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Editorial

Stochastic Processes and Their Applications: In Honor of
Prof. Sally McClean

P.-C. G. Vassiliou 1,* and Andreas C. Georgiou 2,*

1 Department of Mathematics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
2 Quantitative Methods and Decision Analysis Lab, Department of Business Administration,

University of Macedonia, 54636 Thessaloniki, Greece
* Correspondence: vasiliou@math.auth.gr (P.-C.G.V.); acg@uom.edu.gr (A.C.G.)

1. Introductory Notes

Stochastic processes are foundational tools in many scientific disciplines, including
biology, operational research, social sciences, and stochastic finance, among others. The
important characteristics of systems in these areas evolve with time in a relatively random
way, and since stochastic processes are mainly families of random variables, in which
their index represents time, they are the natural tool to use. This origin aligns with its
mathematical interpretation of randomness and probabilistic analysis.

The word “stochastic” comes from the Greek word “στοχαστικός”, and in this context,
it means “random”. The same word, in its form as a verb, is used in Greek in a similar
context, to express the process of thought when someone is searching for all the possible
outcomes of a certain phenomenon that has an important influence on one’s life.

The theory and applications of stochastic processes trace their roots to the development
of one of the richest and most fundamental examples: Brownian motion. This was an
unexpected starting point, as Brownian motion is a remarkable mathematical construct
that simultaneously exhibits properties of a martingale, Gaussian process, diffusion, Lévy
process, Markov process, and more—concepts that were formalized much later. The origins
of Brownian motion can be traced back to the early 1900s.

On 29 March 1900, Louis Bachelier (11 March 1870–28 April 1946) successfully de-
fended his celebrated thesis, Theorie de la Speculation, at the Sorbonne. In this groundbreak-
ing work, he applied probability theory to stock markets, marking the first historical attempt
to introduce stochastic thinking through mathematics. This thesis laid the foundation for
what is now known as stochastic finance.

In 1933, Andrei Kolmogorov (1903–1987) published his seminal work Foundations of
the Theory of Probability, which introduced the axiomatic foundations of probability theory.
This groundbreaking book has withstood the test of time and remains the cornerstone upon
which the entire field of probability and statistics has flourished. Following Kolmogorov’s
contributions during the 1930s and 1940s, the study of stochastic processes became one of
the most mathematically rigorous disciplines, alongside certain areas of pure mathematics
(see Cramer [1]).

The development of stochastic processes as a formal extension of probability theory
owes much to the influential works of Joseph (Joe) Doob (1910–2004) and William Feller
(1906–1970). Doob’s Stochastic Processes [2] and Feller’s two-volume An Introduction to Prob-
ability Theory and Its Applications [3,4] were instrumental in shaping the modern theory of
stochastic processes. These foundational texts not only advanced the field, but also played
a key role in establishing courses on probability and stochastic processes in mathematics
departments worldwide.

Mathematics 2025, 13, 276 https://doi.org/10.3390/math13020276
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The term “probabilist”, so commonly used today, owes much to the era in which Doob
and Feller lived and collaborated. Their long and fruitful discussions helped define and
solidify the identity of probabilists as a distinct group within mathematics, contributing to
the global dissemination of probabilistic and stochastic ideas.

Doob’s 1953 book, Stochastic Processes, became a classic in the John Wiley series and
remains a “must read” for any probabilist. In this landmark work, Doob formally defined
the concept of a martingale for the first time, which naturally led to the definitions of
supermartingales and submartingales. He then developed the theory of martingales and
Markov processes to a remarkable extent, laying the foundation for much of modern
probability theory.

For an inspiring account of how this influential book came to be, one can refer to
Doob’s interview with Laurie Snell [5], where he shares fascinating insights into his writing
process and the development of the field.

In a paper by Doob [6], we learn that Feller was tireless in revising his books, taking
particular delight in discovering new approaches, applications, and examples to enhance
them. His books are extraordinary for their almost bewildering diversity of perspectives
and applications, both within and beyond pure mathematics. No other book remotely
resembles Feller’s work in its combination of the purest mathematics, dazzling technical
virtuosity, and wide-ranging applications, all presented in a style that vividly conveys the
author’s enthusiasm.

2. In Honor of Prof. Sally McClean

A glance at the history of eminent mathematicians reveals a sobering truth: nature
does not preserve its most exceptional minds indefinitely. Each had a finite lifespan and,
eventually, they “left”. For some, this span was tragically short, despite their profound
contributions to the progress of mathematics. It is a common tradition, therefore, for
colleagues to honor such individuals by publishing a volume of invited papers in their
research area.

However, we believe this gesture of respect is far more meaningful when it occurs
just before or at the time of their retirement, allowing them to witness and appreciate the
recognition of their life’s work.

The journal Mathematics (a Q1 journal in the Web of Science list) recognized the success
of our first Special Issue by publishing a volume (book) containing all the papers we edited
for that Issue [7]. Encouraged by this achievement, they invited us to edit another Special
Issue. We proposed the theme, “Stochastic Processes and Their Applications: In Honor
of Prof. Sally McClean”, to mark her semi-retirement and to recognize her significant
contributions to research. The Editorial Board was delighted to accept our proposal,
expressing their enthusiasm for the project.

Prof. Sally Ida McClean, a distinguished Northern Irish statistician and operations
researcher, has significantly advanced the fields of mathematical modeling and health care
planning. Sally Ida McClean was born in Belfast and earned her first degree, an M.A. in
Mathematics, from the University of Oxford in 1970. She went on to complete an M.Sc. in
Mathematical Statistics and Operations Research at Cardiff University in 1972 and earned
her Ph.D. from Ulster University at Coleraine in 1976.

Her research spans a wide range of topics, including workforce modeling, health
administration, interactive architecture, and survey methodology. She has authored over
300 publications in areas such as mathematical modeling, applied probability, multivari-
ate statistical analysis, and the application of mathematical and statistical methods to
computer science.
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Prof. McClean’s contributions to mathematical modeling, particularly in health care
planning, are immense. Her research has significantly impacted elderly care, with models
that optimize health care planning and resource allocation.

Prof. McClean is a Fellow of both the Royal Statistical Society and the Operational
Research Society, as well as an Associate Fellow of the Institute of Mathematics and its
Applications. Her extensive research output is reflected in citation metrics from major
databases. According to Google Scholar, she has over 600 research publications, cited
12,674 times, with an h-index of 54. In the Web of Science (WOS) database, she has
218 publications, cited 2710 times, with an h-index of 25.

Prof. McClean’s outstanding contributions to research have been recognized through
her receipt of Ulster University’s Senior Distinguished Research Fellowship.

3. Stochastic Processes and Their Applications: In Honor of
Prof. Sally McClean

The Guest Editors would like to express their sincere gratitude to the Chief Editors and
the Editorial Board of Mathematics for extending the invitation to edit this special volume.
We warmly thank the authors for their significant contributions to this publication, as well
as for their diligence and enthusiasm in addressing all comments and suggestions during
the review process.

Our heartfelt appreciation goes to the anonymous reviewers whose invaluable assis-
tance and rigorous comments were crucial to the successful completion of this endeavor.

We are also deeply grateful to the Editorial Manager, Dr. Syna Mu, for his tireless
efforts in facilitating the workflow for this Issue, his excellent collaboration with the Guest
Editors, and for arranging partial funding for the publication of this volume.

Special thanks are extended to Professors Michael Voskoglou and Maria Mariani for
serving as Academic Editors for our own contributed articles. Their names were known to
the Guest Editors after the publication of their papers.

Finally, we wish to acknowledge the numerous Editorial Assistants who skillfully
managed the considerable workload involved in handling the large number of submissions
for this volume. Their commitment and effectiveness played a crucial role in successfully
completing this project.

The following section provides an organized overview of the articles in this Special
Issue, categorized into key thematic areas. Additionally, we provide the reader with some
useful references to help introduce the mathematical background relevant to the papers.
The sub-areas (sections) are arranged to generally reflect the title of the Special Issue, with
the articles in each section sorted according to their publication dates.

(i) Markov Chains, Processes, and Markov Systems.
Markov processes are stochastic processes that exhibit the Markov property, while

Markov chains are their discrete time and discrete state space counterpart. That is, the
probabilistic dependence on the past is only through the present state, which contains
all the necessary information for the evolution of the process. Useful introductory texts
on probability theory and stochastic processes can be found in [8], and on homogeneous
and non-homogeneous Markov chains and processes in [9–12] and [13] (Chapter 3). For
Markov systems or Open Markov models, which are generalizations of the Markov chain,
a research monograph on the subject is detailed in [14]. We now provide a brief description
of the articles of the Special Issue that could be included in this category:

3
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(i1) Strong Ergodicity in Non-homogeneous Markov Systems with Chronological
Order, by P.-C.G. Vassiliou [15]. Consider a stochastic system with a population of members
categorized into different states. Three types of movements are possible within this system.
First, members can transition between states; second, members may exit the system from
various states; and third, new members may enter the system to replace those who have
left or to expand the population. When the dynamics of these movements are modeled
by a non-homogeneous Markov chain, the system is referred to as a non-homogeneous
Markov system (NHMS).

An NHMS generalizes the classical Markov chain by accounting for multiple particles
moving among the states, with the possibility of leaving the system and being replaced by
others, potentially with different characteristics. This is in contrast to the classical Markov
chain, which typically models a single particle transitioning among states without exits
or replacements.

In this context, the author studied the concept of strong ergodicity for NHMS, focusing
on a novel relaxation of a critical assumption found in all prior studies, i.e., the study
relaxes the standard assumption regarding the asymptotic behavior of NHMS. Specifically,
the author did not assume that the underlying inhomogeneous Markov chain geometrically
converges to a homogeneous Markov chain with a regular transition probability matrix as
time approaches infinity. Instead, the author investigated and derived conditions under
which the rate of convergence to strong ergodicity in an NHMS is geometrically fast, thereby
broadening the understanding of NHMS dynamics.

(i2) Estimation–Calibration of Continuous-Time Non-Homogeneous Markov Chains
with Finite State Space, by ML Esquivel, NP Krasii, and GR Guerreiro [16]. The paper
is divided into three parts. The first proposes a method to estimate the parameters of a
set of transition intensities from ideal observed data. The second presents the result on
regime-switching Markov chains that establishes the possibility of considering transition
intensities made up of different sorts of functional forms, with each one of the functional
forms depending on different sets of parameters. Finally, in the third part, the norm of
the difference of two probability transition matrices is quantified in terms of the norm
of the corresponding matrices of transition intensities, which justifies the choice of arbi-
trary functional forms for the transition intensities in ways that are more adequate for
parameter estimation.

(i3) Educational Status as A Mediator of Intergenerational Social Mobility in Europe:
A Positional Analysis Approach, by G. Stamatopoulou, E. Tsouparopoulou, and M. Syme-
onaki [17]. The study aimed to investigate both nominal (absolute) and relative (positional)
patterns of intergenerational educational mobility in Europe by analyzing transitions across
the educational levels of respondents and their parents in Europe using raw data drawn
from the European Social Survey (ESS) from the year 2002 and onwards. It reveals all the
necessary information concerning the proposed methodology and the ESS data that are
utilized in order to estimate intergenerational educational mobility in absolute and rela-
tive terms. It presents the measurement results of intergenerational educational mobility,
nominal and positional, and the validation tests performed.

(i4) The Arsenal of Perturbation Bounds for Finite Continuous-Time Markov Chains:
A Perspective, by A.Y. Mitrophanov [18]. This perspective article describes what can be
regarded as deterministic perturbations of the Kolmogorov equations. Thus, in effect, it
considers deterministic perturbations of a stochastic process (i.e., the Markov chain under
study). One could possibly imagine perturbation scenarios involving various deterministic
or stochastic systems under deterministic or stochastic perturbations. Clearly, each scenario
would require its own set of theoretical developments. Yet, the types of results discussed
could be relevant in a broader context and may be applicable to other possible (and, possibly,
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far more complex) perturbation scenarios. At the very least, they can provide a relevant
standard for comparison or even help generate a viable working hypothesis.

(i5) A Throughput Analysis Using a Non-Saturated Markov Chain Model for LTE-LAA
and WLAN Coexistence, by Mun-Suk Kim [19]. The paper proposes an analytical model
to calculate the throughput for each system in a scenario where a single LTE-LAA system,
dedicated to downlink transmission, shares an unlicensed channel with multiple WLAN
systems. This study employs a Markov chain approach to model the random backoff
operations of LTE-LAA eNodeB (eNB) and WLAN nodes under non-saturated traffic
conditions. The Markov chain approach is limited by the need to define LTE-LAA eNB
and WLAN node transmissions in discrete timeslots. Nevertheless, it enables a clear and
detailed analysis of all sequential random backoff operations in the distributed coordination
function of LTE-LAA and WLAN. In addition, this study analyzes the throughput of LTE-
LAA and WLAN systems by integrating the impact of the clear channel assessment (CCA)
threshold, which represents the sensitivity level required to detect ongoing transmissions,
with Markov chain modeling of random backoff operations.

(ii) Semi-Markov Chains, Processes, and Semi-Markov Systems.
Semi-Markov chains are generalizations of Markov chains where the time of transition

from each state to another is now a random variable. The same applies for semi-Markov
processes, except that the time is now continuous. A very good text on semi-Markov chains
and processes for the interested reader can be found in [20]. For semi-Markov systems or
open semi-Markov models, which are, again, generalizations of Markov chains, the first
paper that introduced them was [21], and this is a reliable publication to start from. We
provide below a brief description of the articles that could be categorized in this section:

(ii1) Semi-Markov Models for Processes Mining in Smart Homes, by S. McClean
and L. Yang [22]. This paper is concerned with developing and illustrating some specific
mathematical expressions and results for models of human activity. It develops and uses
Markov-type models to represent ADL processes and corresponding key performance
indicators (KPIs) in smart homes, as well as in describing and evaluating strategies to
determine anomalies in such transitions and durations. The approach is illustrated and
evaluated using a publicly available smart home dataset comprising an event log of sensor
activations, together with an annotated record of the actual activities, which is used for
model development and validation.

(ii2) Attainability for Markov and Semi-Markov Chains, by B Verbeken and M.-A
Guerry [23]. Firstly, the concept of attainability for Markov chains is reviewed and extended
to systems with a growth factor 1 + α, where the parameter α signifies the rate of change
in the size of the system over time. When α is negative, this indicates a contraction in the
system size, i.e., a decline in the number of people in the system. Conversely, when α is
positive, the system expands over time. Thereafter, it is introduced and the attainability is
studied along with the state reunion attainability for semi-Markov chains starting from the
concept of SR-maintainability for semi-Markov chains. It is shown that a general approach
to state reunion attainability, where a structure is said to be state-reunion-attainable if there
exists an arbitrary initial structure from which it can be attained, is not appropriate, and
the concept of (n-step) state reunion attainability starting from a subset S of structures
is introduced. A method to determine the associated region of attainable structures is
also provided.

(ii3) Cost Evaluation for Capacity Planning based on Patient’s Pathways via Semi-
Markov Reward Modelling, by C. Chatzimichail, P. Kolias, and A. Papadopoulou [24]. In
the study, a non-homogeneous semi-Markov reward model is considered, where rewards
are random variables associated with state occupancies and transitions. The novelty of the
paper lies in the inclusion of states’ inflows and availability, which is critical for capacity-
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planning based on service demands in an environment of fixed resources. The theory of
the model is provided, followed by results related to the population’s structure and states’
inflows and the expressions related to the current availability of states. Also, expressions
for the expected costs generated by the system and corresponding to patients’ paths are
developed.

(ii4) On a Mixed Transient–Asymptotic Result for the Sequential Interval Reliability
for Semi-Markov Chains, by G. D’Amico and T. Gkelsinis [25]. The authors studied the
sequential interval reliability, a measure recently introduced in the literature. This measure
represents the probability of the system working during a sequence of non-overlapping
time intervals. In their previous work, the authors proposed a recurrent-type formula for
computing this indicator in the transient case and investigated the asymptotic behavior.
The purpose of this work is to further explore the asymptotic behavior when only some of
the time intervals are allowed to reach infinity while the remaining ones are not. In this way,
a unique indicator that is able to describe the process evolution in transient and asymptotic
cases is provided. It is important to note that this is not a straightforward result since, in
order to achieve it, we need to develop several mathematical ingredients that generalize
the classical renewal and Markov renewal frameworks.

(iii) Mathematical Optimization and Decision Analysis
This category addresses mathematical optimization and decision analysis with a

specific focus on Data Envelopment Analysis (DEA) and stochastic programming. It
addresses hierarchical efficiency evaluation and resource allocation, tailored for large
organizations and enterprises, particularly within the banking sector. Key publications that
can introduce the reader to this area of study are [26–28].

(iii1) A Bilevel DEA Model for Efficiency Evaluation and Target Setting with Stochastic
Conditions, by A.C. Georgiou, K. Karapis, E.-M. Vretta, K. Bitsis, and G. Paltayian [29].
The paper presents a novel bilevel DEA model to evaluate organizational efficiency and set
performance targets under stochastic conditions. It combines hierarchical decision-making
with uncertainty modeling through discrete scenarios, which makes it particularly suitable
for environments with volatile economic conditions. The model’s integration of bilevel
optimization and stochastic elements provides practical insights into resource allocation
and output targeting while accommodating uncertainty. A major contribution of this
work is its ability to address the complex interdependencies and hierarchical structures in
large organizations, exemplified by a case study in the banking sector. This enhances its
relevance to industries with similar operational complexities. The proposed approach offers
dynamic strategies for decision-makers, allowing adjustments as scenarios unfold, thereby
improving overall sustainability across economic, environmental, and social dimensions.
The mathematical rigor and practical application make this paper a valuable addition to the
literature on efficiency analysis, especially for sectors undergoing transformative changes
such as banking.

(ix) General Stochastic Processes.
(ix1) A Class of Power Series q-Distributions, by Charalambos A. Charalambides † [30].

This is a seminal paper extending the work of the author devoted to q-distributions pub-
lished on the research monograph Charalambides [31]. For example, the q-binomial
distribution is the distribution of the number of successes in a sequence of n independent
Bernoulli trials, with the odds of success at a trial varying geometrically with the number of
trials. As a second example, the negative q-binomial distribution of the second kind is the
distribution of the number of failures until the occurrence of the nth success in a sequence of
independent Bernoulli trials, with the probability of success at a trial varying geometrically
with the number of successes. A class of power series q-distributions, by considering a
q-Taylor expansion of a parametric function, provides a unified approach to the study of
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these distributions. Its q-factorial moments, for 0 < q < 1 and 1 < q < ∞, are obtained in
terms of q-derivatives of its series function. Moreover, it is proven that a power series q-
distribution is completely determined from its first two q-cumulants (or q-moments). Also,
the convolution of power series q-distributions, using probability-generating functions,
is shown to be a power series q-distribution. Furthermore, as part of demonstrating this
approach, the q-factorial moments for 0 < q < 1 and 1 < q < ∞ of the q-Poisson (Heine
and Euler) distributions, q-binomial distribution of the first kind, negative q-binomial
distribution of the second kind, and q-logarithmic distribution are obtained as members of
this class of distributions. In addition, interesting and useful structural information about
these distributions is obtained through their probability-generating functions.

† Prof. Charalambos A. Charalambides has “left” us unexpectedly just after submitting
the final form of his paper.

(ix2) Analyzing the Asymptotic Behavior of an Extended SEIR Model with Vaccina-
tion for COVID-19, by V.E. Papageorgiou, G. Vasiliadis, and G. Tsaklidis [32]. The paper
provides valuable corrections concerning the theoretical results displayed in previous publi-
cations that pertain to the non-negativity and boundedness of a system of seven differential
equations, which describe the transition of COVID-19 after the onset of the vaccination
period. These modifications are crucial in validating the suitability of the epidemiological
model for accurately describing the spread of COVID-19. More importantly, it provides
novel properties regarding the global asymptotic stability of both the disease-free and
endemic equilibria based on the values of the basic reproduction number. These theoretical
aspects are more crucial than the local stability analysis, offering insights into long-term
behavior when the system approaches the aforementioned equilibria. Finally, a novel addi-
tion to the literature is the computation of the convergence rate to the endemic equilibria,
offering a more comprehensive understanding of the system’s asymptotic behavior.

Conflicts of Interest: The author declares no conflicts of interest.
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Abstract: Generally, these days people live longer but often with increased impairment and disabili-
ties; therefore, they can benefit from assistive technologies. In this paper, we focus on the completion
of activities of daily living (ADLs) by such patients, using so-called Smart Homes and Sensor Tech-
nology to collect data, and provide a suitable analysis to support the management of these conditions.
The activities here are cast as states of a Markov-type process, while changes of state are indicated
by sensor activations. This facilitates the extraction of key performance indicators (KPIs) in Smart
Homes, e.g., the duration of an important activity, as well as the identification of anomalies in such
transitions and durations. The use of semi-Markov models for such a scenario is described, where the
state durations are represented by mixed gamma models. This approach is illustrated and evaluated
using a publicly available Smart Home dataset comprising an event log of sensor activations, together
with an annotated record of the actual activities. Results indicate that the methodology is well-suited
to such scenarios.

Keywords: Markov-type model; process mining; Smart Homes; convolution of gamma mixture models

MSC: 60K15

1. Introduction

Worldwide, people are living longer, with increasing numbers of older people forming
a larger proportion of the population [1]. It is predicted that, by 2050, the proportion of the
world population over 60 years of age will have grown to over 20%. However, the downside
of this prediction is that it comes with increased impairment and disability in older people,
including cognitive decline, depressive illnesses, and dementia. At the same time, however,
there have been major improvements in technology and, in particular, assistive technologies
are increasingly being used to facilitate the functioning, independence, and well-being of
older citizens.

Older people frequently experience physical and cognitive decline, typically prevent-
ing the completion of activities of daily living (ADLs) [2]. Such patients may need family or
professional care at home or might require admission to a long-term nursing facility, with a
resulting decrease in quality-of-life and an increase in costs. High-tech solutions can help
improve such situations, using so-called Smart Homes, which utilise assistive technologies
and employ sensors to collect appropriate data and provide suitable analysis to support
the diagnosis, monitoring, and treatment of these conditions.

Typically, in Smart Homes, sensors are placed on household objects, such as doors,
to monitor ADLs, or may instead utilise imaging techniques to infer (sub-)activities. The
activation of sensors can be recorded as a time-stamped log of low-level events. Such data
can be thought of as an event history, commonly used in process mining [3], where, in
the Smart Home case, the events typically characterise the start or end of an activity, or
sub-activity, of daily living. The activity can then be analysed to identify ADL behavioural
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patterns or abnormalities. This may lead to a reminder to the patient, if required, or an
alarm to alert carers or medical services that there may be an issue.

Markov models, and their extensions, offer a well-defined mathematical framework
for the movements of individuals through processes, where the individual is known to
enter and leave the system through a given state, at a given time. Such models have been
widely explored and developed to allow for different application areas and settings, as
well as for assessing the legitimacy of assumptions. More specifically, they have already
been used for Smart Homes (e.g., [4]) and Process Mining (e.g., [5]). In this paper, we
explore several possible directions that exploit the computational advantages of the Process
Mining paradigm alongside the mathematical and operational benefits of Markov-type
models. Several topics of interest are explored, namely: (i) first passage time distributions
for classes of interest, such as specific activities or groups of activities; (ii) aggregation of
states to identify levels of detail that are parsimonious and computationally efficient, while
providing appropriate inference; (iii) detection of anomalies and concept drift for such
activities of interest, which may be indicative of activities taking longer than previously or
might signal a new emergent pattern.

This paper is concerned with developing and illustrating some specific mathemat-
ical expressions and results for models of human activity. If these are appropriate then
computation should be efficient and can provide useful results, e.g., characterising and
detecting outliers in performance indicators, such as the length of time taken to perform
important (sub-)activities. Appropriate semi-Markov model assumptions can also be built
into simulation or digital twin analysis, facilitating the study of different scenarios and
their performance in various situations.

The novelty of this paper resides in the development and use of Markov-type models
to represent ADL processes and corresponding key performance indicators (KPIs) in Smart
Homes, as well as in describing and evaluating strategies to determine anomalies in such
transitions and durations. The approach is illustrated and evaluated using a publicly
available Smart Home dataset [6], comprising an event log of sensor activations, together
with an annotated record of the actual activities, which we use for model development
and validation.

2. Literature Review

Processes frequently occur in many different contexts, such as business, telecommu-
nications, and healthcare. Previously, there have been substantial efforts to model and
analyse such processes, with the aim of improving understanding and efficiency as well as
predicting future outcomes. Also, with recent developments in IT, there exist more sophis-
ticated computer systems to collect, store, process, and exchange data. This has led to the
emergence of Process Mining, as a bridge between data mining and process modelling [3],
which has already been applied to diverse areas, such as manufacturing (Lorenz et al. [7]),
telecommunications (Mahendrawathi et al. [8]), and healthcare (Rojas et al. [9]).

In general, such processes are defined as consisting of a number of activities each
with start and end times and corresponding durations. A process instance executes these
activities in a sequence, following the logic and rules at work in real-world scenarios.
Consequently, Process Mining may involve discovering the activities and trajectories that
comprise the process, predicting trajectories, or identifying outliers. Such analysis may use
standard data mining approaches such as classification, clustering, association rules, or
deep learning. However, in addition, model-based approaches can provide possibilities for
incorporating structural process knowledge into the analysis, thereby facilitating improved
insight and enhanced forecasting.

A mathematical model can be used to provide a simplified version of a process,
where analytic solutions or simulation models can imitate process behaviour without
necessarily engaging with real-world scenarios [10]. Such models have frequently been
used to address complex problems such as determining correctness, conformance, or
performance. Performance analysis typically focuses on the dynamic behaviour of the
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process, based on key performance indicators (KPIs) such as response time, uptime, or
reliability. More specifically, the main KPIs for Markov-type models have been identified
by [11] as (i) state occupancy probabilities, i.e., number of visits to a state during an
arbitrary time interval; (ii) first passage time probabilities; and (iii) state occupancy duration
probabilities [12]. Also, Markov models are widely used probabilistic process models where
it is assumed that the Markov property holds, i.e., the current state only depends on the
immediately previous state. This assumption facilitates both the prediction of individual
transitions [13] and population forecasting [14]. Higher-order Markov models [15] may
alternatively be employed if the Markov assumption is not appropriate [16,17]. Also,
non-homogeneous Markov models can be used if the model parameters are changing
with time [13].

Another type of Markov model is the hierarchical Markov model, where states may
be ordered in levels belonging to a hierarchy, where a group of lower-level states may
constitute a single state at a higher level ([4,18]). In addition, hierarchical Markov models
may only be partially observable, with unobserved states at the lower levels; such situa-
tions can be considered as hierarchical hidden Markov models [19]. On the other hand,
depending on the level of interest, the lower levels of the hierarchy may be aggregated to
combine states, remove kth order effects, and reduce computational complexity [20]. Also,
as well as the basic time-stamped events (change of state) data, we may have additional
covariates (features) which can be incorporated into the Markov models. In the literature,
this has been accomplished by using partitioning approaches [10], conditional Bayesian
networks [21], or making the transition parameters functions of the covariates [22].

As a result of such breadth and diversity, Markov-type models are highly appli-
cable to a variety of application areas. A few such examples are manpower planning,
e.g., Papadopoulou and Vassiliou [23], Verbeken and Guerry [24], and McClean et al. [25];
hospital planning, e.g., Marshall and McClean [21], Shaw et al. [26]; business process
modelling, e.g., Yang et al. [5], Chen et al. [27]. In addition, there have been a num-
ber of papers using Markov-like models for Smart Homes, which are our current focus,
e.g., Youngblood and Cook [18], Wang et al. [4]. We have also co-authored an introductory
paper on this topic which focuses on the use of semi-Markov models for state durations
in Smart Homes (Yang et al. [28]). As we will discuss further, this application area is very
well suited to a number of the approaches we have mentioned. As such, we believe that
Process Mining and Markov-type models can make a very useful contribution to utilising
data from Smart Homes, to great advantage.

3. First Passage Time from a Specified Class of States to the Complement of that Class

3.1. The General Case

In what follows, we will consider a notional Smart Home in which we represent human
activities of daily living by way of a semi-Markov process, where the states represent
changes of (sub-)activity and are typically detected by time-stamped sensor activations,
although other mechanisms are possible, e.g., image-processing of a video feed.

We define Class C as a subset of the states of the semi-Markov system and C′ its
complement in S, the full set of states. Here, S is notionally a set of human activities of
daily living carried out in the home and C is a subset of (sub-)activities that are performed
to achieve a goal, e.g., making breakfast. Here, S might be the full set of activities of
interest in the home, such as “make breakfast”, “eat breakfast”, “wash dishes”, “make
dinner”, “take shower”, and so on, while C is a subset of S, for example, we might have
C = “Manage breakfast” = “cook breakfast”, “eat breakfast”, “wash dishes”. On the other
hand, C̃ is an aggregate of all activities in S that are not in C. Initially, we are interested in
the distributions of durations in the states of C before the first transition to C̃.

Then, the sub-transition matrix for class C is A = {aij}, where k is the number of
states and i, j = 1, · · · , k. Here, we consider C̃ as an aggregate of all states in C′ and b is the
k-dimensional column vector of transition probabilities from states of C to the aggregated
states of C̃. Then, H(t) = {hi(t)} is the k × k matrix with columns the probability density
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function’s (pdf’s) of holding times in each state of C, respectively, and f (t) = { fi(t)} is the
column vector of first passage times from each state of C to C̃, respectively. Then,

f ∗(s) = (A�H(s)) f ∗(s) + b�h∗(s), (1)

where � is the Hadamard product and f ∗(s) is the moment generating function of f (t),
while h∗(s) is the moment generating function of h(t). This is a special case of the result
in [29]. Regrouping gives

f ∗(s) = (I − A�H∗(s))−1b�h∗(s). (2)

We note that, in the relation in reference (2), the inverse of the matrix always exists
(see [30], P710). We consider an example for k = 2, which has been explored previously.
Here, states 1 and 2 form the class of interest and we assume that the holding times are
exponentially distributed with parameters as in the diagram (Figure 1).

Figure 1. An example where k = 2.

In this case, h(t) = (h1(t), h2(t))
′
= ((α + β)e−(α+β)t, (γ + δ)e−(γ+δ)t).

A =

⎛⎜⎜⎝0
β

α + β
γ

γ + δ
0

⎞⎟⎟⎠, b =

⎛⎜⎜⎝
α

α + β

δ

γ + δ

⎞⎟⎟⎠, (3)

H(t) =

(
(α + β)e−(α+β)t (α + β)e−(α+β)t

(γ + δ)e−(γ+δ)t (γ + δ)e−(γ+δ)t

)
, h(t) =

(
(α + β)e−(α+β)t

(γ + δ)e−(γ+δ)t

)
, (4)

and

H∗(s) =
(
(α + β)/(α + β + s) (α + β)/(α + β + s)

(γ + δ)/(γ + δ + s) (γ + δ)/(γ + δ + s)

)
. (5)

So,

f ∗(s) =
(

1 −β/(α + β + s)
−γ/(γ + δ + s) 1

)−1
(

α/(α + β + s)

δ/(γ + δ + s)

)

=

(
1 − βγ

(α + β + s)(γ + δ + s)

)−1
(

1 β/(α + β + s)

γ/(γ + δ + s) 1

)(
α/(α + β + s)

δ/(γ + δ + s)

)

=

(
1 − βγ

(α + β + s)(γ + δ + s)

)−1

⎛⎜⎜⎝
α

α + β + s
+

βδ

(α + β + s)(γ + δ + s)
δ

γ + δ + s
+

βγ

(α + β + s)(γ + δ + s)

⎞⎟⎟⎠.

(6)
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Putting γ = 0 to give a Coxian phase type model with two phases, we get:

f ∗(s) =

⎛⎜⎜⎝
β

α + β + s
+

βδ

(α + β + s)(δ + s)
δ

δ + s

⎞⎟⎟⎠, (7)

f (t) =

⎛⎜⎝ βδ

α + β − δ
e−δt +

(α + β)(α − δ)

α + β − δ
e−(α+β)t

δe−δt

⎞⎟⎠. (8)

We note that this equation was previously obtained in McClean [31].

3.2. The Coxian Model

For the general Smart Home case, we consider a Coxian transition matrix structure
where transitions to transient states are sequential (Figure 2) and we envisage a phase-type
model where there are a number of transient states and exit to a single, or possibly a
group of, absorbing state(s). Exit to the absorbing state can occur from any transient case,
otherwise, departure from a transient state is to the next transient state in the sequence. A
classical phase-type distribution describes a non-negative random variable (usually the
duration) generated by a Markov process having a number of transient states (or phases)
and a single absorbing state. The duration in each state is therefore exponential. However,
in the current case, we envisage a semi-Markov Coxian phase-type model, in particular, a
model with mixed gamma durations in each state.

Figure 2. The Coxian phase-type model.

Here, the transient class of states could be all the activities in a visit to the kitchen.
Entry to the class is flagged by a door sensor and the class comprises all possible states
in the kitchen. For example, a state could be accessing the kettle, which may be accessed
for making a cup of coffee (short duration) or for filling a cooking pot (long duration). We
therefore assume that the inhabitant enters the kitchen, and then carries out one or more
activities in the kitchen class, where an activity duration is described by a mixed gamma
duration. In our notional example, these mixture components typically represent latent
sub-states, e.g, the short and long kettle durations.

For this semi-Markov Coxian phase-type model, we let ai be the transition probability
from phase Si to Si+1, for i = 1, · · · , k − 1, and let bi be the probability of transition from Si
to Sk+1, for i = 1, · · · , k where Sk+1 is the absorbing state. Then, fi(t) is the pdf of duration
in phase Si, with corresponding generating function f ∗i (s) for i = 1, · · · , k.

