
mdpi.com/journal/sensors

Special Issue Reprint

Advanced Sensing and 
Safety Control for Connected 
and Automated Vehicles
Volume II

Edited by 

Chao Huang, Yafei Wang, Peng Hang,  

Zhiqiang Zuo, Bo Leng and Hailong Huang







• • • • • • •













Citation: Oh, K.; Seo, J. Development

of a Sliding-Mode-Control-Based

Path-Tracking Algorithm with

Model-Free Adaptive Feedback

Action for Autonomous Vehicles.

Sensors 2023, 23, 405. https://

doi.org/10.3390/s23010405

Academic Editors: Yafei Wang,

Chao Huang, Hailong Huang,

Zhiqiang Zuo, Bo Leng and

Peng Hang

Received: 11 December 2022

Revised: 26 December 2022

Accepted: 27 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Development of a Sliding-Mode-Control-Based Path-Tracking
Algorithm with Model-Free Adaptive Feedback Action for
Autonomous Vehicles

Kwangseok Oh 1 and Jaho Seo 2,*

1 School of ICT, Robotics & Mechanical Engineering, Hankyong National University,
Anseong-si 17579, Republic of Korea

2 Department of Automotive and Mechatronics Engineering, Ontario Tech
University, Oshawa, ON L1G 0C5, Canada

* Correspondence: jaho.seo@ontariotechu.ca; Tel.: +1-905-721-8668 (ext. 7341)

Abstract: This paper presents a sliding mode control (SMC)-based path-tracking algorithm for
autonomous vehicles by considering model-free adaptive feedback actions. In autonomous vehicles,
safe path tracking requires adaptive and robust control algorithms because driving environment and
vehicle conditions vary in real time. In this study, the SMC was adopted as a robust control method to
adjust the switching gain, taking into account the sliding surface and unknown uncertainty to make
the control error zero. The sliding surface can be designed mathematically, but it is difficult to express
the unknown uncertainty mathematically. Information of priori bounded uncertainties is needed to
obtain closed-loop stability of the control system, and the unknown uncertainty can vary with changes
in internal and external factors. In the literature, ongoing efforts have been made to overcome the
limitation of losing control stability due to unknown uncertainty. This study proposes an integrated
method of adaptive feedback control (AFC) and SMC that can adjust a bounded uncertainty. Some
illustrative and representative examples, such as autonomous driving scenarios, are also provided
to show the main properties of the designed integrated controller. The examples show superior
control performance, and it is expected that the integrated controller could be widely used for the
path-tracking algorithms of autonomous vehicles.

Keywords: model-free adaptive feedback; sliding mode control; path tracking; autonomous vehicle;
recursive least squares; forgetting factor; Lyapunov stability

1. Introduction

In addition to advanced hardware components such as steering, braking, and driv-
ing components, autonomous driving technology is one of the most important mobility
technologies for improving safety, efficiency, and convenience. Because an autonomous
vehicle aims to drive under any driving conditions and environment by itself, it needs
various sensors—such as cameras, LiDAR, radar, and ultrasonic sensors—that can replace
human sensory organs. In addition, mechanical actuators such as electric or hydraulic
motors that can replace human muscle are needed to produce the desired force or pressure.
Moreover, a computing system that functions like a human brain is required for data
processing and decision-making for autonomous driving. Consequently, the vehicle system
is more complicated and nonlinear as a result of the necessity of these various components
that allow it to perform various driving tasks—such as lane changing, automatic parking,
car-following, etc.

For driving tasks, accurate path-tracking performance should be ensured with rea-
sonable path planning. Because vehicle conditions and driving conditions/environments
can change unexpectedly, the path-tracking performance of autonomous vehicles can be
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degraded, causing fatal accidents on the road. To overcome the aforementioned limita-
tion, various control technologies for the path tracking of autonomous vehicles have been
developed, as follows.

1.1. Literature Review

Sun, C. et al. presented a model predictive control (MPC) path-tracking controller with
switched tracking errors that can reduce the lateral tracking deviation and maintain vehicle
stability for both normal and high-speed conditions [1]. They compared the performance
of three MPC controllers with different tracking errors and analyzed their results. Baca,
T. et al. proposed a linear MPC-based novel approach for optimal trajectory tracking for
unmanned aerial vehicles (UAVs) using nonlinear state feedback [2]. They demonstrated
the usability of the proposed approach through statistical and experimental evaluations of
the platform in both simulated and real-world examples. Suh, J. et al. developed motion-
planning algorithms for lane changing with a combination of probabilistic and deterministic
prediction methods for automated driving under complex driving circumstances [3]. A
collision probability and a safe driving envelope were defined by the authors using a
reachable set and behavioral prediction of surrounding vehicles for safe lane changing. The
developed model was evaluated based on simulations and experiments using an actual
test vehicle under a lane change scenario. Xu, S. and Peng, H. presented a preview steering
control algorithm for accurate, smooth, and computationally inexpensive path tracking for
automated vehicles, along with an analysis of the closed-loop system [4]. In the study, the
future road curvature as a dynamic disturbance was considered for the preview controller
design, and its performance was evaluated based on simulations and experimental tests.
Chowdhri, N. et al. developed a nonlinear MPC algorithm to perform evasive maneuvers
and avoid a rear-end collision, with constraints [5] that are needed for ensuring vehicle
stability and accounting for actuator limitations. Li, S. et al. proposed an obstacle avoidance
controller based on nonlinear MPC for autonomous vehicle navigation [6]. It was designed
so that the reference trajectory is adjusted when obstacles suddenly appear and the risk
index is computed online for collision avoidance. Cao, J et al. developed a trajectory-
tracking control algorithm for autonomous vehicles considering cornering characteristics
with simplified vehicle dynamics and tire models [7]. Wang, Y et al. developed an MPC
algorithm to optimize the reference trajectory with consideration of the motion prediction
of other traffic participants using Monte Carlo simulations [8]. Quirynen, R. et al. studied
the real-time feasibility of nonlinear MPC-based steering control on an embedded computer
for autonomous vehicles [9]. In addition, Shen, C and Shi, Y investigated the nonlinear
model predictive control (NMPC) method, looking for possible approaches to alleviate
the heavy computational burden, and developed novel distributed NMPC algorithms
by exploiting the dynamic properties of the autonomous underwater vehicle motion for
trajectory-tracking control [10]. Chu, D. et al. presented a trajectory planning and tracking
framework to obtain target trajectory and MPC with PID feedback to effectively track
planned trajectory [11]. In [12], an improved MPC algorithm with fuzzy adaptive weight
control was proposed for autonomous vehicles to ensure tracking accuracy and dynamic
stability during path tracking. To implement trace planning and tracking for obstacle
avoidance, Zhang, C et al. integrated a trajectory planner and a tracking controller for
autonomous vehicles [13]. The study of [14] proposed a scheme for implementing an MPC
path-following controller that considers feasible road regions, vehicle shapes, and the model
mismatch caused by varying road conditions and small-angle assumptions in measurable
disturbances [14]. To maintain a collision-free path for autonomous vehicles, the authors
of [15] proposed a hierarchical path-planning and trajectory-tracking framework by solving
a constrained finite-time optimal problem. Yue, M et al. developed a time-based quantic
polynomial function for trajectory planning that takes into account the vehicle system’s
safety, comfort, and traffic efficiency [16]. A robust MPC with a finite time horizon was
proposed by Peng, H et al. to achieve coordinated path tracking and direct yaw moment
control for autonomous four-in-wheel-motor independent-drive electric vehicles [17].
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The previous studies mentioned above used mathematical vehicle models to design
path-tracking control algorithms; however, there are model uncertainties that have a neg-
ative impact on the path-tracking control performance. Hence, studies on the adaptive
path-tracking control of autonomous vehicles have been conducted to reduce model uncer-
tainty and improve performance under various driving conditions and environments.

Londhe, P. and Patre, B. designed a robust and adaptive tracking control algorithm
for a complete nonlinear model of an autonomous underwater vehicle based on adaptive
fuzzy sliding mode control (SMC) [18]. The study derived fuzzy control rules using the
Lyapunov energy function to minimize chattering. Taghavifar, H. and Rakheja, S. applied
an exponential-like sliding mode fuzzy type-2 neural network approach to design a robust
adaptive indirect controller that can enhance the path-tracking performance of autonomous
road vehicles [19]. In this study, the authors used the Lyapunov stability theorem to derive
the adaptation laws for a hierarchical controller design and ensure the stability of the
closed-loop system.

Zhou, X. et al. proposed an adaptive inverse controller to offset the dynamics of the
steering system’s backlash, and adaptive control laws were robustified by means of sigma
modification [20]. The authors presented hardware-in-the-loop experimental results to
show the main contribution of the proposed control algorithm. Yuan, X. et al. developed a
course-angle optimal referential model and MPC-based adaptive control system for more
adaptive path tracking at different velocities [21].

To improve tracking accuracy and stability, Lin, F. et al. developed an adaptive MPC
controller by applying a recursive least squares algorithm that can estimate cornering
stiffness and road friction online [22]. Liu, S et al. proposed a novel model-free adaptive
control algorithm based on a dual successive projection method and analyzed it using the
introduced method with a symmetrically similar structure of the controller [23]. Guerrero,
J et al. designed an adaptive high-order sliding mode controller that does not require
knowledge of the upper bound of the disturbance for trajectory tracking with the Lyapunov
concept [24]. Tran, V et al. proposed a new concept of an adaptive strictly negative
imaginary controller that minimizes a certain performance index robustly for 3D tracking
of drones in the face of wind gusts [25]. Tian, Y et al. developed an adaptive path-tracking
control strategy that coordinates active front steering and direct yaw moment based on an
MPC algorithm. The authors used the recursive least squares method with a forgetting
factor to identify the rear tires’ cornering stiffness and update the path-tracking system
prediction model [26]. For robust adaptive path tracking of an underactuated unmanned
surface vehicle, Fan, Y et al. proposed an improved line-of-sight guidance law using a
reduced-order extended state observer to address the large sideslip angle that occurs in
practical navigation. [27]. Pereida, K and Schoellig, A developed a novel adaptive MPC
with an underlying L1 adaptive controller to enhance the trajectory tracking of a system
under unknown and changing disturbances [28]. Kebbati, Y et al. presented an improved
particle-swarm-optimized PID to handle the task of speed tracking based on nonlinear
longitudinal dynamics for the coordinated longitudinal and lateral control in autonomous
driving [29]. By applying dynamic trajectory planning and a robust adaptive nonlinear
fuzzy backstepping controller, a novel nonlinear trajectory-tracking control strategy was
developed for lane-changing maneuvers [30]. A sliding mode control approach with
enhanced state observers was proposed in [31] to control both lane-keeping errors and roll
angles within the prescribed performance boundaries. Liang, Y et al. proposed a novel
scheme that integrates local motion planning and control to determine motion behaviors,
track global paths, and conduct local motion commands based on adaptive MPC and lateral
MPC [32]. For autonomous vehicles with four independent in-wheel motors, an integrated
autonomous driving (AD) control system was developed in [33], consisting of two parts: an
AD controller and a chassis controller. He, H et al. presented a hierarchical path-tracking
control framework for two-axle autonomous buses with two layers that can prevent sideslip
and rollover and can acquire the steering angle with stability constraints [34]. In order to
design adaptive control algorithms for path tracking, mode-based or model-free adaptation
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rules are needed for control input adaptation. However, it is difficult to design adaptation
rules ensuring robust stability of control systems while taking constraints into account.
To tackle this issue, data-driven or learning-based path-tracking control algorithms have
been developed.r

Chen, I. and Chan, C. developed deep reinforcement learning algorithms using proxi-
mal policy optimization that were combined with the conventional pure pursuit method to
structure the controller’s architecture [35]. Zhang, K. et al. proposed an adaptive learning
MPC scheme for the trajectory tracking of perturbed autonomous ground vehicles based on
unknown system parameter estimation [36]. The authors designed a set-membership-based
parameter estimator using the recursive least squares technique. Jiang, Y. et al. investigated
the path tracking control strategy of variable-configuration unmanned ground vehicle and
proposed an improved model free predictive control scheme [37]. Li, X. et al. developed a
novel robust adaptive learning control algorithm that can estimate the system uncertainties
through the iterative learning method [38]. In this design, a two-degree-of-freedom vehi-
cle model was reformulated into a parametric form. Wang, Z and Wang, J incorporated
model-free strategies for control and direct data-driven control into a predictive control
framework for trajectory tracking of automated vehicles [39]. For unmanned surface vehi-
cles, Wang, N et al. developed an innovative self-learning system using only input–output
signals [40]. They developed a data-driven performance-prescribed reinforcement learning
control scheme to pursue control optimality and prescribe tracking accuracy simultane-
ously. Jiang, Y et al. studied the heading tracking problem of six-wheel independent-drive
and four-wheel independent-steering unmanned ground vehicles under the influence
of uncertainties based on the model-free adaptive control method and particle swarm
optimization [41]. Parseh, M et al. proposed a data-driven motion planning method to
minimize injury severity for vehicle occupants in unavoidable collisions by establishing
a metric that models the relationship between impact location and injury severity using
real accident data [42]. Wu, Q et al. developed a fuzzy-inference-based reinforcement
learning approach for autonomous overtaking decision-making that was created using a
multi-objective Markov decision process and a temporal difference learning method based
on dynamic fuzzy inference [43]. By integrating model-free control and extreme-seeking
control, Wang, Z et al. provided a new perspective on tuning model-free control gain
while improving its performance [44]. Spielberg, N et al. designed a neural network MPC
using vehicle operation data to construct a neural network model that could be efficiently
implemented in MPC [45]. Peng, Z et al. proposed reduced- and full-order data-driven
adaptive disturbance observers for estimating unknown input gains, as well as total distur-
bances consisting of unknown internal dynamics and external disturbances [46]. To avoid
collisions efficiently, Wang, H and Liu, B proposed a collision-avoidance framework based
on road friction estimation and dynamic stability control [47]. The study of [48] aimed to
develop a model-based feasibility enhancement technique of constrained reinforcement
learning that can enhance the feasibility of policies using a generalized control barrier
function that is defined based on the distance to the constraint boundary [48]. With an
iterative single-critic learning framework, Zhang, K et al. proposed adaptive resilient
event-triggered control for rear-wheel-drive autonomous vehicles [49]. This control can be
effective in balancing frequency and changes when adjusting the vehicle’s control during
the running process. Combining the event-triggered sampling mechanism and the iterative
single-critic learning framework, the authors developed an event-triggered condition for
adaptive resilient control.

1.2. Summary of the Proposed Control Algorithm and Major Contributions

Suitable path-tracking performance is essential for the driving tasks of autonomous
vehicles, such as lane changing, automatic parking, and vehicle following. However,
path-tracking performance can be degraded by unexpected and abrupt changes in vehicle
conditions and the driving environment. To deal with this issue and ensure robust control
performance, our study designed a new path-tracking control algorithm by integrating
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adaptive feedback control (AFC) inputs with SMC. Specifically, the AFC algorithm was
created using the recursive least squares and gradient descent methods to adjust feedback
gains. It was designed so that the SMC algorithm was able to consider the error terms
regulated by the AFC input with finite stability and Lyapunov stability conditions. Further-
more, the designed SMC algorithm is capable of considering the error terms regulated by
the AFC input with finite stability and Lyapunov stability.

The performance evaluation of the proposed path-tracking control algorithm was
conducted under two scenarios: curved path tracking, and lane change scenarios with
constant velocity conditions.

The following is a summary of the major contributions of this study:

• The proposed control method is an attempt to develop an integrative control algorithm
for path tracking of autonomous vehicles using adaptive feedback and SMC algorithms
that can reject model uncertainties and ensure robust stability.

• The proposed control scheme allows for the design of controllers using a simple
mathematical model that requires low computational costs.

Based on the literature review above, Table 1 summarizes the pros and cons of the
proposed control method in comparison with other related existing approaches, which are
classified into five categories.

Table 1. A comparison of the pros and cons of several control methods.

Control Method
and Representative Studies

Main Features Pros Cons

Proposed
Integrative control using AFC

and SMC;
a simple model can be used

Adaptive feedback action and
robust control considering

adaptation are possible

Parameters such as adaptation
rate and weighting factor need

to be properly determined

Model-based
control

Refs. [1–3]

Optimal control using a
system mathematical model

Optimal
control allocation is possible

It is necessary to know the
system parameters and
uncertainty, as well as

their rejection
Model-based

adaptive control
Refs. [20–22]

Optimal control with a
mathematical model and the

adaptation law

Adaptive
optimal control is possible

A proper determination of the
controller’s adaptation rate is

needed for stability
Model-free

adaptive control
Refs. [23,39,44]

Adaptive control without a
system mathematical model

A system mathematical model
is not needed

Optimal control allocation is
difficult for

multi-input systems
Data-driven

control
Refs. [37,42,46]

Adaptive control and
observation using control and

system data

Control and observation are
possible using only data

(without a model)
A stability analysis is required

Learning-based
control

Refs. [40,48,49]

Control using a learning
framework such as

reinforcement learning

Performance can be
enhanced gradually

To maintain stability, a
stability analysis and

adaptation of learning rate
are required

The remainder of this paper is outlined as follows: Section 2 presents a control algo-
rithm for path tracking using SMC with adaptive feedback. Section 3 provides the results
of the performance evaluation. Section 4 concludes with a discussion of the limitations of
the current work and prospects for future research.

2. SMC-Based Path Tracking with Adaptive Feedback Action

This section provides the mathematical formulation of the SMC-based path-tracking
algorithm with adaptive feedback action. In order to design the path-tracking control
algorithm, a kinematic mathematical error model was used. Figure 1 shows defined control
errors such as lateral error and yaw angle error for path tracking.
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Figure 1. Defined control errors for path tracking.

Based on the defined path-tracking error, a kinematic-analysis-based mathematical
error model was derived. The following equations represent the mathematical error model
using kinematic parameters and its state-space representation:

.
ey = vxeϕ (1)

.
eϕ =

vx

L
δ − .

ϕd (2)[ .
ey.
eϕ

]
=

[
0 vx
0 0

][
ey
eϕ

]
+

[
0

vx/L

]
δ +

[
0
−1

]
.
ϕd (3)

where ey and eϕ are the lateral error and yaw angle error with respect to the reference
path for tracking of an autonomous vehicle, respectively, while vx,

.
ϕd, δ, and L are the

longitudinal velocity, desired yaw rate, front steering angle, and wheel base (i.e., the
distance between the front-wheel axle and rear-wheel axle) of the vehicle, respectively.
Figure 2 shows an overall block diagram for the model-free adaptive feedback action-based
SMC algorithm.

Figure 2. Block diagram for the adaptive feedback action-based sliding mode control.

The coefficient for feedback gain adaptation (the coefficient estimation block under
the adaptive feedback action in Figure 2) can be estimated using the recursive least squares
method with a forgetting factor. Using the estimated coefficient, a feedback gain is adapted
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based on the gradient descent method with a proper adaptation gain. The adaptive steering
control input is calculated using the adapted feedback gain and the path-tracking control
error. In this study, the SMC input for path tracking was computed with consideration
of the adaptive steering control input to reduce the impact of the SMC input on the path-
tracking control performance. The following equations were used to calculate the total
steering control input using adaptive and sliding control inputs. In addition, mathematical
definitions of the adaptive steering control and SMC inputs are presented below:

δc = δa f + δsmc (4)

δa f = kyey + kϕeϕ (5)

δsmc = −ρsign(σ) (6)

where δc is the total control input for the front steering wheel angle, δa f and δsmc are
the adaptive feedback-based control input and SMC-based control input, respectively,
ky and kϕ are the feedback gains for the lateral and yaw angle errors, respectively, and
ρ and σ are the magnitudes of the SMC input and sliding surface for controller design,
respectively. Equation (3) can be rewritten by using the AFC input described in Equation (5).
The following state-space-formed error mathematical model is the rewritten equation of
Equation (3) using Equation (5):[ .

ey.
eϕ

]
=

[
0 vx

kyvx/L kϕvx/L

][
ey
eϕ

]
+

[
0

vx/L

]
δsmc +

[
0
−1

]
.
ϕd (7)

In this study, the SMC input for path tracking was computed based on Equation (7).
Calculating SMC inputs requires information about adaptive feedback gains, whose adap-
tation algorithms are explained in the next section.

2.1. Adaptive Feedback Action for Feedback Gain Adaptation

To estimate the coefficients for feedback gain adaptation, the two relationship functions
shown in Equation (8) were designed and used for recursive least squares estimation with
forgetting factors. This equation relates control errors to feedback gains for the derivation
of coefficients Cij(i, j = 1, 2) [50].

.
ey = C11

.
ky + C12

.
kϕ

.
eϕ = C21

.
ky + C22

.
kϕ (8)

The coefficients are estimated based on recursive least squares with properly deter-
mined forgetting factors, which are used for the feedback gain adaptation. The feedback
gain is adapted by using the gradient descent method to minimize the control errors. The
following equation is the cost function Ja f defined for the gradient descent method:

Ja f =
1
2

e2
y +

1
2

we2
ϕ (9)

Based on the gradient descent method with the cost function defined above, the
following feedback gain adaptation rules can be derived to reduce the control errors using
the adaptation gain, weighting factor, and partial derivatives of path-tracking control errors
with respect to feedback gains:

.
ky = −γy

∂Ja f

∂ky
= −γy

(
ey + weϕ

)( ∂ey

∂ky
+ w

∂eϕ

∂ky

)
(10)

.
kϕ = −γϕ

∂Ja f

∂kϕ
= −γϕ

(
ey + weϕ

)( ∂ey

∂kϕ
+ w

∂eϕ

∂kϕ

)
(11)
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In this study, it was assumed that the estimated coefficients in Equation (8) were
approximately equal to the partial derivatives of the path-tracking errors with respect to
the feedback gains. Because this assumption may lead to unexpected control uncertainty, it
was designed so that the SMC algorithm featured AFC inputs to ensure robustness. The
following Equations (12) and (13) are rewritten versions of Equations (10) and (11) with this
assumption; Equation (14) is the detailed AFC input obtained using the adapted feedback
gains and adaptation gains:

.
ky = −γy

∂Ja f

∂ky
= −γy

(
ey + weϕ

)(
Ĉ11 + wĈ21

)
(12)

.
kϕ = −γϕ

∂Ja f

∂kϕ
= −γϕ

(
ey + weϕ

)(
Ĉ12 + wĈ22

)
(13)

δa f = −ey

∫
γy

(
ey + weϕ

)(
Ĉ11 + wĈ21

)
dt − eϕ

∫
γϕ

(
ey + weϕ

)(
Ĉ12 + wĈ22

)
dt (14)

The next subsection explains the SMC algorithm that considers the designed AFC
input for robust path-tracking performance of autonomous vehicles.

2.2. SMC with Adaptive Feedback Action

The AFC algorithm described in the previous subsection can adapt the feedback gain
to reduce the path-tracking control, but it cannot guarantee the stability of the control
algorithm if it is used alone. Therefore, an SMC algorithm that can consider the adaptation
influence on the path-tracking performance is proposed in this study, based on the integra-
tion of two control algorithms (such as adaptive feedback and robust control algorithms).

By integrating the adaptive feedback and robust control algorithms, uncertainties
can be reduced by the feedback gain adaptation, while stability can be ensured by the
robustness of the sliding mode controller. In this study, a sliding surface (σ) was designed
for path tracking using the following equation:

σ = ey + weϕ (15)

where w is the weighting factor for the design of a sliding surface. The following equation
is the cost function for the design of the SMC algorithm; the time derivative of the cost
function is described in Equation (18) for the control input derivation:

Jsmc =
1
2

σ2 (16)

.
Jsmc = σ

.
σ = σ

( .
ey + w

.
eϕ

)
(17)

Equation (17) above can be rewritten as follows by applying Equation (7) to derive the
SMC input considering the adaptive steering control input:

.
Jsmc = σ

(
vxeϕ +

wkyvx

L
ey +

wkϕvx

L
eϕ +

wvx

L
δsmc − w

.
ϕd

)
(18)

All of the terms in the parentheses of Equation (18)—except for the control input term
δsmc—can be considered as disturbances, and an inequality condition using the disturbance
boundary value Lb can be derived as follows:

Lb ≥
∣∣∣∣vxeϕ +

wkyvx

L
ey +

wkϕvx

L
eϕ − w

.
ϕd

∣∣∣∣ (19)
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In order to design an asymptotically stable controller, the discrete injection term of
SMC is defined as follows: wvx

L
δsmc = −ρsign(σ) (20)

where ρ is the magnitude of the injection term, which was designed by considering the
boundary value in Equation (19) for the stability of the controller. Equation (18) can be
rewritten as follows using the boundary value and the definition in Equation (20):

.
Jsmc ≤ σ(Lb − ρsign(σ)) = −|σ|(ρ− Lb) (21)

For the finite stability condition, the following inequality condition was derived based
on the cost function condition, and the magnitude of the injection term can be determined
with Equations (21) and (22):

.
Jsmc ≤ −|σ|α/

√
2 (22)

ρ = Lb + α/
√

2 (23)

where α is a parameter for the finite stability condition. Based on the detailed disturbance
boundary value, the magnitude of the injection term can be rewritten as follows:

ρ =

∣∣∣∣vxeϕ +
wkyvx

L
ey +

wkϕvx

L
eϕ − w

.
ϕd

∣∣∣∣+ α/
√

2 (24)

It is assumed in this study that the AFC input can reduce the control errors reasonably
with the SMC input; therefore, the path-tracking control errors ey and eϕ are taken to be
zero. Equation (24) can be simplified based on this assumption, as shown in Equation (25).

ρ =
∣∣w .

ϕd
∣∣+ α/

√
2 (25)

Using the magnitude of the injection term ρ in Equation (25), the SMC input can be
computed using Equation (20) as follows:

δsmc = − L
wvx

(∣∣w .
ϕd

∣∣+ α/
√

2
)

sign(σ) (26)

To reduce chattering of the SMC input, a sigmoid function was adopted and used in
Equation (26) instead of a sign function. The following equation is the sigmoid-function-
based SMC input:

δsmc = − L
wvx

(∣∣w .
ϕd

∣∣+ α/
√

2
)( mσ

1 + m|σ|
)

(27)

where m is a coefficient that is used to adjust the gradient of the sigmoid function near zero.
Using Equations (4), (14) and (27), the total steering control input that requires the

adaptation gain, weighting factor, and other parameters (α, m) can be derived as follows:

δc = −ey

∫
γy

(
ey + weϕ

)(
Ĉ11 + wĈ21

)
dt − eϕ

∫
γϕ

(
ey + weϕ

)(
Ĉ12 + wĈ22

)
dt − L

wvx

(∣∣w .
ϕd

∣∣+ α/
√

2
)( mσ

1 + m|σ|
)

(28)

The next section provides the performance evaluation results under various evaluation
scenarios (i.e., curved path tracking and lane change).

3. Performance Evaluation

The performance evaluation was conducted using a planar vehicle model called the
bicycle model under two path-tracking scenarios: curved path tracking, and lane change.
The longitudinal velocities for the curved path tracking and lane change scenarios were
kept constant at 30 kph and 60 kph, respectively.

For a comparative study, the performance of the different types of designed path-
tracking controllers was evaluated four times for each scenario. The control algorithms
proposed in this study were designed and evaluated using MATLAB/Simulink. Figures 3
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and 4 illustrate the two scenarios and an overall block diagram for the performance
evaluation of the designed control algorithm, respectively.

 
(a) 

 
(b) 

Figure 3. Two evaluation scenarios for performance evaluation: (a) Curved path-tracking scenario.
(b) Lane change scenario.

 

Figure 4. Overall block diagram for performance evaluation of the control algorithm.

In the waypoint-based path-tracking error derivation block, path-tracking control
errors are computed using the designed waypoints and vehicle states in the block. The
waypoints consist of x and y points of reference paths for curved and lane-change paths.
Tables 2 and 3 show the vehicle specifications and the designed control parameters used
for the performance evaluation.
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Table 2. Vehicle specification.

Parameter Unit Value

Mass kg 1600
Distance between the front axle

and the center of mass m 1.75

Distance between the rear axle
and the center of mass m 1.20

Wheel tread m 1.65
Cornering stiffness, front N/rad 74,000
Cornering stiffness, rear N/rad 140,000

Table 3. Control parameters.

Parameter Value (Curved Path) Value (Lane Change)

Forgetting factor 0.999 0.999
Weighting factor (w) 5 5

Coefficient for
sigmoid function (m) 1 1

Adaptation gain (γy) 1 0.001
Adaptation gain (γϕ) 1 0.001

Parameter for
stability condition (α) 1 1

Proportional gain (kp) 0.05 0.008
Integral gain (ki) 0.02 0.0001

Derivative gain (kd) 0.001 0.00001

The next two subsections show the performance evaluation results for the curved path
and lane change scenarios.

3.1. Path-Tracking Scenario: Curved Path Tracking (30 kph)

The results were compared between cases using AFC alone, SMC alone, SMC with
AFC, and proportional–integral–derivative (PID) control.

The radius of curvature of the designed curved path was 100 m, and the longitudinal
velocity of the vehicle was 30 kph. Figure 5 shows the steering control inputs for path
tracking of all evaluation cases.

Figure 5. Results: steering control inputs for the curved path tracking.

For AFC, the steering control input is relatively large, and oscillation occurs between 10
and 15 s. The steering control input with SMC has a relatively large value around 23 s, with
chattering. When using SMC with AFC, the steering control input is relatively stable compared



Sensors 2023, 23, 405

to other steering control inputs. In the case of PID, the steering control input is relatively high
after 23 s, with large oscillations. Figures 6 and 7 show the estimated coefficients for feedback
gain adaptation in the cases of AFC and SMC with AFC, respectively.

Figure 6. Results: estimated coefficients in the case of AFC for the curved path tracking.

Figure 7. Results: estimated coefficients in the case of SMC with AFC for the curved path tracking.

It can be observed that there is no significant difference between AFC and SMC with
AFC; however, the estimated coefficients for SMC with AFC have a relatively small variation
around 13 and 30 s. Figures 8 and 9 show the adapted feedback gains and path-tracking
control errors (i.e., preview lateral error and yaw angle error), respectively.

Figure 8. Results: adapted feedback gains (AFC—left; SMC with AFC—right) for the curved
path tracking.
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Figure 9. Results: path-tracking control errors (lateral—left; yaw angle—right) for the curved
path tracking.

According to Figure 8, the adapted feedback gains between AFC and SMC with AFC
do not differ significantly, but the feedback gains for SMC with AFC are slightly smaller
than those for AFC. Additionally, SMC with AFC shows smaller preview yaw and lateral
errors than AFC, SMC, and PID. Figures 10–12 show the dynamic behaviors, cost values
for path tracking, and vehicle trajectories, respectively.

 

Figure 10. Results: dynamic behaviors (lateral velocity—left; yaw rate—right) for the curved
path tracking.

Figure 11. Results: cost value comparison for the curved path tracking.
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Figure 12. Results: trajectory comparison for the curved path tracking.

In Figure 11, PID has the highest cost value for path tracking. There is no significant
difference between AFC and SMC with AFC in terms of cost value during the simulation,
except for 13 s; however, SMC with AFC shows the smallest value among the three cases.
Table 4 and Figure 13 compare the maximum and standard deviations of cost values in
each case.

Table 4. Results of cost value comparison for the curved path tracking.

Division Maximum Standard Deviation

Adaptive feedback control (AFC) 0.1568 0.0231
Sliding mode control (SMC) 0.3964 0.1678

SMC with AFC 0.0395 0.0078
Proportional–integral–derivative (PID) 0.5535 0.1058

Figure 13. Results: cost value comparison in bar chart form for the curved path tracking.

We can note that the maximum and standard deviation values for SMC with AFC are
the lowest of all cases. It can also be seen that the SMC-based path-tracking algorithm with
adaptive feedback action shows better performance.

3.2. Path-Tracking Scenario: Lane Change (60 kph)

This section provides performance evaluation results for the lane change scenario
with a constant velocity condition of 60 kph. The lane change scenario was designed by
switching the desired straight paths so that the vehicle could perform the lane change task
reasonably. The time delay function was also used to smooth the path-tracking control
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errors. Figure 14 illustrates the steering control inputs for the lane change scenario for
all cases: AFC, SMC, SMC with AFC, and PID. It can also be observed that the steering
control input in the case of SMC with AFC has relatively large values compared to the
others. Finally, AFC and PID show some oscillations in the steering control input and
slower responses.

Figure 14. Results: steering control inputs for the lane change.

Figures 15 and 16 show the estimated coefficients for feedback gain adaptation in the
cases of AFC and SMC with AFC, respectively.

Figure 15. Results: estimated coefficients in the case of AFC for the lane change.

Figure 16. Results: estimated coefficients in the case of SMC with AFC for the lane change.
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There are no significant differences between SMC with AFC and AFC in terms of their
estimated coefficients and their variation patterns. In the case of using only AFC, there
is a relatively larger change in the estimated coefficients because AFC produce steering
control inputs for path tracking exclusively, without further assistance from the SMC
input. Figures 17 and 18 show the adapted feedback gains and path-tracking control errors,
respectively.

Figure 17. Results: adapted feedback gains (AFC—left; SMC with AFC—right) for the lane change.

Figure 18. Results: path-tracking control errors (lateral—left; yaw angle—right) for the lane change.

In Figure 17, AFC and PID exhibit relatively larger oscillations than SMC with AFC.
In Figure 18, there are also similar oscillations in path-tracking control error between SMC
and SMC with AFC, but their values are not greatly different. In addition, SMC with AFC
shows a higher convergence rate for the preview lateral error and yaw angle error than
AFC, SMC, or PID.

With AFC and SMC, the preview lateral error and yaw angle error are more likely to
converge than with AFC or SMC alone.

Figures 19–21 show the dynamic behaviors, cost values for path tracking, and vehicle
trajectories, respectively.

As shown in Figure 20, AFC has the highest cost value with oscillations for a lane
change, while SMC and SMC with AFC show similar variations in cost values. Figure 21
shows the vehicle trajectories for the same lane change. The results indicate that path-
tracking control with AFC occurs a little later than the other cases, while showing relatively
large overshoots and oscillations. Furthermore, the stabilization rates of the path-tracking
controllers using SMC and SMC with AFC are higher than those of AFC alone and PID. In
Table 5 and Figure 22, the maximum values and standard deviations of the cost values are
compared for each control method.
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Figure 19. Results: dynamic behaviors (lateral velocity—left; yaw rate—right) for the lane change.

Figure 20. Results: cost value comparison for the lane change.

Figure 21. Results: trajectory comparison for the lane change.

Table 5. Results of cost value comparison for the lane change.

Division Maximum Standard Deviation

AFC 5.6590 0.8657
SMC 4.2110 0.5197

SMC with AFC 4.1395 0.4816
PID 4.2591 0.5635
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Figure 22. Results: cost value comparison in bar chart form for the lane change.

The above table shows that the maximum and standard deviation values in the case
of SMC with AFC are the lowest among the four cases, while they differ slightly for SMC,
SMC with AFC, and PID.

Based on the above results, it can be seen that the SMC-based path-tracking algorithm
with adaptive feedback action shows reasonable tracking performance under the lane
change scenario. In the next section, we discuss this study’s conclusions, limitations, and
prospects for future work.

4. Conclusions

This study proposes an SMC-based path-tracking control algorithm with adaptive
feedback action for autonomous vehicles. The adaptive feedback and SMC algorithms
were integrated to enhance the adaptiveness and robustness of the path-tracking control
algorithm. The mathematical error model used for the controller design was based on the
kinematic mathematical error model. The AFC algorithm was designed using recursive
least squares with the forgetting factor and gradient descent methods based on a designed
relationship function that uses a combination of path-tracking control errors and feedback
gains. Based on the modification of the mathematical error model by the AFC input,
the SMC algorithm was designed with finite stability conditions using the Lyapunov
theorem. To avoid chattering phenomena and conflict of the SMC input with the AFC input,
the sigmoid function was used with proper parameters for gradients. The performance
evaluation was conducted under two scenarios (i.e., curved path tracking and lane changes)
with constant velocity conditions. The evaluation results show that the control algorithm
proposed in this study was able to track the designed reference path reasonably. However,
some control parameters should be determined properly for reasonable performance.
Therefore, future work will focus on improving the model-free adaptiveness and robustness
of the control algorithm. Despite these limitations, it is expected that the developed control
algorithm could be widely used for path-tracking algorithms for autonomous vehicles
using a simple mathematical model with low computational costs.

Author Contributions: Writing—original draft preparation, K.O. and J.S.; writing—review and
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 405

References

1. Sun, C.; Zhang, X.; Zhou, Q.; Tian, Y. A Model Predictive Controller with Switched Tracking Error for Autonomous Vehicle Path
Tracking. IEEE Access 2019, 7, 53103–53114. [CrossRef]

2. Baca, T.; Hert, D.; Loianno, G.; Saska, M.; Kumar, V. Model Predictive Trajectory Tracking and Collision Avoidance for Reliable
Outdoor Deployment of Unmanned Aerial Vehicles. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [CrossRef]

3. Suh, J.; Chae, H.; Yi, K. Stochastic Model-Predictive Control for Lane Change Decision of Automated Driving Vehicles. IEEE
Trans. Veh. Technol. 2018, 67, 4771–4782. [CrossRef]

4. Xu, S.; Peng, H. Design, Analysis, and Experiments of Preview Path Tracking Control for Autonomous Vehicles. IEEE Trans. Intell.
Transp. Syst. 2020, 21, 48–58. [CrossRef]

5. Chowdhri, N.; Ferranti, L.; Iribarren, F.; Shyrokau, B. Integrated Nonlinear Model Predictive Control for Automated Driving.
Control Eng. Pract. 2021, 106, 104654. [CrossRef]

6. Li, S.; Li, Z.; Yu, Z.; Zhang, B.; Zhang, N. Dynamic Trajectory Planning and Tracking for Autonomous Vehicle with Obstacle
Avoidance Based on Model Predictive Control. IEEE Access 2019, 7, 132074–132086. [CrossRef]

7. Cao, J.; Song, C.; Peng, S.; Song, S.; Zhang, X.; Xiao, F. Trajectory Tracking Control Algorithm for Autonomous Vehicle Considering
Cornering Characteristics. IEEE Access 2020, 8, 59470–59484. [CrossRef]

8. Wang, Y.; Liu, Z.; Zuo, Z.; Li, Z.; Wang, L.; Luo, X. Trajectory Planning and Safety Assessment of Autonomous Vehicles Based on
Motion Prediction and Model Predictive Control. IEEE Trans. Veh. Technol. 2019, 68, 8546–8556. [CrossRef]

9. Quirynen, R.; Berntorp, K.; Cairano, S. Embedded Optimization Algorithms for Steering in Autonomous Vehicles based on
Nonlinear Model Predictive Control. In Proceedings of the 2018 Annual American Control Conference(ACC), Milwaukee, WI,
USA, 27–29 June 2018. [CrossRef]

10. Shen, C.; Shi, Y. Distributed Implementation of Nonlinear Model Predictive Control for AUV Trajectory Tracking. Automatica
2020, 115, 118863. [CrossRef]

11. Chu, D.; Li, H.; Zho, C.; Zhou, T. Trajectory Tracking of Autonomous Vehicle Based on Model Predictive Control with PID
Feedback. IEEE Trans. Intell. Transp. Syst. 2022, 1–12. [CrossRef]

12. Wang, H.; Liu, B.; Ping, X.; An, Q. Path Tracking Control for Autonomous Vehicles Based on an Improved MPC. IEEE Access 2019,
7, 161064–161073. [CrossRef]

13. Zhang, C.; Chu, D.; Liu, S.; Deng, Z.; Wu, C.; Su, X. Trajectory Planning and Tracking for Autonomous Vehicle Based on State
Lattice and Model Predictive Control. IEEE Intell. Transp. Syst. Mag. 2019, 11, 29–40. [CrossRef]

14. Guo, H.; Cao, D.; Chen, H.; Sun, Z.; Hu, Y. Model Predictive Path Following Control for Autonomous Cars Considering a
Measurable Disturbance: Implementation, Testing, and Verification. Mech. Syst. Signal Process. 2019, 118, 41–60. [CrossRef]

15. Xu, Y.; Zheng, H.; Xu, W.; Wu, J. Robust Hierarchical Model Predictive Control for Trajectory Tracking with Obstacle Avoidance.
IFAC-PapersOnLine 2020, 53, 15745–15750. [CrossRef]

16. Yue, M.; Hou, X.; Zhao, X.; Xu, X. Robust Tube-Based Model Predictive Control for Lane Change Maneuver of Tractor-Trailer
Vehicles Based on a Polynomial Trajectory. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 5180–5188. [CrossRef]

17. Peng, H.; Wang, W.; An, Q.; Xiang, C.; Li, L. Path Tracking and Direct Yaw Moment Coordinated Control Based on Robust
MPC With the Finite Time Horizon for Autonomous Independent-Drive Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6053–6066.
[CrossRef]

18. Londhe, P.; Patre, B. Adaptive Fuzzy Sliding Mode Control for Robust Trajectory Tracking Control of an Autonomous Underwater
Vehicle. Intell. Serv. Robot. 2019, 12, 87–102. [CrossRef]

19. Taghavifar, H.; Rakheja, S. Path tracking of Autonomous Vehicles Using a Novel Adaptive Robust Exponential-like-Sliding-Mode
Fuzzy Type-2 Neural Network Controller. Mech. Syst. Signal Process. 2019, 130, 41–55. [CrossRef]

20. Zhou, X.; Wang, Z.; Shen, H.; Wang, J. Robust Adaptive Path tracking Control of Autonomous Ground Vehicles with Considera-
tions of Steering System Backlash. IEEE Trans. Intell. Veh. 2022, 7, 315–325. [CrossRef]

21. Yuan, X.; Huang, G.; Shi, K. Improved Adaptive Path Following Control System for Autonomous Vehicle in Different Velocities.
IEEE Trans. Intell. Transp. Syst. 2020, 21, 3247–3256.

22. Lin, F.; Chen, Y.; Zhao, Y.; Wang, S. Path Tracking of Autonomous Vehicle based on Adaptive Model Predictive Control. Int. J.
Adv. Robot. Syst. 2019, 16, 1729881419880089. [CrossRef]

23. Liu, S.; Hou, Z.; Tian, T.; Deng, Z.; Li, Z. A Novel Dual Successive Projection-Based Model-Free Adaptive Control Method and
Application to an Autonomous Car. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3444–3457. [CrossRef]

24. Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Trajectory Tracking for Autonomous Underwater Vehicle: An Adaptive Approach.
Ocean Eng. 2019, 172, 511–522. [CrossRef]

25. Tran, V.; Santoso, F.; Garratt, M. Adaptive Trajectory Tracking for Quadrotor Systems in Unknown Wind Environments Using Par-
ticle Swarm Optimization-Based Strictly Negative Imaginary Controllers. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1742–1752.
[CrossRef]

26. Tian, Y.; Hang, P.; Wang, S. Adaptive Coordinated Path Tracking Control Strategy for Autonomous Vehicles with Direct Yaw
Moment Control. Chin. J. Mech. Eng. 2022, 35, 1. [CrossRef]

27. Fan, Y.; Liu, B.; Wang, G.; Mu, D. Adaptive Fast Non-Singular Terminal Sliding Mode Path Following Control for an Underactuated
Unmanned Surface Vehicle with Uncertainties and Unknown Disturbances. Sensors 2021, 21, 7454. [CrossRef] [PubMed]



Sensors 2023, 23, 405

28. Pereida, K.; Schoellig, A. Adaptive Model Predictive Control for High-Accuracy Trajectory Tracking in Changing Conditions.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018. [CrossRef]

29. Kebbati, Y.; Oufroukh, N.; Vigneron, V.; Ichalal, D. Coordinated PSO-PID based Longitudinal Control with LPV-MPC based
Lateral Control for Autonomous Vehicles. In Proceedings of the 2022 European Control Conference (ECC), London, UK, 1–5
August 2022. [CrossRef]

30. Guo, J.; Luo, Y.; Li, K. Adaptive Non-linear Trajectory Tracking Control for Lane Change of Autonomous Four-wheel Indepen-
dently Drive Electric Vehicles. IET Intell. Transp. Syst. 2018, 12, 712–720. [CrossRef]

31. Hu, C.; Wang, Z.; Qin, Y.; Huang, Y.; Wang, J.; Wang, R. Lane Keeping Control of Autonomous Vehicles with Prescribed
Performance Considering the Rollover Prevention and Input Saturation. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3091–3103.
[CrossRef]

32. Liang, Y.; Li, Y.; Khajepiur, A.; Huang, Y.; Qin, Y.; Zheng, L. A Novel Combined Decision and Control Scheme for Autonomous
Vehicle in Structured Road Based on Adaptive Model Predictive Control. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16083–16097.
[CrossRef]

33. Ahn, T.; Lee, Y.; Park, K. Design of Integrated Autonomous Driving Control System That Incorporates Chassis Controllers for
Improving Path Tracking Performance and Vehicle Stability. Electronics 2021, 10, 144. [CrossRef]

34. He, H.; Shi, M.; Li, J.; Cao, J.; Han, M. Design and Experiential Test of a Model Predictive Path Following Control with Adaptive
Preview for Autonomous Buses. Mech. Syst. Signal Process. 2021, 157, 107701. [CrossRef]

35. Chen, I.; Chan, C. Deep Reinforcement Learning based Path Tracking Controller for Autonomous Vehicle. Proc. Inst. Mech. Eng.
Part D J. Automob. Eng. 2021, 235, 541–551. [CrossRef]

36. Zhang, K.; Sun, Q.; Shi, Y. Trajectory Tracking Control of Autonomous Ground Vehicles Using Adaptive Learning MPC. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 32, 5554–5564. [CrossRef] [PubMed]

37. Jiang, Y.; Xu, X.; Zhang, L.; Zou, T. Model free predictive path tracking control of variable-configuration unmanned ground
vehicle. ISA Trans. 2022, 129, 485–494. [CrossRef] [PubMed]

38. Li, X.; Liu, C.; Chen, B.; Jiang, J. Robust Adaptive Learning-Based Path Tracking Control of Autonomous Vehicles under Uncertain
Driving Environments. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20798–20809. [CrossRef]

39. Wang, Z.; Wang, J. Ultra-Local Model Predictive Control: A Model-Free Approach and Its Application on Automated Vehicle
Trajectory Tracking. Control. Eng. Pract. 2020, 101, 104482. [CrossRef]

40. Wang, N.; Gao, Y.; Zhang, X. Data-Driven Performance-Prescribed Reinforcement Learning Control of an Unmanned Surface
Vehicle. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5456–5467. [CrossRef]

41. Jiang, Y.; Xu, X.; Zhang, L. Heading tracking of 6WID/4WIS unmanned ground vehicles with variable wheelbase based on model
free adaptive control. Mech. Syst. Signal Process. 2021, 159, 107715. [CrossRef]

42. Parseh, M.; Asplund, F.; Svensson, L.; Sinz, W.; Tomasch, E.; Torngren, M. A Data-Driven Method towards Minimizing Collision
Severity for Highly Automated Vehicles. IEEE Trans. Intell. Veh. 2021, 6, 723–735. [CrossRef]

43. Wu, Q.; Cheng, S.; Li, L.; Yang, F.; Meng, L.; Fan, Z.; Liang, H. A Fuzzy-Inference-based Reinforcement Learning Method of
Overtaking Decision Making for Automated Vehicles. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 75–83. [CrossRef]

44. Wang, Z.; Zhou, X.; Wang, J. Extremum-Seeking-Based Adaptive Model-Free Control and Its Application to Automated Vehicle
Path Tracking. IEEE/ASME Trans. Mechatron. 2022, 27, 3874–3884. [CrossRef]

45. Spielberg, N.; Brown, M.; Gerdes, J. Neural Network Model Predictive Motion Control Applied to Automated Driving with
Unknown Friction. IEEE Trans. Control. Syst. 2021, 30, 1934–1945. [CrossRef]

46. Peng, Z.; Wang, D.; Wang, J. Data-Driven Adaptive Disturbance Observers for Model-Free Trajectory Tracking Control of Maritime
Autonomous Surface Ships. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5584–5594. [CrossRef]

47. Wang, H.; Liu, B. Path Planning and Path Tracking for Collision Avoidance of Autonomous Ground Vehicles. IEEE Syst. J. 2022,
16, 3658–3667. [CrossRef]

48. Ma, H.; Chen, J.; Eben, S.; Lin, Z.; Guan, Y.; Ren, Y.; Zhen, S. Model-based Constrained Reinforcement Learning using Generalized
Control Barrier Function. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Prague, Czech Republic, 27 September 2021. [CrossRef]

49. Zhang, K.; Su, R.; Zhang, H.; Tian, Y. Adaptive Resilient Event-Triggered Control Design of Autonomous Vehicles with an
Iterative Single Critic Learning Framework. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5502–5511. [CrossRef] [PubMed]

50. Oh, K.; Seo, J. Sensitivity-based model-free adaptive displacement and velocity control algorithms for unknown single-input
multi-output systems with recursive least squares. J. Mech. Sci. Technol. 2021, 35, 5173–5185. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



Citation: Rosique, F.; Navarro, P.J.;

Miller, L.; Salas, E. Autonomous

Vehicle Dataset with Real Multi-

Driver Scenes and Biometric Data.

Sensors 2023, 23, 2009. https://

doi.org/10.3390/s23042009

Academic Editors: Chao Huang,

Yafei Wang, Peng Hang, Zhiqiang

Zuo, Bo Leng and Hailong Huang

Received: 13 December 2022

Revised: 27 January 2023

Accepted: 30 January 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Autonomous Vehicle Dataset with Real Multi-Driver Scenes
and Biometric Data

Francisca Rosique *, Pedro J. Navarro, Leanne Miller and Eduardo Salas

División de Sistemas e Ingeniería Electrónica (DSIE), Campus Muralla del Mar, s/n, Universidad Politécnica de
Cartagena, 30202 Cartagena, Spain
* Correspondence: paqui.rosique@upct.es

Abstract: The development of autonomous vehicles is becoming increasingly popular and gathering
real-world data is considered a valuable task. Many datasets have been published recently in the
autonomous vehicle sector, with synthetic datasets gaining particular interest due to availability and
cost. For a real implementation and correct evaluation of vehicles at higher levels of autonomy, it
is also necessary to consider human interaction, which is precisely something that lacks in existing
datasets. In this article the UPCT dataset is presented, a public dataset containing high quality,
multimodal data obtained using state-of-the-art sensors and equipment installed onboard the UPCT’s
CICar autonomous vehicle. The dataset includes data from a variety of perception sensors including
3D LiDAR, cameras, IMU, GPS, encoders, as well as driver biometric data and driver behaviour
questionnaires. In addition to the dataset, the software developed for data synchronisation and
processing has been made available. The quality of the dataset was validated using an end-to-end
neural network model with multiple inputs to obtain the speed and steering wheel angle and it
obtained very promising results.

Keywords: autonomous vehicles; multimodal driving datasets; LiDAR; driver biometric data

1. Introduction

Rapid advances in artificial intelligence, electronics, information and communications
technology (leading to miniaturisation and improved performance of computers, sensors
and networks) has led to the development of new approaches to Autonomous Vehicle
technologies [1]. This together with new consumption habits and environmental awareness,
where technology is vital and allows us to be more efficient and sustainable, has led to
a considerable increase in the amount of research carried out on autonomous vehicles,
making it the latest trend in the automotive industry [2]. Evidently, there is plenty of
motivation and enthusiasm for speeding up progress, especially with the recent success of
Big Data, Machine Learning and Deep Neural Networks.

Given the growing popularity of the development of autonomous vehicles, the col-
lection of real data is considered a valuable task, with it being necessary for this sector to
provide high-quality, multimodal and real-world datasets which can be used for bench-
marking, simulation development, algorithms testing and diverse computer vision training
exercises, among others.

The vehicle used for the data collection is usually equipped with a variety of sensors,
such as cameras, Light Detection and Ranging (LiDAR) sensors, RADAR, GPS and Inertial
Measurement Units (IMU). The raw data obtained by these sensors is recorded on a disk
while the vehicle is being driven manually. Subsequently, the recorded data can be used
to train and test different algorithms for autonomous driving, e.g., vehicle/pedestrian
detection and tracking, Simultaneous Localization and Mapping (SLAM) and motion
estimation [3].

In this context, many datasets have been published, a summary of the most popular
datasets and their features is presented in Table 1. These datasets vary greatly in terms of
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traffic conditions, sensor configuration, application focus, data format, size, tool support,
as well as other aspects. The most sought-after datasets dedicated to autonomous vehicle
systems (AVS) are the so-called multimodal datasets. These datasets have gained particular
attention recently, as datasets containing data from an individual sensor are insufficient
to provide a complete perception of the environment. Furthermore, the most exploited
sensors in this field, such as cameras, LIDARs, radars, etc., offer complementary data and
their collaboration can guarantee a better understanding of the surroundings [3].

Table 1. Comparison of the main Datasets.

Ref./Year Samples Image Type LIDAR RADAR IMU/GPS
Control
Actions

Raw Data
Driver
Data

Real Data
Biometrics

Data
Driver

Behaviour

UPCT 78 K RGB, Depth Yes No Yes Steering wheel, Speed Yes Yes Yes Yes Yes
KITTI [4]/2012 15 K RGB Yes No Yes - Yes No Yes No No

Udacity [5]/2016 34 K RGB Yes No Yes Steering wheel Yes No No No No
Lyft L5 [6]/2019 323 K RGB Yes No Yes - Yes No Yes No No

nuScenes [7]/2019 1.4 M RGB Yes Yes Yes - Partial No Yes No No
Pandaset [8]/2019 48 K RGB Yes No Yes - Partial No Yes No No
Waymo [9]/2019 1 M RGB Yes No Yes - Yes No Yes No No
PreSIL [10]/2019 50 K RGB Yes No No - No No No No No
GAC [11]/2019 3.24 M RGB No No No Steering wheel, Speed N/A No Yes No No

A2D2 [12]/2020 392 K RGB Yes No Yes Steering angle, brake,
accelerator Partial No Yes No No

IDDA [13]/2020 1 M RGB, Depth No No No - No No No No No
Appollo Scape [14]/2020 100 K RGB Yes No No - No No Yes No No

Cityscapes [15]/2020 25 K RGB No No Yes - No No Yes No No
OLIMP [16]/2020 47 K RGB No Yes No - Yes No Yes No No
PixSet [17]/2021 29 K RGB Yes Yes Yes - No No Yes No No
ONCE [18]/2021 1 M RGB Yes No No - No No Yes No No

Table 1 provides a comparison of the main existing datasets, at both an academic and
professional level and consists of a brief survey of datasets relevant to the development of
autonomous driving systems. We focus on the most comparable and recent datasets, which
strongly emphasise multimodal sensor data. Although they are not recent, we also include
the KITTI and Udacity datasets as we consider them to be two of the most significant early
driving datasets. We present the datasets in chronological order.

Despite the large number of existing studies, most of these datasets do not provide
raw data, but instead offer labelled data to support training and evaluation, in particular
semantic segmentation techniques. Obtaining real labelled data in large quantities is far
from trivial. To start with, it is arduous and expensive to deploy multiple vehicles to
collect images and data in a wide range of environmental, weather and lighting conditions.
Secondly, the task of manually classifying each image is extremely time-consuming. Lastly,
the accuracy of manually produced labels may be inconsistent across the dataset. These rea-
sons, along with the level of fidelity achieved by 3D graphics engines, have encouraged the
creation of synthetic datasets of artificial data based on scenes recreated by simulators [5].

As stated in the work by [19], this method of offering already labelled and even
segmented data often presents problems in data quality due to the methods or models
used. Another disadvantage of those models trained using only synthetic datasets is that
in real-world scenarios, these tend to perform poorly, suffering from domain shift [20,21].

On the other hand, for a real implementation and correct evolution of autonomous
vehicles at levels 4–5, it is also necessary to consider human interaction. Whether to
infer a pedestrian’s intent to cross the road, identify a driver’s intent to perform a certain
manoeuvre or detect potentially reckless moves, autonomous vehicles must have a high-
level understanding of human behaviour. In most existing datasets, it is precisely this
human data factor which is lacking. As can be seen in Table 1, apart from our proposal, the
UPCT dataset, existing datasets dedicated to autonomous vehicles do not include biometric
data or driver behaviour data.

In this article, we present the UPCT dataset, a public dataset of high-quality, multi-
modal data, obtained using state-of-the-art sensors equipped by the CICar autonomous
vehicle belonging to the UPCT. The CICar includes sensors such as cameras, LiDAR, IMU,
GPS and encoders, as well as biometric data from the drivers and driver behaviour ques-
tionnaires. The UPCT dataset offers the data acquired during 20 manual driving tests
carried out by different drivers on an urban circuit, which consists of a circular route in the
Spanish town of Fuente Alamo. To facilitate the use of the dataset, three large subgroups
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of data have been differentiated: Perception, Positioning and Driver data (biometrics and
Driver Behaviour Questionnaire) and both the pre-processed raw data and the code which
facilitates its use have been made available for download.

2. Materials and Methods

2.1. Experimental Design

To obtain the data, we decided to carry out ad hoc driving tests with a group of
50 healthy subjects of different ages and sex from the Region of Murcia (Spain), following
the distribution shown in Table 2. The subjects were in possession of a valid type B driving
licence (for driving cars, vans and, in general, vehicles with a maximum authorised mass
of 3500 kg) at the time of the test. After performing the tests, the results of some subjects
were excluded due to technical problems during the performance of the test or during the
recording of the results, leaving a total of n = 20 subjects (11 male/9 female) with valid raw
data to make up the final dataset.

Table 2. Demographic distribution of subjects by gender and age.

Categories n Initial % Initial n Final % Final

Gender
Male 26 52 11 55

Female 24 48 9 45

Age

18–24 6 12 3 15
25–44 22 44 10 50
45–64 17 34 5 25
>=65 5 10 2 10

2.1.1. Driver Test Design

Before starting the experiment, in addition to the informed consent, each subject
filled in two questionnaires: (1) the Biographic Questionnaire and (2) the Driver Be-
haviour Questionnaire.

• The Biographic Questionnaire identifies key facts about the subject, such as gender,
age and driving record.

• The Driver Behaviour Questionnaire (DBQ) collects self-reported data from the drivers,
as there are no objective records of driving behaviour and previous traffic violations.
The original DBQ consists of 50 items and is used to score the following three underly-
ing factors: errors, violations, and lapses.

For this experiment, we have chosen to use the Spanish Driver Behaviour Question-
naire (SDBQ) [22], a shorter version adapted to Spanish drivers consisting of 28 items
adapted to the peculiarities of the Spanish population. The version used consists of four
factors, composed as follows: 6 traffic law violation items, 6 violation/aggressive mani-
festation items, 8 error items, and 8 lapse items. Participants were asked to indicate, on a
5-point scale, how often they had been involved in the behaviours or situations mentioned
in the questionnaire.

2.1.2. Driving Test Design

The driving test consists of one of the participating drivers, who has been equipped
with a non-invasive smart band device, manually driving the UPCT-CICar vehicle (the
equipment onboard and its characteristics will be explained in more detail in the following
platform setup subsection) and following a previously established and identical route
which is the same for all tests. Each driver had to complete one lap of the circuit, which
included a parking exercise situated approximately halfway along the circuit.

The selected route is an urban circuit in the town of Fuente Álamo in the Region of Mur-
cia, Spain, with the tests performed by multiple drivers manually driving the UPCT-CICar
in real traffic situations (see Figure 1). This route provides a significant Point of Interest
(POI) of typical urban driving situations: (a) intersections with priority and with “Give
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way”; (b) joining a roundabout, internal circulation and leaving the roundabout; (c) circula-
tion in streets with “green wave” traffic lights; (d) traffic jams; (e) rapid incorporation to a
high-density road through a side lane; and (f) pedestrian traffic on public roads.

 

Figure 1. Urban route selected for the driving tests.

In order to contemplate a variety of environmental and driving conditions, the tests
were carried out at different times of the day (morning, afternoon or night). Figure 2
shows some images from the dataset, where different situations captured during the tests
are shown.

    

(a) (b) (c) (d) 

Figure 2. Images from dataset. (a) Pedestrian crossing; (b) saturation due to reflections on the road;
(c) car braking; (d) complex shadows on the road.

After each driving test, the data acquired from the vehicle’s perception systems (Li-
DARs and cameras), positioning systems (IMU, GPS, rotation angle, acceleration, etc.) and
biometric data from the driver are transferred to the central server.

2.1.3. Platform Setup

For this work, the UPCT autonomous vehicle (UPCT-CICar [23]), was driven by a
human pilot in manual mode. CICar is a real-world prototype, based on a commercial
electric vehicle, the Renault Twizy, which has undergone a series of modifications to provide
it with the required functionality. The CICar has been equipped with multiple sensors,
including LiDAR, cameras, IMU, GPS, encoders, etc., necessary for the vehicle to perform
autonomous driving tasks. This platform setup integrates a perception system, a control
system, and a processing system on board the vehicle.
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Perception System: The purpose of a sensor system is to collect data from the sur-
rounding environment of the AV and send that data to the control system. These sensors
measure different physical quantities, which are typically selected to overlap each other,
providing the redundant information needed to correctly merge and correlate the informa-
tion. In our autonomous vehicle, two types of sensors are used to measure the environment:
short-range sensors (up to 10 m) and long-range sensors. Installed short-range sensors
include a Sick 2D laser ranging scanner and time-of-flight camera. The long-range sensors
are a 3D LIDAR scanner and a camera in the visible spectrum. Table 3 and Figure 3 show
the different devices involved in data acquisition during the tests, as well as the details of
the variables involved in obtaining them.

Driver Biometric System: The drivers’ biometric signal collection system has been
carried out using a non-invasive wearable device, bracelet type, called Empatica E4. The
Empatica E4 is a wrist-worn top-quality sensor device considered a Class IIa Medical
Device according to 93/42/EEC Directive. Empatica E4 device measures the acceleration
data (ACC), as well as other physiological parameters, namely the Blood Volume Pulse
(BVP), from which the Heart Rate Variability (HRV) and the Inter-Beat Interval (IBI) are
derived as well, skin temperature (TEMP) and also changes in certain electrical properties
of the skin such as the Electrodermal Activity (EDA). For the creation of our dataset, among
the several measurements recorded by the Empatica E4, this signal was considered, since
it provides information better suited for activity recognition. A summary of the technical
specifications of the accelerometer sensor is detailed in Table 4.

Table 3. Sensor data in CICar.

Device Variable Details

LiDAR 3D Scene

Long-range sensors
3D High-Definition LIDAR (HDL64SE supplied by Velodyne)
Its 64 laser beams spin at 800 rpm and can detect objects up to 120 m away with
an accuracy of 2 cm
1.3 Million Points per Second
Vertical FOV: 26.9◦

2 × LiDAR 2D Scene

Short-range sensors
Sick laser 2D TIM551
Operating range 0.05 m–10 m
Horizontal FOV 270◦
Frequency 15 Hz
Angular resolution 1◦
Range 10% of reflectance 8 m

2 × ToF Scene

Short-range sensors
ToF Sentis3D-M420Kit cam
Range: Indoor: 7 m, Outdoor: 4 m
Horizontal FOV: 90◦

RGB-D Scene

Short-range sensors
Depth Camera D435 Intel RealSense
range 3 m
Up to 90 fps
Depth FOV: 87◦ × 58◦
RGB FOV: 69◦ × 42◦

IMU Localisation, longitudinal and
transversal Acceleration

NAV440CA-202 Inertial Measurement Unit (IMU)
3-axis accelerometer
Bandwidth: 25 Hz
Pitch and roll accuracy of <0.4◦, Position Accuracy < 0.3 m

GPS Localisation EMLID RTK GNSS Receiver
7 mm positioning precision

Encoder Distance

Biometric sensors Driver Biometric signals
Empatica E4
EDA Sensor (GSR Sensor), PPG Sensor, Infrared Thermopile
3-axis Accelerometer
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Figure 3. Autonomous vehicle UPCT-CICar and its different sensors and devices.

Table 4. Biometric variables details.

Variable Sampling Frequency Signal Range [Min, Max] Details

ACC 32 Hz [−2 g, 2 g] Accelerometer 3 axes data (x, y, z).

EDA 4 Hz [0.01 μS, 100 μS] Electrodermal activity by capturing electrical conductance
(inverse of resistance) across the skin.

BVP 64 Hz n/a Blood Volume Pulse.

IBI 64 Hz n/a Inter-beat interval (obtained from the BVP signal)

HR 1 Hz n/a Average Heart Rate (obtained from the BVP signal). Values
are calculated at 10-s intervals.

TEMP 4 Hz [−40 ◦C, 115 ◦C] Skin Temperature.

Control System: The main control systems of the Renault Twizy have been automated
in order to allow the vehicle to be autonomously controlled. The modified systems are the
steering wheel, the brake pedal and the accelerator pedal (see mechanical modification in
Figure 3). Despite the fact that all driving will be manual and not autonomous, the system
will record the data with two controller drives through a CAN bus. The Compact Rio cRIO
9082 controls the accelerator, brake and steering wheel movements with the CAN-Open
communication protocol, as well as I/O signals.

Processing System: Each sensor works with its own sample rate, and in most cases,
this is different between devices. The achieve the synchronisation of the data and accurately
reconstruct the temporal sequence, time stamps have been generated to synchronise the
operating start and finish times. All of this is controlled and synchronised by the on-board
processing system.

