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Editorial

Preface to the Special Issue “Algebraic Structures and Graph
Theory, 2nd Edition”

Irina Cristea * and Alessandro Linzi

Centre for Information Technologies and Applied Mathematics, University of Nova Gorica, Vipavska Cesta 13,
5000 Nova Gorica, Slovenia; alessandro.linzi@ung.si
* Correspondence: irina.cristea@ung.si

This is a continuation of the work initiated in [1], representing a reprint of the second
edition of the Special Issue “Algebraic Structures and Graph Theory”, which was published
in the MDPI journal Mathematics. Among the 36 submissions received for this Special
Issue, the editors selected ten articles and one review paper that successfully passed the
peer-review process, and were then published in the journal in the period from March 2023
to November 2024. They contain original research ideas that have made a significant ad-
vancements in the theory of algebraic structures and graph theory. In particular, the topics
discussed in these 11 papers are related to graphs constructed from lattices, semigroups, or
groups, to particular types of graphs (as edge-primitive, friendship, or equitable graphs),
and to hypercompositional algebras (HX-groups and multi-rings).

Contribution 1 proposes a characterization of the crosscap two annihilating ideals
graphs of lattices with at most four atoms. As a consequence, a large class of r-partite graphs
that can be embedded in the Klein bottle has been introduced. Contribution 2 discusses the
planarity of S(m, e)-graphs associated with some irreducible numerical semigroups with
multiplicity m and embedding dimension e. In Contribution 3, the authors characterize
the maximal connected subdigraphs of the Cayley digraph of a Clifford semigroup related
to one of its subsets. This study helps to investigate on the independence numbers of the
Cayley digraphs of Clifford semigroups. Based on the properties of non-abelian simple
groups having at least one subgroup of order pq, where p and q are two distinct odd
primes, the authors of Contribution 4 completely determined the edge-primitive graphs
of order pq. In Contribution 5 we can find a model for calculating the upper bounds of
the radio numbers of the so-called friendship graphs having k cycles, each of length m,
with 3 ≤ m ≤ 6, and having one common vertex. The study conducted in Contribution 6
leads to a structure theorem for semiconic idempotent commutative residuated lattices.
This theorem is the key element to prove that the variety of strongly semiconic idempotent
commutative residuated lattices has the amalgamation property. A classification of the
seven-valent symmetric graphs of order 8pq, where p and q are distinct primes, is presented
in Contribution 7. The main idea used by the authors of this paper is the reduction of the
automorphism groups of the considered graphs to some non-commutative simple groups.
Another interesting connection between graphs and groups arises in Contribution 8. In this
paper, the authors study some topological indices and graph-theoretic properties (such as
connectedness, diameter, girth, clique number, and radius) of equitable graphs of type I
constructed from various groups. The last two original articles within this Special Issue
deal with algebraic multistructures. In Contribution 9, the concept of Marshall’s quotient
of a non-commutative multi-ring with involution is studied, leading to new examples of
multialgebras with involution. Contribution 10 presents an algorithm for computing the
HX-groups that have support equal to the dihedral group Dn. We conclude this Special
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Issue with Contribution 11, which is a review paper on Feynam diagrams, introduced in
quantum electrodynamics and also used in biology and economy nowadays. The main
analytical and algebraic properties of these diagrams are summarized, with examples
related to wave propagation, information field theory, and medicine.

The Guest Editors extend their sincere appreciation to all of the authors for their
valuable contributions to this Special Issue. We are also deeply grateful to the anonymous
reviewers for their insightful and professional evaluation reports, which have significantly
enhanced the quality of the submitted manuscripts. Furthermore, we acknowledge the
excellent collaboration with the publisher, the constant assistance provided by the MDPI
associate editors in bringing this project to the end, and the great support of the Managing
Editor of this Special Issue, Ms. Ursula Tian.

Conflicts of Interest: The authors declare no conflicts of interest.
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Article

Class of Crosscap Two Graphs Arising from Lattices–I

T. Asir 1,*, K. Mano 2, Jehan A. Al-Bar 3 and Wafaa M. Fakieh 3

1 Department of Mathematics, Pondicherry University, Pondicherry 605 014, Tamil Nadu, India
2 Department of Mathematics, Fatima College, Madurai 625 018, Tamil Nadu, India
3 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21461, Saudi Arabia
* Correspondence: asirjacob75@gmail.com

Abstract: Let L be a lattice. The annihilating-ideal graph of L is a simple graph whose vertex set
is the set of all nontrivial ideals of L and whose two distinct vertices I and J are adjacent if and
only if I ∧ J = 0. In this paper, crosscap two annihilating-ideal graphs of lattices with at most four
atoms are characterized. These characterizations provide the classes of multipartite graphs, which
are embedded in the Klein bottle.

Keywords: crosscap; Klein bottle; lattice; annihilating-ideal graph

MSC: 05C75; 05C25; 05C10; 06A07; 06B99

1. Introduction

According to the well-known theorem of Kuratowski and Wagner, a graph is planar
if and only if it does not contain either of the two forbidden graphs K5 and K3,3. The Graph
Minor Theorem of Robertson and Seymour [1] can be considered a powerful generaliza-
tion of Kuratowski’s Theorem. In particular, their theorem, which is the “deepest” and
“most important” result in the arena of graph theory [2], implies that each graph property,
no matter what, is characterized by a corresponding finite list of graphs. Thus, for surfaces
(both orientable and non-orientable) in general, it is known that the set of forbidden mi-
nors is finite [3]. An analogous characterization for the embedding of graphs on surfaces is
known for the crosscap one surface (Möbius strip) where 103 forbidden subgraphs (equiv-
alently 35 forbidden minors) are characterized [4,5]. So, an open problem is to determine
the several forbidden subgraphs for crosscap two surfaces (the Klein bottle). In this se-
quel, finding a family of graphs that has a crosscap two is an interesting one. Note that
most of the 103 graphs contain a subgraph that is homeomorphic to K3,3, and multipartite
graphs play a vital role in finding these 103 forbidden subgraphs for the projective plane.
It is worth mentioning that the crosscap value of bipartite and tripartite graphs are well
known (refer to Proposition 1). The main goal of this paper is to identify a large class of
crosscap two r-partite graphs where r ≥ 4.

Let us introduce the concept of the annihilating-ideal graph of a lattice, a type of multi-
partite graph. Note that the annihilating-ideal graph is an extension of the concept of the
zero-divisor graph. The idea of the zero-divisor graph of a ring structure is due to Beck [6].
In 2009, Halaš et al. [7] introduced the zero-divisor graph for a partially ordered set, and,
in 2012, Estaji et al. [8] extended the concept of the zero-divisor graph to an arbitrary
finite bounded lattice. For a clear exposition of the work completed in the area of zero-
divisor graphs and their related areas, the reader is referred to the book by Anderson
et al. [9]. In 2011, Behboodi et al. [10] defined and investigated the ideal theoretic ver-
sion of the zero-divisor graph, called the annihilating-ideal graph of a ring, and, thereafter,
many facts about zero-divisors were expressed in the language of ideals. The concept of
an annihilating-ideal graph of a ring was extended to an arbitrary lattice by Afkhami et
al. [11] in 2015. The annihilating-ideal graph of a lattice L, denoted by AG(L), is defined to

Mathematics 2023, 11, 1553. https://doi.org/10.3390/math11061553 https://www.mdpi.com/journal/mathematics3



Mathematics 2023, 11, 1553

be a simple graph whose vertex set is the set of all non-trivial ideals of L, and whose two
distinct vertices I and J are adjacent if and only if I ∧ J = 0. The hope when studying the
annihilating-ideal graph of a lattice is that the graph theoretic properties of the graph from
the lattice will help us to better understand the lattice theoretic properties of the lattice.

One of the most important topological properties of a graph is its genus, which can
be orientable or non-orientable (crosscap). The genus of graphs associated with algebraic
structures has been studied by many authors (see [12–17]). The planar zero-divisor graph
was first explicitly characterized by Smith [18], and the characterization of commutative
rings with projective zero-divisor graphs was obtained by Chiang-Hsieh [15]. In 2019,
Asir et al. [12] enumerated all commutative rings whose zero-divisor graph has a crosscap
two. The planar and crosscap one annihilating-ideal graph of lattices were characterized
by Shahsavar [19] and Parsapour et al. [20], respectively. Additionally, whether the line
graph associated with the annihilating-ideal graph of a lattice is planar or projective was
characterized by Parsapour et al. [21]. Moreover, the authors of [22] characterized all lat-
tices L whose line graph of AG(L) is toroidal.

Now, this paper aims to classify lattices with a number of atoms less than or equal
to four whose annihilating-ideal graph can be embedded in the non-orientable surfaces
of crosscap two. The main results of this paper are Theorems 2, 3, and 5, in which we
have obtained our classifications. As a result, this classification provides a large class
of r-partite graphs that can be embedded in the Klein bottle. Further, in the proof of the
main theorems, we have shown several minimal r-partite graphs that cannot be embedded
in the Klein bottle. Possibly, these graphs may be realized as forbidden subgraphs for
crosscap two surfaces (refer to Example 1). Further, in order to cover the missing cases in
the proof of Theorem 2.6 [20], which affects the statement of the corresponding theorem,
the modified version is included as Theorem 4.

2. Preliminaries

In this section, we present the definitions and results needed to prove the main re-
sults in the subsequent sections. First, we recall some definitions and notations on lattices.
A lattice is an algebra L = (L, ∧, ∨), where ∧ and ∨ are the binary operations, satisfying
the following conditions: for all a, b, c ∈ L
1. a ∧ a = a, a ∨ a = a;
2. a ∧ b = b ∧ a, a ∨ b = b ∨ a;
3. (a ∧ b) ∧ c = a ∧ (b ∧ c); a ∨ (b ∨ c) = (a ∨ b) ∨ c;
4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

According to [23] (Theorem 2.1), we can define an order ≤ on L as follows: for any
a, b ∈ L, we set a ≤ b if and only if a ∧ b = a. Then (L, ≤) is an ordered set in which
every pair of elements has the greatest lower bound (glb) and the least upper bound (lub).
Conversely, let P be an ordered set such that, for every pair a, b ∈ P, glb(a, b) and lub(a, b)
belong to P. For each a and b in P, we define a ∧ b = glb(a, b) and a ∨ b = lub(a, b). Then
(P, ∧, ∨) is a lattice. A lattice L is said to be bounded if there are the elements 0 and 1 in L
such that 0 ∧ a = 0 and a ∨ 1 = 1, for all a ∈ L. Clearly, every finite lattice is bounded. Let
(L, ∧, ∨) be a lattice with a least element 0 and I be a non-empty subset of L. Then I is
said to be the ideal of L, denoted by I �L,

1. For all a, b ∈ I, a ∨ b ∈ I.
2. If 0 ≤ a ≤ b and b ∈ I, then a ∈ I.

In a lattice (L, ∧, ∨) with a least element 0, an element a is called an atom if a �= 0, and,
for an element x ∈ L, the relation 0 ≤ x ≤ a implies that either x = 0 or x = a. We denote
the set of all atoms of L by A(L). For basic facts about lattices, we refer the reader to [24].

Next, we recall the following terms regarding graph embedding. For the non-negative
integers � and k, let S� denote the sphere with � handles, and Nk denote a sphere with k
crosscaps attached to it. Note that every connected compact surface is homeomorphic to
S� or Nk for some non-negative integers � and k. The genus γ(G) of a simple graph G is the

4
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minimum � such that G can be embedded in S�. Similarly, crosscap number (non-orientable
genus) γ̃(G) is the minimum k such that G can be embedded in Nk. Note that the projective
space is of crosscap one and the Klein bottle is of crosscap two. If e = xy ∈ E(G), then the
contraction of e in G, denoted as [x, y] is the graph obtained from G − xy by identifying ver-
tices x and y to create a new vertex z incident with all edges of G that were incident with
either x or y. We say H is a minor of G, if H can be obtained from G by deleting vertices,
edges, and/or contracting edges. For a graph G, we denote G̃ for the subgraph G − V′
where V′ = {v ∈ V| deg(v) = 1}, and we call this graph the reduction of G. For details on
the notion of the embedding of graphs in a surface, we recommend reading [25].

The following three results on the non-orientable embedding of graphs are used fre-
quently in this paper. In what follows, we denote the complete graph with p vertices by
Kp, the complete bipartite graph with parts of sizes p and q by Kp,q, the complete tripartite
graph with parts of sizes p, q, and r by Kp,q,r, and the complete four-partite graph with
parts of sizes p, q, r, and s by Kp,q,r,s.

Proposition 1 ([25,26]). Let p, q, r, and s be positive integers greater than or equal to two. Then

(a) γ̃(Kp) =

{ ⌈
(p−3)(p−4)

6

⌉
i f p ≥ 3

3 i f p = 7.

(b) γ̃(Kp,q) =
⌈
(p−2)(q−2)

2

⌉
.

(c) γ̃(Kp,q,r) =
⌈
(p−2)(q+r−2)

2

⌉
except for K3,3,3, K4,4,1 and K4,4,3. Further,

γ̃(K3,3,3) = 3, γ̃(K4,4,1) = 4 and γ̃(K4,4,3) = 6.

(d). If p ≥ q + r, then γ̃(Kp,q,r,s) ≥
⌈
(p−2)(q+r+s−2)

2

⌉
.

If p ≤ q + r, then γ̃(Kp,q,r,s) ≥
⌈
(p+s−2)(q+r−2)

2

⌉
.

Proposition 2 (([16] Theorem 1.3) (Euler formula)). Let φ : G → Nk be a two-cell embedding
of a connected graph G to the non-orientable surface Nk. Then |V| − |E| + |F| = 2 − k, where
|V|, |E|, and |F| are the number of vertices, edges, and faces that φ(G) has, respectively, and k is
the crosscap of Nk.

The following is an easy observation that will be used in the proof of the main theo-
rem.

Observation 1. Let G be a simple graph with |E| edges embedded with |F| faces. Then 2|E|
|F| ≥

gr(G) where gr(G) denotes the length of the shortest cycle in G.

3. Basic Results and Notations

Before going into the classifications, we need to be familiar with the following nota-
tions and observations given by Parsapour and Javaheri in [20].

Notation: ([20]) Let L be a lattice and A(L) = {a1, a2, . . . , an} be the set of all atoms. Let
i1, i2, . . . , ik be integers with 1 ≤ i1 < i2 < . . . < ik ≤ n. The notation Ui1i2...ik stands for the
following set:{

I �L : {ai1 , ai2 , . . . , aik} ⊆ I and aij /∈ I for ij ∈ {1, 2, . . . , n} \ {i1, i2, . . . , ik}
}

.

The next result provides the structure of AG(L).

Proposition 3. Let L be a lattice with n atoms. Then AG(L) is a 2n − 2-partite graph.

Proof. Let |A(L)| = n. For 1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 < j2 < . . . < jk′ ≤
n, if the index sets {i1, i2, . . . , ik} and {j1, j2, . . . , jk′ } of Ui1i2...ik and Uj1 j2...jk′ respectively,
are distinct, then Ui1i2...ik ∩ Uj1 j2...jk′ = ∅. Clearly, V(AG(L)) =

⋃
1≤i1<i2<...<ik≤n

Ui1i2...ik .

5
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Therefore, for 1 ≤ i1 < i2 < . . . < ik ≤ n, the set Ui1i2...ik forms a partition of V(AG(L)).
Since 0 �= ai1 belongs to every ideal in Ui1i2...ik , no pair of distinct vertices in Ui1i2...ik are
adjacent in AG(L). Note that the number of distinct Ui1i2...ik s is 2n − 1. This, together with
the fact that every vertex in U12...n is isolated in AG(L), implies that AG(L) is a 2n − 2-
partite graph.

According to the abovementioned result regarding the structure of AG(L), in order
to identify the crosscap two r-partite graph or to classify the forbidden r-partite graphs of
a non-orientable surface of order two for some 3 ≤ r ∈ N, one may be interested in finding
all crosscap two annihilating-ideal graphs. This is the main objective of this paper.

We shall also need the following notations:

Notations: Before proving our main results, the following points are assumed for conve-
nience in notations and clarity in proofs. Let us take |A(L)| = n.

• To avoid repetition, we assume |U1| ≥ |U2| ≥ . . . ≥ |Un|.
• We denote the vertices of the set Ui1i2...ik by {Ii1i2...ik , I′i1i2...ik

, I′′i1i2...ik
, . . .}.

• For an integer p, an integer different from p will be denoted by p′.
• For the sake of convenience, we shall denote U(i1i2...ik)c = Uj1 j2...j� where

j1, j2, . . . , j� = {1, 2, . . . , n} \ {i1, i2, . . . , ik} and the notation U(i1i2...ik)c exists only when
Ui1i2...ik �= ∅.

• The edge between the two vertices I and J is denoted by (I, J).
• The notations |F| and fi denote the number of faces and number of i-gons in an em-

bedding of G in Nk, respectively.
• There may be sets Ui1i2...ik such that each vertex of Ui1i2...ik is isolated, ends, or is

adjacent to exactly two ends of an edge in AG(L). In such places, the vertices of
Ui1i2...ik do not affect the crosscap number of AG(L), which leads to ignoring the set
Ui1i2...ik from the corresponding embedding. This fact is used throughout the article
and is sometimes not explicitly pointed out.

• For convenience in any drawing, we provide a particular type of N2-embedding of
AG(L). This means that instead of drawing graphs for the case Uij with 1 ≤ i ≤ j ≤ 3,
we assume i = 1 and j = 2 in figures. Additionally, the notation · · · is used to denote
the possibility of embedding any number of vertices.

We show a few simple, but useful, properties of a crosscap on AG(L). We now state
and prove the following lemma, which provides a subgraph and super-graph structure of
AG(L).

Lemma 1. Let L be a lattice, |A(L)| = n, and n ≥ k ∈ N. Let αi1i2...ik = |Ui1i2...ik |, λ =
max{αi1i2...ik} for all 1 ≤ i1 < i2 < . . . < ik ≤ n. Then

(a). Kα1,α2,...,αn is a subgraph of AG(L).
(b). K(2n−2)(λ) is a super-graph of AG(L).

Proof. Let H be the induced subgraph of AG(L), induced by the vertex subset
⋃n

i=1 Ui. It
is clear that no two distinct vertices in Ui are adjacent, and every vertex in Ui is adjacent
to all of the vertices of Uj for i �= j in AG(L). Thus H = Kα1,α2,...,αn .

The second part follows from the facts that V(AG(L)) =
⋃

Ui1i2...ik ; the number of
vertex subsets Ui1i2...ik , except U12...n, in V(AG(L)) is (n

1) + (n
2) + . . . + ( n

n−1) = 2n − 2; and
λ = max{αi1i2...ik}.

We are now in the position to provide a lower bound for the crosscap of AG(L).
Applying Proposition 1c,d in the first part of the above lemma, we obtain the following
result.

Theorem 1. Let L be a lattice, |A(L)| = n ≥ 3, and |U1| ≥ |U2| ≥ . . . ≥ |Un|.
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(a). If n = 3, then γ̃(AG(L)) ≥
⌈
(|U1|−2)(|U2|+|U3|−2)

2

⌉
. Moreover, the equality holds whenever

Uij = ∅ for all 1 ≤ i ≤ j ≤ 3.

(b). If n ≥ 4, then γ̃(AG(L)) ≥
⎧⎨
⎩
⌈
(|U1|−2)(|U2|+|U3|+|U4|−2)

2

⌉
i f |U1| ≥ |U2|+ |U3|⌈

(|U1|+|U4|−2)(|U2|+|U3|−2)
2

⌉
i f |U1| < |U2|+ |U3|.

We now enter into the core part of the paper. We first observe that AG(L) is totally
disconnected when |A(L)| = 1, and AG(L) contains K7 as a subgraph when |A(L)| ≥
7. Further, according to Proposition 1a, the crosscap of K7 is three. Thus, one obtains
the following result, which provides a bound for the number of atoms in lattice L with
γ̃(AG(L)) = 2.

Proposition 4. Let L be a lattice. If the crosscap of the annihilating-ideal graph AG(L) is two,
then 2 ≤ |A(L)| ≤ 6.

We start the characterization by analyzing the simple case that |A(L)|
= 2. If |A(L)| = 2, then Theorem 2.6 [20] implies that AG(L) ∼= K|U1|,|U2|, and so

γ̃(AG(L)) =
⌈
(|U1| − 2)(|U2| − 2)

2

⌉

whenever |U1|, |U2| ≥ 2. Now, a simple calculation has yielded the following result, which
characterized lattice L with a crosscap two AG(L) in the case of |A(L)| = 2.

Theorem 2. Let L be a lattice and |A(L)| = 2. Then γ̃(AG(L)) = 2 if and only if |U1| =
|U2| = 4 or |Ui| = 3 and |Uj| ∈ {5, 6} where i, j ∈ {1, 2} with i �= j.

To finish this section we show two results that will be used to prove the main results.
The graphs given in Figures 1 and 2 play a vital role in characterizing a lattice with cross-
cap two annihilating-ideal graphs, and, therefore, we draw the graph with its embedding
in the first result.

Lemma 2. For the graphs H1 and H2, as shown in Figures 1 and 2, we have γ̃(H1) = γ̃(H2) = 2.

��

� �

� �

� �

�

(b). An N2-embedding of H1

�

�

�
v4

v1

v1

v2

v2

u3

u3

u1

u4

u4

u2

v3

� �

��

�

�

�

�

(a). The graph H1

u1

v1

u2 u4u3

v2 v3 v4

Figure 1. The graph H1 and its N2-embedding.
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(b). An N2-embedding of H2

�

�

�
v3

v1

v1

v2

v2

u5

u5

u1

u6

u6

u3

u2

� �

��

�

�

� �

(a). The graph H2

�

�

�

�

�

u4 u4

u4u4

u1 u2 u3 u5u4

v1

u6

v3v2

Figure 2. The graph H2 and its N2-embedding.

The graphs H3 and H4 given in Figure 3 play a vital role in our main theorems.

Lemma 3. For the graphs H3 and H4, as shown in Figure 3, we have γ̃(H3) ≥ 3 and γ̃(H4) ≥ 3.

� �

��

�

�

�

�

(a). Graph H3

u1

v1

u2 u4u3

v2 v3 v4

� �

��

�

�

�

�

(b). Graph H4

u1

v1

u2 u4u3

v2 v3 v4

Figure 3. The graphs H3 and H4.

Proof. (a). Consider the subgraph H′
3 = H3 − {u1}. Clearly H′

3
∼= K7 − e where e =

(u2, u3), and there are 13 faces in any N2-embedding of H′
3 of which 12 are triangular, and

1 is rectangular. Now, we try to recover an N2-embedding of H3 by inserting u1 with its
edges. Since u1 is adjacent to four vertices of H′

3, u1 should be inserted into the rectangular
face of H′

3. However, all vertices of H′
3 are adjacent to each other, except for u2 and u3, so

the rectangular face of H′
3 must contain either u2 or u3, which is in contradiction to u2 and

u3 not belonging to the neighborhood set of u1. Therefore, γ̃(H3) ≥ 3.
(b). Apply a similar argument as in (a) for the subgraph H′

4 = H4 − {u1} ∼= K7 − 2e.
Here, notice that the largest face in any N2-embedding of H′

4 is a unique pentagon, and u1
is adjacent to the five vertices v1, v2, v3, v4, and u4.

4. The Case When |A(L)| = 3

Let us start the classification result with a lattice containing exactly three atoms. Note
that the following theorem provides a class of multipartite graphs, which are embedded
in the Klein bottle (refer to Example 1 for an illustration).

Theorem 3. Let L be a lattice with |A(L)| = 3, and let 1 ≤ i �= j �= k ≤ 3. Then γ̃(AG(L)) =
2 if and only if one of the following conditions hold:

(i). |⋃3
n=1 Un| = 9; there is Ui with |Ui| = 6 and Ujk = ∅.

(ii). |⋃3
n=1 Un| = 8, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 6 and |Ujk| = 1.

8
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[b] There exist Ui and Uj such that |Ui| ∈ {5, 4} and |Uj| = 2 with Ujk = ∅.
[c] There exist Ui and Uj such that |Ui| = 4 and |Uj| = 3 with Uik = Ujk = ∅.
[d] There exist Ui and Uj such that |Ui| = |Uj| = 3 with Uij = Uik = Ujk = ∅.

(iii). |⋃3
n=1 Un| = 7, and one of the following cases is satisfied:

[a] There is Ui with |Ui| ∈ {5, 4} and |Ujk| = 1.
[b] There exist Ui and Uj such that |Ui| = |Uj| = 3 with either |Uik| ∈ {1, 2} and

Ujk = ∅ or Uik = ∅ and |Ujk| ∈ {1, 2}.
[c] There exist Ui and Uj such that |Ui| = 3, |Uj| = 2 with |Ujk| ∈ {1, 2}. Further, if

|Ujk| = 1, then either Uij = ∅ or Uik = ∅ and, if |Ujk| = 2, then Uij = Uik = ∅.

(iv). |⋃3
n=1 Un| = 6, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 4 and |Ujk| = 2.
[b] There is Ui with |Ui| = 3 and |Ujk| ∈ {2, 3}.

(v). |⋃3
n=1 Un| = 5; there is Ui with |Ui| = 3 and |Ujk| ∈ {3, 4}.

Proof. Assume that γ̃(AG(L)) = 2. First of all, if |⋃3
n=1 Un| ≤ 4, then AG(L) is planar

(see [19]). Suppose |⋃3
n=1 Un| ≥ 10. If |U2| ≥ 2, then by Theorem 1 we have γ̃(AG(L)) ≥⌈

(|U1|−2)(|U2|+|U3|−2)
2

⌉
≥ 3, which is a contradiction. Suppose |U2| = 1. Then |U3| = 1.

Note that every vertex in U12, U13, and U23 is adjacent to all of the vertices of U3, U2, and
U1, respectively. So, if U23 = ∅, then clearly AG(L) is planar. If not, the vertices in U1 are
adjacent to all of the vertices of U2 ∪ U3 ∪ U23. Since |U1| ≥ 8, K8,3 is a subgraph of AG(L)
that has a crosscap of more than three, refer to Proposition 1a. Thus, 5 ≤ |⋃3

n=1 Un| ≤ 9.
Case 1 Let |⋃3

n=1 Un| = 9. Then, clearly, |U1| ≤ 7. If |U1| = 7, then a slight modifi-
cation to the discussion made in the above paragraph would show that AG(L) is planar
whenever U23 = ∅ and the graph AG(L) contains K7,3 as a subgraph when U23 �= ∅.
If |U1| = 6, then |U2| = 2 and |U3| = 1. Now, if U23 �= ∅, then AG(L) contains K6,4
as a subgraph, which is a contradiction. So, U23 = ∅. Here, all of the vertices in U12
are adjacent to a single vertex of U3, and, therefore, the vertices in U12 do not affect the
crosscap. In Figure 4a, we provide the canonical representation of the embedding of the
resulting graph in N2 so that, in this case, γ̃(AG(L)) = 2. Next, if |U1| = 5 or 4, then
|U2|+ |U3| ≥ 4, and so, by Theorem 1a, we obtain γ̃(AG(L)) ≥ 3. Thus, |U1| = 3, and,
therefore, |U2| = |U3| = 3. Here, K3,3,3 is a subgraph of AG(L), and, therefore, according
to Proposition 1c, we have γ̃(AG(L)) ≥ 3.

Case 2 Let |⋃3
n=1 Un| = 8.

If |U1| = 6, then |U2| = |U3| = 1. Clearly, by [19], AG(L) is planar in the case that
U23 is empty. If |U23| ≥ 2, then the partite sets X = U1 and Y = U2 ∪ U3 ∪ U23 form
K6,4 as a subgraph in AG(L), which is a contradiction. Therefore, |U23| = 1. In this case,
the vertices in U13 ∪ U12 are all end vertices, and, therefore, it does not affect the crosscap.
Thus, the resulting graph is K6,3 ∪ {(I2, I3)}, which is a subgraph of a graph given in
Figure 2a, and, therefore, γ̃(AG(L)) = 2.

Suppose |U1| ∈ {5, 4}. Then, according to Theorem 1a, we have γ̃(AG(L)) ≥ 2.
If U23 �= ∅, then the sets X = U1 and Y = U2 ∪U3 ∪U23 form K5,4 as a subgraph of AG(L),
and so γ̃(AG(L)) ≥ 3. Therefore, U23 = ∅. Let |U2| = 2, |U12| ≥ 0, and |U13| ≥ 0. For
the embedding of AG(L) in N2, in the case of |U1| = 5, we can obtain help from Figure 4a
because the number of vertices and edges of AG(L) is less than that of in Figure 4a. Fur-
ther, Figure 4b provides an N2-embedding of AG(L) in the case of |U1| = 4. Here, notice
that the open neighborhood of each vertex in U13 is {I2, I′2}, and, in Figure 4a,b, there is a
face in an N2-embedding of AG(L) that contains both I2 and I′2 so that every vertex of U13
can be embedded in N2 no matter what its cardinality may be. Let |U2| = 3. This implies
that |U1| = 4. If U13 = ∅ (recall that U23 = ∅), then AG(L) is a subgraph of the graph
H1 in Figure 1, and, therefore, according to Lemma 2, γ̃(AG(L)) = 2. If not, consider
that the subgraph AG(L)− {(I3, I1), (I3, I′1), (I3, I′′1 ), (I3, I′′′1 )} contains K3,6. By Euler’s
formula, any embedding of K3,6 in N2 has nine faces. Further, by solving the equations
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2|E| = 4 f4 + 6 f6 and |F| = f4 + f6, we have all the faces as rectangular faces in any
N2-embedding of K3,6. Now we try to recover the embedding of AG(L) by inserting all
edges (I3, I1), (I3, I′1), (I3, I′′1 ), (I3, I′′′1 ) into the embedding of K3,6. Since degK3,6(I3) = 3,
the vertex I3 is in the boundary of three rectangular faces of any N2-embedding of K3,6.
In addition, note that, at the maximum, each rectangular face can adopt one edge incident
with I3. So, we cannot insert all four edges of I3 into N2 without crossing, which is a
contradiction. Thus, γ̃(AG(L)) ≥ 3.
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� �

� �

� �
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�

�
I′3

I′2

I′2

I3

I3

I′′1

I1

I′′′1

I′1
I2

��

� �

� �

� �

�

(a). |⋃3
n=1 Un| = 9, |U1| = 6 and U23 = ∅

�

�

�

I2

I′2

I′2

I3

I3

I′′′′1

I′′′′1

I1

I′′′′′1

I′′′′′1

I′1

I′′1

�

�

�

�

I′′′1 I′′′1

I′′′1I′′′1

�

I′′1 I′′′1

�

I13

I13

I′13

�

�

I12

(b). | ⋃3
n=1 Un|= 8, |U1|= 4, |U2|= 2 and U23= ∅

Figure 4. N2-embedding of AG(L).

Suppose |U1| = 3. If Uij = ∅ for all 1 ≤ i < j ≤ 3, then, by Proposition 1c, we have
γ̃(AG(L)) = 2. Next, our claim is that Uij = ∅ for all 1 ≤ i < j ≤ 3.

Assume that U12 �= ∅. Then the minor subgraph is

AG(L)− {(I1, I′3), (I′1, I′3), (I′′1 , I′3), (I2, [I3, I12]), (I′2, [I3, I12]), (I′′2 , [I3, I12])} ∼= K4,4

with the partite sets X = U2 ∪ {[I3, I12]} and Y = U1 ∪ {I′3}. By Euler’s formula, any
N2-embedding of K4,4 has eight rectangular faces. Next, we attempt to obtain an N2-
embedding of AG(L) from any N2-embedding of K4,4. For this, we try to embed the six
omitted edges of AG(L) into an arbitrary N2-embedding of K4,4. First, to embed the three
edges (I1, I′3), (I′1, I′3), and (I′′1 , I′3), three rectangular faces are required, denoted as F1, F2,
and F3, all of which contains I′3 (refer to Figure 5a). Since degK4,4(I′3) = 4, exactly one more
face should have I′3; it is denoted as F4. Intentionally, we label the diagonals of F4 as the
vertices I2 and [I3, I12] because F4 can adopt one diagonal edge that can be used to embed
the fourth edge (I2, [I3, I12]). Finally, to embed the rest of the two edges (I′2, [I3, I12]) and
(I′′2 , [I3, I12]), two distinct faces are required, denoted by F5 and F6, which should have the
vertex [I3, I12]. Note that, in any Nk-embedding, every edge of a graph is in exactly two
faces. Since the edge (I1, [I3, I12]) is in F2 and the edge (I′1, [I3, I12]) is in F4, the common
edge between F5 and F6 must be (I′′1 , [I3, I12]). Now, the choice for the unlabelled vertex of
F5 and F6 is either I1 or I′1. Without a loss of generality, we label I1 for F5 and I′1 for F6 (refer
to Figure 5b). Since any N2-embedding of K4,4 has eight faces, there are two more faces,
lets say F7 and F8, that have to be formed using all of the remaining vertices and edges of
K4,4. Notice that, in any N2-embedding of K4,4, each vertex is present in exactly four faces,
and each edge is present in exactly two faces. Since the vertices I2 ∈ X and I′1 ∈ Y are
used twice in the faces F1, . . . , F6, the faces F7 and F8 must share the edge (I2, I′1) (refer to
Figure 5c). Now, the choices for the third and fourth vertices of F7 and F8 are I′2, I′′2 ∈ X
and I1, I′′1 ∈ Y, respectively. Clearly, we have to select distinct vertices for F7 and F8, in
which one is from {I′2, I′′2 } and the other is from {I1, I′′1 }. A contradiction to this fact is that
the edges (I′2, I1) and (I′′2 , I′′1 ) are used twice in the faces F1, . . . , F6.
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(a) (c)(b)
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Figure 5. Representation of faces of N2-embedding of K4,4.

Assume that Ui3 �= ∅ for some i ∈ {1, 2}. Then, the subgraph AG(L)− {Ii3, (Ii, I3),
(I′i , I3), (I′′i , I3)} contains K4,4 − e with the partite sets X = Ui ∪ {I3} and Y = Ui′ ∪ {I′3}
where i′ ∈ {1, 2} \ {i} and e = (I3, I′3). By Proposition 2, any N2-embedding of K4,4 − e
has one hexagonal and six rectangular faces. Note that the hexagonal face should have
either I3 or I′3, and the vertex Ii3 is adjacent to {Ii′ , I′i′ , I′′i′ } ⊂ Y. So, Ii3 with its edges must
be inserted into the hexagonal face, which implies that I3 is in the hexagonal face. Since
degK4,4−e(I3)
= 3, exactly two rectangular faces contain I3 in which it is not possible to embed all of
the three edges (Ii, I3), (I′i , I3), and (I′′i , I3), which is a contradiction. Thus, Uij = ∅ for all
i, j ∈ {1, 2, 3}.

Case 3 Let |⋃3
n=1 Un| = 7.

Suppose |U1| ∈ {5, 4}. Clearly, AG(L) is either planar or projective when U23 = ∅
(refer to [19,20]), and K5,4 is a subgraph of the contraction of AG(L) when |U23| ≥ 2.
Therefore, |U23| will be one. Then, AG(L) is a subgraph of the graph given in Figure 4a
when |U1| = 5, and AG(L) is a subgraph of the graph given in Figure 4b when |U1| = 4
so that γ̃(AG(L)) = 2.

Assume that |U1| = |U2| = 3. Then, AG(L) is projective when Ui3
= ∅ for all i = 1, 2, and the graph AG(L) contains K3,7 as a subgraph when |Ui3| ≥ 3
for some i = 1, 2. Suppose U13 �= ∅ and U23 �= ∅. Now, the graph AG(L) − {I3} is
isomorphic to K4,4 − {e} with the bipartite sets {I1, I′1, I′′1 , I13} and {I2, I′2, I′′2 , I23} where
e = (I13, I23). Note that γ̃(K4,4 − {e}) = 2, and there are seven faces in any N2-embedding
of K4,4 − {e}, of which six are rectangular, and one is hexagonal. Since γ̃(K4,4) = 2
and every face in any N2-embedding of K4,4 is rectangular, the hexagonal face of any
N2-embedding of K4,4 − {e} must have the vertices I13 and I23. Now, we try to recover
an N2-embedding of AG(L) from an N2-embedding of K4,4 − {e} by inserting I3 with its
edges. Here, I3 is adjacent to the six vertices I1, I′1, I′′1 , I2, I′2, and I′′2 . However, the hexag-
onal face of K4,4 − {e} does not contain two of them so that γ̃(AG(L)) ≥ 3. Therefore,
either U13 = ∅ or U23 = ∅. Now, with the help of Figure 6, we have γ̃(AG(L)) = 2 when
1 ≤ |Ui3| ≤ 2 for a unique i ∈ {1, 2}.
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� �

� �

�

�

�

�

I1

I1

I′1
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�
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I′2 I′2

I′2I′2
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Figure 6. |⋃3
n=1 Un| = 7 with |U1| = |U2| = 3, U13 = ∅ and |U23| = 2.
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Assume that |U1| = 3 and |U2| = 2. If |U23| ≥ 3, then AG(L) contains K3,7 as a sub-
graph, and, if U23 = ∅, then, by Theorem 2.4iii [20], AG(L) is projective. Suppose |U23| =
2. If U1j �= ∅ for j = 2 or 3, then consider a subgraph G1 = AG(L)− {I1j, I′23, e1, e2, e3, e4}
where e1 = (I2, I3), e2 = (I2, I′3), e3 = (I′2, I3), and e4 = (I′2, I′3). Clearly, G1 contains
K3,5 with the partite sets X = {I1, I′1, I′′1 } and Y = {I2, I′2, I3, I′3, I23}. Note that any N2-
embedding of K3,5 has one hexagonal and six rectangular faces. Now, we try to recover an
N2-embedding of AG(L) from any N2-embedding of K3,5. Since I′23 is adjacent to all three
vertices of X, the embedding of I′23 requires the hexagonal face of K3,5 to have I1, I′1, and I′′1 .
Notice that each rectangular face may adopt at most one edge into it. So, to insert e f s, for
1 ≤ f ≤ 4, into any N2-embedding of K3,5, four rectangular faces with diagonals as the end
vertices of each e f are required. At last, to insert I1j, a rectangular face with the diagonals
Ij′ and I′j′ for j′ ∈ {2, 3} \ {j} is required. Therefore, it requires one hexagonal face with
five rectangular faces containing the vertices I2, I′2, I3, and I′3 in at least three different faces.
Since the degree of I2, I′2, I3, and I′3 in K3,5 is three, all four vertices are placed in exactly
three faces of any N2-embedding of K3,5. So, the sixth rectangular face of K3,5 could not
be formed using the only left-out vertex in X (namely I23), which is a contradiction. Thus,
U12 = U13 = ∅, and an N2-embedding of AG(L) for this case is provided in Figure 7a.

Suppose |U23| = 1. If U1j �= ∅ for j = 2 and 3, then the minor subgraph is

G2 = AG(L)− {I13, e1, e2, e3, e4, e5} ∼= K4,4 − {e}, (1)

with the bipartite sets {I1, I′1, I′′1 , I3} and {I2, I′2, [I′3, I12], I23} where e1 = (I1, I3), e2 = (I′1, I3),
e3 = (I′′1 , I3), e4 = (I2, [I′3, I12]), e5 = (I′2, [I′3, I12]), and e = (I3, I23). Note that any N2-
embedding of K4,4 −{e} has six rectangular faces and a hexagonal face, and the hexagonal
face must have the vertices I3 and I23. Let us denote the six rectangular faces by F1, . . . , F6
and the hexagonal face by F7. Now, let us try to recover an N2-embedding of AG(L) by in-
serting the vertex I13 and the edges ei for all i = 1, . . . , 5. If we embed the edge e4, the edge
e5, or the vertex I13 together with its edges into F7, then we cannot insert the edges e1, e2, or
e3 into F7. Since degG2(I3) = 3, the vertex I3 is in exactly three faces of an N2-embedding
of G2. So, in such cases, the edges e1, e2 and e3 cannot be embedded in two rectangular
faces which contains I3. Therefore we have to add at least one of the edges e1, e2 or e3 into
F7. For the best possibility, say e1 and e2 are embedded in F7. Then, e3 has to be embedded
into one of the two rectangular faces that contains I3, for example, F1. Notice that there are
two rectangular faces, say F2 and F3, that contain I23, in which one should not embed any
of e4, e5, or I13 with its edges. So, the edges e4 and e5 have to be embedded into different
rectangular faces, say F4 and F5, respectively. Therefore, after embedding the edges from
e1 to e5 nicely, we are left with the single rectangular face F6 that could not be formed using
the diagonal vertices I2 and I′2. Thus, γ̃(AG(L)) ≥ 3. Hence, either U12 = ∅ or U13 = ∅.
In this case, with the help of Figure 7b, we obtain γ̃(AG(L)) = 2.

��

� �

� �

� �

�

(b). U12 = ∅, |U13| ≥ 0 and |U23| = 1

�

�

� I′′1

I1

I1

I′1

I′1

I3

I′2

I′3

��

� �

� �

� �

�

(a). U12 = U13 = ∅ and |U23| = 2

�

�

�
I1

I′′1 I′1

I′1

I23

I3

�

�

�

�

I13 �

I′3 I23

I23

I2

I′′1

I′23

I′23

I′23

I′23I′3

I′3I2

I2

I′2

Figure 7. |⋃3
n=1 Un| = 7 with |U1| = 3 and |U2| = 2.
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Case 4 Let |⋃3
n=1 Un| = 6. Suppose |U1| = 4. If |U23| ≥ 3, then K4,5 is contained

in AG(L), and if |U23| = 1, then AG(L) is projective. Therefore |U23| = 2. Clearly,
AG(L)(except for the end vertices) is a subgraph of the graph H1 given in Figure 1a, and
so Lemma 2 implies γ̃(AG(L)) = 2.

Suppose |U1| = 3. Then AG(L) contains K3,7 when |U23| ≥ 4, and AG(L) is projec-
tive when |U23| ≤ 1. Thus, 2 ≤ |U23| ≤ 3. Then, AG(L) − {U13} is a subgraph of the
graph H2 (see Figure 2a), so that γ̃(AG(L) − {U13}) = 2. Note that every vertex in U13
is adjacent to exactly two vertices of U2 in AG(L). Therefore, replace the labels u4 and u5
with I2 and I′2, respectively, in the N2-embedding of H2 provided in Figure 2b, and then
label all of the other vertices accordingly. Now, we can insert any number of vertices of
U13 into a face that contains both I2 and I′2 so that γ̃(AG(L)) = 2.

Moreover, if |U1| = 2, then AG(L) is either planar or projective (refer to [19,20]).
Case 5 Let |⋃3

n=1 Un| = 5. Then AG(L) is planar or projective when |U1| = 2. This
implies that |U1| = 3. If |U23| ≥ 5, then AG(L) contains K3,7, and, if |U23| ≤ 2, then
AG(L) is projective. Thus, |U23| = 3 or 4. Then, clearly, AG(L) is a subgraph of the graph
H1, as in Figure 2a, so that γ̃(AG(L)) = 2.

All of the results proved in this paper have a similar structure to that of those given
in the statement of Theorem 3. To familiarize readers with the connection between the
multipartite graph and the statement of Theorem 3, we illustrate two four-partite graphs,
G and H, with γ̃(G) = 2 and γ̃(H) �= 2, respectively, in the following example.

Example 1. Consider Case (iii)[c] in Theorem 3. Let |U1| = 3, |U2| = 2, |U3| = 2, and
|U23| = 1. If |U12| = k ∈ Z+ and U13 = ∅, then the corresponding four-partite graph G is
a crosscap two, which is given in Figure 8a. Additionally, if |U12| = 1 and |U13| = 1, then
the crosscap of the corresponding four-partite graph H, given in Figure 8b, is not equal
to two. It is worth mentioning that the four-partite graph H in Figure 8b is minimal with
respect to γ̃(H) �= 2; that is, there exists an edge e in H such that γ̃(H − e) = 2. Further,
the graph H may be realized as one of the forbidden subgraphs for a crosscap two surface.

�

�

�

�

�

�

�

� � � �

U1 U3U2

I23 I12 I′12 Ik
12

�

�

�

�

�

�

�

� � �

U1 U3U2

I13I12

(a) A crosscap two 4-partite graph G (b) A minimal 4-partite graph H with crosscap �= 2

I23

Figure 8. Four-partite graphs.

By using the proof of Theorem 3, we establish the following points, which will be
used in the subsequent results.

Remark 1. If a graph G is isomorphic to K6,3 ∪ (K4 − e) or K4,5 − e where e is an edge, then
γ̃(G) ≥ 3.

5. The Case When |A(L)| = 4

Next, we fix the number of atoms as four. As mentioned in the introduction, for
1 ≤ i �= j ≤ 4, we denote U(ij)c = Uk� where k, � ∈ {1, 2, 3, 4} \ {i, j}, and the notation

13
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U(ij)c exists only when Uij �= ∅. Before going into the characterization of the crosscap two
AG(L) with |A(L)| = 4, we provide modifications for Theorem 2.6 [20]. To be precise,
the missing cases and the corresponding conditions for the projectiveness of AG(L) are
given below.

(i) First of all, consider the missing case |⋃4
n=1 Un| = 4. Then, |Ui| = 1 for all 1 ≤

i ≤ 4. Clearly, AG(L) is planar whenever
⋃

Uij �=∅
U(ij)c = ∅. Therefore,

⋃
Uij �=∅

U(ij)c �= ∅.

If |Uij ∪ U(ij)c | ≥ 4 with Uij, U(ij)c �= ∅, then the subgraph induced by the sets X =
Ui ∪ Uj ∪ Uij and Y =

⋃
k �=i,j

Uk ∪ U(ij)c contains K4,4 or K3,5 as a subgraph. This implies

γ̃(AG(L)) ≥ 2. Therefore, 2 ≤ |Uij ∪ U(ij)c | ≤ 3 if Uij, U(ij)c �= ∅ for 1 ≤ i �= j ≤ 4.
Suppose |Uij ∪ U(ij)c | = 3 for some Uij, U(ij)c �= ∅ with 1 ≤ i �= j ≤ 4. If Uk�, U(k�)c �=

∅ for k� �= ij, then the subgraph AG(L) − {Uij ∪ U(ij)c} contains K3,3 with the partite
sets X = Uk ∪ U� ∪ Uk� and Y =

⋃
m �=k,�

Um ∪ U(k�)c . Note that γ̃(K3,3) = 1. Now, we try to

embed all of the vertices of Uij ∪U(ij)c with their edges in any N1-embedding of K3,3. Since
|Uij ∪ U(ij)c | = 3, either |Uij| = 2 or |U(ij)c | = 2. Without a loss of generality, let |Uij| = 2.
Since the vertex I(ij)c ∈ U(ij)c is adjacent to Iij, I′ij ∈ Uij, all of the three vertices Iij, I′ij, and
I(ij)c must be embedded into a single face of the N1-embedding of K3,3, denoted as F1. Now,
draw the path Iij − I(ij)c − I′ij into F1 and then draw the edges (Iij, Im), (Iij, In), (I′ij, Im), and
(I′ij, In) where m, n /∈ {i, j}. Now, the edges (I(ij)c , Ii) and (I(ij)c , Ij) cannot be embedded
into F1. Therefore, γ̃(AG(L)) ≥ 2. Thus,

⋃
k� �=ij,(ij)c ;Uk� �=∅

U(k�)c = ∅.

Suppose |Uij ∪ U(ij)c | = 2 for all Uij, U(ij)c �= ∅ with 1 ≤ i �= j ≤ 4. Then, Figure 9
guarantees that γ̃(AG(L)) = 1.

��

� ��

�

�

��

I1

I3

I4

��

�

I1

I2

I2

�

I34

I14

I24

I13
I12

I23

I14

Figure 9. |⋃4
n=1 Un| = 4 with |Uij ∪ U(ij)c | ≤ 2 for all Uij, U(ij)c �= ∅.

(ii) Let |⋃4
n=1 Un| = 5. Then, |Ui| = 2 for some 1 ≤ i ≤ 4, and the condition for the

projectiveness of AG(L) given in Theorem 2.6i [20] is that |Ujk| = 1 or 2, in which at most
one of the Ujks has exactly two elements for 1 ≤ i �= j �= k ≤ 4. However, if |Ujk| = 2 with
U(jk)c �= ∅, then the sets X = Ui ∪ U� ∪ U(jk)c and Y = Uj ∪ Uk ∪ Ujk, where � /∈ {i, j, k},
contain K4,4 in AG(L) so that we obtain γ̃(AG(L)) ≥ 2. In fact, if |Ujk| = 2 for some
j, k �= i, then

⋃
p,q �=i;Upq �=∅

U(pq)c = ∅. Otherwise, the sets X = Uj ∪ Uk ∪ Ujk ∪ [Ipq, I(pq)c ]

and Y = U1 ∪ U�, where � /∈ {i, j, k}, form K5,3, so we can conclude that γ̃(AG(L)) ≥ 2.
Further, if |Ujk| ≤ 1 for all j, k �= i, then | ⋃

p,q �=i;Upq �=∅
U(pq)c | ≤ 1. For if |U(pq)c | ≥ 2, then

the sets X = Up ∪ Uq ∪ Upq and Y = Ui ∪ Ur ∪ U(pq)c , where r /∈ {i, p, q}, form K3,5,
and, if |U(pq)c |, |U(p1q1)c | = 1 for some 1 ≤ p1 �= q1 ≤ 4 with p1q1 �= pq, then the sets
X = Up ∪ Uq ∪ Upq ∪ {[Ip1q1 , I(p1q1)c ]} and Y = Ui ∪ Ur ∪ U(pq)c form K4,4 − {e} in AG(L)
where r /∈ {i, p, q}.

(iii) Let |⋃4
n=1 Un| = 6. If there exists |Ui| = 3 for some 1 ≤ i ≤ 4, then the statement

of ([20] Theorem 2.6(ii)(a)) says that if Ujk� = ∅ for 1 ≤ i �= j �= k �= � ≤ 4, |Ujk| ≤ 1, and
at most one of the Ujks has exactly one element, then AG(L) is projective. However, for
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instance, if |Ujk| = 1 with U(jk)c = Ui� �= ∅, then the partite sets X = Ui ∪ U� ∪ Ui� and
Y = Uj ∪ Uk ∪ Ujk contain K5,3 as a subgraph of AG(L) so that γ̃(AG(L)) ≥ 2. Therefore,
the condition U(jk)c = ∅ has to be added to the statement of ([20] Theorem 2.6iia).

As a result of the above remarks (i), (ii), and (iii), we modify the statement of ([20]
Theorem 2.6) as follows.

Theorem 4. Let L be a lattice with |A(L)| = 4. Let 1 ≤ i �= j �= k �= � ≤ 4 and 1 ≤ p �= q ≤ 4.
Then γ̃(AG(L)) = 1 if and only if one of the following conditions hold:

(i). |⋃4
n=1 Un| = 4; there exist two non-empty sets Uij and U(ij)c such that 2 ≤ |Uij ∪U(ij)c | ≤

3. Moreover, if |Uij ∪ U(ij)c | = 3, then
⋃

pq �=ij,(ij)c ;Upq �=∅
U(pq)c = ∅.

(ii). |⋃4
n=1 Un| = 5; there is Ui with |Ui| = 2, | ⋃

p,q �=i
Upq| ≤ 4 in which at most one of the

Upqs has a maximum of two elements, and | ⋃
Upq �=∅

U(pq)c | ≤ 1. Moreover, if |Upq| = 2, then⋃
Upq �=∅

U(pq)c = ∅, and, if
⋃

p,q �=i
Upq = ∅, then Ujk� �= ∅.

(iii). |⋃4
n=1 Un| = 6, and one of the following is satisfied:

[a] There is Ui with |Ui| = 3. If |Ujk�| = 1, then Ujk = Uj� = Uk� = ∅ and if
Ujk� = ∅, then |Ujk ∪ Uj� ∪ Uk�| ≤ 1. Moreover, U(pq)c = ∅ whenever Upq �= ∅.

[b] There exist Ui and Uj such that |Ui| = |Uj| = 2 with |Uk�| ≤ 1. Additionally,
U(pq)c = ∅ whenever Upq �= ∅. Moreover, if |Uik|, |Ui�| ≤ 1 or |Ujk|, |Uj�| ≤ 1, then
|Uk�| ≤ 1. Furthermore, if |Uik| = |Ujk| = 1 or |Ui�| = |Uj�| = 1, then Uk� = ∅.

(iv). |⋃4
n=1 Un| = 7 and one of the following is satisfied:

[a] There is Ui with |Ui| = 4 and Ujk� = Ujk = ∅.

[b] There exist Ui and Uj such that |Ui| = 3 and |Uj| = 2. Additionally, Uk� = ∅, and
Ujk� = ∅ whenever Uik = Ui� = Ujk = Uj� = ∅.

We are now in the position to state and prove the second result which classifies all
lattices L with four atoms whose AG(L) has a crosscap two.

Theorem 5. Let L be a lattice with |A(L)| = 4. Let 1 ≤ i �= j �= k �= � ≤ 4 and 1 ≤
p, q, r, s, t ≤ 4. Then γ̃(AG(L)) = 2 if and only if one of the following conditions hold:

(i). |⋃4
n=1 Un| = 9; there is Ui with |Ui| = 6 and Ujk = Uj� = Uk� = Ujk� = ∅.

(ii). |⋃4
n=1 Un| = 8, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 5 and Ujk = Uj� = Uk� = Ujk� = ∅.
[b] There exist Ui and Uj such that |Ui| = 4, |Uj| = 2 and

⋃
pq �=ij

Upq = Ujkl = ∅.
[c] There exist Ui and Uj such that |Ui| = |Uj| = 3 and

⋃
pq �=ij

Upq = Uik� = Ujk� = ∅.

[d] There exist Ui, Uj, and Uk such that |Ui| = 3, |Uj| = |Uk| = 2, and
⋃

Upq =⋃
pqr �=ijk

Upqr = ∅ for 1 ≤ p �= q �= r ≤ 4.

(iii). |⋃4
n=1 Un| = 7, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 4 and | ⋃
p,q �=i

Upq ∪ Ujk�| = 1. Moreover, U(pq)c = ∅ when-

ever |Upq| = 1 for p, q �= i.

[b] There exist Ui and Uj such that |Ui| = 3, |Uj| = 2 and | ⋃
p,q �=i

Upq ∪ Ujk�| ≤ 1.

Moreover, if | ⋃
p,q �=i

Upq ∪ Ujk�| = 1, then U(pq)c = ∅ and Uik = Ui� = Uik� = ∅, and if⋃
p,q �=i

Upq ∪ Ujk� = ∅, then |Uik ∪ Ui�| ∈ {1, 2}.

[c] There exist Ui, Uj, and Uk such that |Ui| = |Uj| = |Uk| = 2 with |⋃Upq| ≤ 2, in
which at most one of the Up�s has exactly one element, and, also, at most two distinct sets’
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Ursts are non-empty for all rst �= ijk. Moreover, if |Upq| = 2 or |Up�| = 1 for p, q �= �, then
at most one of the Ursts is non-empty.

(iv). |⋃4
n=1 Un| = 6, and one of the following cases is satisfied:

[a] There is Ui with |Ui| = 3, | ⋃
p,q �=i

Upq ∪ Ujk�| ∈ {2, 3} in which |Upq| ≤ 2, and

| ⋃
Upq �=∅

U(pq)c | ≤ 1. Moreover, if |Upq| ∈ {1, 2} with |Ujk�| = 2, then
⋃

Upq �=∅
U(pq)c = ∅.

[b] There exist Ui and Uj such that |Ui| = |Uj| = 2 and |Uij ∪ Uk�| ≤ 3 with
|Uij|, |Uk�| ≤ 2. Additionally, if |Uij| = 2, then |Uk�| ≤ 1 and

⋃
pq �=ij,k�

Upq = Uik� =

Ujk� = ∅, and, if |Uij| = 1, then |Uk�| ≤ 1 and | ⋃
pq �=ij,k�

Upq| ≤ 1. Moreover, in the case of

Uij = ∅, one of the following hold:

[b1] If |Uk�| = 2, then | ⋃
pq �=ij,k�

Upq| ≤ 2 in which |Upq| ≤ 1 and⋃
Upq �=∅

U(pq)c = ∅.

[b2] If |Uk�| = 1, then |Urs| ≤ 3 with U(rs)c = ∅ where |Urs| = max
pq �=ij,k�

|Upq| and

| ⋃
mn �=ij,k�,rs,(rs)c

Umn| ≤ 1.

[b3] If Uk� = ∅, then | ⋃
pq �=ij,k�

Upq| ≤ 4 in which at most three Upqs are non-empty.

Furthermore, if |Upq| ∈ {2, 3}, then U(pq)c = ∅.

(v). |⋃4
n=1 Un| = 5; there exists Ui such that |Ui| = 2 and 1 ≤ | ⋃

p,q �=i
Upq| ≤ 6 in which

|Upq| ≤ 4. Moreover,

[a] If |Upq| = 4, then U(pq)c = ∅, | ⋃
r,s �=i;rs �=pq

Urs| ≤ 1, and
⋃

Urs �=∅
U(rs)c = ∅.

[b] If |Upq| = 3, then U(pq)c = ∅, | ⋃
r,s �=i;rs �=pq

Urs| ≤ 2 and U(rs)c = ∅ whenever

|Urs| = 2.

[c] In the case of |Upq| = 2, one of the following holds

[c1] If | ⋃
r,s �=i;rs �=pq

Urs| = 4, then
⋃

Urs �=∅
U(rs)c = ∅.

[c2] If | ⋃
r,s �=i;rs �=pq

Urs| ∈ {2, 3}, then | ⋃
Urs �=∅

U(rs)c | ≤ 1. In addition, | ⋃
Urs �=∅

U(rs)c | =
1 whenever | ⋃

r,s �=i;rs �=pq
Urs| = 2 in which exactly two Urss are non-empty.

[c3] If | ⋃
r,s �=i;rs �=pq

Urs| ≤ 1, then either U(pq)c = ∅ with 1 ≤ | ⋃
Urs �=∅

U(rs)c | ≤ 2 or

U(rs)c = ∅ with |U(pq)c | ≤ 1.
[d] If |Upq| ≤ 1 for all 1 ≤ p �= q �= i ≤ 4, then 2 ≤ | ⋃

Upq �=∅
U(pq)c | ≤ 3 in which at

most two distinct U(pq)c s are non-empty.

(vi). |⋃4
n=1 Un| = 4; there exist two non-empty sets Uij and U(ij)c such that 2 ≤ |Uij ∪U(ij)c | ≤

5, and one of the following cases is satisfied:

[a] If |Uij ∪ U(ij)c | = 5, then either |Uij| = 4 or |U(ij)c | = 4. Further,⋃
pq �=ij,(ij)c ;Upq �=∅

U(pq)c = ∅.

[b] If |Uij ∪ U(ij)c | = 4, then |Upq ∪ U(pq)c | = 2 whenever Upq, U(pq)c �= ∅ for
pq �= ij. Further, if |Uij| = |U(ij)c | = 2, then at most one pair of Upq, U(pq)c is nonempty
for all pq �= ij.

[c] If |Uij ∪ U(ij)c | = 3, then |Upq ∪ U(pq)c | ∈ {2, 3} whenever Upq, U(pq)c �= ∅ for
pq �= ij. Further, if U(rs)c �= ∅ for 1 ≤ r �= s ≤ 4 and rs �= pq, ij, then |Urs ∪ U(rs)c | ∈
{2, 3} with |(Upq ∪ U(pq)c) ∪ (Urs ∪ U(rs)c)| ∈ {4, 5}.
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Proof. Assume that γ̃(AG(L)) = 2. Then, by Theorem 1b, we have |⋃4
n=1 Un| ≤ 9. So,

4 ≤ |⋃4
n=1 Un| ≤ 9.

Case 1 Let |⋃4
n=1 Un| = 9. Then, by Theorem 1b, γ̃(AG(L)) = 2 implies |U1| = 6.

If Uij �= ∅ or Uijk �= ∅ for some i �= 1, then the sets X = U1 and Y = V(AG(L)) \ U1
contain K6,4, which has a crosscap four. So, Uij, Uijk = ∅ for all i �= 1. Here, remember
that every vertex in U1jk is an end vertex, and every vertex in U1j is of degree two. Let G12

be the induced subgraph of AG(L) induced by the vertex subset
⋃4

n=1 Un. It is clear that
G12

∼= K6,1,1,1, and G12 is a subgraph of the graph H2 given in Figure 2a with the labels
u� ∈ U1 (for � = 1, . . . , 6), I2 = v1, I3 = v2, and I4 = v3. By Figure 2b, the N2-embedding
of G12 contains three different faces with vertices I2, I3; I3, I4;, and I2, I4, respectively. So,
any number of vertices in U1j can be embedded into the N2-embedding of G12 without
edge-crossing. Thus, γ̃(AG(L)) = 2.

Case 2 Let |⋃4
n=1 Un| = 8.

Case 2.1 Suppose |U1| ∈ {5, 4}. If Uij �= ∅ or Uijk �= ∅ for some i �= 1, then AG(L)
contains K5,4 as a subgraph, which is a contradiction. Therefore, Uij = ∅ and Uijk = ∅
for all i �= 1. Now, if |U1| = 5, then AG(L) is a subgraph of the annihilating-ideal graph
in Case 1 with |U1| = 6 so that γ̃(AG(L)) = 2. Suppose |U1| = 4. Here, |U2| = 2. If
I ∈ ⋃

i �=1
Uij ∪ U234, then AG(L) contains a copy of K4,5 where the partite sets are U1 and

U2 ∪ U3 ∪ U4 ∪ {I} so that γ̃(AG(L)) ≥ 3. If U1j �= ∅ for some j ∈ {3, 4}, then AG(L)
contains K5,4 − e as a subgraph with the partition sets U1 ∪ U1j and U2 ∪ U3 ∪ U4 so that,
by Remark 1, we have γ̃(AG(L)) ≥ 3. Therefore,

⋃
ij �=12

Uij = ∅ and U234 = ∅. In this case,

one can retrieve an N2-embedding of AG(L) from Figure 4b by changing the label I′3 to I4
and its related edges such that γ̃(AG(L)) = 2.

Case 2.2 Suppose |U1| = 3. Let |U2| = 3. If Uij �= ∅ or Uijk �= ∅ for ij �= 12, then
AG(L) contains K4,5 − e, which is a contradiction. Therefore, Uij = ∅ and Uijk = ∅ for
all ij �= 12. In this case, the crosscap of AG(L) is same as the crosscap of K3,3,1,1 so that
γ̃(AG(L)) = 2. Let |U2| = 2 and I ∈ ⋃

ijk �=123
Uij ∪ Uijk.

• In the case that I ∈ Uij for ij ∈ {12, 13}, the contraction of AG(L) induced by the
partite sets X = Ui ∪ U4 and Y = Uj ∪ {Ik, [I′k, Iij]}, where k /∈ {i, j, 4}, forms a copy
of H4.

• In the case that I ∈ Uij for ij ∈ {14, 23, 24, 34}, the graph AG(L) contains K5,4 with
the partite sets Ui ∪ Uj ∪ Uij and Uk ∪ U� where k, � /∈ {i, j}.

• In the case that I ∈ ⋃
ijk �=123

Uijk, the contraction of AG(L) induced by (
⋃4

n=1 Un \
{I�}) ∪ {[I�, I]} forms H4 where � is the least integer in {1, 2, 3, 4} \ {i, j, k}.

Thus,
⋃

ijk �=123
Uij ∪ Uijk = ∅, and, so, the crosscap of AG(L) is the crosscap of K3,2,2,1, which

is two.
Case 2.3 Suppose |U1| = 2. Then, K2,2,2,2 is a subgraph of AG(L). Suppose

γ̃(K2,2,2,2) = 2. Then, by Euler’s formula, the number of faces in an N2 embedding of
K2,2,2,2 is 16 so that all the faces are triangular, which contradicts the fact that K2,2,2,2 has
no triangular embedding (see [27]). Thus, γ̃(AG(L)) ≥ 3.

Case 3 Let |⋃4
n=1 Un| = 7.

Case 3.1 Suppose |U1| = 4. If | ⋃
i �=1

Uij ∪ Uijk| ≥ 2, then AG(L) contains K4,5 with

one partite set X = U1, and, so, γ̃(AG(L)) ≥ 3. Further, by Theorem 4iv, AG(L) is
projective whenever Uij = Uijk = ∅ for all i �= 1. Therefore, | ⋃

i �=1
Uij ∪ Uijk| = 1, and let

I ∈ ⋃
i �=1

Uij ∪ Uijk. Now, if U1j = ∅ for all 2 ≤ j ≤ 4, then it is easy to verify that AG(L)
is isomorphic to a subgraph of the graph H1 (see Figure 1a). Therefore, by Lemma 2, we
have γ̃(AG(L)) = 2. So, let U1j �= ∅ for some 2 ≤ j ≤ 4. Suppose Uk� = ∅ for 2 ≤ j �=
k �= � ≤ 4. Here, the open neighbor of each vertex in U1j is Ik and I� in AG(L). Let G13 be
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the induced subgraph of AG(L) induced by the vertex subset
⋃4

n=1 Un ∪ {I}. Clearly, G13
is a subgraph of the graph H1 given in Figure 1a with the labels u� ∈ U1 (for � = 1, . . . , 4),
v1 = I2, v2 = I3, v3 = I4, and v4 = I. Since (I3, I4), (I2, I4), (I2, I3) ∈ E(AG(L)), any
number of vertices in U1j (for 2 ≤ j ≤ 4) can be embedded in the N2-embedding of G13
without edge-crossing, and, therefore, γ̃(AG(L)) = 2. Now, take Uk� �= ∅ for 2 ≤ j �=
k �= � ≤ 4. Note that the set Uk� is nothing but the singleton set {I}. Now, consider the
subgraph G14 = AG(L)− {I1j, (Ij, Ik), (Ik, I�), (Ij, I�), (I, Ij)}, which is isomorphic to K4,4
with the partition sets X = U1 and Y = {Ij, Ik, I�, I}. Note that any N2-embedding of
G14 has eight rectangular faces so that each face shares exactly two vertices from X and Y.
In AG(L), the vertex I1j is adjacent to three vertices of Y, namely Ik, I�, and I. Therefore,
one cannot insert I1j with its edges into N2 without crossing, which is a contradiction.

Case 3.2 Suppose |U1| = 3. Then, |U2| = 2. If | ⋃
i �=1

Uij ∪ Uijk| ≥ 2, then it is easy to

check that the contraction of AG(L) contains either K4,5 − e or K3,6 ∪ (K4 − e) as a sub-
graph, and, so, by Remark 1, we have γ̃(AG(L)) ≥ 3. Therefore, | ⋃

i �=1
Uij ∪ Uijk| ≤ 1.

Assume | ⋃
i �=1

Uij ∪ Uijk| = 1. If Uij �= ∅, then U(ij)c = ∅; otherwise, the graph induced

by the partition sets X = U1 ∪ U3 and Y = U2 ∪ U4 ∪ [Iij, I(ij)c ] form H4 in AG(L) so
that γ̃(AG(L)) ≥ 3. Further, if I ∈ U13 ∪ U14 ∪ U134, then consider the graph AG(L) −
{I, e1, e2, e3, e4, e5} ∼= K4,4 − e with the bipartite sets {I1, I′1, I′′1 , Ij} and {Ii, I′i , Ik, Iijk} where
e1 = (I1, Ij), e2 = (I′1, Ij), e3 = (I′′1 , Ij), e4 = (Ii, Ik), e5 = (I′i , Ik)}, and e = (Ij, Iijk). Now,
a similar argument given for G2 (refer to Equation 1) leads to γ̃(AG(L)) ≥ 3. Therefore,
| ⋃
i �=1

Uij ∪ Uijk| = 1 with U13 = U14 = U134 = ∅. In this case, with the help of Figure 10a,

we obtain γ̃(AG(L)) = 2. Notice that in Figure 10a, we take |U34| = 1.
Assume

⋃
i �=1

Uij ∪ Uijk = ∅. If |U1j| ≥ 3 for some j ∈ {3, 4}, then the sets X = U2 ∪ Uj′

and Y = U1 ∪ Uj ∪ U1j, where j′ ∈ {3, 4} \ {j}, form K3,7. So, |U1j| ≤ 2 for j = 3, 4.
Suppose |U13 ∪ U14| ≥ 3. Let |U1j| ≥ 2 and |U1k| ≥ 1 for j, k ∈ {3, 4}. Then, the subgraph
AG(L)− {I1k, (I1, Ij), (I′1, Ij), (I′′1 , Ij)} contains K3,6 with the partite sets X = U2 ∪ Uk and
Y = U1 ∪ Uj ∪ U1j. Since degK3,6(Ij) = 3, Ij is contained in exactly three rectangular faces
in any N2-embedding of K3,6. Since {I1, I′1, I′′1 , Ij} ⊂ Y, to embed the edges (I1, Ij), (I′1, Ij),
and (I′′1 , Ij), the vertices I1, I′1, and I′′1 on the diagonals of the three rectangular faces that
contain Ij, respectively, are required. Now, after embedding the three edges, Ij is in exactly
six triangular faces, all of which were formed by using two vertices from Y and one vertex
from X. Therefore, the vertex I1k cannot be embedded because it is adjacent to Ij as well
as two vertices from X. So, |U13 ∪ U14| ≤ 2. However, AG(L) is projective if U13 ∪ U14 =
∅. Thus, 1 ≤ |U13 ∪ U14| ≤ 2. Now, one can obtain help from Figure 10b to say that
γ̃(AG(L)) = 2.