In this case:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b1 0 · · 0

0 0 b2 0 · 0

· · · · · ·
· · · · · ·
· · · · · ·
0 0 0 · · bk−1

0 0 0 · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

·
·
·

ak−1

ak

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)
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H(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(t) · · · · h1(t)

h2(t) · · · · h2(t)

· · · · · ·
· · · · · ·
· · · · · ·

hk−1(t) · · · · hk−1(t)

hk(t) · · · · hk(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and h(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(t)

h2(t)

·
·
·

hk−1(t)

hk(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Then, we have:

f ∗(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −b1h∗1(s) 0 · · 0
0 1 −b2 f ∗2 (s) 0 · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 0 · · −bk−1 f ∗k−1(s)
0 0 0 · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1h1(t)

a2h2(t)

·
·
·

ak−1hk−1(t)

akhk(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 b1h∗1(s) b1b2h∗1(s)h
∗
2(s) · · b1b2 · · · bk−1h∗1(s) · · · h∗k−1(s)

0 1 b2h∗2(s) 0 · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 0 · · bk−1h∗k−1(s)
0 0 0 · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1h1(t)

a2h2(t)

·
·
·

ak−1hk−1(t)

akhk(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(11)

So,

f ∗i (s) =
k

∑
j=i

αjhj ∗ (s)
k−1

∏
r=j

brh∗r (s), i = 1, · · · , k. (12)

For k = 2 and

H∗(s) =
(
(α + β)/(α + β + s) (α + β)/(α + β + s)

(γ + δ)/(γ + δ + s) (γ + δ)/(γ + δ + s)

)
. (13)

We therefore obtain the previous result for a Coxian Markov phase-type model. If
the initial state entered in C is unknown we use a probability vector π = {πi}, where πi
is the probability of admission to state Si, i = 1, · · · , k. In this case, the transform of the
unconditional pdf of duration in C is:

g∗(s) = π f ∗(s). (14)

For mixed gamma holding times and a semi-Markov Coxian phase-type model
we have:

hi(t) =
Ri

∑
r=1

πir
1

Γ(αir)β
αir
ir

tαir−1e−
t

βir , t ≥ 0, (15)

and

h∗i (s) =
Ri

∑
r=1

πir(1 + βirs)−αir , i = 1, · · · , k. (16)

So, we need to compute f ∗i (s), which is a mixture of terms with coefficients
αj ∏k−1

r=j br of the convolution of exponentials. Thus, the time to exit from class C is
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prob(exit from 1) × (mixed gamma 1) + prob(exit from 2) × (mixed gamma 1
⊕

mixed
gamma 2) + · · · . We can think of this as a mixture of terms relating to exits from successive
states, where the corresponding duration is a convolution of times in all the states involved
in this transition. We regard such terms as durations of time to exit from C, following entry
to the hidden semi-Markov model, where the gamma mixture components are hidden
states. Here,

⊕
denotes convolution (sum of two independent random variables). We write

f ∗i (s) =
k

∑
j=i

aj(
k−1

∏
r=j

brh∗j (s)h
∗
r (s)), i = 1, · · · , k. (17)

For example, when k = 2:

f ∗1 (s) = a1h∗1(s) + a2b1h∗1(s)h
∗
2(s), (18)

f ∗2 (s) = a2h∗2(s). (19)

So, for entrance to state 1 and exit from state 1, we have a mixture of durations with an
exit from state 1 directly, with probability a1 and from state 1 to state 2, and then state 2 to
exit, with probability a2b1. Inverting the transforms, the corresponding durations have pdfs
h1(t) and the convolution of h1(t) and h2(t), respectively. Here, a1 + b1 = 1 and a2 = 1. For
entrance to state 2, exit can only occur directly from state 2, and the duration has pdf h2(t).

In general, of course, different sequences may be formed from the same activities
executed in different orders. Here, we have developed the theory for commonly occurring
sequences and those potentially of particular interest, e.g., some sequences might indicate
that the patient is not managing their activities successfully. In further work, we plan to
further consider these aspects, particularly focusing on the aggregation of states, as an aid
to understanding, and improved computational efficiency [20].

3.3. Gamma Convolutions

The sum of a number of independently and identically distributed random variables
is called their convolution. The exact expressions for the convolutions of n gamma pdfs
and cumulative distribution functions (cdfs) are complex and difficult to compute, but are
of considerable practical interest [32]. In particular, some authors have proposed that a
simple gamma distribution can give a good approximation, especially for convolutions
with n > 2, (Stewart et al. [33], Covo and Elalouf [34]). On the other hand, approximations
and high-performance algorithms have also been developed and are implemented in coga
(r-project-org) [35]. In particular, exact solutions have been implemented for n = 2 [36]
or n > 2 [37], while efficient approximate solutions have originated from Barnabani [38].

In our current context, some interesting work has been carried out by Guenther et al. [20]
(and in other papers), who describe the modelling and computation of passage-time distribu-
tions between groups and aggregates of states.

4. Experiments on Artificially Generated Smart Home Data

In this Section, we generate mixed gamma data representing typical behaviours
of each of two activities, in each case consisting of two possible sub-activities, where
each sub-activity has two or three possible mixed gamma components. The chosen ac-
tivities are Toileting and Breakfast, respectively. In each case, we simulate an activity
instance by generating two mixed gamma sub-activity instance durations, where we as-
sume these two sub-activities are followed sequentially. For each activity, we then simulate
10,000 representative activity instance durations as the sum of the corresponding mixed
gamma sub-activity instance durations.

Using these simulated data, we carry out a series of experiments that, for each of the
two activities, compare the empirical activity duration distribution with the convolution
model, computed as the convolution of the two sub-activity durations, and the mixed
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gamma model fitted to the actual (simulated) data for the activity duration. As discussed
in the previous section, the latter has previously been shown to give a good approximation
to such data [5].

4.1. Datasets

Toileting To generate data that simulates a scenario in which the inhabitant first
performs ‘use toilet’ and then ‘wash hands’, we suppose the inhabitant has three patterns
when using the toilet, requiring 1, 5, and 10 min on average and two duration patterns
for washing hands, taking on average 20 and 40 s each. Such patterns are created by
gamma distributions with parameters presented in Table 1. The sequential execution of the
two activities is referred to as ‘Toileting’.

Table 1. Toileting: real gamma distribution parameters and the parameters fitted by the model-
based method.

Real Parameters Estimated Parameters

Activity Shape Scale Mean Mixing Shape Scale Mean

Toileting
Use toilet

3 20 60 0.795 3.076 19.168 58.961
50 6 300 0.165 43.040 6.946 298.963
200 3 600 0.040 201.440 2.970 598.284

Wash hands 20 1 20 0.701 21.257 0.939 19.951
40 1 40 0.299 46.666 0.861 40.170

Breakfast To simulate a ‘Breakfast’ scenario including two consecutive activities, ‘eat
food’ (three patterns taking 10, 20, and 40 min on average) and ‘wash dishes’ (two patterns,
requiring 5 and 10 min), gamma distributions are employed with the parameters shown
in Table 2.

Table 2. Breakfast: real gamma distribution parameters and the parameters fitted by the model-
based method.

Real Parameters Mathematical Model

Activity Shape Scale Mean Mixing Shape Scale Mean

Breakfast
Eat food

60.00 10.00 600.00 0.69 57.12 10.54 601.86
60.00 20.00 1200.00 0.24 66.77 18.07 1206.47
120.00 20.00 2400.00 0.07 121.83 19.69 2398.62

Wash dishes 10.00 30.00 300.00 0.74 13.35 20.94 279.58
30.00 20.00 600.00 0.26 29.78 19.08 568.22

4.2. Goodness of Fit of the Model-Based Method for ‘Toileting’

Regarding ‘Toileting’, Table 1 displays real gamma parameters for generating the
activities ‘use toilet’ and ‘wash hands’, alongside the model-based method estimated
from gamma mixture models. Additionally, Table 3 shows the gamma mixture model
parameters obtained from the data-driven-based method. Such mixture models are fitted
by maximizing the likelihood using the Nelder–Mead simplex algorithm [5].

Table 3. Toileting: parameters fitted by the data-driven-based method.

Mixing Shape Scale Mean

Toileting
0.796 6.086 13.402 81.561
0.164 51.745 6.529 337.822
0.040 189.917 3.376 641.162
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Figure 3 demonstrates the model-based method for estimating the duration distribu-
tion of the ‘toileting’ activity (red line). This is achieved by the convolution of estimated
gamma mixture models for ‘use toilet’ (black line) and ‘wash hands’ (orange line) in
Figure 4. The green line represents the distribution that is estimated by the data-driven
method. In other words, instead of fitting ‘toileting’ data directly (the data-driven method),
the model-based approach first separately fits the duration distributions of the two sub-
activities and then combines them to estimate the ‘toileting’ duration distribution. The
model-based method is therefore suitable for scenarios in which the distribution of sub-
activities is known, without the need for additional computational resources.

Figure 3. Toileting: pdf of the model- and data-driven-based methods.

Figure 4. Toileting: pdf of activities ‘use toilet’ and ‘wash hands’.

The KS test [39] is then employed to assess the goodness of fit of the model-based method,
with the results presented in Table 4 and Figure 5. We note that the Anderson–Darling test
could have been used here as a more powerful alternative to the Kolmogorov–Smirnov test.
In summary, both the model-based and data-driven methods effectively represent the original
data distribution, as indicated by p-values of 0.219 (model-based) and 0.181 (data-driven),
which exceed the predetermined significance level of 0.05. Furthermore, the estimated dura-
tion distributions by the two methods is extremely similarly with a p-value of 0.610; the same
result can be seen in Figure 5.

Table 4. Toileting: the goodness of data fitting by using the KS test.

Sample 1 Sample 2 Statistic p-Value

Model-based Real data 0.047 0.219
Data-driven-based Real data 0.049 0.181

Model-based Data-driven-based 0.034 0.610
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Figure 5. Toileting: cdf of the model- and data-driven-based methods.

4.3. Goodness of Fit of the Model-Based Method for ‘Breakfast’

Similarly, parameters to generate the data of ‘eating food’ and ‘washing dishes’ and
parameters fitted by the model-based method are presented in Table 2. Table 5 displays the
data-driven method estimated gamma mixture model parameters. The fitted pdf curves
are shown in Figure 6.

Table 5. Breakfast: parameters fitted by the data-driven-based method.

Mixing Shape Scale Mean

Breakfast
0.698 51.105 17.714 905.274
0.233 59.564 27.811 1656.523
0.069 145.588 20.580 2996.230

Figure 6. Breakfast: the pdf of model- and data-driven-based methods.

The pdf of activities ‘eat food’ and ‘wash dishes’ is given in Figure 7. The KS test
results are given in Table 6 and Figure 8. The data-driven method fits the data the best with
the highest p-value of 0.523 compared to 0.276 of the model-based method. We highlight
that, although the performance of the data-driven method in data fitting outperforms the
model-based method, they show less distribution difference with a p-value of 0.821.

Table 6. Breakfast: the goodness of data fitting by using the KS test.

Sample 1 Sample 2 Statistic p-Value

Model-based Real data 0.180 0.276
Data-driven-based Real data 0.147 0.523

Model-based Data-driven-based 0.114 0.821
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Figure 7. Toileting: pdf of activities ‘eat food’ and ‘wash dishes’.

Figure 8. Breakfast: activites of the model- and data-driven-based methods.

5. Example Using Artificially Generated Data for Toileting to Assess Deterioration

Using the artificially generated data described in Section 4.2, we will illustrate the
model described in Equations (17) to (19) and discussed in Section 3.3, for gamma convolu-
tion. We therefore consider a toileting model as described in the real data part of Table 1.
However, we now use a mixed gamma with the given parameters for the two activities ‘use
toilet’ and ‘wash hands’ but, unlike in Section 4, we assume that ‘wash hands’ is omitted
with probability b. This might be of interest, for example, when assessing deteriorating
cognitive or kidney function in an elderly patient.

In this case, the pdf for time spent on the toileting activity becomes a mixture of the
pdf of time spent using the toilet, with probability b, and the convolution of time spent
on ‘use toilet’ and ‘wash hands’, with probability 1 − b. In Figure 9, we see the pdf of this
distribution plotted as a function of b, which shows that, with the increase of b (higher
probability to omit washing hands), the length of duration to complete activity ‘toileting’ is
decreasing. Here, b may be regarded as a proxy for impairment, and we can therefore use
a statistical test, such as likelihood ratio, to test for drift in b, signalling possible decline.
Similarly, Figure 10 demonstrates the pdf that ‘wash dishes’ is omitted with probability b.

Figure 9. Toileting: pdf of the model-based method given that “wash hands” is omitted with
probability b.
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Figure 10. Breakfast: pdf of the model-based method given that “wash dishes” is omitted with
probability b.

6. Experiments on Real-World Smart Home Data

Datasets

This section utilizes data pertaining to the daily activities of a 26-year-old individual
living in a three-room apartment, as gathered by van Kasteren [6]. The data comprise
14 binary state-change sensors, representing the seven activities shown in Table 7 with
the Markov transition probabilities shown in Table 8. These sensors were strategically
positioned in various areas such as cupboards, refrigerators, and doors, and were left
unattended for a duration of 28 days. Additional insights into the apartment’s layout and
sensor placement can be found in [6,40].

Table 7. Events in the activity, sensor, and location level [28].

Level Events #Events

Activity ‘Get Drink’, ‘Go to Bed’, ‘Leave House’, ‘Prepare
Breakfast’, ‘Prepare Dinner’, ‘Take Shower’, ‘Use Toilet’ 7

Sensor

‘Microwave’, ‘Hall Toilet Door’, ‘Hall Bathroom Door’,
‘Cups Cupboard’, ‘Fridge’,‘Plates Cupboard’, ‘Front
Door’, ‘Dish Washer’, ‘Toilet Flush’, ‘Freezer’, ‘Pans

Cupboard’, ‘Washing Machine’, ‘Groceries Cupboard’,
‘Hall Bedroom Door’

14

Location ‘Outdoor’, ‘Bedroom’, ‘Kitchen’, ‘Washroom’ 4

Table 8. Transition probabilities between activities [28].

GD GTB LH PB PD TS UT

Get Drink (GD) 0.15 0 0 0.05 0 0 0.8
Go to Bed (GTB) 0 0 0 0.042 0 0 0.958
Leave House (LH) 0.091 0.03 0.03 0 0.091 0.061 0.697
Prepare Breakfast (PB) 0.05 0 0 0 0 0.55 0.4
Prepare Dinner (PD) 0.6 0 0.1 0 0 0 0.3
Take Shower (TS) 0 0 0.913 0 0.043 0 0.043
Use Toilet (UT) 0.061 0.193 0.096 0.158 0.053 0.088 0.351

Since all seven activities have a high transition probability to activity ‘use toilet’, these
transitions are of interest, with 16, 23, 23, 8, 3, 1, and 40 samples, respectively, starting from
‘get drink’, ‘use toilet’, ‘go to bed’, ‘leave house’, ‘prepare breakfast’, ‘prepare dinner’, ‘take
shower’ and ‘use toilet’. Due to the limited sample size and the lack of a representative,
several transitions are ignored and, finally, data from ‘go to bed’ to ‘use toilet’ and ‘use
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toilet’ to ‘use toilet’ are used as a case study. Their density distributions are shown in
Figures 11 and 12. Figures 13 and 14 demonstrate their active curves with the KS test results
in Tables 9 and 10.

Figure 11. From ‘go to bed’ to ‘use toilet’: the pdf of model- and data-driven-based methods.

Figure 12. From ‘use toilet’ to ‘use toilet’: the pdf of model- and data-driven-based methods.

Figure 13. From ‘go to bed’ to ‘use toilet’: cdf of the model- and data-driven-based methods.
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Figure 14. From ‘use toilet’ to ’use toilet’: cdf of the model- and data-driven-based methods.

Table 9. From ‘go to bed’ to ‘use toilet’: the goodness of data fitting by using the KS test.

Sample 1 Sample 2 Statistic p-Value

Model-based Real data 0.215 0.685
Data-driven-based Real data 0.205 0.705

Model-based Data-driven-based 0.248 0.532

Table 10. From ‘use toilet’ to ’use toilet’: the goodness of data fitting by using the KS test.

Sample 1 Sample 2 Statistic p-Value

Model-based Real data 0.582 0.217
Data-driven-based Real data 0.481 0.384

Model-based Data-driven-based 0.388 0.632

7. Conclusions and Further Work

Smart Homes and sensorized environments are becoming increasingly prevalent
and can provide a useful source of support for disabled inhabitants. In this paper, we
have developed suitable equations for semi-Markov models with mixed gamma duration
distribution; these have been implemented and evaluated using simulated and real data
and have been shown to produce promising results. Such durations can be interpreted
as KPIs (Key Performance Indicators) and can be used to assess changes represented by
anomalies/outliers or concept drift (changes in duration distribution).

In further work, we plan to extend the research to different Markov-type models,
such as: (i) nth order models, where the Markov property no longer hold in all cases,
and there may be situations when the next (sub-)activity depends on previous states;
(ii) non-homogeneous Markov models [17], where the model parameters vary with time,
e.g., day-time and night-time, or week-days and weekends, might have different activity
patterns that are reflected in model parameters; and (iii) the aggregation of semi-Markov
models with a view to providing key information at a suitable level of detail and to improve
computational efficiency.

In general, such models can be used in healthcare situations in several important ways.
Firstly, they can provide assistance for the patient, by reminding and prompting when
a (sub-)activity has been ongoing for too long or omitted. By providing such services in
the home, there are potentially huge financial benefits, in terms of reduced hospital and
nursing home admissions, as well as improved quality-of-life for the patient and their
carers. Secondly, by providing information to the medical professionals and identifying
possible deterioration in the patient’s condition, there can be improved monitoring, with the
potential for more timely and effective treatment and reductions in hospital (re)admissions.
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Finally, by having a suitable deployment of such Smart Home technologies, the care of
relevant patients can be better managed, resourced, and planned. However, although there
has been a considerable amount of research and some deployment of such solutions, there
is still a lot of work that needs to be undertaken before the approach is fully fit-for-purpose
and widely adopted ([41,42]).
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Abstract: Several research papers have attempted to describe the dynamics of COVID-19 based on
systems of differential equations. These systems have taken into account quarantined or isolated cases,
vaccinations, control measures, and demographic parameters, presenting propositions regarding
theoretical results that often investigate the asymptotic behavior of the system. In this paper, we
discuss issues that concern the theoretical results proposed in the paper “An Extended SEIR Model
with Vaccination for Forecasting the COVID-19 Pandemic in Saudi Arabia Using an Ensemble Kalman
Filter”. We propose detailed explanations regarding the resolution of these issues. Additionally, this
paper focuses on extending the local stability analysis of the disease-free equilibrium, as presented
in the aforementioned paper, while emphasizing the derivation of theorems that validate the global
stability of both epidemic equilibria. Emphasis is placed on the basic reproduction number R0, which
determines the asymptotic behavior of the system. This index represents the expected number of
secondary infections that are generated from an already infected case in a population where almost
all individuals are susceptible. The derived propositions can inform health authorities about the long-
term behavior of the phenomenon, potentially leading to more precise and efficient public measures.
Finally, it is worth noting that the examined paper still presents an interesting epidemiological scheme,
and the utilization of the Kalman filtering approach remains one of the state-of-the-art methods for
modeling epidemic phenomena.
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modelling; COVID-19

MSC: 65P40; 62P10; 37N35; 34D20

1. Introduction

The authors in [1] propose a compartmental model that contains a system of seven
differential equations with the aim of describing the changing dynamics of the spread of
COVID-19. The model divides the population into smaller parts, considering susceptible
(S), exposed (E), infected (I), quarantined (Q), recovered (R), deceased (D), and vaccinated
(V) cases. The first part of the aforementioned paper is dedicated to the proposal of
theoretical results regarding the non-negativity of model’s states, the boundedness of the
total population, and the existence and local stability of the disease-free equilibrium (DFE),
based on the basic reproduction number, R0.

However, there are certain issues regarding the presented proofs and formulas. In
the present analysis, we aim to introduce the existing errors, providing detailed comments
that rectify them. Moreover, emphasis is placed on proposing theorems concerning the
global stability analysis of epidemic equilibria, in accordance with the above-mentioned
scheme. In this way, we extend the theoretical results displayed in [1], while providing
valuable information regarding the asymptotic behavior of the epidemiological system.
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This information can be employed for the establishment of more accurate measures that
can facilitate the limiting of the virus’s transmission.

Typically, the spread of infectious diseases is explained through compartmental mod-
els, among which the SIR model—representing susceptible-infected-recovered—is the most
recognized [2]. Consequently, numerous studies delve into the dynamics of COVID-19
relying on the SIR model or its adaptations like SIRS [3], SEIR, or the SEIRD models [4].
Furthermore, Malkov [5] proposed a deterministic SEIRS model that incorporates time-
varying transmission rates for the description of the transmission of COVID-19. Other
compartmental extensions can be found in [6–11]. All the abovementioned endeavors are
based on systems of differential equations that can be numerically solved.

Several techniques have been proposed in the literature to establish numerically stable
methodologies for solving systems of differential equations. Many papers employ Runge–
Kutta methodologies, with the 4th-order Runge–Kutta being the most widely known [12,13].
Several extensions have been proposed in the articles of Kalogiratou and Monovasilis,
which refer to two-derivative Runge–Kutta methods with optimal phase properties [14],
optimized dispersion and dissipation error [15], and constant and frequency dependent
coefficients [16]. Moreover, additional advanced techniques for solving systems of partial
differential equations have been proposed in [17–19].

In summary, the present paper provides valuable corrections concerning the theoretical
results displayed in [1] that pertain to the non-negativity and boundedness of a system of
seven differential equations, which describe the transition of COVID-19 after the onset of
the vaccination period. These modifications are crucial in validating the suitability of the
epidemiological model for accurately describing the spread of COVID-19. More importantly,
we provide novel properties regarding the global asymptotic stability of both the disease-free
and endemic equilibria based on the values of the basic reproduction number (R0). These
theoretical aspects are more crucial than the local stability analysis, offering insights into
long-term behavior when the system approaches the aforementioned equilibria. Finally, a
novel addition to the literature is the computation of the convergence rate to the endemic
equilibria, offering a more comprehensive understanding of the system’s asymptotic behavior.
Using real values for the basic reproduction number derived from experimental data, we can
evaluate the severity of the phenomenon and validate previous predictions about the future
course of the pandemic in the literature.

The rest of the article is structured as follows: In Section 2, we present a series of
issues regarding the non-negativity and boundedness theorems that are proposed in [1],
while Sections 3 and 4 are dedicated to the rectification of issues concerning the local
stability of the disease-free equilibrium and the existence and uniqueness of the endemic
equilibrium, respectively. Finally, in Section 5, we present novel results regarding the global
stability of the epidemic equilibria, while in Section 6, we conclude with the advantages of
epidemiological modeling, emphasizing the main contribution of the present paper.

2. Non-Negativity of Model’s States and Boundedness of the Total Population

To begin, the authors in [1] have proposed an ODE system of seven equations to describe
the transmission of COVID-19 after the opening of the vaccination period. As a result, the
examined population has been split into seven compartments (classes) based on the state of
the population’s members; Equation (1) displays the transitions between these classes, namely

dS(t)
dt = Λ − βS(t)I(t)− aS(t)− μS(t),

dE(t)
dt = βS(t)I(t)− γE(t) + σβV(t)I(t)− μE(t),

dI(t)
dt = γE(t)− δI(t)− μI(t),

dQ(t)
dt = δI(t)− (1 − κ)λQ(t)− κρQ(t)− μQ(t),

dR(t)
dt = (1 − κ)λQ(t)− μR(t),

dD(t)
dt = κρQ(t),

dV(t)
dt = αS(t)− σβV(t)I(t)− μV(t),

(1)
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with non-negative initial conditions. In Table 1, we present the definition of the system’s
states and parameters.

Table 1. Parameter and state definition of the proposed SEIHCRDV model.

Symbol Definition of Parameter/State

S Susceptible
E Exposed
I Infectious
Q Quarantined
R Recovered
D Deceased
V Vaccinated
Λ New births and new residents
a Vaccination rate
β Transmission rate
γ Incubation rate
δ Infection rate
λ Recovery rate
κ Case fatality rate
μ Natural death rate
ρ Death rate
σ Vaccine inefficacy

In the first theorem of [1], the authors aim to prove the non-negativity of the system’s
states based on the proposed system of differential equations. More specifically, an attempt
to prove the non-negativity of the number of susceptible cases S(t), ∀t ≥ 0, when S0 > 0 is
displayed. This attempt leads to

S(t) ≥ S0e−μt ≥ 0 . (2)

However, this inequality does not seem to hold true when considering the first differ-
ential equation of the system. Equation

dS(t)
dt

= Λ − βS(t)I(t)− aS(t)− μS(t) > −μS(t) , (3)

holds true only when Λ > βS(t)I(t) + aS(t). It is evident that there are several instances of
parameter selections where the aforementioned expression is not satisfied. We note that
all system’s parameters are assumed to be positive constants, as they represent ingoing or
outgoing transition rates of the system’s states. Therefore, a modification of (2) is required
to lead to the desired outcome. Specifically, we take

dS(t)
dt = Λ − βS(t)I(t)− aS(t)− μS(t) > −βS(t)I(t)− aS(t)− μS(t)

= −(βI(t) + a + μ)S(t) ≥ −
(

β max
t∈[0,∞)

I(t) + a + μ

)
S(t) .

Using the infinity norm ‖I(t)‖∞ = max
t∈[0,∞)

I(t), we obtain

d ln(S(t))
dt

≥ −(β‖I(t)‖∞ + a + μ).

Consequently, by integrating the above expression with respect to t, and substituting
t = 0, we result in

S(t) ≥ S0e−(β‖I(t)‖∞+a+μ)t ≥ 0 , ∀t ≥ 0 . (4)

Notice that ‖I(t)‖∞ < ∞, as we refer to a finite population function, N(t). We believe
that this approach now rectifies the proof of Theorem 1. The utilization of the infinity norm
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can be employed for proving the non-negativity of vaccinated cases, too, while the proof
for the remaining states is omitted for the sake of brevity.

In the second theorem of [1], the authors aim to prove the boundedness of the total
population function N(t), ∀t ≥ 0. They claim that since N(t) = S(t) + E(t) + I(t) + Q(t) +
R(t) + D(t) + V(t), for the derivative with respect to time, we have

dN(t)
dt

=
dS(t)

dt
+

dE(t)
dt

+
dI(t)

dt
+

dQ(t)
dt

+
dR(t)

dt
+

dD(t)
dt

+
dV(t)

dt
, (5)

which leads to
dN(t)

dt
= Λ − μN(t), ∀t ≥ 0 . (6)

However, Equation (6) does not hold based on the proposed epidemiological system,
which is presented in Equation (1). This derives from the inclusion of the deceased cases,
D(t), in the total population. The above expression should be rectified as

dN(t)
dt

= Λ − μ(S(t) + E(t) + I(t) + Q(t) + R(t) + V(t)) = Λ − μN(t) + μD(t), (7)

after the summation of all equations of the ODE system, as dN(t)
dt = dS(t)

dt + dE(t)
dt + dI(t)

dt +
dQ(t)

dt + dR(t)
dt + dD(t)

dt + dV(t)
dt . Thus, after moving μN(t) to the left side, we lead to

dN(t)
dt

+ μN(t) = Λ + μD(t),

or
deμtN(t)

dt
= (Λ + μD(t))eμt

and integrating with respect to t, we obtain

eμtN(t)− N0 =
Λ
μ

(
eμt − 1

)
+ μ

∫ t

0
D(s)eμsds, (8)

or

N(t) =
Λ
μ
+

(
N0 − Λ

μ

)
e−μt + μe−μt

∫ t

0
D(s)eμsds. (9)

As a result, N(t) is bounded if and only if
∫ t

0 D(s)eμsds is bounded for all t > 0.
Moreover, there is another major issue in the proof of Theorem 2 in [1]. The authors

claim that N(t) ≤ Λ
μ for all t > 0, regardless of the system’s parameters. According to

Expression (6), which as we mentioned earlier is not true, the authors lead to

N(t) =
Λ
μ
+

(
N0 − Λ

μ

)
e−μt, ∀t > 0 . (10)

Apparently, N(t) ≤ Λ
μ is not true for every parametric set. Based on Equation (10),

this is valid for all t > 0, only when N0 < Λ
μ .

Finally based on (9) for t → ∞ , we lead to

lim
t→∞

N(t) =
Λ
μ

, (11)

in case lim
t→∞

e−μt ∫ t
0 D(s)eμsds = 0.

As a result, it becomes evident that the authors’ proof for Theorem 2 does not validate
the theorem’s statement.
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3. Local Stability of the Disease-Free Equilibrium (DFE)

Moving on to Theorem 3, the authors claim that the disease-free equilibrium (DFE)
is locally asymptotically stable if R0 < 1 and unstable when R0 > 1. First, we notice that
during the computation of R0, the vector W(X) of Section 3.3 in [1] should be rectified to
W(X) = ((μ + δ)E,−γE + (μ + δ)I)T , since the number of infected cases is missing from
the second component of the vector. This modification does not alter the final formula for
R0, where

R0 =
βγΛ(μ + ασ)

μ(μ + γ)(μ + δ)(μ + α)
. (12)

To prove the local asymptotic stability of the DFE X0, the respective Jacobian matrix of
the epidemiological system is employed. Equilibrium X0 is locally asymptotically stable
when all six eigenvalues of the Jacobian J

(
X0) are negative. So, it is claimed that there are

two eigenvalues λ5, λ6, where

λ5 = −1
2

(
ε2 + ε3 +

√
(ε2 − ε3)

2 + 4ε2ε3R0

)
, (13)

and

λ6 = −1
2

(
ε2 + ε3 −

√
(ε2 − ε3)

2 + 4ε2ε3R0

)
. (14)

with ε2 = −(α + μ) and ε3 = −(δ + μ). While λ6 is indeed smaller than 0 when R0 < 1,
the same does not hold true for Expression (13). More specifically, we have√

(ε2 − ε3)
2 + 4ε2ε3R0 <

√
(ε2 − ε3)

2 + 4ε2ε3 = |ε2 + ε3| = −(ε2 + ε3),

or
ε2 + ε3 +

√
(ε2 − ε3)

2 + 4ε2ε3R0 < 0 ,

or

−1
2

(
ε2 + ε3 +

√
(ε2 − ε3)

2 + 4ε2ε3R0

)
> 0 ,

leading to λ5 > 0. According to the above, the DFE becomes asymptotically unstable
when R0 < 1, which contradicts with the statement of Theorem 3. Moreover, this outcome
opposes several analyses in literature [6,8,9,12,20–26]. On the other hand, when R0 is
greater than 1, the DFE becomes asymptotically unstable as λ5 < 0 and λ6 > 0.

The aforementioned issues possibly derive from the form of the Jacobin matrix J
(
X0),

which is presented in [1] (Equation (20), Section 3.3), as there are several mistakes concern-
ing the signs of the elements that take place on the matrix diagonal. The authors’ proof for
Theorem 3 does not validate the theorem’s statement.

4. Existence and Uniqueness of the Endemic Equilibrium

Following the theorem that concerns the local stability of the DFE, the authors empha-
size the existence and uniqueness of an endemic equilibrium, denoted by X∗. To begin with,
the expression of the endemic equilibrium should be rectified to X∗ = (S∗, E∗, I∗, Q∗, R∗, V∗),
as the number of diseased cases—and the respective differential equation—are excluded
from the determination of the equilibrium.

At the first part of the proof, the authors in [1] describe the components of X∗ with re-
spect to I∗ after adding the second and sixth equation of the system evaluated on the endemic
equilibrium. In Section 3.4 of [1], the authors use the notations ε1 = μ + α, ε3 = μ + δ and
ε4 = μ + λ(1 − κ) + κρ, and lead to expression

V∗ = ΛβγI + Λαγ − ε2ε3(βI + ε1)I
μγ(βI + ε1)

, (15)

30



Mathematics 2024, 12, 55

which represents the number of vaccinated cases when the system has entered the endemic
equilibrium. The endemic equilibrium is obtained after setting all derivatives of system (1)
to zero. After solving with respect to V∗, we reach Expression (15).

First, the I symbols should be replaced with I∗, as the system has to be evaluated at
the endemic equilibrium X∗ to describe V∗. Also, considering the notation in Section 3.3
of [1], where ε2 = −(γ + μ), the minus sign of the numerator must be replaced with a
plus sign.

Afterwards, the statement that a2 is always positive and a0 is negative when R0 > 1
contradicts Formula (26) in that paper. It should be emphasized that the opposite behavior
holds for these two quantities, namely a2 < 0 and a0 > 0.

Finally, we notice that an alternative, simpler formula can be derived for the number
of vaccinated cases at the equilibrium. Using the sixth equation of the system evaluated at
X∗, we culminate in V∗ = aS∗

μ+σβI∗ = αΛ
(μ+σβI∗)(βI∗+μ+α)

.

5. Global Stability Analysis of Epidemic Equilibria

At this point we emphasize the extension of the results concerning the stability analysis
of epidemic equilibria. Global stability analysis provides information about the behavior of
a system across its entire state space. Therefore, it determines the stability of the system
for all initial conditions. Thus, it offers a comprehensive view of the system’s behavior in
contrast to the local stability analysis, which can provide insights only around the equilibria.

Theorem 1. The DFE X0, is globally asymptotically stable if and only if R0 < 1.

Proof of Theorem 1. Based on the LaSalle’s invariance principle, we choose a Lyapunov function L(t)
that is positive semidefinite in the feasible region Ω = {(S, E, I, Q, R, V) | S, E, I, Q, R, V ≥ 0} =
R6
+, while its derivative is negative definite in the same region. Let

L(t) =
1
2

[(
S − S0

)2
+ E2 + I2 + Q2 + R2 +

(
V − V0

)2
]
=

1
2

XTX ≥ 0, (16)

where X =
(
S − S0, E, I, Q, R, V − V0)T , as E0 = I0 = Q0 = R0 = 0. Function L(t)

becomes 0 only on X0. For the derivate, we obtain

dL
dt =

(
S − S0) dS

dt + E dE
dt + I dI

dt + Q dQ
dt + R dR

dt +
(
V − V0) dV

dt
=

(
S − S0)[Λ − β

(
S − S0)I − βS0 I − (α + μ)

(
S − S0)− (α + μ)S0]

+E
[−(γ + μ)E + β

(
S − S0)I + βS0 I + σβ(V − V0)I + σβV0 I

]
+I[γE − (δ + μ)I] + Q[δI − ((1 − κ)λ + κρ + μ)Q] + R[(1 − κ)λQ − μR]
+
(
V − V0)[a

(
S − S0)+ aS0 − μ

(
V − V0)− μV0 − σβ(V − V0)I + σβV0 I]

= −β
(
S − S0)2 I − βS0(S − S0)I − (α + μ)

(
S − S0)2

−(γ + μ)E2 + β
(
S − S0)EI + σβ

(
V − V0)EI + βS0EI + σβV0EI

+γIE − (δ + μ)I2 + δQI − ((1 − κ)λ + κρ + μ)Q2 + (1 − κ)λRQ − μR2

+α
(
V − V0)(S − S0)− μ

(
V − V0)2 − σβI

(
V − V0)2

+ σβV0(V − V0)I
= XTAX = XTA1X + XTA2X,

(17)

where

A1 =

⎛⎜⎜⎜⎜⎜⎜⎝

−(α + μ) 0 −βS0 0 0 0
0 −(γ + μ) β

(
S0 + σV0) 0 0 0

0 γ −(δ + μ) 0 0 0
0 0 δ −((1 − κ)λ + κρ + μ) 0 0
0 0 0 (1 − κ)λ −μ 0
α 0 −σβV0 0 0 −μ

⎞⎟⎟⎟⎟⎟⎟⎠,
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and

A2 =

⎛⎜⎜⎜⎜⎜⎜⎝

−βI 0 0 0 0 0 0
βI 0 0 0 0 0 σβI
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −σβI

⎞⎟⎟⎟⎟⎟⎟⎠,

where A2 is a polynomial matrix. We have dropped the (t) notation for the sake of sim-
plicity. Furthermore, we notice that Λ − (α + μ)S0 = 0 and aS0 − μV0 = 0. Quantities
β
(
S − S0)IE, σβ

(
V − V0)IE, −σβI

(
V − V0)2 and −β

(
S − S0)2 I are matched with A2.