3. Results

As a result of the different executions of the experiment with the participating subjects,
a raw data set has been obtained that has been curated and published in a repository. The
data in the repository is organized under three major directories: (1) Driver, (2) Perception
and (3) Position. The distribution of the data in the different directories is detailed below.
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3.1. Driver Directory

This directory contains information regarding the drivers, from the questionnaires
completed before the test and the biometric data obtained during the test. The directory
contains 20 Biometric_XX.csv files (one per driver, where XX is the driver identifier number)
and a DBQ.csv file with the data collected from the Biographic Questionnaire and the
Driver Behaviour Questionnaire forms.

For the composition of the Biometric_XX.csv files, a normalised sampling frequency
of 4 Hz has been used and in the case of sensors with lower frequencies, the table has been
completed with NaN fields, with the HR column being the only one affected as the sample
rate of this field is 1 Hz. The Biometric_XX.csv files have the following table format, where
each column contains the following information:

• (TIME): The first column corresponds to the time stamp expressed as a unix timestamp
in UTC.

• (TEMP): Data from the temperature sensor expressed as degrees in Celsius (◦C).
• (EDA) Measurement of electrodermal activity by capturing electrical conductance

(inverse of resistance) across the skin. The data provided is raw data obtained directly
from the sensor expressed in micro siemens (μS).

• (BVP) The BVP is the blood-volume pulse and the raw output of the PPG sensor. The
PPG/BVP is the input signal to algorithms that calculate Inter beat Interval Times (IBI)
and Heart Rate (HR) as outputs.

• (HR): This file contains the average heart rate values calculated at 10-s intervals. They
are not derived from real-time readings but are processed after the data is loaded into
a session.

• (ACC_X, ACC_Y, ACC_Z) Data from the three-axis accelerometer sensor. The ac-
celerometer is configured to measure acceleration in the range [−2 g, 2 g]. Therefore,
the unit in this file is 1/64 g. Data from x, y and z axis are displayed in the sixth,
seventh and eighth columns, respectively.

The DBQ.csv file is made up of a total of 45 columns, where the first column contains
the subject identifier. The rest of the columns correspond to each of the items from the
Biographic Questionnaire and the Driver Behaviour Questionnaire forms, where the last
25 columns are the questions from the DBQ form.

3.2. Perception Directory

This directory contains:

• Twenty .bin type files, called perceptionXX.bin, where XX corresponds to the identifier
number assigned to each driver at the time of the test.

• Twenty images from the RGB-D camera (front view).

In the .bin file, the data from the 3D LiDAR sensor, 2D LiDAR sensors and TOF
cameras, obtained by the CICar perception system is saved. The data from these sensors
were recorded continuously during the driving test, with data packets being written by the
different sensors one after the other and at the exact moment in which they arrived at the
system, without contemplating an established order of sensor reading and recording.

Each data packet consists of a header made up of two 32-bit integers, which identify
the source of the data followed by the data as it was received from the sensors. The header
format is as follows:

uint32_t head [2];

• head [0]: indicates the size in bytes of the packet received by the sensor.
• head [1]: contains a sensor identifier which shows the source of the data packet

received.

The sensor identifiers are the following:
//Packet identifiers in the data file
static const uint32_t LIDAR_PACKET_ID = 0 × 4C494452; // 3D LiDAR
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static const uint32_t GPS_PACKET_ID = 0 × 475053; // GPS
static const uint32_t NMEA_STRING_ID = 0 × 4E4D4541;//
static const uint32_t M420_FRAME_ID = 0 × 4D343230; // Camera ToF
static const uint32_t T551_FRONT_ID = 0 × 54354652; // Front 2D LiDAR
static const uint32_t T551_BACK_ID = 0 × 5435424B; // Rear 2D LiDAR
The following is a .bin file example:
(uint32_t) 1206 // Data packet size 1206 bytes
(uint32_t) 0 × 4C494452 // Data source: 3D LiDAR
(char [1206]) { ... } // 1206-byte vector with 3D LiDAR data
(uint32_t) 230,524 // Size of data packet 230,524 bytes
(uint32_t) 0 × 4D343230 // Data source: ToF camera
(char [230524]) { .. } // 230524-byte vector with ToF data.
(uint32_t) 1206 // Size of data packet 1206 bytes
(uint32_t) 0 × 4C494452 //Data source: 3D LiDAR
(char [1206]) { .... } //1206-byte vector with 3D LiDAR data.
(uint32_t) 1206 //Size of data packet 1206 bytes
(uint32_t) 0 × 4C494452 //Data source: 3D LiDAR
(char [1206]) { .... } //1206-byte vector with 3D LiDAR data.
(uint32_t) 921 //Size of data packet 921 bytes
(uint32_t) 0 × 54354652 //Data source: Front 2D LiDAR
(char [921]) { ..... } //921-byte vector with Front 2D LiDAR data.
To facilitate the use and processing of the data, a programme has been developed that

allows the data from each sensor to be extracted separately and independently into an
additional .bin file. In this case, by separating the data into different files, the data packet
identifier is not necessary, but synchronisation with the system is lost. Therefore, to avoid
loss of synchronisation between the data packet of each sensor, the time stamp of the exact
moment of capture must be included. The .bin file format for each independent sensor is
as follows:

uint32_t segundos // Capture timestamp seconds
uint32_t microseg // Capture timestamp microseconds
uint32_t numbytes // Number of bytes in the data packet
char datos[numbytes] // ‘raw’ data packet from the sensor
This structure is repeated continuously for each data packet until the end of the file.
Furthermore, the data has been pre-processed and the 3D LiDAR, 2D LIDAR and ToF

camera data from each test carried out They have been merged into a single point cloud and
extracted to a .csv file called POINTCLOUD_XX.csv, where XX is the identifier assigned to
each driver at the start of the test.

3.3. Position Directory

This directory contains information regarding the position system, obtained during
the driving tests. The directory contains 20 Position_XX.csv files, one for each driver where
XX is the driver identifier number. Each of these systems collects information from the GPS,
IMU and Encoder sensors.

The Position_XX.csv files are saved in the following table format, where each column
contains the following information:

• (TIME) This first column contains the timestamp of the session expressed as a unix
UTC timestamp.

• (LATITUDE) latitude values obtained by the GPS.
• (LONGITUD) longitude values obtained by the GPS.
• (ALTITUDE) altitude values obtained by the GPS.
• (STERING_ANGLE): Steering wheel angle.
• (SPEED): Speed/(m/s).
• (DISTANCE_TRAVELLED).
• (LIN_ACEL_X): acceleration obtained around the x-axis, obtained in g.
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• (LIN_ACEL_Y): acceleration obtained around the y-axis, obtained in g.
• (LIN_ACEL_Z): acceleration obtained around the z-axis, obtained in g.
• (ANG_VEL_X): angular velocity obtained around the x-axis, in degrees/second.
• (ANG_VEL_Y): angular velocity obtained around the y-axis, in degrees/second.
• (ANG_VEL_Z): angular velocity obtained around the x-axis, in degrees/second.

The acceleration or angular velocity values are given by four bytes. These bytes
correspond to a real number according to the IEEE-754 standard. The IEEE-754 standard is
the most widely used for the representation of floating-point numbers.

4. Technical Validation

4.1. Driver Test Validation

To validate the data regarding the drivers, the following actions were carried out:

• A first validation is carried out by measuring the reliability of the data obtained
from the DBQS tests carried out on the drivers. The reliability of the questionnaires
was obtained with the entire sample, finding Cronbach’s alpha indices and the two
Guttman halves. The values to interpret the reliability were: <0.50 unacceptable;
0.50 ≥ poor < 0.60; 0.60 ≥ questionable/doubtful < 0.70; 0.70 ≥ acceptable < 0.80;
0.90 ≥ good < 0.90; and ≥0.90 excellent. The Cronbach Alpha coefficient is 0.796,
which shows that the DBQ data set in this experiment has credibility [24].

• Missing data E4 data of seven participants (driver 1, driver 5, driver 17, driver 21,
driver 30, driver 42, driver 45) were excluded due to a device malfunction during data
collection. While physiological signals in the dataset are mostly error-free with most
of the files complete above 95%, a portion of data is missing due to issues inherent to
devices or a human error.

Raw data from the Empatica device was downloaded in csv format and analysed with
the Kubios tool [25]. Kubios offers five artefact correction options based on very low to
very high thresholds. No correction of the artefacts analysed by Kubios was necessary This
is not surprising since the Empatica E4 already uses an algorithm that removes wrong IBIs
or other wrong signals [26].

4.2. Driving Test Validation

Once the driving tests have been completed, a manual verification phase has been
carried out on the data obtained (see Figure 4), where the data from those tests where
reading or writing failures occurred, or failures in the test itself (routes, drivers, etc.) has
been discarded.

Figure 4. Verification process.

• Checking for abnormalities during the test. The time elapsed for the completion of
each test has been checked, passing a filter, and discarding those tests in which the
time has been either very short or too long. Data of five participants (driver 4, driver
17, driver 23, driver 29, driver 40) were excluded.

• Checking for errors in reading the sensors or writing to the disk. For each of the tests,
the correct sending of information by the sensors during the test is verified. Those
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tests where a total or partial failure has been detected have been discarded. To detect
these failures, the following aspects were checked:

a. All files exist on the disk. At the end of each test, the number of files generated
has been checked. The absence of any of the files implies a failure to read or
write the data occurred, therefore this test was discarded completely. Data of
four participants (driver 1, driver 10, driver 31, driver 34) were excluded.

b. Empty files. It has been verified that the files generated all contain data, discard-
ing those tests where empty files have been detected. Data of two participants
(driver 35, driver 36) were excluded.

c. Exploratory data analysis. Considering the different types of data processed,
different types of descriptive analytics have been chosen: (1) Analysis of data
deviation. A standard deviation analysis has been applied to those data with
discrete values (average speed, time travelled, etc.), discarding those data with
a sharp deviation. Data of two participants (driver 11, driver 38) were excluded
(2) Time series analysis: most of the data correspond to time series of data,
with a certain variation of speed, for this reason, it has been decided to use the
Dynamic Time Warping (DTW) technique.

• Checking for driving route failures. For each of the tests carried out, the route taken by
the driver during the test has been verified, to make sure the driver stuck to the route
initially stipulated. The test where a small deviation from the track occurred has been
discarded. To verify this, the following checks were made: (1) steering wheel rotation
pattern during the test, given that for the same trajectory the steering wheel rotation
pattern must be similar for all the tests. (2) GPS trajectory, the trajectory has been
painted and the tests that do not comply with the marked route have been eliminated.

After this first screening process, a quality validation of the resulting data is performed
to guarantee the quality of the data (see Figure 4). Our validation method comprised
three steps: (1) Quality control of variables. (2) Quality control of support media. (3)
Experimental validation.

4.2.1. Quality Control of Variables

An analysis of the internal structure of the set of circumstances of the DBQ form
(content validity) has been performed. To be able to apply a factorial analysis correctly,
those items with a declaration frequency of less than 5% were eliminated. Subsequently,
and since the items on the form are dichotomous variables, the tetrachoric correlation
coefficient was applied to obtain the correlation matrix between the 28 items.

The reliability of the questionnaires was obtained with the entire sample, finding
Cronbach’s alpha indices and the two Guttman halves. The values to interpret the relia-
bility were: <0.50 unacceptable; 0.50 ≥ poor < 0.60; 0.60 ≥ questionable/doubtful < 0.70;
0.70 ≥ acceptable < 0.80; 0.90 ≥ good < 0.90; and ≥0.90 excellent. The Cronbach Alpha
coefficient is 0.796.

Secondly, outliers in the acquired data, those values notably different compared to the
patterns present in the rest of the data, may be due to errors in reading and writing the
data from the sensors. Certain deviations were detected in the data from the GPS, due to
momentary loss of signal or where the position has been calculated with a fewer number of
satellites. In those cases in which the losses are less than two consecutive time intervals, a
prediction of the vehicle’s position is made. For cases where the loss is greater, the tests
have been discarded. To apply this prediction a constant acceleration Kalman filter has
been used.

4.2.2. Quality Control of Support Media

The clocks of all the sensors and devices were synchronised at the start of each
experimental test session. All devices are controlled by the control unit on board the
vehicle, which provides a perfect temporal and spatial synchronisation of the data obtained
by the sensors (see Figure 5).
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Figure 5. Data synchronisation with timestamp. (a) accelerator; (b) break; (c) distance; (d) steering
wheel angle.

It has been verified that the data obtained by the encoder is synchronised with the
rest of the sensor data. This was achieved by checking the distance indicated by the
encoder coincides with the distance calculated between two consecutive GPS timestamps
(GNSS). This was done using the Havershine expression shown in Equation (1), where d
is the distance in metres between two points on the Earth’s surface; r is the Earth’s radius
(6378 km); ϕ1 and ϕ2 are the latitudes in radians; Ψ1 and Ψ2 are the longitudes in radians
of two consecutive timestamps.

d = 2rsin−1

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos ϕ1cos ϕ2sin2

(
Ψ2 − Ψ1

2

))
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The indirect data provided by the encoder has also been verified, for example, that the
speed matches the direct data measurements provided by the GPS.

4.2.3. Experimental Validation

Finally, the most conclusive validation was performed: the usability analysis of the
data contained in the final dataset. The work by Navarro et al. [20] presents the implemen-
tation of six end-to-end deep learning models trained using the UPCT dataset. The different
end-to-end models were tested using different data sources from the vehicle, including
RGB images, linear accelerations and angular velocities. We trained two models using only
RGB image data, two using both the image data and IMU data as input to the models, and
the last two used sequences of images as an input.

The best results were obtained using a mixed data input type end-to-end deep neural
network model which used the front images obtained by the vehicle camera and angular
speeds from the IMU to predict the speed and steering wheel angle, obtaining a mean error
of 1.06%. An exhaustive optimization process of the convolutional blocks has demonstrated
that it is possible to design lightweight end-to-end architectures with a high performance
more suitable for the final implementation in autonomous driving.
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5. Conclusions

In this work, we have presented the UPCT dataset, a real-world public driving dataset
with 20 sets of driving data from 20 drivers which performed a driving test on an urban
circuit in real traffic situations. The dataset contains different types of data which we have
divided into three categories: (1) Driver, (2) Perception and (3) Position.

The dataset has been validated and tested with six end-to-end deep neural network
models, using the RGB image data and IMU data, obtaining very promising results
considering the size of the dataset. The detailed results are published in the work by
Navarro et al. [20]. We plan to continue this research by making use of the depth images
and comparing the results to those obtained when using just RGB images, as well as
performing data augmentation to increase the sample sizes.

The main novelty of this dataset is the collection of biometric driver data which allows
the behaviour of autonomous driving models to be compared to human drivers. In future
research, we plan to use biometric driver data to perform driver behaviour studies. An
interesting approach would be to relate the stress levels of the driver to certain driving
situations, such as entering a roundabout, entering a main road or parking, for example. As
each of the 20 drivers completed the same circuit, it would also be possible to compare the
different driving styles and relate these tendencies to certain age groups or to a particular
sex. In addition, in the driving behaviour questionnaire, each driver was asked about their
driving style, and with the driving test, this can be compared to their real-life performance
to determine if drivers correctly perceive their attitudes whilst driving.

Author Contributions: Conceptualization, F.R., P.J.N., L.M. and E.S.; methodology, F.R., P.J.N., L.M.
and E.S.; software, P.J.N. and F.R.; validation, F.R. and L.M.; formal analysis, F.R., P.J.N., L.M. and E.S.;
investigation, F.R., P.J.N., L.M. and E.S.; resources, F.R. and P.J.N.; data curation, P.J.N., L.M. and F.R.;
writing—original draft preparation, F.R., P.J.N. and L.M.; writing—review and editing, F.R., P.J.N.,
L.M. and E.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by AEI METROPOLIS (ref. PLEC2021-007609) Spanish
Government projects.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data set presented here, which is available within Figshare and
released under a CC-BY 4.0 license. https://figshare.com/s/4b9a25a958c3ec578362 (accessed on 1
December 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Olaverri-Monreal, C. Autonomous vehicles and smart mobility related technologies. Infocommun. J. 2016, 8, 17–24.
2. Alawadhi, M.; Almazrouie, J.; Kamil, M.; Khalil, K.A. A systematic literature review of the factors influencing the adoption of

autonomous driving. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 1065–1082. [CrossRef]
3. Rosique, F.; Navarro, P.J.; Fernández, C.; Padilla, A. A Systematic Review of Perception System and Simulators for Autonomous

Vehicles Research. Sensors 2019, 19, 648. [CrossRef] [PubMed]
4. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.

[CrossRef]
5. Yang, Z.; Zhang, Y.; Yu, J.; Cai, J.; Luo, J. End-to-end Multi-Modal Multi-Task Vehicle Control for Self-Driving Cars with Visual

Perceptions. In Proceedings of the Proceedings—International Conference on Pattern Recognition, Beijing, China, 20–24 August
2018; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2018; Volume 2018-Augus, pp. 2289–2294.

6. Kesten, R.; Usman, M.; Houston, J.; Pandya, T.; Nadhamuni, K.; Ferreira, A.; Yuan, M.; Low, B.; Jain, A.; Ondruska, P.; et al. Lyft
Level 5 AV Dataset. 2019. Available online: https://www.woven-planet.global/en/woven-alpha/future-automated-driving-
applications (accessed on 1 December 2022).

7. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. Nuscenes: A
multimodal dataset for autonomous driving. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, San Juan, PR, USA, 17–19 June 1997; IEEE Computer Society: Washington, DC, USA, 2020; pp. 11618–11628.



Sensors 2023, 23, 2009

8. Scale, A.I. Hesai Pandaset Open Dataset 2019. Available online: https://scale.com/open-av-datasets/pandaset (accessed on 1
December 2022).

9. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Gou, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
Perception for Autonomous Driving: Waymo Open Dataset. 2019. Available online: https://waymo.com/open/ (accessed on 1
December 2022).

10. Hurl, B.; Czarnecki, K.; Waslander, S. Precise Synthetic Image and LiDAR (PreSIL) Dataset for Autonomous Vehicle Perception.
In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2522–2529.

11. Wang, D.; Wen, J.; Wang, Y.; Huang, X.; Pei, F. End-to-End Self-Driving Using Deep Neural Networks with Multi-auxiliary Tasks.
Automot. Innov. 2019, 2, 127–136. [CrossRef]

12. Geyer, J.; Kassahun, Y.; Mahmudi, M.; Ricou, X.; Durgesh, R.; Chung, A.S.; Hauswald, L.; Pham, V.H.; Mühlegg, M.; Dorn, S.; et al.
A2D2: Audi Autonomous Driving Dataset. arXiv 2020, arXiv:2004.06320.

13. Alberti, E.; Tavera, A.; Masone, C.; Caputo, B. IDDA: A Large-Scale Multi-Domain Dataset for Autonomous Driving. IEEE Robot.
Autom. Lett. 2020, 5, 5526–5533. [CrossRef]

14. Huang, X.; Wang, P.; Cheng, X.; Zhou, D.; Geng, Q.; Yang, R. The ApolloScape Open Dataset for Autonomous Driving and Its
Application. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2702–2719. [CrossRef] [PubMed]

15. Dataset Overview—Cityscapes Dataset. Available online: https://www.cityscapes-dataset.com/dataset-overview/ (accessed on
1 December 2022).

16. Mimouna, A.; Alouani, I.; Ben Khalifa, A.; El Hillali, Y.; Taleb-Ahmed, A.; Menhaj, A.; Ouahabi, A.; Ben Amara, N.E. OLIMP: A
Heterogeneous Multimodal Dataset for Advanced Environment Perception. Electronics 2020, 9, 560. [CrossRef]

17. Déziel, J.; Merriaux, P.; Tremblay, F.; Lessard, D.; Plourde, D.; Stanguennec, J.; Goulet, P.; Olivier, P. PixSet: An Opportunity
for 3D Computer Vision to Go Beyond Point Clouds With a Full-Waveform LiDAR Dataset. In Proceedings of the 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2987–2993.

18. Mao, J.; Niu, M.; Jiang, C.; Liang, H.; Chen, J.; Liang, X.; Li, Y.; Ye, C.; Zhang, W.; Li, Z.; et al. One Million Scenes for Autonomous
Driving: ONCE Dataset. 2021. Available online: https://arxiv.org/abs/2106.11037 (accessed on 1 December 2022).

19. Koopman, P.; Wagner, M. Challenges in Autonomous Vehicle Testing and Validation. SAE Int. J. Trans. Saf. 2016, 4, 15–24.
[CrossRef]

20. Navarro, P.J.; Miller, L.; Rosique, F.; Fernández-Isla, C.; Gila-Navarro, A. End-to-End Deep Neural Network Architectures for
Speed and Steering Wheel Angle Prediction in Autonomous Driving. Electronics 2021, 10, 1266. [CrossRef]

21. Cai, J.; Deng, W.; Guang, H.; Wang, Y.; Li, J.; Ding, J. A Survey on Data-Driven Scenario Generation for Automated Vehicle Testing.
Machines 2022, 10, 1101. [CrossRef]

22. de Cózar, E.L.; Sanmartín, J.; Molina, J.G.; Aragay, J.M.; Perona, A. Behaviour Questionnaire (SDBQ). p. 15. Available online:
https://www.uv.es/metras/docs/2005_metodologia_SDBQ.pdf (accessed on 1 December 2022).

23. Borraz, R.; Navarro, P.J.; Fernández, C.; Alcover, P.M. Cloud Incubator Car: A Reliable Platform for Autonomous Driving. Appl.
Sci. 2018, 8, 303. [CrossRef]

24. Deng, Z.; Chu, D.; Wu, C.; He, Y.; Cui, J. Curve safe speed model considering driving style based on driver behaviour questionnaire.
Transp. Res. Part F Traffic Psychol. Behav. 2019, 65, 536–547. [CrossRef]

25. Kubios HRV—Heart Rate Variability. Available online: https://www.kubios.com/ (accessed on 7 December 2022).
26. How Is IBI.csv Obtained? Available online: https://support.empatica.com/hc/en-us/articles/201912319-How-is-IBI-csv-

obtained- (accessed on 7 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



Citation: Liu, J.; Zhao, Z.; Fang, Z.;

Li, Y.; Du, L. Correction of Error of

Airborne Anemometers Caused by

Self-Excited Air Turbulence. Sensors

2023, 23, 4288. https://doi.org/

10.3390/s23094288

Academic Editors: Yafei Wang,

Chao Huang, Hailong Huang,

Zhiqiang Zuo, Bo Leng and

Peng Hang

Received: 8 March 2023

Revised: 15 April 2023

Accepted: 24 April 2023

Published: 26 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Correction of Error of Airborne Anemometers Caused by
Self-Excited Air Turbulence

Jianqiang Liu 1,2, Zhan Zhao 1,2, Zhen Fang 1,2, Yong Li 3 and Lidong Du 1,2*

1 State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100194, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210008, China
* Correspondence: lddu@mail.ie.ac.cn; Tel.: +86-10-5888-7593

Abstract: An airborne anemometer, which monitors wind on the basis of Meteorological Multi-rotor
UAVs (Unmanned Aerial Vehicles), is important for the prevention of catastrophe. However, its
performance will be affected by the self-excited air turbulence generated by UAV rotors. In this
paper, for the purpose of the correction of an error, we developed a method for the elimination of
the influence of air turbulence on wind speed measurement. The corresponding correction model
is obtained according to the CFD (Computational Fluid Dynamics) simulation of a six-rotor UAV
which is carried out with the sliding grid method and the S-A turbulence model. Then, the model is
applied to the developed prototype by adding the angle of attack compensation model of the airborne
anemometer. It is shown by the actual application that the airborne anemometer can maintain the
original measurement accuracy at different ascent speeds.

Keywords: air turbulence error; CFD simulation; multi-rotor UAVs; meteorological observation

1. Introduction

Multi-rotor UAVs have prevailed in many fields such as chemical [1], agricultural [2,3]
and meteorological monitoring. By integrating miniaturized instruments, they have greatly
promoted the development of scientific, industrial, and regulatory fields, especially in
meteorological environment monitoring. It has great advantages over traditional automatic
weather stations (AWS), satellites, remote sensing, and other measurement methods. As
a platform for meteorological monitoring, multi-rotor UAVs can collect sensor data more
sensitively and timely, and can obtain data with high spatial and temporal resolution [4]. A
lot of research has been initiated in recent years. The US and Europe have begun to use
UAVs as important instruments for disaster and environmental monitoring [5,6]. Brooke
Potter et al. [7] made use of a UAV to collect data from a remote stream site. Zhewen
Xing [8] and Ruisheng Ma [9] used multi-rotor UAVs to monitor meteorological disasters.
Daniel Leuenberger et al. [10] used drones to improve the accuracy of weather forecasts.

Although multi-rotor UAVs have advantages in various measurement tasks, there
is an urgent demand to resolve the effect of air turbulence generated by rotors. Many
researchers have done a lot of meaningful work. Seokkwan Yoon et al. [11] calculated
and simulated the airflow of rotors to study the best separation distance between the
fuselage and the wings. Neal [12] solved the time-dependent Navier–Stokes equations for
isolated rotors in hover and forward flight using detached eddy simulation and adaptive
mesh refinement. Scott E. [13] used a fixed LBM grid and an adaptive refinement method
to establish a simulation model for the four rotors of the drone. Qiwei Guo et al. [14]
studied the formation process and flow distribution of the downwash airflow of the
quadrotor UAV, and established the calculation model of the downwash airflow of the
quadrotor agricultural UAV using CFD simulation. Hao Zhang et al. [15] studied the
downwash airfield distribution of a six-rotor UAV when hovering at different flight speeds
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and altitudes, and performed numerical simulations on the airflow field. Most of the papers
are about the simulation and modeling of the downwash airflow for multi-rotor UAVs.
However, for many meteorological monitoring UAVs, the sensors are established on top of
the multi-rotor UAVs. Upwash airflow excited by the multi-rotor UAVs will disturb the
sensor even more.

Therefore, the research on the influence of the upwash airflow on the multi-rotor
UAVs is more significant, especially the anemometer-involved application. When multi-
rotor drones are used as airborne anemometers, the impact of rotor airflow should be
compensated. The angle of attack (AOA) of the multi-rotor UAVs will also affect the
performance of the anemometer as well. It is more urgent to resolve the union effects
which come from these two weak points. Taro Nakai et al. [16,17] made a very prominent
contribution to the correction of the AOA. They improved the accuracy of the correction
method for ultrasonic wind sensors. In this paper, the differential pressure anemometer
developed by Cheng Liu and Yichen Pan [18,19], is used. Although it can maintain its
original measurement accuracy in the AOA range of 0–45 degrees, the union effects still
need to be corrected when it is used in multi-rotor UAVs.

In this paper, for the purpose of the correction of error, we developed a method
for the elimination of the influence of air turbulence on wind speed measurement. The
corresponding correction model is obtained according to the CFD (Computational Fluid
Dynamics) simulation of a six-rotor UAV which is carried out with the sliding grid method
and the S-A turbulence model. Then, the model is applied in the developed prototype by
adding the angle of attack compensation model of the airborne anemometer. The model has
been verified in actual measurement, and it can make the airborne anemometer maintain
the original wind speed measurement accuracy in the angle of attack range of 0–45◦ at
various ascent speeds.

2. Methods

The UAV used in this work is a common six-rotor UAV, which has six propellers,
and all its attitude and position control are achieved by adjusting the speed of the six
driving motors. When the UAV is working normally, the three propellers are separated
by 120 degrees rotate clockwise, and the other three propellers rotate counterclockwise, as
shown in Figure 1. In general, the motion state of a six-rotor UAV is mainly divided into
five types: hovering, vertical motion, rolling motion, pitching motion, and yaw motion.
Only the hovering and vertical motions are simulated in this paper to study the impact on
the anemometer because the two types often occur in measurement scenarios.

 
Figure 1. The working status of the six rotors.

2.1. Basic Control Equation

In the process of UAV flight, it is difficult to study the complex flow field and phe-
nomenon generated by the rotation of the rotor using traditional aerodynamics. With
the continuous development of computer technology and numerical methods, the use of
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computational fluid dynamics to calculate and simulate the rotor flow field has become
one of the important methods for studying the characteristics of the rotor flow field.

The flying speed of meteorological UAVs is low, and the ascent speed is within
5 m/s normally. Therefore, the air medium in the external flow field can be regarded as
incompressible. Navier–Stokes (NS) equations are the most suitable differential equation
to express incompressible fluid. The NS equation reflects the basic laws of viscous fluids,
and it relies on differential equations to describe fluid motion. The three-dimensional
incompressible N-S equation is expressed as follows:⎧⎪⎪⎨

⎪⎪⎩
ρ Du

Dt = ρ fx − ∂p
∂x + μ∇2u

ρ Dv
Dt = ρ fy − ∂p

∂y + μ∇2v

ρ Dw
Dt = ρ fz − ∂p

∂z + μ∇2w

(1)

where u, v, and w are the components of the dimensionless velocity along the x, y, and z
directions, p and t are the dimensionless pressure and time, fx, fy, and fz denote the compo-
nents of the external force per unit volume of fluid in the x, y, and z directions, respectively.
Multiply the above equations by the unit vectors i, j, and k in the three directions and add
them to obtain the simpler vector form of the N-S equation for incompressible viscous fluid:

D
→
V

Dt
=

→
f − 1

ρ
∇p +

μ

ρ
∇→

V (2)

where
→
V is the velocity vector, ∇ is the Hamiltonian, and

→
f is the total external force per

unit volume of fluid.

2.2. Calculation Method

When using the CFD method to simulate the rotor flow field, there are two main
methods. The first method is to use the Actuator Disk theory [20] to equate the rotating
blade with an actuator disk. The momentum source method [21] is a kind of actuator disk
method. Its basic idea is that the action of the blade on the airflow is added to the governing
equations (Euler or N-S) equivalent to the time-averaged momentum source term. In this
way, the effect of the blade on the airflow is characterized by the change of the airflow. The
second method is the sliding grid method, which generates a body-fitted grid around each
blade, and uses the entire rotor grid system as a motion-nested grid. In this grid, the rotor
flow field is simulated by solving the Euler equation or N-S equation. Essentially, the rotor
rotation of a multi-rotor UAV belongs to the mechanical rotation, so a simple and adaptable
sliding grid can be used to complete the calculation of various states with a multi-reference
(MRF) system model.

The MRF model is one of the multi-region calculation methods, which uses a steady-
state approximation. Different rotation or movement speeds can be assumed in each region.
The equations of the motion reference system are used to solve the flow problem in each
motion area grid. On the interface of the computational domain, a local reference system is
used to calculate the flux of the flow variables in one area and convert them to adjacent
areas. The schematic diagram of a typical MRF system model is shown in Figure 2. It is
a coordinate system that rotates at a stable angular velocity

→
w for a stationary reference

system. The origin of the rotating system is positioned by the position vector
→
r .
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Figure 2. MRF model diagram.

The position of any point in the calculation domain of the rotation system can be
determined by the position vector

→
r and the origin of the rotation system. The implicated

velocity can be expressed as follows:

→
ur =

→
w ×→

r (3)

The velocity
→
ur can be converted from a stationary system to a rotating system by the

following equation:
→
vr =

→
v − →

ur (4)

where
→
vr is the relative velocity and

→
v is the absolute velocity. When solving the problem

of multiple moving individuals in a rotating coordinate system, the additional term in
the momentum equation will cause the fluid acceleration to increase. The fluid governing
equations in the form of relative velocity are shown as follows:

∂ρ

∂t
+∇ · ρ

→
vr = 0 (5)

∂

∂t

(
ρ
→
vr

)
+∇ ·

(
ρ
→
vr

→
vr

)
+ ρ

(
2
→
w × →

vr +
→
w ×→

w × →
vr

)
= −∇p +∇ · →τ +

→
F (6)

∂

∂t
(ρEr) +∇ ·

(
ρ
→
vr Hr

)
= ∇ ·

(
k∇T +

=
τr · vr

)
+ sh (7)

where Equation (5) is the continuity equation, Equation (6) is the momentum equation,
and Equation (7) is the energy equation. The momentum equation contains two additional
acceleration terms: Coriolis acceleration 2

→
w × →

vr and centripetal acceleration
→
w ×→

w × →
vr.

Compared with the original equation, the viscous stress
=
τr uses the relative velocity deriva-

tive term. The energy equation uses relative internal energy Er and relative total enthalpy
Hr, and these variables are defined as:

Er = h − p
ρ
+

1
2

(
v2

r − u2
r

)
(8)

Hr = Er +
p
ρ

(9)

In a sliding grid, the relative motion between the stationary and rotating parts causes
transient interaction effects, which is a strong unsteady phenomenon, but these effects are
ignored in the MRF system. The sliding grid technology uses two or more calculation areas,
each area can generate a grid independently, which is extremely convenient for complex
models. There is at least one interface between each area and adjacent areas. The interface
of adjacent computing areas forms a “grid boundary”, and the dynamic domain will move
along the interface. The grid on the interface does not need to be aligned, and the flux is
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calculated by the information interpolation between the grid nodes. A virtual grid layer is
generated on both sides of the slip surface, which overlaps the computational domain grid
on both sides of the sliding surface. During calculation, the nodes on the virtual grid layer
are interpolated to realize the flux transfer on the computational domains on both sides of
the interface.

When using the sliding grid technology for numerical simulation, the model needs
to be divided into two parts: the rotor part and the stator part, and these two parts have
meshed separately. In this paper, the rotor part is the cylindrical area where the propeller
rotates, and the stator part is the entire computational domain minus other areas of the
rotor part. In the modeling, the connecting parts of the rotor part and the stator part are
paired to form multiple interfaces.

2.3. Turbulence Model

In this paper, the method of numerical simulation calculation of the UAV flow field is
the S-A turbulence model which is widely used in aviation. Compared with the k-ε turbu-
lence model, the S-A turbulence model is more robust in simulating and calculating complex
flows and consumes fewer computing resources. The S-A turbulence model is based on a
transport equation of eddy viscosity containing the convection term, diffusion term, and
source term. This application was proposed by Spalart and Allmaras [22]. Ashford and
Powell [23] improved this to avoid negative values in the generated term. The fluctuating
amount

∼
v of turbulent kinetic energy can be obtained from the transport equation:

∂v
∂t

+
→
V · ∇∼

v =
1
σ

{
∇ ·

[
v + (1 + cb2)

∼
v∇∼

v
]
− cb2

∼
v∇∼

v
}
+ Q (10)

where
→
V is the mean velocity, Q is the source term, σ and cb2 are constant. Source term Q

contains the generating term and dissipative term as follows:

Q =
∼
vP

(∼
v
)
− ∼

vD
(∼

v
)

(11)

∼
vP

(∼
v
)
= cb1S

∼
v (12)

∼
vD

(∼
v
)
= cw1 f2

(∼
v
d

)2

(13)

The generating term can be obtained by Equations (14)–(16) in the following:

∼
S = S fv3 +

∼
v

k2d2 fv2 (14)

fv2 =
1(

1 + χ
cv2

)3 (15)

fv3 =
(1 + χ fv1)(1 − χ fv2)

χ
(16)

where d is the minimum distance to the wall surface, S is the vorticity. fm can be obtained
by Equations (17)–(19) as follows:

fv2 = g
(

1 + c6
w

g6 + c6
w

)6

(17)

g = r + cw2

(
r6 − r

)
(18)
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r =
∼
v

∼
Sk2d2

(19)

The constant value in the S-A turbulence model is:

cw1 = 3.239, cw2 = 0.3, cw3 = 2, cv1 = 7.1, cv2 = 5, cb1 = 0.1355, cb2 = 0.622, k = 0.41, σ = 0.667 (20)

2.4. Correction Model of the Angle of Attack

In this paper, a solid-state differential pressure anemometer is mounted on the multi-
rotor UAV, and its structure is shown in Figure 3. The principle of the differential pressure
anemometer in this work is that the differential pressure between the two ends of the
cylinder varies with the wind speed. According to the variation in the differential pressure
and distribution, the corresponding wind speed and wind direction can be calculated.
Figure 4 is a schematic diagram of the anemometer measurement.

Figure 3. The internal structure of the differential pressure anemometer.

Figure 4. Schematic diagram of PD1 and PD2.

The relationship between differential pressure and wind speed and direction can be
expressed as follows [24]:

U∞ = 2

√
PD2

ρ(asin 2θ + a + 2b)
(21)
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θ =
1
2

⎡
⎣arccos

(RD − 1)
(

1 + 2b
a

)
√
(RD)

2 + 1
− arctanRD

⎤
⎦ (22)

where U∞ is the wind speed, ρ is the air density, and a and b are the correction coefficients
obtained by fitting the measured data. RD is the ratio of the two largest differential
pressures(PD1 and PD2), which is expressed by:

RD =
PD1

PD2
(23)

When the angle of attack is greater than 15◦, the measurement result is affected [25].
In this paper, the angle of attack is the angle between the wind speed vector and the
anemometer measurement plane where the eight holes are located, as shown in Figure 5.
The tilt angle α between the anemometer and the vertical axis is used to replace the angle
of attack because it is equivalent to it and can easily be obtained by the accelerometer inside
the anemometer in practical applications.

Figure 5. Display of AOA and α.

According to previous work, the angle of attack error of the anemometer can be
corrected and compensated by the model as shown in Equations (24)–(27), so that the
anemometer can maintain the original measurement accuracy and range [19].

UT = 2

√
PTD2

ρ(asin 2θ + a + 2b)
(24)

PTD2 =
PD2

T(g(α, θ))
(25)

T(αr) = a0 + a1cos αr + a2cos αr
2 (26)

g(α, θ) = αr = arcsin(sin α · cos θ) (27)

where UT is the corrected wind speed under α, PTD2 is the second-largest differential
pressure under the tilt angle α and T(g(α, θ)) represents the influence of the angle of attack
on the pressure distribution. For Equations (24)–(27), there is a detailed derivation process
and explanation in reference [19], which will not be introduced here.
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3. Simulation and Modeling

3.1. Mesh and Boundary Conditions

In this paper, the geometric model is very complicated, there are small gaps between
the rotating area and the static area. To better express as many detailed areas as possible, an
unstructured grid method is used for numerical simulation calculations. For the calculation
of the external flow domain of CFD, the larger the flow domain, the smaller the interference
of the external flow field boundary on the flow field calculation. This requires the flow
field to be set as large as possible during the calculation. However, a large computing
domain needs to consume too many computing resources. When the calculated flow
domain size reaches a certain range, the calculation accuracy remains stable. Before the
formal simulation, we conducted a grid independence test to ensure the optimal grid size
and distribution while maintaining calculation accuracy. The mesh size of the area where
the airflow changes drastically and the area close to the surface is set to be smaller, and
the mesh size of the area where the airflow is stable to be larger to keep the accuracy of
calculation and save the calculation resources. We initially divided 5,376,248 mesh cells
roughly according to the above rules, calculated the maximum wind speed error, and then
refined the entire mesh four times. The final grid-independence test result is shown in
Figure 6. The red triangle in the figure represents the number of grids divided in our five
simulations and the corresponding maximum error.

Figure 6. Grid-independence test.

According to the results of the grid-independence analysis, we ultimately used
10,803,973 grids for subsequent simulations. The dynamic calculation area is selected
to cover the adjacent area of the propeller blades, as this area has the most significant
impact on the air motion related to the rotation of the propeller. After further increasing the
calculation area, the simulation results do not show significant changes, but the calculation
time greatly increases. Therefore, after considering the calculation amount and simulation
accuracy, we choose the adjacent area of the propeller blades as the dynamic calculation
area. The external flow domain selected in this paper is shown in Figure 7. The “encryption
area” in Figure 7 refers to the outer region of the “computing domain”, which is usually
used to avoid the influence of boundary effects on the calculation results and to improve
the computational efficiency. Since the “computing domain” can be divided into multiple
regions for parallel computing, adding an external “encryption area” can expand the range
of the computing domain, thereby improving the accuracy and efficiency of numerical
simulation. The size of the flow domain is about eight times the size of the UAV simulation
model. Due to the symmetry of the UAV model, symmetrical boundary conditions are used
in the calculation, and only half of the UAV model is calculated for the flow field, which
saves computing resources without sacrificing calculation accuracy. The mesh diagram of
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the UAV is shown in Figure 8. The copter has a length of 1 m and a width of 1 m, and each
blade has a length of 30 cm and a width of 5 cm. The anemometer is located at a height of
5 cm above the rotor. The number of mesh cells here is 3,689,216.

 

Figure 7. Computing domain and the encryption area.

 

Figure 8. The mesh diagram of the UAV.

For the sliding grid of the UAV, the rotors of the UAV should be wrapped in the
rotation area. The static domain and each dynamic domain use interfaces to transfer data.
The mesh diagram of the dynamic area of the UAV rotors is shown in Figure 9. The number
of mesh cells here is 8,795,339.

 

Figure 9. The mesh diagram of the dynamic area of the UAV rotors.

According to the calculation requirements in this work, the entire calculation domain is
divided into two parts, the dynamic domain, and the static domain. The relevant boundary
conditions include the object boundary conditions, the far-field boundary conditions, and
the interface boundary conditions. The surface of the aircraft model is set with no slippage
and no penetration. The contact surface between the flow domain of the UAV and the outer
flow domain is set as interfaces. Similarly, the contact surfaces between the flow domain of
the rotors and the overall flow domain of the UAV are set as interfaces, which allows the
two-flow domain to exchange data during the calculation process. Except for the symmetry
plane, the surface of the flow domain of the UAV is all set as a velocity inlet to simulate the
realistic flow field of the UAV during flight.
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3.2. Simulation and Results

The measurement accuracy of the wind sensor on the top of the UAV will be affected
by the airflow generated by the rotors. It is necessary to compare the simulation value
and the standard value of the wind speed of the UAV under different ascent speeds and
different crosswind conditions through CFD simulation. The wind speed measurement
error of the UAV will be corrected by comparing the two values. In the paper, the UAV
velocity flow field diagram is obtained through CFD simulation at different ascent speeds
of 0 m/s, 3 m/s, and 5 m/s and different crosswind speeds of 0 m/s, 3 m/s, 5 m/s, 7 m/s,
10 m/s, 13 m/s, 15 m/s, 17 m/s, and 20 m/s. Figures 10–12 are the velocity flow field
diagrams of the UAV under different ascent speeds and crosswind speeds. The drone is
hovering at the ascent speed of 0 m/s. When the crosswind speed is 0 m/s, the theoretical
value of the wind speed measured by the UAV wind sensor should be 0 m/s. However, the
flow field diagram shows a flow velocity exists at the wind sensor position, which indicates
that the airflow driven by the rotation of the UAV rotors will affect the measurement results.
When the UAV is rising at a constant speed, the UAV rotors have different effects on the
flow velocity at the wind sensor position under different crosswind speeds.

  
(a) (b) 

  
(c) (d) 

Figure 10. The UAV velocity flow field diagram at ascent speed of 0 m/s. when the crosswind speed
is: (a) 0 m/s, (b) 5 m/s, (c) 10 m/s, (d) 13 m/s.

  
(a) (b) 

Figure 11. Cont.
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(c) (d) 

Figure 11. The UAV velocity flow field diagram at ascent speed of 3 m/s. when the crosswind speed
is: (a) 0 m/s, (b) 5 m/s, (c) 10 m/s, (d) 13 m/s.

  
(a) (b) 

  
(c) (d) 

Figure 12. The UAV velocity flow field diagram at ascent speed of 5 m/s. when the crosswind speed
is: (a) 0 m/s, (b) 5 m/s, (c) 10 m/s, (d) 13 m/s.

To clearly express the influence of the UAV rotors on wind speed measurement, specific
simulation crosswind speed values under different standard crosswind speeds and ascent
speeds are listed in Table 1. As shown in Table 1, when the crosswind speed of the drone is
the same, the higher the ascent speed, the closer the simulation speed is to the standard
crosswind speed. As the speed in the UAV flow field increases, the influence of the motion
of the UAV rotors has a smaller effect on the flow field near the wind sensor.

Table 1. Simulation crosswind speed table under different standard crosswind speeds and
ascent speeds.

Standard Crosswind
Speed (m/s)

Simulation Crosswind Speed
(m/s) at Ascent Speed of 0 m/s

Simulation Crosswind Speed
(m/s) at Ascent Speed of 3 m/s

Simulation Crosswind Speed
(m/s) at Ascent Speed of 5 m/s

0 0.168 0.015 0.009
3 3.344 3.333 3.222
5 5.928 5.758 5.419
7 7.612 7.552 7.438

10 10.970 10.670 10.661
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Table 1. Cont.

Standard Crosswind
Speed (m/s)

Simulation Crosswind Speed
(m/s) at Ascent Speed of 0 m/s

Simulation Crosswind Speed
(m/s) at Ascent Speed of 3 m/s

Simulation Crosswind Speed
(m/s) at Ascent Speed of 5 m/s

13 13.807 13.794 13.682
15 16.148 15.989 15.871
17 18.282 18.099 17.979
20 21.483 21.263 21.142

3.3. Modeling

The wind speed measurement error of the airborne anemometer comes from the angle
of attack of the UAV and the air turbulence of the rotors. Combining the two correction
models can well correct the wind speed measurement error of the airborne anemometer.
Figure 13 shows curves between simulation crosswind speed and standard crosswind
speed under different ascent speeds based on the data in Table 1. It shows that the curves
under the three ascent speeds are almost the same. In other words, although the airflow of
the UAV rotors has an influence on the wind speed measurement, the speed of the rotor
within 5 m/s is not related to it.

Figure 13. Curves between simulation crosswind speed and standard crosswind speed under different
ascent speeds.

The three curves in Figure 13 are fitted by the least-squares method to obtain Equation (28)
as expressed:

Vr = c0Vm + c1 (28)

where Vr is the real crosswind speed and Vm is the measured crosswind speed. c0 and c1
are the fitting coefficients. The values of c0 and c1 are the result of averaging the coefficients
of three formulas which is expressed in Equation (29):

c0 = 0.9456 c1 = −0.1573 (29)

According to Equations (24) and (28), the wind speed measurement correction model
of the airborne anemometer can be expressed as:

UR = 2c0

√
PTD2

ρ(asin 2θ + a + 2b)
+ c1 (30)
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4. Test and Results

The wind speed correction model of the airborne anemometer is obtained by combin-
ing the angle of attack correction model and the air turbulence correction model, and the
model was verified through a UAV flight test. The drone flies at different ascent speeds near
the meteorological tower at a height of 70 m and performs the wind speed measurement.
The measurement results of the cup anemometer in the meteorological tower are used as
standard data for comparison with the measurement results from the airborne anemometer
before and after correction, which are shown in Figure 14. The wind speed measured by the
drone after correction is dynamically changing and consistent with the measurement result
of the cup anemometer, while the measurement results from the airborne anemometer
before correction had a larger error. It can be seen from the figure that there are some devia-
tions between the test points and the standard value. This is because the cup anemometer
and the airborne anemometer are in close positions but not absolutely the same. In the
boundary layer, the uneven airflow causes this deviation, but these deviations are within a
reasonable range.

 
Figure 14. Wind speed measurement results between the meteorological tower and
airborne anemometer.

To clearly verify the compensation model, the measurement error curve of the airborne
anemometer is drawn, as shown in Figure 15. In this paper, the wind speed measurement
error of the anemometer is ±(0.5 + 0.03 V) m/s (V is the standard wind speed). The error
bar in Figure 15 is obtained according to the standard value, which is the reason for its
dynamic change. It can be seen from the figure that the wind speed measurement errors of
the airborne anemometer are all within the error bar, which verifies that the model has a
good correction effect.
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Figure 15. Wind speed measurement errors of the airborne anemometer.

5. Conclusions

In this paper, the influence of the air turbulence generated by the rotors of UAVs on
the measurement of the airborne anemometer is studied. The CFD simulation of the UAV is
carried out using the sliding grid method and the S-A turbulence model. The relationship
between the measured wind speed and the standard wind speed was obtained, and an air
turbulence correction model was established. The angle of attack compensation model of
the differential pressure anemometer is added to the air turbulence correction model to
make it more practical.

The model is verified in the actual measurement, and the result shows the model has
a good correction effect. The airborne anemometer maintains the original measurement
accuracy at different ascent speeds. This study proves that for a six-rotor UAV, the air
turbulence generated by the rotors has an impact on the measurement, but it is not related
to the speed of rotors within 5 m/s. Since the ascent speed of meteorological UAVs is low,
this paper does not study speeds above 5 m/s. The effect of the high-speed rotating rotors
on the airflow needs to be further explored. Whether this model has the same corrective
effect on UAVs with other rotor numbers or UAVs with other structures requires further
research and verification.
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Abstract: The Internet of vehicles (IoVs) is an innovative paradigm which ensures a safe journey by
communicating with other vehicles. It involves a basic safety message (BSM) that contains sensitive
information in a plain text that can be subverted by an adversary. To reduce such attacks, a pool of
pseudonyms is allotted which are changed regularly in different zones or contexts. In base schemes,
the BSM is sent to neighbors just by considering their speed. However, this parameter is not enough
because network topology is very dynamic and vehicles can change their route at any time. This
problem increases pseudonym consumption which ultimately increases communication overhead,
increases traceability and has high BSM loss. This paper presents an efficient pseudonym consumption
protocol (EPCP) which considers the vehicles in the same direction, and similar estimated location.
The BSM is shared only to these relevant vehicles. The performance of the purposed scheme in
contrast to base schemes is validated via extensive simulations. The results prove that the proposed
EPCP technique outperformed compared to its counterparts in terms of pseudonym consumption,
BSM loss rate and achieved traceability.

Keywords: vehicle anonymization; IoVs; pseudonym consumption; adversary; BSM; traceability

1. Introduction

Vehicular ad hoc networks (VANETs) support communication among vehicles to
ensure road safety and transportation facilities by using the intelligent transport system
(ITS) along with the support of road side units (RSUs) [1]. VANETs are transformed into
the Internet of vehicles (IoVs) to provide more flexibility and ease to mankind. The IoVs
transportation system is increasing rapidly; it is estimated that 2 billion vehicles will be
connected to the IoVs by 2035. The IoVs supports five types of communication including
vehicle-to-vehicle (V2V), vehicle-to-RSU (V2R), vehicle-to-infrastructure (V2I), vehicle-to-
cloud (V2C) and vehicle-to-pedestrian (V2P). This communication is collectively known
as vehicle to everything (V2X) communication [2,3]. The V2X communication is shown in
Figure 1. The IoVs provide a set of supporting information for the drivers such as precrash
warning, post-crash notification, pedestrian vicinity alert, danger zone alert and amber
warning. Because of these timely notifications, the accident ratio is reduced to a large
extent [4–6]. Besides these notifications, it provides comfort and entertainment services to
both passengers and drivers [4,7].

Sensors 2023, 23, 5217. https://doi.org/10.3390/s23115217 https://www.mdpi.com/journal/sensors
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Figure 1. V2X communication.

A basic safety message (BSM) or a beacon is utilized for communication in the network.
These BSMs contain all of the important information related to the vehicle (speed, velocity
and direction) in plain form [8]. When this BSM is broadcasted, there is a high probability
that any adversary can access this BSM. The adversary can be local or global. A local
adversary is one that is part of a network, becomes a malicious node and sends network
information to any other body. A global adversary is a person who eavesdrops on BSMs
from their area of interest by using antennas or other devices [9]. This raises security
issues and disturbs the privacy and anonymization of vehicles. An adversary can use this
BSM information for bad intentions such as harming users or drivers, blackmailing or
threatening them. These issues can cause hesitation in users or drivers and put their lives
in danger [10].

Vehicle’s anonymity and data privacy are critical factors that cannot be compromised.
To avoid these issues, a trusted authority (TA) provides pseudonyms for vehicles. Ve-
hicles use these pseudonyms to communicate with other vehicles or RSUs [11]. These
pseudonyms are changed after some time so that if an adversary is tracking a vehicle, they
cannot continually trace the target vehicle’s whole trajectory. This provides security to some
extent, but high pseudonym consumption makes pseudonyms insufficient. In this case,
vehicles communicate to the TA directly or indirectly to issue a new set of pseudonyms [12].
This increases pseudonym consumption and computation overhead because only the TA
keeps the link between the vehicle’s true identity and pseudonym [13]. It also increases the
BSM loss rate, and if any safety message is lost, it results in severe consequences. So, it is
important to use pseudonyms economically.

This paper presents the efficient pseudonym consumption protocol (EPCP) to use
pseudonyms effectively while maintaining vehicle anonymization. In this scheme, neighbor
vehicles that exist in a close range, and have the same estimated new location, are considered
to be relevant vehicles. A pseudonym-changing alert is broadcasted in an efficient way
after calculating the required matrices. The main contributions of our work are as follows:

(1) We explore the literature on pseudonym-based anonymity assurance for messaging
in the IoVs.

(2) Next, we propose a solution to estimate the next state of vehicles and their speed and
direction before sending the pseudonym-changing alert.

(3) We also deal with the exchange of pseudonyms to reduce costs and ensure anonymity
as well.

(4) Finally, simulations are performed to validate the results where the proposed scheme
outperforms in contrast to three dominating schemes.

The remaining part of the manuscript is organized as follows: In Section 2, the lit-
erature is discussed on pseudonym-based schemes. Section 3 provides a system model
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and problem statement. Section 4 presents a proposed solution. Section 5 explores the
performance of the EPCP. At the end, the conclusion and future work are discussed in
Section 6.

2. Literature Review

Many pseudonym-based schemes are presented to enhance vehicle anonymization
and provide protection against attacks planned by an adversary. These techniques are
majorly divided into two main classes, mix-context-based schemes and mix-zone-based
schemes. In this section, schemes of both categories are discussed.

2.1. Mix-Context-Based Schemes

In mix-context-based schemes, vehicles change their pseudonyms together in case
specified triggers are satisfied. If such triggers are not fulfilled, vehicles will not change
their pseudonyms. These schemes are also known as user-centric schemes.

In [14], Pan et al. proposed a cooperative pseudonym change based on the number
of neighbors (CPN) protocol. The idea behind this scheme is that vehicles tend to change
pseudonyms after getting triggered. This technique increases anonymity during dense
traffic flow; however, it has high pseudonym consumption. Babaghyou et al. proposed a
strategy [15] in which the transmission range of vehicles was restricted as per the speed
of the neighboring vehicle. The advantage of this scheme is that safety-oriented messages
are not neglected. The drawback of this scheme is that pseudonym consumption is high.
Vehicles that change lanes also receive BSMs, which lessens the security.

To solve the problem of pseudonym-linking, Xinghua et al. presented a scheme in
which vehicles exchange pseudonyms with each other. To exchange its pseudonym, the
vehicle broadcasts the request message Reqi and transmits its virtual identity (VID) to the
RSU. In case a nearby vehicle receives this, Reqi transmits an assist reply beacon containing
all of the information to the RSU [16]. This technique increases the delinking ability among
the most recent and former pseudonyms, which reduces the chance of tractability. The
shortcomings of the technique include high communication and computation overhead.

To reduce packet loss and reduce adversary linking attacks, Zidani et al. [17] presented
a scheme in which vehicles change pseudonyms in case there is a variation in speed and
on the basis of surrounding vehicles. The most prominent achievement of this scheme is
that it makes use of adaptive beaconing. When the beaconing interval varies, it creates
high confusion for the adversary because the adversary cannot identify when vehicles
communicate and share information. The benefit of this scheme is that the adversary cannot
link correctly to the pseudonyms of target vehicles.

To enhance vehicle confidentiality, cooperative pseudonym exchange and scheme
permutation (CPESP) [18] is presented. This technique is a mixture of two separate schemes
consisting of cooperative pseudonym exchange (CPE) and scheme permutation (SP). In
the first phase, the vehicles which are ready to swap their pseudonym may broadcast a
BSM to neighbor vehicles for showing willingness. In scheme permutation, vehicles change
their pseudonym using two methods, which are either RSP or the periodical pseudonym-
changing procedure. One technique is selected for the time being. The SP technique is
considered as being highly valuable in low road traffic. In this scheme, both CPE and SP
algorithms work equally. The unutilized set of pseudonyms is used in a hybrid way where
one technique is chosen as the RSP, and the periodical pseudonym is considered on behalf
of the pseudonym-updating process. This technique has higher protection against linking
attacks, and more schemes need to be added for increasing confusion for an adversary.
In [19], the technique uses three types of pseudonyms including real, initial and new
pseudonyms produced by the TA, RSU and onboard unit (OBU), correspondingly. Each
pseudonym is allocated to vehicles before the authentication of the previous one. The
advantage of this scheme is that a pseudonym-linking attack is not possible because a
pseudonym is updated by three entities, but it increases computation overhead and has
very high pseudonym consumption.
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To enhance privacy and maintain low traceability, the context-adaptive privacy scheme
(CADS) was proposed [20]. Vehicles switch to silence while changing pseudonym; how-
ever, this silent mode is smaller to prevent missing important safety-oriented messages.
The benefit of this technique is that it much lessens adversary traceability. Another tech-
nique, dynamic grouping and virtual pseudonym-changing (DGVP), was recommended
to increase anonymization. The idea behind this technique is that vehicles are clustered
into groups and any one of them is chosen as the group leader (GL). Each group mem-
ber is allotted a group identity (GID). When vehicles are higher than a threshold value,
vehicles update their pseudonym, or else a virtual pseudonym-updating mechanism is
introduced [21]. The benefit of this technique is that external vehicles cannot listen to
information from other group members. The problem is that the computation cost rises
during the virtual pseudonym exchange due to an extra beacon being created in it.

To reduce the traceability problem, another scheme named crowd-based mix context
(CMC) was proposed, in which vehicles with heavy traffic broadcast beacon messages with
PU = 1 notify other vehicles to change pseudonyms. When traffic is lower, two pseudonyms
are generated and exchanged randomly with each other. The neighbors accept the correct
pseudonym and the false one is excluded [22]. The benefit of this technique is that the
adversary cannot trace the target vehicle for a long time successfully. The drawback of the
technique is that it is applicable only to vehicles moving at low speeds.

In [23], vehicles tend to change pseudonyms in groups, and these groups are moni-
tored by the group head (GH). Pseudonym consumption is lower in this strategy. In [24],
the author proposed a mechanism to preserve vehicles’ confidentiality throughout the
journey to enhance the security of the VANET. When nodes come within the range of
an RSU, it broadcasts a BSM. When neighbors receive this beacon, they send a BSM in
return, including VID, pseudonym, location and speed. By using this information, the
RSU confirms that vehicles are legal. Trip time informs when a vehicle departs from the
current RSU. Afterward, trip time Ti is calculated using Equation (1). RangeRSU shows
the transmission range of the RSU while Speedvehicle represents the vehicle’s speed. The
vehicle’s speed is checked against the threshold speed Vs; if it is less than this, the vehicle
enters into the congestion detection phase and transmits a congestion awareness beacon.
For the confirmation of congestion, the RSU waits for other vehicles to send congestion
messages. The advantage of this scheme is that unauthorized vehicles are reported and
quick action is taken so that the adversary cannot listen to the communication of the vehicle.
The drawback of this technique is that it is only suitable in heavy traffic.

Ti =
RangeRSU
Speedvehicle

(1)

Yang et al. [25] presented a technique named the dynamic pseudonym swap zone
(DPSZ), in which vehicles exchange their pseudonym by developing a temporary zone. In
the case of any malicious activity, that vehicle’s credentials are revoked, and its exchanging
procedure is also revoked. After it, the target vehicle is notified about it, and then allotted
with a novel pseudonym. It will protect nodes from attacks planned by the adversary.
The nodes can check their capability to respond according to Equation (2). α shows the
likelihood of vehicles to reply to the initiator, |Þi| represents the neighbors of vi, μ is the
vehicle’s count to create a zone where vehicles can switch their pseudonyms and e is Euler’s
constant. When |Þi;| ≥ μ, in this case, nodes have little chance to response. This scheme is
more secure against internal and external attacks. The weakness of this technique is that
swapping occurs when vehicles reach a threshold μ. This perfect condition is not possible
each time.

α =

{
1, |Þi| = μ

e1 |Þi|
μ , |Þi| ≥ μ

(2)

During the silent mode, there is a great risk that vehicles are unable to receive safety
beacons. In order to reduce this issue, vehicles update their pseudonym in the presence
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of k nodes. Furthermore, road traffic is dynamic and changes frequently; it enhances
the anonymity set when more vehicles enter the silent mode. When the anonymity set
increases, it ultimately increases adversary confusion. During time t, suppose k neighbors
are available to change the pseudonym; then, at t = t + at time, vehicles have a choice to
freely decide whether to change their pseudonym or not. If the beacon is transmitted with
probability p, it represents vehicles that want to update their pseudonym; this procedure
is called flickering. In t = t + nT, vehicles set the beacon bit to HT = 1 and inform new
neighbors. So, that vehicle updates the pseudonym together at t = t + (n + 1) time. The
duration of the silence mode decreases in comparison, to prevent bad effects on safety
messages [26]. To prevent linking attacks and to increase privacy, another approach, the
synchronized pseudonym-changing protocol (SPCP) [27], was proposed. In this scheme,
vehicles change their pseudonym in the group that is monitored by a group head (GH).
The advantage of this protocol is that it increases anonymization, and enhances the level
of confusion for adversaries. The shortcoming of the scheme is that enormous storage is
required for the TA so that the group record information can be handled easily.

2.2. Mix-Zone-Based Schemes

In mix-zone-based schemes, there are some zones (traffic signals, malls, marts, toll
plazas) that are predefined. When vehicles enter these zones, they change their pseudonym.
K.Emara et al. presented a scheme which allows vehicles to move into silent mode in
case they enter the ideal region. When initiator vehicles find any silent node in their
surroundings, they switch to silent mode too and then change their pseudonym [28]. This
scheme proved to be better in the case of traceability. The drawback of the scheme is
that the silent mode reduces safety-oriented applications. Li et al. [29] came up with a
strategy to create a mix zone in the red traffic light. When vehicles stop at a red light, they
become silent and change pseudonym. During a red light, not many essential beacons
are neglected. Vehicles obtain active gain at green traffic lights. The scheme does not
make a compromise on safety beacons during silent mode but is effective only with a high
density. In [30], vehicles create a virtual cryptographic mix zone for changing pseudonym.
In this zone, vehicles broadcast safety messages but in an encrypted format. After changing
pseudonyms, vehicles exit from the zone. Safety messages are not neglected in this scheme
but the decryption of beacons needs extra time. In [31], vehicles change pseudonyms in
parking areas and shopping malls, and these places are considered as zones. Vehicles exit
randomly from the zone, which increases the confusion of the adversary. In cases where
zones are not available for a long time, vehicles will not change pseudonyms and the
attacker can perform linking attacks on target vehicles easily.

In [32], one pseudonym is allotted per vehicle by the pseudonym certificate authority
(PCA); after this, more pseudonyms are generated using a Gao algorithm. Pseudonym
consumption is very low in this scheme but the randomization process is very challenging.
In [33], when vehicles are in traffic, their speed is checked if it is slow (lies within 20 km/h
to 40 km/h), and they check their neighbors. After ensuring the existence of neighbors,
vehicles update their pseudonym. In order to encourage selfish nodes in the network to
take part in the pseudonym-updating mechanism, a motivation procedure is used. Vehicles
are given some incentive on changing pseudonym; if they will not change, their incentive
value will be detected [34]. The benefit of the scheme is that it increases anonymity. The
vehicular location privacy zone (VLPZ) is presented [35] in the network and it is divided
into grids. Each grid contains zones where vehicles move and change pseudonyms. The
entrance point is known as a router, and from which vehicles move into the zone and exit
from the aggregator. The degree of anonymity is calculated using Equation (3), where d
shows the degree of anonymity, k represents the capacity of the vehicular zone and |AS|
shows the occupancy of the vehicular zone. This scheme needs a separate RSU, which is
expensive to deploy.

d =
log2(|AS|)

log2(k)
(3)
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In [36], vehicles opt for a group as per its velocity and change their pseudonym in
cases where Sth > 1, where Sth represents the speed threshold. If a vehicle leaves a group to
join another, it is also allowed to change pseudonym. The scheme is appropriate for long
journeys but is not suitable for short distances.

3. System Model and Problem Statement

In this section, the system model of the proposed solution is described, which consists
of four main entities which are the TA, vehicles, location-based server and RSU.

(1) The TA is used to allocate pseudonyms to vehicles when they enter the network. In
case a vehicle is conducting suspicious activities in the network, after receiving the
report from the RSU, the TA revokes the pseudonym of that vehicle. So, the main
purpose of this entity is to allocate, revoke and keep the link between former and
new pseudonyms.

(2) Vehicles are the basic components of the system model, which is equipped with
the OBU, GPS and sensors. The vehicles can communicate with each other and
the RSU for sharing safety beacons, and share pseudonym information and other
information. During traveling on roads, vehicles need to know accurate information
about their destination.

(3) The location-based server provides the following facilities: (i) inquiring about vehicle
appeal to the RSU, (ii) sends a request to the location-based server (LBS) for providing
accurate location information for moving to the desired destination.

(4) The RSU monitors traffic and informs vehicles about it in a timely manner. In this
case, the pseudonyms are insufficient, and the RSU requests the TA to provide more
numbers. In the case of malicious nodes in the network, the RSU instructs the TA
to revoke its pseudonym. The system model of the proposed scheme is shown in
Figure 2.

Figure 2. System models.