��
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� �
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(a). | ⋃
i �=1

Uij ∪ Uijk| = 1 and U13 = U14 = U134 = ∅
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(b).
⋃

Uij ∪ Uijk = ∅ and 1 ≤ |U13 ∪ U14| ≤ 2
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Figure 10. |⋃4
n=1 Un| = 7 with |U1| = 3.
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Case 3.3 Suppose |U1| = 2.
Claim A: At most two distinct Uijs are non-empty in which at most one Ui4 is non-

empty for 1 ≤ i �= j ≤ 4. Additionally, at most two distinct U�mns are non-empty for
�mn �= 123.

Assume on the contrary that at least three Uijs are non-empty for 1 ≤ i, j ≤ 4; say,
Ui1i2 , Ui3i4 and Ui5i6 are non-empty. Let p ∈ {1, 2, 3} \ {i1, i2}, q ∈ {1, 2, 3} \ {p, i3, i4}
and r ∈ {1, 2, 3} \ {p, q, i5, i6}. If r exists, then the minor subgraph induced by the vertices
[Ip, Ii1i2 ], I′p, [Iq, Ii3i4 ], I′q, [Ir, Ii5i6 ], I′r, and I4 forms K7 in AG(L), which is a contradiction. If r
does not exist, then take r as {1, 2, 3} \ {p, q} and form a minor of AG(L) with the partite
sets X = {Ir, I′r, I4, Ir4} and Y = {[Ip, Ii1i2 ], I′p, [Iq, Ii3i4 ], I′q}, which is isomorphic to either
H3 or H4, as in Figure 3. So, by Lemma 3, we have γ̃(AG(L)) ≥ 3. Therefore, only at
most two distinct Uijs can be non-empty for 1 ≤ i �= j ≤ 4. Further, if Um4, Un4 �= ∅ for
some 1 ≤ m �= n ≤ 4, then the subgraph induced by the sets X = Um ∪ Um4 ∪ {Ik} and
Y = Un ∪ U4 ∪ {[I′k, In4]}, where k �= m or n, form H4 which has a crosscap of at least three.

Note that all the vertices in U123 are end vertices in AG(L). If Uijk, U�mn, and Upqr are
non-empty for ijk, �mn, pqr �= 123, then the minor subgraph induced by
{[I(ijk)c , Iijk], I′(ijk)c , [I(�mn)c , I�mn], I′(�mn)c , [I(prq)c , Ipqr], I′(pqr)c , I4} is K7, which is a contradic-
tion. Therefore, at most two distinct U�mns are non-empty for �mn �= 123.

Claim B: |Uij| ≤ 2 and |Ui4| ≤ 1 for all 1 ≤ i < j ≤ 3.
If |Uij| ≥ 3 for some 1 ≤ i, j ≤ 3, then AG(L) contains K7,3 as a subgraph with the

partite sets X = Ui ∪ Uj ∪ Uij and Y = Uk ∪ U4 where k ∈ {1, 2, 3} \ {i, j}. Additionally,
if |Ui4| ≥ 2 for some 1 ≤ i ≤ 3, then AG(L) contains K5,4 as a subgraph with the partite
sets X = Ui ∪ U4 ∪ Ui4 and Y = Uj ∪ Uk where j, k ∈ {1, 2, 3} \ {i}. Thus, |Uij| ≤ 2 and
|Ui4| ≤ 1 for all 1 ≤ i < j ≤ 3.

Assume |Uij| = 2 for some 1 ≤ i, j ≤ 3. Suppose Uk� �= ∅ for some 1 ≤ k < � ≤ 4
and k� �= ij. Let us take j /∈ {k, �} ∩ {i, j}. Then, AG(L) contains K6,3 ∪ (K4 − e) with the
partite sets X = {Ii, I′i , Ij, [I′j , Ik�], Iij, I′ij} and Y = Um ∪ U4 where m ∈ {1, 2, 3} \ {i, j}. So,
by Remark 1, γ̃(AG(L)) ≥ 3. Therefore, Uk� = ∅. In this case, the number of Uijk cannot
be more than one because here AG(L) contains K6,3 ∪ (K4 − e). For the remaining cases,
by Figure 11a, we obtain γ̃(AG(L)) = 2.

Assume |Uij| ≤ 1 for all 1 ≤ i, j ≤ 3. Suppose |Uk4| = 1 for some 1 ≤ k ≤ 3. If there
are two U�mns that are non-empty for �mn �= 123, then it is not hard to verify that AG(L)
contains a subgraph similar to the structure of H3, which has a crosscap of at least three.
For all the remaining cases, that is |Uij| = |Uk4| = 1 with unique U�mn �= ∅ or |Uij| ≤ 1
and |Upq| ≤ 1 with at most two U�mns that are non-empty for 1 ≤ i, j, k, p, q ≤ 3 and
�mn �= 123, one can use Figure 11b to obtain γ̃(AG(L)) = 2.

Figure 11. |⋃4
n=1 Un| = 7 with |U1| = 2.

Case 4 Let |⋃4
n=1 Un| = 6.
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Case 4.1 Suppose |U1| = 3. Note that each vertex of Uij for i = 1 is adjacent to exactly
two vertices Ii′ and Ij′ for i′, j′ /∈ {i, j} and (Ii′ , Ij′) ∈ E(AG(L)), so we do not want to
bother about U1j and U1jk for all 2 ≤ j < k ≤ 4. If |Uij| ≥ 3 for some i �= 1, then AG(L)
contains K4,5 as a subgraph with the partite sets X = U1 ∪ Uk and Y = Ui ∪ Uj ∪ Uij where
k ∈ {2, 3, 4} \ {i, j}, which is a contradiction. So, |Uij| ≤ 2 for all i �= 1.

((i).Assume |Uij| = 2 for some i �= 1. If U(ij)c �= ∅, then the sets X = Ui ∪ Uj ∪ Uij
and Y = U1 ∪ Uk ∪ U(ij)c form K4,5 in AG(L), and, if Uk� �= ∅ for some k �= 1 with
k� �= ij or U234 �= ∅, then AG(L) contains K4,5 − e so that γ̃(AG(L)) ≥ 3. If not, that is
U(ij)c , Uk�, U234 = ∅ for all k �= 1 with k� �= ij, then by Figure 12a, we have γ̃(AG(L)) = 2.

(ii). Assume |Uij| ≤ 1 for all i �= 1. If U(i1 j1)c �= ∅ and U(i2 j2)c �= ∅ for some
Ui1 j1 �= ∅ and Ui2 j2 �= ∅, then the sets X = Ui1 ∪ Uj1 ∪ Ui1 j1 ∪ {[Ii2 j2 , I(i2 j2)c ]} and Y =
U1 ∪Um ∪U(i1 j1)c , where m �= i1, j1, contains K4,5 − e in AG(L). Additionally, if |U(ij)c | ≥ 3,
then the sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Um ∪ U(ij)c , where m �= i, j, form K3,7
in AG(L), which is a contradiction. So, at most one of the sets U(ij)c is non-empty with
|U(ij)c | ≤ 2.

Let |U(ij)c | = 2. If I ∈ ⋃
k� �=ij

Uk� ∪ U234, then the sets X = {Ii, Ij, Iij} and Y =

{I1, I′1, [I′′1 , I], Im, I(ij)c , I′(ij)c}, where m �= i, j, form K3,6 ∪ (K4 − e) so that, by Remark 1,
γ̃(AG(L)) ≥ 3. Therefore,

⋃
k �=1;k� �=ij

Uk� ∪ U234 = ∅. For this case, readers can verify the

N2-embedding of AG(L).
Let |U(ij)c | = 1. If I, J ∈ ⋃

k �=1;k� �=ij
Uk� ∪ U234 with |Uk�| ≤ 1, then the sets {Ii, Ij, Im, I1,

[I′1, I], [I′′1 , J], [Iij, I(ij)c ]} form K7. Therefore, | ⋃
k �=1;k� �=ij

Uk� ∪ U234| = 1.

Let
⋃

i �=1
U(ij)c = ∅. Then, by Theorem 4iii[a], AG(L) is projective if | ⋃

i �=1
Uij ∪ Uijk| ≤ 1.

If | ⋃
i �=1

Uij ∪ Uijk| ≥ 4, then K3,7 is a subgraph of AG(L) with the partite sets X = U1

and Y = V(AG(L)) \ U1. So, in the case of
⋃

i �=1
U(ij)c = ∅, γ̃(AG(L)) = 2 whenever

2 ≤ | ⋃
i �=1

Uij ∪ Uijk| ≤ 3 with |Uij| ≤ 1 (refer to Figure 12b).

Figure 12. |⋃4
n=1 Un| = 6 with |U1| = 3.

Case 4.2 Suppose |U1| = 2. Then, |U2| = 2 and |U3| = |U4| = 1. If |U34| ≥ 3, then the
partite sets X = U1 ∪ U2 and Y = U3 ∪ U4 ∪ U34 form K4,5 as a subgraph in AG(L), which
is a contradiction.

Case 4.2.1 Assume |U34| = 2. Then, U(pq)c = ∅ for all Upq �= ∅; otherwise, the sets
X = U1 ∪ U2 and Y = U3 ∪ U4 ∪ U34 ∪ {[Ipq, I(pq)c ]} form K4,5 in AG(L). In particular,
U12 = ∅.

If |Uij| ≥ 2 for some ij �= 12, 34 and i < j, then the subgraph AG(L)− {I34, I′34, (Ii, Ij),
(I′i , Ij)} contains K3,5 with the partite sets X = Ui ∪ Uj ∪ Uij and Y = Ui′ ∪ Uj′ where i′ ∈
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{1, 2} \ {i} and j′ ∈ {3, 4} \ {j}. Note that any N2-embedding of K3,5 has one hexagonal
and six rectangular faces, and the vertices I34 and I′34 are adjacent to Ii, I′i , Ii′ and I′i′ . So, to
insert I34 and I′34 into an N2-embedding of K3,5, we require two faces, say F1 and F2, which
contains Ii, I′i , Ii′ , and I′i′ . If either F1 or F2 is hexagonal, then the corresponding face may
adopt one of the edges (Ii, Ij) or (I′i , Ij). Let us take that the edge (Ii, Ij) is embedded. Now,
to insert an edge (I′i , Ij), a rectangular face containing I′i and Ij as diagonals is required.
However, no such rectangular face exists because the edges (I′i , Ii′) and (I′i , I′i′) have been
used twice in F1 and F2, which is a contradiction.

For all of the remaining cases, that is | ⋃
ij �=12,34

Uij| ≤ 2 with |Uij| ≤ 1 and U(pq)c = ∅

when Upq �= ∅ for 1 ≤ p �= q ≤ 4, we have γ̃(AG(L)) = 2 (refer to Figure 13a).

Figure 13. |⋃4
n=1 Un| = 6 with |U1| = 2.

Case 4.2.2 Assume that |U34| = 1. Let us take ij �= 12, 34.
Let |U12| ≥ 3, then the subgraph of AG(L) induced by the sets X = U3 ∪ U4 ∪ U34

and Y = U1 ∪ U2 ∪ U12 contains K3,7 so that γ̃(AG(L)) ≥ 3. Thus, |U12| ≤ 2.
Let |U12| = 2. If I ∈ ⋃

ij �=12,34
Uij ∪ U134 ∪ U234, then AG(L) contains K3,6 ∪ (K4 − e),

so that, by Remark 1, γ̃(AG(L)) ≥ 3. Therefore,
⋃

ij �=34,12
Uij ∪ U134 ∪ U234 = ∅, and in this

case, by Figure 13b, we obtain γ̃(AG(L)) = 2.
Let |U12| = 1. If |Uij| ≥ 2, then the partite sets X = Ui′ ∪ Uj′ and Y = {Ii, I′i , Ij, Iij, I′ij,

[I34, I12]} where i′ ∈ {1, 2} \ {i} and j′ ∈ {3, 4} \ {j} form a minor subgraph K3,6 ∪ (K4 − e)
in AG(L) so that, by Remark 1, γ̃(AG(L)) ≥ 3. If Uij, Uk� �= ∅ for ij, k� �= 12, 34
where {i, j} ∩ {k, �} = j = �, then the partite sets X = {Ii, [I′i , Ik�], I�, Iij} and Y =
{Ik, I′k, Im, [I34, I12]} where m /∈ {i, j, k} form (H4 ∪ (u2, u3)) − (u1, u4). A slight modifi-
cation of the proof for H4 in Lemma 3 yields γ̃(AG(L)) ≥ 3. Further, minor changes to
the labels in Figure 13a give γ̃(AG(L)) = 2 whenever | ⋃

ij �=12,34
Uij| ≤ 1.

Let U12 = ∅. Then U(pq)c = ∅ for all Upq �= ∅; otherwise, AG(L) contains K8 − 4e,
which is isomorphic to (H4 ∪ (u1, u3))− (v1, v2), so Lemma 3 gives us γ̃(AG(L)) ≥ 3. If
|Uij| ≥ 4, then the partite sets X = Ui ∪ Uj ∪ Uij and Y = Ui′ ∪ Uj′ where i′ ∈ {1, 2} \ {i}
and j′ ∈ {3, 4} \ {j} contain K7,3 in AG(L), which is a contradiction. Suppose |Uij| ∈
{2, 3}. If |Uk�| ≥ 2 for some k� �= ij where {k, �} ∩ {i, j} = k = i, then the subgraph
G15 = AG(L) − {I34, Ik�, I′k�, (Ii, Ij), (I′i , Ij)} contains K5,3 with the partite sets X = Ui ∪
Uj ∪ Uij and Y = Ui′ ∪ Uj′ where i′, j′ /∈ {i, j}. Note that any N2-embedding of K5,3 has
one hexagonal and six rectangular faces. Further, in AG(L), I34 is adjacent to Ii, I′i , Ii′ , I′i′ ,
and, also, Ik�, I′k� are adjacent to Ii′ , I′i′ , Ij. So, to embed the vertices I34, Ik�, and I′k�, one
hexagonal and two rectangular faces containing both Ii′ and I′i′ are required. In such a
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case, one cannot find two rectangular faces with the diagonal vertices Ii, Ij and I′i , Ij. So,
either the edge (Ii, Ij) or (I′i , Ij) cannot be drawn without crossing, which is a contradiction.
Thus, we obtain the result as in the statement-(iv)[b2].

Case 4.2.3 Suppose U34 = ∅.
If |Uij ∪ U(ij)c | ≥ 4 for some ij /∈ {12, 34}, then the sets X = Ui ∪ Uj ∪ Uij and Y =

Ui′ ∪ Uj′ ∪ U(ij)c where i′, j′ /∈ {i, j} form a complete bipartite graph whose crosscap is
more than two.

Let |Uij| ∈ {2, 3} for some ij /∈ {12, 34}. Then, clearly, U(ij)c must be empty. Let k� /∈
{12, 34, ij, (ij)c}. If |Uij ∪ Uk� ∪ U(k�)c | ≥ 5, then the sets X = Ui ∪ Uj ∪ Uij ∪ {[Ik�, Ik�c ]}
and Y = Ui′ ∪ Uj′ where i′ ∈ {1, 2} \ {i} and j′ ∈ {3, 4} \ {j} form K6,3 ∪ (K4 − e) and, by
Remark 1, γ̃(AG(L)) ≥ 3. Therefore, 2 ≤ |Uij ∪ Uk� ∪ U(k�)c | ≤ 4. Now, there are at most
three possibilities:

(i). |Uij| = 3 and |Uk�| = 1; this case is pictured in Figure 14.
(ii). |Uij| = 2 and |Uk�| = |U(k�)c | = 1; this case is pictured in Figure 15a.
(iii). |Uij| = |Uk�| = 2; this case is pictured in Figure 15b.

Thus, in all these cases, we have γ̃(AG(L)) = 2.
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Figure 14. |⋃4
n=1 Un| = 6 with |U1| = |U2| = 2.

Figure 15. |⋃4
n=1 Un| = 6 with |U1| = |U2| = 2.

Let |Uij| ≤ 1 for all ij /∈ {12, 34}. Then, at least one Uij = ∅ for ij /∈ {12, 34}. Other-
wise, the graph induced by {I1, I′1, I2, I′2, I3, I4, [I13, I24], [I14, I23]} forms K8 − 3e in AG(L).
Clearly, γ̃(K8 − 3e) ≥ 3 because the number of faces in the N2-embedding of K8 − 3e is 17,
which contradicts the well-known fact that 2|E|

|F| must be greater than the girth value (refer
to Observation 1). Therefore, | ⋃

ij �=12,34
Uij| ≤ 3. Thus, by [20, Theorem 2.6iib)], we have

γ̃(AG(L)) = 2 whenever | ⋃
ij �=12,34

Uij| = 3.
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Case 5 Let |⋃4
n=1 Un| = 5. Then, |U1| = 2. If Uij = ∅ for all 1 ≤ i < j ≤ 4,

then γ̃(AG(L)) ≤ 1. Observe that we do not want to consider the sets Uij for i �= 1
whenever U(ij)c = ∅ because every vertex in Uij is adjacent to Ii, Ij and (Ii, Ij) ∈ E(AG(L)).
If |Uij| ≥ 5 for some i �= 1, then the sets X = Ui ∪ Uj ∪ Uij and Y = Ui′ ∪ Uj′ where
i′, j′ /∈ {i, j} form K3,7 in AG(L), which is a contradiction.

Case 5.1 Assume |Uij| = 4 for some i �= 1. Then, U(mn)c = ∅ whenever Umn �= ∅;
otherwise, the sets X = Ui ∪ Uj ∪ Uij ∪ {[Imn, I(mn)c ]} and Y = Ui′ ∪ Uj′ where i′, j′ /∈ {i, j}
form K7,3 as a minor of AG(L). Similarly, U(ij)c = ∅; otherwise K6,4 is a minor of AG(L).
If |Uk�| ≥ 2 for some k �= 1 and k� �= ij, then the subgraph G16 = AG(L)−{Ik�, I′k�, (Ii, Ij)}
contains K6,3 with the partition sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Ui′ where i′ /∈ {1, i, j}.
Since {i, j} ∩ {k, �} �= ∅, let {i, j} ∩ {k, �} = i = k. Clearly, j ∈ {2, 3, 4} \ {k, �}. Note that
each face in any N2-embedding of K6,3 is rectangular, and the vertices Ik�, I′k� are adjacent
to I1, I′1 and Ij. Therefore, to insert Ik� and I′k�, two rectangular faces that contain I1, I′1 and
Ij are required. Next, to insert the edge (Ii, Ij), a rectangular face with the diagonals Ii and
Ij is required. However, the edges (I1, Ij) and (I′1, Ij) have been used twice to form the first
two rectangular faces. So, one cannot construct another rectangular face that contains Ii
and Ij with a single left-out vertex of Y, which is a contradiction.

Therefore, for the remaining case, that is, |Uk�| ≤ 1 for all k �= 1 and k� �= ij with
U(mn)c = ∅ whenever Umn �= ∅, by using Figure 16a, one can have γ̃(AG(L)) = 2.

Figure 16. |⋃4
n=1 Un| = 5 with |U1| = 2.

Case 5.2 Assume |Uij| = 3 for some i �= 1. Let p /∈ {1, i, j}. Clearly, U(ij)c = ∅;
otherwise, the sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Up ∪ U(ij)c form K5,4.

If |Uk�| = 3 for some k �= 1 and k� �= ij, then the subgraph G′
15 = AG(L) −

{Ik�, I′k�, I′′k�, (Ii, Ij), (I1, Ip), (I′1, Ip)} has a similar structure of G15 with the partite sets X =
Ui ∪ Uj ∪ Uij and Y = U1 ∪ Up, and so γ̃(AG(L)) ≥ 3. Suppose |Uk�|, |Umn| = 2
for k, m �= 1 and k�, mn �= ij. Let {i, j} ∩ {k, �} = i = k. Then, G17 = AG(L) −
{Ik�, I′k�, Imn, I′mn, (Ii, Ij)} has K5,3 with the partite sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ U�.
Any N2-embedding of K5,3 has one hexagonal and six rectangular faces. Notice that Ik�, I′k�
are adjacent to I1, I′1, Ij, and Imn, I′mn are adjacent to I1, I′1, Ii. So, to embed Ik�, I′k�, Imn, and
I′mn, one hexagonal and two rectangular faces containing both I1 and I′1 are required. How-
ever, the edge (Ii, Ij) cannot be drawn without crossing, which is a contradiction. There-
fore, | ⋃

k �=1;k� �=ij
Uk�| ≤ 3 and |Uk�| �= 3.

Suppose | ⋃
k �=1;k� �=ij

Uk�| = 3. Since |Uk�| �= 3 for all k �= 1 and k� �= ij, we have |Uk�| = 2

and |Umn| = 1 for some m �= 1 and mn �= ij, k�. Next, we claim that U(k�)c = U(mn)c = ∅.
If U(k�)c �= ∅, then by letting {i, j} ∩ {k, �} = i = k, K7,3 can be formed by the sets X =
Ui ∪ Uj ∪ Uij ∪ Uk� and Y = U1 ∪ {[I�, I(k�)c ]}. If U(mn)c �= ∅, then AG(L) has a similar
structure to G15, so that γ̃(AG(L)) ≥ 3.
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Suppose | ⋃
k �=1;k� �=ij

Uk�| ≤ 2. As mentioned, U(k�)c = ∅ when |Uk�| = 2 for k �= 1 and

k� �= ij. Suppose |Uk�| = 1 and |U(k�)c | ≥ 2. Then, AG(L)−{Ik�, I(k�)c , I′(k�)c , (Ii, Ij), (I1, I�),
and
(I′1, I�)} has K5,3 with the partite sets X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ U�. Note that
any N2-embedding of K5,3 has one hexagonal and six rectangular faces, Ik� is adjacent to
I1, I′1, Ij, I(k�)c , I′(k�)c , and I(k�)c , I′(k�)c are adjacent to Ik, I�, Ik�. So, the three vertices
Ik�, I(k�)c , I′(k�)c together with the edges (Ii, Ij), (I1, I�), (I′1, I�) cannot be embedded, and,
also
, γ̃(AG(L)) ≥ 3. Therefore, |Uk� ∪ U(k�)c | ≤ 2. Further, if |Uk� ∪ U(k�)c | = |U�m ∪ U(�m)c | =
2 for k� �= ij and �m �= ij, k�, then AG(L) contains K3,7, which is a contradiction.

Thus, an N2-embedding of AG(L) can be retrieved from Figure 16a for | ⋃
pq �=ij

Upq| ≤ 3

with U(pq)c = ∅ if |Upq| = 2.
Case 5.3 Assume |Uij| = 2 for some i �= 1. Clearly, |U(ij)c | ≤ 1; otherwise, the sets

X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Up ∪ U(ij)c where p /∈ {1, i, j} form K5,4.
If |Uk�|, |Umn| = 2 for k, m �= 1 and k�, mn �= ij, then U(ij)c , U(k�)c , U(mn)c = ∅. Further,

an N2-embedding of AG(L) in the case of |Uij| = |Uk�| = |Umn| = 2 is given in Figure 16b
so that γ̃(AG(L)) = 2.

Suppose |Uk�| = 2, |Umn| ≤ 1 for k, m �= 1 and k�, mn �= ij. If U(ij)c , U(k�)c �= ∅,
then the sets X = U1 ∪ Up ∪ U(ij)c and Y = Ui ∪ Uj ∪ Uij ∪ {[I(k�), I(k�)c ]} where p /∈
{1, i, j} form K5,4 − e in AG(L) so that, by Remark 1, we have γ̃(AG(L)) ≥ 3. Fur-
ther, since |Uk�| = 2, we have |U(k�)c | ≤ 1. Therefore, |U(ij)c ∪ U(k�)c | ≤ 1. Suppose
|U(ij)c ∪ U(k�)c | = 1, say U(ij)c �= ∅. Then, U(mn)c = ∅; otherwise, X = U1 ∪ Up ∪ U(ij)c

and Y = Ui ∪ Uj ∪ Uij ∪ {[I(mn), I(mn)c ]} where p /∈ {1, i, j} form K4,5 − e in AG(L). So,
|Umn ∪ U(mn)c | ≤ 1. Suppose not, that is, U(ij)c , U(k�)c = ∅, then |U(mn)c | ≤ 1; other-
wise, AG(L)− {Iij, I′ij, Ik�, I′k�, (Im, In), (I1, Im′), (I′1, Im′)} ∼= K5,3 with the partite sets X =

U1 ∪ Um′ ∪ U(mn)c and Y = Um ∪ Un ∪ Umn where m′ /∈ {1, m, n} is a similar structure to
G17 which has a crosscap of at least three. So, |Umn ∪ U(mn)c | ≤ 2.

Suppose |Uk�|, |Umn| ≤ 1 for k, m �= 1 and k�, mn �= ij. Then, by Theorem 4(ii),
γ̃(AG(L)) = 2 provided | ⋃

k �=1;k� �=ij
Uk�| = 2 with | ⋃

p �=1
U(pq)c | = 1 or | ⋃

k �=1;k� �=ij
Uk�| = 1 with

|U(ij)c | = 1, U(k�)c = ∅ or U(ij)c = ∅, |U(k�)c | ≤ 2 or
⋃

k �=1;k� �=ij
Uk� = ∅ with |U(ij)c | = 1.

Hence, γ̃(AG(L)) = 2 whenever 4 ≤ | ⋃
i �=1

Uij ∪ U(ij)c | ≤ 6 with | ⋃
i �=1

U(ij)c | ≤ 1 or

| ⋃
i �=1

Uij| = 3 with |Uij ∪ U(ij)c | ≤ 3 and a unique U(ij)c �= ∅ or
⋃

i �=1
Uij = 2 with |U(ij)c | = 1.

Case 5.4 Assume |Uij| = 1 for all i �= 1. Then, |U(ij)c | ≤ 3; otherwise, the sets
X = Ui ∪ Uj ∪ Uij and Y = U1 ∪ Ui′ ∪ U(ij)c where i′ /∈ {1, i, j} form K3,7.

Suppose |Uk�| = |Umn| = 1 for k, m �= 1 and k�, mn �= ij. If U(ij)c , U(k�)c , U(mn)c �= ∅,
then the sets X = U1 ∪ U2 ∪ U3 and Y = {I4, [Iij, I(ij)c ], [Ik�, I(k�)c ], [Imn, I(mn)c ]} form
H4 as a minor of AG(L), which is a contradiction. Assume that |U(ij)c | = 3. If I ∈
U(k�)c ∪ U(mn)c , then G18 = AG(L)− {I, Ik�, Imn, (Ii, Ij), (I1, Ii′), (I′1, Ii′)} contains K6,3 with
the partite sets X = U1 ∪ Ui′ ∪ U(ij)c and Y = Ui ∪ Uj ∪ Uij and any N2-embedding of
K3,6 has nine rectangular faces. Here, it is not hard to verify that all the left-out vertices
and edges cannot be embedded into the nine rectangular faces so that γ̃(AG(L)) ≥ 3.
Therefore, U(k�)c ∪ U(mn)c = ∅. Here, the graph AG(L) − {Ik�, Imn} is a subgraph of
the graph in Figure 2a, and the suitable labels in Figure 2b give two different faces in
the N2-embedding of AG(L)− {Ik�, Imn} that contains the vertices N(Ik�) and N(Imn) so
that γ̃(AG(L)) = 2. Assume |U(ij)c | ≤ 2. If |U(ij)c ∪ U(k�)c | ≥ 4, then the subgraph
AG(L)− {I(k�)c , I′(k�)c , Imn, (Ii, Ij), (I1, Ii′), (I′1, Ii′)} has a similar structure to G15 so that we
have γ̃(AG(L)) ≥ 3. Additionally, by Theorem 4ii, AG(L) is projective when | ⋃

i �=1
U(ij)c | ≤

1. For all of the remaining cases, γ̃(AG(L)) = 2 can be verified by drawing the N2-
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embedding.
Thus, γ̃(AG(L)) = 2 when 2 ≤ | ⋃

i �=1
U(ij)c | ≤ 3 with at least one of the sets’ U(ij)c = ∅.

Suppose |Uk�| = 1 and Umn = ∅ for k, m �= 1 and k�, mn �= ij. If |U(ij)c | = 3 and
U(k�)c �= ∅, then the subgraph AG(L) − {I(k�)c , Ik�, (Ii, Ij), (I1, Ii′), (I′1, Ii′)} has a similar
structure to G18, and, if |U(ij)c | = |U(k�)c | = 2, then the subgraph
AG(L) − {I(k�)c , I′(k�)c , Ik�, (Ii, Ij), (I1, Ii′), (I′1, Ii′)} has a similar structure to G15

so that γ̃(AG(L)) ≥ 3. Further, AG(L) is projective if |U(ij)c ∪ U(k�)c | ≤ 1. Thus,
γ̃(AG(L)) = 2 whenever |U(ij)c ∪ U(k�)c | ∈ {2, 3}.

Suppose Uk�, Umn = ∅ for k, m �= 1 and k�, mn �= ij. Then, γ̃(AG(L)) = 2 whenever
2 ≤ |U(ij)c | ≤ 3.

Case 6 Let |⋃4
n=1 Un| = 4. Then, by Theorem 4(i), |Uij ∪ U(ij)c | ≥ 3 for

some Uij, U(ij)c �= ∅. Further, if |Uij ∪ U(ij)c | ≥ 6 with Uij, U(ij)c �= ∅, then the subgraph
induced by the sets X = Ui ∪ Uj ∪ Uij and Y =

⋃
k �=i,j

Uk ∪ U(ij)c contains one of the graph’s

K3,7, K4,6, or K5,5 as a subgraph so that γ̃(AG(L)) ≥ 3. Therefore, 3 ≤ |Uij ∪ U(ij)c | ≤ 5 for
some Uij, U(ij)c �= ∅.

(i) Suppose |Uij ∪ U(ij)c | = 5 for Uij, U(ij)c �= ∅. If either |Uij| = 3 or |U(ij)c | = 3,
then the sets X = Ui ∪ Uj ∪ Uij and Y =

⋃
k �=i,j

Uk ∪ U(ij)c form K4,5, which is a contradiction.

So, either |Uij| = 4 or |U(ij)c | = 4. With no loss of generality, assume that |Uij| = 4. If
Uk�, U(k�)c �= ∅ for k� �= ij, (ij)c, then clearly |{i, j} ∩ {k, �}| = 1 and |{m, n} ∩ {k, �}| = 1
where m, n ∈ {1, 2, 3, 4} \ {i, j}. So, let us take {i, j} ∩ {k, �} = {j} and {m, n} ∩ {k, �} =
{m}. This implies that (Ik�, Ii), (I(k�)c , Im) ∈ E(AG(L)). Then, the subgraph AG(L) −
{Ii, Ik�, I(k�)c} contains K5,3 with the partite sets X = Uj ∪ Uij and Y = Um ∪ Un ∪ U(ij)c .
Now, the path Ii − Ik� − I(k�)c has to be embedded into a single face of any N2-embedding
of K5,3. Further, the vertices Ii and I(k�)c are adjacent to Ij and Im. So, after embedding these
four edges, the edge (Ik�, In) cannot be embeded, which means γ̃(AG(L)) ≥ 3. Therefore,
U(k�)c = ∅ when Uk� �= ∅ for all k� �= ij, (ij)c, and, in such cases, γ̃(AG(L)) = 2.

(ii) Suppose |Uij ∪ U(ij)c | = 4 for Uij, U(ij)c �= ∅. If |Uk� ∪ U(k�)c | ≥ 3 for k� �= ij,
then the subgraph AG(L)−{Uk� ∪ U(k�)c} contains a crosscap two graph K5,3 or K4,4 with
the partite sets X = Ui ∪ Uj ∪ Uij and Y =

⋃
m �=i,j

Um ∪ U(ij)c . Since |Uk� ∪ U(k�)c | ≥ 3,

we can take |Uk�| ≥ 2. Notice that the path Ik� − I(k�)c − I′k� together with the edges
(Ik�, Im), (Ik�, Ii), (I′k�, Im), and (I′k�, Ii) should be embedded into a single face of an N2-
embedding of K5,3. Thereafter, the face cannot adopt the edges (I(k�)c , Ij) and (I(k�)c , In)
where n /∈ {i, j, m}, which implies that γ̃(AG(L)) ≥ 3. Therefore, |Uk� ∪ U(k�)c | = 2 for all
Uk�, U(k�)c �= ∅ with k� �= ij and 1 ≤ i, j ≤ 4.

If |Uij| = 3, then, by Figure 17a, we obtain γ̃(AG(L)) = 2. If not, then |Uij| =
2. Suppose |Uk� ∪ U(k�)c | = |Umn ∪ U(mn)c | = 2 for Uk�, U(k�)c , Umn, U(mn)c �= ∅ with
k�, mn �= ij. Then, the subgraph AG(L)− {[Ik�, I(k�)c ], [Imn, I(mn)c ]} contains K4,4 with the
partite sets X = Ui ∪Uj ∪Uij and Y = Ui′ ∪Uj′ ∪U(ij)c , where i′, j′ /∈ {i, j}. Note that every
face of any N2-embedding of K4,4 is rectangular, and the vertices [Ik�, I(k�)c ] and [Imn, I(mn)c ]
are adjacent to the four vertices Ii, Ij, Ii′ , and Ij′ . So, to embed the vertices [Ik�, I(k�)c ] and
[Imn, I(mn)c ], two distinct rectangular faces with boundaries Ii, Ij, Ii′ , and Ij′ are required,
which is a contradiction. Therefore, at least one U(k�)c = ∅ when Uk� �= ∅ for k� �= ij and
1 ≤ i �= j ≤ 4. In this case, an N2-embedding of AG(L) is given in Figure 17b.

(iii) Suppose 2 ≤ |Uij ∪ U(ij)c | ≤ 3 for all Uij, U(ij)c �= ∅ with 1 ≤ i �= j ≤ 4. Then,
by Theorem 4i, there exists Uk� such that Uk�, U(k�)c �= ∅ with |Uk� ∪ U(k�)c | = 3 and⋃
mn �=k�,(k�)c ;Umn �=∅

U(mn)c �= ∅.
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(b). |U12|= |U34|= 2 and |U14 ∪ U23|= 2

Figure 17. |⋃4
n=1 Un| = 4 with |U12 ∪ U34| = 4.

Suppose |Uij ∪ U(ij)c | = 3 for all 1 ≤ i �= j ≤ 4. That is, |U12 ∪ U34| = |U13 ∪ U24| =
|U14 ∪ U23| = 3. Without a loss of generality, we let |U12| = |U13| = |U14| = 2. Now, con-
sider the bipartite graph G19 = AG(L)−{(I2, I3), (I2, I4), (I3, I4), (I2, I34), (I3, I24), (I4, I23)}
with the partite sets X = U1 ∪ U12 ∪ U13 ∪ U14 and Y = U2 ∪ U3 ∪ U4 ∪ U34 ∪ U24 ∪ U23.
Note that γ̃(G19) = 2 and the faces of any N2-embedding of G19 have one of the following
possibilities:

• Nine rectangular and two hexagonal faces;
• Ten rectangular faces and one octagonal face.

Since, in G19, the only common neighbor for I2 and I34 in X is I1, no rectangular face
has both I2 and I34. Therefore, the edge (I2, I34) should be embedded in a face of a length
of more than four; so the edges are (I3, I24) and (I4, I23). Thus, we have to embed the
three mutually disjoint edges of 〈Y〉 in either two hexagonal faces or one octagonal face.
However, in any case, the faces may adopt at most two mutually disjoint edges of 〈Y〉,
and, so, γ̃(AG(L)) ≥ 3. For the remaining cases, we have γ̃(AG(L)) = 2.

Remark 2. As an illustration, we consider the case (v)[a] in Theorem 5. Let |U1| = |U2| =
|U3| = |U4| = 1 and |U23| = 4. If |U24| = |U34| = 1, then the corresponding five-partite
graph, as in Figure 18a, has a crosscap two. Additionally, if |U24| = 2, then the crosscap of
the corresponding five-partite graph, given in Figure 18b, is not equal to two. Moreover,
the five-partite graph G in Figure 18b is minimal with respect to γ̃(G) �= 2.
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(a) A crosscap two 5-partite graph
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(b) A minimal 5-partite graph with crosscap �= 2

Figure 18. Five-partite graphs.
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6. Conclusions

The forbidden subgraphs for a crosscap two surface (a Klein bottle) are not known yet.
In this regard, an open problem will be to determine a family of graphs that has a crosscap
number two. This paper provides a class of r-partite graphs, where 2 ≤ r ≤ 5, that can
be both embedded and not embedded in a crosscap two surface. This was completed
by using the classification of all lattices with at most four atoms whose annihilating-ideal
graph has a crosscap two.
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Abstract: Let S(m, e) be a class of numerical semigroups with multiplicity m and embedding dimen-
sion e. We call a graph GS an S(m, e)-graph if there exists a numerical semigroup S ∈ S(m, e) with
V(GS) = {x : x ∈ g(S)} and E(GS) = {xy ⇔ x + y ∈ S}, where g(S) denotes the gap set of S. The
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1. Introduction and Preliminaries

In the last couple of decades, researchers have been assigning graphs to various
kinds of algebraic structures, which opens new horizons to study algebraic structures with
the help of graphs’ theoretic properties and vice versa. The first paper in this direction
was the work by Beck [1], where he assigned a graph with the zero divisor elements of a
commutative ring and called it a zero divisor graph. After that, many generalizations of this
concept were provided by different researchers. Presently, assigning a graph to an algebraic
object and studying the interplay between the properties of algebraic objects and with
properties of the graph is an active area of research. The most studied concepts among these
are the zero divisor graph [2], extended zero divisor graph [3], Cayley graph [4], nilpotent
graphs [5], etc. Recently, Binyamin et al. [6] assigned a graph to the numerical semigroup
and studied some properties of this graph. In a similar way, a graph is assigned to the ideal
of a numerical semigroup by Binyamin et al. [7] who studied its metric dimension [8] and
planarity [9].

Let N be the set of non-negative integers. A subset S ⊂ N is said to be numerical
semigroup if 0 ∈ S, x + y ∈ S for all x, y ∈ S, and N \ S is finite. The least positive
integer x ∈ S is called the multiplicity of S and the set N \ S is called the gap set of S. We
use the notations m(S) and g(S) to denote the multiplicity and gap set of S, respectively.
The number of elements of g(S) is called the genus of S. The largest integer that belongs to
the set g(S) is called the Frobenius number and is denoted by F(S) or simply F. A numerical
semigroup is said to be symmetric if for any x ∈ N \ S, then F − x ∈ S. Similarly, a numerical
semigroup is said to be pseudo symmetric if for any x ∈ N \ S, either F − x ∈ S or x = F

2 .
An important property of numerical semigroup is that it is always finitely generated and
there exists a minimal system of generators of S. Let x1, x2, . . . , xn be a minimal system of
generators of S, then we write S = 〈x1, x2, . . . , xn〉. The number of elements in the minimal
system of generators of S is called the embedding dimension of S and is denoted by e(S).
A numerical semigroup is called irreducible if it cannot be written as an intersection of
two numerical semigroups containing it properly. It is well-known that an irreducible
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numerical semigroup is either symmetric or pseudo-symmetric [10]. To read more about
the theory of numerical semigroups, the readers can see the book by [11].

Let G be a simple graph with the vertex set and edge set denoted by V and E, re-
spectively. The degree of a vertex x ∈ V is the number of edges incident to it. A graph is
called complete if every pair of vertices has an edge between them. A complete graph on n
vertices is denoted by Kn. A complete subgraph of a graph G is called clique and the clique
of largest possible size in G is called a maximum clique of G. The number of vertices in the
maximum clique of G is called clique number and is denoted by cl(G). A graph G is called
bipartite if its vertex set V can be partitioned into two sets, V1 and V2, and the edges are
from elements of V1 to the elements of V2. If all the vertices of V1 are adjacent to all vertices
of V2, then G is called a complete bipartite graph. If | V1 |= m and | V1 |= n, Km,n denotes
the complete bipartite graph. A graph is called planar if it can be embedded in a plane.
In other words, a graph is planar if it can be drawn in a plane such that its edges intersect
at end points (or no edges cross each other). A graph H is called minor of G if H can be
formed by deleting edges and vertices and by contracting edges. The planarity of a graph
can be checked using the famous Wagner’s Theorem which states that a graph G is planar
if and only if it contains neither K5 nor K3,3 as a graph minor [12].

We use the notation S(m, e) to denote the class of numerical semigroups with multiplic-
ity m and embedding dimension e. Following the idea of Binyamin et al. [6], a graph G can
be assigned to any numerical semigroup S by considering the vertex set of G as the gap set
g(S) and any two vertices are adjacent if their sum belongs to S. In this work, we introduced
the notion of S(m, e) graph. We call a graph GS an S(m, e)-graph if there exist a numerical
semigroup S ∈ S(m, e) with V(GS) = {x : x ∈ g(S)} and E(GS) = {xy ⇔ x + y ∈ S},
where g(S) denotes the gap set of S. Now, finding a closed subset of g(S) is equivalent to
finding a clique of graph GS (which is very difficult to compute in general). In this article,
we computed a clique of graph GS of order 5 and as a consequence, we deduced that the
graph GS is non-planar. The aim of this article is to discuss the planarity of S(m, e)-graphs
for some cases when S is an irreducible numerical semigroup.

2. Planarity of Graphs Associated with Numerical Semigroups of Embedding
Dimension 2

In this section, we discuss the planarity of the graph GS associated with the numerical
semigroup S ∈ S(m, 2). It is well-known that every numerical semigroup of embedding
dimension 2 is symmetrical and for any S ∈ S(m, 2), we have | g(S) |= F+1

2 . We prove
that if | GS |> 4, then GS is always non-planar. The following results can be immediately
obtained from Theorem 1 [6].

Proposition 1 ([6]). Every S(m, e)-graph for m > 3, is not a complete graph.

Proposition 2 ([6]). If S(3, 2)-graph is complete then GS ∼= K3 or K4.

Proposition 3 ([6]). If S(3, 3)-graph is complete then GS ∼= K2 or K3.

Proposition 4 ([6]). Every S(2, 2)-graph is complete.

Lemma 1. Let GS be a graph associated with S = 〈m, b〉. If |GS| > 4, then one of the following
conditions hold:

1. If m = 3 then {F, F − 3, F − 6, F − 9, F − b} ⊆ g(〈m, b〉).
2. If m ≥ 4 then {F, F − m, F − 2m, F − b, F − (m + b)} ⊆ g(〈m, b〉).

Proof. If m = 3 then clearly 0, 3, 6, 9, b ∈ S, and therefore F, F − 3, F − 6, F − 9, F − b /∈ S.
Furthermore, |GS| > 4 gives F ≥ 11 and b ≥ 7. Please note that

F − b = b − 3.
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This implies
F − 3, F − 6, F − 9, F − b > 0,

and therefore
F, F − 3, F − 6, F − 9, F − b ∈ g(〈m, b〉).

Since 0, m, 2m, b, b + m ∈ S, therefore, F, F − m, F − 2m, F − b, F − (m + b) /∈ S. Also

F − m = mb − b − 2m = (m − 1)b − 2m,

F − 2m = mb − b − 3m = (m − 1)b − 3m,

F − b = mb − m − 2b = (m − 2)b − m,

and
F − (m + b) = mb − 2m − 2b = (m − 2)b − 2m.

If m ≥ 4, then clearly
F − m, F − 2m, F − b, F − (m + b) > 0.

This implies
F, F − m, F − 2m, F − b, F − (m + b) ∈ g(〈m, b〉).

Theorem 1. Let GS be an S(m, 2)-graph, where m ≥ 2. If |GS| > 4 then cl(GS) ≥ 5.

Proof. We may assume that S =< m, b >. If m = 2 then from Proposition 4, we have
GS ∼= Kn with n ≥ 5, as |GS| > 4. This gives cl(GS) ≥ 5 in this case.
Now if m = 3 then from Lemma 1, we have

{F, F − 3, F − 6, F − 9, F − b} ⊆ g(〈m, b〉).

Clearly 2F − 3, 2F − 6, 2F − 9, 2F − b ∈ S. Now we need to show

2F − 12, 2F − 15, 2F − (3 + b), 2F − (6 + b), 2F − (9 + b) ∈ S.

Since |GS| > 4 therefore F ≥ 11 and b ≥ 7. Please note that

F − (2F − 12) = 12 − F /∈ S,

F − (2F − 15) = 15 − F /∈ S,

F − (2F − (3 + b) = (3 + b)− F = 3 − (F − b) /∈ S,

F − (2F − (6 + b) = (6 + b)− F = 9 − b /∈ S,

F − (2F − (9 + b) = (6 + b)− F = 12 − b /∈ S.

This gives

2F − 12, 2F − 15, 2F − (3 + b), 2F − (6 + b), 2F − (9 + b) ∈ S,

and therefore cl(GS) ≥ 5 (see Figure 1).

31



Mathematics 2023, 11, 1681

F

F − 3

F − 6

F − 9

F − b

Figure 1. Minimum possible clique for the case m = 3.

If m ≥ 4 then again from Lemma 1, we have

{F, F − m, F − 2m, F − b, F − (m + b)} ⊆ g(〈m, b〉).

Clearly, 2F − m, 2F − 2m, 2F − b, 2F − (m + b) ∈ S. Please note that

F − (2F − 3m) = 3m − F = m − (F − 2m) /∈ S,

F − (2F − (2m + b)) = 2m + b − F = m − (F − (m + b)) /∈ S,

F − (2F − (3m + b) = 3m + b − F.

This implies 3m + b − F = 4m + (2 − m)b or 3m + b − F = (4 − b)m + 2b. Since 4 ≤ m < b,
therefore, both possibilities give 3m + b − F /∈ S. Furthermore,

F − (2F − (m + 2b)) = m + 2b − F.

We have either m + 2b − F = 2m + (3 − m)b or 3m + b − F = (2 − b)m + 3b. Again
4 ≤ m < b, give m + 2b − F /∈ S. This implies

2F − 3m, 2F − (2m + b), 2F − (3m + b), 2F − (m + 2b) ∈ S.

Consequently, we obtain cl(GS) ≥ 5 (see Figure 2).

F

F − m

F − 2m

F − b

F − (m + b)

Figure 2. Minimum possible clique for the case m ≥ 4.

Corollary 1. For m ≥ 2, every S(m, 2)-graph, whose order is greater than 4 is non-planar.

3. Planarity of Graphs Associated with Irreducible Numerical Semigroups of Maximal
Embedding Dimension

A numerical semigroup S is said to have a maximal embedding dimension if its
multiplicity and embedding dimension are the same. It is proved in [10] that a numerical
semigroup of maximal embedding dimension is irreducible if its embedding dimension is
either 2 or 3. In this section, we discuss the planarity of the graph GS in the case S ∈ S(3, 3).

Lemma 2. Let S = 〈3, 3 + x, 3 + 2x〉, where x is not a multiple of 3. If |g(S)| > 6, then

{F, F − 3, F − 6, F − 9,
F
2
} ⊆ g(S).
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Proof. Please note that x > 5 and F > 10, as |g(S)| > 6. This implies F − 3, F − 6, F − 9 > 0.
Since S is pseudo symmetric and 3, 6, 9 ∈ S, therefore,

{F, F − 3, F − 6, F − 9,
F
2
} ⊆ g(S).

Theorem 2. Let GS be an S(m, e)-graph, where S is an irreducible numerical semigroup of maximal
embedding dimension. If |GS| > 4 then cl(GS) ≥ 4.

Proof. Since S is an irreducible numerical semigroup of maximal embedding dimension,
then from Proposition 6 of [10], it follows that either m = 2 = e or m = 3 = e. If m = 2 = e,
then from Proposition 4, it follows that cl(GS) ≥ 5. Now if m = 3 = e, then from
Proposition 7 of [10], we have S = 〈3, 3 + x, 3 + 2x〉, where x is not a multiple of 3.

If |GS| = 5 then x = 4. This implies S = 〈3, 7, 11〉 and g(S) = {1, 2, 4, 5, 8} such that
1 + 4 /∈ S and

2 + 4, 2 + 5, 2 + 8, 4 + 5, 4 + 8, 5 + 8 ∈ S.

This gives cl(GS) = 4. Similarly, If |GS| = 6 then x = 5, therefore, S = 〈3, 8, 13〉 and
g(S) = {1, 2, 4, 5, 7, 10}. Clearly cl(GS) = 4.
Now if |GS| > 6 then from Lemma 2, we have

{F, F − 3, F − 6, F − 9,
F
2
} ⊆ g(S).

Clearly, 2F − 3, 2F − 6, 2F − 9, 3F
2 ∈ S. Now we show that 2F − 9, 2F − 12, 3F

2 − 3, 2F −
15, 3F

2 − 6, 3F
2 − 9 ∈ S. This is easy to see that none of 2F − 9, 2F − 12, 3F

2 − 3, 2F − 15, 3F
2 − 6

and 3F
2 − 9 is equal to F

2 . Please note that

F − (2F − 9) = 9 − F = 3 − (F − 6),

F − (2F − 12) = 12 − F = 3 − (F − 9),

F − (2F − 15) = 15 − F,

F − (
3F
2

− 3) = 3 − F
2

,

F − (
3F
2

− 6) = 6 − F
2

and
F − (

3F
2

− 9) = 9 − F
2

.

Since F − 6, F − 9, F
2 ∈ g(S), therefore, 9 − F, 12 − F, 3 − F

2 /∈ S. Furthermore, since F ≥ 14,
therefore, 15 − F, 6 − F

2 , 9 − F
2 /∈ S. This implies cl(GS) ≥ 5 (see Figure 3).

F

F
2

F − 3

F − 6

F − 9

Figure 3. Minimum possible clique for the case m = e = 3 and | GS |> 6.
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Corollary 2. Let GS be an S(m, e)-graph, where S is an irreducible numerical semigroup of
maximal embedding dimension. If |GS| > 5 then GS is non-planar.

Proof. If m = 2 = e, then the result follows immediately from Theorem 1. If m = 3 = e,
then S =< 3, x + 3, 2x + 3 > and F = 2x. Now, if | GS |= 6 then x = 5 and therefore
S =< 3, 8, 13 > . This implies cl(GS) = 4 (see Figure 4). By contraction of e4e5 and by
removing multiple edges, we obtain the minor of GS isomorphic to K5 (see Figure 5). Now
if | GS |> 6 then from Theorem 2 it follows that cl(GS) ≥ 5. Hence GS is non-planar.

2

1

4

5

7

10

Figure 4. Graph GS for S =< 3, 8, 13 >.

2

1

4

7

10

Figure 5. Minor of GS for S =< 3, 8, 13 >.

4. Planarity of Graphs Associated with Irreducible Numerical Semigroups of Arbitrary
Embedding Dimension

In this section, we discuss the planarity of different classes of irreducible numerical
semigroups of arbitrary embedding dimensions.

Lemma 3. Let GS be an S(m, e)-graph, where S = 〈m, m + 1, qm + 2q + 2, . . . , qm + (m − 1)〉
with m ≥ 2q + 3, e = m − 2q and q ≥ 1. Then,

{F, F − m, F − (m + 1), F − (2m + 1), F − (qm + 2q + 2)} ⊆ g(S).

Proof. Since 0, m, m + 1, 2m + 1, qm + 2q + 2 ∈ S, therefore, F, F − m, F − (m + 1), F −
(2m + 1), F − (qm + 2q + 2) /∈ S. From Lemma 1 of [13], it follows that S is symmetric and
F = 2qm + 2q + 1. Please note that

F = 2qm + 2q + 1 = (m + 1) + (2q − 1)m + 2q.

Since q ≥ 1, therefore, F > m + 1. This implies F − m, F − (m + 1) > 0 and therefore
F − m, F − (m + 1) ∈ g(S). Now consider

F − (2m + 1) = 2qm + 2q + 1 − 2m − 1 = (2q − 2)m + 2q > 0,

F − (qm + 2q + 2) = 2qm + 2q + 1 − qm − 2q − 2 = qm − 1 > 0.

This gives F − (2m + 1), F − (qm + 2q + 2) ∈ g(S). Consequently, we obtain the required
result.
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Theorem 3. Let GS be an S(m, e)-graph, where S = 〈m, m + 1, qm + 2q + 2, . . . , qm + (m − 1)〉
with m ≥ 2q + 3, e = m − 2q and q ≥ 1. Then, GS is nonplanar.

Proof. From Lemma 3, we have

{F, F − m, F − (m + 1), F − (2m + 1), F − (qm + 2q + 2)} ⊆ g(S).

Clearly 2F − m, 2F − (m + 1), 2F − (2m + 1), 2F − (qm + 2q + 2) ∈ S. We need to show
2F − (3m+ 1), 2F − (3m+ 2), 2F − ((q+ 1)m+ 2q+ 2), 2F − ((q+ 1)m+ 2q+ 3), 2F − ((q+
2)m + 2q + 3) ∈ S. For this, we consider

F − (2F − (3m + 1)) = (3m + 1)− F = m − (F − (2m + 1)) /∈ S,

F − (2F − (3m + 2)) = (3m + 2)− F = (3 − 2q)m − (2q − 1).

For q = 1, we have F − (2F − (3m + 2)) = m − 1 and for q > 1, F − (2F − (3m + 2)) < 0.
Both cases give F − (2F − (3m + 2)) /∈ S.

F − (2F − ((q + 1)m + 2q + 2)) = ((q + 1)m + 2q + 2))− F,

= m − (F − (qm + 2q + 2)) /∈ S.

F − (2F − ((q + 1)m + 2q + 3)) = ((q + 1)m + 2q + 3))− F,

= (1 − q)m + 2 /∈ S.

F − (2F − ((q + 2)m + 2q + 3)) = ((q + 2)m + 2q + 3))− F = (2 − q)m + 2.

For q = 1, we have F − (2F − ((q + 2)m + 2q + 3)) = m + 2, for q = 2, we have F − (2F −
((q + 2)m + 2q + 3)) = 2 and for q > 2, F − (2F − ((q + 2)m + 2q + 3)) < 0. All three cases
give F − (2F − ((q + 2)m + 2q + 3)) /∈ S. This implies cl(GS) ≥ 5 and consequently GS is
non-planar (see Figure 6).

F − (m + 1)

F

F − m

F − (2m + 1)

F − ((q + 2)m + 2q + 3)

Figure 6. Minimum possible clique for the case m ≥ 2q + 3, e = m − 2q and q ≥ 1.

Lemma 4. Let GS be an S(m, e)-graph, where S = 〈m, m + 1, (q + 1)m + q + 2, . . . , (q + 1)m +
m − q − 2〉 with m ≥ 2q + 4, e = m − 2q − 1 and q ≥ 0.

1. If q = 0 and |GS| > 6, then {F, F − m, F − (m + 1), F − (m + 2), F − (m + 3)} ⊆ g(S).
2. If q > 0 then {F, F − m, F − 2m, F − (m + 1), F − (2m + 1)} ⊆ g(S).

Proof. Since 0, m, m + 1, m + 2, m + 3, 2m, 2m + 1 ∈ S, therefore, F, F − m, F − 2m, F − (m +
1), F − (m + 2), F − (m + 3), F − (2m + 1) /∈ S. From Lemma 3 of [13], it follows that S is
symmetric and F = 2(q + 1)m − 1.

If q = 0 and |GS| > 6 then F = 2m − 1 with m > 6. Please note that F − m = m − 1 > 0,
F − (m + 1) = m − 2 > 0, F − (m + 2) = m − 3 > 0 and F − (m + 3) = m − 4 > 0. This
implies

{F, F − m, F − (m + 1), F − (m + 2), F − (m + 3)} ⊆ g(S).
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Now if q > 0, then F ≥ 4m − 1 with m ≥ 6. We have F − m ≥ 3m − 1 > 0, F − 2m ≥
2m − 1 > 0, F − (m + 1) ≥ 3m − 2 > 0 and F − (2m + 1) ≥ 2m − 2 > 0. This gives

{F, F − m, F − 2m, F − (m + 1), F − (2m + 1)} ⊆ g(S).

Theorem 4. Let GS be an S(m, e)-graph, where S = 〈m, m + 1, (q + 1)m + q + 2, . . . , (q +
1)m + m − q − 2〉 with m ≥ 2q + 4, e = m − 2q − 1 and q ≥ 0.

1. If q = 0 and |GS| > 6, then GS is non-planar.
2. If q > 0, then GS is non-planar.

Proof. If q = 0 and |GS| > 6, then from Lemma 4, it follows that

{F, F − m, F − (m + 1), F − (m + 2), F − (m + 3)} ⊆ g(S).

Clearly, 2F − m, 2F − (m + 1), 2F − (m + 2), 2F − (m + 3) ∈ S. Also

F − (2F − (2m + 1)) = 2m + 1 − F = m − (F − (m + 1)) /∈ S.

F − (2F − (2m + 2)) = 2m + 2 − F = m − (F − (m + 2)) /∈ S.

F − (2F − (2m + 3)) = 2m + 3 − F = m − (F − (m + 3)) /∈ S.

F − (2F − (2m + 4)) = 2m + 4 − F = 5 /∈ S.

F − (2F − (2m + 5)) = 2m + 5 − F = 6 /∈ S.

Now if q > 0, then again from Lemma 4, we have

{F, F − m, F − 2m, F − (m + 1), F − (2m + 1)} ⊆ g(S).

Clearly, 2F − m, 2F − 2m, 2F − (m + 1), 2F − (2m + 1) ∈ S. We have to show 2F − 3m, 2F −
(3m + 1), 2F − (4m + 1), 2F − (3m + 2) ∈ S. For this, we consider

F − (2F − 3m) = 3m − F = m − (F − 2m) /∈ S.

F − (2F − (3m + 1)) = 3m + 1 − F = m − (F − (2m + 1)) /∈ S.

F − (2F − (4m + 1)) = 4m + 1 − F = m − 2((1 − q)m + 1) /∈ S.

F − (2F − (3m + 2)) = 3m + 2 − F = m − 2(1 − q)m + 3 /∈ S.

Both cases implies cl(GS) ≥ 5, therefore, GS is non-planar (see Figures 7 and 8).

F

F − m

F − (m + 1)

F − (m + 2)

F − (m + 3)

Figure 7. Minimum possible clique for the case m ≥ 2q + 4, e = m − 2q − 1 and q = 0.
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F

F − m

F − 2m

F − (m + 1)

F − (2m + 1)

Figure 8. Minimum possible clique for the case m ≥ 2q + 4, e = m − 2q − 1 and q > 0.

Lemma 5. Let GS be an S(m, e)-graph, where S = 〈m, m + 1, (q + 1)m + q + 2, . . . , (q + 1)m +
m − q − 3, (q + 1)m + (m − 1)〉 with m ≥ 2q + 5, e = m − 2q − 1 and q ≥ 0. Then,

{F,
F
2

, F − m, F − (m + 1), F − ((q + 1)m + q + 2)} ⊆ g(S).

Proof. Since m, m + 1, (q + 1)m + q + 2 ∈ S, therefore, F − m, F − (m + 1), F − ((q + 1)m +
q + 2) /∈ S. From Lemma 2 of [14], it follows that S is pseudo-symmetric and F = 2(q +
1)m − 2. This implies

F − m = (2q + 1)m − 2 > 0.

F − (m + 1) = (2q + 1)m − 3 > 0.

F − ((q + 1)m + q + 2) = (q + 1)m − (q + 4) > 0,

since m ≥ 2q + 5. This gives

{F,
F
2

, F − m, F − (m + 1), F − ((q + 1)m + q + 2)} ⊆ g(S).

Theorem 5. Let GS be an S(m, e)-graph, where S = 〈m, m + 1, (q + 1)m + q + 2, . . . ,
(q + 1)m + m − q − 3, (q + 1)m + (m − 1)〉 with m ≥ 2q + 5, e = m − 2q − 1 and q ≥ 0.
If m ≥ 6 then GS is non-planar.

Proof. From Lemma 5, we have

{F,
F
2

, F − m, F − (m + 1), F − ((q + 1)m + q + 2)} ⊆ g(S).

Then 3F
2 , 2F − m, 2F − (m + 1), 2F − ((q + 1)m + q + 2) ∈ S. Now consider

F − (
3F
2

− m) = m − F
2

/∈ S.

F − (
3F
2

− (m + 1)) = m + 1 − F
2
= 2 − qm /∈ S.

F − (
3F
2

− ((q + 1)m + q + 2)) = (q + 1)m + q + 2 − F
2
= q + 3 /∈ S,

since q + 3 < m.

F − (2F − (m + 1)) = 2m + 1 − F = m − (F − (m + 1)) /∈ S.

F − (2F − ((q + 2)m + q + 2)) = (q + 2)m + q + 2 − F = (1 − m)q + 4 /∈ S.

F − (2F − ((q + 2)m + q + 3)) = (q + 2)m + q + 3 − F = (1 − m)q + 5 /∈ S.

This implies cl(GS) ≥ 5 and therefore GS is non-planar (see Figure 9).
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F

F
2

F − m

F − (m + 1)

F − ((q + 1)m + q + 2)

Figure 9. Minimum possible clique for the case m ≥ 2q + 5, e = m − 2q − 1 and q ≥ 0.

Lemma 6. Let GS be an S(m, e)-graph, where S = 〈m, m + 1, qm + 2q + 3, . . . , qm + m − 1,
(q + 1)m + q + 2〉 with m ≥ 2q + 4, e = m − 2q and q ≥ 1. Then,

{F,
F
2

, F − m, F − (m + 1), F − 2m} ⊆ g(S).

Proof. Since m, m + 1, 2m ∈ S, therefore, F − m, F − (m + 1), F − 2m /∈ S. From Lemma 4
of [14], it follows that S is pseudo-symmetric and F = 2qm + 2q + 2. This implies

F − m = (2q − 1)m + q + 2 > 0.

F − (m + 1) = (2q − 1)m + q + 1 > 0.

F − 2m = (2q − 2)m + q + 2 > 0.

This gives

{F,
F
2

, F − m, F − (m + 1), F − 2m} ⊆ g(S).

Theorem 6. Let GS be an S(m, e)-graph, where S = 〈m, m + 1, qm + 2q + 3, . . . ,
qm + m − 1, (q + 1)m + q + 2〉 with m ≥ 2q + 4, e = m − 2q and q ≥ 1. Then,

{F,
F
2

, F − m, F − (m + 1), F − 2m} ⊆ g(S).

Proof. From Lemma 6, it follows that

{F,
F
2

, F − m, F − (m + 1), F − 2m} ⊆ g(S).

Note that 3F
2 , 2F − m, 2F − 2m, 2F − (m + 1) ∈ S. Now consider

F − (
3F
2

− m) = m − F
2

/∈ S.

F − (
3F
2

− 2m) = 2m − F
2
= (2 − q)m − (q + 1) /∈ S,

F − (
3F
2

− (m + 1)) = m + 1 − F
2
= (1 − q)m − q /∈ S,

since m > q + 1.
F − (2F − 3m) = 3m − F = m − (F − 2m) /∈ S.

F − (2F − (2m + 1)) = 2m + 1 − F = m − (F − (m + 1)) /∈ S.

F − (2F − (3m + 1)) = 3m + 1 − F = (3 − 2q)m − (2q + 1) /∈ S,

since m > 2q + 1. This gives cl(GS) ≥ 5 and hence GS is non-planar (see Figure 10).

38



Mathematics 2023, 11, 1681

F

F
2

F − m

F − (m + 1)

F − 2m

Figure 10. Minimum possible clique for the case m ≥ 2q + 4, e = m − 2q and q ≥ 1.

5. Conclusions

Numerical semigroups have applications in many fields. One of the important ap-
plications of a numerical semigroup is in finding the non-negative solutions of linear
diophantine equations. Following the idea of Binyamin et al. [6], we introduced the concept
of S(m, e) graph. In this work, we discussed the planarity of S(m, e)-graphs in the case
when the numerical semigroup is either symmetric or pseudo-symmetric. To answer the
planarity of any general S(m, e) graph is still an open problem.
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Abstract: Let S be a Clifford semigroup and A a subset of S. We write Cay(S, A) for the Cayley
digraph of a Clifford semigroup S relative to A. The (weak, path, weak path) independence number
of a graph is the maximum cardinality of an (weakly, path, weakly path) independent set of vertices
in the graph. In this paper, we characterize maximal connected subdigraphs of Cay(S, A) and apply
these results to determine the (weak, path, weak path) independence number of Cay(S, A).
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1. Introduction

In algebraic graph theory, Cayley graphs are an important concept relating semigroup
theory and graph theory. One of the appealing subjects in the study of Cayley graphs of
semigroups is considering how to apply the results obtained from the Cayley graphs of
groups to the case of semigroups.

Let S be a semigroup and A a subset of S. The Cayley digraph Cay(S, A) of a semigroup
S relative to A (which is simply called Cayley graph) is defined as the digraph with the
vertex set S, and the arc set E(Cay(S, A)) consisting of those ordered pairs (x, y) such that
y = xa for some a ∈ A, i.e., E(Cay(S, A)) = {(x, xa)|x ∈ S, a ∈ A}.

The motivation for considering Clifford semigroups lies in their unique and intriguing
algebraic properties; Clifford semigroups represent one of the important types of semi-
groups, which are a union of groups. These semigroups serve as a natural bridge between
the worlds of semigroups and groups, providing an avenue to explore the interplay be-
tween these two fundamental algebraic structures. Consequently, it can be inferred that the
Cayley digraphs of Clifford semigroups contain the Cayley digraphs of groups.

Investigating the Cayley digraph can yield valuable insights into network optimiza-
tion and communication protocols. In [1] Heydemann has undertaken a comprehensive
examination of diverse classes of Cayley graphs of groups, which have been subject to
extensive scrutiny as models for interconnection networks. It subsequently presents a
detailed analysis of outcomes and issues pertaining to network routings, with a particular
focus on evaluating the loads of nodes and links during the routing processes. Xiao and
Parhami [2] explored the Cayley digraphs of groups and their coset graphs concerning
subgroups, deriving general results on homomorphisms and broadcasting. Additionally,
practical applications were discussed in well-known interconnection networks such as the
butterfly network, de Bruijn network, cube-connected cycles network, and shuffle-exchange
network. Consequently, these results can be effectively applied to the Cayley digraph of
Clifford semigroups by specifying a certain collection of groups.

Numerous papers have undertaken the study of characterizations concerning the
Cayley graphs of different types of semigroups (see [3–6] and their references). Notably,
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specific conditions delineating the characteristics of Cayley graphs of Clifford semigroups
have been provided in reference [7]. Recently, Ilić-Georgijević [8] focused on presenting
conditions that precisely characterize the Cayley graphs of a particular group known as
homogeneous semigroups. It is important to highlight that this class encompasses, among
others, the category of Clifford semigroups.

The independence number is a graph parameter that measures the size of the largest
vertex set in a graph that induces no edge. There have been many research topics on
the independence numbers of graphs and digraphs. The independence number of finite
connected simple graphs was studied by Harant and Schiermeyer [9,10]. They gave lower
bounds of the independence number in terms of the order, size and degrees. In [11],
Löwenstein et al. proved several tight lower bounds of the order and average degree for
the independence number of connected graphs. Some results on the upper and lower
bounds of the independence number of graphs have been obtained by many authors (see
for examples, refs. [12–17]). In their work [18], The authors presented the zero forcing
number for specific classes of graphs and digraphs. It is worth noting that in certain classes
of digraphs, such as cycles or trees, we observed that the zero forcing number is less than
or equal to the independence number. As a result, the zero forcing set demonstrates a
relationship with the independent set.

The independent sets are interesting topics in the study of Cayley digraphs. In [19],
Panma and Nupo studied independent sets and some generalizations of independent
sets such as weakly independent, path independent, and weakly path independent sets
in Cayley digraphs of rectangular groups. They gave lower and upper bounds for the
independence, weak independence, path independence, and weak path independence
numbers by using some algebraic properties of groups.

It is natural to investigate the Cayley digraph of Clifford semigroups and consider how
the results from the group case exist. The purpose of this work is to find the independence,
weak independence, path independence, and weak path independence numbers of Cayley
digraphs of Clifford semigroups by using the properties of groups.

In order to attain these results, our approach initiates with an exploration of the
independent sets of small size within the Cayley digraph of the Clifford semigroup. It is
noteworthy that the independence number of a graph can be expressed as the summation
of the independence numbers of its maximal connected subdigraphs. Building upon this
fundamental fact, we progress to the second step, which involves a dedicated focus on
characterizing a maximal connected subdigraph of the Cayley digraph (Section 3).

Subsequently, we determine the independence number of the Cayley graphs (Section 4)
and the weak independence number of the components (Section 5). In continuation, we
define a partial order on the set of all left cosets in all subgroups of the Clifford semigroup,
effectively representing a path within the component. This facilitates the determination of
the path independence number for any given component (Section 6). Lastly, we delve into
the investigation of the weak path independence number (Section 7).

2. Preliminaries

Some basic definitions and relevant notations are presented in this section. We refer
to [20] for more information on graph theory and [21] for semigroup theory. All sets
mentioned in this paper are assumed to be finite. Because, in this work, all mentioned
graphs are directed graphs, we will refer to a directed path as a path for convenience.

Let D be a digraph with a vertex set V(D) and an arc set E(D). The vertices u and v
in D are said to be:

- independent if (u, v) /∈ E(D) and (v, u) /∈ D;
- weakly independent if (u, v) /∈ E(D) or (v, u) /∈ E(D);
- path independent if there is neither a path from u to v nor from v to u;
- weakly path independent if there are no paths from u to v or no paths from v to u.
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The non-empty subset I of V(D) is called an independent (respectively, weakly indepen-
dent, path independent, weakly path independent) set if any two vertices in I are independent
(respectively, weakly independent, path independent, weakly path independent).

The independence (respectively, weak independence, path independence, weak path indepen-
dence) the number of D is the maximum cardinality among all independent (respectively,
weakly independent, path independent, weakly path independent) sets of D.

Let α(D) (respectively, αw(D), αp(D), αwp(D)) denote the independence (respectively,
weak independence, path independence, weak path independence) number of D.

The independent (respectively, weakly independent, path independent, weakly path
independent) set of D is called an α−set (respectively αw−set, αp−set, αwp−set) of D if the
cardinality of I is equal to α(D) (respectively, αw(D), αp(D), αwp(D)).