The characteristic polynomial of the 6 × 6 matrix A1 is

p(x) = det(xI6 − A1) = (x + α + μ)(x + μ)2(x + ((1 − κ)λ + κρ + μ))(
x2 + (γ + δ + 2μ)x + (μ + δ)(μ + γ)− βγ

(
S0 + σV0)) = 0,

(18)

leading to 4 negative eigenvalues. Now, for the second-order polynomial in (18), we imple-
ment the 2nd-order Routh–Hurwitz criterion, where the roots of the polynomial, lay on the
left-hand side of the complex plane when coefficients (γ + δ + 2μ) and (μ + δ)(μ + γ)−
βγ

(
S0 + σV0) are both positive. Apparently, (γ + δ + 2μ) > 0. Then the Routh–Hurwitz

criterion is satisfied when (μ + δ)(μ + γ)− βγ
(
S0 + σV0) > 0, and based on the R0 for-

mula displayed in [1], this inequality is true if and only if R0 < 1.
Ultimately, the eigenvalues of A2 are all non-positive due to I(t) being non-negative,

(non-negativity of system’s states). In parallel, the eigenvalues of A1 are all negative if
and only if R0 < 1. According to the above observations we get that XTA1X < 0, and
XTA2X ≤ 0. To summarize, dL

dt = XTAX < 0, if and only if R0 < 1, which proves the global
asymptotic stability of the DFE. �

Theorem 2. The endemic equilibrium X∗, is globally asymptotically stable when R0 > 1.

Proof of Theorem 2. Following a similar approach to that of the previous theorem, we note
that according to [1] the endemic equilibrium exists only when R0 is greater than 1. We
choose the quadratic Lyapunov function,

L(t) =
1
2

[
(S − S∗)2 + (E − E∗)2 + (I − I∗)2 + (Q − Q∗)2 + (R − R∗)2 + (V − V∗)2

]
=

1
2

YTY ≥ 0, (19)

where Y = (S − S∗, E − E∗, I − I∗, Q − Q∗, R − R∗, V − V∗)T , and L(X∗) = 0. Employ-
ing the second equation of the proposed system of differential equations evaluated on the
endemic equilibrium, we get

βS∗ I∗ + σβV∗ I∗ − γE∗ − μE∗ = 0 ,

or

β(S∗ + σV∗) = (γ + μ)E∗

I∗ =
(γ + μ)(δ + μ)

γ
(20)

.
For the derivative of the selected Lyapunov function, we have

dL
dt

= (S − S∗)
dS
dt

+ (E − E∗)
dE
dt

+ (I − I∗)
dI
dt

+ (Q − Q∗)
dQ
dt

+ (R − R∗)
dR
dt

+ (V − V∗)
dV
dt

, (21)

and after some algebraic manipulations we obtain
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dL
dt = (S − S∗)[−(a + μ)(S − S∗)− β(S − S∗)I − βS∗(I − I∗)]

+(E − E∗)[−(a + δ)(E − E∗) + σβ(V − V∗)I + β(S − S∗)I − β(S∗ + σV∗)I∗]
+(I − I∗)[γ(E − E∗)− (δ + μ)(I − I∗)]
+(Q − Q∗)[δ(I − I∗)− ((1 − κ)λ + κρ + μ)(Q − Q∗)]
+(R − R∗)[(1 − κ)λ(Q − Q∗)− μ(R − R∗)]
+(V − V∗)[α(S − S∗)− μ(V − V∗)− σβ(V − V∗)I − σβV∗(I − I∗)],

(22)

since according to [1] it holds that E∗ = δ+μ
γ I∗, Q∗ = δ

(1−κ)λ+κρ+μ
I∗, R∗ = (1−κ)λδ

μ((1−κ)λ+κρ+μ)
I∗,

and S∗ = Λ
βI∗+μ+α . Additionally, we notice that Λ− (α + μ)S∗+ βS∗ I∗ = 0, β(S∗ + σV∗)I∗ −

(γ + μ)E∗ = 0, and αS∗ − σβV∗ I∗ − μV∗ = 0, which derive from Equation (22) of [1]
(Section 3.4), leading to our Equation (22).

Now, Expression (22) can be represented in matrix form as

dL
dt

= XTBX = XTB1X + XTB2X, (23)

where

B1 =

⎛⎜⎜⎜⎜⎜⎜⎝

−(α + μ) 0 −βS∗ 0 0 0
0 −(γ + μ) 0 0 0 0
0 γ −(δ + μ) 0 0 0
0 0 δ −((1 − κ)λ + κρ + μ) 0 0
0 0 0 λ(1 − κ) −μ 0
α 0 −σβV∗ 0 0 −μ

⎞⎟⎟⎟⎟⎟⎟⎠,

and

B2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−βI 0 0 0 0 0 0
βI 0 (γ+μ)(δ+μ)

γ 0 0 0 σβI
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −σβI

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, the model’s endemic equilibrium is globally asymptotically stable when R0 > 1.
The eigenvalues of B2 are all non-positive due to I(t) being non-negative, while all eigen-
values of B1 lie on the left complex plain since they represent negative real numbers.
Consequently, we obtain XTB1X < 0, and XTB2X ≤ 0. Thus, dL

dt = XTBX < 0, when
R0 > 1, proving the global stability of the endemic equilibrium. �

Theorem 3. When R0 < 1, the extended SEIR model converges exponentially to the DFE according
to the maximum eigenvalue of matrix A. On the other hand, in case R0 > 1, the system converges
to the endemic equilibrium based on the maximum eigenvalue of matrix B.

Proof of Theorem 3. In order to determine the convergence rate of the suggested epidemi-
ological model to the DFE, it is necessary to find a positive value for the parameter k that
fulfills the inequality

dL(t)
dt

≤ −kL(t), (24)

where L(t) still represents the Lyapunov function. Based on the above, we can lead
to the epidemic system’s convergence rate, which is determined by k

2 . The distinction
of the two cases, R0 < 1 and R0 > 1, is included to ensure that the existence of the
two examined endemic equilibria is satisfied, before we proceed to the investigation of
their convergence rates. We require the most appropriate k value that satisfies Expression
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(24). After substituting the formulas for L(t) and its derivate with respect to time, we obtain

XTAX ≤ −k
1
2

XTX, (25)

XT
(

A +
k
2

I
)

X ≤ 0, (26)

leading to the conclusion that matrix A + k
2 I must be negative semidefinite. For R0 < 1, the

eigenvalues (λi) of A are all negative. Our goal is to determine the value of k, for which the
eigenvalues

(
λi +

k
2

)
of matrix A + k

2 I are also negative.

As a result, we culminate in λi +
k
2 ≤ 0, when k ≤ −2λi for i = 1, . . . , 6, which leads to

the selection of k = −2max{λi, i = 1, . . . , 6} > 0. This validates that the convergence rate
to DFE is equal to −max{λi, i = 1, . . . , 6} > 0. Similarly, in case R0 > 1 the convergence
rate of the epidemiological model to the endemic equilibrium is based on the positive
equivalent of the maximum eigenvalue of matrix B. �

6. Conclusions

In this paper, we have identified several issues regarding the theoretical results that
are presented in [1] and accounted for the non-negativity, boundedness, existence, and
local stability of epidemic equilibria. Moreover, special emphasis is placed on examining
the global stability analysis of the produced equilibria based on the LaSalle’s invariance
principle, extending the theoretical investigation of the aforementioned paper.

It is important to underline that the global stability analysis can provide insights into
the entire state space’s stability, not just a neighborhood around an equilibrium point.
Global stability analysis is often more robust to uncertainties and parameter variations.
It can reveal whether a system remains stable under a wide range of conditions, making
it particularly valuable in fields like control theory and engineering, where parameter
variations are common. More importantly, it reveals the long-term behavior of the system
regardless of the initial condition.

At this point, we should emphasize that despite the aforementioned issues, the sta-
tistical methodology proposed in [1], has an important role in the field of mathematical
modelling in epidemiology. Kalman filtering provides the best linear unbiased estimate
of a system’s states in the presence of noise and uncertainty, while it optimally combines
measurements and a priori system predictions [12,27,28]. It can adapt to changing system
dynamics by adjusting the filter’s parameters. This makes it suitable for systems with time-
varying characteristics. Additionally, Kalman filters are computationally efficient, making
them applicable in real-time systems. Like the traditional Kalman filter, Ensemble Kalman
filtering provides estimates of state uncertainty and consistency, aiding in decision-making
processes. Also, by sampling from the state space it accomplishes the capturing of complex
nonlinear dynamics and avoids filter divergence.

Global stability analysis of COVID-19 models provides crucial insights that are im-
mensely valuable for practical applications. It helps in predicting the long-term behavior
of the disease spread. Understanding the stability of the model equilibria allows for pro-
jections about the disease trajectory, aiding in preparedness and resource allocation. Also,
by analyzing the stability of different equilibria within the models, researchers can assess
the effectiveness of various intervention strategies. This insight guides policymakers in
implementing control measures such as vaccination drives, social distancing, or lockdowns.
It assists in resource allocation by estimating the potential severity and duration of the out-
break. Hospitals, medical supplies, and personnel can be strategically deployed based on
the projected stability of the disease dynamics. Finally, analyzing the stability of the model
against real-world data allows for model validation. Insights gained from the analysis can
also contribute to refining the model by identifying areas where the model might deviate
from observed patterns.
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There are several analyses in the literature that propose the utilization of statistical
methodologies like Kalman filters, aiming to provide estimations about the future state of
the COVID-19 pandemic [1,12,29–31]. The employed statistical methodology holds promise
in steering decisions concerning the short-term trajectory of the pandemic. Conversely, the
stability analysis provided in our study furnishes insights into the extended patterns of the
phenomenon, augmenting awareness around this public health concern in the long run.
Therefore, we argue that both analyses present valuable insights into the pandemic, each
offering unique viewpoints.

In future work, we find it intriguing to explore a hybrid epidemiological particle filter.
This approach handles the uncertainty inherent in pandemic phenomena by integrating
particle filtering, which offers an alternative way to address the uncertainties present in
both the equations defining the state and the observations of such phenomena. Moreover,
delving into the disease’s evolution using various stochastic methods like discrete or
continuous time Markov chains holds significant promise aiming to examine interesting
stochastic descriptors [32]. Finally, numerical methods for the computationally efficient
solving of the ODE system can be investigated [33], as the establishment of methodologies
of low complexity is always of interest in mathematical modelling [34–36].

Finally, in the case of COVID-19, given the ongoing circumstances, it remains difficult
to curtail the transmission of the virus in the foreseeable future. The R0 decreases during
periods of lockdown, although it rises right after the easing of restrictions to values which
are far higher than unity [37,38]. Also, even after the initialization of the vaccination
campaigns, variants like omicron continue to spread rapidly [39,40].

Several variants have emerged even after the onset of the vaccination period, with the
most widely known being the alpha, delta, and omicron variants, while the corresponding
values for the delta variant ranged between 3.2 and 8 with a mean of 5.08 [41,42]. Moreover,
according to the review of Liu and Rocklöv [43], the basic reproduction number for the omi-
cron variant is 2.5 times greater than the respective reproduction number of the delta variant.
Hence, according to the above comments, it becomes evident that the transmissibility of the
virus will persist for quite a long-time interval. This perspective was strongly supported
by many researchers even during the early stages of the pandemic [44,45]. Neither the
establishment of lockdowns nor the vaccination campaigns, reduced the reproduction
values less than unity for sufficiently long periods. Therefore, the eradication of the disease
seems almost impossible.

As a result, public authorities may emphasize the reduction of severe infections,
hospitalizations, and deaths as these are the main issues of concern for the entire population.
Until now, this policy has shown a significant improvement of the confrontation against
the pandemic’s drawbacks. Without a doubt, the systematic and timely vaccination of the
population plays a pivotal role in realizing this objective.
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Abstract: The effective allocation of limited resources and the establishment of targeted goals play
a pivotal role in enhancing the overall efficiency of large enterprises and organizations. To achieve
optimal organizational efficiency, managers seek dynamic strategies that adapt to the constraints of
limited and uncertain historical data. This paper introduces an evaluation of organizational efficiency
through a stochastic framework, employing a bilevel data envelopment analysis (DEA) approach. This
decision-making process is centralized within a decision-making unit (DMU) overseeing subordinate
decision-making units (subDMUs). Discrete scenarios, each associated with a realization probability,
define the uncertain parameters in the bilevel DEA-based model. This stochastic approach allows for
recourse actions upon scenario realization leading to an enhanced overall organizational strategy.
Decision-makers acting within uncertain and dynamic environments can benefit from this research
since it allows the investigation of efficiency assessment under alternative scenarios in the presence
of volatility and risk. The potential impact of applying this methodology varies depending on the
specific domain. Although, the context of this paper focuses on banking, in general, enhancing
resource allocation and target setting under stochasticity, contributes to advancing sustainability
across all its three dimensions (economic, environmental, social). As mentioned earlier, the practical
application of our approach is demonstrated via a case study in the banking sector.

Keywords: DEA; bilevel optimization; stochastic conditions; resource allocation

MSC: 90-10

1. Introduction

Large enterprises and organizations are the backbone of local and national economies;
they generate substantial profits, contribute to economic development, and foster inno-
vation. Their investments in human capital, productivity, and facilities contribute to
technological advancements. Additionally, these entities actively promote green growth
and a circular economy, aligning with sustainable development goals and the protection
of natural assets. Beyond economic contributions, their impact on societal welfare is
significant, providing job opportunities, healthcare coverage, and social insurance that
underpin overall well-being. The ongoing changes in economic policies, prices, and market
fluctuations necessitate these entities to optimally allocate resources and set targets. Such
strategic decisions are paramount, influencing productivity, efficiency, future planning, and
profitability. The perpetual limitation of resources underscores the critical importance of
optimal resource allocation for large enterprises and organizations, facilitating their ability
to achieve objectives and remain competitive in a dynamic market.

Major organizations usually comprise a central decision-making unit (DMU) and
several subordinate decision-making units (subDMUs). The primary DMU, which is
responsible for overseeing and managing the subDMUs, plays a pivotal role in allocating
finite resources and defining appropriate output targets. Concurrently, it may also set
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minimum thresholds for the efficiency of each subDMU. The latter term (i.e., efficiency)
is quantified as the weighted ratio of the outputs generated to inputs utilized by the
DMU. On the other hand, effectiveness in the context of a DMU is articulated in terms of
profitability however in a broader spectrum, effectiveness encapsulates the extent to which
an organization achieves its objectives.

The problem of resource allocation and target setting, calls for redesigning policies of
organizations with multi-stage or multi-level structures, in a way that optimizes organiza-
tional efficiency and effectiveness.

Data envelopment analysis (DEA) introduced by Charnes, Cooper, and Rhodes [1] is a
widely used non-parametric method for assessing the efficiency of homogeneous DMUs
with multiple inputs and outputs. Traditional DEA models, treat DMUs as black boxes,
disregarding internal structures, interconnections, and interactions among operational
and organizational stages. On the other hand, in a Network DEA (NDEA) environment,
each DMU comprises various stages or levels, so optimizing the performance of a DMU
could theoretically result from evaluating the performance of each individual stage or level
(sub-DMUs). In an NDEA scheme, intermediate outputs play a vital role in the DMU
evaluation as they are generated from a sub-DMU, and act as inputs to another sub-DMU
of the system, as defined by Färe and Grosskopf [2]. Kao and Hwang in [3] showed that
ignoring the sub-processes of a DMU may lead to an overall efficient system, even though
a DMU might be inefficient in an individual stage. Kao and Hwang in [4] showed that
it is important to consider the internal structure of a DMU to identify any inefficiencies,
since a DMU may have better overall efficiency compared to another DMU, although
the sub-processes of the first DMU may have worse individual efficiencies. The internal
structure of a DMU can be decomposed into two stages in a simple case, while in a more
complex case, it may consist of multiple stages. Halkos et al. [5] provide a comprehensive
classification of two-stage DEA models.

Despotis et al. [6] presented a novel definition for overall system efficiency in net-
work DEA literature, inspired by the concept of the “weak link” in supply chains and the
maximum-flow/minimum-cut problem in networks. Employing a two-phase max-min
optimization technique within a multi-objective programming framework, they estimate
individual stage efficiencies and overall system efficiency in two-stage processes of varying
complexity. Additional research on composition and decomposition techniques in both
two-stage and multi-stage environments can be found in [7–9]. In the context of assessing a
parallel network structure integrated with a hierarchical one, Kremantzis et al. [10] propose
a linear additive decomposition DEA model as well as a non-linear multiplicative aggrega-
tion DEA model. Both constitute alternative approaches to evaluating the performance in
parallel network DEA problems.

Fukuyama and Matousek [11] studied the strengths between network and traditional
DEA. Based on their research, the precision and accuracy of DEA results are better when
network models are used compared to traditional DEA models. In the same manner,
Kao [12] showed that it is possible for a DMU to be considered as efficient using traditional
DEA and not efficient using the network DEA approach. Hence, the efficiency can be
overestimated by the classical models, and this problem is perpetuated as the stages
increase. More comprehensive research about NDEA models can be found in [13–18].
Typically, each DMU independently optimizes its input and output levels to maximize its
efficiency. However, our study concerns the cases of major enterprises, where a central
DMU governs a group of subDMUs to maximize overall organizational efficiency and
profitability. DEA serves as a mathematical programming technique extensively applied
to address centralized resource allocation and target-setting challenges. In most resource
allocation DEA models, precise input and output data are assumed, whereas real-world
data are often unavailable or inaccurate. Relying on calculated optimal solutions based
on such data may lead to profit loss, planning inconsistencies, and reduced production.
Therefore, acknowledging the uncertainty in achieving output targets becomes imperative.
Large organizations must be capable of redesigning consumption and production processes,

39



Mathematics 2024, 12, 529

and taking remedial actions to maximize overall efficiency. Uncertainty is a fundamental
factor in addressing challenges related to resource allocation, production design, and
output targeting. One of the most challenging issues faced by traditional optimization
problems is the tendency of optimal solutions to perturbations in the values of the problem’s
parameters, often exhibiting a high degree of sensitivity. This characteristic underscores
the crucial importance of identifying “robust solutions” in the realm of optimization theory.
To mitigate such uncertainties, the optimization community employs various mathematical
frameworks, including stochastic programming, chance-constrained programming, and
robust optimization. Stochastic programming optimizes the expected outcome of an
objective function. On the other hand, chance constraint programming ensures that the
derived solution satisfies certain constraints within a given probability level. Finally, robust
optimization is a risk-averse strategy, focusing on optimizing the “worst- case” scenario
within a predefined uncertainty set. In the stochastic programming approach, the uncertain
parameter vector is modeled using discrete probabilistic scenarios, while in the robust
optimization approach, its values are defined by a continuous set [19].

The latest approaches tackle data uncertainty by incorporating methods that account
for and mitigate the impact of fluctuations, or imprecisions in the input data. This is
achieved by considering a range or set of possible values for the input parameters rather
than relying on precise, fixed values. The robust DEA approach aims to provide reliable
and stable efficiency assessments even when faced with uncertainties in the data, thus
enhancing the model’s resilience to variations that consider the dynamic and uncertain
nature of the banking environment. Therefore, a robust solution remains optimal regardless
of the stochasticity governing the problem’s parameters, although this optimal performance
is restricted to a specific parameter range. The latter represents a significant advantage over
traditional DEA methods that do not handle data uncertainty.

In their recent work, Zhang et al. [20] addressed the challenge of allocating limited
medical reserves in the context of a public health emergency. It takes into account uncer-
tainties in both demand and donated supplies, as well as the priorities of healthcare centers.
The formulation of the problem involves a two-stage stochastic program, treating donated
supplies as an effective recourse action with the ultimate goal of minimizing overall losses.
According to Shakouri et al. [21], in situations where uncertainties exist in the data of
a problem, traditional DEA models may yield inaccurate results. For this reason, they
proposed two stochastic p-robust two-stage network DEA (NDEA) models to estimate the
efficiency of DMU in an uncertain environment. These models are developed within the
context of a bilevel framework. Their approach facilitates more effective mitigation of the
adverse impact on the objective function, addressing uncertainties often neglected in tradi-
tional NDEA models. The practical application of these models is demonstrated through an
analysis of the performance of bank branches. Finally, robust and stochastic optimization
techniques have been successfully applied in various DEA models, such as [22–25].

This paper introduces a stochastic bilevel DEA model aimed at optimizing overall
organizational efficiency. The efficiency metric, defined as profitability (total revenues
minus total input costs), is evaluated within a stochastic framework in a bilevel structure
(DMU and sub DMUs and under uncertainty). Building upon Hakim et al.’s deterministic
model [26], the proposed DEA model accommodates stochastic conditions for uncertain
parameters by incorporating alternative scenarios with associated occurrence probabilities.
Specifically, the model assumes imprecise and unknown data for output targets, requiring
the decision-maker of the central unit to formulate a strategy without perfect information.
The motivation is an application in the banking sector where DEA methods have been
extensively applied ([11,27–33]).

Our research is driven by the recent performance evaluations conducted by Greek
banking institutions, which are a response to the ongoing transformative phase within
the Greek banking system. This restructuring is mandated by regulatory directives issued
by European supervisory authorities and is deemed crucial due to the economic crisis of
the past fifteen years and the prolonged debt crisis. At its essence, this restructuring is
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guided by two principles: the reduction of operational costs and the strategic deployment
of technology. Consequently, Greek banks have embarked on a new era characterized by a
comprehensive overhaul of their network infrastructure. The primary aim is to enhance
organizational effectiveness and branch efficiency, thereby boosting revenue generation
from retail banking products while optimizing resource utilization. Additionally, in ac-
cordance with European guiding principles, banks are revamping their branch networks
by introducing innovative outlets that seamlessly integrate state-of-the-art technologies
to serve customers, along with augmenting their specialized staff. This transformative
process is geared toward achieving key objectives, including heightened net profitability
and the equitable distribution of dividends to shareholders.

The rest of the paper is organized as follows: Section 2 discusses pertinent DEA-based
models, exploring various approaches to resource allocation, targeting, and uncertainty
capture. We review fundamental concepts and mathematical formulations of bilevel pro-
gramming and optimization under uncertainty. Section 3 provides the problem description
and notation. Section 4 details the bilevel DEA-based model with stochastic conditions
and outlines the proposed solution methodology. Our computational study and results
are presented in Section 5, while Section 6 encapsulates concluding remarks based on the
paper’s findings and contributions.

2. Literature

2.1. Resource Allocation

Numerous approaches have been proposed to tackle resource allocation and target-
setting challenges. Golany et al. [34] introduced a DEA-based model optimizing overall or-
ganizational profitability and technical efficiency. Athanassopoulos [35] integrated goal pro-
gramming and DEA for multi-level resource allocation, applied to central fund allocation in
Greek local authorities. Yu et al. [36] employed a centralized DEA model with a Russell mea-
sure for human resource reallocation in Taiwanese airports. Amirteimoori and Tabar [37] ad-
dressed fixed resource allocation in organizations with multiple DMUs, while Beasley [38]
maximized average efficiency for DEA-based models, incorporating fixed-cost resources
and output targets in centralized decision-making. Lozano and Villa [39] presented DEA
models for centralized resource allocation, aiming to minimize input consumption, max-
imize output production, and enhance individual DMU efficiency. Varmaz et al. [40] in-
centivized subDMUs in large organizations, adapting Lozano and Villa’s model [39] to
compute super-efficiency. Afsharian et al. [41] proposed a DEA-based model for incen-
tivizing DMUs under central management, addressing shortcomings in Varmaz et al. [40].
Similarly, Afsharian et al. [42] extended this approach to hierarchically structured organi-
zations, illustrating it with data from a German retail bank. Asmild et al. [43] expanded
Lozano and Villa’s [39] models, suggesting modifications for inefficient DMUs and pro-
viding a procedure for alternative optimal solutions in an input-oriented BCC framework.
Wu et al. [44] incorporated economic and environmental factors in DEA models for re-
source allocation, considering three scenarios for resource availability. Fang [45] proposed
a generalized centralized resource allocation model, decomposing technical efficiency into
components and illustrating the approach with a supermarket example.

Two-stage network DEA approaches addressing the resource allocation problem have
been introduced by various researchers. Chen et al. [46] proposed a DEA model evaluating
the efficiency of two-stage network processes with shared inputs across both stages, en-
compassing inputs utilized collectively and those specific to each stage. Zha and Liang [47]
outlined a cooperative model allocating freely shared inputs in a series production process.
This product-form model calculates the overall efficiency for the assessed DMU, illustrating
collaboration between the two stages.

Wu et al. [48] presented an approach to managing undesirable intermediate outputs
in a two-stage production process with shared resources. They employed additive and
non-cooperative models to gauge the efficiency of each DMU and subDMU, applying
these models to industrial production in thirty provincial regions in China. Yu et al. [49]
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addressed the allocation of fixed costs among subDMUs, considering efficiency. They
introduced a two-stage network DEA model grounded in cross-efficiency concepts.

Recent studies, particularly [50,51], have introduced notable advancements in tackling
the issue of resource allocation prompted by the Internet of Things.

2.2. Bilevel Network DEA

In his seminal work, Dempe [52] describes a bilevel programming problem (BLP) as a
setting where an optimization problem includes within its constraint set a second, partial
optimization problem. The outer optimization task is commonly denoted as the upper
level, while the inner optimization task is referred to as the lower level. The idea can be
traced back to the early work of Freiherr von Stackelberg [53] in economic game theory.
According to Stackelberg’s conceptualization, the hierarchical structure encompasses two
distinct decision-makers: the leader and the follower, corresponding to the upper and
lower-level problems, respectively. The standard mathematical formulation of a bilevel
problem is as follows:

min
x,y

F(x, y) (1)

s.t. G(x, y) ≤ 0 (2)

H(x, y) = 0 (3)

min
y

f (x, y) (4)

s.t. g(x, y) ≤ 0 (5)

h(x, y) = 0 (6)

where x ∈ Rn and y ∈ Rm are the set of upper- and lower-level variables, respectively.
Moreover, the upper-level problem (leader’s problem) is specified via (1)–(3) and its do-
main is partially specified by the optimal solutions of the lower-level problem (follower’s
problem) outlined by (4)–(6).

The motivation behind the employment of this optimization schema is its ability to
capture the hierarchical relations between the centralized decision-maker and the multiple
sub-DMUs with great accuracy.

Shafiee et al. [54] introduced a bilevel DEA model for evaluating bank branch perfor-
mance, employing a mixed-integer linear programming (MILP) approach for its solution.
The study incorporates internal structures and Stackelberg relationships, providing insight-
ful information about each component of the banking chain. Zhou et al. [55] devised a
bilevel DEA model tailored for systems with bilevel structures, exemplified by manufac-
turing supply chains with multiple distribution centers. Their approach, rooted in the
Stackelberg competition game theory, features multiple followers. The case study involves
a supply chain with a plant and two distribution centers. Sinha et al. [56] developed an
oligopolistic market model with multiple leaders and followers over multiple time periods
under Stackelberg relations. Their model, applicable to industries like aircraft manufactur-
ing, accounts for leaders acting in a Stackelberg manner toward followers while engaging
in the Cournot competition among themselves. Experimental results illustrate the impact
of player entrance or exit on profits and costs, with nonlinear handling of demand and cost
functions for accurate problem simulation. Hajiagha et al. [57] proposed an efficiency-based
planning method, considering current DMU performance and projecting future efficiency
while also considering profit performance. This bilevel approach maximizes efficiency at the
upper level and optimizes inputs and outputs based on costs and profits at the lower level.
Addressing the limitations of classic DEA models, the authors emphasize the simultaneous
consideration of profit and technical efficiency. In recent developments, bilevel DEA-based
models for resource allocation and target setting have emerged. Hakim et al. [26] proposed
a deterministic bilevel DEA model for centralized resource allocation and target setting,
optimizing organizational effectiveness by maximizing total profit while ensuring each
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DMU operates efficiently within predefined bounds. Ang et al. [58] extended this work for
organizational systems with higher-level entities and subordinate two-stage DMUs. Their
bilevel model aims to maximize both organizational and two-stage DMU efficiency.

2.3. Stochastic Optimization for DEA

According to Olesen and Petersen [59], stochastic DEA extends the original idea in
three different directions. First, is the deviations from the production frontier, while in the
second case, DEA can handle random noise coming from measurement or specification
errors. In the latter case, the production possibility set (PPS) is adjusted according to the
random data.

Chance constraints were introduced by Charnes and Cooper [60] and are routinely
used ever since in the context of stochastic DEA. By using this method, we can formulate
a problem with stochastic constraints assuming that we may have constraints’ violation
within a certain probability level. Beraldi and Bruni [61] proposed a stochastic DEA method
using chance constraints formulation that transformed into a deterministic equivalent
under the discrete distribution assumption.

Zhou et al. [62] suggest a stochastic network DEA model to facilitate a two-stage
system under data uncertainty. The model is based on a centralized control mechanism
and a transformation to a deterministic equivalent linear programming model. The trans-
formation relies on the assumption that some problem parameters, e.g., inputs/outputs are
related to stochastic factors.

The conventional DEA formulations exhibit determinism and static characteristics,
rendering them highly sensitive to minor parameter fluctuations. Acknowledging this
susceptibility to small changes, the incorporation of robustness in DEA models becomes
imperative. The objective is to maintain solution stability in the face of uncertain conditions.
Marbini et al. [63] pioneered the development of novel robust non-radial DEA models,
specifically designed to gauge the performance of decision-making units under conditions
of data uncertainty. Their approach involves the utilization of Interval DEA, enabling the
assessment of interval efficiencies based on both optimistic and pessimistic viewpoints. Ul-
timately, the authors introduce the concept of the “price of robustness” to comprehensively
evaluate the effectiveness and robustness of the proposed models.

In their study, Tseng et al. [64] investigated the dynamics of economic efficiency and
revenue sharing in the electricity market, employing a sophisticated bilevel scheme. Their
primary objective was to pinpoint the Nash equilibrium while contending with capacity
constraints estimated through DEA. To tackle the challenges arising from price uncertain-
ties, the researchers introduced a cutting-edge approach by developing stochastic mixed
complementarity models. These models seamlessly integrate stochastic programming and
robust optimization techniques, offering a robust solution to address the intricate issue of
price uncertainty in the electricity market.

As highlighted by Omrani et al. [65], the sole computation of a single efficiency
metric proves insufficient in certain contexts for assessing the overall efficiency of decision-
making units (DMUs). Consequently, a multi-objective DEA model has been devised to
concurrently evaluate profit, operational, and transactional efficiencies within the realm of
bank branches, particularly under conditions of data uncertainty. To address the challenges
posed by data uncertainty, a robust approach has been employed in the formulation of the
model, enhancing its capacity to provide a more comprehensive and nuanced assessment
of efficiency in banking operations.

2.4. The Proposed Stochastic Framework

In traditional DEA models, such as [1], each DMU decides on its own input and out-
put levels to maximize its own efficiency. In single-stage resource allocation DEA models,
DMUs are considered as black boxes, namely the internal structures, and the interconnec-
tions and interactions among the stages of the operational and organizational structures
are ignored [34–45]. However, in large enterprises and organizations, a group of subDMUs
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is under the control of a central DMU, aiming to maximize overall organizational efficiency
and profitability. Nonetheless, in the two-stage DEA models [46,47] where interactions
and interconnections are incorporated, hierarchical relations among the departments or
the organizational levels are not considered. In the majority of resource allocation DEA
models, the input and output data are known and precise, while in real-world problems,
these data are often unavailable or erroneous. The stochastic DEA models on resource
allocation [59–65] deal with uncertainty, however, to the best of our knowledge, the DMUs
under examination have no bilevel structure.

Within our proposed stochastic framework, we incorporate a bilevel approach to
DEA methodology alongside stochastic conditions, aimed at capturing the uncertainty
surrounding the achievement of output targets and thereby optimizing organizational
efficiency. The uncertainty within our framework is delineated by discrete realizations of
uncertain parameters across various scenarios. Each uncertain parameter within the model
is assigned a value corresponding to a scenario, with each scenario linked to a realization
probability reflecting managerial estimations. Furthermore, the decision-maker retains the
ability to select a strategy either prior to or independently of knowing the exact values
assumed by uncertain parameters when a scenario materializes.

3. Problem Description

Within this section, we offer a comprehensive description of the problem at hand.
Firstly, in Section 3.1, we provide a detailed description of our case, pointing out all the
major elements. We explain how an input, which is associated with a cost, is converted into
a valuable output. Moreover, in Section 3.2, we present the notation and model assumptions
to establish a clear understanding of the problem.

3.1. An Application in Banking

In general, the banking sector plays a pivotal role in conducting diverse financial
transactions, aggregating funds, and financing both short- and long-term public and
private investments. In particular, the Greek banking sector is further characterized by
fierce competition, driven by the pursuit of increased profitability for stakeholders. In
recent years, this competition has intensified as management endeavors to optimize returns.
Given the paramount significance of this sector, the proposed stochastic bilevel DEA model
is motivated by an application specific to banking.

In the application scenario, the central administration aims to maximize overall effi-
ciency by optimizing profit. This necessitates strategic resource allocation among subDMUs
(which actually are specific branches) and the establishment of output targets aligned with
their capabilities. Concretely, the bank management defines future performance targets
for each individual DMU, considering the resources available to them. The institution
selected for the implementation of the proposed model is among the Greek systemic banks.
It maintains an active network of more than 250 branches and significant metrics in terms
of human capital, deposits, and loans, capturing an estimated 25% of the total market share.
For the specific case under consideration, the implementation focuses on a network situated
in one of the largest urban centers in Greece. The planning process includes ten branches
(DMUs) of diverse sizes, (b)ig, (m)edium, or (s)mall, determined by factors, such as staffing
levels, customer base, and the volume of deposits and loans across various categories
(including mortgage loans, consumer loans, and small business loans). Additionally, the
branches are geographically classified as eastern, central, or western, reflecting their spe-
cific locations in the region. The spatial planning of these branches was designed to allow
coverage of geographical districts within the urban landscape under study. The data mirror
typical real-world scenarios; however, they have been simulated for disclosure purposes.