The core problem before broadcasting is that the vehicle’s actual distance is not
considered, only the speed of the vehicle is noticed, and the BSM is transmitted. The
topology in the IoVs is very dynamic: vehicles move at different speeds and follow different
routes and lanes. So, there is a high chance that vehicles that are neighbors at time t will no
longer remain neighbors at time Δ + t due to the large distance. However, they still receive
a BSM [15]. This problem has a bad impact on pseudonym consumption. High pseudonym
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consumption increases the chances of an important BSM loss rate. When irrelevant vehicles
receive a BSM, it disturbs a vehicle’s anonymity.

Adversary Model

An adversary is considered as somebody who spies on vehicles’ BSMs to obtain
information about a vehicle’s location, direction and other sensitive information. The
aim behind it is to threaten or trace drivers or passengers and follow the target vehicle’s
path. After receiving a BSM, an adversary attempts to extract with the vehicle’s former
pseudonym. With this aim, an adversary installs eavesdropping sensors into the trajectory
to gain the BSMs. The adversary passively observes the BSMs from its area of interest but
does not change the information available in the adversary model, as shown in Figure 3.

Figure 3. Adversary model.

4. Efficient Pseudonym Consumption Protocol

We present the proposed efficient pseudonym consumption protocol (EPCP) that aims
for the efficient utilization of a pseudonym. Vehicles may change their pseudonym when
vehicle v has more neighbors. For sparse traffic, vehicles exchange their pseudonyms to
avoid pseudonym wastage as well as increase anonymity. Besides the mix-context trend on
which the EPCP scheme is based, there are some other methods that pseudonym-changing
techniques have used. The silence-based pseudonym-changing trend refers to those cases
that become silent for some specified or random time to change pseudonym. During the
silent mode, vehicles do not broadcast or receive any safety messages. Fixed-place changing
pseudonyms are those that change pseudonym only in front of a traffic red light signal,
in parking lots near malls or markets, at road junctions, etc. The group-based changing
pseudonym trend refers to those schemes that make groups on the basis of some metric
and pseudonym-changing mechanisms that occur within groups. Many cases have used
encryption-based pseudonym-changing trends that refer to mechanisms in which vehicles
use encrypted beacons to transmit within their transmission range. The receiving vehicles
first decrypt the information and then change pseudonym simultaneously, if needed.

The developed solution of the EPCP can be used for smooth and secure long and short
journeys. It can be beneficial for military fleets, as the adversary cannot track all of the
information all of the time, while such privacy issues exist in traditional transportation.
Additionally, the scheme can be implemented for vehicles used for medical emergencies,
and for lawyers that have security threats. The EPCP scheme can also be deployed for
riding services and public transport, as the proposed scheme is not much more expensive
to implement. On the whole, the EPCP is effective to use in all scenarios where anonymity
is the main concern of users and passengers.
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Before sending a BSM, vehicle v checks some metrics. In the first phase, vehicle v
checks its neighbors as per the BSM received in the previous timeframe. After this, the next
state is estimated. If the state lies within the premises of a close range then vehicles are
considered to be relevant ones that are following the same state.

In the second phase, the speed of vehicles v is checked against two threshold values in
contrast to the neighboring vehicles. If the relevant vehicles are moving too slow or too
fast, this means that soon they will be far away from the premises of vehicle v. This results
in increasing BSM delay. If speed is according to vehicle v, then its direction is checked as
the vehicles can change route due to notifications received from the RSU.

In the third phase, if a vehicle’s flagbit is 1, then the pseudonym will be exchanged or
changed as per the density of the road. In the case of sparse traffic when no vehicle lies
in the close radius, then the pseudonym time is checked. After the expiry of the lifespan
for the current pseudonym, the vehicle is allowed to change the pseudonym. To prevent a
pseudonym-linking attack, we reduced the pseudonym lifespan in the proposed scheme. A
list of notations used in this scheme is presented in Table 1.

Table 1. List of notations.

Sr. Notation Description

1. k Number of neighbors
2. Neigh_dis Neighbor distance
3. Neigh_v Vehicles in locality of vehicle v
4. thresholdmin Minimum threshold speed
5. threshold Neighbor threshold value
6. Vi Vehicle v
7. Vj Neighboring vehicles
8. thresholdmax Maximum threshold speed
9. Close_R Close range
10. N_direction Direction of neighbor vehicles

The efficient pseudonym consumption algorithm is presented in Algorithm 1. In
lines 1–7, when vehicle v obtains the BSM from its neighboring nodes, the position of the
sending vehicles is extracted from the received BSM. If it lies within the transmission range,
in this case, the BSM is kept; otherwise, it is discarded. The onboard unit of the vehicle
helps it in interacting with nearby entities as well as sending and receiving BSMs. In the
next time slot, vehicle v intends to send a BSM. After the beacon interval time, the BSM is
prepared and important information about vehicle v is included in it. In lines 11–16, the
BSM received in the previous time slot is checked, and if at least a single BSM of the vehicle
is present, its next state is estimated. For the estimation of the next state, the Kalman filter is
used. The difference between the present state and the estimated state is checked using
Euclidean distance. If it lies in the close range then it is relevant and further parameters
are checked.

In lines 20–29, the neighbor vehicle’s speed is checked against two speed values.
In other schemes, only one threshold value is used, with the reason behind using two
values being that vehicles that are too slow or too fast will quickly leave the proximity
of vehicle v and will not remain its neighbor. If the road traffic is dense, then the vehicle
will change its pseudonym; otherwise, it will be exchanged. In the case of no vehicle
existing in proximity, then, after the pseudonym lifetime of the vehicle has expired, the
vehicle changes its pseudonym. The pseudonym lifetime is decreased to 50 s to avoid a
pseudonym-linking attack.
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Algorithm 1: Efficient Pseudonym Consumption Algorithm

//When intended vehicle v get BSM
1. N_position = BSM.pos ();
2. Neigh_dis = dis(my_position, N_position)
3. If (Neigh_dis ≤ T) then

4. Neigh_v++
5. store ← store + Neigh_v;
6. Else drop BSM.
7. End if

//intended vehicle v aims to disseminate BSM in upcoming timeslot
8. while (OBU status is active) do

9. wait (beacon interval)
10. Ready (BSM);
11. if (nodes ≥ k) then

12. vehicles_trails ← kalman_filter(store);
13. for i ← 1 to Neigh_v do

14. if (Euclidean (vehicles_trails(i).pos, current_state.pos) ≤ Close_R) then

15. adjacent ← adjacent + vehicles_trails(i);
16. End if

17. End for

18. if (!adjacent.empty()) then

19. Call Function Neighbor_speed ← BSM.speed()
20. if (Neighbor_speed < thresholdmin) OR (Neighbor_speed > thresholdmax) then

21. Call Function BSM (Delay)
22. Else

23. N_direction = Call Function BSM_direction ()
24. if (std:: equal(mine_direction, N_direction)) then

25. if (Neigh_v ≥ threshold &&((Neigh_v (Readyflag) && v_readyflag == 1))
then

26. Call Function Update cooperatively pseudonym ()
27. Set Readyflag_bit to 0
28. elseif (Neigh_v < threshold && ((Neigh_v (Readyflag) && v_readyflag ==
1))
29. Random exchange of unused pseudonym (Vi, Vj)
30. Set Readyflag_bit to 0
31. End if

32. End if

33. End if

34. If (adjacent.empty()) then

35. Locality ← False //no vehicle is in transmission range of vehicle v
36. End if

37. If (v_pseudolife > stable_span) then

38. Call Function Update pseudonym ();
39. Set Readyflag_bit to 0
40. End if

41.End if

42.End while

5. Results and Discussion

In this section, we present the simulation environment, results and related discus-
sions. To validate the results, we performed extensive simulations using privacy extension
(PREXT) [37]. It is built upon the veins framework [38] which includes two main mod-
ules, which are Object Modular Network Testbed (OMNet++) version 5.0 [39] for network
construction and Simulation of Urban Mobility (SUMO) 0.25.0 [40] for traffic mobility
scenarios, as in the real world. The map of Munich city was used by downloading it from
Open Street Map (OSM). For creating the vehicles’ route, randomTrips was employed.
PREXT helped in analyzing crucial factors such as pseudonym consumption, traceability,
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normalized traceability and confusion rate, which are important factors from an anonymity
perspective. For QoS, the BSM loss rate was checked. For simulation, a highway scenario
was considered. The minimum and maximum speed thresholds were 5 m/s and 30 m/s,
respectively. The base schemes were CPN [14], WHISPER [15] and DGVP [21]. A list of
simulation parameters with respected values is shown in Table 2.

Table 2. Simulation parameters and values.

Parameters Values

Simulation time 300 s
Number of vehicles 50, 100, 150, 200
Transmission range 300 m
Pseudonym stable time 50 s
Minimum speed threshold 5 m/s
Maximum speed threshold 30 m/s
Close range 100 m
Neighbor threshold 40
Operating system Ubuntu 16.04
Coupling protocol TraCi

5.1. Average Percentage of Adversary Attains Traceability

Traceability is a concept defined as the probability that an adversary will guess the
target vehicle’s path appropriately using a BSM [28]. If the adversary knows the traces
of the target vehicle, this increases its vulnerabilities and security threats. The higher the
traceability, the lower the vehicle anonymization. So, it is a crucial parameter from an
anonymization perspective; simulation was performed five times, and the average was
considered under sparse to dense traffic. Figure 4 shows that the proposed scheme of the
EPCP achieved the lowest traceability compared to the base schemes. The reason behind
high traceability in CPN is that the techniques do not make use of sufficient triggers for
changing pseudonyms. The lack of opting for a suitable context raises the chances of high
traceability. WHISPER has relatively low traceability compared to CPN, which limits the
transmission range on the basis of the speed of nearby vehicles. In the case of DGVP,
initially, the traceability rate surges to 30%, but when the vehicles’ densities increase, the
traceability factor starts dropping. The reason behind this is that this technique changes the
pseudonym in groups. During sparse traffic, the few vehicles remain in the group and do
not update the pseudonym until it has expired, whilst high-speed vehicles exit the group,
making it easy for adversaries to trace vehicles. A crowd is formed as vehicle density
increases, due to crowd vehicles changing to a slow speed and joining groups, changing the
pseudonym together, which reduces the traceability factor. As can be observed, when the
number of vehicles are 200, the traceability factor reduces to 7%. Our proposed EPCP checks
multiple factors (direction, estimated next state of neighbors and direction) to minimize the
chances of traceability. Besides this, in the EPCP, the pseudonym lifetime is also reduced to
50 s to lessen the possibility that an adversary creates a connection between a former and a
new pseudonym correctly. In the case of sparse traffic on the road with 50 vehicles, CPN
achieves 58.4% traceability, whereas WHISPER accomplishes 21.5% traceability, DGVP
attains 30% and EPCP accomplishes 14.4% traceability.

5.2. Average Percentage of Adversary Attains Normalized Traceability

Some vehicles do not update their pseudonym, and mapping out such vehicles is very
easy. Eliminating such vehicles provides a better privacy level. This concept is known as
normalized traceability [28]. Under this metric, a simulation can be conducted. Figure 5
depicts that the EPCP has significantly low normalized traceability. Under sparse traffic
(when the number of vehicles are 50), after excluding those vehicles, the traceability ratio
is reduced in CPN, and it attains normalized traceability of 54.4%. WHISPER lay within
16.5%, DGVP achieved normalized traceability of 23% and the proposed scheme of the
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EPCP had 9.5% normalized traceability. The results proved that EPCP and WHISPER had
better normalized traceability in comparison to CPN.

 

Figure 4. Average percentage of traceability in sparse to dense traffic scenario.

 

Figure 5. Average percentage of normalized traceability in sparse to dense traffic scenario.

5.3. Pseudonym Consumption

Vehicles interact with other entities using a pseudonym. The TA provides a pair of
private and public information to vehicles when they enter into a network for registration.
For a pseudonym, the public key is considered. Vehicles have a sufficient set of pseudonyms;
so, they must be used wisely. In the case of low pseudonyms, vehicles appeal to the RSU
to request the TA to allot them more pseudonyms. In return, the TA provides vehicles
more pseudonyms through the RSU. This increases communication and computation
overhead and makes the scheme costly to deploy. In CPN, pseudonym utilization is very
high; the reason behind this is that when a vehicle wants to update its pseudonym, all
neighboring nodes in the network also update their pseudonym even without any need,
which ultimately raises pseudonym consumption. Moreover, vehicles also update their
pseudonym when they meet a trigger (a trigger is a condition when k number of neighbors
are present), and the value of k is kept as 2 within it. Although WHISPER has lower
pseudonym consumption than CPN, it should be even less. The WHISPER scheme only
uses the metric of speed before sending a BSM, and many neighbor vehicles can change
their lanes after some time, but they still change their pseudonyms without any need. In
DGVP, vehicles make use of two pseudonyms: one is original, and one is virtual. During
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the virtual method, two messages are generated with pseudonyms and are transmitted to
member vehicles. This mechanism increases pseudonym utilization. The proposed scheme
has lower pseudonym consumption, as shown in Figure 6, because only those vehicles that
will remain for some time change pseudonyms. If such vehicles do not exist in the network,
the BSM is delayed for some time to avoid the wastage of pseudonyms. During a dispersed
distribution of vehicles on the road with 50 vehicles, the pseudonym utilization is 440 in
CPN. For WHISPER, the pseudonym consumption is 103, in DGVP it lies in the range of
430 and in EPCP it remains at 50.

 

Figure 6. Pseudonym consumption.

5.4. BSM Loss Rate

Vehicles possess a limited buffer to store the beacons received from various entities.
The vehicles receive irrelevant BSMs and may keep them for a long time. This results
in filling the buffers, which causes emergency messages to be delayed or dropped. The
existing techniques retain the BSMs of these vehicles in buffer that takes different paths
at time Δ + t which are not useful now; this rises the BSM loss rate. In the proposed
technique of the EPCP, when vehicles receive BSMs outside of the close area, it drops them,
which lowers the BSM loss rate. Besides this, the proposed scheme generates and transmits
BSMs at a very stable rate, which helps in overcoming the loss rate, while in the CPN and
WHISPER strategies, both keep irrelevant BSMs, which increases the chances of important
BSMs being lost. In DGVP, vehicles share information about safety only to their group
members. So, when few vehicles lie within a group, the BSM loss rate is low, while it
increases with increasing increments of group members. The BSM packet loss is stable in
the EPCP, compared to WHISPER, DGVP and CPN, as presented in Figure 7. The value on
the X-axis indicates the total number of vehicles, whereas values on the Y-axis represent
the BSM loss rate. The loss rate in WHISPER lies within the range of 1500, 3400, 12,000 and
14,000, and the numbers of vehicles are 50, 100, 150 and 200, correspondingly. Similarly, the
BSM loss in CPN is up to 4000, 8000, 15,000 and 18,000, with 50, 100, 150 and 200 vehicles.
In DGVP, it remains at 2000, 4000, 13,500 and 16,500 under vehicle densities of 50, 100, 150
and 200. In the proposed scheme of the EPCP, the loss rate is up to 200, 1000, 5000 and
7000 under vehicle densities of 50, 100, 150 and 200. The result signifies that the EPCP has
a lower loss rate than CPN and WHISPER.
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Figure 7. BSM packet loss rate.

5.5. Average Confusion for Attacker Due to Change in Pseudonym

By creating high confusion for an adversary, better anonymity can be achieved that
ultimately increases the privacy level. Different vehicle densities (sparse, mediocre and
dense) are shown in the X-axis, while the Y-axis shows the average confusion level for the
adversary (the results are shown in Figure 8). The higher confusion rate in the EPCP is
because direction and speed threshold factors are considered before sending a pseudonym-
changing beacon. It adds the minimum and only relevant vehicles that overcome the
possibility of attacks. Apart from this, in sparse situations, pseudonyms are exchanged
randomly with each other so that pseudonyms should not be wasted and upsurge the
confusion of attackers in tracing the target vehicle. In DGVP, during dense traffic, vehicles
slow down their speed which increases the anonymity set, which increases confusion for
the adversary in mapping out the target vehicle accurately in the case of the disperse
distribution of traffic when the number of vehicles are 50. WHISPER accomplishes a
value of 10.2, whereas the proposed scheme of the EPCP maintains an average value of
12.8, DGVP accomplishes an average value of 10.8 and CPN attains an average value of
5.2. During high traffic, the average confusion rate is up to 25.5, 30.5, 33.9 and 20.5 for
WHISPER, EPCP, DGVP and CPN, respectively.

 

Figure 8. Average confusion for adversary according to pseudonym change.
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5.6. Proportion of Vehicles That Changed Pseudonym

When a stable proportion of vehicles updates the pseudonym cooperatively, it surges
the efficiency of the technique, while updating the pseudonym very frequently upsurges
the communication and computation cost. In the context of the CPN, it had a very high
proportion of vehicles that changed pseudonyms because of a trigger (a condition when
two vehicles exist in the transmission range), and it changed pseudonyms.

The EPCP had a slightly low proportion of vehicles that changed pseudonyms; be-
cause of strict checks, some vehicles showed a lack of interest in changing their pseudonym.
WHISPER had a worthy proportion of vehicles that cooperatively updated their pseudonyms.
As far as the DGVP is concerned, initially it had a lower vehicle proportion of those chang-
ing pseudonyms, but when the density of traffic became heavy, the proportion of vehicles
that changed their pseudonym significantly increased. Figure 9 shows that in the EPCP,
the proportion of vehicles that changed their pseudonym remained at 70%, 75%, 77% and
80% under traffic of 50, 100, 150 and 200 vehicles, respectively. The WHISPER proportion
lay under 77–89% in sparse and dense traffic. The CPN lay within the proportion of 82%
in the case of sparse traffic, while this proportion increased up to 90% in dense traffic. In
DGVP, the proportion remained at 65%, 71%, 85% and 91% with traffic of 50, 100, 150 and
200 vehicles, correspondingly.

 

Figure 9. Proportion of vehicles that changed their pseudonym.

Overall, the performance of the proposed scheme remained stable under various
metrics from sparse to dense traffic, but the shortcoming of the EPCP scheme is that slightly
lower vehicles changed their pseudonym because of selfish nodes in the network. The
WHISPER scheme performed fairly for most of the metrics. In the case of the CPN scheme,
the pseudonyms were not well utilized, which ultimately increased the computation and
communication overheads. As DGVP is a dense-based scheme, it outperforms in dense
traffic, while the effectiveness is reduced in distributed traffic. So, DGVP is only acceptable
to use in heavy traffic.

6. Conclusions

In this paper, a mix-context technique named the efficient pseudonym consumption
protocol was proposed to reduce pseudonym utilization by sending beacons when rele-
vant neighboring vehicles were present on the road. For this purpose, the next state of
vehicles, their direction and their speed threshold were checked. In the proposed strategy,
vehicles are allowed to exchange pseudonyms in lower traffic and change only when
traffic is dense to utilize pseudonyms effectively. Simulation was performed to check
the effectiveness of the proposed scheme of the EPCP under the PREXT simulator, along
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with OMNet++ and SUMO. The results showed that the proposed technique of the EPCP
has better pseudonym consumption, a low BSM loss rate and a higher confusion rate for
adversaries, and achieved low traceability and normalized traceability compared to the
existing schemes of CPN, WHISPER and DGVP when traffic was sparse. The limitation
of the scheme is that no motivation mechanism is introduced to encourage selfish nodes
to participate in the pseudonym-changing process. For the proposed work, only external
adversary was considered, which may not be very efficient for cases of internal adversary.
In the near future, an encouragement-based mechanism will be introduced to motivate
selfish nodes in the network to participate in the pseudonym-changing process to increase
the proportion of vehicles. Besides this, a scenario of an internal adversary should also
be checked when some internal entities, i.e., the vehicle or RSU, become semi-honest or
malicious. Additionally, the communication cost of the proposed scheme should also be
checked, and the EPCP should be compared with other anonymity-based schemes; these
are a few of our upcoming plans.
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Abstract: In order to improve the stability and economy of 4WID-4WIS (four-wheel independent
drive—four-wheel independent steering) electric vehicles in trajectory tracking, this paper proposes
a trajectory tracking coordinated control strategy considering energy consumption economy. First,
a hierarchical chassis coordinated control architecture is designed, which includes target planning
layer, and coordinated control layer. Then, the trajectory tracking control is decoupled based on
the decentralized control structure. Expert PID and Model Predictive Control (MPC) are employed
to realize longitudinal velocity tracking and lateral path tracking, respectively, which calculate
generalized forces and moments. In addition, with the objective of optimal overall efficiency, the
optimal torque distribution for each wheel is achieved using the Mutant Particle Swarm Optimization
(MPSO) algorithm. Additionally, the modified Ackermann theory is used to distribute wheel angles.
Finally, the control strategy is simulated and verified using Simulink. Comparing the control results
of the average distribution strategy and the wheel load distribution strategy, it can be concluded
that the proposed coordinated control not only provides good trajectory tracking but also greatly
improves the overall efficiency of the motor operating points, which enhances the energy economy
and realizes the multi-objective coordinated control of the chassis.

Keywords: 4WID-4WIS EVs; trajectory tracking control; multi-objective coordinated control; mutant
particle swarm optimization (MPSO)

1. Introduction

4WID-4WIS EV is a novel electric vehicle that reduces mechanical components, such
as differentials and half shafts. It also integrates four-wheel steering technology based on
a distributed four-wheel drive system. This allows four wheels to be driven and steered
independently, increasing the controllable degree of freedom. In a word, 4WID-4WIS EV
has unique advantages in vehicle dynamics control [1,2].

To fully exploit the control potential of 4WID-4WIS EV and improve the overall
performance of the vehicle, coordinated multi-objective control of the chassis has become
a current research focus [3–5]. In particular, stability and economy are two important
performance characteristics. It is difficult to improve one performance by controlling only
one performance, and in extreme cases, the effect deteriorates. Therefore, there is a need
for coordinated control of the two performances to make the vehicle stable and economical
at the same time, which has been researched and studied by several scholars [6]. In [7], a
4WID EV torque coordination control strategy is developed, which considers both stability
and economy and uses MPC to calculate the generalized force. The demand torque of each
wheel is determined by an online solution using the control distribution error, tire utilization
rate, and power consumption of the drive system as objective functions. In [8], a multi-
objective online optimization of energy management strategy for 4WID EV is proposed. It
considers the efficiency of the drive system, tire slip energy consumption, wheel torque
fluctuation, yaw rate tracking error, etc. The weights of each element are dynamically
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adjusted using the fuzzy control method, and the effectiveness of the strategy is verified by
simulations. In [9], a cooperative game-based actuator fault-tolerant control strategy for a
4WID EV is proposed. This strategy minimizes tire energy dissipation to ensure economic
efficiency by designing a two-dimensional game controller that simultaneously satisfies the
generalized forces required for vehicle stability.

Due to the great potential of intelligent driving technology to enhance vehicle
safety [10,11], improve traffic efficiency, and reduce energy consumption [12], the re-
search on trajectory tracking control of 4WID-4WIS electric vehicles has received in-
creasing attention in the automotive industry, and numerous control methods have been
developed [13–15]. In [16], LTV-MPC (Linear Time-Varying Model Predictive Control)
based on DYC (Direct Yaw Control) is used to realize velocity tracking and trajectory
tracking, which improves stability during trajectory tracking. In [17], a robust path-tracking
controller for 4WID-4WIS agricultural robotic vehicles is designed by combining the back-
stepping SMC (Sliding Mode Control) theory to improve the robustness of trajectory
tracking. In [18], a four-wheel steering controller and a velocity tracking controller for
4WID-4WIS EV are designed based on the SMC algorithm to improve the accuracy of
trajectory tracking. In [19], the feedback linear quadratic regulator (LQR) controller is used
to realize emergency avoidance under 4WS high-speed conditions.

There are certain shortcomings in the aforementioned research which can be summa-
rized as follows. Most studies on chassis coordinated control is related to traditional 4WID
EV, while there is relatively little research on 4WID-4WIS EV. In addition, most existing
research establishes multi-objective optimization problems and solves them online to obtain
the control variables. This not only makes the objective function too complex and difficult
to solve but also has a negative impact on the real-time performance of the controller. Last
but not least, many studies on the trajectory tracking control of 4WID-4WIS EV mostly
only consider the trajectory tracking performance. Some studies also consider stability, but
there is almost no research that simultaneously considers trajectory tracking performance,
stability and economy.

To improve the stability and economy of 4WID-4WIS EV in trajectory tracking, the
contributions of this paper are summarized as follows:

• A hierarchical architecture for chassis coordinated control is designed including target
planning layer, and coordinated control layer.

• The MPC path tracking controller is constructed, which takes into account stability
constraints, such as yaw rate and tire slip angle.

• The MPSO algorithm is also used to create a mapping of the distribution coefficients by
optimizing the torque distribution between the front and rear wheels offline, thereby
reducing the computational cost.

The paper is organized as follows: Section 2 proposes a hierarchical chassis coordina-
tion control. Section 3 highlights the simulation validation and compares the simulation
results of different torque distribution strategies. Section 4 sums up the conclusions.

2. Trajectory Tracking Coordinated Control

2.1. Vehicle Model

4WID-4WIS EV uses in-wheel motors and steering motors to replace the traditional
transmission and steering mechanism, giving it more control freedom and thus enabling
more advanced control methods to improve the overall performance of the vehicle. Con-
sidering the strong coupling between the vehicle subsystems and the strong nonlinearity
of the tires and motor actuators, it is of great significance to establish a reasonable and
accurate vehicle model to study the control strategy of 4WID-4WIS EV.

2.1.1. Vehicle Dynamic Model

The vehicle is a complex multi-body dynamic system, and the vehicle dynamic model
is the basis for dynamic analysis, active control, function realization, and parameter opti-
mization. According to the research objective and concern, many scholars have proposed
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various linear and nonlinear vehicle models with different degrees of complexity [20,21].
This work focuses on the longitudinal and lateral coupling control of the 4WID-4WIS
EV. The coupling effects between longitudinal motion and lateral motion of the vehicle
include three categories: kinematic coupling, tire force coupling, and load transfer coupling.
Kinematic coupling refers to the longitudinal motion being influenced by the longitudinal
component of the steering wheel lateral deflection force due to the presence of the wheel
steering angle. Additionally, the lateral motion is also influenced by the longitudinal veloc-
ity. Tire force coupling is the interaction between tire lateral and longitudinal forces, the
combined force of which is constrained by the friction ellipse. The vertical load redistribu-
tion is caused by longitudinal acceleration or lateral acceleration, which in turn influences
the longitudinal and lateral dynamics. Therefore, a vehicle dynamic model with seven
degrees of freedom is adopted, i.e., longitudinal motion, lateral motion, yaw motion, and
the rotation of four wheels.

The vehicle is assumed to be left-right symmetric about the center plane and driven
on a flat horizontal road, ignoring the vertical motion of the body. At the same time, it is
assumed that the suspension system is a rigid structure and the body pitch and roll motion
is neglected. After conducting the above modifications, the simplified dynamic model is
developed, as shown in Figure 1.

Figure 1. 4WID-4WIS vehicle dynamic model.

The longitudinal motion equation is:

m
( .
vx − vyωr

)
= Fx f l + Fx f r + Fxrl + Fxrr (1)

The lateral motion equation is:

m
( .
vy + vxωr

)
= Fy f l + Fy f r + Fyrl + Fyrr (2)
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The equation of yaw motion is:

Iz
.

ωr =
(

Fx f r + Fxrr − Fx f l − Fxrl

)d
2
+

(
Fy f l + Fy f r

)
l f −

(
Fyrl + Fyrr

)
lr (3)

where,
Fxij = Ftxij cos δij − Ftyij sin δij (4)

Fyij = Ftxij sin δij + Ftyij cos δij (5)

i ∈ { f , r}, j ∈ {l, r} (6)

The equation of wheel motion is:

Iw
.

ωij = Tdij − FtxijRe f f − Tbij (7)

where, m is the vehicle mass, vx is the longitudinal velocity, vy is the lateral velocity, ωr
is the yaw rate, Fxij and Fyij are the longitudinal force and lateral force of each wheel,
respectively, Iz is the yaw inertia, l f is the distance from the center of mass to the front axle,
lr is the distance from the center of mass to the rear axle, d is the wheelbase of the vehicle,
Ftxij and Ftyij are the longitudinal and lateral forces of each wheel in the tire coordinate
system, respectively, δij is the wheel angle, Iw is the wheel moment of inertia, ωij is the
speed of each wheel, Tdij is the driving torque of each wheel, Tbij is the braking torque of
each wheel, and Re f f is the effective rolling radius of the wheel.

2.1.2. Tire Model

As the only component that connects the vehicle to the ground, any state of vehicle
motion depends on the interaction forces between the tire and the road surface. The tire
has a critical impact on the vehicle’s performance, so it is necessary to perform accurate
dynamic modeling of tires to better describe the effects of tire forces on vehicle dynamics.
The tire model describes the relationship between the tire motion parameters and tire forces,
which can be mainly divided into three types: theoretical model, empirical model, and
semi-empirical model [22,23]. The theoretical model is formed by studying the deformation
mechanism of tires based on the physical essence of tire mechanics, but its complex structure
is not conducive to simulation research. The empirical model is based on the experimental
tire data, but as a result, it also lacks theoretical support and is poorly scalable. The semi-
empirical model combines the advantages of both models with theoretical support and
experimental data to obtain key parameters that ensure good accuracy and scalability.

In this study, the most commonly used semi-empirical tire model MF (Magic Formula)
is selected. The combination formula of trigonometric functions is used to describe the
relationship between tire force, slip rate, and slip angle. This model is suitable for the
operating condition with combined longitudinal and lateral forces. The general expression
of the MF tire model is as follows:⎧⎨

⎩
y = D sin{Carctan[Bx − E(Bx − arctan(Bx))]}
Y(X) = y(x) + SV
x = X + SH

(8)

where, B is the stiffness factor, C is the shape factor, D is the peak factor, E is the curvature
factor, Y is the output variable, that is, longitudinal force, lateral force or aligning torque, X
is the input variable, that is, slip rate or slip angle, SV is the vertical offset, and SH is the
horizontal offset.
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As input variables for the MF tire model, slip rate and side slip angle are important
parameters for calculating the tire effect, which must be calculated from the vehicle state as
shown in Equations (9) and (10), respectively.

sij =

⎧⎨
⎩

ωijRe f f −uij
ωijRe f f

ωijRe f f ≥ uij(Drive)
ωijRe f f −uij

uij
ωijRe f f < uij(Brake)

(9)

where, uij is the speed of the wheel center.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α f l = tan−1
( vy+ωr l f

vx−ωr ·d/2

)
− δ f l

α f r = tan−1
( vy+ωr l f

vx+ωr ·d/2

)
− δ f r

αrl = tan−1
(

vy−ωr lr
vx−ωr ·d/2

)
− δrl

αrr = tan−1
(

vy−ωr lr
vx+ωr ·d/2

)
− δrr

(10)

2.1.3. Motor Model

The 4WID-4WIS EV drive system consists of four in-wheel motors, and independent
four-wheel steering is achieved by four steering motors. Therefore, to investigate the
longitudinal and lateral coordinated control strategy, the characteristics of the motors are
first analyzed, and suitable motor models are established.

1. In-wheel motor model

The research focuses on the coordinated control of the vehicle with multiple objectives.
For the in-wheel motor model, the charging and discharging efficiency of the motor is
only for the steady-state characteristics. The transient characteristics of the motor are
not considered. Therefore, the charging and discharging efficiency of the motor can be
expressed as in Equation (11).

ηem = η(nem, Tem) (11)

where, nem is the motor speed, and Tem is the motor torque.
Since the driving state of the vehicle is mainly studied in this paper, the motor efficiency

characteristics are shown in Figure 2. The external characteristic curve and the efficiency
map are used to characterize the in-wheel motor. The external characteristic curve can be
used to determine the maximum torque as a function of wheel speed in real-time. The
discharge efficiency of the motor can be determined using a two-dimensional look-up table
of motor speed and torque.

Figure 2. In-wheel motor efficiency map.
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2. Steering Motor Model

Since the steering motor in this study is not focused on the efficiency characteris-
tics, it is simplified from the perspective of the motor actuation effect as a wheel angle
tracking model. The delay caused by the steering mechanism is considered as shown
in Equation (12).

δij_out = δij_req · 1
1 + τs

(12)

where, δij_out is the actual output angle, δij_req is the required output angle, and τ is the
response time constant.

2.2. Vehicle State Acquisition

Before performing chassis coordination control, it is necessary to observe the lateral
and longitudinal states of the vehicle, including the vehicle’s position information and the
body’s pose information. The position information of the vehicle consists of the coordinates
of the vehicle’s lateral and longitudinal axes, velocity and acceleration information, and
the pose information of the body includes yaw rate, sides lip angle, pitch angle, roll
angle and so on.

The implementation of the control strategy is based on the acquisition of vehicle state
information by pose sensors. There have been many studies on how to obtain the pose
information of the vehicle. For example, RTK (Real Time Kinematic) and INS (Inertial
Navigation System) are combined for positioning. Body combination sensors, including
longitudinal acceleration sensors, lateral acceleration sensors and yaw rate sensors are used
for pose calculation.

Considering that the signals from pose sensors contain uncertain noise interference,
it is necessary to design a reasonable signal filter to obtain accurate pose signals. At the
same time, the acquisition of road condition information, such as road adhesion coefficient
and road slope, can be realized by designing corresponding state observers based on the
information from pose sensors. Since the focus of this paper is on the trajectory tracking
coordinated control, this part will not be elaborated in detail.

2.3. Chassis Control Architecture

Based on the vehicle states obtained by pose sensors, the trajectory tracking controller
receives the expected path and velocity information sent by the decision planning layer and
controls the longitudinal and lateral movement of the vehicle so that the vehicle follows
the expected path. In addition, 4WID-4WIS EV has multiple degrees of freedom, and the
driving and steering of each wheel are controllable, which provides a basis for realizing
multi-objective coordinated control of the chassis. In summary, this research aims to achieve
the expected trajectory tracking while improving driving stability and energy economy.

The chassis control architecture designed in this paper is shown in Figure 3, which has
a layered structure and is divided into target planning layer and coordinated control layer.

Based on the decentralized control structure, the target planning layer receives the
expected path and velocity information and decouples the longitudinal and lateral control
targets. In the longitudinal direction, an expert PID control method is used to track the
desired velocity and output the generalized longitudinal force. In the lateral direction,
the MPC algorithm is used to perform the multi-objective real-time rolling optimization
considering the stability constraints, such as yaw rate and tire slip angle. It outputs the
generalized yaw moment and the generalized wheel angle.
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Figure 3. The chassis coordinated control architecture.

The coordinated control layer distributes the torque and wheel angle of each wheel
according to the generalized force, generalized yaw moment, and generalized wheel angle,
which realizes the calculation of the control objective of the motor actuator. Considering
the efficiency characteristics of the in-wheel motor, the torque distribution control uses
the MPSO algorithm to optimize the torque of the front and rear wheels offline. Then, the
two-dimensional diagram of the optimal torque distribution coefficient is generated and
real-time table look-up is performed according to the vehicle state to calculate the torque
for each wheel. The wheel angle distribution strategy considers the wheel slip angle and
distributes the generalized wheel angle based on the modified Ackerman theory to obtain
the wheel angles. Finally, the torque and angle of each wheel are output to in-wheel motors
and steering motors to realize the closed-loop control of the strategy.

2.4. Target Planning

The target planning layer completes the resolution of the chassis control targets based
on the expected trajectory. The expected vehicle trajectory includes information about
the expected path and velocity, i.e., the expected coupling of the vehicle’s longitudinal
and lateral motion states. Trajectory tracking strategies can be divided into decentralized
control and centralized control according to different control structures. Decentralized
control [24,25] refers to the decoupling of longitudinal and lateral vehicle motion, i.e., it
decomposes the trajectory tracking problem into longitudinal velocity tracking and lat-
eral path tracking problems and designs corresponding control objectives. Centralized
control [26–28], on the other hand, means that the longitudinal and lateral motion in the
trajectory tracking problem is considered uniformly, with a global controller computing
the longitudinal and lateral control targets. The centralized trajectory tracking controller
considers the system holistically and can better account for the coupling properties between
longitudinal and lateral motion control. However, the higher dimensionality and complex-
ity of the system model make it more challenging to design control laws than decentralized
control, and it is also more computationally intensive and costly to implement physically.
In contrast, the decentralized trajectory tracking strategy is relatively simple and easy to
implement in engineering practice. In this work, the trajectory tracking strategy adopts
a decentralized structure, decouples the trajectory tracking problem into a longitudinal
velocity tracking problem and a lateral path tracking problem, and designs the tracking
strategy to calculate the desired generalized force and moment.

2.4.1. Longitudinal Velocity Tracking

The uncertainty of vehicle system parameters, uncertain external disturbances, and
nonlinear coupling between systems lead to difficulties in tuning PID control parameters
and low robustness of dynamic and steady-state performance of vehicle velocity track-
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ing [29]. In this work, the expert PID algorithm is used in conjunction with the expert
system theory to track the longitudinal velocity.

The expert PID algorithm is based on various knowledge of the controlled object
and the control laws. If the precise model of the controlled object is not available, the
PID parameters are designed using expert experience. The deviations and increments
of deviations are used to determine the current state of the controlled system. Rules are
designed to adjust the output of the controller to achieve faster and smoother convergence
of the controlled system.

Assume that e(k) = v(k)− vd(k) is the velocity error, and Δe(k) = e(k)− e(k − 1) is
the velocity error increment. At the same time, based on engineering practice experience,
the maximum deviation value is set as Mmax, the middle deviation value is set as Mmid
and the minimum deviation value is set as Mmin. According to the setting of deviation,
deviation increment and extreme value of deviation, the setting rules are as follows:

(1) When |e(k)| > Mmax, it means that the velocity error is unacceptably large. At this
time, the controller should be directly output at full load, that is, u(k) = Fxmax.

(2) When e(k) ∗ Δe(k) > 0, Δe(k) = 0, it means that the velocity deviation is changing in
the direction of increasing the absolute value of the deviation, or the deviation is a
certain fixed value, then

u(k) = u(k − 1) + k1
{

kie(k) + kpΔe(k) + kdΔΔe(k)
}

(13)

If |e(k)| > Mmid, the velocity deviation is also large, and it may be considered to
increase the output gain k1 of the controller.

(3) When e(k)Δe(k) < 0, Δe(k)Δe(k − 1) > 0, e(k) = 0, it means that the absolute
value of the velocity deviation is changing in the direction of decreasing, or has
reached the equilibrium state. Then, the controller output remains unchanged, that is,
u(k) = u(k − 1).

(4) When e(k)Δe(k) < 0, Δe(k)Δe(k − 1) < 0, it means that the velocity deviation is in
the limit state, then,

u(k) = u(k − 1) + k2kie(k) (14)

If |e(k)| > Mmid, it means that the velocity deviation is also large, and it may be
considered to increase the output gain k2 of the controller.

(5) When |e(k)| < Mmin, it means that the absolute value of the velocity deviation is very
small. In order to reduce the static error of the system, PI control is implemented:

u(k) = u(k − 1) + kie(k) + kpΔe(k) (15)

To sum up, the generalized longitudinal force is expressed as:

Fxd(k) = u(k) (16)

2.4.2. Lateral Path Tracking

Intelligent driving faces a complex and changing environment where conditions, such
as critical safety constraints and actuator constraints, must be met [30–32]. In this paper,
MPC is used to realize the lateral path tracking considering the driving stability constraints.

1. Predictive model design

The predictive model is the basis of the MPC used to predict the future output of
the controlled system. The vehicle is a complex coupled nonlinear dynamic model. More
degrees of freedom can improve the modeling accuracy, but the complexity of the model
will also increase, making it difficult to meet the requirements for fast model solutions and
real-time control. Therefore, dynamic modeling must strike a balance between improving
model accuracy and reducing model complexity. Considering the accuracy and real-time
requirements for lateral control of vehicles, a nonlinear three degrees-of-freedom vehicle
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model with lateral and longitudinal coupling is established in this paper to realize the
prediction of system output as shown in Figure 4.

Figure 4. Nonlinear three degrees-of-freedom vehicle model.

Based on the established dynamic model, the force analysis is performed:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m
( .
vy + vxωr

)
= Cf

( vy+l f ωr
vx

− δ f

)
+ Cr

(
vy−lrωr

vx
− δr

)
− mvxωr

Iz
.

ωr = l f Cf

( vy+l f ωr
vx

− δ f

)
− lrCr

(
vy−lrωr

vx
− δr

)
+ Mzd

.
ϕ = ωr.
x = vx cos ϕ − vy sin ϕ
.
y = vx sin ϕ + vy cos ϕ

(17)

where, ϕ is the heading angle, Cf and Cr are the equivalent cornering stiffnesses of the front
axle and the rear axle, respectively, δ f is the front wheel angle, δr is the rear wheel angle,
Mzd is the generalized yaw moment, x and y are the longitudinal and lateral coordinates of
the centroid in the geodetic coordinate system, respectively.

In the path tracking process, the desired heading angle and lateral coordinate can be
obtained from the longitudinal coordinate of the current vehicle position. The state variable
X, the control variable u and the output variable Y of the controller can be shown as:

X =
[
vy, ϕ, ωr, y, x

]T

u =
[
δ f , δr, Mzd

]T

Y = [ϕ, y]T
(18)

Assuming that the longitudinal velocity remains constant during path tracking, in
order to meet the real-time requirements of high-speed control, this paper uses Taylor’s
formula to linearize the nonlinear system. The Taylor expansion is performed at the
reference point, and the high-order differential components are rounded off. Then, the
discretization is carried out using the first-order difference quotient method, as shown
in Equation (19).

X(k + 1) = aX(k) + bu(k − 1) + bΔu(k) + d(k) (19)

where,
a = I + T ∂ f

∂X , b = T ∂ f
∂u

d(k) = Xr(k + 1)− aXr(k)− bur(k)
(20)

the augmented state variables are constructed:

ξ(k + 1) =
[

X(k + 1)
u(k)

]
=

[
a b

0Nu×Nx INu×Nu

]
ξ(k) +

[
b

INu×Nu

]
Δu(k) +

[
d(k)

0Nu×1

]
(21)

where, Nx is the number of state variables, and Nu is the number of control variables.
Equation (21) can be simplified as

ξ(k + 1) = Aξ(k) + BΔu(k) + d(k) (22)
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where,

A =

[
a b

0Nu×Nx INu×Nu

]
, B =

[
b

INu×Nu

]
, d(k) =

[
d(k)

0Nu×1

]
(23)

Therefore, the discretized output equation can be obtained as:

Y(k + 1) = Cξ(k + 1) (24)

where,

C =

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

]
(25)

The prediction time-domain length is set as p, and the control time-domain length is
set as c (p ≥ c). Assuming that the control increment outside the control time domain is
zero, the predicted output equation of the system can eventually be obtained by iteration,
as shown in Equation (26).

Yp(k) = Φξ(k) + ΘΔU(k) + ΓD(k) (26)

where,

Yp(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y( k + 1|k)
Y( k + 2|k)
Y( k + 3|k)

...
Y( k + c|k)

...
Y( k + p|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ΔU(k) =

⎡
⎢⎢⎢⎢⎢⎣

Δu(k)
Δu(k + 1)
Δu(k + 2)

...
Δu(k + c − 1)

⎤
⎥⎥⎥⎥⎥⎦, D(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d(k)
d(k + 1)
d(k + 2)

...
d(k + c − 1)

...
d(k + p − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA
CA2

CA3

...
CAc

...
CAP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB 0Ny×Nu 0Ny×Nu · · · 0Ny×Nu

CAB CB 0Ny×Nu · · · 0Ny×Nu

CA2B CAB CB · · · 0Ny×Nu
...

...
...

...
...

CAc−1B CAc−2B CAc−3B · · · CB
...

...
...

...
...

CAp−1B CAp−2B CAp−3B · · · CAp−cB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 0Ny×(Nx+Nu) 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu)

CA C 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu)

CA2 CA C · · · 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu)

...
...

...
...

...
...

...
CAc−1 CAc−2 CAc−3 · · · C · · · 0Ny×(Nx+Nu)

...
...

...
...

...
...

...
CAp−1 CAp−2 CAp−3 · · · CAp−c · · · C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

2. Objective function design

The control objective of lateral path tracking is to ensure that the vehicle tracks the
desired path smoothly, accurately, and quickly. Therefore, the objective function in this
paper is designed as shown in Equation (30).

J =
[
Yp(k)− Yre f

]T
QQ

[
Yp(k)− Yre f

]
+ ΔU(k)T RRΔU(k) (30)
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where, QQ = Ip ⊗ Q, RR = Ic ⊗ R, Q is the weight coefficient matrix of the output of the
control system, R is the weight coefficient matrix of the control increment, and ⊗ represents
the Kronecker product.

The first in the objective function represents the deviation of the heading angle and
the deviation of the lateral displacement, which characterizes the accuracy of the vehicle in
tracking the desired path. The second limits the control increment, which not only ensures
the stability and continuity of the control but also takes into account the response capability
of the actuator. Equation (30) can be simplified as,

J = [E + ΘΔU(k)]TQ[E + ΘΔU(k)] + ΔU(k)T RΔU(k) (31)

where,
E = Φξ(k) + ΓD(k)− Yre f (32)

Considering that E is a constant matrix at each sampling moment, it can be omitted.
The final objective function in standard quadratic programming form is obtained, as shown
in Equation (33).

J = ΔU(k)T
(

ΘTQΘ + R
)

ΔU(k) + 2ETQΘΔU(k) (33)

3. Constraints design

A major advantage of MPC over other control methods is that it handles constraints
better. MPC is a rolling optimization process that can naturally incorporate constraints into
the optimization problem. For the path-following controller in this paper, the constraints
are mainly considered in the form of the constraint on the control increment, the constraint
on the control set, and the stability constraints.

In order to make the control process more stable and improve the stability and comfort
of the vehicle when tracking the desired path, the control increment should be constrained.
Due to the constraints of the actuator, there are also constraints on the control variables,
such as front wheel angle, rear wheel angle, and generalized yaw moment. So, in summary,
the following can be said:

Umin(k) ≤ Uct(k − 1) + Act ∗ ΔU(k) ≤ Umax(k) (34)

where,

Uct(k − 1) =

⎡
⎢⎢⎢⎣

u(k − 1)
u(k − 1)

...
u(k − 1)

⎤
⎥⎥⎥⎦, Act =

⎡
⎢⎢⎢⎣

1 0 · · · 0
1 1 · · · 0
...

...
...

...
1 1 1 1

⎤
⎥⎥⎥⎦⊗ Ic (35)

To ensure that the vehicle has good stability while tracking the desired path, stability
constraints must be imposed on the MPC optimization problem. The stability constraints
generally start with the two parameters yaw rate and tire slip angle. Therefore, the con-
straint output variable is defined as Yb = [ωr, αr]

T . The expression for the constraint output
can be obtained, as shown in Equation (36).

Yb(k + 1) = Cbξ(k + 1) (36)

where,

Cb =

[
0 0 1 0 0 0 0 0
1

vx
0 − lr

vx
0 0 0 −1 0

]
(37)

The predicted output equation for the stability constraint is shown in Equation (38).

Yp,b(k) = Φbξ(k) + ΘbΔU(k) + ΓbD(k) (38)
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where,

Yp,b(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yb( k + 1|k)
Yb( k + 2|k)
Yb( k + 3|k)

...
Yb( k + c|k)

...
Yb( k + p|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Φb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cb A
Cb A2

Cb A3

...
Cb Ac

...
Cb AP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(39)

Θb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CbB 0Ny1×Nu 0Ny1×Nu · · · 0Ny1×Nu

Cb AB CbB 0Ny1×Nu · · · 0Ny1×Nu

Cb A2B Cb AB CbB · · · 0Ny1×Nu
...

...
...

...
...

Cb Ac−1B Cb Ac−2B Cb Ac−3B · · · CbB
...

...
...

...
...

Cb Ap−1B Cb Ap−2B Cb Ap−3B · · · Cb Ap−cB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

Γb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cb 0Ny1×(Nx+Nu) 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu)

Cb A Cb 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu)

Cb A2 Cb A Cb · · · 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu)

...
...

...
...

...
...

...
Cb Ac−1 Cb Ac−2 Cb Ac−3 · · · Cb · · · 0Ny1×(Nx+Nu)

...
...

...
...

...
...

...
Cb Ap−1 Cb Ap−2 Cb Ap−3 · · · Cb Ap−c · · · Cb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

Based on the road adhesion conditions and the tire slip angle limits, it can be shown
in Equation (42).

Yb,min ≤ Φbξ(k) + ΘbΔU(k) + ΓbD(k) ≤ Yb,max (42)

In summary, the finite time domain optimization problem for MPC in this paper can
be transformed into a standard quadratic programming problem:

min
ΔU(k)

ΔU(k)T(ΘTQΘ + R
)
ΔU(k) + 2ETQΘΔU(k)

s.t. ΔUmin(k) ≤ ΔU(k) ≤ ΔUmax(k)
Umin(k) ≤ Uct(k − 1) + Act ∗ ΔU(k) ≤ Umax(k)
Yb,min ≤ Φbξ(k) + ΘbΔU(k) + ΓbD(k) ≤ Yb,max

(43)

The optimal sequence of control increments is obtained by solving the standard
quadratic programming problem, and the first element Δu∗(k) is output. The control
variable at the current moment can be described as Equation (44).

u(k) = u(k − 1) + Δu∗(k) (44)

2.5. Coordinated Control

The coordinated control layer receives the generalized force, generalized yaw moment,
and generalized wheel angle from the upper layer. The wheel torque and the wheel
angle are calculated and output to in-wheel motors and steering motors. Depending on the
actuating subsystem, the coordinated control layer consists of two parts: torque distribution
control and wheel angle distribution control.



Sensors 2023, 23, 5496

2.5.1. Torque Distribution Control

The torque distribution control receives the generalized longitudinal force and the
generalized yaw moment output from the upper level and distributes and controls the
driving torque of the individual wheels. The current research in torque distribution mainly
considers the stability index and economic index as the control objective and uses online
real-time optimization to complete the torque coordinated distribution [33,34]. However,
current research has the following limitations:

• The rule-based torque distribution control does not consider the operating efficiency
of motor, resulting in unnecessary power loss.

• The real-time optimization of torque distribution places a large burden on the con-
troller. The solution speed may be slow and this problem may even be unsolvable
under certain working conditions.

• The economic evaluation generally uses the size of the control variables as the index,
ignoring the efficiency characteristics of the motor. This is mainly due to the nonlinear-
ity of the motor model, which makes it impossible to optimize the system efficiency
in real-time.

To address these issues, this paper simplifies the real-time optimization problem of
torque distribution in order to balance practical and optimization objectives. A combination
of rule-based strategy and offline optimization strategy is used for the distribution strategy.
A rule-based strategy is designed to distribute the torque between the left and right wheels.
Considering the stability constraints, the optimization of the torque distribution coefficients
between the front and rear wheels based on the MPSO algorithm leads to an optimal wheel
torque, improving the efficiency while ensuring the response speed of the vehicle. First, the
torque distribution between left and right wheels is carried out based on the generalized
longitudinal force and generalized yaw moment requirements. Then, the MPSO algorithm
is used to optimize the torque distribution offline between the front and rear wheels on the
same side to obtain the optimal distribution coefficient of the front axle. Finally, the driving
torque of each wheel is calculated.

1. Left-right distribution

A rule-based strategy is used for the generalized longitudinal force to distribute it
equally between the left and right sides of the vehicle. The corresponding demand torques
are obtained as follows.

TdlF = TdrF =
Fxd
2

Re f f (45)

where, TdlF and TdrF are the left-hand and right-hand demand torques, respectively, corre-
sponding to the generalized longitudinal forces.

The same uniform distribution is used for the generalized yaw moment. The yaw
moment generated by the wheels on both sides is equal and has an opposite direction,
which can shorten the response time of the vehicle and speed up the response speed. It can
be represented as Equation (46).

TdlM = −Mzd
d Re f f

TdrM = Mzd
d Re f f

(46)

where, TdlM and TdrM are the left-hand and right-hand demand torques, respectively
corresponding to the generalized yaw moment.

The total demand torques are,

Tdl =
Fxd
2 Re f f − Mzd

d Re f f

Tdr =
Fxd
2 Re f f +

Mzd
d Re f f

(47)

where, Tdl and Tdr are the left-hand and right-hand demand torques, respectively.

2. Front-rear distribution
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For the front and rear wheels on the same side, the total demand torque is fixed. The
independent drive function allows the torque of the front and rear wheels to be optimally
distributed so that in-wheel motors can operate in the high-efficiency range as far as
possible. Considering the high time complexity of online optimization, this paper uses the
MPSO algorithm to optimize the distribution coefficient of the front axle offline, and it is
put into a tabular form for subsequent table lookup operations which ensures the real-time
performance of the system.

(1) The MPSO algorithm

PSO (Particle Swarm Optimization) is a type of swarm intelligent optimization algo-
rithm [35]. In PSO, each solution of the optimization problem is abstracted as a particle,
and all particles search for the optimal solution in the solution space. Each particle is
assigned a fitness function to determine the fitness of the current location, and a speed
property to determine the distance and direction of flight, after which the optimal solution
is determined by iteration.

The traditional PSO algorithm has the advantage of fast convergence, but it can easily
fall into local optimal solutions in some complex situations. Therefore, the MPSO algorithm
is introduced to avoid the problem of premature convergence. The MPSO algorithm
combines the traditional PSO algorithm with the idea of mutation in the genetic algorithm.
The mutation occurs when the population location is updated, thereby jumping out of
the local optimal solution, which is conducive to finding the global optimal solution and
reduces the probability of premature convergence. The process of the MPSO is shown
in Figure 5.

(2) Distribution coefficient optimization

Since the four in-wheel motors are the same, the offline optimization problems on the
left and right sides are essentially the same, so this paper takes the right-side wheel as an
example. In order to carry out the optimization, the economy needs to be characterized
and this paper uses the overall motor efficiency as the economic index. The expression of
the overall motor efficiency is,

J =
Tf rn f r + Trrnrr

Tf rn f r
η f r

+ Trrnrr
ηrr

(48)

where, Tf r and Trr are the output torques of the right front and right rear motors, respectively,
n f r and nrr are the output speeds of the right front and right rear motors, respectively, and
η f r and ηrr are the output efficiencies of the right front and right rear motors, respectively.

To simplify the complexity of the optimization problem, the concept of the front axle
distribution coefficient λ is introduced, which is the ratio of the front wheel torque to the
total demand torque.

During normal driving, there is little difference in speed between the front and rear
wheels on the same side, so the optimization problem can be translated into Equation (49).

minJ =
λ

η f r
+

1 − λ

ηrr
(49)

Considering the constraints on the external characteristics of the in-wheel motor, the
following constraints are made:

0 ≤ λTdr ≤ Tmax
0 ≤ (1 − λ)Tdr ≤ Tmax

(50)

where, Tmax is the peak torque of the in-wheel motor.
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Figure 5. Flowchart of MPSO algorithm.

In addition, depending on the vehicle model, the center of mass is closer to the front
axle, which means that the vertical load on the front axle is greater than that on the rear axle.
This results in a greater tire adhesion limit for the front wheel, with a greater longitudinal
force limit. Therefore, the front wheels should take on a larger portion of the required
torque. The following restriction applies to the distribution coefficient of the front axle.

0.5 ≤ λ ≤ 1 (51)

Factors affecting the front axle distribution coefficient include the velocity and the
demand torque, wherein the velocity is represented by wheel speed. Based on the MPSO
algorithm, the offline optimization of the front axle distribution coefficient is realized by
programming in MATLAB. Finally, the mapping of the optimal distribution coefficient for
the front axle is shown in Figure 6. The optimal distribution coefficient for the front axle is
determined by the velocity and the demand torque, which realizes the torque distribution
between the front and rear wheels on the same side. From the optimization results, when
the demand torque is low, the front wheel drive is selected; when the demand torque is
high, it tends to be four-wheel drive.

Figure 6. Optimal front axle distribution coefficient.
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(3) Torque calculation for each wheel

Based on the optimal coefficient for the distribution of front axle torque determined via
offline optimization, the torque for each wheel can be calculated. The offline optimization of
the front axle distribution coefficients takes into account the constraints on the peak torque
of the in-wheel motors but still requires stability corrections according to the constraints on
road adhesion, as shown in Equation (52).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Tf l = min

(
|λlTdl |, μFz f l

)
· sgn(Tdl)

Tf r = min
(
|λrTdr|, μFz f r

)
· sgn(Tdr)

Trl = min(|(1 − λl)Tdl |, μFzrl) · sgn(Tdl)
Trr = min(|(1 − λr)Tdr|, μFzrr) · sgn(Tdr)

(52)

where, λl and λr are the optimal front axle distribution coefficients for the left and right
side, respectively. Tij is the torque of each wheel, μ is the coefficient of road adhesion, and
Fzij is the vertical load of each wheel, which can be obtained using Equation (53).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fz f l =
mglr

2l − maxh
2l − mayhlr

dl

Fz f r =
mglr

2l − maxh
2l +

mayhlr
dl

Fzrl =
mgl f

2l + maxh
2l − mayhl f

dl

Fzrr =
mgl f

2l + maxh
2l +

mayhl f
dl

(53)

2.5.2. Wheel Angle Distribution Control

The generalized wheel angle calculated by the target planning layer is the correspond-
ing angle at the center of the front and rear axles, which is referred to as the equivalent
angle of the front and rear wheels. Traditional control methods often assume that the left
and right wheels on the same axis have the same angle, which directly corresponds to
the equivalent angle. Although this method can simplify the design process, it does not
take into account the actual steering geometry relationship, which not only increases tire
wear but also causes unnecessary energy consumption. For this reason, the wheel angle
distribution method based on Ackermann steering geometry is applied in this paper to
convert the equivalent angle into the angle of each wheel.

By distributing the wheel angles based on the Ackermann steering geometry, the tires
can be put into a pure rolling condition as much as possible. However, the ideal Ackermann
steering principle is limited by the fact that it ignores the cornering characteristics of the
tires. To further improve vehicle stability and reduce excessive tire wear, the Ackermann
principle must be modified to obtain wheel angles.

When the vehicle is steering, the lateral elastic deformation of the tires results in the
slip angles of the individual wheels on the front and rear axles. As shown in Equation (54),
the corresponding relationship that each wheel angle should satisfy can be called the
modified Ackermann principle.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

tan(δ f l − α f l) =
tan δ f

1− d
2l (tan δ f −tan δr)

tan(δ f r − α f r) =
tan δ f

1+ d
2l (tan δ f −tan δr)

tan(δrl − αrl) =
tan δr

1− d
2l (tan δ f −tan δr)

tan(δrr − αrr) =
tan δr

1+ d
2l (tan δ f −tan δr)

(54)

3. Simulation and Results

This section is divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.
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3.1. Environment and Configuration

In this section, the simulation model is built based on the MATLAB R2022a software
produced by MathWorks (Natick, MA, USA), as shown in Figure 7. The vehicle model
is the seven degrees-of-freedom vehicle model presented in Section 2. The simulations
were performed using single-lane change and slalom test. The results verify the effect of
trajectory tracking and economic optimization, which fully proves the effectiveness of the
proposed control strategy.

Figure 7. 4WID-4WIS EV simulation model.

To validate the economic performances of the coordinated control, simulations compar-
ing the average distribution strategy and the wheel load distribution strategy are performed.
These two strategies are simple and efficient and are widely used in practice. Therefore, the
advantages of the proposed distribution control strategy can be further emphasized.

3.1.1. Average Distribution Strategy

The generalized longitudinal force and the generalized yaw moment output from the
upper layer are distributed equally to each wheel. The wheel torque in this strategy is
as follows: {

Tf l = Trl =
Fxd
4 Re f f − Mzd

2d Re f f

Tf r = Trr =
Fxd
4 Re f f +

Mzd
2d Re f f

(55)

3.1.2. Wheel Load Distribution Strategy

The generalized force and yaw moment are distributed equally between the left and
right sides of the vehicle. Then, the distribution between the front and rear wheels is carried
out on the same side in proportion to the vertical load on the tires. The wheel torque with
this strategy is shown in Equation (56).⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tf l =
Fz f l

Fz f l+Fzrl

(
Fxd
2 Re f f − Mzd

d Re f f

)
Tf r =

Fz f r
Fz f r+Fzrr

(
Fxd
2 Re f f +

Mzd
d Re f f

)
Trl =

Fzrl
Fz f l+Fzrl

(
Fxd
2 Re f f − Mzd

d Re f f

)
Trr =

Fzrr
Fz f r+Fzrr

(
Fxd
2 Re f f +

Mzd
d Re f f

)
(56)

3.2. Results and Analysis
3.2.1. Single-Lane Change

As one of the common conditions, the single-lane change condition is usually used to
simulate a vehicle lane change scenario.
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1. Trajectory tracking effect

Three speeds of 40 km/h, 80 km/h, and 120 km/h are simulated to verify the effect
of the controller. The longitudinal velocity tracking and lateral path tracking results are
analyzed to verify the performance of the vehicle at low, medium, and high speeds. The
simulation results are shown in Figures 8 and 9.

  
(a) (b) 

Figure 8. Velocity tracking results under single-lane change: (a) The results of velocity; (b) The results
of longitudinal tracking error.

  
(a) (b) 

  
(c) (d) 

Figure 9. Path tracking results under single-lane change: (a) The results of lateral displacement;
(b) The results of heading angle; (c) The results of lateral displacement tracking error; (d) The results
of heading angle tracking error.
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For a single-lane change, the longitudinal velocity tracking algorithm can track the
expected velocity very well according to Figure 8. The tracking error is less than 0.2 km/h,
which satisfies the longitudinal tracking accuracy requirements. As the velocity increases,
the tracking error gradually increases. This is mainly because the nonlinearity of the tire
gradually increases and is associated with the strong coupling properties between the
subsystems, resulting in a decrease in tracking accuracy.

The data in Figure 9c,d have been processed to obtain the tracking error at different
velocities to facilitate quantitative analysis of the error, as shown in Table 1.

Table 1. Comparison of path tracking errors under single-lane change.

Performance Index 40 km/h 80 km/h 120 km/h

Lateral displacement
tracking error (m)

Maximum 0.0115 0.0171 0.0234
Average 0.0024 0.0036 0.0053

Standard deviations 0.0040 0.0058 0.0075

Heading angle
tracking error (rad)

Maximum 0.0012 0.0036 0.0042
Average 0.0002 0.0009 0.0009

Standard deviations 0.0004 0.0012 0.0012

From Figure 9 and Table 1, it can be seen that the lateral path tracking algorithm is
very good at tracking the desired path for single-lane change. As the speed increases, the
lateral displacement error gradually increases. The maximum lateral displacement error is
0.0115 m at 40 km/h, 0.0171 m at 80 km/h, and 0.0234 m at 120 km/h, which is mainly due
to the gradual increase in the nonlinearity of the tire and the enhancement of the coupling
effect of the subsystem. At the same time, although the lateral displacement error increases,
it is still generally small and within acceptable limits. Similarly, the heading angle error
also increases with velocity but remains at a low level overall. The maximum heading
angle error at 120 km/h is only 0.0042 rad, which demonstrates the good path-tracking
performance of the controller.

The trajectory tracking controller is designed to achieve good stability while providing
accurate and reliable path tracking. To check the stability effect, the lateral acceleration
of the vehicle, side slip angle, and yaw rate are selected as indicators, and the simulation
results are analyzed.

From Figures 10–13, it can be seen that the vehicle is in a stable state due to the
stability constraints and no instability occurs even at a high speed of 120 km/h. The lateral
acceleration is kept within 0.4 g, which ensures the accuracy of the linear tire model. The
side slip angles at different speeds are all within 0.01 rad, and the yaw rate is all within
0.15 rad/s, indicating that the vehicle has good driving stability.

The simulation results shown in Figure 13 illustrate the advantages of 4WIS in terms of
dynamic control. At low speeds, the front and rear wheels rotate in the opposite direction,
reducing the steering radius and improving the vehicle’s maneuverability. At high speeds,
the front and rear wheels turn in the same direction, thereby increasing the lateral stability
margin and improving the vehicle’s driving stability.

2. Economy optimization effect

The above three distribution strategies are simulated at different velocities to validate
the economy optimization effect, using the overall efficiency of the motor and the battery
SOC as performance indicators. It is assumed that Rule 1 is the average distribution strategy,
Rule 2 is the wheel load distribution strategy, and Rule 3 is the torque distribution strategy
proposed in this paper. At the same time, the control strategy does not include a braking
energy recovery strategy. The initial value of SOC is set to 0.8. The simulation results are
shown in Figures 14–16 and Table 2.
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Figure 10. Lateral acceleration under single-lane change.

Figure 11. Side slip angle under single-lane change.

Figure 12. Yaw rate under single-lane change.
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Figure 13. Wheel angles under single-lane change: (a) Front-left wheel; (b) Front-right wheel; (c)
Rear-left wheel; (d) Rear-right wheel.

Figure 14. Change in SOC at 40 km/h under single-lane change.



Sensors 2023, 23, 5496

Figure 15. Change in SOC at 80 km/h under single-lane change.

Figure 16. Change in SOC at 80 km/h under single-lane change.

Table 2. Comparison of overall motor efficiency under single-lane change.