The digraph D is said to be connected if the underlying graph, obtained by replacing all
directed edges of D with undirected edges, is connected. It is said to be strongly connected if
there exists a path from u to v and a path from v to u for all u, v ∈ V(D). It is a well-known
result that for any group G and a non-empty subset A of G, the Cayley digraph Cay(〈A〉, A)
is strongly connected where 〈A〉 is a subgroup of G generated by A. Let G1 = (V1, E1),
G2 = (V2, E2) be digraphs. The union G1 ∪ G2 of G1 and G2 is the digraph with vertex set
V1 ∪ V2 and arc set E1 ∪ E2. The disjoint union G1

⋃̇
G2 of G1 and G2 is the union of G1 and

G2 with V1 ∩ V2 = ∅. In view of [7], we obtain the following helpful lemma.

Lemma 1 ([7]). Let G be a group and ∅ �= A ⊆ G. Then Cay(G, A) ∼=
·⋃

i∈I
(Vi, Ei) where

I = {1, 2, . . . , |G|
|〈A〉| } and (Vi, Ei) ∼= Cay(〈A〉, A) for all i ∈ I.

Let (Y, ≤) be a partially ordered set and X is a non-empty subset of Y, we say that an
element c of Y is a lower bound of X if c ≤ y for every y in X. A lower bound element c of X
is called the greatest lower bound (meet) of X if b ≤ c for every lower bound b in X. An upper
bound and the least upper bound (join) are defined dually. The meet (join) of {a, b} will be
denoted by a ∧ b (a ∨ b).

A partially ordered set Y is called a meet (join) semilattice if x ∧ y (x ∨ y) ∈ Y for all
x, y ∈ Y. A partially ordered set Y is called a semilattice if it is a meet semilattice or a join
semilattice. In this work, we suppose that all semilattices are meet semilattices. For join
semilattices, the results are proved dually.

An element e of a semigroup S is idempotent if e2 = e. An element a of a semigroup S
is completely regular if there exists an element x ∈ S such that a = axa and ax = xa.

A semigroup S is completely regular if all its elements are completely regular. A semi-
group S is a Clifford semigroup if it is completely regular and all its idempotents commute
with all elements of S. It can be readily deduced that if S is a group, then the identity
element e is the only idempotent element in S such that ea = ae for all a ∈ S and every
element a is a completely regular because a = aa−1a and aa−1 = a−1a where a−1 is an
inverse of a. This then implies that every group is a Clifford semigroup.

Let Y be a semilattice and {(Gβ, ◦β)|β ∈ Y} be a family of groups indexed by Y where
Gβ ∩ Gλ = ∅ for any β �= λ ∈ Y. Suppose that, for all β ≥ λ in Y, there exists a group
homomorphism fβ,λ : Gβ → Gλ such that

(i) for all λ ∈ Y, fλ,λ = idGλ
is the identity mapping on Gλ,

(ii) fβ,λ fγ,β = fγ,λ for all λ, β, γ ∈ Y with γ ≥ β ≥ λ,

and the multiplication on S =
⋃

β∈Y
Gβ is defined for x ∈ Gβ and y ∈ Gλ by

xy = fβ,β∧λ(x) ◦β∧λ fλ,β∧λ(y).
It is easy to check that S =

⋃
β∈Y

Gβ under that multiplication is a semigroup, and called

a strong semilattice of groups. We write S = [Y; Gβ, fβ,λ]. For convenience, we will refer to
fβ,β∧λ(x) ◦β∧λ fλ,β∧λ(y) as fβ,β∧λ(x) fλ,β∧λ(y).
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In 1995, Howie [21] showed a necessary and sufficient condition for a Clifford semi-
group that S is a Clifford semigroup if and only if S is a strong semilattice of groups.
Thus, every Clifford semigroup can be written in the form [Y; Gβ, fβ,λ] for some semi-
lattice Y, group Gβ and structure homomorphism fβ,λ. Henceforth, whenever we state
that [Y; Gβ, fβ,λ] is a Clifford semigroup, it is to be understood that Gβ is a group for ev-
ery β ∈ Y. Consequently, we will use the term strong semilattice of groups instead of
Clifford semigroup.

3. Characterizations of Maximal Connected Subdigraphs in Cay(S, A)

Clearly, the independence number of a graph is a summation of the independence
numbers of all its maximal connected subdigraphs. Thus we begin this work with the
characterization of maximal connected subdigraphs of Cay(S, A).

Hereafter, we let S = [Y; Gβ, fβ,λ] be a Clifford semigroup, Y′ = {γ ∈ Y : Gγ ∩ A �= ∅}
and Aβ = { fγ,β(aγ) : aγ ∈ Gγ ∩ A, γ ≥ β} where ∅ �= A ⊆ S. For X ⊆ S, let us denote by
[X] the subdigraph of Cay(S, A) induced by X.

Since the minimum element of Y exists it follows that in each maximal connected
subdigraph of Cay(S, A), there exists β ∈ Y such that β ∧ γ = β for all γ ∈ Y′. Let
B = {β ∈ Y : β ∧ (

∧
γ∈Y′

γ) = β}. Clearly, (λ ∧ (
∧

γ∈Y′
γ)) ∧ (

∧
γ∈Y′

γ) = λ ∧ (
∧

γ∈Y′
γ) for all

λ ∈ Y. Then we obtain the following lemma.

Lemma 2. λ ∧ (
∧

γ∈Y′
γ) ∈ B for all λ ∈ Y.

By Lemma 2, we obtain for each λ ∈ Y there exists β ∈ B such that λ ∧ (
∧

γ∈Y′
γ) = β.

We then define Yβ = {λ ∈ Y : λ ∧ (
∧

γ∈Y′
γ) = β} for all β ∈ B.

Lemma 3. {Yβ : β ∈ B} is a partition of Y.

Proof. Clearly, β ∈ Yβ for every β ∈ B. Thus Yβ �= ∅ for all β ∈ B. By Lemma 2, we obtain⋃
β∈B

Yβ = Y. Now, assume that μ ∈ Yβ ∩ Yβ′ . Then μ ∧ (
∧

γ∈Y′
γ) = β and μ ∧ (

∧
γ∈Y′

γ) = β′

which implies β = β′. Therefore {Yβ : β ∈ B} is a partition of Y.

Example 1. Let Y = {λ1, λ2, . . . , λ6} be a semilattice with a partial order that represented by
the Hasse diagram in Figure 1. For I = {1, 2, . . . , 6}, we let {Gλi : i ∈ I} be a family of groups,
indexed by the semilattice Y where Gλi = Z4 = {0̄λi , 1̄λi , 2̄λi , 3̄λi} is an additive group of integers
modulo 4, for all i ∈ I. Let fλi ,λj(x̄λi ) = x̄λj for every x̄λi ∈ Gλi , x̄λj ∈ Gλj and i > j. Then
S = [Y; Gλi , fλi ,λj ] is a Clifford semigroup.

Y

λ1

λ2

λ3 λ4

λ5 λ6

⇒

S

Gλ1

Gλ2

Gλ3 Gλ4

Gλ5 Gλ6

Figure 1. The Hasse diagram of the semilattice Y = {λ1, λ2, . . . , λ6} and the family of groups
{Gλi = Z4 : i = 1, 2, 3, 4, 5, 6}.

If we put A = {2̄λ6} where 2̄λ6 ∈ Gλ6 , then we get
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(i) Y′ = {λ6} and B = {λ1, λ2, λ4, λ6},
(ii) Yλ1 = {λ1}, Yλ2 = {λ2, λ3}, Yλ4 = {λ4, λ5} and Yλ6 = {λ6},
(iii) {Yλ1 , Yλ2 , Yλ4 , Yλ6} is a partition of Y.

Lemma 4. fλ,η(g〈Aλ〉) ⊆ fλ,η(g)〈Aη〉 for all η, λ ∈ Y, such that η ≤ λ.

Proof. Let h ∈ fλ,η(g〈Aλ〉). Then h = fλ,η(ga) for some a = at1
1 at2

2 . . . atm
m ∈ 〈Aλ〉 where

ai ∈ Aλ and ti ∈ Z for all 1 ≤ i ≤ m. For each ai ∈ Aλ, we obtain ai = fγi ,λ(bγi) for some
bγi ∈ A ∩ Gγi where λ ≤ γi and we then obtain fλ,η( fγi ,λ(bγi)) = fγi ,η(bγi) ∈ Aη for all
1 ≤ i ≤ m. Consider

h = fλ,η(ga) = fλ,η(gat1
1 at2

2 . . . atm
m )

= fλ,η(g) fλ,η( fγ1,λ(bγ1)
t1 fγ2,λ(bγ2)

t2 . . . fγm ,λ(bγm)
tm)

= fλ,η(g) fλ,η( fγ1,λ(bγ1))
t1 fλ,η( fγ2,λ(bγ2))

t2 . . . fλ,η( fγm ,λ(bγm))
tm

= fλ,η(g) fγ1,η(bγ1)
t1 fγ2,η(bγ2)

t2 . . . fγm ,η(bγm)
tm .

Hence h = fλ,η(g) fγ1,η(bγ1)
t1 fγ2,η(bγ2)

t2 . . . fγm ,η(bγm)tm ∈ fλ,η(g)〈Aη〉.
Therefore fλ,η(g〈Aλ〉) ⊆ fλ,η(g)〈Aη〉.

Let D be a digraph and v ∈ V(D). The set of in-neighbors and the set of out-neighbors
of a vertex v are defined by N−(v) = {u ∈ V(D) : (u, v) ∈ E(D)} and N+(v) = {u ∈
V(D) : (v, u) ∈ E(D)}, respectively. In addition, we use N(v) = N−(v) ∪ N+(v), the set
of neighbors of the vertex v.

From Lemma 1, we observe that the Cayley digraph Cay(Gλ, Aλ) ∼= ⋃
i∈I

(Vi, Ei) for all

λ ∈ Y where I = {1, 2 . . . , |Gλ |
|〈Aλ〉| } and (Vi, Ei) = [gi〈Aλ〉] ∼= Cay(〈Aλ〉, Aλ) for all i ∈ I

where gi〈Aλ〉 ∈ Gλ/〈Aλ〉 and [gi〈Aλ〉] is an induced subdigraph of Cay(S, A).

Lemma 5. Let x be a vertex in Cay(S, A) and let β ∈ B. Then N(x) ⊆ ⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g) for all

x ∈ ⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g).

Proof. Let x ∈ ⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g). Then x ∈ Gλ for some λ ∈ Yβ where fλ,β(x) ∈ gβ〈Aβ〉.

Thus we let fλ,β(x) = gβat1
1 at2

2 . . . atm
m where ai ∈ Aβ and ti ∈ Z for all 1 ≤ i ≤ m . Assume

that u ∈ N(x), we shall show that u ∈ ⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g). Consider two cases:

(i) Case u ∈ N+(x), which means (x, u) ∈ E(Cay(S, A)). Thus u = xa for some
a ∈ A. Since A ⊆ S, we assume that a ∈ A ⊆ Gγ for some γ ∈ Y′. By the
definition of multiplication on S, we obtain u ∈ Gλ∧γ, Clearly, λ ∧ γ ∈ Yβ because
λ ∈ Yβ. Then

fλ∧γ,β(u) = fλ∧γ,β( fλ,λ∧γ(x) fγ,λ∧γ(a))

= fλ,β(x) fγ,β(a)

= gβat1
1 at2

2 . . . atm
m fγ,β(a).
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Since fγ,β(a) ∈ Aβ, we obtain at1
1 at2

2 . . . atm
m fγ,β(a) ∈ 〈Aβ〉.

Hence fλ∧γ,β(u) = gβat1
1 at2

2 . . . atm
m fγ,β(a) ∈ gβ〈Aβ〉. From λ ∧ γ ∈ Yβ and

fλ∧γ,β(u) ∈ gβ〈Aβ〉, we conclude that u ∈ ⋃
h∈gβ〈Aβ〉

f −1
λ∧γ,β(h) ⊆

⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g).

(ii) Case u ∈ N−(x), which means (u, x) ∈ E(Cay(S, A)). Thus x = ua for some
a ∈ A ∩ Gγ and γ ∈ Y′. Assume that u ∈ Gη . Clearly, η ∧ γ = λ because
x ∈ Gλ. First, we will show that η ∈ Yβ. From η ∧ γ = λ, we obtain η ∧
(
∧

γ′∈Y′
γ′) = (η ∧ γ)∧ (

∧
γ′∈Y′

γ′) = λ ∧ (
∧

γ′∈Y′
γ′) = β. Then η ∈ Yβ. From fλ,β(x) =

fλ,β( fη,λ(u) fγ,λ(a)) = fη,β(u) fγ,β(a), we obtain fη,β(u) = fλ,β(x)( fγ,β(a))−1. Since
fγ,β(a) ∈ Aβ, we conclude that fγ,β(a)−1 ∈ 〈Aβ〉.
Therefore fη,β(u) = fλ,β(x)( fγ,β(a))−1 ∈ gβ〈Aβ〉 which implies
u ∈ ⋃

h∈gβ〈Aβ〉
f −1
η,β(h) ⊆

⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g).

Hence u ∈ ⋃
gβ∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(gβ), as required.

Lemma 6. For each x ∈ S. There exists β ∈ B, λ ∈ Yβ and gβ〈Aβ〉 ∈ Gβ/〈Aβ〉 such that
x ∈ ⋃

g∈gβ〈Aβ〉
f −1
λ,β(g).

Proof. Let x ∈ S. Then x ∈ Gλ for some λ ∈ Y. By Lemma 2, we obtain λ ∈ Yβ for some
β ∈ B. Thus fλ,β(x) is defined in Gβ which implies there exists gβ〈Aβ〉 ∈ Gβ/〈Aβ〉 and
g′ ∈ gβ〈Aβ〉 such that fλ,β(x) = g′. Therefore x ∈ ⋃

g∈gβ〈Aβ〉
f −1
λ,β(g).

Theorem 1. Let β ∈ B and gβ〈Aβ〉 ∈ Gβ/〈Aβ〉. Then [
⋃

g∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(g)] is a maximal connected

subdigraph of Cay(S, A).

Proof. Let β ∈ B, gβ〈Aβ〉 ∈ Gβ/〈Aβ〉 and g′ ∈ gβ〈Aβ〉. We first show that, for each
x ∈ ⋃

gβ∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(gβ), there exists a path from x to g′. Now, let x ∈ ⋃

gβ∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(gβ). Then

x ∈ Gλ for some λ ∈ Yβ. From λ ∈ Yβ, it follows that there exists {γ1, γ2, . . . , γt} ⊆ Yβ

such that λ ∧ γ1 ∧ γ2 ∧ . . . ∧ γt = β, and there exists {a1, a2, . . . , at} ⊆ A where ai ∈ Gγi for
all 1 ≤ i ≤ t, such that x, xa1, xa1a2, . . . , xa1a2 . . . at is a path from x to xa1a2 . . . at. Consider

xa1a2 . . . at = (. . . (( fλ,λ∧γ1(x) fγ1,λ∧γ1(a1))a2) . . .)at

= (. . . (( fλ∧γ1,(λ∧γ1)∧γ2
( fλ,λ∧γ1(x) fγ1,λ∧γ1(a1)) fγ2,(λ∧γ1)∧γ2

(a2)) . . .)at

...

= f
λ∧(t−1∧

i=1
γi),λ∧(

t−1∧
i=1

γi)∧γt

(. . . ( fλ,λ∧γ1(x) fγ1,λ∧γ1(a1)). . .) f
γt ,λ∧(

t−1∧
i=1

γi)∧γt

(at)

= fλ,β(x) fγ1,β(a1) fγ2,β(a2) . . . fγt ,β(at)

∈ fλ,β(x)〈Aβ〉.
Since [ fλ,β(x)〈Aβ〉] ∼= Cay(〈Aβ〉, Aβ), it follows that there exists a path from xa1a2 . . . at

to g′. Thus [
⋃

g∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(g)] is a connected subdigraph of Cay(S, A). Suppose that there
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exists x′ ∈ S \ ⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g) such that x′ ∈ N(x) for some x ∈ ⋃

g∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(g). By using

Lemma 5, we conclude that x′ ∈ ⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g), a contradiction. Therefore [

⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g)]

is a maximal connected subdigraph of Cay(S, A), as required.

From Theorem 1, we have investigated the maximal connected subdigraph of Cay(S, A)
and obtained some needed properties. Afterward, we then achieve a characterization for a
maximal connected subdigraph of Cay(S, A).

Theorem 2. A subdigraph C of Cay(S, A) is a maximal connected subdigraph if and only if
C = [

⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g)] for some β ∈ B and gβ〈Aβ〉 ∈ Gβ/〈Aβ〉.

Proof. Let C be a maximal connected subdigraph of Cay(S, A) and x a vertex of C. By
Lemma 6, we obtain x ∈ ⋃

g∈gβ〈Aβ〉
f −1
λ,β(g) for some β ∈ B, λ ∈ Yβ and gβ〈Aβ〉 ∈ Gβ/〈Aβ〉,

which means x ∈ ⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g). From Lemma 5 and C is connected, we obtain V(C) ⊆

⋃
g∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(g). Since [

⋃
gβ∈gβ〈Aβ〉

λ∈Yβ

f −1
λ,β(gβ)] is an induced subdigraph and C is maximal

connected, we conclude that C = [
⋃

gβ∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(gβ)].

Conversely, C = [
⋃

g∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(g)] is a maximal connected subdigraph by

Theorem 1.

Example 2. From the Clifford semigroup S = [Y; Gλi , fλi ,λj ] in an Example 1 and A = {2̄λ4 , 1̄λ6},
the Cay(S, A) can be pictured as Figure 2. In addition, we obtain B = {λ1, λ2, λ4} and
the following:

(i) Consider λ1 ∈ B. We obtain [
⋃

g∈gλ1
〈Aλ1

〉
η∈Yλ1

f −1
η,λ1

(g)] = [
⋃

g∈Gλ1

f −1
λ1,λ1

(g)] = [Gλ1 ].

(ii) Consider λ2 ∈ B.
We obtain [

⋃
g∈〈Aλ2

〉
η∈Yλ2

f −1
η,λ2

(g)] = [(
⋃

g∈〈Aλ2
〉

f −1
λ3,λ2

(g)) ∪ (
⋃

g∈〈Aλ2
〉

f −1
λ2,λ2

(g))] =

[Gλ3 ∪ Gλ2 ].
(iii) Consider λ4 ∈ B.

We obtain [
⋃

g∈〈Aλ4
〉

η∈Yλ4

f −1
η,λ4

(g)] = [(
⋃

g∈〈Aλ4
〉

f −1
λ6,λ4

(g)) ∪ (
⋃

g∈〈Aλ4
〉

f −1
λ5,λ4

(g))∪

(
⋃

g∈〈Aλ4
〉

f −1
λ4,λ4

(g))] = [Gλ6 ∪ Gλ5 ∪ Gλ4 ].

We see that, Cay(S, A) is the union of three maximal connected subdigraphs which are [Gλ1 ],
[Gλ3 ∪ Gλ2 ] and [Gλ6 ∪ Gλ5 ∪ Gλ4 ].
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0̄λ1 1̄λ1 2̄λ1 3̄λ1

0̄λ2 1̄λ2 2̄λ2 3̄λ2

0̄λ3 1̄λ3 2̄λ3 3̄λ3

0̄λ4 1̄λ4 2̄λ4 3̄λ4

0̄λ5 1̄λ5 2̄λ5 3̄λ5 0̄λ6 1̄λ6 2̄λ6 3̄λ6

Figure 2. Cay(S, A) where Y = {λ1, λ2, . . . , λ6}, Gλi = Z4 and A = {2̄λ4 , 1̄λ6}.

From Theorem 1, we denote by Cgβ
the maximal connected subdigraph

[
⋃

g∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(g)] associate with β ∈ B and gβ〈Aβ〉 ∈ Gβ/〈Aβ〉. It follows easily that

Cgβ
= Cg′

β
if g′

β ∈ gβ〈Aβ〉 and Cay(S, A) ∼= ⋃
g∈Aβ

β∈B

Cgβ
where Aβ is the set of representatives

of all left cosets in Gβ/〈Aβ〉.

4. Lower and Upper Bounds of the Independence Numbers

In this section, we introduce bounds of the independence number of Cay(S, A). We
first denote by Aβ,λ the set of all elements of A in which Gβ Aβ,λ ⊆ Gλ, i.e., Aβ,λ = {a ∈ A :
Gβa ⊆ Gλ}. Set Y′

β := {λ ∈ Y \ {β} : λ ∧ γ = β, ∃γ ∈ Y′}. For any β ∈ B and λ ∈ Yβ, we

define Mgβλ =

{ {gλ〈Aλ〉 ∈ Gλ/〈Aλ〉 : fλ,β(gλ) ∈ gβ〈Aβ〉}, if Aλ �= ∅
{gλ〈eλ〉 ∈ Gλ/〈eλ〉 : fλ,β(gλ) ∈ gβ〈Aβ〉}, if Aλ = ∅.

Let us denote by
⋃

Mgβλ the union of all sets in Mgβλ. We here start with the lower
bound of the independence number of Cgβ

.

Lemma 7. ∑
λ∈Yβ

α([
⋃

Mgβλ − ⋃
η∈Y′

λ

Gη Aη,λ]) ≤ α(Cgβ
).

Proof. Let Xgβλ be an α−set of [
⋃

Mgβλ − ⋃
η∈Y′

λ

Gη Aη,λ]. We will show that
⋃

λ∈Yβ

Xgβλ is

an independent set of Cgβ
. Let u, v ∈ ⋃

λ∈Yβ

Xgβλ. This gives u ∈ Xgβη and v ∈ Xgβλ for

some η, λ ∈ Yβ. Assume that (u, v) ∈ E(Cgβ
). Then v = ua for some a ∈ A. We consider

two cases:

(i) Case λ = η, from [
⋃

Mgβλ − ⋃
η∈Y′

λ

Gη Aη,λ] is an induced subdigraph of Cay(S, A)

and (u, v) ∈ E(Cgβ
), we see that (u, v) is an arc in [

⋃
Mgβλ − ⋃

η∈Y′
λ

Gη Aη,λ]. Since

u, v ∈ Xgβλ and Xgβλ is an independent set of [
⋃

Mgβλ − ⋃
η∈Y′

λ

Gη Aη,λ], we obtain

u, v are independent, which is a contradiction.
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(ii) Case λ �= η, since u ∈ Xgβη ⊆ Gη and v = ua ∈ Xgβλ ⊆ Gλ, we have a ∈ Aη,λ.
Then we obtain v = ua ∈ Gη Aη,λ ⊆ ⋃

η∈Y′
λ

Gη Aη,λ which implies v /∈ Xgβλ ⊆
⋃

Mgβλ − ⋃
η∈Y′

λ

Gη Aη,λ, a contradiction.

Thus we conclude that
⋃

λ∈Yβ

Xgβλ is an independent set of Cgβ
. Clearly,

Xgβη ∩ Xgβλ = ∅ for all η, λ ∈ Yβ where η �= λ. Therefore | ⋃
λ∈Yβ

Xgβλ| = ∑
λ∈Yβ

α([
⋃

Mgβλ −
⋃

η∈Y′
λ

Gη Aη,λ]) ≤ α(Cgβ
).

The following lemma gives an upper bound of α(Cgβ
) obtained by using the fact that

if D = (V, E) and D′ = (V, E′) such that E′ ⊆ E, then α(D) ≤ α(D′).

Lemma 8. α(Cgβ
) ≤ ∑

λ∈Yβ

α([
⋃

Mgβλ]).

Proof. We see that V(Cgβ
) = V(

⋃
λ∈Yβ

[
⋃

Mgβλ]) because

u ∈ V(Cgβ
) ⇔ u ∈ ⋃

g∈gβ〈Aβ〉
λ∈Yβ

f −1
λ,β(g)

⇔ u ∈ f −1
λ,β(g) for some g ∈ gβ〈Aβ〉 and λ ∈ Yβ

⇔ fλ,β(u) = g ∈ gβ〈Aβ〉
⇔ u〈Aλ〉 ∈ Mgβλ

⇔ u ∈ ⋃Mgβλ.

Next, we let (u, v) ∈ E(
⋃

λ∈Yβ

[
⋃

Mgβλ]). Clearly, u, v ∈ V(Cgβ
). Since [

⋃
Mgβλ] and

Cgβ
are induced subdigraphs of Cay(S, A), we conclude that (u, v) ∈ E(Cgβ

). Thus
E(

⋃
λ∈Yβ

[
⋃

Mgβλ]) ⊆ E(Cgβ
) and so α(Cgβ

) ≤ ∑
λ∈Yβ

α([
⋃

Mgβλ]), as required.

From Cgβ
is a maximal connected subdigraph of Cay(S, A) and Cay(S, A) ∼= ⋃

g∈Aβ

β∈B

Cgβ
,

we can directly conclude that

α(Cay(S, A)) = ∑
g∈Aβ

β∈B

α(Cgβ
).

Consequently, a lower(upper) bound of α(Cay(S, A)) can be presented in the form of
the summation of lower(upper) bounds of each α(Cgβ

).

Theorem 3. ∑
β∈B

( ∑
λ∈Yβ

α([
⋃

Mgβλ − ⋃
η∈Y′

λ

Gη Aη,λ])) ≤ α(Cay(S, A)) ≤ ∑
β∈B

( ∑
λ∈Yβ

α([
⋃

Mgβλ])).

Any two elements a and b of a partially ordered set (P,≤) are called comparable
(incomparable) if either a ≤ b or b ≤ a (neither a ≤ b nor b ≤ a). A subset X of P is called a
chain (anti-chain) if any two elements of X are comparable (incomparable).

Here, we establish examples to show that the proposed lower and upper bounds
are sharp.

Proposition 1. Let S = [Y; Gβ, fλ,η ] be a Clifford semigroup in which consists a chain Y with the
maximum and minimum elements, namely m′ and m, respectively. We put fλ,η(x) = eη for all
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x ∈ Gλ, λ > η ∈ Y where eη is the identity element of Gη . If A = {eλ : λ ∈ Y}, then Cem is a
maximal connected subdigraph of Cay(S, A) and α(Cem) = ∑

λ∈Ym

α([
⋃

Memλ − ⋃
η∈Y′

λ

Gη Aη,λ]).

Proof. Let A = {eλ : λ ∈ Y}. Then Y′ = Y. From B = {β ∈ Y : β ∧ γ = β for all γ ∈ Y′},
we obtain B = {m}. Thus Cem is a maximal connected subdigraph of Cay(S, A). Next, we
will show that α(Cem) = ∑

λ∈Ym

α([
⋃

Memλ − ⋃
η∈Y′

λ

Gη Aη,λ]) = 1 + ∑
λ>m

(|Gλ| − 1). Consider

I :=
⋃

λ>m
(Gλ \ {eλ}) ∪ {em′ }, we claim that I is a maximal independent set of Cem . Let

u, v ∈ I where u �= v. Then u ∈ Gλ and v ∈ Gη for some λ, η ∈ Y \ {m}. Assume
that (u, v) ∈ E(Cem). This gives v = ueγ for some eγ ∈ A. By the assumption, we
obtainv = fλ,η(u) fγ,η(eγ) = eηeη = eη where η �= m′. It contradicts to the fact that eη /∈ I.
Thus I is an independent set of Cem . In addition, by V(Cem) \ I = {eλ : λ �= m′} and
(eλ, eη) ∈ E(Cem) for all λ > η ∈ Y, we obtain I is a maximal independent set of Cem . Thus
α(Cem) = 1 + ∑

λ>m
(|Gλ| − 1).

Now, from the assumption, we have Aλ = {eλ} for all λ ∈ Y. Thus Memλ =
{gλ〈{eλ}〉 ∈ Gλ/〈{eλ}〉 : fλ,β(gλ) ∈ em〈{em}〉} = Gλ for all λ ∈ Ym. From Aη,λ = {eλ}
and fη,λ(gη)eλ = eλeλ = eλ for all gη ∈ Gη , η ∈ Y′

λ, we obtain
⋃

η∈Y′
λ

Gη Aη,λ = {eλ} where

λ �= m′ and
⋃

η∈Y′
m′

Gη Aη,m′ = ∅. Since Aλ = {eλ}, E(Cay(Gλ, Aλ)) = {(gλ, gλ) : gλ ∈ Gλ}.

Thus, for each λ ∈ Y where λ �= m′, the induced subdigraph [
⋃

Memλ − ⋃
η∈Y′

λ

Gη Aη,λ] is

the digraph with vertex set Gλ \ {eλ} and arc set {(gλ, gλ) : gλ ∈ Gλ} which implies
all vertices in Gλ \ {eλ} are independent. Hence α([

⋃
Memλ − ⋃

η∈Y′
λ

Gη Aη,λ]) = |Gλ| − 1

for all λ ∈ Y where λ �= m′. From
⋃

η∈Y′
m′

Gη Aη,m′ = ∅, we obtainthe induced subdi-

graph [
⋃

Memm′ − ⋃
η∈Y′

m′
Gη Aη,m′ ] is the digraph with vertex set Gm′ and arc set {(gm′ , gm′) :

gm′ ∈ Gm′ } which implies all vertices in Gm′ are independent. Hence α([
⋃

Memm′ −⋃
η∈Y′

m′
Gη Aη,m′ ]) = |Gm′ | and so ∑

λ∈Ym

α([
⋃

Memλ − ⋃
η∈Y′

λ

Gη Aη,λ]) = 1 + ∑
λ>m

(|Gλ| − 1).

Therefore α(Cem) = ∑
λ∈Ym

α([
⋃

Memλ − ⋃
η∈Y′

λ

Gη Aη,λ]), as required.

Example 3. Let Y = {λ1, λ2, λ3, λ4} be a chain such that λ1 ≤ λ2 ≤ λ3 ≤ λ4. For
I = {1, 2, 3, 4}, we let {Gλi : i ∈ I} be a family of groups, indexed by Y where Gλi = Z4 =
{0̄λi , 1̄λi , 2̄λi , 3̄λi} is an additive group of integers modulo 4 for all i ∈ I. Let fλi ,λj(x̄λi ) = 0̄λj

for every x̄λi ∈ Gλi , 0̄λj ∈ Gλj and i > j. Then S = [Y; Gλi , fλi ,λj ] is a Clifford semigroup. For
A = {0̄λi : i ∈ I}, Cay(S, A) can be pictured as in Figure 3.

We now determine the independence number of the maximal connected subdigraph C0̄λ1
.

From Aλ1 = {0̄λ1}, we obtain 0̄λ1〈Aλ1〉 = {0̄λ1}. Since Yλ1 = {λ1, λ2, λ3, λ4}, we obtain
the following.

(i) Consider λ4 ∈ Yλ1 . We obtainα([
⋃

M0̄λ1
λ4
\ ⋃
η∈Y′

λ4

Gη Aη,λ4 ])=α([{0̄λ4 , 1̄λ4 , 2̄λ4 , 3̄λ4}])=

4.
(ii) Consider λ3 ∈ Yλ1 . We obtain α([

⋃
M0̄λ1

λ3
\ ⋃

η∈Y′
λ3

Gη Aη,λ3 ]) = α([{1̄λ3 , 2̄λ3 , 3̄λ3}]) =

3.
(iii) Consider λ2 ∈ Yλ1 . We obtain α([

⋃
M0̄λ1

λ2
\ ⋃

η∈Y′
λ2

Gη Aη,λ2 ]) = α([{1̄λ2 , 2̄λ2 , 3̄λ2}]) =

3.
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(iv) Consider λ1 ∈ Yλ1 . We obtainα([
⋃

M0̄λ1
λ1

\ ⋃
η∈Y′

λ1

Gη Aη,λ1 ]) = 0.

We see that α(C0̄λ1
) = ∑

λ∈Yλ1

α([
⋃

M0̄λ1
λ − ⋃

η∈Y′
λ

Gη Aη,λ]) = 4 + 3 + 3 = 10.

0̄λ1 1̄λ1 2̄λ1 3̄λ1

0̄λ2 1̄λ2
2̄λ2 3̄λ2

0̄λ3 1̄λ3
2̄λ3 3̄λ3

0̄λ4 1̄λ4 2̄λ4 3̄λ4

Figure 3. Cay(S, A) where Y = {λ1, λ2, λ3, λ4}, Gλi = Z4 and A = {0̄λ1 , 0̄λ2 , 0̄λ3 , 0̄λ4}.

Proposition 2. Let S = [Y; Gβ, fλ,η ] be a Clifford semigroup in which consists a chain Y with the
maximum and minimum elements, namely m′ and m, respectively. We put fλ,η(x) = eη for all
x ∈ Gλ, λ > η ∈ Y where eη is the identity element of Gη . For every λ ∈ Y, let Gλ = 〈hλ〉 for
some hλ ∈ Gλ such that hλ �= eλ and A = {hλ : λ ∈ Y}. Then α(Cem) = ∑

λ∈Ym

α([
⋃

Memλ]).

Proof. Let Xλ be an α−set of the induced subdigraph [
⋃

Memλ]. We then define a set X
′
λ

by X
′
λ := Xλh−1

λ if hλ ∈ Xλ, otherwise X
′
λ = Xλ. Consider X

′
λ = Xλh−1

λ . If hλ ∈ X
′
λ, we

then obtain hλ = xλh−1
λ for some xλ ∈ Xλ. Thus xλ = hλhλ, which implies (hλ, xλ) ∈

E([
⋃

Memλ]). It contradicts to the fact that Xλ is an independent set of [
⋃

Memλ] and
xλ, hλ ∈ Xλ. Hence hλ /∈ X

′
λ for all λ ∈ Ym. Additionally, if (xλh−1, yλh−1

λ ) ∈ E([
⋃

Memλ]),
we obtainyλh−1

λ = (xλh−1)hλ which implies yλ = xλhλ, a contradiction. Thus X
′
λ is an

independent set of [
⋃

Memλ] for all λ ∈ Y. Now, we claim that
⋃

λ∈Ym

X
′
λ is an independent

set of Cem . Let xλh−1
λ , xηh−1

η ∈ ⋃
λ∈Ym

X
′
λ. Assume that (xλh−1

λ , xηh−1
η ) ∈ E(Cem) for some

λ, η ∈ Ym where λ �= η. Then xηh−1
η = (xλh−1

λ )hγ for some γ ∈ Y. Because Y is a chain,
γ = η. By the assumption, we obtain

xηh−1
η = fλ,η(xλh−1

λ ) fη,η(hη)

= fλ,η(xλ) fλ,η(h−1
λ ) fη,η(hη)

= eηeηhη = hη .

It is contradicts to the fact that hλ /∈ X
′
λ for all λ ∈ Ym. Thus

⋃
λ∈Ym

X
′
λ is an independent

set of Cem . Hence we can conclude that α(Cem) ≥ | ⋃
λ∈Ym

X
′
λ| = ∑

λ∈Ym

α([
⋃

Memλ]). By
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using the fact that V(
⋃

λ∈Yβ

[
⋃

Mgβλ]) = V(Cem) and E(
⋃

λ∈Yβ

[
⋃

Mgβλ]) ⊆ E(Cem), we obtain

α(
⋃

λ∈Yβ

[
⋃

Mgβλ]) = ∑
λ∈Ym

α([
⋃

Memλ]) ≥ α(Cem). Therefore α(Cem) = ∑
λ∈Ym

α([
⋃

Memλ]),

as required.

5. Lower and Upper Bounds of the Weak Independence Numbers

In this section, we present the exact value of the weakly independent number of Cgβ

that based on the order of Mgβλ and the independence number of Cay(〈Aλ〉, A
′
λ) where

A
′
λ := Aλ \ {a ∈ Aλ : a−1 /∈ Aλ} for all λ ∈ Y. We start with some simple bounds for

αw(Cgβ
).

Lemma 9. α(Cgβ
) ≤ αw(Cgβ

) ≤ |V(Cgβ
)|.

Proof. From the fact that every independent set is a weakly independent set. We obtain
α(Cgβ

) ≤ αw(Cgβ
). For an upper bound, it is obvious that αw(Cgβ

) ≤ |V(Cgβ
)|.

By the definition of a Cayley digraphs, we have both (xλ, yλ) and (yλ, xλ) are belong
to E(Cay(〈Aλ〉, Aλ)) if and only if there exists a, b ∈ Aλ such that yλ = xλa and xλ = yλb.
Since Gλ is a group, we obtain b = a−1, from that property we can say that, in other words,
if yλ = xλa and a−1 /∈ Aλ, then xλ and yλ are weakly independent. We now construct
an example and then obtain the sharpness of the lower and upper bounds in Lemma 9
as follows;

Proposition 3. Let S = [Y; Gβ, fλ,η ] be a Clifford semigroup in which consists an ordered set
Y = {λ}. Then the following conditions hold:

1. if A = {hλ, h−1
λ }, then αw(Chλ

) = α(Chλ
);

2. if |Gλ| > 2 and A = {hλ} where hλ �= h−1
λ , then αw(Chλ

) = |V(Chλ
)|.

Proof.

1. Let A = {hλ, h−1
λ }. It is easy to check that if (xλ, yλ) ∈ E(Chλ

) then (yλ, xλ) ∈ E(Chλ
).

Thus αw(Chλ
) = α(Chλ

).
2. Let A = {hλ}. Let (xλ, yλ) ∈ E(Chλ

). Then yλ = xλhλ. Assume that xλ = yλhλ.
Thus xλhλ = yλ which implies hλ = h−1

λ , a contradiction. We conclude that if
(xλ, yλ) ∈ E(Chλ

) then (yλ, xλ) /∈ E(Chλ
) for every xλ, yλ ∈ V(Chλ

) which implies
V(Chλ

) is weakly independent set. Therefore αw(Chλ
) = |V(Chλ

)|, as required.

Let G be a group and ∅ �= A ⊆ G. We next present a result on the weak independence
number of Cay(G, A) as follows.

Lemma 10. Let G be a group and ∅ �= A ⊆ G. Then αw(Cay(G, A)) = αw(Cay(G, A
′
)) =

α(Cay(G, A
′
)) where A

′
:= A \ {a ∈ A : a−1 /∈ A}.

Proof. We first show that αw(Cay(G, A)) = αw(Cay(G, A
′
)). Since A

′ ⊆ A, we obtain
E(Cay(G, A

′
)) ⊆ E(Cay(G, A)). Thus αw(Cay(G, A)) ≤ αw(Cay(G, A

′
)).

Conversely, we let X
′

be a weakly independent set of Cay(G, A
′
) and x, y ∈ X

′
.

We claim that X
′

is a weakly independent set of Cay(G, A). Assume that (x, y), (y, x) ∈
E(Cay(G, A)). Then there exist a, a−1 ∈ A such that y = xa and x = ya−1. Thus a, a−1 ∈ A

′

and it follows that (x, y), (y, x) ∈ E(Cay(G, A
′
)), a contradiction, because X

′
is a weakly

independent set and x, y ∈ X
′
. Hence X

′
is a weakly independent set of Cay(G, A) and

then αw(Cay(G, A
′
)) ≤ αw(Cay(G, A)). Therefore αw(Cay(G, A

′
)) = αw(Cay(G, A)).

Next, we will show that αw(Cay(G, A
′
)) = α(Cay(G, A

′
)). Clearly, every independent

set is a weakly independent set. Thus α(Cay(G, A
′
)) ≤ αw(Cay(G, A

′
)).
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Conversely, by the definition of A′, we obtain (x, y) ∈ E(Cay(G, A
′
)) if and only if

(y, x) ∈ E(Cay(G, A
′
)). Let X be a weakly independent set of Cay(G, A

′
). We then obtainx, y

are independent for every x, y ∈ X, which implies X is an independent set of Cay(G, A
′
).

Hence αw(Cay(G, A
′
)) ≤ α(Cay(G, A

′
)). Thus αw(Cay(G, A

′
)) = α(Cay(G, A

′
)).

By the definition of Mgβλ, we then obtain
[⋃

Mgβλ

]
=

·⋃
i∈I′

Di where Di
∼= [gi〈Aλ〉] ∼=

Cay(〈Aλ〉, Aλ) for all i ∈ I′ where I′ = {1, 2, . . . , |Mgβλ|}.
According to the above lemma, we consequently obtain αw(Cay(〈Aλ〉, Aλ)) =

αw(Cay(〈Aλ〉, A
′
λ)) = α(Cay(〈Aλ〉, A

′
λ)).

We now present the exact value of the weakly independent number of Cgβ
in the form

of the summation of |Mgβλ|αw(Cay(〈Aλ〉, Aλ)) for all λ ∈ Yβ.

Lemma 11. αw(Cgβ
) = ∑

λ∈Yβ

|Mgβλ|αw(Cay(〈Aλ〉, Aλ)).

Proof. Let X be an αw−set of Cgβ
. We will show that |X| ≤ ∑

λ∈Yβ

|Mgβλ|αw(Cay(〈Aλ〉, Aλ)).

From
[⋃

Mgβλ

]
=

·⋃
i∈I′

Di where Di
∼= [gi〈Aλ〉] ∼= Cay(〈Aλ〉, Aλ) for all

i ∈ I′ = {1, 2, . . . , |Mgβλ|}, we then obtain |X ∩ (
⋃

Mgβλ)| = ∑
gλ〈Aλ〉∈Mgβλ

|X ∩ gλ〈Aλ〉|

and |X ∩ gλ〈Aλ〉| ≤ |Xgλ〈Aλ〉| for all gλ〈Aλ〉 ∈ Mgβλ where Xgλ〈Aλ〉 is an αw−set of
[gλ〈Aλ〉]. Moreover, we conclude that ∑

gλ〈Aλ〉∈Mgβλ

λ∈Yβ

|X ∩ gλ〈Aλ〉| ≤ ∑
gλ〈Aλ〉∈Mgβλ

λ∈Yβ

|Xgλ〈Aλ〉|.

Since X ⊆ ⋃
λ∈Yβ

(
⋃

Mgβλ), we obtain |X| = |X ∩ (
⋃

λ∈Yβ

(
⋃

Mgβλ))| = ∑
gλ〈Aλ〉∈Mgβλ

λ∈Yβ

|X ∩

gλ〈Aλ〉| ≤ ∑
gλ〈Aλ〉∈Mgβλ

λ∈Yβ

|Xgλ〈Aλ〉| = ∑
λ∈Yβ

|Mgβλ|αw(Cay(〈Aλ〉, Aλ)). Thus αw(Cgβ
) = |X|

≤ ∑
λ∈Yβ

|Mgβλ|αw(Cay(〈Aλ〉, Aλ)).

Conversely, we know that
[⋃

Mgβλ

]
is a disjoint union of [gλ〈Aλ〉] for all gλ〈Aλ〉 ∈

Mgβλ, we obtain
⋃

gλ〈Aλ〉∈Mgβλ

Xgλ〈Aλ〉 is a weakly independent set of Cgβ
where Xgλ〈Aλ〉 is a

weakly independent set of [gλ〈Aλ〉]. From the fact that if u ∈ Gλ and v ∈ Gη where λ �= η,
then u, v are weakly independent, we obtain

⋃
gλ〈Aλ〉∈Mgβλ

λ∈Yβ

Xgλ〈Aλ〉 is a weakly independent

set of Cgβ
. Since [gλ〈Aλ〉] ∼= Cay(〈Aλ〉, Aλ) for all gλ〈Aλ〉 ∈ Mgβλ, we obtain |Xgλ〈Aλ〉| =

αw(Cay(〈Aλ〉, Aλ)) for all gλ〈Aλ〉 ∈ Mgβλ and λ ∈ Yβ. Hence ∑
gλ〈Aλ〉∈Mgβλ

λ∈Yβ

|Xgλ〈Aλ〉| =

∑
λ∈Yβ

|Mgβλ|αw(Cay(〈Aλ〉, Aλ)) and so αw(Cgβ
) ≥ ∑

λ∈Yβ

|Mgβλ|αw(Cay(〈Aλ〉, Aλ)).

Example 4. Let Y = {λ1, λ2, λ3, λ4} be a semilattice with a partial order that represented by
the Hasse diagram in Figure 4. For I = {1, 2, 3, 4}, we let {Gλi : i ∈ I} be a family of groups,
indexed by the semilattice Y where Gλi = Z4 = {0̄λi , 1̄λi , 2̄λi , 3̄λi} is an additive group of integers
modulo 4 for all i ∈ I. Let fλi ,λj(x̄λi ) = x̄λj for every x̄λi ∈ Gλi , x̄λj ∈ Gλj and i > j. Then
S = [Y; Gλi , fλi ,λj ] is a Clifford semigroup.
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Let A = {2̄λ2}. Then we picture Cay(S, A) in Figure 5. From Aλ2 = {2̄λ2}, then 〈Aλ2〉 =
{0̄λ2 , 2̄λ2} which implies Gλ2 /〈Aλ2〉 = {〈Aλ2〉, 1̄λ2〈Aλ2〉}. We here consider C0̄λ2

and each
λ2, λ4 ∈ Yλ2 as follows.

(i) Consider λ4 ∈ Yλ2 .

• Since A = {2̄λ2}, we have Aλ4 = ∅. Thus we put Aλ4 = {0̄λ4}.
• Then M0̄λ2

λ4
= {gλ4〈0̄λ4〉 ∈ Gλ4 /〈0̄λ4〉 : fλ4,λ2(gλ4) ∈ 0̄λ2〈Aλ2〉}

= {0̄λ4〈0̄λ4〉, 2̄λ4〈0̄λ4〉}.
• From Aλ4 = {0̄λ4}, we obtainαw(Cay(〈Aλ4〉, Aλ4)) = αw(Cay({0̄λ4}, {0̄λ4})) =

1.
• Therefore |M0̄λ2

λ4
|αw(Cay({0̄λ4}, {0̄λ4})) = 2.

(ii) Consider λ2 ∈ Yλ2 .

• We have M0̄λ2
λ2

= {gλ2〈Aλ2〉 ∈ Gλ4 /〈Aλ4〉 : fλ2,λ2(gλ2) ∈ 0̄λ2〈Aλ2〉} =

{〈Aλ2〉}.
• From 〈Aλ2〉 = {0̄λ2 , 2̄λ2}, we obtainαw(Cay(〈Aλ2〉, Aλ2)) = 1.
• Therefore |M0̄λ2

λ2
|αw(Cay(〈Aλ2〉, Aλ2)) = 1.

Therefore αw(C0̄λ2
) = |M0̄λ2

λ4
|αw(Cay({0̄λ4}, {0̄λ4})) + |M0̄λ2

λ2
|αw(Cay(〈Aλ2〉, Aλ2))

= 3. Similarly,

αw(C1̄λ2
) = |M1̄λ2

λ4
|αw(Cay({0̄λ4}, {0̄λ4})) + |M1̄λ2

λ2
|αw(Cay(〈Aλ2〉, Aλ2)) = 3,

αw(C0̄λ1
) = |M0̄λ1

λ3
|αw(Cay({0̄λ3}, {0̄λ3})) + |M0̄λ1

λ1
|αw(Cay(〈Aλ1〉, Aλ1)) = 3,

αw(C1̄λ1
) = |M1̄λ1

λ3
|αw(Cay({0̄λ3}, {0̄λ3})) + |M1̄λ1

λ1
|αw(Cay(〈Aλ1〉, Aλ1)) = 3.

Y

λ1

λ2λ3

λ4

⇒

S

Gλ1

Gλ2Gλ3

Gλ4

Figure 4. The Hasse diagram of the semilattice Y = {λ1, λ2, λ3, λ4} and the family of groups
{Gλi = Z4 : i = 1, 2, 3, 4}.

0̄λ1 1̄λ1 2̄λ1 3̄λ1

0̄λ2 1̄λ2 2̄λ2 3̄λ2

0̄λ3 1̄λ3 2̄λ3 3̄λ3

0̄λ4 1̄λ4 2̄λ4 3̄λ4

Figure 5. Cay(S, A) where A = {2̄λ2}.

By Lemma 10, we directly obtain the following corollary.

Corollary 1. αw(Cgβ
) = ∑

λ∈Yβ

|Mgβλ|αw(Cay(〈Aλ〉, A′
λ)) = ∑

λ∈Yβ

|Mgβλ|α(Cay(〈Aλ〉, A′
λ)).
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In summary, we now obtain the weak independence number of Cay(S, A), which is
presented in terms of αw(Cay(〈Aλ〉, Aλ)) for all λ ∈ Yβ.

Theorem 4. αw(Cay(S, A)) = ∑
g∈Aβ

β∈B

(αw(Cgβ
)) = ∑

g∈Aβ

β∈B

( ∑
λ∈Yβ

|Mgβλ|αw(Cay(〈Aλ〉, Aλ))).

Example 5. From the Example 4, Cay(S, A) consists of four components, C0̄λ2
, C1̄λ2

, C0̄λ1
and

C1̄λ1
. We see that X = {0̄λ4 , 1̄λ4 , 2̄λ4 , 3̄λ4 , 0̄λ2 , 1̄λ2 , 0̄λ3 , 1̄λ3 , 2̄λ3 , 3̄λ3 , 0̄λ1 , 1̄λ1} is an αw−set of

Cay(S, A). Then αw(Cay(S, A)) = αw(C0̄λ2
) + αw(C1̄λ2

) + αw(C0̄λ1
) + αw(C1̄λ1

) = 12 = |X|.

6. The Path Independence Numbers

From the fact that, for every λ ∈ Y, Cay(〈Aλ〉, Aλ) is strongly connected. By this
information, we can conclude that αp(Cay(〈Aλ〉, Aλ)) = 1. However, to find the path
independence number of Cgβ

, we need to consider a path between induced subdigraphs
[gλ〈Aλ〉] and [hη〈Aη〉] of Cay(S, A) where gλ〈Aλ〉 ∈ Mgβλ and hη〈Aη〉 ∈ Mgβη .

We here investigate a relation that indicates all paths between [gλ〈Aλ〉] and [hη〈Aη〉] in
Cgβ

. Let C̃gβ
:=

⋃
λ∈Yβ

Mgβλ and Ỹη := {λ ∈ Y : λ ∧ (
∧

γ∈Γλ

γ) = η for some Γλ ⊆ Y′} ∪ {η}.

Define a relation ∼ on C̃gβ
by gλ〈Aλ〉 ∼ hη〈Aη〉 if and only if fλ,η(gλ) ∈ hη〈Aη〉 and

λ ∈ Ỹη .

Lemma 12. (C̃gβ
, ∼) is a partially ordered set.

Proof. Let β ∈ B. We shall show that ∼ is a partial order on C̃gβ
.

(i) Since fλ,λ(gλ) ∈ gλ〈Aλ〉 and λ ∈ Ỹλ, we then obtain gλ〈Aλ〉 ∼ gλ〈Aλ〉.
(ii) Let gλ〈Aλ〉 ∼ hη〈Aη〉 and hη〈Aη〉 ∼ gλ〈Aλ〉. Then fλ,η(gλ) ∈ hη〈Aη〉 and

fη,λ(hη) ∈ gλ〈Aλ〉. This gives η ≤ λ and λ ≤ η. From Y is a semilattice and
λ, η ∈ Y, we obtainλ = η. Since hη〈Aη〉 = hλ〈Aλ〉 and fη,λ(hη) = fλ,λ(hλ) ∈
gλ〈Aλ〉, it follows that gλ〈Aλ〉 = hη〈Aη〉.

(iii) Let gλ〈Aλ〉 ∼ hη〈Aη〉 and hη〈Aη〉 ∼ kκ〈Aκ〉. Then fλ,η(gλ) ∈ hη〈Aη〉 and
fη,κ(hη) ∈ kκ〈Aκ〉. From Lemma 4, we obtain fη,κ(hη〈Aη〉) ⊆ fη,κ(hη)〈Aκ〉. Thus
fη,κ(hη) ∈ fη,κ(hη)〈Aκ〉 and so fη,κ(hη)〈Aκ〉 = kκ〈Aκ〉. Therefore fλ,κ(gλ) =
fη,κ( fλ,η(gλ)) ∈ fη,κ(hη〈Aη〉) ⊆ fη,κ(hη)〈Aκ〉 = kκ〈Aκ〉.
From λ ∈ Ỹη and η ∈ Ỹκ , there exist two subsets of Y′, denoted by Γλ and Γη , such
that λ ∧ (

∧
γ∈Γλ

γ) = η and η ∧ (
∧

γ∈Γη

γ) = κ. Then λ ∧ (
∧

γ∈Γλ∪Γη

γ) = κ and thus

λ ∈ Ỹκ .

Therefore (C̃gβ
, ∼) is a partially ordered set.

Lemma 13. Let x ∈ gλ〈Aλ〉 and y ∈ hη〈Aη〉 where λ �= η. Then there is a path from x to y if
and only if gλ〈Aλ〉 ∼ hη〈Aη〉.
Proof. Assume that there exists a path from x to y. Then we let x = v1, v2, . . . , vn = y be
a path from x to y where (vi, vi+1) ∈ E(Cay(S, A)) for all i = 1, 2, . . . n − 1. It follows that
there exist a1, a2, . . . , an−1 ∈ A and γ1, γ2, . . . , γn−1 ∈ Y′ such that vi+1 = viai and ai ∈ Gγi

for all i = 1, 2, . . . , n − 1. This gives
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vn = (. . . ((v1a1)a2) . . .)an−1

= (. . . ((xa1)a2) . . .)an−1

= (. . . (( fλ,λ∧γ1(x) fγ1,λ∧γ1(a1))a2) . . .)an−1

= (. . . (( fλ∧γ1,(λ∧γ1)∧γ2
( fλ,λ∧γ1(x) fγ1,λ∧γ1(a1)) fγ2,(λ∧γ1)∧γ2

(a2)) . . .)an−1

...

= f
λ∧(n−2∧

i=1
γi),λ∧(

n−2∧
i=1

γi)∧γn−1

(. . . ( fλ,λ∧γ1(x) fγ1,λ∧γ1(a1)). . .) f
γn−1,λ∧(n−2∧

i=1
γi)∧γn−1

(an−1)

= fλ,η(x) fγ1,η(a1) fγ2,η(a2) . . . fγn−1,η(an−1)

∈ fλ,η(x)〈Aη〉.
Since vn = y ∈ hη〈Aη〉, we obtain fλ,η(x)〈Aη〉 = hη〈Aη〉. From Lemma 4, we obtain

fλ,η(gλ〈Aλ〉) = fλ,η(x〈Aλ〉) ⊆ fλ,η(x)〈Aη〉 = hη〈Aη〉 which implies fλ,η(gλ) ∈ hη〈Aη〉.
Therefore gλ〈Aλ〉 ∼ hη〈Aη〉.

Conversely, suppose that gλ〈Aλ〉 ∼ hη〈Aη〉. Then fλ,η(gλ) ∈ hη〈Aη〉 and λ ∈ Ỹη , i.e.,
there exists Γλ ⊆ Y′ such that λ ∧ (

∧
γ∈Γλ

γ) = η. Now, we let Γλ = {γ1, γ2, . . . , γn} and

a1, a2, . . . an ∈ A. Then gλ, gλa1, gλa1a2, . . . , gλa1a2 . . . an is a path from gλ to gλa1a2 . . . an.
Consequently, we conclude that

gλa1a2 . . . an = f
λ,λ∧( n∧

i=1
γi)

(gλ) f
γ1,λ∧( n∧

i=1
γi)

(aγ1) f
γ2,λ∧( n∧

i=1
γi)

(aγ2). . . f
γn ,λ∧( n∧

i=1
γi)

(aγn)

∈ fλ,η(gλ)〈Aη〉.
Since fλ,η(gλ) ∈ hη〈Aη〉, we obtain fλ,η(gλ)〈Aη〉 = hη〈Aη〉. From the fact that

[gλ〈Aλ〉] and [hη〈Aη〉] are strongly connected, there exist a path from x to gλ and a path
from gλa1a2 . . . an to y. Therefore there exists a path from x to y, as required.

By using an anti-symmetric property, we can conclude that if λ �= η and there is a path
from x ∈ gλ〈Aλ〉 to y ∈ hη〈Aη〉, then there is no path from y to x. Now, we are ready to
give the path independence number of Cgβ

.

Lemma 14. αp(Cgβ
) = max{|X| : X is an anti-chain in (C̃gβ

, ∼)}.

Proof. Let X′ be an αp−set of Cgβ
and x, y ∈ X′. Since x ∈ g〈Aλ〉 and y ∈ h〈Aη〉 for

some g ∈ Gλ, h ∈ Gη , we obtainx〈Aλ〉 �= y〈Aη〉 because [x〈Aλ〉] is strongly connected.
By Lemma 13, we have x〈Aλ〉 � y〈Aη〉 and y〈Aη〉 � x〈Aλ〉. Thus X = {g〈Aλ〉 ∈ C̃gβ

:
x ∈ X′} is an anti-chain in (C̃gβ

,∼) and |X′| = |X|. Therefore αp(Cgβ
) ≤ max{|X| :

X is an anti-chain in (C̃gβ
, ∼)}.

Conversely, we know that for every path independent set X′ of Cgβ
, there exists

X = {x〈Aλ〉 ∈ C̃gβ
: x ∈ X′} where X is an anti-chain in (C̃gβ

,∼), and |X′| = |X|. Hence
αp(Cgβ

) ≥ max{|X| : X is an anti-chain in (C̃gβ
, ∼)}.

In summary, the path independence number of Cay(S, A) will be obtained in the form
of the summation of max{|X| : X is an anti-chain in (C̃gβ

, ∼)} for all g ∈ Aβ and β ∈ B.

Theorem 5. αp(Cay(S, A))= ∑
g∈Aβ

β∈B

(αp(Cgβ
))= ∑

g∈Aβ

β∈B

max{|X| : X is an anti-chain in (C̃gβ
, ∼)}.

7. The Weak Path Independence Numbers

In this section, a weakly path independent set of Cgβ
of Cay(S, A) is investigated. By

the definition of a weakly path independent set and [g〈Aλ〉] ∼= Cay(〈Aλ〉, Aλ) is strongly
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connected, we can conclude that αwp([g〈Aλ〉]) = 1 for every induced subdigraph [g〈Aλ〉]
of Cay(S, A) and β ∈ B.

From the fact that, for all g ∈ gλ〈Aλ〉 and h ∈ hη〈Aη〉 where λ �= η, there is no path
from h to g if there is a path from g to h. We here obtain the weak path independence
number of Cgβ

and Cay(S, A) as follows.

Lemma 15. αwp(Cgβ
) = | ⋃

λ∈Yβ

Mgβλ|.

Proof. Let Mgβλ be a set of representatives of all cosets in Mgβλ. From the fact that there
exists a path either from g to h or from h to g for any different g, h ∈ ⋃

λ∈Yβ

Mgβλ. Thus
⋃

λ∈Yβ

Mgβλ is a weakly path independent set of Cgβ
and hence αwp(Cgβ

) ≥ | ⋃
λ∈Yβ

Mgβλ| =
| ⋃

λ∈Yβ

Mgβλ|.
Conversely, let X be an αwp−set of Cgβ

. We know that [g〈Aλ〉] is strongly connected
for every g〈Aλ〉 ∈ ⋃

λ∈Yβ

Mgβλ. Hence |X| ≤ | ⋃
λ∈Yβ

Mgβλ|. It follows that αwp(Cgβ
) ≤

| ⋃
λ∈Yβ

Mgβλ| = | ⋃
λ∈Yβ

Mgβλ| and so αwp(Cgβ
) = | ⋃

λ∈Yβ

Mgβλ|, as required.

Now, the weak path independence number of Cay(S, A) will be obtained in the form
of the summation of αwp(Cgβ

) = | ⋃
λ∈Yβ

Mgβλ| as follows.

Theorem 6. αwp(Cay(S, A)) = ∑
g∈Aβ

β∈B

(αwp(Cgβ
)) = ∑

g∈Aβ

β∈B

| ⋃
λ∈Yβ

Mgβλ|.

8. Discussion

In this paper, we conducted an in-depth investigation of the independence num-
bers of the Cayley digraph of the Clifford semigroup. The study focused on a maximal
connected subdigraph to analyze its independent sets. Our findings revealed that the
independence number of the entire digraph is influenced by the independence numbers
of its maximal connected subdigraphs, providing valuable insights into the structural
dependencies within the digraph. Although our research aligned with previous studies on
the independence numbers of graphs and digraphs, its unique focus on the Cayley digraph
of the Clifford semigroup contributes to the theoretical understanding of this specific math-
ematical structure. As a stepping stone for future research, our study suggests exploring a
subdigraph of the Cayley digraphs, which is smaller than a component, to further deepen
the understanding of the independence number. In summary, our investigation sheds light
on the independence numbers of the Cayley digraph and opens new avenues for future
explorations and potential applications in diverse domains.

9. Conclusions

In conclusion, we obtained the characteristic of a maximal connected subdigraph in
Cayley digraphs of Clifford semigroups in Section 3. The lower and upper bounds of the in-
dependence and the weak independence numbers of Cayley digraphs of Clifford semigroups
are presented in Sections 4 and 5. Finally, we have achieved the exact values of the path
independence and the weak path independence numbers in Sections 6 and 7, respectively.

Author Contributions: Conceptualization, K.L. and S.P.; methodology, K.L. and S.P.; validation, S.P.;
investigation, K.L.; writing—original draft preparation, K.L. and S.P.; writing—review and editing,
K.L. and S.P.; visualization, S.P.; supervision, K.L. and S.P.; project administration, S.P.; funding
acquisition, S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

56



Mathematics 2023, 11, 3445

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the referees for their useful comments and
valuable suggestions on the manuscript. This research was supported by Chiang Mai University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Heydemann, M. Cayley graphs and interconnection networks. Graph Symmetry Algebr. Methods Appl. 1997, 497, 167–224.
2. Xiao, W.; Parhami, B. Some mathematical properties of cayley digraphs with applications to interconnection network design. Int.

J. Comput. Math. 2005, 82, 521–528. [CrossRef]
3. Arworn, S.; Knauer, U.; Na Chiangmai, N. Characterization of digraphs of right (left) zero unions of groups. Thai J. Math. 2003, 1,

131–140.
4. Hao, Y.; Gao, X.; Luo, Y. On the Cayley graphs of Brandt semigroups. Commun. Algebra 2011, 39, 2874–2883. [CrossRef]
5. Kelarev, A.V.; Ryan, J.; Yearwood, J.L. Cayley graphs as classifiers for data mining: The influence of asymmetries. Discret. Math.

2009, 309, 5360–5369. [CrossRef]
6. Khosravi, B. On the Cayley graphs of completely simple semigroups. Bull. Malays. Math. Sci. Soc. 2018, 41, 741–749. [CrossRef]
7. Panma, S.; Na Chiangmai, N.; Knauer, U.; Arworn, S. Characterizations of Clifford semigroup digraphs. Discret. Math. 2006, 306,

1247–1252. [CrossRef]
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Abstract: A graph is edge-primitive if its automorphism group acts primitively on the edge set of
the graph. Edge-primitive graphs form an important subclass of symmetric graphs. In this paper,
edge-primitive graphs of order as a product of two distinct primes are completely determined. This
depends on non-abelian simple groups with a subgroup of index pq being classified, where p > q are
odd primes.
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1. Introduction

Throughout this paper, all graphs considered are assumed to be finite, connected and
undirected. Let Γ = (VΓ, EΓ) be a graph with vertex set VΓ and edge set EΓ. The size
|VΓ| is called the order of the graph Γ. Define an arc as a pair of ordered adjacent vertices,
let AΓ be the set of the arcs of Γ. Each edge {α, β} corresponds to two arcs (α, β) and (β, α).

Let Γ be a graph. For an integer s ≥ 1, an s-arc in Γ is an (s + 1)-tuple (v0, v1, · · · , vs)
of vertices such that {vi, vi+1} ∈ EΓ, and vi �= vi+1 for 0 ≤ i ≤ s − 1. A permutation of VΓ
that preserves the adjacency of Γ is called an automorphism of Γ, and all automorphisms
of Γ form a group which is called the full automorphism group of Γ, denoted by Aut(Γ).
Let G be a subgroup of Aut(Γ), and denoted by G ≤ Aut(Γ). Let G ≤ Aut(Γ) acting on
vertex set VΓ, α ∈ VΓ. We say that Gα as the subgroup of G is a vertex-stabilizer if G is
fixing the vertex α. (Similarly, let e = {α, β} ∈ EΓ. We may define the edge-stabilizer and
arc-stabilizer of G, denoted by Ge and Gαβ, respectively). Moreover, the group Aut(Γ) has a
natural action on EΓ. Then, the graph Γ is said to be G-edge-transitive if EΓ �= 0 and for
each pair of edges there exists some g ∈ G ≤ Aut(Γ) mapping one of these two edges to
the other one. So, the graph Γ is called G-vertex-transitive or G-arc-transitive if G ≤ Aut(Γ)
is transitive on VΓ or AΓ, respectively. A graph Γ that is a G-arc-transitive graph for some
G ≤ Aut(Γ) is also known as a symmetric graph.

A graph Γ is G-edge-primitive if G ≤ Aut(Γ) acts primitively on EΓ, that is, if G pre-
serves no nontrivial partition of the edge set. A G-edge-transitive graph Γ is G-edge-primitive
if some edge-stabilizer , the subgroup of its automorphism group which fixes a given edge,
is a maximal subgroup of the automorphism [1]. Additionally, Γ is called edge-primitive
if it is Aut(Γ)-edge-primitive. In this paper, the original motivation was the problem of
classifying all edge-primitive graphs of order as a product of two distinct primes. The study
of edge-primitive graphs was initiated by R. M. Weiss. In 1973. Weiss [2] confirmed all
edge-primitive graphs of valency 3. These graphs are the Heawood graph of order 14, the
complete bipartite graph K3,3, the Levi graph and the Biggs–Smith cubic distance-transitive
graph of order 102. Giudici and Li [3] systematically studied the O’Nan–Scott primitive
types of the automorphism groups of edge-primitive graphs, and the G-edge-primitive
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graphs for G, an almost simple group with socle PSL2(q), are classified. We use soc(G) to
denote the socle of a group G, that is, the subgroup of G generated by all minimal normal
subgroups of G. In case G is finite, the socle is the product of all minimal normal subgroups
of G. A two dimensional projective group is denoted by PSL2(q). Li and Zhang [4] anna-
lyzed edge-primitive s-arc-transitive graphs for s ≥ 4. Guo et al. classified edge-primitive
tetravalent and pentavalent graphs in [5] and [6]. Pan et al. discussed edge-primitive
graphs of prime valency in [7], and edge-primitive Cayley graphs on abelian groups and
dihedral groups in [8]. Lu [9] proved that a finite 2-arc-transitive edge-primitive graph has
an almost simple automorphism group if it is neither a cycle nor a complete bipartite graph.
Recently, Giudici and King [10] classified edge-primitive 3-arc-transitive graphs.

The work of studying edge-primitive graphs of specific orders is also attractive. Pan
et al. studied all edge-primitive graphs of prime power order in [11], and edge-primitive
graphs of order twice as a prime power in [12]. The main work of this paper is to classify
all edge-primitive graphs of order as a product of two distinct primes.

In this paper, the notations used are standard [1]. For a positive integer n, we usually
use Kn and Kn,n to denote the complete graph of order n and the complete bipartite graph
of order 2n, respectively. Zn is defined as the cyclic group of order n, and D2n as the
dihedral group of order 2n. As in Atlas [13], sometimes we simply use n to denote a cyclic
group of order n. For the two groups K and H, we use K × H and K : H to denote the
direct product of K and H and the semidirect product of K by H, respectively. The general
linear group GLn(q) consists of all the n × n matrices with entries in Fq that have a non-zero
determinant. The special linear group SLn(q) is the subgroup of all matrices of determinant 1.
The projective general linear group PGLn(q) and projective special linear group PSLn(q) are the
groups obtained from GLn(q) and SLn(q) on factoring by the scalar matrices contained in
those groups. We use PSUn(q), PSpn(q), and PΩn(q) to denote the projective special unitary
group, the projective symplectic group, and the projective special orthogonal group, respectively.
See [3] for details.

The classification of graph theory is closely related to the classification of group
theory. The application of group theory in graph theory is mainly achieved through
the role of groups on graphs. The symmetry of a graph is mainly described by the role
of the automorphism group of the graph on each subgraph of the graph, such as the
transitivity and primitivity of the automorphism group on the vertex set and edge set of
the graph. The edge-primitive graph discussed in this paper is one of them. Specifically,
the construction, characterization, and classification of various edge-primitive graphs with
additional conditions have become some of the main issues discussed in algebraic graph
theory. This paper completes the classification of specific orders in the edge-primitive
graph, that is, edge-primitive graphs of order as a product of two distinct primes are
completely determined.

The main result of this paper is shown as follows. Some of the graphs that appear in
Theorem 1 will be explained in Section 2.

Theorem 1. Let Γ be a G-edge-primitive graph of order pq, where G ≤ AutΓ, and p > q are odd
primes. Then, one of the following holds:

(1) Γ is a star.
(2) Γ, G are listed in Table 1, where for α ∈ VΓ and e ∈ EΓ, Gα and Ge is the stabilizer of α and

e, respectively.

Table 1. Edge-primitive graphs of order as a product of two distinct primes.

G Ge Gα |V Γ| Remark

M22 M10 24 : A6 77 G(77, 6)
Apq Spq−2 Apq−1 pq Kpq, pq ≥ 15

PSL2(19) D20 A5 57 G(57, 6)
PSL2(25) D24 S5 65 G(65, 10)
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The layout of this paper is as follows. We collect some basic properties of edge-
primitive graphs and some examples for edge-primitive graphs in Section 2. The most
important theorem was proved in the last section.

2. Preliminary and Examples

The simplest examples of edge-primitive graphs are the stars K1,n, the cycles with
prime numbers of vertices, and the complete graphs Kn. Following [3], we call an edge-
primitive graph trivial if it is a star or a cycle. In this paper, non-trivial edge-primitive graphs
are our main research object. We first collect some preliminary results of edge-primitive
graphs for later use.

Lemma 1 ([3], Lemma 3.4). Let Γ be a non-trivial G-edge-primitive graph for some G ≤ Aut(Γ).
Then, Γ is G-arc-transitive.