In our model (Figure 1), we established five key inputs that induce expenses under
typical operation circumstances for each bank branch (DMU):

X1: Specialized personnel (relationship managers);
X2: Supporting personnel (base officers);
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X3: ATMs;
X4: Administrative costs (thousands of euros);
X5: Interests for deposits (millions of euros).

In a similar manner, six outputs were selected and are outlined as follows:

Y1: Mortgage loans (ML);
Y2: Small business loans (SB);
Y3: Consumer loans (CL);
Y4: Mutual funds (MF);
Y5: Net fee income (NFI);
Y6: Surplus deposits (SD).

Figure 1. Input and output structures.

During the conversion of inputs into expenses, we adhered to industry-standard
practices prevalent in the banking sector. For the two staff categories, namely relationship
managers and base officers, we considered the average yearly salary expenses. Regarding
ATMs and administrative expenses, we factored in the costs associated with installation,
operation, and distribution per staff member. Regarding deposits, we accounted for the
average weighted interest rate of bank deposits, set at 0.35%. All expenses are presented on
an annual basis.

The bank manager’s objective encompasses two primary goals: to enhance both
efficiency and profitability, thus safeguarding sustainability and ensuring resilience in the
face of dynamic economic and political conditions. To aid the decision-maker, we propose
an optimal resource allocation strategy and establish output targets. It is important to note
that the pursuit of profit maximization is tempered by an additional constraint, mandating
the fulfillment of a minimum efficiency rate for each DMU. In the process, each DMU
utilizes inputs X1 to X5 (see Table 1). Table 1 includes typical values for the above inputs
for 10 DMUs.

45



Mathematics 2024, 12, 529

Table 1. Input data for each DMU.

Label DMU X1 X2 X3 X4 X5

East B1 1 4 12 3 16 0.788
East B2 2 3 10 2 15.6 0.525
East M 3 2 8 1 8 0.420
East S 4 1 5 1 2.4 0.280

Central B 5 4 10 4 21 0.875
Central M 6 5 13 4 36 1.225
Central S 7 1 4 2 1.4 0.350

West B 8 3 9 2 12 0.455
West M 9 2 7 1 7.2 0.385
West S 10 0 6 2 7.2 0.420
Total 10 25 84 22 126.8 5.723

One could argue that outputs ML, SB, and CL, correspond to revenues coming from
loans while MF and NFI refer to commissions from banking transactions and mutual funds
management. Finally, SD pertains to the revenue that stems from the surplus of deposits
that a branch holds and are placed as deposits in the European Central Bank, through the
Bank of Greece.

Table 2 contains the balances for each loan type (in millions of euros), the balances of
mutual funds under management (in millions of euros), the surplus of deposits (in millions
of euros), and the net commissions from banking activities (in thousands of euros).

Table 2. Output balances.

DMU ML SB CL MF NFI SD

1 30 19 9.8 40 9.1 67.5
2 40 15 4.5 35 7.56 45
3 18 6 2.3 20 4.54 36
4 10 3 1.5 8 2.25 24
5 30 12 11 50 8.81 50
6 24 10 9 35 7.58 35
7 12 8 5 15 1.85 15
8 50 10 12 20 5.4 20
9 34 5.8 8 9 4.5 9

10 15 3 5 5 1.3 5
Total 263 91.8 68.1 237 52.889 302.45

The income of each DMU is calculated as a percentage of the output balances. More-
over, these percentages are summarized in Table 3.

Table 3. Net margin rate profit for each output.

Output Income Percentage

Mortgages income 2.00%
SB Loans income 4.00%

Consumer income 7.00%
Mutual income 0.50%
Deposit income 3.75%

Additionally, we added the net fee income for each DMU to the above balances in
order to calculate the total income. Using the output balances and income rates, we can
deduce the final output data recorded in Table 4.

46



Mathematics 2024, 12, 529

Table 4. Output data for each DMU.

DMU

Scenario Output 1 2 3 4 5 6 7 8 9 10

1

Y1 0.42 0.56 0.25 0.14 0.42 0.34 0.17 0.70 0.48 0.21
Y2 0.53 0.42 0.17 0.08 0.34 0.28 0.22 0.28 0.16 0.08
Y3 0.48 0.22 0.11 0.07 0.54 0.44 0.25 0.59 0.39 0.25
Y4 0.14 0.12 0.07 0.03 0.18 0.12 0.05 0.07 0.03 0.02
Y5 6.37 5.29 3.18 1.58 6.17 5.31 1.3 3.78 3.15 0.91
Y6 1.77 1.18 0.95 0.63 1.97 2.76 0.79 1.02 0.87 0.95

2

Y1 0.6 0.8 0.36 0.2 0.6 0.48 0.24 1 0.68 0.3
Y2 0.76 0.6 0.24 0.12 0.48 0.4 0.32 0.4 0.23 0.12
Y3 0.69 0.32 0.16 0.11 0.77 0.63 0.35 0.84 0.56 0.35
Y4 0.2 0.18 0.10 0.04 0.25 0.18 0.08 0.1 0.05 0.03
Y5 9.1 7.56 4.54 2.25 8.81 7.58 1.85 5.4 4.5 1.3
Y6 2.53 1.69 1.35 0.9 2.81 3.94 1.13 1.46 1.24 1.35

3

Y1 0.69 0.92 0.41 0.23 0.69 0.55 0.28 1.15 0.78 0.35
Y2 0.87 0.69 0.28 0.14 0.55 0.46 0.37 0.46 0.27 0.14
Y3 0.79 0.36 0.19 0.12 0.89 0.72 0.4 0.97 0.64 0.4
Y4 0.23 0.2 0.12 0.05 0.29 0.2 0.09 0.12 0.05 0.03
Y5 10.47 8.69 5.22 2.59 10.13 8.72 2.13 6.21 5.18 1.5
Y6 2.91 1.94 1.55 1.04 3.23 4.53 1.29 1.68 1.42 1.55

3.2. Notations and Assumptions

Table 5 presents a comprehensive compilation of the notation, accompanied by
brief descriptions.

Table 5. Notation summary.

Notation Description

Indices
n number of DMUs
m number of input resources
s number of output targets
ω scenario index
Sets
J set of DMUs
I set of inputs
O set of outputs
Ω set of scenarios
Parameters
pr unit price for output r
ci unit cost for input i
Xik observed input i for DMU k
Yω

rk observed output r for DMU k of scenario ω
Lek lower bound for efficiency of DMU k
Lxik lower bound for input resource i of DMU k
Uxik upper bound for input resource i of DMU k
Lyrk lower bound for output target r of DMU k
Uyrk upper bound for output target r of DMU k
bi availability for input resource i
ε infinitesimal number
qω realization probability of scenario ω
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Table 5. Cont.

Notation Description

Variables
xik input resource i for DMU k
yω

rk output target r for DMU k of scenario ω
vik weight attached to input resource i for DMU k
uω

rk weight attached to output target r for DMU k of scenario ω
lt
k unrestricted variable

λω
jk

is used for defining the possibility set of input resources or output targets of DMU k
of scenario ω

e∗k optimal efficiency for DMU k
eω∗

k optimal efficiency for DMU k of scenario ω
ekj cross-efficiency of DMU j with respect to DMU k

4. Methodology

4.1. Stochastic Bilevel DEA Model

In the context described in Section 3.1, it is apparent that the decisions for the allocation
of inputs within the branches (subDMUs) are made at the beginning of the period by the
central unit and then are followed by the resolution of the inherent uncertainty. It makes
sense that target setting should take into account the observed outputs under the realized
scenario. Thus, target setting constitutes the second-stage (aka recourse) variables in
our formulation. Therefore, we extend, analogously, the deterministic bilevel model of
Hakim et al. [26] to a two-stage stochastic bilevel DEA model with recourse actions.

4.1.1. The Upper-Level Model

Within a defined set of scenarios denoted as Ω, the upper-level structure follows the
framework given in (7)–(15). The upper-level model includes decision variables for the
input resources (xik) and the output targets (yω

rk). The optimization criterion involves profit
maximization through optimal resource allocation, output targeting, and efficiency lower
bounds of each subDMU.

max
xik ,yω

rk ,λω
jk

|Ω|
∑

ω=1
qω

[
s

∑
r=1

pr

n

∑
k=1

yω
rk

]
−

m

∑
i=1

ci

n

∑
k=1

xik (7)

s.t.

Lek ≤ eω∗
k ∀k ∈ J (8)

xik ≥
n

∑
j=1

λω
jkXij ∀i ∈ I , k ∈ J (9)

yω
rk ≤

n

∑
j=1

λω
jkYω

rj ∀r ∈ O, k ∈ J , ω ∈ Ω (10)

n

∑
j=1

λω
jk = 1 ∀k ∈ J , ω ∈ Ω (11)

λω
jk ≥ 0 ∀k ∈ J , ω ∈ Ω (12)
n

∑
k=1

xik ≤ bi ∀i ∈ I (13)

Lxik ≤ xik ≤ Uxik ∀i ∈ I , k ∈ J (14)

Lyrk ≤ yω
rk ≤ Uyrk ∀r ∈ O, k ∈ J , ω ∈ Ω (15)

The objective function (7) maximizes the expected overall organizational profits, where
ci and pr denote the unit input costs and the unit output prices, respectively. Constraint (8)
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sets an efficiency lower bound for each subDMU decided by the central DMU. Con-
straints (9) and (10) ensure that the optimal allocation of resources and targeting is feasible
with respect to the production possibility set constructed by the observed input and output
values of the subDMUs. Constraint (11) poses the variable returns to scale (VRS) assump-
tion for the model; nevertheless, the constant returns to scale (CRS) assumption can also
be considered ignoring the latter constraint. Constraint (13) sets an upper bound for the
availability of resources. Constraints (14) and (15) set upper and lower bounds for input
resources and output targets decided by the central DMU.

4.1.2. The Lower-Level Model

The lower-level model is the multiplier DEA-based model under VRS assumption as
presented in Beasley [38]. In the lower level, the optimal weights associated with inputs
and outputs are determined. The main objective here is that each DMU tries to maximize its
efficiency, given the input resources and target setting based on the upper-level decisions.
For every DMU k(k = 1, . . . , n) and scenario ω ∈ Ω, the lower-level problem is described
by (16)–(19).

eω∗
k = max

vik ,uω
rk ,tω

k

∑s
r=1 uω

rkyω
rk − lω

k
∑m

i=1 vikxik
(16)

s.t.

0 ≤ eω
kj =

∑s
r=1 uω

rkyω
rj − lω

k

∑m
i=1 vikxij

≤ 1 ∀k, j ∈ J , ω ∈ Ω (17)

vik ≥ ε ∀i ∈ I , k ∈ J (18)

uω
rk ≥ ε ∀r ∈ O, k ∈ J , ω ∈ Ω (19)

The objective function (16) of this model calculates the optimal efficiency score eω∗
k for

each subDMU k and each scenario ω. The model, which runs for each subDMU k, computes
the optimal input (vik) and output weights (uω

rk) for each scenario ω that maximizes the
efficiency for each subDMU k. Constraint (17) restricts the values of subDMU efficiency
between zero and one. Constraints (18) and (19) ensure that the weights take values larger
than a nonnegative infinitesimal number for input and output respectively. The existence
of the free variable lω

k imposes the variable returns to scale assumption for the efficiency of
the subDMU k.

4.2. Solution Approach

In this section, we generalize Theorem 1 of Hakim et al. [26] in our stochastic framework.

Lemma 1. The solution (x∗ik, yω∗
rk , λω∗

jk ; ∀i, k, j, r) of the upper-level model (7)–(15) is optimal, assum-
ing that (uω∗

rk , v∗ik, lω∗
k ; ∀i, k, r) is an optimal solution of the lower level model (16)–(19) if and only if

(x∗ik, yω∗
rk , λω∗

jk , uω∗
rk , v∗ik, lω∗

k ; ∀i, k, j, r) is an optimal solution of the single-level model (20)–(31).

Proof. Let us assume that (x∗ik, yω∗
rk , λω∗

jk ; ∀i, k, j, r) is an optimal solution of the upper-level
model (7)–(15) and U∗ is the corresponding objective value. Moreover, let (uω∗

rk , v∗ik, lω∗
k ;

∀i, k, r) be the optimal solution of the lower-level model (16)–(19), given that (x∗ik, y∗rk, λ∗
jk;

∀i, k, j, r) is a feasible solution of the upper-level model (7)–(15). Then, (x∗ik, yω∗
rk , λω∗

jk ,
uω∗

rk , v∗ik, lω∗
k ; ∀i, k, j, r) satisfies all the constraints of the single-level model (20)–(31) since it

satisfies constraints (9)–(15) and (17)–(19), which are the same with (22)–(31). Furthermore,
the optimal solution of the lower-level model e∗k equals ekk when the weights are replaced
with their optimal values (uω∗

rk , v∗ik, lω∗
k ; ∀i, k, r); therefore, constraint (21) is also satisfied.

Hence, (x∗ik, yω∗
rk , λω∗

jk , uω∗
rk , v∗ik, lω∗

k ; ∀i, k, j, r) is a feasible solution for the single-level model
and the corresponding objective value is equal to the optimum value U∗ of the bilevel
model. If A∗ is the optimum value of the single-level model then it holds that A∗ ≥ U∗.
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Conversely, we have to show that the optimal solution (x∗ik, yω∗
rk , λω∗

jk , uω∗
rk , v∗ik, lω∗

k ;
∀i, k, j, r) of the single-level model (20)–(31) induces an optimal solution (x∗ik, yω∗

rk , λω∗
jk ;

∀i, k, j, r) of the upper-level model (7)–(15) and an optimal solution (uω∗
rk , v∗ik, lω∗

k ; ∀i, k, r) of
the lower-level model (16)–(19). The optimal solution (x∗ik, yω∗

rk , λω∗
jk , uω∗

rk , v∗ik, lω∗
k ; ∀i, k, j, r)

of the single-level model (20)–(31) satisfies constraints (9)–(15) and (17)–(19), which are
the same with (22)–(31). Furthermore, e∗k equals ekk for the optimal weights, thereby con-
straint (8) is also satisfied. Thus, the optimal solution (x∗ik, yω∗

rk , λω∗
jk , uω∗

rk , v∗ik, lω∗
k ; ∀i, k, j, r)

of the single-level model (20)–(31) induces a feasible solution (x∗ik, yω∗
rk , λω∗

jk ; ∀i, k, j, r) of the
upper-level model (7)–(15), where (uω∗

rk , v∗ik, lω∗
k ; ∀i, k, r) is an optimal solution of the lower-

level model (16)–(19). Assuming that U∗ is the optimum value of the upper-level model
and the objective value of the feasible solution (x∗ik, yω∗

rk , λω∗
jk ; ∀i, k, j, r) of the upper-level

model (7)–(15) is A∗, then it holds that A∗ ≤ U∗.

By Lemma 1, the stochastic bilevel DEA programming problem is converted to a
single-level as follows:

max
xik ,yω

rk ,λω
jk

|Ω|
∑

ω=1
qω

[
s

∑
r=1

pr

n

∑
k=1

yω
rk

]
−

m

∑
i=1

ci

n

∑
k=1

xik (20)

s.t.

Lek ≤ eω
kk =

∑s
r=1 uω

rkyω
rk − lω

k
∑m

i=1 vikxik
∀k ∈ J , ω ∈ Ω (21)

xik ≥
n

∑
j=1

λω
jkXij ∀i ∈ I , k ∈ J (22)

yω
rk ≤

n

∑
j=1

λω
jkYω

rj ∀r ∈ O, k ∈ J , ω ∈ Ω (23)

n

∑
j=1

λω
jk = 1 ∀k ∈ J , ω ∈ Ω (24)

λω
jk ≥ 0 ∀k ∈ J , ω ∈ Ω (25)
n

∑
k=1

xik ≤ bi ∀i ∈ I (26)

Lxik ≤ xik ≤ Uxik ∀i ∈ I , k ∈ J (27)

Lyrk ≤ yω
rk ≤ Uyrk ∀r ∈ O, k ∈ J , ω ∈ Ω (28)

0 ≤ eω
kj =

∑s
r=1 uω

rkyω
rj − lω

k

∑m
i=1 vikxij

≤ 1 ∀j ∈ J , ω ∈ Ω (29)

vik ≥ 0 ∀i ∈ I , k ∈ J (30)

uω
rk ≥ 0 ∀r ∈ O, k ∈ J , ω ∈ Ω (31)

The above optimization problem is non-linear and can be shown to be non-convex
as well by considering the Hessian matrix of constraints (21) and (29). In either case, the
Hessian matrix is not positive semidefinite and, thus, the constrained set is not convex.

5. Computational Study

The proposed work was encoded in Python 3.7.0, and for the stochastic bilevel model,
Pyomo 5.7.3 was used, combined with the optimization engine of Gurobi 10.0.1. This
solver version can deal with quadratic non-convex constraint problems by using global
optimization techniques. All the experiments were conducted on an Intel Core i5-8350
CPU @ 1.70 GHz with 16 GB of RAM, running on 64-bit Ubuntu 22.04.1 (Intel, Santa Clara,
CA, USA).
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Our test instance comprises three different distinct scenarios denoted by ω, where
ω = 1, 2, 3 and the realization probabilities are q1 = 0.2, q2 = 0.5, q3 = 0.3, respectively.
We assume that the input availabilities are independent of scenarios and are given as
bi = (25, 84, 22, 126.8, 5.723) ∀i ∈ I , respectively. The lower bound on each input i and
DMU k is given by Lxik = 0.8Xik, while the upper bound is calculated as Uxik = 1.2Xik.
In a similar manner, the lower and upper bound for output r and DMU k are given by
Lyrk = 0.8Y1

rk, and Uyrk = 1.2Y3
rk, respectively. The output bounds are independent of the

scenarios. The unit costs for each of the five inputs are ci = (40,000, 28,000, 27,500, 1000,
and 1,000,000) ∀i ∈ I . In addition, the corresponding unit output prices are set to EUR
100,000, except the last output price, which is p6 = 1, 000, 000. We are aligned with the
VRS assumption and the efficiency lower bound is Lek = 0.95 for all DMU and scenarios.
Finally, we should point out that our test instance has 5 inputs, 6 outputs, and 10 DMUs.

Additionally, a sensitivity analysis is undertaken to evaluate the model’s performance,
with a specific emphasis on both profitability and efficiency, while maintaining all other
parameters at a constant level. In the initial scenario, we systematically vary the efficiency
lower bound. Subsequently, a series of test instances is executed, each characterized by
distinct input resources.

Utilizing the data outlined in Tables 1 and 4, we have derived an optimal solution
addressing the challenge of resource allocation and target setting, accounting for an effi-
ciency lower bound (LBek = 0.95) across all decision-making units. Referencing Table 6,
the allocation of input resources among bank branches by the central administration is
depicted. Notably, all resources are fully utilized, except for AC, which exhibits a slack of
7.63 in relation to the upper availability bound of 126.8.

Table 6. Resource allocation for each DMU.

DMU X1 X2 X3 X4 X5

1 4.00 12.00 3.00 16.00 0.788
2 3.30 10.37 2.30 13.93 0.630
3 2.20 7.82 1.20 8.38 0.437
4 1.10 5.20 1.00 2.88 0.291
5 4.01 10.72 3.65 19.42 0.848
6 4.35 11.24 3.90 28.80 0.987
7 1.05 4.14 1.95 1.68 0.352
8 2.80 9.00 1.80 12.79 0.546
9 2.20 7.50 1.20 8.08 0.425
10 0.00 6.00 2.00 7.20 0.420

Total 25.00 84.00 22.00 119.17 5.723

In addition to managing resource allocation among DMUs, our model emphasizes
a crucial aspect: the establishment of output targets designed to enhance organizational
effectiveness and profit maximization. Table 7 showcases the optimal output plan for each
output and DMU, considering various scenarios. The final column displays the summation
of outputs for each distinct output. The probability of occurrence for each scenario reflects
the economic uncertainty anticipated during the future implementation of the strategic
plan. Specifically, we consider scenarios representing a pessimistic outlook (q1 = 0.2),
a normal economic environment (q2 = 0.5), and an optimistic scenario (q3 = 0.3). This
probability distribution accounts for the potential economic conditions that may influence
the execution of the strategic plan.
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Table 7. Output targets for every DMU and scenario.

DMU

Scenario Output 1 2 3 4 5 6 7 8 9 10 Total

1

Y1 0.420 0.469 0.392 0.174 0.419 0.391 0.183 0.560 0.470 0.210 3.687
Y2 0.532 0.421 0.199 0.092 0.403 0.337 0.221 0.239 0.199 0.084 2.726
Y3 0.480 0.394 0.222 0.105 0.518 0.499 0.252 0.470 0.401 0.245 3.587
Y4 0.140 0.111 0.056 0.028 0.162 0.153 0.051 0.063 0.042 0.018 0.825
Y5 6.370 5.373 3.471 1.733 6.228 5.889 1.385 3.766 3.472 0.910 38.597
Y6 1.772 1.418 0.982 0.654 1.909 2.221 0.791 1.154 0.957 0.945 12.802

2

Y1 0.600 0.669 0.497 0.248 0.599 0.558 0.261 0.648 0.672 0.300 5.053
Y2 0.760 0.601 0.287 0.131 0.576 0.481 0.316 0.443 0.285 0.120 4.000
Y3 0.686 0.435 0.222 0.145 0.740 0.713 0.360 0.610 0.573 0.350 4.833
Y4 0.200 0.159 0.078 0.041 0.232 0.219 0.074 0.107 0.061 0.025 1.195
Y5 9.100 7.676 4.973 2.475 8.897 8.413 1.978 6.340 4.960 1.300 56.112
Y6 2.531 2.025 1.403 0.934 2.727 3.173 1.130 1.755 1.367 1.350 18.395

3

Y1 0.690 0.770 0.497 0.276 0.689 0.642 0.300 0.745 0.773 0.345 5.727
Y2 0.874 0.691 0.331 0.151 0.662 0.552 0.363 0.510 0.320 0.138 4.592
Y3 0.789 0.435 0.222 0.145 0.850 0.820 0.414 0.702 0.658 0.403 5.438
Y4 0.230 0.183 0.090 0.047 0.267 0.242 0.085 0.123 0.062 0.029 1.356
Y5 10.465 8.827 5.719 2.846 10.232 9.675 2.275 7.291 5.704 1.495 64.529
Y6 2.911 2.329 1.614 1.074 3.136 3.649 1.300 2.018 1.572 1.553 21.155

The efficiency analysis in Table 8 provides a comprehensive overview of DMU per-
formance under varying operating scenarios. It is essential to note that ẽk represents the
weighted average efficiency across all scenarios. Notably, DMU 10 consistently demon-
strates high efficiency across all scenarios, whereas DMU 7 exhibits lower efficiency in the
first scenario but achieves efficiency in subsequent scenarios. DMUs 3 and 6 showcase
increased efficiency in scenarios 2 and 3, respectively. The primary objective of the proposed
model is to maximize overall profit, and Table 9 elucidates the total revenues, costs, profits,
and profitability. Notably, the input allocation remains constant across scenarios, resulting
in a fixed total input cost of 9,799,166. As anticipated, revenues and, consequently, profits,
vary with scenarios, with lower profitability in the worst economic scenario, moderate
profitability in the moderate scenario, and high profitability in the most optimistic scenario.
It is crucial to highlight that the ‘Expected’ row represents the weighted sum of revenues
and profits, respectively. In reference to our benchmark instance, with an efficient lower
bound, LBek = 0.95, the total expected profit amounts to EUR 15,302,644, reflecting a 60.69%
profitability. This underscores the model’s effectiveness in achieving optimal outcomes
even in diverse operating conditions.

Table 8. Efficiencies for every DMU in each scenario.

DMU e1∗
k e2∗

k e3∗
k ẽk

1 0.95 0.95 0.95 0.95
2 0.95 0.95 0.95 0.95
3 0.95 0.98 0.95 0.97
4 0.95 0.95 0.95 0.95
5 0.95 0.95 0.95 0.95
6 0.95 0.95 0.96 0.95
7 0.95 1 1 0.99
8 0.95 0.95 0.95 0.95
9 0.95 0.95 0.95 0.95
10 1 1 1 1

ẽk is the weighted average efficiency.
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Table 9. Revenues, profits, and profitability for the three scenarios.

Scenario Revenues Profit Profitability (%)

1 17,744,100 7,944,934 44.78
2 25,514,665 15,715,499 61.59
3 29,318,860 19,519,693 66.58

Expected 25,101,811 15,302,644 60.96

5.1. Sensitivity Analysis

We performed a sensitivity analysis by changing the efficiency lower bound to be
achieved by the bank branches from 0.95 to 0.7 and 0, respectively. In Table 10, we can
see all optimal DMU efficiencies taking into consideration the output scenarios and the
enforced efficiency lower bound. We can observe that in the first case, e.g., LBek = 0.7, we
do not have significant variations except for DMUs 2 and 4, which have average efficiencies
of 0.78 and 0.89, respectively. More precisely, DMU 4 performs very well in the moderate
and optimistic scenario. In Table 11, it appears that the organization has higher profits for
LBek = 0 than for LBek = 0.7. This means that a strict policy about branch efficiency does
not necessarily yield greater profitability. Another argument of the latter statement is that
the relaxed problem for LBek = 0.7 seems to have an inferior solution to the one we obtain
when LBek = 0.95 and a better one in the case where LBek = 0.

It is noteworthy that—during the experiments—we identified that the system can
work in a completely efficient manner, having all eω∗

k = 1 ∀k ∈ J and ω ∈ Ω. In order to
achieve this ambitious feat, we need to increase the input availability b5 from 5.723 to 6,
yielding a profit of 15,452,279.

Table 10. Efficiencies for each DMU for LBek = 0.7 and LBek = 0.

LBek = 0.7 LBek = 0

DMU e1∗
k e2∗

k e3∗
k ẽk e1∗

k e2∗
k e3∗

k ẽk

1 0.7 0.72 0.72 0.72 0.27 0.3 0.34 0.31
2 0.78 0.76 0.81 0.78 0.54 0.18 0.37 0.31
3 0.7 0.7 0.78 0.72 0.57 0.61 0.63 0.61
4 0.7 0.94 0.94 0.89 0.7 0.84 0.84 0.81
5 0.72 0.7 0.72 0.71 0.28 0.32 0.34 0.32
6 0.7 0.7 0.75 0.72 0.32 0.37 0.4 0.37
7 0.71 0.7 0.7 0.70 0.93 0.62 0.08 0.52
8 0.72 0.7 0.7 0.70 0.47 0.55 0.58 0.54
9 0.7 0.7 0.7 0.70 0.86 0.94 0.66 0.84

10 0.79 0.73 0.7 0.73 0.57 0.49 0.46 0.50

Table 11. Revenues, costs, and profits for the three scenarios for LBek = 0.7 and LBek = 0.

LBek = 0.7 LBek = 0

Scenario Revenues Profit Yield (%) Revenues Profit Yield (%)

1 17,744,100 7,945,593 44.78 17,744,100 7,945,084 44.78
2 25,514,665 15,716,158 61.60 25,514,665 15,715,649 61.59
3 29,314,435 19,515,928 66.57 29,318,946 19,519,931 66.58

Expected 25,100,483 15,301,976 60.96 25,101,836 15,302,821 60.96
Input cost = 9,798,507.

We also implemented a sensitivity analysis for the case study presented in Section 3.1,
considering seven different strategies to maximize the overall organizational efficiency. In
the first case, two base officers were replaced with an ATM and, therefore, the ATMs are
increased by one in each bank branch. Then the overall profits of the bank are increased
in contrast to the profits in the base case study (see Table 12). In this scenario, the overall
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profits are even higher than the base case study. Thereby this strategy creates the highest
profit for the bank. In the second case, one base officer is replaced with a relationship
manager in each bank branch. Following this strategy, the overall profitability of the bank
decreases in comparison to the base case study. This reduction is expected since relationship
managers have a higher cost for the bank. In the third scenario, we differentiate the cost
of deposits among the bank branches with respect to their location. More precisely, the
cost of deposits increases to 1% from 0.35% for the West bank branches, to 1.5% for the
City Center bank branches, and to 2% for the East bank branches. In the fourth scenario,
we combine the replacement of a base officer with a relationship manager in each bank
branch with the increase in the cost of deposits performed in the third scenario. In the
third and fourth scenarios, the overall profit becomes negative. Since the cost of deposits
is augmented, the costs exceed the revenues of the bank eliminating the profit. In the
fifth scenario, a combination of the first and third scenarios is implemented and a loss is
observed, however lower than that of scenario four. In the sixth scenario, two base officers
were replaced with an ATM, and one base officer was replaced with a relationship manager
in each bank branch. Thus, the tendency of the banks to replace employees with ATMs
and digital services is also due to profit gain. In the seventh scenario, a combination of
scenarios one, two, and three is performed, leading to a loss higher than those observed
in scenarios three, four, and five. Furthermore, in conjunction with Table 12, Figure 2
illustrates the fluctuations in revenues, costs, and profits. In this sensitivity analysis, we
modify input resources, noting that expected revenues remain consistent compared to input
allocation costs. However, the variability in costs has a substantial impact on expected
profits, resulting in losses in some scenarios.

Table 12. Sensitivity analysis for the seven scenarios assumed.

Scenario Exp. Revenues Total Cost Exp. Profit

1 25,098,657 9,495,636 15,603,021
2 25,106,434 9,917,651 15,188,784
3 23,951,562 25,579,251 −1,627,688
4 23,982,217 25,693,324 −1,711,107
5 24,074,086 25,261,859 −1,187,773
6 25,103,557 9,615,635 15,487,922
7 24,117,803 25,382,135 −1,264,331

‘Exp.’ = ‘Expected’.

Figure 2. Revenues, costs, and profits for every scenario.
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5.2. Theoretical and Managerial Implications

In a theoretical context within the exploration of bilevel modeling, decisions that need
to be made at the outset of the examined time period and before any of the scenarios unfold
are termed first-stage decisions. Moreover, decisions executed after a scenario materializes,
known as recourse decisions, allow corrective actions and are referred to as second-stage
decisions. The initial-stage solutions, implemented at the beginning, remain consistent
across all scenarios. In contrast, second-stage decisions vary and are contingent on the
specific scenario. The bilevel DEA model, incorporating stochastic conditions, enables
recourse decisions and actions based on information obtained following the realization of a
particular scenario.

As a result, managers can adjust their strategic planning in response to information
revealed over time. On the other hand, the deterministic counterpart of the proposed DEA
model lacks the flexibility for dynamic changes in strategy and adjustments to emerging
economic conditions. For DMUs with multi-stage or multi-level structures, managers
aim for optimal organizational efficiency by pursuing dynamic strategies that can adapt
to the constraints of limited and uncertain historical data. To this end, the total input
consumption is reduced and/or the total production is augmented and simultaneously
the overall profits are maximized. Decision-makers acting within uncertain and dynamic
environments can benefit from the suggested approach since it allows the investigation of
efficiency assessment under alternative scenarios in the presence of volatility and risk. The
potential impact of applying this methodology varies depending on the specific domain.
Although, the context of this paper focuses on banking, in general, enhancing resource
allocation and target setting under stochasticity, contributes to advancing sustainability
across all its three dimensions (economic, environmental, social).

The bilevel DEA model, incorporating stochastic conditions, calculates the anticipated
organizational profit by considering total expected income from outputs and subtracting
total input costs. These computations account for various scenarios determined by the
manager. In contrast, the deterministic model optimizes future organizational profits based
on historical data with fixed input and output values. In both models, the central DMU
must formulate a strategy before uncertain parameters are revealed, ensuring consideration
of potential future outcomes for more informed predictions of organizational profits. This
approach enhances the accuracy of predicting expected organizational efficiency and allows
for more precise resource allocation and target setting through adjustments when new
information is revealed.

6. Conclusions

The presented bilevel DEA model with stochastic conditions simultaneously optimizes
resource allocation and output targeting, taking into consideration the efficiency lower
bound posed by the central manager of large DMUs comprising multiple subDMUs. It
considers the hierarchical relations that appear in such large organizations and enterprises
that can be captured uniquely through the bilevel framework. Within this framework,
objectives are optimized while simultaneously ensuring that DMU’s operational efficiency
aligns with the managerial strategy. The interconnections and conflicting interests inherent
in this complex organizational structure involving the central administration and subor-
dinate DMUs cannot be adequately captured by the network DEA optimization schema.
In our approach, the uncertainty and unavailability of data are considered when evaluat-
ing the efficiency of large DMUs with a hierarchical structure. The proposed stochastic
approach allows for the realization of uncertain parameters through discrete scenarios
associated with an occurrence probability. One of the main advantages of this model is
that it enables decision-makers of large DMUs to obtain an optimal economic strategy that
permits readjustment to the new data upon the realization of one of the scenarios. Based
on the scenario to be realized, recourse actions can be taken to adjust input consumption
and output targets accordingly. To examine the performance of the stochastic approach, we
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apply the proposed model to evaluate the efficiency of a bank based on data that mirror
typical real-world scenarios.

One limitation of this study is its exclusive focus on for-profit organizations, particu-
larly large enterprises, which directly influence the objective function. Alternative applica-
tions of the model could explore diverse efficiency realizations, incorporating variations of
the objective function. Additionally, when addressing banking issues, our concentration
was on stochastic fluctuations in output targets while assuming deterministic input values.
However, in many real-world scenarios, inputs may also exhibit stochastic tendencies.
Furthermore, although our analysis was based on three scenarios, there are typically nu-
merous potential scenarios to consider. For our case study, we chose to examine only a
small number of decision-making units (DMUs) and scenarios. However, increasing the
dimension of the problem will substantially increase the computational resources needed.
This may necessitate the use of additional methodologies rooted in machine learning, of-
fering an intriguing avenue for further research. For instance, Hao and An [66] suggested
a pre-scoring method for DMUs, referred to as the angle-index synthesis method. They
performed several numerical experiments, highlighting that their algorithm demonstrates
excellent performance in computational time, exhibiting a linear increase in computational
time, even for a staggering case involving 1 billion DMUs.