Velocity (km/h) Strategy Maximum Average

40
Rule 1 0.7356 0.7303
Rule 2 0.7347 0.7283
Rule 3 0.8411 0.8375

80
Rule 1 0.8969 0.8877
Rule 2 0.8970 0.8882
Rule 3 0.9276 0.9241

120
Rule 1 0.8973 0.8791
Rule 2 0.8972 0.8793
Rule 3 0.9147 0.9107
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For a single-lane change, the change in SOC is almost identical for the average and
wheel load distribution strategies at different speeds. The maximum and average values of
the overall motor efficiency are also almost identical, indicating that the economic effects of
these two strategies are almost the same.

The change in battery SOC represents the electrical energy consumed by the in-wheel
motors while driving. Comparing the change curves of SOC at different speeds, the SOC
change in Rule 3 is smaller than those in Rule 1 and Rule 2, and the SOC in Rule 3 falls
relatively slowly. This shows that the in-wheel motors consume less electric energy in the
Rule 3 strategy, which proves the energy economy of the proposed strategy.

The average value of the overall motor efficiency of Rule 3 is 14.68% higher than
that of Rule 1 at 40 km/h. Compared with the results of Rule 1, the average values at
80 km/h and 120 km/h have increased by 4.10% and 3.5%, respectively. This shows that
the coordinated control strategy proposed in this paper can maintain the overall motor
efficiency at a relatively high level and effectively improve the vehicle economy.

Comparing the effects of economy optimization at different speeds, it can be found
that the economy optimization at low speeds is better, and the difference in SOC decline is
significant. This is because the demand torque is relatively low at low speeds. In the average
distribution strategy, the torque of each wheel is very low, so in-wheel motors operate in the
low-efficiency region. However, the proposed strategy optimizes the torque distribution
and tends to select the front wheel drive mode. This allows the front in-wheel motors
to operate in a relatively efficient range, and the overall efficiency can be significantly
improved. However, at high speeds, the in-wheel motors’ speeds are also high. As shown
in Figure 2, the motor’s efficiency characteristic range gradually narrows as the speed
increases when the motor’s speed is high. The distribution difference of the motor working
points decreases for different strategies, resulting in a less significant improvement effect.

3.2.2. Slalom Test

1. Trajectory tracking effect

Two speeds of 30 km/h and 60 km/h are simulated to verify the effect of the controller.
The longitudinal velocity tracking and lateral path tracking results are analyzed to verify
the performance of the vehicle at different speeds. The simulation results are shown in
Figures 17 and 18.

  
(a) (b) 

Figure 17. Velocity tracking results under slalom test: (a) The results of velocity; (b) The results of
longitudinal tracking error.

The data in Figure 18c,d have been processed to obtain the tracking error at different
velocities to facilitate quantitative analysis of the error, as shown in Table 3.
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(a) (b) 

(c) (d) 

Figure 18. Path tracking results under slalom test: (a) The results of lateral displacement; (b) The
results of heading angle; (c) The results of lateral displacement tracking error; (d) The results of
heading angle tracking error.

Table 3. Comparison of path tracking errors under slalom test.

Performance Index 30 km/h 60 km/h

Lateral displacement
tracking error (m)

Maximum 0.0412 0.0603
Average 0.0158 0.0241

Standard deviations 0.0147 0.0214

Heading angle
tracking error (rad)

Maximum 0.0058 0.0129
Average 0.0011 0.0033

Standard deviations 0.0010 0.0029

From Figure 18 and Table 3, it can be seen that the lateral path tracking algorithm
is very good at tracking the desired path in a slalom test. As the speed increases, the
path-tracking error gradually increases. The average lateral displacement error is 0.0158 m
and the average heading angle error is 0.0011 rad at 30 km/h, while the average lateral
displacement error is 0.0241 m and the average heading angle error is 0.0033 rad at 60 km/h.
Although the tracking error increases, it remains low overall, which shows the good tracking
performance of the designed controller.

Figures 19–22 show that the vehicle is in a stable state due to stability constraints. The
side slip angle is maintained at a low level, which provides good tracking capability. The
lateral acceleration is kept within 0.4 g, ensuring the accuracy of the linear tire model. The
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velocities under both simulation conditions are not particularly high, so the front and rear
wheels turn in opposite directions, which improves the maneuverability of the vehicle
while meeting the stability requirements.

 
Figure 19. Lateral acceleration under slalom test.

 
Figure 20. Side slip angle under slalom test.

Figure 21. Yaw rate under slalom test.
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Figure 22. Wheel angles under slalom test: (a) Front-left wheel; (b) Front-right wheel; (c) Rear-left
wheel; (d) Rear-right wheel.

2. Economy optimization effect

The above three distribution strategies are simulated at different speeds to validate the
economy optimization effect, using the overall efficiency of the motor and the battery SOC as
performance indicators. The simulation results are shown in Figures 23 and 24 and Table 4.

Figure 23. Change in SOC at 30 km/h under slalom test.
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Figure 24. Change in SOC at 80 km/h under slalom test.

Table 4. Comparison of overall motor efficiency under slalom test.

Velocity (km/h) Strategy Maximum Average

30
Rule 1 0.6404 0.6151
Rule 2 0.6409 0.6121
Rule 3 0.7857 0.7484

60
Rule 1 0.8973 0.7995
Rule 2 0.8971 0.7987
Rule 3 0.9345 0.8829

In the slalom test, the change in SOC is almost identical for the average and wheel
load distribution strategies at different speeds. The maximum and average values of the
overall motor efficiency are also almost identical, indicating that the economic effects of
these two strategies are almost the same.

Comparing the change curves of SOC at different speeds, the change in SOC in Rule 3
is smaller than in Rule 1 and Rule 2, and the SOC in Rule 3 drops relatively slowly. This
shows that the in-wheel motors consume electric energy under the Rule 3 strategy, which
proves the energy economy of the proposed strategy.

The coordinated control proposed in this paper is significantly better than the other
two strategies, as shown in Table 4. Compared with the results of Rule 1, the average value
of the overall motor efficiency of Rule 3 has increased by 21.67% at 30 km/h. At 60 km/h, it
has increased by 10.43%, which proves that the coordinated control strategy can effectively
improve the vehicle economy.

4. Conclusions

In this paper, a 4WID-4WIS EV trajectory tracking coordinated control strategy consid-
ering energy consumption economy is proposed to improve vehicle stability and economy
during trajectory tracking. A hierarchical chassis coordinated control architecture for 4WID-
4WIS EV is designed. In the target planning layer, the longitudinal velocity tracking and
lateral path tracking are achieved by using expert PID and MPC, respectively, consider-
ing stability constraints, such as yaw rate and tire slip angle. In the coordinated control
layer, the optimal torque distribution for each wheel is performed to achieve the optimal
overall motor efficiency based on the MPSO algorithm. Then, the angle distribution of
each wheel is performed in combination with the modified Ackermann theory. From the
simulation results, it can be concluded that the proposed coordinated control strategy not
only achieves good trajectory tracking but also ensures driving stability and improves the
energy consumption economy.

In future work, the coupling characteristics between multiple subsystems will be
considered. The influence of vertical dynamics will be incorporated into the control strategy
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to achieve unified control of multi-dimensional lateral, longitudinal, and vertical dynamics.
At the same time, the motor model will be further improved, and research on redundant
control of actuator failures will be conducted. The test with a real vehicle will be conducted
to further verify the effectiveness of the control strategy.
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Abstract: The recent advancements in Intelligent Transportation Systems (ITS) have revealed signifi-
cant potential for enhancing traffic management through Advanced Driver Assist Systems (ADASs),
with benefits for both safety and environment. This research paper proposes a vehicle localization
technique based on Kalman filtering, as accurate positioning of the ego-vehicle is essential for the
proper functioning of the Traffic Light Advisor (TLA) system. The aim of the TLA is to calculate
the most suitable speed to safely reach and pass the first traffic light in front of the vehicle and
subsequently keep that velocity constant to overcome the following traffic light, thus allowing safer
and more efficient driving practices, thereby reducing safety risks, and minimizing energy consump-
tion. To overcome Global Positioning Systems (GPS) limitations encountered in urban scenarios,
a multi-rate sensor fusion approach based on the Kalman filter with map matching and a simple
kinematic one-dimensional model is proposed. The experimental results demonstrate an estimation
error below 0.5 m on urban roads with GPS signal loss areas, making it suitable for TLA application.
The experimental validation of the Traffic Light Advisor system confirmed the expected benefits with
a 40% decrease in energy consumption compared to unassisted driving.

Keywords: vehicle localization; Kalman filter; ADAS; kinematic model; GPS; TLA; ITS

1. Introduction

Vehicle localization represents a fundamental task in many fields, ranging from Au-
tonomous Vehicles (AV) to Advanced Driving Assistance Systems (ADASs) as well as traffic
management [1]. Indeed, the starting point for most of the control logic, on both the vehicle
and infrastructure sides, is the knowledge of the vehicle position. This is typically fed to
algorithms intended to compute either vehicle optimal trajectory and speed or safety risk
indexes to safely overcome dangerous situations, especially in urban scenarios.

Vehicle localization techniques can be distinguished between the onboard sensor-based
systems and those relying upon Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication. The former category can be further split into active sensor based
(e.g., LiDAR and RADAR) and passive sensor based (e.g., GPS and IMU). On the one hand,
active sensors are generally more costly and computationally expensive than passive ones.
On the other hand, Inertial Measurement Units (IMUs) suffer from noisy signals which may
lead to integration divergence, while when dealing with Global Positioning Systems (GPS)
a typical issue is the signal loss [2]. In vehicle localization, GPS outage is thus a relevant
phenomenon to cope with, especially in urban scenarios, where the presence of trees and
high buildings limit the sensor capabilities.

The Green Light Optimal Speed Advisory (GLOSA) system is an application that
conveys speed references to the driver to achieve lower travel times, fuel/energy consump-
tion, and safer travel conditions [3]. This can be achieved thanks to the knowledge of
road data, the vehicle state in terms of position and speed, and traffic light schedules. The
speed profile calculation is typically addressed by taking into account different criteria.
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One typical approach is to minimize the engine power demand and idling time [4]. Another
approach prioritizes driver annoyance reduction by minimizing the difference between the
suggested and actual speeds, or by aiming to pass the traffic light in the smallest amount of
time [5].

In this framework, the present study proposes a multi-sensor multi-rate vehicle local-
ization technique based on Kalman filtering as the ego-vehicle position is a prerequisite for
making ADASs work. The aim is to have an accurate state estimation that provides the
vehicle position to the Traffic Light Advisor (TLA) system thought to be used in challenging
scenarios such as urban roads, where pure GPS information may be neither present nor
reliable. The field tests for the localization algorithm demonstrated good accuracy results
in different conditions and GPS signal availability, proving to be consistent for running
ADASs, such as the TLA. Furthermore, having implemented the localization algorithm
and knowing the working plans of a set of traffic lights on a predefined path of the city
of Milan, the paper reports full-scale testing on a trolley-bus in the urban scenario of
the TLA developed by [6] at Politecnico di Milano, confirming the previously obtained
simulation results.

The remainder of this paper is structured as follows: After the literature review in
Section 2, the experimental setup used for the experimental campaigns is presented in
Section 3. Section 4 details the proposed localization algorithm, and Section 5 summarizes
the main feature of the TLA and presents the scenarios and the metrics adopted for the
ADAS validation. The results of both the localization algorithm and the TLA system are
reported in Section 6 while Section 7 draws the conclusions of this work, proposing some
future development for the implemented systems.

2. State of the Art

In the literature, the criteria employed for the determination of the speed profile in
GLOSA applications typically involve the minimization of the total energy consumption
and travel time [7–10]. This kind of ADAS can be further distinguished into two cate-
gories based on the number of traffic lights they consider in real time to determine the
recommended speeds: single-segment GLOSA (S-GLOSA) and multiple-segment GLOSA
(M-GLOSA). S-GLOSA systems focus on analyzing the first traffic light encountered by
the vehicle, while M-GLOSA systems consider multiple traffic lights along the vehicle’s
route. In the case of S-GLOSA algorithms, they typically employ modeling approaches
incorporating velocity profiles both upstream and downstream of the intersection, as
demonstrated in [11]. However, in recent years, data-driven approaches have emerged as
a promising alternative, as highlighted in [12]. In that research, a conventional S-GLOSA
system is contrasted with reinforcement learning (RL) implementation, which incorporates
data from a single traffic light and limited information from the preceding three vehicles.
The RL-based approach resulted in an 11% increase in energy savings compared to the
standard S-GLOSA system. These developments in data-driven methodologies highlight
the potential to enhance the performance and energy efficiency of GLOSA systems.

In the future, Vehicle-to-Infrastructure (V2I) communication will be one of the main
drivers making this kind of Advanced Driving Assistance System possible by providing
a great amount of data about adjacent vehicles and traffic [13]. In fact, the work in [14]
analyzes the effect of the GLOSA system running different simulations varying both infras-
tructure variables (e.g., cycle times and communication range) and external variables, such
as traffic conditions. As far as traffic is concerned, the research conducted in [15] demon-
strates the effectiveness of M-GLOSA systems compared to single-segment approaches,
especially in free-flow traffic conditions. However, optimizing M-GLOSA systems while
considering traffic light phase changes presents challenges, leading to non-convex feasible
solution domains. To tackle this issue, the literature proposes various approaches. Stud-
ies like [8,15] have implemented Genetic Algorithms (GAs) to address the optimization
problem. Additionally, search-based algorithms, employing semi-heuristic or brute-force
methods, have also been explored in [11]. A widely adopted alternative is Model Predic-
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tive Control (MPC), and the authors in [16] investigated the MPC application for GLOSA
implementation in road segments containing multiple traffic lights.

Self-localization has been extensively studied in the literature for a long time, as it
serves as a crucial component in the development of Cooperative Active Safety Systems
and ADASs in general. In a comprehensive review conducted in [17], various sensor-based
and communication-based approaches for localization are thoroughly examined, with a
specific focus on accuracy and real-time performance. The findings of the survey show
that data fusion techniques, such as the integration of onboard passive sensors and Vehicle-
to-Everything (V2X) communication, offer a promising solution due to their robustness,
accuracy, and ability to operate in real time.

GPS outages represent a huge limiting point in vehicle localization in urban canyoning;
thus, the most adopted strategy to cope with this issue is to use the Kalman filter and
its variants to estimate the vehicle state also when GPS is not available, fusing different
sensors (e.g., Inertial Measurement Unit and Wheel Speed Sensor) and a dynamic vehicle
model [18,19]. In [2], an extended Kalman filter (EKF) fusing a digital map, IMUs, GPS
data, and cellular Base Transceiver Stations (BTS) signals is presented. In their work, the
authors proposed the use of cellular BTS not only to overcome GPS outages but also to
improve localization accuracy.

Recently, LiDAR and vision sensors have been adopted to overcome the challenges of
localization in urban scenarios, fusing these types of sensors to cope with the limitation
of every single device [20]. In [21], a cascading Kalman filter and dynamic object removal
model using multi-GNSS, INS, Precise Point Positioning (PPP), and vision to improve
vehicle navigation performances in urban scenarios is presented. In this framework, a
novel application in state estimation is Simultaneous Localization and Mapping (SLAM)
which can be involved either in AV applications or in Cooperative ITS. On the one hand,
Bersani et al. [22] presents an integrated system for vehicle state estimation using unscented
Kalman filter fusing data from different passive sensors, such as GPS and IMUs, and from
active sensors, like RADAR and LiDAR, which are used to detect and track obstacles as
well as improve the localization algorithm. On the other hand, Wang et al. [23] compares
different localization systems based on both GNSS and V2X communication for inter-vehicle
distance calculation, which is needed for safety ADAS applications.

An interesting challenge in fusing different sensors is dealing with their different
sampling frequency. In fact, in asynchronous multi-sensor systems, there is the possibility
to miss some data when performing state estimation [24]. The authors in [25] presented
different multi-rate multi-sensor models for Kalman filtering with missing measurements.
The idea is to run the state estimation algorithm at the fastest sensor frequency and just
predict the state vector whenever a sensor is missing or it is considered not reliable.

In addition to the widely studied Kalman filtering techniques, which are extensively
covered in the vehicle localization literature, alternative strategies like graph optimization
have also been explored. The authors in [26] introduced a novel approach in their work,
presenting a multi-sensor fusion method formulated as a graphical model. This model
optimizes the integration of onboard sensors to enhance positioning performance, utilizing
a kinematic vehicle model as the underlying basis.

Recently, the advent of the 5G network cooperative oriented the research toward new
horizons, such as cooperative localization and the Internet of Vehicles (IoV). In fact, thanks
to the perception algorithm of the surrounding vehicles, vehicle communication allows
gathering localization information that can be used to either improve the ego-vehicle state
estimation when GPS is not accurate [27] or to fill the gap in case the GPS signal is missing
for long periods [28]. Another approach investigated in the literature in the last decades is
the use of Assisted-GPS (A-GPS) systems which exploit the terrestrial communication link
to determine the current location [29]. This type of localization is typically employed on
cell phones to avoid decoding the GPS messages for each satellite observed, thus using a
remote server [30]. More recently, an alternative A-GPS system combining a barometer and
accelerometer is proposed in [31] to improve the localization on smartphones.
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This research paper introduces a localization technique that is both simple and reliable,
offering robustness and accuracy for a TLA application. The approach relies on the use of
a Kalman filter and map matching. The filter incorporates a one-dimensional uniformly
accelerated kinematic motion model and integrates data from various onboard sensors,
including the IMU, GPS, and Electronic Control Unit (ECU), each operating at different
frequencies. Moreover, the localization algorithm is integrated into the Traffic Light Ad-
visor (TLA) system, as developed in [6]. This integration optimizes the vehicle’s speed,
minimizing unnecessary stops and ensuring a smoother driving experience, ultimately
reducing energy consumption.

The primary contribution of this study is the development and full-scale experimental
testing of a localization algorithm in urban scenarios facing GPS signal loss conditions. In
particular, the algorithm utilizes multiple sensors and different sampling rates, making it
suitable for implementing Advanced Driver Assistance Systems (ADAS), including Traffic
Light Advisor (TLA) systems. The research mainly focuses on the urban road environment,
where traditional GPS systems exhibit poor performance due to the challenges posed by
urban canyoning. Instead of relying solely on velocity integration, the algorithm leverages
the combined information from the Electronic Control Unit (ECU) for speed, Inertial
Measurement Unit (IMU) for longitudinal acceleration, and GPS measurements to achieve
a smoother output and accurate vehicle localization even in the absence of reliable GPS
data. Alongside the presentation of the localization algorithm, the study also showcases
the practical application of the proposed method. Specifically, experimental results for
the Traffic Light Advisor (TLA) system are presented to further validate the approach
introduced in [6] through real-world road tests.

3. Experimental Setup

This section aims at introducing the experimental setup used for the validation of
both the Kalman filter and the Traffic Light Advisor system. The localization algorithm
relies on a GPS receiver, responsible for locating the vehicle via latitude and longitude
measurements, the integrated speed value available from the Electronic Control Unit
(ECU) of the trolley-bus, and an Inertial Measurement Unit (IMU) that returns the values
of acceleration along its axes. The main navigation system utilized is the GPS which is
installed on the front part of the vehicle and provides spatial coordinates in a fixed reference
frame. As mentioned, it can be missing for significant portions of the path when the number
of satellites is not sufficient or the signal is not reliable, thus not allowing the algorithm to
know the measurement of the vehicle’s position. The information coming from the GPS
receiver must be then fused with other measurements coming from the ECU, providing the
longitudinal velocity of the vehicle, and the 5 DoF IMUs measuring the acceleration of a
body along the three main axes (x, y, z), as well as the rotational speed around the x and y
axes as shown in Figure 1.

GPS

IMU

ECU
X

Y

Figure 1. View and schematic representation of the instrumented vehicle used in the testing campaigns.

It is worth mentioning that, as depicted in the architectural diagram in Figure 2, the
available sensors have different sampling frequencies. In fact, the GPS rate is 10 Hz, while
the ECU returns the speed value at 20 Hz and the acceleration from the IMU comes at
100 Hz. As a consequence, the localization algorithm running at 100 Hz has to deal with
these different frequencies.
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Figure 2. Architectural diagram of the vehicle’s sensor acquisition and processing.

On the onboard computational unit, the sensor acquisition, the localization algorithm,
as well as the TLA system run on a soft real-time-based Robotic Operating System (ROS)
architecture [32], allowing to have a simple framework for managing information coming
from different sources using a publisher–subscriber logic. Within this framework, there
are different nodes for publishing both the raw sensor data on the vehicle network and
the vehicle data that can be read from its Controller Area Network (CAN), such as vehicle
speed. This connection to the vehicle CAN-bus is used also to publish the outputs of the
Traffic Light Advisor system so that the information can be shown to the driver on the
integrated dashboard of the vehicle. Figure 3 reports a sample snapshot of the dedicated
Human–Machine Interface (HMI). In particular, in the middle of the dashboard the driver
receives a synthetic visual indication (i.e., an arrow indicator) to understand whether to
accelerate or decelerate with respect to the current vehicle speed in order to reach the traffic
light without stopping. This is done in order to minimize as much as possible the possible
distraction source for the driver. However, additional information, such as the current
traffic light status (i.e., top left corner), the time-to-change of the upcoming traffic light, and
the value of the speed proposed by the TLA algorithm (i.e., bottom left corner), is provided
in the periphery of the HMI.

Figure 3. Example view of the Human–Machine Interface used for TLA experimental tests (snapshot
with test values for all possible outputs).

The testing area is available on a 4 km long portion of the regular service trolley-bus
path in the city of Milan, being mainly covered in a preferential lane for public transporta-
tion. The route map (see Figure 4a) includes different scenarios, such as avenues with
trees, urban canyoning, mid-narrow turns, and a tunnel 200 m long where the GPS is
missing for a relatively long time. Furthermore, in order to have a better assessment of
the localization algorithm, additional tests have been performed where a more favorable
RTK correction for GPS is available, thus having a ground truth reference to evaluate the
algorithm’s performances. Moreover, the second testing scenario (see Figure 4b) considered
presents more severe testing conditions in terms of curve severity.
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Figure 4. Testing areas in the city of Milan. (a) Testing Area 1; (b) Testing Area 2.

4. Localization Algorithm

In order to minimize the error when estimating the position, a widely spread choice
while dealing with linear systems is the use of the Kalman filter, also known as the Linear
Quadratic Estimator (LQE). The principle of the Kalman filter (scheme in Figure 5) is to use
a dynamic model of a system, with a number of variables constituting the state vector x and
describing the system itself and its evolution over time. The system prediction step is taken
thanks to known input variables, i.e., control inputs u, while the available measurements z
are used to properly update the propagated variables in order to minimize the difference
between the predicted states and the observed quantities. For the present application, the
governing equations are those related to a simple uniformly accelerated 1D model:{

st+1 = st + vt · t + 1
2 at · t2

vt+1 = vt + at · t
(1)

where s, v, and a represent the vehicle’s position along the curvilinear coordinate on the
path, speed, and longitudinal acceleration, respectively. The choice of such a simple model
is justified by the fact that, on the one hand, the speed, and thus the accelerations, are
limited. On the other hand, the TLA application needs just longitudinal accuracy along a
predefined map of the path which has been obtained with the same algorithm presented
in [33] based on the Cubic Hermite Spline (CHS).

Map
Matchingdeg2utmGPS

IMU

ECU

,
Kalman Filter

Traffic Light Advisor

TL data

Figure 5. Scheme of the localization algorithm.

Figure 5 summarizes the scheme of the implemented Kalman filter for localizing the
trolley-bus along a known map of the route followed by the vehicle. In the following, the
general mathematical description of the state estimator is reported, dividing the algorithm
into four stages for the sake of clarity.

4.1. Process Equation

The first step reports the process equation, defining a discrete-time linear time-varying
system as

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (2)
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with it being possible to assume that the system matrices Fk−1 (i.e., state transition matrix),
Gk−1 (i.e., control-input matrix), and control action uk−1 are known without errors. In fact,
according to Equation (1), the state transition and control-input matrices can be defined as

Fk−1 =

[
1 dt
0 1

]
Gk−1 =

[ 1
2 dt2

dt

]
(3)

where dt stands for the integration time step equal to 0.01 s.
The process noise wk−1 ∼ (0, Qk−1) assumes a random Gaussian zero-mean covari-

ance Qk−1, and it accounts for the noise related both to the modeling and to the input
variables. The covariance Qk−1 indicates how much the system model can be trusted for
the prediction of the estimate. In fact, higher values of Qk−1 indicate lower accuracy of the
model, so less weight on the estimate.

In this work, the noise due to the model is assumed to be negligible and, as an
additional assumption, the covariance matrix Qk−1 is considered constant and diagonal:

Qk−1 =

[
Qpos 0

0 Qvel

]
(4)

in which the diagonal elements of the matrix are calculated as

Qpos = dt2 · σ2
ax · dt2 = 10−10 (5)

Qvel = dt · σ2
ax · dt = 10−6 (6)

where σ2
ax represents the longitudinal acceleration variance, obtained from measurements.

4.2. Measurement Equation

The measurement equation of the system is written as

zk = Hkxk + vk (7)

where Hk represents the measurement matrix structured as

Hk =

[
Hgps 0

0 Hecu

]
(8)

with Hgps and Hecu being Boolean values depending on GPS and ECU data availability, as
depicted in Figure 6.

As far as the Hk definition is concerned, in order to deal with the GPS outages and
the multi-rate multi-sensor setup illustrated above, Hgps and Hecu are Boolean variables
defined depending on each sensor’s availability at time k. Both Hgps and Hecu are initially
set to zero; if a GPS measure is available and it is considered reliable as the number of
satellites received is greater than 7, then Hgps is set to 1. As for the speed, if a new speed
measurement arrives, Hecu is set to 1. It is worth noting that the speed value read from the
ECU is considered always reliable, as the vehicle is thought to run in a standard adherence
condition with a limited average speed. In case no measurement is available for the update,
Hk remains null; thus, the state keeps on just being predicted. Performing this check every
0.01 s, the consequence, in the best-case scenario, is that the GPS update occurs just once
every 10 time steps, while the ECU update happens once in 5 time steps.

Gaussian measurement noise nk ∼ (0, Rk) is associated with the sensors used for the
measurement update. It is characterized by zero mean and covariance Rk defined as

Rk =

[
Rgps 0

0 Recu

]
(9)
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where Rgps = 10−1 and Recu = 10−5 are tuning parameters for the filter related to the
reliability of the sensors, as they are obtained by computing the variance of the signals
of the two sensors. In fact, more reliable sensors lead to lower Rk values, while sensors
introducing more noise will be responsible for higher Rk values, thus leading to a lower
impact of the measurement update on the state estimation. These values are then adjusted
to obtain additional stability for the estimate, especially when the vehicle stands still. The
idea behind the tuning is based on the following principles:

• Rgps > Recu in the driving condition: the availability and the accuracy of the GPS
depend on many different factors, while the Wheel Speed Sensor is much more reliable
and accurate, as the values of the variance confirm;

• Rgps >> Recu in the standing-still condition: the value of Rgps has been increased
to 1 when the vehicle speed is lower than 1 km/h; otherwise, the covariance values
remain the default ones. In this way, when the vehicle stands still, the GPS data are
less considered as they are less reliable and accurate for the update, while the ECU
speed value becomes much more important.

Full update

No update

WSS 
update

GPS 
update

Sensors
Input

available

available

available

not
available

not
available

not
available

Figure 6. Measurement matrix Hk workflow definition.

4.3. Time Update Equations

In the prediction step defined in (2) at time k, the predicted state x̂−k and corresponding
covariance P−

k are calculated according to the model:{
x̂−k = Fk−1 x̂+

k−1 + Gk−1ui−1

P−
k = Fk−1P+

k−1FT
k−1 + Qk−1

(10)

4.4. Measurement Update Equations

When the measurements are available at instant k, then the measurement step consists
of the following equations:⎧⎪⎨

⎪⎩
Kk = P−

k HT
k [HkP−

k HT
k + Rk]

−1

x̂+
k = x̂−k + Kk [zk − Hk x̂−k ]

P+
k = [I − Kk Hk] P−

k

(11)
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These equations represent the updated estimations for the state x̂+
k and the covariance P+

k ,
respectively, and these two quantities will be required for the following step k + 1 in the
prediction step equations shown above.

5. Traffic Light Advisor Experimental Validation

The Traffic Lights Advisor (TLA) system is an auxiliary tool for the driver, which
is able to provide real-time information about the following traffic light’s phase while
suggesting the speed to cruise through the intersections on the path during the green light
phase. Entering into the details of the TLA as an ADAS, it is expected to deal with the
typical situations faced approaching a traffic light:

• Stop&Go: the algorithm is intended to properly modulate the vehicle speed in order
to avoid a complete stop (when possible) in front of the traffic light.

• Last-second braking: the algorithm should inform the driver about the need to slow
down, as an acceleration maneuver is not feasible.

• Unnecessary stop: the algorithm aims at suggesting to the driver the recommended
speed (compliant with road limits and vehicle safety) in order to pass the upcoming
intersections during the green phase of the traffic light.

As a result, the main goal of this algorithm is to save both travel time and the energy
used by the vehicle. This is done by considering the 4 traffic lights ahead on the path closest
to the vehicle. In particular, the algorithm is thought to consider a uniformly accelerated
motion model for the vehicle to reach the suggested speed within the first traffic light of
the series and then keep that velocity to safely pass the upcoming intersections without
stopping. In the following, the most relevant features of the functioning of the TLA system
are reported; for further details, the reader can refer to the work in [6] where the full design
of the algorithm is presented.

The TLA system is based on an iterative algorithm for selecting the recommended
velocity which has to fulfill the following constraints:

• The velocity has to be below the maximum allowed speed limit for the road.
• The vehicle should be able to reach the target velocity following a uniformly acceler-

ated motion model within the end of the first available green phase of the first traffic
light ahead, with the the maximum vehicle acceleration limited to 1 m/s2 for both
safety and comfort concerns.

• Considering the generic ith traffic light, the vehicle’s admissible speed range is ob-
tained from the intersection between the required velocity to reach the upcoming
intersection and the admissible speed range computed for the (i − 1)th traffic light.

Figure 7 represents the scheme of the Traffic Light Advisor system: the inputs, coming
from onboard sensors for the localization algorithm presented in Section 4; the traffic lights;
and the map enter the algorithm that produces an output that is shown in the HMI.

TLA Algorithm

On board data
• GPS
• IMU
• ECU

Traffic Lights
• Position
• Phase
• Sequence

Map Data
• Route
• Speed limits

Localization

Computing

Output 
generation

HMI

Figure 7. Schematics of the Traffic Light Advisor algorithm.

As far as the traffic light data are concerned, through the municipality of Milan there
has been the possibility to know the traffic light plans of the intersections along the route.
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These data are fed to a “Traffic Light Generator” which is in charge of emulating the real
traffic lights on the road. This emulator, implemented in the Matlab-Simulink environment,
communicates the traffic lights’ phases, sequences, and positions to the TLA algorithm.

In this work, the aim is to add an experimental validation of the non-optimal Traffic
Light Advisor algorithm presented in [6]. To validate the functioning of the algorithm,
similarly to what is performed in [34], three different cases are considered:

• Base Case: test run without the TLA used to establish a benchmark. This is obtained
by letting the driver behave as usual, with no additional information available to the
driver with respect to the typical driving case.

• TLA Case: test run with the TLA running and showing information to the driver
who tries to follow the instructions. The algorithm, running in real time, conveys the
information to the driver through a specifically designed HMI (see Figure 3).

• Ideal Case: simulation run in post-process on the basis of the TLA Case data ex-
perimentally acquired, aiming to assess the behavior of the algorithm, assuming an
ideal driver able to perfectly follow the algorithm’s instructions. This is proposed to
check whether the algorithm is working correctly, observing how it would operate if
no constraints set by external factors such as traffic, the driver’s reflexes, and other
interference were to impact its ideal behavior.

In Section 6, the results of the experimental campaign are reported, proposing a
comparison between the Base Case and TLA Case. Subsequently, the real test performed
on the road is compared with the aforementioned Ideal Case. The comparison is carried
out not only by looking at the kinematic performances in terms of the covered distance,
average speed, and acceleration but also from an energetic point of view. In fact, knowing
the vehicle mass (i.e., m = 19,800 kg) and the vehicle acceleration a and velocity v from
the onboard sensors, it is possible to obtain a rough evaluation of the power consumption
expressed in (kW) starting from the inertial force as

P =
m · a · v

1000
(12)

From the power consumption, it is possible to derive then the following index, i.e., Instan-
taneous Energy Consumption (IEC) expressed in (kWh/100 km), which allows quantifying
the energy being drained by the vehicle:

IEC = P
Δt
Δs

(13)

where Δt is the time step of the algorithm and Δs is the distance covered by the vehicle in
the time span.

6. Results

This section is devoted to the presentation of the validation results of both the localiza-
tion state estimator and the Traffic Light Advisor algorithm. The tests have been performed
on two different paths, as shown in Figure 4, because of the availability of the traffic light
information during the test runs.

6.1. Localization

The state estimator presented in Section 4 runs at 100 Hz as a standalone C++ ROS
node generated in the Matlab-Simulink environment [35], subscribing to the sensors’ topics
present in the ROS network of the vehicle. In the following, the results of the state estimator
experimental data on the two Testing Areas are reported. It is worth noticing that the
measurement used by the Kalman filter is the raw data of the GPS device, as it represents a
more general and applicable condition in urban scenarios. As far as the localization accuracy
is concerned, the estimation error is evaluated using as ground truth the data coming from
the real-time kinematic (RTK)-corrected GPS data which reaches cm level precision.



Sensors 2023, 23, 6888

The analysis is focused on three main conditions:

• Vehicle standing still: this condition is quite frequent in urban scenarios because
of the high number of intersections and the stops along the path of a local public
transportation vehicle. The typical GPS behavior in this situation is to fluctuate
around the actual position, causing the vehicle localization to change, both forward
and backward.

• Prolonged GPS outage: this condition is usually faced because of urban canyoning,
high trees, or tunnels.

• Regular driving with curved path: this is the general scenario to be considered for the
localization accuracy assessment.

The first two items are analyzed in Testing Area 1 (i.e., Figure 4a) which covers the
regular service path of the vehicle. Figure 8a depicts the trend of the covered distance
(i.e., the curvilinear coordinate along the path) in correspondence to a stop. As can be seen,
on the one hand, the GPS trend is floating; on the other hand, the state estimator is able to
provide a constant s value thanks to the increase in the Rgps. This allows having a constant
value for the curvilinear coordinate when the vehicle is stopped, which is fundamental for
the TLA application as the change in the distance of the traffic light ahead affects the TLA
speed calculation. The plot reported in Figure 8b shows the state estimator trend during
a prolonged GPS outage because of a 200 m long tunnel. The distance between the state
estimator value sKF and the GPS coordinate sGPS as soon as it becomes available is equal to
1.86 m. Although this value is relatively high, the GPS benchmark after a long outage has
to be considered as not reliable, as it requires some time (i.e., 20–30 m) to obtain acceptable
GPS accuracy.

The testing campaign on the second Testing Area (i.e., Figure 4b) aims to evaluate the
actual localization accuracy that can be obtained with the proposed localization algorithm.
In fact, this area is characterized by better GPS coverage as there are no urban canyons
that typically affect the GPS signal. Furthermore, the route path has four narrow turns,
allowing to assess the behavior of the state estimator in the turn condition as well. In this
case study, the raw data of the GPS, i.e., before the RTK correction, are fed to the localization
algorithm. The state estimator output is then compared with the RTK correction GPS data
which provides the ground truth value for the accuracy assessment.

(a) (b)

Figure 8. Testing Area 1: state estimator results analysis. (a) Vehicle standing still; (b) long GPS outage.

In Figure 9, a portion of the trend of the covered distance on the closed path of the
Testing Area 2 is shown. In this scenario, it is possible to appreciate a much smoother
trend of the state estimator with respect to the step-wise GPS signal because of the higher
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frequency of the localization algorithm, i.e., 100 Hz. When considering the entire path, the
estimation error can be calculated as

εs = sRTK − sKF (14)

where sRTK and sKF are the curvilinear coordinate along the map of the GPS RTK corrected
and the proposed Kalman filter, respectively. Taking the Root Mean Square value of the
error trend over the whole path, it turns out to be equal to 0.28 m. Figure 10 reports the
trajectory of the vehicle estimated by the proposed Kalman filter in the narrowest turn on
the path. The color indicates the estimation error εs, with the estimation error limited to
0.4 m also in the turn condition.

Figure 9. Testing Area 2: state estimator result analysis.

Figure 10. Testing Area 2: state estimator accuracy in curve condition.

The obtained experimental results show good accuracy for the TLA application, which
just needs the vehicle location along the path to compute the distance from the upcoming
traffic lights. Furthermore, as the vehicle considered is a large local public transportation
vehicle, changes in speed and direction are typically not so harsh, so the choice of a one-
dimensional model, on the one hand, allows to minimize the implementation effort. As far
as the behavior in the curve condition is concerned, the results are promising and allow
running the TLA algorithm in a general urban scenario, although the model appears to not
be accurate enough for control logic dealing with vehicle lateral dynamics.

6.2. Traffic Light Advisor

As mentioned in Section 5, the assessment of the TLA performances is performed both
from a kinematic and an energetic point of view. In particular, in Figure 11, the plot of
the covered distance of one test run, comparing the Base Case of the driver with the TLA
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Case, is shown. The horizontal lines represent the traffic lights status on the path, with the
sequence between the red and green phases. It is worth mentioning that the yellow phase
has been included in the red one for adding an extra safety margin to the algorithm.

Figure 11. TLA Case comparison with respect to Base Case.

From the graph, it is possible to observe how the TLA system, besides avoiding
the stop at the second traffic light encountered by the vehicle, allows having a smoother
trend for the entire path, meaning that the velocity has a lower fluctuation, and thus
lower acceleration.

Table 1 proposes a similar analysis from a quantitative point of view, showing the
Root Mean Square values of velocity, acceleration, and IEC, previously defined. The results
indicate that, when the TLA is active, the vehicle proceeds with a lower average speed
with respect to the Base Case. This can sound unexpected, but it is consistent with the
lower acceleration value, as the driver tends to accelerate more than required to cruise
through all the intersections without stops. Besides more comfort for passengers, having
lower accelerations guarantees lower energy consumption, with a 40% reduction in the
energetic indicator IEC when the TLA is active. Furthermore, these values confirm the
results obtained from the simulations conducted in [6].

Table 1. RMS values for speed, acceleration, and IEC: comparison between Base Case and TLA Case.

Base Case TLA Case Reduction

vRMS [m/s] 6.50 4.95 −23.7%
aRMS [m/s2] 0.53 0.31 −44.3%
IECRMS

[
kWh

100 km

]
291.39 175.92 −39.6%

The plot in Figure 12 is intended to investigate in which situation the algorithm has an
improvement margin and how it could be adjusted to further enhance its impact.

In fact, the spotlight is on the algorithm’s reaction to the inability of the driver to
perfectly follow the speed reference. The plot reports the previously shown trend of the
TLA Case and it is compared with a set of ideal behaviors of the vehicle obtained by
running different simulations 8 s long, each one having the vehicle position and velocity
in correspondence to the start of the simulation (i.e., current actual vehicle position and
velocity) as the initial conditions. This allows to see how the vehicle would have proceeded
in an ideal case, thus highlighting, on the one hand, the effect of external factors as well
as driver behaviors, and, on the other hand, the capability of the TLA system to adapt to
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the conditions the vehicle is facing. Two main points of interest are indicated in the plot,
those in which the ideal response to given real conditions (i.e., blue solid line) is suggesting
a different behavior. In both cases, the vehicle should accelerate right before crossing the
facing traffic light, but the driver is more confident in waiting for some seconds because
the traffic in front of the vehicle is still showing a red light. This is a natural tendency of
human drivers to not fully trust an indication of the HMI. In fact, although based on actual
real-time data about the traffic light time-to-change, in some cases the TLA is perceived
unsafe as it may also suggest accelerating when a common driver, without knowing when
the light is going to change, would not.

Figure 12. TLA Case comparison with respect to Ideal Case.

7. Conclusions

In this work, a localization algorithm based on Kalman filtering for a Traffic Light
Advisor application and the TLA experimental validation are proposed. The implemented
Kalman filter is designed to run at 100 Hz with a simple 1D kinematic model and mea-
surements from sensors having different sampling frequencies. Real-world tests provided
results accurate enough to be integrated into the TLA algorithm with an average error lower
than 0.5 m, having robust behavior both in long GPS outage situations and standing-still
and curve conditions thanks to the filter weight tuning and map matching. Regarding
the TLA validation, the experimental campaign confirmed the positive impact on both
comfort, service regularity, and energy consumption with respect to unassisted driving.
The comparison with a simulated ideal case highlighted the areas of improvement for the
actual implementation of the system, such as the presence of traffic in front of the vehicle,
and external factors, like road unevenness, that make the driver slow down, as well as
driver difficulties in following and trusting the HMI indications.

As future developments, on the one hand, it would be interesting to extend the state
estimator to a 2D vehicle model, aiming at using the implemented localization algorithm for
other ADAS applications also considering later dynamics of the vehicle. On the other hand,
the TLA experimental validation would need additional testing campaigns to perform
a larger statistical assessment of the algorithm. Furthermore, it would be valuable to
introduce information about the traffic ahead in the TLA algorithm to cope with the
challenges that emerged from the test.
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Abstract: With the increasing use of automated vehicles (AVs) in the coming decades, government
authorities and private companies must leverage their potential disruption to benefit society. Few
studies have considered the impact of AVs towards mode shift by considering a range of factors at the
city level, especially in Australia. To address this knowledge gap, we developed a system dynamic
(SD)-based model to explore the mode shift between conventional vehicles (CVs), AVs, and public
transport (PT) by systematically considering a range of factors, such as road network, vehicle cost,
public transport supply, and congestion level. By using Melbourne’s Transport Network as a case
study, the model simulates the mode shift among AVs, CVs, and PT modes in the transportation
system over 50 years, starting from 2018, with the adoption of AVs beginning in 2025. Inputs such
as current traffic, road capacity, public perception, and technological advancement of AVs are used
to assess the effects of different policy options on the transport systems. The data source used is
from the Victorian Integrated Transport Model (VITM), provided by the Department of Transport
and Planning, Melbourne, Australia, data from the existing literature, and authors’ assumptions.
To our best knowledge, this is the first time using an SD model to investigate the impacts of AVs
on mode shift in the Australian context. The findings suggest that AVs will gradually replace CVs
as another primary mode of transportation. However, PT will still play a significant role in the
transportation system, accounting for 50% of total trips by person after 2058. Cost is the most critical
factor affecting AV adoption rates, followed by road network capacity and awareness programs. This
study also identifies the need for future research to investigate the induced demand for travel due to
the adoption of AVs and the application of equilibrium constraints to the traffic assignment model to
increase model accuracy. These findings can be helpful for policymakers and stakeholders to make
informed decisions regarding AV adoption policies and strategies.

Keywords: system dynamics; driverless vehicles; future transportation; transport policy; smart mobility

1. Introduction

Automated driving technologies (e.g., artificial intelligence and remote sensing) have
received much attention for their research and developments [1]. Automated driving
technologies can transfer vehicle driving functions from human drivers to computers,
and the automation level is divided into six levels [2]. Simply defined, level 0 means no
driving automation, while level 5 demonstrates full driving automation without any human
intervention. Moreover, AVs could improve road safety by eradicating traffic accidents,
as most accidents are due to human errors, such as driving too fast and driver fatigue. In
short, the upcoming automated vehicles will benefit the broader society by decreasing
traffic congestion, offering new mobility choices, and reducing road accidents [3].

The rise in AVs is expected to significantly affect the transportation sector by changing
the way people travel. AVs have the potential to revolutionise mobility by reducing traffic
congestion, improving road safety, and increasing energy efficiency [4]. However, there are

Sensors 2023, 23, 7388. https://doi.org/10.3390/s23177388 https://www.mdpi.com/journal/sensors



Sensors 2023, 23, 7388

concerns that the widespread adoption of AVs could lead to an increase in vehicle kilometres
travelled and a decrease in the use of public transport (PT) and active transportation modes,
ultimately increasing energy consumption, emissions, and congestion [4]. Therefore, it is
important to investigate the potential mode shift between AVs, CVs, and PT to evaluate the
effect of AVs on the transportation system and plan accordingly. Most studies employed
a static approach to investigate the effect of AVs on the transportation system without
considering the dynamic interactions between different travel modes and the feedback
loops that could affect the mode shift behaviour [5,6].

If we want to manage future road networks to meet the demands of automated vehicle
trips due to the shift from public transport and conventional vehicle trips, we need to
understand how AV trips change over time due to a range of reasons, such as policy
implementation, AV cost, and psychological factors. As such, the main contributions of this
study are as follows:

1. We developed a system dynamic (SD)-based model to explore the mode shift between
conventional vehicles (CVs), AVs, and public transport (PT) by systematically consid-
ering a range of factors, such as road network, vehicle cost, public transport supply,
and congestion level. This model addresses the knowledge gaps on the impact of AVs
towards mode shift by considering a range of factors at the city level.

2. Inputs such as current traffic, road capacity, public perception, and technological
advancement of AVs are used to assess the effects of different policy options on the
transport systems. An SD approach has been adopted for the present study because it
can incorporate the dynamic interactions [7] between different travel modes and the
feedback loops that could affect the mode shift behaviour. To our best knowledge, this
is the first time using an SD model to investigate the impacts of AVs on mode shift in
the Australian context.

3. The SD model provides a valuable contribution to the methodological understanding
of the effects of AVs on transportation by considering various system-level factors.
The model can be used to explore the effects of AV adoption on mode shift, changes in
traffic congestion, and other transportation-related factors, supporting policy decision
making to achieve a sustainable, equitable, and accessible transport system, especially
for the long term. This model also presents significant advantages. The SD model not
only comprehensively considers various factors and their quantitative relationships,
but it also allows for sensitivity analysis of individual variables. This capability
enables us to thoroughly investigate the influences of each variable, enhancing the
model’s comprehensiveness and utility. Additionally, the SD model is a powerful
tool for analysing the complex interactions between different components of the
transportation system and identifying potential solutions to the challenges posed
by AV adoption. By providing a detailed analysis of the effects of AV adoption on
modal shift behaviour, the proposed model can help policymakers develop policies
that promote the adoption of AVs while also minimising the negative effects on PT
and congestion.

The paper is organised as follows. Section 2 presents the literature review for the
transport modelling and system dynamics approach. It is followed by Section 3 that
describes the SD model developed for this study, while Section 4 discusses the results for
different scenarios. A list of the abbreviations used in this study is shown in Table 1.
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Table 1. A list of abbreviations used in this study.

Abbreviation Explanation

AVs Automated Vehicles
CVs Conventional Vehicles
PT Public Transport
LoS Level of Service

CAVs Connected and Autonomous Vehicles
VITM Victorian Integrated Transport Model
EVs Electric Vehicles
SD System Dynamic

VISTA Victorian Integrated Survey of Travel and Activity
EVs Electric Vehicles
DTP Department of Transport and Planning
CBD Central Business District
VKT Vehicle Kilometre Travelled

2. Literature Review

In this section, we review the relevant works under two subsections: transport mod-
elling and system dynamics modelling.

2.1. Transport Modelling

Some past studies investigated the effects of AVs on traffic flow and traffic safety
using microscopic traffic simulations of individual vehicles [8,9]. Other interesting studies
also investigated the effects of AVs using microscopic traffic modelling. For example, [10]
researched lane assignment strategies of AVs and their effects on overall traffic efficiency
and safety in a highway scenario. Reference [11] used the traffic simulation package VISSIM
to investigate the congestion effects of shared AVs on urban traffic by modelling the peak
morning period in 2040. Several shared AV market penetrations were modelled: 0 per
cent, 3 per cent, 25 per cent, 50 per cent, and 100 per cent. Similarly, [12] developed an
efficient stochastic optimisation framework to find optimal shares between CVs and AVs
by considering factors of CAVs (e.g., VKT, the value of time, and automation cost). This
framework was successfully applied to the Chicago network, and the system costs were
optimised. Reference [13] studied a mixed traffic system to control the density and ratio of
CVs and AVs to avoid large-scale traffic congestion using a cellular automation model. It
was suggested that the findings would have practical implications for traffic management
control. From a traffic safety perspective, mixed traffic flow was simulated to identify
the frequency of dangerous situations and the value of time to collision under different
penetration levels [14]. The results revealed that smooth driving increases with the CAV
penetration rate. Another study conducted a detailed assessment of the effects of CAVs on
a freeway using a microsimulation [15]. The findings showed that CAVs could reduce delay
and emissions by 38 per cent and 52 per cent in shared lanes. Shared lanes performed better
at low traffic volumes, while dedicated lanes performed at high volumes. A recent study
by [16] used SDs to optimise mobility by understanding mode choice between rail, car, bus,
and air. In addition, the SD method was implemented in EV adoption by incorporating cost,
infrastructure supply, vehicle technology, and social utility [17]. In policy developments,
various factors (e.g., GDP, capital investment, and solid waste emission) were modelled in
SDs to evaluate policy effects on the urban economy [18].

Further, a study by [19] proposed a multi-stage modelling approach to enhance net-
work performance to cater to the growing demand for AVs. While the AV-related subnet-
work could improve network performance, it also increased the total travel distance. In
a recent study, [20] proposed a new business model for AVs called ‘AV crowdsourcing’,
which involved renting out privately owned AVs to gain profits. The study tested the
feasibility of this business scenario using an equilibrium model. However, the optimal
price for AV crowdsourcing needs to be investigated further by considering individuals’
sensitivity to the utility function and additional costs associated with AVs. This business
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model has the potential to provide a high return for private AV users. However, more
research is needed to fully understand its effect on the adoption rate of AVs and the overall
transportation system. Reference [21] predicted that urban households would see a 2.8 per
cent increase in commuting trips using private AVs by coupling North Carolina’s demand
and choice models to capture household preference. However, the result varied by different
penetration rates and fuel types.

In summary, most past studies explored the effects of AVs on traffic flow, efficiency,
and safety using microsimulations. Given that Australia will establish an AV safety law in
2026 to facilitate the deployment of AVs [22], this suggests a need for further research into
the external factors affecting future AV trips. However, few studies have considered the
effect of AVs on mode shift by considering a range of factors at the system level.

2.2. System Dynamics Modelling

This literature review primarily focuses on the application of SD modelling to transport
planning, especially the effects of AVs and EVs. Reference [23] examined the possible
implications of implementing AVs by employing an SD approach to three scenarios: (1) no
change in behaviour and ownership, (2) change in behaviour and no change in ownership,
and (3) complete change in ownership in which all vehicles are shared AVs. However, the
investigation did not consider the adoption process, including factors such as penetration
level and level of service, which may change over time. Additionally, the data were gathered
through a workshop setting. In addition, while a study conducted in the Netherlands
used an SD modelling approach to examine the adoption process and policy tests across
four scenarios (i.e., AV in bloom, demand, doubt, and standby), it failed to account for
the potential traffic congestion resulting from AV usage and the associated policy effects,
such as congestion charging policies [24]. A comparable study by [25] employed an SD
modelling approach to assess the effects of AVs on mode choice, focusing on levels 1 to
3. The study analysed two scenarios: AVs and cooperative/connected vehicles, which
can communicate with infrastructure and other vehicles. However, the base year data
used in the study were from 2013, which may not accurately reflect the current state of AV
technology, as it has been rapidly advancing in recent years. Some past research leveraging
SD modelling to solve complex interactive transport problems is shown in Table 2.

Table 2. System Dynamic Approaches Review.

Purpose Variable Strength Conclusion
Future Study

Suggestion/Limitation

To evaluate the construction
scale of urban rail for traffic,

economy, and society [26]

GDP, population, accident,
gas emission, congestion
degree; construction scale

was a policy variable

Presented the effect of the
urban rail system on urban

traffic, economy, society, and
environment; guided

transportation
infrastructure planning

As the mileage of urban rail
increased, the number of cars

increased; appropriate
construction of urban rail

would help

Some variables need more
research, such as sociology,

economics, and demography

To evaluate the effects of AVs
on mode choice and broader
transportation system [23]

Travel time, public transit
fare, traffic volume, adequacy

of PT, etc.

Three different scenarios to
investigate the effect on mode

choice and mobility

Better to obtain public
acceptance of AVs as

shared-use vehicles or PT
tools before establishing the
mindset of private vehicles

Public discussion should be
initiated to fully understand
views on AVs when AVs are

in the market

To evaluate the innovation
diffusion of AVs in the long

term [24]

Technology maturity, research
and development funds,

attractiveness, purchase price,
and fleet

Complex and dynamic
innovation systems of AVs

and six levels of AVs
were represented

System was highly uncertain
due to different market
penetration levels and

policies adopted

Further research could focus
on gaining more knowledge

of factors affecting the
diffusion of AVs by

leveraging this model

To evaluate the mobility
effects of AVs [25]

Mode choice, travel time, and
time of day choice

Uncertainties were
incorporated into penetration

rates, capacity, and value
of time

AVs could cause increased car
trips and level of congestion

Extend the model by
considering travel time

reliability, road pricing policy,
and ride-sharing

A useful approach for
optimising individuals’

mobility and guiding city
planners [16]

Rail, car, bus, and air
customers (mode choice)

What factors influence
people’s choices and can
model their behaviours;
several scenarios were

included (sensitive to price,
trip duration, and need to

stay overnight)

Customers were not sensitive
to price, trip duration, need to
stay overnight, or need to use
additional means of transport

Future research should be
parametrised to identify more

details for
individual platforms
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Table 2. Cont.

Purpose Variable Strength Conclusion
Future Study

Suggestion/Limitation

Adoption of EVs [17]

Economic utility (cost,
infrastructure convenience,

and vehicle technology) and
social utility

Complex interaction and how
feedback can affect

EV adoption

Consumers’ vague
perceptions and pilot of EV
projects led to delays in EV
adoption; however, social

commerce helped

Future research should focus
on EV adoption through

combinations of
incentive plans

To evaluate the effects of AV
adoption on greenhouse gas

emissions [27]
Emissions, fleet, and adoption

Life cycle assessment to
assess the various scenarios
in the medium to long term

To decrease greenhouse gas
emissions, the government

should manage vehicle travel
speeds, provide subsidies,

and increase the renewable
electricity supply

Further research needs to
focus on developing the

model in conjunction with
other methods to support the
investigation of greenhouse

emission process

As shown in Table 2, in previous studies, SD modelling has been used to explore
various facets of AV adoption and its influence on transport planning. However, few
studies considered factors, such as network capacity and current transport characteristics,
to evaluate the adoption of AVs at the system level (i.e., city level). As AV technology is
continuously evolving and maturing, it is crucial to conduct further research into adoption
rates of AVs compared with trips from other modes, such as PT and CVs, in a city-level
context. Currently, there is a lack of a comprehensive framework to systematically consider
mode shift change due to the upcoming AVs, especially in an Australian context.

3. Methods

The SD model in this study considers the interaction of AV and CV adoption in a
mixed-vehicle fleet along with PT. It is developed using VENSIM PLE (version 8.2.0) and
simulated from 2018 to 2068, with AV adoption starting in 2025 [28]. The model dynamically
computes parameters through feedback loops to determine their impact. System dynamics
modelling involves the creation of stock-and-flow models, where flows are divided into
inflows and outflows, representing the rates at which quantities are added or subtracted
from a specific stock. Consequently, the integral of the net flow, combined with the initial
stock value at time “a0”, yields the total stock at time “a”. The net flow, calculated by
subtracting outflows from inflows, represents the derivative of the total stock concerning
time, as shown in Equation (1).

Stock (a) =
∫ a

a0
[in f low(a)− out f low(a)]da + Stock(a0) (1)

3.1. Description of the System in This Study

The system under consideration is described in Figure 1. External factors are important
in determining future AV demand, such as technological advancement and infrastructure
capacity of AVs. In this study, AVs represent level 2 and above. Different policies can affect
an individual’s mode of choice between PT, AVs, and CVs. In addition, if more individuals
use CVs or AVs instead of PT, the results could prevent them from using private vehicles
because of increased travel time. Thus, the government will adjust the policy (dotted line)
once more network traffic is causing congestion. Therefore, policy decision making is
important to achieve a sustainable, equitable, and accessible transport system by satisfying
equilibrium in the system.

3.2. Model Explanation
3.2.1. Data Input

We obtained the transport data from VITM developed by the Victorian Department
of Transport and Planning (DTP), Melbourne, Australia. VITM is a strategic four-step
transport demand model developed to predict future travel demand and travel patterns
as a result of land use changes, population changes, travel behaviour changes, and major
infrastructure projects [29]. VITM is based on the Victorian Integrated Survey of Travel and
Activity, including individual trips within family households. The model incorporates the
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complicated interactions within the transport system (e.g., private vehicle trips, PT, and
other modes) and land use changes. Specifically, the VITM is a comprehensive transport
demand model that operates on multiple time periods, trip purposes, and modes of travel.
This model encompasses car, public transport, and active transport modes and is designed
to estimate transportation demand over a typical school day. Employing population,
employment, and enrolment projections, VITM assesses the forthcoming impacts of changes
in Victoria’s road and public transport infrastructure. Further, we considered data from the
existing literature [30,31] and the national survey conducted in Australia [32], and where
the relevant data were unavailable, we made realistic assumptions, which are shown in the
following tables.

Figure 1. System effects in this study.

3.2.2. Calculations

The study proposed a stock-and-flow-based SD model to simulate the distribution of
trips among CVs, AVs, and PT. The model incorporates four sub-models: network capacity,
CV trips, AV trips, and PT trips, as shown in Figure 2. As shown in Figures 3–5, the stocks
(e.g., CV adopters) are represented by boxes, while the double-lined arrows represent
flows (e.g., the total delay in the network). The ‘tap’ symbol denotes flow rates (e.g., from
CV adopters to AV adopters), and the single-lined arrows represent influence links (e.g.,
local collectors influencing road infrastructure). An encircled R represents the reinforcing
feedback loop, while an encircled B represents a balancing feedback loop. The model takes
inputs and time series data to generate outputs. The simulation model was used to explore
the effects of AV adoption on the transportation system at a city level, including the shifts
in mode share and changes in traffic congestion. The model outputs include CV adopters,
AV adopters, and PT adopters, representing any 15 min period during a typical weekday
AM (7 am to 9 am) peak, signifying that the system dynamics model simulates 15 min
segments within the AM peak of a standard weekday. Consequently, we have performed
a straightforward calculation to derive 15 min boardings, achieved by dividing the 2 h
duration by 8. The simulation period is 50 years, starting from the base year.
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Figure 2. Simplified architecture of the stock-and-flow model.

Figure 3. Public transport adoption sub-model. (Notes: 1. <> symbols signify their repeated
occurrence within the system dynamics model, whereas variables lacking <> symbols appear only
one time in the system. 2. <min per h> denotes a conversion factor of 60 min per h, facilitating unit
conversion within this model).
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Figure 4. Network capacity sub-model.

3.3. Sub-Model Explanation

The sub-model of the study includes public transport, network capacity, and CV
transitions to AV, which are used to evaluate the various factors influencing AV adoption
in a closed transportation system.

3.3.1. Public Transport Sub-Model

Figure 3 shows the public transport sub-model. The trips generated by public transport
depend on the adoption by AV and CV users. Table 3 shows the sub-model’s equations,
values, and units for the key variables and stocks.

The utility function determines the number of people who choose PT as their primary
mode of transportation [33]. The choice of PT as a primary mode of transportation is
influenced by various factors, including travel time, travel cost, and standard deviation of
travel time. In this study, VITM was used to determine the total PT travel time, which was
used to obtain the average PT travel time by dividing the total PT boarding. The average
PT travel time also included the average out-of-vehicle travel time, such as the time spent
walking to the tram/train station. For example, the “PT utility function” hinges on two
pivotal factors: the “PT trip cost” and “PT travel time”. The “PT trip cost” element can be
influenced by the uptake of PT by individuals, denoted by “PT adopters” and “PT adopters
initial”, thereby influencing what we term as “PT cost reduction”. Furthermore, the “PT
travel time” is sourced from the VITM model’s 2018 dataset. As more individuals embrace
PT, it might drive the “PT investment rate”, thereby impacting “PT capacity growth” and,
subsequently, the number of “PT adopters”. Additionally, ‘PT utility function’ refers to a
mathematical construct employed for assessing passenger modal preferences, while ‘PT
utility fraction’ utilises this function to ascertain the likelihood of selecting the PT mode
over AV and CV modes.
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Figure 5. Transitions between CV and AV sub-model. (Notes: 1. <> symbols signify their repeated
occurrence within the system dynamics model, whereas variables lacking <> symbols appear only
one time in the system. 2. ‘AV trip cost’ is represented as a stock due to its dependency on other
variables like ‘AV trip cost initial’ and ‘AV cost reduction’. In contrast, ‘CV trip cost’ maintains a more
consistent cost due to its mature technology. Consequently, ‘AV trip cost’ is categorised as a stock,
while ‘CV trip cost’ is a variable unaffected by other factors).
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Table 3. The public transportation sub-model’s parameters, equations, and values.

Parameter Name Unit Value (Equation) Source/Explanation

Sum utility N/A EXP (CV utility) + EXP (AV
utility) + EXP (PT utility) Utility function [34].

PT change required N/A

Percentage changes in
individuals opting for public

transport as their primary
mode during each

simulation interval.

PT utility function N/A

−0.049 × (PT initial travel
time × min per h/”PT

passenger total boardings
(2 h)”) − 0.05 × PT average
out-of-vehicle travel time −

0.0038 × PT trip cost

Probability of choosing PT as
commuting mode based on
travel time and cost during

any 15 min at AM peak.

PT initial travel time Person × hour 165,795

Collective travel duration via
various modes such as trains,
trams, and buses, as supplied
by the VITM model from DTP

for input into this system
dynamics model.

PT passenger total boarding (2
h) Person 508,420

Cumulative count of person
boardings on public transport
encompassing train, bus, and
tram trips. This information is
furnished by the VITM model

from DTP during the AM
peak period spanning 2 h.

PT average out-of-vehicle
travel time Minute 11 VISTA provided by DTP.

PT travel time Minute

PT initial travel time × min
per h/“PT passenger total

boardings (2 h)” + PT average
out-of-vehicle travel time

PT travel time includes
in-vehicle travel time and
out-of-vehicle travel time.

PT fleet travel time Person × hour PT trips per 15 min per person
× PT travel time/min per h

Total public transport fleet
travel time including trains,

trams, and buses.

PT trips per 15 min per person Person Passenger trips per
15 min × PT adopters

It is to determine the number
of people who choose PT

modes across total people.

PT investment rate Dmnl/Year/Person/dollar 1 × 10−9
Amount by which ‘PT

capacity’ grows each year for
each dollar spent on PT.

PT capacity max Dmnl 0.5 Fraction of passenger travel
that PT can ultimately service.

PT capacity growth Dmnl/Year

PT trip cost × PT trips per
15 min per person × PT

investment rate
× (PT capacity max − PT

capacity)/PT capacity max

The adoption of PT by users can contribute to PT-related revenue, which can then be
used to increase PT capacity by providing more services. The PT investment rate is the
amount by which PT capacity grows each year for each dollar spent on PT. However, the
PT capacity max sets the maximum proportion of individuals who will adopt PT as their
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primary mode of transportation for commuting purposes. For instance, if the PT capacity
max is set at 0.6, it means that a maximum of 60 per cent of all adopters (i.e., AV, CV, and
PT) are PT adopters.

This study highlights the importance of considering various factors when modelling
PT demand. The results can be used to inform policy decisions and transportation planning.

3.3.2. Network Capacity Sub-Model

The road network capacity sub-model is illustrated in Figure 4. In this model, the
variable ‘road capacity’ represents the total number of cars in the road network that can
travel without congestion, and its unit is cars. Level of service is a qualitative measure
used to evaluate traffic flow based on factors such as speed, congestion, and density. As a
result, the number of vehicles in a given time period in level C condition, “road capacity”,
is calculated by multiplying the road length by the level of service C. This sub-model
plays a significant role in determining the capacity of the road network and its ability to
accommodate the increased use of AVs and CVs. It also assists in identifying potential
road congestion and areas where road infrastructure may require upgrades to handle the
influx of AVs and CVs. The network capacity sub-model evaluates the combined length
of distinct road types within Melbourne. It establishes the overall road capacity, a critical
factor influencing the adoption of CVs and AVs, and subsequently impacts the volume of
individuals choosing for these vehicle types as the number of trips grows. Table 4 shows
the sub-model equations, values, and units for the key variables and stocks.

Table 4. Network capacity sub-model’s parameters, equations, and values.