Arc transitive graphs can be represented using the group theory method of construct-
ing a coset graph. Let G be a finite group, and let H ≤ G. We say that the set [G : H] is
the right coset of H in G if [G : H] = {Hx | x ∈ G}. For an element g ∈ G with g2 ∈ H,
Hx, Hy ∈ [G : H], we say that Cos(G, H, HgH) is a coset graph of G with respect to H and
g if Hx and Hy are adjacent if and only if yx−1 ∈ HgH. The graph Γ is connected if and
only if 〈H, g〉 = G. Let α be the vertex H of the coset graph. Moreover, the valency of Γ is
|H : H ∩ Hg|, and the stabilizer of the edge {H, Hg} is 〈H ∩ Hg, g〉. See [3] for details.

Let e = {α, β} ∈ EΓ, denote by Gα, Ge, and Gαβ as the vertex-stabilizer, edge-stabilizer,
and arc-stabilizer of G, respectively.

Lemma 2 ([12], Lemma 2.5). Let Γ be a graph, 1 �= N � G ≤ AutΓ, and e = {α, β} ∈ EΓ.
Then, the following statements hold.

(1) If Γ is G-edge-primitive, then Ge ∼= Ne.(G/N). In particular, |Ge| = |Ne||G : N|.
(2) If Γ is G-arc-transitive, then Ge ∼= Gαβ.Z2.
(3) If Γ is G-edge-transitive but not G-arc-transitive, then Ge ∼= Gαβ.

The valency of a regular graph Γ is denoted by val(Γ) .

Lemma 3. Let Γ be a nontrivial G-edge-primitive graph and e = {α, β} ∈ EΓ. Then |Gα| > |Ge|.

Proof. It can be easily concluded that Γ is non-trivial, val(Γ) = |Gα : Gαβ| ≥ 3, and Γ is
G-arc-transitive, so |Ge| = 2 · |Gαβ|.

We define a transitive permutation group G ≤ Sym(Ω) as quasiprimitive if every
minimal normal subgroup of G is transitive on Ω. Moreover, we say that the group G is
biquasiprimitive if each of its minimal normal subgroups has at most two orbits, and there is
a minimal normal subgroup with exactly two orbits Ω on it.

Let Γ be a G-edge-primitive graph with G ≤ Aut(Γ), and let N be a nontrivial normal
subgroup of G. If N is transitive on edges, then Γ is either transitive on vertices or Γ is
bipartite and N has two orbits on the vertex set. This simple observation leads to the
following assertion.

Lemma 4. Let Γ be a non-trivial G-edge-primitive graph with G ≤ Aut(Γ). Then, G is either
quasiprimitive or biquasiprimitive on VΓ.

Therefore, we need some relevant information for (quasi)primitive permutation
groups. Let G be a quasiprimitive group. Utilizing the structure and the action of soc(G),
the quasiprimitive permutation group is divided into eight types by O’Nan–Scott–Praeger
theorem, namely HA, HS, HC, AS, SD, CD, PA, and TW. See Praeger [14] for details. As
an application of the O’Nan–Scott-Praeger theorem, it is straightforward to obtain the
following results.
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Lemma 5. Let G be a quasiprimitive permutation group of degree pq, where p > q are odd primes.
Then, G is an almost simple group.

By Theorem 2.1 of [3], Giudici and Li have classified the groups which act edge-
primitively on a complete graph.

Lemma 6 ([8], Lemma 2.4). Let G be an almost simple group with soc(G) = PSLn(k) and n ≥ 3.
Then, the action of G on a complete graph is not edge-primitive.

To construct edge-primitive graphs, the most important results are as follows:

Proposition 1 ([3], Proposition 2.5). Let G be a finite group with a maximal subgroup E. Then,
there exists a G-edge-primitive, arc-transitive graph Γ with an edge stabiliser E if and only if E has
a subgroup A and |E : A = 2|. In addition, G have a core-free subgroup H such that A < H �= E.
In this case, Γ = Cos(G, H, HgH) for some g ∈ E\A.

Example 1. Let Γ = Kpq, where p > q are odd primes. Then, AutΓ = Spq contains a subgroup
G = Apq. This subgroup G has a maximal subgroup E = Spq−2, and E has a subgroup A = Apq−2
of index two. The group G also contains a maximal subgroup isomorphic to H = Apq−1, and H
contains the subgroup A. So, the graph Γ is G-vertex-primitive, and by Proposition 1, the graph Γ
is also G-edge-primitive.

Example 2. Let T ∼= M22. According to Atlas [13], M22 has two maximal subgroups H ∼= 24 : A6
and E ∼= M10 such that H ∩ E ∼= A6. Define a coset graph

G(77, 16) := Cos(T, H, HgH), with g ∈ E\H an involution.

By Proposition 1, G(77, 16) is an T-edge-primitive graph, with valency |H : H ∩ E| = 16,
and |G(77, 16)| = |T : H| = 77. Based on the calculation of the Magma [15], it can be concluded
that any T-arc-transitive graph with vertex stabilizer 24 : A6 and valency 77 is isomorphic to
G(77, 16) and has the automorphism group M22.Z2. So, G(77, 16) is G-edge-primitive with
M22 ≤ G ≤ M22.Z2.

Example 3. Let T ∼= PSL2(19). Then, following Proposition 8.4 of [3], T has a subgroup H ∼= A5
and a maximal subgroup E ∼= D20 of one conjugate class such that H ∩ E ∼= D10. Define a coset
graph

G(57, 6) := Cos(T, H, HgH), with g ∈ E\H an involution.

By Proposition 1, this graph is T-edge-primitive, with valency |H : H ∩ E| = 6 and
|G(57, 6)| = |T : H| = 57. Furthermore, after calculation in Magma [15], it can be con-
cluded that any T-arc-transitive graph with vertex stabilizer A5 and valency 57 is isomorphic
to G(57, 6), and has automorphism group PSL2(19).Z2. So G(57, 6) is G-edge-primitive with
PSL2(19) ≤ G ≤ PGL2(19).

Example 4. Let T ∼= PSL2(25). Then, from Proposition 8.4 of [3], T has a subgroup H ∼= S5 and
of a maximal subgroup E ∼= D24 of one conjugate class such that H ∩ E ∼= D12. Define a coset
graph

G(65, 10) := Cos(T, H, HgH), with g ∈ E\H an involution.

By Proposition 1, this graph is T-edge-primitive, with valency |H : H ∩ E| = 10 and
|G(65, 10)| = |T : H| = 65. Furthermore, a computation by Magma [15] shows that any T-
arc-transitive graph with vertex stabilizer A5 and valency 65 is isomorphic to G(65, 10), and has auto-
morphism group PSL2(25).Z2. So, G(65, 10) is G-edge-primitive with PSL2(25) ≤ G ≤ PGL2(25).
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3. Proof of Theorem 1

Let Γ be a non-trivial G-edge-primitive graph for some G ≤ Aut(Γ). Further assume
that the order of this graph is pq, where p > q are odd primes. By Lemmas 1 and 4, Γ is
G-arc-transitive and G is either quasiprimitive or biquasiprimitive on VΓ.

Therefore, we need to consider two types of cases when G is quasiprimitve on VΓ. By
Lemma 5, G can only be an almost simple group. Thus, soc(G) = T is non-abelian simple
and transitive on VΓ, so |T : Tα| = pq. Non-abelian simple groups with a subgroup of
index pq have been classified in [16] (Theorem 1.1) (see also [17] [THEOREM]). The result
can be read off as follows.

Lemma 7. Let T be a non-abelian simple group with a subgroup H of index pq, where p > q are
odd primes. Then, the tuple (T, H) is listed in Table 2, where P1 is the stabilizer of the classical
group acting naturally on the 1-subspaces.

Table 2. Non-abelian simple groups with a subgroups of index pq.

Row T H |T : H| Conditions

1 A5 Z2 ×Z2 3 · 5 Z2 ×Z2 < A4
2 A7 PSL2(7) 3 · 5

(A4 × 3) : 2 5 · 7
3 A8 23 : PSL3(2) 3 · 5

24 : (S3 × S3) 5 · 7
4 M11 M9 : 2 5 · 11
5 M22 24 : A6 7 · 11
6 M23 PSL3(4) : 2 11 · 23

24 : A7 11 · 23
7 PSL2(11) A4 5 · 11
8 PSL2(19) A5 3 · 19
9 PSL2(23) S4 11 · 23
10 PSL2(25) S5 5 · 13
11 PSL2(29) A5 7 · 29
12 PSL2(59) A5 29 · 59
13 PSL2(61) A5 31 · 61
14 PSL5(2) 26 : (S3 × SL3(2)) 5 · 31
15 PΩ−

8 (2) 26 : PSU4(2) 7 · 17
16 PΩ+

10(2) 28 : PΩ+
8 (2) 17 · 31

17 Apq Apq−1 pq pq ≥ 15
18 Ap Sp−2

p−1
2 · p p ≥ 11, p−1

2 prime
19 Ap+1 Sp−1

p+1
2 · p p ≥ 5, p+1

2 prime
20 PSL2(p) Dp±1

p∓1
2 · p p∓1

2 odd prime
21 PSLn(k) P1

kd−1
k−1 n ≥ 3 kd−1

k−1 = pq
22 PSp4(2

2i
) P1 (22i

+ 1)(22i+1
+ 1) q = 22i

+ 1, p = 22i+1
+ 1

23 PSU3(22i
) P1 (22i

+ 1)(22i+1−22i
+ 1) q = 22i

+ 1, p = 22i+1−22i
+ 1

24 PΩ+
2(2i+1)(2) P1 (22i

+ 1)(22i+1 − 1) q = 22i
+ 1, p = 22i+1 − 1

25 PΩ−
2i+1 (2) P1 (22i−1 − 1)(22i

+ 1) q = 22i−1 − 1, p = 22i
+ 1

Lemma 8. Assume that G is an almost simple quasiprimitive group on VΓ. Then, Γ and G are
listed in Table 1 in Theorem 1.

Proof. Based on the assumption, G ∼= T.o, where o ≤ Out(T) and |T : Tα| = pq. Hence,
the tuple (T, Tα) (as (T, H) there) is listed in Table 2. We analyze each candidate in the
following.

Row 1. In this case, T ∼= A5, Tα = Z2 × Z2, |VΓ| = 15 and Out(T) = Z2. Hence, G ∼= A5 or
Aut(A5) ∼= S5, and |Ge| = 4 or 8, respectively. By Lemma 3, |Ge| < 4 or 8. However, by the
Atlas [13], A5 or S5 have no such maximal subgroup Ge. So, Γ is not edge-primitive in this case.
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Row 2. In this case, T ∼= A7, if Tα
∼= PSL(2, 7), |VΓ| = 15 and G ∼= T.o, where o ≤

Out(A7) ∼= Z2. Then, by [1] (p. 308, TABLE B.2), T is of rank 2 on VΓ, so one non-trivial
suborbit is of lengths 14. Hence, Γ is T-arc-transitive of valency 14. Assume val(Γ) = 14,
then |Tαβ| = |Tα |

14 = 12 and |Te| = 24, so |Ge| = 24|o|. However, by the Atlas [13],
there is no maximum subgroup of order 24|o| in group A7.o, which is a contradiction. If
T ∼= (A4 × 3) : 2, |VΓ| = 35, then by Lemma 3, |Ge| < 72|o|. However, by the Atlas [13],
G ∼= T.o has no such maximal subgroup Ge, which is a contradiction.

Row 3. Assume that T ∼= A8, if Tα
∼= 23 : PSL3(2), |VΓ| = 15 and G ∼= T.o, where

o ≤ Out(A8) ∼= Z2. By [1] (p. 308, TABLE B.2), T is of rank 2 on VΓ, so one non-trivial
suborbit is of lengths 14. Then, Γ is T-arc-transitive of valency 14. Assume val(Γ) = 14,
then |Tαβ| = |Tα |

14 = 96 and |Te| = 192, so |Ge| = 192|o|. However, by the Atlas [13], there is
no maximum subgroup of order 192|o| in group A8.o, which is a contradiction. If T ∼= 24 :
(S3 × S3), |VΓ| = 35, and by Lemma 3, |Ge| < 576|o|. By the Atlas [13], Ge ∼= (A5 × 3) : 2
or S5 × S3, then |Gαβ| = |Ge |

2 = 360 or 720. However, a computation by Magma [15] shows
that 24 : (S3 × S3) has no subgroup with order 360 or 720, a contradiction.

Row 4. Assume that T ∼= M11, |VΓ| = 55, and Out(M11) = 1. By Lemma 3, |Te| < |Tα| = 144.
By the Atlas [13], Te ∼= S5 or M8 : S3, then |Tαβ| = |Te |

2 = 120 or 48. However, according to
the calculation in Magma [15], it can be concluded that Tα

∼= M9 : 2 has no subgroup with
order 120 or 48, which is a contradiction.

Row 5. In this case, T is primitive on VΓ, |VΓ| = 77, and G ∼= T.o, where o ≤ Out(M22) ∼=
Z2. By [1] (p. 321, TABLE B.2), T is of rank 3 on VΓ, and it is easy to compute out that
the lengths of its two non-trivial suborbits are 16 and 60. So, Γ is T-arc-transitive of
valency 16 and 60. If val(Γ) = 16, by Example 2, Γ = G(77, 16). If val(Γ) = 60, then
|Tαβ| = Tα

val(Γ)
= 96, and by Lemma 6, |Ge| = |Te.o| = |Tαβ.Z2.o| = 192|o|, hence, |Ge| ≤ 384.

However, by the Atlas [13], all maximal subgroups of T and Aut(T) are of order at least
660, which is a contradiction.

Row 6. In this case, T ∼= M23, if Tα
∼= PSL3(4) : 2, |VΓ| = 253, and Out(M23) = 1,

G ∼= M23. By Lemma 3, |Ge| < |Gα| = 40320. By the Atlas [13], we can see that there are
five possibilities for Ge, 24 : A7, A8, M11, 24 : (3 × A5) : 2, 23 : 11. Note that only the
case 24 : (3 × A5) : 2 contains an index two subgroup 24 : (3 × A5), hence |Gαβ| = 2880.
However, from Magma [15], Gα

∼= PSL3(4) : 2 has no subgroup with order 2880, which is a
contradiction. Similarly, for the case Tα

∼= 24 : A7, we also get a contradiction.

Row 7–13. By [3] (Theorem 1.3), since |VΓ| = pq, and p > q are odd primes. Now, a
direct computation can determine all the possibilities of Γ. If T ∼= PSL2(19), by Example 3,
Γ = G(57, 6). If T ∼= PSL2(25), by Example 4, Γ = G(65, 5).

Row 14. In this case, T ∼= PSL5(2), |VΓ| = 155, and G ∼= T.o, where o ≤ Out(PSL5(2)) ∼=
Z2. Using the calculations in Magma [15], it can be concluded that T is of rank 3 on
VΓ, with two non-trivial suborbits of lengths 42 or 112. Hence, val (Γ) = 42 or 112,
and Γ is T-arc-transitive. If val (Γ) = 42, then |Tαβ| = Tα

val(Γ)
= 1536, by Lemma 2,

|Ge| = |Te.o| = |Tαβ.Z2.o| = 3076|o|. However, by the Atlas [13], there is no maximum
subgroup of order 3076|o| in group PSL5(2).o, which is a contradiction. If val (Γ) = 112,
then |Tαβ| = Tα

val(Γ)
= 576, and |Ge| = |Te.o| = |Tαβ.Z2.o| = 1152|o|. By the Atlas [13], there

is no maximum subgroup of order 1152|o| in group PSL5(2).o, which is a contradiction.

Row 15. If T ∼= PΩ−
8 (2), |VΓ| = 119, and G ∼= T.o, where o ≤ Out(PΩ−

8 (2))
∼= Z2.

According to the calculation in Magma [15], it can be concluded that T is of rank 3 on VΓ,
with two non-trivial suborbits of lengths 54 or 64. Hence, val (Γ) = 54 or 64, and Γ is T-arc-
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transitive. If val (Γ) = 54, then |Tαβ| = Tα
val(Γ)

= 30720, and |Ge| = |Te.o| = |Tαβ.Z2.o| =
61440|o|. However, by Atlas [13], there is no maximum subgroup of order 61440|o| in group
PΩ−

8 (2).o, which is a contradiction. If val (Γ) = 64, then |Tαβ| = Tα
val(Γ)

= 25920, and
|Ge| = |Te.o| = |Tαβ.Z2.o| = 51840|o|. However, by the Atlas [13], there is no maximum
subgroup of order 51840|o| in group PΩ−

8 (2).o, which is a contradiction.

Row 16. In this case, T ∼= PΩ+
10(2), |VΓ| = 527, and G ∼= T.o, where o ≤ Out(PΩ+

10(2))
∼=

Z2. From Magma [15], a simple computation can determine that the rank of T on VΓ
is 3, with two non-trivial suborbits of lengths 256 or 270. Hence, val (Γ) = 256 or 270,
and Γ is T-arc-transitive. If val (Γ) = 256, then |Tαβ| = Tα

val(Γ)
= 174182400, and |Ge| =

|Te.o| = |Tαβ.Z2.o| = 348364800|o|. However, by Atlas [13], G ∼= T.o has no maximal
subgroup with order 348364800|o|, which is a contradiction. Similarly, if val (Γ) = 270,
then |Tαβ| = Tα

val(Γ)
= 165150720, |Ge| = 330301440|o|. By the Atlas [13], there is no

maximum subgroup of order 330301440|o| in group PΩ+
10(2).o, which is a contradiction.

Row 17. In this case, T ∼= Apq is 2-transitive on the set of right cosets of Apq−1, where
pq ≥ 15, so Γ = Kpq and Tα

∼= Apq−1. Hence, Tαβ
∼= Apq−2, and Te ∼= Spq−2 is maximal in

T, so Γ is G-edge-primitive with G ∼= Apq and Spq.

Row 18–19. Assume that T ∼= Ap, |VΓ| = p−1
2 · p, and G ∼= T.o, where o ≤ Out(Ap).

According to the calculation in Magma [15], it can be concluded that T is of rank 3 on VΓ,
with two non-trivial suborbits of lengths 2(p − 2) or (p−2)(p−3)

2 . Hence, val (Γ) = 2(p − 2)

or (p−2)(p−3)
2 , and Γ is T-arc-transitive. If val (Γ) = 2(p − 2), then |Tαβ| = Tα

val(Γ)
= (p−3)!

2 ,
and |Ge| = |Te.o| = |Tαβ.Z2.o| = (p − 3)!|o|, By [18] (Theorem 1.1), there exists no subgroup
Ge, which is a maximal subgroup of G ∼= T.o, such that Ge has a subgroup Gαβ of index

two. Thus, there is no G-edge-primitive graph arising in this case. If val (Γ) = (p−2)(p−3)
2 .

Similarly, |Ge| = 4(p − 4)!|o|. By [18] (Theorem 1.1), there is no G-edge-primitive graph.
Assume that T ∼= Ap+1, similar to the discussion above, |Ge| = (p − 2)!|o| or (p − 3)!|o|,
by [18] (Theorem 1.1), there is no G-edge-primitive graph occurring in this case.

Row 20. Then, T ∼= PSL2(p), Tα
∼= Dp±1. By [3] (Theorem 1.3), no graph Γ exists in this

case.

Row 21. Then, T ∼= PSLn(k) is 2-transitive on VΓ = where n ≥ 3, so Γ is a complete graph,
contradicting Lemma 6.

Row 22. In this case, T ∼= PSp4(2
2i
), |VΓ| = (22i

+ 1)(22i+1
+ 1), and G ∼= T.o with

o ≤ Out(PSp4(2
2i
)). From Magma [15], it can be concluded that T is of rank 3 on

VΓ, with two non-trivial suborbits of lengths 22i
+ 22i+1

or 23·2i
. Hence, val (Γ) =

22i
+ 22i+1

, and 23·2i
, and Γ is T-arc-transitive. If val (Γ) = 22i

+ 22i+1
, then |Tαβ| =

|P1|
val(Γ)

=
|PSp4(2

2i
)|

|VΓ|·val(Γ)
, and |Ge| = |Te.o| = |Tαβ.Z2.o|, so |Ge| = 2|PSp4(2

2i
)||o|

(22i+1)(22i+1+1)(22i+22i+1 )
=

23·2i+1(22i − 1)2|o|. Therefore, by [19] (Tables 8.12–8.15), G ∼= T.o has no maximal sub-
group with order 23·2i+1(22i − 1)2|o|, which is a contradiction. If val (Γ) = 23·2i

. Simi-

larly, |Ge| = 2|PSp4(2
2i
)||o|

(22i+1)(22i+1+1)(23·2i )
= 22i+1(22i − 1)(22i+1 − 1)|o|. By [19] (Tables 8.12–8.15),

T has a maximal subgroup GL2(22i
).Z2 with order 22i+1(22i − 1)(22i+1 − 1). However,

T ∼= PSp4(2
2i
), so 22i

is an even number, again a contradiction.
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Row 23. In this case, T ∼= PSU3(22i
), |VΓ| = (22i

+ 1)(22i+1 − 22i
+ 1), and G ∼= T.o with

o ≤ Out(PSU3(22i
))). From Magma [15], a simple computation can determine that the

rank of T on VΓ is 2, with one non-trivial suborbit of lengths 23·2i
. Hence, val (Γ) = 23·2i

and Γ is T-arc-transitive. If val (Γ) = 23·2i
, then |Tαβ| = |P1|

val(Γ)
= |PSU3(22i

)|
|VΓ|·val(Γ)

, and |Ge| =
|Te.o| = |Tαβ.Z2.o|, so |Ge| = 2|PSU3(22i

)||o|
(22i+1)(22i+1−22i+1)(23·2i )

= 2(22i+1 − 1)|o|. However, by [19]

(Table 8.5–8.6), G ∼= T.o has no maximal subgroup with order 2(22i+1 − 1)|o|, which is a
contradiction.

Row 24. In this case, T ∼= PΩ+
2(2i+1)(2), |VΓ| = (22i

+ 1)(22i+1 − 1), and G ∼= T.o with

o ≤ Out(PΩ+
2(2i+1)(2)). According to the calculation in Magma [15], it can be concluded

that T is of rank 3 on VΓ, with two non-trivial suborbits are of lengths 22i+1
and 2(22i − 1)

(22i−1 − 1). Hence, val (Γ) = 22i+1
, and 2(22i − 1)(22i−1 − 1), and Γ is T-arc-transitive.

If val (Γ) = 22i+1
, then |Tαβ| = |P1|

val(Γ)
=

|PΩ+
2(2i+1)

(2)|
|VΓ|·val(Γ)

, and |Ge| = |Te.o| = |Tαβ.Z2.o|, so

|Ge| =
2|PΩ+

2(2i+1)
(2)||o|

(22i+1)(22i+1−1)(22i+1 )
= 222i−2i+1(22i − 1)

2i−1
∏
j=1

(22j − 1)|o|. However, by [19], G ∼= T.o

has no maximal subgroup with order 222i−2i+1(22i − 1)
2i−1
∏
j=1

(22j − 1)|o|, which is a contradic-

tion. If val(Γ) = 2(22i − 1)(22i−1 − 1). Similarly, |Ge| =
2|PΩ+

2(2i+1)
(2)||o|

(22i+1)(22i+1−1)(2(22i−1)(22i−1−1))
=

222i+2i
(22i−1 − 1)

2i−2
∏
j=1

(22j − 1)|o|. However, by [19], G ∼= T.o has no maximal subgroup

with order 222i+2i
(22i−1 − 1)

2i−2
∏
j=1

(22j − 1)|o|, which is a contradiction.

Row 25. In this last case, T ∼= PΩ−
2i+1(2), |VΓ| = (22i−1 − 1)(22i

+ 1), and G ∼= T.o with
o ≤ Out(PΩ−

2i+1(2)). After the calculation in Magma [15], it can be concluded that T is of

rank 3 on VΓ, with two non-trivial suborbits of lengths 2(22i−1 + 1)(22i−2 − 1) or 22i+1−2.
Hence, val (Γ) = 2(22i−1 + 1)(22i−2 − 1) and 22i+1−2, and Γ is T-arc-transitive. If val (Γ) =

2(22i−1 + 1)(22i−2 − 1), then |Tαβ| = |P1|
val(Γ)

=
|PΩ−

2i+1 (2)|
|VΓ|·val(Γ)

, and |Ge| = |Te.o| = |Tαβ.Z2.o|,

so |Ge| =
2|PΩ−

2i+1 (2)||o|
(22i−1−1)(22i+1)(2(22i−1+1)(22i−2−1))

= 22i(2i−1)(22i−2+1)
2i−3
∏
j=1

(22j − 1)|o|. However,

by [19], G ∼= T.o has no maximal subgroup with order 22i(2i−1)(22i−2+1)
2i−3
∏
j=1

(22j − 1)|o|,

which is a contradiction. If val (Γ) = 22i+1−2. Similarly, |Ge| =
2|PΩ−

2i+1 (2)||o|
(22i−1−1)(22i+1)(22i+1−2)

=

222i−3·2i+3(22i−1 + 1)
2i−2
∏
j=1

(22j − 1)|o|. However, by [19], G ∼= T.o has no maximal subgroup

with order 222i−3·2i+3(22i−1 + 1)
2i−2
∏
j=1

(22j − 1)|o|, which is a contradiction.

Now, we are ready to complete the proof of Theorem 1.

Proof of Theorem 1. Suppose that the Γ is a G-edge-primitive with order pq, where
G ≤ Aut(Γ), and p > q are odd primes. Let Γ be a G-edge-primitive graph of order
pq, where G ≤ Aut(Γ), and p > q are odd primes. Suppose Γ is not a star. By Lemma 4, G
is quasiprimitive or biquasiprimitive on VΓ.
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Firstly, suppose that G is quasiprimitive on VΓ, by Lemma 8, and Γ, G, s are listed in
Table 1 in Theorem 1.

Secondly, suppose that G is biquasiprimitive on VΓ, then G has biparts Δ1 and Δ2 with
VΓ = Δ1 ∪ Δ2, so |Δ1| = |Δ2| = pq

2 . However, as p > q are odd primes, this is impossible.
This completes the proof of Theorem 1.

4. Conclusions

Currently, the construction, classification, and characterization of various edge-primitive
graphs with additional conditions have become some of the main issues discussed in al-
gebraic graph theory. In this paper, edge-primitive graphs of order as a product of two
distinct primes are completely determined. This depends on non-abelian simple groups
with a subgroup of index pq being classified, where p > q are odd primes. It is meaningful
for future research to classify edge-primitive graphs of other specific orders or degrees.
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Abstract: This paper investigates the radio labeling of friendship networks (F3,k, F4,k, F5,k, and
F6,k). In contrast, a mathematical model is proposed for determining the upper bound of radio

numbers for (F3,k, F4,k, F5,k, and F6,k). A computational investigation is presented to demonstrate
that our results are superior to those of the past. In conclusion, the empirical study demonstrates that
the proposed results surpass the previous ones in terms of the upper bound of the radio number and
the run-time.

Keywords: graph coloring; frequency assignment problem; radio labeling of a graph; integer;
programing; span

MSC: 05C78

1. Introduction

Wireless communication includes all techniques and methods of connecting and
communicating between devices using a wireless signal and wireless communication
technologies and gadgets. Wireless communication network services may appear in many
areas, such as satellite communications, internet technology, mobile telephony, military
communications, TV and radio broadcasting, and many others. Rapid development in
wireless communication services led to a depletion of the most important resources and
frequencies in the radio spectrum. Such development affects the economic cost of available
frequencies. The reusing of frequencies may give good economies, but on the other hand,
it may decrease the quality of the communication service. Using the same frequencies
for many wireless communication networks leads to unacceptable interference among
signals. This motivated the frequency assignment problem (FAP). Given a set of transmitters
in a network, the main procedure of FAP is the assignment of frequencies to transmitters,
keeping interference at an acceptable level, and making use of the available frequencies
in an efficient way. Such constraints of interference are related to the use of the same (or
almost the same) frequencies for transmitters within a certain range from each other. The
smaller the distance is among transmitters, the stronger the interference is that occurs.
Therefore, it is suggested that the difference in frequency assignments should be greater.

The graph theory introduces an effective model for this problem. The interference
between transmitters is modeled as a graph, and this graph is called an interference graph
G(V, E). Every vertex from V(G) stands for a unique transmitter. Any two vertices are
adjacent (connected by an edge) if and only if the broadcasting of their corresponding
transmitters may interfere. The frequency channels are labeled by positive integers. Hence,
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the vertex coloring (labeling) problem of the graph G with some constraints on the labeling
is equivalent to FAP [1], where it is shown that the propagation of the signal may lead
to interference in regions with a large distance from each other. As a result, not only
must nearby transmitters be assigned different frequencies but they should be effectively
separated. This results in the modeling of FAP as distance-constrained labeling of the graph
G. For some services, it is adequate that the transmitters should have distinct frequencies;
moreover, the nearby transmitters inquired to use channels with appropriate separation.
In this situation, FAP is equivalent to the radio labeling problem of the graph G (see ref. [2]).
The radio labeling problem of graph G is described as follows. Let G = (V(G), E(G))
be a connected graph. For any u, v ∈ V(G), let d(u, v) denote the distance between two
vertices u, v. That is d(u, v) stands for the length of the shortest path between u, v. The
maximum distance between any two vertices in G is defined as the diameter of G and
denoted as diam(G). Thus, diam(G) = max{d(u, v) : u, v ∈ V(G) }. A radio labeling of G
is a one-to-one mapping L from V(G) to N, where N is the set of natural number, satisfying
the condition

|L(u)− L(v)| ≥ diam(G) + 1 − d(u, v). For all u, v ∈ V(G).

The span of a labeling L is the maximum integer (span) that L assigns to a vertex in G.
The main objective of the radio labeling problem is to find the minimum span over all such
labeling L of the graph G. Such minimum span is denoted as rn(G) or the radio number
of G. Saha [3] introduced an algorithm that determines the lower and upper bounds of
the radio number of a graph. Badr and Moussa [4] proposed the development of Saha’s
algorithm and introduced a novel mathematical model for the radio labeling application.
The radio labeling problem has been studied for different families of graphs [5–18]. For
more details about the mathematical models, the reader can refer to [19–30].

As the number of wireless networks and services increase, this leads to many transmis-
sion stations that may be close to each other. Consequently, in most cases, there is at least
one transmission station that will overlap with many other stations. This inhibits the ability
of the receiver to decipher incoming signals. This concept is illustrated in Figure 1, which
shows a typical situation in which the signal of transmission stations A and B overlap in
the vicinity of transmission station C as in Figure 1a, while Figure 1b shows the modeling
of this interference by path graph. Whenever the number of transmission stations increases,
as Figure 2a, every station hopes to increase its coverage area, which leads to more physical
overlapping and hence, more radio frequency interference. This situation can be modeled
by the friendship graph as shown in Figure 2b.

Figure 1. Path graph for modeling frequency interference of stations A, B and C. (a) Physical frequency
interference. (b) Path interference graph.

The objective of the present paper is to study the radio labeling of friendship networks
(F3,k, F4,k, F5,k , and F6,k). On the other hand, a mathematical model is proposed to find
the upper bound of F3,k, F4,k, F5,k , and F6,k. A computational study is presented to prove
the efficiency of our results compared to the previous results. Finally, the empirical study
shows that the proposed results outperform the previous results according to the upper
bound of the radio number and the running time.
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Figure 2. Friendship graph for modeling frequency interference of stations A, B, C, D, E, F
and G. (a) Many transmitting stations and more Physical frequency interference. (b) Friendship
interference graph.

The rest of this paper is organized as follows. Section 2 presents the upper bounds
for the radio number of the above-mentioned friendship graphs. The integer linear pro-
gramming model of radio labeling of such friendship graphs is presented in Section 3. In
Section 4, we present an experimental study for comparing results obtained in Sections 2
and 3, and algorithms that solved the same problem from [3,4]. The conclusion of this
paper and future work are presented in Section 5.

2. Radio Number of Friendship Graph

In this section, we seek to find the upper bound of rn(G) where G is a friendship graph.

Definition 1. For the given positive integers k, m, a friendship graph, denoted as Fm,k, is represented
as k cycles (blocks), each of length m, and all have one common vertex. For an illustration, F3,k is
shown in Figure 3.

Figure 3. F3,k with labeling of vertices.

Definition 2. The order of the graph G is the cardinality of its vertex set V(G).

Theorem 1. The radio number of the friendship graph F3,k is its order.

Proof. Following Definition 1 for F3,k, we find that diam(F3,k) = 2,
∣∣V(F3,k)

∣∣ = 2k + 1, and
d
(
xi, xj

) ≥ 1 for any xi, xj ∈ V(F3,k) and i �= j. Since any radio labeling L is one-to-one, it
follows that

rn(F3,k) ≥
∣∣V(F3,k)

∣∣ (1)
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Define the map L with codomain {0, 2, 3, · · · , 2k + 1} as follows:

L(x1) = 0;
L(xi) = i; 2 ≤ i ≤ 2k + 1

Now, we claim to prove that
∣∣L(xi)− L

(
xj
)∣∣ ≥ diam(F3,k) + 1 − d

(
xi, xj

)
, that is∣∣L(xi)− L

(
xj
)∣∣ ≥ 3 − d

(
xi, xj

)
for all xi, xj ∈ V(F3,k) and i �= j.

Case 1. Let 2 ≤ i ≤ k + 1 and 2 ≤ j ≤ k + 1. Then,
∣∣L(xi)− L

(
xj
)∣∣ = |i − j| ≥ 1.

Since d
(
xi, xj

)
= 2, then,

∣∣L(xi)− L
(
xj
)∣∣ ≥ 3 − d

(
xi, xj

)
.

Case 2. Let i = 1, j ∈ {2, 3, · · · , 2k + 1}. Then,
∣∣L(xi)− L

(
xj
)∣∣ = |0 − j| = j ≥ 2.

Since d
(
xi, xj

)
= 1. Consequently,

∣∣L(xi)− L
(

xj
)∣∣ ≥ 3 − d

(
xi, xj

)
.

Case 3. Let i, j ∈ {k + 2, k + 3, · · · , 2k + 1}. Then,
∣∣L(xi)− L

(
xj
)∣∣ ≥ 1. Since, d

(
xi, xj

)
= 2.

Therefore,
∣∣L(xi)− L

(
xj
)∣∣ ≥ 3 − d

(
xi, xj

)
.

Case 4. Let i ∈ {2, 3, · · · , k + 1}, j = k + i. Then,
∣∣L(xi)− L

(
xj
)∣∣ = |k + i − i| = k ≥ 2.

Since d
(
xi, xj

)
= 1 then

∣∣L(xi)− L
(
xj
)∣∣ ≥ 3 − d

(
xi, xj

)
.

Case 5. Let i ∈ {2, 3, · · · , k + 1}, j ∈ {k + 2, k + 3, · · · , 2k + 1}, for every j �= k + i,∣∣L(xi)− L
(
xj
)∣∣ = |i − j| ≥ k − 1 where k ≥ 2. Moreover, d

(
xi, xj

)
= 2.

Hence,
∣∣L(xi)− L

(
xj
)∣∣ ≥ 3 − d

(
xi, xj

)
.

Thus, L is a radio labeling of F3,k and

rn(F3,k) ≤ 2k + 1 (2)

From Formulas (1) and (2), rn(F3,k) = 2k + 1. �

For more illustrations, Figure 3 shows F3, k with labeling of vertices.

Theorem 2. Let k > 2 and G ∼= F4, k be a friendship graph with blocks each of length 4 and∣∣V(F4,k )
∣∣ = 3k + 1 then rn(F4, k) ≤ 7k + 1.

Proof . Define the map L as follows:

L
(

xjk+i

)
=

⎧⎪⎪⎨
⎪⎪⎩

0, i = j = 0
3 + i − 1, j = 0, 1 ≤ i ≤ k
k + 1 + 3i, j = 1, 1 ≤ i ≤ k

4k + 1 + 3i, j = 2, 1 ≤ i ≤ k

Since diam(F4,k) = 4, we claim to prove that |L(xu)− L(xv)| ≥ 5 − d(xu, xv) for all xu, xv ∈
V(F4,k) and u �= v.

Case 1. Let j = 0, 1 ≤ i ≤ k, then
∣∣∣L(x0)− L

(
xjk+i

)∣∣∣ = |0 − (3 + i − 1)| = 2 + i. Since

d
(

x0, xjk+i

)
= 2. Consequently,

∣∣∣L(x0)− L
(

xjk+i

)∣∣∣ ≥ 5 − d
(

x0, xjk+i

)
.

Case 2. Let j ∈ {1, 2}, 1 ≤ i ≤ k,then

∣∣∣L(x0)− L
(

xjk+i

)∣∣∣= { k + 1 + 3i, j = 1
4k + 1 + 3i, j = 2

Since d
(

x0, xjk+i

)
= 1. Consequently,

∣∣∣L(x0)− L
(

xjk+i

)∣∣∣ ≥ 5 − d
(

x0, xjk+i

)
.

Case 3. Let j ∈ {1, 2}, 1 ≤ t ≤ k and 1 ≤ i ≤ k

d
(

xi, xjk+t

)
=

{
1, i = t
3 i �= t
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Consequently,

∣∣∣L(xi)− L
(

xjk+t

)∣∣∣ =
⎧⎪⎪⎨
⎪⎪⎩

2i + k − 1, j = 1 and i = t
2i + 4k − 1, j = 2 and i = t

3i − t + k − 1 j = 1 and i �= t
3i − t + 4k − 1 j = 2 and i �= t

Therefore,
∣∣∣L(xi)− L

(
xjk+t

)∣∣∣ ≥ {4, i = t
2 i �= t

Hence,
∣∣∣L(xi)− L

(
xjk+t

)∣∣∣ ≥ 5 − d
(

xi, xjk+t

)
.

Case 4. Let j, m be elements of {1, 2}, 1 ≤ t ≤ k and 1 ≤ i ≤ k.
Then, d

(
xjk+i, xmk+t

)
= 2. Moreover,

∣∣∣L(xjk+i

)
− L( xmk+t)

∣∣∣ = { 3k, j �= m and i = t
3(i − t), j = m and i �= t

Then,
∣∣∣L(xjk+i

)
− L(xmk+t)

∣∣∣ ≥ 5 − d
(

xjk+i, xmk+t

)
.

Case 5. Let j = 0, 1 ≤ i < t ≤ k, then d
(

xjk+i, xjk+t

)
= 4 and∣∣∣L(xjk+i

)
− L
(

xjk+t

)∣∣∣ = |3 + i − 1 − (3 + t − 1)| = t − i ≥ 1. Therefore,

∣∣∣L(xjk+i

)
− L
(

xjk+t

)∣∣∣ ≥ 5 − d
(

xjk+i, xjk+t

)
.

From the above cases, the radio condition holds and L is a radio labeling of F4, k and

rn(F4, k) ≤ 7k + 1. �

The graph F4, k with labeling of vertices is presented in Figure 4.

Figure 4. F4, k with labeling of vertices.
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Theorem 3. Let k > 2 and G ∼= F5, k be a friendship graph with blocks each of length 5 and∣∣V(F5,k )
∣∣ = 4k + 1 then, rn(F5, k ) ≤ 8k + 1.

Proof. Define the map L as follows:
Let k be an odd number, and then

L
(

xjk+i

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, i = j = 0
3 + i − 1, j = 0, 1 ≤ i ≤ k

k + 2(i + 1), j = 1, 1 ≤ i ≤ k
3k + 2(i + 1), j = 2, 1 ≤ i ≤ k
5k + 3i + 1, j = 3, 1 ≤ i ≤ k

while

L
(

xjk+i

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = j = 0
3 + i − 1, j = 0, 1 ≤ i ≤ k

k + 2(i + 1), j = 1, 1 ≤ i ≤ k
3k + 4, j = 2, i = 1

3k + 3 + 2i j = 2, 2 ≤ i ≤ k
5k + 5 j = 3, i = 1

5k + 1 + 3i j = 3, 2 ≤ i ≤ k

whenever k is an even number.
Since diam(F5,k) = 4, we claim to prove that |L(xu)− L(xv)| ≥ 5 − d(xu, xv) for all

xu, xv ∈ V(F5,k) and u �= v.

Case 1. Let j = 0, 1 ≤ i ≤ k, and then,
∣∣∣L(x0)− L

(
xjk+i

)∣∣∣ = |0 − (3 + i − 1)| = 2 + i.

Since d
(

x0, xjk+i

)
= 2. Then,

∣∣∣L(x0)− L
(

xjk+i

)∣∣∣ ≥ 5 − d
(

x0, xjk+i

)
.

Case 2. Let j = 1, 1 ≤ i ≤ k, and then
∣∣∣L(x0)− L

(
xjk+i

)∣∣∣ = |0 − (k + 2i + 2)| = k + 2i +

2 ≥ 3. Since d
(

x0, xjk+i

)
∈ {1, 2}. Consequently,

∣∣∣L(x0)− L
(

xjk+i

)∣∣∣ ≥ 5 − d
(

x0, xjk+i

)
.

Case 3. Let j = 2, 1 ≤ i ≤ k then,
∣∣∣L(x0)− L

(
xjk+i

)∣∣∣ = |0 − (3k + 2i + 2)| = 3k + 2i + 2 ≥
3. Moreover, d

(
x0, xjk+i

)
∈ {1, 2}. Consequently,

∣∣∣L(x0)− L
(

xjk+i

)∣∣∣ ≥ 5 − d
(

x0, xjk+i

)
.

Case 4. Let j = 3, 1 ≤ i ≤ k, and then∣∣∣L(x0)− L
(

xjk+i

)∣∣∣ = |0 − (5k + 3i + 1)| = 5k + 3i + 1 ≥ 3. Since, d
(

x0, xjk+i

)
∈ {1, 2},

then,
∣∣∣L(x0)− L

(
xjk+i

)∣∣∣ ≥ 5 − d
(

x0, xjk+i

)
.

Case 5. Let j = 0, 1 ≤ i < t ≤ k, and then
∣∣∣L(xjk+i

)
− L
(

xjk+t

)∣∣∣ = |L(xi)− L(xt)| =
t − i ≥ 1.
Since d

(
xjk+i, xjk+t

)
= 4, then

∣∣∣L(xjk+i

)
− L
(

xjk+t

)∣∣∣ ≥ 5 − d
(

xjk+i, xjk+t

)
.

Similarly, we can prove that the radio condition holds for every pair of vertices from
V(F5, k), and L is a radio labeling of F5, k that proved rn(F5, k) ≤ 8k + 1. �

For more illustrations, F5, k with labeling of vertices is presented in Figure 5.
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Figure 5. F5, k with labeling of vertices.

Theorem 4. Let k > 2, F6, k be a friendship graph with blocks each of length 6 and
∣∣V(F6,k )

∣∣ =
5k + 1 and then rn(F6, k) ≤ 17k + 1.

Proof. Define the map L as follows:

L
(

xjk+i

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = j = 0
4 + i − 1, j = 0, 1 ≤ i ≤ k

k + 6, j = 1, i = 1
k + 10 + 3(i − 2) j = 1, 2 ≤ i ≤ k

4k + 4 + 3i j = 2, 1 ≤ i ≤ k
7k + 7 j = 3, i = 1

7k + 11 + 5(i − 2) j = 3, 2 ≤ i ≤ k
12k + 5i + 1 j = 3, 2 ≤ i ≤ k

Since diam(F6, k) = 6. From the above definition of the labeling function L and
Figure 6, one can prove that the radio condition |L(xu)− L(xv)| ≥ 7 − d(xu, xv) holds for
all xu, xv ∈ V(F6, k) and u �= v. Moreover, rn(F6, k) ≤ 17k + 1. �

Figure 6. F6, k with labeling of vertices.
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A friendship F6, k with labeling of its vertices is shown in Figure 6.

3. Integer Linear Programming Model

A new mathematical formulation for the radio labeling problem is proposed for
F3, k, F4, k, F5, k, and F6, k. We next describe the problem of finding the radio labeling
problem for a graph in terms of an integer programming problem [4]. Let G be a connected
graph of order n with V(G) = {u1, u2, · · · , un } and let D =

[
dij
]

be the distance matrix of
G, that is, dij = d

(
ui, uj

)
for 1 ≤ i, j ≤ n. We suppose that vi are the labels of the vertices ui

such that 1 ≤ i ≤ n. Now, we can introduce the mathematical model for the radio labeling
problem as an integer programming model. We define the function F by

minF = v1 + v2 + · · ·+ vn

subject to ∣∣vi − vj
∣∣ ≥ diam + 1 − d

(
ui, uj

)
for 1 ≤ i ≤ n − 1; 2 ≤ j ≤ n and i < j

where v1, v2, · · · , vn ∈ {0, 1}
The radio number of the graph G = max1≤i≤n{vi}.

4. Computational Study

We carried out a computational study to measure the efficiency of the proposed upper
bounds by Theorems 1–4 compared to the results of the algorithms introduced in [3,4].
Moreover, the comparison between the results of those Theorems and the mathemati-
cal model introduced in Section 3 is also presented. All of these are compatible with
a PC with a Core i7 CPU@2.8 GHz, 8 GB of RAM, and a 64-bit operating system. The
computational studies were carried out using MATLAB R2016a and the MS Windows 7
Professional system.

According to the upper bound of the radio number of F3,k, Table 1 and Figure 7 show
that the proposed results in Theorem 1 outperform the proposed results in [3] for k when it
is odd. When k is even, the same results occur. On the other hand, the proposed results in
Theorem 1 outperform the proposed results in [4] for every k.

Table 1. A comparison among our results, [3], and integer programming results [4] for F3,k.

k n
Saha [3] ILPM [4] Theorem 1

rn(F3,k) CPU Time rn(F3,k) CPU Time rn(F3,k)

1 3 4 0.024824 4 0.07009 3

2 5 5 0.026428 7 0.056758 5

3 7 8 0.028891 10 0.060813 7

4 9 9 0.035933 13 0.066483 9

5 11 12 0.035994 16 0.067994 11

6 13 13 0.03913 19 0.07225 13

7 15 16 0.03958 22 0.073795 15

8 17 17 0.041326 25 0.078172 17

9 19 20 0.044408 28 0.078172 19

10 21 21 0.045015 31 0.080299 21

11 23 24 0.047039 34 0.088287 23

12 25 25 0.047221 37 0.102373 25

13 27 28 0.048065 40 0.160287 27

14 29 29 0.04859 43 0.182859 29

15 31 32 0.092601 46 0.272814 31
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Figure 7. A comparison among our results, the Saha algorithm, Saha, L., et al., 2012 [3]; and integer
programming according to the upper bound of the radio number of F3,k from Badr, et al., 2020 [4].

According to the running time, Table 1 and Figure 8 show that the proposed results
in Theorem 1 take the constant time complexity O(1), while the proposed results in [3]
take O(n3). On the other hand, the proposed results in Theorem 1 take less time than the
proposed results in [4].

Figure 8. A CPU time comparison among our results, the Saha algorithm, Saha, L., et al., 2012 [3];
and integer programming of F3,k from Badr, et al., 2020 [4].

According to the upper bound of the radio number of F4,k, Table 2 and Figure 9 show
that the proposed results in Theorem 2 outperform the proposed results in [3] for k = 1, 2.

Table 2. A comparison among our results, [3], and integer programming results [4] for F4,k.

k n
Saha [3] ILPM [4] Theorem 2

rn(F4,k) CPU Time rn(F4,k) CPU Time rn(F4,k)

1 4 10 0.025561 11 0.051869 8

2 7 16 0.027393 17 0.053149 15

3 10 22 0.02758 23 0.055986 22

4 13 29 0.028133 30 0.056235 29

5 16 36 0.030245 37 0.067974 36

6 19 43 0.030387 44 0.067994 43

7 22 50 0.031081 51 0.06921 50

8 25 57 0.031635 58 0.071135 57

9 28 64 0.031749 65 0.07225 64
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Table 2. Cont.

k n
Saha [3] ILPM [4] Theorem 2

rn(F4,k) CPU Time rn(F4,k) CPU Time rn(F4,k)

10 31 71 0.035689 72 0.073031 71

11 34 78 0.038289 79 0.106774 78

12 37 85 0.043385 86 0.107721 85

13 40 92 0.043505 93 0.160287 92

14 43 99 0.044422 100 0.182859 99

15 46 106 0.054716 107 0.200691 106

Figure 9. A comparison among our results, the Saha algorithm, Saha, L., et al., 2012 [3]; and integer
programming according to the upper bound of the radio number of F4,k from Badr, et al., 2020 [4].

For k = 3, 4, . . . , 15, the same results occur. On the other hand, the proposed results in
Theorem 2 outperform the proposed results in [4] for every k.

According to the running time, Table 2 and Figure 10 show that the proposed results
in Theorem 2 take the constant time complexity O(1) while the proposed results in [3]
take O(n3). On the other hand, the proposed results in Theorem 2 take less time than the
proposed results in [4]

Figure 10. A CPU time comparison among our results, the Saha algorithm, Saha, L., et al., 2012 [3];
and integer programming of F4,k from Badr, et al., 2020 [4].
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According to the upper bound of the radio number of F5,k, Table 3 and Figure 11 show
that the proposed results in Theorem 3 outperform the proposed results in [3] for k = 1.

Table 3. A comparison among our results, [3], and integer programming results [4] for F5,k.

k n
Saha [3] ILPM [4] Theorem 3

rn
(
F5,k
)

CPU Time rn
(
F5,k
)

CPU Time rn
(
F5,k
)

1 5 12 0.013394 14 0.033658 9

2 9 17 0.013676 24 0.038117 17

3 13 25 0.021828 35 0.048892 25

4 17 33 0.045767 46 0.050592 33

5 21 41 0.159417 57 0.053916 41

6 25 49 0.170631 68 0.057428 49

7 29 57 0.212698 79 0.064091 57

8 33 65 0.248107 90 0.124051 65

9 37 73 0.253468 101 0.133257 73

10 41 81 0.285491 112 0.162882 81

11 45 89 0.286759 123 0.221091 89

12 49 97 0.450209 134 0.23193 97

13 53 105 0.454764 145 0.23485 105

14 57 113 0.604194 156 0.312935 113

15 61 121 0.621928 167 0.317238 121

Figure 11. A comparison among our results, the Saha algorithm, Saha, L., et al., 2012 [3]; and integer
programming according to the upper bound of the radio number of F5,k from Badr, et al., 2020 [4].

For k = 2, 3, 4, · · · , 15, the same results occur. On the other hand, the proposed results
in Theorem 3 outperform the proposed results in [4] for every k.

According to the running time, Table 3 and Figure 12 show that the proposed results
in Theorem 3 take the constant time complexity O(1), while the proposed results in [3]
take O(n3). On the other hand, the proposed results in Theorem 3 take less time than the
proposed results in [4].
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Figure 12. A CPU time comparison among our results, the Saha algorithm, Saha, L., et al., 2012 [3];
and integer programing of F5,k from Badr, et al., 2020 [4].

According to the upper bound of the radio number of F6,k, Table 4 and Figure 13 show
that the proposed results in Theorem 4 outperform the proposed results in [3] for k = 1.
For k = 2, 3, 4, · · · , 15, the same results occur. On the other hand, the proposed results in
Theorem 4 outperform the proposed results in [4] for every k.

Table 4. A comparison among our results, [3], and integer programming results [4] for F6,k.

k n
Saha [3] ILPM [4] Theorem 4

rn
(
F6,k
)

CPU Time rn
(
F6,k
)

CPU Time rn
(
F6,k
)

1 6 22 0.026524 24 0.033143 18

2 11 36 0.029344 44 0.038123 35

3 16 52 0.030768 62 0.040921 52

4 21 69 0.049229 80 0.042084 69

5 26 86 0.092921 98 0.045056 86

6 31 103 0.094403 117 0.046653 103

7 36 120 0.129486 136 0.046656 120

8 41 137 0.258403 155 0.047893 137

9 46 154 0.281746 174 0.04914 154

10 51 171 0.314351 193 0.05036 171

11 56 188 0.417131 212 0.060892 188

12 61 205 0.488938 231 0.06789 205

13 66 222 0.59044 250 0.075292 222

14 71 239 0.703049 269 0.08014 239

15 76 256 1.08618 288 0.09014 256

According to the running time, Table 4 and Figure 14 show that the proposed results
in Theorem 4 take the constant time complexity O(1), while the proposed results in [3]
take O(n3). On the other hand, the proposed results in Theorem 4 take less time than the
proposed results in [4].
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Figure 13. A comparison among our results, the Saha algorithm, Saha, L., et al., 2012 [3]; and integer
programming according to the upper bound of the radio number of F6,k from Badr, et al., 2020 [4].

Figure 14. A CPU time comparison among our results, the Saha algorithm, Saha, L., et al., 2012 [3];
and integer programming of F6,k from Badr, et al., 2020 [4].

5. Conclusions

In this paper, the radio labeling of friendship networks (F3,k, F4,k, F5,k, and F6,k)
are studied. Additionally, a mathematical model is proposed to find the upper bound of
(F3,k, F4,k, F5,k , and F6,k). A computational study is presented to prove the efficiency
of our results compared to the previous results. Finally, the empirical study shows that
the proposed results overcome the previous results according to the upper bound of the
radio number and the running time. In future work, we will find an upper bound of
the radio number of general friendship networks Fn,k. Moreover, new algorithms and
development of known algorithms will be proposed to find the radio numbers of the
different radio networks.
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1. Introduction

A commutative residuated lattice is defined as an algebra (L, ∧, ∨, ·, →, e) of type (2, 2, 2, 2, 0)
satisfying the following conditions:(RL1) (L, ∧, ∨) is a lattice; (RL2) (L, ·, e) is a commuta-
tive monoid with identity e; and (RL3) (∀x, y, z ∈ L) x · y ≤ z ⇐⇒ y ≤ x → z, where ≤ is
the lattice ordering.

Sometimes, commutative residuated lattices are also called commutative residuated
lattice-ordered monoids and abbreviated by CRLs. It is well known that (RL3) holds if and
only if ≤ is compatible with · and for all a, b ∈ L, {p ∈ L : a · p ≤ b} contains a greatest
element (denoted by a → b).

A CRL L is called idempotent if for all a ∈ L, a · a = a; is called integral if for all a ∈ L,
a ≤ e; is called totally ordered if for all a, b ∈ L, a ≤ b or a ≥ b; is called semilinear when it
is a subdirect product of totally ordered CRLs; and is called conic if for all a ∈ L, a ≤ e or
a ≥ e (see [1–4]). A semilinear idempotent CRL is said to be an odd Sugihara monoid if for
all a ∈ L, (a → e) → e = a. An integral idempotent CRL is said to be a Brouwerian algebra
if for all a, b ∈ L, a · b = a ∧ b. As in [4], a CRL L is called semiconic when it is a subdirect
product of conic CRLs.

Ward and Dilworth were the first to study a class of algebra as a generalization of
ideal lattices of rings in [5], which we call commutative residuated lattices. CRLs play an
important role in the study of algebraic logic, as they provide an algebraic semantics for
substructural logics (see [6]). The multitude of different types of CRLs makes the investiga-
tion rather complicated, and at the present moment, large classes of CRLs lack a structural
description. The study of constructions is very important in enhancing our understanding
of CRLs and, as a result, of substructural logics. Hart, Rafter and Tsinakis were the first to
study the structure theory of CRLs in [7]. In [8], the authors extend the main results of [7] to
the non-commutative case. More recently, there has been substantial research regarding the
structure of some specific classes of CRLs, see, for example, [9–12]. Idempotent CRLs form
an important tool both in algebra and logic (see [6]). Among them, semiconic ones make
a valuable contribution because they include several important algebraic counterparts of
substructural logics (see [13]). Recently, algebra properties for semiconic CRLs have been
given by many authors (see [1,2,4,6,14–19]). In [20], the authors obtain a structure theorem
for semilinear idempotent CRLs. In this paper, we will study the construction of semiconic
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idempotent CRLs. From the semigroup algebraic perspective, idempotent CRLs are indeed
ordered semigroups (for ordered semigroups, see [21]). The natural partial order plays
an important role in the investigation of semigroups (see [22,23]). We will make use of the
natural partial order to obtain some important properties and then establish a structure
theorem of semiconic idempotent CRLs, which generalizes the main result of [20].

We proceed as follows: in Section 2, we present some definitions and facts used in the
sequel. In Section 3, we obtain some properties of semiconic idempotent CRLs. In Section 4,
we give a structure theorem for semiconic idempotent CRLs, which generalizes the main
result of [20]. In Section 5, we prove that the variety of strongly semiconic idempotent
CRLs has the amalgamation property, which generalizes the main result of [10].

2. Preliminaries

In this section, we will list some facts about CRLs.
A monoid (M, ·, e) is said to be a po-monoid when it is also a poset (M, ≤), and in which

≤ is compatible with · in the sense that (∀a, b, c ∈ M) a ≤ b =⇒ c · a ≤ c · b, a · c ≤ b · c.
A po-monoid (M, ·, e,≤) is said to be a lattice-ordered monoid when (M,≤) is a lattice.
A lattice-ordered monoid (M, ·, e,≤) is said to be idempotent if for all a ∈ M, a · a = a; is
said to be commutative when the monoid reduct (M, ·, e) is a commutative monoid; and
is said to be conic, if for all a ∈ M, a ≤ e or a ≥ e. For convenience, we simply write
a · b as ab for a, b ∈ M. The reader is referred to reference [21] for detailed information on
lattice-ordered monoids.

We need the following results.

Lemma 1 ([19]). Let (M, ·, e,≤) be an idempotent lattice-ordered monoid with identity e, and
a, b ∈ M.

(1) a ∧ b ≤ ab ≤ a ∨ b.
(2) If a, b ≥ e, then ab = a ∨ b.
(3) If a, b ≤ e, then ab = a ∧ b.
(4) If a ≤ e ≤ ab, then ab = b.
(5) If ab ≤ e ≤ a, then ab = b.

Let (L,∧,∨, ·,→, e) be a CRL and ≤ shall always denote the lattice order of L in
this paper.

Lemma 2 ([6,24]). Let (L, ∧, ∨, ·, →, e) be a CRL and a, b, c ∈ L.

(1) a(b ∨ c) = ab ∨ ac.
(2) a → (b ∧ c) = (a → b) ∧ (a → c).
(3) (b ∨ c) → a = (b → a) ∧ (c → a).
(4) b(b → a) ≤ a.
(5) e ≤ a → a.
(6) ((a → b) → b) → b = a → b.
(7) a → (b → c) = (ab) → c.

From now on, we denote a → e and (a → e) → e by a∗ and a∗∗, respectively. Next,
we shall present some known facts on conic idempotent CRLs used in later proofs. More
details on semiconic residuated lattices can be found in [2,4,25].

Lemma 3 ([4]). Let L be a conic idempotent CRL, and a, b ∈ L.

(1) If a and b are incomparable, then a∗ = b∗.
(2) The elements a and b∗ are comparable.
(3) a � b if and only if a → b < e.
(4) If a ≤ e(a > e), then a∗ = a → a ≥ e(a∗ < e).
(5) {a∗ : a ∈ L} is a chain in (L, ∧, ∨).
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3. Some Properties

To begin with, we obtain some properties of conic idempotent commutative lattice-
ordered monoids.

Now let (L, ·, e, ≤) be a conic idempotent commutative lattice-ordered monoid. Since
the monoid reduct of L is an idempotent commutative monoid, we define the natural partial
order on L as follows: for a, b ∈ L,

a ≤n b if and only if ab = a.

It is clear that (L, ≤n) is a semilattice. For a, b ∈ L, a ‖ b [resp. a ‖n b] means that a and
b are incomparable under ≤ [resp. ≤n], and a ≺ b [resp. a ≺n b] means that a < b [resp.
a <n b]. For any c ∈ L, a ≤ c ≤ b [resp. a ≤n c ≤n b] implies either a = c or b = c. Let
a ∧n b = max{c ∈ L : c ≤n a, b} and a ∨n b = min{c ∈ L : a, b ≤n c} if it exists in (L, ≤n).

Proposition 1. Let (L, ·, e, ≤) be a conic idempotent commutative lattice-ordered monoid. The fol-
lowing statements are true for a, b ∈ L:

(1) If a, b ≤ e, then a ≤n b if and only if a ≤ b.
(2) If a, b ≥ e, then a ≤n b if and only if a ≥ b.
(3) a ‖ b if and only if a ‖n b.
(4) If a ‖ b and a < e, then a ∧n b = a ∧ b.
(5) If a ‖ b and a > e, then a ∧n b = a ∨ b.

Proof. (1) Let a, b ∈ L be such that a, b ≤ e. Then, by Lemma 1(3), a ≤n b ⇐⇒ ab = a ⇐⇒
a ∧ b = a ⇐⇒ a ≤ b.

(2) This is similar to (1).
(3) If a ‖ b, then since L is conic, a, b ≤ e or a, b ≥ e. If a, b ≤ e, then by (1), a ∦n b is

impossible. Thus, a ‖n b. Similarly, if a, b ≥ e, then a ‖n b. Conversely, let a, b ∈ L such
that a ‖n b. Suppose that a ≤ e ≤ b or b ≤ e ≤ a. Then, since L is conic, by Lemma 1(4,5),
ab = a or ab = b, which implies that a ≤n b or b ≤n a, a contradiction. Hence, a, b ≤ e or
e ≤ a, b. Thus, by (1) and (2), a ‖ b.

(4) Let a, b ∈ L such that a ‖ b and a < e. Then, by Lemma 1(3), a ∧ b = ab. Let c ∈ L
such that c ≤n a and c ≤n b. Then, ca = c and cb = c, so cab = cb = c. Thus, c ≤n ab. Since
ab ≤n a and ab ≤n b, a ∧ b = ab = a ∧n b.

(5) Let a, b ∈ L such that a ‖ b and a > e. Then, by Lemma 1(2), ab = a ∨ b > a, b > e.
So by (2), a ∨ b ≤n a and a ∨ b ≤n b. Let c ∈ L such that c ≤n a and c ≤n b. Then, ca = c
and cb = c, so cab = cb = c. Thus, c ≤n ab = a ∨ b. Therefore, a ∧n b = a ∨ b.

Secondly, we obtain some properties of conic idempotent CRLs.

Proposition 2. Let L be a conic idempotent CRL. The following statements are true for a, b ∈ L:

(1) If a < e, then a <n a∗ and a∗ ∦n b.
(2) If a < e and a <n b <n a∗, then b < e.
(3) If a > e, then a∗ <n a and a∗ ∦n b.
(4) If a > e and a∗ <n b <n a, then b > e.
(5) If a ‖ b and a < e, then a ∨n b = a ∨ b and (a ∧ b)∗ = a∗.

Proof. (1) Let a, b ∈ L such that a < e. Then, ae = a < e, and so a < e ≤ a → e = a∗.
Since a(a → e) ≤ e by Lemma 2(4), a(a → e) = a by Lemma 1(5), which implies that
a <n a → e = a∗. Since by Lemma 3(2), a∗ ∦ b, by Proposition 1(3), a∗ ∦n b.

(2) Let a ∈ L such that a < e and a <n b <n a∗ = a → e. Then, ab = a < e, and so
b ≤ a → e = a∗. Suppose that b ≥ e. Then, since by Lemma 3(4), a∗ ≥ e, by Proposition 1(2),
a∗ ≤n b, contrary to b <n a∗. Thus, b < e.

(3) This is similar to (1).
(4) This is similar to (2).
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(5) Let a, b ∈ L such that a, b < e and a ‖ b. Since a, b ≤ a ∨ b ≤ e, by (1), a ≤n a ∨ b
and b ≤n a ∨ b. Let d ∈ L such that a ≤n d and b ≤n d. Then, ad = a and bd = b, so
d(a ∨ b) = da ∨ db = a ∨ b by Lemma 2(1). Thus, a ∨ b ≤n d. Therefore, a ∨n b = a ∨ b.
Because a ∧ b ≤ a < e, a∗ = a → e ≤ (a ∧ b) → e = (a ∧ b)∗ by Lemma 2(3). Suppose that
a∗ < (a ∧ b)∗. Then, a ∧ b < a < a∗ < (a ∧ b)∗, so by (2), a∗ < e. But since a < e, a∗ ≥ e by
Lemma 3(4), a contradiction. Thus, a∗ = (a ∧ b)∗.

Proposition 3 ([2]). Let L be a conic idempotent CRL, and let a, b ∈ L such that a ≤ e. If b < a
or a ‖ b, then a → b = b or a → b ‖ a.

Let (L, ≤) be a join-semilattice, and let L⊥ = L ∪ {⊥} such that ⊥ ≤ a for all a ∈ L. L

is said to be an upper pre-lattice when L is not a lattice and (L⊥,≤) is a lattice. Let L be a
lattice and C ⊆ L. C is said to be an upper pre-sublattice of L if C is an upper pre-lattice and
there exists a ∈ L such that (C ∪ {a},≤) is a sublattice of L. Similarly, we can define the
lower pre-lattice and lower pre-sublattice.

Let L be a conic idempotent CRL. We define the following sets: L+ = {a ∈ L : a > e},
L− = {b ∈ L : b ≤ e}, L∗ = {j ∈ L : (∃a ∈ L) j = a∗}, L∗− = {j ∈ L∗ : j ≤ e},
and L∗+ = {j ∈ L∗ : j > e} = {j ∈ L∗ : (∃i ∈ L∗−) j = i∗}. For every j ∈ L∗, let
Lj = {c ∈ L : c∗∗ = j}. By Lemma 3(4), Lj ⊆ L+ for all j ∈ L∗+. Since a∗ <n a∗∗ ≤n a <n e
for all a > e by Proposition 2(1,3) and Lemma 3(4), a∗∗ > e by Proposition 2(4). It follows
that Li ⊆ L− for all i ∈ L∗−. Because L∗− ⊆ L∗ and (L∗,≤) is a chain by Lemma 3(5),
(L∗−, ≤) is a chain. It is clear that L∗ = L∗− ∪ L∗+.

We have the following result, which generalizes ([15] Theorem 3.2).

Theorem 1. Let L be a conic idempotent CRL.

(1) If a ∈ L, then a ∈ L∗ if and only if a∗∗ = a.
(2) If i, l ∈ L∗−, then i = l if and only if i∗ = l∗. In addition, i ≺n i∗ for all i ∈ L∗− \ {e}.
(3) If j, s ∈ L∗ such that j �= s, then Lj ∩ Ls = ∅.
(4) If i ∈ L∗−, then Li is a sublattice of (L, ∧, ∨) and (Li, ∧, ∨, ·, →Li , i) is a Brouwerian algebra,

where →Li is given by x →Li y = (x → y) ∧ i for all x, y ∈ Li.
(5) If j = i∗ ∈ L∗+, then Lj has a greatest element j and is either a sublattice of L or an upper

pre-sublattice of L.
(6) If i, l ∈ L∗− such that i �= l, a ∈ Li, b ∈ Ll and c ∈ Li∗ , d ∈ Ll∗ then i < l ⇐⇒ a < b ⇐⇒

c > d.
(7) If i ∈ L∗− and j = i∗ such that Lj is an upper pre-sublattice of L, then there exists l ∈ L∗−

such that i ≺ l in L∗− and (Lj ∪ {l∗}, ≤) is a sublattice of L with a least element l∗.
(8) If L satisfies that (x ∧ y)∗ = x∗ ∨ y∗ , then Li is a sublattice of L for all i ∈ L∗+.
(9) If i ∈ L∗−, l ∈ L∗+ and a ∈ Li, b ∈ Ll, then i <n l ⇐⇒ a <n b.
(10) L is finitely subdirectly irreducible if and only if Le is a finitely subdirectly irreducible

Brouwerian algebra.
(11) L∗ is a totally ordered odd Sugihara monoid and subalgebra of L, that we call its skeleton.

Proof. (1) We only need to verify the necessity because the sufficiency is clear. Suppose that
a ∈ L∗. Then, there exists c ∈ L such that c∗ = a. Thus, by Lemma 2(6), a = c∗ = c∗∗∗ = a∗∗.

(2) We only need to prove the sufficiency because the necessity is obvious. Suppose
that i∗ = l∗. Since i, l ∈ L∗− by assumption, i = i∗∗ = l∗∗ = l by (1). Let i ∈ L∗− \ {e}.
Then, by Proposition 2(1), i <n i∗. Let a ∈ L such that i ≤n a ≤n i∗. Suppose that
i <n a <n i∗. If a ≥ e, then by Proposition 2(2), a < e, a contradiction. If a < e, then since
i = i∗∗ <n a <n i∗, a > e by Proposition 2(4), a contradiction. Consequently, i ≺n i∗.

(3) It is obvious.
(4) Let i ∈ L∗− and let x, y ∈ Li. Then, x∗∗ = y∗∗ = i, which, together with (x ∨

y)∗ = x∗ ∧ y∗ ∈ {x∗, y∗} by Lemmas 2(3) and 3(5), derives that (x ∨ y)∗∗ = i, whence
x ∨ y ∈ Li. If x ≤ y or y < x, then (xy)∗ = (x ∧ y)∗ = x∗ or (xy)∗ = (x ∧ y)∗ = y∗,
and so (xy)∗∗ = (x ∧ y)∗∗ = i, which implies that xy = x ∧ y ∈ Li. If x ‖ y, then by
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Proposition 2(5), (xy)∗ = (x ∧ y)∗ = x∗, and so (xy)∗∗ = (x ∧ y)∗∗ = i, which implies
that xy = x ∧ y ∈ Li. Thus, Li is a sublattice of (L,∧,∨). By (1), i ∈ Li. Let c ∈ Li. Then,
c ≤ (c → e) → e = c∗ → e = c∗∗ = i. Thus, i is the greatest element of Li, and so (Li, ·, i, ≤)
is an integral idempotent commutative lattice-ordered monoid with an identity i. We can
claim that max{z ∈ Li : xz ≤ y} = (x → y) ∧ i for all x, y ∈ Li. To prove this, we consider
the following cases:

• If x ≤ y, then i ≤ e ≤ x → y by Lemma 3(3) and so max{z ∈ Li : xz ≤ y} = i = (x →
y) ∧ i.