Taking into account the above, other avenues for future research could involve intro-
ducing stochastic elements at the input level, providing a representation of a potentially
more realistic economic environment. Furthermore, we are investigating the possible
integration of chance constraints concerning the targeted efficiency levels for each DMU.
This approach allows the central administration to specify a range of desired efficiency
levels for each distinguished DMU rather than a precise value. Finally, another path for
future exploration might involve substituting the lower level with a two-stage problem
while preserving the bilevel hierarchy. This approach would entail addressing a stochastic
bilevel network DEA problem, thus finding applications in diverse sectors beyond banking.
Ultimately, an alternative approach could involve demonstrating a tighter formulation to
effectively address instances with larger dimensions.

Author Contributions: Conceptualization, A.C.G., K.K., E.-M.V. and K.B.; methodology, A.C.G.,
K.K., E.-M.V., K.B. and G.P.; software, K.K., E.-M.V. and K.B.; validation, A.C.G., K.K., E.-M.V., K.B.
and G.P.; formal analysis, A.C.G., K.K., E.-M.V., K.B. and G.P.; investigation, A.C.G., K.K., E.-M.V.,
K.B. and G.P.; resources, A.C.G., K.K., E.-M.V., K.B. and G.P.; data curation, A.C.G., K.K., E.-M.V.,
K.B. and G.P.; writing—original draft preparation, K.K., E.-M.V., K.B. and G.P.; writing—review
and editing, A.C.G. and K.K.; visualization, K.K., E.-M.V. and K.B.; supervision, A.C.G. and K.K.;
project administration, A.C.G.; funding acquisition, A.C.G. All authors have read and agreed to the
published version of the manuscript.

Funding: The research project was funded by the Hellenic Foundation for Research and Innova-
tion (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members &
Researchers” (Project Number: 3154).

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: The authors are grateful to Emmanuel Thanassoulis from the Aston Business
School for engaging in fruitful discussions regarding the general idea of the problem. Additionally,
they would like to thank the three anonymous referees for their valuable and constructive comments
and suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1979, 3, 339.
[CrossRef]

2. Färe, R.; Grosskopf, S. Intertemporal production frontiers: With dynamic DEA. J. Oper. Res. Soc. 1997, 48, 656. [CrossRef]
3. Kao, C.; Hwang, S.N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance

companies in Taiwan. Eur. J. Oper. Res. 2008, 185, 418–429. [CrossRef]

56



Mathematics 2024, 12, 529

4. Kao, C.; Hwang, S.N. Efficiency measurement for network systems: IT impact on firm performance. Decis. Support Syst. 2010,
48, 437–446. [CrossRef]

5. Halkos, G.E.; Tzeremes, N.G.; Kourtzidis, S.A. A unified classification of two-stage DEA models. Surv. Oper. Res. Manag. Sci.
2014, 19, 1–16. [CrossRef]

6. Despotis, D.K.; Koronakos, G.; Sotiros, D. The “weak-link” approach to network DEA for two-stage processes. Eur. J. Oper. Res.
2016, 254, 481–492. [CrossRef]

7. Koronakos, G.; Sotiros, D.; Despotis, D.K.; Kritikos, M.N. Fair efficiency decomposition in network DEA: A compromise
programming approach. Socio-Econ. Plan. Sci. 2022, 79, 101100. [CrossRef]

8. Despotis, D.K.; Sotiros, D.; Koronakos, G. A network DEA approach for series multi-stage processes. Omega 2016, 61, 35–48.
[CrossRef]

9. Despotis, D.K.; Koronakos, G.; Sotiros, D. Composition versus decomposition in two-stage network DEA: A reverse approach.
J. Product. Anal. 2016, 45, 71–87. [CrossRef]

10. Kremantzis, M.D.; Beullens, P.; Kyrgiakos, L.S.; Klein, J. Measurement and evaluation of multi-function parallel network
hierarchical DEA systems. Socio-Econ. Plan. Sci. 2022, 84, 101428. [CrossRef]

11. Fukuyama, H.; Matousek, R. Efficiency of Turkish banking: Two-stage network system. Variable returns to scale model. J. Int.
Financ. Mark. Inst. Money 2011, 21, 75–91. [CrossRef]

12. Kao, C. Network Data Envelopment Analysis: Foundations and Extensions; Springer: Berlin/Heidelberg, Germany, 2016; Volume 240.
13. Kourtzidis, S.; Tzeremes, N. Measuring Banking Performance in a Network DEA context: A General Weight Assurance Region

Model. In Proceedings of the European Workshop on Efficiency and Productivity Analysis XVII, Porto, Portugal, 27–29 June 2022.
14. Kao, C. Network data envelopment analysis: A review. Eur. J. Oper. Res. 2014, 239, 1–16. [CrossRef]
15. Henriques, I.C.; Sobreiro, V.A.; Kimura, H.; Mariano, E.B. Two-stage DEA in banks: Terminological controversies and future

directions. Expert Syst. Appl. 2020, 161, 113632. [CrossRef] [PubMed]
16. Omrani, H.; Oveysi, Z.; Emrouznejad, A.; Teplova, T. A mixed-integer network DEA with shared inputs and undesirable outputs

for performance evaluation: Efficiency measurement of bank branches. J. Oper. Res. Soc. 2023, 74, 1150–1165. [CrossRef]
17. Tsaples, G.; Papathanasiou, J. Multi-level DEA for the construction of multi-dimensional indices. MethodsX 2020, 7, 101169.

[CrossRef] [PubMed]
18. Roudabr, N.; Najafi, S.E.; Moghaddas, Z.; Movahedi Sobhani, F. Overall Efficiency of Four-Stage Structure with Undesirable

Outputs: A New SBM Network DEA Model. Complexity 2022, 2022, 9577175. [CrossRef]
19. Kazemzadeh, N.; Ryan, S.M.; Hamzeei, M. Robust optimization vs. stochastic programming incorporating risk measures for unit

commitment with uncertain variable renewable generation. Energy Syst. 2019, 10, 517–541. [CrossRef]
20. Zhang, Y.; Li, Z.; Jiao, P.; Zhu, S. Two-stage stochastic programming approach for limited medical reserves allocation under

uncertainties. Complex Intell. Syst. 2021, 7, 3003–3013. [CrossRef]
21. Shakouri, R.; Salahi, M.; Kordrostami, S. Stochastic p-robust approach to two-stage network DEA model. Quant. Financ. Econ.

2019, 3, 315–346. [CrossRef]
22. Sadjadi, S.J.; Omrani, H.; Makui, A.; Shahanaghi, K. An interactive robust data envelopment analysis model for determining

alternative targets in Iranian electricity distribution companies. Expert Syst. Appl. 2011, 38, 9830–9839. [CrossRef]
23. Wang, K.; Wei, F. Robust data envelopment analysis based MCDM with the consideration of uncertain data. J. Syst. Eng. Electron.

2010, 21, 981–989. [CrossRef]
24. Landete, M.; Monge, J.F.; Ruiz, J.L. Robust DEA efficiency scores: A probabilistic/combinatorial approach. Expert Syst. Appl.

2017, 86, 145–154. [CrossRef]
25. Charles, V.; Cornillier, F. Value of the stochastic efficiency in data envelopment analysis. Expert Syst. Appl. 2017, 81, 349–357.

[CrossRef]
26. Hakim, S.; Seifi, A.; Ghaemi, A. A bi-level formulation for DEA-based centralized resource allocation under efficiency constraints.

Comput. Ind. Eng. 2016, 93, 28–35. [CrossRef]
27. Seiford, L.M.; Zhu, J. Profitability and marketability of the top 55 US commercial banks. Manag. Sci. 1999, 45, 1270–1288.

[CrossRef]
28. Portela, M.C.A.S.; Thanassoulis, E. Comparative efficiency analysis of Portuguese bank branches. Eur. J. Oper. Res. 2007,

177, 1275–1288. [CrossRef]
29. Akther, S.; Fukuyama, H.; Weber, W.L. Estimating two-stage network slacks-based inefficiency: An application to Bangladesh

banking. Omega 2013, 41, 88–96. [CrossRef]
30. Wanke, P.; Barros, C. Two-stage DEA: An application to major Brazilian banks. Expert Syst. Appl. 2014, 41, 2337–2344. [CrossRef]
31. Wang, K.; Huang, W.; Wu, J.; Liu, Y.N. Efficiency measures of the Chinese commercial banking system using an additive two-stage

DEA. Omega 2014, 44, 5–20. [CrossRef]
32. Hafsal, K.; Suvvari, A.; Durai, S.R.S. Efficiency of Indian banks with non-performing assets: Evidence from two-stage network

DEA. Future Bus. J. 2020, 6, 1–9. [CrossRef]
33. Fukuyama, H.; Matousek, R.; Tzeremes, N.G. A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production

process: Evidence from the Turkish banking system. Omega 2020, 95, 102198. [CrossRef]
34. Golany, B.; Phillips, F.; Rousseau, J. Models for improved effectiveness based on DEA efficiency results. IIE Trans. 1993, 25, 2–10.

[CrossRef]

57



Mathematics 2024, 12, 529

35. Athanassopoulos, A.D. Goal programming & data envelopment analysis (GoDEA) for target-based multi-level planning:
Allocating central grants to the Greek local authorities. Eur. J. Oper. Res. 1995, 87, 535–550.

36. Yu, M.M.; Chern, C.C.; Hsiao, B. Human resource rightsizing using centralized data envelopment analysis: Evidence from
Taiwan’s Airports. Omega 2013, 41, 119–130. [CrossRef]

37. Amirteimoori, A.; Tabar, M.M. Resource allocation and target setting in data envelopment analysis. Expert Syst. Appl. 2010,
37, 3036–3039. [CrossRef]

38. Beasley, J.E. Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 2003, 147, 198–216. [CrossRef]
39. Lozano, S.; Villa, G. Centralized resource allocation using data envelopment analysis. J. Product. Anal. 2004, 22, 143–161.

[CrossRef]
40. Varmaz, A.; Varwig, A.; Poddig, T. Centralized resource planning and Yardstick competition. Omega 2013, 41, 112–118. [CrossRef]
41. Afsharian, M.; Ahn, H.; Thanassoulis, E. A DEA-based incentives system for centrally managed multi-unit organisations. Eur. J.

Oper. Res. 2017, 259, 587–598. [CrossRef]
42. Afsharian, M.; Ahn, H.; Thanassoulis, E. A frontier-based system of incentives for units in organisations with varying degrees of

decentralisation. Eur. J. Oper. Res. 2019, 275, 224–237. [CrossRef]
43. Asmild, M.; Paradi, J.C.; Pastor, J.T. Centralized resource allocation BCC models. Omega 2009, 37, 40–49. [CrossRef]
44. Wu, J.; An, Q.; Ali, S.; Liang, L. DEA based resource allocation considering environmental factors. Math. Comput. Model. 2013,

58, 1128–1137. [CrossRef]
45. Fang, L. A generalized DEA model for centralized resource allocation. Eur. J. Oper. Res. 2013, 228, 405–412. [CrossRef]
46. Chen, Y.; Du, J.; Sherman, H.D.; Zhu, J. DEA model with shared resources and efficiency decomposition. Eur. J. Oper. Res. 2010,

207, 339–349. [CrossRef]
47. Zha, Y.; Liang, L. Two-stage cooperation model with input freely distributed among the stages. Eur. J. Oper. Res. 2010,

205, 332–338. [CrossRef]
48. Wu, J.; Zhu, Q.; Ji, X.; Chu, J.; Liang, L. Two-stage network processes with shared resources and resources recovered from

undesirable outputs. Eur. J. Oper. Res. 2016, 251, 182–197. [CrossRef]
49. Yu, M.M.; Chen, L.H.; Hsiao, B. A fixed cost allocation based on the two-stage network data envelopment approach. J. Bus. Res.

2016, 69, 1817–1822. [CrossRef]
50. Li, X.; Da Xu, L. A review of Internet of Things—Resource allocation. IEEE Internet Things J. 2020, 8, 8657–8666. [CrossRef]
51. Qiu, Q.; Cui, L.; Gao, H.; Yi, H. Optimal allocation of units in sequential probability series systems. Reliab. Eng. Syst. Saf. 2018,

169, 351–363. [CrossRef]
52. Dempe, S. Foundations of Bilevel Programming; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002.
53. Von Stackelberg, H. Market Structure and Equilibrium; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.
54. Shafiee, M.; Lotfi, F.H.; Saleh, H.; Ghaderi, M. A mixed integer bi-level DEA model for bank branch performance evaluation by

Stackelberg approach. J. Ind. Eng. Int. 2016, 12, 81–91. [CrossRef]
55. Zhou, X.; Luo, R.; Tu, Y.; Lev, B.; Pedrycz, W. Data envelopment analysis for bi-level systems with multiple followers. Omega

2018, 77, 180–188. [CrossRef]
56. Sinha, A.; Malo, P.; Frantsev, A.; Deb, K. Finding optimal strategies in a multi-period multi-leader–follower Stackelberg game

using an evolutionary algorithm. Comput. Oper. Res. 2014, 41, 374–385. [CrossRef]
57. Hajiagha, S.H.R.; Mahdiraji, H.A.; Tavana, M. A new bi-level data envelopment analysis model for efficiency measurement and

target setting. Measurement 2019, 147, 106877. [CrossRef]
58. Ang, S.; Liu, P.; Yang, F. Intra-organizational and inter-organizational resource allocation in two-stage network systems. Omega

2020, 91, 102009. [CrossRef]
59. Olesen, O.B.; Petersen, N.C. Stochastic data envelopment analysis—A review. Eur. J. Oper. Res. 2016, 251, 2–21. [CrossRef]
60. Charnes, A.; Cooper, W.W. Chance-constrained programming. Manag. Sci. 1959, 6, 73–79. [CrossRef]
61. Beraldi, P.; Bruni, M. Efficiency evaluation under uncertainty: A stochastic DEA approach. Decis. Econ. Financ. 2020, 43, 519–538.

[CrossRef]
62. Zhou, Z.; Lin, L.; Xiao, H.; Ma, C.; Wu, S. Stochastic network DEA models for two-stage systems under the centralized control

organization mechanism. Comput. Ind. Eng. 2017, 110, 404–412. [CrossRef]
63. Hatami-Marbini, A.; Arabmaldar, A.; Toloo, M.; Nehrani, A.M. Robust non-radial data envelopment analysis models under data

uncertainty. Expert Syst. Appl. 2022, 207, 118023. [CrossRef]
64. Tseng, C.Y.; Lee, C.Y.; Wang, Q.; Wu, C. Data envelopment analysis and stochastic equilibrium analysis for market power

investigation in a bi-level market. Transp. Res. Part E Logist. Transp. Rev. 2022, 161, 102705. [CrossRef]
65. Omrani, H.; Shamsi, M.; Emrouznejad, A.; Teplova, T. A robust DEA model under discrete scenarios for assessing bank branches.

Expert Syst. Appl. 2023, 219, 119694. [CrossRef]
66. Muren; Hao, L.; An, Q. Efficiency evaluation of very large-scale samples: Data envelopment analysis with angle-index synthesis.

Comput. Oper. Res. 2024, 161, 106457. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

58



Citation: Vassiliou, P.-C.G. Strong

Ergodicity in Nonhomogeneous

Markov Systems with Chronological

Order. Mathematics 2024, 12, 660.

https://doi.org/10.3390/

math12050660

Academic Editor: Michael Voskoglou

Received: 11 January 2024

Revised: 5 February 2024

Accepted: 18 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Strong Ergodicity in Nonhomogeneous Markov Systems
with Chronological Order

P.-C.G. Vassiliou

Department of Statistical Sciences, University College London, Gower St., London WC1E 6BT, UK;
vasiliou@math.auth.gr

Abstract: In the present, we study the problem of strong ergodicity in nonhomogeneous Markov systems.
In the first basic theorem, we relax the fundamental assumption present in all studies of asymptotic
behavior. That is, the assumption that the inherent inhomogeneous Markov chain converges to a
homogeneous Markov chain with a regular transition probability matrix. In addition, we study the
practically important problem of the rate of convergence to strong ergodicity for a nonhomogeneous
Markov system (NHMS). In a second basic theorem, we provide conditions under which the rate
of convergence to strong ergodicity is geometric. With these conditions, we in fact relax the basic
assumption present in all previous studies, that is, that the inherent inhomogeneous Markov chain
converges to a homogeneous Markov chain with a regular transition probability matrix geometrically
fast. Finally, we provide an illustrative application from the area of manpower planning.
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1. Introductory Notes

Consider a stochastic system that has a population of members categorized in different
states. Three types of movements are possible in the system. Firstly, movements of members
are probable among the states of the system; secondly, members are leaving the system
from the various states; and thirdly, new members are entering the system to replace leavers
and to expand the population. When the various movements of the system are modeled
by a nonhomogeneous Markov chain, we call such a system a nonhomogeneous Markov
system (NHMS).

An NHMS is actually a generalization of the classical Markov chain where we have one
particle moving among the states without the possibility of leaving the system and probably
being replaced by another with possibly different characteristics. Of great importance is
the vector of absolute probabilities which consists of the probabilities of the particle to be
in any state of the Markov chain. On the other hand, in an NHMS, we have a population of
particles categorized according to their characteristics in the various states. Particles are
leaving the population from all the states, and new particles are entering the population
to replace them and to expand the population. Of great importance is the vector of the
expected relative population structure. Hence, the problems to be solved are a lot harder,
and new strategies and tools are used other than the simple Markov chain. The roots of
the motive for the development of the theory of NHMS, which was first introduced in
Vassiliou [1], could be summarized in the use of Markov models in manpower systems. This
started with the work of Young and Almond [2], Young [3,4], and Bartholomew [5,6], and it
was extended in the works of Young and Vassiliou [7], Vassiliou [8,9], and McClean [10,11].
In the book by Vassiliou [12], one can find the evolution of the theory of NHMS and
the large diversity of its developments in various directions, that is, NHMS in discrete
and continuous time, stochastic control in NHMS, Laws of Large Numbers for NHMS,
Perturbations theory, NHMS in a stochastic environment, Markov systems, and others.
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In Section 5.4 of [12], there is a synopsis of real and potential applications of NHMS
which illustrates the breadth of applications and some of the reasons why the entire
theory is central to these processes. Work on manpower planning using results from
NHMS and new areas has continued throughout the years up to nowadays, for example,
Garg, et al. [13–15], Ugwugo and McClean [16], Vassiliadis [17,18], Georgiou, et al. [19],
Guerry [20,21], Pollard [22], Esquivel, et al. [23–25].

In Section 2 of the present study, we define and describe the NHMS in discrete time and
space in a compact but hopefully readable way for the reader who comes in contact for the
first time with these processes. We also state the expected relative population structure in
the various states as a function of the parameters of the population that could be estimated
from the available data. In Section 3, we start with some basic definitions of concepts and
mathematical tools, as well as useful known results that will be used in what follows. The novel
part of this section is Theorem 1, where we study strong ergodicity for NHMS by relaxing the
basic assumption present in all studies of strong ergodicity for NHMS. That is, we will not
assume that the inherent inhomogeneous Markov chain converges as time goes to infinity to a
homogeneous Markov chain with a regular (it consists of one communicating class of states,
which is aperiodic) transition probability matrix or, equivalently, that the inhomogeneous
Markov chain is strongly ergodic. In Section 3, we start with some basic definitions of concepts
and mathematical tools, as well as useful known results that will be used in what follows.
The novel part of this section is Theorem 4, where we prove under what conditions the rate
of convergence of strong ergodicity in a NHMS is geometrically fast. This is an important
question in NHMS due to its large practical value. In Theorem 4, we relax the basic assumption
present in all studies of the rate of convergence to its asymptotic behavior for a NHMS. That
is, we will not assume that the inherent inhomogeneous Markov chain converge as time
goes to infinity to a homogeneous Markov chain with a regular transition probability matrix
geometrically fast. Finally, in Section 5, we provide an illustrative application from the area of
manpower planning.

2. The NHMS in Discrete Time and Space

Let a population consist of any kind of entities and let us denote by T(t) for t = 1, 2, . . .,
the total number of memberships at time t, that is, at the end of the interval (t − 1, t], which
are being held by its members. At every point of time that a member leaves the population,
the membership is being transferred to a new member. For example, members could be
patients in a hospital and memberships the beds they occupy. It is assumed that the total
number of memberships are known or the sequence {T(t)}∞

t=0 is a realization of a known
stochastic process depending on the application. The memberships are distributed in a
finite number of states and let S = {1, 2, . . ., k} be the state space. Important aspect of
an NHMS (see Vassiliou [12], Section 5.2) is the population structure, that is, the vector of
random variables

N(t) = [N1(t), N2(t), . . ., Nk(t)],

where Ni(t) is the number of memberships in state i at time t. Also, very important is the
relative population structure, which is the vector of random variables q(t) = N(t)/T(t). We
denote by P(t) the transition probability matrix of the internal transitions of the members
of the population during the interval (t − 1, t], that is, the t-th interval. Also, we have
probable leavers from the states in S in every time interval t and let us denote by

pk+1(t) = [p1,k+1(t), p2,k+1(t), . . ., pk,k+1(t)],

where the state k + 1 represents the external environment. Finally, we have new entrants of
memberships to the population in order to replace leavers and to expand the population.
Let us collect the probabilities of allocation of the memberships to the various states in the
t-th interval in the following stochastic vector

p0(t) = [p01(t), p02(t), . . ., p0k(t)],
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where the state 0 represents the new entrants with their memberships waiting to be allocated
in the various states. Note that in what follows we assume that ΔT(t) = T(t)− T(t − 1) ≥ 0.

The transition probability matrix of the memberships Q(t) in the t-th interval can be
shown (Vassiliou [12], p. 193), and it is given by

Q(t) = P(t) + pk+1(t)p0(t). (1)

We call the inhomogeneous Markov chain defined uniquely by the sequence of transition
probability matrices {Q(t)}∞

t=0 the embedded or inherent nonhomogeneous Markov chain of
NHMS. A population or any physical phenomenon that could be modeled in the above
described way is defined to be a nonhomogeneous Markov system.

Now, as previously, we define the relative population structure for a population which
started at time s and is at time t to be q(s, t) = N(s, t)/T(t), where N(s, t) is the population
structure for the population. It could be proved that (Georgiou and Vassiliou [26] and
Vassiliou [12], p. 195)

E[q(s, t)] = E[q(s, t − 1)]α(t − 1)Q(t) + b(t − 1)p0(t), (2)

where s is the initial time and, therefore, q(s) is the initial relative population structure
which is known and

α(t − 1) =
T(t − 1)

T(t)
and b(t − 1) =

T(t)− T(t − 1)
T(t)

, (3)

and where q(s, t) is the relative population structure at time t for the system that started
with initial relative population structure q(s), which apparently is a random variable, and
we denote by E[q(s, t)] its expected value.

From (2), recursively, we obtain

E[q(s, t)] = q(s)
T(s)
T(t)

Q(s, t) +
1

T(t)

t

∑
τ=1

ΔT(s + t)p0(s + t)Q(s + τ, t), (4)

where
Q(s, t) = Q(s + 1)Q(s + 2). . .Q(t).

3. Strong Ergodicity in NHMS with Chronological Order

The asymptotic behavior of NHMS and of nonhomogeneous Markov chains, as well as
of homogeneous Markov chains, has been one of the central problems for many years, as can
be seen in Refs. [12,27–31]. The asymptotic behavior of NHMS started with Vassiliou [1,32],
and an updated evolution of these theorems and their variants could be found in Vassil-
iou [12]. In the present section, we provide and prove a basic theorem for strong ergodicity
in NHMS when the transition probabilities matrices of the inherent Markov chain {Q(t)}∞

t=0
are given in chronological order; that is, it is assumed that the time order of the elements
of the sequence {Q(t)}∞

t=0 is given and will not be changed. In Theorem 1 we relax the
basic assumption present in all studies of asymptotic behavior for NHMS. That is, we
will not assume that the inherent inhomogeneous Markov chain converge as time goes to
infinity to a homogeneous Markov chain with a regular (it consists of one communicating
class of states which is aperiodic) transition probability matrix or, equivalently, that the
inhomogeneous Markov chain is strongly ergodic. We start with some basic definitions
and results, which will be useful in what follows.

For what follows, we assume a complete probability space (Ω,F ,P) and consider an
NHMS in discrete time and space. Therefore, we will not repeat this in every Definition,
Lemma, Proposition, or Theorem.
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Definition 1. We say that the NHMS is strongly ergodic if and only if there exists a stochastic
vector ψ such that

lim
ν→∞

‖E[q(t, t + ν)]− ψ‖ = 0. for t = 0, 1, 2, . . ., (5)

where ‖.‖ from now on is any vector norm, except if it is otherwise stated.

Definition 2. If Q is any finite stochastic matrix with state space S = {1, 2, . . ., k}, then the
Dobrushin ergodicity coefficient that is known is given by

τ1(Q) =
1
2

max
i,r

k

∑
j=1

∣∣∣qij − qkj

∣∣∣. (6)

We now define another class of ergodicity coefficients which will be generated by different norms.

Definition 3 (Seneta [27]). Let the set

Dn =
{

x : x ∈ R
n, x ≥ 0, x1
 = 1

}
,

and by d(. . .) any metric on this set. Then, the quantity

τ(P) = sup
x,y∈Dn

d(xP, yP)

d(x, y)
with x �= y, (7)

for any stochastic matrix, P is called a coefficient of ergodicity.

Remark 1. All matrix norms on Rn provide an appropriate metric on Dn via d(x, y) = ‖x − y‖.
Then for any stochastic matrix P we get

τ‖.‖(P) = sup
x,y∈Dn

‖(x − y)P‖
‖x − y‖ with x �= y. (8)

We call τ‖.‖(P) the coefficient of ergodicity induced by the norm ‖.‖. It is proved that (8) can
be written equivalently (Vassiliou [12], p. 118) as follows:

τ‖.‖(P) = sup
‖z‖=1
z1
=1

‖zP‖ over all z ∈ R
n. (9)

When the L1 norm is used, that is, for an n × n matrix A with elements from C, we obtain that

‖A‖1 =
n

∑
i,j=1

∣∣aij
∣∣, (10)

then
τ1(P) = sup

‖z‖1=1
z1
=1

‖zP‖1 over all z ∈ R
n. (11)

We now give the definitions of strong and weak ergodicity for a nonhomogeneous
Markov chain:

Definition 4. Consider an inhomogeneous Markov chain {Xt}∞
t=0 in discrete time and space. We

say that {Xt}∞
t=0 with a sequence of transition probability matrices {Q(t)}∞

t=0 is strongly ergodic
if there exists a stable stochastic matrix Q such that for every t

lim
ν→∞

‖Q(t, t + ν)− Q‖ = 0. (12)
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If the limit is zero uniformly in t we say that {Xt}∞
t=0 or equivalently {Q(t)}∞

t=0 is uniformly
strongly ergodic.

Definition 5. Consider an inhomogeneous Markov chain {Xt}∞
t=0 in discrete time and space. We

say that {Xt}∞
t=0 with sequence of transition probability matrices {Q(t)}∞

t=0 is weakly ergodic if
for all states i, j, r, t

qir(t, t + ν)− qjr(t, t + ν) → 0 as ν → ∞. (13)

Note that in (13), limν→∞ qij(t, t + ν) is not actually necessary to exist.

Remark 2. Note that equivalently a non-homogeneous Markov chain is weakly ergodic if
τ1(Q(t, t + ν)) < 1 for every t.

We now state the following Lemma the proof of which exists in Vassiliou ([12], p. 119).

Lemma 1. The coefficient of ergodicity generated by any metric as in (7) or induced by any vector
norm on Rn has the following properties:

(1) τ(P1P2) ≤ τ(P1)τ(P2) for any P1, P2 stochastic matrices.
(2) For any stochastic matrix P, τ(P) = 0 if and only if rank(P) = 1.

The following Lemma proof, which can be found in Paz [33], is useful in what follows:

Lemma 2. If P is a stochastic matrix and if R is any real matrix such that R1
 = 0 and in addition
‖R‖ < ∞, then

‖RP‖ ≤ ‖R‖τ1(P).

We now state and prove one of the basic theorems of the present paper.

Theorem 1. Let there be the complete probability space (Ω,F ,P) and consider an NHMS in
discrete time and space. We assume that

lim
t→∞

T(t) = T with ΔT(t) ≥ 0. (14)

Let {Y(t)}∞
t=0 be the inherent nonhomogeneous Markov chain of the movement of memberships.

If {Y(t)}∞
t=0 is weakly ergodic with {Q(t)}∞

t=0, the sequence of transition probabilities, and in
addition, there exists a stochastic vector

ψ(t) = [ψ1(t), ψ2(t), . . ., ψk(t)], (15)

which is the left eigenvector of Q(t) for t = 0, 1, 2, . . ., that is

ψ(t) = ψ(t)Q(t) for t = 0, 1, 2, . . ., (16)

and
∞

∑
t=0

‖ψ(t + 1)− ψ(t)‖ < ∞, (17)

then the NHMS is strongly ergodic.

Proof. From (17) we obtain that there exists a stochastic vector ψ such that

lim
t→∞

‖ψ(t)− ψ‖ = 0. (18)

From (16) and (18), we obtain that there exists a stochastic matrix Q such that

lim
t→∞

‖Q(t)− Q‖ = 0 with Q1
 = 1
. (19)
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Denote by Ψ(t) to be the stable matrix with row the stochastic vector ψ(t) and Ψ the stable
matrix with row ψ. Then, we have

‖Ψ(t + 1)− Ψ(t)‖ = ‖ψ(t + 1)− ψ(t)‖ and ‖Ψ(t)− Ψ‖ = ‖ψ(t)− ψ‖. (20)

We now show that
lim

ν→∞
‖Q(t, t + ν)− Ψ‖ = 0. (21)

We have that

Q(t, t + ν)− Ψ = Q(t, t + r)Q(t + r, t + ν)− Ψ(t + r)Q(t + r, t + ν)+

Ψ(t + r)Q(t + r, t + ν)− Ψ(t + ν − 1) + Ψ(t + ν − 1)− Ψ. (22)

Taking norms on (22) we obtain that

‖Q(t, t + ν)− Ψ‖ ≤ ‖Q(t, t + r)Q(t + r, t + ν)− Ψ(t + r)Q(t + r, t + ν)‖

+‖Ψ(t + r)Q(t + r, t + ν)− Ψ(t + ν − 1)‖+ ‖Ψ(t + ν − 1)− Ψ‖. (23)

We now have

N1(t, ν) = ‖Q(t, t + r)Q(t + r, t + ν)− Ψ(t + r)Q(t + r, t + ν)‖ ≤

‖[Q(t, t + r)− Ψ(t + r)]Q(t + r, t + ν)‖ ≤ (Due to Lemma 2) ≤

‖Q(t, t + r)− Ψ(t + r)‖τ1(Q(t + r, t + ν)) ≤ 2τ1(Q(t + r, t + ν)), (24)

where τ1(Q(t + r, t + ν)) is less than one due to weak ergodicity of {Y(t)}∞
t=0 the inherent

nonhomogeneous Markov chain. Also for fixed r, we can always choose ν such that

N1(t, ν) ≤ ε

3
, with ε > 0 a small number. (25)

We now have that

Ψ(t + r)Q(t + r, t + ν) = (due to Equation (16)) =

[Ψ(t + r)− Ψ(t + r + 1)]Q(t + r + 1, t + ν)+

+Ψ(t + r + 1)Q(t + r + 1, t + ν). (26)

Now, similarly, we obtain

Ψ(t + r + 1)Q(t + r + 1, t + ν) =

[Ψ(t + r + 1)− Ψ(t + r + 2)]Q(t + r + 2, t + ν)

+Ψ(t + r + 2)Q(t + r + 2, t + ν), (27)

and using this equation recursively, we obtain

Ψ(t + r)Q(t + r, t + ν) =
t+ν−1

∑
j=t+r+1

[Ψ(j − 1)− Ψ(j)]Q(j, t + ν)

+Ψ(t + ν − 1)Q(t + ν − 1, t + ν). (28)
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From condition (16), we obtain that

Ψ(t + ν − 1) = Ψ(t + ν − 1)Q(t + ν − 1), (29)

and
ψ(t + ν − 1) = ψΨ(t + ν − 1). (30)

Therefore, from (28)–(30), as well as, Lemma 2, we have that

N2(t, ν) = ‖Ψ(t + r)Q(t + r, t + ν)− ΨΨ(t + ν − 1)‖ ≤∥∥∥∥∥ t+ν−1

∑
j=t+r+1

[Ψ(j − 1)− Ψ(j)]τ1(Q(j, t + ν))

∥∥∥∥∥ ≤

t+ν−1

∑
j=t+r+1

‖ψ(j − 1)− ψ(j)‖τ1(Q(j, t + ν)) ≤

≤ (τ1(Q(t + r, t + ν)) < 1 due to weak ergodicity of {Y(t)}∞
t=0;

see also Remark 2).

