(X), γ−(X), γ(X), and β(X) according to Definition 13
2: for each y in γ+(X) do

3: Compute |X+
0.5(y)| and |Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+ |X−0.5(y)|

4: r[y] = 1 � r[y] denotes the number of increasing methods of y
5: w[y][1] = 0.5 � w[y][1] denotes the variation of the first increasing method of y
6: c[y][1] = min(0.5 · |X+

0.5(y)|, 0.5 · (|Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+ |X−0.5(y)|)) � c[y][1]
denotes the cost of the first increasing method of y

7: end for
8: for each y in γ−(X) do
9: Compute |X−0.5(y)| and 2|Ẋ+

1 (y)|+ |Ẋ+
0.5(y)|+ |X+

0.5(y)|
10: r[y] = 1
11: w[y][1] = 0.5
12: c[y][1] = min(0.5 · |X−0.5(y)|, 0.5 · (2|Ẋ+

1 (y)|+ |Ẋ+
0.5(y)|+ |X+

0.5(y)|))
13: end for
14: for each y in γ(X) do

15: Compute |X+
0.5(y)| and |X−0.5(y)|

16: r[y] = 1
17: w[y][1] = 0.5
18: c[y][1] = min(0.5 · |X+

0.5(y)|, 0.5 · |X−0.5(y)|)
19: end for
20: for each y in β(X) do
21: Compute |Ẋ+

1 (y)|, |X−0 (y)|, 2|Ẋ+
1 (y)| + |Ẋ+

0.5(y)| + |X+
0.5(y)| and |Ẋ−0.5(y)| +

2|Ẋ−1 (y)|+ |X−0.5(y)|
22: r[y] = 2 � the number of increasing methods is 2
23: w[y][1] = 0.5
24: c[y][1] = min(0.5 · |Ẋ+

1 (y)|, 0.5 · |X−0 (y)|)
25: w[y][2] = 1 � w[y][2] denotes the variation of the second increasing method of y
26: c[y][2] = min(0.5 · (2|Ẋ+

1 (y)|+ |Ẋ+
0.5(y)|+ |X+

0.5(y)|), 0.5 · (|Ẋ−0.5(y)|+ 2|Ẋ−1 (y)|+
|X−0.5(y)|)) � c[y][2] denotes the cost of the second increasing method of y

27: end for
28: Compute m′(X) according to Definition 12
29: Δ = (m′(X)− t1)|V| � Δ is the amount of variations needed to transform X into an

alliance set
30: Utilize the dynamic programming method in [30] or [31,32] to solve the knapsack

problem and obtain the optimal solution M = {p1
1, . . . , pr1

1 , p1
2, . . . , pr2

2 , . . . , p1
s , . . . , prs

s }
31: According to M, determine the agents that need to change their attitudes, and add the

agents and the issues to the corresponding sets
32: return R0→0.5, R0.5→1, R0→1, R0.5→0, R1→0.5, R1→0

Steps 2–27 of Algorithm 1 first determine the number of increasing methods r[y],
the variation w[y][k], and the cost c[y][k] of the k-th increasing method for issue y ac-
cording to Theorem 4. Then, Algorithm 1 solves the optimal attitude change strategy
by dynamic programming method in Step 30 and obtains an optimal solution M =
{p1

1, . . . , pr1
1 , p1

2, . . . , pr2
2 , . . . , p1

s , . . . , prs
s }. Finally, in Step 31, according to the optimal so-

lution M and Theorem 4, Algorithm 1 identifies the agents that are required to change
their attitudes towards some specific issues, and adds the pairs of agent and issue to the
corresponding sets: R0→0.5, R0.5→1, R0→1, R0.5→0, R1→0.5, and R1→0.

Example 6 verifies the validity of Algorithm 1.