• If x > y or x ‖ y, then by Proposition 3, x → y = y or x → y ‖ x. So (x →
y)∗∗ = y∗∗ = i or (x → y)∗∗ = x∗∗ = i by Lemma 3(1). Thus, x → y ∈ Li, whence
max{z ∈ Li : xz ≤ y} = x → y = (x → y) ∧ i

We define x →Li y = (x → y) ∧ i for all x, y ∈ Li. Thus, (Li,∧,∨, ·,→Li , i) is a Brouwe-
rian algebra.

(5) Let j = i∗ ∈ L∗+. By similar arguments as in the proof of (4), j is the greatest
element of Lj and b ∨ c ∈ Lj for all b, c ∈ Lj, so Lj is a join-semilattice with a greatest element
j. Suppose that Lj is not a sublattice of L. Then, there exists b, b′ ∈ Lj such that b ‖ b′ and
d = b ∧ b′ /∈ Lj. Hence, e ≤ d < b and d∗∗ < b∗∗ = j by Lemma 2(3). Let c ∈ Lj. Suppose
that c ‖ d. Then, d∗∗ = c∗∗ = j by Lemma 3(1), which is contrary to d∗∗ < j. Assume that
c < d. Then, d∗∗ > c∗∗ = b∗∗ = j by Lemma 2(3), which is contrary to d∗∗ < j. Thus, for all
c ∈ Lj, d < c. Similarly, if g, g′ ∈ Lj such that g ∧ g′ /∈ Lj, then for all c ∈ Lj, g ∧ g′ < c. It
follows that d = g ∧ g′. Therefore, (Lj ∪ {d}, ≤) is a sublattice of L. Consequently, Lj is an
upper pre-sublattice.

(6) Let i, l ∈ L∗− such that i �= l and let a ∈ Li, b ∈ Ll . If i < l, then by (4), a ≤ i < l
and b ≤ l. Suppose that b ≤ i. Then, b∗∗ ≤ i∗∗ = i < j, which is contrary to b∗∗ = j.
Thus, i < b by Lemma 3(2), whence a < b. Conversely, if a < b, then a ≤ i and a < b ≤ l.
Suppose that l < i. Then, a∗∗ ≤ l∗∗ = l < i, which is contrary to a∗∗ = i. Thus, i < l.
Similarly, i < l ⇐⇒ c > d.

(7) Let i ∈ L∗− and j = i∗ such that Lj is an upper pre-sublattice of L. Then, there
exists b, b′ ∈ Lj such that b ‖ b′ and d = b ∧ b′ /∈ Lj. Let l = d∗. Then, d ∈ Ll∗ . Since
d < b, i < l by (6). Let k ∈ L∗− such that i ≤ k ≤ l. Suppose that i < k < l. Then, by (6)
d < k∗ < b, b′, contrary to d = b ∧ b′. Thus, i ≺ l in L∗. We have dl = dd∗ = d(d → e) ≤
e =⇒ d ≤ d∗ → e = d∗∗ = l∗. We claim that l∗ = d. Otherwise, if d < l∗, then since i < l,
j = i∗ > l∗ by (6) and so l∗ < b, b′. It follows that l∗ ≤ b ∧ b′ = d. It is a contradiction.
Thus, l∗ = d∗∗ = d = a ∧ b. Consequently, (Lj ∪ {l∗},≤) is a sublattice of L with a least
element l∗.

(8) Let i ∈ L∗+ and a, b ∈ Li. Then, (a ∧ b)∗∗ = (a∗ ∨ b∗)∗ = a∗∗ ∧ b∗∗ = i, and so
a ∧ b ∈ Li. It follows that Li is a sublattice of L.

(9) Since a ∈ Li and b ∈ Ll , a ≤ i ≤ e < b ≤ l by (4 − 5) and i∗ �= e. Then, a ≤n i
and l ≤n b by Proposition 1(1–2). Suppose that i <n l. Then, a <n b. Conversely, assume
that a <n b. We claim that a∗ �= e. Otherwise if a∗ = e, then a <n b =⇒ ab = a ≤ e =⇒
b ≤ a → e = a∗ = e, which is contrary to b > e. Consequently, a∗ > e by Lemma 3(4).
By Proposition 2(1,3), a ≤n i = a∗∗ <n a∗ and b∗ <n l = b∗∗ ≤n b. Suppose that l <n i. If
a <n l, then a <n l <n i = a∗∗ <n a∗, and so by Proposition 2(2), l < e, which is contrary to
l > e. If l <n a, then b∗ <n l = b∗∗ <n a <n b, and so by Proposition 2(4), a > e, which is
contrary to a ≤ e. Consequently, i <n l.

(10) Suppose that L is finitely subdirectly irreducible, then e is join-irreducible in
L. Since Le is a sublattice of L, e is join-irreducible in Le, which implies that Le is finitely
subdirectly irreducible. Conversely, Le is finitely subdirectly irreducible. Then, e is join-
irreducible in Le. By (6), we have that b < a for all a ∈ Le and b ∈ Li such that i ∈ L∗− \ {e},
which implies that e is join-irreducible in L. Thus, L is finitely subdirectly irreducible.

(11) By Lemma 3(5), (L∗, ≤) is a totally ordered set, which implies that L∗ is a sublattice
of L. Let a∗, b∗ ∈ L∗. If a∗, b∗ ≤ e, then a∗b∗ = a∗ ∧ b∗ ∈ L∗. If a∗, b∗ ≥ e, then a∗b∗ =
a∗ ∨ b∗ ∈ L∗. If a∗ ≤ e, b∗ > e or a∗ > e, b∗ ≤ e, then by Lemma 1(4,5), a∗b∗ ∈ {a∗, b∗} ⊆ L∗.
Thus, L∗ is closed with respect to multiplication. By Lemma 2(7), we have a∗ → b∗ =
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a∗ → (b → e) = (a∗b) → e ∈ L∗. Consequently, L∗ is a subalgebra of L. By Lemma 2(6),
(a∗ → e) → e = ((a → e) → e) → e = a → e = a∗. It follows that L∗ is a totally ordered
odd Sugihara monoid.

Theorem 2. Let L, K be conic idempotent CRLs and f : L → K be a homomorphism between
conic idempotent CRLs.

(1) f (L∗) ⊆ K∗ and f (Li) ⊆ K f (i) for all i ∈ L∗.
(2) If i ∈ L∗ such that Li is an upper pre-sublattice of L and f (i) �= e, then K f (i) is an upper

pre-sublattice of K and there exists j ∈ L∗ such that j ≺ i in L∗ and f (j) ≺ f (i) in K∗.

Proof. (1) Let a ∈ L∗. Then, there exists b ∈ L such that a = b∗. Since f is a homomorphism,
f (a) = f (b∗) = f (b)∗ ∈ K∗, which implies that f (L∗) ⊆ K∗. Let i ∈ L∗ and a ∈ Li. Then,
a∗∗ = i, and so f (a)∗∗ = f (a∗∗) = f (i), which implies that f (a) ∈ K f (i). It follows that
f (Li) ⊆ K f (i).

(2) Since Li is an upper pre-sublattice of L, i > e by Theorem 1(4), and there exists
a, b ∈ Li such that a ∧ b /∈ Li. Let j = a ∧ b. By the proof of Theorem 1(7), e ≤ a ∧ b = j ≺ i
in L∗, and so j < i in L. Hence, i∗ < j∗ by Theorem 1(6). It follows that i <n j and i∗ <n j∗
by Theorem 1(2). We claim that i <n j∗. Otherwise, if j∗ <n i, then i∗ <n j∗ <n i, and
so by Proposition 2(4), j∗ > e, which is contrary to j∗ = (a ∧ b)∗ ≤ e. Thus, i <n j∗.
We have f (a), f (b) ∈ K f (i) and f (a) ∧ f (b) = f (a ∧ b) = f (j) ∈ K f (j) by (1). Suppose
that f (j) = f (i). Then, f (j) = f (i) = f (ij∗) = f (i) f (j∗) = f (j) f (j)∗ = f (j)∗, and so
by Proposition 2(1,3), f (i) = f (j) = e, which is contrary to f (i) �= e. Consequently,
f (j) �= f (i). It follows that K f (i) is an upper pre-sublattice of K and by the proof of
Theorem 1(7), f (j) = f (a ∧ b) = f (a) ∧ f (b) ≺ f (i) in K∗.

4. The Construction Theorem

In this section, we shall show how to construct a conic idempotent CRL and then prove
that any conic idempotent CRL is isomorphic to some conic idempotent CRL constructed
in this way.

To start with, we introduce some new concepts.

Definition 1. Let (I,≤) be a chain with a greatest element e. Let I+ = {i+ : i ∈ I \ {e}} such
that I ∩ I+ = ∅ and i+ �= l+ for every pair i, l ∈ I \ {e} such that i �= l. Let J = I ∪ I+.
Let A = {(Aj,≤Aj) : j ∈ J} be a family of pairwise disjoint nonempty posets indexed by
J. (I, I+, J;A) is called a chain expansion system (abbreviated by CE-system) if the following
conditions hold:

(CE1) If i ∈ I, then (Ai, ≤Ai ) is a Brouwerian algebra with a greatest element i.

(CE2) If i+ ∈ I+, then (Ai+ ,≤Ai+
) is either a lattice with a greatest element i+ or an upper

pre-lattice with a greatest element i+.

(CE3) If i+ ∈ I+ such that (Ai+ , ≤Ai+
) is an upper pre-lattice, then there exists j ∈ I such that

i ≺ j in I.

Given a CE-system (I, I+, J; A), put L =
⋃
j∈J

Aj. Define a binary relation ≤ on the set L

as follows. Let a ∈ Aj, b ∈ Ak. a ≤ b in L if one of the following conditions is satisfied:

(P1) j = k ∈ J and a ≤Aj b.

(P2) j, k ∈ I and j < k.

(P3) j = i+1 ∈ I+, k = i+2 ∈ I+ and i2 < i1 in I.

(P4) j ∈ I and k ∈ I+.

Lemma 4. (L, ≤) is a lattice.
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Proof. Firstly, we prove that (L,≤) is a poset. Obviously, ≤ is reflexive. Next, we prove
that ≤ is antisymmetric. To see this, let a ∈ Aj, b ∈ Ak such that a ≤ b and b ≤ a. We
consider four cases:

• If j = k ∈ J, then by (P1), a ≤Aj b and b ≤Aj a. Since (Aj, ≤Aj) is a poset, a = b.
• Suppose j �= k and j, k ∈ I. Then, since a ≤ b and b ≤ a, j < k and k < j, a contradic-

tion. Thus, j �= k and j, k ∈ I is impossible.
• By similar arguments as in the previous case, j �= k, and j, k ∈ I+ is impossible.
• Similarly, either j ∈ I, k ∈ I+ or k ∈ I, j ∈ I+ is impossible.

Next, we prove that ≤ is transitive. Let a ∈ Aj, b ∈ Ak, and c ∈ As be such that a ≤ b
and b ≤ c. We consider four cases:

• j = k = s ∈ J. Then, by (P1), a ≤Aj b and b ≤Aj c. Since (Aj,≤Aj) is a poset, a ≤Aj c.
Thus, by (P1), a ≤ c.

• j = k �= s. If k, s ∈ I and k < s, then j < s, and so by (P2), a ≤ c. If k = i+1 , s = i+2 ∈ I+

such that i2 < i1 in I, then j = i+1 , and so by (P3), a ≤ c. If k ∈ I and s ∈ I+, then j ∈ I,
and so by (P4), a ≤ c.

• j �= k = s. Then, by similar arguments as in the prior case, a ≤ c.
• j �= k and k �= s. If j, k, s ∈ I, then j < k and k < s, and so j < s, which implies

that a ≤ c by (P2). If j ∈ I and s ∈ I+, then by (P4), a ≤ c. If j, k, s ∈ I+ such that
j = i+1 , k = i+2 , s = i+3 , then i3 < i2 and i2 < i1 in I by (P3). Since (I,≤) is a chain,
i3 < i2, and so by (P3), a ≤ c.

We conclude a ≤ c, whence ≤ is transitive.
Finally, we will prove that for all a, b ∈ L, a ∨ b and a ∧ b exist in L. Let a ∈ Aj, b ∈ Ak.

We consider three cases:

• If a ≤ b, then a ∨ b = b and a ∧ b = a in L.
• If b ≤ a, then a ∨ b = a and a ∧ b = b in L.
• If a ‖ b, then by the definition of ≤, j = k. If j, k ∈ I, then since (Aj,≤Aj) is a

Brouwerian algebra, a ∨Aj b exists in Aj. Let c ∈ As such that a, b ≤ c. If s = j, then by
(P1), a ≤Aj c and b ≤Aj c, and so a ∨Aj b ≤Aj c. Thus, by (P1), a ∨Aj b ≤ c. If s �= j,

then since a ≤ c, either s ∈ I and j < s or s ∈ I+, which together with a ∨Aj b ∈ Aj,
derives that a ∨Aj b ≤ c. It follows that a ∨ b = a ∨Aj b in L. Similarly, a ∧ b = a ∧Aj b
in L. If j = k = i+ ∈ I+, then (Ai+ ,≤Ai+

) is either a lattice or a pre-lattice by (CE2).
If (Ai+ ,≤Ai+

) is a lattice or an upper pre-lattice and a ∧Ai+ b exists, then by similar
arguments as in the prior case, a∨ b = a∨Ai+ b and a∧ b = a∧Ai+ b in L. If (Ai+ , ≤Ai+

)

is an upper pre-lattice and a ∧Ai+ b does not exist, then by similar arguments in the
prior case, a ∨ b = a ∨Ai+ b in L. By (CE3), there exists t ∈ I such that i ≺ t in I.
We claim that t+ = a ∧ b in L. Because t+ is the greatest element of (At+ ,≤At+

) by
(CE2), t+ ≤ a, b by (P3). Let c ∈ As such that c ≤ a, b. Since (Ai+ ,≤Ai+

) is an upper
pre-lattice and a ∧Ai+ b does not exist, c /∈ Ai+ , and so by (P3 − 4), either s ∈ I or
there exists l ∈ I such that s = l+ and i < l in I, which implies that either s ∈ I or
s = l+ such that t ≤ l. It follows that c ≤ t+ by (P3 − 4). Thus, a ∧ b = t+ in L.

We define a multiplication ◦ on L in the following ways: for a ∈ Aj, b ∈ Ak,

a ◦ b =

⎧⎪⎪⎨
⎪⎪⎩

a ∧ b if j, k ∈ I,
a ∨ b if j, k ∈ I+,
a if j = i+ ∈ I+, k ∈ I, i < k or j ∈ I, k = l+ ∈ I+, j ≤ l,
b if j = i+ ∈ I+, k ∈ I, i ≥ k or j ∈ I, k = l+ ∈ I+, j > l.

Lemma 5. (L, ∧, ∨, ◦, e) is a conic lattice-ordered idempotent commutative monoid with identity
e.
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Proof. It is clear that a ◦ a = a and a ◦ b = b ◦ a for a, b ∈ L.
Let a ∈ Aj. If j ∈ I, then since e is the greatest of I, j ≤ e, which together with e is

the greatest element of Ae by (CE1), derives that a ≤ e and a ◦ e = a. If j = i+ ∈ I+, then
i < e, so a > e and a ◦ e = a. Now, we will show that ◦ satisfies the associative law. Let
a ∈ Aj, b ∈ Ak, c ∈ As. We consider the following cases:

• If j, k, s ∈ I, then (a ◦ b) ◦ c = (a ∧ b) ◦ c = a ∧ b ∧ c and a ◦ (b ◦ c) = a ◦ (b ∧ c) =
a ∧ b ∧ c, whence a ◦ (b ◦ c) = (a ◦ b) ◦ c.

• If j, k ∈ I and s = i+ ∈ I+, then

(a ◦ b) ◦ c = (a ∧ b) ◦ c =
{

a ∧ b if j ∧ k ≤ i,
c if i < j ∧ k;

and

a ◦ (b ◦ c) =

⎧⎨
⎩

a ◦ b = a ∧ b if k ≤ i,
a ◦ c = a = a ∧ b if j ≤ i < k,
c if i < j ∧ k;

=

{
a ∧ b if j ∧ k ≤ i,
c if i < j ∧ k.

It follows that a ◦ (b ◦ c) = (a ◦ b) ◦ c.
• If j ∈ I, k = i+, s = l+ ∈ I+, then

(a ◦ b) ◦ c =

⎧⎨
⎩

a ◦ c = a if j ≤ i ∧ l,
b ◦ c = b ∨ c if i < j,
a ◦ c = c if l < j ≤ i;

=

{
a if j ≤ i ∧ l,
b ∨ c if j > i ∧ l;

and

a ◦ (b ◦ c) = a ◦ (b ∨ c) =
{

a if j ≤ i ∧ l,
b ∨ c if j > i ∧ l.

However, a ◦ (b ◦ c) = (a ◦ b) ◦ c.
• If j, k, s ∈ I+, then (a ◦ b) ◦ c = (a ∨ b) ◦ c = a ∨ b ∨ c and a ◦ (b ◦ c) = a ◦ (b ∨ c) =

a ∨ b ∨ c, whence a ◦ (b ◦ c) = (a ◦ b) ◦ c.

Finally, we show that ≤ is compatible with ◦. Let a, b ∈ L be such that a ≤ b. We need
only to prove that a ◦ c ≤ b ◦ c for every c ∈ L. Suppose that a ∈ Aj, b ∈ Ak, c ∈ As. We
need to consider the following cases:

(1) If j, k, s ∈ I, then by the definition of ◦, a ◦ c = a ∧ c and b ◦ c = b ∧ c. Since a ≤ b,
a ◦ c ≤ b ◦ c.

(2) If j, k ∈ I and s = i+ ∈ I+, then a ≤ b < c and j ≤ k. The following subcases need
be considered:

• If i < j, then i < k, and so by the definition of ◦, a ◦ c = c and b ◦ c = c, whence
a ◦ c ≤ b ◦ c.

• If j ≤ i, then by the definition of ◦, a ◦ c = a and b ◦ c ∈ {b, c}. It follows that
a ◦ c ≤ b ◦ c.

(3) If j, s ∈ I and k ∈ I+, then by the definition of ◦, a ◦ c = a ∧ c ≤ c < b and
b ◦ c ∈ {b, c}, whence a ◦ c ≤ b ◦ c.

(4) If j ∈ I and k, s ∈ I+, then a < b ≤ b ∨ c, so by the definition of ◦, a ◦ c ∈ {a, c}
and b ◦ c = b ∨ c, whence a ◦ c ≤ b ◦ c.

(5) If j = i+, k = l+ ∈ I+ and s ∈ I, then since a ≤ b, l ≤ i in I by (P3). The following
subcases need be considered:

• If s ≤ l, then by the definition of ◦, a ◦ c = c and b ◦ c = c, whence a ◦ c ≤ b ◦ c.
• If s > l, then by the definition of ◦, a ◦ c ∈ {a, c} and b ◦ c = b. It follows that

a ◦ c ≤ b ◦ c.
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(6) If j, k, s ∈ I+, then by the definition of ◦, a ◦ c = a ∨ c and b ◦ c = b ∨ c, whence
a ◦ c ≤ b ◦ c.

We may define a binary operation → on L in the following way: for a, b ∈ L such that
a ∈ Aj, b ∈ Ak,

a → b =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

j+ if j, k ∈ I and a ≤ b, or j ∈ I, k = i+ ∈ I+ and j ≤ i,
b if j, k ∈ I and j > k, or j ∈ I, k = i+ ∈ I+ and j > i,
a →Aj b if j = k ∈ I such that a ‖ b or a > b,
b if j, k ∈ I+ and a ≤ b, or j = i+ ∈ I+, k ∈ I and i ≥ k,
i if j = i+, k ∈ I+ and a � b, or j = i+ ∈ I+, k ∈ I and i < k.

We denote by J
⊗A the above (L, ∧, ∨, ◦, →, e).

Theorem 3. L = J
⊗A is a conic idempotent CRL.

Proof. We need only to prove that for all a, b ∈ L, a → b = max{c : a ◦ c ≤ b}. Suppose
that a ∈ Aj, b ∈ Ak. We need to consider the following cases:

Case 1 j, k ∈ I and a ≤ b, or j ∈ I, k = i+ ∈ I+ and j ≤ i. We need only to check the
following subcases:

(1) If j, k ∈ I and a ≤ b, then by the definition of ◦, a ◦ (a → b) = a ◦ j+ = a ≤ b. Let
c ∈ As ⊆ L such that a ◦ c ≤ b. If s ∈ I, then by (P4), c ≤ j+ = a → b. If s = l+ ∈ I+,
then b < c by (P4), and by the definition of ◦, a ◦ c ∈ {a, c}, which, together with a ◦ c ≤ b,
derives that a ◦ c = a. Thus, j ≤ l, whence c ≤ j+ = a → b.

(2) If j ∈ I, k = i+ ∈ I+ and j ≤ i, then by the definition of ◦ and (P4), a ◦ (a → b) =
a ◦ j+ = a ≤ b. Let c ∈ As ⊆ L such that a ◦ c ≤ b. If s ∈ I, then by (P4), c ≤ j+ = a → b.
If s = l+ ∈ I+, then by the definition of ◦, a ◦ c ∈ {a, c}. Assume that a ◦ c = c. Then, by
the definition of ◦, l < j ≤ i, so b < c = a ◦ c by (P3), which is contrary to a ◦ c ≤ b. Thus,
a ◦ c = a, which implies that j ≤ l, and so c ≤ j+ by (P1) and (P3).

Case 2 j, k ∈ I and j > k, or j ∈ I, k = i+ ∈ I+ and j > i. We need only to check the
following subcases:

(1) If j, k ∈ I and j > k, then a > b by (P2), and so by the definition of ◦, a ◦ (a → b) =
a ◦ b = a ∧ b = b. Let c ∈ As ⊆ L such that a ◦ c ≤ b. Suppose that s ∈ I+. Then, c > b by
(P4), and by the definition of ◦, a ◦ c ∈ {a, c}, which implies that a ◦ c > b, a contradiction.
Suppose that s ∈ I such that s ≥ j. Then, a ◦ c = a ∧ c ∈ Aj, which implies that a ◦ c > b,
a contradiction. Thus, s ∈ I and s < j, whence c = a ∧ c = a ◦ c ≤ b = a → b.

(2) If j ∈ I, k = i+ ∈ I+ and j > i, then by the definition of ◦, a ◦ (a → b) = a ◦ b = b.
Let c ∈ As ⊆ L such that a ◦ c ≤ b. If s ∈ I, then c ≤ b = a → b by (P4). If s = l+ ∈ I+

such that l ≥ j, then l > i, and so c ≤ b = a → b by (P3). If s = l+ ∈ I+ such that l < j,
then by the definition of ◦, c = a ◦ c ≤ b = a → b.

Case 3 j = k ∈ I such that a ‖ b or a > b. Then, by the definition of ◦ and (CE1),
a ◦ (a → b) = a ◦ (a →Aj b) = a ∧ (a →Aj b) = a ∧Aj (a →Aj b) ≤Aj b, which implies that
a ◦ (a → b) ≤ b. Let c ∈ As ⊆ L such that a ◦ c ≤ b. Suppose that s ∈ I+ or s ∈ I such
that s > j. Then, c > b by (P2, 4), and by the definition of ◦, a ◦ c ∈ {a, c}, which implies
that a ◦ c � b, a contradiction. If s ∈ I such that s < j, then c ≤ a →Aj b = a → b by (P2).
If s ∈ I such that s = j, then by the definition of ◦, a ∧Aj c = a ∧ c = a ◦ c ≤ b, which
implies that a ∧Aj c ≤Aj b, so c ≤Aj a →Aj b by (CE1). Thus, c ≤ a →Aj b = a → b.

Case 4 j, k ∈ I+ and a ≤ b, or j = i+ ∈ I+, k ∈ I and i ≥ k. We need only to check the
following subcases:

(1) If j, k ∈ I+ and a ≤ b, then by the definition of ◦, a ◦ (a → b) = a ◦ b = a ∨ b = b.
Let c ∈ As ⊆ L such that a ◦ c ≤ b. If s ∈ I, then by (P4), c ≤ b. If s ∈ I+, then by the
definition of ◦, c ≤ a ∨ c = a ◦ c ≤ b = a → b.

(2) If j = i+ ∈ I+, k ∈ I and i ≥ k, then by the definition of ◦, a ◦ (a → b) = a ◦ b = b.
Let c ∈ As ⊆ L such that a ◦ c ≤ b. Suppose that s ∈ I+. Then, by the definition of ◦,
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a ◦ c = a ∨ c > b, a contradiction. If s ∈ I, then by the definition of ◦, a ◦ c ∈ {a, c}, which
together with a > b, derives that c = a ◦ c ≤ b = a → b.

Case 5 j = i+, k ∈ I+ and a � b, or j = i+ ∈ I+, k ∈ I and i < k. We need only to
check the following subcases:

(1) If j = i+, k ∈ I+ and a � b, then by the definition of ◦ and (P4), a ◦ (a →
b) = a ◦ i = i ≤ b. Let c ∈ As ⊆ L such that a ◦ c ≤ b. Suppose that s ∈ I+. Then,
a ◦ c = a ∨ c � b, a contradiction. If s ∈ I, then by the definition of ◦, a ◦ c ∈ {a, c}, which
together with a � b, derives that c = a ◦ c ≤ b.

(2) If j = i+ ∈ I+, k ∈ I and i < k, then by the definition of ◦ and (P2), a ◦ (a →
b) = a ◦ i = i ≤ b. Let c ∈ As ⊆ L such that a ◦ c ≤ b. Suppose that s ∈ I+. Then, by
the definition of ◦, a ◦ c = a ∨ c > b, a contradiction. If s ∈ I, then by the definition of
◦, a ◦ c ∈ {a, c}, which together with a > b, derives that a ◦ c = c. Thus, s ≤ i, whence
c ≤ i.

Next we shall prove that any conic idempotent CRL is isomorphic to some J
⊗A.

Suppose that L = (L,∧,∨, ·,→, e) is a conic idempotent CRL. Let L∗ = {j ∈ L : (∃a ∈
L)j = a∗}, I = {i ∈ L∗ : i ≤ e} = L∗− and I∗ = {i∗ : i ∈ I \ {e}} = L∗+. Let
Y = {(Lj,≤) : j ∈ L∗}. By Proposition 2, for all i ∈ I \ {e}, i∗ > e, so I∗ ∩ I = ∅.
If i, l ∈ I such that i �= l, then there exists a, b ∈ L such that a∗ = i and b∗ = l, so
i∗∗ = a∗∗∗ = a∗ = i �= l = b∗ = b∗∗∗ = l∗∗. Thus, i∗ �= l∗.

Lemma 6. (I, I∗, L∗; Y) is a CE-system.

Proof. By Theorem 1(1–5,7), (I, I∗, L∗; Y) is a CE-system.

Theorem 4. L is equal to L∗⊗Y .

Proof. For convenience, we denote by ≤1 the imposed ordering on L∗⊗Y . We need only
to prove that for all a, b ∈ L, ≤=≤1 and a · b = a ◦ b.

We now prove ≤=≤1. Let a, b ∈ L. Assume that a ≤ b. We need to consider
three cases:

(1) If a ≤ e, b ≤ e, then a∗∗, b∗∗ ∈ I by Lemma 3(4), and by Theorem 1(6), a∗∗ ≤ b∗∗,
which, together with a ∈ La∗∗ and b ∈ Lb∗∗ , derives that a ≤1 b by (P1 − 2).

(2) If a ≥ e, b ≥ e, then a∗, b∗ ∈ I, which, together with a ∈ La∗∗ and b ∈ Lb∗∗ , derives
that a∗ ≥ b∗ by Theorem 1(6). Thus, by (P3), a ≤1 b.

(3) If a ≤ e and b > e, then by Lemma 3(4), a∗∗ ≤ e and b∗∗ > e, so a∗∗ ∈ I and
b∗∗ ∈ I∗, whence by (P4), a ≤1 b.

Thus, ≤⊆≤1 .
Suppose that a ≤1 b. We need to consider four cases:
(1) If a∗∗ = b∗∗ ∈ I, then a ≤ b by (P1).
(2) If a∗∗, b∗∗ ∈ I such that a∗∗ < b∗∗, then by Theorem 1(6), a ≤ b.
(3) If a∗∗, b∗∗ ∈ I∗ such that a∗ > b∗, then by Theorem 1(6), a ≤ b.
(4) If a∗∗ ∈ I and b∗∗ ∈ I∗, then by Lemma 3(4), a ≤ e and b > e, so a ≤ b.
Thus, ≤1⊆≤, whence ≤1=≤
It remains to be verified that a · b = a ◦ b for all a, b ∈ L. For this, we need to consider

three cases:
(1) If a ≤ e, b ≤ e, then by Lemma 1(3), a · b = a ∧ b. On the other hand, by the

definition of ◦ and ≤=≤1, a ◦ b = a ∧ b, whence a · b = a ◦ b.
(2) If a > e, b > e, then by similar arguments as in (1), a · b = a ◦ b.
(3) a > e and b ≤ e.

• If b ≤ a∗, then a∗, b∗∗ ∈ I by Lemma 3(4) and b∗∗ ≤ a∗∗∗ = a∗ by Lemma 2(3), which
together with a ∈ L(a∗)∗ and b ∈ Lb∗∗ derives a ◦ b = b by the definition of ◦. On the
other hand, a · b = a · a∗ · b = a∗ · b = b by Proposition 2(3). Hence, a · b = b = a ◦ b.

• If b > a∗, then a∗, b∗∗ ∈ I by Lemma 3(4), and b∗∗ ≥ b > a∗∗∗ = a∗ by Theorem 1(4),
which, together with a ∈ L(a∗)∗ and b ∈ Lb∗∗ , derives a ◦ b = a by the definition
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of ◦. Suppose that a · b = b. Then, a∗ <n b <n a, so by Proposition 2(4), b > e,
a contradiction. Thus, a · b = a by Lemma 1(4,5). Hence, a · b = a = a ◦ b.

By Theorem 4, we have the following result, which generalizes ([20] Theorem 20).

Theorem 5. Let L = (L, ∧, ∨, ·, →, e) be a CRL. The following conditions are equivalent:

(I) L is a subdirectly irreducible idempotent semiconic CRL.

(II) There exists a CE-system (I, I+, J; A) such that

(1) Ae is a nontrivial subdirectly irreducible Brouwerian algebra or Ae = {e}, and there
exists i ∈ I such that i ≺ e in I;

(2) L ∼= J
⊗A.

Proof. Let L be a subdirectly irreducible semiconic idempotent CRL. Then, since semi-
conic idempotent CRL is the variety generated by conic idempotent CRLs, L is conic.
By Theorem 4, L ∼= L∗⊗Y , where (I, I∗, L∗; Y) is a CE-system. Because L is a subdirectly
irreducible CRL, the set {a ∈ L : a < e} has a greatest element. Let i = max{a ∈ L : a < e}.
If i ∈ Le, then i = max{a ∈ Le : a < e}, so by Theorem 1(4), Le is a nontrivial subdirectly
irreducible Brouwerian algebra. If i /∈ Le, then since Le ⊆ L−, Le = {e} and i ≺ e, so
i∗∗ < e, which implies that i∗∗ ≤ i. On the other hand, by Proposition 2(1), ii∗ = i ≤ e, so
i ≤ i∗ → e = i∗∗. Thus, i = i∗∗, whence i ∈ I by Theorem 1(1).

Conversely, let (I, I+, J; A) be a CE-system such that (1) and (2). Then, by Theorem 3,
L is a conic idempotent CRL. If Ae is a nontrivial subdirectly irreducible Brouwerian algebra,
then max{a ∈ Ae : a < e} exists, and so max{a ∈ Ae : a < e} = max{a ∈ L : a < e}, which
implies that L is a subdirectly irreducible semiconic idempotent CRL. If Ae = {e} and there
exists i ∈ I such that i ≺ e, then by (P1, 2), max{a ∈ L : a < e} = i, which implies that L is
a subdirectly irreducible semiconic idempotent CRL.

5. The Amalgamation Property

In this section, we will use the structure theorem of conic idempotent CRLs to give
some new result about the amalgamation property of the variety of semiconic idempotent
CRLs, which generalizes the main results of [10].

Let K be a class of algebras. A span is a pair of embeddings 〈i1 : A ↪→ B, i2 : A ↪→ C〉
between algebras A, B, C ∈ K. The class K is said to have the amalgamation property if
for every span of K, there exists an amalgam D ∈ K and embeddings j1 : B ↪→ D and
j2 : C ↪→ D such that j1 ◦ i1 = j2 ◦ i2.

Example 1. Let A = {a2, a1, e, a−1, a−2}. We define an order relation ≤A on A by a−2 <A
a−1 <A e <A a1 <A a2, see Figure 1a. We can define a multiplication operation on A by the
following: for all i, j ∈ {1, 2, −1, −2},

aiaj = ajai =

⎧⎨
⎩

ai if |j| < |i|,
ai if i = j,
ai if i = −j < 0;

and ae = ea = a for all a ∈ A. Let B = {x−2, x−1, e, x1, y2, z2, x2}. We define an order relation
≤B on B by x−2 <B x−1 <B e <B x1 <B y2, z2 <B x2, see Figure 1b. We can define a
multiplication operation on B by for all i, j ∈ {1, 2, −1, −2} and b ∈ {y, z},
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xixj = xjxi =

⎧⎨
⎩

xi if |j| < |i|,
xi if i = j,
xi if i = −j < 0;

xib2 = b2xi =

{
b2 if |i| < 2,
xi if |i| = 2;

y2z2 = z2y2 = x2 and ce = ec = c for all c ∈ B. Let C = {m−3, m−2, m−1, e, m1, m2, n3, k3, m3}.
We define an order relation ≤C on C by m−3 <C m−2 <C m−1 <C e <C m1 <C m2 <C
n3, k3 <C m3, see Figure 1c. We can define a multiplication operation on C by for all i, j ∈
{1, 2, 3, −1, −2, −3} and b ∈ {n, k},

mimj = mjmi =

⎧⎨
⎩

mi if |j| < |i|,
mi if i = j,
mi if i = −j < 0;

mib3 = b3mi =

{
b3 if |i| < 3,
mi if |i| = 3;

n3k3 = k3n3 = m3 and ce = ec = c for all c ∈ C. We define a division operation on P by
a → b = max{p ∈ P | ap ≤ b} for all a, b ∈ P, where P ∈ {A, B, C}. It is easy to see that
A, B and C are subdirectly irreducible semiconic idempotent CRLs. We define two maps as follows.
ϕ1 : A −→ B; e �→ e and ai �→ xi for i ∈ {−2,−1, 1, 2}. ϕ2 : A −→ C; e �→ e, ai �→ mi
for i ∈ {−1, 1}; a2 �→ m3 and a−2 �→ m−3. It is clear that ϕ1 and ϕ2 are embeddings of A into
B, C, respectively. We claim that there are no amalgams in K where K is the class of all conic
idempotent CRLs. Suppose that there exists an amalgam D ∈ K and embeddings ψ1 : B ↪→ D
and ψ2 : C ↪→ D such that ψ1 ϕ1 = ψ2 ϕ2. Then, ψ1(x1) = ψ1 ϕ1(a1) = ψ2 ϕ2(a1) = ψ2(m1)
and ψ1(x2) = ψ1 ϕ1(a2) = ψ2 ϕ2(a2) = ψ2(m3). Hence, by Theorem 2, ψ2(m1) = ψ1(x1) ≺
ψ1(x2) = ψ2(m3) in D∗. But ψ2(m1) < ψ2(m2) < ψ2(m3) in D∗. It is a contradiction. We
conclude that the span 〈ϕ1 : A −→ B, ϕ2 : A −→ C〉 has no amalgam in K.
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Figure 1. We define an order relation ≤A on A by a−2 <A a−1 <A e <A a1 <A a2, in (a), an order
relation ≤B on B by x−2 <B x−1 <B e <B x1 <B y2, z2 <B x2, in (b) and order relation ≤C on C by
m−3 <C m−2 <C m−1 <C e <C m1 <C m2 <C n3, k3 <C m3 in (c).

An immediate consequence of Example 1 is the following.

Proposition 4. The class of all conic idempotent CRLs and the class of subdirectly irreducible
semiconic idempotent CRLs do not have the amalgamation property.

Proof. By Example 1, there exists a span of (subdirectly irreducible) conic idempotent CRLs
such that it has no amalgam in the class of all (subdirectly irreducible) conic idempotent
CRLs. It follows that the class of all conic idempotent CRLs and the class of subdirectly
irreducible semiconic idempotent CRLs do not have the amalgamation property.

We introduce the following concept.
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Definition 2. The variety of strongly semiconic idempotent CRLs consists of the semiconic idem-
potent CRLs that satisfy (x ∧ y)∗ = x∗ ∨ y∗.

A consequence of Theorem 1 is the following.

Proposition 5. A conic idempotent CRL L is a strongly semiconic idempotent CRL if and only if
Li is a lattice for all i ∈ L∗.

Proof. Let L be a conic idempotent CRL. Suppose that L is a strongly semiconic idempotent
CRL. Then, L satisfies (x ∧ y)∗ = x∗ ∨ y∗. Hence, by Theorem 1(4,8), Li is a sublattice of
CRL for all i ∈ L∗, and so Li is a lattice for all i ∈ L∗. Conversely, suppose that Li
is a lattice for all i ∈ L∗. Let a, b ∈ L. If a < b, then by Lemma 2(3), b∗ ≤ a∗, so
(a ∧ b)∗ = a∗ = a∗ ∨ b∗. Similarly, if b < a, then (a ∧ b)∗ = a∗ ∨ b∗. If a ‖ b, then
by Lemma 3(1), a∗ = b∗, so a∗∗ = b∗∗. Hence, there exists i ∈ L∗ such that a, b ∈ Li.
Since Li is a lattice, by Theorem 1(4,5), Li is a sublattice of L. Hence, a ∧ b ∈ Li. Thus,
(a ∧ b)∗ = (a ∧ b)∗∗∗ = i∗ = i∗ ∨ i∗ = a∗∗∗ ∨ b∗∗∗ = a∗ ∨ b∗. Consequently, L satisfies
(x ∧ y)∗ = x∗ ∨ y∗. It follows that L is a strongly semiconic idempotent CRL.

Let L be a CRL. A lattice filter F of L is called normal if it contains e and it is closed
under multiplication. A normal filter F of L is said to be prime if it is prime in the usual
lattice theoretic sense; that is, whenever x ∨ y ∈ F, then x ∈ F or y ∈ F. Let F and Θ be
a normal filter and a congruence of L respectively. It is well known that ΘF = {(x, y) ∈
L2 | (x → y) ∧ (y → x) ∈ F} is a congruence of L and the upper set FΘ =↑ [e]Θ of the
equivalence class [e]Θ is a normal filter. Moreover, we have the following.

Lemma 7 ([8]). The lattice NF (L) of normal filters of a CRL L is isomorphic to its congruence
lattice Con(L). The isomorphism is given by the mutually inverse maps F �→ ΘF and Θ �→↑ [e]Θ.

Lemma 8 ([8]). Let L be a CRL, and let F be a normal filter of L. Then, [e]ΘF = {x | x ∧ (x →
e) ∧ e ∈ F} = {x | ∃a ∈ F−, a ≤ x ≤ a → e}.

In what follows, if F is a normal filter of L, L/F shall always denote the quotient
algebra L/ΘF. Given an element x ∈ L, we write [x]F or [x] if there is no confusion for the
equivalence class of x in L/F.

Lemma 9. Let L be a semiconic CRL, and let F be a normal filter of L. Then, the following
statements are equivalent:

(1) F is prime.

(2) For all a, b ∈ L−, whenever a ∨ b ∈ F, then a ∈ F or b ∈ F.

(3) L/F is a finitely subdirectly irreducible conic CRL.

Proof. (1) ⇒ (2) By specialization.
(2) ⇒ (3) Suppose that (2) holds, and let a ∈ L. Since L is semiconic, (a ∧ e) ∨

(a → e ∧ e) = e ∈ F. It follows that either a ∧ e ∈ F or a → e ∧ e ∈ F. If a ∧ e ∈ F,
then by Lemma 8, [a ∧ e] = [e] =⇒ [a] ∧ [e] = [e] =⇒ [a] ≥ [e]. If a → e ∧ e ∈ F,
then [a → e ∧ e] = [e] =⇒ [a] → [e] ∧ [e] = [e] =⇒ [a] → [e] ≥ [e] =⇒ [a] ≤ [e].
Thus, L/F is a conic CRL. Let a, b ∈ L such that [a] ∨ [b] = [e]. Then, since L is conic,
([a] ∨ [b]) ∧ [e] = [e] =⇒ ([a] ∧ [e]) ∨ ([b] ∧ [e]) = [e] =⇒ [(a ∧ e) ∨ (b ∧ e)] = [e], which
implies that (a ∧ e) ∨ (b ∧ e) ∈ F. Hence, a ∧ e ∈ F or b ∧ e ∈ F, which derives that
[a ∧ e] = [e] or [b ∧ e] = [e]. Since [a ∨ b] = [e], [a] ≤ [e] and [b] ≤ [e]. It follows that
[a] = [a]∧ [e] = [a ∧ e] = [e] or [b] = [b]∧ [e] = [b ∧ e] = [e]. Consequently, L/F is a finitely
subdirectly irreducible conic CRL.

(3) ⇒ (1) Assume that (3) holds, and let a, b ∈ L such that a ∨ b ∈ F. Then, (a ∨
b) ∧ e = (a ∧ e) ∨ (b ∧ e) ∈ F. It follows that [(a ∧ e) ∨ (b ∧ e)] = [e] =⇒ [a ∧ e] ∨ [b ∧ e] =
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[e] =⇒ [a ∧ e] = [e] or [b ∧ e] = [e] =⇒ a ∧ e ∈ F or b ∧ e ∈ F =⇒ a ∈ F or b ∈ F. Thus, F
is prime.

Lemma 10 ([8]). Let L be a residuated lattice and {ai | 1 ≤ i ≤ n}, {bj | 1 ≤ j ≤ m} ⊆ L−
be finite subsets of the negative cone of L with the property that ai ∨ bj = e for any i and j. Then,
(∏n

i=1 ai) ∨ (∏m
j=1 bj) = e.

Lemma 11 ([26]). Let U be a subclass of variety V satisfying the following conditions:

(i) Every subdirectly irreducible member of V is in U.

(ii) U is closed under isomorphisms and subalgebras.

(iii) For any algebra B ∈ V and subalgebra A of B, if Θ ∈ Con(A) and A/Θ ∈ U, then there
exists Φ ∈ Con(B) such that Φ

⋂
A2 = Θ and B/Φ ∈ U.

(iV) Every span in U has an amalgam in V.

Then, V has the amalgamation property.

We have the following result, which generalizes [26] (Theorem 49) in the commuta-
tive case.

Theorem 6. Let V be a variety of semiconic CRLs, and suppose that the class of finitely subdirectly
irreducible conic CRLs in V has the amalgamation property. Then, V has the amalgamation property.

Proof. It is well known that every subdirectly irreducible semiconic CRL is a finitely
subdirectly irreducible conic CRL. It is clear that the class of finitely subdirectly irreducible
conic CRLs is closed under isomorphisms and subalgebras. By Lemma 11, we need only
to prove that for any B ∈ V, any subalgebra A of B, and P ∈ NF (A) such that A/P is a
finitely subdirectly irreducible conic CRL, there is Q ∈ NF (B) such that Q ∩ A = P and
B/Q is a finitely subdirectly irreducible conic CRL. Since V has the congruence extension
property, there is a normal filter F of B such that P = F ∩ A. Let X denote the poset
under set-inclusion of all set-inclusions of all normal filters of B whose intersection with A
is P. Since F ∈ X , X �= ∅. By Zorn’s lemma, we have element Q. Next, we shall show that
Q is a prime normal filter of B. Suppose otherwise, and let x, y ∈ B− be such that x ∨ y ∈ Q
but x /∈ Q and y /∈ Q. Let Qx and Qy be the normal filters of B generated by Q ∪ {x} and
Q ∪ {y}, respectively. Then, by the maximality of Q, P is a proper subset of the normal
filters Qx ∩ A and Qy ∩ A of A, and so there exist elements c, d ∈ A \ P, q, r ∈ Q− and
n, m ∈ Z+ such that qxn ≤ c ≤ e, and rym ≤ d ≤ e. Hence, by Lemma 8, [q]Q = [r]Q = [e]Q
and x ∨ y ∈ Q ∩ B− =⇒ [x ∨ y]Q = [e]Q. Thus, by Lemma 10, [e]Q = [xn]Q ∨ [ym]Q =
[q]Q[xn]Q ∨ [r]Q[ym]Q = [qxn]Q ∨ [rym]Q = [qxn ∨ rym]Q ≤ [c ∨ d]Q ≤ [e]Q. It follows that
[c ∨ d]Q = [e]Q. Since P = Q ∩ A, the map ϕ : A/P → B/Q is an embedding, which
together with c ∨ d ∈ A derives that [c]P ∨ [d]P = [c ∨ d]P = [e]P. Because A/P is a finitely
subdirectly irreducible conic CRL, [c]P = [e]P or [d]P = [e]P. Then, by Lemma 8, c ∈ P,
or d ∈ P. But c, d /∈ P, which is a contradiction. Thus, Q is a prime normal filter of B, and by
Lemma 9, B/Q is a finitely subdirectly irreducible conic CRL. The proof of the theorem is
complete.

Lemma 12 ([10]). The class of totally ordered Sugihara monoids has the amalgamation property.

The following result is essentially due to Maksimova (see [27] Chapter 6).

Lemma 13. (Maksimova) The variety of all Brouwerian algebras has the amalgamation property
and the class of finitely subdirectly irreducible Brouwerian algebras has the amalgamation property.

Theorem 7. The class of finitely subdirectly irreducible strongly conic idempotent CRLs has the
amalgamation property.
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Proof. Let 〈i1 : A ↪→ B, i2 : A ↪→ C〉 be a span of finitely subdirectly irreducible strongly
conic idempotent CRLs, assuming, without loss of generality, that i1 and i2 are inclusion
maps and that B ∩ C = A. Then, using Theorem 1(11), we also have inclusions between
their skeletons A∗ ↪→ B∗ and A∗ ↪→ C∗. Since by Theorem 1(11), these skeletons are totally
ordered odd Sugihara monoids, Lemma 12 yields an amalgam J for this span that is also a
totally ordered odd Sugihara monoid. Moreover, we may assume that J = B∗ ∪ C∗. Let
J− = {j ∈ J | j ≤ e} and J+ = {j ∈ J | j > e}.

Consider i ∈ A∗. Recalling that Ai = {x ∈ A | x∗∗ = i}, clearly Ai ⊆ Bi = {x ∈
B | x∗∗ = i} and Ai ⊆ Ci = {x ∈ C | x∗∗ = i}. If i = e, then by Theorem 1(10), Ae, Be
and Ce are finitely subdirectly irreducible Brouwerian algebras, and by Theorem 2, Ae is a
subalgebra of Be and Ce. Hence, by Lemma 13, there exists a finitely subdirectly irreducible
Brouwerian algebra De as an amalgam with De = Be ∪ Ce. If i < e, then by Lemma 13,
there exists a Brouwerian algebra Di as an amalgam with Di = Bi ∪ Ci. If i > e, then
by Proposition 5, each of Bi and Ci is a lattice. It is well known that the class of lattices
has the amalgamation property. It follows that there exists a lattice Di as an amalgam
with Di = Bi ∪ Ci. Since i is the greatest element of Ai, Bi and Ci, it is also the greatest
element of Di. Now, for all j ∈ B∗ \ A∗ and k ∈ C∗ \ A∗, let Dj = Bj and Dk = Ck. Let
X = {(Dj,≤Dj) | j ∈ J}. By construction, (J−, J+, J;X ) is a CE-system. Thus, D = J

⊗X
is a conic idempotent CRL. Since De is a finitely subdirectly irreducible Brouwerian algebra,
D = J

⊗X is a finitely subdirectly irreducible conic idempotent CRL. By Proposition 5,
D = J

⊗X is a strongly finitely subdirectly irreducible conic idempotent CRL. To show
that D is an amalgam of the original span, it suffices to check that B and C are subalgebras
of D. Consider x, y ∈ B with x ∈ Bi, y ∈ Bj. Then, i, j ∈ J. If i < j in B∗ ⊆ J, then x ≤B y
and x ≤D y, so x ∨D y = y = x ∨B y and x ∧D y = x = x ∧B y. If i = j ∈ B∗+ ⊆ J+,
then since Di is a lattice and Bi is a sublattice of Di, x ∨D y = x ∨Di y = x ∨Bi y = x ∨B y
and x ∧D y = x ∧Di y = x ∧Bi y = x ∧B y ∈ B. If i = j ∈ B∗− ⊆ J−, then since Di is a
Brouwerian algebra and Bi is a subalgebra of Di, x ∨D y = x ∨Di y = x ∨Bi y = x ∨B y and
x ∧D y = x ∧Di y = x ∧Bi y = x ∧B y. Thus, B is a sublattice of D. By the definition of D,
we have

x ◦B y =

⎧⎪⎪⎨
⎪⎪⎩

x ∧B y if i, j ∈ B∗− ⊆ J−,
x ∨B y if i, j ∈ B∗+ ⊆ J+,
x if i ∈ B∗+ ⊆ J+, j ∈ B∗− ⊆ J−, i∗ <B∗ j or i ∈ B∗− ⊆ J−, j ∈ B∗+ ⊆ J+, i ≤B∗ j∗,
y if i ∈ B∗+ ⊆ J+, j ∈ B∗− ⊆ J−, i∗ ≥B∗ j or i ∈ B∗− ⊆ J−, j ∈ B∗+ ⊆ J+, i >B∗ j∗.

and

x ◦D y =

⎧⎪⎪⎨
⎪⎪⎩

x ∧D y if i, j ∈ J−,
x ∨D y if i, j ∈ J+,
x if i ∈ J+, j ∈ J−, i∗ <J j or i ∈ J−, j ∈ J+, i ≤J j∗,
y if i ∈ J+, j ∈ J−, i∗ ≥J j or i ∈ J−, j ∈ J+, i >J j∗.

Thus, x ◦D y = x ◦B y.
By similar arguments, we have x →D y = x →B y.
The proof that C is a subalgebra of D is symmetrical.

Since every variety of commutative residuated lattices has the congruence extension
property, by Theorem 6, we have the following result, which generalizes [10] (Theorem 5.6).

Theorem 8. The variety of strongly semiconic idempotent CRLs has the amalgamation property.
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Abstract: A graph is symmetric if its automorphism group is transitive on the arcs of the graph.
Guo et al. determined all of the connected seven-valent symmetric graphs of order 8p for each prime
p. We shall generalize this result by determining all of the connected seven-valent symmetric graphs
of order 8pq with p and q to be distinct primes. As a result, we show that for each such graph of Γ, it
is isomorphic to one of seven graphs.

Keywords: normal quotient; symmetric graph; automorphism group

MSC: 05C25

1. Introduction

We assume that the graphs in this paper are finite, simple, connected and undirected.
For undefined terminologies of groups and graphs, we refer the reader to [1,2].

Let Γ be a graph. We denote VΓ, EΓ, AΓ and AutΓ as a vertex set, edge set, arc set
and full automorphism group of the graph Γ, respectively. We define that the graph Γ
is vertex-transitive if AutΓ is transitive on the vertex set VΓ of Γ, and Γ is an arc-transitive
graph if AutΓ is transitive on the arc set AΓ of Γ. An arc-transitive graph is also called a
symmetric graph.

Let G be a group, and let S be a subset of G such that S = S−1 := {s−1|s ∈ S} . The Cay-
ley graph Cay(G, S) is defined to have a vertex set G and edge set {{g, sg}‖g ∈ G, s ∈ S}.
Now, we denote the following Cayley graphs of dihedral groups by CDk

2pq.

Set CDk
2pq = Cay(G, {b, ab, ak+1b, . . . , ak5+k4+···+k+1b}), where G = 〈a, b|apq = b2 = 1,

ab = a−1〉 ∼= D2pq, and k is a solution of the equation x6 + x5 + · · ·+ x + 1 ≡ 0(mod pq).
There are many graph parameters to characterize the reliability and vulnerability of

an interconnection network, such as spectral characterization, main eigenvalues, distance
characteristic polynomials, and arc-transitivity. Among these parameters, the spectral
characterizations, main eigenvalues, and distance characteristic polynomials are the better
ones to measure the stability of a network; see [3–7], for example. For arc-transitivity,
see [8], as an example. In this paper, we study the arc-transitivity of graphs.

Let p and q be distinct primes. By [9–11], symmetric graphs of orders p, 2p, and 3p
have been classified. Furthermore, Praeger et al. determined symmetric graphs of order pq
in [12,13].

Recently, the classification of symmetric graphs with certain valency and with a
restricted order has attracted much attention. For example, all cubic symmetric graphs
of an order up to 768 have been determined by Conder and Dobcsa ń yi [14]. Tetravalent
s-transitive graphs of order 6p, 6p2, 8p, 8p2, 10p or 10p2 were classified in [15–17]. More
recently, a large number of papers on seven-valent symmetric graphs have been published.
The classification of seven-valent symmetric graphs of order 8p, 12p, 16p, 24p or 2pq
were presented in [18–22]. We shall generalize these results by determining all connected
seven-valent symmetric graphs of the order 8pq.

In this paper, the main result we obtain is the following theorem.
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Theorem 1. Let p < q be primes and let Γ be a seven-valent symmetric graph of the order 8pq.
Then, Γ is isomorphic to one of the graphs in Table 1.

Table 1. seven-valent symmetric graphs of order 8pq.

Γ AutΓ (p, q)

C48 PGL(2, 7)× D8 (2,3)
C112 (Z3

2×D14):F21 (2,7)
C120 S7 (3,5)
C i

312 PGL(2, 13)×Z2 (3, 13), i = 1, 2, 3, 4
C5

312 (PSL(2, 13)×Z2):Z2 (3,13)
C6

312 PSL(2, 13):D8 (3,13)
C(23,2q) (Z3

2 × D2q):Z7 (2, 7
∣∣ q − 1)

Some of the properties in Table 1 are obtained with the help of the Magma system [23].
The method of proving Theorem 1 is to reduce the automorphism groups of the graphs
to some nonabelian simple groups. To make this method effective, we need to know the
classification result of stabilizers of symmetric graphs. If the valency is a prime p, the
method may still work. However, we need information about the stabilizers of prime-
valent symmetric graphs and a more detailed discussion. Additionally, the term symmetric
graph that is used in this paper has been also used for a different type of symmetry in
other research works; see [24], for example. It studied the symmetry of graphs through
characteristic polynomials, which is more interesting and detailed.

2. Preliminary Results

In this section, we will provide some necessary preliminary results to be used in
later discussions.

For a graph Γ and its full automorphism group AutΓ, let G be a vertex-transitive
subgroup of AutΓ and let N be an intransitive normal subgroup of G on VΓ. We use VN
to denote the set of N-orbits in VΓ. The normal quotient graph ΓN is a graph that satisfies
the vertex set of VN and two N-orbits B, and C ∈ VN are adjacent in ΓN if and only if some
vertex of B is adjacent in Γ to some vertex of C. The following Lemma ([25] Theorem 9)
provides a basic method for studying our seven-valent symmetric graphs.

Lemma 1. Let Γ be an G-arc-transitive graph of the prime valency p, where p > 2 and G ≤ AutΓ,
and let N be a normal subgroup of G and have at least three orbits on VΓ. Then, the following
statements hold.

(i) N is semi-regular on VΓ and G/N ≤ AutΓN, and Γ is a normal cover of ΓN;
(ii) Γ is (G, s)-transitive if and only if ΓN is (G/N, s)-transitive, where 1 ≤ s ≤ 5 or s = 7.

By ([26] Theorem 3.4) and ([27] Theorem 1.1), we have the following lemma, which
describes the vertex stabilizers of symmetric seven-valent graphs.

Lemma 2. Let Γ be a seven-valent (G, s)-transitive graph, where G ≤ AutΓ and s ≥ 1 are integers.
Let α ∈ VΓ. Then, s ≤ 3 and one of the following holds, where F14, F21 and F42 denote the Frobenius
group of order 14, 21 and 42, respectively.

(i) If Gα is soluble, then |Gα|
∣∣ 22 · 32 · 7. Further, the couple (s, Gα) lie in the following table.

s 1 2 3

Gα Z7, F14, F21, F14 ×Z2, F21 ×Z3 F42, F42 ×Z2, F42 ×Z3 F42 ×Z6

(ii) If Gα is insoluble, then |Gα|
∣∣ 224 · 34 · 52 · 7. Further, the couple (s, Gα) lie in the following table.
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s 2 3

Gα

PSL(3, 2), ASL(3, 2),
ASL(3, 2)×Z2,

A7, S7

PSL(3, 2)× S4, A7 × A6,
S7 × S6, (A7 × A6) : Z2,

Z6
2 : (SL(2, 2)× SL(3, 2)), [220] :

(SL(2, 2)× SL(3, 2))

|Gα| 23 · 3 · 7, 26 · 3 · 7, 27 · 3 · 7,
23 · 32 · 5 · 7, 24 · 32 · 5 · 7

26 · 32 · 7, 26 · 34 · 52 · 7, 28 · 34 · 52 · 7,
27 · 34 · 52 · 7, 210 · 32 · 7, 224 · 32 · 7

To construct seven-valent symmetric graphs, we need to introduce the Sabidussi coset
graph. Let G be a finite group, and H is a core-free subgroup of G. Suppose D is a union of
some double cosets of H in G, such that D−1 = D. The Sabidussi coset graph Cos(G, H, D)
of G with respect to H and D is defined to have a vertex set VΓ = [G : H] (the set of right
cosets of H in G), and the edge set EΓ = {{Hg, Hdg}|g ∈ G, d ∈ D} [28,29].

Proposition 1 ([30] Proposition 2.9). Let Γ be a graph and let G be a vertex-transitive subgroup
of Aut(Γ). Then, Γ is isomorphic to a Sabidussi coset graph Cos(G, H, D), where H = Gα is the
stabilizer of α ∈ VΓ in G and D consists of all elements of G with a map of α to one of its neighbors.
Further,

(i) Γ is connected if and only if D generates the group G;
(ii) Γ is G-arc-transitive if and only if D is a single double coset. In particular, if g ∈ G

interchanges α and one of its neighbors, then g2 ∈ H and D = HgH;
(iii) The valency of the graph Γ is equal to |D|/|H| = |H : H ∩ Hg|.

In the following lemmas, we provide classification information of seven-valent sym-
metric graphs of order 8p and 2pq, where p and q are two distinct primes. By [19], we
obtain the classification of seven-valent symmetric graphs of order 8p.

Lemma 3. Let Γ be a seven-valent symmetric graph of order 8p. Then Γ ∼= K8,8 − 8K2 or C24.

By [22], we can describe seven-valent symmetric graphs of order 2pq.

Lemma 4. Let 3 ≤ p < q be primes and let Γ be a seven-valent symmetric graph of order 2pq.
Then, the following statements hold:

(i) Γ ∼= CDk
2pq, where k is a solution of the equation x6 + x5 + · · ·+ x + 1 ≡ 0(mod pq), and

AutΓ ∼= D2pq : Z7, where p
∣∣ q − 1.

(ii) Γ lies in Table 2.

Table 2. Seven-valent symmetric graphs of order 2pq.

Γ AutΓ (p, q)

C1
78 PGL(2, 13) (3, 13)

C2
78 PSL(2, 13) (3, 13)

C310 PSL(5, 2).Z2 (5, 31)
C30 S8 (3, 5)

Next, we need some information about nonabelian simple groups. The first one has
information about maximal subgroups of PSL(2, t) and PGL(2, t), where t is an odd prime;
refer to ([31] Section 239) and ([32] Theorem 2) .

Lemma 5. Let G = PSL(2, t) or PGL(2, t), where t ≥ 5 is a prime, and let M be a maximal
subgroup of G.

(i) If G = PSL(2, t), then M ∈ {Dt−1, Dt+1, Z2 : Z(t−1)/2, A4, S4, A5};
(ii) If G = PGL(2, t), then M ∈ {D2(t−1), D2(t+1), Z2 : Zt−1, S4, PSL(2, t)}.
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The next proposition is about nonabelian simple groups of order that are divisible by
at most seven primes. By [2] (pp. 134–136), we have the following proposition.

Proposition 2. Let T be a nonabelian simple group, such that 28pq
∣∣ |T| and |T| ∣∣ 227 · 34 · 52 · 7

·p · q, where 5 ≤ p < q are primes. Then, T is one of the groups in Table 3.

Table 3. Simple group T with order dividing 227 · 34 · 52 · 7 · p · q.

T |T| (p, q) T |T| (p, q)

M22 27 · 32 · 5 · 7 · 11 (5, 11) PSL(3, 8) 29 · 32 · 72 · 73 (7, 73)
M23 27 · 32 · 5 · 7 · 11 · 23 (11, 23) PSL(3, 16) 212 · 32 · 52 · 7 · 13 · 17 (13, 17)
M24 210 · 33 · 5 · 7 · 11 · 23 (11, 23) PSL(2, 53) 22 · 32 · 53 · 7 · 31 (5, 31)
J1 23 · 3 · 5 · 7 · 11 · 19 (11, 19) PSL(2, 72) 24 · 3 · 52 · 72 (5, 7)
HS 29 · 32 · 53 · 7 · 11 (5, 11) PSL(4, 4) 212 · 34 · 52 · 7 · 17 · 17 (5, 17)
A11 27 · 34 · 52 · 7 · 11 (5, 11) PSL(5, 2) 210 · 32 · 5 · 7 · 31 (5, 31)
Sz(8) 26 · 5 · 7 · 13 (5, 13) PSL(6, 2) 215 · 34 · 5 · 72 · 31 (7, 31)
PSp(4, 8) 212 · 34 · 5 · 72 · 13 (7, 13) 3D4(2) 212 · 34 · 72 · 13 (7, 13)
PSL(2, 26) 26 · 32 · 5 · 7 · 13 (5, 13) 2D4(2) 212 · 34 · 5 · 7 · 17 (5, 17)
PSL(2, 29) 29 · 32 · 7 · 19 · 73 (19, 73) G2(4) 212 · 33 · 52 · 7 · 13 (5, 13)
PSL(2, q) q(q+1)(q−1)

2

Proof. Suppose T is a sporadic simple group, by [2] (pp.135–136), T = M22, M23, M24, J1,
or HS. Suppose T = An is an alternating group. Then, T = A11 is the limitation of |T|.

Let X be one type of the Lie group, and let t = r f be a prime power. Now, suppose
that T = X(t) is a simple group of the Lie type, as T contains at most four 3-factors, three
5-factors, and two 7-factors [2] (p.135), and T = PSL(2, q), PSL(2, 53) or PSL(2, 72).

Similarly, if r = 2, then T = Sz(8), PSp(4, 8), PSL(2, 26), PSL(2, 29), PSL(3, 8), PSL(3, 16),
PSL(4, 4), PSL(5, 2), PSL(6, 2), 3D4(2), 2D4(2) or G4(2).

3. The Proof of Theorem 1

We will prove Theorem 1 through a series of lemmas in this section. To prove
Theorem 1, we need information on seven-valent symmetric graphs of order 4pq. Therefore,
we first prove the following lemma.

Lemma 6. Let p < q be primes and let Γ be a seven-valent symmetric graph of order 4pq. Then,
Γ ∼= C24, C60, SG i

156 or CG j
156, where i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4.

Proof. Let Γ be a seven-valent symmetric graph of the order 4pq, where p < q are primes.
Let A = AutΓ. In Lemma 2, |A| ∣∣ 226 · 34 · 52 · 7 · p · q is |Aα|

∣∣ 224 · 34 · 52 · 7, where α ∈ VΓ.
If p = 2, then Γ has the order 8q; in Lemma 3, we have q = 3 and Γ ∼= C24. If p = 3,
then Γ has the order 12q, and in [18,33], we have q = 5 or 13 and Γ ∼= C60, SG i

156 or CG j
156,

where i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4. Therefore, we only need to prove that there is no
seven-valent symmetric graph of order 4pq for 5 ≤ p < q, and the Lemma 6 is proved.

Now, we assume 5 ≤ p < q. By ([33] Theorem 1.1), we have A ∼= PSL(2, r) × Z2,
PGL(2, r)×Z2, PSL(2, r) or PGL(2, r), where r ≡ ±1(mod 7) is a prime. If A ∼= PSL(2, r)×Z2
or PGL(2, r)× Z2, then A has a normal subgroup N ∼= Z2. It follows that ΓN is a seven-
valent symmetric graph of order 2pq and A/N ≤ AutΓN . Since A/N is isomorphic to
PSL(2, r) or PGL(2, r) for 5 ≤ p < q, there exists no such graph in Lemma 4. Hence, A is
not isomorphic to PSL(2, r)×Z2 or PGL(2, r)×Z2.

If A ∼= PSL(2, r) or PGL(2, r), then A has a normal subgroup N ∼= PSL(2, r). Assume
that N has t orbits on the vertex set of Γ, t ≥ 3. Then, N is semi-regular on VΓ in Lemma 1
and thus |N| divides 4pq, contradicting with N ∼= PSL(2, r) and 5 ≤ p < q. Hence, Nα �= 1,
N has, at most, two orbits on VΓ and 2pq

∣∣ |N : Nα|. Note that Γ is connected, N � A,

and Nα �= 1. Then, we have 1 �= NΓ(α)
α � AΓ(α)

α . This implies that 7
∣∣ |Nα|; thus, we have

that 14pq
∣∣ |N|. And, |N| ∣∣ 226 · 34 · 52 · 7 · p · q is |N| ∣∣ |A|. Since |A : N| ≤ 2, we have
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|Aα : Nα| ≤ 2. If Aα is insoluble, then Nα is also insoluble as |Aα : Nα| ≤ 2. In Lemma 5,
Nα = A5 (the alternating group on {1, 2, 3, 4, 5}), which contradicts with 7

∣∣ |Nα|. Therefore,
Aα is soluble. It follows that |Aα|

∣∣ 252 in Lemma 2; thus, |Nα| divides 252. This implies
that |N| ∣∣ 1008 · p · q.

We claim that r = q, since |VΓ| = |A|/|Aα| = 4pq and |Aα|
∣∣ 252. Then, we have

4pq =
r(r − 1)(r + 1)

2|Aα| or
r(r − 1)(r + 1)

|Aα| . Since r ≡ ±1(mod 7) is a prime and |Aα|
∣∣ 252,

we have r = p or q. Assume that r = p. Then, 4q =
(r − 1)(r + 1)

2|Aα| or
(r − 1)(r + 1)

|Aα| . This

implies that q = r + 1 as q > p, which is impossible because r + 1 is not a prime. Thus,

r = q and |N| = q(q − 1)(q + 1)
2

. Note that (
q + 1

2
,

q − 1
2

) = 1. Assume that p
∣∣ q − 1

2
.

Then, q + 1
∣∣ 1008. And then, we have q = 7, 11, 13, 17, 23, 41, 47, 71, 83, 167, 251 or 503.

Assume that p
∣∣ q + 1

2
. Then, q − 1

∣∣ 1008. And then, we have q = 7, 13, 17, 19, 29, 37, 43,

73, 113, 127, 337 or 1009. Note that 14pq
∣∣ |N|, |N| ∣∣ 226 · 34 · 52 · 7 · p · q and 5 ≤ p < q.

Therefore, N is one of the groups in the following table:

N Order N Order

PSL(2, 29) 22 · 3 · 5 · 7 · 29 PSL(2, 41) 23 · 3 · 5 · 7 · 41
PSL(2, 43) 22 · 3 · 7 · 11 · 43 PSL(2, 71) 23 · 32 · 5 · 7 · 71
PSL(2, 83) 22 · 3 · 7 · 41 · 83 PSL(2, 113) 24 · 3 · 7 · 19 · 113
PSL(2, 167) 23 · 3 · 7 · 83 · 167 PSL(2, 251) 22 · 32 · 53 · 7 · 251
PSL(2, 337) 24 · 3 · 7 · 132 · 337 PSL(2, 503) 23 · 32 · 7 · 251 · 503
PSL(2, 1009) 24 · 32 · 5 · 7 · 101 · 1009

Assume that q = 29, 71, 113, 251 or 1009. Note that |N : Nα| = 2pq or 4pq. N has no
subgroup of index 2pq or 4pq in Lemma 5, which is a contradiction.

Assume that q = 337. Then, N = PSL(2, 337), contradicting with |N| ∣∣ 226 · 34 · 52 · 7 ·
p · q.

Assume that q = 41. Then, N = PSL(2, 41) and (p, q) = (5, 41). Since N has no
subgroup of index 2pq in Lemma 5, we have that N is transitive on VΓ, and thus |Nα| = 42.
Hence, Nα = F42 in Lemma 2. In Proposition 1, Γ = Cos(N, Nα, NαgNα), where g is a
2-element in N such that g2 ∈ Nα and 〈Nα, g〉 = N. In Magma [23], there is no such g ∈ N,
which is a contradiction.

Finally, assume that q = 43. Then, N = PSL(2, 43) and (p, q) = (11, 43). If N has
two orbits on VΓ, then A = PGL(2, 43) and Aα = F42 in Lemma 2. This is impossible, as
PGL(2, 41) has no subgroup isomorphic to F42. Therefore, N is transitive on VΓ and in
Lemma 2, Nα = F21. In Lemma 5, PSL(2, 41) has no subgroup isomorphic to F21, which is a
contradiction. Similarly, q �= 83, 167 or 503. This completes the proof.