Parameter Name Unit Value (Equation) Source/Explanation

Local collector density Car/km 11.2 LoS C standard (HCM 2016)

Local collector length km 5572.5 VITM provided by DTP

Secondary arterial density/
Rural unsealed density/Ramp

terminal density/Primary
divided density/Primary

undivided density/CBD density

Car/km 13.7 LoS C standard

Secondary arterial length km 3626.84 VITM provided by DTP

Rural unsealed length km 741.2 VITM provided by DTP

Level crossing length km 84.83 VITM provided by DTP

Ramp terminal length km 29.58 VITM provided by DTP

Freeway density Car/km 16.2 LoS C standard (HCM 2016)

Freeway length km 2707.51 VITM provided by DTP

Primary divided length km 4113.7 VITM provided by DTP

Primary undivided length km 4010.57 VITM provided by DTP

CBD length km 64.04

Sourced from the VITM model to
provide input for this analysis,

signifying the road length within
Melbourne’s central business
district (CBD) in kilometres

CBD density Car/km 13.7

Acquired from the traffic
engineering standard, specifically
the level of service C standard, to

ascertain the optimal traffic
density for vehicle movement to

travel smoothly

Notes: DTP (Department of Transport and Planning); VISTA (Victorian Integrated Survey of Travel and Activity).
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3.3.3. CV Transitions to AV Sub-Model

Figure 5 shows the CV transitions to the AV sub-model, which presents the transition
model between CVs and AVs, where the number of trips generated by each mode depends
on the trip cost and time spent. Therefore, if AVs can travel faster and become cheaper and
AVs are more attractive than current CVs, people change from public transit (e.g., PT) to
auto-based modes [35].

A previous study used two-stage stochastic programming that assumed AV cost and
commuting travel time would simultaneously affect AV ownership and adoption rates [36].
Similar to the study conducted by [28], this research assumed that AVs would be available
in the market after 2025.

The utility function determines the proportion of people who choose AVs or CVs as
their primary mode. ‘AV trip cost’ is expected to decrease over time, represented by the ‘AV
trip cost min’ variable and ‘AV trip cost reduction time’ variable. Similarly, ‘AV confidence’
is expected to increase over time with more people adopting AVs and matured technology.
‘AV trip cost’ and ‘AV confidence’ are the two main factors affecting the adoption of AVs
compared to the adoption of CVs.

Additionally, the actual VKT will decrease as the ‘car average speed’ decreases due to
congestion. The threshold of VKT is determined by the level of service C, called ‘congested
VKT per 15 min’, which is calculated based on the total road network capacity (‘Road
capacity LOS C’) and the fraction of frequently used road networks during the AM peak
(please refer to Section 3.3.2). In contrast, the ‘car desired VKT per 15 min’ variable
represents the actual VKT, including both CVs and AVs, which affects the ‘car average
speed’. The ‘car average speed’ and ‘Car desired VKT per 15 min’ then influence the
‘CV travel time’ and ‘AV travel time’, ultimately affecting the proportion of individuals
choosing these modes (‘CV/AV utility function’). Further, the ‘AV confidence influence
rate’ refers to the proportion of individuals positively influenced to choose AVs. This is
because those interested in owning AVs tend to rely on their friends for information and
recommendations [37].

Therefore, the variables in the transition model are interconnected, and the changes in
one variable will affect the other variables, affecting users’ mode choices. Table 5 shows the
sub-model equations, values, and units for the key variables and stocks.

3.4. Testing

Different tests build confidence for stock-and-flow models [38]. To ensure the reliability
and validity of the model, we conducted a series of tests, as recommended by [38], including
a model structure test, behavioural test, and boundary test. The model structure test
assessed the parameters, boundaries, and overall structural adequacy of the model. For
instance, in structure assessment, all the parameters align with the actual system, such as
increasing the AV trip cost could make less people choose the AV mode. Similarly, for the
boundary assessment, the stock-and-flow model behaviour is sensitive to the removal of
existing endogenous elements but insensitive to adding new endogenous elements.

The behavioural test examined the model’s ability to capture and simulate the be-
haviour of the transportation system realistically. For example, we have changed the value
of a single parameter (e.g., PT investment rate) in extreme conditions. Then, the model
performs realistically, as the impacted variable (e.g., PT adopters) is within range.

Finally, the boundary test evaluated the sensitivity of the model to changes in the input
parameters and boundaries. By passing these tests in the present study, the researchers
were confident in the model’s ability to represent the transportation system and evaluate
different policy scenarios realistically.

Figures 6 and 7 illustrate the sensitivity analysis conducted on AV occupancy and AV
initial trip cost. In Figure 6, different scenarios for AV occupancy—low (average 1.1 person
per AV car), medium (average 1.3 person per AV car), and high (average 1.5 person per
AV car)—were evaluated. Interestingly, there was minimal variation in AV adoption rates
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across these scenarios, suggesting that AV occupancy has a minor influence compared to
factors like cost, travel time, and social influence.

Table 5. CV transitions to AV sub-model’s parameters, equations, and values.

Parameter Name Unit Value (Equation) Source/Explanation

AV/CV desired VKT per 15 min Car × km AV/CV trips per 15 min × Car average speed LoS C ×
“15 min”

Maximum car capacity in the network
that does not lead to congestion

AV/CV occupancy Person/Car 1.1 Average number of persons per car

AV/CV trips per 15 min Car AV/CV trips per 15 min per
person/AV/CV occupancy

Number of AV/CV trips for any 15 min
during AM peak

AV/CV trips per 15 min per person Person Passenger trips per 15 min × AV/CV adopters
Number of AV/CV trips among total

trips generated by private vehicle trips
and PT trips

AV/CV fleet travel time Car × hour AV/CV desired VKT per 15 min/Car average speed Vehicle × km/km/h equals vehicle × h

AV/CV travel time Minute AV fleet travel time × min per h/AV trips per 15 min Average AV/CV travel time per vehicle

AV/CV utility function N/A −1.55–0.066 × AV/CV travel time − 0.004 × AV/CV
trip cost

It is an AV/CV utility function to
determine the probability of choosing

AV/CV mode

Car average speed km/hour

Car average speed LoS C − (Car desired VKT per 15
min − Congested VKT per 15 min)× (Car average

speed LoS C − Car average speed gridlock)/(Gridlock
VKT per 15 min − Congested VKT per 15 min)

Vehicle speed decreases as VKT exceeds
the congestion threshold

Car average speed LoS C km/hour 48.1 VITM provided by DTP

Congested VKT per 15 min Car × km Road capacity LoS C × Road use fraction × Car
average speed LoS C × “15 min”

Threshold for congestion in a network
level depends on average vehicle speed

(travel in a smooth way) and road
capacity

Road use fraction N/A 0.62
This is the assumed value as there are
some roads that are seldomly used in

Victorian network

AV adopters initial Dmnl 0.01
This must be greater than zero to avoid a
‘floating point error’ due to division by

zero in ‘AV travel time’ at t = 0

Notes: AV (automated vehicle); CV (conventional vehicle); DTP (Department of Transport and Planning); VITM
(Victorian Integrated Transport Model); and VKT (vehicle kilometres travelled).

Figure 6. Sensitivity test of AV occupancy.
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Figure 7. Sensitivity test of AV initial trip cost.

In Figure 7, the sensitivity test explored AV initial cost through high (800), medium
(700), and low (600) scenarios in comparison to the CV trip cost (400). The high-cost scenario
exhibited a slow growth in AV adoption rates from 2018 to 2048 due to fewer individuals
embracing AVs at a higher cost. However, after 2048, all scenarios converged to the same
AV adoption rate, aligning with the decreasing cost trend. Consequently, these sensitivity
tests regarding “AV occupancy” and “AV trip cost initial” enhance the model’s credibility
and reinforce its validity.

3.5. Scenarios

Table 6 outlines the scenarios tested in the model and their respective assumptions.
In the base scenario, the maximum fraction of AV adopters remained at 90 per cent, while
PT capacity was assumed to be at a 50 per cent fraction level, and the minimum AV trip
cost was set at 400. Setting the maximum fraction of AV adopters at 90% is a practical
choice, considering that not everyone may fully switch to AVs due to personal preferences
or concerns about new technology. As technology improves and people become more
confident, a significant portion of the population is expected to embrace AVs. So, in
practice, we assume 90% AV adoption instead of 100%. Choosing 50% for PT capacity
makes sense because many big cities with well-used public transportation, like New York
and London, hover around this utilisation level. Thus, we assume Melbourne’s PT capacity
to be 50%, given the city’s current PT usage being below 30%. Additionally, we set AV trip
cost min equal to CV trip cost (400) to ensure AV trips remain affordable and competitive,
aligning with the cost of conventional trips.
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Table 6. Various scenarios implemented in the model.

Scenario Parameter Name Unit
Value

Low Neutral High

Baseline

AV adopters max N/A 90%

AV trip cost min N/A 400

PT capacity max N/A 50%

1a

AV adopters max Fraction
40%

1b 60%

1c 100%

2a
AV trip cost min

N/A 360

2b N/A 430

3a
PT capacity Fraction

30%

3b 60%

Lower

AV adopters max Fraction 40%

AV trip cost min N/A 430

PT capacity max Fraction 60%

Upper

AV adopters max Fraction 100%

AV trip cost min N/A 360

PT capacity max Fraction 30%
Notes: AV, automated vehicle; na, not applicable; and PT, public transport.

Over time, the model predicted that more CV adopters would transition to AV adopters
as trust in AV technology increases and the cost of AVs decreases due to technological ad-
vancement. The model also predicted that as network congestion increases, the percentage
of trips taken via PT would increase. Other scenarios tested included varying the AV trip
cost, PT investment rate, and PT capacity max assumptions to evaluate their effects on
mode choice and travel behaviour. These scenarios provide insight into potential future
outcomes and the effects of different policy and technological interventions on the adoption
of AVs and travel behaviour in Melbourne.

Scenario 1 in the model included the base case with a neutral assumption of 60 per
cent for ‘AV adopters max’ because approximately 60 per cent of participants surveyed
who had heard of AVs held a positive view of them [32]. The high scenario assumed that
‘AV adopters max’ would be 100 per cent, as it was believed that 100 per cent of individuals
could adopt AVs in the next 50 years. In contrast, the low scenario assumed that only
40 per cent of individuals would adopt AVs [32].

In scenario 2, the base case for ‘AV trip cost min’ for calculating the utility function
was assumed to be 400 (baseline scenario), the same as the ‘CV trip cost’. However, the
Australia-wide survey results showed that around 20 per cent of respondents preferred
shared AVs for daily work, reducing the average cost of an AV trip [32]. Thus, the ‘AV
trip cost min’ for the low scenario was set to 360. Conversely, for the high scenario, the
Australia-wide survey results revealed that the respondents thought AVs were worth more
than CVs [32]. As a result, the ‘AV trip cost min’ for the high scenario was assumed to be
430. It was essential to consider preferences and perceptions towards AVs in determining
the AV trip cost, as these play a significant role in influencing the adoption rate of AVs.
Cost factor was one of the critical factors affecting the adoption rate of AVs. Thus, it was
necessary to examine various scenarios to identify the potential effects of AV trip costs on
the adoption rate of AVs.

Scenario 3 examined the effect of PT capacity on the transportation system. The
assumption for the base case (same as the baseline scenario) was that 50 per cent of the
adopters would choose PT as their primary mode, and the PT capacity max was set at
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50 per cent. For the low scenario, the PT capacity max was decreased to 30 per cent because
currently, PT trips only account for 30 per cent of total trips during the morning peak in
Melbourne. This is due to research finding that individuals who already rely on PT as their
primary mode of transportation are more inclined to continue using it in the future [39].

The high scenario assumed that 60 per cent of trips were generated by PT in Melbourne
for the 24 h period from VITM 2018, and the PT capacity max was set at 60 per cent during
the AM morning peak. These assumptions reflect the potential for increased PT usage and
the need to ensure that PT capacity can meet growing demand.

The lower and upper scenarios in the study represent the minimum and maximum
possible scenarios for AV adopters based on three variables: AV adopters max, AV trip cost
min, and PT capacity max. These scenarios help to explore these variables’ potential effects
(boundary) on the adoption of AVs and the use of PT.

Table 7 presents the various scenarios for road expansion rates. The low scenario
denotes an annual growth of 1 per cent in terms of road network capacity; whereas, the
high scenario denotes a growth rate of 3 per cent.

Table 7. Road expansion and awareness program implemented in the model.

Scenario Parameter Name Unit
Value

Baseline Low Neutral High

Road expansion program Road expansion rate Fraction

0%

1%

2%

3%

AV awareness program AV confidence influence rate Fraction

40%

60%

80%

100%

Notes: AV, automated vehicle.

4. Results

In this section, we discuss the outcomes under three subsections: baseline scenario,
other scenarios, and road expansion and awareness program scenarios.

4.1. Baseline Scenario

Using the data presented in Tables 3–5 and the baseline scenario in Table 6, Figure 8
displays the fluctuation of adoption rates among AVs, CVs, and PT within the 50-year
simulation period. In the base year 2018, CV trips accounted for 78 per cent of total trips,
while PT trips accounted for 22 per cent. After the trips stabilised in year 30, CV and
AV trips by people accounted for 31 per cent and 19 per cent, respectively. The fraction
of PT trips remained the same (50 per cent) after year 40, slightly increasing from year 0
(20 per cent). This indicates that after year 30, CV, AV, and PT trips reach equilibrium, and
their adoption rates remain stable.

Interestingly, the adoption rates of CVs and PT decrease over time while the adoption
rate of AVs increases. This could be due to the technological advancement (lower cost) of
AVs and their increased acceptance by the public. As AVs become more affordable and
reliable, individuals may switch from CVs to AVs. Similarly, with increasing road network
congestion, individuals may shift from CVs and AVs to PT, resulting in a slight increase in
PT trips per person until year 40.
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Figure 8. Baseline scenario of AVs, CVs, and PT.

Overall, the findings suggest that AVs will gradually replace CVs as another primary
mode of transportation in Melbourne. However, PT will still play a significant role in the
transportation system, accounting for 50 per cent of total trips by people after year 40. It
is noteworthy that alterations in the “PT capacity max” parameter (currently set at 0.5)
will impact the proportion of individuals opting for public transport after convergence.
Furthermore, while results can fluctuate due to modifications in road capacity, i.e., the
utility function and costs of PT, AVs/CVs, confidence gains, and other factors, the overall
trend of these travel choices remains consistent. Figure 8 suggests that while the adoption
of AVs is projected to increase over time, PT remains pivotal within the transportation
network. Consequently, AVs could be effectively integrated as a solution for first- and
last-mile connectivity, contributing to the overall efficiency of the transportation system.

4.2. Other Scenarios

Figure 9 presents the fraction of AV adopters for 10 scenarios from Table 6, including
baseline, lower, and upper cases. Due to road network capacity constraints, the graph
shows around 16 to 24 per cent of AV adopters among the 10 scenarios, with the lowest
adoption rate from the lower case and the highest from the upper case. The adoption rate
of AVs started to increase around year 8, due to the assumption that people would start
accepting AVs from 2026 (base year 2018), and stabilised around year 34 (2052). Except for
the lower and upper scenarios, the lowest adoption rate (17 per cent) was in the scenario
‘AV trip cost min (high)’, while the highest adoption rate (22 per cent) was in the scenario
‘AV trip cost min (low)’. These results show that the cost of AV trips is an important factor
in determining the adoption rate of AVs.

Compared with the scenario ‘AV trips cost min(high)’ and ‘PT capacity max(high)’,
the AV adopters rate of scenario ‘AV adopters max(low)’ exceeded these two scenarios
after year 32. This indirectly proves that the cost of AV trips is the most important factor
compared with ‘AV adopters max’ and ‘PT capacity max’. The second- and third-highest AV
adopters rate scenarios were ‘PT capacity max(low)’ and ‘AV adopter max(high)’, meaning
PT demand might reach a high level due to lower capacity, resulting in more people
switching to AVs. Therefore, it is essential to consider the balance between PT capacity
and AV adoption rate to ensure a smooth transition to AVs. The evaluation of these
10 scenarios, featuring different values for “AV adopters max”, “AV trip cost min”, and
“PT capacity max”, reveals a spectrum of adoption rates spanning from 16% to 24%. This



Sensors 2023, 23, 7388

implies that these variables introduce relatively minor uncertainties in the results. These
findings indicate that cost, whether through financial incentives or subsidies, emerges as
the primary determinant influencing the number of individuals who opt for AV adoption
once the adoption rate stabilises. These findings can be helpful for policymakers and
stakeholders to make informed decisions regarding AV adoption policies and strategies.

 

Figure 9. AV adopters in different scenarios.

4.3. Road Expansion and Awareness Program Scenarios

Figure 10 shows the adoption rate of AVs under different road expansion and aware-
ness program scenarios. For the road expansion program, the baseline scenario assumed a
1 per cent annual growth rate in road network capacity, while the high scenario assumed a
3 per cent growth rate. The baseline scenario showed an AV adoption rate of 19 per cent,
while the high scenario showed a rate of approximately 24 per cent that continued slightly
even after year 50. This suggests that a 1 per cent increase in road network capacity could
lead to a 2 per cent increase in the AV adoption rate. However, higher road expansion rates
can result in a longer time for AV adoption to stabilise due to increased space on the road.
Interestingly, there is little difference in AV adoption rates between road expansion scenar-
ios in the first 20 years. This could be because road network capacity is not a significant
determining factor, and cost remains the most critical factor influencing AV adoption.

Further, the study suggests that awareness programs could be more effective than
road investment programs in increasing AV adoption rates, particularly between years
4 and 24. However, even with the low and high scenarios for the influence rate, the AV
adopter rate remained lower than the low road expansion scenario, at 19.3 per cent and
19.7 per cent, respectively. Therefore, although awareness programs could lead to a more
rapid increase in adoption rates, road investment programs are more likely to result in
higher adoption rates in the long term.
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Figure 10. AV adopters in different road expansion and awareness program scenarios.

5. Discussion

In this section, we discuss the following three aspects: AV adoption, awareness
program, and cost.

5.1. AV Adoption

A study conducted by [40] developed a framework to forecast the adoption of AVs
in Nashville, US. The study projected that AVs would likely capture a 50 per cent market
share by year 18 and an 80 per cent market share by year 31, which differs from our
study’s findings (10 per cent market share by year 18 and 23 per cent after year 30). This
variance may be attributed to the difference in the transportation culture between Australia
and the US. Unlike Australia, the US has a car-centric culture, which may lead to a more
rapid adoption of AVs. Similarly, [41] proposed a simulation-based framework using a
multinomial logit model to predict Americans’ adoption of CAVs under different scenarios.
The authors found that privately owned AVs would be 24.8 per cent in year 30, compared
with 18 per cent in the present study, and this result was based on an annual 5 per cent
price decrease and the same willingness to pay value.

Additionally, a dynamic approach for designing AV subsidies to accelerate the early
deployment of AVs was developed by [42]. The present study also highlights the impor-
tance of cost as a critical factor for adoption, which can be addressed through optimal
subsidies. Reference [43] used a discrete choice model by incorporating it into the dynamic
model with AV subsidies and infrastructure investment as inputs. That study concluded
that the optimal subsidy increased from USD 10,000 in year 1 to USD 20,000 in year 60,
when AV market penetration was 50 per cent.

In contrast to our study, [44] employed agent-based modelling and considered the
reduced value of time of AVs caused by parking restrictions and increased congestion.
The study concluded that AVs would decrease transit ridership by 75 per cent, which
differs from the present findings that showed an increase in public transit ridership due to
congestion and reduced AV costs. In a similar study, [23] used SD modelling to discover
that traffic volume would considerably increase, leading to higher congestion equilibrium
levels and more VKT. It is, therefore, imperative for the present study to consider the
induced traffic volume, as we assumed a relatively stable total number of trips.

Automated on-demand mobility services, such as Uber and taxis, could potentially
see a reduction in PT trips by 9–10 per cent in Singapore during peak hours with the
introduction of AVs alongside private vehicles [45]. This is because some individuals may
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shift from PT to AVs due to lower costs compared with existing taxis and on-demand
mobility services.

This study’s findings suggest that policymakers and stakeholders need to consider
the effect of congestion levels on AV adoption rates when developing policies to promote
AVs. It is essential to address current congestion levels, as this can influence the adoption
rate of AVs. Therefore, road expansion and awareness programs could be a more effective
approach to promoting AV adoption. Further, cost is the most important factor in deter-
mining the adoption rate of AVs, and optimal subsidies could be used to make AVs more
affordable and competitive in the market.

5.2. Awareness Programs

According to [46], social influence and public acceptance are two crucial factors neces-
sary for the widespread adoption of AVs. To encourage the adoption of AVs, governments
should work with manufacturers to promote their usefulness and create favourable condi-
tions that foster social influence and public acceptance.

Ref. [47] used SD modelling to find that a lack of customer acceptance was the main
barrier to AV adoption. The authors suggested that awareness programs can address
this issue, which can help increase the adoption rate. As suggested by [48], the societal
dimension of AVs as part of governance processes is important for the transition from CVs
to AVs. These recommendations from past studies are consistent with the present study’s
finding that an awareness program could increase AV adoption rates more quickly than a
road investment program.

Although awareness programs can drive an initial surge in AV adoption rates (e.g.,
from 2028 to 2048), this study indicates that their effect may diminish over time. Therefore,
policymakers should consider longer-term strategies, such as investment in AV infrastruc-
ture (e.g., charging stations), especially when future cars become electric AVs, to sustain
and increase adoption rate.

5.3. Cost

In this study, cost was identified as the most significant factor affecting adoption rates.
Similarly, in a study conducted by [49], a lab experiment was carried out in a mixed traffic
environment consisting of AVs and CVs to explore the mode preferences of individuals.
Participants who received complete information about mode and cost considered perceived
cost and inertia during the decision-making process. According to [50], various trade-offs,
such as travel time cost, waiting time cost, miles travelled, and operational cost, were
captured by considering AVs in private and shared mobility systems. The researchers
concluded that technological advancement is necessary to promote AV adoption due to the
lower cost of AVs, which aligns with this study’s findings.

Additionally, [42] found that optimal subsidies can serve as both an incentive for
AV manufacturers to innovate and improve their products and a means of providing
competitive pricing to attract potential consumers. Moreover, the research conducted
by [51] showed that individuals tended to be more responsive to the cost of the vehicle
and the provision of exclusive lanes, which is consistent with the findings of the present
study regarding AV trip costs and road expansion programs. The cost factor could also
significantly influence individuals’ decisions to adopt AVs in Ireland [52].

Therefore, policymakers could consider providing optimal subsidies to AV manu-
facturers to innovate and improve their products and offer competitive pricing to attract
potential consumers. Further, governments could invest in AV infrastructure, such as
exclusive lanes, to provide a more seamless and efficient travel experience for AV users.
Policymakers should also consider the balance between PT capacity and AV adoption rates
to ensure a smooth transition to AVs, which could lead to a reduction in private car usage
and, consequently, contribute to reducing greenhouse gas emissions.
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6. Conclusions

This study used an SD modelling approach to investigate the effect of AVs on the mode
shift between CVs, AVs, and PT in Melbourne, Australia, by systematically considering a
range of factors, such as road network, vehicle cost, PT supply, and congestion level. The
study also highlights the importance of cost as a critical factor in adoption, which can be
addressed through optimal subsidies. Further, the adoption rate of AVs was found to be
affected by road network capacity and awareness programs. While higher road expansion
rates could result in a longer time for AV adoption rates to stabilise, awareness programs
could lead to a more rapid increase in adoption rates. However, road investment programs
are more likely to result in higher adoption rates in the long term. Therefore, it is important
to facilitate the transition from CVs to AVs in a seamless manner so that road network can
accommodate both types of vehicles during the transition period.

The increasing prevalence of AVs in Australia may have significant implications for
mobility patterns, particularly in ride-hailing services [53]. This could result in a more
congested network, as future travel demand is expected to be primarily carried out via
private AVs, with most passengers using shared patterns [6]. Therefore, it is crucial
to investigate the adoption rates of AVs in various potential scenarios, including those
involving ride-hailing services. Understanding the potential effect of AVs on ride-hailing
services will help policymakers develop strategies to manage traffic congestion and ensure
a sustainable transportation system.

The SD model developed in this study has the potential to assist planners, policymak-
ers, and researchers to evaluate the potential effect of AVs on the transportation system
and plan accordingly to minimise adverse effects and maximise the benefits of AVs. Like-
wise, analogous to the approach described in reference [54], the adaptation of monitoring
strategies in response to evolving conditions holds applicability in making well-informed
decisions regarding mode shifts within dynamic transportation systems. However, this
study has several limitations that need to be addressed in future research. First, the study
only considered a single metropolitan area and assumed that AVs would be available to
everyone equally. In reality, AV adoption rates may vary across regions due to factors such
as urban design, travel patterns, and demographic characteristics. Thus, future studies
should explore the adoption rates of AVs in different regions and the factors that influence
them.

The study made three assumptions regarding AV adoption rates in Melbourne, Aus-
tralia, including a constant 2 per cent growth rate in total trips over time. However, in
reality, AVs may induce demand for travel by providing more convenient and accessible
transportation, increasing total trips. Thus, future research should explore the potential
induced demand due to AV adoption. Additionally, applying equilibrium constraints to
traffic assignment models could enhance the model’s accuracy by characterising route
choice behaviour and vehicle preference, as suggested in the literature [36].
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Abstract: Road parameter identification is of great significance for the active safety control of tracked
vehicles and the improvement of vehicle driving safety. In this study, a method for establishing a
prediction model of the engine output torques in tracked vehicles based on vehicle driving data
was proposed, and the road rolling resistance coefficient f was further estimated using the model.
First, the driving data from the tracked vehicle were collected and then screened by setting the
driving conditions of the tracked vehicle. Then, the mapping relationship between the engine torque
Te, the engine speed ne, and the accelerator pedal position β was obtained by a genetic algorithm–
backpropagation (GA–BP) neural network algorithm, and an engine output torque prediction model
was established. Finally, based on the vehicle longitudinal dynamics model, the recursive least
squares (RLS) algorithm was used to estimate the f . The experimental results showed that when
the driving state of the tracked vehicle satisfied the set driving conditions, the engine output torque
prediction model could predict the engine output torque T̂e in real time based on the changes in the ne

and β, and then the RLS algorithm was used to estimate the road rolling resistance coefficient f̂ . The
average coefficient of determination R of the T̂e was 0.91, and the estimation accuracy of the f̂ was
98.421%. This method could adequately meet the requirements for engine output torque prediction
and real-time estimation of the road rolling resistance coefficient during tracked vehicle driving.

Keywords: tracked vehicles; engine output torque prediction model; GA–BP neural network;
estimation of rolling resistance coefficient

1. Introduction

Tracked vehicles are mostly used in agricultural, fire protection, and military fields
due to their good trafficability. A driving road is complex and changeable, and the demands
on the dynamics and safety of tracked vehicles are high [1]. The road parameters affect
the acceleration, braking, and steering performance of vehicles, and they are important
parameters for risk assessment and active safety control during tracked vehicle driving [2].
Road parameter estimation is of great significance for improving the safety and dynamic
performance of vehicles [3]. Road identification is generally achieved by estimating a
parameter that reflects the characteristics of the road surface, such as the road adhesion
coefficient, roughness, rolling resistance coefficient, or slope. To realize road surface
recognition and improve the safety of vehicle driving, researchers have conducted in-
depth studies. For tracked vehicles, researchers have mostly focused on the dynamic
characteristics of tracked vehicles [4] and the coupling between the track and ground
during vehicle driving. There have been few studies on the further application of research
results to road recognition.

At present, there are two main methods to realize road recognition. One is to directly
measure the road through environmental sensors or vehicle state sensors [5,6]. Abhinav
et al. [7] proposed a terrain recognition method based on a deep learning long short-term
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Sensors 2023, 23, 7549

memory model, using the acoustic waves generated by the interactions between the vehicle
and the terrain as the terrain feature variable. Huang et al. [8] proposed a road boundary
monitoring method based on a deep learning network. The experimental results showed
that the method had high accuracy and robustness for lane boundary line monitoring in
various scenarios. Based on road images, laser radar point cloud data, and vehicle state
information, Zhao et al. [9] realized road recognition by parameter estimation and state
fusion. The direct measurement method using environmental sensors for road recognition
has the advantages of real-time measurement capabilities and high estimation accuracy.
However, to achieve large-scale commercial applications, it is necessary to further reduce
the cost of environmental sensors and their reliability in harsh environments [10].

Another method is to estimate the road feature parameters through a vehicle model
and then perform road recognition. The method of estimating the road adhesion coefficients
of wheeled vehicles based on the slip-slope method [11] using the μ − s curve is compara-
tively mature, but the implementation of this method is based on an accurate tire model.
Since the vehicle longitudinal dynamics model does not include the tire model, the method
of estimating the road characteristics parameters based on this model is theoretically more
suitable for tracked vehicles. The application of this method to wheeled vehicles could also
be used as a reference. The estimation of the engine output torque is a difficult task for road
parameter estimation based on the vehicle longitudinal dynamics model. Chu et al. [12]
used the vehicle longitudinal dynamics model to estimate the road slope by making full
use of the accurate driving force information from an electric-drive vehicle. Liu et al. [13] es-
tablished an engine output torque prediction model, including a fuel supply system model,
an in-cylinder combustion model, and a crankshaft dynamics model. Based on the vehicle
longitudinal kinematics model, the Kalman filter algorithm was used to estimate the road
slope. Because the established engine output torque prediction model was too complex, this
method was difficult to use for real vehicle control. Cong et al. [14] established a look-up
table model of the engine output torque by fitting the corresponding relationship between
the engine output torque, engine speed, and accelerator pedal position and estimated the
road slope based on the Kalman filter algorithm. This method required a lot of manual
calibration work in the bench test stage of the vehicle, and it was difficult to update after
the calibration was complete. The predicted torque error of the model would increase with
the engine performance degradation. The development of intelligent algorithms provides a
new idea for establishing an engine model with nonlinearity, multiple disturbances, and
time lag [15].

In this study, the tracked vehicle was the research object, and a method for establishing
a prediction model of the engine output torque in the tracked vehicle, based on the vehicle
driving data, was proposed. This method saves a lot of manual calibration work during
the vehicle bench test stage and has the advantage of enabling real-time updates. The
rolling resistance coefficient estimation for the road was realized using the model. The
vehicle driving data, during the driving process, from the tracked vehicle were collected.
The vehicle driving data were screened by setting the driving conditions of the vehicle to
estimate the f . The Kalman filter algorithm was used to filter the longitudinal acceleration
a in the selected data segments, and the engine output torque Te of each data segment
was calculated based on the filtered longitudinal acceleration â. The engine speed ne, the
engine speed variation rate n′

e, the accelerator pedal position β, and the accelerator pedal
position variation rate β′ were the inputs, and the engine output torque Te was the output.
A genetic algorithm–backpropagation (GA–BP) neural network algorithm was used to fit
the mapping relationship between the inputs and the output, Te = f (ne, n′

e, β, β′). Based on
the longitudinal dynamics model of tracked vehicles, the RLS algorithm with the forgetting
factor λ was used to estimate the f̂ . The implementation process is shown in Figure 1. The
experimental results showed that the sensor information could be used to automatically
judge the driving conditions during the driving process of the tracked vehicle. When the
driving conditions of the vehicle satisfied the set driving conditions, the engine output
torque prediction model predicted the T̂e in realtime based on the ne and β, and then it
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further estimated the f̂ . The estimation results had high accuracy and could better meet
the requirements for the real-time estimation of the road parameters for tracked vehicles.

Figure 1. Process of engine output torque prediction and rolling resistance coefficient estimation.

2. Estimation of f Based on Recursive Least Squares (RLS) Algorithm

The longitudinal driving forces on the tracked vehicle are shown in Figure 2. The
vehicle driving force Ft can be expressed as follows:

Ft = mg f cos α + δma + mg sin α +
CD A
21.15

v2, (1)

where m is the mass of the vehicle, g is the acceleration of gravity, f is the rolling resistance
coefficient of the road, α is the road slope, δ is the rotating mass scaling factor, a is the
longitudinal acceleration of the tracked vehicle, CD is the air resistance coefficient, A is the
windward area of the tracked vehicle, and v is the speed of the tracked vehicle.

 

Figure 2. Forces on the tracked vehicle during longitudinal driving.

The relationship between the Te and vehicle driving force Ft can be expressed as follows:

Te =
Ftr
iη

, (2)
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where i is the transmission ratio from the engine to the driving wheel, η is the transmission
efficiency, and r is the radius of the sprocket.

The formula for f can be obtained by combining (1) and (2):

f =
Teiη

r − CD A
21.15 v2 − mg sin α − δma

mg cos α
. (3)

From Formula (3), it can be seen that f can be obtained when Te, a, and α are known.
The RLS algorithm with the forgetting factor λ is used to estimate the f . The RLS

algorithm can be expressed as follows:

y(t) = ϕT(t)θ(t) + e(t), (4)

where ϕ(t) is the estimated parameter vector at time t, θ(t) is the regression vector at
time t, and e(t) is the deviation between the measured value y(t) and the estimated value
ϕT(t)θ(t) at time t.

The RLS algorithm iteratively updates the position parameter vector ϕ(t) at each
sampling time by making the regression vector θ(t) contain the input and output data
from a previous time. The RLS algorithm minimizes the estimation bias for each iteration
period by updating the vector regression θ(t). In this paper, y(t) = Teiη/r − CD A

21.15 v2 −
mg sin α(t)− δma(t), θ(t) = mg cos α(t), and λ = 0.98.

The calculation steps for the RLS algorithm at each time t are as follows:

(1) The system output y(t) is measured, and the regression vector θ(t) is calculated.
(2) The difference e(t) between the actual output of the system y(t) at time t and the

output of the prediction model obtained by estimating the parameters ϕT(t)θ(t − Δt)
is calculated. Δt is the time interval. The difference e(t) can be expressed as follows:

e(t) = y(t)− ϕT(t)θ(t − Δt). (5)

(3) The updated gain vector G(t) and the covariance matrix C(t) are calculated. These
can be expressed as follows:

C(t) =
1
λ

[
C(t − Δt)− C(t − Δt)ϕ(t)ϕT(t)C(t − Δt)

λ + ϕT(t)P(t − Δt)ϕ(t)

]
, (6)

G(t) =
C(t − Δt)ϕ(t)

λ + ϕT(t)C(t − Δt)ϕ(t)
. (7)

(4) The parameter estimation vector ϕ(t) is updated as follows:

ϕ(t) = ϕ(t − Δt) + Ge(t). (8)

3. Tracked Vehicle Driving Data Acquisition and Processing

The tracked vehicle examined in this study was equipped with a diesel engine, a dry
clutch, and a fixed shaft gearbox. The tracked vehicle was equipped with a combined iner-
tial navigation module, including an acceleration sensor and a gyroscope. The positioning
data were processed by differential processing, and the accuracy reached the centimeter
level. The acceleration sensor was used to measure the longitudinal acceleration value
of the tracked vehicle in real time. The gyroscope was used to measure the vehicle pitch
angle, and the vehicle pitch angle was assumed to be equal to the road slope value. The
vehicle controller received the driver’s control instructions to control the vehicle, and the
driving data recorder recorded the vehicle’s driving data, which was convenient for the
data analysis and control optimization of the vehicle. The communication structure of each
module is shown in Figure 3.
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Figure 3. Communication structure of each module.

The test site was a vehicle driving test site in Shanxi, China. The total length of the
test site route was 10 km, including a sand road and a cement road. The rolling resistance
coefficients of the two roads were measured to be 0.06 and 0.045. Figure 4 shows the satellite
map of the experimental site. A total of 119.67 h driving data were collected by the driving
data recorder. The collected data included GPS coordinates, vehicle speed, longitudinal
acceleration, pitch angle, heading angle, and gear and clutch displacement.

Figure 4. Satellite map of the experimental site.

To ensure the accuracy of the engine output torque model, the driving data were
screened by setting the driving conditions for the tracked vehicle. The vehicle driving data
that satisfied the driving conditions were used as the effective data to establish the engine
output torque prediction model.

(1) The measurement of the vehicle pitch angle by the gyroscope was affected not only
by the road slope but also by installation error, the suspension state, and other factors.
Under some conditions, for example, the clutch was engaged too fast when shifting,
which caused the vehicle to pitch in a short time even if it was driving on a flat
road, resulting in measurement errors. At the same time, a large change in the road
slope also increased the measurement error of the acceleration sensor. To improve
the prediction accuracy of the model, the driving data with a large angle measured
by the gyroscope were eliminated by setting the ramp threshold to αth = 3◦, so that
the tracked vehicle could drive on a flat road, which was approximately level, as far
as possible.

(2) The selected vehicle driving data did not include the clutch separation process, and the
driving force during the vehicle driving process was only provided by the engine. The
engagement and separation state of the clutch was judged by the displacement of the
clutch control cylinder clhx. When the clutch combination displacement clhx ≤ 18 mm,
the clutch was considered engaged. Setting the vehicle acceleration threshold ath and
the minimum stable driving time threshold ts ensured that the stable driving data
were screened after the vehicle shift was complete. By analyzing the driving data,
we set ath = 0.4 m/s2 and ts = 10 s. The driving data when the vehicle acceleration
|a| ≤ 0.4 m/s2 for more than 10 s after the clutch was engaged was considered stable
and valid data.
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(3) It was necessary to limit the heading angle γ in the screened vehicle driving data
to ensure that the tracked vehicle was in a straight-line driving state. Considering
the influence of sensor measurement error and random road disturbances, we set
γth = 5◦. In the selected driving data, the change in the heading angle of the vehicle
between the initial moment and the final moment could not exceed 5◦.

Due to the body vibration and acceleration sensor measurement bias during the
running of the tracked vehicle, the acceleration measurement data had a larger error than
the real value. The Kalman filter algorithm was used to filter a to obtain an accurate
longitudinal acceleration â. The vehicle displacement p, velocity v, and acceleration a were
the state variables, and u was the measured value of the acceleration sensor. The driving
displacement pGPS and the driving speed vGPS obtained by the vehicle’s integrated inertial
navigation module through the differential positioning system were taken as the observed
quantities. The vehicle state equation at time t can be expressed as follows:⎡

⎣pt
vt
at

⎤
⎦ =

⎡
⎣1 Δt 1

2 Δt2

0 1 Δt
0 0 0

⎤
⎦
⎡
⎣pt−Δt

vt−Δt
at−Δt

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦ut−Δt, (9)

⎡
⎢⎣ pGPSt−Δt

vGPSt−Δt
vGPSt−vGPSt−Δt

Δt

⎤
⎥⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣pt−Δt

vt−Δt
at−Δt

⎤
⎦, (10)

where Xk =

⎡
⎣pt

vt
at

⎤
⎦, Yk =

⎡
⎢⎣ pGPSt−Δt

vGPSt−Δt
vGPSt−vGPSt−Δt

Δt

⎤
⎥⎦, F =

⎡
⎣1 Δt 1

2 Δt2

0 1 Δt
0 0 0

⎤
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⎡
⎣0

0
1

⎤
⎦, H =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦,

and Δt is the calculation time step.
The Kalman filter algorithm uses a recursive method to solve the filtering problem of

discrete linear data [16]. The steps are as follows:

(1) Update the prediction equation:{
X−

t = FXt−Δt + But
P−

t = FPt−ΔtFT + Q
. (11)

(2) Update the Kalman gain coefficient:

K = P−
t HT(HP−HT + R)

−1
. (12)

(3) Update the measurement equation:{
Xt = X−

t + K(Yt − HX−
t )

Pt = (I − KH)P−
t

. (13)

In these formulas, X−
t is the prior state estimation at time t, Xt is the posterior state

estimation at time t, P−
t is the prior covariance matrix at time t, Pt is the covariance

matrix at time t, Q is the process noise covariance matrix, R is the observation noise

covariance matrix, and K is the Kalman gain coefficient. In this study, Q =

⎡
⎣0.5 0 0

0 0.5 0
0 0 0.5

⎤
⎦,

R =

⎡
⎣0.2 0 0

0 0.2 0
0 0 0.2

⎤
⎦, and P0 =

⎡
⎣0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦. The acceleration data measured by some

accelerometers are filtered, and the filtering effect is shown in Figure 5.
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Figure 5. Filtering effect on the acceleration signal.

4. Engine Output Torque Prediction Model

After obtaining â using the Kalman filter algorithm, the driving force Ft of the vehicle
was calculated according to Formula (1), and the Te was further obtained. The ne, n′

e, β,
and β′ were used as the inputs in the engine output torque prediction model, and the
corresponding engine output torque Te, calculated by â, was used as the model output. The
GA–BP neural network algorithm was trained on the inputs and output, and the mapping
relationship between the Te and ne, n′

e, β, and β′ was Te = f (ne, n′
e, β, β′). Thus, the engine

output torque prediction model was established.
The GA–BP neural network algorithm makes use of the global optimization ability

of the genetic algorithm to make up for the shortcomings of BP neural networks, such as
the slow learning convergence speeds, uncertain network structures, and ease of falling
into the local minimum. The initial weights and thresholds in the BP neural network were
used as genes in the genetic algorithm. The values on the genes represented the connection
weights or thresholds in the BP neural network and formed the chromosomes of the genetic
algorithm. A certain number of chromosomes were used as the initial population of the
genetic algorithm. After selection, crossover, and mutation iterations, the initial weights and
thresholds of the optimal BP neural network were obtained. The GA–BP neural network
algorithm structure diagram is shown in Figure 6. After the simulation test, the number of
genetic iterations in the genetic algorithm is set to 30, the number of populations is 5, the
probability of crossover is 0.7, and the probability of mutation is 0.1.

. 

Figure 6. Genetic algorithm–backpropagation (GA) neural network algorithm structure diagram.
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The BP neural network continuously corrected the weights and thresholds of each
neural network layer through error backpropagation. The number of input nodes in the
BP neural network is four, the number of output nodes is one, and the hidden layer is
ten. When the training results met the set requirements, the training was stopped and the
prediction results were output. The network structure is shown in Figure 7.

Figure 7. Structure of the backpropagation (BP) network.

In the graph, ω
[n]
jk is the weight value from the k-th node to the j-th node of the

(n − 1)-th layer in the neural network, b[n]j represents the threshold of the j-th node of the

n-th layer neural network, z[n]j is the linear result of the j-th node added to the n-th layer

neural network, and a[n]j represents the output value of the j-th node of the n-th layer
neural network.

The initial weights and thresholds for each layer of the neural network were calculated
by the genetic algorithm to obtain the optimal solution. σ denotes the activation function,
and χ donates the learning rate. The input signal fitting process is as follows:

Gradient of output layer:

σ
[n]
j =

∂s

∂α
[n]
j

σ′
(

z[s]j

)
; (14)

Gradient of hidden layer:

σ
[n]
j = ∑ ω

[n]
kj σ

[n+1]
k σ′

(
z[n]j

)
; (15)

s-th iteration threshold:

b[n]j (s) = b[n]j (s − 1)− ησ
[n]
j ; (16)

s-th iteration weight:

ω
[n]
jk (s) = ω

[n]
jk (s − 1)− ησ

[n]
j a[n−1]

k . (17)

The learning rate χ was adaptively adjusted according to the error change e(s), which
can be expressed as:

χ(s) =

⎧⎨
⎩

1.05χ(s − 1) e(s − 1) < e(s − 2)
0.5χ(s − 1) e(s − 1) < 1.04e(s − 2)
χ(s − 1) other

. (18)

5. Experimental Results and Analysis

The accuracy of the tracked vehicle engine output torque prediction model and the
effectiveness of the f estimation method were verified by experiments. The experimental
pavement was a sand road and a cement road. The structural parameters of the experimen-
tal vehicle are shown in Table 1.
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Table 1. Tracked vehicle structural parameters.

Parameter Value

m (kg) 31,000
r (m) 0.283

A (m2) 6
CD 0.45
δ 1.24

i (1st gear to 5th gear) 28.35/13.23/9.45/6.71/4.3
η (1st gear to 5th gear) 0.79/0.77/0.76/0.75/0.73

To improve the computational efficiency, the engine output torque prediction model
was established through offline updates and online prediction. In this study, MATLAB
2021b was used to train the engine output torque prediction model offline through the
selected vehicle driving data, and the generated model was converted into C code and
imported into an industrial personal computer (IPC).

The IPC received the vehicle state in real time through the controller area networks
(CAN) bus. When the vehicle state was determined to meet the set working conditions,
a data storage container was established to store the vehicle state data. When it was
determined that the current vehicle driving state did not meet the set conditions, the data
stored in the container were emptied and the vehicle state was continuously monitored.
When the container stored data for more than 10 s, i.e., the vehicle had been running in a
specific state for 10 s, the engine output torque prediction model began to predict the T̂e
based on the ne and β, and the f̂ was further estimated. The data container was used to
store data to estimate the f̂ and update the f̂ in real time, based on the current vehicle state.
The process through which the IPC processed the tracked vehicle driving data is shown
in Figure 8.

 

Figure 8. Process through which the industrial personal computer (IPC) processed the tracked vehicle
driving data.

5.1. Estimation of f̂ for Tracked Vehicles Driving on a Sand Road

The annular sand road in the vehicle driving test field was selected as the experimen-
tal test road. According to the driving habits and environmental conditions, the driver
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determined the gear and speed to maintain driving safety and speed. The IPC received the
driver’s control information and the vehicle driving state data in real time, and automati-
cally determined whether the vehicle’s state satisfied the set driving conditions. When the
driving conditions were satisfactory, the engine output torque prediction model predicted
the T̂e in real time and estimated the f̂ .

Figure 9 shows the trajectory of the tracked vehicle. The vehicle started from the
starting point and traveled around the circular runway. The driving distance was 3694 m.
The red solid line section marked in Figure 9 indicates that the state of the tracked vehicle
on this section satisfied the set driving conditions. The total length of the red solid line
segment was 2054.5 m. Figure 10 shows the change in the speed, and the gear and clutch
cylinder displacement in the tracked vehicle during the whole driving process. As can
be seen from Figure 10, the total driving time of the vehicle was 622.3 s. The vehicle
starts in second gear, the highest gear was fifth gear, the highest speed was 32.5 km/h, the
commonly used gear during the vehicle driving was fourth gear, and the average driving
speed was 20.55 km/h. When f lagstate = 1, the driving state of the vehicle meets the set
conditions. The entire driving process satisfied the set driving conditions during 10 periods,
and the total time was 313.8 s. Figure 11 shows the changes in the acceleration, pitch angle,
and heading angle of the tracked vehicle. It can be seen from Figure 11 that the acceleration
of the vehicle increased rapidly in a short time during the engagement of the vehicle’s
clutch, and the impact of shifting the vehicle was large. After the clutch engagement was
completed, the vehicle acceleration changed relatively smoothly when the vehicle was
accelerating and decelerating. The acceleration measurement value was more credible, and
it was reasonable to screen the vehicle driving data by setting the acceleration threshold.
It can be seen from the change in the heading angle that when the tracked vehicle was
under the set driving conditions, the heading angle of the vehicle was almost unchanged,
and the vehicle could be considered to have maintained, approximately, a straight driving
state. Under the set driving conditions, the change in the pitch angle of the tracked vehicle
was in the range of the set pitch angle. Figure 12 shows the changes in the engine speed
and accelerator pedal angle during the driving process of the vehicle. The selected driving
information data excluded the rapid variation stage of the engine speed during the shifting
process. The accelerator pedal angle and engine speed varied smoothly, and the vehicle
ran stably.

Figure 13 shows the T̂e prediction of the engine output torque prediction model when
the tracked vehicle satisfied the driving conditions for the first time on the sand road. The
Te, calculated based on â using Equation (1), was the real value, and the engine output
torque predictions of the BP neural network were used as the control data. The engine
output torque value T̂eGA−BP predicted by the GA–BP neural network was closer to the
Te. The root mean square error σe and the coefficient of determination R were used as the
evaluation indices on the accuracy of the engine output torque estimation.

σe =

√
(T̂e − Te)

2/n, (19)

R = 1 − ∑ (Te − T̂e)
2

∑ (Te − Te)
2 , (20)

where n is the number of sample data, and Te is the average value of the true values on the
output torque of the transmitter calculated from the sample data.

The root mean square error of the engine output torque obtained by the engine
output torque prediction model established by the BP neural network was 78.65, and the
coefficient of determination was 0.768. The root mean square error of the engine output
torque calculated by the GA–BP was 45.06, and the coefficient of determination was 0.924,
which was 42.71% and 20.31% higher than those of the BP neural network, respectively.
Figure 14 shows the result on the further f estimation by the RLS algorithm. The rolling
resistance coefficient estimated by the GA–BP neural network method was more convergent.
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The average error of the f̂ value estimated by the RLS algorithm was 0.00093, while it was
0.00117 for the BP neural network. Thus, the estimation accuracy was improved by 20.51%.

 
Figure 9. Trajectory of the tracked vehicle driving on the sand road.

 
Figure 10. Changes in the speed, and gear and clutch cylinder displacement in the tracked vehicle on
the sand road.

 
Figure 11. Changes in the longitudinal acceleration, heading angle, and pitch angle of the tracked
vehicle running on the sand road.
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Figure 12. Changes in the engine speed and accelerator pedal position in the tracked vehicle running
on the sand road.

 
Figure 13. Predicted T̂e values when the tracked vehicle satisfied the driving conditions for the first
time on the sand road.

 
Figure 14. Predicted f̂ values when the tracked vehicle satisfied the driving conditions for the first
time on the sand road.

Table 2 shows the vehicle state and T̂e prediction for the 10 periods when the tracked
vehicle satisfied the driving conditions. The average root mean square error of the engine
output torque estimated by the GA–BP neural network was 42.24, and the average root
mean square error calculated by the BP neural network was 73.95. The average root mean
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square error of the engine output torque calculated by the GA–BP neural network on the
sand road was 42.87% higher than that of the BP neural network. Similarly, the average
coefficient of determination of the engine output torque estimated by the engine output
torque model established by the GA–BP neural network was 0.918, which was 27.73%
higher than that of the BP neural network.

Table 2. Vehicle state, T̂e, and estimated f̂ when the tracked vehicle satisfied the driving conditions
on the sand road.

Time (s)
Distance

(m)
Gear

Average
Speed (km/h)

σe
(GA–BP)

σe
(BP)

R
(GA–BP)

R
(BP)

1 56.1–154.6 671.13 4 24.48 43.6 79.69 0.9287 0.7624
2 172.2–212.8 279.84 4 24.8 32.34 60.07 0.9305 0.7604
3 266–291.8 189.63 4 26.46 43.47 75.6 0.8727 0.6452
4 319.8–343.1 167.53 4 25.88 35.83 75.93 0.903 0.5640
5 343.3–394.3 356.49 4 25.11 40.59 76.04 0.9118 0.6907
6 398.1–411.1 96.98 5 26.82 42.59 79.97 0.9498 0.7437
7 415.2–429.6 136.84 5 33.99 52.66 79.26 0.9387 0.7832
8 461.6–471.7 41.89 3 14.78 51.73 69.84 0.9184 0.7142
9 475.5–498.3 57.39 2 9.04 42.95 64.35 0.8942 0.7627

10 596.9–611.2 56.83 3 14.3 36.67 78.73 0.9215 0.7608

Figure 15 shows the change in the average absolute error emb of the f̂ estimation results
obtained by the two methods, which was calculated as

emb =
∑
∣∣T̂e − Te

∣∣
n

. (21)

 
Figure 15. Engine output torque predictions when the tracked vehicle satisfied the driving conditions
during 10 periods on the sand road.

The emb value of the road rolling resistance coefficient estimated by the GA–BP neural
network was 0.00108, which was 24.44% higher than that of the BP neural network. The
engine output torque model was established by the GA–BP neural network on the sand
road, and the engine output torque was estimated. The estimation accuracy of the rolling
resistance coefficient of the road was significantly improved compared with that of the BP
neural network. Thus, the GA–BP neural network can better meet the real-time estimation
requirements of the rolling resistance coefficient during the driving process of a vehicle on
a sand road.

5.2. Estimation of f̂ for Tracked Vehicles Running on a Cement Road

The driver drove the tracked vehicle by starting in second gear on the cement road.
During the driving process of the vehicle, the IPC received the state information on the
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vehicle, predicted the engine output torque, and estimated the road rolling resistance
coefficient in real time, when the vehicle state satisfied the driving conditions.

Figure 16 shows the driving route of the tracked vehicle on the cement road, with a
driving distance of 776.5 m. The red solid line in the figure represents the road section
where the tracked vehicle predicted the T̂e and estimated the f̂ . During the whole driving
process of the tracked vehicle, the engine output torque was predicted and the rolling
resistance coefficient was estimated four times. The total length of the driving section was
554.3 m. Figure 17 shows the speed, the displacement of the clutch cylinder, and the change
in the gear when the tracked vehicle was driving on the cement road. The tracked vehicle
did not shift again after starting in second gear, and it ran in second gear to complete the
trip. The maximum speed was 14.36 km/h and the time was 260 s. The time for the tracked
vehicle to meet the set driving conditions was 154.4 s. Figure 18 shows the changes in
the acceleration, pitch angle, and heading angle of the tracked vehicle. The acceleration
changed smoothly when the tracked vehicle was under the set working conditions, the
pitch angle change was less than the set threshold, and the heading angle change was
small. The vehicle could be considered to be in a straight driving state. Figure 19 shows the
relationship between the engine speed and the percentage change in the accelerator pedal.
The engine speed and the driver’s control accelerator pedal changed smoothly during the
selected driving data.

 
Figure 16. Trajectory of the tracked vehicle driving on the cement road.

 
Figure 17. Changes in the speed, and gear and clutch cylinder displacement in the tracked vehicle on
the cement road.



Sensors 2023, 23, 7549

 
Figure 18. Changes in the longitudinal acceleration, heading, and angle of the tracked vehicle running
on the cement road.

 
Figure 19. Changes in the engine speed and accelerator pedal position in the tracked vehicle running
on the cement road.

Figure 20 shows the predicted values of the T̂e and the estimated f̂ values when the
tracked vehicle ran on the cement road and met the set driving conditions for the first time.
The T̂e predicted by the engine output torque prediction model established by the GA–BP
neural network was closer to the real value of the engine output torque. Figure 21 shows
the estimation of the road rolling resistance coefficient f̂ by the RLS algorithm. The GA–BP
neural network was used to estimate the engine output torque and further estimated the
road rolling resistance coefficient with better accuracy.

Table 3 shows the estimated values on the vehicle state, T̂e, and f̂ of the tracked vehicle
on the cement road under the set conditions. The σe value in the results estimated by
the GA–BP neural network was 13.09, and the value for the BP neural network method
was 42.4% greater. The R from the GA–BP method was 0.895, which was 12.8% higher
than that of the BP neural network. Figure 22 shows the change in the emb values for the
f̂ estimation results obtained by the two methods. The emb value by the GA–BP neural
network predictions was 0.00061, which was 38.1% higher than that of the BP neural
network predictions.
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Figure 20. Prediction of the T̂e values when the tracked vehicle satisfied the driving conditions for
the first time on the cement road.

Figure 21. Prediction of the f̂ values when the tracked vehicle satisfied the driving conditions for the
first time on the cement road.

Figure 22. Engine output torque prediction when the tracked vehicle satisfied the driving conditions
during 10 periods on the cement road.
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Table 3. Vehicle state, T̂e, and estimated f̂ when the tracked vehicle satisfied the driving conditions
on the cement road.

Time (s)
Distance

(m)
Gear

Average
Speed (km/h)

σe
(GA–BP)

σe
(BP)

R
(GA–BP)

R
(BP)

1 33.3–104 257.9 2 13.12 19.01 33.38 0.86 0.75
2 125.3–144.7 75.5 2 13.45 11.2 18.12 0.83 0.748
3 156.1–203.7 184.1 2 13.89 10.49 18.54 0.92 0.76
4 221.7–238.4 39.8 2 8.51 11.66 20.88 0.89 0.81

6. Conclusions

In this paper, a method for establishing an engine output torque prediction model
based on vehicle driving data was proposed for tracked vehicles, and the model was used
to further estimate the rolling resistance coefficient of the road. The following conclusions
can be drawn from the experimental results:

(1) The engine output torque prediction model obtained by fitting the vehicle driving data
with the GA–BP neural network had a high level of engine output torque prediction
accuracy. The engine output torque prediction model was established using vehicle
driving data, which reduced the calibration work in the engine bench test stage
significantly and had real-time updating capabilities. This method provides a new
option for the establishment of an engine output torque model.

(2) In this study, a prediction model of the engine output torque was established, and
the RLS algorithm was used to estimate the road rolling resistance coefficients of
tracked vehicles under certain driving conditions. The experimental results showed
that when the tracked vehicle was driving on a sand road and a cement road, the
rolling resistance coefficient of the road could be automatically estimated and had
high accuracy when the vehicle driving state satisfied the set driving conditions. To a
certain extent, this method meets the requirements for the real-time estimation of the
rolling resistance coefficient of a road when a tracked vehicle drives longitudinally.

(3) Limited by the system structure of the tracked vehicle and the measurement error of
the sensor, to ensure the prediction accuracy of the engine output torque prediction
model and the estimation accuracy of the road rolling resistance coefficient, it is
necessary to limit the driving conditions of the tracked vehicle, which makes it
difficult to apply this model throughout the whole driving process. Determining how
to make the tracked vehicle estimate the road parameters over the whole driving
process will be the focus of future research.
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Abstract: In structural vibration response sensing, mobile sensors offer outstanding benefits as
they are not dedicated to a certain structure; they also possess the ability to acquire dense spatial
information. Currently, most of the existing literature concerning mobile sensing involves human
drivers manually driving through the bridges multiple times. While self-driving automated vehicles
could serve for such studies, they might entail substantial costs when applied to structural health
monitoring tasks. Therefore, in order to tackle this challenge, we introduce a formation control
framework that facilitates automatic multi-agent mobile sensing. Notably, our findings demonstrate
that the proposed formation control algorithm can effectively control the behavior of the multi-
agent systems for structural response sensing purposes based on user choice. We leverage vibration
data collected by these mobile sensors to estimate the full-field vibration response of the structure,
utilizing a compressive sensing algorithm in the spatial domain. The task of estimating the full-field
response can be represented as a spatiotemporal response matrix completion task, wherein the suite
of multi-agent mobile sensors sparsely populates some of the matrix’s elements. Subsequently, we
deploy the compressive sensing technique to obtain the dense full-field vibration complete response
of the structure and estimate the reconstruction accuracy. Results obtained from two different
formations on a simply supported bridge are presented in this paper, and the high level of accuracy in
reconstruction underscores the efficacy of our proposed framework. This multi-agent mobile sensing
approach showcases the significant potential for automated structural response measurement, directly
applicable to health monitoring and resilience assessment objectives.

Keywords: full-field sensing; compressive sensing; multi-agent system; mobile sensors; formation
control; structural health monitoring

1. Introduction

Bridge health monitoring is essential to ensure public safety, prolong infrastructure
lifespan, and mitigate potential risks through continuous assessment of structural integrity
and performance. Although fixed sensors placed on the structure are commonly used for
vibration-based bridge health monitoring [1], they require ongoing monitoring of sensor
health to ensure data reliability [2,3]. Mobile sensing presents an alternative approach,
involving the installation of vibration sensors on mobile vehicles or carriers [4]. These
mobile units traverse the structure, collecting vibration response data in relation to spatial
and temporal variations. Mobile sensing offers distinct benefits compared to traditional
fixed sensors, including increased spatial information, scalability, and reduced maintenance
costs [5]. The advancements in wireless sensing technologies enable mobile sensor networks
to complement wired counterparts, facilitating expanded usage of mobile sensors [6]. Mod-
ern smartphones, equipped with motion sensing chips like accelerometers and gyroscopes,
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enhance the potential for crowd-sourced data collection [7–9]. Nevertheless, these mobile
sensing techniques often require multiple passes on bridges to record vibration response
data. Notably, Matarazzo et al. [10] demonstrated that controlled field experiments and
UBER trips on the Golden Gate Bridge enable continuous modal information extraction
from smartphone-recorded vibration data. In their study, the researchers traversed the
bridge 102 times and utilized 72 UBER trips, capturing acceleration vibration data with
smartphones. The collected data were then analyzed to determine the most probable
modal frequencies (MPMFs) using the synchro-squeezed wavelet transform [11]. Impor-
tantly, multiple vehicles were employed simultaneously for data collection. Additionally,
the effectiveness of this mobile sensing approach was verified on the Harvard Bridge by
Matarazzo et al. [12]. In a similar vein, Eshkevari et al. [13] conducted an experimental
study validating crowd-sourced modal identification using continuous wavelets (CMICW),
utilizing a collection of smartphone-mounted sensors on vehicles that moved back and
forth across the bridge using a motored pulley system. Therefore, this paper introduces
a multi-agent formation control framework to automate the mobile sensing procedure,
eliminating the need for manual driving stages, particularly in the context of structural
vibration response sensing.

The concept of capturing bridge vibration data through sensors on moving vehicles
was first introduced by Yang et al. [14]. Leveraging the pure structural responses recorded
by these mobile sensors, system properties have been deduced using input–output bal-
ance [15]. Over the past decade, extensive studies have explored mobile sensing through
diverse avenues, encompassing analytical and numerical analyses [16–19], laboratory-scale
experiments [20–23], and real-life scenarios [24,25]. The literature predominantly empha-
sizes bridge modal identification via mobile sensing. Oshima et al. [26] detected mode
shape-based support damage by mapping mobile sensor data to fixed sensor data. Mode
shape-based bridge damage detection was achieved by Malekjafarian and O’Brien [27]
using the short time-frequency domain decomposition (STFDD) method. High-resolution
mode shapes were obtained via laser vibrometer and accelerometers mounted on vehi-
cles as proposed by O’Brien and Malekjafarian [28]. Additional signal processing tech-
niques like Short-Time Fast Fourier Transform (STFFT) [29], Empirical mode decomposition
(EMD) [30,31], and Hilbert transform [32] are employed for estimating mode shapes from
data collected by mobile sensors. Matarazzo et al. [33,34] introduced the “structural identi-
fication using expectation maximization (STRIDE)” method for mode shape identification
from mobile sensors. Eshkevari et al. [35–37] formulated mobile sensing data as a sparse
matrix with missing values. They employed alternating least-square (ALS) for matrix
completion, followed by principal component analysis (PCA) and structured optimization
analysis (SOA) for modal identification. Matrix completion approaches have gained trac-
tion in recent years for health monitoring due to their data-driven nature, applicable to
both fixed sensors [38] and mobile sensors [19,36,37]. Yang and Nagarajaiah [38] utilized
nuclear norm minimization for matrix completion, and a comprehensive overview of such
methods is presented in Nagarajaiah and Yang [39].

Throughout the aforementioned research, instances involving multiple mobile sensors
for structural sensing or system identification typically involve independent manual control
of each vehicle by humans. In certain cases, trains or vehicles with multiple trailers [26]
have been employed, attaching sensors to each axle. The evolution of self-driving cars [40]
presents the potential to streamline and enhance the mobile sensing process for structural
health monitoring (SHM). Multiple self-driving cars could be useful for this purpose;
however, autonomous vehicles are optimized for individual operations, often proving
expensive for structural vibration response measurement work. Thus, an alternative
approach is imperative to automate the mobile sensing procedure without relying on costly
self-driving vehicles.

The primary objective of this paper is to automate the mobile sensing process instead of
manually driving the vehicles or deploying fully self-driving cars. As a novel contribution,
this paper introduces a formation control-based framework to collect the bridge vibration
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response data through multi-agent systems. The vibration measurement sensors installed
on the multi-agent can capture structural responses at the corresponding position of their
movement on the system, which can create a sparse space–time response matrix. In recent
work, we proposed full-field structural vibration response estimation from a limited number
of fixed sensors using data-driven [41] and physics-based [42] approaches. In this study,
we deploy this concept to acquire full-field structural vibration responses but utilizing a
limited number of automatic multi-agent mobile sensors.

In this paper, we first introduce a framework designed for acquiring full-field re-
sponses using mobile sensors and underscore its significance in Structural Health Mon-
itoring (SHM) for bridges. Within this proposed framework, two primary components
take center stage: the formation control strategy and compressive sensing. We provide a
brief overview of these fundamental concepts. The formation control strategy streamlines
the process by harnessing mobile sensors, while the compressive sensing algorithm is
employed to estimate full-field responses with a limited sensor setup. This becomes espe-
cially pertinent as we leverage data from a network of multi-agent sensors to achieve this
objective. Subsequently, we validate the effectiveness of this proposed framework through
a numerical study involving a simply supported bridge. We explore two distinct scenarios
for formation control. Additionally, we outline practical implementation recommendations
that should be taken into consideration. Finally, we delve into the results, draw conclusions,
and outline potential avenues for future research.

2. Proposed Framework and Its Significance in Bridge SHM

In this section, we initially outline the overarching process for vibration response
sensing for bridge health monitoring. Subsequently, we delineate where our proposed
automatic formation control-based mobile sensing framework fits in the domain of bridge
SHM. Following this, we introduce the details of the formation control-based mobile
sensing framework.

The overall sensing pipeline for the bridge structural health monitoring is illustrated
in Figure 1. Generally, such sensing can be performed using either fixed or moving/mobile
sensors. For fixed sensing cases, sensors are strategically placed at specific locations on the
bridge. This approach facilitates the measurement of vibration responses at those particular
bridge locations. By analyzing these responses, the health of the bridge can be monitored by
estimating system parameters, detecting the presence of damage, and deriving a full-field
response from a limited array of sensors. This full-field response can then be utilized for
tasks such as damage localization, full-state estimation, or control purposes. An alternative
approach to obtaining similar information involves mobile sensing. In this setup, sensors
are mounted on vehicles, which can be operated manually or autonomously. Given that
the aim of this paper revolves around achieving a fully automated sensing process with
minimal human intervention, we refrain from addressing manual driving. Also, achieving
coordination through manual driving is complex. In the context of automated driving, two
possibilities emerge: (a) autonomous vehicles like Tesla or Waymo, and (b) multi-agent
systems wherein vehicles interact with each other. Self-driving cars entail substantial
costs, and using multiple self-driving cars for sensing purposes might prove economically
unfeasible, as a single sensor might not suffice for bridge health monitoring. Thus, this
paper concentrates on multi-agent systems to perform such tasks, as they offer a cost-
effective and automated approach to the sensing process.