≤
t+ν−1

∑
j=t+r+1

‖ψ(j − 1)− ψ(j)‖ < ∞, (31)

due to condition (17). Since N2(t, ν) < ∞ for every r and ν and it is a sum of positive
numbers, we have that its tail goes to zero. Hence, we could, for every ε > 0, fix t + r
such that N2(t, ν) < ε/3 for ν − 1 ≥ r and we can always take a ν large enough so that
N1(t, ν) < ε/3 and

N3(t, ν) = ‖Ψ(t + ν − 1)− Ψ‖ ≤ ε

3
, (32)

therefore, we obtain that
lim

ν→∞
‖Q(t, t + ν)− Ψ‖ = 0. (33)

Now, from (4), we have that

‖E[q(t, t + ν)]− ψ‖ =∥∥∥∥∥q(t)
T(t)

T(t + ν)
Q(t, t + ν) +

1
T(t + ν)

t+ν

∑
τ=t

ΔT(τ)Q(τ, t + ν)− ψ

∥∥∥∥∥ ≤

1
T(t + ν)

∥∥∥∥∥q(t)T(t)Q(t, t + ν) +
t+ν

∑
τ=t

ΔT(τ)Q(τ, t + ν)− T(t + ν)ψ

∥∥∥∥∥ ≤

‖q(t)T(t)Q(t, t + ν)− T(t)ψ‖+
∥∥∥∥∥t+ν

∑
τ=t

ΔT(τ)p0(τ)Q(τ, t + ν)− [T(t + ν)− T(t)]ψ

∥∥∥∥∥. (34)

Now, we have
A(t, t + ν) = ‖q(t)T(t)Q(t, t + ν)− T(t)ψ‖ ≤

T(t)‖q(t)‖‖Q(t, t + ν)− ψ‖. (35)
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By fixing ε > 0, we can always find ν0 such that

A(t, t + ν) ≤ ε

2
for ν ≥ ν0. (36)

B(t, t + ν) =

∥∥∥∥∥t+ν

∑
τ=t

ΔT(τ)p0(τ)Q(τ, t + ν)− [T(t + ν)− T(t)]ψ

∥∥∥∥∥ =

= (since p0(τ)Ψ = p0Ψ = ψ) =∥∥∥∥∥t+ν

∑
τ=t

ΔT(τ)p0(τ)Q(τ, t + ν)−
t+ν

∑
τ=t

ΔT(τ)p0Ψ

∥∥∥∥∥ =

∥∥∥∥∥t+ν

∑
τ=t

ΔT(τ)[p0(τ)Q(τ, t + ν)− p0Ψ]

∥∥∥∥∥ ≤

t+ν

∑
τ=t

ΔT(τ)‖p0(τ)Q(τ, t + ν)− p0Ψ‖ ≤

t+ν

∑
τ=t

ΔT(τ)‖p0(τ)[Q(τ, t + ν)− Ψ] + p0(τ)Ψ − p0Ψ‖

≤
t+ν

∑
τ=t

ΔT(τ)‖Q(τ, t + ν)− Ψ‖ (37)

Now, for ν > ν0 from (37), we have that

B(t, t + ν) ≤
t+ν−ν0

∑
τ=t

ΔT(τ)‖Q(τ, t + ν)− Ψ‖+
t+ν

∑
τ=t+ν−ν0

ΔT(τ)‖Q(τ, t + ν)− Ψ‖

≤
t+ν−ν0

∑
τ=t

ΔT(τ)
ε

2
+ 2|T(t + ν)− T(t + ν − ν0 + 1)|, (38)

where the second part of (38) for ν >> ν0 is less than ε/2 due to condition (14). The first
part is also for, ν >> ν0, less than ε/2 since ΔT(t) →t→∞ 0 due to condition (14). From (34)
and (36), and a ν > ν0 large enough (ν >> ν0), we easily see that

‖E[q(t, t + ν)]− ψ‖ ≤ ε for every ν >> ν0,

hence, the NHMS is strongly ergodic.

4. Rate of Convergence in NHMS with Chronological Order

An important question in nonhomogeneous Markov chains and NHMS, due to its
very large practical value, is the rate of convergence to their asymptotic structure. In fact,
it is important to find the necessary conditions under which the rate of convergence is
geometric because then the value of the asymptotic result is greater. The roots of the study of
finding conditions under which the rate of convergence is geometric for nonhomogeneous
Markov chains are in Huang, et al. [34,35] and Seneta [31]. The study of the geometric
rate of convergence in NHMS started in Vassiliou and Tsaklidis [36] and Georgiou and
Vassiliou [26], and an updated evolution of these theorems and their variants could be
found in Vassiliou [12]. The importance of answering this problem for practical purposes
is apparent in Bartholomew [37] for the homogeneous Markov system, which is a very
special case of an NHMS. In the present section, we provide and prove a basic theorem for
the rate of convergence to strong ergodicity in NHMS when the transition probabilities
matrices of the inherent Markov chain {Q(t)}∞

t=0 are given in chronological order. In
Theorem 4, we relax the basic assumption present in all studies of the rate of convergence
to its asymptotic behavior for an NHMS. That is, we will not assume that the inherent
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inhomogeneous Markov chain converges as time goes to infinity to a homogeneous Markov
chain with a regular transition probability matrix geometrically fast. We start with some
basic definitions and results which will be useful in what follows.

Definition 6. We say that a sequence of matrices {An}∞
n=0 converges with geometrical rate to a

matrix A if there exists constants c > 0 and 0 < b < 1 such that

‖An − A‖ ≤ cbn for n = 1, 2, . . .. (39)

Lemma 3 (Vassiliou and Tsaklidis [36]). The following statements are equivalent:

(i) The sequence {ΔT(t)}∞
t=0 converges to zero geometrically fast.

(ii) The sequence {T(t)}∞
t=0 converges to T geometrically fast.

Definition 7. (i) A stochastic matrix P is called Markov if at least one column of P is entirely
positive. Let M be the set of all Markov matrices. (ii) We say that the stochastic matrix P ∈ G2
if (a) P ∈ G1 the set of all regular matrices; (b) QP ∈ G1 for any Q ∈ G1. (iii) We say that the
stochastic matrix P ∈ G3 the set of all scrambling matrices if τ‖.‖1

(P) < 1.

Remark 3. The distinction of the set G2 from all stochastic regular matrices is due to the fact
that the product of two regular matrices is not always regular. In addition, the product of two
nonregular stochastic matrices could be regular. A practical way to check if a stochastic matrix of
small dimension is scrambling is the following: given any two rows i, j, there is at least one column
k such that pik > 0 and pjk > 0.

Definition 8. The incidence matrix of a stochastic matrix P is a matrix where in the positions of
positive elements we put the number 1. Therefore, two stochastic matrices P and Q of the same
dimension have the same incidence matrix if they have the positive elements in the same positions.
Then, we write P ∼ Q.

We now state some known Lemmas and Theorems, the proofs of which can be found
in Vassiliou ([12], p. 143).

Theorem 2. For all stochastic matrices, we have M ⊂ G3 ⊂ G2 ⊂ G1.

Lemma 4. If P(t, t + ν) ∈ G1 with t ≥ 0, n ≥ 1, then P(t, t + ν) ∈ M for t+ ν ≥ μ the number
of distinct incidence matrices corresponding to G1 with the same dimension as P(t, t + ν).

Theorem 3. Let there be a complete probability space (Ω,F ,P), and consider a nonhomogeneous
Markov chain {Xt}∞

t=0 in discrete time and space with a sequence of transition probabilities matrices
{P(t)}∞

t=0. If P(t) ∈ G2 for every t = 1, 2, . . . and

min
i,j

(
pij(t), 0

)+ ≥ γ > 0, (40)

uniformly for all t ≥ 1, then weak ergodicity obtains at a uniform geometric rate.

We now define the geometrically strongly ergodic NHMS, which is a central concept
in the present section.

Definition 9. Let there be a complete probability space (Ω,F ,P), and consider an NHMS in
discrete time and space. We say that the NHMS is strongly ergodic if there exists a stochastic vector
ψ and constants c > 0 and 0 < b < 1 such that

‖E[q(t, t + ν)− ψ]‖ ≤ cbν for c > 0 and 0 < b < 1.

We now state and prove the basic theorem of this section.
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Theorem 4. Let there be a complete probability space (Ω,F ,P), and consider an NHMS in discrete
time and space. We assume that the total number of memberships is increasing (ΔT(t) ≥ 0), and it
converges geometrically fast to T. That is,

lim
t→∞

T(t) = T geometrically fast with ΔT(t) ≥ 0. (41)

Let {Y(t)}∞
t=0 be the inherent nonhomogeneous Markov chain of the movement of memberships.

If {Y(t)}∞
t=0 is weakly ergodic with {Q(t)}∞

t=0 the sequence of transition probabilities to be such that

(i) Q(t) ∈ G2 for every t = 1, 2, . . ., (42)

(ii) min
i,j

(
qij(t), 0

)+ ≥ γ > 0, (43)

and if in addition there exists a stochastic vector

ψ(t) = [ψ1(t), ψ2(t), . . ., ψk(t)], (44)

which is the left eigenvector for t = 1, 2, . . . of Q(t), that is,

ψ(t) = ψ(t)Q(t) for every t, (45)

and in addition

lim
ν→∞

‖ψ(t + ν)− ψ(t + ν − 1)‖ = 0 geometrically fast, (46)

then the NHMS is geometrically strongly ergodic.

Proof. In order to prove that the NHMS is geometrically strongly ergodic, we must show
that the expected relative structure satisfies Definition 9.

From (46), we have that there exists a vector ψ and constants c1 > 0 and 0 < b1 < 1
such that

‖ψ(t + ν)− ψ‖ ≤ c1bt+ν
1 . (47)

We define Ψ(t) and Ψ as the stable matrices with rows ψ(t) and ψ, respectively.
We now show that the inherent nonhomogeneous Markov chain {Y(t)}∞

t=0 is geomet-
rically strongly ergodic. That is, we need to show that there exists constants c2 > 0 and
0 < b2 < 1 such that

‖Q(t, t + ν)− Ψ‖ ≤ c2bν
2 for every t. (48)

Let us denote by μ the number of distinct incidence matrices corresponding to G1 with the
same dimension as P(t, t + ν). Then, for ν > μ, we have that

‖Q(t, t + ν)− Ψ‖ ≤ ‖Q(t, t + μ)Q(t + μ, t + ν)− Ψ(t + μ)Q(t + μ, t + ν)‖

+‖Ψ(t + μ)Q(t + μ, t + ν)− Ψ(t + ν − 1)‖+ ‖Ψ(t + ν − 1)− Ψ‖. (49)

Now, we have that

D1(t, ν, μ) = ‖Q(t, t + μ)Q(t + μ, t + ν)− Ψ(t + μ)Q(t + μ, t + ν)‖

≤ ‖[Q(t, t + μ)− Ψ(t + μ)]Q(t + μ, t + ν)‖
≤ ‖Q(t, t + μ)− Ψ(t + μ)‖τ1(Q(t + μ, t + ν))

≤ 2τ1(Q(t + μ, t + ν)). (50)
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For arbitrary but fixed t and ν with mμ ≤ ν with m, the largest such integer from (50), we
have that

D1(t, ν, μ) ≤ 2τ1(Q(t + μ, t + 2μ))τ1(Q(t + μ, t + 2μ)). . .

τ1(Q(t + (m − 1)μ, t + mμ))τ1(Q(t + mμ, t + ν)). (51)

Since Q(t) ∈ G2 and by Lemma 4 we have that τ1(Q(t + (i − 1)μ, t + iμ)) ∈ M and

τ1(Q(t + (i − 1)μ, t + iμ)) ≤ 1 − γμ with 0 < γ < 1 for i = 2, 3, . . ., m. (52)

From the weak ergodicity of the inherent nonhomogeneous Markov chain {Y(t)}∞
t=0, we

have that
τ1(Q(t + mμ, t + ν)) ≤ 1. (53)

From (51)–(53), we arrive at
D1(t, ν, μ) ≤ (1 − γμ)m, (54)

which as ν → ∞ goes to zero at a uniform geometric rate.
Following the steps of arriving at relation (31), we straightforwardly obtain that

D2(t, ν, μ) = ‖Ψ(t + μ)Q(t + μ, t + ν)− Ψ(t + ν − 1)‖

≤ ‖Ψ(t + μ)Q(t + μ, t + ν)− ΨΨ(t + ν − 1)‖

≤
t+ν−1

∑
j=t+μ+1

‖ψ(j − 1)− ψ(j)‖τ1(Q(j, t + ν)). (55)

We now have the largest integer for m, such that mμ ≤ ν

τ1(Q(t + μ, t + ν)) = τ1(Q(t + μ, t + 2μ)Q(t + 2μ, t + 3μ). . .

Q(t + (m − 1)μ, t + mμ)Q(t + mμ, t + νμ))

= (by Lemma 1)

≤ τ1(Q(t + μ, t + 2μ))τ1(Q(t + 2μ, t + 3μ)). . .

τ1(t + (m − 1)μ, t + mμ)τ1(t + mμ, t + ν) ≤
≤ (using (52))

≤ (1 − γμ)(1 − γμ). . .(1 − γμ) = (1 − γμ)m. (56)

From (56), we have that

τ1(Q(t + μ, t + ν)) →ν→∞ 0 uniformly geometrically fast. (57)

From (55), we have that

D2(t, ν, μ) ≤ ‖ψ(t + μ − 1)− ψ(t + μ)‖(1 − γμ)m+

‖ψ(t + μ)− ψ(t + μ + 1)‖(1 − γμ)m−1 + ‖ψ(t + μ)− ψ(t + μ + 1)‖(1 − γμ)m−1

+. . . + ‖ψ(t + μ(m − 1)− 1)− ψ(t + μ(m − 1))‖(1 − γμ)

+‖ψ(t + μm − 1)− ψ(t + μm)‖. (58)

Now, we have that
(1 − γμ)m →m→∞ 0 geometrically fast ,
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since (1 − γμ) < 1. Also, from condition (46), we have that

‖ψ(t + μm − 1)− ψ(t + μm)‖ →m→∞ 0 geometrically fast,

Therefore,
D2(t, ν, μ) →ν→∞ 0 geometrically fast. (59)

Now, from (49), (54) and (59), and condition (46), we easily have that

‖Q(t, t + ν)− Ψ‖ →ν→∞ 0 geometrically fast; (60)

hence, there exist constants c > 0 and 0 < b < 1 such that

‖Q(t, t + ν)− Ψ‖ ≤ cbν for every t, and c > 0, 0 < b < 1. (61)

What remains, according to Definition 9, is to show that the expected relative population
structure E[q(t, t + ν)] converges for every t to the vector ψ as ν goes to infinity geometri-
cally fast.

From (35), we have that

A(t, t + ν) = ‖q(t)T(t)Q(t, t + ν)− T(t)ψ‖ ≤

T(t)‖q(t)‖‖Q(t, t + ν)− ψ‖. (62)

From (61), we have that

A(t, t + ν) ≤ T(t)‖q(t)‖‖Q(t, t + ν)− ψ‖ ≤ c1bν, (63)

with c1 > 0 and 0 < b < 1.
From Lemma 3, we have that since T(t) converges geometrically fast to T, then ΔT(t)

converges geometrically fast to zero. Hence,

ΔT(t) ≤ c2bt
2 with c2 > 0 and 0 < b2 < 1. (64)

Now, from (37), we have that

B(t, t + ν) ≤
t+ν

∑
τ=t

ΔT(τ)‖Q(τ, t + ν)− Ψ‖. (65)

With no loss of generality, we may assume that b > b2, and then, from (63) and (64),
we have that

B(t, t + ν) ≤ c1c2

t+ν

∑
τ=t

(
b2

b

)τ

bt+ν = c3bt+ν
t+ν

∑
τ=t

(
b2

b

)τ

≤ c3bt+ν

(
1 − b2

b

)ν(
1 − b2

b

)−1
≤ c4bν

3. (66)

From (63) and (66), we easily arrive at the proof of the theorem.

5. An Illustrative Application

We will illustrate the results in the previous section with an example from a population
of manpower. To possibly better visualize, the reader may have in mind a University system
with three grades. That is, grade one is those with the level of Professors, grade two belongs
to the Associate Professors, and finally, in grade three, there are the Assistant Professors.
The University has a plan for funding T(t) for t = 0, 1, 2, . . . memberships for the next few
years. When a member of staff is leaving, their membership remains with the University,
that is, the funding of their position is not lost but remains, and the University could go
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on to appoint someone at any grade. The external environment to which the leavers go
and their membership is retained by the University and it is the population of members of
academic staff from Universities almost all over the world, as practices have shown. Hence,
it is from this external environment that the new members will obtain the memberships
available from the organization of the University.

A fundamental question for the practitioner is the estimation of the transition prob-
abilities from the historical records. The way to estimate the transition probabilities of
the memberships is a small extension of the way it is performed in manpower planning,
which is well documented in Bartholomew [38]. Another quite similar problem is that of
the competing risk model in the medical literature, as it was presented by Kalbfleisch and
Prentice ([39], Chapter 8), Lee [40], and Cox and Oakes [41]. Also, similar problems exist in
the study of reliability models and various actuarial studies as discussed in Elandt–Johnson
and Johnson ([42], Chapter 7).

Now define by
Nij(t): the number of memberships moving from grade i to grade j in the t-th interval.
Ni(t − 1): the number of memberships in state i at the beginning of the t-th interval.
Assume that the number of years available in the historical data of the University is n.

Then, the maximum likelihood estimate of the probability qij(t) is the following:

q̂ij(t) =
Nij(t)

Ni(t − 1)
for any t. (67)

It is an apparent advantage that the probabilities q̂ij(t) are separately estimated for every
(i, j). In this way, the number of years of historical records necessary are significantly
reduced. At this point, it is useful to test the hypothesis that the probabilities q̂ij(t) are
indeed functions of time. That is,

H0: q̂ij(t) = q̂ij for every t. (68)

Considering the flow of memberships which move from grade i to grade j as a multinomial
random variable, then (see Andersen and Goodman [43]) hypothesis (68) is tested by
the statistic:

χ2(i, j) =
n

∑
t=1

Ni(t − 1)

(
q̂ij(t)− q̂ij

)
q̂ij

, (69)

where

q̂ij =
∑n

t=0 Nij(t)
∑n

t=1 Ni(t − 1)
, (70)

is the maximum likelihood estimate under the null hypothesis and is chi-square distributed
with n − 1 degrees of freedom.

Now, let that the χ2(i, j) showed that the probabilities q̂ij(t) are functions of time.
Then, there is a need to predict their values as functions of time. For a specific pair (i, j),
let that

x1ij(t), x2ij(t), . . ., xmij(t), (71)

are probable covariates for the specific application. Then, logistic stepwise regression is an
appropriate model for these probabilities. Let us define by

log it(x) = log
(

x
1 − x

)
, (72)

then we obtain

log it
(
q̂ij(t)

)
= a0 + a1x1ij(t) + a2x2ij(t) + . . . + amxmij(t). (73)
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Now, it is obvious that stepwise regression will show what are the important covariates to
predict q̂ij(t) (see also Vassiliou [44]).

Let that following the above-described steps, we ended with the matrix:

Q(t) =

⎛⎜⎝0.2 + 1
4+t3 0.8 − 1

4+t3 0
0.3 0.5 − 1

8+t4 0.2 + 1
8+t4

0 0.2 + 2
10+t8 0.8 − 2

10+t8

⎞⎟⎠ for t = 1,2,. . . . (74)

The total population of memberships was planned according to the following sequence

T(0) = 400, T(1) = 430, T(2) = 450,

T(3) = 475, T(4) = 500 and T(t) = 500 for t = 5, 6, . . ., (75)

that is, the total number of memberships converge geometrically fast with ΔT(t) ≥ 0,
satisfying the condition (41) in Theorem 4.

It is not difficult to check that the sequence (74) satisfies condition (42), that is, Q(t) ∈
G2 for t = 1, 2, . . .. Also, it satisfies condition (43) since

min
i,j

(
qij(t), 0

)+ ≥ γ = 0.2 > 0. (76)

For the sequence of transition probability matrices for the memberships (74), we find
for the condition (45) that the vectors ψ(t) that satisfy it were the following:

For t = 1 ψ(1) = [0.216, 0.432, 0.352], (77)

for t = 2 ψ(2) = [0.166, 0.390, 0.444], (78)

for t = 3 ψ(3) = [0.164, 0.416, 0.420], (79)

for t = 4 ψ(4) = [0.164, 0.424, 0.412], (80)

for t = 5 ψ(5) = [0.163, 0.426, 0.411], (81)

for t = 6 ψ(6) = [0.163, 0.427, 0.410], (82)

for t = 7 ψ(7) = [0.163, 0.427, 0.410]. (83)

We observe that already for t = 6 in (82) and (83) we have convergence of ψ(t) which
satisfies condition (45) of Theorem 4, that is the convergence is geometrically fast. Hence,
we conclude that

ψ = [0.16, 0.43, 0.41].

Calculating using the transition probability matrices given in (74) the matrix product
Q(t, t + ν) we find that for ν ≥ 9 it converges to ψ = [0.16, 0.43, 0.41]. Hence, we conclude
that Q(t, t + ν) as ν → ∞ converges geometrically fast as was expected from Theorem 4
relation (48).

Now, given the convergence of Q(t, t + ν) as ν → ∞ it is straight forward to find
from Equation (2) applying it recursively or equivalently from Theorem 1 that E[q(s, t)]
converges geometrically fast (in fact in 9 time steps) to

ψ = [0.16, 0.43, 0.41].
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Hence, the NHMS is geometrically strongly ergodic.

6. Conclusions and Further Research

Two fundamental theorems have been founded that relax previous assumptions and
provide conditions for ergodicity and for the convergence rate of the relative population
structure in an NHMS. More specifically, in Theorem 1 the strong ergodicity of an NHMS
is studied without assuming the convergence of the inherent inhomogeneous Markov
chain to infinity to a homogeneous Markov chain with a regular transition probability
matrix. In Theorem 4, it is proved under what conditions the rate of convergence of
strong ergodicity in a NHMS is geometrically fast. This is done by departing from the
basic assumption in which the inherent inhomogeneous Markov chain converges after a
large time to a homogeneous Markov chain with a regular transition probability matrix.
The proved theorems are expanding the understanding of the dynamics and behavior of an
NHMS. The paper concludes with an illustrative application from the field of Manpower
Planning, showcasing the vital practical relevance of the discussed concepts. Further
research paths may include the relaxation of relative assumptions in the many variant
models of the NHMS in diverse populations. Of particular interest may be the theorems of
Laws of Large numbers in an NHMS.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The author declare no conflict of interest.

References

1. Vassiliou, P.-C.G. Asymptotic behavior of Markov systems. J. Appl. Prob. 1982, 19, 433–438. [CrossRef]
2. Young, A.; Almond, G. Predicting distributions of staff. Comput. J. 1961, 3, 144–153. [CrossRef]
3. Young, A. Models for planning recruitment and promotion of staff. Brit. J. Indust. Rel. 1965, 3, 301–310. [CrossRef]
4. Young, A. Demographic and ecological models for manpower planning. In Aspects of Manpower Planning; Bartholomew, D.J.,

Morris, B.R., Eds.; English University Press: London, UK, 1971.
5. Bartholomew, D.J. A multistage renewal processes. J. R. Stat. Soc. B 1963, 25, 150–168.
6. Bartholomew, D.J. Stochastic Models for Social Processes, 1st ed.; Wiley: New York, NY, USA, 1967.
7. Young, A.; Vassiliou, P.-C.G. A non-linear model on the promotion of staff. J. R. Stat. Soc. A 1974, 138, 584–595. [CrossRef]
8. Vassiliou, P.-C.G. A Markov model for wastage in manpower systems. Oper. Res. Quart. 1976, 27, 57–70. [CrossRef]
9. Vassiliou, P.-C.G. A high order non-linear Markovian model for promotion in manpower systems. J. R. Stat. Soc. A 1978, 141,

86–94. [CrossRef]
10. McClean, S.I. A continuous-time population model with Poisson recruitment. J. Appl. Prob. 1976, 13, 348–354. [CrossRef]
11. McClean, S.I. Continuous-time stochastic models for multigrade population. J. Appl. Prob. 1978, 15, 26–37. [CrossRef]
12. Vassiliou, P.-C.G. Non-Homogeneous Markov Chains and Systems, Theory and Applications; Chapman and Hall: London, UK; CRC

Press: Boca Raton, FL, USA, 2023.
13. Garg, L.; McClean, S.I.; Meenan, B.; Millard, P. A non-homogeneous discrete time Markov model for admission scheduling and

resource planning in a cost capacity constaint healthcare system. Health Care Manag. Sci. 2010, 13, 155–169. [CrossRef]
14. Garg, L.; McClean, S.I.; Meenan, B.; Millard, P. Non-homogeneous Markov models for sequential pattern mining of healthcare

data. Ima J. Manag. Math. 2009, 20, 327–344. [CrossRef]
15. Garg, L.; McClean, S.I.; Meenan, B.; Millard, P. Phase-Type survival trees and mixed distribution syrvival trees for clustering

patient’s hospital length of stay. Informatika 2011, 22, 57–72.
16. Ugwuogo, F.I.; McClean, S.I. Modelling heterogeneity in manpower systems: A review. Appl. Stoch. Models Bus. Ind. 2000, 2,

99–110. [CrossRef]
17. Vassiliadis, G. Transient analysis of the M/M/k/N/N queue using a continuous time homogeneous Markov chain system with

finite state capacity. Commun. Stat. Theory Methods 2014, 43, 1548–1562. [CrossRef]
18. Vassiliadis, G. Transient analysis of a finite source discrete-time queueing system using homogeneous Markov system with state

size capacities. Commun. Stat. Theory Methods 2014, 45, 1403–1423. [CrossRef]
19. Georgiou, A.C.; Thanassoulis, E.; Papdopoulou, A. Using data envelopment analysis in markovian decision making. Eur. J. Oper.

Res. 2022, 298, 276–292. [CrossRef]
20. Guerry, M.A. On the evolution of stock vectors in a deterministic integer-valued Markov system. Linear Algebra Its Appl. 2008,

429, 1944–1953. [CrossRef]

73



Mathematics 2024, 12, 660

21. Guerry, M.A. Some results on the embeddable problem for discrete time Markov models in manpower planning. Commun. Stat.
Theory Methods 2014, 43, 1575–1584. [CrossRef]

22. Pollard, B.S. Open Markov processes: A compositional perspective on a non-equilibrium steady state in biology. Entropy 2016, 18,
140. [CrossRef]

23. Esquivel, M.L.; Fernandes, J.M.; Guerriero, G.R. On the evolution and asymptotic analysis of open Markov populations:
Application to consumption credit. Stoch. Model. 2014, 30, 365–389. [CrossRef]

24. Esquivel, M.L.; Guerriero, G.R.; Fernandes, J.M. Open Markov chain scheme models fed by second order stationary and non
stationary processes. Revstat-Stat. J. 2017, 15, 277.

25. Esquivel, M.L.; Krasil, N.P.; Guerriero, G.R. Open type population models: From discrete to continuous time. Mathematics 2021,
9, 1496. [CrossRef]

26. Georgiou, A.C.; Vassiliou, P.-C.G. Periodicity of asymptotically attainable stuctures in non-homogeneous Markov systems. Linear
Algebra Its Appl. 1992, 176, 137–174. [CrossRef]

27. Seneta, E. Non-Negative Matrices and Markov Chains, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1981.
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Abstract: We propose a method for fitting transition intensities to a sufficiently large set of trajectories
of a continuous-time non-homogeneous Markov chain with a finite state space. Starting with
simulated data computed with Gompertz–Makeham transition intensities, we apply the proposed
method to fit piecewise linear intensities and then compare the transition probabilities corresponding
to both the Gompertz–Makeham transition intensities and the fitted piecewise linear intensities;
the main comparison result is that the order of magnitude of the average fitting error per unit
time—chosen as a year—is always less than 1%, thus validating the methodology proposed.

Keywords: Markov chains; non homogeneous; continuous time; regime switching processes;
estimation; calibration; health insurance; long-term care
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1. Introduction with a Literature Review

This study follows on from a previous article (see [1]) in which we developed a way to
calibrate a Markov chain model in continuous time using data obtained from Portuguese
National Network of Continuing Care. The calibration methodology used in that work,
although very effective, is not completely satisfactory as it rests on a series of ad hoc
processes with reduced guarantees of reproducibility and robustness.

In the present work, we intend to develop simpler and more robust means of esti-
mating and calibrating intensities for non-homogenous continuous-time Markov chains
(see [2] for a recent introduction to these processes and their applications). For this purpose,
we first develop the two following subjects. The first subject deals with Markov chain
regime switching achieved by considering an abrupt change in the intensities, for instance,
having intensities with jumps. The second subject complements the first one if we suppose
that we replace regular intensities by irregular ones—like piecewise linear—in principle
with more easily estimable parameters; we study the effect on the transition probabili-
ties of a replacement of the original intensities by sufficiently close alternative intensities.
These two different streams of ideas are connected not only to one another but also to the
estimation–calibration techniques to be studied.

We now present a review of the literature, mainly covering the subject of estimation
and calibration of continuous-time non-homogeneous Markov chains with finite state space
relevant for health insurance and long-term care (LTC), existing results for the Kolmogorov
ordinary differential equations, as well as works where one can find some similarities
between non-homogeneous Markov chains and semi-Markov jump linear systems.

A consecrated approach in the study of continuous-time Markov chains for applica-
tions, namely, in the multiple state models—the transition intensity approach (see [3] p. 126
or [4] p. 189)—consists of giving the intensities, solving the Kolmogorov ODE and using
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the transition probabilities obtained for computations. The intensities should be estimated
from the data. This is the approach that we assume in this work.

The statistics of homogeneous Markov chains has already received several very tho-
rough analyses. A very well organised and complete one is provided in Billingsley’s
monograph [5] that treats, in the first part, the discrete-time homogeneous Markov chains
and in the second part the continuous-time chains by resorting to the canonical embedded
process. A companion reference is article [6] that provides a very complete set of references
on the subject until 1961. In order to obtain consistency and asymptotic normality results
for the maximum likelihood estimators, the author assumes, as usual, stringent regularity
assumptions in particular on the intensities.

The statistics of Markov chain models for multiple state models is usually performed
under simplifying assumptions on the model. For instance, in [7], the intensities are sup-
posed to be constant in selected time intervals, and observations are chosen for which the
exact age belongs to a given selected time interval. Another set of simplifying assumptions
is proposed in [8] (pp. 126–128); at first, the transition functions are approximated in a
one-year period interval by a one-sided Stieltjes interval. and then, using these approxi-
mations the transition intensities, with adequate analytical properties, are obtained as a
result of a minimisation of a sum of squares objective function. The method proposed in [4]
(pp. 147–169) has also two steps; in the first step, the transitions intensities are supposed
to be constant in one-year period intervals and are estimated with a maximum likelihood
approach. Subsequently, there is a second step of denominated graduation—a method
generally described in [9]—that fits parameters of exponential functional intensity using
generalised linear models. The method is applied to real data, and it becomes clear that
several adequate particular ad hoc assumptions in the method are inevitable in order to
deal with specific properties of the data. The simplifying assumption of transition intensi-
ties constant in each one-year period is also taken in [10] (pp. 683–690), where a detailed
treatment of an example is also presented; in a commentary, the authors also refer the need
of a graduated procedure to obtain the final intensities.

The excellent review work [11] illustrates the manner in which multiple-state Markov
and semi-Markov models can be used for the actuarial modelling of health insurance
policies. The bivariate character of the Markov process naturally associated with a semi-
Markov model is useful whenever the durational effects are not negligible but in contrast is
technically much more difficult to handle than the univariate Markov process. Considering
discrete-time semi-Markov processes, the authors in [12] study semi-Markov jump linear
systems—which is a hybrid dynamical system that consists of a family of subsystem modes
and a semi-Markov process that orchestrates switching between them—with bounded
sojourn times, in order to provide sufficient criteria for the stability and stabilisation prob-
lems with respect to a specified approximation error. The companion work [13] enlarges
the previous model by considering delay, and by means of a novel Lyapunov–Krasovskill
functional and using the probability structure of semi-Markov switching signal, the suffi-
cient stability conditions for the considered systems are presented in terms of a set of linear
matrix inequalities and a proper semi-Markov switching condition. It now becomes clear
that a natural extension of our work would be to consider semi-Markov models instead of
Markov chains.

The estimation–calibration methodology we propose in this work is applied to continu-
ous piecewise linear intensities. Since in health insurance and long-term-care multiple-state
models, the intensities are usually of Gompertz–Makeham type (see [4] pp. 21, 24, 101), we
previously showed that the distance between two transition probability matrices—in the
sense of some matrix norm—is bounded by the same distance between the correspondent
intensity matrices, thus showing that the Gompertz–Makeham functional form for the
intensities is not really necessary.
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We now refer to some works with contributions to the topic of estimation calibra-
tion of multiple state models, also called multi-state models. The work [14] proposes a
review of multiple-state models via continuous-time Markov chains, signalling the usual
approach for the non-homogeneous case of considering piecewise constant intensities. It is
at first reading, a most interesting review paper with applications to real data comparing
different model analyses. Ref. [15] deals with a nonparametric approach to statistical infer-
ence in non-homogeneous Markov processes based on counting processes for transition
intensities—namely using the so-called Nelson–Aalen estimator or the kernel smoothing
estimator of Ramlau–Ahnsen—presenting a case study using this methodology. Ref. [16]
can be seen as a continuation of the previously referred to work. Besides reviewing methods
for non-parametric estimation of transition probabilities, the authors study the case where
semi-parametric Cox type regression models are specified for the transition intensities
whenever there is specification of the development of the time-dependent covariates. An
illustration of the methods with data from a randomised clinical trial in patients with
liver cirrhosis is also presented. Ref. [17] is an ancillary reference for graduating the
transition intensities in a multiple-state model for permanent health insurance applications
based on generalised linear models—with a random component based on independent
Poisson response variables—in the case that the intensities are supposed to depend on
some secondary variables. The work in [18] follows the preceding paper in the main intent
of proposing a graduation method for the transition intensities of a non-homogeneous
continuous-time Markov chain model. In the work [19], a comparison between a discrete-
time and continuous-time homogeneous Markov chain models is presented in order to
assess the effect of unevenly spaced observations. Since the authors want to incorporate
covariates in the model, this study also deals with a series of multinomial logit regressions
for the discrete-time model and proportional hazard regressions for the covariates through
transition intensity functions for the continuous-time model. Ref. [20] is a simplified
multiple-state model that develops a generic estimation method for calculating the transi-
tion probabilities in a one-year multiple-state model based on disability prevalence rates;
multiple logistic regression models are employed to estimate disability prevalence rates
and the one-year recovery rates. In doing so, the authors assume three conditions of the
ratio between the mortality rate of inactive and active people—and several other conditions
used in the literature—that allow the necessary computations in the case treated which
concerns cross-sectional data measuring the disabled status of an individual at one point in
time. The work [21] introduces a semi-parametric model that employs a logit function to
capture the treatment intensities across two groups, aiming to estimate transition intensity
rates within the framework of an illness–death model. Parameter estimation is conducted
through an EM algorithm coupled with profile likelihood. Simulation studies presented
in the text indicate that the proposed method is straightforward to apply and produces
results comparable to those of the parametric model. The study [22] examines the im-
pact of part-time and full-time employment on health by employing a Markov three state
model—using piecewise constant forces, where the transition intensities are graduated
using generalised linear models and assumed, at the start, to be equal per age level—and
generalised linear models to refine the initial raw rates. Integration of the corresponding
Chapman–Kolmogorov equations allow us to derive a comprehensive solution. As an
application of the model, the effectiveness of a partial early-retirement incentive in the
Netherlands is evaluated. The refined rates obtained indicate that working part-time does
not necessarily correlate with improved health among the elderly.

In the present work, we also establish a result with regime-switching Markov chains
exploring the possibility of having, in the whole time period under study, intensities with
several different functional forms (linear, exponential, etc.) in different subintervals of the
whole time period. Our study of ordinary differential Equations (ODE) with regimes that
began with the work [23] and was exploited in [24] is based on general results of existence
and uniqueness of solutions of ODE—due to Caratheodory and Wintner for existence and
Osgood for uniqueness, among others—with a non-regular second member. In the case of
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a second member of the non-regular ODE, the regimes appear clearly in the solutions of
the Kolmogorov equations due, for example, to possible discontinuities in the entries of the
intensity matrix.