Now, let Γ be a seven-valent symmetric graph of the order 8pq, where p < q are
primes. Let A := AutΓ. Take α ∈ VΓ. In Lemma 2, |Aα|

∣∣ 224 · 34 · 52 · 7, and hence
|A| ∣∣ 227 · 34 · 52 · 7 · p · q.

If p = 2, then Γ has the order 16q; by [20], we have q = 3, 7 or 7
∣∣ q − 1, and Γ is

isomorphic to C48, C112 or C(23,2q). If p = 3, then Γ has the order 24q; in [21], we have q = 5
or 13, and Γ is isomorphic to C120, C i

312 with i = 1, 2, 3, 4, C5
312 or C6

312. Therefore, we only
need to prove that there is no seven-valent symmetric graph of the order 8pq for 5 ≤ p < q,
and the Theorem 1 is proved. For the remainder of this paper, we let 5 ≤ p < q.

In the next lemma, we deal with the case where there is a soluble minimal normal
subgroup of A.

Lemma 7. Assume that A has a soluble minimal normal subgroup. Then, there exists no seven-
valent symmetric graph of order 8pq for 5 ≤ p < q.
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Proof. Assuming N is a soluble minimal normal subgroup of the full automorphism group
A. Then, N is an elementary abelian group. Since |VΓ| = 8pq, we have N ∼= Z2, Z2

2, Z3
2, Zp

or Zq. It is easy to prove that N has more than two orbits on VΓ; if not, we have 4pq
∣∣ |N|,

a contradiction. Therefore, in Lemma 1, |Nα| = 1, and the quotient graph ΓN of Γ relative
to N is a seven-valent symmetric graph, with A/N as an arc-transitive subgroup of the
automorphism of ΓN .

If N ∼= Z3
2, then ΓN is a seven-valent symmetric graph of the order pq (pq is an odd

number), which is a contradiction, as symmetric graphs of the odd order odd valent do not
exist. If N ∼= Z2, then ΓN is a seven-valent symmetric graph of the order 4pq. In Lemma 6,
we note that 5 ≤ p < q, ΓN does not exist, which is a contradiction. If N ∼= Zp, then ΓN is a
seven-valent symmetric graph of the order 8q. ΓN does not exist in Lemma 3, which is a
contradiction. Similarly, we obtain that N � Zq.

If N ∼= Z2
2, then ΓN is a seven-valent symmetric graph of the order 2pq. In Lemma 4,

ΓN ∼= C310 or CDk
2pq, where k is a solution of the equation x6 + x5 + · · ·+ x + 1 ≡ 0(mod pq)

and p
∣∣ q − 1.

Let ΓN ∼= C310. Then, A/N ≤ AutC310 = PSL(5, 2).Z2. Furthermore, A/N is arc-
transitive on VΓN . By Magma [23], AutΓN has a minimal arc-transitive subgroup, which is
isomorphic to PSL(5, 2). Thus, PSL(5, 2) ≤ A/N ≤ PSL(5, 2).Z2. Since the Schur Multiplier
of PSL(5, 2) is trivial, A = Z2

2 × PSL(5, 2) or (Z2
2 × PSL(5, 2)).Z2. For the former case, in

Proposition 1, Γ = Cos(A, Aα, AαgAα), where g is a 2-element in A such that g2 ∈ Aα and
〈Aα, g〉 = A. By Magma [23], there is no such g ∈ A, which is a contradiction. For the latter
case, A/N has a normal subgroup, M ∼= PSL(5, 2). It is obvious that M has at most two
orbits on VΓ. Since M has no subgroup of order 16128, M is transitive on VΓ, implying that
|Mα| = 8064; this is impossible in Lemma 2.

Let ΓN ∼= CDk
2pq, where k is a solution of the equation x6 + x5 + · · ·+ x + 1 ≡ 0(mod pq).

Note that A/N is an arc-transitive subgroup of Aut(ΓN) = D2pq : Z7. Hence, 2pq ·
7
∣∣ |A/N|. This implies that A/N = D2pq : Z7. Let H be a normal subgroup of the order

pq of D2pq and Q be a Sylow q-subgroup of H. Then, in the Sylow Theorem, Q char H
and thus Q � D2pq is H � D2pq. Note that Q is also a Sylow q-subgroup of D2pq. Then,
Q char D2pq and thus Q � A/N is D2pq � A/N. Then, 5 ≤ p < q and p

∣∣ q − 1. Then,
q ≥ 11. Hence, Q is also a Sylow q-subgroup of A/N. Let Q = G/N. Then, G/N ∼= Zq and
|G| = 22 · q. In the Sylow Theorem, the Sylow q-subgroup of G is normal, at say L. Then,
L ∼= Zq, and thus G = Z2

2 ×Zq = N × L. Hence, L � A is G � A. Then, the normal quotient
graph ΓL of Γ relative to L is a seven-valent symmetric graph of order 8p. In Lemma 3,
there exists no graph for this case, which is a contradiction.

Thus, we complete the proof of Lemma 7.

Now we move on to the case where there is no soluble minimal normal subgroup of
A. Then, we have the following lemma.

Lemma 8. Assume that A has no soluble minimal normal subgroup. Then, there exists no seven-
valent symmetric graph of order 8pq for 5 ≤ p < q.

Proof. Let N be an insoluble minimal normal subgroup of A, and let C = CA(N) be the
centralizer of N in A. Then, N is isomorphic to Td, where d ≥ 1 and T are non-abelian
simple groups. Assume that N has t orbits on the vertex set of Γ. If t ≥ 3, then Nα = 1 by
Lemma 1 and thus |N| = |T|d ∣∣ 8pq, since N is insoluble. Then, |N| = 4pq or 8pq. Thus, N
has two orbits or an orbit on VΓ, which is a contradiction. Hence, N has at most two orbits
on VΓ, and it follows that 4pq

∣∣ |N|.
If Nα = 1, then |N| = 4pq or 8pq, since q

∣∣ |N| and q2 � |N|. Then, N = T. Note that
5 ≤ p < q [34]; no such simple group exists, and this is a contradiction. Hence, Nα �= 1.
Since Γ is connected to N � A and Nα �= 1, we have 1 �= NΓ(α)

α � AΓ(α)
α . It follows that 7

divides |Nα|. Then, we have that 28pq
∣∣ |N|.
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Now, we claim that d = 1. Otherwise, d ≥ 2, and thus 72
∣∣ |N|. We have d = 2

as |N| ∣∣ 227 · 34 · 52 · 7 · p · q. So p = 7 or q = 7. If p = 7, then q > 7 and q2
∣∣ |T|2,

which contradicts with |N| ∣∣ 227 · 34 · 52 · 7 · p · q. If q = 7, then p = 5. This implies that
|T| ∣∣ 213 · 32 · 5 · 7. Note that 35

∣∣ |T|. By checking the nonabelian simple group of an order
less than 213 · 32 · 5 · 7, we have that T = A7, A8 or PSL(3, 4), and N = A7

2, A8
2 or PSL(3, 4)2

as d = 2. On the other side of the coin, C � A, C ∩ N = 1 and thus 〈C, N〉 = C × N. Because
|C × N| ∣∣ 227 · 34 · 52 · 7 · p · q and |N| = |T|2 = 26 · 34 · 52 · 72 or 212 · 34 · 52 · 72, C is a
{2, p}-group, and hence soluble, where p = 5. So, C = 1 as A contains no soluble minimal
normal subgroup. This implies A = A/C ≤ Aut(N) ∼= Aut(T)wrZ2. By Magma [23], no
such graph exists, which is a contradiction. Therefore, we have d = 1, and N = T � A is a
nonabelian simple group.

We next prove that C = 1. If C �= 1, then C is insoluble, as C � A and A contain
no soluble minimal normal subgroup. In the same argument as for the case N, we have
7 divides |Cα|. Because 〈C, N〉 = C × N and C, N � A, we have Cα × Nα ≤ Aα. Note
that 7 divides |Nα|; this concludes that 72

∣∣ |Aα|, which is a contradiction with Lemma 2.
Therefore, we have C = 1, and thus A ≤ Aut(T) is almost simple. It follows that T = soc(A)
is a nonabelian simple group and satisfies the following condition.

Condition(*): |T| lies in Table 3 such that 28pq
∣∣ |T| and |T| ∣∣ 227 · 34 · 52 · 7 · p · q.

Assume first that T ∼= M22, M23, J1, A11, PSL(2, 29), PSL(3, 16), PSL(2, 53), PSL(2, 72),
PSL(4, 4), PSL(6, 2), PSp(4, 8), HS, 2D4(2), 3D4(2), or G2(4). Note that |T : Tα| = 4pq or
8pq. T has no subgroup of index 4pq or 8pq by Atlas [35], which is a contradiction.

Assume that T ∼= M24. Since T has no subgroup of index 4pq, we show that T is
transitive on VΓ, and thus |Tα| = 120, 960. In Proposition 1, Γ = Cos(T, Tα, TαgTα), where g
is a 2-element in T such that g2 ∈ Tα and 〈Tα, g〉 = T. In Magma [23], there is no such g ∈ T,
which is a contradiction. Similarly, T is not isomorphic to Sz(8), PSL(2, 26) or PSL(5, 2).

Assume that T ∼= PSL(3, 8). If T has two orbits on VΓ, then Γ is bipartite and
|Tα| = 27 · 32 · 7. Recall that A is almost simple. Thus, A ≤ Aut(T). Since Aut(T) = PSL(3, 8).
Z6, we have A ∼= PSL(3, 8).Z2, PSL(3, 8).Z3 or PSL(3, 8).Z6, and thus |Aα| = 27 · 32 · 7,
26 · 33 · 7 or 27 · 33 · 7, which is impossible according to Lemma 2. Thus, T is transitive on
VΓ. In Proposition 1, Γ = Cos(T, Tα, TαgTα), where g is a 2-element in T such that g2 ∈ Tα

and 〈Tα, g〉 = T. By Magma [23], there is no such g ∈ T, which is a contradiction.
Finally, assume that T ∼= PSL(2, q). Then, T ≤ A ≤ Aut(T) = PGL(2, q) (PGL(2, q) =

PSL(2, q).Z2) and |A : T| ≤ 2. If Aα is insoluble, then Tα is also insoluble as |Aα : Tα| ≤ 2.
Tα = A5 in Lemma 5, contradicting with 7, divides |Tα|. Therefore, Aα is soluble, and
|Aα| divides by 252 in Lemma 2, and so |Tα| divides 252. This implies that |T| ∣∣ 2016 · p · q.

Note that |T| = q(q − 1)(q + 1)
2

and (
q + 1

2
,

q − 1
2

) = 1. If p
∣∣ q − 1

2
, then q + 1

∣∣ 2016. It

follows that q = 7, 11, 13, 17, 23, 31, 41, 47, 71, 83, 167, 223, 251 or 503. If p
∣∣ q + 1

2
, then

q − 1
∣∣ 2016. It follows that q = 7, 13, 17, 19, 29, 37, 43, 73, 97, 113, 127, 337, 673, 1009 or

2017. Note that T meets the condition (*) and 5 ≤ p < q. Therefore, T is one of the groups
in the following table:

T Order T Order

PSL(2, 29) 22 · 3 · 5 · 7 · 29 PSL(2, 41) 23 · 3 · 5 · 7 · 41
PSL(2, 43) 22 · 3 · 7 · 11 · 43 PSL(2, 71) 23 · 32 · 5 · 7 · 71
PSL(2, 83) 22 · 3 · 7 · 41 · 83 PSL(2, 97) 25 · 3 · 72 · 97
PSL(2, 113) 24 · 3 · 7 · 19 · 113 PSL(2, 167) 23 · 3 · 7 · 83 · 167
PSL(2, 223) 25 · 3 · 7 · 37 · 223 PSL(2, 251) 22 · 32 · 53 · 7 · 251
PSL(2, 337) 24 · 3 · 7 · 132 · 337 PSL(2, 503) 23 · 32 · 7 · 251 · 503
PSL(2, 673) 25 · 3 · 7 · 337 · 673 PSL(2, 1009) 24 · 32 · 5 · 7 · 101 · 1009
PSL(2, 2017) 25 · 32 · 7 · 1009 · 2017

Assume that q = 29, 71, 97, 113, 223, 251, 337 or 1009. Note that |T : Tα| = 4pq or 8pq.
T has no subgroup of index 4pq or 8pq in Lemma 5, which is a contradiction.
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Assume that q = 337. Then, T = PSL(2, 337), which contradicts with |T| ∣∣ 227 · 34 · 52 ·
7 · p · q.

Assume that q = 43. Then, T = PSL(2, 43) and (p, q) = (11, 43), since T has no
subgroup of index 8pq. Then, T is not transitive to VΓ. If T has two orbits on VΓ, then
|Tα| = 21. As A is almost simple, A = PGL(2, 43), and Aα = F21 in Lemma 2. In
Proposition 1, Γ = Cos(A, Aα, AαgAα), where g is a 2-element in A such that g2 ∈ Aα and
〈Aα, g〉 = A. In Magma [23], there is no such g ∈ A, which is a contradiction.

Finally, assume that q = 41. Then, T = PSL(2, 41) and (p, q) = (5, 11). If T has two
orbits on VΓ, then |Tα| = 42. As A is almost simple, A = PGL(2, 41), and Aα = F42 in
Lemma 2. This is impossible, as PGL(2, 41) has no subgroup isomorphic to F42. Therefore,
T is transitive to VΓ and in Lemma 2, Tα = F21. In Lemma 5, PSL(2, 41) has no subgroup
isomorphic to F21, which is a contradiction. Similarly, q �= 167, 503, 673 or 2017.

Thus, we complete the proof of Lemma 8.

By combining Lemma 6, 7 and 8, we have completed the proof of Theorem 1.

4. Conclusions

Through the classification of seven-valent symmetric graphs of the order 8pq, we
obtain many highly symmetric graphs in Table 1. These graphs can be applied to the design
of the interconnection network. With induction, we may further classify seven-valent
symmetric graphs of the order 8n, where n is an odd square-free integer. We can even
classify p-valent symmetric graphs of the order 2kn, where k is a positive integer and n is
an odd square-free integer.
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Nomenclature

G, H, . . . Groups
a, b, . . . Elements o f groups
ab b−1ab
Dn Dihedral group o f order n
Sn, An Symmetric, alternating groups o f degree n
Z Sets o f integers
Zn Z/nZ
M22, M23, M24 Mathieu groups
ASL(n, R) A f f ine group over R
Sz(2n) Suzuki group
SL(n, R) Linear groups over R
J1 Janko group
HS Higman, Sims group
PSp(4, 8) Symplectic group
2D4(2) Orthogonal group
3D4(2) Triality twisted group
G2(4) Chevalley group
PGL(n, R), PSL(n, R) Projective general linear and projective special linear groups
Γ Graph
VΓ, EΓ, AΓ Vertex set, edge set, arc set o f Γ
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ΓN Quotient graph
α Element o f graph
Aut(Γ),Aut(ΓN) Automorphism group o f Γ and ΓN
Cn Symmetric graph o f order n
Gα Stabilizer o f α in G
G × H, Gn Direct product, direct power
GwrH Wreath product
G.H An extension o f G by H
|G| Cardinality o f the group G
G/N Quotient group
Fn Frobenius group o f order n
H ∼= G H is isomorphic with G
〈Nα, g〉 Group generated by Nα and g
G � A G is a normal subgroup o f A
Aut(T) Automorphism group o f T
soc(A) Socle o f G
CA(N) Centralizer o f N in G
|A : N| Index o f the subgroup N in A

References

1. Godsil, C.D.; Royle, G. Algebraic Graph Theory; Springer: Berlin, Germany, 2001.
2. Gorenstein, D. Finite Simple Groups; Plenum Press: New York, NY, USA, 1982.
3. Abiad, A.; Brimkov, B.; Hayat, S.; Khramova, A.P.; Koolen, J.H. Extending a conjecture of Graham and Lovász on the distance

characteristic polynomial. Linear Algebra Appl. 2023, in press. [CrossRef]
4. Hayat, S.; Javaid, M.; Koolen, J.H. Graphs with two main and two plain eigenvalues. Appl. Anal. Discr. Math. 2017, 11, 244–257.

[CrossRef]
5. Hayat, S.; Koolen, J.H.; Liu, F.; Qiao, Z. A note on graphs with exactly two main eigenvalues. Linear Algebra Appl. 2016, 511,

318–327. [CrossRef]
6. Hayat, S.; Koolen, J.H.; Riaz, M. A spectral characterization of the s-clique extension of the square grid graphs. Europ. J. Combin.

2019, 76, 104–116. [CrossRef]
7. Koolen, J.H.; Hayat, S.; Iqbal, Q. Hypercubes are determined by their distance spectra. Linear Algebra Appl. 2016, 505, 97–108.

[CrossRef]
8. Xiao, R.; Zhang, X.; Zhang, H. On Edge-Primitive Graphs of Order as a Product of Two Distinct Primes. Mathematics 2023,

11, 3896. [CrossRef]
9. Chao, C.Y. On the classification of symmetric graphs with a prime number of vertices. Trans. Am. Math. Soc. 1971, 158, 247–256.

[CrossRef]
10. Wang, R.J.; Xu, M.Y. A classification of symmetric graphs of order 3p. J. Combin. Theory B 1993, 58, 197–216. [CrossRef]
11. Cheng, Y.; Oxley, J. On the weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 1987, 42, 196–211. [CrossRef]
12. Praeger, C.E.; Wang, R.J.; Xu, M.Y. Symmetric graphs of order a product of two distinct primes. J. Combin. Theory B 1993, 58,

299–318. [CrossRef]
13. Praeger, C.E.; Xu, M.Y. Vertex-primitive graphs of order a product of two distinct primes. J. Combin. Theory B 1993, 59, 245–266.

[CrossRef]
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Abstract: This paper introduces equitable graphs of Type I associated with finite groups. We inves-
tigate the connectedness and some graph-theoretic properties of these graphs for various groups.
Furthermore, we establish the novel concepts of the equitable square-free number and the equitable
group. Our study includes an analysis of the equitable graphs for specific equitable groups. Addi-
tionally, we determine the first, second and forgotten Zagreb topological indices for the equitable
graphs of Type I constructed from certain groups. Finally, we derive the adjacency matrix for this
graph type built from cyclic p-groups.

Keywords: equitable graph; equitable group; topological indices

MSC: 05C62; 05C25

1. Introduction

The connection between graphs and groups is an interesting field of research and has
wide applications. Research on this subject leads to the investigation of the relationship
between the group and the associated graph and explores theoretical properties from one
to the other. The graph associated with a group can provide valuable information and offer
a combinatorial approach to studying groups. This can give group theorists more tools to
work with. Additionally, comparing groups with similar graph-theoretic properties can
help classify these groups. The literature is rich with studies on this topic. This concept
has been known since 1878, when Cayley graphs were presented [1]. Subsequently, several
graphs have been constructed from groups, such as the commuting graph, which was
introduced by Brauer and Fowler in 1955 [2]. Then, the prime graphs were defined by
Gruenberg and Kegel in 1975 [3]. Later, in 2009, Chackrabarty, Gosh and Sen presented the
power graph [4,5]. Many graphs have been introduced in the literature: for instance, the
order-divisor graph, intersection graph and cyclic graph. All of these graphs have been
thoroughly studied, including their characteristics and their relations with groups. For
more details, we refer the reader to [6–11].

In light of the increasing significance of graphs linked to groups and their role in
classifying both groups and graphs, as well as the importance of element orders in a finite
group, we are inspired to introduce a new type of graph based on the distinctions between
element orders within the group. Through this research, we study a graph associated with
a finite group called the equitable graph Type I and denoted by E1(G). The vertex set of
this graph is a finite group G, and two distinct vertices x and y are adjacent if and only if
|o(x)− o(y)| ≤ min{o(x), o(y)}.

In our research, we extensively studied important algebraic groups in order to create
general formulaic representations of the resulting graphs. These representations were thor-
oughly analyzed to understand their theoretical properties and topological characteristics.
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Moreover, our exploration of this innovative conceptual definition allowed us to establish
new specialized terminology: specifically, the concepts of the equitable square-free number
and the equitable group. These new concepts serve as valuable classifications within the
respective domains of number theory and graph theory.

In this paper, G denotes a finite group, and e is the identity of G. For any element of
G, say g, o(g) is the order of g, and the number of elements of order m in a cyclic group is
equal to φ(m), where φ is the Euler’s phi function. For a real number x, the greatest integer
≤ x [or the least integer ≥ x], called the floor [or ceiling] function and denoted by �x [or
!x"], respectively.

Let Γ denote a graph with vertex set V and edge set E. Then, m(Γ(V)) denotes the
size of the graph, and the number of edges incident to a single vertex v ∈ V is called
the degree of v, d(v); the maximum and minimum degrees of the graph are denoted by
Δ(Γ(V)) and δ(Γ(V)), respectively. The graph Γ(V) is said to be connected if and only if
there is a path between any two distinct vertices of V, while the graph is complete if and
only if any two vertices are adjacent, and Km denotes the complete graph on m vertices.
The complete subgraph of Γ(V) is called a clique, and the clique number, ω(Γ(V)), is the
cardinality of the maximum clique. The diameter, diam(Γ(V)), is defined as the maximum
distance between two vertices, and the radius, r(Γ(V)), is the minimum eccentricity of the
graph, where the eccentricity of any vertex v is defined as e(v) = max{d(v, u) : u ∈ V}.
The length of the shortest cycle in Γ(V) is called the girth of the graph, and it is denoted
by gr(Γ(V)). A set S of vertices is said to be a dominating set if every vertex v belong to
V \ S is adjacent to at least one vertex in S, and the cardinality of the minimum dominating
set, γ − set, is called the domination number, γ(Γ(V)). The minimum number of colors
needed to label the vertices such that no two adjacent vertices have the same color is called
the chromatic number of the graph, χ(Γ(V)). The adjacency matrix is an (n × n) matrix,
where |V| = n, and is denoted by A(Γ(V)). Almost all of the definitions and notations can
be found in [12–14] for group theory and graph theory.

Through this work, we deal with finite groups and simple graphs. We consider the
vertex set as the elements of the group and introduce the first type of equitable graph,
E1(G). In this paper, we study the connectedness of the equitable graph Type I for some
groups and investigate some of their theoretical properties in Section 2. In Section 3, we
introduce the concepts of the equitable square-free number and the equitable group. Then,
the graph of this group is studied. Next, we determine the first, second and forgotten
Zagreb indices for the equitable graph Type I of some groups in Section 4. Finally, in
Section 5, we obtain the adjacency matrix for E1(G), where G is a cyclic p-group, and many
examples are included. In this work, since the vertices are the elements of the group G,
we use the words “elements” and “vertices” interchangeably. Also, for simplicity, we use
δ(E1), for example, rather than δ(E1(G)).

2. Equitable Graph Type I

The definition of the first type of an equitable graph from any finite group is introduced
in this section. Later, we explore some theoretical properties of this graph from certain
groups.

Definition 1. Let G be a finite group. The equitable graph of Type I of G, denoted by E1(G), is a
graph with vertex set G in which any two distinct elements of G, x and y are adjacent if and only if

| o(x)− o(y) | ≤ min{o(x), o(y)}.
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Example 1. Consider the special linear group G = SL(2, 3) that is the group of 2 × 2 matrices
with determinant 1 over the field of three elements. Then, the list of the elements is as follows:

v1 =
( 1 0

0 1

)
, v2 =

( 2 0
0 2

)
, v3 =

( 1 1
0 1

)
, v4 =

( 2 1
2 0

)
,

v5 =
( 1 0

2 1

)
, v6 =

( 0 1
2 2

)
, v7 =

( 1 2
0 1

)
, v8 =

( 2 2
1 0

)
,

v9 =
( 1 0

1 1

)
, v10 =

( 0 2
1 2

)
, v11 =

( 2 1
0 2

)
, v12 =

( 1 1
2 0

)
,

v13 =
( 2 0

2 2

)
, v14 =

( 0 1
2 1

)
, v15 =

( 2 2
0 2

)
, v16 =

( 1 2
1 0

)
,

v17 =
( 2 0

1 2

)
, v18 =

( 0 2
1 1

)
, v19 =

( 0 2
1 0

)
, v20 =

( 0 1
2 0

)
,

v21 =
( 1 1

1 2

)
, v22 =

( 2 1
1 1

)
, v23 =

( 1 2
2 2

)
, v24 =

( 2 2
2 1

)
,

where v1 has order 1, v2 has order 2, v3 to v10 have order 3, v11 to v18 have order 6, and v19 to v24
have order 4. Then E1(G) is depicted in Figure 1.

Figure 1. The equitable graph Type I of the group SL(2, 3).

• δ(E1(G)) = 1, Δ(E1(G)) = 22.
• χ(E1(G)) = ω(E1(G)) = 22.
• gr(E1(G)) = 3.
• γ(E1(G)) = 2.
• diam(E1(G)) = 3.
• m(E1(G)) = 246.

Lemma 1. gr(E1(G)) = 3 for any finite group G with order greater than 3.

Proof. Let G be a finite group of order n. Then, the result is clear for n = 1 or 2, and the
only group of order 3 is a cyclic group in which the identity is isolated. Now, assume that
n = 4; then there are only two possible cases for the group G. Either G is cyclic or G is
isomorphic to the Klein four group V4 = 〈a, b : a2 = b2 = e, ab = ba〉. In the first case, the
element of order two is adjacent to the two elements of order four in E1(G), forming a cycle
with three edges. In the latter case, the graph is complete.

Now, if n > 4, it is clear that there exist at least three elements sharing the same order.
Hence, E1(G) contains K3 as a subgraph.

The following lemma has been utilized in numerous proofs throughout this research;
therefore, it is prudent to mention it here.
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Lemma 2. Let i be a positive integer. Then

1. 2i−2 + 2i−1 + 2i = (7)2i−2.

2. 2i−2 + 2i−1 = (3)2i−2.

Theorem 1. Let G be a cyclic group of order 2k; k > 1 is a positive integer. Then E1(G) is
connected.

Proof. As G is a cyclic group, the orders of the elements are the divisors of |G|. Now, as is
well known, | 2i − 2i+1 |= 2i for all 0 ≤ i ≤ k − 1. Therefore, each element of order 2i is
adjacent to all elements of order 2i+1 (as vertices) for all 0 ≤ i ≤ k − 1. Thus, we conclude
that there is a path between any two vertices, and the graph E1(G) can be shown as in
Figure 2 such that each circle forms a complete subgraph.

Figure 2. The equitable graph Type I of cyclic groups of order 2k.

Theorem 2. Let G be a cyclic group of order 2k; k > 1 and is a positive integer. Then E1(G) has
the following properties:

1. δ(E1) = 1, and Δ(E1) = (7)2k−3 − 1 unless k = 2, in which case Δ(E1) = 3.
2. ω(E1) = (3)2k−2.
3. diam(E1) = k.
4. E1(G) is a weakly perfect graph.

5. γ(E1) =
⌈ k + 1

3

⌉
.

6. r(E1) =

⎧⎪⎨
⎪⎩

k
2

, k ≡ 0(mod2);
k + 1

2
, otherwise.

7. m(E1) = 1 +
k−1

∑
i=1

2i−1(2i+1 − 1).

Proof. Let G be a cyclic group of order 2k, where k > 1 is a positive integer.

1. In this case, the minimum degree and the maximum degree for k = 2 are obvious.
Now, for k > 2, each element of order 2i is adjacent to each element of order 2i−1

and 2i+1 for all 1 ≤ i ≤ k − 1, and since the number of elements of order 2m is
φ(2m) = 2m−1 as G is cyclic, for all 1 ≤ m ≤ k, we obtain the result.

2. According to the fact that φ(2) = 1 < φ(22) < . . . < φ(2k) and from the adjacency
criteria, the result can be obtained using Lemma 2.

3. This follows from Theorem 1 and the adjacency method of the vertices.
4. Since for any graph Γ, obviously χ(Γ) ≥ ω(Γ), we obtain that χ(E1) � 3(2k−2). Then,

according to the adjacency order, we can reuse these colors, and hence, χ(E1) �
3(2k−2). Therefore, the equality holds.

5. Through the adjacency method and by Figure 2, we deduce that for each of three
consecutive cliques, one vertex of the middle one can be in a dominating set. So

the cardinality of γ − set � k + 1
3

, and thus, from the definition of the domination

number and the number of sequential cliques, we can obtain γ(E1) �
k + 3

3
.
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6. From Figure 2, we obtain that the eccentricity of the vertices ranges between k and
k
2

(or
⌈ k

2

⌉
) if k is even (or odd). Therefore, r(E1) =

⌈ k
2

⌉
.

7. This follows from the adjacency method and the fact that the elements of the same
order form a complete subgraph. Hence,

m(E1) = 1 +
k

∑
i=2

[φ(2i)(φ(2i)− 1)
2

+ φ(2i−1)(φ(2i))
]

Let n be a positive integer. Then the dihedral group of order 2n is defined as follows

D2n = 〈a, b : an = b2 = e, ab = ba−1〉.

Example 2. Consider the dihedral group of order 8, D8. Then this group has one element of order
1, five elements of order 2, and two elements of order 4. Therefore, the equitable graph of D8 is
shown as in Figure 3, where v1 denote the identity, v2 = a2, v3 = b, v4 = ab, v5 = a2b, v6 = a3b,
v7 = a, and v8 = a3.

Figure 3. The equitable graph Type I of D8.

Through the next two results, we explore the theoretical properties of the equitable
graph of this group for special cases of n.

Theorem 3. Consider the dihedral group G ∼= D2n; n = 2k, k > 1. Then

1. E1(G) is connected.

2. diam(E1(G)) = k, and γ(E1(G)) =
⌈ k + 1

3

⌉
.

3. χ(E1(G)) = ω(E1(G)) = 2k + 3.

Proof. Let G ∼= D2n; n = 2k, k > 1. Then

1. The connectedness of this graph is satisfied since the order of the elements of D2n in
this case are clearly 2i for each 1 ≤ i ≤ k, which is the same as the cyclic group of
order 2k.

2. From the previous point, we obtain that the equitable graph Type I of this group and
any cyclic group of order 2k share the same diameter and domination number. Then by
Theorem 2 we obtain the result.

3. The number of elements of order 2 in D2n is equal to n + 1, and for the remaining
divisors of n, there are φ(2m) elements for all 1 < m ≤ k. Hence, clearly, the maximum
clique consists of the elements of order 2 in addition to the elements of order 22 by the
connectedness. Therefore, we obtain the outcome.

Proposition 1. Let G be the dihedral group D2n; n = 2k, k > 1. Then
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1. δ(E1(G)) =

⎧⎨
⎩

5, k = 2 or 3;
11, k = 4;
13, k ≥ 5.

2. Δ(E1(G)) =

{
2k + 6, k ≥ 3;
7, k = 2.

Proof. Let G be the dihedral group D2n; n = 2k, k > 1. Then

1. From the adjacency method and according to the number of elements in each order in
G, we attain the solution for k = 2, 3 or 4. Now, for all k ≥ 5, we have that the degree
of any element of order 23 is 13, which is the minimum among all others, and hence,
we are done.

2. For the first case, since the elements of order 22 are adjacent to all elements of order 2,
which include the maximum number of the elements, we obtain that

Δ(E1(G)) = 2k + 1 + φ(22)− 1 + φ(23) = 2k + 6.

Now, when k = 2, let v(j) denote a vertex of order j. Then d(v(1)) = 5, d(v(2)) = 7,
and d(v(22)) = 6. Hence, we can conclude the result.

Theorem 4. Let G be a cyclic group of order pk, where p > 2 is a prime number and k > 1. Then
E1(G) is disconnected.

Proof. Let G be a cyclic group of order pk, where p > 2 is a prime number and k > 1. Then
the graph E1(G) is as shown in Figure 4.

Figure 4. The equitable graph Type I of cyclic groups of order pk.

Thus, for any 1 ≤ i ≤ k, we have |pi − pi−1| > min{pi, pi−1}. Hence, all elements
of order pi cannot be adjacent to any element of a different order. Therefore, the graph
consists of disconnected cliques.

Theorem 5. Consider the cyclic group G of order pk; p > 2 is a prime number, and k > 1. Then
E1(G) has the following properties

1. δ(E1) = 0, Δ(E1) = pk − pk−1 − 1.
2. There are k + 1 components.
3. γ(E1) = k + 1.
4. ω(E1) = pk−1(p − 1).
5. χ(E1) = pk−1(p − 1).

6. m(E1) =
k

∑
i=1

(pi − pi−1)[pi − pi−1 − 1]
2

.

Proof. Let G be a cyclic group of order pk; p > 2 is a prime number, and k > 1. Then

1. The result is clear for the minimum degree. Now, for the maximum degree, the result
follows as each element of the same order forms a complete subgraph and since
φ(p) < φ(p2) < . . . < φ(pk). Thus, Δ(E1) is equal to the degree of any element of
order pk.

2. Since the elements of the same order form a clique and by Theorem 4, we obtain that
the number of the components is the number of the divisors of |G|.
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3. According to Theorem 4 and the method of the adjacency, one vertex from each clique
can be in the dominating set that includes the identity. Thus, the cardinality of the
dominating set is at most k + 1. Therefore, the dominating set, say S, contains the
identity and one vertex of order pi for all 1 ≤ i ≤ k, and hence, |S| = k + 1.

4. The result is direct as the number of vertices in each clique equals φ(pi) for all
1 ≤ i ≤ k.

5. By the previous point, we obtain that at least pk−1(p − 1) colors are needed to label
the vertices. Since the components are disjoint, these colors can be reused. Hence,
χ(E1) = ω(E1).

6. The result can be obtained through the adjacency method and from the fact that all of
the elements of order pi form a complete subgraph for all 1 ≤ i ≤ k.

Theorem 6. Let G be a cyclic group of order 2k.q; q > 2 is a prime number, and k > 1, such that
|2i − q| ≤ min{2i, q} for some 1 ≤ i ≤ k. Then E1(G) is connected.

Proof. It is known that the divisors of n consist of 1, 2, 22, . . . , 2k, q, 2q, 22q,
. . . , 2kq. Then by Theorem 1, we obtain that the vertices of orders 1, 2, . . ., 2k are connected.
Consequently, |2jq− 2j−1q| = 2j−1q = min{2jq, 2j−1q} for all 1 ≤ j ≤ k, and this is achieved
by the connectedness of the vertices of orders q, 2q, . . ., 2kq. Therefore, by the condition
|2i − q| ≤ min{2i, q} for some 1 ≤ i ≤ k, the connectedness of this graph holds.

Proposition 2. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then
E1(G) has the following properties

1. δ(E1) = 1.
2. χ(E1) = ω(E1) = φ(n) + φ( n

2 ).

3. Δ(E1) =

{
φ(n) + φ( n

2 ) + φ( n
3 ) + φ( n

4 )− 1, i f q = 3;
φ(n) + φ( n

2 ) + φ( n
4 )− 1, i f q > 3.

Proof. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then
for the first point, the proof is followed, since deg(e) = 1, which is the minimum among
all vertices. For (2), as the orders n and n

2 involve the largest number of elements, and
since |2kq − 2k−1q| ≤ min{2kq, 2k−1q}, |2kq − 2k| > min{2kq, 2k}, and |2kq − 2k−2q| >
min{2kq, 2k−2q}, we obtain that the vertices of orders n and n

2 form the maximum clique. It
is clear that χ(E1) ≥ ω(E1). But from the relations above, we deduce that the colors of the
vertices of order n can be reused. Thus, χ(E1) ≤ ω(E1).

The maximum degree of this graph is the degree of a vertex of order n
2 ; this follows

from the previous points and according to the adjacency method. Now, if q > 3, we
have |2 − q| > min{2, q}. Consequently, |2k − 2k−1q| > min{2k, 2k−1q}. Hence, by the
arrangement of the order as in Theorem 6, we obtain the result. Otherwise, if q = 3, since
|3 − 2| ≤ min{3, 2}, we obtain that |2k−13 − 2k| ≤ min{2k−13, 2k}. Also, as |3 − 1| >
min{3, 1}, then |2k−13 − 2k−1| > min{2k−13, 2k−1}. Then

Δ(E1) = φ(2k3) + φ(2k−13) + φ(2k) + φ(2k−23)− 1. (1)

Theorem 7. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then E1(G)
has the following properties:

1. If E1(G) is connected, then

(a)

{
γ(E1) = � t−4

5  + 2, i f q = 3;
� t−4

5  + 2 ≤ γ(E1) ≤ ! t
3", i f q > 3.
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(b) diam(E1) = (t − 1)− (k − i).

where i is a positive integer such that 2i ≤ q ≤ 2i+1, and t denotes the number of divisors of
n, which in this case is equal to 2(k + 1).

2. If E1(G) is disconnected, then γ(E1) = 2! k+1
3 ".

Proof. Let G be a cyclic group of order 2k.q; q > 2 is a prime number, and k > 1. Then
consider the connected case of the graph, and let q = 3; then the divisors of n will be in the
following order:

1, 2, 3, 22, 2.3, 23, 223, 24, 233, . . . , 2k, 2k−13, 2k3.

Let v(j) denote a single vertex corresponding to an element of order j. Now, as the
vertex that is associated with the element of order 2, say v(2), is adjacent to the identity
and all vertices that are associated with elements of order 3 and 4, thus v(2) belongs to the
dominating set S. For the remaining t − 4 divisors, we have the following relation:

It is clear that any vertex associated with an element of order 2i, say v(2i), is adjacent
to all symmetrical vertices and all v(2i−1) and v(2i+1) for all 2 ≤ i ≤ k − 1. This implies that
any vertex v(2i3) is adjacent to all vertices of orders 2i+13 and 2i−13.

Also, since |2 − 3| ≤ min{2, 3}, we have |2i − 2i−13| ≤ min{2i, 2i−13}. And as
|22 − 3| ≤ min{22, 3}, we obtain |2i − 2i−23| ≤ min{2i, 2i−23} for all 2 ≤ i ≤ k − 2.
Therefore, v(2i3) is adjacent to all symmetrical vertices and all vertices v(2i−13), v(2i+13), v(2i+1)
and v(2i+2). Also, each vertex v(2i) is adjacent to all symmetrical vertices and all vertices
v(2i−1), v(2i+1), v(2i−23) and v(2i−13). Thus, according to the order of elements mentioned at
the beginning of the proof, we find that the dominating set contains v(223), v(26), v(273),
v(211), . . ., v(2k−1) or v(2k); so for every five consecutive divisors, one vertex can be in S,

and so γ(E1) > � t−4
5  + 1. But since |2k3 − 2k| > min{2k3, 2k}, one vertex of v(n) or v( n

2 )

must be in S. Hence, we conclude the result. On the other hand, concerning the case of
q > 3, |2 − q| > min{2, q}, where the minimum value for this occurs at q = 3, so the graph
in this case is more interconnected based on the relationships mentioned previously. So
γ(E1) > � t−4

5  + 2. But the equality is possible given that numerous examples achieve it.
For instance, if n = 245, then, according to the order of the divisors, which is as follows:

1, 2, 22, 5, 23, 2(5), 24, 22(5), 23(5), 24(5),

we obtain that the minimum dominating set contains the vertices v(2), v(2(5)) and v(24(5)),
where v(j) denotes a single vertex associated with an element of order j. Hence, γ(E1) =

3 = � 10−4
5  + 2, and this yields the desired result. Also, it is clear that γ(E1) cannot be more

than ! t
3", whereas the occurrence of the maximum probability arises when for every set of

three consecutive divisors (orders), a singular vertex having an order equal to the middle
divisor is included in the dominating set.

The diameter of E1(G) in this case is clearly equal to the distance between the identity
and an element of order 2kq (as each divisor of n corresponds to a clique in E1(G)). Thus, if
q > 2k, then diam(E1) = t − 1. Otherwise, if 2i < q < 2i+1 for some 1 ≤ i ≤ k − 1, then

2i+1 < 2q < 2i+2

2i+2 < 22q < 2i+3

...
2k−1 < 2(k−1)−iq < 2k.

Then, the path, say P, that joined the identity with v(2kq) will be as follows: v(1) − v(2) −
. . . − v(2i) − v(2i+1) − . . . − v(2k) − v(2k−i)q − . . . − v(2k−1q) − v(2kq).

Now, as has been shown, all the vertices corresponding to the elements of orders
q, 2q, . . . , and 2(k−1)−iq have been excluded from P. This reduces the length by about
(k − 1)− i + 1 = k − i. Therefore, the result is obtained.
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Finally, when the graph E1(G) is disconnected, meaning |2k − q| > min{2k, q} and
q > 2k, there are two components by Theorem 6, and each component consists of k + 1
cliques that are joined successively as in Theorem 1. Therefore, in this case, the domination
number is twice the value of the domination number in Theorem 2.

Theorem 8. Let Sn and An be the symmetric and alternating groups, respectively, on a set of n
elements. Then

1. E1(Sn), where n ≥ 2, is connected.
2. E1(An) is connected for all n > 3.

Proof. The proof is straightforward due to the nature of the orders of the elements in these
groups.

The following theorems have been referenced for their applications in verifying the
Eulerian and planar properties of this graph.

Theorem 9 ([14] (Theorem 6.2.2)). For nontrivial connected graph Γ, the following statements
are equivalent:

1. Γ is Eulerian.
2. The degree of each vertex of Γ is an even positive integer.
3. Γ is an edge-disjoint union of cycles.

Theorem 10 ([14] (Theorem 8.4.1)). K5 is nonplanar.

Theorem 11. Let G be a cyclic group of order n; n is a positive integer. Then

1. E1(G) is not Eulerian for all n ≥ 3.
2. E1(G) is not Hamiltonian for all n ≥ 2.

Proof. Let G be a cyclic group of order n; n is a positive integer. Then the proof of the first
point follows from Theorem 9 since whenever the graph E1(G) is connected, the degree
of the identity vertex is equal to one, which is an odd integer. Now, for the second point,
according to the definition of the graph and since there is exactly one element of order 2 in
this group, there is only one edge that is incident to the identity. Hence, it is impossible to
have any Hamiltonian cycle in E1(G).

Theorem 12. Let G be a cyclic group of order n; n is a positive integer. Then E1(G) is planar for
all n ≤ 6 and nonplanar otherwise.

Proof. Let G be a cyclic group of order n; n is a positive integer. Then for each n > 6, the
graph E1(G) contains an induced subgraph K5, and this implies the nonplanarity of the
graph. On the other hand, the proof is obvious for n = 1, 2, 3 and 4. Also, if n = 5, then
E1(G) consists of an isolated vertex, which is the identity, and the complete graph k4, and
hence, it is planar. Finally, the planarity of the graph when n = 6 is shown in Figure 5.

Figure 5. The plane embedding of a cyclic group of order 6.
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3. Equitable Square-Free Number

This section endeavors to establish the conceptual frameworks of the equitable square-
free number and the equitable group. Furthermore, it encompasses a comprehensive study
of the connectedness properties inherent to the equitable graph Type I associated with such
a group, and we analyze its characteristics in detail.

Definition 2. Let p1 < p2 < · · · < pk be distinct prime numbers. The square-free number
n = ∏k

i=1 pi is called an equitable square-free number if and only if pi+1 − pi ≤ pi for all
i = 1, 2, · · · , k − 1.

Theorem 13. Let n be an equitable square-free number and consider the cyclic group G of order n.
Then

1. For p1 = 2, E1(G) is connected.
2. For p1 > 2, E1(G) is disconnected.

Proof. Let G be a cyclic group of order n, where n is an equitable square-free number. Then
the divisors of n will be arranged, in general, as follows:

1 , p1 , p2 , · · · , pk , p1 p2 , p1 p3 , · · · , p1 pk , p2 p3 , · · · · · · , pk−1 pk , p1 p2 p3 , p1 p2 p4 , · · · · · · ,
pk−2 pk−1 pk , p1 p2 p3 p4 , · · · · · · , p1 p2 . . . pk−1 , · · · , p2 p3 . . . pk , p1 p2 . . . pk = n

Since the order of the elements is the divisor of n, we first need to prove that any vertices
that have an order equal to the product of the same number of primes form a component;
that is, any two vertices of orders with the same number of primes have a path between
them. This is clear for order 1 since there is only one vertex that has this order, which is the
identity. Also, the vertices with order n clearly form a component.

Now we will prove this for the remaining divisors by using the mathematical induction
on the number of primes in the prime factorization of the divisors, say m. The proof is clear
for m = 1, n = pi; 1 ≤ i ≤ k according to the choice of n.
The base case of m = 2:

Let d1 = pi pj and d2 = pt ps be any two divisors such that j < i, t < s, and j ≤ t. By
the definition of n, we have

|pi+1 − pi| ≤ min{pi+1 , pi}; for all i = 1, 2, . . . , k − 1.

Then
|pj pi+1 − pj pi| ≤ min{pj pi+1 , pj pi} (2)

So if t = j, then this forms a path between the vertices of order d1 and d2. If j < t, then we
have the following:
By inequality (2), we can find a path from the vertices of order pj pi to the vertices of order
pj pk. Hence, from the ordering of the divisors, we obtain that:

pj+1 pj+2 − pj pk = pj+1 pj+2 − pj pj+2 + pj pj+2 − pj pk (3)

≤ pj pj+2 + pj pj+2 − pj pk (4)

= pj(2pj+2 − pk) ≤ pj pk (5)

Then
|pj+1 pj+2 − pj pk| ≤ min{pj+1 pj+2, pj pk} (6)

This forms an edge between the vertices of these orders. Then by using the same fact
as in inequality (2), we obtain that there is a path from the vertices of order pj pi to the
vertices of order pj+1 pk. Continuing the process in the inequalities (2) and (6), we can find
a path between vertices of orders d1 and d2. Therefore, for all α ∈ Sk such that α �= e and
α(j) < α(i), there is a path from any vertex of order pj pi to any vertex of order pα(j)pα(i),
where 1 ≤ j < i ≤ k.
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The inductive hypothesis: Assume that this is true for all m < k − 1. That is, for all α ∈ Sk
such that α �= 1 and α(i1) < α(i2) < · · · < α(im), there is a path between any two vertices
of orders ∏m

j=1 pij and ∏m
j=1 pα(ij)

.

The inductive proof: Let m = k − 1, and di = ∏k−1
t=1 pit and dj = ∏k−1

s=1 pjs are any two
divisors such that pit < pit+1 and pjs < pjs+1 for all 1 ≤ t, s ≤ k − 2. By the inductive
hypothesis, we have that there is a path between the vertices of orders d′

i = ∏k−2
t=1 pit

and d′
j = ∏k−2

s=1 pjs . Now if pik−1
= pjk−1

, we are done. So without loss of generality, let
pik−1

< pjk−1
. Then, similarly to the base case, we can find a path between the vertices

of orders di = d′
i pik−1

and dj = d′
j pjk−1

. Hence, for all α ∈ Sk such that α �= e and
α(i1) < α(i2) < · · · < α(ik−1), there is a path from the vertices of order ∏k−1

t=1 pit to the
vertices of order ∏k−1

t=1 pα(it).
Now, assume that p1 = 2. Then by the first part, we need to check the connectedness

between the components, and this is clear from the fact that for any integer m,

|2m − m| = m = min{2m, m}.

Thus, for any divisor d = pi1 pi2 . . . pit , where 2 ≤ t ≤ k − 1 and 2 < pi1 < pi2 < · · · < pit ,
we have

|2d − d| = d ≤ min{2d, d} (7)

Therefore, there is a path from any element of order ∏m
t=1 pit to any element of order

∏m+1
j=1 pij , where 1 ≤ m ≤ k − 1. Therefore, there is a path between any two vertices in

E1(G). Otherwise, if p1 > 2, since |pi − 1| > min{pi, 1} for all i = 1 , 2 , . . . , k, we have
that for any divisor d of |G|,

|d − 1| > min{d, 1} (8)

Then, there is no edge between the identity and any other vertex in the graph. Hence, the
identity is an isolated vertex.

For the disconnected case delineated in Theorem 13, the subsequent theorem examines
the cardinality of its constituent components.

Theorem 14. Let G be a cyclic group of order n = ∏k
i=1 pi, where n is an equitable square-free

number, and consider that p1 > 2. Then

1. E1(G) has 3 or 4 components for k = 2 or 3, respectively.
2. For k > 3, we have

• If |p1 p2 − pt| ≤ min{p1 p2, pt} for some 3 < t ≤ k. Then E1(G) has 3 components.
• If |p1 p2 − pi| > min{p1 p2, pi} for all 3 < i ≤ k, then the number of the components

in E1(G) will be as follows:{
5, |p1 p2 p3 − pt pl | ≤ {p1 p2 p3, pt pl} f or some 1 ≤ t < l ≤ k;
k + 1, |p1 p2 p3 − pi pj| > {p1 p2 p3, pi pj} f or all 1 ≤ i < j ≤ k.

Proof. Let G be a cyclic group of order n = ∏k
i=1 pi , where n is an equitable square-free

number. Now as p1 > 2, we have |pi − 1| > min{pi, 1}. Then

|n −
k−1

∏
r=1

pir | >
k−1

∏
r=1

pir = min{n,
k−1

∏
r=1

pir} (9)

Thus, there is no edge between the elements of order ∏k−1
r=1 pir and the elements of order

equal to n. These two components are depicted in Figure 6.
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Figure 6. The disconnecting of the last components in E1(G).

In the figure, the dotted line circle represents a connected (not complete) subgraph,
and o(v) denotes the order of the element v in the group G. Hence, when k = 2, E1(G)
obviously has three components, as is shown in Figure 7.

Figure 7. The equitable graph Type I of G with k = 2.

Let k = 3. Then according to the choice of the prime numbers, we have |p1 p2 − p3| >
min{p1 p2, p3}. So there is no edge between any element of order pi and any element of
order pr ps. Thus, the graph has 4 components, as shown in Figure 8.

Figure 8. The equitable graph Type I of G with k = 3.

Now let k > 3 and assume that |p1 p2 − pt| ≤ min{p1 p2, pt} for some 3 < t ≤ k. This
implies that there is a path between any two elements of order pi and pr ps for all 1 ≤ i ≤ k
and 1 ≤ r < s ≤ k, respectively. Also, by this assumption, we obtain that

|p1 p2 . . . pt−1 pt+1 . . . pk − p3 . . . pt−1 pt pt+1 . . . pk| ≤ min{p1 p2 . . . pt−1 pt+1 . . . pk, p3 . . . pt−1 pt pt+1 . . . pk} (10)

Hence, there is a path between all elements of order ∏k−1
r=1 pir and ∏k−2

s=1 pjs . Also, by
choosing any 2 < i ≤ k such that i �= t, we obtain that

|p1 p2 pi − pt pi| ≤ min{p1 p2 pi, pt pi} (11)

And this forms a path between the elements of order ∏3
r=1 pir and ∏2

s=1 pjs . Continuing
this process, we obtain that there is a path between any two elements of order ∏m

r=1 pir
and ∏m−1

s=1 pjs for all 3 ≤ m ≤ k − 2. Therefore, there is a path between any two elements
of order ∏m

r=1 pir and ∏t
s=1 pjs , where 1 ≤ m , t ≤ k − 1, and hence, these vertices form a

component. Thus, the graph in this case is expressed as in Figure 9.
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Figure 9. E1(G) with 3 components, where k > 3.

On the other hand, if |p1 p2 − pi| > min{p1 p2, pi} for all 3 < i ≤ k. By the increasing
of the primes, we have that p1 p2 < pi pj for all 1 ≤ i ≤ k − 1, 2 < j ≤ k and i < j. Then

|pi pj − pr| > min{pi pj, pr}; ∀1 ≤ r ≤ k and 1 ≤ i < j ≤ k (12)

Therefore, there is no path between any two elements of order pr and pi pj. Hence, the two
components C1 and C2 are disjoint, where Cm denotes the components that consist of all
elements of order ∏m

j=1 pij for all 1 ≤ m ≤ k. Consequently, we have

|
k−1

∏
r=1

pir −
k−2

∏
s=1

pjs | > min{
k−1

∏
r=1

pir ,
k−2

∏
s=1

pjs} (13)

Thus, the disjoint components are depicted in Figure 10.

Figure 10. The disconnected components in E1(G) with 5 components.

Now consider the case |p1 p2 p3 − pt pl | ≤ min{p1 p2 p3, pt pl} for some 1 ≤ t <
l ≤ k. Hence, there is a path from any element of order pi pj to any element of order
∏3

r=1 pir . Then, by choosing any c /∈ {1, 2, 3, t, l}, we obtain that |p1 p2 p3 pc − pt pl pc| ≤
min{p1 p2 p3 pc, pt pl pc}. Thus, this forms a path from any element of order ∏3

r=1 pir to any
element of order ∏4

s=1 pjs . Sustaining this procedure, we obtain that

|
m

∏
r=1

pir −
m−1

∏
s=1

pjs | ≤ min{
m

∏
r=1

pir ,
m−1

∏
s=1

pjs}; ∀4 ≤ m ≤ k − 2 (14)

Therefore, there is a path between any two elements of these orders, and hence, it forms a
component such as that shown in Figure 11.

Figure 11. The middle component in E1(G) with 5 components.

120



Mathematics 2024, 12, 2126

Otherwise, if |p1 p2 p3 − pi pj| > min{p1 p2 p3, pi pj} for all 1 ≤ i < j ≤ k, then
p1 p2 p3 > pi pj for all 1 ≤ i < j ≤ k. Also, since p1 p2 p3 < pi pj pr for all 1 ≤ i < j < r ≤ k,
we obtain that

|
3

∏
r=1

pir −
2

∏
s=1

pjs | > min{
3

∏
r=1

pir −
2

∏
s=1

pjs (15)

Hence, there is no path between these components, as presented in Figure 12.

Figure 12. The disconnection of the first four components in E1(G) with k + 1 components.

From inequality (15), we obtain

|
k−2

∏
r=1

pir −
k−3

∏
s=1

pjs | > min{
k−2

∏
r=1

pir ,
k−3

∏
s=1

pjs} (16)

Hence, these components are disjoint, as described in Figure 13.

Figure 13. The disconnection of the last four components in E1(G) with k + 1 components.

Then, by the mathematical induction on the number of primes in the prime factoriza-
tion of the divisors, say m, we will prove that the component containing elements of order
∏m

r=1 pir and the component consisting of elements of order ∏m−1
r=1 pir for all 4 ≤ m ≤ k − 3

are separated.
The base case, m = 4: First, claim p1 p2 p3 p4 > pk−2 pk−1 pk. Then

p1 p2 p3 p4 > pi pj pr; for all 1 ≤ i < j < r ≤ k.

Now since p1 p2 > pi for all 1 ≤ i ≤ k and p1 p2 p3 > pi pj for all 1 ≤ i < j ≤ k, then
p1 p2 p3 > pk−1 pk.

Moreover, as p4 is greater than every prime on the left side of the inequality and pk−2
is smaller than every prime on the other side, according to the choice of the primes, we
obtain that

p1 p2 p3 p4 > pk−2 pk−1 pk

Thus, by the increasing these numbers, we have
p1 p2 p3 p4 > pi pj pr for all 1 ≤ i < j < r ≤ k. From inequality (15) and for any

t ∈ {1, 2, . . . , k}, such that pt > pir and pt > pjs for all r = 1, 2, 3 and s = 1, 2, respectively,
then

|
3

∏
r=1

pir pt −
2

∏
s=1

pjs pt| > min{
3

∏
r=1

pir pt,
2

∏
s=1

pjs pt} (17)

Furthermore, p1 p2 p3 − pk−1 pk > min{p1 p2 p3, pk−1 pk} = pk−1 pk

p1 p2 p3 p4 − p4 pk−1 pk > p4 pk−1 pk (18)
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and
p1 p2 p3 pk−2 − pk−2 pk−1 pk > pk−2 pk−1 pk (19)

Then
p1 p2 p3 pk−2 − p4 pk−1 pk > p4 pk−1 pk (20)

Then, adding the inequalities (18) and (19) gives

[p1 p2 p3 p4 − pk−2 pk−1 pk] + [p1 p2 p3 pk−2 − p4 pk−1 pk] > pk−2 pk−1 pk + p4 pk−1 pk (21)

Also, inequality (20) implies that

p1 p2 p3 p4 − pk−2 pk−1 pk > pk−2 pk−1 pk

Then,

|
4

∏
r=1

pir −
3

∏
s=1

pjs | > min{
4

∏
r=1

pir ,
3

∏
s=1

pjs} (22)

Thus, there is no path from any element of order ∏3
s=1 pjs to any element of order ∏4

r=1 pir .
The inductive hypothesis: Assume that this is true for all m < k − 3, that is

|
m

∏
r=1

pir −
m−1

∏
s=1

pjs | > min{
m

∏
r=1

pir ,
m−1

∏
s=1

pjs} (23)

Then the resulting components are depicted in Figure 14.

Figure 14. The disconnection of the middle components in E1(G) with k + 1 components.

The inductive proof: Claim that | ∏k−3
r=1 pir − ∏k−4

s=1 pjs | > min{∏k−3
r=1 pir , ∏k−4

s=1 pjs}.
Now from the inductive hypothesis, we have for all k − 4 < s ≤ k and ps > pij for all
1 ≤ j ≤ k,

|p1 p2 . . . pk−4 ps −
k−5

∏
j=1

pij ps| > min{p1 p2 . . . pk−4 ps,
k−5

∏
j=1

pij ps} (24)

Then, similarly to the base case, we obtain

p1 p2 . . . pk−3 > p5 p6 . . . pk, and
|p1 p2 . . . pk−3 − p5 . . . pk| > min{p1 p2 . . . pk−3, p5 . . . pk}

Then

|p1 p2 . . . pk−3 −
k−4

∏
j=1

pij | > min{p1 p2 . . . pk−3,
k−4

∏
j=1

pij} (25)

And hence, p1 p2 . . . pk−3 > ∏k−4
j=1 pij .

Thus, the increase of the primes implies that

|
k−3

∏
r=1

pir −
k−4

∏
s=1

pjs | > min{
k−3

∏
r=1

pir ,
k−4

∏
s=1

pjs} (26)
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Therefore, there is no path between any two elements of orders ∏k−3
r=1 pir and ∏k−4

s=1 pjs .
Hence, there is no path between any element of order ∏m

r=1 pir and any element of order
∏m−1

s=1 pjs for all 4 ≤ m ≤ k − 4, and this complete the proof.

Definition 3. Let G be a finite group. Then G is said to be an equitable group if the order of G is
an equitable square-free number.

Example 3. The symmetric group S3, the dihedral group D30 and the cyclic group of order 1729
are examples of equitable groups.

Corollary 1. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where pi are distinct primes

for all 1 ≤ i ≤ k. Then the only cases in which E1(G) is connected to k = 2, 3 or 4 are
n = 6, 30 or 210, respectively.

Proposition 3. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where k > 2 is a positive

integer and pi are distinct primes for all 1 ≤ i ≤ k. Consider the disconnected graph E1(G). Then
E1(G) has the following properties:

1. δ(E1) = 0,
2. χ(E1) = ω(E1) = φ(n),
3. Δ(E1) = φ(n)− 1,

4. 2k − 2 ≤ γ(E1) ≤ ! 2k−2
3 "+ 2.

Proof. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where k > 2 is a positive

integer and pi are distinct primes, and consider the disconnected graph E1(G). Then, the
identity is isolated, and hence, we obtain the result of the minimum degree. Also, since
all the vertices that are associated with the elements of order n in G, which occupies the
largest number of vertices, form a disjoint clique by Theorem 14, we obtain (2) and (3).

To prove (4), let Cm denote a component that consists of vertices that correspond to
the elements of order dm = ∏m

j=1 pij , where 1 ≤ m ≤ k in the group. Then we have k + 1
components, including the identity. From Theorem 14, we obtain that the identity and
one vertex from Ck belong to the dominating set, say S. The two components C1 and Ck−1

consist of k = (k
1) = ( k

k−1) connected cliques. Hence, taking into view the number of cliques
in these components and the difference between the divisors, at least one vertex of each of
them can be in S. Each one of the remaining (k − 3) components consists of (k

j) connected
cliques, which is greater than k for all 2 ≤ j ≤ k − 2. So again, based on a similar reason, at
least two vertices of each component belong to S. Thus, the dominating set S consists of at
least 4 + 2(k − 3) = 2k − 2 components. The highest value that S can attain is ! 2k−2

3 "+ 2
since each divisor of n corresponds to a clique in this graph and, in our case, n has 2k

divisors. As previously explained, the identity and one vertex of Ck are included in the
dominating set. Therefore, 2k − 2 cliques remain, in which, for each three consecutive
cliques, one vertex can be in S, which has an order equal to the middle ones.

Proposition 4. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where k > 2 is a positive

integer and pi are distinct primes. Consider the connected graph E1(G). Then E1(G) has the
following properties:

1. δ(E1) = 1.
2. Δ(E1) = φ(n) + φ( n

2 ) + φ( n
3 )− 1.

3. χ(E1) = ω(E1) = φ(n) + φ( n
2 ).

4. γ(E1) ≥ k + 1 unless k = 2, 3 or 4, in which case, γ(E1) = k.

5. diam(E1) ≥ 2γ(E1) unless k = 2, 3 or 4, in which case, diam(E1) = 3, 6 or 10, respectively.

Proof. Let G be a cyclic equitable group of order n = ∏k
i=1 pi, where k > 2 is a positive

integer and pi are distinct primes, and consider the connected graph E1(G). Then the
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number of vertices that are associated with the elements of order 2 in G is φ(2) = 1, for
which the identity is uniquely adjacent to it, and this yields the result of (1). Now, the
two following differences |n − n

2 | ≤ min{n, n
2 } and | n

2 − n
3 | ≤ min{ n

2 , n
3 } lead to any

vertex associated with an element of order n
2 being adjacent to all symmetrical vertices and

all vertices that are associated with elements of order n and n
3 . Moreover, as | n

2 − n
5 | >

min{ n
2 , n

5 } and |n − n
3 | > min{n, n

3 }, taking into consideration the number of elements in
each order, this gives (2) and (3), respectively.

The diameter and the domination number of the graph when k = 2, 3 or 4 is obtained
obviously. On the other hand, let k be greater than four. Then the first four primes are always
2, 3, 5 and 7, which means that the divisors of n begin as 1, 2, 3, 5, 6, 7, 10, . . . , n

2 , n. Let
v(i) denote a single vertex associated with an element of order i in G for all 1 ≤ i ≤ n. Then
we have v(2), v(10), v(42), v( n

2 )
or v(n) and one vertex from the component Ck−1, where Cm is

defined as in Proposition 3 are always belonging to S. Now for the residue components (C3
to Ck−2), at least k − 4 vertices from these components can be included in the dominating
set regarding the connectedness of the graph and the difference between the divisors. Thus,
γ(E1) ≥ k + 1.

Moreover, the diameter of the graph is clearly the shortest path from the identity to
v(n), which, in this case, usually starts as v(1) → v(2) → v(3) → v(6) → v(10) → . . . → v(n).

So we obtain that each vertex in S gives at least two edges in this path in addition to
the edge between v(3) and v(6). Hence, we conclude the result.

4. Zagreb Indices of the Equitable Graph

Topological indices are crucial for analyzing the physico–chemical characteristics of
chemical compounds. They include degree-based and distance-based molecular structures
and hybrid formulations. These indices are leading tools for identifying physical properties,
chemical reactivity and biological activities of compounds. For any graph Γ with vertex set
V and edge set E, the first and second Zagreb indices are defined as M1(Γ) = ∑

u∈V

(
d(u)

)2

and M2(Γ) = ∑
uv∈E

d(u)d(v). The forgotten index is similar to the first Zagreb index, which

is defined as F(Γ) = ∑
u∈V

(
d(u)

)3. For more details, see [15,16]. Through this section, we

determine these three indices for the equitable graph Type I from some specific cyclic
groups.

Theorem 15. Let G be a cyclic group of order 2k; k > 1 is a positive integer. Then the first, second
and forgotten Zagreb indices of E1(G) will be as follows:

1. M1(E1(G)) = 10 + 2k−1((3)2k−2 − 1)
2
+

k−2

∑
i=1

2i((7)2i−1 − 1)
2
.

2. M2(E1(G)) = 3 +
k−1

∑
i=1

22i−1[d(v2i )d(v2i+1)] +
k

∑
i=2

[ si(si + 1)
2

]
[d(v2i )]2

where si = φ(2i)− 1 = 2i−1 − 1.

3. F(E1(G)) = 28 + 2k−1((3)2k−2 − 1)
3
+

k−2

∑
i=1

2i((7)2i−1 − 1)
3
.

Proof. Let G be a cyclic group of order 2k; k > 1 is a positive integer. Then as φ(2i) = 2i−1

and for any vertex v that associates with an element of order 2i; 2 ≤ i ≤ k − 1, we have
d(v) = φ(2i−1) + φ(2i)− 1 + φ(2i+1), and if i = 1 or k, d(v) = 3 or [φ(2k−1) + φ(2k)],
respectively. Then, computing M1(E1) = ∑

v∈V(E)
d2(v), we obtain

M1(E1(G)) = 1 + 9 + φ(22)[1 + φ(22)− 1 + φ(23)]2 + φ(23)[φ(22) + φ(23)− 1+
φ(24)]2 + . . . + φ(2k−1)[φ(2k−2) + φ(2k−1)− 1 + φ(2k)]2 + φ(2k)[φ(2k−1) + φ(2k)− 1]2.
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Hence, substituting the value of φ(2i) and using Lemma 2, we obtain the result.
Now for the second Zagreb index, let v(2i) denote the vertex corresponding to an

element of order 2i; then

M2(E1(G)) = ∑
uv∈E(E1)

d(u)d(v)

= (1)(3) + 2[d(v(2))d(v(22))] +
( φ(23)−1

∑
j=1

j
)
[d(v(23))]

2 + (22)(23)[d(v(23))d(v(24))]

+
( φ(24)−1

∑
j=1

j
)
[d(v(24))]

2 + . . . . . . + (2k−2)(2k−1)[d(v(2k−1))d(v(2k))] +

( φ(2k)−1

∑
j=1

j
)
[d(v(2k))]

2.

Setting si = φ(2i)− 1, using the fact that
n

∑
j=1

j =
n(n + 1)

2
, and since all the vertices that

correspond to elements of the same order have the same degree, we obtain what is required.
For the forgotten index, we have the following:

F(E1(G)) = 1 + 27 + φ(22)[1 + φ(22)− 1 + φ(23)]3 + φ(23)[φ(22) + φ(23)− 1+
φ(24)]3 + . . . + φ(2k−1)[φ(2k−2) + φ(2k−1)− 1 + φ(2k)]3 + φ(2k)[φ(2k−1) + φ(2k)− 1]3.

Then, similarly to the first index, we obtain the desired outcome.

Example 4. Let G be a cyclic group of order 2k; k > 1. Table 1 shows the value of the topological
indices of E1(G).

Table 1. The topological indices of a cyclic group G of order 2k for some k > 1.

|G| = 22 |G| = 23 |G| = 24 |G| = 25 |G| = 26

M1(E1(G)) 18 182 1726 15,054 125,678
M2(E1(G)) 19 465 9677 176,325 300,5621
F(E1(G)) 44 960 19,896 361,384 6,151,048

Theorem 16. Let G be a cyclic group of order pk; p > 2 is a prime number, and k > 1 is a positive
integer. Then the first, second and forgotten Zagreb indices of E1(G) will be as follows:

1. M1(E1(G)) =
k

∑
i=1

(pi − pi−1)[pi − pi−1 − 1]2.

2. M2(E1(G)) =
k

∑
i=1

[ si(si + 1)
2

.(si)
2]

where si = φ(pi)− 1; 1 ≤ i ≤ k.

3. F(E1(G)) =
k

∑
i=1

(pi − pi−1)[pi − pi−1 − 1]3.

Proof. Let G be a cyclic group of order pk; p > 2 is a prime number, and k > 1 is a positive
integer. Then the result for the first Zagreb and the forgotten indices follows from the fact
that each clique in this graph has φ(pi) vertices, where pi is the order of the group elements
that correspond to these vertices for all 1 ≤ i ≤ k, and hence, the degree of any vertex v in
such a clique is φ(pi)− 1.

Now for the second Zagreb index, since each vertex is adjacent only to the vertices
that associate with elements of the same order, consider the clique, say Q, of vertices that
correspond to elements of order pi for some 1 ≤ i ≤ k. Let v1 , v2 , . . . , vt, where t = φ(pi).
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Then d(u) = d(v), f or all u �= v in Q, and by computing ∑ d(u).d(v), uv ∈ E(E1), we
obtain

d(v1)d(v2) + d(v1)d(v3) + . . . + d(v1)d(vt)
+ d(v2)d(v3) + d(v2)d(v4) + . . . + d(v2)d(vt)
...
+ d(vt−2)d(vt−1) + d(vt−2)d(vt) + d(vt−1)d(vt)
= d(v1)[(φ(pi)− 1)(d(v1))] + d(v2)[(φ(pi)− 2)(d(v2))] + . . . + d(vt−2)[2(d(vt−2))]
+ d(vt−1)[1(d(vt−1))]

=
t−1

∑
j=1

j[d(vj)]
2 =

[ t − 1(t)
2

]
(t − 1)2.

Therefore, by generalizing this sum to all 1 ≤ i ≤ k, we obtain the result.

Example 5. Let G be a cyclic group of order pk; k > 1 and p > 2. Table 2 shows the value of the
topological indices of E1(G).