Nevertheless, within all mobile sensing strategies—whether manual driving or auto-
matic driving—the responses measured by the sensor installed within the vehicle comprise
bridge responses, superimposed with road roughness and vehicle dynamics [43], attributed
to vehicle–bridge interaction [44,45]. When the recorded sensor data are amalgamated with
the vibration from other sources mentioned above, conventional SHM methods cannot be
directly applied as they are designed to work with pure structural vibration responses [46].
To circumvent this problem, the existing literature addresses primary approaches: (1) con-
trolling the sensing conditions like vehicle speed and road roughness intensity so that the
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recorded response mainly contains the bridge vibration [14,27], (2) modeling the vehicle–
bridge interaction in a closed form to eliminate the uncertainties due to vibration sources
other than the bridge itself [47,48], (3) to use blind source separation (BSS) techniques to
extract the different sources of the recorded response [35]. The BSS technique is capable of
estimating pure bridge vibration response.

Sensing for Bridge SHM

Fixed Sensing Mobile Sensing

Manual Driving Automatic Driving

Self-Driving cars Multi-agent systems

Pure Bridge response at the instantaneous sensor location

System Parameter Estimation,
Detection of Presence of damage

Full-field response estimation

System Parameter Estimation,
Detection and Localization of possible damage,
Full-state vibration Control

Bridge response superposed with road 
roughness and vehicle dynamics

Source separation
techniques

Figure 1. Framework for bridge vibration response sensing and structural health monitoring. This
paper proposes a multi-agent formation control strategy for automatic driving in mobile sensing
(marked with a red solid border). The result is numerically validated in the full-field response
estimation (marked with a red dotted border). All the other framework components are marked with
blue solid border. The image on the right shows that the acquired vibration response in the sensor
contains the bridge vibration, road roughness, and vehicle dynamics.

In this paper, we focus on the multi-agent-system-based sensing framework and
assume that the recorded bridge vibration response has undergone prior processing to
eliminate the unintended road roughness and vehicle–bridge-interaction-related motion
to work with pure structural vibration. This is a valid assumption as we explore only
numerical scenarios in this study.

In the formation-control-based framework, the multi-agent system is designed to
traverse the bridge in a user-defined formation. At a given instantaneous position of all
the mobile agents, they collect the vertical vibration response of the bridge. The ultimate
goal of this paper is to estimate full-field vibration response time history. In terms of matrix
terminology, the objective is to complete the spatiotemporal response matrix. The mobile
agent sparsely populates some of the elements of this spatiotemporal response matrix.
To better elucidate the matrix completion process, drawing a comparison with fixed sensors
could provide enhanced clarity.

The distinction between fixed and mobile sensing for a simply supported bridge is
depicted in Figure 2. In scenarios involving fixed sensors, the spatiotemporal response
matrix is populated along a particular column based on the sensor’s position, as illus-
trated in Figure 2a. Conversely, with mobile sensors, the spatiotemporal response matrix
is populated diagonally in accordance with the movement and instantaneous positions
of the vehicles, as shown in Figure 2b. The slope of these diagonals depends on the ve-
hicle speeds. Now, considering one particular time instance marked by the red arrow in
Figure 2b, only four elements are occupied (as four sensors are considered for demon-
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stration purposes). The spatial compressive sensing algorithm’s task is to estimate other
values from the measured ones. Consequently, executing this procedure in real time for
all rows leads to a complete spatiotemporal matrix, essentially constituting the full-field
vibration response.

Figure 2. Vibration response sensing and the sensed entries of the spatiotemporal response matrix
using (a) fixed sensors, (b) mobile sensors.

The authors recently published studies to complete the spatiotemporal matrix using
the compressive sensing algorithm for fixed sensor cases [41,42], addressing the problem in
Figure 2a. In the present paper, we intend to employ the same algorithm to accomplish
spatiotemporal matrix completion for mobile sensor cases, e.g., addressing the problem
in Figure 2b. In essence, the core proposition of this paper revolves around introducing
a formation control algorithm to efficiently and autonomously populate the elements of
the spatiotemporal matrix using a multi-agent system. Subsequently, the capability of
compressive sensing is leveraged to complete the spatiotemporal response matrix utilizing
response data collected through the multi-agent system, thus estimating the full-field
vibration response of the structure.

3. Formation Control of Multi-Agent System Formulation

In this section, we introduce the formation control algorithm intended for automated
sensing within the multi-agent system. We adopt a graphical model to depict interactions
among these multi-agent systems, a prevalent approach in the state-of-the-art study. This
framework often utilizes a graph, wherein agents represent graph nodes, while the graph
edges symbolize communication and sensing exchanges between these agents, as empha-
sized by Godsil and Royle [49].

Graph G is defined as (V , E); here, V denotes the set of nodes or vertices of graph
and E ⊆ V × V symbolizes the edges. Here, it is assumed that there are no self-edges,
viz., (i, i) �∈ E for any i ∈ V , which is a valid assumption. The neighbor set of node i ∈ V
is defined as Ni := {j ∈ V : (i, j) ∈ E}. The graph edges are weighted by wij which
are associated with (i, j) for i, j ∈ V ; here, wij > 0 if (i, j) ∈ E and wij = 0 otherwise.
The Laplacian Matrix L = [lij] ∈ R

|V|×|V| of G = (V , E) is defined as

lij =

{
∑k∈Ni

wik, if i = j
−wij, if i �= j

. (1)
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The majority of dynamic models for automated mobile sensors adhere to the double-
integrator dynamic models, given that the control feedback can be linearized in this form,
as outlined in Ren and Beard [50]. In the context of graph G, a collection of n agents, each
modeled as a double-integrator system, residing within an m-dimensional space, can be
succinctly expressed: {

ṗi = vi,
v̇i = ui,

i = 1, · · · , n. (2)

Here, pi ∈ R
m, vi ∈ R

m, and ui ∈ R
m indicate the position, velocity, and control input

of agent i in relation to the global coordinate system. The agents have the capacity to sense
the relative positions and velocities of neighboring agents within the global coordinate
system. The overarching aim of the agents is to maneuver in a manner that controls a
formation shape, where the designated desired position p∗ ∈ R

mn and desired velocity
v∗ ∈ R

mn are pre-defined.
A formation comprises agents that move to acquire and maintain a specific geometric

configuration based on the relative positions of neighboring agents. A formation can be
denoted by specifying the desired position p∗i (t) and the desired velocity v∗i (t) for all
i = 1, · · · , n at any given time instant t ≥ 0. The primary goal is to formulate a control
strategy ui in a manner such that,{

pi(t) −→ p∗i (t),
vi(t) −→ v∗i (t),

i = 1, · · · , n. (3)

Here, the symbol, ‘’−→”, indicates the desirability, e.g., the actual position and actual
velocity of agent i at time instant t which are pi(t) and vi(t), but desired to be p∗i (t) and
v∗i (t).

If the agents can precisely measure their positions and velocities in the global coordi-
nate system in which p∗i (t) and v∗i (t) are specified, then the Equation (3) could be solved
in a straightforward manner using classical control. In this case, the controller follows the
subsequent equation:

ui(t) = gp(p∗i (t)− pi(t)) + gv(v∗i (t)− vi(t)); i, j = 1, · · · , n; gp, gv > 0. (4)

In this context, parameters gp and gv function as scaling factors linked to the posi-
tion and velocity components of the control force. The formulation of formation control
presented in Equation (4) corresponds to the concept of position-based formation control,
a framework previously explored in works such as Ren and Beard [51] and Oh et al. [52].
However, within this position-based control scheme, every agent must possess sophisti-
cated sensors capable of precisely measuring position and velocity with respect to global
coordinates. Implementing this control strategy could prove challenging due to the as-
sociated financial costs tied to the requirement for advanced sensors, especially only for
structural health monitoring purposes. Nevertheless, if agents are restricted to sensing their
neighboring agents’ relative positions and velocities solely, the goal outlined in Equation (4)
becomes notably more intricate to attain. A more lenient objective emerges, revolving
around maintaining relative positions and velocities amongst the agents. This approach
is termed displacement-based control [52]. In this context, agents actively regulate their
neighboring counterparts to realize the intended formation, with most agents operating
without knowledge of the global coordinate system. Consequently, a less rigid objective is
to devise a control law ui such that{

pi(t)− pj(t) −→ p∗i (t)− p∗j (t),
vi(t)− vj(t) −→ v∗i (t)− v∗j (t),

i, j = 1, · · · , n. (5)

To satisfy the objective in Equation (5), the control law can be written as
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ui(t) = gp ∑
j∈Ni

(pj(t)− pi(t)− p∗j (t) + p∗i (t))

+ gv ∑
j∈Ni

(vj(t)− vi(t)− v∗j (t) + v∗i (t)); gp, gv > 0; i = 1, · · · , n.
(6)

Considering the formation moves in a constant velocity, ṗ∗ = v∗ and v̇∗ = 0. We assume

p =

⎧⎪⎨
⎪⎩

p1
...

pn

⎫⎪⎬
⎪⎭; v =

⎧⎪⎨
⎪⎩

v1
...

vn

⎫⎪⎬
⎪⎭; p∗ =

⎧⎪⎨
⎪⎩

p∗1
...

p∗n

⎫⎪⎬
⎪⎭; v∗ =

⎧⎪⎨
⎪⎩

v∗1
...

v∗n

⎫⎪⎬
⎪⎭.

From Equation (2), the system dynamics are{
ṗ
v̇

}
=

[
0mn Imn
0mn 0mn

]{
p
v

}
+

[
0mn
Imn

]
u. (7)

Equation (6) can be rewritten as

ui = gp

[∣∣∣Ni

∣∣∣(p∗i − pi)− ∑
j∈Ni

(p∗j − pj)

]
+ gv

[∣∣∣Ni

∣∣∣(v∗i − vi)− ∑
j∈Ni

(v∗j − vj)

]
. (8)

Here,
∣∣∣Ni

∣∣∣ denotes the cardinality of neighbor set Ni (total number of neighbors of agent i).
Equations (7) and (8) can be simplified to

u =
[
gp(Ln ⊗ Im) gv(Ln ⊗ Im)

]{p∗ − p
v∗ − v

}
. (9)

Here, ⊗ denotes the Kronecker product. Defining the error signals as{
ep = p∗ − p
ev = v∗ − v

, (10)

ep and ev are the differences between the desired and actual amplitude of agent position
and velocity, respectively. With ṗ∗ = v∗ and v̇∗ = 0, the error dynamics can be evolved
from Equations (2) and (10) as{

ėp = ṗ∗ − ṗ = v∗ − v = ev

ėv = v̇∗ − v̇ = −v̇ = −u
. (11)

From Equations (9) and (11),

ėv = −u =
[−gp(Ln ⊗ Im) −gv(Ln ⊗ Im)

]{ep
ev

}
. (12)

From Equations (11) and (12), error dynamics expression [52] is{
ėp
ėv

}
=

[
0mn Imn

−gp(Ln ⊗ Im) −gv(Ln ⊗ Im)

]{
ep
ev

}
. (13)

The system represented in Equation (13) reaches consensus if and only if Gn is con-
nected (if there is at least one edge from one node to any other node of the graph, Gn, is
said to be connected). In consensus,
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⎧⎨
⎩

∣∣∣∣∣∣epi (t)− epj(t)
∣∣∣∣∣∣ → 0,∣∣∣∣∣∣evi (t)− evj(t)
∣∣∣∣∣∣ → 0,

t → ∞. (14)

The rate at which convergence or consensus is achieved hinges on the values of the
constants gp and gv, intrinsic properties of the controller. In the context of Structural Health
Monitoring (SHM) applications involving carriers, these constants, gp and gv, are reliant
upon the vehicle controller responsible for steering the system. During convergence or
consensus processes, Equation (14) guarantees compliance with Equation (5). With the
control law established as per Equation (6), the dynamics of the closed-loop system are
characterized by{

ṗ
v̇

}
=

[
0mn Imn

−gp(Ln ⊗ Im) −gv(Ln ⊗ Im)

]{
p
v

}
+

[
0mn 0mn

gp(Ln ⊗ Im) gv(Ln ⊗ Im)

]{
p∗
v∗

}
. (15)

In the scenario where agents are limited to sensing only the relative positions and
velocities of neighboring agents, they would not fulfill Equation (3), implying an inability
to attain predetermined absolute positions within the global coordinate system. To address
this, a minimum subset of agents, usually just one, must possess the capability to sense
absolute positions. This particular agent plays the role of a leader within the multi-agent
system, and by employing a leader–follower methodology, formation consensus can be
achieved. Consequently, the control law is modified as follows:

ui(t) = gp ∑
j∈Ni

(pj(t)− pi(t)− p∗j (t) + p∗i (t))

+gv ∑
j∈Ni

(vj(t)− vi(t)− v∗j (t) + v∗i (t))

+higp(p∗l − pl) + higv(v∗l − vl),

(16)

where pl and vl denote the position and velocity of the leader, respectively, and

hi =

{
1 if i = l
0 otherwise

. (17)

Defining the matrix, H = diag(h1, · · · , hn), the error dynamic is given by

{
ėp
ėv

}
=

[
0mn Imn

−gp

[
(Ln + Hn)⊗ Im

]
−gv

[
(Ln + Hn)⊗ Im

]]{ep
ev

}
, (18)

and similarly, the final closed-loop system dynamics is expressed as

{
ṗ
v̇

}
=

[
0mn Imn

−gp

[
(Ln + Hn)⊗ Im

]
−gv

[
(Ln + Hn)⊗ Im

]]{p
v

}

+

[
0mn 0mn

gp

[
(Ln + Hn)⊗ Im

]
gv

[
(Ln + Hn)⊗ Im

]]{p∗
v∗

}
.

(19)

In brief, Figure 3 presents a flowchart illustrating the formation control strategy. This
strategy comprises two distinct loops: the inner loop focuses on controlling the individual
agent dynamics, as described in Equation (2), while the outer loop manages the overall
formation, adhering to the less stringent objective outlined in Equation (5).

The performance evaluation of the proposed formation control algorithm can be based
on the disparity between the desired and actual positions of the agents [53]. Therefore,
for any given agent i and time instance t, the error is quantified as Δi(t) = |p∗i (t)− pi(t)|.
Over the entire data collection duration denoted as Q, the position error for each agent is
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computed as Δi =
1
Q

Q

∑
i=1

Δi(t). Ultimately, the collective formation error for all n agents

is expressed as Δ =
1
n

n

∑
i=1

Δi. It is important to note that since the primary goal of the

multi-agent system is to populate the elements of the spatiotemporal response matrix,
the formation error is exclusively contingent on the agents’ positions and not their velocities.

Figure 3. Formation control framework for a multi-agent system.

4. Brief Overview of Full-Field Response Estimation from a Limited Number
of Sensors

Using the Formation control algorithm proposed in Section 3, the elements of the
spatiotemporal response matrix are sparsely filled as shown in Figure 2b. In order to obtain
the full-field response, the compressive sensing framework proposed by the authors [41,42]
is used in this paper. Hence, in this section, we briefly discuss the procedure for the sake
of completeness.

4.1. Compressive-Sensing-Based Full Signal Reconstruction from Few Measurements

The concept of Compressive Sensing [54] is briefly discussed in this section. A signal
y ∈ R

m is sparse, if

y = Dx =
n

∑
j=1

xjdj = ∑
j∈S

xjdj. (20)

In this context, D ∈ R
m×n signifies the orthonormal basis matrix, with dj representing

the jth column of D. Typically, the basis matrix is treated as overcomplete, i.e., m < n.
The majority of coefficients of xj are zero in Equation (20). This characteristic results
in signal sparsity, which can be expressed as S = {j|xj �= 0}. The level of sparsity is
represented by s = |S| = ||x||0, thus indicating that x ∈ R

n represents a sparse vector.
The Compressive Sensing (CS) technique is capable of estimating y ∈ R

m from the
noisy measured vector z ∈ R

p, where p << m.

z = Θy + e = ΘDx + e = Φx + e, where Φ = ΘD, (21)

where Θ ∈ R
p×m constitutes the measurement matrix. The term e signifies the error

or noise constrained within the bound ||e||2 ≤ ε. Consequently, the estimation of basis
coefficients is attainable by solving the following convex optimization problem:

x̂ = arg min
||Φx−z||2≤ε

||x||1, (22)

where the �2 norm is represented by || · ||2. The formulation given in Equation (22) can be
expressed within an optimization framework known as LASSO [55], as follows:

minimize ||Φx − z||2 + λ||x||1. (23)

Here, λ represents the regularization parameter. The interior point method [56] is employed
to derive the sparse solution x from Equation (23), subsequently enabling the recovery of
the complete signal y using Equation (20).
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As proposed by Amini et al. [57], the determination of the minimum sampling points
required for accurate signal reconstruction relies on the basis matrix D. This estimation
can be achieved by applying techniques like Singular Value Decomposition (SVD) and
Normalized Power Index (NPI), as follows:

D = UΣV; NPIp =
∑

p
i=1 σ2

i

∑m
i=1 σ2

i
, (24)

where D ∈ R
m×n, U ∈ R

m×m, V ∈ R
n×n, and Σ ∈ R

m×n with m < n. Diagonal values of
Σ represent the singular values, and σi represents the ith singular value. The minimum
sensor number for accurate signal reconstruction is the smallest integer value of p for which
NPI→1.

We use the concept of compressive sensing in the spatial domain for every time instant
to obtain the full field response from the response time histories of sparse sensors. However,
the knowledge of basis or Dictionary matrix D in Equation (20) is still required. If no model
knowledge is available, then Dictionary learning [58] can be used to obtain D from the
training signals [41]. On the contrary, if the intrinsic physics of the system is known, then
physics-informed dictionaries could be easily obtained [42]. Both of these methods are
briefly discussed.

4.2. Learning the Basis Functions Using Dictionary Learning

Dictionary learning [58] designs matrix D ∈ R
m×n to attain a good sparse represen-

tation y ≈ Dx for a set of signals y ∈ R
m based on training samples. The sparse vectors,

x ∈ R
n, consist of few nonzero coefficients. To construct the dictionary, D, matrix Y ∈ R

m×N

can be formulated, where columns correspond to training signals and N represents the
number of training signals. Assembling this matrix Y involves arranging individual y

signals in a stack. Consequently, the optimization problem inherent to Dictionary learning
can be expressed as follows:

min
D,X

||Y − DX||2F (25)

such that, ||x�||0 ≤ s, � = 1 : N,

||dj|| = 1, j = 1 : n.

Here, X corresponds to the matrix of sparse representations, while || · ||F denotes the
Frobenius norm. Upon resolving the optimization problem defined in Equation (25), each
column within the matrix D serves as a basis function for the signal set Y.

Directly obtaining D and X from Y is difficult as Y = DX; hence, it is subdivided
into two smaller optimization problems: (a) Sparse Coding and (b) Dictionary Updating.
Basically, in Dictionary learning, the objective is to obtain D and X from the training signals
Y. The typical approach for solving such challenges is alternating minimization, which
involves the following steps: (1) During the sparse coding phase, D remains fixed while X is
estimated, and (2) in the Dictionary updating stage, X is held constant while D is estimated.
This iterative process continues until a convergence point is reached.

4.3. Obtaining the Basis Functions from Physics-Based Knowledge

One method alternative to Dictionary learning for estimating basis matrix D is ob-
tained from the closed-form solution of the inherent differential equation of the continuous
system. One example of a simple beam is presented in this section. The equation of motion
governing an Euler–Bernoulli beam subject to a distributed transverse force can be denoted
using the formulation given by Rao [59]:

∂2

∂x2

[
EI(x)

∂2w(x, t)
∂x2

]
+ ρA(x)

∂2w(x, t)
∂t2 = f (x, t), (26)
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where w(x, t) signifies the transverse displacement response of the beam, while f (x, t)
represents the applied forcing function. Here, E denotes Young’s modulus, ρ represents
density, and I(x) and A(x) stand for the moment of inertia and cross-sectional area at
position x from one end of the beam, respectively. In the case of uniform beams, it is
reasonable to assume that the transverse displacement response can be expressed as a linear
combination of the beam’s normal modes utilizing a separation of variables approach. For a
simply supported beam of length L, the deflection equation is expressed as

w(x, t) =
∞

∑
i=1

Wi(x)ηi(t) =
∞

∑
i=1

Ci sin(βix)ηi(t) =
∞

∑
i=1

Ci sin
iπx

L
ηi(t) =

∞

∑
i=1

C̃i sin
iπx

L
. (27)

Here, the ith mode is characterized by the mode shape Wi(x) in generalized coordi-
nates. The response time history of the ith mode is denoted as ηi(t). The spatial parameter

β is connected to the natural frequency ω through relation ω = β2
√

EI
ρA . The constant Ci

represents the amplitude associated with the ith mode, dependent on the applied forcing
function. Consequently, the basis matrix D can be formulated as

D =

⎡
⎢⎢⎢⎣

sin(β1x1) . . . sin(βnx1)
sin(β1x2) . . . sin(βnx2)

...
...

...
sin(β1xm) . . . sin(βnxm)

⎤
⎥⎥⎥⎦. (28)

When considering p random measurements across the beam’s length at a specific time

instance, the representation can be expressed [60] as follows: zj =
n

∑
q=1

C∗
q sin(βqxj); j =

1, 2, · · · , p. This can be compactly represented in matrix form as z = ΘDx = Φx. In this
context, x = [C∗

1 , C∗
2 , · · · , C∗

n]
T , and it is expected that the sparse solution should exhibit

non-zero values for C∗
q if C∗

q ≈ C̃i. It is crucial to note that the sparse solution x differs from
spatial locations xi.

In summary, Figure 4 illustrates the compressive sensing framework used to estimate
the full-field vibration response, employing a network of multi-agent sensors.

Figure 4. Proposed compressive sensing framework for spatiotemporal response matrix completion.
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5. Numerical Analysis and Result

In this section, we showcase the practicality of the proposed formation control frame-
work, as introduced in Section 3, for accomplishing essential formations within multi-agent
systems. Initially, we demonstrate the feasibility of achieving user-defined formations from
the initial condition of automated mobile sensors. The term “intended formation” refers to
the prescribed motion of a collection of mobile sensors, while “initial condition” pertains to
the initial position and velocity of this group of mobile sensors. Subsequently, we illustrate
the process of estimating the full-field response by employing recorded responses from the
array of mobile sensors, using the method outlined in Section 4. In this context, all mobile
sensors are treated as point sensors, and their mass is negligibly small in comparison to
the total mass of the bridge, which is a realistic assumption. For this numerical analysis,
a simply supported bridge is considered as the structure of interest.

5.1. System Description

Bridge decks could be modeled as simply supported beams. In this study, a sim-
ply supported steel beam [41] of 50 m in length, 1 m in height, and 0.5 m in width
is considered. The beam’s Young’s modulus is E = 2.1 × 1011 Pa, while its density is
ρ = 7860 kg/m3. Consequently, the first four natural frequencies of the beam are computed
as 0.94, 3.75, 8.44, and 15 Hz. For this scenario, a 1% Rayleigh damping is taken into con-
sideration. The total count of virtual and dense sensing points is set at 4999, resulting
in a spatial separation of 0.01 m between the virtual sensing points. The primary aim of
this section involves the estimation of vibration time histories for the dense virtual points
(4999 in total) using the vibration data collected from a limited number of mobile sensors.
In this example, we acquire the system’s basis functions through Dictionary learning [41].
In practical scenarios, the training data required for Dictionary Learning can be acquired
through various means, including the utilization of cameras [61,62] or alternative full-field
sensing techniques such as Digital Image Correlation [63,64]. Utilizing this data-driven
basis matrix, compressive sensing is applied across the entire time series to acquire the time
histories of all virtual sensing points. Subsequently, the obtained dense time histories need
to be compared with against the results of finite element formulation to assess the accuracy
of reconstruction. To facilitate this evaluation, a relative error metric εi [41] is considered
as follows:

εi =
||RExact,i − REstimated,i||22

1
m ∑m

i=1 ||RExact,i||22
× 100; i = sensor index. (29)

Here, m is the number of virtual sensing points, and || · ||2 indicates the two-norm.
REstimated,i and RExact,i symbolize the estimated and exact (FEM) responses of the ith virtual
sensing point, respectively. Both RExact,i and REstimated,i have dimensions of nt × 1, where
nt corresponds to the number of time samples. The overall average error E [41] is expressed
as follows:

E =
1
ns

ns

∑
i=1

εi, (30)

where E signifies the average error of all the relative errors εi of independent virtual
responses, and hence E is invariant to the number of virtual sensors.

5.2. Different Types of Formation Control and the Corresponding Reconstruction Result

In this section, we examine two specific configurations termed Formation-1 and
Formation-2, with the objective of assessing the capability of the proposed formation
control to emulate user-defined formations. In the context of Formation-1, the fleet of
mobile sensors traverses the entire bridge back and forth, capturing vibration responses.
In contrast, Formation-2 involves the mobile sensors moving back and forth within localized
sections of the bridge. Subsequent sections comprehensively delve into the details of these
formations. Each individual mobile sensor captures the acceleration response of the bridge’s
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vibration data, a practical choice owing to the convenience of installing accelerometers
on vehicles.

5.2.1. Formation-1

This formation involves a total of ten mobile sensors. Half of these sensors (R1 to R5)
commence from the left segment of the bridge, while the remaining half (R6 to R10) initiate
their movements from the bridge’s right segment, as depicted in Figure 5a. Subsequently,
R1 to R5 advance towards the right extremity of the bridge until the leading vehicle de-
tects proximity to the bridge’s end. Likewise, R6 to R10 move towards the bridge’s left
end. Through synchronized back-and-forth motion, all these mobile sensors record the
vibration response data from the bridge. The number of laps conducted entirely depend
upon the user’s data collection duration. Since the mobile sensors move in opposing direc-
tions, creating crossover instances, practical feasibility warrants of two lanes, as depicted
in Figure 5.

Figure 5. Two instances illustrating Formation 1—(a) R1 to R5 commencing from the left section of
the bridge, while the remaining half (R6 to R10) initiate movement from the right segment. The ”blue”
arrows represent the immediate direction of motion for the mobile sensors. (b) Once the mobile
sensors detect proximity to the bridge’s end supports, they alter their movement direction. This
sequence persists during the entire sensing duration.

As the direction of movement of agents R1 to R5 and R6 to R10 are opposite, crossing
occurs between these two sets of agents in the middle region of the bridge. During these
occurrences, two agents simultaneously record identical bridge vibration response read-
ings. Consequently, in such scenarios, the elements of the spatiotemporal response matrix
are determined as the average measurements derived from these two mobile sensors.
The graph connection topology between all the mobile agents is visually depicted in
Figure 6. Here, graph G is considered as an undirected and unweighted graph, where
(j, i) ∈ E only if wij = wji = 1 ∀; (i, j) ∈ E for the sake of simplicity. This study as-
sumes that graph G has no switching topologies (multi-agent connection topologies remain
unchanged over time). The exploration of more intricate agent connection topologies is
reserved for future endeavors.

Figure 6. Graph connection topology of Formation-1. Mobile agents are connected only with their
neighboring agents. The red line shows the connection between the agents.

Analyzing the graph connection topology in Figure 6, it is evident that the entire
graph is disconnected. R1 to R5 are interlinked, while R6 to R10 are connected indepen-
dently. In these scenarios, mobile sensors are connected in a manner where each vehicle
can only sense the relative position and velocity of its nearest neighboring mobile sensors.
To maintain a global sense of position, at least one mobile sensor, the leader, must measure
its position relative to the global coordinates (Equation (16)). For the connected graph
of R1 to R5, R1 is designated as the leader; similarly, R6 serves as the leader for R6 to
R10. Importantly, any vehicle within R1 to R5 or R6 to R10 could be assigned as the leader.
The reference velocity amplitude v∗ is set to 1 m/s for all vehicles, though this choice is
user-dependent. However, this can result in the mobile agents leaving the bridge after
traversing from one end to the other. The multi-agent system must move back and forth
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to capture longer vibration data, as depicted in Figure 5. This movement can be achieved
by applying the same control strategy discussed in Section 3 at different time windows.
The formation error for Formation-1 is calculated as 0.98 m; it arises due to the minimal
interconnectivity among the agents. To achieve a more precise formation, it is possible to
increase communication among the agents, but this would come at the cost of higher com-
putational demands, particularly concerning wireless communication between the agents.
It is important to note, however, that this formation error does not affect the estimation
of the full-field response matrix since compressive sensing is employed for this purpose.
Compressive sensing is well-suited for reconstructing the entire signal from randomly
selected samples. In this context, compressive sensing effectively generates the complete
spatial profile of the full field from the randomly positioned multi-agent vehicles at a given
time instance. With a time sampling frequency of 100 Hz, this demonstration involves
the automated mobile sensors collecting data for 100 s. Consequently, the spatiotemporal
matrix assumes dimensions of 10,000 × 4999 (with 4999 spatial points as discussed in
Section 5.1). Data from the automated mobile sensors populate some of the spatiotemporal
response matrix elements, while the rest are filled using the compressive sensing algorithm
outlined in Section 4. The spatiotemporal response matrix elements filled by the auto-
matic multi-agent mobile sensors are depicted for four-time instances (at t = 5, 10, 15, 20 s)
in Figure 7.

Figure 8a showcases all the sparsely populated entries in the spatiotemporal response
matrix for the entire 100 s using Formation-1. Given this limited amount of data, matrix
completion or full-field sensor data reconstruction is performed for each time instance
through the compressive sensing technique outlined in Section 4. The spatial profile
of relative errors εi for the estimated full-field response, as defined in Equation (30), is
computed and presented in Figure 8b. The computed average error E amounts to 1.18%.
Notably, relatively large εi values are observed at locations around 7.02 m and 44.63 m from
the left end, corresponding to relative errors of 6.94% and 1.55%, respectively, as depicted in
Figure 8b. Worth mentioning is the higher error values near the bridge’s ends (0–10 m and
40–50 m from the left end), likely due to fewer sensors being present as vehicles cross each
other, particularly during instances like t = 12 s, 37 s, and so on. Given that the vehicles
are concentrated in the middle portion nearly half the time, this phenomenon contributes
to prominent errors at the ends and negligible errors in the middle. Investigating optimal
vehicle movement strategies to minimize reconstruction errors across the entire beam could
be a scope of future research.

Reconstructed responses for Location 1 are displayed in Figure 9 for two distinct
time segments: 50–55 s and 60–65 s. Figure 8a shows that during the period from 50
to 55 s, the instantaneous location of the automated mobile sensors covers the entirety
of the bridge, resulting in the reconstructed time history to be exact to the actual true
response. Conversely, in the time span of 60–65 s (Figure 8b), as the automated mobile
sensors are intercepting near the middle of the bridge, they become concentrated within
that specific region. This concentration leads to discernible disparities between the actual
and reconstructed time histories.
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Figure 7. Sparsely filled entries of the spatiotemporal matrix at various time instants due to the
data collected by automatic multi-agent mobile sensors in Formation-1. (a) at t = 5 s, (b) at t = 10 s,
(c) at t = 15 s, and (d) at t = 20 s. The top figure of each subfigure shows the filled entries, and the
corresponding bottom figure shows the instantaneous position of the mobile sensor formation.

Figure 8. (a) Sparse entries in the spatiotemporal response matrix for the entire duration of 100 s
using Formation-1 which are used for estimating full-field response. (b) Relative reconstruction error
(%) is associated with each location along the length of the simply supported bridge. Location 1
corresponds to the highest error observed across the bridge’s entire span.
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Figure 9. Comparison of reconstructed and actual time history responses at Location 1 (Figure 8) for
two time snippets. (a) t = 50–55 s, (b) t = 60–65 s.

5.2.2. Formation-2

The reconstruction error of Formation-1 is higher near the bridge ends than in the
middle section, which is attributed to the multi-agent system’s crossing near the bridge
midpoint. As the final objective is to achieve highly accurate full-field response estimation,
Formation-2 is designed to circumvent situations involving “crossing”. In Formation-2,
the mobile sensors execute back-and-forth movements within a confined spatial range,
as depicted in Figure 10. In this case, we study with only six mobile sensors, as obtained
through the formula for the optimal number of sensors required for accurate full-field
response estimation as provided in Equation (24). The graph connection topology among
all the automated multi-agent mobile sensors is depicted in Figure 11.

Figure 10. (a) Initial positions of R1 to R6 in Formation-2. The ”blue” arrows indicate the current
movement direction of the mobile sensors. (b) When the mobile sensors detect their proximity to
the bridge end supports, their movement direction is altered. This back-and-forth process continues
throughout the data collection phase.

Figure 11. Graph connection topology of Formation-2. Mobile agents are connected only with their
neighboring agents. The red line shows the connection between the agents.

Figure 11 shows that the mobile agents are only connected with their neighboring
agents, enabling them to sense their relative velocity and relative displacement with respect
to the nearest neighboring vehicles. Consequently, the presence of a leader is necessary
to determine global position coordination and ensure proper formation maintenance.
For Formation-2, the role of the leader is assumed by the agent R1. The reference velocity
amplitude is randomly chosen and kept constant as [1, 1.1, 1.4, 1.6, 1.2, 1.1] m/s for all
vehicles throughout the process. Similar to Formation-1, the control strategy is applied in
different time windows to achieve the back-and-forth movement of the automatic multi-
agent mobile sensors. The formation error of Formation-2 is calculated as 0.54 m and it
is important to emphasize that this formation error does not impact the estimation of the
full-field response, as explained in Section 5.2.1. The sparsely filled entries contributed
by the automated mobile sensors in the spatiotemporal response matrix of dimensions
10,000 × 4999 are depicted in Figure 12 for four distinct time instances.
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Figure 12. Sparsely filled entries of the spatiotemporal response matrix at different time instants due
to Formation-2 motion of multi-agent mobile sensors at (a) at t = 5 s, (b) at t = 10 s, (c) at t = 15 s,
and (d) at t = 20 s. The top figure of each subfigure shows the filled entries, and the corresponding
bottom figure shows the instantaneous position of the mobile sensor formation.

Figure 13a shows the sparsely populated entries of the spatiotemporal response
matrix for the total 100 s, when the multi-agent system follows Formation-2. Utilizing the
compressive sensing technique, the full-field sensor time history can be derived for each
time instance using these sparse entries. The spatial distribution of relative reconstruction
error for Formation-2 is depicted in Figure 13b. The average relative error is computed
as 0.36%. Notably, Location 1 (18.9 m from the left end) and Location 2 (45.6 m from the
left end) exhibit relatively higher relative error values of 0.62% and 1.63%, respectively.
The corresponding estimated time histories for these locations are depicted in Figure 14,
revealing that the reconstructed response time histories are comparable to the actual
response time histories.

We attempted to compare the compressive-sensing-based spatiotemporal matrix com-
pletion approach with other state-of-the-art algorithms currently available. Nevertheless,
employing matrix completion techniques based on Singular Value Decomposition (SVD)
methods [65] and the OptSpace method [66] proved unfeasible due to their failure to con-
verge within an acceptable tolerance limit, even with a large number of iterations. This
outcome can be attributed to the dimensions of sparse matrices, which are 10,000 × 4999,
containing only 10,000 × 6 populated values, resulting in a mere 0.12% of filled entries.
Consequently, estimating the remaining unknown values without additional information
proved exceedingly difficult. In contrast, our proposed approach applies compressive sens-
ing to each row of the spatiotemporal matrix independently, leveraging knowledge of the
underlying basis function obtained either through dictionary learning or a physics-based
approach. This approach rendered full-field response estimation feasible, distinguishing it
from the other methods.
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Figure 13. (a) Sparsely filled sparse entries of the spatiotemporal matrix for the total time 100 s with
Formation 2. (b) Relative reconstruction error (%) for each location of the simply supported bridge.

Please note that different types of formations yield varying levels of reconstruction
accuracy. As demonstrated in the aforementioned examples, Formation-2 exhibits superior
accuracy in estimating full-field vibration responses compared to Formation-1. The pri-
mary objective of this paper is to enable user-driven control of the multi-agent system.
It is evident from the agent formation control that the proposed algorithm effectively
adheres to user-defined formations. Generally, the compressive sensing-based frame-
work yields improved reconstruction accuracy when mobile sensors can continuously
span the entire beam. This is in contrast to Formation-1, which yields inferior results
due to instances where all mobile sensors cluster in the central portion of the structure.
Identifying the optimal formation remains a potential area for future research, which can
be motivated from optimal input [67–69] and sensor location [70] for structural system
identification literature.

Figure 14. Time history response comparison of (a) Location 1 and (b) Location 2 in Figure 13b. Both
the reconstructed time histories are comparable with the actual time histories.

5.3. Achieving Formation-1 from Any Initial Condition

While Figures 5a and 10a illustrate the initial starting positions of Formation-1 and
Formation-2, respectively, a significant advantage of formation control is its capability to
achieve any formation from varying initial positions and velocities of the automated multi-
agent mobile sensors using the controller outlined in Equation (19). Notably, the multi-agent
system requires a certain amount of time to converge to the desired formation from any
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given position or velocity. Throughout this study, gp and gv in Equation (19) are consistently
set to one, controlling the convergence rate towards the formation. A practical example is
depicted in Figure 15, wherein the initial positions of the mobile sensors are set at 25 m from
the left end (bridge midpoint) with zero initial velocity. Utilizing this starting condition,
Formation-1 is achieved. Figure 15d illustrates the formation’s attainment in approximately
26 s. Consequently, for better accuracy while using the full-field response estimation
framework, data collected beyond 26 s are appropriate.

Figure 15. The automated multi-agent mobile sensors achieve Formation-1 where the initial position
of all the mobile sensors is in the middle of the bridge. This figure shows the instances of how it
achieves the target formation (a) t = 5 s, (b) t = 10 s, (c) t = 15 s, (d) t = 20 s.

The requirements for consensus for the undirected graphs are as follows [50]:

(a) Every agent must be connected with at least one other agent; otherwise, achieving
consensus becomes unattainable.

(b) The time it takes for all agents to reach a consensus from an arbitrary starting point,
known as the convergence time is dependent on gp, gv, and the second eigenvalue of
the Laplacian matrix (L in Section 3). Moreover, this convergence time is inversely
proportional to the magnitude of the second eigenvalue, which is influenced by the
graph connection weights. In essence, increasing the strength of graph connections or
weights results in quicker convergence for achieving consensus.

(c) The convergence time of consensus is also influenced by graph connectivity. In this
study, the multi-agent system is considered to be connected with only neighboring
agents. For instance, if we consider the second eigenvalue of the Laplacian matrix
as λ2, considering a total of n agents, there can be 2(

n
2) potential graphs, considering

the isomorphic graphs as different graphs. Amidst these diverse graph sets, there
are instances where the second eigenvalue of the Laplacian matrix λ̂2 exceeds λ2.
Such graphs with a higher second eigenvalue converges faster toward consensus than
the neighboring connection graph, as demonstrated in this paper. However, more
connections among agents would be attributed to the cost. Therefore, in the pursuit of
simplicity and cost effectiveness, we opted to investigate the most straightforward
scenarios, such as multi-agent connection with only neighboring agents.
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The presented formation control strategy holds potential for modern structural health
monitoring through the crowd-sensing of bridge vibration data. It offers the ability to
automate the process of collecting vibration data by coordinating the movement of vehicles.
The data gathered from smartphones installed in these mobile vehicles can be harnessed
to characterize the modal properties of bridge structures under real-world circumstances,
which is essential for condition assessment and damage detection frameworks. We discuss
the advantages of full-field sensing from a limited number of fixed sensors in detail in our
previous studies [41,42]; this paper performs a similar task, i.e., full-field sensing, but with
a limited number of automatic mobile sensors.

6. Recommendation for Practical Implementation

Practical implementation recommendations are crucial for the successful execution
of full-field vibration response estimation tasks based on multi-agent formation control.
Several factors must be taken into account when designing experiments for this purpose.

Sensor arrangement: To successfully achieve the formation control, every agent
should be equipped with the IMU (Inertial Measurement Unit) and Wireless Commu-
nication Modules. IMUs combine accelerometers and gyroscopes to measure an agent’s
linear acceleration and angular velocity. They are essential for estimating an agent’s orien-
tation and motion dynamics. In this paper, the movement of agent is one-directional; hence,
only linear accelerometer is sufficient. For the 2D and 3D formation control problem, IMUs
would be necessary. Wireless communication modules (e.g., Wi-Fi, Bluetooth) facilitate
communication and coordination among agents as the formation control often requires
agents to exchange information with one another. As the proposed formation control
requires a “leader” agent, a GPS (Global Positioning System) device should be mounted on
the “leader” agent. GPS sensors provide accurate global position information, including
latitude, longitude, and altitude, which are used to obtain absolute position estimates of
agents.

Data frequency: The data frequency or sampling rate for formation control depends
primarily on agent dynamics (faster moving agents needs higher sampling frequency to
maintain formation accuracy) and formation precision (precise formation control requires
higher data frequency). In this paper, the agents are moving at an approximately 1 m/s
velocity; hence, we considered 100 Hz as the data sampling frequency to maintain the
preciseness at a cm level.

Noise reduction techniques: Noise reduction techniques play a crucial role in improv-
ing the performance and reliability of formation control algorithms, especially in scenarios
where sensor data is subject to various sources of noise and uncertainty. The Kalman
filter [71] is a widely used technique for estimating the state of a dynamic system while
accounting for measurement noise. In formation control, it can be employed to filter noisy
sensor measurements, such as GPS positions or IMU data, to obtain more accurate estimates
of agent positions and velocities. Additionally, sensor fusion (combining data from multiple
sensors) and Predictive Filters (such as the Alpha–Beta filter which can provide a more
stable estimate of the current state) can be employed to achieve the desired level of noise
reduction and robustness in real-world formation control systems.

Sensor synchronization: Sensor synchronization in formation control is the process of
aligning the data from sensors on different agents or vehicles in a formation such that they
share a common time reference and are temporally aligned. This synchronization is crucial
for achieving accurate and coordinated control of the agents within the formation. How-
ever, sensor inaccuracies can lead to errors in position estimation, which can degrade the
formation quality. Additionally, delays in communication can disrupt the synchronization
of sensors.

Calibration: In many formation control scenarios, agents may have different types
of sensors, each with its own calibration requirements and limitations. Coordinating the
calibration of heterogeneous sensors can be challenging, as the calibration process for one
sensor may not be directly applicable to others.
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Scalability: Scalability issues can arise when the formation control system encounters
challenges in maintaining performance, coordination, and communication efficiency as the
system scales up as the number of agents in the formation grows, communication load and
overhead can increase significantly. Also, as the density of agents in a formation increases,
the likelihood of collisions or near misses can also rise. To address scalability issues in
formation control, decentralization and sparse communication can be adopted, which is
scope of future exploration.

Computational demands for real-time data acquisition and processing: As the multi-
agent system are connected with each other wirelessly, the computational demand of col-
lecting and transmitting data wirelessly in real time to the server depends on the sampling
frequency and data latency. Sometimes, the wireless transmission experience data packet
losses which need to recovered, as well in the data server [3]. Efficient wireless protocols
and technologies as well as a real-time operating system could be helpful in this regard.
Once the data are stored in the server and sparsely populate the spatiotemporal data matrix,
the real-time full-field response estimation is very fast. In this paper, each of the rows of
the spatiotemporal response matrix requires approximately 0.43 s on average from the
sparse data.

7. Discussion

Mobile sensing serves as an alternative to fixed sensing for the acquisition of vibration
response data in the field of structural health monitoring. Currently, mobile sensors are op-
erated by assigned drivers, a potentially impractical approach if the array of mobile sensors
needs to follow specific patterns to optimize the data collection procedure. To address this
issue, we introduce an automated multi-agent mobile sensing framework in this paper. Our
proposed method diverges from fully autonomous vehicles which necessitate numerous
sensors to maintain the vehicle’s position and speed, a potentially economically inefficient
arrangement for structural health monitoring objectives. Therefore, the proposed formation
control strategy relies solely on vehicles that autonomously manage themselves by gaug-
ing the relative velocity and relative position of their nearest neighboring agent/vehicles.
In this technique, very few vehicles (often just one) with information about their global
position, referred to as the “leader vehicle,” are required. This formation control strat-
egy could be useful across various mobile sensing-oriented structural health monitoring
technologies. In this work, we utitize the suggested framework for estimating full-field
responses using a limited number of mobile sensors. We consider two distinct formations:
Formation-1 involves two groups of vehicles crossing each other and traversing back and
forth over a bridge during the data collection phase. However, Formation-1 exhibits notable
response estimation errors near the bridge’s ends due to sensor gaps as the vehicle groups
intersect. In contrast, Formation-2 features vehicles moving back and forth locally, result-
ing in a reduced number of estimation errors. Furthermore, we showcase the capability
of mobile sensors to achieve any formation from any initial position and velocity using
the proposed formation control framework. This strategy holds the potential to facilitate
real-time assessment of changing system parameters or automated localization of damage.

8. Conclusions and Future Work

In this paper, we explored a minimalistic and cost-efficient scenario where the multi-
agent system exclusively relies on neighboring connections. Instead, if the number of
connections between the multi-agent system increases, then the consensus, as well as the
whole framework, i.e., formation control combined with controlling the position of the
entire formation over time, is more robust. However, achieving such a dense connection
among the multi-agent systems would demand a better and larger number of sensors,
potentially leading to higher costs.

This paper primarily investigates mobile sensors with time-invariant graph interaction
topology. Exploring directed, weighted, and switching graph topologies could offer insights
into the performance of formation control in the domain of vibration sensing and health
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monitoring, which remains a subject for future investigation. Additionally, in the paper,
it is assumed that the vehicles are configured as point mobile sensors with unidirectional
movement. In the context of 2D and 3D structures, the adaptation of mobile sensors into
multi-dimensional vehicles and the potential consideration of mobile sensors as rigid
bodies could be a scope of future study. Furthermore, for 2D and 3D systems, optimal paths
for mobile sensors could be identified to maximize sensing information—an aspect not
necessary for the current 1D movement scenario. Furthermore, to evaluate the effectiveness
of the proposed method, real-life or laboratory experiments can be executed, which could
also be explored in future work.
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Abstract: In this paper, a comprehensive deterministic Eco-Driving strategy for Connected and
Autonomous Vehicles (CAVs) is presented. In this setup, multiple driving modes calculate speed
profiles that are ideal for their own set of constraints simultaneously to save fuel as much as possible,
while a High-Level (HL) controller ensures smooth and safe transitions between the driving modes
for Eco-Driving. This Eco-Driving deterministic controller for an ego CAV was equipped with Vehicle-
to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) algorithms. This comprehensive Eco-Driving
strategy and its individual components were tested by using simulations to quantify the fuel economy
performance. Simulation results are used to show that the HL controller ensures significant fuel
economy improvement as compared to baseline driving modes with no collisions between the ego
CAV and traffic vehicles, while the driving mode of the ego CAV was set correctly under changing
constraints. For the microscopic traffic simulations, a 6.41% fuel economy improvement was observed
for the CAV that was controlled by this comprehensive Eco-Driving strategy.

Keywords: eco-driving; ecological cooperative adaptive cruise control; velocity trajectory; dynamic
programming; traffic simulation

1. Introduction

Fuel economy enhancement in road vehicles is a problem that researchers around the
world have been working to improve for decades. Eco-Driving is a term used to describe
the energy-efficient use of road vehicles. Some researchers have focused on improving
the powertrain efficiency to improve the fuel economy in vehicles [1,2], whereas others
have worked on utilizing Connected and Autonomous Vehicle (CAV) technologies for the
same purpose [3–5]. Longitudinal autonomy and connectivity have also been utilized to
achieve fuel savings for individual and platooning vehicles [6]. Robust control and model
regulation were also used for vehicle control [7–9]. A parameter space with robustness was
also utilized as another method for vehicle control [10–13], (p. 20 [14]), [15,16]. The problem
being addressed here is how to improve the fuel efficiency of a vehicle (Eco-Driving) by
using connectivity with the infrastructure and nearby vehicles. Existing solutions are first
presented in the literature review below, followed by the contributions made in this paper.
The aim of this paper is to improve the fuel economy, which is shown in the simulation
experiment results parts of this paper.

Developments in Vehicle-to-Infrastructure (V2I) communication technology have
enhanced the capabilities of CAVs. Researchers are able to study and enhance the fuel
economy in vehicles by using vehicle connectivity technology in CAVs. CAVs can use
roadway infrastructure information through V2I, where they receive information about
traffic lights and STOP signs in order to reduce fuel consumption for conventional vehicles
and battery power for electric vehicles. In V2I, CAVs receive traffic light and STOP sign
locations, as well as the Signal Phase and Timing (SPaT) from traffic lights. Using this
information, longitudinal control algorithms can be developed to modify the speed of the
ego CAV in order to save fuel.

Sensors 2023, 23, 8416. https://doi.org/10.3390/s23208416 https://www.mdpi.com/journal/sensors
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There is ample work in academia on algorithms utilizing V2I technology. Altan et al.
developed a V2I algorithm and tested it at one signalized intersection to quantify how
much fuel it saved for one connected vehicle [17]. Cantas et al. [18] and Kavas-Torris
et al. [19] studied the fuel saving performance of the Pass-at-Green (PaG) V2I application
in a microscopic traffic simulator through Monte Carlo simulations, as well as Hardware-
in-the-loop (HIL) tests. Kavas-Torris et al. [20] analyzed the PaG V2I algorithm through
microscopic traffic simulations, where varying but realistic traffic flows were present around
the ego CAV. Sun et al. used a data-driven approach, where the optimal speed profile for a
CAV thorough an intersection showed 40% fuel savings [21]. Asadi and Vahidi utilized
V2I and a radar for a control algorithm that reduced the fuel consumption and idling time
at traffic lights [22]. Li et al. also utilized SPaT to improve fuel savings [23]. Li et al. used
V2I for Eco-Driving through Eco-Departure from a signalized intersection for CAVs with
internal combustion engines [24].

Drivers interact with other drivers during daily driving activities and are bound by the
speed of the slower preceding vehicle that they are following. To consider the Eco-Driving
of a CAV in traffic, the preceding vehicle information also has to be taken into account by
control algorithms in the ego CAV, such as the lead vehicle position and speed. Vehicles
can also communicate with each other through V2V to obtain acceleration information and
use it for fuel economy, emissions and safety benefits.

Cruise Control (CC) systems aim to keep the vehicle speed constant to aid the drivers
on roadways and are particularly helpful for freeway driving [25]. CC designs usually
employ classical control methods while approaches like fuzzy logic control have also been
used [26]. They help in safety and are useful as Driver Assist Systems (DAS); however, CC
models do not adjust the ego vehicle speed with respect to the outside input, such as the
preceding vehicle’s position and speed.

Adaptive Cruise Control (ACC) has been widely used for saving fuel and improving
safety for vehicles [27,28]. ACC is a valuable part of the Advanced Driver Assistance
Systems (ADAS) and SAE Level 2 automated vehicles are equipped with ACC for car-
following scenarios [29]. An ego vehicle equipped with a classical ACC uses cameras and
radars to detect and track the preceding vehicle and actuators to control the ego vehicle
speed [28]. Kural and Aksun Güvenç designed an ACC model by using Model Predictive
Control (MPC) [30]. By reducing the unnecessary accelerations and decelerations as much
as possible in the ego vehicle, ACC systems help to improve performance and indirectly
save fuel. However, V2V technology is not utilized in ACC systems.

Cooperative Adaptive Cruise Control (CACC) enables V2V to be used for car-following
scenarios [31]. In CACC, the ego vehicle receives information about the preceding vehicle
from the preceding vehicle itself via V2V communication. Hu et al. utilized V2V technology
for car following with an optimal look-ahead control framework for fuel savings [32].
Cantas et al. implemented a CACC algorithm, where the ego CAV received the acceleration
of the preceding vehicle through V2V [33]. Kianfar et al. designed a CACC architecture that
is capable of driving within a vehicle platoon while minimizing inter-vehicular spacing,
attenuating shock waves and ensuring safety [34]. Rasool et al. used Pontryagin’s Minimum
Principle (PMP) to improve fuel efficiency during car following with CACC [35]. Güvenç
et al. designed and tested a CACC system for the Grand Cooperative Driving Challenge
(GCDC) [36]. Naus et al. used the frequency-domain approach to design and experimentally
validate a string-stable CACC system [37].

Ecological Cooperative Adaptive Cruise Control (Eco-CACC) is an improvement over
the CACC system and aims to improve fuel efficiency by using road information while
utilizing CACC in car-following scenarios or vehicle platoons. Zhai et al. designed an
Eco-CACC model for a heterogeneous platoon with a time delay between the platoon
agents [38]. Yang et al. modeled an Eco-CACC algorithm to compute the fuel-optimum
vehicle trajectory through a signalized intersection that also handles queue effects [39].
Almannaa et al. designed an Eco-CACC model to reduce fuel consumption and achieve
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travel time savings around signalized intersections and also tested the system through field
implementation [40].

There is also research on the energy management of vehicles using V2I and V2V in the
recent literature. Zhang et al. focused on using a chaining neural network and an improved
equivalent consumption minimization strategy (ECMS) with an equivalent factor (EF) to
minimize energy consumption in a hybrid electric vehicle and showed a benefit ranging
from 0.2% to 5% over the ECMS with a traditional adaptation law [41]. He et al. proposed
an improved MPC-based strategy for energy management utilizing V2V and V2I for a
hybrid vehicle [42]. Ma et al. used V2V for platooning and V2I for passing at intersections
for a homogeneous platoon of connected electric vehicles [43].

In this study, a comprehensive Eco-Driving strategy was developed for a CAV equipped
with V2I and V2V algorithms. The validation of the proposed strategy was carried out by
using realistic simulations with other traffic generated by a microscopic traffic simulator.
This study shows the relative fuel savings that each component provides to CAVs, how
each component can be improved and what constitutes the largest effect on fuel savings.
It has been shown that the complete Eco-Driving architecture presented in this paper is
applicable to be used in real life in actual vehicles. The main contribution of this paper is
the development and simulation validation of an integrated Eco-Driving system that uses
V2I to handle realistic situations with infrastructure (STOP signs and traffic lights) and
V2V to handle interactions with other vehicles. The other contributions that help this main
contribution are summarized as follows:

1. V2I and V2V algorithms were developed to control the longitudinal motion of a CAV
for Eco-Driving.

2. The High-Level (HL) controller was also tested in a traffic simulator with realistic
traffic flow. The traffic vehicles were controlled by the traffic simulator and had default
car-following models, which enabled them to change lanes when they were behind
slower vehicles. Thus, the traffic vehicles created dynamically changing constraints
on the HL controller. It was observed that the HL controller ensured that no collisions
were observed between the ego CAV and traffic vehicles, and the driving mode of the
ego CAV was set correctly under changing constraints.

3. The High-Level (HL) controller designed for the comprehensive Eco-Driving of a CAV
enabled fuel savings.

The rest of this paper is organized as follows: Section 2 describes the comprehensive
Eco-Driving strategy for CAVs that was developed in this work. Section 3 details the
deterministic High-Level controller. The microscopic traffic simulation environment is
introduced in Section 4. Section 5 discusses the simulation results and comparative analysis
based on various performance measures, followed by conclusions summarized in Section 6.

2. Complete Eco-Driving Strategy for a Connected and Automated Vehicle (CAV)

The schematic in Figure 1 displays a complete picture of the comprehensive Eco-
Driving strategy for CAVs proposed in this paper. Firstly, the CAV needs to have a speed
profile, which is called Eco-Cruise, that is route-dependent and fuel-optimal. This Eco-
Cruise speed profile would assume normal operating conditions, meaning it would assume
no surrounding traffic and infrastructure around the CAV. Additionally, the speed limit of
the route and ride comfort with desired and safe acceleration and deceleration limits need
to be enforced as constraints during the calculation of this fuel-optimal speed profile. This
speed profile takes the route elevation into account, as well as the constraints of the vehicle,
and can be calculated offline by using Dynamic Programming (DP). The Eco-Cruise mode
shown in Figure 1 is the default driving mode, meaning that when the ego CAV does not
interact with other vehicles or is not in the vicinity of traffic signs, Eco-Cruise is active to
consume as little fuel as possible.
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Figure 1. Comprehensive Eco-Driving architecture of CAVs.

CAVs interact with roadway infrastructure, such as traffic lights and STOP signs. For
the Eco-Driving of a CAV, when there is an upcoming traffic light and the traffic light Signal
Phase and Timing (SPaT) information is broadcast from a Roadside Unit (RSU), then the
ego CAV goes into Pass-at-Green (PaG) mode (the green-colored block in Figure 1). In this
mode, the ego CAV picks up the traffic light state and duration, as well as the location,
from the upcoming traffic light. Then, the V2I longitudinal control algorithm on the ego
CAV makes a decision about either passing the traffic light or stopping for a red light. In
order to pass the traffic light, the ego CAV can accelerate to a higher speed, keep its speed
constant or decelerate to a lower speed. If one of these three states is possible, then the
PaG calculates a smooth speed profile for the ego CAV to follow so that the fuel economy
and ride comfort are maximized. For the state where the vehicle is not able to pass, the
PaG calculates a smooth Eco-Approach to the traffic light so that the vehicle decelerates
smoothly and spends as little time as possible while idling during the red light. Once
the light turns green, the PaG calculates a smooth Eco-Departure speed profile from the
traffic light.

For the Eco-Driving of a CAV, the ego CAV also interacts with STOP signs on roadways.
STOP signs are usually not equipped with any type of V2I equipment; therefore, another
tool needs to be used to obtain the STOP sign location information. In this architecture, the
ego CAV is equipped with eHorizon (Autoliv Inc., Ogden, UT, USA, 2020), an electronic
horizon that has a detailed map in it. Once the ego CAV gets close to the STOP sign location,
it goes into Eco-Stop mode (the red-colored block in Figure 1). In Eco-Stop mode, using the
STOP sign location information, an Eco-Approach speed profile is calculated that enables
the ego CAV to decelerate smoothly in a fuel-optimal manner and stop at the STOP sign.
After the ego CAV waits for 5 s at the STOP sign during the simulations, the Eco-Departure
is subsequently activated to get the vehicle to speed up to the speed limit. A perception
sensor like a camera and image processing should be used in conjunction with the electronic
horizon map in practice to be certain of the STOP sign location and presence. While a 5 s
wait period is fine for the fuel economy computations in this paper, the CAV should use
perception and communication sensors to assess the safety of operation before proceeding
to depart the STOP sign.



Sensors 2023, 23, 8416

Other than the roadway infrastructure, CAVs also interact with other surrounding
traffic agents. CAVs are equipped with perception sensors; hence, they can detect nearby
objects or vehicles. For the Eco-Driving of a CAV, once the ego CAV detects a preceding
vehicle, it needs to go into Eco-Cooperative Adaptive Cruise Control (Eco-CACC) mode
(the light-orange-colored block in Figure 1). This mode uses V2V communication so that the
ego CAV obtains the preceding vehicle’s information and uses that information to follow
the preceding vehicle in a fuel-efficient manner.

When the preceding vehicle’s movement is too erratic or the preceding vehicle is
moving too slowly, the ego CAV goes into Lane-Change mode (the gray-colored block in
Figure 1). In Lane-Change mode, the ego CAV obtains the surrounding vehicles’ informa-
tion, such as the vehicles’ speed and acceleration, as well as the vehicles’ position. Then, the
model determines if it is safe to change lanes and executes lane changing. The main goal of
a Lane Change in the Eco-Driving of a CAV is to make sure the ego CAV can maintain the
optimal Eco-Cruise speed to obtain maximum fuel savings while also ensuring the safety
of the ego vehicle and other nearby vehicles in adjacent lanes. If the leader vehicle changes
lanes, it is not a leader vehicle anymore and the ego vehicle will revert back to Eco-Cruise
until a new leader vehicle is encountered. If the Lane-Change mode commanded a Lane
Change for the ego vehicle, but a new vehicle from adjacent traffic lanes joined the target
lane, then the ego vehicle would either go back to the Eco-Cruise or car-following modes,
depending on the speed of this new vehicle in front.

2.1. Fuel Optimization with Eco-Cruise

Dynamic Programming is a well-known solution that is used to find optimal bench-
mark solutions to various optimal control problems. Dynamic Programming (DP) [9] was
used in the calculation of the fuel-optimal Eco-Cruise speed profile for a conventional
vehicle. For Eco-Cruise, the problem was to minimize the road load acting on the vehicle
(Figure 2) so that the fuel consumed by the vehicle would also be minimized.

Road Load = Frolling + Faero + Fgrade (1)

Road Load = mgr0 cos(α(s)) +
(

1
2

ρair A f CDv2
)
+ mg sin(α(s)) (2)

 

Figure 2. Road forces acting on a vehicle.

The road load (Figure 2) equation given in (1) has three parts. The first part is the
rolling resistance Frolling, and this term depends on the tire properties, vehicle speed and
road conditions. In Equation (2), m is the vehicle mass with the rotating inertia factor, r0
is a parameter of the rolling resistance equation and α is the road grade. The second term
is Faero and refers to the aerodynamic drag term. Faero depends on the vehicle speed and
frontal cross-section area of the vehicle. In Equation (2), ρair is the density of air, A f is the
front cross-sectional area, CD is the drag coefficient and v is the vehicle speed. Fgrade is the
road grade term, and it depends on the vehicle mass and the road grade.
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The power that needs to be provided from the engine in a vehicle to beat road load
and enable acceleration can be expressed as follows:

P = Fxv =

(
me

dv
dt

+
1
2

ρair·A f ·CD·v2 + m·g·r0· cos(α) + m·g· sin(α)
)

v (3)

where P is the power, Fx is the force required at the tires and me
dv
dt is the force required

to accelerate. The rest of the terms in Equation (3) come from the road load acting on
the vehicle, which was given in Equation (2). Using the power expression given in
Equation (3), the fuel rate that is consumed by the vehicle when it is traveling can be
expressed as follows:

.
m f =

P/ηt + Paccessories
ηe

(4)

where
.

m f is the fuel rate, Paccessories is the power required to keep the accessories running,
ηt is the transmission efficiency and ηe is the engine efficiency. This expression for the fuel
rate given in Equation (4) can be used as the cost function that needs to be minimized for
this analysis. Further details for this optimal control formulation can be found in [44].

In this paper, the fuel-optimal DP solution presented here was used for different
driving modes. Firstly, the driving mode called Eco-Cruise, where the fuel-optimal speed
profile is calculated offline by using road information, was found by using DP. Additionally,
the Eco-Stop mode, where the ego vehicle approaches a STOP sign fuel-economically, also
utilized DP. Finally, the Eco-Departure mode, where the ego vehicle departs from a traffic
light or STOP sign, also used DP. These solutions were all distance-based solutions, as
presented earlier.

In the DP solution, the whole trip horizon is divided into segments. Additionally, the
solution space is also divided into nodes. The solution starts from the end point, where
the desired vehicle speed and vehicle location are known. The cost in terms of the fuel
rate seen in Equation (4) is assigned to each link to move from the current node to each
previous neighboring node in backward propagation. Then, the feasibility constraint of
going from one node to the next is checked, where the acceleration and deceleration, as
well as the jerk-rate limits, are enforced. Details about this approach can be found in [44].

2.2. Vehicle-to-Infrastructure (V2I) Interactions of a CAV

A vehicle traveling from a starting location to a traffic light (or a STOP sign) can be
seen in Figure 3. In Figure 3, xego is the position, vego is the speed and aego is the acceleration
of the ego vehicle. TLlocation is the traffic light location, TLSPaT is the traffic light state and
duration and STOPlocation is the location of the STOP sign.

 

Figure 3. V2I interaction as an optimal control problem.

In this paper, when it comes to V2I communication, the aim is to design control
algorithms that minimize the fuel consumption in a vehicle. Fuel consumption can be
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reduced through the utilization of V2I so that the vehicle control algorithms can obtain
roadway infrastructure information and use it to consume less fuel. The optimal control
problem can be defined with the objective function (5):

minimize︸ ︷︷ ︸
Te(t), Fb(t)

J(u(t)) = LN

(
s
(

t f

)
, v

(
t f

))
+

∫ t f

0
Lk(s(t), v(t), Te(t), Fb(t), t)dt (5)

where Lk is the running cost and LN is the terminal cost. Additionally, u(t) is the input, s(t)
is the distance, t f is the final time, v(t) is the vehicle velocity, Te(t) is the engine torque and
Fb(t) is the brake force. The states are subject to

ds(t)
dt

= v(t) (6)

dv(t)
dt

= KTe Te − KFb Fb − gr0 cos(α(t))− 1
2m

ρair A f CDv(t)2 − g sin(α(t)) (7)

where Equation (6) expresses that the derivative of the position is equal to the speed. In
Equation (7), m is the vehicle mass, r0 is a parameter of the rolling resistance equation, α(t)
is the road grade, ρair is the density of air, A f is the front cross-sectional area, CD is the
drag coefficient, v(t) is the vehicle speed and g is the gravitational acceleration. The vehicle
model expression given in Equation (7) shows that road load and brake force subtracted
from the total powertrain force to the wheels is equal to the vehicle acceleration. There are
initial and final algebraic constraints on the states of the position and speed, and they are
as follows:

s(0) = sinitial = 0 (8)

s
(

t f

)
= s f inal = s f (9)

v(0) = vinitial = vi = 0 (10)

v
(

t f

)
= v f inal = v f = 0 (11)

vmin(t, s(t)) ≤ v(t) ≤ vmax(t, s(t)) (12)

where sinitial (8) is the initial vehicle position and s f (9) is the final vehicle position. Addi-
tionally, vi (10) is the initial vehicle speed, v f (11) is the final vehicle speed and vmin (12) is
the minimum allowable speed for the vehicle. The speed limit of the roadway is enforced
as the vmax (12) constraint, which is the maximum allowable speed of the vehicle. There are
also algebraic constraints on the input’s engine torque Te (13) and brake force Fb (14):

Te,min(v(t), t) ≤ Te(t) ≤ Te,max(v(t), t) (13)

0 ≤ Fb(t) ≤ Fb,max(v(t), t) (14)

The optimal control problem posed here was solved by using Dynamic Programming
for the case where the ego CAV approaches a STOP sign. Different Eco-Approach profiles
were calculated for approaching the STOP sign, and depending on the instantaneous speed
of the ego CAV when it was within 300 m of the STOP sign, the appropriate profile was
chosen during the simulations.