The general theory of existence of solutions of Kolmogorov equations is exhaustively
treated in the works of Feinberg, Shiryaev and Mandala (see [25–27]). Their powerful results
apply to jump processes with values in a general Borel space and so are also transferable to
non-homogeneous Markov chains with a finite state space. Since we are dealing with this
finite state space—due to our interest in health insurance and long-term-care multiple-state
models—we chose to present a more simple approach that requires only classical existence
theorems for ordinary differential equations, namely Caratheodory’s existence theorem
and Osgood’s uniqueness theorem.

We now succinctly describe the contents of this work.

• In Section 2, we develop the subject of regime-switching Markov chains. The results
obtained can be applied to the consideration of discontinuous intensity matrices.

• In Section 3, we deal with the approximation of matrices of transition probabilities
given an approximation of the correspondent matrices of intensities.

• Sections 4–6 detail, with an example, the methodology for estimation–calibration
proposed and present an analysis of the results obtained.

• In Section 7, we provide a discussion of the results obtained in the example treated,
and in Section 8, we summarise all the results obtained in this work.

There are three main contributions of this work. The first is the proposal of a method
to estimate the parameters of a set of transition intensities from ideal observed data. The
second is a result on regime-switching Markov chains that establishes the possibility of
considering transition intensities made up of different sorts of functional forms, with each
one of the functional forms depending on different sets of parameters. Finally, the third
contribution is a result that quantifies the norm of the difference of two probability transition
matrices in terms of the norm of the corresponding matrices of transition intensities; this
last result justifies the choice of arbitrary functional forms for the transition intensities in
ways more adequate for parameter estimation.

2. Regime Switching Markov Chains

In this section, we develop the formalism of regime switching for Markov chains, in
which the transition probabilities are derived from intensities that, at a certain point in time,
can change either in functional form or in the parameters. The consideration of discontinu-
ous piecewise linear intensities suggests the study of Markov chains in continuous time
with regimes. Let us state some preliminary notations and results for context purposes
(see [28]). Firstly, we recall the definition of an intensity matrix Q(t, θ).

Definition 1. Let L(�d×d) be the space of d× d square matrices with coefficients in�. A function
Q : [0,+∞[→ L(�d×d) denoted by

Q(t, θ) =
[
μθ

ij(t)
]

i,j=1,...,d
,

with θ ∈ Θ ⊂ �p a parameter is a transition intensity matrix if, for almost all t ≥ 0, it verifies

(i) ∀i = 1, . . . , d, t ≥ 0, μθ
ii(t) ≤ 0;

(ii) ∀i = 1, . . . , d, ∀j = 1, . . . , d, t ≥ 0, i �= j ⇒ μθ
ij(t) ≥ 0;

(iii) ∀i = 1, . . . , d, t ≥ 0, ∑j=1,...,d μθ
ij(t) = 0.
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Secondly, we recall the Kolmogorov ordinary differential Equations (ODE) for non-
homogeneous continuous-time Markov chains. These equations, upon integration, give the
matrix of transition probabilities P(x, t, θ) as a function of the matrix of intensities Q(t, θ),
where θ ∈ Θ is a parameter. The forward Kolmogorov ODE can be represented in the
following form:

⎧⎨⎩
P′

t(x, t, θ) = P(x, t, θ)Q(t, θ)

P(x, x) = I ,
(1)

or, in integrated form, by

P(x, t, θ) = I +
∫
[x,t]

P(x, s, θ)Q(s, θ)ds . (2)

Finally, let us now deal with regime-switching Markov chains.
The general motivation for the study of regime switching in ODE can be seen in [23,24].

Let us elaborate on the motivation to study regime-switching Markov chains. Suppose that
we have two continuous-time Markov chains, having the same state space, with intensi-
ties of different functional forms—such as piecewise constant or affine of the Gompertz-
Makeham type, etc.—depending on two sets of parameters, say Θ1 and Θ2, respectively,
defined in two contiguous-time intervals, say [0, t1] and [t1, t2]. The result we proof shows
that there exists a well-defined Markov chain in the interval [0, t2] with intensities de-
pending on a set of parameters Θ := Θ1 ∪ Θ2 such that the transition probabilities of this
Markov chain—obtained by the solution of the Kolmogorov equations—coincide with the
transition probabilities of the first initial Markov chain in [0, t1] and also coincide with the
transition probabilities of the second initial Markov chain in [t1, t2]. This result will grant
us a greater latitude in the choice of the functional forms of the intensities for estimation
purposes since it will be possible to partition a time interval of interest in two or more
disjoint intervals and to have intensities, in each one of the intervals, possibly of different
functional forms and different sets of parameters. In Theorem 4, we consider extended
solutions of an ODE in the sense of Carathéodory. For that, following [29] (pp. 41–44), we
consider the definition of an extended solution of a differential equation.

Definition 2 (Extended solution of an ODE). For f (t, y) : I ×D → �
d×d a non necessarily

continuous function, with I ⊂ [0,+∞[ and D ⊂ �d×d and a differential equation given by

Y ′(t) = f (t, Y(t)) , Y(0) = y0 ∈ �d×d , (3)

or in the equivalent integral form, with the appropriate Lebesgue measure du in�,

Y(t) = y0 +
∫ t

0
f (u, Y(u))du , (4)

an extended solution Y(t) of the ODE in Formula (3) is an absolutely continuous function Y(t),
such that f (t, Y(t)) ∈ D for t ∈ I and Formula (3)—or equivalently, Formula (4)—is verified
for all t ∈ I almost everywhere (a.e), that is, possibly with the exception of a set of null Lebesgue
measure in [0,+∞[.

We now recall Caratheodory’s existence theorem—see [29] (p. 43) for the unidi-
mensional result and [30] (pp. 28–29) for the multidimensional result, with a proof via
Schauder’s fixed point theorem—in the context of the model we are studying, a theorem
that ensures the existence of an extended solution under general conditions.

79



Mathematics 2024, 12, 668

Theorem 1 (Caratheodory’s existence theorem). Suppose that f (t, y) : I ×D → �
d×d, with

I = [0, u[ an open set of [0,+∞[ and D an open set of�d×d, verifies that

(i) f (t, y) is measurable in the variable t, for fixed y, and continuous in the variable y, for fixed t,
for (t, y) ∈ I ×D.

(ii) For each compact set K � D and T > 0, there exists a Lebesgue integrable function λ(t), such
that ‖ f (t, y)‖ ≤ λ(t) for (t, y) ∈ [0, T]× K.

Then, for every (t0, y0) ∈ I ×D such that Y(t0) = y0, that is, a given initial condition of
equation in Formula (3), there exists an extended solution according to Definition 2, defined in a
neighbourhood of (t0, y0).

Despite the fact that Theorem 1 guaranties the local existence of an extended solution,
it is always possible to consider a maximal extension of this solution, possibly, to a larger
time interval (see [30] pp. 29–30).

Theorem 2 (Maximal time interval for existence). With the notations and under the hypothesis
of Theorem 1, any existing solution Y admits a continuation Ỹ to a maximal time interval of
existence, let it be [a, b] such that, ∂D being the boundary of D:

lim
t→a

Ỹ(t) ∈ ∂D and lim
t→b

Ỹ(t) ∈ ∂D .

Remark 1 (Applying Caratheodory theorem to the Kolmogorov ODE). Kolmogorov ODE
for continuous time Markov chains, in Formula (1), falls under this formalism in the following way:

f (t, y, θ) = Q(t, θ) · y (5)

which is essentially the equation in Formula (3) with the possibility of dependence on a parameter
θ ∈ Θ. Consider a matrix norm ‖·‖ in the sense of [31] (p. 340), that is, a submultiplicative
norm—such as the l1 norm and l2 norm, also known as the Frobenius norm—and observe that since

‖ f (t, y, θ)‖ = ‖Q(t, θ) · y‖ ≤ ‖Q(t, θ)‖‖y‖ , (6)

and since any norm of a probability intensity matrix is bounded, we can apply Caratheodory’s
theorem to the Kolmogorov ODE under the condition that there exists a Lebesgue integrable function
λ(t) such that

sup
θ∈Θ

‖Q(t, θ)‖ ≤ λ(t) , (7)

for all t ∈ [0, T]. We will see in Remark 3 that the condition in Formula (7) is also sufficient to
ensure the unicity of the extended solutions.

Remark 2 (Existence of extended solutions alternative proof). We could also quote Wintner’s
theorem, referred to in [32], a theorem that states that if ‖ f (t, y)‖ ≤ N(t)L(‖y‖) with N and L
piecewise continuous, positive and L non-decreasing, such that for some c > 0∫ +∞

c

1
L(s)

ds = +∞ ,

then the ODE in Formula (3) has a solution for a given initial condition. We observe that the quoted
theorem is valid, under the assumption that f (t, y) is continuous with the possible exception of
points of a null Lebesgue set of the time variable, by considering extended solutions instead of usual
solutions, which have a continuous derivative, and as L(t) and N(t) both satisfy the hypotheses
of Wintner’s theorem for parameters of the intensity functions and taking each, two (or several)
distinct values in two (or several) complementary intervals of the time domain.
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We now quote an unicity result—from [30] p. 30—applicable whenever there is
existence of an extended solution in the Caratheodory sense.

Theorem 3 (Unicity of extended solutions). Suppose that f (t, y) : I ×D → �
d×d, with

I = [0, u[ an open set of [0,+∞[ and D an open set of�d×d, verifies the conditions in Theorem 1,
and moreover, that for each compact set K � D and T > 0, there exists a Lebesgue integrable
function λK(t), such that

‖ f (t, y1)− f (t, y2)‖ ≤ λK(t)‖y1 − y2‖ , (8)

for (t, y1) , (t, y2) ∈ [0, T]× K. Then, for every (t0, y0) ∈ I ×D such that Y(t0) = y0, that is,
a given initial condition of equation in Formula (3), there exists an unique extended solution Y
according to Definition 2, defined in a neighbourhood of (t0, y0). The domain of definition of Y is
open, and Y is continuous in this domain.

Remark 3 (Applying the unicity result to the Kolmogorov ODE). With the interpretation
given in Formula (5) and if the norm is a matrix norm, similarly to what we had in Formula (6), we
now have that a sufficient condition for the unicity of the extended solutions of Kolmogorov ODE is
for each compact set K � D and T > 0, there exists a Lebesgue integrable function λK(t) such that
‖Q(t, θ)‖ ≤ λK(t) , thus implying that

‖ f (t, y1, θ)− f (t, y2, θ)‖ = ‖Q(t, θ) · (y1 − y2)‖ ≤ ‖Q(t, θ)‖‖y1 − y2‖ ≤
≤ λK(t)‖y1 − y2‖ ,

(9)

which is the hypothesis bound in Formula (8) for Theorem 3.

Remark 4 (On the unicity of the extended solutions). Either directly using Theorem 18.4.13
in [33] (p. 337) or using Osgood’s uniqueness theorem—as presented for instance, in [34] (p. 58) or
in [35] (pp. 149–151)—we may also conclude that the extended solution, that we know to exist, is
unique, in the sense that two solutions may only differ on a set of Lebesgue measures equal to zero.

Remark 5 (On the numerical computation of extended solutions). We observe that these
existence and uniqueness results are essential for a numerical integration of the ODE, but that no
result on numerical convergence is implied—in the existence and uniqueness results above—for the
regime switching ODE with discontinuous coefficients. Nevertheless, the Lipschitz condition with
respect to the y variable—such as the one in Formula (8)—is sufficient for the convergence of the
Euler method (see [36] p. 74).

The next theorem is a simple example of a regime-switching result for continuous-time
Markov chains. The extension of this result to more than two regimes is straightforward.
We consider the Kolmogorov ODE in a time interval [0, T].

Theorem 4 (Regime switching continuous-time Markov chains). Let ‖·‖ denote a matrix
norm, let Θ denote a parameter set and let Q1(t, θ) defined for t ∈ [0, t1] and Q2(t, θ) defined for
t ∈ [t1, T] be two intensity matrices such that for λ(t), an integrable function defined in [0, T], we
have for t ∈ [0, T]

max

(
sup
θ∈Θ

‖Q1(t, θ)‖, sup
θ∈Θ

‖Q2(t, θ)‖
)

≤ λ(t) . (10)

Then, there exists P̃(t, θ) such that

1. In [0, t1], we have that P̃ ≡ P1, a.e. in t, where P1 is a solution of the Cauchy problem
(P1)

′
t(t, θ) = P1Q1(t, θ) with the usual initial conditions;

2. In [t1, T], we have that P̃ ≡ P2 a.e. in t, where P2 is a solution of the Cauchy problem
(P2)

′
t(t, θ) = P2Q2(t, θ) with the initial conditions given by P1(t1, θ);

3. P̃ is a transition probability matrix.
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Proof. Let Q1(t, θ) =
[
μ1,θ

ij (t)
]

i,j=1,...,d
and Q2(t, θ) =

[
μ2,θ

ij (t)
]

i,j=1,...,d
. If we define

Q(t, θ) =
[
μθ

ij(t)
]

i,j=1,...,d
:= Q1(t, θ)1I[0,t1]

(t) + Q2(t, θ)1I]t1,T](t) , (11)

we will have that:
μθ

ij(t) = μ1,θ
ij (t)1I[0,t1]

(t) + μ2,θ
ij (t)1I]t1,T](t) ,

and we can, immediately, verify that Q(t, θ) is an intensity matrix on [0, T] according
to Definition 1. Moreover, since by Formula (10) and the definition in Formula (11), we
have that

‖Q(t, θ)‖ ≤ λ(t) ,

we can let P̃(t, θ) be the unique solution of the Kolmogorov equation P̃
′
t = P̃Q on [0, T]

with the usual conditions. It is then clear that P̃(t, θ) is a transition probability matrix.
Furthermore, if we define

P̂(t, θ) := P1(t, θ)1I]0,t1[
(t) + P2(t, θ)1I]t1,T[(t)

and we will then have, using the hypothesis that

∂P̂(t, θ)

∂t
=
a.e.

∂P̂1(t, θ)

∂t
1I]0,t1[

(t) +
∂P̂2(t, θ)

∂t
1I]t1,T[(t)

=
a.e.

=
a.e. P1Q1(t, θ)1I]0,t1[

(t) + P2Q2(t, θ)1I]t1,T[(t)
=
a.e.

=
a.e.

(
P1(t, θ)1I]0,t1[

(t) + P2(t, θ)1I]t1,T[(t)
)(

Q1(t, θ)1I[0,t1]
(t) + Q2(t, θ)1I]t1,T](t)

)
=
a.e.

=
a.e. P̂(t, θ)Q(t, θ) ,

which shows that P̂(t, θ) ≡ P̃(t, θ) a.e. in t and, as a consequence, that P̃(t, θ) ≡ P̂(t, θ) ≡
P1 in [0, t1] a.e. and P̃(t, θ) ≡ P̂(t, θ) ≡ P2 in [t1, T] a.e.

We present in Figure 1 graphical representations of transition probabilities obtained
by numerical integration of Kolmogorov equations with discontinuous piecewise linear
intensities for a four-state Markov chain with intensity matrix given in Formula (16).

State one is the healthy state, state four is an absorbing state corresponding to death
and states two and three are intermediate dependent states. This representation, aside
from being an illustration of a regime switching Markov chain, also illustrates the possible
extreme effects of a regime switching of discontinuous-intensity matrix entries. The subject
of Markov chains with regimes has, as can easily be observed, an interest independent of
the objective that motivates us to study it. However, in the context of the present work, it
can be a way to justify a more efficient and robust parameter estimation (or calibration)
process by an adequate choice of functional forms for the intensities.
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Figure 1. Solutions of Kolmogorov ODE for discontinuous linear intensities. pij: j = 1 (blue); j = 2
(orange); j = 3 (green); j = 4 (red). ∑4

j=1 pij (purple). Lower left pi3: i = 1 (blue); i = 2 (orange);
Lower right pi4: i = 1 (blue); i = 2 (orange); i = 3 (green).

3. On the Approximation of Intensities and Corresponding Transition Probabilities

One way to simplify the estimation of intensities of Markov chain models in contin-
uous time—relevant for health insurance and long-term-care models—is to replace the
usual Gompertz–Makeham type intensities—containing exponential and linear terms and
therefore being difficult to estimate—by continuous piecewise linear intensities. In this
sense, it is important to have a result that controls the distance between two matrices of
transition probabilities resulting from the integration of the Kolmogorov equations for the
correspondent two matrices of intensities.

It is known (see, for example, [37] p. 264 and [1]) that we can represent the transition
probabilities in the Hostinsky form:

P(x, t, θ) =

= I +
+∞

∑
n=1

∫
[x,t]

∫
[t1,t]

· · ·
∫
[tn−1,t]

Q(t1, θ)Q(t2, θ) · · · Q(tn, θ)dtn · · · dt1 ,
(12)

where the right-hand member only depends on the intensities and where the series con-
verges uniformly. The following theorem—akin to a multidimensional Gronwall-type
inequality—is a natural result.

Theorem 5 (Dependence of the transition probabilities on the intensities). Let ‖·‖ be a matrix
norm and let Q1(t, θ) and Q2(t, θ) be two matrices of intensities norm bounded by M > 0 in
[0, T]. Define

ε(Q1, Q2) := sup
t∈[0,T], θ∈Θ

‖Q1(t, θ)− Q2(t, θ)‖ . (13)
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Then, we have that

sup
t∈[x,T], θ∈Θ

‖P1(x, t, θ)− P2(x, t, θ)‖ ≤ ε(Q1, Q2)
eM|T−x| − 1

M
, (14)

where P1(x, u, θ) and P2(x, u, θ) are the solutions of the Kolmogorov equations—given in For-
mula (1)—with matrices of intensities Q1(t, θ) and Q2(t, θ), respectively.

Proof. The proof of a result of this type for an ordinary differential equation
y′(t) = f (t, y(t)), satisfying the condition

| f (t, y1(t))− f (t, y2(t))| ≤ λ(t)|y1(t)− y2(t)| ,

where λ is integrable and is immediate from the integral representation of the differential
equation. So we will use the integral representation given by Formula (12). The following
well-known result (see [38] p. 217 and, for a proof, [28] p. 348) will be instrumental.

Lemma 1. Let q : �+ �→ � a measurable function integrable over every bounded interval of�+.
Then, we have that

∫ t

s

∫ t

s1

· · ·
∫ t

sn−1

q(s1)q(s2) . . . q(sn)dsn . . . ds2ds1 =

(∫ t
s q(u)du

)n

n!
,

for all 0 ≤ s ≤ t, n ≥ 1.

Let us show, by induction, that if ‖Q1(t, θ)‖ ≤ M and ‖Q2(t, θ)‖ ≤ M for some
0 < M < +∞ then, using hypothesis in Formula (13), we have that∥∥∥∥∥ n

∏
k=1

Q1(tk, θ)−
n

∏
k=1

Q2(tk, θ)

∥∥∥∥∥ ≤ max
k=1,...,n

‖Q1(tk, θ)− Q2(tk, θ)‖ · Mn−1 ≤

≤ ε(Q1, Q2)Mn−1

(15)

In fact, for the first order bound we have that

Q1(t1, θ)Q1(t2, θ)− Q2(t1, θ)Q2(t2, θ) =

= Q1(t1, θ)Q1(t2, θ)− Q1(t1, θ)Q2(t2, θ) + Q1(t1, θ)Q2(t2, θ)− Q2(t1, θ)Q2(t2, θ) =

= Q1(t1, θ)(Q1(t2, θ)− Q2(t2, θ)) + (Q1(t1, θ)− Q2(t1, θ))Q2(t2, θ) ,

and then it follows, using the matrix norm hypothesis, that

‖Q1(t1, θ)Q1(t2, θ)− Q2(t1, θ)Q2(t2, θ)‖ ≤
≤ M‖Q1(t2, θ)− Q2(t2, θ)‖+ M‖Q1(t1, θ)− Q2(t1, θ)‖ ≤
≤ M · max

k=1,2
‖Q1(tk, θ)− Q2(tk, θ)‖ .

Consider now, for clarity, the next induction step, the second order bound.

Q1(t1, θ)[Q1(t2, θ)Q1(t3, θ)]− Q2(t1, θ)[Q2(t2, θ)Q2(t3, θ)] =

= Q1(t1, θ)[Q1(t2, θ)Q1(t3, θ)]− Q1(t1, θ)[Q2(t2, θ)Q2(t3, θ)]+

+ Q1(t1, θ)[Q2(t2, θ)Q2(t3, θ)]− Q2(t1, θ)[Q2(t2, θ)Q2(t3, θ)] =

= Q1(t1, θ)([Q1(t2, θ)Q1(t3, θ)]− [Q2(t2, θ)Q2(t3, θ)])+

+ (Q1(t1, θ)− Q2(t1, θ))[Q2(t2, θ)Q2(t3, θ)] .
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Again it follows, from the matrix norm hypothesis and using the previous order one
bound, that

‖Q1(t1, θ)Q1(t2, θ)Q1(t3, θ)− Q2(t1, θ)Q2(t2, θ)Q2(t3, θ)‖ ≤
≤ M‖[Q1(t2, θ)Q1(t3, θ)]− [Q2(t2, θ)Q2(t3, θ)]‖+ M2‖Q1(t1, θ)− Q2(t1, θ)‖ ≤
≤ M2 · max

k=1,2,3
‖Q1(tk, θ)− Q2(tk, θ)‖ .

The induction proof is now cleared. Now, by using Formulas (12) and (15) and Lemma 1,
we have the following bound for the norm of the difference of the two transition probabil-
ity matrices.

‖P1(x, t, θ)− P2(x, t, θ)‖ ≤

≤
+∞

∑
n=1

∫
[x,t]

∫
[t1,t]

· · ·
∫
[tn−1,t]

∥∥∥∥∥ n

∏
k=1

Q1(tk, θ)−
n

∏
k=1

Q2(tk, θ)

∥∥∥∥∥dtn · · · dt1 ≤

≤ 1
M

+∞

∑
n=1

∫
[x,t]

∫
[t1,t]

· · ·
∫
[tn−1,t]

ε(Q1, Q2)Mndtn · · · dt1 ≤

≤ 1
M

+∞

∑
n=1

∫
[x,t]

∫
[t1,t]

· · ·
∫
[tn−1,t]

ε(Q1, Q2)
1/n M × · · · × ε(Q1, Q2)

1/n M dtn · · · dt1 =

=
1
M

ε(Q1, Q2)
+∞

∑
n=1

Mn|t − x|n
n!

= ε(Q1, Q2)
eM|T−x| − 1

M
,

thus proving the result, in Formula (14).

A result like the one given by Theorem 5 is expected to simplify the estimation of the
parameters θ ∈ Θ that allow the fitting of a Markov chain model to real data coming, for
example, from multi-state models for health insurance or long-term care, which was the
case discussed in [1].

Remark 6 (Applying Theorem 5). The applicability of Formula (14) requires that M|T − x| � 1;
if not, the result is of no use. The usefulness of the result relies on the possibility of localising the
computation of the solutions of Kolmogorov ODE. Once time units are chosen—let us say, one year—
this is achieved by solving, successively, the Kolmogorov differential equations in time intervals
[xk, xk+1] of length |xk+1 − xk| � 1. In doing so, the final values of the transition probability
matrix in one interval must be the initial values of the transition probability matrix Kolmogorov
ODE in the immediately following time interval. Supposing the adequate hypothesis for the existence
and unicity of solutions of the Kolmogorov forward equations, we may then conclude that two matrix
intensity matrices are close to one another in some small time interval, the correspondent probability
transition matrices will be close to one another in the same small time interval.

An illustrative example of the usefulness of this result is given in Figure 2 for which
the intensity matrix considered is the following.

⎛⎜⎜⎜⎝
μ11(t) 1.20135 × 10−5e0.117(t+50) + 1

200 1.2 · μ12(t) 0.05 · μ34(t)
0.7 · μ12(t) μ22(t) 5.49958 × 10−6e0.128(t+50) + 3

500 0.5 · μ34(t)
0.36 · μ12(t) 0.3 · μ23(t) μ33(t) 4.08902 × 10−6e0.139(t+50) + 7

1000
0. 0 0 1

⎞⎟⎟⎟⎠ (16)

That is all the intensities are of Gompertz–Makeham type; moreover, μ12(t), μ23(t) and
μ34(t) were first defined, and then, all the others were defined proportional to these three;
the determinations of the parameters of these intensities from the data is the goal of an
estimation calibration procedure. The coefficients of μ12(t), μ23(t) and μ34(t) were chosen
having in mind a unit time of one year and a LTC model starting at the age of 50 years and
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going on until 100 years of age. The proportions between μ12(t), μ23(t) and μ34(t) and all
the others can be calibrated using a discrete-time transition matrix if available. The linear
interpolations of the intensities were given at the six following points t = 0, 15, 30, 40, 45, 50.
The differences of the linear interpolated intensities and the original Gompertz–Makeham
intensities μ12(t), μ23(t) and μ34(t) are shown in Figure 3.
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Figure 2. Comparing transition probabilities from Gompertz–Makeham intensities (left-hand side)
and corresponding six-point linear interpolations (right-hand side). pij: j = 1 (blue); j = 2 (orange);
j = 3 (green); j = 4 (red). ∑4

j=1 pij (purple).
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Figure 3. The symmetric of the differences between Gompertz–Makeham intensities and correspond-
ing six-point linear interpolations for μ12(t), μ23(t) and μ34(t).

The analysis of Figure 3 together with Figure 2 conveys an illustration of Theorem 5
and Remark 6 in the particular case of the approximation of Gompertz–Makeham intensities
by linear interpolated ones.
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4. Constructive Definition of CT-MC

The existence of a non-homogenous continuous-time Markov chain can also be guar-
anteed by a known constructive procedure that we now present, for completeness, and that
is most useful for simulation and that we will use for defining the estimation calibration
procedure proposed in this work. A reference for the following algorithmic definition of a
Markov chain in continuous time is [37] (p. 266). For a proof of Theorem 6 below, see [38]
(pp. 221–233). Let θ ∈ Θ be a parameter.

Definition 3 (Constructive definition). Given a transition intensity matrix,

Q(t, θ) =
[
μθ

ij(t)
]

i,j=1,...,d
,

define

p�(t, i, j) =

⎧⎨⎩
1−δ

j
i

−μθ
ii(t)

μθ
ij(t) μθ

ii(t) �= 0

δ
j
i μθ

ii(t) = 0 ,
(17)

with δ
j
i Kronecker’s delta. Let X0 = i, according to some initial distribution on {1, 2, . . . , d}.

1. The jump sequence (τn)n≥0 of stopping times is defined by induction as follows; τ0 ≡ 0.
2. τ1, the sojourn time in state i which is also the time of first jump, has an exponential distribu-

tion function given by

Fτ1(t) = �[τ1 ≤ t] = 1 − exp
(∫ t

0
μθ

ii(t)du
)

. (18)

We note that this distribution of the stopping time is mandatory as a consequence of a general
result on the distribution of sojourn times of a continuous-time Markov chain (see Theorem
2.3.15 in [38] p. 221).

3. Given that the process is in state i, it may jump to state j at time τ1 = s1 with probability
p�(t, i, j) defined in Formula (3), that is

�[Xs1 = j|τ1 = s1 , X0 = i] = p�(s1, i, j) , (19)

and so Xt = i for 0 ≡ τ0 ≤ t < τ1.
4. Given that τ1 = s1 and Xs1 = j, τ2 time of the second jump with an exponential distribu-

tion function,

Fτ2|τ1=s1
(t) = �[τ2 ≤ t | τ1 = s1] = 1 − exp

(∫ t

0
μθ

jj(u + s1)du
)

and
�[Xs2 = k|τ1 = s1 , X0 = i , τ2 = s2 , Xs1 = j] = p�(s1 + s2, j, k) ,

and so Xt = j for τ1 ≤ t < τ2.

The following theorem ensures that the preceding construction yields the desired result.

Theorem 6 (The continuous-time Markov chain). Let the intensity matrix be norm bounded
by a Lebesgue integrable function in [0, T]. Then, given the times (τ0)n≥1, we have that with the
sequence (Yn)n≥1 defined by Yn = Xτn , the process defined by

Xt =
+∞

∑
n=0

Yn1I[τn ,τn+1[
(t) =

+∞

∑
n=0

Xτn 1I[τn ,τn+1[
(t) (20)

which is a continuous-time Markov chain with transition probabilities P and transition intensi-
ties Q.
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Proof. This theorem is stated and proved, in the general case of continuous-time Markov
processes in [38] (p. 229).

5. Estimation–Calibration Procedure

In the following, we consider the set of procedures that allow us to obtain transition
intensities from simulated data and then, by integration of the forward Kolmogorov ODE,
the transition probabilities; these so-called estimated transition probabilities will be com-
pared to the original transition probabilities that were used to generate the simulated data.
The procedures comprehend both non-parametric statistical estimation by kernel methods
and fitting piecewise linear functions to data with additional constraints, a procedure more
akin to calibration.

We will consider an ideal sample of complete data represented in Figure 4; each line
represents a trajectory and we have on the left-hand side the initial state, following it, we
have the time spent in that state then the new state and the time spent in that state an so on
and so forth. . .

{1, 5.10729, 1, 11.2061, 4}{1, 8.94734, 1, 13.8573, 3, 24.6617, 4}{1, 6.87776, 4}{1, 6.98515, 1, 13.3962, 4}{1, 4.71123, 1, 9.89146, 3, 18.109, 4}{2, 7.70894, 4}{1, 6.84374, 1, 13.6126, 4}{1, 6.04099, 1, 10.3816, 4}{2, 6.33596, 4}{3, 9.85956, 4}{2, 4.69848, 3, 12.0129, 4}{3, 5.10992, 4}{1, 8.59185, 1, 15.0347, 1, 25.448, 4}{1, 6.32415, 1, 12.4971, 4}{1, 4.45355, 1, 9.13481, 4}{1, 8.64611, 4}
Figure 4. A set of simulated trajectories of a 4-state continuous-time Markov chain.

Using the procedure detailed in Section 4, these data were generated with a full
intensity matrix, that is a matrix of the form,⎛⎜⎜⎝

−(μ12 + μ13 + μ14) μ12 μ13 μ14
μ21 −(μ21 + μ23 + μ24) μ23 μ24
μ31 μ32 −(μ31 + μ32 + μ34) μ34
0 0 0 0

⎞⎟⎟⎠ (21)

with the intensities given by⎧⎨⎩
μ12 = 3.47 · 10−6 e0.138(t+65) + 1

2500 = μ21 μ13 = 0.5 · μ12 μ23 = 1.5 · μ12
μ14 = 0.0000758 e0.087(t+65) + 1

2000 μ24 = 1.4 · μ14 μ34 = 1.8 · μ14
μ21 = μ12 μ31 = 0.1 · μ21 μ32 = 0.4 · μ21

(22)

This set of intensities used to generate the full data sample was supposed to determine a
model for LTC with four states; the relations between the intensities reflect the qualitative
relations describing the force of transitions that we suppose are held in this particular model.

For estimation–calibration purposes—following the results on the distance of transi-
tion probabilities—we will suppose that is has given the most tractable functional form of
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the intensities depending on some parameters to be estimated. For instance, a continuous
piecewise linear functional form for which we can have, for i �= j,

μθ
ij(t) =

r

∑
k=1

(
θk,1

ij + θk,2
ij t

)
1I[tk ,tk+1[

(t) , (23)

with 0 = t0 < t1 < · · · < tr+1 = T, and possibly some conditions on the parameters θk,1
ij

and θk,2
ij if the intensity μθ

ij(t) is supposed to be piecewise linear and continuous.
We stress again that the values in Figure 4 were simulated. For LTC, for example,

real data will be given, possibly, with time stamps of a day, at best; being so, the order
of approximation will have to be chosen looking for precision with a balance between
a sufficiently narrow interval around a given time and having enough observations to
perform the estimation.

Let us detail a methodology to identify the parameter θ ∈ Θ inspired by the constructive
definition of the Markov chain in Remark 3. The general idea of the methodology is as follows.

(i) Given a state i, we have to find a fitting for the distribution of random times of i → i
jumps. According to Formula (18), these times have an exponential distribution with
density μθ

ii(t).
(ii) For every other state j, by using �[Xs1 = j|τ1 = s1 , X0 = i], possibly with an approx-

imation, by Formula (19), we can obtain an approximation of p�(s1, i, j).
(iii) By using Formula (17) and the approximation obtained for p�(s1, i, j), we can obtain

an approximation for μθ
ij(t).

(iv) Finally, we will fit a linear continuous piecewise intensity to μθ
ij(t).

Let us detail the procedures for applying the methodology just described.

1. Recall that an observed trajectory has the following structure: (first state, time spent
in state, second state, time spent in state, third state . . . ). The maximum length of
a trajectory in our sample is 11. Select all the trajectories of length greater than 3
that start at state i = 1. If the next state is also i = 1, the time spent in state—in this
case, in state i = 1—is the first part of the sample for obtaining μθ

11(t). Select all the
trajectories of length greater than 5 for which the second state is i = 1; this set of
trajectories already contains the previous considered set of trajectories and so, if the
third state is also i = 1, the sum of the time spent in the first state and the time spent
in the second state will be the second part of the sample for obtaining μθ

ii(t). Repeat,
successively, the procedure for all trajectories of length greater than 7, then of length
greater than 9 and finally of length greater than 11 to obtain the full sample for the
intensity μθ

11(t).
2. Fit a smooth kernel distribution to the sample obtaining the intensity μθ

11(t).
3. Repeat the procedure used for obtaining the sample for μθ

11(t), but this time, select the
transitions 1 → 2, that is, the transitions from state i = 1 to state i = 2. Fit a smooth
kernel distribution to these data.

4. Now, we look for an estimate of p�(t, i, j) given by Formulas (17) and (19). For that, we
will consider rounding the sojourn times—say to the unity, in order to have enough
observations—and then group all observations of jumps from the first state according
to this rounding. Consider then the observations towards state i = 2. We will then
have that

p�(s1, 1, 2) = �[Xs1 = 2|τ1 = s1 , X0 = 1] ≈ �[Xs1 = 2, s1 − 0.5 ≤ τ1 < s1 + 0.5]
�[s1 − 0.5 ≤ τ1 < s1 + 0.5]

=

=
�[s1 − 0.5 ≤ τ1 < s1 + 0.5|Xs1 = 2] ·�[Xs1 = 2]

�[s1 − 0.5 ≤ τ1 < s1 + 0.5]

(24)
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and most of the left-hand side of the formula will be estimable with the observations
by using the smooth kernel distributions.