Table 2. The topological indices of a cyclic group G of order pk; p > 2 for some k > 1.

|G| = 32 |G| = 33 |G| = 52 |G| = 53 |G| = 72 |G| = 73

M1(E1(G)) 152 157,040 7256 987,356 70,752 1,307,720
M2(E1(G)) 376 4,064,272 68,644 48,583,594 1,447,716 71,230,240
F(E1(G)) 752 8,128,544 137,288 97,167,188 2,895,432 142,460,480

Theorem 17. Let G be a cyclic group of order 2kq; q > 2 a prime number, and k > 1. Then the
first Zagreb index is given by the following formula:

• If 2t ≤ q ≤ 2t+1 for some 1 ≤ t < k, we have

M1(E1(G)) = 10 +
t−1

∑
i=1

2i[(7)2i−1 − 1]2 + 2t−1[(7)2t−2 + q − 2]2 + (q − 1)[(3)2t−1+

2q − 3]2 +
k−1

∑
i=t+1

2i−1[(7)2i−2 + (3)2i−t−2(q − 1)− 1]2 +
k−t−1

∑
i=1

2i−1(q − 1)[(7)2i−2(q−
1) + (3)2i+t−1 − 1]2 + 2k−1[(3)2k−2 + (3)2k−t−2(q − 1)− 1]2 + 2k−t−1(q − 1)[2k−1+

(7)2k−t−2(q − 1)− 1]2 +
k−1

∑
i=k−t+1

2i−1(q − 1)[(7)2i−2(q − 1)− 1]2 + 2k−1(q − 1)[(3)2k−2(q−
1)− 1]2.

• If q > 2k, and |q − 2k| ≤ min{q, 2k}, we have

M1(E1(G)) = 10 +
k−2

∑
i=1

2i[(7)2i−1 − 1]2 + 2k−1[(3)2k−2 + q − 2]2 + (q − 1)[2k−1 + 2q−

3]2 +
k−2

∑
i=1

2i(q − 1)[(7)2i−1(q − 1)− 1]2 + 2k−1(q − 1)[(3)2k−2(q − 1)− 1]2.

• If q > 2k, and |q − 2k| > min{q, 2k}, we have

M1(E1(G)) = 10 +
k−2

∑
i=1

2i[(7)2i−1 − 1]2 + 2k−1[(3)2k−2 − 1]2 + (q − 1)[2q − 3]2+

k−2

∑
i=1

2i(q − 1)[(7)2i−1(q − 1)− 1]2 + 2k−1(q − 1)[(3)2k−2(q − 1)− 1]2.

Proof. Let G be a cyclic group of order 2kq; q > 2 a prime number, and k > 1. Then
consider the arrangement of the divisors according to the position of the prime number q.
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Assume the first case; then the divisors will be as follows:
1, 2, 22, . . . , 2t, q, 2t+1, 2q, 2t+2, 22q, . . . , 2k, 2k−t, . . . , 2kq.
For the later cases, the divisors will be as mentioned in the proof of Theorem 6. Hence,
applying identical procedures as outlined in Theorem 15 and using Lemma 2, we achieve
the desired outcome.

Theorem 18. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then the
second Zagreb index is given by the following formula:

• If 2t ≤ q ≤ 2t+1 for some 1 ≥ t < k, then

M2(E1(G)) = 3 +
k−1

∑
i=1

22i−1[d(v(2i))d(v(2i+1))] +
2kq

∑
i=22

[ si(si + 1)
2

]
[d(v(i))]

2

+
k

∑
i=0

φ(2iq)φ(2i+1q)[d(v(2iq))d(v(2i+1q))] +
k

∑
i=t

22i−t−2(q − 1)[d(v(2i))d(v(2i−tq))]

+
k

∑
i=t+1

22i−t−3(q − 1)[d(v(2i−t−1q))d(v(2i))].

• If q > 2k, and |q − 2k| ≤ min{q, 2k}, then

M2(E1(G)) = 3 +
k−1

∑
i=1

22i−1[d(v(2i))d(v(2i+1))] +
2kq

∑
i=22

[ si(si + 1)
2

]
[d(v(i))]

2+

2k−1(q − 1)[d(v(2k))d(v(q))] +
k−1

∑
i=0

φ(2iq)φ(2i+1q)[d(v(2iq))d(v(2i+1q))].

• If q > 2k, and |q − 2k| > min{q, 2k}, then

M2(E1(G)) = 3 +
k−1

∑
i=1

22i−1[d(v(2i))d(v(2i+1))] +
2kq

∑
i=22

[ si(si + 1)
2

]
[d(v(i))]

2

+
k−1

∑
i=0

φ(2iq)φ(2i+1q)[d(v(2iq))d(v(2i+1q))].

where si = φ(i)− 1 and d(v(j)) denote the degree of a vertex that is associated with an
element of order j.

Proof. Let G be a cyclic group of order 2kq; q > 2 a prime number, and k > 1. Then
applying the same procedure as in Theorems 15 and 17, we obtain the result.

Theorem 19. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then the
forgotten index is given by the following formula:

• If 2t ≤ q ≤ 2t+1 for some 1 ≥ t < k, we have

F(E1(G)) = 28 +
t−1

∑
i=1

2i[(7)2i−1 − 1]3 + 2t−1[(7)2t−2 + q − 2]3 + (q − 1)[(3)2t−1+

2q − 3]3 +
k−1

∑
i=t+1

2i−1[(7)2i−2 + (3)2i−t−2(q − 1)− 1]3 +
k−t−1

∑
i=1

2i−1(q − 1)[(7)2i−2(q−
1) + (3)2i+t−1 − 1]3 + 2k−1[(3)2k−2 + (3)2k−t−2(q − 1)− 1]3 + 2k−t−1(q − 1)[2k−1+

(7)2k−t−2(q − 1)− 1]3 +
k−1

∑
i=k−t+1

2i−1(q − 1)[(7)2i−2(q − 1)− 1]3 + 2k−1(q − 1)[(3)2k−2(q−
1)− 1]3.

• If q > 2k, and |q − 2k| ≤ min{q, 2k}, we have
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F(E1(G)) = 28 +
k−2

∑
i=1

2i[(7)2i−1 − 1]3 + 2k−1[(3)2k−2 + q − 2]3 + (q − 1)[2k−1 + 2q−

3]3 +
k−2

∑
i=1

2i(q − 1)[(7)2i−1(q − 1)− 1]3 + 2k−1(q − 1)[(3)2k−2(q − 1)− 1]3.

• If q > 2k, and |q − 2k| > min{q, 2k}, we have

F(E1(G)) = 28 +
k−2

∑
i=1

2i[(7)2i−1 − 1]3 + 2k−1[(3)2k−2 − 1]3 + (q − 1)[2q − 3]3+

k−2

∑
i=1

2i(q − 1)[(7)2i−1(q − 1)− 1]3 + 2k−1(q − 1)[(3)2k−2(q − 1)− 1]3.

Proof. Let G be a cyclic group of order 2kq; q > 2 is a prime number, and k > 1. Then the
proof is similar to Theorems 15 and 17.

5. The Adjacency Matrix A(E1(G))

In graph theory, the adjacency matrix of a simple graph Γ is a symmetric matrix
A(Γ) = (aij) of size n × n, where n represents the number of vertices in the graph. The
matrix is defined such that aij = 1 if the vertices vi and vj are adjacent and 0 otherwise.

This section deals with obtaining the adjacency matrix of the equitable graph of Type I
that arises from cyclic p groups.

Proposition 5. Let G be a cyclic group of order 2k; k > 2 (or pk; k > 1, and p > 2 is a prime
number). Then the adjacency matrix of the equitable graph Type I of G will be as follows:

A(E1(G)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . . . . . . . . . . . . . . . . . . .
... J∗

... J
... . . . . . .

... J
. . . . . . . . . . . . . . . . . . . . . . . . . . .
... J

... J∗
... . . . . . .

... J
. . . . . . . . . . . . . . . . . . . . . . . . . . .
... J

... . . .
. . . . . . . . .

... J
. . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
... . . . . . .

. . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . .
... J

... . . . . . . . . . J∗
... J

. . . . . . . . . . . . . . . . . . . . . . . . . . .
... J

... . . . . . . . . . J
... J∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Proof. Let G be a cyclic group of order n and assume that n = 2k; k > 2. Then according
to the adjacency method, let J be a 3 × 3 matrix for which each entry equals one, and J∗ is
similar to J except that it has zeros in the main diagonal. In A(E1(G)), the first row consists
of zeros except for in the (2k−1)th position. The middle row, (2k−1), has one only in the
positions (2k−1 , 0), (2k−1 , 2k−2) and (2k−1 , 2k−23). Now for each (4m)th row, where
m ≥ 1, if m is odd, then there are zeros in the positions (4m , i), where i = 0, 4m, 2k−1,
and all odd numbers. On the other hand, if m is even such that 4m �= 2k−1, this row has
ones in the positions (4m, 4i) for all i ≥ 1 and i �= m. The corresponding rows and columns
are symmetric.

Now suppose that n = pk, where p > 2, and k > 1. Then by the definition of the
graph, in this case, J and J∗ are (p − 1 × p − 1) matrices, and they are as defined as before.
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The first row (column) is zeros, and the remaining rows (columns) in A(E1(G)) have the
following explanations

First, if p = 3, the (3m)th rows, where m ≥ 1 and 3m �= 3k−1 or (2)3k−1, have ones in
the positions (3m , 3i), where i ≥ 1, except for the case when i = 3k−2 or (2)3k−2 or i = m.
For the (3k−1)th and ((2)3k−1)th rows (columns), they have one at a unique position where
the row and the column intersect mutually. Now if p > 3, then the (pr)th rows, where
r ≥ 1, consist of ones only in the positions (pr , pi) for all i ≥ 1 and i �= r.

Example 6. Let G ∼= Z8. Then

A(E1(G)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 1 1 0 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 1 0 0 0 1 0
0 1 1 1 0 0 1 1
0 1 1 1 1 1 0 1
0 1 1 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Example 7. Let G be a cyclic group of order 2k; k = 2. Then

A(E1(G)) =

⎛
⎜⎜⎝

0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

⎞
⎟⎟⎠

Example 8. Let G ∼= Z9. Then

A(E1(G)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 1 0 0
0 1 1 0 0 1 0 1 1
0 1 1 0 1 0 0 1 1
0 0 0 1 0 0 0 0 0
0 1 1 0 1 1 0 0 1
0 1 1 0 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6. Conclusions

In this research, we introduced the equitable graphs Type I on groups. We studied
the connectedness of these graphs for some groups and explored some of their theoretical
properties. Additionally, the equitable square-free number and the equitable group were
established. Furthermore, the connectedness and characteristics of the graph of cyclic
equitable groups were investigated. The first, second and forgotten Zagreb indices were
determined for the equitable graph Type I of specific groups. Finally, the adjacency matrix
for the equitable graph Type I of cyclic p-groups was obtained. The newly introduced graph
has significant potential for further investigation into its properties. Promising avenues
for future research include analyzing equitable graph Type I, examining its perfectness,
computing spectral properties, and elucidating connections with other well-known graph
classes associated with finite groups. Addressing these open problems can provide valuable
insights into theoretical and practical aspects, advancing our understanding of finite group
theory and its interplay with graph theory.
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Seria Matematică 2018, 26, 29–40. [CrossRef]
7. Akhbari, S.; Heydari, F.; Maghasedi, M. The intersection graph of a group. J. Algebra Its Appl. 2015, 14, 1550065. [CrossRef]
8. Ma, X.L.; Wei, H.Q.; Zhong, G. The cyclic graph of a finite group. Algebra 2013, 2013, 107265 . [CrossRef]
9. Cameron, P.J. Graphs defined on groups. Int. J. Group Theory 2022, 11, 53–107.
10. Nath, R.K.; Fasfous, W.N.T.; Das, K.C.; Shang, Y. Common neighborhood energy of commuting graphs of finite groups. Symmetry

2021, 13, 1651. [CrossRef]
11. Sharma, M.; Nath, R.K.; Shang, Y. On g-noncommuting graph of a finite group relative to its subgroups. Mathematics 2021, 9, 3147.

[CrossRef]
12. Hungerford, T.W. Algebra; Springer Science and Business Media: New York, NY, USA, 2012; Volume 73.
13. Kumar, A.; Selvaganesh, L.; Cameron, P.J.; Chelvam, T.T. Recent developments on the power graph of finite groups—A survey.

Akce Int. J. Graphs Comb. 2021, 18, 65–94. [CrossRef]
14. Balakrishnan, R.; Ranganathan, K. A Textbook of Graph Theory, 2nd ed.; Springer Science and Business Media: New York, NY, USA,

2012.
15. Abdu, A.; Mohammed, A. Topological Indices Types in Graphs and Their Applications; Generis Publishing: Chisinau, Moldova, 2021.
16. Ali, F.; Rather, B.A.; Sarfraz, M.; Ullah, A.; Fatima, N.; Mashwani, W.K. Certain topological Indices of non-commuting graphs for

finite non-abelian groups. Molecules 2022, 27, 6053. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

130



Citation: Roberto, K.M.A.; Santos,

K.R.P.; Mariano, H.L. On

Non-Commutative Multi-Rings with

Involution. Mathematics 2024, 12,

2931. https://doi.org/10.3390/

math12182931

Academic Editors: Irina Cristea and

Alessandro Linzi

Received: 29 July 2024

Revised: 14 September 2024

Accepted: 18 September 2024

Published: 20 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Non-Commutative Multi-Rings with Involution

Kaique M. A. Roberto †, Kaique R. P. Santos † and Hugo Luiz Mariano *,†

Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010 , São Paulo 05508-090, Brazil;
kaique.roberto@alumni.usp.br (K.M.A.R.); kaique.rps@ime.usp.br (K.R.P.S.)
* Correspondence: hugomar@ime.usp.br
† The authors contributed equally to this work.

Abstract: The primary motivation for this work is to develop the concept of Marshall’s quotient
applicable to non-commutative multi-rings endowed with involution, expanding upon the main ideas
of the classical case—commutative and without involution—presented in Marshall’s seminal paper.
We define two multiplicative properties to address the involutive case and characterize their Marshall
quotient. Moreover, this article presents various cases demonstrating that the “multi” version of
rings with involution offers many examples, applications, and relatives in (multi)algebraic structures.
Therefore, we established the first steps toward the development of an expansion of real algebra and
real algebraic geometry to a non-commutative and involutive setting.

Keywords: multi-rings; involution; abstract real algebra

MSC: 16Y20; 11E16; 11E81

1. Introduction

Multialgebraic structures are ”algebraic-like” structures endowed with multiple val-
ued operations: an n-ary multi-operation on set A is just a function An → P(A) \ {∅}. The
definition and study of the concept of multi-group (Definition 1) began in the 1930s by
Marty; in the 1950s, the commutative hyperrings were introduced by Krasner (Definition 2).
Since then, research on these multi-structures and their broad range of applications has
been developed. The concepts of (commutative) multi-ring and superring (Definition 2), are
much more recent developments, as discussed in [1,2]. To access advances and results in the
theory of multi-ring and hyperring (commutative), we recommend the following: [2–9].

Many instances of multialgebraic structures codify the nature of mathematical objects
through operations. Here, we recall some basic examples and provide additional ones,
focusing on the non-commutative case.

Moreover, the exploration of this subject remains substantially open compared to
the classical case. The natural progression of the subject has led to the development of
polynomials [2], linear algebra [10], and orderings [11].

The main purpose of the present work is to outline the fundamental steps necessary
to expand Marshall’s seminal paper [1] to the context of non-commutative multi-rings
with involution. Specifically, we present and analyze the expansion of the notion of the
“Marshall’s quotient” (see [12]), a crucial construction in abstract concepts of real algebra
and real algebraic geometry. This includes applications in the space of signs [13], abstract
real spectra [14], real semigroups [15], and real reduced multi-rings [1].

Building on this foundation, future work will focus on developing a real spectrum
for non-commutative rings with involution, as a preparation for establishing an abstract
theory of Hermitian forms ([16]).

Within this context, we introduce the concept of the Marshall quotient for involutive
(non-commutative) multi-rings and discuss some applications to quaternion algebras over
formally real fields. The main technical results are presented in Theorems 3–5. To illustrate
an application, in Section 5, we provide the following:

Mathematics 2024, 12, 2931. https://doi.org/10.3390/math12182931 https://www.mdpi.com/journal/mathematics131
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Theorem 1 (7). Let R be a commutative ring and A be an R-algebra with involution σ. We denote

Orth(A) := {a ∈ A : aσ(a) = σ(a)a = 1}.

If Orth(A) ⊆ Z(A), then A/mOrth(A) is a (non-commutative) hyperring.

Outline

In Section 2, we provide a brief introduction to multi/super-structures relevant to
this work. We offer a non-standard example that extends Krasner’s hyperfield and the
signal hyperfield in Example 2. In Section 3, we introduce the basic objects of the theory
of (non-commutative) multi-rings with involution and invite the reader to compare this
theory with the classical one. Additionally, we cover various constructions and examples,
including multi-groups, products, and matrices.

In Section 4, we define Marshall’s quotient on involutive multialgebras and analyze the
conditions for their existence using a “coherent” approach. Theorem 3 presents two types
of quotients characterized by certain multiplicative subsets. Although many relations can
be considered when forming classes in the quotient, we focus on four different possibilities
and show how they are similar (Lemma 4). Moreover, in developing particular examples,
we verify the independence of the conditions in Theorem 3. Additionally, the available
quotient provides a “concrete” framework that encodes several types. In Section 5, we
explore some applications and present examples of quotients that generate well-known
multi-structures. Finally, in Section 6, we present our final remarks and conclusions.

2. Multi-Structures

In this section, we provide a brief overview of multi-structures and establish the
necessary notations for the reader.

Multialgebraic structures are “algebraic-like” structures endowed with multi-valued
operations. An n-ary multi-operation on set A is defined as a function f : An → P(A) \ {∅},
where P(A) is the power set of A. Alternatively, the same concept can be described by an n+
1-ary relation R f ⊆ An+1, which satisfies the following condition: for all x0, x1, · · · , xn−1 ∈
A, there exists xn ∈ A, such that R f (x0, x1, · · · , xn−1, xn).

Definition 1 (Adapted from Definition 1.1 in [1]). A multi-group concept is a first-order
structure (G, ·, r, 1), where G is a non-empty set, r : G → G is a function, 1 is an element of G,
· ⊆ G × G × G is a ternary relation (which will play the role of a binary multi-operation, and we
denote d ∈ a · b for (a, b, d) ∈ ·), such that for all a, b, c, d ∈ G, we have the following:

M1 - If c ∈ a · b, then a ∈ c · (r(b)) and b ∈ (r(a)) · c. We write a · b−1 to simplify a · (r(b)).
M2 - b ∈ a · 1 iff a = b.

M3 - If there exists x, such that x ∈ a · b and t ∈ x · c), then there exists y, such that y ∈ b · c
and t ∈ a · y. Equivalently, if ∃ x(x ∈ a · b ∧ t ∈ x · c), then ∃ y(y ∈ b · c ∧ t ∈ a · y).

The structure (G, ·, r, 1) is said to be commutative (or abelian) if it satisfies the following condi-
tion for all a, b, c ∈ G:

M4 - c ∈ a · b iff c ∈ b · a.

The structure (G, ·, 1) is a commutative multimonoid (with unity) if it satisfy M3, M4, and
condition a ∈ 1 · a for all a ∈ G.

Definition 2 (Definition 5 in [2]). A (commutative) superring is a tuple (R,+, ·,−, 0, 1),
satisfying the following:

1. (R,+, −, 0) is a commutative multi-group and (R, ·, 1) is a (commutative) multimonoid;
2. (Null element) a · 0 = 0 and 0 · a = 0 for all a ∈ R;
3. (Weak distributive) If x ∈ b+ c, then a · x ∈ a · b+ a · c and x · a ∈ b · a+ c · a. Equivalently,

(b + c) · a ⊆ b · a + c · a and a · (b + c) ⊆ a · b + a · c.
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4. The rule of signals holds: −(ab) = (−a)b = a(−b), for all a, b ∈ R.

Note that if a ∈ R, then 0 = 0 · a ∈ (1 + (−1)) · a ⊆ 1 · a + (−1) · a, thus (−1) · a = −a.

R is said to be a multi-ring if (R, ·, 1) forms a monoid. A hyperring R is a multi-ring such
that if for a, b, c ∈ R, a(b + c) = ab + ac and (b + c)a = ba + ca. A multi-ring (respectively,
a hyperring) R is said to be a multi-domain (hyperdomain) if it contains no zero divisors. A
commutative multi-ring R will be a multifield if every non-zero element of R has a multiplica-
tive inverse.

If a = 0, then a(b + c) = ab + ac and (b + c)a = ba + ca. Observe that hyperfields

and multifields coincide. Indeed, by definition, every hyperfield is a multifield, and, for a
given multifield, F, if a �= 0, then we have the following:

a−1(ab + ac) ⊆ b + c implies aa−1(ab + ac) ⊆ a(b + c),

whenever b, c ∈ F. Therefore, a(b + c) = ab + ac.

Definition 3. Let A and B be superrings. A map f : A → B is a morphism if for all a, b, c ∈ A:

1. f (1) = 1 and f (0) = 0;
2. f (−a) = − f (a);
3. f (ab) = f (a) f (b);
4. if c ∈ a + b then f (c) ∈ f (a) + f (b).

A morphism f is a full morphism if for all a, b ∈ A,

f (a + b) = f (a) + f (b) and f (a · b) = f (a) · f (b).

In this text, we provide some examples and treat (non-commutative) multi-rings.
For more details, we recommend the reader to check [2–9] for advances and results in
multi-ring/hyperring (commutative) theory.

Example 1.

1. Suppose that (G, ·, 1) is a group. Defining a ∗ b = {a · b}, and r(g) = g−1, we have
that (G, ∗, r, 1) is a multi-group. In this way, every ring, domain, and field is a multi-ring,
multi-domain, and hyperfield, respectively.

2. Let K = {0, 1} with the usual product, and the sum defined by relations x + 0 = 0 + x = x,
x ∈ K, and 1 + 1 = {0, 1}. This is a hyperfield referred to as Krasner’s hyperfield [17].

3. Q2 = {−1, 0, 1} is the “signal” hyperfield with the usual product (in Z) and the multi-
valued sum defined by relations⎧⎪⎨

⎪⎩
0 + x = x + 0 = x, for every x ∈ Q2

1 + 1 = 1, (−1) + (−1) = −1
1 + (−1) = (−1) + 1 = {−1, 0, 1}

4. For every multi-ring R, we define the opposite multi-ring Rop, which has the same structure
unless (Rop, ·op, 1op) is the opposite monoid of (R, ·, 1), i.e., ·op is the reverse multiplication.
The null element and the weak distributive properties are satisfied on both sides in Rop because
they are met on the opposite sides in R.

The following example codifies the structure of ranks of square matrices:

Example 2 (Superrings of signed ranks). Consider n ∈ N and

K±
n = {0, 1, 2, ..., n − 1, n−, n+}.
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This set is endowed with a superring structure, which includes the addition ⊕ and multiplication $
operations, defined by the following:

(n = 0,1) K±
0 = K0 = {0}, K±

1 = Q2 and K1 = {0, 1} = K.

(K1) 0 is the identity with respect to the addition ⊕;

(K2) 1. m ⊕ m′ =
{
[|m − m′|, m + m′]; m, m′ ∈ {1, ..., n − 1}, m + m′ < n;
[|m − m′|, m + m′] ∪ {n±}; m, m′ ∈ {1, ..., n − 1}, m + m′ ≥ n;

2. m ⊕ n± = [n − m, n − 1] ∪ {n±} whenever m ≤ n − 1;
3. (n is even) n+ ⊕ n+ = n− ⊕ n− = K±

n ;
n+ ⊕ n− = K±

n \ {0}.
4. (n is odd) n+ ⊕ n+ = n− ⊕ n− = K±

n \ {0};
n+ ⊕ n− = K±

n .

(K3) n+ is the identity with respect to the multiplication $ and n− $ n− = n+;

(K4) For m, m′ < n,

m $ m′ =
{
[m + m′ − n, min(m, m′)], whenever m + m′ > n;
[0, min(m, m′)], otherwise.

We denote the superrings of ranks by Kn = {0, 1, 2, ..., n − 1, n}, whose axioms are identical,
except for n+ = n− = n.

Example 3 (Kaleidoscope, Example 2.7 in [12]). Let n ∈ N and define

Xn = {−n, ..., 0, ..., n} ⊆ Z.

We define the n-kaleidoscope multi-ring by (Xn,+, ·,−, 0, 1), where − : Xn → Xn is the
restriction of the opposite map in Z, + : Xn × Xn → P(Xn) \ {∅} is given by the following rules:

a + b =

⎧⎪⎨
⎪⎩
{a}, if b �= −a and |b| ≤ |a|
{b}, if b �= −a and |a| ≤ |b|
{−a, ..., 0, ..., a} if b = −a

,

and · : Xn × Xn → Xn is given by the following rules:

a · b =

{
sgn(ab)max{|a|, |b|} if a, b �= 0
0 if a = 0 or b = 0

.

With the above rules we have that (Xn,+, ·,−, 0, 1) is a multi-ring, which is not a hyperring for
n ≥ 2 because

n(1 − 1) = b · {−1, 0, 1} = {−n, 0, n}
and n − n = Xn. Note that X0 = {0} and X1 = {−1, 0, 1} = Q2.

Example 4 (Triangle hyperfield [18]). Let R+ be the set of non-negative real numbers endowed
with the following (multi)operations:⎧⎪⎨

⎪⎩
a�b = {c ∈ R+| |a − b| ≤ c ≤ |a + b|}, for all a, b ∈ R+,
a · b = ab, the usual multiplication in R+,
−a = a.

Moreover, this is a hyperfield that does not satisfy the double distributive property (see 5.1 in [18]
for more details).
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Example 5.

1. The prime ideals of a commutative ring (its Zariski spectrum) are classified by equivalence
classes of morphisms into algebraically closed fields; however, they can be uniformly classified
by a multi-ring morphism into the Krasner hyperfield K = {0, 1}.

2. The orderings of a commutative ring (its real spectrum) are classified by classes of equivalence
of ring homomorphisms into real closed fields. However, they can be uniformly classified by
a multi-ring morphism into the signal hyperfield Q2 = {−1, 0, 1}.

3. The Krull valuation on a commutative ring with a group of values (G,+,−, 0, ≤) is just a
morphism into the hyperfield TG = G ∪ {∞}.

3. Multialgebras with Involution

In this section, we introduce the key concept of this work: multialgebras with involution.
For a multi-ring A, we denote

Z(A) := {a ∈ A : for all b ∈ A, ab = ba},

the center of A. Of course, if A is commutative, Z(A) = A. The classical theory of central
algebras with involution suggests the development of this subject in a very similar way.

Definition 4.

1. Let R be a commutative multi-ring, A be a (non-necessarily commutative) multi-ring, and
j : R → A a homomorphism of multi-rings, such that j[R] ⊆ Z(A), then (A, j) is an
R-multialgebra.

2. A morphism of R-multialgebras f : (A, j) → (A′, j′) is a morphism of multi-rings f : A →
A′ such that f ◦ j = j′.

3. An involution σ over the R-multialgebra (A, j) is an (anti)isomorphism of R-multialgebras
σ : (A, j) → (Aop, jop) where Aop is the opposite multi-ring, jop : Rop → Aop is a
homomorphism, and σop = σ−1. Thus, for all a, b ∈ A, σ(ab) = σ(b)σ(a).

4. A multialgebra with involution is just a (R, τ)-multialgebra endowed with an involution,
where (R, τ) is a multi-ring with involution. A morphism of R-multialgebras with
involution is a morphism of R-multialgebras f : (A, j, σ) −→ (A′, j′, σ′) satisfying f ◦ σ =
σ′ ◦ f .

5. For each commutative multi-ring with involution (R, τ), there exists the category of (R, τ)-
multialgebras with involution, whose objects are (R, τ)-multialgebras with involution
and morphisms are morphisms of R-multialgebras with involution.

Whenever the involution τ is clear, we will omit it and write only R. Note that
item 1 implies that (R, τ) is an initial object in R. Item 2 ensures that every morphism
f : (A, j, σ) −→ (A′, j′, σ′) is represented by a commutative triangle.

(R, τ) (A, σ)

(A′, σ′)

�

j

j′
f (�)

We call (A, σ) a subalgebra of (A′, σ′) if the diagram (�) is satisfied by the restricted
identity morphism f = idA′ |A. An ideal J ⊆ A is a σ-invariant (σ(J) ⊆ J) non-empty
subset satisfying J · A ⊆ J and x + y ⊆ J for all x, y ∈ J. Once J is σ-invariant and σ is an
isomorphism, A · J = σ(σ(J) · σ(A)) ⊆ σ(J) ⊆ J and, thus, J is a two-sided ideal. A proper

ideal is an ideal J �= A. We call J a prime ideal if J is an ideal such that ab ∈ J implies a ∈ J
or b ∈ J for any pair a, b ∈ A. The smallest ideal generated by a1, ..., ak ∈ A is
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J(a1, ..., ak) =
k

∑
i=1

Aai A + Aσ(ai)A.

We define the quotient A/J as usual (see, for instance, [2,12,19], or [20]). We have
many standard and effusive constructions that raise various examples in category R.

Let I be a non-empty set. For a given family (Ai, ji, σi)i∈I of R-multialgebras with
involution, the direct product ∏ Ai = (∏i∈I(Ai, πi), j̀, σ̀) is an R-multialgebra with invo-
lution such that πi0 : ∏ Ai −→ Ai0 are projection morphisms for each i0 ∈ I. Indeed,
σ̀(ai)i∈I = (σi(ai))i∈I is an involution over ∏ Ai, and j̀(r) = (ji(r))i∈I ∈ Z(∏ Ai) is a
well-defined map satisfying the necessary conditions above.

Matrices over a given commutative multi-ring are natural constructions. We denote
by Mn(A) the set of square matrices of order n with coefficients in (A, j, σ) and set the sum
and product of matrices as follows:

For all matrices C = (cij)n×n, B = (bij)n×n ∈ Mn(A), we define the function σ̄ :
Mn(A) −→ Mn(A) by σ̄(B) = (σ(bji))n×n and (multi)operations, as follows:

C + B := {(dij) : dij ∈ cij + bij for all i, j} �= ∅

CB := {(dij) : dij ∈
n

∑
k=1

cikbkj = ci1b1j + ci2b2j + ... + cinbnk for all i, j} �= ∅

λC := (λcij)n×n, for all λ ∈ R.

Since σ is an involution and A is a commutative multi-ring, it follows that σ̄ is also an
involution. Finally, let f : (A, σ) −→ (Mn(A), σ̄) be the diagonal morphism defined by

f (a) = diag(a, a, ..., a) ∈ Mn(A),

which associates each a ∈ A with a diagonal matrix in Mn(A) and j̄ := f ◦ j is the injective
morphism such that j̄(R) ⊆ Z(Mn(A)). We will avoid the verification that (Mn(A), j̄, σ̄) is
an R-multialgebra with involution, but the reader can check Section 2 of [10], Theorem 2.3,
and Lemma 2.5. However, we provide an example to illustrate this construction.

Example 6. Consider the 2-kaleidoscope multi-ring (X2,+, ·, −, 0, 1) as defined in 3 and ( )t the
matrix transposition. Then, (M2(X2), ( )t) is an X2-multialgebra with involution.

Let A =

[
1 2
−1 0

]
and B =

[
0 1
−1 1

]
matrices over X2. Thus,

AB =

[
1 · 0 + 2 · (−1) 1 · 1 + 2 · 1
−1 · 0 + 0 · (−1) −1 · 1 + 0 · 1

]
, At =

[
1 −1
2 0

]
, Bt =

[
0 −1
1 1

]
.

Therefore, (AB)t = Bt At =

[−2 0
2 −1

]
.

Example 7. (Adapted from [21]) Let G0 = G ∪ {0} be a group with 0 and define + the multi-
operation satisfying the following:

x + 0 = 0 + x = x , ∀x ∈ G0;

x + x = G0 \ {x} , ∀x ∈ G0;

x + y = {x, y} , ∀x, y ∈ G0 with x �= y.

We can define an involution σ over this structure by setting σ(x) = x−1 for all x ∈ G and σ(0) = 0.
In fact, σ is additive and it is easy to verify that (G0, 0, 1,+, ·, σ) is a multi-ring with involution.
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4. Marshall’s Quotient of Multialgebras with Involution

The notion of Marshall’s quotient of a commutative (hyper)ring (resp., multi-ring) by
a multiplicative subset always produces a commutative hyperring (resp., a commutative
multi-ring), and is the main construction used in the abstract approaches of quadratic
forms theory ([1,12]). In this section, we introduce the main technical tool, in the gen-
eral setting of a (non-commutative) multi-ring with involution, developed in the present
work—Marshall’s quotient—which will enable us to construct a variety of interesting
multialgebras with involution, derived from standard algebraic structures.

Throughout this section, we fix an R-multialgebra with involution (A, j, σ). We are
interested in Marshall-coherent subsets satisfying at least one of the conditions in Theorem 3,
i.e., normality or convexity. These conditions interact in many ways with the relations
below (6) compared to the commutative case. First of all, we explore basic properties due
to definitions.

Definition 5. A subset (without zero divisors) S ⊆ A is called a Marshall-coherent subset
whenever

• S is a multiplicative submonoid of (A, ·, 1)
• σ[S] ⊆ S (or, equivalently σ[S] = S)

We call S standard if sσ(s) ∈ Z(A)×, for all s ∈ S. We note that S is convex if xSσ(x) ⊆ S for
all x ∈ A0 in the subset of nonzero divisors of A. If xσ(x) ∈ S for all x ∈ A0, we note that S is
1-convex.

Immediately, convexity implies 1-convexity. One can check Lemma 5 and Proposition 1
for a reciprocal result. From now on, we fix a Marshall-coherent subset S ⊆ A.

The expansion of the theory to this non-commutative and involutive setting, inevitably,
leads us to a multitude of definitions that are collapsed to a single one in the traditional
commutative setting and where the involution is trivial. Therefore, we present the following:

Definition 6. Let a, b ∈ A and s1, s2, t1, t2 ∈ S. We define the following:

1. a ∼1 b iff a = s1bs2 and b = t1at2;
2. a ∼2 b iff s1as2 = t1bt2;
3. a ∼3 b iff as1 = t1b and s2a = bt2;
4. a ∼4 b iff there is s ∈ S such that asσ(b) ∈ S.

Despite the diversity of these relations, they are interconnected and, under certain
natural conditions, they may coincide. Of course, a ∼1 b implies a ∼2 b. Further, ∼4 is
an equivalence relation when S is 1-convex. Indeed, this relation concurs with ∼3 (see
Lemma 4). We start our exploration of these relations and the associated properties of
Marshall-coherent subsets.

Lemma 1. For ∼ = ∼1, as defined above, ∼ is an equivalence relation and satisfies the following:

1. For all a ∈ A and all s ∈ S, σ(s)as ∼ a, saσ(s) ∼ a, and abs ∼ ab, sab ∼ ab.
2. For all a, b ∈ A if a ∼ b then σ(a) ∼ σ(b).

Proof. Of course ∼ is reflexive (since S has 1) and symmetric. Now, let a ∼ b and b ∼ c,
with a = s1bs2, b = t1at2 and b = r1cr2, c = w1bw2, s1, s2, t1, t2, r1, r2, w1, w2 ∈ S. Then

a = s1bs2 = s1(r1cr2)s2 = (s1r1)c(r2s2)

and
c = w1bw2 = w1(t1at2)w2 = (w1t1)a(t2w2).
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Since S is multiplicative, we have s1r1, r2s2, w1t1, t2w2 ∈ S, which implies a ∼ c. Hence,
∼=∼1 is an equivalence relation. Items 1 and 2 are straightforward once S is multiplicative
and σ-invariant.

Lemma 2. If S is standard, then ∼ = ∼2 is an equivalence relation and satisfies the following:

1. For all a ∈ A and all s ∈ S, σ(s)as ∼ a, saσ(s) ∼ a, and abs ∼ ab, sab ∼ ab.
2. For all a, b ∈ A if a ∼ b then σ(a) ∼ σ(b).

Proof. Reflexivity and symmetry follow immediately. Note that sσ(s) ∈ Z(A) enable us to
rewrite the definition of ∼ = ∼2 as follows:

a ∼2 b iff s1as2 = t1bt2 iff σ(s1)s1as2σ(t2) = σ(s1)t1bt2σ(t2) iff as′1 = t′1b,

for s′1, t′1 ∈ S.
Consider a ∼ b and b ∼ c, which means that there exist s1, t1, s2, t2 ∈ S. such that

as1 = t1b and bs2 = t2c. Scaling the previous equation on the right by s2, and the latter,
on the left by t1, we conclude that a(s1s2) = (t1t2)c. Thus, ∼ is transitive; that is, an
equivalence relation.

For Item 1, observe that w(σ(s)as)w′ = (wσ(s))a(sw′), and w(abs)w′ = w(ab)sw′ for
all s, w, w′ ∈ S. Item 2 follows by applying σ to both sides of as = bt.

Back to Example 7, we observe that normal and convex (Marshall-coherent) subgroups
coincide in this type of structure. In general, this is not the case, nor is their relationship
with the relations above equal. Now, we treat these two cases.

Lemma 3. Suppose that x · S = S · x for each x ∈ A. Let a, a′ ∈ A, and the following statements
are equivalent:

1. ∃s, t, s′, t′ ∈ S such that sat = s′a′t′
2. ∃u, u′ ∈ S such that ua = u′a′
3. ∃v, v′ ∈ S such that av = a′v′

That is, a ∼2 a′ if, and only if, a ∼3 a′. Furthermore, ∼S=∼2=∼3 is an equivalence relation.

Proof. (1) ⇐⇒ (2) ⇐⇒ (3) follows immediately from the hypothesis. Thus, ∼i=∼j for
each pair (i, j), i, j ∈ {2, 3}. For simplicity, denote ∼S=∼i, for each i ∈ {2, 3}.

The relation ∼S is an equivalence relation: suppose that ua = u′a′ and r′a′ = r′′a′′ for
u, u′, r′, r′′ ∈ S. Observe the following:

ua = u′a′ =⇒ r′ua = r′(u′a′) ∴ r′ua = r′(a′v′), for some v′ ∈ S.

Also

(r′u)a = (r′a′)v′ = (r′′a′′)v′ =⇒ ∃r′u = v, v′′ ∈ S, such that (r′u)a = v′′a′′.

It follows that a ∼S a′, a′ ∼S a′′ implies a ∼S a′′. We already prove that ∼S is transitive.
Reflexivity and symmetry follow from 1 ∈ S and the equivalence of the statements 1, 2,
and 3.

Lemma 3 is a powerful tool to deal with multiplication. It improves efficiency when
managing equations, but mainly, it is a sufficient condition for the Marshall’s quotient (8)
being a multi-ring instead of a superring (Theorem 3).

We observe that, for a given Marshall’s coherent subset S, convexity is the reflexivity
property of ∼4 by definition. Indeed, there is a suitable relationship between the upward-
selected set of relations and Marshall’s coherent convex subsets.
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Lemma 4. Suppose that S is convex. Let a, a′ ∈ A, and the following statements are equivalent:

1. a ∼2 a′;
2. a ∼3 a′;
3. a ∼4 a′.

Furthermore, ∼S=∼2=∼3=∼4 is an equivalence relation. Additionally, for every 1-convex S′,
∼4=∼3⊆∼2.

Proof. 1 =⇒ 2 : There are s1, s2, t1, t2 ∈ S such that we have the following:

s1as2 = t1a′t2 =⇒ s1as2(σ(a)︸ ︷︷ ︸
∈S

a) = t1a′ t2(σ(a)a)︸ ︷︷ ︸
∈S

(S is Marshall convex)

∴ (a′σ(a′))s3︸ ︷︷ ︸
∈S

a = (a′ σ(a′))t1a′t′2︸ ︷︷ ︸
∈S

=⇒ sa = a′t.
(1)

2 =⇒ 3 : Suppose that a ∼3 a′. Then, there exist s1, t1 ∈ S, satisfying the following:

as1 = t1a′ =⇒ as1σ(a′) = t1a′σ(a′) ∈ S. (2)

3 =⇒ 1 : Finally, if a ∼4 a′, then ∃s, t1 ∈ S such that we have the following:

asσ(a′) = t1 =⇒ a sσ(a′)a′︸ ︷︷ ︸
∈S

= t1a′ ∴ 1 · as2 = t1a′ · 1.
(3)

To prove the final assertion, consider a ∼S b = a ∼4 b, for all a, b ∈ A. Since 1 ∈ S
and S is convex, aσ(a) ∈ S for all a ∈ A. Moreover, as long as S is σ-invariant, asσ(b) ∈ S
if, and only if, bσ(s)σ(a) ∈ S. It turns out that a ∼S b if, and only if, b ∼S a. Thus, ∼S is
reflexive and symmetric.

Finally, we prove the transitivity property. Put a ∼S b and b ∼S c. Thus, by definition,
it follows that

∃r, s, s′, s” ∈ S;

{
asσ(b) = s′ 1

brσ(c) = s” 2

1·2
=⇒ a sσ(b)br︸ ︷︷ ︸

∈S

σ(c) = s′s” ∈ S.

Remember that S is closed under multiplication and 1-convex. We have previously demon-
strated that transitivity holds; thus, we conclude that ∼S is an equivalence relation. The
final assertion follows straightforwardly.

The following lemma summarizes and proves many results concerning the properties
of Marshall-coherent subsets and the above relations.

Lemma 5. Let S be a Marshall-coherent set in (A, σ). The following statements hold:

1. If y · S = S · y for all y ∈ A and S is 1-convex, then S is convex;
2. If S is convex and xσ(x) ∈ Z(A)× for all non-zero divisors x ∈ A, then x · S = S · x (S is

normal);
3. If S ⊆ A×, and S is 1-convex, then A0 = A× denotes the set of non-zero divisors, i.e., every

non-zero divisor has an inverse in A;
4. If S is standard, then S ⊆ A×;
5. If S is standard then a ∼1 a′ if, and only if, a ∼2 a′ if, and only if, a ∼3 a’;

Proof. 1. Let x ∈ A be a non-zero divisor and s ∈ S. Thus, σ(x)sx = z for some
z ∈ A. Commuting s with x, it follows that σ(x)xs′ = y for a suitable s′ ∈ S. Hence,
1-convexity and the closure of multiplication implies y ∈ S. Therefore, σ(x)Sx ⊆ S.

2. Let x ∈ A∗ be a non-zero divisor. For any s1 ∈ S, σ(x)s1x = s2 for some s2. Therefore
(xσ(x))s1x = xs2, which implies s1x = xs2(xσ(x))−1. Since xσ(x) ∈ S× has an
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inverse in S, s1x = xs′1 for a suitable choice of s′1. Hence, S · x ⊆ x · S. The reverse
inclusive follows from symmetry.

3. By definition, A× ⊆ A0. For the inverse inclusion, note that A0 is a Marshall-coherent
set and, let y ∈ A0 and 1 ∈ S. Thus, σ(y)y = s′ �= 0.

σ(y)y = s′ =⇒ s′−1σ(y)y = 1 ∴ y−1
l = s′−1σ(y) is a left inverse for y. (4)

The same argument shows that y has the right inverse y−1
r . Note that yy−1

l = s1 ∈ S.
Thus, yy−1

l y = s1y and implies y = s1y for some s1 ∈ S. Scaling by y−1
r on both right

sides of the equation, we obtain 1 = s1. Hence, y−1 = y−1
l = y−1

r .
4. By hypothesis, sσ(s) ∈ Z(A)×(∩S). Hence, ∃x ∈ A such that (xσ(s))s = 1. Direct

calculations confirm that this serves as a unique inverse on both sides.
5. The statement can be straightforwardly proven by scaling and division.

Item 1 of Lemma 5 provides a sufficient condition for a normal subset to be a convex
subset. On the other hand, Item 2 specifies a reciprocal condition; that is, each element,
x ∈ A0, has a norm lying in the center. In the classical theory of rings with involution (see,
for instance, [16]), involution with traces x + σ(x) and norms xσ(x) lying in the center are
called standard. This justifies the notation above. As we see in Section 5, standard subsets
are typical examples.

For each ∼ ∈ {∼1, ∼2, ∼3, ∼4}, we denote an element in A/ ∼ (whenever it exists) by
[a]. We have well-defined rules, as follows:

[a] + [b] := {[c] : c = s1as2 + t1bt2 for some s1, s2, t1, t2 ∈ S} and,

[a][b] := {[c] : c = rasbt for some r, s, t ∈ S}.

Observe that the involutory structure can be defined in the very same way for superrings.

Definition 7. A superring with involution (A, σ) is a superring that satisfies the (mutatis
mutandis) axioms for multialgebras with involution.

Theorem 2. The structure (A/ ∼2,+, ·, [0], [1]) is a superring with involution provided by
σ([a]) := [σ(a)]. If S is standard, then (A/ ∼1,+, ·, [0], [1]) is a superring with involution
σ([a]) := [σ(a)].

Proof. We proceed with a very similar argument to the one used in Theorem 6.

We define existing quotients for general Marshall-coherent subsets. In the sequel, we
deal with normality and convexity.

Definition 8. We define the superring (A/ ∼,+, ·, [0], [1]) as the Marshall’s quotient of A by
S, and denote it by A/mS := A/ ∼.

Whenever ∼ is chosen, we indicate the Marshall subset S by adding it to the index,
i.e., writing ∼S.

Theorem 3 has a central result in this section. Since the reverse image of the canonical
morphism j : R −→ A (see Definition 4) lifts Marshall-coherent subsets of A to R, the
quotient is a multialgebra (with involution) likewise. The associated Marshall-coherent
subset is Sj = j−1[S] ⊆ R, where S ⊆ A is Marshall-coherent in A and [S] = [1] is the
algebraic class of S under ∼S.

Theorem 3. Let S ⊆ A be a Marshall-coherent subset of a multi-ring A satisfying one of the
additional conditions below:

1. (Normal) xS = Sx, for all x ∈ A.
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2. (Convex) For all x ∈ A, a nonzero divisor in A, xSσ(x) ⊆ S.

If (A, σ) is an (R, τ)-multialgebra with involution, the set Sj := j−1[S] ⊆ R is a mul-
tiplicative submonoid of (R, ·, 1). Moreover, jS : R/ ∼Sj→ A/ ∼S, [r] �→ [j(r)] defines an
R/ ∼Sj -multialgebra structure over A/ ∼S, and σS : A/ ∼S→ A/ ∼S, [a] �→ [σ(a)] is an
involution over the R/ ∼Sj -multialgebra (A/ ∼S, jS). In both cases, A/ ∼S is a multi-ring.

Proof. Once j : (R, τ) −→ (A, σ) is a homomorphism, if s1rs2 = t1r′t2 in R, then j([r]) =
[j(r)] = [j(r′)] = j([r′]). It is easy to check that Sj is a multiplicative submonoid of R and,
due to S being Marshall-coherent, σ(j(r)) = j(τ(r)) ∈ S for all r ∈ Sj. Thus, τ(r) ∈ Sj
whenever r ∈ Sj. We conclude that Sj is Marshall-coherent and, by Theorem 2, R/ ∼Sj is a
superring endowed with an involution τ([r]) := [τ(r)].

For any two elements [c], [d] ∈ [a] · [b] ⊆ R/ ∼Sj , s1c = t1ab and ds2 = abt2 for some
s1, t1, s2, t2 ∈ Sj, because R is commutative. Scaling these equations, we write s1ct2 = t1ds2,
i.e., , [a] · [b] = {[ab]}. Hence, R/ ∼Sj is a multi-ring with involution.

Now, consider the following diagram:

0 �� R
j ��

ψR

��

A
ψ �� A/ ∼S �� 0

R/ ∼Sj

∃!jS

�� (5)

(1) If xS = Sx, then ∼ = ∼2 can be read as a ∼ b if, and only if, as = tb for some
s, t ∈ S. Previous constructions (see Theorem 2) and demonstrations show that (A/ ∼S)
is a superring. Let [c] and [c′] be elements in [a] · [b]; thus, c = abs and c′ = s′ab for some
s, s′ ∈ S. Scaling equations and comparing gives us s′c = c′s = s′abs, which means that
c ∼ c′. Therefore, [a] · [b] = {[ab]} and A/ ∼ is a multi-ring.

By the universal property of the quotient R/ ∼Sj , js is unique. Since all arrows are
homomorphisms, (A/ ∼S, jS) is R/ ∼Sj -multialgebra. Furthermore, S is σ-invariant, which
means σ(aS) = σ(a)S. Consequently, the induced anti-homomorphism σS : A/ ∼S−→
A/ ∼S such that σ([a]) = [σ(a)] is well-defined and an involution over A/ ∼S.

(2) Let ∼ = ∼2. In this case, Lemma 4 and the preceding case show that A/ ∼ is a
multi-ring. The proof is the same as before since Theorem 2 still holds.

The above theorem provides us with two kinds of quotients lying in the class of
multi-rings. One can wonder if the quotient can provide some information about the
Marshall-coherent subset.

Proposition 1. Let A/ ∼S be a multi-ring, and S be a Marshall-coherent subset, such that 1 ∈ S
and ∼=∼2. Then, [1] is 1-convex if, and only if, [1] is convex.

Proof. (Sketch:) Note that [S] = [1] is Marshall-coherent. The converse is immediate. To
prove the reciprocal statement, use [x] · [s] · [σ(x)] = [xsσ(x)] = [1] (since the quotient is a
multi-ring, · is a usual operation) for all s ∈ [1]. We obtain xsσ(x) ∈ [1] and, therefore [1]
is convex.

According to the above results, some immediate examples follow below.

Example 8. For a given (A, σ), a (R, σ′)-multialgebra with involution, the following sets are
Marshall-coherent:

(a) The set of all non-zero divisors A0;
(b) The set of all invertible elements A×;
(c) The set of all symmetric elements (in A0) Sym(A, σ) = {a ∈ A0| a = σ(a)};
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(d) If xσ(x) ∈ Z(A) for all x ∈ A, then A0σ(A0) = {aσ(a)| a ∈ A0} is Marshall-coherent
and convex.

In the next section, we will provide more examples minutely. For now, we treat
another kind of operation in the quotient. For a, a′ ∈ A, let a ∼S a′ if, and only if, there
exist s, t, s′, t′ ∈ S such that sat = s′a′t′. This can be replaced in terms of the equivalent
statements in 3 or 4, whether x · S = S · x or S is convex, respectively. Hence, ∼S is an
equivalence relation. Moreover, each [a] is invariant under S action, [a] = [sa] for all s ∈ S.

In A/ ∼S define [a] + [b] := {[c] : ∃ri, si, ti ∈ S, r0cr1 ∈ s0as1 + t0bt1}, −[a] := [−a]
and [a] · [b] := [ab].

Theorem 4. Suppose that x · S = S · x. Then, we have the following:

1. A/ ∼S is a (non-commutative) multi-ring.
2. If A is a hyperring, then A/ ∼S is a hyperring. In particular, if A is a ring, then A/ ∼S is a

hyperring.
3. It holds the universal property of Marshall’s quotient for homomorphisms f : A → M and

anti-homomorphisms (= homomorphism f : A → Mop) such that f [S] = {1}.

Proof. To demonstrate 1, we note that +, ·, and − are well-defined as multi-group opera-
tions, and 0 = [0] = {0} is the null element because A is a multi-ring.

Suppose that [c] ∈ [a] + [b]. Thus, there exists r, s, t ∈ S, satisfying rc ∈ sa + tb in A.
Therefore, sa ∈ rc + t(−b) (in A). Similarly, tb ∈ s(−a) + rc. Consequently, [a] ∈ [c]− [b]
and [b] ∈ −[a] + [c].

Let [b] ∈ [a] + [0]. By definition, there exists r ∈ S such that rb ∈ sa + t0 for some
s, t ∈ S. However, it implies [a] = [b]. The reciprocal is obvious.

If [x] ∈ [a] + [b] and [t] ∈ [x] + [c], then vt ∈ wx + zc and r′wx ∈ s′a + p′b for
r′, s′, p′, v, w, z ∈ S. Afterward,

vt ∈ wx + zc =⇒ r′vt ∈ r′wx + r′zc

∃r′wx(r′wx ∈ s′a + p′b ∧ r′vt ∈ r′wx + r′zc) =⇒ ∃y(y ∈ p′b + r′zc ∧ r′vt ∈ s′a + y)

The last implication means ∃[y]([y] ∈ [b] + [c]∧ [t] ∈ [a] + [y]). Once A is a multi-ring,
[c] ∈ [a] + [b] if, and only if, [c] ∈ [b] + [a] follows.

We already proved that (A/ ∼S,+,−, 0) is a multi-group. Note that there exists
1 = [1] = S ∈ A/ ∼S such that [a] · [1] = [a] for all [a] ∈ A/ ∼S. Thus, (A/ ∼S, ·, 1) is
a monoid. Moreover, [a] · 0 = 0. Finally, let [c] ∈ [a] + [b] and pd ∈ [d] ∈ A/ ∼S. By
definition, exists r, s, t ∈ S such that rc ∈ sa+ tb. Since A is a multi-ring, rcpd ∈ sapd+ tbpd.
Using the ’normality property’ of S, we rewrite it as follows:

r′cd ∈ s′ad + t′bd ∴ [c][d] ∈ [a][d] + [b][d].

Similarly, [d][c] ∈ [d][a] + [d][b] holds. It follows that A/ ∼S is a multi-ring. For the second
assertion, suppose that A is a hyperring. Let [e] ∈ [a][d] + [b][d]. Thus,

∃s, r, t ∈ S, se ∈ rad + tbd =⇒ se ∈ (ra + tb)d (A is hyperring)

=⇒ [e] ∈ ([a] + [b])[d] (by definition of +).

Therefore, [a][d] + [b][d] = ([a] + [b])[d]. By symmetry, [d][a] + [d][b] = [d]([a] + [b])
also follows.

To demonstrate the third statement, consider f : A −→ M a homomorphism such
that f ([S]) = 1. Let a ∈ A and s ∈ S. Thus, f (sa) = f (s) f (a) = f (a). Define the
homomorphism f̄ : A/ ∼S−→ M with f̄ ([a]) = f (a). Hence, f̄ is well-defined, and f =
f̄ ◦ ψ, with ψ(a) = [a] the canonical projection. It is immediate that another homomorphism
ḡ : A/ ∼S−→ M satisfying f = ḡ ◦ ψ must coincide with f̄ .
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Remark 1. Theorem 4 is valid if S is convex. Since both conditions normality and convexity imply
∼2=∼3, we are capable of proving that the distributive laws hold and the entire rest of the proof
follows as above.

The next theorem distinguishes Marshall-coherent subsets that lie in the center Z(A)
from an ordinary one.

Theorem 5. Let A be a multialgebra with involution and S ⊆ A be a Marshall-coherent subset such
that S ⊆ Z(A) (thus, in particular, xS = Sx, for all x ∈ A). Then, A/mS is a (non-commutative)
hyperring with induced involution.

Proof. From previous considerations and Theorem 2, we prove that A/mS is a multi-ring
instead of a superring, and the hyperring property still holds.

In fact, if [c] ∈ [a][b], then cr = asbt for some r, s, t ∈ S ⊆ Z(A), which means
cr = (ab)(st) and c ∼ ab. Then, [a][b] = {[ab]}, proving that A/mS is a multi-ring.

Now, let [y] ∈ [c][a] + [c][b]. Then, [y] = [d1] + [d2] for some [d1] ∈ [c][a], [d2] ∈ [c][b],
providing the following equations:

y = r1d1s1 + r2d2s2,

d1 = t1cv1aw1 and

d2 = t2cv2aw2

for some r1, r2, s1, s2, t1, t2, v1, v2, w1, w2 ∈ S. Then, we have the following:

y = r1d1s1 + r2d2s2

= r1[t1cv1aw1]s1 + r2[t2cv2bw2]s2

= c(r1t1v1)a(w1s1) + c(r2t2v2)b(w2s2)

= c[(r1t1v1)a(w1s1) + (r2t2v2)b(w2s2)]

implying that [y] ∈ [c]([a] + [b]). The same reasoning provides [ac] + [bc] ⊆ ([a] +
[b])[c].

5. Applications

This section focuses on results surrounding particular examples. We verify some
quotients associated with typical multi-structures, a few of them presented in Section 2.
Throughout the subsections below, we deal with technical results and interpret elements in
the Marshall quotient as classes of isometric elements.

5.1. Orthogonal

Let R be a commutative ring and A be an R-algebra with involution σ. We denote the
following:

Orth(A) := {a ∈ A : aσ(a) = σ(a)a = 1}.

Once we prove that Orth(A) is a Marshall-coherent subset, then, by definition, the
standard property also holds, as follows:

Lemma 6. The set Orth(A) is non-empty and if a, b ∈ Orth(A) then σ(a), ab ∈ Orth(A).

Proof. The set Orth(A) is non-empty because 1 ∈ Orth(A). For the rest, note that
σ(a)σ(σ(a)) = σ(a)a and (ab)σ(ab) = ab[σ(b)σ(a)] for all a, b ∈ A. If a, b ∈ Orth(A),
these imply σ(a)a = aσ(a) = 1 and

(ab)σ(ab) = ab[σ(b)σ(a)] = a[bσ(b)]σ(a) = aσ(a) = 1.
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Now let a, b ∈ A. We define

a ∼ b if, and only if, as = tb for some b, t ∈ Orth(A).

Note that a ∼ b if, and only if, a = sbt for some s, t ∈ Orth(A), because S= Orth(A) is a
Marshall-coherent standard subset.

Theorem 6. The structure (A/ ∼,+, ·, [0], [1]) is a superring with involution σ([a]) := [σ(a)].

Proof. Note that a ∼ 0 if, and only if, a = 0. Moreover, from the very definitions of the
sum and the product, we have for all a, b ∈ A,

[a] + [0] = [0] + [a] = {[a]}, [a][1] = [1][a] = {[a]},

[a] + [b] = [b] + [a],

σ([a][b]) = [σ(b)][σ(a)],

[0] ∈[a] + [b] ⇐⇒ [b] = −[a].

Now, let a, b, c ∈ A and [e] ∈ ([a] + [b]) + [c]. As a result, [e] also belongs to [x] + [c] for
some [x] ∈ [a] + [b]. Consequently, we can express e as s1xs2 + t1ct2 and x as v1av2 +w1bw2,
where s1, s2, t1, t2, v1, v2, w1, w2 ∈ Orth(A). Then, we have the following:

e = s1xs2 + t1ct2

= s1(v1av2 + w1bw2)s2 + t1ct2

= (s1v1)a(v2s2) + (s1w1)b(w2s2) + t1ct2

= (s1v1)a(v2s2) + [(s1w1)b(w2s2) + t1ct2]

Let y = (s1w1)b(w2s2) + t1ct2. Then, [e] ∈ [a] + [y] with [y] ∈ [b] + [c], implying that
[e] ∈ [a] + ([b] + [c]). The same reasoning provides [a]([b][c]) = ([a][b])[c].

Finally, let [x] ∈ [c]([a] + [b]). Therefore, [x] ∈ [c][d] for some [d] ∈ [a] + [b]. These
provide equations x = rcsdt and d = s1as2 + t1bt2. Thus, we have the following:

x = rcsdt

= rcs[s1as2 + t1bt2]t

= rcss1as2t + rcst1bt2t

= rc(ss1)a(s2t) + rc(st1)b(t2t)

with r, ss1, s2t, st1, t2t ∈ Orth(A), concluding that [x] ∈ [c][a] + [c][b]. Similarly, we con-
clude that ([a] + [b])[c] ⊆ [a][c] + [b][c].

Observe that S is not necessarily convex, and neither satisfies xS = Sx (see Theorem 2).
Thus, A/ ∼ may not be a multi-ring.

Definition 9. We define the superring (A/ ∼,+, ·, [0], [1]) as the orthogonal fragment of A,
and denote by A/mOrth(A) := A/ ∼.

Theorem 7. If Orth(A) ⊆ Z(A), then A/mOrth(A) is a (non-commutative) hyperring.

Proof. This is a particular case of Theorem 5.

Theorem 8. Let F be a field and A = M2(F). Then A/mOrth(A) consists of rotation 2 × 2
matrices over F.
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Proof. Note that a ∈ Orth(A) if, and only if, aat = id2, with σ(a) = at the transpose
matrix of a = (aij)2×2. Applying the definition of matrix product, we have to solve the
following system: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
a2

11 + a2
12 = 1

a2
21 + a2

22 = 1
a11a21 + a12a22 = 0
det(a)2 = 1

.

We conclude the following:

Orth(A) =

{(
x y
y −x

)
| x2 + y2 = 1, x, y ∈ F

}
∪
{(

x −y
y x

)
| x2 + y2 = 1, x, y ∈ F

}
. (6)

If F = R, in (6), the second subset (with the positive determinant equal to 1) is the set
of orthonormal matrices or the set of linear transformations in R2 that are rotations by some
angle θ ∈ [0, 2π) with x = cos(θ) and y = sin(θ). Moreover, consider the inner product

〈a, b〉 =
2

∑
i,j=1

aijbij, for a, b ∈ A.

One may verify that the actions of elements in Orth(A) function as a set of isometries.
By solving a system of equations very similar to the one discussed above, it is possible to
demonstrate that these actions form a subset of isometries. The associated matrix, denoted
as T = (tij), has a determinant different from ±(t11 − t12). Thus, this quotient describes
the behavior concerning certain kinds of isometry classes considering the underlined
inner product.

5.2. Quaternions over Real Closed Fields

Now, we explore the diversity of quotients in quaternions. Although this includes a
lot of calculations, it provides quick verification of independence regarding normal and
convex quotients.

Example 9. Let R be a real closed field and

H = R{x, y}/(x2 + 1, y2 + 1, xy + yx)

the corresponding quaternion algebra (1, 1)R; it is an R-division algebra of dimension 4. Put
S = R>0 · 1 ⊆ H. Note that S satisfies the second condition of the Theorem 3 (it is a convex set) in
the previous section and S = {σ(a) · a : a ∈ H \ {0}}.

Then, H/mS ∼= S3 is a monoid. And, in this quotient, x · σ(x) · x = x, as x · σ(x) = 1.

We observe that, in this case, S is also standard, “normal”, and 1-convex (see Lemma 5).

Example 10. Let H be the quaternions real algebra endowed with the standard involution σ(a) = ā,
for all a ∈ H. Set S = R \ {0} and define a ∼ b iff a = σ(x)by for some x, y ∈ S. Thus, [0] = {0},
and for a nonzero element a, [a] is the line determined by the origin and the quaternion a(without
{0}), i.e., H/mS ∼= RP3.

Once S ⊆ Z(H) (S has the first “normality” property of the Theorem 3), it is easy
to check that S = [1] = [−1], and [±a] = Sa, and for a, a pure quaternion as well. If
a = a0 + a1i + a2 j + a3k and b = b0 + b1i + b2 j + b3k are quaternion numbers, then we have
the following:

[a] + [b] =
⋃
[x0 + x1i + x2 j + x3k], (7)
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for xi ∈ R, xi ∈ S, or xi = 0, depending on ai, bi �= 0, or ai �= 0 and bi = 0 (and vice-versa),
or both ai = bi = 0, respectively, for each i ∈ {0, 1, 2, 3}. Hence, [a] + [b] is the plane
determined by [a] and [b], containing (or not containing) the origin.

Example 11. Consider the orthogonal fragment Orth(H). Let S = S3 ⊆ H, representing the
sphere of radius with 1 centered at the origin.

Clearly, 1 ∈ S, and S is a multiplicative set, satisfying x−1 ∈ S whenever x ∈ S. Once
|x| = xσ(x), it is immediate that S is σ-invariant. It remains to verify that the sphere
qualifies as “a normal set” in H (item 1 of Theorem 3) and, thus, the quotient is a multi-ring.
In fact, let a ∈ H and x ∈ S; given the norm is multiplicative, we have the following:

|ax| = |a| =⇒ aσ(a)xσ(x) = σ(a)a =⇒ aσ(a)x = σ(x)−1σ(a)a

=⇒ σ(a)ax = σ(x)−1σ(a)a =⇒ ax = (σ(a)−1σ(x)−1σ(a))a.
(8)

Yet, we have the following: |σ(a)−1σ(x)−1σ(a)| = |σ(a)−1||σ(x)−1||σ(a)| = |σ(a)−1||σ(a)| =
1; therefore,

y = σ(a)−1σ(x)−1σ(a) ∈ S.

We conclude that ax = ya for some y ∈ S, i.e., aS ⊆ Sa. The reverse inclusion is followed by
symmetry. Moreover, in a general division algebra with standard involution, this property
holds since S = Orth(H).

Let a ∼ b iff a = σ(x)by, with x, y ∈ S. Hence, a ∼ b iff |a| = |b|. It is obvious that
[0] = {0} and [1] = S3 = S. The elements [a] are spheres centered at the origin with
radius

√|a|. In fact,
√|a| = a · σ(a)√

|a| , with x = σ(a)√
|a| ∈ S. Therefore,

√|a| ∼ a. For a ∈ [b],

[a] + [b] forms a filled sphere with radius 2
√|a|. If |a| > |b|, both triangular inequalities

|a + b| ≤ |a| + |b| and ||a| − |b|| ≤ |a − b| indicate that [a] + [b] is the ’hollow’ surface
defined by two spheres with coincident centers at the origin and radii

√|a|+√|b| and√|a| −√|b|. Moreover, H/mS ∼= R+, as a multimonoid with multi-addition, satisfies
the following:

[a] + [b] =

{
[a − b, a + b] if a ≥ b;
[b − a, a + b] if b ≥ a.

Thus, this is the triangle hyperfield Example 4. In the last example, S does not
satisfy the convexity property. At the same time, Example 9 shows Marshall-coherent sets
satisfying many properties simultaneously. These examples illustrate that the definitions
provided in the previous section encapsulate elements of different types of structures and
demonstrate the independence between the statements outlined in Theorem 3.

6. Conclusions

We have extended the concept of the (commutative) multi-ring, as presented in Mar-
shall’s seminal paper [1], to the setting of (non-commutative) and involutive multi-rings
(Definition 4). Additionally, we have expanded the concept of Marshall’s coherent subset
to this new setting (Definition 5) and introduced and studied several equivalence relations
related to this notion (Definition 6; Lemmas 4 and 5). Furthermore, we have broadened
the concept of Marshall’s quotient (Definition 8; Theorems 2 and 3) to accommodate this
framework, which serves as a key technical tool for constructing many interesting examples
of multialgebras with involution. These examples are derived from standard algebraic
structures such as orthogonal groups and quaternion algebras, as thoroughly developed
in Section 5.

Thus, we have established the groundwork for extending real algebra and real algebraic
geometry into the non-commutative and involutive settings, broadening the abstract method-
ologies utilized in the space of signs [13], abstract real spectra [14], real semigroups [15], and
real reduced multi-rings [1]. Notably, the theory presented here lends itself to model-theoretic

146



Mathematics 2024, 12, 2931

methods since every n-multi-operation corresponds to a n+ 1-relation, satisfying an ∀∃ axiom.
This is an area we intend to explore in future work. Moreover, the continued development of
the theory on non-commutative multialgebras with involution should lay a robust foundation
for establishing an abstract theory of Hermitian forms ([16]), similar to how the theory of
special groups ([22]) serves as an abstract theory of quadratic forms.
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Abstract: The HX-groups represent a generalization of the group notion. The Chinese mathematicians
Mi Honghai and Li Honxing analyzed this theory. Starting with a group (G, ·), they constructed
another group (G, ∗) ⊂ P∗(G), where P∗(G) is the set of non-empty subsets of G. The hypercom-
position “∗” is thus defined for any A, B from G, A ∗ B = {a · b|a ∈ A, b ∈ B}. In this article, we
consider a particular group, G, to be the dihedral group Dn, n is a natural number, greater than 3, and
we analyze the HX-groups with the dihedral group Dn as a support. The HX- groups were studied
algebraically, but the novelty of this article is that it is a computer analysis of the HX-groups by
creating a program in C++. This code aims to improve the calculation time regarding the composition
of the HX-groups. In the first part of the paper, we present some results from the hypergroup theory
and HX-groups. We create another hyperstructure formed by reuniting all the HX-groups associated
with a dihedral group Dn as a support for a natural fixed number n. In the second part, we present
the C++ code created in the Microsoft Visual Studio program, and we provide concrete examples of
the program’s application. We created this program because the code aims to improve the calculation
time regarding the composition of HX-groups.

Keywords: HX-group; C++ code; group; hypergroup; dihedral group

MSC: 20N20

1. Introduction

Hypergroup theory represents a generalization of classical algebraic structures. F. Marty
noticed that the quotient group’s elements are sets, and he introduced the concept of a
hypergroup in 1934 [1]. Over time, the theory of hypergroups has developed greatly
from a theoretical point of view. It has applications in numerous fields, such as geom-
etry, topology, cryptography, code theory, graphs, hypergraphs, automata theory, fuzzy
degree, probability, etc. [2–8]. Starting with a non-empty set H and the hyperoperation
“◦”:H × H → P∗(H), where P∗(H) represents the collection of all non-empty subsets of H,
we obtained a semihypergroup if and only if the hyperoperation satisfies the associativity
relation, i.e., (a ◦ b) ◦ c = a ◦ (b ◦ c), for any a, b, c ∈ H3. Also, (H, ◦) is a quasihypergroup if
and only if the hyperoperation satisfies the reproducibility relation, i.e., H ◦ a = a ◦ H = H,
for any a ∈ H. We say that (H, ◦) is a hypergroup if and only if “◦” satisfies the associa-
tivity and reproducibility relation. In hypergroup theory, we can compute two sets in the
following way: for any A, B sets from H, A ◦ B = A ◦ B = ∪{a ◦ b/ a ∈ A, b ∈ B}. In 1985,
three Chinese mathematicians, HongXing Li, QinZhi Duan, and PeizHuang, used the term
“hypergroup” [9]. Later, Li renamed the concept with the term HX-groups [10]. Zhenliang
studied the properties of HX-groups [11], and, recently, the interest in this concept has
increased. Corsini studied the hypergroups associated with Z/nZ, the Chinese hyper-
groupoid of an HX-group, and found conditions such that the Chinese hypergroupoid
becomes a hypergroup; see [12–14]. Cristea established a link between HX-groups and
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hypergroups [15]. Sonea determined the HX-groups with dihedral group Dn as a sup-
port [16], created a new commutative hyperstructure that considered the union of all the
HX-groups [17], and studied the NeutroHX-groups [18]. Also, Mousavi, Jafarpour, and
Cristea studied the HX-Polygroups [19]. This article is divided into three sections. The first
section refers to the introductory notions from the theory of HX-groups and the theory of
hypergroups. Also, a new hyperstructure Gn formed by the union of all the HX-groups
associated with the dihedral group Dn for a fixed natural number n is presented [17]. Until
now, HX-groups have been analyzed only from an algebraic point of view. In the second
part of the article, a computational approach to HX-groups is presented using code in the
C++ programming language. This code facilitates the calculation time regarding the com-
position of HX-groups, and the third section refers to the connection between HX-groups
and graph theory.