For the interactions between the ego CAV and traffic lights, Pass-at-Green (PaG) was
used. PaG is a V2I application that uses roadway infrastructure information to eliminate
or decrease idling at red lights to decrease the fuel consumption for the ego vehicle. PaG
operates under deterministic control by using the input, which includes the distance to
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the upcoming traffic light, Signal Phase and Timing (SPaT) information received from the
upcoming traffic light, instantaneous actual vehicle speed, maximum acceleration and
maximum deceleration limits and jerk limit for ride comfort. Using these inputs, the
PaG calculates a smooth and fuel-economic speed profile so that the vehicle can pass the
upcoming traffic light.

Depending on the distance to the traffic light and the SPaT information from the
upcoming traffic light, the PaG chooses one of four options for the recommended vehicle-
speed trajectory. These PaG states are as follows:

• Cruise State: the vehicle keeps its speed constant and passes the traffic light when the
light is green.

• Increase Speed State: The vehicle accelerates to a higher speed, travels at a constant
speed when it is passing the green traffic light and then decelerates to the initial lower
speed. The vehicle obeys speed limits, as well as acceleration, deceleration and jerk
limits for ride comfort.

• Eco-Approach State: The vehicle cannot catch the current green light; therefore, it
decelerates to a stop at the traffic light. Then, after the traffic light turns green, the
vehicle smoothly accelerates to a higher speed and passes the traffic light. The vehicle
obeys speed limits, as well as acceleration and deceleration limits for ride comfort.

• Decrease Speed State: The vehicle decelerates to a lower speed, travels at a constant
speed when it is passing the traffic light and then accelerates to the initial higher speed.
The vehicle obeys speed limits as well as acceleration and deceleration limits for
ride comfort.

More information on the PaG can be found in [17–19,44].

2.3. Vehicle-to-Vehicle (V2V) Interactions of a CAV

An ego CAV following a lead connected vehicle can be seen in Figure 4. xego and xlead
are the positions of the ego and lead vehicles, respectively.

.
xego and

.
xlead are the speeds of

the ego and lead vehicle, respectively.
..
xego and

..
xlead are the accelerations of the ego and

lead vehicle, respectively. It should be noted that the sinusoidal-looking perturbation in
the speed profile of Figure 4 is for illustration purposes only and represents a perturbation
(not necessarily sinusoidal) that the ego vehicle does not want to follow.

 

Figure 4. Car following a CAV as an optimal control problem.

Fuel consumption in CAVs can be reduced by the utilization of V2V so that the vehicle
control algorithms can obtain the lead vehicle’s information and use it to consume less fuel.

In order to prevent a collision from happening between the lead vehicle and the ego
CAV, the following algebraic constraint also needs to be enforced. These constraints are
as follows:

xactual = xlead − xego, xactual > 0 (15)
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where xactual (15) is the actual distance between the lead and the ego vehicle, and it needs
to always be larger than zero to ensure that the vehicles do not collide.

ACC, CACC and Eco-CACC models with Proportional-Derivative (PD) feedback
control and a constant time-gap spacing policy were designed in order for the ego CAV
to safely follow the lead vehicle. Eco-CACC used a preceding acceleration feedforward
compensator that filtered high-frequency acceleration disturbances of the preceding vehicle.
More information about the V2V models can be found in [45,46].

3. The High-Level Controllers for V2I, V2V and V2I + V2V

In this section, the deterministic control algorithms that were developed for the Eco-
Driving of a CAV are explored further.

3.1. High-Level (HL) Controller for V2I with No Traffic

The High-Level (HL) controller for V2I with no traffic handles how the ego CAV be-
haves when it is traveling on a roadway with no other vehicle around it and is implemented
as a state-flow chart. The aim is to determine when the CAV has to switch between the
different driving modes of the Eco-Driving of the CAV architecture presented in Figure 1.
This controller ensures the seamless transition from one driving mode to the next.

Depending on deterministic conditions, such as the current upcoming traffic light
state and duration, the distance between the infrastructure elements (the traffic lights and
STOP signs) and the ego vehicle, as well as the instantaneous vehicle speed, the controller
is tasked to make a decision to switch between driving modes. The flow chart for the
deterministic control algorithm for the fuel-economic Eco-Driving of a single CAV with no
traffic can be seen in Figure 5.

Figure 5. Flowchart for the HL controller with no traffic for V2I.

As seen in Figure 5, the ego CAV aims to maintain its speed as close to the Eco-Cruise
speed as possible. The Eco-Cruise speed is the fuel-economic speed profile that is route-
dependent and is calculated offline prior to the trip. In case there is an upcoming traffic
light, the Pass-at-Green (PaG) V2I algorithm takes over control of the ego vehicle. If there is
a STOP sign, then Eco-Stop mode is activated to make the vehicle stop smoothly at the sign.
After stopping at the STOP sign for a few seconds, Eco-Departure takes over and makes the
ego vehicle accelerate smoothly. The HL controller makes sure the correct driving mode is
active and mode transitions are smooth to save as much fuel as possible.
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3.2. High-Level (HL) Controller for V2V with Traffic

This High-Level (HL) controller for V2V with traffic aims to make transitions between
driving modes correctly and smoothly so that the ego vehicle speed does not jump abruptly
when the driving mode changes. The flowchart for the controller is seen in Figure 6, where
the Eco-Cruise speed is the fuel-economic and road-dependent speed profile for the ego
vehicle to follow to consume less fuel. When there is a preceding vehicle with no V2V
communication, the ACC model is activated and the ego CAV safely follows the lead
vehicle. If the preceding vehicle is equipped with V2V and does not have an erratic driver,
then the CACC takes over and follows the lead vehicle smoothly while keeping a safe
distance between vehicles to prevent a collision. If the preceding vehicle with V2V has an
erratic driver, then Ecological Cooperative Adaptive Cruise Control (Eco-CACC) takes over
control to follow the erratic leader without responding to its high-frequency accelerations
in order to maintain fuel savings and safety. If the leader is erratic and lane changing
is possible for the ego vehicle, then the ego vehicle changes its lane and maintains the
Eco-Cruise speed.

Figure 6. Flowchart for the HL controller with traffic for V2V.

The driving modes shown in Figure 6 have different controllers, and when they all
run simultaneously during testing, the recommended vehicle speeds from each driving
mode are usually different. If driving modes were to switch immediately with no transition,
then the recommended speeds would not be continuous and cause the actual ego vehicle
speed to jump abruptly. To overcome this problem, a Transition State is added to smoothly
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transition between driving modes. The algebraic equation for the Transition State to
smoothly increase the vehicle speed is as follows:

vtrans = vtrig + vchg,acc (16)

vchg,acc =
(
vlim − vtrig

)⎛⎝(
tact − ttrig

4
(
vlim − vtrig

) − 1

)3

+ 1

⎞
⎠ (17)

where vtrans (16) is the recommended transition speed for the vehicle, vtrig is the vehicle
speed when the driving-mode transition started and vchg,acc is the speed change needed for
the ego vehicle to travel at the higher speed limit. In Equation (17), vlim is the actual speed
limit of the road, tact is the actual simulation time and ttrig is the time instant when the
driving-mode transition starts. The third-order power equation that comprises the variables
seen in Equation (17) ensures that the recommended speed is smooth when driving modes
are switched and the ego CAV accelerates.

When the Eco-Cruise speed is smaller than the instantaneous vehicle speed, the
following Equation (18) ensures that the vehicle decelerates slowly. In Equation (18), vchg,dec
is the speed change needed for the ego vehicle to travel at the lower speed limit. In
Equation (19), vlim,low is the user-set lower speed limit, tact is the actual simulation time
and ttrig is the time instant when the driving-mode transition starts. A third-order power
equation that comprises the variables seen in Equation (19) ensures that the recommended
speed is smooth when driving modes are switched and the ego CAV decelerates. When
the Eco-Cruise speed catches up to the vehicle speed, then the recommended speed for the
CAV to follow switches back to the Eco-Cruise speed:

vtrans = vtrig − vchg, dec (18)

vchg,dcc =
(
vlim,low − vtrig

)⎛⎝(
tact − ttrig

4
(
vlim,low − vtrig

) − 1

)3

+ 1

⎞
⎠ (19)

3.3. High-Level (HL) Controller for V2V and V2I with Traffic

The HL controller for V2V and V2I with traffic was designed as a state-flow diagram
in Simulink, and the flowchart for the HL controller decision-making process can be seen in
Figure 7. The default mode is the Eco-Cruise mode, where the precalculated fuel-economic
DP profile is the desired speed profile for the vehicle. The Eco-Cruise speed profile also
makes sure the ego vehicle drives in a fuel-economic manner around STOP signs. When
there is a lead vehicle in close proximity to the ego vehicle, car-following models are
activated to safely and closely follow the preceding vehicle. When there is a traffic light
ahead, the mode is switched to the PaG V2I algorithm. After the ego vehicle passes the
traffic light, depending on the instantaneous speed of the vehicle, the transition modes are
activated (speed up or speed down).
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Figure 7. Flowchart for the HL controller with traffic for V2V and V2I.

4. Microscopic Traffic Simulation Environment

A simulation environment was set up by using Simulink and the Vissim commer-
cial traffic simulator to run co-simulations by using the COM interface capability of
Vissim [19,47]. Details about setting up a COM connection between Simulink and Vissim
can be found in [47]. Other than the COM interface between Simulink and Vissim, there
was no specific Matlab Simulink package that was installed for the simulation experiments.
During the co-simulations, realistic traffic information was being sent from Vissim to
Simulink. The ego vehicle with a mid-sized vehicle powertrain was being controlled by the
High-Level (HL) controller in Simulink. The fuel consumption model was also in Simulink,
and the realistic fuel consumption values were achieved by using multi-dimensional tables
that replicated the behavior of a real vehicle engine. The HL controller determined which
action to take and which driving mode to activate in response to the realistic traffic and
infrastructure information received from the traffic simulator.

The simulation environment designed in Vissim is called the Arlington Route and it
has one STOP sign, five traffic lights and is 6873 m long. The Arlington Route can be seen
below in Figure 8.

 

Figure 8. Arlington Route from “Google Maps” (2022).
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The speed limit, traffic sign locations and route-dependent fuel-economic DP solution
for the Eco-Cruise driving mode for the Arlington Route can be seen below in Figure 9.

Figure 9. Characteristics of the Arlington Route.

The pink ego vehicle approaching a traffic light at an intersection with other traffic
vehicles around it during the traffic simulation can be seen in Figure 10. During the
simulation, the ego vehicle was controlled by the HL controller to save fuel by smoothly
approaching traffic lights and STOP signs. At the same time, whenever there was a vehicle
in front of the ego vehicle and the distance between the ego and lead vehicles was less than
50 m, ACC, CACC or Eco-CACC were activated to prevent collisions between the vehicles
during car following.

 

Figure 10. Ego vehicle approaching an intersection in the traffic simulation.

The traffic-vehicle compositions were the same at each simulation. Additionally, the
traffic simulator spawned vehicles at a common start time for each simulation, meaning
that the vehicle with a specific ID entered the roadway at the same timestamp across all
simulation cases. This unity ensures that the simulation results can be compared with each
other since the traffic vehicles that interact with the ego vehicle appear in the simulator at
the same time. Additionally, the traffic light periods for each traffic light were the same
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across all simulations. When it comes to experimental parameters, the distance traveled by
vehicles, the inter-vehicular distance between the ego and leader vehicle, vehicle speed,
simulation time, distance to traffic lights and STOP signs, SPAT for traffic lights and HL
controller state were recorded and analyzed for system performance.

Depending on the test case and whether there were other traffic vehicles around
the ego vehicle for V2V, or V2I communication with the road infrastructure, one of the
three HL controllers presented in Section 3 was used.

5. Results and Discussion

To assess the fuel economy performance of the V2I and V2V algorithms in a traffic
network, five different simulations were run. For case 1, the ego vehicle was commanded
to follow the fuel-economic DP profile in Eco-Cruise mode with no other traffic vehicles
around in the simulation.

For the second case, the ego vehicle was commanded to follow the same Eco-Cruise
speed as the first case while also interacting with STOP signs by using Eco-Stop and traffic
lights by using PaG. For case 2, the HL controller for V2I with no traffic presented in
Section 3.1 was utilized during the simulations.

The third simulation case built on top of the second simulation case, where Eco-Cruise,
Eco-Stop and PaG were all working in tandem, and there were also traffic vehicles around
the ego vehicle. Whenever the ego vehicle was in the vicinity of a lead vehicle, the ACC
mode was activated. The fourth simulation case used the same V2I models, and when there
was a lead vehicle ahead, the CACC mode was activated. The fifth and final simulation
case used the same V2I models as the fourth case, except the car-following model that was
used when there was a lead vehicle in front of the ego vehicle for this case was Eco-CACC.
For cases 3, 4 and 5, the HL controller for V2V and V2I with traffic, which was presented in
Section 3.3, was used.

The speed profile for the ego vehicle when there were no other traffic vehicles around
can be seen in Figure 11. The light blue line represents the ego vehicle speed when it was
commanded to follow the DP offline-calculated Eco-Cruise profile in Figure 9. The light
red line represents the vehicle speed when the vehicle was around a traffic light, and the
SPaT information was used to modify the speed profile for case 2.

 
Figure 11. Ego vehicle with Eco-Cruise only (case 1) and Eco-Cruise + Eco-Stop + PaG (case 2).
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The results of the third simulation case, where there were other traffic vehicles in the
traffic simulator and the ego vehicle was equipped with the V2I algorithms and ACC, can be
seen in Figure 12. Whenever the distance between the ego vehicle and the lead vehicle was
below 50 m, the ACC took over control to make sure no collision could occur. If the distance
between the ego and the lead vehicle was larger than 50 m, the HL controller commanded
the ego vehicle to either follow the Eco-Cruise trajectory or the PaG trajectory to save fuel.
During this simulation, around 500 s, the PaG commanded the vehicle to accelerate to pass
the traffic light, which was not observed in cases 4 and 5. This acceleration-to-pass behavior
observed in case 3 resulted in the ego vehicle having the highest fuel consumption among
cases 3, 4 and 5.

Figure 12. Traffic simulation for ego vehicle with V2I and ACC, case 3.

The results of the fourth simulation case, where there were other traffic vehicles in the
traffic simulator and the ego vehicle was equipped with the V2I algorithms and CACC,
can be seen in Figure 13. The HL controller handled having a preceding vehicle ahead of
the ego vehicle the same as the ACC case. Towards the end of the simulation in case 4, the
ego vehicle switched into car-following mode with CACC. In CACC mode, the ego vehicle
tried to follow the lead vehicle at a safe distance. During the simulation, the lead vehicle
was driving faster than the ego vehicle, which resulted in the ego vehicle accelerating to a
higher speed to keep up with the lead vehicle around 730 s. This resulted in the ego vehicle
having a higher fuel consumption in case 4 (Figure 13), where the ego vehicle used CACC
compared to case 5 (Figure 14), where the ego vehicle used Eco-CACC for car following.
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Figure 13. Traffic simulation for ego vehicle with V2I and CACC, case 4.

The results of the fifth and the final simulation case, where there were other traffic
vehicles in the traffic simulator and the ego vehicle was equipped with the V2I algorithms
and Eco-CACC, can be seen in Figure 14. Similar to the previous cases with ACC and
CACC, the HL controller handled the state transitions.

The fuel consumed by the ego vehicle in each of the two simulation cases, where there
was no other traffic flow around the ego vehicle, was recorded, and the percentage of the
fuel consumption reduction in the models was calculated with respect to the simulation
case 1 (Table 1). During case 1 and case 2, there were no other vehicles around the ego
vehicle to interact with by using V2V. When the ego vehicle could use V2I in case 2, the fuel
consumed by the ego vehicle decreased compared to using the Eco-Cruise-only simulation
in case 1, where the ego vehicle stops at all traffic lights and STOP signs.
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Figure 14. Traffic simulation for ego vehicle with V2I and Eco-CACC, case 5.

Table 1. Results for the fuel economy of the ego vehicle in no-traffic network.

Simulation
Case

Number
Simulation Scenario Name

Total Fuel
Consumption (g)

% Fuel
Consumption

Reduction with
Respect to Case #1

1 Eco-Cruise only (no traffic,
vehicle stops at all traffic lights) 395.85 -

2 Eco-Cruise with Eco-Stop and
PaG (no traffic, V2I only) 382.17 3.46%

Three simulations were run, where there was another vehicle around the ego vehicle,
and the results are summarized in Table 2. Traffic vehicles that constrained the motion of
the ego vehicle were present for cases 3, 4 and 5. Compared to ACC for car following in
case 3, using CACC in case 4 resulted in a 1.51% fuel economy improvement. Moreover,
using the Eco-CACC in case 5 was even more beneficial in reducing the fuel consumed by
the ego vehicle. The fuel consumption decreased by 6.41% when using Eco-CACC in case 5
compared to using ACC in case 3.



Sensors 2023, 23, 8416

Table 2. Results for the fuel economy of the ego vehicle in a traffic network.

Simulation
Case

Number
Simulation Scenario Name

Total Fuel
Consumption (g)

% Fuel
Consumption

Reduction with
Respect to Case #3

3 Eco-Cruise with Eco-Stop and
PaG and ACC (V2I + no V2V) 454.20 -

4 Eco-Cruise with Eco-Stop and
PaG and CACC (V2I + V2V) 447.37 1.51%

5 Eco-Cruise with Eco-Stop and
PaG and Eco-CACC (V2I + V2V) 425.12 6.41%

6. Conclusions and Future Work

In this paper, a comprehensive Eco-Driving strategy with V2I and V2V algorithms
was tested in a realistic microscopic traffic simulation environment, where a real-life route
in Columbus, Ohio, USA, was modeled in a traffic simulator with the same number of
lanes, speed limits, traffic lights and STOP signs. When PaG was active and used traffic
infrastructure information in case 2, 3.46% less fuel was consumed compared to only using
the Eco-Cruise speed profile case 1. For the simulation cases that required car following,
it was shown that using CACC and Eco-CACC with V2V was more beneficial than using
only ACC. The ego vehicle consumed 1.51% and 6.41% less fuel as compared to ACC only
(case 3) for car following when CACC (case 4) and Eco-CACC (case 5) were used, respec-
tively. Moreover, it was seen that Eco-CACC, which was modeled with a filter to attenuate
the acceleration of the lead vehicle, consumed less fuel than CACC, which used the lead
vehicle acceleration without filtering it.

For future work, the different driving modes that were presented here can be combined
as part of an MPC with varying constraints under different driving conditions to improve
the complete Eco-Driving strategy of the CAV presented in this paper.

There is also potential for improvement for the High-Level (HL) controller. In the
simulation results, it was seen that for some cases during car following, the HL controller
switched between different driving modes very rapidly. In real-life implementations, this
rapid switching between driving modes would diminish the ride comfort for the passengers.
To eliminate this rapid switching issue in the HL controller, a dead zone can be included in
the controller. When controllers have dead zones, they do not respond to the change in the
input within the dead zone region [48]. By exploring the addition of a dead zone to the HL
controller, the rapid switching issue might be eliminated.

Within the scope of this paper, it was assumed that the functional safety of the ego CAV
was satisfied and there were no malicious agents for the V2I, V2V and V2X communication.
However, in real life, there could be cyber-security threats to the functional safety of a CAV
due to malicious road agents. For example, malicious agents could broadcast inaccurate
acceleration information to other CAVs on the roadway, or they could intentionally drive
in an erratic manner. For safe and reliable real-life implementation and VIL testing, the
cyber-security and functional safety aspects of CAVs need to be explored further.

To obtain real-world behavior when the CAVs are deployed, datasets dedicated to
CAVs are needed. These were not created in the current paper, but there are such papers
in the literature where such data are collected. For example, the paper in [49] presented a
dedicated dataset for analyzing CAVs’ behavior.
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Abstract: In the past decade, automotive companies have invested significantly in autonomous
vehicles (AV), but achieving widespread deployment remains a challenge in part due to the com-
plexities of safety evaluation. Traditional distance-based testing has been shown to be expensive
and time-consuming. To address this, experts have proposed scenario-based testing (SBT), which
simulates detailed real-world driving scenarios to assess vehicle responses efficiently. This paper
introduces a method that builds a parametric representation of a driving scenario using collected
driving data. By adopting a data-driven approach, we are then able to generate realistic, concrete
scenarios that correspond to high-risk situations. A reinforcement learning technique is used to
identify the combination of parameter values that result in the failure of a system under test (SUT).
The proposed method generates novel, simulated high-risk scenarios, thereby offering a meaningful
and focused assessment of AV systems.

Keywords: autonomous vehicles; testing; edge case generation; scenario-based testing; parametric
representation; data-driven method

1. Introduction

The Society of Automotive Engineers (SAE) outlines six levels of driving automa-
tion [1]. As automation levels increase, autonomous systems must ensure safety without
human intervention. Therefore, comprehensive evaluations are crucial before deploying
these systems on public roads. Unlike deterministic approaches like distance-based testing,
scenario-based testing (SBT) offers a promising alternative by assessing systems against
meaningful driving scenarios and reducing test efforts for safety assurance [2–4]. SBT
concentrates on creating high-risk traffic situation test cases for evaluating a system’s
performance. In SBT, there are three levels of representations [5]:

• Functional scenarios, which comprise the highest abstraction layer and contain a lin-
guistic description of a scenario.

• Logical scenarios, which detail the range and distribution of parameters that describe a
specific event.

• Concrete scenarios, which arise from specifying a value for each parameter, and are
sampled from the distribution defined in the logical scenario.

Moreover, concrete scenarios can be classified into the following three types based on
their occurrence probability: typical, critical, and edge case scenarios.

• Typical scenarios represent common, real-world operating behaviors with a low likeli-
hood of leading to high-risk situations.

• Critical scenarios entail higher-risk situations with safety concerns, occurring less
frequently than typical scenarios.

• Edge cases refer to statistical outliers, presenting challenging scenarios that are rarely
encountered in normal driving activities.

Sensors 2024, 24, 108. https://doi.org/10.3390/s24010108 https://www.mdpi.com/journal/sensors
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Identifying a combination of parameter values that describe realistic scenarios is chal-
lenging due to the complex, non-linear relationships between parameters. A considerable
effort is required to pinpoint the optimal combination of parameters that accurately capture
all aspects of a given scenario.

Highly automated vehicles (HAVs) will eliminate the need for human drivers, making
it crucial to evaluate their operation in edge case scenarios to ensure safe deployment [6].
A representative test case, for example, is a cut-in scenario where the HAV might collide
during a lane change.

In the literature, generating concrete scenarios for critical events is a burgeoning
research area in SBT. Prior studies have centered on manually constructing simulated
scenarios utilizing expert knowledge [7–9]. However, these methods may produce scenarios
that do not accurately reflect real-world traffic participant behavior. Moreover, many
existing techniques focus on scenario generation without giving adequate attention to edge
cases [2,10,11]. A recent study by De Gelder et al. applied kernel density estimation to fit a
distribution to three parameters from a given scenario [2]. This work generates test cases
using Monte Carlo simulation but does not explicitly direct the search toward edge cases.

Generating high-risk scenarios for testing HAVs is important in ensuring their safety
and reliability. These scenarios, particularly edge cases, are crucial for assessing how these
vehicles perform in rare or unexpected situations, thereby establishing public trust and
meeting regulatory safety standards. By simulating realistic driving conditions, including
rare and unusual situations, these tests provide a comprehensive evaluation of autonomous
systems, thus uncovering potential weaknesses that might not be evident in normal driving
conditions. This approach is more efficient than traditional distance-based testing methods
and crucial for the overall advancement of autonomous vehicle technology. It allows for
focused and effective testing, thus ensuring the vehicles are well equipped to handle a wide
range of driving scenarios.

This paper presents a method for generating realistic and challenging concrete sce-
narios to evaluate HAV subsystems using real-world data. We exemplify our approach
using lane change events on urban roads. However, the proposed methodology can be
extended to accommodate various road scenarios, thereby highlighting its versatility and
applicability. In this work, we used the CARLA simulator, a tool that is engineered to
facilitate autonomous urban driving system development, training, and validation [12].
This versatile software allows us to control all digital assets, which encompasses static and
dynamic actors, thus enabling the creation or playback of diverse scenarios.

We transformed raw data into meaningful scenarios through a three-step process.
First, we extracted lane change maneuvers from the collected data and converted them into
a parameterized representation [13], thereby validating the parameterization’s effectiveness
using metrics to compare the parameterized scenario representation with the original real-
world trajectory. Next, we constructed a search space, or parameter space, using extracted
parameter values, and we then compared the following three different representations:
independent univariate normal, multivariate normal, and a multimodal–multivariate
distribution. Finally, we treated CARLA’s open-source simulation tool’s collision avoidance
system (CAS) as the system under testing (SUT). We employed an RL method to optimize
the parameter values for realistic and challenging scenarios, with the reward function
biasing learning toward edge cases.

We summarize our paper’s contributions as follows:

• A novel method for identifying and parameterizing real-world lane change sce-
narios, thereby demonstrating a strong resemblance between reproduced and real-
world trajectories.

• A unique urban lane change dataset (81 cut-in and 53 cut-out) with raw parameter
values and OpenSCENARIO representations for each event (available online).

• An extended data-driven methodology [14] for generating problematic concrete sce-
narios for a specific CAS, which was evaluated through quantitative and qualita-
tive analysis.
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2. Related Work

This section provides an overview of the previous works on scenario extraction meth-
ods, scenario datasets, and concrete scenario generation methods.

De Gelder et al. in [15] implemented a scenario extraction method that relies heavily
on real-time tagging. Although the technique enabled automated tagging in real-time and
used a combination of tags to mine scenarios, extracting scenarios using other published
datasets is not easy. Moreover, the approach was highly dependent on the accuracy
and consistency of the real-time tagging process, which may not be reliable. In contrast,
Krajewski et al. in [16] demonstrated a more robust scenario extraction process for lane
change maneuvers by measuring when the vehicles crossed a lane in the data collected
from cameras fitted to drones. This method did not depend on real-time tagging, which
made it more reliable and easier to apply to other datasets. Xinxin et al. in [17] presented a
scenario extraction framework that relied on various computer vision techniques to extract
scenarios from video data. While this approach showed promise, it also had limitations,
particularly regarding the accuracy of the extracted scenarios. Similarly, the study of [18]
proposed a methodology to generate concrete scenarios by extracting scenario parameters
from the HighD dataset for assessing an active lane-keeping system (ALKS). While their
approach was promising it also had limitations, particularly regarding the complexity of
the generated scenarios and the need for accurate data to ensure their validity. Despite
their limitations, both of the studies of [17,18] proposed scenario extraction frameworks
and generated scenarios in a standard format, which may be helpful for researchers and
practitioners in the field.

Several literature contributions have focused on the publication of verification and
validation datasets. For instance, the Safety Pilot Model Deployment (SPMD) [19] program,
launched by the University of Michigan Transportation Research Institute (UMTRI) with the
support of various US departments, collected 73 miles of data and stored it in a text format.
However, extracting scenarios from this dataset requires extensive post-processing, which
can be time-consuming and inconvenient for end users [20]. Krajewski et al. [16] published
the HighD dataset, one of the most extensive highway vehicle trajectory datasets. While
it consists of over 16 h of measurements from six locations with around 100,000 vehicles,
the trajectories were recorded from a bird’s eye perspective. In the study of [18], a method
to extract scenario parameters from the HighD dataset to create concrete scenarios was
proposed. While this method is promising, it focuses primarily on highway scenarios, which
limits its usefulness for researchers and practitioners interested in urban driving scenarios.

The generation of concrete scenarios has been explored in the literature, but these
methods have limitations that must be considered. For instance, Barbier et al. proposed
in [10] a technique to evaluate a system’s behavior by formulating it as a statistical model-
checking problem. While they computed the statistical characteristics of the system under
test (SUT) by identifying the system failures in randomly generated scenarios in a sim-
ulation, they did not bias their search toward edge cases. In contrast, in [2], real-world
scenarios were parameterized and stored in a database. Monte Carlo simulations were
then employed to generate test cases from the parameterized representation. However,
the Monte Carlo simulation is a random search. Depending on the scenario, it may be
less likely to find a falsification result than a directed search, as described in this paper.
Zhao et al. in [11] extracted a statistical model of vehicle behavior from real-world data in a
lane following scenario, and they then skewed the statistical model to create more critical
scenarios. The performance of this model-based approach depends on having an adequate
model representation of real-world behavior, which may not always be the case.

Recent research has focused on generating concrete scenarios using a manually built
combination of parameters. For instance, Gangopadhyay et al. proposed using Bayesian
optimization (BO) to create challenging scenarios [7]. BO utilizes the Bayes rule to learn
the model, and it then finds challenging scenarios by using the learned model. Similarly,
in [8], an evolutionary algorithm (EA) was employed to search for critical scenarios from
parameter space. Also, Zhou et al. [21] introduced a challenging scenario generation
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approach for automated driving systems through using genetic-based algorithms. Other
researchers, such as Koren et al., Liu et al., and Lu et al. [9,22,23], have employed an
RL-based approach to search for collision scenarios from a manually built search space.
These methods do not account for real-world traffic participant behavior in the scenario
generation process, as their parameter space does not consider the correlations between the
different variables.

The authors in [24] presented a novel scenario generation method that utilizes kernel
density estimation (KDE) to approximate the probability density function (PDF) of scenario
parameters, thus enabling the generation of realistic scenarios. In addition to that, they
introduced a novel metric to quantify the extent to which the generated scenarios reflect real-
world scenarios. This work was limited as it did not explicitly demonstrate the generation
of more critical scenarios.

In our previous work, ref. [14], we proposed a method to generate concrete scenarios
for assessing the performance of CAS at pedestrian crossings. Our approach had the
advantage of biasing the learning toward high-risk events, which enabled the creation of
many concrete scenarios through using a parameter space built from expert knowledge.
However, it did not fully encode realistic traffic participant behavior, as expected in a
data-driven approach. In this paper, we address this limitation by building the parameter
space from real-world data, which enables the generation of more realistic and challenging
scenarios in the context of a lane change maneuver.

3. Background

This section introduces several fundamental concepts used in our approach to generate
concrete scenarios for assessing the performance of collision avoidance systems. These
concepts include REINFORCE RL, responsibility sensitive safety (RSS), OpenX formats,
the data collection vehicle, coordinate frames, and the lane change scenario types used in
our method.

• Reinforce RL

Reinforcement learning (RL) algorithms aim to find an optimal policy that maxi-
mizes reward by interacting with the environment modeled as a Markov decision process
(MDP) [25]. RL is typically implemented in three ways: dynamic programming, Monte
Carlo methods, and temporal difference learning. Our approach employs the Monte Carlo
method REINFORCE, a policy gradient algorithm that directly manipulates the policy to
find the optimal one that maximizes expected return [26]. In this algorithm, the policy
is defined by the weights of the neural networks [27]. The learning process updates the
weights to find the optimal policy that predicts the desired action given a state.

• Responsibility Sensitive Safety (RSS)

Responsibility Sensitive Safety (RSS) is a formal method proposed by Intel’s Mobileye
that computes the minimum distance required to keep a vehicle safe [28]. RSS aims to
guarantee that an agent will not cause an accident rather than to ensure that an agent will
not be involved in an accident [28]. Our work focuses on the safe longitudinal distance, as
well as on the minimum distance required for the ego vehicle to stop in time if a vehicle or
object in front brakes abruptly.

• OpenX Formats: OpenSCENARIO and OpenDRIVE

The OpenX formats, including OpenSCENARIO and OpenDRIVE, enable the con-
struction of simulations based on real-world scenarios using programs that support the
format [29–31]. These formats facilitate the sharing of test scenarios that have the potential
to influence safety profoundly. OpenSCENARIO describes the dynamic contents, such
as the behavior of the traffic participants and weather conditions, while OpenDRIVE can
represent a road network and the surrounding environment. Our approach uses version
1.1 for both formats, stored as XML files.
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• Data Collection Vehicle

Our data collection vehicle is a Volkswagen Passat station wagon fitted with Ibeo
and SICK lidars. The Ibeo HAD feature fusion detection and tracking system provides
tracking data for capturing the trajectory of dynamic traffic participants. The algorithms
and methodology presented in this paper are not specific to this exact sensor arrangement.
It is possible to employ this framework on a different platform with minor modifications to
the code.

• Coordinate Frames

Our scenario extraction framework runs on the robot operating system (ROS). Two co-
ordinate frames, base_link and odom, reference the vehicle’s position in the environment.
The Frenet reference frame is used to represent the positions of the traffic participants, thus
enabling the trajectories and interactions to be described with fewer parameters.

Lane Change Scenario Types

Our approach considers two lane change scenarios: cut-in and cut-out. A cut-in
scenario is when a vehicle moves into the ego vehicle’s lane, while a cut-out scenario is
when a front vehicle moves out of the ego vehicle’s lane. These scenarios are essential for
assessing the performance of collision avoidance systems.

4. Edge Case Focused Concrete Scenario Generation

This section describes our methodology for generating concrete scenarios, which
involves extracting lane change scenarios from real-world data and generating edge case
concrete scenarios. The process, as shown in Figure 1, consists of two stages.

Figure 1. Architecture of the proposed method. The concrete scenario generation method is an
end-to-end approach that involves identifying and converting real-world scenarios into a parametric
representation to build a dataset and generate concrete scenarios from these parameters.

4.1. Lane Change Scenario Extraction

In the initial stage, we propose a novel approach for extracting lane change scenarios
from real-world data and represent them in a parameterized form. The set of parameters,
previously introduced in our work [13], characterizes the scenarios. We transform the
extracted parameterized collections of lane change interactions into OpenSCENARIO files,
thus allowing us to replay the trajectories in a simulator. The proposed scenario extraction
technique utilizes the point clouds obtained from the rear, downwards-facing SICK lidar
that are configured in a push-broom layout in combination with odometry and object
tracking data. This module generates individual scenarios in the OpenSCENARIO format
and their corresponding road structure in the OpenDRIVE format. The values of each
parameter are stored in JSON files. The framework of the scenario extraction is depicted in
Figure 2.
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Figure 2. The scenario extraction approach pipeline involves the identification and parameterization
of lane change scenarios in an open format using the data logged by the sensor system.

4.1.1. Tracking and Point Cloud Processing

The data collection vehicle is equipped with an object-tracking system to capture
the road participants’ trajectories in real-time. We used the TF transformation module in
the robot operating system (ROS) to convert the tracking relative observations from the
base_link (ego vehicle) frame to the odom (map) frame.

We used the lidar readings to find the location of the road lane markings, which helped
us to find where and when a lane change occurs. To achieve this, we filtered the point cloud
data from the push-broom lidar. Initially, the lidar points were sorted from the road center
toward the lane boundaries. Then, we evaluated the first and second derivatives of the
angle between the adjacent points to obtain the points hitting the road [32]. This allowed
us to identify the curbs, as well as the separate road and non-road points. We grouped the
points belonging to the lane markings by utilizing the intensity information in the point
cloud. The reflective paint used to draw lane markings typically produces higher intensity
readings than other road points.

After identifying and grouping the lidar points belonging to the lane markings, we
converted them to the global odom frame and merged them to form the lanes. A more
detailed explanation of this process can be found in [33]. We assigned a numerical label to
each lane, and its location and tracking information were converted into a Frenet frame,
where the data is represented in longitudinal s and lateral displacement t. This lane
representation allows us to detect lane change scenarios based on specific criteria such as
a lateral displacement to the lane center, which is not directly available in the Cartesian
coordinate system.

4.1.2. Scenario Extraction Logic and Parameters

To detect the lane change scenarios, we compared the lane number and lateral distance
of the tracked vehicles to the ego path at each time step. A cut-in scenario was detected
when the lateral displacement between any front and side vehicle and the ego vehicle lane
approached zero, while a cut-out scenario was detected when a tracked vehicle moved
away from the ego vehicle’s lane and the lateral displacement increased. The scenarios’
duration was set from eight seconds prior to the lane crossing to four seconds ahead,
thereby capturing a total of 12 s of trajectory for each scenario, which is longer than the
average lane change duration estimated by Toledo et al. [34].

To parameterize the real-world lane change scenarios, we used the list of parameters
from our previous work [13]. These parameters came from four control points: scenario
start, cut start, cut end, and scenario end. The scenario set the initial parameters for the ego
and adversary vehicles, and the remaining parameters configured the adversary vehicle’s
dynamic properties over time.

The output of this stage was the parametric representation of the extracted scenarios,
which we used to create OpenSCENARIO files that described the trajectories in simulation.
We also used OpenDRIVE files to describe the road network where the trajectories were
executed. To replay the parameterized scenarios, we used the OpenSCENARIO player
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Esmini [35]. Additionally, we stored the representations of each captured scenario in the
JSON files to facilitate the construction of the parameter space in the subsequent stage.
The collection of OpenSCENARIO, OpenDRIVE, and JSON files have been made publicly
available [33].

4.2. Edge Case Scenario Generation

The proposed method for concrete scenario generation involves building a parameter
search space based on the built scenario dataset and employing a reinforcement learning
(RL)-based approach, as illustrated in Figure 3. Specifically, this work focused on cut-in
scenarios, although the same process can be used for other road events.

Figure 3. Architecture of the concrete scenario generation technique.

The parameter space comprises the set of possible values for each parameter to gener-
ate new scenarios. In our previous work, independent distributions were introduced for
each of the five parameters, and these were randomly sampled to learn the combination
of the values that led to problematic scenarios. However, this approach was unable to
account for parameter correlations, thus potentially resulting in unrealistic scenarios. To
overcome this issue, this paper employed a multivariate–multimodal distribution to model
the values of seven parameters that describe the extracted scenarios, thereby providing
a more realistic range of values that account for the correlations observed in real-world
vehicle interactions. The parameters used to recreate lane-changing vehicle trajectories
were adversary vehicle trigger distance, velocity at the cut start, duration from start to cut
start, velocity at the cut end, time from cut start to cut end, final velocity, and the duration
from cut end to scenario end.

Algorithm 1 outlines the RL-based technique for generating concrete scenarios. In
earlier stages, for each episode, the controller predicts parameter values as actions to
generate a new concrete scenario in simulation by sampling from the parameter space. In
later stages, the controller indicates actions based on the learned policy.

The state in the RL context encapsulates the current conditions of the environment. For
the concrete scenario generation focused on lane changing, the state can be represented as
a vector of the current values of the following seven parameters: adversary vehicle trigger
distance, velocity at the cut start, duration from start to cut start, velocity at the cut end,
time from cut start to cut end, final velocity, and the duration from cut end to scenario end.
Formally, the state at time t can be represented as

St = [dtrigger, vstart, tstart, vend, tend, v f inal , tscenario]. (1)

The action taken by the controller is to generate a new set of parameter values for
the next scenario. Thus, an action At at time t can be represented as a vector of the new
parameter values:
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At = [d′trigger, v′start, t′start, v′end, t′end, v′f inal , t′scenario] (2)

Algorithm 1: Pseudocode for the Proposed Concrete Scenario Generation Method
Result: Optimal policy πθ in which controller can generate a challenging scenario
1. Build a multivariate, multimodal distribution as parameter space;
while until the threshold do

if exploration_decay > threshold then
2. The controller generates action to create a scenario in simulation by
sampling from the distribution;

end

else
3. The controller generates action to create a scenario in simulation using
policy πθ ;

end

4. Run the scenario in simulation and get the reward;
5. Store the action and reward for 50 episodes;
if episode%50 == 0 then

6. Evaluate the gradient of the objective function J using the below
expression:

∇J(θ) ≈ 1
N ∑

τ∈N

T−1

∑
t=0

∇θ logπθ(At, St)R(τ) (3)

Where N is the number of trajectories and R is the total return of a
trajectory;

7. Update the weights of the controller using the above function;
end

end

The reward function guides the learning process by considering the minimum safe
distance using RSS and the occurrence of collisions. The reward function quantifies the risk
in the lane change maneuver. A high reward signifies a dangerous lane change, while a low
reward means the vehicles are driving safely. At the end of each episode, the total number
of high-risk timesteps is normalized between −0.1 and 0.1, which is denoted as n_highrisk
in the reward function.

R =

{
n_highrisk non collision

0.25 collision
(4)

Through experimentation, we found that a smaller reward value improves exploration,
resulting in a better chance of finding challenging scenarios, hence the values in the reward
function. The controller is updated after storing action–reward pairs for 50 episodes, and
the NN’s weights are updated to lead toward an optimal policy. The controller operates for
2500 episodes in this configuration.

The objective function J(θ) was used to evaluate and improve the policy. It was
approximated using the total return R of trajectories over a batch of episodes and logπθ .
The logπθ in the objective function is equivalent to categorical cross entropy, so we can use
categorical cross entropy as a loss function. The loss function is multiplied with return R to
enable the learning in the direction of the maximum return. The gradient of J with respect
to θ guides the update of the policy parameters, and it can be represented as follows:

∇J(θ) ≈ 1
N ∑

τ∈N

T−1

∑
t=0

∇θ logπθ(At, St)R(τ). (5)
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The controller (policy) iteratively samples actions (sets of parameter values) from the
parameter space, and the environment provides feedback in the form of rewards based on
the riskiness of the generated lane-changing scenarios. The goal is to learn an optimal policy
that maximizes the likelihood of generating challenging and realistic concrete scenarios.

5. Results

The proposed method uses a data-driven parameter space constructed from the para-
metric representations of real-world events to generate problematic scenarios. This section
presents the results of the scenario extraction process from the collected data and the RL
learning of high-risk scenarios.

5.1. Scenario Parameterization

We developed a novel technique for extracting lane change scenarios from real-world
data. The parameterized cut-in scenarios were replayed using the Esmini player. The
positions of the ego and challenging vehicles were recorded at six timesteps during a
cut-in maneuver.

To illustrate the comparison between the real-world scenario and its corresponding
simulated version, Figure 4a shows the trajectories of a cut-in scenario. The blue trajectory
represents the real-world data, and the red represents the parameterized scenario. The
numbers within the circles indicate the seconds that have elapsed since the beginning of the
lane change maneuver. The initial longitudinal positions of both trajectories were similar.
Toward the end, at the 9th second, we can see a slight variation in the longitudinal position.
Figure 4b shows a comparison of a parameterized cut-out scenario and its corresponding
real-world scenario. Our scenario extraction method allowed us to build a dataset of
lane change events from real-world data, which consists of 81 cut-in scenarios and 53
cut-out scenarios.

(a) (b)
Figure 4. Alignment of the temporal (seconds from the cut start indicated within circles) and spatial
parameters between the real-world scenarios and their corresponding parameterized cut-in and
cut-out scenarios. y and x axis correspond to longitudinal and lateral displacement in meters. (a) Cut
in. (b) Cut out.

5.2. Training

The proposed method aims to maximize the reward function using RSS and a binary
collision metric. The average reward was computed over 50 episodes. As shown in Figure 5,
the reward tended to increase with additional iterations, thus indicating that the generated
scenarios were of an increasingly higher risk. This suggests that the controller had learned
to predict the action that generates a challenging scenario with maximum return, which, in
this example, involved a collision.
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Figure 5. Average reward per episode showing the overall learning of the method.

Figure 6a,c show the highest-risk scenario learned by the method. As shown in
Figure 6a, the adversary vehicle initiated a lane change maneuver around the 4th timestep
and ended up in a collision with the ego vehicle on the 21st. The minimum safe distance
computed using longitudinal RSS is always higher than the actual relative distance between
the vehicles, thus indicating a higher risk profile. The parameter values for this scenario are
shown in Table 1. Upon analysis, we found that the collision occurred due to the restricted
field of view of the SUT, which failed to detect and respond to the adversary vehicle in the
blind spot.

(a) (b)

(c) (d)
Figure 6. The method learned challenging and non-challenging cut-in scenarios from the multivariate,
multimodal distribution, as illustrated in (a,b), where the y axis represents longitudinal displacement
in meters, the x axis indicates lateral displacement in meters, and the numbers inside the circles
denote the timesteps following the commencement of the cut-in. The safe threshold for RSS is also
shown along with the actual relative distance. In cases where the RSS distance was lower than the actual
distance, it indicated a dangerous scenario. (a) Challenging scenario representation. (b) Non-challenging
scenario representation. (c) RSS performance in a challenging scenario. (d) RSS performance in a
non-challenging scenario.

Table 1. Parameter values for a challenging scenario.

Parameter Challenging

trigger_dist 4.0 m
cutin_vel 9.5 m/s

start_to_cutin_dist 8.0 m
cutin_end_vel 7.5 m/s

cutin_start_to_cutin_end_time 5.5 s
final_vel 8.0 m/s

cutin_end_to_final_time 3.0 s
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In contrast, an example of a low-risk scenario is illustrated in Figure 6b,d. In Figure 6b,
the adversary vehicle initiated a lane change maneuver at the 7th timestep and reached the
ego vehicle’s lane around the 18th timestep. The comparison of both vehicles’ longitudinal
positions at the 19th timestep indicated that the longitudinal position of the ego vehicle
was safely behind the adversary vehicle. Figure 6d illustrates the risk profile of a non-
challenging scenario, where the minimum safe distance computed by RSS is always lower
than the relative distance between the ego vehicle and adversary vehicle, suggesting lower
levels of risk.

As the seven parameters defined each scenario, the correlation between these pa-
rameters was encoded in a seven-dimensional space, which cannot be visualized directly.
To show a subset of this distribution, we used two-dimensional plots, as illustrated in
Figure 7. The green dots indicate the samples from the distribution that represent different
collected scenarios, while the red dot shows the collision scenarios generated during the
learning phase. The subfigures of Figure 7 illustrate the generated challenging scenarios
and the distribution samples related to the following three pairs of scenario parameters:
cutin_vel over trigger_dist (Figure 7a), start_to_cutin_time over cutin_vel (Figure 7b), and
cutin_start_to_end_time over cutin_end_vel (Figure 7c). Our proposed method utilizes cor-
related data during the learning phase, thus leading to generated challenging scenarios that
are consistent with the parameter space. In contrast, random sampling without considering
the correlation can lead to unrealistic scenarios that are unlikely to occur in the real world.

(a)

(b)
Figure 7. Cont.
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(c)
Figure 7. These graphs illustrate the multivariate, multi-modal distribution that represents the
seven-dimensional parametric representation of the dataset. Green dots indicate normal scenarios,
while red dots indicate collisions. The distribution is not uniform, and the correlations between the
parameters are captured. The generated scenarios from this distribution are more realistic than those
from uniform random sampling as they are more similar to the captured dataset. The parameter pairs
shown in the graphs highlight the different correlations in the dataset. (a) Cutin_vel vs. trigger_dist;
(b) start_to_cutin_time vs cutin_vel; and (c) cutin_start_to_end vs. cutin_end_vel.

5.3. Experiments

We compared three parameter spaces using independent univariate, multivariate
normal, and multivariate multimodal distributions. In the first experiment, we fitted an
independent multimodal distribution to each parameter. We used kernel density estima-
tion to fit a multivariate normal distribution for the second experiment, while the third
experiment used a multimodal, multivariate distribution to build the parameter space and
to sample new high-risk scenarios.

For the first experiment, we created a scenario by combining random samples from each
univariate distribution. The resulting learned high-risk scenario, as shown in Figure 8a,b,
depicted an adversary vehicle initiating a lane change maneuver when it was ahead of the
ego vehicle but ending up in a collision by hitting the back of the ego vehicle. However,
this type of interaction was not close to any of the scenarios from the real-world dataset,
and it was not representative of a common scenario.

(a) (b)
Figure 8. Cont.
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(c) (d)

(e) (f)
Figure 8. A qualitative analysis was conducted on the three different parameter spaces constructed
using different representations of the dataset. The RL process output was used for each parameter
space and a comparison was made. Figures (a,b) represent the learned scenario based on the indepen-
dent univariate distribution, (c,d) represent the multivariate normal distribution, and (e,f) represent
the multivariate multimodal distribution. The third parameter space, which is multivariate and
multimodal, generated a collision interaction that closely matched the trajectory of the real-world
data. The y axis represents longitudinal displacement in meters and the x axis represents lateral
displacement in meters, with the numbers inside the circles indicating the timesteps following the
commencement of the maneuver. (a) Independent. (b) Trajectory. (c) Multivariate. (d) Trajectory.
(e) Multimodal. (f) Trajectory.

For the second experiment, we used kernel density estimation (KDE) to fit a multivari-
ate normal distribution that incorporated the correlations between the different variables.
The resulting collision scenario, as shown in Figure 8c,d, was closer to the trajectories
collected in the real-world dataset. However, the vehicle collided with the side of the ego
vehicle, and the adversary vehicle was slightly behind the ego vehicle at the 21st timestep,
thereby resulting in a side collision. The sampling from the multivariate, unimodal normal
distribution to the data was not likely to accurately represent the original data as most of
the parameters were multimodal.

For the third and final experiment, we used a multimodal, multivariate distribution
to describe the parameters in the dataset. We created these distributions to build the
parameter space and sampled from them to generate and extract new high-risk scenarios.
The resulting trajectory from our RL-based algorithm, as shown in Figure 8e, was much
closer to the original real-world dataset. The learned parameters were close to the original
data, and the algorithm was able to find a collision that was a cut-in scenario where
the adversary vehicle misjudged the merge and was slightly too close to the ego vehicle.
Figure 8f shows that the adversary vehicle began the lane change maneuver around the 4th
timestep and collided with the ego vehicle around the 21st.
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We conducted a quantitative analysis to compare the three different parameter spaces
based on their likelihood estimates. We employed the RL-based algorithm to generate
high-risk scenarios and used the Python library scipy to compute the likelihoods. We
compared the likelihoods of the scenarios generated using independent univariate, multi-
variate normal and multivariate multimodal distributions. We found that the multivariate,
multimodal distribution had the highest likelihood value of existing within the real-world
data, which we believe better represents the collected data. Therefore, we used it as the
ground truth model to compare the likelihood of a learned high-risk scenario. We fitted
the distributions using the gaussian_kde function, and we computed the likelihood of
the selected scenarios in the distribution using the pd f function. The likelihood for the
converged RL scenario using the independent univariate distribution was extremely low
(e−95). This result indicated that the learned scenarios based on this approach significantly
deviated from the original real-world dataset. The experiment based on the multivari-
ate normal parameter space gave a significantly higher likelihood of existing within the
real-world data (e−17). However, the likelihood was still far lower than the multivariate,
multimodal distribution, which had the highest likelihood value (e−12), thus indicating
that the scenarios generated using this distribution were more realistic and representative
of the original dataset.

6. Conclusions and Future Work

We propose a method that generates realistic and challenging scenarios in simulation
by using a data-driven parameter space and RL-based technique. Parameterized scenarios
from real-world data enable the reproduction of events and the building of data-driven
parameter spaces that encode realistic traffic behaviors.

We compared the following three parameter spaces for generating high-risk scenarios
in autonomous vehicle testing: independent univariate, multivariate normal, and mul-
tivariate multimodal distributions. The first experiment, using univariate distributions,
produced unrealistic scenarios that did not match real-world data. The second experi-
ment, employing a multivariate normal distribution, yielded more realistic side collision
scenarios but still lacked accuracy in representing complex real-world situations. The
third experiment was most successful using a multimodal, multivariate distribution, which
closely mirrored real-world driving scenarios (particularly in simulating realistic lane
change maneuvers).

Our quantitative analysis reinforced these findings, with the multimodal, multivari-
ate distribution showing the highest likelihood of resembling real-world scenarios. This
contrasted with the low likelihood values of the scenarios generated from univariate dis-
tributions. The multivariate normal distribution was better but less effective than the
multimodal approach. Our research demonstrates that a multivariate, multimodal distri-
bution is the most effective in creating realistic and challenging scenarios for autonomous
vehicle testing, which is crucial for ensuring the safety and reliability of these systems in
real-world conditions.

In future work, we plan to integrate more complex traffic situations to enhance the
robustness of our models. We also see potential in developing a more interactive simu-
lation environment, where the autonomous vehicle’s responses can dynamically alter the
scenario in real-timedh, thus providing a more comprehensive assessment of its decision-
making capabilities.
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Abstract: In the realm of conditionally automated driving, understanding the crucial transition phase
after a takeover is paramount. This study delves into the concept of post-takeover stabilization
by analyzing data recorded in two driving simulator experiments. By analyzing both driving and
physiological signals, we investigate the time required for the driver to regain full control and adapt
to the dynamic driving task following automation. Our findings show that the stabilization time
varies between measured parameters. While the drivers achieved driving-related stabilization (wind-
ing, speed) in eight to ten seconds, physiological parameters (heart rate, phasic skin conductance)
exhibited a prolonged response. By elucidating the temporal and cognitive dynamics underlying the
stabilization process, our results pave the way for the development of more effective and user-friendly
automated driving systems, ultimately enhancing safety and driving experience on the roads.

Keywords: takeover; stabilization; conditionally automated driving; driving simulator; user study;
physiology

1. Introduction

In recent years, the advent of conditionally automated vehicles (Society of Automotive
Engineers—SAE Level 3 [1]) has promised transformative shifts in transportation, offering
the potential to enhance road safety, efficiency, and convenience [2–5]. Conditionally
automated driving systems, which delegate all driving tasks to the vehicle only when the
appropriate conditions are met but still require human supervision, promise significant
potential to alleviate driver fatigue, reduce human error, and mitigate traffic congestions.
However, realizing these benefits hinges upon a critical factor: the seamless transition of
control between the automated driving mode and human operation, commonly referred to
as the “takeover” process.

While conditionally automated vehicles offer the allure of a more relaxed driving
experience, they also introduce unique challenges, particularly during the handover of
control from the automation to the human driver. Maggi et al. define takeover as “the
process with which one agent takes back control of part or all of the dynamic driving
task” and handover as “the parallel process with which one agent relinquishes part or all
of the dynamic driving task” [6]. This transition phase represents a period of increased
risk and uncertainty, where drivers must swiftly re-engage in the driving task to ensure
safety. Research has highlighted the potential pitfalls associated with takeover situations,
including delayed reaction times, reduced situational awareness, and increased likelihood
of accidents [7–13]. Multitasking, for example, is a problem already present in conventional
vehicles and is only likely to increase with the introduction of conditionally automated
vehicles [14,15].

A crucial but understudied aspect of takeover scenarios is the concept of stabilization
time: the time it takes a driver to regain full control and exhibit consistent, safe driv-
ing behavior following a transition from automated to manual driving. Understanding
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stabilization time is paramount for optimizing the design and implementation of con-
ditionally automated systems, as it directly impacts the safety and user experience of
such technologies.

In this article, we aim to address the pressing need for a comprehensive investigation
of stabilization time in conditionally automated driving environments. With driving
simulator user studies and advanced physiological signals analysis, we seek to determine
and elucidate the factors influencing stabilization time. By shedding light on the temporal
and cognitive dynamics during the takeover process, our research seeks to enhance the
efficacy and acceptance of conditionally automated vehicles, paving the way for safer and
more seamless integration into our transportation systems.

1.1. Related Work

The integration of automated vehicles into existing transportation systems necessitates
a comprehensive regulatory framework to ensure their safe and responsible use. The
planned amendment to the Vienna Convention on Road Traffic [16] provides that a takeover
can be requested at any time either by the vehicle or by the driver. According to the
SAE J3016 standard [1], conditionally automated vehicles must provide “the sustained
and operational design domain-specific performance of the entire dynamic driving task
under normal operation with the expectation that the user is receptive to automated
driving-system requests to intervene, as well as to relevant system failures in other vehicle
systems, and will respond appropriately.” This does not require the driver to monitor the
journey while the system is in operation. Working party no. 29 of the World Forum for
Harmonization of Rules on Vehicles and their Systems and Units proposes amendments
to the United Nations’ regulations on automated lane keeping systems (UN Regulation
No. 157 and UN Regulation No. 79) [17]. In this context, it was noted that the rules for
fully automated systems which can decide on the appropriate maneuver to take in relation
to the traffic situation have not yet been finalized [18]. The International Organization
for Standardization (ISO) offers two standards on this topic: ISO 26262-1:2018 (Road
vehicles—Functional safety) [19] and ISO 21448:2022 (Road vehicles—Safety of the intended
functionality) [20]. These two standards complement each other and together form the basis
for safety and advanced support systems in first- and second-level automated vehicles, but
do not interfere with further levels of automation. Therefore, the transition to further levels
of automation and the associated problem of the takeover process are still under research.

1.1.1. On Takeover Process

If proper conditions are met, e.g., a dedicated road infrastructure is in place, normal
weather and visibility conditions prevail, advanced driver assistance systems (ADAS)
are working, etc., a conditionally automated vehicle drives in fully automated mode.
Meanwhile, the driver can engage in other tasks, such as writing emails, reading a book,
etc. In case of a predictable situation (e.g., exiting a highway) or an unpredictable situation
(sensor failure, traffic collision, road works, extreme weather conditions, etc.) that the
vehicle cannot safely manage, it alerts the driver and the driver must take over. Normally,
a takeover (TO) process starts with a takeover request (TOR) issued by the vehicle.

The timing of the TOR is one of the crucial parameters of every TO process [8].
The takeover lead time (TORlt) is defined as the time interval between the TOR and the
anticipated situation requiring a TO, e.g., a collision or the end of the road. Researchers
around the globe use different TORlts in their research. Sanghavi et al. showed that
drivers’ reactions were fastest when using three seconds as the TORlt, but the safest and
least demanding reactions were provoked with a TORlt of seven seconds [21]. Shi et al.
similarly showed that drivers elicited the overall best reactions when using a TORlt of
six seconds [22], while Tan and Zhang concluded that drivers’ situational awareness was
best when using a TORlt between 16 and 30 s [23]. Eriksson and Stanton conducted a
literature review and found that the most commonly used TORlts among the studies
reviewed were 3, 4, 5, 6, 7, and 9 s [24].
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After the vehicle initiates a TOR, the driver is responsible for taking over in a decent
time, referred to as reaction time (RT). It is most commonly measured from the TOR until
the driver turns the steering wheel more than two degrees (steering reaction time) or presses
the brake pedal more than 10% (brake reaction time) [25]. For a deeper understanding, RT
could be further divided into shorter intervals, e.g., for gaze switching from a secondary
task to driving, gathering information (becoming aware of the situation), and deciding on
the appropriate action [26]. According to the situation awareness (SA) theory [27], which is
often used in vehicular human–machine interaction planning [28,29], achieving SA entails
perception of environmental elements (SA level 1), comprehension of their significance
(SA level 2), and the ability to anticipate their future status (SA level 3). Therefore, some
researchers divide the driver’s readiness to take over the vehicle into visual, mental, and
physical readiness [9,26].

Regarding the user interfaces (UIs) for issuing the TOR, researchers first explored
the appropriate modalities. Auditory interfaces (beeps) are known to provoke the fastest
reactions [30], while tactile patterns [31–33] and ambient light [34,35] reduce drivers’ effort
and increase their situational awareness. Most concluded that multimodal user interfaces
should be used when issuing a TOR [36,37]. If researchers’ conclusions are consistent in
terms of UI modality, we did not find this to be the case for the different types of stimuli.
Auditory beeps represent the most often used stimuli [38–40]; Stojmenova et al. reported
that a pure tone of 4000 Hz provoked the fastest reactions during driving experiments [40].
Politis et al. recommend abstract visual cues in non-urgent situations and additional
auditory warning for increased urgency of the situation [38]. Among tactile interfaces,
meaningful stimuli (e.g., different patterns) generally do not improve takeover performance,
but could increase the driver’s mental load [39,41]. Wu et al. showed that including the
recommended steering direction in the TOR increases TO safety by decreasing the reaction
time and reducing mental workload [42]. Additionally, Kraut et al. recently reported that
assertive TO requests lead to shorter reaction times without finding any other effect on
driver performance, stress, and subjective perceptions [43].

While the driver is taking over the demanding driving task, they can already observe
the road to become aware of the situation as soon as possible. Various support systems
besides mere TOR mechanism would be of additional benefit due to lack of time, possible fa-
tigue, bad weather conditions, and other factors that could occur during the TO [44]. Recent
related studies considered extended reality (XR) technologies in the first few moments of
TO [44], steering wheel with torque guidance mechanism [45], and additional gradual brak-
ing systems [46]. It seems that strategies which monitor the driver’s reactions and adapt
the user interface accordingly should be used to achieve the best TO performance [46,47].

1.1.2. On Post-Takeover Stabilization

Overall, a proper takeover that ensures a safe and efficient transition of control between
the automated system and the human driver involves a combination of timely response,
attentiveness, readiness, smooth transition, correct actions, and awareness of the system’s
limitations. However, this process does not end with taking over the vehicle, i.e., by
grabbing the steering wheel or applying the brakes, as the driver must resolve the critical
situation that led to the initiation of a TO procedure and continue driving the vehicle
manually. We refer to this phase of adaptation back to manual driving as achieving post-
takeover stabilization or simply stabilization.

To account for stabilization, Shull et al. [48] and Ma et al. [49] recommended multi-
stage TO requests. However, Butmee et al. [50] and Pipkorn et al. [51] showed that sta-
bilization is almost impossible to achieve in some cases and therefore recommended
automatically stopping the vehicle without even trying to issue a TOR. Gruden et al. noted
in their study [39] that some drivers only took over the vehicle (i.e., applied the brake
pedal) but were unable to perform any other action to prevent collisions. Therefore, they
proposed a TO UI that helps the driver to take over the vehicle by providing additional
warnings to minimize the stabilization time [46].
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Determining the required stabilization time is also necessary for planning how often a
driver can perform a TO; stated otherwise, this is how long a manual or automated driving
must last before initiating a transition back. Feldhütter et al. explored how the duration of
automated driving affects TO performance and concluded that there was no difference in
performance when drivers had 5 or 20 min between consecutive TOs [52]. This could be
understood as a hint that the stabilization phase after the transition of control might have
already concluded prior to new TORs in both cases. Bourrelly et al. showed that longer
periods of automated driving lead to poorer performance [53]. However, this is more
probably a consequence of fatigue or some other phenomenon rather than stabilization
after TO. On the other hand, Zhang et al. observed a degraded driving performance in
terms of lane control for more than five minutes after TO [54]. Kim et al. measured the
stabilization time after TO as reported by the drivers, i.e., the driver had to say “stable” after
taking over and safely handling all driving functions [55]. They reported mean stabilization
times of 11.5 s, 22.7 s, and 28.7 s for three consequent studies, found that stabilization time
was longer when the accident occurred on the road in front of the vehicle compared to
accidents in the oncoming lane, and observed some differences in age and gender. Gaspar
et al. proposed adapting the TORlt based on whether drivers had achieved sufficient
stabilization in previous TO attempts [56]. Riahi Samani and Mishra examined how long
the TOR effect lasts and concluded that the first ten seconds after the TOR carry the most
significant information, while the effects significantly reduce after 20 s [57]. Choi et al.
showed that cognitive and visual load due to secondary tasks have different effects on
stabilization after the TO [58]. Cognitive load increased the time from TO until resolving the
situation (i.e., lane change), while visual load increased the steering wheel angle variability
after the situation was already resolved, alluding to different effects of secondary tasks on
stabilization time after a TO.

1.1.3. On Driving-Related and Physiological Predictors of Stabilization

As stabilization could only be achieved after the TO itself, not all common metrics for
assessing TO performance could be used (e.g., reaction time or minimal time to collision do
not contain any information on post-takeover stabilization). On the other hand, metrics
that evaluate overall driving style could be compared within short intervals following
the TO. The most obvious would therefore be to measure lane deviation/winding and
determine when it stops. This could be achieved by observing steering wheel angle
variability, lateral accelerations, or lane position deviation [59–65]. In the previously
referred study, Zhang et al. measured the duration of how long the driver was out of their
supposed lane per minute and recorded more than 10 s per minute for more than five
minutes following the TO in about 25% of drivers [54]. Riahi Samani and Mishra calculated
the driving-behavior-related parameters (maximum acceleration/deceleration, standard
deviation of lane position, headway, maximum/minimum speed) in time windows of
10 s [57]. Their Multilevel Mixed-Effect Parametric Survival Models analysis showed that
the first ten seconds after the takeover request contained the majority of information,
while the probability of unsafe behavior significantly reduced only 20 s after the TOR.
Choi et al. measured steering angle variability during two consecutive intervals: between
TO and lane crossing and in the first five seconds after lane crossing [58]. Their conclusions
differed depending on the type of secondary task. Kim et al. recorded stabilization time
by instructing the drivers to say “stable” when they were fully capable of driving [55].
The stabilization times they measured in three experiments varied between 10 and 30 s,
with longer stabilization times in scenarios involving an accident on the road or multiple
vehicles in the vicinity.