Example 6. For the CAIS in Example 5, given the threshold t1 = 0.35, we have X = {1/x1, 0.5/x2,
1/x3}. According to Table 3, we have m′(X) = 0.625, γ+(X) = {y1}, γ−(X) = {y3, y4}, and
β(X) = {y2}. Since m′(X) = 0.625 > 0.35, X should be transformed into an alliance set.
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According to Algorithm 1, X∗(y1) of issue y1 can be increased from 0.5 to 1 with the variation
w[y1][1] = 0.5 and the cost c[y1][1] = 0.5; X∗(y3) of issue y3 can be increased from 0.5 to 1 with
the variation w[y3][1] = 0.5 and the cost c[y3][1] = 0.5; X∗(y4) of issue y4 can be increased from
0.5 to 1 with the variation w[y4][1] = 0.5 and the cost c[y4][1] = 0.5; X∗(y2) of issue y2 can be
increased from 0 to 0.5 with the variation w[y2][1] = 0.5 and the cost c[y2][1] = 0.5, or increased
from 0 to 1 with the variation w[y2][2] = 1 and the cost c[y2][2] = 1. According to the dynamic
programming method, only p2

y2
= 1 and p1

y4
= 1 can be obtained in M.

Since y2 ∈ β(X), we can compute 2|Ẋ+
1 (y1)|+ |Ẋ+

0.5(y1)|+ |X+
0.5(y1)| = 2 = |Ẋ−0.5(y1)|+

2|Ẋ−1 (y1)|+ |X−0.5(y1)|. Furthermore, since R(x1, y2) = 0 and X(x2) = 1, we have R0→1 =
{(x1, y2)}. Since y4 ∈ γ−(X), we can compute |Ẋ−0.5(y4)| = 1 < 4 = 2|Ẋ+

1 (y4)|+ |Ẋ+
0.5(y4)|+

|X+
0.5(y4)|. Since R(x2, y4) = 1 and X(x) = 0.5, we have R1→0.5 = {(x2, y4)}.

Therefore, the optimal attitude change strategy is R0→1 = {(x1, y2)}, R1→0.5 = {(x2, y4)},
i.e., changing the attitude of x1 towards y2 from opposing to agreeing and changing the attitude of
x2 towards y4 from agreeing to neutral. After changing attitudes, we have m′(X) = 0.25 < 0.35,
α+(X) = {y2}, α−(X) = {y4}, γ+(X) = {y1} and γ−(X) = {y3}, i.e., X becomes an alliance
set with the minimal cost 2. The changes in conflict analysis results caused by attitude changes is
shown as Figure 4.

Figure 4. Changes in conflict analysis results caused by attitude changes.

5. Conclusions

In this paper, a hybrid conflict analysis model is proposed by combining conflict
analysis and L-3WCL. The model employs L-fuzzy three-way concepts to capture the
issues on which agents commonly agree and the issues which they commonly oppose, and
identifies the state of a set of agents. In addition, this paper seeks minimal cost to reach a
consensus of agents by developing an optimal attitude change strategy.

In fact, the existing studies [9–11] used different fuzzy numbers to describe agents’
uncertainty about issues in conflict analysis situations, and these studies were conducted
in the case that agents are completely trustworthy. The study [25] further considered to
what extent the agent can be trusted. However, [25] used fuzzy concepts to describe agents’
consistency by considering only the common agreement consistency and ignoring the
common opposition consistency. In this study, we use L-3WCL to describe both agreement
consistency and disagreeing consistency, which can help us analyze conflict situations more
comprehensively.

On the other hand, the existing conflict analysis solution methods [1,4,6,26] used as a
solution strategy the selection of the optimal subsets of issues most agents agree on. Our
method introduces a third-party assumption to mediate between agents in search of an
optimal attitude change strategy, and is better suited to deal with situations where the
conflict has not yet reached a serious level. Thus, our study provides a new perspective on
conflict resolution.

However, there are some problems that need to be explored and improved. For
example, in the proposed model, both the agreement consistency and the opposition
consistency may reach the value 1, i.e., the set of agents may agree on and oppose an
issue unanimously. Although we have explained this situation as a special case, this
may be unreasonable. In fact, by Proposition 1 (1), this is a result of introducing CRL to
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characterize the problem of conflict analysis. In addition, the proposed model employs
CRL to characterize both attitudes and trust degrees to {0, 0.5, 1}. Since attitude values and
trust values have different meanings and operators, for example, it seems unreasonable
that the negative attitude 0 is less than the positive attitude 1, but it seems reasonable that
the trust degree 0 is less than the trust degree 1. Furthermore, the different meanings of
their values means that different operators are needed. This may lead to unreasonable
results and therefore needs to be further explored.
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