2. The Construction of the Hyperstructure Gn

In this section, we will present the construction of the hyperstructure Gn. We consider
a new hyperstructure formed by the union of all HX-groups with the dihedral group Dn as
support for a fixed natural number n > 3 [17]. In what follows, we recall the basic notions
of HX-groups.

Definition 1 ([10]). Let (G, ·) be a group and G ⊂ P∗(G), where P∗(G) is the set of non-empty
subsets of G. An HX-group is a non-empty subset H of P∗(G), which is a group with respect to
the operation “∗” defined by

∀ A, B ∈ G, A ∗ B = {a · b | a ∈ A, b ∈ B}. (1)

We say that G has group G as support.

The HX-groups with the dihedral group Dn as support denoted by Gq1
p1 are deter-

mined [16].

Theorem 1 ([16]). For n = p1q1, p1, q1 ∈ N∗, the (Gq1
p1 , ∗) is an HX-group associated with the

dihedral group Dn with elements

Ai = {ρi, ρq1+i, ρ2q1+i, . . . , ρ(p1−1)q1+i};

Aq1+i = {ρiσ, ρq1+iσ, ρ2q1+iσ, . . . , ρ(p1−1)q1+iσ};

where i ∈ {0, 1, . . . , q1 − 1}.

Proposition 1. The < ρq > is a normal subgroup in Dn, where n = pq, p, q are natural numbers.

Proof. In what follows, we will recall the definition of a normal subgroup, which we will
apply [20] in the demonstration. Let (G, ·) be a group and H a subgroup of G. For any x in
G, H is a normal subgroup in G if and only if xH = Hx. In this case,

H =< ρq >= {e, ρq, q2q, . . . , q(p−1)q}.

Therefore, the elements in H are of the form ρkq, k ∈ {0, 1, . . . , p − 1}. We have to show
that xρkqx−1 ∈ H for any x ∈ Dn and k ∈ {0, 1, . . . , p − 1}. For x = ρt, t ∈ {0, 1, . . . , n − 1},
we obtain

xhx−1 = ρtρkq(ρt)−1
= ρt+kq+n−t = ρn+kq = ρnρkq = eρkq = ρkq ∈ H.
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For x = ρtσ,

xhx−1 = ρtσρkq(ρtσ
)−1

= ρtσρkqρtσ = ρtσρkq+tσ

= ρtσσρn−(kq+t) = ρteρn−(kq+t) = ρt+n−(kq+t)

= ρn−kq = ρ(p−k)q ∈ H.

In conclusion, < ρq > is a normal subgroup in the dihedral group Dn.

Proposition 2. The HX-group obtained previously represents the quotien group Gq
p = Dn

<ρq> for
n = pq.

Proof. We proved before that < ρq > is a normal subgroup in Dn, so

Dn

< ρq >
= {x < ρq > / x ∈ Dn}.

For x = ρt, t ∈ {0, 1, . . . , n − 1}, we obtain

ρt < ρq >= ρt · {e, ρq, q2q, . . . , q(p−1)q} = {ρt, ρt+q, . . . , ρt+(p−1)q} = At,

where At is defined by Theorem 1.
For x = ρtσ, t ∈ {0, 1, . . . , n − 1}, we have

ρtσ < ρq >= ρtσ · {e, ρq, q2q, . . . , q(p−1)q} = {ρtσ, ρtσρq, ρtσq2q, . . . , ρtσq(p−1)q}
= {ρtσ, ρtρn−qσ, ρtρn−2qσ, . . . , ρtρn−(p−1)qσ}
= {ρtσ, ρt+(p−1)qσ, ρt+(p−2)qσ, . . . , ρt+qσ}
= {ρtσ, ρt+qσ, . . . , ρt+(p−2)qσ, ρt+(p−1)qσ} = Aq+t,

where Aq+t, is defined by Theorem 1. Therefore, we can conclude that Dn
<ρq> = Gq

p.

After that, we took into consideration the union of all HX-groups associated with a
dihedral group Dn as support, and we obtained a new hyperstructure defined in [17].

Gn =
{
Gq1

p1 | HX − groups for any p1, q1 ∈ N∗ such that n = p1q1

}
is the set of all HX-groups. We define the hyperoperation “◦”: Gn × Gn → P∗(Gn); thus,

Gq1
p1 ◦ Gq2

p2 =
⋃

0≤s≤2p1−1

⎛
⎝ ⋃

0≤t≤2p2−1

Cs,t

⎞
⎠ ,

Cs,t = Xq1
s ∗ Yq2

t ; Xq1
s ∈ Gq1

p1 , Yq2
t ∈ Gq2

p2

n = p1q1 = p2q2, p1, q1, p2, q2 ∈ N∗.

We analyzed the hyperstructure (G4, ◦) and obtained some results; see [17].

Proposition 3. The hyperstructure (G4, ◦) is a commutative structure where

G4 =
{
Gq1

p1 | HX − groups, for any p1, q1 ∈ N∗ such that 4 = p1q1

}
.

Remark 1. The elements of the hyperstructure (G4, ◦) satisfy the following equality

Gq1
p1 ◦ Gq2

p2 = Gq2
p2 ◦ Gq1

p1 = GLCM{q1,q2}
GCD{p1,p2}, (2)

for any p1, q1, q2, p2 ∈ N∗ such that 4 = p1q1 = p2q2.
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LCM{q1, q2} represents the least common multiple of numbers q1, q2, and GCD {p1, p2}
represent the greatest common divisors of p1, p2.

Proposition 4. The hyperstructure (G4, ◦) is a semihypergroup, but not a quasihypergroup.

Now, we present the connection between the number of cyclic subgroups and the
cardinality of Gn.

Remark 2. The cyclic subgroups of the dihedral group Dn are < σ >, < ρσ >, . . . ,< ρn−1σ >,
and < ρd >, where d is a divisor of n. So, the number of all cyclic subgroups is n + τ(n), where
τ(n) = (α1 + 1)(α2 + 1) . . . (αk + 1), n = pα1

1 pα2
2 . . . pαk

k .

Proposition 5. The cardinality of the hyperstructure Gn is equal to the number of normal subgroups
of a dihedral group Dn.

Proof. According to Proposition 1 and Remark 2, we can state that the normal subgroups
of the dihedral group Dn are < ρd >, where d is a divisor of n. Also, the construction of the
hyperstructure Gn implies that the |Gn| = τ(n), where τ(n) = (α1 + 1)(α2 + 1) . . . (αk + 1),
n = pα1

1 pα2
2 . . . pαk

k . The conclusion is immediate.

Example 1. We determine the composition between the HX-groups G4
1 and G2

2 , where

G2
2 = {{e, ρ2}, {ρ, ρ3}, {σ, ρ2σ}, {ρσ, ρ3σ}};

G4
1 = {{e, ρ, ρ2, ρ3}, {σ, ρσ, ρ2σ, ρ3σ}}.

Therefore,
G4

1 ∗ G2
2 = {C0,0, C0,1, C0,2, C0,3, C1,0, C1,1, C1,2, C1,3},

and the sets Xq1
s ,Yq2

t , where s∈ {0, 1}, t ∈ {0, 1, 2, 3}, q1 = 4, q2 = 2, are

X4
0 = {e, ρ, ρ2, ρ3}, X4

1 = {σ, ρσ, ρ2σ, ρ3σ},

Y2
0 = {e, ρ2}, Y2

1 = {ρ, ρ3}, Y2
2 = {σ, ρ2σ}, Y2

3 = {ρσ, ρ3σ}.

In the following, we calculate the elements Ci,j, i ∈ {0, 1}, j ∈ {0, 1, 2, 3}.

C0,0 = X4
0 ∗ Y2

0 = {e, ρ, ρ2, ρ3} ∗ {e, ρ2} = e · e ∪ e · ρ2 ∪ ρ · e ∪
∪ρ · ρ2 ∪ ρ2 · e ∪ ρ2 · ρ2 ∪ ρ3 · e ∪ ρ3 · ρ3

= {e, ρ, ρ2, ρ3} = X4
0;

C0,1 = X4
0 ∗ Y2

1 = {e, ρ, ρ2, ρ3} ∗ {ρ, ρ3} =

= e · ρ ∪ e · ρ3 ∪ ρ · ρ ∪ ρ · ρ3 ∪
∪ρ2 · ρ ∪ ρ2 · ρ3 ∪ ρ3 · ρ ∪ ρ3 · ρ3.

= {e, ρ, ρ2, ρ3} = X4
0

C0,2 = X4
0 ∗ Y2

2 = {e, ρ, ρ2, ρ3} ∗ {σ, ρ2σ} =

= {σ, ρσ, ρ2σ, ρ3σ} = X4
1.

C0,3 = X4
0 ∗ Y2

3 = {e, ρ, ρ2, ρ3} ∗ {ρσ, ρ3σ} = X4
1.

Similarly, we obtain

C1,0 = X4
1 ∗ Y2

0 = X4
1, C1,1 = X4

1 ∗ Y2
1 = X4

1, C1,2 = X4
1 ∗ Y2

1 = X4
0, C1,3 = X4

1 ∗ Y3
1 = X4

0.

So, we have
G4

1 ◦ G2
2 = G4

1 .
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Remark 3. The calculation time for composing two HX-groups can be quite high. This represents
the starting point of the idea of creating code in the C ++ programming language because we can
improve the calculation time and analyze higher-order HX-groups.

3. Materials and Methods

Implementing C ++ Code into Microsoft Visual Studio 2022

This section will present the code in the C ++ programming language, created in
Microsoft Visual Studio 2022. The code describes the HX-groups associated with the dihedral
group Dn and their composition. Creating such a program was needed to improve the
calculation time for composing the HX-groups. The composition problem can become
quite complex, as observed in the works [17,18]. The input data will be n (the order of the
dihedral group Dn), and the divisors p1, q1, p2, q2 so that n = p1q1 = p2q2. In the program,
we identify the HX-group Gq1

p1 with G(p1, q1); the elements of Gq1
p1 formed a matrix and are

noted with a[i][j], and similarly the elements of Gq2
p2 are noted through b[i][j]. We identify

the elements of the dihedral group with natural numbers. So, we consider the function
f : (Dn, ·) → (N,+) as follows:

f
(

ρk
)

= k, (3)

f (ρkσ) = n + k,

where k ∈ {0, 1, . . . , n − 1}. For a fixed natural number n, we consider the restriction
of function f , so f : (Dn, ·) → ({0, 1, . . . , 2n − 1},+). In these conditions, we can state
the following:

Proposition 6. For a fixed natural number n, the function f : (Dn, ·) → ({0, 1, . . . , 2n − 1},+)

f
(

ρk
)

= k, (4)

f (ρkσ) = n + k,

is a bijective function.

Proof. The injectivity results immediately because, for any x,y ∈ Dn such that f (x) = f (y), it
implies x = y. The elements from Dn have the form ρk or ρkσ. As we can see, f (ρk) �= f (ρkσ)
for any k ∈ {0, 1, . . . , n − 1}. So, to have the equality f (x) = f (y) means that x = ρk,
y = ρp, k, p ∈ {0, 1, . . . , n − 1}, or x = ρkσ, y = ρpσ. In both cases, it results that p = k; this
means that x = y. To study the surjectivity, we have to prove that, for any element k from
{0, 1, . . . , 2n − 1}, there is x ∈ Dn such that f (x) = k. For k ∈ {0, 1, . . . , n − 1}, we consider
x = ρk, and, for k ≥ n, we consider x = ρk−nσ. In conclusion, f is a bijective function.

To determine the composition of groups Gq1
p1 ◦ Gq2

p2 , where n = p1q1 = p2q2, we have
four cases. We denote by ⊕ the composition law created in the program mentioned above,
and we provide the composition rules in each case.

Case 1. We compute the elements that have the form ρk with ρp, for any k,
p ∈ {0, 1, . . . , n − 1} in the following way

k ⊕ p = f (ρk) ◦ f (ρp) = k + p(modn) (5)

Case 2. We compute the elements that have the form ρk with ρpσ

k ⊕ (n + p) = f (ρk) ◦ f (ρpσ) =

{
n + k + p, k + p < n
k + p, k + p ≥ n

(6)
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Case 3. The composition of the elements that has the form ρpσ with ρk is

(n + p)⊕ k = f (ρpσ) ◦ f (ρk) =

{
2n + p − k, p < k
n + p − k, p ≥ k

(7)

Case 4. The composition of the elements that has the form ρpσ with ρkσ is

(n + p)⊕ (n + k) = f (ρpσ) ◦ f (ρkσ) =

{
p − k, p ≥ k
p + n − k, p < k

. (8)

In the following, we present the code in the C ++ programming language.

# include <iostream >
# include < s t d i o . h>
# include <algorithm >
using namespace std ;
i n t main ( )
{
i n t n , i , j , p1 , q1 , p2 , q2 , k , l , s , t , a [ 1 0 0 ] [ 1 0 0 ] ,
b [ 1 0 0 ] [ 1 0 0 ] , c [ 2 0 0 ] , p , d , e , aux , v [ 2 0 0 ] [ 2 0 0 ] , x , m;
cout << "n = " ;
c in >> n ; cout << " p1 = " ;
c in >> p1 ; cout << " q1 = " ;
c in >> q1 ;
i f ( n == p1 * q1 )
{
cout << " The HX Group G( " << p1 << " , " << q1 << " ) " << endl ;
f o r ( i = 0 ; i < 2 * p1 ; i ++)
{
f o r ( j = 0 ; j < q1 ; j ++)
{
i f ( i < p1 )

a [ i ] [ j ] = i + j * p1 ;
e l s e
a [ i ] [ j ] = i + n − p1 + j * p1 ;
cout << a [ i ] [ j ] << " " ;

}
cout << endl ;
}
}
cout << endl ;

cout << " p2 = " ; c in >> p2 ;
cout << " q2 = " ; c in >> q2 ;
i f ( n == p2 * q2 )
{
cout << " The HX Group G ( " << p2 << " , " << q2 << " ) " << endl ;
d = 2 * p2 ;
f o r ( i = 0 ; i < 2 * p2 ; i ++)
{
f o r ( j = 0 ; j < q2 ; j ++)
{
i f ( i < p2 )

b [ i ] [ j ] = i + j * p2 ;
e l s e
b [ i ] [ j ] = i + n − p2 + j * p2 ;
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cout << b [ i ] [ j ] << " " ;
}
cout << endl ;
}
cout << endl ;
}

i f ( ( n == p1 * q1)&&(n == p2 * q2 ) )
{

cout << " Composition between the HX group G( " << p1<<
" , " << q1 << " ) and HX group G( " << p2 << " , " << q2 <<
" ) i s " << endl ;

m = p1 * p2 ;

f o r ( p = 0 ; p < p1 * p2 ; p++)
{
f o r ( j = 0 ; j < q1 ; j ++)
{
f o r ( t = 0 ; t < q2 ; t ++)
{
c [ p ] = ( a [ p / p2 ] [ j ] + b [ p % p2 ] [ t ] ) % n ;
cout << c [ p ] << " " ;
}
}
cout << endl ;
}
cout << endl ;
cout << endl ;

f o r ( p = p1 * p2 ; p < 2 * p1 * p2 ; p++)
{
f o r ( j = 0 ; j < q1 ; j ++)
{
f o r ( t = 0 ; t < q2 ; t ++)
{
c [ p ] = ( a [ p / p2 ] [ j ] + b [ p % p2 ] [ t ] ) % n + n ;
cout << c [ p ] << " " ;
}
}
cout << endl ;
}
cout << endl ;

f o r ( p = 2 * p1 * p2 ; p < 3 * p1 * p2 ; p++)
{
f o r ( j = 0 ; j < q1 ; j ++)
{
f o r ( t = 0 ; t < q2 ; t ++)
{
c [ p ] = ( ( a [ p1 + p % p1 ] [ j ] − b [ p % p2 ] [ t ] ) % n ) + n ;
cout << c [ p ] << " " ;
}
}
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cout << endl ;
}
cout << endl ;

f o r ( p = 3 * p1 * p2 ; p < 4 * p1 * p2 ; p++)
{
f o r ( j = 0 ; j < q1 ; j ++)
{
f o r ( t = 0 ; t < q2 ; t ++)
{
c [ p ] = ( ( a [ p1 + p % p1 ] [ j ] − b [ p2 + p % p2 ] [ t ] ) + n ) % n ;
cout << c [ p ] << " " ;
}
}
cout << endl ;
}
cout << endl ;
cout << " Composition between the HX group G( " <<
p2 << " , " << q2 < <") and HX group G( " << p1 << " , "
<< q1 << " ) i s " << endl ;

e = 2 * p1 ;

f o r ( p = 0 ; p < p1 * p2 ; p++)
{
f o r ( j = 0 ; j < q2 ; j ++)
{
f o r ( t = 0 ; t < q1 ; t ++)
{
c [ p ] = ( b [ p / p1 ] [ j ] + a [ p % p1 ] [ t ] ) % n ;
cout << c [ p ] << " " ;
}
}
cout << endl ;
}
cout << endl ;

f o r ( p = p1 * p2 ; p < 2 * p1 * p2 ; p++)
{
f o r ( j = 0 ; j < q2 ; j ++)
{
f o r ( t = 0 ; t < q1 ; t ++)
{
c [ p ] = ( b [ p / p1 ] [ j ] + a [ p % p1 ] [ t ] ) % n + n ;
cout << c [ p ] << " " ;
}
}
cout << endl ;
}
cout << endl ;

f o r ( p = 2 * p1 * p2 ; p < 3 * p1 * p2 ; p++)
{
f o r ( j = 0 ; j < q2 ; j ++)
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{
f o r ( t = 0 ; t < q1 ; t ++)
{
c [ p ] = ( b [ p / e ] [ j ] − a [ p % p1 ] [ t ] ) % n + n ;
cout << c [ p ] << " " ;
}
}
cout << endl ;
}
cout << endl ;

f o r ( p = 3 * p1 * p2 ; p < 4 * p1 * p2 ; p++)
{
f o r ( j = 0 ; j < q2 ; j ++)
{
f o r ( t = 0 ; t < q1 ; t ++)
{
c [ p ] = ( ( b [ p2 + p % p2 ] [ j ] − a [ p1 + p % p1 ] [ t ] ) + n ) % n ;
cout << c [ p ] << " " ;
}
}
cout << endl ;
}
cout << endl ;
}
}

4. Results

4.1. The Results Are Provided by the C ++ Code Implemented for N = 4

The following will present the results obtained using the C++ code realized in Mi-
crosoft Visual Studio 2022. To better understand the above program, we will explain how it
works. For n = 4, we have the hyperstructure

G4 =
{
G2

2 , G4
1 , G1

4

}
Moreover, we apply the program presented in the previous section in each situation.
First situation: We consider p1 = 2, q1 = 2 , p2 = 1, q2 = 4, respectively. In [16], we

presented the composition of HX-groups G2
2 and G4

1 . In the presented cod, these HX-groups
are equivalent to the following HX-groups

G2
2 = {{0, 2}, {1, 3}, {4, 6}, {5, 7}}, where

{0, 2} =
{

f (ρ0), f (ρ2)
}

, {1, 3} =
{

f (ρ1), f (ρ3)
}

,

{4, 6} =
{

f (σ), f
(

ρ2σ
)}

, {5, 7} =
{

f (ρσ), f
(

ρ3σ
)}

;

G4
1 = {{0, 1, 2, 3}, {4, 5, 6, 7}}, where

{0, 1, 2, 3} =
{

f (ρ0), f (ρ1), f (ρ2), f (ρ3)
}

,

{4, 5, 6, 7} =
{

f (σ), f (ρσ), f
(

ρ2σ
)

, f
(

ρ3σ
)}

.

(1) We compute the elements from case 1, where

k ⊕ p = f (ρk) · f (ρp) = (k + p)(mod n)
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{0, 2} ⊕ {0, 1, 2, 3} =

⎛
⎝ ⋃

k∈{0,2}
f (ρk)

⎞
⎠ ◦

⎛
⎝ 3⋃

p=0
f (ρp)

⎞
⎠ =

= 0 ⊕ 0 ∪ 0 ⊕ 1 ∪ 0 ⊕ 2 ∪ 0 ⊕ 3 ∪ 2 ⊕ 0 ∪ 2 ⊕ 1 ∪ 2 ⊕ 2 ∪ 2 ⊕ 3

= {0, 1, 2, 3, 2, 3, 0, 1} = {0, 1, 2, 3},

{1, 3} ⊕ {0, 1, 2, 3} =

⎛
⎝ ⋃

k∈{1,3}
f (ρk)

⎞
⎠ ◦

⎛
⎝ 3⋃

p=0
f (ρp)

⎞
⎠ =

= 1 ⊕ 0 ∪ 1 ⊕ 1 ∪ 1 ⊕ 2 ∪ 1 ⊕ 3 ∪ 3 ⊕ 0 ∪ 3 ⊕ 1 ∪ 3 ⊕ 2 ∪ 3 ⊕ 3

= {1, 2, 3, 0, 3, 0, 1, 2} = {0, 1, 2, 3}.

(2) We applied the formulas from case (2), where

k ⊕ (n + p) = f (ρk) ◦ f (ρpσ) =

{
n + k + p, k + p < n
k + p, k + p ≥ n

.

{0, 2} ⊕ {4, 5, 6, 7} =

⎛
⎝ ⋃

k∈{0,2}
f (ρk)

⎞
⎠ ◦

⎛
⎝ 3⋃

p=0
f (ρpσ)

⎞
⎠ =

= 0 ⊕ 4 ∪ 0 ⊕ 5 ∪ 0 ⊕ 6 ∪ 0 ⊕ 7 ∪ 2 ⊕ 4 ∪ 2 ⊕ 5 ∪ 2 ⊕ 6 ∪ 2 ⊕ 7

= {4, 5, 6, 7, 6, 6, 4, 5} = {4, 5, 6, 7}.

We explain the second rule in this situation:

0 ⊕ 4 = 4 + 0 + 0 = 4 : (k = 0, p = 0, k + p < 4),

0 ⊕ 5 = 4 + 0 + 1 = 5 : (k = 0, p = 1, k + p < 4),

0 ⊕ 6 = 4 + 0 + 2 = 6 : (k = 0, p = 2, k + p < 4),

0 ⊕ 7 = 4 + 0 + 3 = 7 : (k = 0, p = 3, k + p < 4),

2 ⊕ 4 = 4 + 2 + 0 = 6 : (k = 2, p = 0, k + p < 4),

2 ⊕ 5 = 4 + 2 + 1 = 6 : (k = 2, p = 1, k + p < 4),

2 ⊕ 6 = 2 + 2 = 4 : (k = 2, p = 2, k + p ≥ 4),

2 ⊕ 7 = 2 + 3 = 5 : (k = 2, p = 3, k + p ≥ 4).

Similarly, we calculate

{1, 3} ⊕ {4, 5, 6, 7} =

⎛
⎝ ⋃

k∈{1,3}
f (ρk)

⎞
⎠ ◦

⎛
⎝ 3⋃

p=0
f (ρpσ)

⎞
⎠ =

= 1 ⊕ 4 ∪ 1 ⊕ 5 ∪ 1 ⊕ 6 ∪ 1 ⊕ 7 ∪ 3 ⊕ 4 ∪ 3 ⊕ 5 ∪ 3 ⊕ 6 ∪ 3 ⊕ 7

= {5, 6, 7, 4, 7, 4, 5, 6} = {4, 5, 6, 7}.

(3) We applied the formulas from case (3), where

(n + p)⊕ k = f (ρpσ) ◦ f (ρk) =

{
2n + p − k, p < k
n + p − k, p ≥ k

.

{4, 6} ⊕ {0, 1, 2, 3} =

⎛
⎝ ⋃

p∈{0,2}
f (ρpσ)

⎞
⎠ ◦

(
3⋃

k=0

f (ρk)

)
=

= 4 ⊕ 0 ∪ 4 ⊕ 1 ∪ 4 ⊕ 2 ∪ 4 ⊕ 3 ∪ 6 ⊕ 0 ∪ 6 ⊕ 1 ∪ 6 ⊕ 2 ∪ 6 ⊕ 3

= {4, 7, 6, 5, 6, 5, 4, 3} = {4, 5, 6, 7},
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where

4 ⊕ 0 = 4 + 0 − 0 = 4 : (p = 0, k = 0, p ≥ k),

4 ⊕ 1 = 2 ∗ 4 + 0 − 1 = 7 : (p = 0, k = 1, p < k),

4 ⊕ 2 = 2 ∗ 4 + 0 − 2 = 6 : (p = 0, k = 2, p < k),

4 ⊕ 3 = 2 ∗ 4 + 0 − 3 = 5 : (p = 0, k = 3, p < k),

6 ⊕ 0 = 4 + 2 − 0 = 6 : (p = 2, k = 0, p ≥ k),

6 ⊕ 1 = 4 + 2 − 1 = 5 : (p = 2, k = 1, p ≥ k),

6 ⊕ 2 = 4 + 2 − 2 = 4 : (p = 2, k = 2, p ≥ k),

6 ⊕ 3 = 2 ∗ 4 + 2 − 3 = 7 : (p = 2, k = 3, p < k).

Analogously, we have

{5, 7} ⊕ {0, 1, 2, 3} =

⎛
⎝ ⋃

p∈{1,3}
f (ρpσ)

⎞
⎠ ◦

(
3⋃

k=0

f (ρk)

)
=

= 5 ⊕ 0 ∪ 5 ⊕ 1 ∪ 5 ⊕ 2 ∪ 5 ⊕ 3 ∪ 7 ⊕ 0 ∪ 7 ⊕ 1 ∪ 7 ⊕ 2 ∪ 7 ⊕ 3

= {5, 4, 7, 6, 7, 6, 5, 4} = {4, 5, 6, 7}.

(4) The fourth case refers to computing the elements that are greater than n. We have
the relation

(n + p)⊕ (n + k) = f (ρpσ) ◦ f (ρkσ) =

{
p − k, p ≥ k
p + n − k, p < k

.

{4, 6} ⊕ {4, 5, 6, 7} =

⎛
⎝ ⋃

p∈{0,2}
f (ρpσ)

⎞
⎠ ◦

(
3⋃

k=0

f (ρkσ)

)
=

= 4 ⊕ 4 ∪ 4 ⊕ 5 ∪ 4 ⊕ 6 ∪ 4 ⊕ 7 ∪ 6 ⊕ 4 ∪ 6 ⊕ 5 ∪ 6 ⊕ 6 ∪ 6 ⊕ 7

= {0, 3, 2, 1, 2, 1, 0, 3} = {0, 1, 2, 3}

because

4 ⊕ 4 = 0 − 0 = 0 : (p = 0, k = 0, p ≥ k);

4 ⊕ 5 = 0 + 4 − 1 = 3 : (p = 0, k = 1, p < k);

4 ⊕ 6 = 0 + 4 − 2 = 2 : (p = 0, k = 2, p < k);

4 ⊕ 7 = 0 + 4 − 3 = 1 : (p = 0, k = 3, p < k);

6 ⊕ 4 = 2 − 0 = 2 : (p = 2, k = 0, p ≥ k);

6 ⊕ 5 = 2 − 1 = 1 : (p = 2, k = 1, p ≥ k);

6 ⊕ 6 = 2 − 2 = 0 : (p = 2, k = 2, p ≥ k);

6 ⊕ 7 = 2 + 4 − 3 = 3 : (p = 2, k = 3, p < k).

Therefore, G2
2 ◦ G4

1 = {{0, 1, 2, 3}, {4, 5, 6, 7}} = G4
1 .

The composition G4
1 ◦ G2

2 is analyzed analogously and will be described in Table 1:

Table 1. The composition between HX-groups G4
1 and G2

2 .

G4
1 ◦ G2

2 {0, 2} {1, 3} {4, 6} {5, 7}
{0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {4, 5, 6, 7} {4, 5, 6, 7}
{4, 5, 6, 7} {4, 5, 6, 7} {4, 5, 6, 7} {0, 1, 2, 3} {0, 1, 2, 3}
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We have G4
1 ◦ G2

2 = {{0, 1, 2, 3}, {4, 5, 6, 7}} = G4
1 . In conclusion,

G2
2 ◦ G4

1 = G4
1 ◦ G2

2 = G4
1 .

Second situation: We consider p1 = 2, q1 = 2, and p2 = 4, q2 = 1 so that the
composition G2

2 ◦ G1
4 is illustrated in the following table according to the rules presented

above for each case.
We can state that G2

2 ◦ G1
4 = {{0, 2}, {1, 3}, {4, 6}, {5, 7}} = G2

2 , and, proceeding
similarly, we obtain G1

4 ◦ G2
2 = {{0, 2}, {1, 3}, {4, 6}, {5, 7}} = G2

2 .
Third situation: We have to compute G1

4 ◦ G4
1 and G4

1 ◦ G1
4 , where

G1
4 = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}}.

4.2. A Graph Representation of the HX-Groups with Dihedral Group Dn as Support

Graph theory is applied in many fields, such as computer science, physics, biol-
ogy [4,21,22], and social and information systems. A graph represents connected points
along with their connections. Lines or curves can represent these connections. The points
are called nodes or vertices; the lines between points are edges. The sets of nodes are
denoted by V, and the sets of edges are denoted by E; therefore, a graph is represented by
G = (V, E). In this section, we construct the graph associated with the hyperstructures
(G4, ◦) and (G6, ◦). The vertices represent the elements of the set Gn, and we say that x, y
formed an edge if and only if

[x, y] = x ◦ y ∩ {x, y} �= ∅. (9)

So, let G4 = (V4, E4) be the graph associated with the hyperstructures (G4, ◦), where
V4 = {G4

1 , G2
2 , G1

4}. In relation (2), we established the connection between the composition
of two HX-groups. So, according to them, we can draw the following graphs G4, and,
similarly, we obtained the graph G6. For graph G4, the node i is represented by the HX-

group G
4
i

i , where i is a divisior of 4, and, for the graph G6, the node j is represented by

the HX-group G
6
j

j , where j is a divisior of 6. In graph theory, it is important to determine
the degree of a vertex. The degree of a vertex v is denoted by deg(v) and represents
the number of edges that are incident to the vertex. In our situation, we can say that
deg(1) = deg(2) = deg(4) = 2 for G4, and deg(1) = 3, deg(2) = 2, deg(3) = 2, and
deg(6) = 3 for G6.

5. Discussion

The main objective of the study was to analyze the HX-groups associated with the
dihedral group Dn through the IT theory. A code in the C++ programming language,
created in the Microsoft Visual Studio 2022 program, was presented in detail. This code
represents a novelty in the field of HX-groups. In the first part of the paper, we discussed
the HX-groups associated with the dihedral group from an algebraic point of view. In the
second part of the work, the innovative part of the article was revealed. In Proposition 6, we
established a connection between the elements of the dihedral group and natural numbers
to implement the HX-groups in the C ++ code programming language. The compositions
between G1

4 and G2
2 and G2

2 and G1
4 , respectively, are described in Tables 1 and 2. This code

is necessary to improve the calculation time for the composition of two HX-groups. In
Figures 1 and 2, we can notice how the program works for n = 4. Finally, a connection
between the HX-groups G4, G6 and graph theory was presented in Figure 3.
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Figure 1. The groups G1
4 , G4

1 , and G4
1 ◦ G1

4 .

Figure 2. The composition G1
4 ◦ G4

1 .

1

2 4

1

2 6

3

Figure 3. Graph G4 and graph G6.

Table 2. Composition of HX-groups G2
2 and G1

4 .

G2
2 ◦ G1

4 {0} {1} {2} {3} {4} {5} {6} {7}
{0, 2} {0, 2} {1, 3} {0, 2} {1, 3} {4, 6} {5, 7} {4, 6} {5, 7}
{1, 3} {1, 3} {0, 2} {1, 3} {0, 2} {5, 7} {4, 6} {5, 7} {4, 6}
{4, 6} {4, 6} {5, 7} {4, 6} {5, 7} {0, 2} {1, 3} {0, 2} {1, 3}
{5, 7} {5, 7} {4, 6} {5, 7} {4, 6} {1, 3} {0, 2} {5, 7} {0, 2}

Author Contributions: Conceptualization, A.P.S. and C.C.; Methodology, A.P.S. and C.C.; Code
created in Microsoft Visual Studio 2022 program, A.P.S. and C.C.; Writing—original draft, A.P.S. All
authors have read and agreed to the published version of the manuscript.
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Abstract: Feynman diagrams represent one of the most powerful and fascinating tools developed in
theoretical physics in the last century. Introduced within the framework of quantum electrodynamics
as a suitable method for computing the amplitude of a physical process, they rapidly became a
fundamental mathematical object in quantum field theory. However, their abstract nature seems to
suggest a wider usage, which actually exceeds the physical context. Indeed, as mathematical objects,
they could simply be considered graphs that depict not only physical quantities but also biological or
economic entities. We survey the analytical and algebraic properties of such diagrams to understand
their utility in several areas of science, eventually providing some examples of recent applications.

Keywords: Feynman diagrams; quantum field theory; graph theory; combinatorics; RNA folding;
quantum finance; mathematical physics
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1. Introduction

In the late 1940s, Richard Feynman published a renowned paper [1], in which he
proposed a pictorial formulation of the quantum field theory (QFT) by introducing the
so-called Feynman diagrams for describing particle interaction as field propagation (see
Figure 1). His original attempt was to simplify the tricky computations coming from quan-
tum electrodynamics theory (QED), namely the quantum description of electromagnetic
phenomena. As highlighted by David Kaiser [2], the contribution to quantum physics was
enormous and, at least, twofold. On the one hand, Feynman diagrams provide a powerful
tool to simplify the critical calculations emerging from the perturbative approach in QFT.
From this point of view, the diagrams become a topological way to treat enumeration and
combinatorical issues. On the other hand, the pedagogical influence that this diagrams had
in the second half of the 20th century cannot be overlooked.

Figure 1. Standard representation of a second-order Feynman diagram in QED. The usual interpre-
tation is the following: fix a time direction; consider the external lines physical particles and the
internal lines virtual particles.

The usage of analogous instruments has, not so surprisingly, spread in many other
physical field theories. For instance, their application in quantum chromodynamics
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(QCD) [3–5], or even in quantum gravity (QG) [6,7], effective field theory (EFT) [8], and con-
densed matter physics [9], is quite common nowadays.

There also exists a third philosophical interpretation that considers Feynman diagrams
not only merely computational tools, but something that actually provides an in-depth
depiction of physical processes [10–12]. However, most quantum field theorists actually
lean in favour of Feynman diagrams as merely book-keeping devices (namely, they are
conveniently employed for calculations) [13–15]. In some sense, this work actually shows
that, at least as powerful organizational tools, Feynman-type diagrams can be used in
different domains not directly linked with quantum phenomena. Indeed, inspired by
this intriguing formulation of fundamental physics, namely the graphical description,
with its intrinsic topological and algebraic nature, the diagrams began to be used in
different domains, such as mathematical biology and economic science. In this manuscript,
we survey different applications of Feynman-type diagrams in order to aim at a broad
audience, in the hope that these techniques can provide an inspiring starting point for
future developments in many scientific areas. We remark that this work fits into the context
of a renewed interest in Feynman diagrams, as evidenced by the recent experimentation
of their use in a high school setting [16] or the more technical reformulation in categorical
semantics [17].

This paper is organized as follows: In Section 2, we briefly introduce the diagrams,
stressing their mathematical significance. Section 3 is devoted to the first application of
these kinds of graphs in a biological context. A completely different example is given in
Section 4, where we review the usage of diagrams in the field of the so-called quantum
economy. Finally, in Section 5, we conclude by taking stock of the overview by proposing
some other fascinating applications of these particular mathematical tools.

2. From Matrix Integrals to Diagrams

In this section, we propose a brief summary of how diagrams can be generated from a
classical mathematical apparatus. There are many authors who discuss the construction
of Feynman diagrams and the contextual Feynman rules in QFT [3,5]. In this section, we
plan to point out the most important steps in the creation of such graphs, in terms of
mathematical operators. Naturally, once you have fixed the graphical apparatus, one can
skip the evaluation of the generating functional and the associated Green functions for
obtaining amplitudes, as presented in this section. Indeed, the Feynman rules allow us to
easily compute the amplitude just by using a list of several formal steps. However, for our
purpose, it is important to explain the mathematical formulation behind the diagrams,
in order to understand how the same techniques can be used in different scientific domains.
Now, we are going to work in a finite-dimensional setting to provide a better explanation
of the various passes. Analogous arguments can be found, for instance, in [3,5,18–21].

As is often the case in mathematics, we start by considering an integral, that is,

Z0 =
∫
Rn

dx exp
(
−1

2
xT Ax

)
= (2π)

n
2 (det A)−

1
2 , (1)

where x = (x1, . . . , xn) ∈ Rn and A ∈ Mn is a symmetric matrix. After some straightfor-
ward computation, it is also possible to prove that, given a generic vector b ∈ Rn, we can
write the following integral:

Zb =
∫
Rn

dx exp
(
−1

2
xT A x + bTx

)
, (2)

as

Zb = Z0 exp
(

1
2

bT A−1b

)
. (3)
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We can now fix a set of k indices as i1, . . . , ik in {1, 2, . . . , n}, so that we can define the
so-called k-point function as follows:

〈xi1 , . . . , xik 〉 =
1

Z0

∫
Rn

dx exp
(

1
2

xT Ax)

)
xi1 · · · xik . (4)

This kind of function plays a central role in the development of the theory. Indeed, it is
possible to compute Equation (4) by differentiating Zb:

∂Zb

∂bi
=

∂

∂bi

∫
Rn

dx exp
(

1
2

xT Ax + bTx

)

=
∫
Rn

dx
∂

∂bi
exp
(

1
2

xT Ax + bTx

)

=
∫
Rn

dx exp
(

1
2

xT Ax + bTx

)
xi.

(5)

Thus, we immediately obtain the following expression for the one-point function:

〈xi〉 = 1
Z0

∂Zb
∂bi

∣∣∣∣
b=0

, (6)

and then the generic formulation for the k-points function:

〈xi1 , . . . , xik 〉 =
1

Z0

(
∂

∂bi1
· · · ∂

∂bik
Zb

)∣∣∣∣
b=0

=
∂

∂bi1
· · · ∂

∂bik
exp
(

1
2

bT A−1b

)∣∣∣∣
b=0

. (7)

Thanks to these computational steps, we have actually translated the original problem into
another one: now, we simply need to compute the derivatives of the exponential function in
Equation (3). To reduce this intricate operation to a combinatoric affair, we make use of the
well-known Wick’s theorem (which is stated and proved in every book concerning QFT; see,
for instance, [5]). In our framework, this theorem immediately leads to a combinatorical
expression of the form

∂

∂bi1
· · · ∂

∂bik
exp
(

1
2

bT Ab

)∣∣∣∣
b=0

= ∑
all pairings

A−1
il1 ,il2

· · · A−1
ilk−1

,ilk
. (8)

With “all parings”, here we denote all possible pairings of the indices i1, . . . , ik. Now, it
seems to be clear that the sum of Equation (8) can be split in different contributions by
using the N-order series expansion of the exponential function as follows:

exp
(

1
2

bT A−1b

)
=

(
1

N!

)(
1

2N

)( n

∑
i,j=1

A−1
i,j bibj

)N

, (9)

In particular, if we use a lighter notation for the derivative, namely

∂

∂bi
≡ ∂i , (10)

by fixing N = 1, we immediately obtain the following from Equation (9):

∂2∂1

(
1
2

n

∑
i,j=1

A−1
i,j bibj

)
= A−1

1,2 = 〈x1, x2〉,

∂1∂1

(
1
2

n

∑
i,j=1

A−1
i,j bibj

)
= A−1

1,1 = 〈x1, x1〉,
(11)
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Let us remark that the paring (∂1, ∂2) is equivalent to the paring (∂2, ∂1), because of the
symmetry of the matrix A−1. Similarly, for N = 2, expressions involve other combinations
of indices, for instance,

∂4∂3∂2∂1

(
1
2!

)(
1
2

)2
(

1
2

n

∑
i,j=1

A−1
i,j bibj

)2

= A−1
2,3 A−1

1,4 + A−1
2,4 A−1

1,3 + A−1
3,4 A−1

1,2 , (12)

= 〈x1, x2, x3, x4〉

∂4∂3∂1∂1

(
1
2!

)(
1
2

)2
(

1
2

n

∑
i,j=1

A−1
i,j bibj

)2

= 2 · A−1
1,4 A−1

1,3 + A−1
3,4 A−1

1,1 (13)

= 〈x1, x1, x3, x4〉.

Thus, Wick’s theorem provides a practical way to compute n-points functions as we show
in the latter formulas for the two-points and four-points functions (the generalization is
quite obvious). Now, the combinatorial computations arising from Wick’s argument can
actually be graphically represented. In particular, let us consider the right-hand side of
Equations (12) and (13). They can be depicted as graphs, where the indices of the points xi
in the m-point function become the vertices and and each term A−1

i,j becomes an edge from
vertex xi to vertex xj. Practically speaking, it turns out that it is possible to visualize such
an expression by means of graphs, as we propose in Figures 2 and 3.

+ +

x1 x3

x2 x4

x1 x3

x2 x4

x1 x3

x2 x4

Figure 2. The three graphs representing the 4-points function 〈x1, x2, x3, x4〉, which is explicitly given
by Equation (12).

2 +

x1 x3

x4

x3

x4

x1

Figure 3. The two graphs representing the 4-points function 〈x1, x1, x3, x4〉. The first graph is
multiplied by the same factor, 2, appearing even in the explicit formula of Equation (13).

Remark 1. The previous paragraphs have explored in depth the link between the mathematical
framework and the graphical structures. As mentioned above, the construction of these diagrams
can be formulated in a pure formal context by the list of Feynman rules. The latter formulation
really provides an easier way to construct the diagrams. However, as we are going to see in the next
sections, the mathematical background represents one of the cores of this work, which one needs
in order to have a better understanding of the translation of these techniques in other studies.

Physically speaking, the structure of Feynman diagrams arises directly from the
integrals (namely the generating function) due to the path integral approach to QFT [5].
In fact, in the quantum field theory realm the studied integrals assume (by adapting the
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previous notations) the following form, which involves some potential function U(x) and
the reduced Planck constant h̄:

ZU =
∫

dx exp
(
−1

2
xT Ax + h̄U(x)

)
. (14)

Equation (14) is trivially linked with the above discussion (we remark that the construction
in QFT is actually more complicated, as it involves infinite quantities. However, for the
purpose of this illustrative section, the most important thing is to capture the spirit of the
mathematical formulation linked to Feynman diagrams). Now, as one can deduce from
the proposed construction, it is possible to fix some formal rules in order to connect this
abstract mathematical formulation to the corresponding physical significance. This proce-
dure imposes the classical QED interpretation first provided by Feynman (and formally
developed by Dyson [22]), in which objects as virtual particles are introduced in order to
explain the physical phenomena underlying the diagrams (the ontological nature of virtual
particles is still an open debate in the philosophical community [23,24]). However, for the
purpose of this work, we just consider the mathematical formulation of such diagrams
and how their generality can be translated to other scientific domains. Indeed, in this
section, we show how it is possible to construct a graph theory starting from a specific class
of integrals.

In the next two sections, we apply this impressive trick coming from QFT to develop
a graph theory for approaching the problem of RNA folding and for modelling the bond
prices in quantum finance.

Remark 2. It is important to underline that the application of diagrams in the biological and
economical contexts actually comes from two different perspectives. In fact, in the first case,
the analogy inspiring the construction comes, as we are going to see, directly from the similarity
between the pictures in the QFT and RNA framework. Instead, in the second case, the analogy
is mediated by the path integral formulation. It is now quite clear that the formal mathematical
construction can be based directly on the path integral formulation instead of its diagrammatic
version. However, we consider the choice of Feynman-type diagrams for developing and studying the
most suitable theories in order to disseminate such an approach to different scientific communities.
For the role of the analogy in the mathematical reasoning and discovery, we refer interested readers
to [25,26].

3. RNA Folding Problem

In the previous section, we formally show the connection between matrices and
diagrams. This deep link can be exploited to study many kinds of problems once one has
reformulated the link in terms of matrix field theory. In this spirit, in 2002 Orland and
Zee [27] proposed a method for predicting the tertiary structure of RNA based on such
a matrix theory. Indeed, the usage of diagrams to describe secondary and tertiary RNA
structures is actually a common practice, as testified by a large number of representations,
which one can find in the literature [27–35].

We briefly recall that RNA is usually defined as a single-filament polymer, made
of ribonucleosides with four main nucleobases: adenine (A), cytosine (C), guanine (G),
and uracil (U). Despite being single-filament, RNA bases can form bonds (similarly to
DNA) with bases from other molecules, or even within the same molecule, thus creating
more complicated 2D and 3D structures. In standard Watson–Crick base-pairings, A binds
U with two hydrogen bonds, and G binds C with three hydrogen bonds. Moreover, RNA
structural motifs are made up of two components: the first one consists of free bases, like in
bulges, loops, or junctions, and the second one is made up of stems of paired bases. While
the secondary structure could be assimilated to RNA’s planar conformation (i.e., planar
graphs), the tertiary structure is its 3D conformation, which determines its specific function
(see [36]). The main role in the passage between 2D and 3D models is played by the
so-called pseudoknots. Roughly speaking, a pseudoknot is composed of at least two helices
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with both internal bonds and free bases interacting across the two motifs and separated by
an additional stretch of free bases (see [37]). In the next paragraphs, we explore in-depth
the contribution of pseudoknots in this framework and their graph representation.

Returning to the main topic, Orland and Zee noticed a profound analogy between the
model obtained by stretching the manipulation of RNA secondary structures (see Figure 4)
and the classical Feynman diagrams defined above.

Figure 4. Classical diagram of a kissing hairpin pseudoknot.

It turns out that such an approach is strictly related to the topology of such diagrams,
as it was already proved by t’Hooft [38]. Thanks to this topological perspective, we can
introduce the fundamental notion of genus, which can be used to topologically classify RNA
structures [30,32,33,39]. It is important to underline that the formal construction, which we
are going to explain in the following, is none other than a particular case of a the so-called
maps enumeration problem belonging to the theory of dessin d’enfant, whose contemporary
formulation in terms of graph embedding into manifolds is due to Grothendieck [40]. Read-
ers interested in the latter topic may also consult the manuscript published by Zvonkin [41].
The matrix formalism introduced in [27] and then developed in [32] is based on the stan-
dard energy models for RNA studied in recent years. These energetic models are based on
the following partition function:

Z =
∫ L

∏
k=1

d3rk f (r)ZL(r), (15)

where rk is the 3D position vector k-th base, L is the length of the sequence, and f (r) is a
function, which takes into account the properties of the RNA chain. A fundamental role
is played by the function ZL(r), which provides the description of base interactions; it is
given by

ZL = 1 + ∑
〈i,j〉

Vij(rij) + ∑
〈i,j,k,l〉

Vij(rij)Vkl(rkl) + · · · , (16)

where 〈i, j〉 denotes the pair relation j > i, 〈i, j, k, l〉 the quadruplets relation l > k > j > i,
and so on. In this formalism, the function Vij(r) represents the Boltzmann factor with
energy εij that relates the i-th and the j-th bases at the distance induced by the vector rij:

Vij(rij) = exp
(−βεijsij(rij)

)
, (17)

where β = 1/kBT is the usual symbol for the inverse temperature multiplied to the
Boltzmann constant, and sij(rij) is the space-dependent part of the interaction. And,
precisely in this context, Orland and Zee noticed the analogy with QCD that induced them
to rewrite the above problem in terms of integrals over the space of N × N dimensional
Hermitian matrices:

Zn(a, N) =
1

A(N)

∫
dN×Nφ exp

(
− N

2a

)
Tr φ2 × 1

N
Tr(I+ φ)n , (18)

where φ is a Hermitian matrix, Tr(·) represents the trace operator, and A(N) is a computable
normalization factor.
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These latter integrals can be represented by means of diagrams inspired by the Feyn-
man diagrams that we introduced in the previous section. Let us consider for the sake of
simplicity the one-dimensional case (R), with n = 2. By basic computations, we obtain
Z2(a) = 1 + a, namely, if one depicts a circle with two points, the addendum 1 is the no-
chord diagram, and the term a is the diagram with chords joining the two points. Now, it is
also possible to represent Z4(a) = 1+ 6a + 3a2, where, in addition to the no-chord diagram,
there are also six one-chord diagrams (all the possible combinations) that provide the term
6a. Finally, 3a2 are intuitively the three possible combinations of two-chord diagrams (see
Figure 5 for some examples).

c d

ba

Figure 5. Four examples of diagrams representing terms of the integral Z4(a) = 1 + 6a + 3a2. We rep-
resent here the no-chord diagram (a), that is, the addendum 1, a one-chord diagram (b) contributing
to the first-order term 6a, and two of the three second-order two-diagrams in 3a2: one planar (c) and
one non-planar (d).

Remark 3. As we are going to explain in the next paragraphs, the power of this approach becomes
relevant for large N and large −N expansion. In particular, one can notice that the computation of
Z2(a, N) = 1+ a does not depend on N; instead, by computing Z4(a, N) = 1+ 6a+ 2a2 + a2/N2,
one explicitly obtains the dependence on N. We remark that, in this example, the term involving
1/N2 actually represents the non-planar diagram.

Once the matrix framework is recovered, it is possible to evaluate such integrals in
terms of diagrams, by using the already mentioned Wick’s theorem. Moreover, thanks to
this graphical approach we can also describe pseudoknots in terms of topological quantities,
namely the genus. Figure 4 depicts the standard way to represent a well-known pseudoknot,
called kissing hairpin [42]. This picture can be used to derive (by stretching the backbone)
two other useful graphs, namely the stretching (or arc) diagram (Figure 6a) and the circle (or
disk) diagram (Figure 6b).

(a) (b)

Figure 6. Stretching (or arc) diagram of a kissing hairpin pseudoknot (a). Circle diagram of kissing
hairpin pseudoknot (b).

Now, in terms of crossing diagrams, pseudoknots can be computed by using the genus
of a surface. Topologically speaking, the genus of a surface is the number of holes or handles
of a (orientable) surface. In this framework, the genus of a diagram can be defined as the
genus of the surface with the lowest genus, in which our diagram can be drawn with no
intersections. In particular, if we consider the case of the kissing hairpin, we obtain the
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representation in Figure 7, in which the diagram appears embedded in a surface with genus
g = 1, namely a torus.

Figure 7. Kissing hairpin pseudoknot embedded on a torus. Notice that the circle diagram can be
actually drawn without any crossings. This corresponds to the topological genus of the torus, namely
g = 1 (adapted from [43]).

It is clear now how the topology allows us to classify pseudoknots, which have a
central role in the theory. We remark, indeed, that the genus g is included explicitly in
the original formulation of the theory [27,32,43], in which the authors consider power
series of Equation (18) with respect to terms of the form N−2g (where N is the dimension
of the matrix), so that Equation (16) can be rewritten by also including the topological
contribution due to pseudoknots (we can assume that the chains are infinitely flexible, so
that all spatial degrees of freedom are gotten rid of when simplifying the notation):

ZL(N) = 1 + ∑
〈i,j〉

Vij + ∑
〈i,j,k,l〉

VijVkl +
1

N2 ∑
〈i,j,k,l〉

VikVjk + · · · . (19)

Remark 4. We point out that Equation (19) explicitly provides the link between secondary and
pseudoknot structures from a topological perspective. In particular, the topological considerations
that lead to Equation (19) are based on the N expansion used in the already mentioned matrix
field theories. Indeed, this approach predicts that non-planar Feynman diagrams have amplitudes
proportional to the negative power of N, and then we can get rid of them when N is large. The same
technique has been applied to the problem of RNA folding, leading to the same sort of cancellation of
non-planar configurations [27].

The standard way to compute the genus of a diagram is the well-known Euler charac-
teristic that, in the case of diagrams, is provided by the celebrated formula χ = V − E + F,
where V, E, and F are the numbers of vertices, edges, and faces, respectively. We remark
that, in this view, a vertex is a nucleotide, an edge is any line connecting two nucleotides,
and a face is a part of the surface within a closed loop of edges. In the case of n arcs, one
trivially obtains E = V + n. There is also a famous theorem due to Euler stating that any
polyhedron homeomorphic to a sphere with a boundary has an Euler characteristic χ = 1.
As a corollary, all RNA secondary structures with no pseudoknots can be represented
by disk diagrams with χ = 1. Let us suppose that the RNA secondary structure admits
pseudoknots; as in the case of kissing hairpin, the computation of the Euler characteristic
leads to the value χ = −1. The geometrical significance of such a value is strictly related to
the number of holes on a surface. In particular, we recall that for any orientable surface,
we have χ = 2 − 2g − p, where p is the number of punctures. In conclusion, the kissing
hairpin pseudoknot induces a genus g = 1, and can be drawn without crossing on a surface
with one hole, that is exactly a torus (Figure 7).

Now, we want to stress two more properties about pseudoknots that turn out to be
very important for computational reasons. The genus of a diagram is an additive quantity,
and so it is possible to provide two notions to characterize the intrinsic complexity of a
pseudoknot, namely the concepts of irreducibility and nested pseudoknots [42]. A diagram
is said to be irreducible if it cannot be split into two disconnected parts by cutting a single
line, as in Figure 8b. In parallel, a diagram is said to be nested in another one if it can be
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removed by cutting two lines and keeping the rest of the diagram connected in a single
component, as in Figure 8d. These two definitions can be combined as follows: if a diagram
is both irreducible and non-nested, it is called a primitive diagram. Other interesting details
about genuses and pseudoknots can be found in [32,33,39,42,44].

c d

ba

Figure 8. Four example of pseudoknots (reproduced from [42]). A reducible (a) and an irreducible
(b) pseudoknot. (a) can be split in two disconnected pieces with a single cut. A nested (c) and a
non-nested (d) pseudoknot. Two disconnected components can be obtained in (c) by making two cuts.

Remark 5. This section is devoted to the explanation of how the matrix theory can be applied in
the context of RNA folding prediction problems and the way to connect pseudoknots with genuses
by using graphs and their embedding into manifolds. The interests for this method assume a
greater significance when such an approach is used to developed specific software for modelling and
predicting RNA structures. In particular, we want to mention McGenus [45] and its precursor
TT2NE [46]. Indeed, the notion of pseudoknots and the graphical apparatus outlined above allow us
to consider, in producing a suitable predictive software, having both the perspectives: the global one
(provided by genuses and pseudoknots) and the local one (provided by the energy function due to the
coupling rules of the biological theory). A useful overview about these topics and the most recent
applications of McGenus is eventually proposed in [47].

For the sake of completeness, finally, we want to mention some other recent works
that describe a topological approach based on graphs to RNA folding problems. A similar
outlook to the one described above is given in [28], where the authors studied a Hermitian
matrix model with a given potential that enumerates the number of chord diagrams by
using the formalism of the topological recursion, and in [29], where the authors provided a
classification and an enumeration of RNA structures by genus. Moreover, two interesting
generalizations of the concept of genuses were introduced [31,35]. The first one is the genus
trace, a function g(i) : N → N providing the genus of a segment of the chain between the
first and the i-th residue. The second one is the fingerprint matrix, which gives a useful
mathematical visualization of all the genuses computed between two elements of a chain;
namely, if one fixes the notation G = (gij) for the matrix, the generic element gij represents
the genus of the sub-chain between the i-th and the j-th residue. Another computational
approach based on pseudoknot prediction is given in [34], where the authors proposed a
quantitative analysis of the topological constraints on RNA three-dimensional conforma-
tional space, with specific attention to the distribution of helix orientations, for pseudoknots
and loop–loop kissing structures. The results showed a strong topological coupling between
helices and loops in RNA tertiary motifs.

4. Quantum Finance Experience

In this fourth section, we describe a completely different application of Feynman-type
diagrams in the interdisciplinary field of econophysics [48–50]. In general, this field of study
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exploit methods and approaches developed in the domain of physics to solve economical
and financial problems.

In the following paragraphs, we focus on an intriguing topic, which is based on
quantum theories, and therefore it is called quantum econophysics. Although there are several
doubts about the ontological foundation of the analogy between quantum mechanics and
finance [51], it is still interesting to describe the framework proposed by several authors in
the last two decades based on the path integral formulation, which can even be reformulated
with the graphical techniques introduced by Feynman and discussed in Section 2. The
first attempt to merge quantum and economic theory dates back to the end of the 1970s
with the first works of Qadir [52] and Samuelson [53]. Specifically, the first one proposed,
under suitable assumptions, the use of quantum formalism to model micro-economics (in
analogy with micro-physics). A renewed interest in these ideas started to emerge between
the end of the 1990s and the beginning of the 2000s, thanks to researchers coming from the
social sciences such as Shubik [54] and Haven [55].

However, at the same time, the two most important approaches to quantum econophysics
came onto the stage, that is, the works of Ilinski [56] and Baaquie [57]. In the following years,
Baaquie has considerably developed his own approach with several manuscripts [58–62]
and books [63,64], which represent the core of this section. Interested readers can find
further materials on quantum methods for economics and finance in [65–69]. In the following
paragraphs, we explore the formalism developed by Baaquie [57,59,70] for modelling
European options on coupon bonds.

Remark 6. European options represent the most used path-independent options. An option is
said to be path-independent if the payoff function is independent of how the security arrives at its
final price. On the contrary, path-dependent options (such as American or Asian options) are
ones in which payoff functions depend on the whole path that the security takes before the option
expires. For further details, see [57,71]. Moreover, we recall that a bond is a primary negotiable
financial instrument that at the pre-established maturity gives its owner the right to repayment
of the capital lent to the issuer plus a fixed or variable interest rate, the coupon (basically, it is a
special type of investment). A derivative financial instrument is instead the option, which gives to
the owner the possibility to buy or sell the underlying bond at a certain price on or before the option
expiry date.

The formalism introduced by Baaquie is inspired by QFT and it naturally leads to
Feynman representation of a perturbative series, which, in this case, models a financial
instrument, namely the forward interest rate (the forward interest rate is just the future yield
on a coupon bond). More formally [70], we can denote by f (x, t) the function representing
the forward interest rates for a fixed time t and a loan at some future times x > t. With this
notation, it is possible to define the forward price of a bond (maturing at time Ti) in terms
of the interest rate:

Fi = exp
(
−
∫ Ti

t∗
dx f (t0, x)

)
, t∗ > t0 , (20)

where t∗ is the future time (with respect to the initial time t0) for which a zero coupon
bond is going to be issued. The development of a rigorous mathematical formulation of the
forward interest rates starts from the following equation that describes the time evolution
of such rates f (t, x):

∂

∂t
f (t, x) = α(t, x) + σ(t, x) · A(t, x) , (21)

where A(t, x) denotes the two-dimensional quantum field (a stochastic random field)
associated with the forward interest rates, α(t, x) is the drift fixed by a choice of numeraire,
and σ(t, x) is the volatility given by the market itself. In this context, one can consider
f (t, x) and A(t, x) as two-dimensional quantum fields [70]. In this framework, it is possible
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to express the quantum field theory of the forward interest rates thanks to the following
generating function [57]:

Z(h) =
1
Z

∫
DAeS+

∫ ∞
t0

dt
∫ ∞

0 dzh(t,z)A(t,z) , (22)

where the stiff action S and the partition function Z are, respectively,

S := S(A) =
∫ ∞

0
dt
∫ ∞

t
dx L and Z =

∫
DAeS . (23)

Here, L denotes a suitable Lagrangian describing the evolution of instantaneous forward
rates depending on the three parameters, as explained in [57].

Now, following the argument in [59], in the case of (European) options for coupon
bonds, the price of the call option has a partition function of the form

Z(η) =
1
Z

∫
DAeSeiηV , (24)

where Z was already defined in Equation (23), and V is the so-called notional principal
amount. Mathematically speaking, the price at time t of a Treasury Bond maturing at some
future time T > t can be defined by using the forward interest rates f (t, x) as

B(t, T) = exp
(
−
∫ T

t
dx f (t, x)

)
.

As explained in [59], it is also possible to rewrite the price of the coupon bond in terms of a
zero coupon bond B(t∗, T) and the interest rate Fi, defined in Equation (20) as

N

∑
i=1

kiB(t∗, Ti) =
N

∑
i=1

kiFi +
N

∑
i=1

ki(B(t∗, T)− Fi) = F + V, with V =
N

∑
i=1

ki(B(t∗, T)− Fi).

Here, ki denotes (fixed) dividends payed at time Ti, for i = 1, . . . , N. Moreover, in these
settings, one can prove (see [70]) that V is actually a small perturbation of F.

As highlighted by Baaquie [57], the volatility of the forward interest rates is actually a
little quantity, namely it is approximately 10−2/year. Thus, the volatility function σ(x, t)
can be used as a perturbation, that is, an expansion parameter, and the approximation of the
partition function can be systematically improved by expanding to higher orders. In other
words, the goal now becomes the construction of an analytical expression that yields the
price of the coupon bond option in terms of the power series (in σ) of the partition function
Z(η) given in Equation (24). The analogy with QFT is exploited to develop the rigorous
perturbation expansion for the partition function, whose terms can be computed in terms
of Feynman diagrams. In particular, we have the following cumulant expansion:

Z(η) = exp
(

iηa1 − (1/2)η2a2 − i(1/3!)η3a3 + (1/4!)η4a3 + · · ·
)

, (25)

where the parameters ai are computed thanks to the Feynman diagram representations.
There is now a technical–financial hypothesis to add on our argument, namely the put–call
parity constraint. Roughly speaking, put–call parity is a relationship between the price of a
call option and a put option, which mathematically leads to the following conditions:

Z(0) = 1 and ∂ηZ(η)|η=0 = 0 .

This imposes a1 = 0, and it leads to the simplified version of Equation (25):

Z(η) = exp
(
−(1/2)η2a2 − i(1/3!)η3a3 + (1/4!)η4a3 + · · ·

)
. (26)
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It is possible to expand the partition function even in a power series in η. Such an expansion
yields to

Z(η) =
1
Z

∫
DAeiηV

(
1 + iηV +

1
2!
(iη)2V2 +

1
3!
(iη)3V3 +

1
4!
(iη)4V4 + · · ·

)
. (27)

By comparing Equations (26) and (27), it is possible to find the relation between the co-
efficients a2, a3, a4 and V (see also Remarks 7 and 8). Remarkably, one can see that the
martingale condition implies that a1 = 0, so that put–call parity is satisfied. Moreover,
these coefficients can be described more specifically by introducing a suitable correlation
function Gij (a real symmetric matrix) for expressing the correlation in the fluctuations of
the forward bond prices Fi and Fj. If we denote the magnitude of the matrix elements Gij

as G and use the relation G & σ2, we can rewrite partition function as

Z(η) & exp
(
−c2ζ2 − c3ζ3σ − c4ζ4σ2 + · · ·

)
, with ζ = ση , (28)

where the coefficients ci are O(1). Here, the quadratic term in the exponential for Z fixes
the magnitude of the perturbations as O(1). As a consequence, the remaining terms are of
order σ, σ2, and so on. This argument allows us to compute the partition function to any
order of accuracy with respect to the parameter G (or, equivalently, σ).

Remark 7. In the previous paragraphs, we described the construction of the series expansion of the
partition function Z(η). It is now clear that the next step involves the computation of the following
coefficients emerging from the comparisons of Equations (26) and (27), namely the following (we
recall that the coefficient a1 = 〈V〉 has to be 0 because of the put–call parity condition):

a2 =〈V2〉; (29)

a3 =〈V3〉; (30)

a4 =〈V4〉 − 3A2. (31)

The analytic computation of these values is given in full in Appendix of [59].

Once we fix this formalism, it appears quite natural to connect the perturbative
expansion of the partition function Z with the Feynman diagrams. Specifically, the forward
bond propagator Gij that denotes the correlation between the forward bond price Fi and Fj
can be depicted with a wavy line as in Figure 9.

Fi Fj

Gij

Figure 9. The wavy line is the correlator Gij between the two forward bond prices, Fi and Fj,
represented by the small circles. Adapted from [59].

This graph formalism can be used to compute the coefficients a2, a3, and a4 of Equation (27)
as represented in Figure 10.
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b

Fi

Fj

Fk

c

Fi

Fj

Fk

Fl

a

+ 1
2

Fi

Fj

Fi

Fj

Figure 10. Diagrams representing the evaluation of parameters a2 (a), a3 (b), and a4 (c). Adapted
from [59].

We remark that all the diagrams contributing in the series of the partition function Z
are connected, namely none of the forward bond prices are decoupled from the forward
bond propagator Gij. However, it is also possible to produce disconnected Feynman
diagrams (that do not contribute to any of the coefficients), as one can see in Figure 11.

a

Fi

b

Fi

Fj

Figure 11. Disconnected diagrams of the second (a) and third (b) order. As one can notice, the forward
bond prices, namely the dots on the top line, have no link with the other forward bond prices. Adapted
from [59].

The application of Feynman pictorialism in modelling financial objects represents an
intriguing possibility for using such a formalism in a practical framework. In particular, it is
interesting to underline that such a theoretical construction has a corresponding empirical
study, which can be found in [62]. Apart from the interpretive aspects that surely represent
a non trivial issue, the visualization of the terms arising from the series expansion (28)
by means of Feynman-type diagrams provides a powerful tool, in order to compute the
price of the option for a coupon bond in the framework of quantum finance. However,
the works mentioned above can be considered the first technical step in a wider study in
this fascinating field.
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Remark 8. The computations of Remark 7 are summarized by the graphs represented in Figure 10.
In particular, by some intricate calculations (see Appendix of [59]), it is possible to obtain the
following expression for the coefficient a1 depending on the propagator Gij:

a2 =
N

∑
i,j=1

Ji Jj
(
exp
(
Gij
)− 1

)
, (32)

where Ji = kiFi and Jj = kjFj, with ki, kj ∈ R. Thus, by expanding the exponential functions,
we obtain

a2 =
N

∑
i,j=1

Ji Jj

(
Gij +

1
2

G2
ij

)
+ O(G3

ij), (33)

which is equivalent to the Feynman-type representation in Figure 10a. Analogous expressions
can be found also for coefficients a3 and a4, which are equivalent to the graphs in Figure 10b and
Figure 10c, respectively.

5. Conclusions

In this work, we have presented two different applications of the Feynman diagram-
matic formalism belonging to two completely different domains. On the one hand, RNA
secondary and tertiary structures can be modelled intuitively in terms of graphs by involv-
ing the matrix theory as theoretical support. On the other hand, the field of econophysics,
based on the path integral formulation of the theory, finds a strong ally for studying
nonlocal and nonlinear problems.

The abstract nature of the mathematics behind Feynman diagrams suggest the wider
use of these tools, which actually transcends the original physical domain. Indeed, we
remark that the mathematical significance of Feynman diagrams is well studied in terms of
algebraic lattice structures in the framework of Hopf algebras [72,73] and tensor models [74].

In this concluding section, we want to propose a few more attempts to use Feynman
diagrams in unusual scientific areas of study. One of the most natural applications of
Feynman diagrams has arisen in geophysics for modelling different scenarios involving
wave propagation. In this field, we indicate, by way of example, two interesting works.
The first one regards wave propagation in a laterally heterogeneous medium [75]. Here,
the authors used diagrams to find a solution for random media elastic wave problems
involving Dyson’s equation and the Bethe–Salpeter equation. The second study exploits the
closer link between the perturbation graphs and collision diagrams for modelling scattering
processes in oceanic wave guides involving surface and internal gravity waves [76].

Other stimulating employments of Feynman-type graphs come from the field of chem-
istry, where this kind of representation is used to derive a more accurate reaction–diffusion
equation starting from a path integral formulation [77], or even for the so-called 2D-Raman-
THz spectroscopy of liquid water [78].

A fascinating arrangement of Feynman diagrams is given in information theory for
distributed quantities, which actually provides a Bayesian statistical field theory named
information field theory. In this framework, interacting information field theories can be
diagrammatically expanded in terms of Feynman diagrams [79,80].

Finally, we mention three different applications in the medical area. In the first case,
the authors proposed a method for studying some neuronal function signal propagations
based on the cable equation [81]. The benefit of this approach is the possibility of working
with Green’s function, corresponding to the propagator of the system that may be han-
dled with techniques employed in the many body systems theory and then represented
by Feynman diagrams. The second case aimed to investigate brain function by using
electroencephalogram (EEG) combined with a set of Feynman rules inspired by quantum
particle interactions [82]. In particular, the author introduces the brain state matrix, which is
composed of several EEG indicators, for predicting several brain reactions that are analyzed
as sensory-evoked and event-related potentials. The last medical example regards cardiac
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arrhythmia. In [83], the authors introduced three quasiparticles (heads, tails, and pivots) in
order to capture the rich dynamics in excitable systems (which are a large class of chemical
and biological systems). Specifically, they used Feynman-like diagrams to represent the
dynamical creation, annihilation, and recombination of the identified quasiparticles.

As we have seen in this paper, the usage of Feynman diagrams, as powerful computa-
tional tools, seems to go beyond the original physical setting. The graphical approach that
many satisfactions gave to QED has an intrinsic capacity to reproduce complicated abstract
concepts (such as matrix integrals) in a more suitable and intuitive way. We hope that such
a work could be good inspiration for researchers coming from different scientific areas who
want to look at things from a different and fascinating angle.
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