Although stabilization in terms of driving-related predictors was almost always mea-
sured using lane deviation, it was not often compared to drivers’ physiological stabilization
or arousal. The duration of physiological responses to TO, such as pupil size, gaze disper-
sion, heart rate, and skin conductance stabilization was rarely measured. In general, the
most commonly measured physiological signals during driving include (1) eye-tracking
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data such as pupil size, blink rate, horizontal gaze dispersion [25,65–70]; (2) heart rate or
heart-rate variability [71–74]; and (3) phasic skin conductance [60,70,72,74]. It is also worth
noting that the range of physiological responses during TO vary significantly between
individuals [74]. Feldhütter et al. reported slower gaze responses in TOs after 20 min of
automated driving than in TOs after five minutes of automated driving [52]. Kerautret et al.
reported a long-lasting increase in heart rate after a TO in an emergency situation [75].
Gruden et al. reported on delays and durations of physiological responses to TORs, reveal-
ing that pupil diameter had the fastest response with an average duration of about 10 s,
while the phasic skin conductance response lasted about 20 s and heart rate almost 60 s [76].

1.2. Our Contribution

Achieving post-takeover stabilization seems to be an often-overlooked aspect of TO
scenarios. Understanding stabilization time is vital for optimizing the design and im-
plementation of conditionally automated systems. By exploring how drivers adapt to
and recover from takeover events, we can inform the development of more intuitive
and user-friendly automation interfaces, as well as tailor training programs to enhance
drivers’ preparedness for takeover situations. Previous research studies have inadequately
addressed the complexity of stabilization time, primarily due to the following pitfalls:

• Limited scope: Many studies have focused narrowly on the time it takes a driver to
physically regain control of the vehicle, such as braking reaction time or steering wheel
movement, neglecting the broader cognitive and behavioral aspects that influence
stabilization time. Zeeb et al. [77], Kim et al. [78], and Radlmayr et al. [79] have shown
that analyzing reaction time alone does not provide sufficient insight into the takeover
quality. Moreover, Gold et al. concluded that although some interfaces led to faster
reaction times, the drivers’ actions were of poorer quality [7]. This narrow focus fails
to capture the full extent of the transition process and its implications for safety.

• Lack of generalization: Many studies were conducted exclusively in controlled labo-
ratory environments, using a predetermined TO user interface. For example, Zhang
et al. issued a takeover request with only an audible, spoken warning [54]. Kim et al.
did not even report how a TOR was issued in their study [80]. Additionally, almost all
of the presented studies issued a TOR as a one-time event, while Gruden et al. [46]
showed that TO is a process that should be monitored and that warnings should be
adapted to the driver’s reactions. This limits the generalizability of findings and may
not accurately reflect the challenges drivers face when driving different vehicles.

• Insufficient consideration of physiological factors: Previous research has often over-
looked the role of physiological factors, such as stress, cognitive load, and fatigue, in
influencing stabilization time. For example, Riahi Samani and Mishra analyzed driving
behavior by measuring only vehicle acceleration, speed, and position [57]. Choi et al.
reported numerous driving-related parameters (speed, reaction times, maximal wheel
angle, etc.) before and after TO, but only measured drivers’ subjective perception with
a single visual analog scale at the end of the driving trials [58]. Similarly, Zhang et al.
performed a thorough analysis of driver behavior with driving-related parameters
and a questionnaire at the end of the trial, but also included heart-rate variability
as the only physiological measurement [54]. Therefore, it is possible that some long-
lasting effects on the driver’s state after the TO were overlooked by measuring only
vehicle parameters.

In this paper, we aim to address these shortcomings by conducting comprehensive
investigations into stabilization time in conditionally automated driving environments.
We expand the current scope of knowledge by determining the post-takeover stabilization
time with multiple variables using data from studies with different TO user interfaces.
Furthermore, our investigation of physiological signals, such as heart rate variability
and electrodermal activity, offers novel insights into the cognitive and emotional states
underlying post-takeover performance, enriching our understanding of driver behavior in
dynamic driving environments. To summarize, the research questions of our study are:
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1. How long after the takeover could stabilization be achieved? Could this be before
reaching the system limit (e.g., impact), i.e., is it more or less than the provided TOR
lead time (6 s on average in the reviewed literature)?

2. Do physiological signals elicit a similar stabilization time as driving-related param-
eters? Does a driver remain stressed or aroused longer after the TO than could be
predicted from vehicle parameters?

The reminder of this article is organized as follows: Section 2 presents the datasets
used and our analysis procedure. Section 3 presents the results. The discussion is presented
in Section 4, and a brief conclusion can be found in Section 5.

2. Materials and Methods

Datasets from two driving simulator user studies conducted as part of the European
Union’s Horizon 2020 research and innovation program HADRIAN (Holistic Approach for
Driver Role Integration and Automation–Allocation for European Mobility Needs) were
combined and used for the analysis. In the first user study, Stojmenova Pečečnik et al.
explored four types of head-up displays (HUD) to assist drivers in conditionally automated
vehicles [81,82]. In the second user study, Strle et al. evaluated the proposed HUD against a
baseline condition in terms of cognitive load (physiological signals analysis) induced by the
HUD [83]. Both studies involved similar conditions: a within-subject design, the driving
scenarios featured a city road, the drivers were asked to take over the vehicle four times
per scenario, and the same driving simulator setup was used. The only difference was the
interfaces used for driving assistance and takeover requests. As we seek general results
that are valid for any type of takeover user interface, we joined the datasets for analysis.

2.1. Technical Set-Up
2.1.1. Driving Simulator

Both studies were conducted in a NERVtechTM motion-based driving simulator
(Nervtech d.o.o., Ljubljana, Slovenia) [84] that consists of three 49′′ FullHD curved dis-
plays covering the driver’s viewing angle of about 145◦, a steering wheel, pedals, a 4-DoF
(degrees of freedom) motion platform, and a physical dashboard display; see Figure 1.
Using a high-fidelity driving simulator offered several advantages for studying takeover
performance (a controlled, safe, risk-free, and standardized environment). Some critical
driving scenarios that provide valuable insights into stabilization time could never be safely
performed in the real world. In simulators, they can be systematically manipulated and
repeated. This level of control also allows for precise measurement of key variables. In
addition, driving simulators have been widely used in previous research to study driver
behavior, cognitive processes, and performance in various driving tasks. Some studies
showed comparable results between studies using real vehicles and motion-based driving
simulators, both in terms of physical validity (e.g., vehicle dynamics [85]) and behav-
ioral validity (e.g., car sickness [86]). However, Bellem et al. recommended a motion
scaling factor of approximately 50% to 60%, as speed may be underestimated in virtual
environments [87]. While we acknowledge that simulators cannot perfectly replicate the
complexity of real driving, we believe that our studies have minimized any significant
discrepancies between simulated and real vehicles.

The software used to create and play the scenario was AVSimulation’s SCANeR
Studio 1.7 [88]. The scenario was developed internally to mimic an urban journey for a
person driving from home to work through different parts of the city during the day. It is
13 km long and takes about 16 min. At the beginning, the vehicle was parked on the road
with two lanes (one for each direction), and the speed limit was 50 km/h. The surrounding
traffic was included to simulate a busy small-town road. After about 3 km there were some
crosswalks where pedestrians wanted to cross the road. About 6 km from the starting
point, the scenario included a complicated intersection where the road widened to 5 lanes
and the driver had to move to the appropriate lane based on the navigation system’s
instructions. The journey then continued on a four-lane road (two lanes in each direction).
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About 10 km from the starting point there was a school area where children crossed the
road at crosswalks without traffic lights. After driving 13 km in total, the scenario ended
with the driver being asked to park in the street parking lot on the right side of the road,
which simulated arrival at the office. During each journey, the vehicle requested four
takeover attempts. First, to handle some of the crosswalks; second, to change lanes at the
complicated intersection; third, to drive through the school grounds; and fourth, to park
the vehicle at the end. Before and after this, the driver was asked to engage the automated
driving function. The driver could take over the vehicle by turning the steering wheel or
pressing the brake or accelerator pedal.

Figure 1. NERVtechTM motion-based driving simulator located at the University of Ljubljana, Faculty
of Electrical Engineering.

2.1.2. Head-Up Display and Takeover Requests

The simulated vehicle featured a head-up display (HUD) designed to assist the driver
in monitoring the environment by presenting driving-related information such as current
speed, speed limit, safety distance, and the status of assistance systems (see Figure 2a). The
amount and location of the presented information varied between trial conditions. For
example, some conditions also included navigation information projected directly onto the
road (see Figure 2b).

When the vehicle in the automated mode approached its system limits, it issued a
TOR five seconds before automated driving would become unavailable. The request was
presented with an auditory signal (sine wave, 4000 Hz) and a visual notification with
countdown on the HUD (see Figure 2c). At some TORs (when approaching a school area),
the TO countdown was already displayed five seconds before the acoustic warning. A
period of manual driving followed every TO. When automated driving became available, a
synthesized female voice asked the driver to turn on the automated driving function by
pressing a dedicated button on the steering wheel lever.
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Figure 2. Head-up display (HUD) in the simulated vehicle: (a) represents an example of the informa-
tion displayed on the HUD; (b) shows navigation instructions, projected directly onto the road; and
(c) shows the takeover request notification.

2.1.3. Wearable Sensor Devices

The physiological data were collected using two wearable sensor devices. The eye-
tracking data (pupil diameter, gaze) were recorded using Tobii pro glasses 2 [89] with a
sampling frequency of 50 Hz. The Empatica E4 wristband [90] was used to record blood
volume pulse (BVP) and extract heart rate using the E4’s internal algorithm, galvanic skin
response (GSR), and skin temperature. The current heart rate was calculated once per
second, while GSR and skin temperature were captured with a sampling frequency of 4 Hz.

2.2. Participants and Their Tasks

A total of 30 drivers participated in the first study [82] (16 male, 14 female;
aged 23 to 55). As the study had a within-subject design with four trials (types of HUD)
and there were four TOs in each trial, this resulted in a total number of 480 TO attempts.
28 drivers participated in the second study [83] (14 male, 14 female; aged 21 to 57). As each
participant in the study completed two trials (types of HUD) and there were four TOs in
each trial, the study provided 224 TO attempts. In total, we analyzed 704 TOs.

Participation in the study was completely voluntary. Participants were informed that
they could stop the experiment at any time without providing a reason. They received a
gift voucher of 10 € as compensation for their time. Informed consent was obtained from
each participant. The study was conducted in accordance with the code of ethics of the
University of Ljubljana which is consistent with the Declaration of Helsinki.

The driver’s primary responsibility was to ensure safe driving continuity. They were
asked to drive the vehicle according to the navigation system and get to the destination
parking lot. When the automatic driving mode was available, drivers were asked to activate
it and engage in a secondary task—a 2048 puzzle game [91] on a smartphone.

Before participating in the study, the detailed procedure was explained to each par-
ticipant and the conductor collected written informed consent and a demographic ques-
tionnaire. Participants began with a test drive to familiarize themselves with the driving
simulator and ask questions. Each trial began and ended with manual driving. During
the whole trial (four TOs) the experiment was not interrupted. After the trial, participants
completed four questionnaires (a custom made Likert scale about the system, a System Us-
ability Scale—SUS [92], a User Experience Questionnaire—UEQ [93], and an Acceptance of
Advanced Transport Telematics questionnaire [94]). However, these questionnaires focused
on the HUD being tested and not on the takeover procedure [95]. As they served other
research purposes, they do not provide information on our research questions (stabilization
time) and were therefore omitted from our analysis. More detailed descriptions of the
study procedures can be found in Stojmenova Pečečnik et al. [82] and Strle et al. [83].
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2.3. Variables of Interest

According to related work, driving-related stabilization could be assessed by measure-
ments of lane deviation [54,58]. Among physiological signals, GSR, pupil diameter, and
heart rate seem to be good indicators of drivers’ mental or physiological state [74,96,97].
Similar to the way alterations in the GSR signal can indicate the intensity of emotional
state, such as happiness or stress [98], pupil diameter directly reflects the driver’s mental
load [66], while heart rate and heart rate variability reflect the autonomic nervous system
which might indicate a stress response [99,100].

To determine and compare the post-takeover stabilization time we collected the fol-
lowing driving-related and physiological data:

1. Driving-related variables:

• Winding (standard deviation of steering wheel angle);
• Speed;
• Deceleration.

2. Physiological variables:

• Eyes off-road ratio (E-OFF);
• Pupil diameter (PD);
• Heart rate (HR);
• Phasic skin conductance (SC).

2.4. Analysis Procedure

Steering wheel angle, vehicle speed, deceleration, eye gaze, pupil diameter, heart rate,
and skin conductance were measured continuously throughout the driving trial. To study
post-takeover stabilization, we applied two time windows: one of two seconds and one of
five seconds, and we performed a separate analysis for both cases. The time windows (data
bins) started at the moment the driver took over the vehicle, i.e., started driving manually,
and were calculated every other second (starting at 0 s, 2 s, 4 s, 6 s, etc. after TO). In this
way, we obtained non-overlapping windows in the first case, when the window length was
two seconds, and overlapping windows in the second case, when the window length was
five seconds.

Winding was calculated as the standard deviation of the steering wheel angle for each
time window. Additionally, we used the mean speed and deceleration of each time window.
Among the physiological variables, we observed eye gaze and determined whether the
gaze was directed toward or away from the road. We then calculated the ratio of samples
with eye gaze off the road (E-OFF). The mean pupil diameter (PD) and heart rate (HR) for
each time window were also calculated. To account for individual differences in PD, we
subtracted the value at TO from each subsequent sample of the same driver (shifted the
data) so that each PD starts at zero at the TO. Phasic skin conductance (SC) was calculated
from the raw GSR signal using the cvxEDA algorithm (convex optimization approach) by
Greco et al. [101]. We used the mean phasic skin components in each time window.

The means of the calculated variables over all TO attempts were plotted in the time
range from the TO to the time window starting 12 s after the TO (7 windows). We performed
repeated measures analysis of variance (RM ANOVA) with Greenhouse-Geisser correction
when the sphericity assumption was violated for each variable of interest with the window
start time as the factor. If differences between time windows were confirmed, we performed
paired-samples t-tests for every pair of time windows with Bonferroni adjustment for
multiple comparisons. We considered the variable stabilized in a given time window if no
differences were observed between that time window and all subsequent windows. An
alpha level of 0.05 was used if not stated otherwise.

Data were processed with Python 3.9.12 (anaconda distribution) [102] and analyzed
with IBM SPSS Statistics 22 [103].
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3. Results

The following subsections present the plots of the measured variables for each time
window and the statistical analysis of the differences between the adjacent time windows.

3.1. Driving-Related Variables

Repeated measures ANOVA confirmed that differences in winding exist between
time windows: F(3.1, 1957.4) = 251.1, p < 0.001 for time windows of two seconds, and
F(2.1, 1335.6) = 185.8, p < 0.001 for time windows of five seconds. The mean values
are presented in Figure 3, and the pairwise comparisons can be found in Appendix A,
Tables A1 and A2. Winding stabilized in the time interval starting eight seconds after the
TO for both window lengths.

(a) (b) 

Figure 3. Winding (standard deviation of steering wheel angle) after the takeover. Chart (a) represents
calculations with a window length of two seconds; chart (b) represents calculations with a window
length of five seconds.

Repeated measures ANOVA confirmed that differences in speed exist between time
windows: F(2.1, 1338.0) = 34.9, p < 0.001 for time windows of two seconds, and
F(1.5, 989.7) = 13.5, p < 0.001 for time windows of five seconds. The mean values are pre-
sented in Figure 4, and the pairwise comparisons can be found in Appendix A,
Tables A1 and A2. When using a window length of two seconds, speed stabilized only in
the time interval starting ten seconds after the TO. The drivers slowed down immediately
after the TO and then accelerated until the speed stabilized. When using a window length
of five seconds, speed already first stabilized in the time interval starting two seconds after
the TO, when the drivers slowed down. Afterwards, the drivers accelerated and the speed
stabilized again in the time interval starting eight seconds after the TO.

Repeated measures ANOVA revealed no differences in deceleration between time
windows when using a window length of two seconds F(4.6, 317.9) = 1.01, p = 0.410, but
revealed statistically significant differences between time windows when using a window
length of five seconds F(3.4, 684.4) = 5.46, p = 0.001. The mean values are presented in
Figure 5, and the pairwise comparisons for the window length of five seconds can be found
in Appendix A, Table A2. When using a window length of five seconds, deceleration
stabilized in the time interval starting two seconds after the TO.
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(a) (b) 

Figure 4. Mean speed after the takeover. Chart (a) represents calculations with a window length of
two seconds; chart (b) represents calculations with a window length of five seconds.

(a) (b) 

Figure 5. Mean deceleration after the takeover. Chart (a) represents calculations with a window
length of two seconds; chart (b) represents calculations with a window length of five seconds.

3.2. Physiological Variables

Repeated measures ANOVA confirmed that differences in eyes off-road ratio exist
between time windows: F(5.4, 3506.1) = 6.12, p < 0.001 for time windows of two seconds,
and F(2.8, 1797.8) = 4.27, p = 0.006 for time windows of five seconds. The mean values
are presented in Figure 6, and the pairwise comparisons can be found in Appendix A,
Tables A1 and A2. E-OFF stabilized in the time interval starting two seconds after the TO
for both window lengths.
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(a) (b) 

Figure 6. Eyes off-road ratio after the takeover. Chart (a) represents calculations with a window
length of two seconds; chart (b) represents calculations with a window length of five seconds.

Repeated measures ANOVA confirmed that differences in pupil diameter exist be-
tween time windows: F(3.5, 2150.0) = 143.9, p < 0.001 for time windows of two seconds,
and F(2.1, 1311.5) = 129.8, p < 0.001 for time windows of five seconds. The mean values
are presented in Figure 7, and the pairwise comparisons can be found in Appendix A,
Tables A1 and A2. Pupil diameter stabilized in the time interval starting six seconds after
the TO for both window lengths. When using a window length of five seconds, the pupil
diameter started dropping again in the interval starting twelve seconds after the TO.

 
(a) (b) 

Figure 7. Mean pupil diameter after the takeover. Chart (a) represents calculations with a window
length of two seconds; chart (b) represents calculations with a window length of five seconds.

Repeated measures ANOVA confirmed that differences in heart rate exist between
time windows: F(3.6, 150.1) = 2.76, p = 0.035 for time windows of two seconds, and
F(2.6, 263.7) = 15.8, p < 0.001 for time windows of five seconds. The mean values are pre-
sented in Figure 8, and the pairwise comparisons can be found in Appendix A,
Tables A1 and A2. When using a window length of two seconds, no statistically sig-
nificant differences between data in adjacent time intervals were observed. When using a
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window length of five seconds, the HR only started dropping in the interval starting eight
seconds after the TO and stabilized again in the interval starting ten seconds after the TO.

(a) (b) 

Figure 8. Mean heart rate after the takeover. Chart (a) represents calculations with a window length
of two seconds; chart (b) represents calculations with a window length of five seconds.

Repeated measures ANOVA confirmed that differences in phasic skin conductance ex-
ist between time windows: F(1.2, 708.6) = 9.90, p = 0.001 for time windows of two seconds,
and F(1.1, 653.7) = 12.6, p < 0.001 for time windows of five seconds. The mean values
are presented in Figure 9, and the pairwise comparisons can be found in Appendix A,
Tables A1 and A2. Phasic skin conductance only started dropping in the time interval start-
ing six seconds after the TO and did not stabilize while measuring for both window lengths.

(a) (b) 

Figure 9. Mean phasic skin conductance after the takeover. Chart (a) represents calculations with a
window length of two seconds; chart (b) represents calculations with a window length of five seconds.

4. Discussion

This study aimed to investigate two primary research questions: (1) How long after
takeover could stabilization be achieved, and could it occur before reaching the system limit
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(e.g., impact); and (2) Do physiological signals exhibit a similar stabilization time to driving-
related parameters, and does a driver remain stressed or aroused longer after takeover than
predicted from vehicle parameters? Our findings provide insights into these research ques-
tions, shedding light on the temporal and cognitive dynamics underlying the stabilization
process in takeover scenarios in conditionally automated driving environments.

Regarding the first research question, our results indicated that the stabilization
time following takeover (TO) varied for different parameters. Notably, deceleration and
eyes off-road ratio stabilized approximately two seconds after TO, then pupil diameter
stabilized approximately six seconds after TO, winding stabilized approximately eight
seconds after TO, speed stabilized eight to ten seconds after TO, heart rate stabilized more
than ten seconds after TO, and phasic skin conductance did not stabilize at all in both the
two-second and five-second intervals.

Deceleration being one of the first parameters to stabilize indicates that the drivers
probably applied the brake pedal to take over the vehicle, slow down a bit, and then
stopped braking, which is in line with the findings of Gruden et al. [47]. The E-OFF ratio
also stabilized approximately two seconds after TO, indicating a rapid adjustment of visual
attention after the transition, in line with Stephenson et al. [69]. Pupil diameter, often
considered a direct indicator of driver cognitive load [66], showed stabilization starting
several seconds after TO. It should be noted that pupil diameter stabilizing at a lower
value than at TO could reflect lower cognitive load after TO or adaptation to changes in
light conditions [75,104]. As the driver was performing a secondary task before TO, the
driver’s gaze was directed off the driving simulator screen, which could have different
illumination than when looking at the screen (road). However, as pupil constriction due
to sudden illumination changes occurs in fractions of a second [105], we believe that our
measurements reliably reflect the decrease in mental load that stabilized six seconds after
TO. After the decrease in mental load, the stabilization times of winding and speed show
that driving-related parameters stabilize about eight to ten seconds after TO. This is less
than the stabilization reported by Kim et al. [55], but is consistent with Riahi Samani
and Mishra [57], who found that most information can be obtained by observing the
first ten seconds following TO. It should be noted that they measured stabilization based
on a different method. As Kim et al. instructed drivers to say “stable” when they felt stable,
it is reasonable that this self-reported stabilization is longer, as the vehicle should already
be stable for some time before the driver considers it stable. However, this is still more than
the usually adopted TORlt of six seconds [24], implying that drivers might not be able to
stabilize the vehicle in time, e.g., before impact with an obstacle. Therefore, using longer
TORlt, as proposed by Tan and Zhang [23], might be beneficial. As the driver should have
enough time to react and stabilize to perform a qualitative TO, the sum of reaction and
stabilization times should be lower than or at least similar to the TORlt. Heart rate and
phasic skin conductance did not begin to decrease until approximately six to eight seconds
after TO, indicating a prolonged arousal state following TO and vehicle-related stabilization.

Addressing the second research question, our findings suggest that physiological
signals do not necessarily exhibit a similar stabilization time as driving-related parameters.
While driving-related parameters such as winding and speed stabilized within a few sec-
onds after TO, physiological signals, especially HR and SC, demonstrated more prolonged
stabilization periods, as proposed by Gruden et al. [76]. HR and SC exhibited variations
between adjacent time intervals, indicating a longer period of arousal following TO than
predicted from vehicle parameters alone. HR stabilized only in the last observed time
window when using the window length of five seconds, in line with Kerautret et al. [75],
while SC did not stabilize during the observed duration. Therefore, we propose longer
observations of physiological parameters in future studies to reliably detect drivers’ arousal
stabilization. We suspect that the drivers remain aroused while being able to reasonably
drive the vehicle, i.e., after achieving vehicle-related stabilization. However, if another
unforeseen situation occurs while being stressed, drivers might react worse due to still
being under the influence of the last TO. This discrepancy highlights the importance of
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considering both physiological and driving-related parameters when assessing drivers’
arousal and stress levels during takeover scenarios.

Additionally, vehicle speed exhibited a different profile than other parameters, which
monotonously stabilized after TO. It initially dropped and showed an earlier stabilization
with a five-second interval occurring two seconds after TO, followed by an increasing trend
and a subsequent stabilization eight seconds after TO. The initial drop could be explained
by the immediate deceleration at TO, which settled afterwards. Speed, deceleration, and
heart rate also exhibited variations between the lengths of the time windows. It should be
noted that the deceleration at the interval length of two seconds was probably not found
significant, as there were not many TO attempts (only about 10%) where drivers gradually
decelerated and therefore deceleration data could be calculated. The longer size, on the
other hand, resulted in overlapping time windows that contained more data samples. Some-
thing similar could be stated for HR data measured with the E4 wristband. As the driver
is moving during a TO, many HR samples were not available due to motion artifacts [71].
Since heartbeats are produced about once per second, there is a high probability that data
were not available in most of the two-second intervals. According to our results, this could,
however, not be stated for the five-second intervals.

Therefore, it is essential to acknowledge some limitations of the study. (1) As previ-
ously mentioned, the different illumination of the environment and the driving simulator
screen may have affected pupil diameter measurements [104]. (2) There were many miss-
ing samples for deceleration and heart rate. Future studies could interpolate the missing
values or use some other tools for analysis. (3) The experiments were conducted in a
controlled high-fidelity driving simulator environment. While driving simulators offer
several advantages, including controlled experimental conditions and enhanced safety,
they may not fully replicate the stress, distraction, and other real-world driving conditions.
However, user studies with potentially dangerous scenarios could never be conducted
on the road without exposing participants to actual risk. Moreover, simulators allow us
to systematically manipulate variables, assess driver responses, and collect detailed data
that are difficult to obtain in on-road studies. Therefore, despite their limitations, driving
simulators are a valuable tool for studying takeover performance. (4) Additionally, the
study focused on a limited set of physiological parameters, and further investigation of
additional measures of cognitive workload and emotional state could provide a more
comprehensive understanding of stabilization time.

Next, we open up some interesting discussion topics related to stabilization time.
These considerations could be further investigated by readers, as a deeper analysis would
exceed the sole purpose of this manuscript. Our analysis could be further generalized
by drawing on and comparing the results of other researchers’ TO studies or tailored to
individual technological systems. While our study focused primarily on identifying factors
that reveal stabilization time, future research could explore interventions or strategies
aimed at shortening the time it takes for drivers to regain full control after a takeover,
similar to studies conducted to find the optimal TO user interface [35,37,46]. For example,
Petermeijer et al. showed that auditory TOR stimuli provoked the fastest response [30]. The
guidelines by Naujoks et al. [106] also provide a way to design an optimal user interface
and show which features should be included. Possible approaches include the development
of advanced automation interfaces (integration of real-time feedback mechanisms, adaptive
displays, and ergonomic design to support rapid and effective TO), driver training pro-
grams, or predictive algorithms to improve driver readiness and responsiveness to takeover
events. The datasets we used consisted of takeover attempts with the same lead time of five
seconds, as this is considered optimal for takeover requests in the literature [21]. However,
future research could dive further into the relationship between takeover lead time and
stabilization time and how different lead times affect driver adaptation and performance
during takeover events. The effects of the urgency of the takeover scenario and the driver’s
secondary task on overall TO performance have been studied in depth, but their effects
on stabilization time have not yet been adequately addressed. The aim of this paper is
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to determine the stabilization time in a general takeover scenario. In the dataset used,
participants were allowed to perform any type of secondary task at their own discretion.
Although the investigation of the influence of scenario complexity is beyond the scope of
the present manuscript, it could be useful for the development of adaptive, context-aware,
and robust automated driving systems.

5. Conclusions

Our study contributes to the understanding of stabilization time in takeover scenarios
in conditionally automated driving environments. We have shown that driving-related
stabilization can be achieved approximately eight to ten seconds after the TO, which is
more than the commonly assumed TOR lead time. We also demonstrated that physiological
signals, particularly heart rate and phasic skin conductance, exhibited prolonged stabiliza-
tion periods, indicating that drivers remain aroused even after driving-related stabilization
is achieved.

Future studies should extend the observation period after TO to reliably determine
the stabilization time of phasic skin conductance, which did not stabilize during our
observations. In addition, a more thorough analysis of the missing values for heart rate and
deceleration should be performed. Ultimately, a model of drivers’ mental states throughout
the TO process could be derived from this and similar studies to better understand the
process. The diversity of drivers could be taken into account by clustering drivers based on
demographic data and analyzing different driver profiles. To improve the generalizability of
the results, future analysis could combine data from many TO studies conducted by research
groups around the world to obtain valid comparisons under many different conditions and
using different technologies. Using artificial intelligence and machine learning techniques,
predictive algorithms could anticipate upcoming takeover events and proactively assist
drivers to reduce stabilization time. By addressing these future research directions, we can
further improve our understanding of stabilization time and accelerate progress towards
a future where automated vehicles seamlessly coexist with human drivers, ushering in a
new era of mobility characterized by enhanced safety, efficiency, and accessibility.
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Pairwise comparisons for the dependent variables in the analysis.
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81. Stojmenova Pečečnik, K.; Sodnik, J. Evalvacija projekcijskega zaslona za pogojno avtomatizirana vozila. Elektrotehniški Vestn.
2022, 89, 269–274.
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Abstract: This paper describes control methods to improve electric vehicle performance in terms
of handling, stability and cornering by adjusting the weight distribution and implementing control
systems (e.g., wheel slip control, and yaw rate control). The vehicle is first simulated using the bicycle
model to capture the dynamics. Then, a study on the effect of weight distribution on the driving
behavior is conducted. The study is performed for three different weight configurations. Moreover,
a yaw rate controller and a wheel slip controller are designed and implemented to improve the
vehicle’s performance for cornering and longitudinal motion under the different loading conditions.
The simulation through the bicycle model is compared to the experiments conducted on a rear-
wheel driven radio-controlled (RC) electric vehicle. The paper shows how the wheel slip controller
contributes to the stabilization of the vehicle, how the yaw rate controller reduces understeering, and
how the location of the center of gravity (CoG) affects steering behavior. Lastly, an analysis of the
combination of control systems for each weight transfer is conducted to determine the configuration
with the highest performance regarding acceleration time, braking distance, and steering behavior.

Keywords: electric vehicle; weight distribution; active safety systems; wheel slip controller;
torque vectoring

1. Introduction

Electric vehicles (EVs) have increased in popularity due to their influence on reducing
greenhouse gas emissions, reducing the impact of pollution on human health and hence
contributing to a cleaner environment [1,2]. According to the market outlook, 58% of
new car sales will be of electric vehicles by 2040 [3]. Due to the electrification in the
automotive world, the possibility of the functionality of a vehicle has significantly been
affected. Research aimed at improving the safety of vehicles to reduce car accident fatalities
has increased substantially. An example is an active stability control system that prevents
vehicles from spinning, drifting, and rolling over. The most commercialized stability control
systems are based on differential braking and torque vectoring which apply a different
braking or driving torque to each driving wheel to achieve the desired yaw moment,
respectively. This can be achieved when the wheels are driven separately by two electric
motors [4,5]. Moreover, electric vehicles, due to their architecture, offer greater potential
compared to conventional vehicles regarding longitudinal motion.

EVs with individually driven wheels allow the development of control algorithms
that can significantly improve vehicle performance through anti-lock braking system (ABS)
and traction control (TC) [6]. Such systems are essential in vehicles as they assist the driver
to keep the vehicle stable and follow the desired trajectory. The systems are based on
the feedback control of the lateral dynamics parameters, such as the side-slip angle and
yaw rate responses. Some researchers have focused solely either on the control of the
yaw rate response to increase responsiveness to steering inputs or on the feedback control
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of the side slip angles to enhance stability; others attempted to combine both feedback
controls to further increase vehicle stability performance [7]. To achieve this, various control
algorithms have been developed and presented in the literature: for example, regarding
the electronic stability control, PID, state feedback control, optimal control and sliding
mode-based controllers have been used [8]. Das et al. proposed a modular hierarchical
control architecture for multi-wheeled vehicles [9]. M. K. Aripin et al. evaluated a non-
linear feedback algorithm and sliding mode for yaw rate control [10]. Benoit Lacroix et al.
conducted a study to compare different methods on direct yaw moment control (i.e., PID
and sliding mode) using a 2-DOF vehicle model [7]. Similar methods were implemented
by Andoni Medina et al. who compared typical control methods used for ensuring vehicle
stability and improving lap time for electric racing cars using PID and sliding controllers [11]
as well as Leonardo De Novellis, et al. who analyzed and compared different PID and sliding
mode-based control techniques (e.g., SOSM controllers) [12]. Gökhan Tekin et al. developed
a fuzzy logic control scheme for active yaw rate and side slip angles feedback control [13].
Haiping Du et al. analyzed the yaw rate and side slip angle responses of a vehicle when
applying a controller based on a finite numbers of linear matrix inequalities (LMIs) [14].
Alberto Parra et al. presented a study on nonlinear model predictive controller on EV with
multiple drive trains to enhance energy efficiency through the control of the cornering
performance [15]. Last, A. Parra et al. and Q. Lu et al. proposed intelligent and H∞
controllers, respectively [16,17].

Furthermore, weight distribution is a key parameter in road vehicle design as different
loading conditions may lead to more aggressive under- or oversteering behavior aggravat-
ing the stability of a vehicle. Weight distribution also influences the maximum force that
can be transmitted to the wheels. Research has been conducted to analyze the dependency
of weight distribution on the driving behavior. Ekalak Prompakdee et al. conducted a
research aimed at studying the relation of the understeer gradient with the weight distri-
butions on intercity buses under steady state conditions [18]. The driving performances
under various loading conditions have also been analyzed in [19] to study the effect on the
braking distance in road freight transport. An analysis on weight distribution aimed at
maximizing the cornering speed of formula cars has also been conducted by H. Nozaki [20].
Lastly, a lot of research has been ongoing for developing anti-lock braking systems and
traction controllers: often, such systems are based on wheel slip controllers; however,
various methods have been investigated. Regarding the control schemes, PID is most often
used [21]. For example, Min et al. show the performance of PID and fuzzy controller on
ABS development [22]. Taketoshi Kawabe et al. developed a wheel slip controller based on
sliding mode for commercial vehicles on low friction roads [23]. Ma et al. evaluated the
performance of wheel slip controller based on model predictive control considering road
roughness and low adhesion surfaces [24]. Dzmitry Savitski et al. compared PI, first-order
sliding mode, integral sliding mode and continuous twisting algorithms applied to a wheel
slip controller on fully electric vehicles [25].

This research combines the implementation of a yaw rate controller and a wheel
slip controller to improve longitudinal and cornering performance to different weight
distributions in order to determine the configuration with the highest performance in
terms of safety, handling and stability. To conclude, the literature presents studies on the
implementation of effective electronic stability controls, on wheel slip controllers for ABS
or TC and also on the effect of loading condition on driving behavior for different vehicles;
however, a study combining the weight distribution analysis and the implementation of
control system algorithms to fully improve performance on rear-wheel driving electric
vehicles is missing. In other words, the article is aimed at showing how weight distribution
and control systems can be designed and combined to improve the driving behavior.

This paper is organized as follows: Section 2 shows the experimental set up and the
methods used to model the vehicle and implement the control schemes. Then the results are
shown and discussed in Sections 3 and 4, respectively. Finally, some concluding remarks
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are made in Section 5. A video on the results obtained can be seen at the following url:
https://youtu.be/wRzeLYJABbQ (accessed on 25 May 2024).

2. Materials and Methods

2.1. Experimental Set Up

The RC car used to perform the experiments is an FG Competition EVO 08-510 (FG
Modellsport GmbH, Winterbach, Germany). The vehicle is in scale 1:5; about five times
smaller than a real car. The main components can be seen in Figure 1 and an overview on
the processor boards and their connections is shown in Figure 2. The vehicle originally
had an internal combustion engine which had been replaced by two electric motors, each
driving the rear wheel through a gearbox designed in-house at the Eindhoven University
of Technology. The vehicle is driven by a remote controller which sends the steering and
throttle percentage to the receiver on board. The steering percentage is directly sent to the
front tires servos, while the throttle percentage is first sent to the DSP. By implementing
control schemes on the DSP it is possible to actively control the torque that is delivered
to each driving wheel. The car originally had friction brakes; however, they have been
disconnected and the vehicle is braked through the electric motors on the rear tires. The
motors are three-phase synchronous machines with a maximum output power of 419 W
corresponding to a maximum torque of 5.29 Nm delivered to each driving tire. In case
of emergency, the motor can be short-circuited through a resistive circuit. To power the
vehicle, a Makita 40 V, 4 Ah Li-ion battery pack is used. For safety reason a battery
management system is implemented: if the battery voltage drops below 3 Volts, the motors
are deactivated and short-circuited.

The torque setpoints for the left and right rear motor (from the control actions) are
sent using PWM signals to the power board electronics. The full mechanical range of
the throttle handle on the RC transmitter is mapped to a maximum of 0–100% value in
the forward driving direction (pulling the handle) and 0–100% in the backward driving
direction (pushing the handle). The reading on the display shows the current value. This
mapping of the mechanical range is set by the End Point Adjustment (EPA) value. The
throttle handle and torque generation are shown in Figure 3.

The DSP is equipped with a Texas Instruments (TI)eZDSP F28355 board (Dallas, TX,
USA) and AMBER wireless data transfer system (Trier, Germany) that allows the data
to be transferred to a PC with a frequency of 200 Hz through the data logger unit. The
board is supported by Matlab embedded encoder. Hence, the control schemes can be
directly implemented on Matlab and Simulink 2021b [26]. The program is implemented
and uploaded on the vehicle through the USB programming cable. Last, the vehicle is
equipped with the following sensors:

• wheel speed sensors on each tire
• gyroscope

Figure 1. Experimental set up: vehicle system.
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The wheel speed sensors are located on the inside of each wheel. They consist of
six black and six white stripes of film located along the circumference in the inside of the
wheel. As the wheel rotates, the transition of the black and white regions are detected
by CNY70 optical sensors located on a PCB inside the wheel. The velocity is calculated
from the time elapsed between each transition. The gyroscope is an MPU-6000 (InvenSense
Inc., Sunnyvale, CA, USA) that calculates the rotation around the z-axis (i.e., the yaw
rate). To conclude, the data gathered from the gyroscope and speed sensor allow for the
implementation of feedback to individually control the torque in each motor.

Figure 2. Experimental set up: software system overview.

Figure 3. Experimental set up: throttle handle and torque generation.
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2.2. Vehicle Dynamics Modeling

The main factor for analyzing the weight distribution of a vehicle is the position of
its center of gravity (CoG). Determining the CoG involves weighing the car. As depicted
in Figure 4, each tire is precisely positioned on the center point of a scale to measure its
weight. Furthermore, the vehicle configuration ensures that the Center of Gravity (CoG) is
equidistant from the left and right wheels. It results in equal forces being experienced by
the left and right tires.

Figure 4. Vehicle on scales for weight measurement.

Next, given that the car is standstill, the following equations of motion are derived:⎧⎪⎨
⎪⎩

Iyyω̇y = Fz1a − Fz2b = 0
l = a + b
mg = Fz1 + Fz2

(1)

where Fz1 and Fz2 are the normal forces acting on the front and rear tire, respectively,
obtained by the measurements conducted as in Figure 4. Iyy is the pitch mass moment
of inertia, ω̇y is the pitch acceleration, l is the wheelbase and m is the mass. Solving the
equations above for each weight configuration allows to derive the corresponding a and b
values representing the distance between the CoG and the front and rear tires, respectively,
as shown below: {

a = Fz2
mg l

b = Fz1
mg l.

(2)

In order to investigate various loading conditions, weights were placed on the front
and on the rear of the vehicle to achieve different CoG locations. More specifically, the
weights have been attached to the tail (Figure 5a) and to the front bumper (Figure 5b) to
maximize the change in weight. The set up for the testing vehicle with front- and rear-
loaded weights is illustrated in Figure 5. The experiments were conducted on these two
configurations as they represent the most extreme loading condition possible for the vehicle
in consideration. In order to validate the yaw rate and wheel slip controllers, the tests were
conducted on the unloaded vehicle shown in Figure 4.
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(a) Rear loaded vehicle (b) Front loaded vehicle

Figure 5. Vehicle loading condition.

2.3. Vehicle Model

This section deals with the differential equation used to describe and model the vehicle
behavior. For the scope of this research, the bicycle model has been used due to its simplicity,
computational efficiency, and accuracy related to the control objective.

The bicycle model consists of the longitudinal (u), lateral (v) and yaw motion (r) as
shown in ([27] Figure 1.9) which shows the global coordinates denoted as X and Y, the lateral
and longitudinal directions, u and v, together with the yaw rate (r) moments denoted as
Mz and the parameters a, b, l. Moreover, the model is based on the following assumptions:

• The left and right tires are lumped together in one equivalent tire.
• Pitch and roll are not taken into account: the height of the center of gravity is assumed

to be zero.
• The vehicle is assumed to drive on a flat surface.

We remark that these assumptions are reasonable in practice. The first assumption is
for deriving a bicycle model; the second assumption is based on the bicycle dynamics (in a
2-D space); the third assumption is according to the actual testing environment. In order to
model the vehicle, two reference frames are used, i.e., the global or ground reference frame
(X, Y) and the body reference frame frame (i.e., the one relative to the vehicle direction),
denoted by (u,v,r) where the u-axis is the the longitudinal axis of the vehicle. The origin
of the body frame is given by the center of gravity [28]. The subscript x and y are used to
indicate the longitudinal and lateral directions, respectively. Next, the forces and moments
acting on the rear-wheel driven vehicle are determined and the following equations are
derived to describe the vehicle behavior in the body frame ([27]).⎧⎪⎨

⎪⎩
Fu = Fx2 − sin(δ)Fy1 − Fd

Fv = Fy2 + cos(δ)Fy1

Mz = Mtv + a(cos(δ))Fy1 − bFy2.

(3)

where Mz denotes the yaw moment around the z-axis. For simplicity, this model only
considers the yaw moment around the z-axis denoted as Mz rather than the moments
around each tire. The model also takes into account the drag forces Fd (Fd is a sum of
rolling resistance and air resistance forces.) Moreover, since the test vehicle is RWD, the
longitudinal force on the rear tires is equal to zero. The relation between torque and
throttle is assumed to be linear, hence the force applied to the driving wheel Fx2 is related
to the input torque through the wheel radius rw. The vehicle drag forces are given as a
combination of rolling resistance, and aerodynamic drag. For the scope of this research,
such forces have not been measured individually, but the combined resistance force denoted
by Fd is calculated experimentally from a coast-down test. Mtv represents the extra moment
due to torque vectoring, and is determined by the following equation:
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Mtv =
ΔT
rw

w, (4)

where ΔT is the torque difference applied to the wheels by the yaw rate controller, e.g., the
output of the controller. w is the vehicle width. Furthermore, the vehicle trajectory in terms
of the global coordinate systems is derived as follows:⎧⎪⎨

⎪⎩
Ẋ = u cos(ψ)− v sin(ψ)
Ẏ = u sin(ψ) + v cos(ψ)
ψ̇ = r,

(5)

where ψ is the angle between the body and the global reference frame, and r denotes
the angular velocity. Combining Equations (3) and (5) leads to the equations of motion
according to Newton’s laws:⎧⎪⎨

⎪⎩
mẊ = Fu cos(ψ)− Fv sin(ψ)
mẎ = Fu sin(ψ) + Fv cos(ψ)
Izzṙ = Mz,

(6)

where Izz is yaw moment of inertia. After taking the derivative with respect to time for
Equation (5) and substituting it in Equation (6), the vehicle model below is found:⎧⎪⎨

⎪⎩
m(u̇ − vr) = Fu

m(v̇ + ur) = Fv

Izzṙ = Mz.

(7)

2.4. Tire Lateral Dynamics and Steering Behavior

The tire is under the effect of a vertical load and a lateral force when turning which
contributes to the vehicle heading angle. The tire lateral forces (Fy1, Fy2) have a non-linear
relation with the side slip angles. However, by keeping the angles small, (α1 and α2,
respectively) the lateral forces are assumed to be linearly proportional to the side slip
angles. Such an angle is defined as the angle between the tire orientation and its velocity
vector. The front and rear side slip angles are given in Equation (8), respectively.{

α1 = δ − arctan (v+ar)
u

α2 = arctan (v−br)
u .

(8)

Assuming linear tire behavior, the side slip angles are related to the lateral forces
through the cornering stiffness (C1 and C2 for the front and the rear tires, respectively). The
lateral forces can therefore be written as [5]:{

Fy1 ≈ α1C1

Fy2 ≈ α2C2.
(9)

Last, an indicator of the vehicle cornering behavior is the understeer gradient η. It
indicates the path curvature of the vehicle that results from a given steering angle δ at any
speed. Given that the steering angle is expressed as the combination of the kinematic steering
angle and the additional angle due to the lateral acceleration (ay), δ can be written as:

δ =
l
R
+ η

ay

g
=

l
R
+ α1 − α2 (10)

where R is the turning radius, ay the lateral acceleration, g the gravitational acceleration,
and η the under-steer gradient. Expressing the side slip angles as a function of the vertical
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forces allows us to express the steering angle as a function of lateral acceleration and static
vertical load as shown below:

δ =
l
R
+

ay

g
(

Fz1

C1
− Fz2

C2
). (11)

The under-steer gradient is given as:

η =

(
Fz1

C1
− Fz2

C2

)
. (12)

Note that dynamic load transfer should not be taken into account in this equations,
hence the vertical forces Fz1 and Fz2 represent the static weight distribution. The driving
behavior is related to the previous equations according to the following relation:⎧⎪⎨

⎪⎩
η = 0 “neutral steer” for α1 = α2

η > 0 “under steer” for α1 > α2

η < 0 “over steer” for α1 < α2

(13)

In other words, to maintain a constant cornering radius R the steering angle has to
increase for an understeered vehicle, decrease for an oversteered one and remain the same
for a neutral steered vehicle [27].

The equations described in this section have been implemented in Matlab and Simulink
to model the vehicle, given a torque and steering percentage as inputs. The data to validate
the model have been gathered from a constant cornering experiment. In other words, the
vehicle was driven along a constant radius with slowly increasing throttle. Then, the model
was fitted to the measurement data by tuning the cornering stiffness values.

2.5. Yaw Rate Controller Design

The following paragraph deals with the implementation of a torque vectoring algo-
rithm. In this research, a PID-type controller is applied due to its practicality, simplicity
and effectiveness compared to other control methods [8,29]. However, due to the high
frequency noise in the sensors, a PI controller is chosen. The controller designed in this
paper is designed to impose a certain yaw rate to the vehicle. In other words, it is designed
to minimize the error between the vehicle measured yaw rate and the reference (i.e., cor-
responding yaw rate for neutral steering condition) by redistributing the torque to the
driving wheels. The reference yaw rate is calculated according to the small slip angle
approximation. Given that at steady state the expression for path curvature under constant
speed and steering angle is given below [27]:

1
R

=
r
V

≈ r
u

, (14)

and that under kinematic steering, the steering angle is related to the turning radius through
the following equation:

δ =
l
R

, (15)

substituting Equation (15) into Equation (14), yields the following reference:

rre f = u(
δ

a + b
) (16)

The longitudinal speed u is assumed to be the average velocity of the rear wheels
assuming that they are not spinning nor they are locked. Hence, through feedback, the
error is reduced by the PI action as follows:

ΔT = Kpe + KI

∫
e, (17)
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where the error e is given as the difference between the reference rre f and measured yaw
rate r as follows:

e = rre f − r, (18)

Next, the torque (i.e., the output of the controller) is distributed between the left (Tle f t)
and right motor (Tright) as follows: {

Tright = T − ΔT
2

Tle f t = T + ΔT
2

(19)

where T is the input torque. Equation (19) is valid according to the following sign con-
vention: turning clockwise is positive and anti-clockwise negative. The schematic of the
controller is shown in Figure 6.

Figure 6. Yaw rate controller scheme.

The parameters are obtained by manual tuning of the proportional KP and integral KI
gains. The resulting values are displayed in Table 1.

Table 1. Yaw rate controller parameters.

KP KI

2 0.6

2.6. Longitudinal Dynamics: Slip Controller

In order to improve the longitudinal performance of the vehicle, a wheel slip controller
is implemented using a PI controller. The PI-type controller is implemented due to its
effectiveness and simplicity [21]. A quarter car model consisting of a single wheel attached
to a mass is used. According to this model, only longitudinal dynamics are considered;
moreover, one of the limitations is the assumption of a fixed load on the wheel. The model
and the underlying equations are shown in Equation (20).⎧⎪⎨

⎪⎩
mv̇ = −Fx

Jω̇ = rwFx + T
Fx = Fzμ(κ),

(20)

where m is the mass, v̇ is the rate of change of velocity, J the wheel inertia, Fx is the
longitudinal tire force, Fz is the normal force, T is the torque, ω̇ is the rate of change of the
angular velocity and μ is the tyre road friction coefficients dependent on the slip ratio κ.
By looking at the equation above it follows that, given a fixed vertical load, the value of
the slip that leads to the highest friction coefficient must be found such that the maximum
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braking/traction force can be developed. The slip ratio is defined as the normalized
difference between the vehicle velocity and the wheel velocity as follows [30]:

κ = −v − ωr
v

. (21)

Hence, the following relation holds⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ = 0 free rolling tyre
κ > 0 driving tyre
κ < 0 braking tyre
κ = −1 locked wheel

(22)

Since the slip of a free rolling wheel (i.e., non-driving wheel), is equal to zero, the
wheel slip of a rear-wheel driven car can be approximated as follows:

κ ≈ −ω f − ωr

ω f
, (23)

which can be rewritten as:
ωr ≈ ω f (1 + κ). (24)

Since at very low speed (ωr ≈ 0) the slip value is not defined, the slip is achieved
by upper bounding the speed of the rear wheel as a function of the front tire as shown in
Equation (24). Next, a PI controller is designed such that the wheel slip is kept constant at
the point where the maximum force can be developed. The controller takes the difference
between the measured rear wheel speed and the reference (ω f (1 + κ)) and minimizes the
error according to Equation (18). In this case, the error is given as the difference between
the rear tire velocity and the reference. The torque (e.g., output of the PI controller) is added
to the input torque such that the error is minimized. Figure 7 shows the control scheme
for the left tire only as the scheme is equivalent for both tires. T indicates the input torque
(e.g., output of the controller), τ is the output torque (e.g., torque applied to the tire).

Figure 7. The control loop in the wheel model.

Last, the value of the slip is set to be positive when the driver is accelerating, and
negative when braking according to Equation (22), such that both anti-lock braking system
(ABS) and traction control (TC) systems are obtained. Given that no data on the tire
characteristics are provided, the ideal slip value has been determined experimentally
through a braking and acceleration test. Regarding controller design, the gains are obtained
manually tuning the controller. The resulting values are displayed in Table 2.

Table 2. Wheel slip controller parameters.

KP KI

4 8

3. Results

The following section deals with the results gathered throughout the research. First,
the vehicle driving performance is analyzed and the model is validated. Next, the yaw
rate and the wheel slip controllers are evaluated. Then, the weight transfer analysis is
conducted. At last, the combination of control algorithms and weight transfer is analyzed.
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3.1. Steering Behavior and Model Validation

In order to determine the unknown values of the cornering stiffness, a constant cor-
nering test is conducted. This consists of steady state driving with constant steering angle
for different velocities ranging from 0 to 3 m/s. Higher velocities were not reached due to
the tire friction limits. The steering angle used throughout the experiments corresponds
to 24.3 degrees. By looking at Figure 8, it is possible to compare the vehicle behavior
with respect to the model and the reference values. Initially, the vehicle’s yaw rate follows
the neutral steer reference, then at approximately 2 m/s, the vehicle starts to under-steer
as the yaw rate drops. In the linear region, the discrepancy between the model and the
measurement data is negligible; however, as the non-linear region approaches, the error
reaches a maximum of about 9% at approximately 1.7 m/s. In the non-linear region, where
the yaw rate suddenly drops, the error suddenly increments linearly with the speed: this is
due to the non-linearities of the tires that are not taken into account by the bicycle model.
In order to validate the model, the cornering stiffness values have been tuned manually to
minimize the discrepancy. Given that the car is understeering and approximately 60% of
the weight is on the rear, solving Equation (11) for a negative understeer gradient leads to
the relation of C1 < 0.7 C2. As a result, the modeled value of the front cornering stiffness
is equal to 0.55 C2. More specifically the modeled value for the rear cornering stiffness is
equal to 350 N

rad/s , while the front value is equal to 192.5 N
rad/s . The load configuration for

this measurement is displayed by the “unloaded” case in Table 3.

Table 3. Vertical static load on each axle; experiments on launch and cornering performance).

Experiment Fz1 [N] Fz2 [N]

Loaded front 92.9 69
Loaded rear 40.5 97.4
Unloaded 56.3 76.2

Figure 8. Vehicle steering behavior: modeled and experimental data.

3.2. Yaw Rate Controller

The results in this section are obtained by a steady state cornering test with a steering
angle of 24.3 degrees. Figure 9 shows the vehicle behavior with and without the yaw rate
controller. It follows that in the linear tire region, the controller does not contribute to the
yaw moment as the vehicle is in neutral steering condition; however, in the non-linear
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tire region, a positive moment is applied to the vehicle improving its performance. In
other words, the controller reduces the error by causing an increase in the yaw rate of
approximately 15% at 2.5 m/s. Last, it is possible to notice that above a longitudinal speed
of 2.5 m/s, the tires exceed their limits, where the input force exceeds the maximum force
that can be developed by the tire. As a consequence, the vehicle starts to slide sideways in
the direction of the turn. This can be seen by the sudden increase of the yaw rate which
instantly reaches a maximum of 1.8 deg/s between 2.5 and 2.6 m/s.

Figure 9. Vehicle steering behavior with yaw rate controller.

3.3. Weight Transfer Analysis

This subsection deals with the weight transfer analysis. Figure 10 shows the yaw
rate as a function of velocity for both the modeled and the experimental data together
with the reference for three weight configurations without applying any control systems.
The loading conditions for this experiment are shown in Table 3, namely the case for
a = 0.37 corresponds to the “Loaded rear” case and a = 22 is the “Loaded front” case. By
looking at the figure, it follows that generally, for any weight configuration, the car shows
understeering behavior at high speed as the yaw rate drastically drops at approximately
2.2 m/s. Next, both configurations for a = 0.3 and a = 0.37 show similar behavior at low
speed: both cases show neutral steer behavior until the non-linear tire region (u > 2 m/s)
is entered, whereas the third configuration shows a higher mismatch with the reference.
More specifically, when the CoG is moved forward, the vehicle starts to understeer at a
lower speed: the error between the reference and the measured data reaches a value greater
than 5% already at a velocity of 1 m/s, then it increases linearly with the speed. Regarding
the peak values, shifting the CoG forward leads to a slightly higher maximum yaw rate
achievable compared to the other cases, namely a 5% increase in the maximum yaw rate is
achieved by shifting the CoG to the front by 16 cm. However, the peak value is reached at a
slightly higher speed. Last, in the non-linear region, the configuration for a = 0.37 m shows
the lowest yaw rate for any given velocity, while moving the CoG forward leads to higher
yaw rate values. More specifically, moving the CoG rearward by 15 cm leads to a decrease
of the yaw rate approximately by 15% in the high speed region. To conclude, loading the
front axle leads to a more severe understeering in the linear region while loading the rear
axle reduces such behavior. However, the opposite phenomena appears at high speed as
the lowest yaw rate is achieved when loading the rear axle. Furthermore, Figure 10 shows
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that the model matches the observation above; however, a mismatch with regard to the
experimental data appears at high speed due to the linear nature of the model.

Figure 10. Vehicle steering behavior with yaw rate controller.

3.4. Wheel Slip Controller

This paragraph deals with the validation of the slip controller. Figure 11a,b show
the resulting measurements while braking and accelerating when the vehicle is unloaded,
respectively. In order to evaluate the controller performance, a step of −2.5 Nm and
2.64 Nm is applied for braking and launching without applying a steering input, respec-
tively. The loading condition corresponds to the “unloaded” case shown in Table 3. By
looking at Figure 11a,b, it follows that the wheel slip controller prevents the driving wheels
from locking and spinning as in Figure 12a,b. Figure 13 shows the values of the slip as the
vehicle accelerates when the controller is applied as a function of velocity. It follows that
constant slip of approximately 0.2 is achieved at all speeds. Since the wheels spin when the
controller is not applied, it is not possible to calculate a reasonable value of slip using the
methods above; however, Figure 12b shows that a very high difference in speed between
the front and rear tires is achieved suggesting a high slip value. Hence, the wheel slip
controller allows the vehicle to maximize the driving/braking force (see Equation (20)).
An average deceleration of 2 m/s2 is achieved while braking, and an average acceleration
of 2.3 m/s2 is reached when launching. Last, with a slip controller, the stability of the
vehicle is highly increased as any unwanted yaw moment is rejected: Figure 14a,b show
that when the wheel slip controller is not applied, the vehicle loses stability as a yaw
moment is generated. Due to the nature of the experimental set up, the values of velocity
and acceleration are given as an indication based on the testing results; they would be used
to represent reasonable real-life values (after a scaling) for large-scale vehicles.
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(a) (b)

Figure 11. Wheel slip controller: wheel velocity against time. (a) Wheel slip controller during braking
maneuver (ABS). (b) Wheel slip controller during acceleration manoeuvre (TC).

(a) Braking (b) Acceleration

Figure 12. Wheel speed during a launch and braking maneuver with no slip controller.

Figure 13. Values of slip: launch control.
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(a) Braking (b) Acceleration

Figure 14. Vehicle speed during a launch and braking maneuver with no slip controller.

3.5. Control Algorithms for Different Weight Configurations

The loading conditions shown in Table 3 have been implemented for testing the vehicle
performance for different weight configurations. In addition, the experiments have been
performed with the yaw rate and wheel slip controllers. Figure 15 shows the yaw rate
value as a function of the longitudinal velocity. By looking at the Figure, it follows that
the same observation as in Section 3.2 can be gathered. In other words, implementing
the controller improves the vehicle performance in the non-linear region of the tires for
every loading condition. Moreover, it follows that approximately the same performance
can be achieved for each configuration. Therefore, given that in the non-linear region, the
configuration with the CoG moved rearward (a = 0.37) has the lowest angular velocity, the
most significant improvement can be seen in this configuration as the yaw rate is increased
by approximately 30% at 2.5 m/s.

Figure 15. Weight transfer analysis: yaw rate against longitudinal velocity with a yaw rate controller.

Last, an analysis of the vehicle’s longitudinal performance with a wheel slip controller
for each weight configuration is conducted. Figures 16a and 17a show the longitudinal
velocity of the vehicle as a function of time while accelerating and braking for the three
loading conditions, respectively. To evaluate the performance while accelerating, the vehicle
has been loaded as in Table 3. The loading conditions throughout the braking tests are
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displayed in Table 4. The same inputs as in Section 3.4 are applied. From Figure 16, it
follows that by shifting the CoG rearward, hence increasing the static vertical load on the
rear axle, the vehicle shows a higher acceleration. Namely, for the braking case, increasing
the rear weight distribution from 42% to 70%, leads to an increase of 48% in the average
acceleration. According to Figure 17a, there is a linear relation between the maximum
force developed by the tire and the vertical static force on the driving axle. Figure 16b
shows the vehicle velocity for a launch with different weight configurations. The same
conclusion as for Figure 17a can be drawn. The acceleration linearly increases with the
vertical load on the rear axle. In this case, increasing the rear vertical load by 43% leads to
an increase in acceleration from 1.78 m/s2 to 3.2 m/s2. As a consequence the braking and
the acceleration distance are highly reduced when the CoG is shifted to the rear or the rear
axle is loaded. Namely for the acceleration, increasing the rear mass percentage from 42% to
70% leads to a 50% decrease in the acceleration distance, while the braking distance is reduced
by approximately 34% when the mass percentage on rear is shifted from 44% to 63.5%

Table 4. Vertical static load on each axle braking experiment.

Experiment Fz1 [N] Fz2 [N]

Loaded front 89.9 71.4
Loaded rear 54.6 95.6
Unloaded 56.3 76.4

(a) Weight transfer analysis: TC. (b) Weight transfer analysis: ABS.

Figure 16. Weight transfer analysis: wheel slip controller.

(a) Weight transfer analysis: acceleration distance (b) Weight transfer analysis: braking distance

Figure 17. Braking and accelerating distance for different weight distribution.
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4. Discussion

First, the research shows that, given the assumptions in Section 2.2, the bicycle model
captures the essential dynamics of the vehicle especially in the linear tire region, hence it can
be considered an accurate model in mimicking the cornering behavior of the vehicle. The
bicycle model allows to design and implement an effective yaw rate controller. However,
the bicycle model also presents some limitations as it is based on several assumptions
as detailed in Section 2. Hence, a different model may be used to examine the impact
of the driver or of passengers. Moreover, the model assumes the height of the center of
gravity to be zero. In general, EVs are heavier compared to the corresponding vehicles with
ICE [31], so this is a reasonable assumption. Moreover, the load transfer is neglected which
ensures the accuracy of the model at low lateral and longitudinal acceleration. As for severe
maneuvers that produce large lateral accelerations, the bicycle model does not represent
the vehicle response accurately due to nonlinear tire forces and associated dynamic load
transfer. In other words, a different approach is suggested to model such maneuvers.

As shown in Figure 9, the cornering performance has improved as the yaw rate has
increased up to 30% when the CoG is shifted to the rear. However, the effect of the controller
is limited by the vehicle physical limits. When the force applied to the wheel exceeds the
friction circle, the tires start spinning, hence the vehicle loses stability. Implementing a
slip controller to prevent the wheel from spinning or locking while cornering will further
improve the vehicle’s performance. Regarding the longitudinal motion, applying a wheel
slip controller prevents the wheel from spinning and from locking, enhancing performance
with regard to the braking distance and acceleration time and it greatly improves vehicle
stability as any unwanted moment is completely rejected. However, throughout the
experiments the same tires have been fitted to the vehicle and the tests were performed on
a flat surface with a constant tyre road coefficient. The paper [32] suggest that to ensure the
effectiveness of the control system, information of the peak tyre–road friction coefficient and
adjustment of the slip ratios are fundamental. The implementation of a control algorithm
based on the estimation of the tyre road friction may be beneficial in practice.

Figure 10 shows the importance of the weight distribution in vehicles regarding
cornering performance. The relation between the weight distribution and the driving
behavior can be analyzed by observing by the equations of motion in Section 2. Adjusting
the CoG location changes the parameters, namely the static vertical load and the values
of a and b. Such parameters influence the lateral side slip angles, and hence the lateral
forces. By looking at Equation (8), it follows that shifting the CoG towards the front
leads to an increase in the front side slip angle, which may lead to understeering as
shown in Equation (13). Furthermore, Equation (3) leads to the same conclusion as at
constant lateral forces and steering angle, increasing the value of a leads to a higher turning
moment (i.e., oversteer). The same reasoning can be applied by looking at the understeer
gradient in Equation (11), as it expresses the cornering behavior as a function of the static
vertical load. Increasing the vertical front load (i.e., reducing the parameter a) leads to
understeering, whereas decreasing it leads to oversteering. Such observations match with
the results shown in Figure 10 corresponding to the linear region. Moreover, by applying
Equation (12), the modeled value of the understeer gradient is calculated: the gradient has
a value of approximately zero when loading the vehicle on the rear while it reaches a value
of about 0.3 when loading the vehicle on the front. To model the dynamics at a higher speed
more precisely, a more advanced model may be implemented; however, such observations
show that the main dynamics of the vehicle are well represented by the bicycle model.

Regarding the longitudinal motion, Equation (20) shows that the force is dependent
on the longitudinal slip, and linearly to the vertical force. Hence increasing the tire load
leads to an increase in the maximum force assuming that the tire-road coefficient is con-
stant. Furthermore, the tire model assumes no pitch motion, hence no load transfer while
accelerating or decelerating. Given that load transfer increases at high acceleration and
when the center of gravity is high, it is neglected for the scope of this research. However,
implementing load transfer in the tire model may further improve the performance of
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the controller and of the vehicle for very high acceleration values [30]. Given the results
shown in Section 3, it follows that the optimal location of the CoG is highly dependent on
the application.

5. Conclusions

From this research, it follows that vehicle performance can be improved by imple-
menting active safety systems such as a yaw rate controller or wheel slip controller. Such
systems considerably increase handling, performance and stability as they allow the driver
to maintain control of the vehicle, hence preventing accidents by reducing excessive over
and understeer while cornering and increasing the stability while accelerating or braking.
Moreover, we conclude that performance is highly related to loading conditions, where the
weight distribution should be adjusted to meet the cornering requirements.

For a rear-wheel driven vehicle, locating the CoG rearward leads to a higher under-
steering in the linear tire region, whereas shifting it to the front reduces such behavior.
However, such distribution has also an effect on the longitudinal dynamics with regard
to braking and launching, as decreasing the vertical load on the driving axle decreases
the maximum force that can be developed, hence decreasing the performance in terms of
braking distance and acceleration time. Since excessive over- and understeering is often
undesired, for a rear-wheel driving vehicle, a trade-off has to be achieved.

To conclude, weight distribution and control algorithms highly influence driving
behavior in terms of stability, handling and hence, safety. This research has provided an
insight on how control systems can be implemented on commercial vehicles with different
weight distribution to increase their performance. For future research, we will further
explore topics such as vehicle stability concerning road friction, saturated tire force, and
advanced control (prescribed performance control and sliding mode control [33]) to further
improve the vehicle driving performance.
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