5. Resorting to Formula (17), we can compute values for μθ
12(t) and fit a piecewise linear

density. That is, using again Formula (17), since μθ
11(s1) �= 0, we have that for an

arbitrary time t = s1,

μθ
12(s1) ≈

−μθ
11(s1)

1 − δ2
1

p�(s1, 1, 2) = −μθ
11(s1) · p�(s1, 1, 2) .

6. We consider a set of values of μθ
12(s1), μθ

12(s2), . . . , μθ
12(sk) and then fit the multidimen-

sional parameter θ ∈ Θ to these values (see Formula (23) for the case of a continuous
piecewise linear intensity functional form).

7. These procedures are to be repeated in order to obtain the parameters μθ
2j for j �= 2

and μθ
3j for j �= 3.

8. The intensities μθ
jj for j = 1, 2, 3 are obtained in the usual form and are forcible contin-

uous piecewise linear since they are the sum of continuous piecewise linear functions.

6. Results of the Estimation–Calibration Procedure

We present the results from the estimation procedure developed in accordance with
the methodology proposed in Section 5.

The estimated matrix structure is a full matrix such as the one given in Formula (21)
but with piecewise linear intensities which are not very elucidative in themselves. It is
preferable to look at a graphical representation of these intensities. In Figure 5, we have
the estimated intensities (in blue colour) and the fitted piecewise linear intensities (in red
colour). We can observe that despite observable differences the fitting is reasonably good
with the exception of the intensity μ21. This may be due to the fact that we only had seven
observations in the sample, and they are consistent with LTC data. We also observe that
the fitting with an exponential-type density will give a non satisfactory result. In order to
evaluate the quality of this fitting, we present in Table 1 the maximum distance between
the computed approximate intensities and the fitted piecewise linear intensities.

Table 1. (1)—Maximum distance between the values of the computed approximate intensities; and
(2)—the fitted piecewise linear intensities and the maximum distance normalised by the maximum
value of the estimated intensities.

μ12 μ13 μ14

(1) 0.025381 0.159100 1.165812
(2) 0.000667 0.004186 0.030679

μ21 μ23 μ24
(1) 0.003661 0.020507 0.397256
(2) 0.000963 0.005396 0.104541

μ31 μ32 μ34
(1) 7.398272 0.000024 0.086817
(2) 3.52299 0.000011 0.04134

We observe that the error for μ31 is quite large compared to the other errors; this could
be due to the fact that the estimation was performed with only 20 observations, again
consistent with LTC data.
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Figure 5. Data recovered from the simulated results (blue) and the piecewise linear intensities
fitted (red).

In Figure 6, we can compare qualitatively the original transition probabilities with
the ones obtained as the solution of the forward Kolmogorov ODE with the estimated
piecewise linear intensities. A first qualitative observation is that the general behaviour
of the estimated and fitted intensities is similar. In order to compare quantitatively the
original transition probabilities with the ones obtained as the solution of the Kolmogorov
ODE with the estimated piecewise linear intensities, we present, in Figure 7, the difference
between the original transition probabilities and the estimated transition probabilities
for each of the three transient states. It is clear that there are substantial differences.
To justify these differences we have at least two cumulative sources of error. The first error
source is induced by the fact that there was a estimation–calibration procedure applied
to 5000 trajectories generated from the original transition probabilities; the second error
source comes from the fact that while the original transition probabilities are produced
from intensities of the Gompertz–Makeham type, the estimated transition probabilities are
produced by continuous piecewise linear intensities fitted to the simulated data.
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Figure 6. Comparing original transition probabilities used for simulation (left) with the estimated
piecewise linear transition probabilities (right). pij: j = 1 (blue); j = 2 (orange); j = 3 (green); j = 4
(red). ∑4

j=1 pij (purple).

In order to detail the average error per year coming from the estimation procedure we
can compute

Δij :=
1
27

∫ 27

0

∣∣pij(t)− p̃ij(t)
∣∣dt (25)

with pij(t) the original transition probabilities and p̃ij(t) the estimated transition probabili-
ties. The results are presented in Table 2.
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Table 2. Average error per year between the estimated and the original probability transitions.

Δ11 Δ12 Δ13 Δ14

0.004647 0.001806 0.000896 0.007118

Δ21 Δ22 Δ23 Δ24
0.002394 0.002140 0.002624 0.004081

Δ31 Δ32 Δ33 Δ34
0.000896 0.001258 0.005907 0.003898

The main conclusion is that the order of magnitude of the average error per unit
time—chosen as a year since it is the time duration of an interval where transition proba-
bilities in health insurance and long-term-care models can have a significant impact—is
always less than 1%. Of course, we have to be careful of the extremes of these errors that
are visible in Figure 7.
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Figure 7. The difference between the original transition probabilities and the estimated ones.
pij − p̃ij: j = 1 (blue); j = 2 (orange); j = 3 (green); j = 4 (red).

All computations and graphic representations were created with a Mac mini (M1 2020)
equipped with macOS Monterey 12.5.1 with Wolfram Mathematica 12, version 12.3.1.0.
The estimation–calibration procedures use either native functions or small routines that
require reasonable execution times of the order of a second.

7. Discussion

The methodology proposed in this work gave us the continuous piecewise linear
intensities depicted in Figure 5. The use of the continuous piecewise linear functional
form was intentional although not necessary; a better fit to the data, most possibly with
a larger number of parameters, could be computed and possibly could provide a better
final result, qualitatively, in Figure 6 and quantitatively with metrics given by both the
average error per year, as in Table 2 and as in Figure 7, showing the analysis of local
discrepancies between the original transition probabilities and the transition probabilities
resulting from the estimation methodology. The intention of using the continuous piecewise
linear functional form for the intensities was to illustrate the possibility of an estimation–
calibration procedure relying on a small number of parameters. Whenever faced with the
estimation–calibration of intensities for real-data modelling, a situation where there are
no known determined intensities generating the data, the choice of the functional form is
secondary with respect to the quality of the model fitting.

8. Conclusions

In this work, we proposed a methodology for estimation–calibration of continuous-
time non-homogeneous Markov chains with finite state space. We presented an ap-
plication of the methodology to a Monte Carlo simulated set of trajectories generated
from intensities of Gompertz-Makeham type, and we obtained, by the methodology, es-
timated continuous piecewise linear intensities. We compared the correspondent tran-
sition probabilities—obtained by solving the forward Kolmogorov ODE for the original
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Gompertz–Makeham intensities and for the continuous piecewise linear intensities—obtaining
an average error per year of always less than 1%.

In order to justify the methodology, we presented a result on regime-switching Markov
chains, proving the existence of a Markov chain process, in a given time interval, obtained
by glueing together different intensities matrices defined in the different intervals of a
partition of the time interval of the Markov chain process; this result shows that it is possible
to consider intensities of different functional forms for different sub intervals of the time
interval where the whole Markov chain process is defined.

We also presented a result that shows that it is possible to bound the distance between
the matrix of transition probabilities corresponding to different matrix intensities by the
distance between these matrix intensities. This result shows that, with respect to the
transition probabilities, we can consider changes in functional form of the intensities—in
an intensity matrix—as long as the distance between the original intensity matrix and the
altered one is small enough.

In future work, we intend to improve the methodology in order to control the quality
of the process by adequate tests and to improve the algorithm used.
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Abstract: A class of power series q-distributions, generated by considering a q-Taylor expansion of a
parametric function into powers of the parameter, is discussed. Its q-factorial moments are obtained
in terms of q-derivatives of its series (parametric) function. Also, it is shown that the convolution of
power series q-distributions is also a power series q-distribution. Furthermore, the q-Poisson (Heine
and Euler), q-binomial of the first kind, negative q-binomial of the second kind, and q-logarithmic
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1. Introduction

Benkherouf and Bather (1988) [1] derived the Heine and Euler distributions, which
constitute the q-analogs of the Poisson distribution, as feasible priors in a simple Bayesian
model for oil exploration. The probability (mass) function of the q-Poisson distributions is
given by (Charalambides (2016), p. 107) [2]

px(λ; q) = Eq(−λ)
λx

[x]q!
, x = 0, 1, . . . , (1)

where 0 < λ < 1/(1 − q) and 0 < q < 1 (Euler distribution) or 0 < λ < ∞ and 1 < q < ∞
(Heine distribution). Also, Eq(t) = ∏∞

i=1(1 + t(1 − q)qi−1) is a q-exponential function,
satisfying the relation Eq(t)Eq−1(−t) = 1, where |t| < b(q) and |q| < 1 or |q| > 1, with the
bound b(q) ≤ ∞ depending on q. It should be noted that eq(t) = ∏∞

i=1(1 − t(1 − q)qi−1)−1

is another q-exponential function, connected to the first one by eq(t) = Eq−1(t).
Kemp and Kemp (1991) [3], in their study of Weldon’s classical dice data, introduced

a q-binomial distribution. It is the distribution of the number of successes in a sequence
of n independent Bernoulli trials, with the odds of success at a trial varying geometrically
with the number of trials. Kemp and Newton (1990) [4] further studied it as a stationary
distribution of a birth and death process. The probability function of this q-binomial
distribution of the first kind is given by

px(θ; q) =
[

n
x

]
q

θxq(
x
2)

∏n
i=1(1 + θqi−1)

, x = 0, 1, . . . , n, (2)

where 0 < θ < ∞ and 0 < q < 1 or 1 < q < ∞.
Charalambides (2010) [5] in his study of the q-Bernstein polynomials as a q-binomial

distribution of the second kind, introduced the negative q-binomial distribution of the
second kind. It is the distribution of the number of failures until the occurrence of the nth
success in a sequence of independent Bernoulli trials, with the probability of success at a
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trial varying geometrically with the number of successes. The probability function of this
negative q-binomial distribution of the second kind is given by

px(θ; q) =
[

n + x − 1
x

]
q
θx

n

∏
i=1

(1 − θqi−1), x = 0, 1, . . . , (3)

where 0 < θ < 1 and 0 < q < 1.
A q-logarithmic distribution was studied byC. D. Kemp (1997) [6] as a group size

distribution. Its probability function is given by

px(θ; q) = [−lq(1 − θ)]−1 θx

[x]q
, x = 1, 2, . . . , (4)

where 0 < θ < 1, 0 < q < 1, and

−lq(1 − θ) = lim
t→0

1
[t]q

( ∞

∏
i=1

1 − θqt+i−1

1 − θqi−1 − 1
)
=

∞

∑
j=1

θ j

[j]q

is a q-logarithmic function.
A class of power series q-distributions, which is introduced in Section 2 by considering

a q-Taylor expansion of a parametric function, provides a unified approach to the study
of these distributions. Its q-factorial moments, for 0 < q < 1 and 1 < q < ∞, are obtained
in terms of q-derivatives of its series function. As essentially noted by Dunkl (1981) [7]
and formally expressed in Charalambides and Papadatos (2005) [8] and Charalambides
(2016) [2], the usual factorial (and binomial) moments are given in terms of the q-factorial
(and q-binomial) moments through the q-Stirling numbers of the first kind. Moreover, it
is proved that a power series q-distribution is completely determined from its first two
q-cumulants (or q-moments). Also, the convolution of power series q-distributions, using
probability-generating functions, is shown to be a power series q-distribution. Further-
more, in Section 3, demonstrating this approach, the q-factorial moments for 0 < q < 1
and 1 < q < ∞ of the q-Poisson (Heine and Euler) distributions, q-binomial distribution
of the first kind, negative q-binomial distribution of the second kind, and q-logarithmic
distribution are obtained as members of this class of distributions. In addition, interest-
ing and useful structural information about these distributions is obtained through their
probability-generating functions.

2. Power Series q-Distributions

Consider a positive function g(θ) of a positive parameter θ and assume that it is
analytic with a q-Taylor expansion about zero (Jackson (1909) [9], Ernst (2012) [10], p. 103)

g(θ) =
∞

∑
x=0

ax,qθx, 0 < θ < ρ, ρ > 0, (5)

where the coefficient

ax,q =
1

[x]q!
[Dx

q g(t)]t=0 ≥ 0, x = 0, 1, . . . , 0 < q < 1, or 1 < q < ∞, (6)

with Dq = dq/dqt the q-derivative operator (Ernst (2012) [10], p. 200),

Dqg(t) =
dqg(t)

dqt
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g(t)− g(qt)
(1 − q)t , q �= 1, t �= 0

Dg(t) = dg(t)
dt , q = 1,

Dg(0) = dg(0)
dt , t = 0,
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does not involve the parameter θ. Clearly, the function

px(θ; q) =
ax,qθx

g(θ)
, x = 0, 1, . . . , (7)

with 0 < θ < ρ and 0 < q < 1 or 1 < q < ∞, satisfies the properties of a probability
(mass) function.

Definition 1. A family of discrete q-distributions px(θ; q), θ ∈ Θ, q ∈ Q, is said to be a class
of power series q-distributions, with parameters θ and q and series function g(θ) if it has the
representation (7), with series function satisfying condition (5).

Remark 1. The q-Taylor expansion (5) may be equivalently expressed as expressed as Jackson
(1942) [11], Ernst (2012) [10], p. 103

g(θ) =
∞

∑
x=0

bx,qθx, 0 < θ < ρ, ρ > 0,

where the coefficient

bx,q =
q(

x
2)

[x]q!
[Dx

q g(qt)]t=0 ≥ 0, x = 0, 1, . . . , 0 < q < 1, or 1 < q < ∞,

and does not involve the parameter θ. Indeed, replacing q by q−1 in (5) and (6) and since [x]q−1 ! = q−(x
2)

[x]q! and [Dx
q−1 g(t)]t=0 = [Dx

q g(qt)]t=0, the equivalent expression is readily deduced.

Remark 2. The class of power series q-distributions, for q → 1, reduces to the class of (usual)
power series distributions, which was introduced by Noack (1950) [12] and further studied by Khatri
(1959) [13] and Patil (1962) [14]. Furthermore, it should be noted that the range of x in (7), as in
the case of the power series distributions, need not be the entire set of nonnegative integers; it can be
an arbitrary non-null subset of nonnegative integers. Also, note that a truncated version of a power
series q-distribution is itself a power series q-distribution in its own right; hence, the properties that
hold for a power series q-distribution continue to hold for its truncated forms.

The basic properties of a power series q-distribution are established in the following
propositions. Its q-factorial moments are derived first, in terms of the q-derivatives of the
series function.

Proposition 1. The mth q-factorial moment of the power series q-distribution (7) is given by

E([X]m,q) =
θm

g(θ)
· dm

q g(θ)
dqθm , m = 1, 2, . . . . (8)

In particular, the q-mean and q-variance are given by

E([X]q) =
θ

g(θ)
· dqg(θ)

dqθ
(9)

and

V([X]q) =
θ2q
g(θ)

· d2
qg(θ)
dqθ2 − θ

g(θ)
· dqg(θ)

dqθ

(
θ

g(θ)
· dqg(θ)

dqθ
− 1

)
, (10)

respectively.
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Proof. The mth q-factorial moment,

E([X]m,q) =
∞

∑
x=m

[x]m,q
ax,qθx

g(θ)
=

θm

g(θ)

∞

∑
x=m

ax,q[x]m,qθx−m,

on using the mth q-derivative of the series function (5),

dm
q g(θ)
dqθm =

∞

∑
x=m

ax,q[x]m,qθx−m,

is readily deduced as (8). In particular, for m = 1, the q-mean is given by (9). Also, using
the expression (Charalambides (2016), p. 43)

V([X]q) = qE([X]2,q)− E([X]q)
(
E([X]q)− 1

)
,

the q-variance is obtained in the form (10).

The derivation of the q−1-factorial moments, E([X]m,q−1), m = 1, 2, . . . , of several
power series q-distributions, in addition to their own interest, are shown to be useful in the
study of limiting distributions (Kyriakoussis and Vamvakari (2013) [15] and Charalambides
(2016) [2], chapter 4). These moments are given, in terms of the q−1-derivatives of the
series function, by (8) with q replaced by q−1. An alternative expression, in terms of the
q-derivatives of the series function, is obtained in the next proposition.

Proposition 2. The mth q−1-factorial moment of the power series q-distribution (7) is given by

E([X]m,q−1) =
θmq(

m+1
2 )

g(θ)
dm

q g(q−mθ)

dqθm , m = 1, 2, . . . . (11)

In particular, the q−1-mean and q−1-variance are given by

E([X]q−1) =
θq

g(θ)
· dqg(q−1θ)

dqθ
(12)

and

V([X]q−1) =
θ2q2

g(θ)
· d2

qg(q−2θ)

dqθ2 − θq
g(θ)

· dqg(q−1θ)

dqθ

(
θq

g(θ)
· dqg(q−1θ)

dqθ
− 1

)
, (13)

respectively.

Proof. The mth q−1-factorial moment, since [x]m,q−1 = q(
m+1

2 )−mx[x]m,q, may be expressed as

E([X]m,q−1) =
∞

∑
x=m

[x]m,q−1
ax,qθx

g(θ)
=

θmq(
m+1

2 )

g(θ)

∞

∑
x=m

ax,q[x]m,qq−mxθx−m.

Also, the mth q-derivative of the series function g(q−mθ), with respect to θ, can be written as

dm
q g(q−mθ)

dqθm = q−m2
[dm

q g(u)
dqum

]
u=q−mθ

=
∞

∑
x=m

ax,q[x]m,qq−mxθx−m.

Introducing it into the last expression of the mth q−1-factorial moment, (11) is obtained. In
particular, for m = 1, the q−1-mean is given by (12). Also, using the expression

V([X]q−1) = q−1E([X]2,q−1)− E([X]q−1)
(
E([X]q−1)− 1

)
,
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the q−1-variance is obtained in the form (13).

The convolution of power series q-distributions is also a power q-series distribution,
according to the following proposition.

Proposition 3. (a) The probability generating function P(t) = E(tX) of the power series q-
distribution (7) is given, in terms of the series function (5), by

P(t) =
g(θt)
g(θ)

, |t| < ρ/θ. (14)

(b) Suppose that Xj, j = 1, 2, . . . , n, is a sequence of n independent random variables obeying a
power series q-distribution, with series function gj(θ), j = 1, 2, . . . , n. Then, the sum Sn = ∑n

j=1 Xj
obeys a power series q-distribution, with series function

g(θ) =
n

∏
j=1

gj(θ). (15)

Proof. (a) The probability generating function P(t) = ∑∞
x=0 px(θ; q)tx, on using (5) and (7),

is readily obtained as (14).
(b) The probability generating function PSn(t), of the sum Sn = ∑n

j=1 Xj, is the product
of the generating functions PXj(t), j = 1, 2, . . . , n, of the summands, PSn(t) = ∏n

j=1 PXj(t),
and so by (14) is deduced in the form

PSn(t) =
n

∏
j=1

gj(θt)
gj(θ)

=
∏n

j=1 gj(θt)

∏n
j=1 gj(θ)

.

Using again (14), the last expression implies (15).

The second part of Proposition 3 can be directly extended to an infinite series of
random variables according to the following corollary.

Corollary 1. Suppose that Xj, j = 1, 2, . . . , is a sequence of independent random variables obeying
a power series q-distribution, with series function gj(θ), j = 1, 2, . . . . Then, the sum S = ∑∞

j=1 Xj
obeys a power series q-distribution, with series function

g(θ) =
∞

∏
j=1

gj(θ), (16)

provided ∏∞
j=1 gj(θ) < ∞.

3. Particular Power Series q-Distributions

Particular power series q-distributions, which are obtained by specifying the series
function, are discussed; their q-factorial moments are deduced and convolution properties
are examined.

3.1. q-Poisson Distributions

The q-Poisson distributions, with probability function (1), belong in the family of
power series q-distributions, with series function g(λ) = eq(λ) = 1/Eq(−λ), where
0 < λ < 1/(1 − q) and 0 < q < 1 (Euler distribution) or 0 < λ < ∞ and 1 < q < ∞
(Heine distribution). Indeed, since Dqeq(t) = eq(t) and eq(0) = 1, it follows from (6) that

ax,q =
1

[x]q!
[Dx

q eq(t)]t=0 =
1

[x]q!
, x = 0, 1, . . . ,

and the probability function (7) reduces to (1).
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The q-factorial moments, by (8) and since dm
q eq(λ)/dqλm = eq(λ), are readily deduced as

E([X]m,q) = λm, m = 1, 2, . . . ,

where 0 < λ < 1/(1 − q) and 0 < q < 1 (Euler distribution) or 0 < λ < ∞ and 1 < q < ∞
(Heine distribution). In particular, the q-mean is given by

E([X]q) = λ.

Furthermore, using (10), the q-variance is obtained as

V([X]q) = qλ2 − λ(λ − 1) = λ(1 + (q − 1)λ).

The q−1-factorial moments, by (11) and since

dm
q eq(q−mλ)

dqλm = q−m2
eq(q−mλ),

are obtained as

E([X]m,q−1) =
λmq(

m+1
2 )

eq(λ)
· q−m2

eq(q−mλ) =
λmq−(m

2 ) ∏∞
i=1

(
1 − λ(1 − q)qi−1)

∏∞
i=1

(
1 − λ(1 − q)q−m+i−1

) ,

which on using

∞

∏
i=1

(
1 − λ(1 − q)q−m+i−1) = m

∏
j=1

(
1 + λ(1 − q−1)q−(j−1)) ∞

∏
i=1

(
1 − λ(1 − q)qi−1),

reduces to

E([X]m,q−1) =
λmq−(m

2 )

∏m
j=1

(
1 + λ(1 − q−1)q−(j−1)

) , m = 1, 2, . . . ,

where 0 < λ < 1/(1 − q) and 0 < q < 1 (Euler distribution) or 0 < λ < ∞ and 1 < q < ∞
(Heine distribution). In particular, the q−1-mean is

E([X]q−1) =
λ

1 + λ(1 − q−1)
.

Also, by (13), the q−1-variance is obtained as

V([X]q−1) =
λ2q−2(

1 + λ(1 − q−1)
)(

1 + λ(1 − q−1)q−1)
) +

λ + λ2(1 − q−1)− λ2(
1 + λ(1 − q−1)

)2

=
λ2q−2+λ3q−2−λ3q−3+λ − λ2q−1+λ2q−2−λ2q−2−λ3q−2+λ3q−3(

1 + λ(1 − q−1)
)2(1 + λ(1 − q−1)q−1)

) ,

which reduces to

V([X]q−1) =
λ(

1 + λ(1 − q−1)
)2(1 + λ(1 − q−1)q−1)

) .

A characterization of a q-Poisson distribution through a relation between the first two
q-factorial moments is worth mentioning. Clearly,

E([X]2,q) =
(
E([X]q)

)2,
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for 0 < λ < 1/(1 − q) and 0 < q < 1 (Euler distribution) or 0 < λ < ∞ and 1 < q < ∞
(Heine distribution). Charalambides and Papadatos (2005) [8] showed that a family of
nonnegative integer-valued random variables Xλ, for 0 < λ < ρ and 0 < q < 1, with a
power series q-distribution, obeys a Euler distribution, if and only if

E([Xλ]2,q) =
(
E([Xλ]q)

)2,

for 0 < λ < ρ and 0 < q < 1. Without any change in the proof, the last relation holds true
for 0 < λ < ρ and 0 < q < 1 or 1 < q < ∞ if and only if the probability function of Xλ is
given by

px(aλ; q) = Eq(−aλ)
(aλ)x

[x]q!
, x = 0, 1, . . . ,

where 0 < aλ < 1/(1 − q) and 0 < q < 1 or 0 < aλ < ∞ and 1 < q < ∞, with a > 0
an arbitrary constant. The additional characterization provided by this extension may be
rephrased as follows. A family of nonnegative integer-valued random variables Xλ, for
0 < λ < ρ and 0 < q < 1, with a power series q-distribution, obeys a Heine distribution, if
and only if

E([Xλ]2,q−1) =
(
E([Xλ]q−1)

)2,

for 0 < λ < ρ and 0 < q < 1.
A close examination of the probability generating function of a q-Poisson distribution

reveals interesting and useful structural information about the probability distribution. Specif-
ically, from expression (14), with series function g(λ) = Eq(λ) = ∏∞

i=1
(
1 + λ(1 − q)qi−1),

and setting θ = λ(1 − q), the probability generating function of the Heine distribution is
deduced as

P(t) =
Eq(λt)
Eq(λ)

=
∞

∏
i=1

1 + θtqi−1

1 + θqj−1 , −∞ < t < ∞, 0 < θ < ∞, 0 < q < 1,

where PXi (t) =
(
1+ θtqi−1)/

(
1+ θqj−1) is the probability generating function of a Bernoulli

distribution. Therefore, according to Corollary 1, the Heine distribution may be expressed
as an infinite convolution of independent (and not identically distributed) Bernoulli distri-
butions. This representation of the Heine distribution was first noticed by Benkherouf and
Bather (1988).

Also, from (14), with g(λ) = eq(λ) = ∏∞
j=1

(
1−λ(1− q)qj−1)−1, and setting θ = λ(1 − q),

the probability generating function of the Euler distribution is obtained as

P(t) =
eq(λt)
eq(λ)

=
∞

∏
j=1

1 − θqj−1

1 − θtqj−1 , |t| < 1/θ, 0 < θ < 1, 0 < q < 1,

where PXj(t) =
(
1 − θqj−1)/

(
1 − θtqj−1) is the probability generating function of a geo-

metric distribution. Therefore, according to Corollary 1, the Euler distribution may be
expressed as an infinite convolution of independent (and not identically distributed) geo-
metric distributions. It should be noted that this expression of the Euler distribution was
derived by Kemp (1992) [16].

3.2. q-Binomial Distribution of the First Kind

The q-binomial distribution of the first kind, with probability function (2), is a power
series q-distribution, with series function g(θ) = ∏n

i=1(1 + θqi−1), where 0 < θ < ∞ and
0 < q < 1 or 1 < q < ∞. Indeed, since
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Dqg(θ) = ∏n
i=1(1 + θqi−1)− ∏n

i=1(1 + θqi)

(1 − q)θ

=
[(1 + θ)− (1 + θqn)]∏n−1

i=1 (1 + θqi)

(1 − q)θ
= [n]q

n−1

∏
i=1

(1 + (θq)qi−1),

it follows successively that

Dx
q g(θ) = [n]x,qq1+2+···+(x−1)

n−x

∏
i=1

(1 + (θqx)qi−1) = [n]x,qq(
x
2)

n−x

∏
i=1

(1 + (θqx)qi−1),

for x = 1, 2, . . . , n, and, by (6), that

ax,q =
1

[x]q!
[Dx

q g(t)]t=0 =

[
n
x

]
q
q(

x
2), x = 0, 1, . . . , n,

and the probability function (7) reduces to (2).
The q-factorial moments, by (8) and since

dm
q g(θ)
dqθm = [n]m,qq(

m
2 )

n−m

∏
i=1

(1 + (θqm)qi−1) = [n]m,qq(
m
2 )

n

∏
i=m+1

(1 + θqi−1),

are obtained as

E([X]m,q) =
[n]m,qθmq(

m
2 )

∏m
i=1(1 + θqi−1)

, m = 1, 2, . . . ,

where 0 < θ < ∞ and 0 < q < 1 or 1 < q < ∞. In particular, the q-mean is

E([X]q) =
[n]qθ

(1 + θ)
.

Also, by (10), the q-variance is obtained as

V([X]q) =
[n]q[n − 1]qθ2q2

(1 + θ)(1 + θq)
+

[n]qθ

1 + θ

(
1 − [n]qθ

1 + θ

)
,

which, on using the expression q[n − 1]q = [n]q − 1, reduces to

V([X]q) =
[n]qθ

(1 + θ)(1 + θq)

(
1 +

[n]qθ(q − 1)
1 + θ

)
.

The q−1-factorial moments, on using (11) with

dm
q g(q−mθ)

dqθm = [n]m,qq(
m
2 )−m2

n−m

∏
i=1

(1 + θqi−1) = [n]m,qq−(m+1
2 )

n−m

∏
i=1

(1 + θqi−1),

and since

n

∏
i=1

(1 + θqi−1) =
n−m

∏
i=1

(1 + θqi−1)
n

∏
i=n−m+1

(1 + θqi−1)

=
n−m

∏
i=1

(1 + θqi−1)
n

∏
i=1

(1 + θqn−m+i−1),
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are obtained as

E([X]m,q−1) =
[n]m,qθm

∏m
i=1(1 + θqn−m+i−1)

, m = 1, 2, . . . ,

where 0 < θ < ∞ and 0 < q < 1 or 1 < q < ∞. In particular, the q−1-mean is

E([X]q−1) =
[n]qθ

1 + θqn−1 .

Also, by (13) and using the expression [n − 1]q = [n]q − qn−1, the q−1-variance is obtained as

V([X]q−1) =
[n]qθ

1 + θqn−1 − [n]qθ2qn−2

(1 + θqn−1)(1 + θqn−2)

+
[n]2qθ2q−1

(1 + θqn−1)(1 + θqn−2)
− [n]2qθ2

(1 + θqn−1)2 ,

which after some algebra reduces to

V([X]q−1) =
[n]qθ

(1 + θqn−1)(1 + θqn−2)

(
1 +

[n]qθ(q−1 − 1)
1 + θqn−1

)
.

The probability generating function of the q-binomial distribution of the first kind, on
using (14), is deduced as

P(t) =
n

∏
i=1

1 + θtqi−1

1 + θqi−1 , |t| < ∞, 0 < θ < ∞, 0 < q < 1 or 1 < q < ∞,

where PXi (t) =
(
1+ θtqi−1)/

(
1+ θqj−1) is the probability generating function of a Bernoulli

distribution. Therefore, according to Proposition 3(b), the q-binomial distribution of the first
kind, may be expressed as a convolution of n independent (and not identically distributed)
Bernoulli distributions.

More generally, the q-binomial distribution of the first kind may be expressed as a
convolution of n independent q-binomial distributions of the first kind. Specifically, let
Xj, j = 1, 2, . . . , n, be a sequence of n independent random variables and assume that Xj
follows a q-binomial distribution of the first kind with parameters rj, θqsj−1 , and q, where

sj = ∑
j
i=1 ri, for j = 1, 2, . . . , n and s0 = 0. Clearly, the probability-generating function of

Xj is given by

PXj(t) =
rj

∏
i=1

1 + θtqsj−1+i−1

1 + θqsj−1+i−1 , |t| < ∞, 0 < θ < ∞, 0 < q < 1 or 1 < q < ∞.

Consequently, the probability-generating function of the sum Sn = ∑n
j=1 Xj, is deduced as

PSn(t) =
n

∏
j=1

rj

∏
i=1

1 + θtqsj−1+i−1

1 + θqsj−1+i−1 =
n

∏
j=1

sj

∏
i=sj−1+1

1 + θtqi−1

1 + θqi−1 ,

which, for sn ≡ m, simplifies to

PSn(t) =
m

∏
i=1

1 + θtqi−1

1 + θqi−1 , |t| < ∞, 0 < θ < ∞, 0 < q < 1 or 1 < q < ∞.

Therefore, the distribution of Sn is a q-binomial distribution of the first kind with parameters
m, θ, and q.
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Finally, it is worth noticing that the probability-generating function of the Heine
distribution, with parameters λ and q,

PX(t) =
∞

∏
i=1

1 + θtqi−1

1 + θqj−1 , −∞ < t < ∞, 0 < θ < ∞, 0 < q < 1,

where θ = λ(1 − q), may be expressed as product, PX(t) = PXn(t)PYn(t), of the probability
generating function of the q-binomial distribution of the first kind, with parameters n, θ,
and q,

PXn(t) =
n

∏
i=1

1 + θtqi−1

1 + θqj−1 , −∞ < t < ∞, 0 < θ < ∞, 0 < q < 1,

and the probability generating function of the Heine distribution, with parameters λqn and q,

PYn(t) =
∞

∏
i=1

1 + θtqn+i−1

1 + θqn+j−1 , −∞ < t < ∞, 0 < θ < ∞, 0 < q < 1.

Therefore, a Heine distribution may be expressed as a convolution of a q-binomial distribu-
tion of the first kind and an independent Heine distribution.

3.3. Negative q-Binomial Distribution of the Second Kind

The negative q-binomial distribution of the second kind with probability function (3)
is a power series q-distribution, with series function g(θ) = ∏n

i=1(1 − θqi−1)−1, where
0 < θ < 1 and 0 < q < 1. Indeed, since

Dqg(θ) = ∏n
i=1(1 − θqi−1)−1 − ∏n

i=1(1 − θqi)−1

(1 − q)θ

=
[(1 − θqn)− (1 − θ)]∏n+1

i=1 (1 − θqi−1)

(1 − q)θ
= [n]q

n+1

∏
i=1

(1 − θqi−1),

it follows successively that

Dx
q g(θ) = [n]q[n + 1]q · · · [n + x − 1]q

n+x

∏
i=1

(1 − θqi−1) = [n + x − 1]x,q

n+x

∏
i=1

(1 − θqi−1),

for x = 1, 2, . . . , and, by (6), that

ax,q =
1

[x]q!
[Dx

q g(t)]t=0 =

[
n + x − 1

x

]
q
, x = 0, 1, . . . ,

and the probability function (7) reduces to (3).
The q-factorial moments, by (8) and since

Dm
q g(θ) = [n + m − 1]m,q

n+m

∏
i=1

(1 − θqi−1)−1

= [n + m − 1]m,q

n

∏
i=1

(1 − θqi−1)−1
m

∏
i=1

(1 − θqn+i−1)−1,

are obtained as

E([X]m,q) =
[n + m − 1]m,qθm

∏m
i=1(1 − θqn+i−1)

, m = 1, 2, . . . ,

where 0 < θ < 1 and 0 < q < 1. In particular, the q-expected value is

E([X]q) =
[n]qθ

1 − θqn .
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Also, by (10), the q-variance is obtained as

V([X]q) =
[n]q[n + 1]qθ2q

(1 − θqn)(1 − θqn+1)
+

[n]qθ

1 − θqn

(
1 − [n]qθ

1 − θqn

)
which, on using the expression [n + 1]q = [n]q + qn, reduces to

V([X]q) =
[n]qθ

(1 − θqn)(1 − θqn+1)

(
1 +

[n]qθ(q − 1)
1 − θqn

)
.

The q−1-factorial moments, on using (11) with

dm
q g(q−mθ)

dqθm = q−m2
[n + m − 1]m,q

n+m

∏
i=1

(1 − θq−m+i−1)−1,

and since

n+m

∏
i=1

(1 − θq−m+i−1)−1 =
m

∏
i=1

(1 − θq−m+i−1)−1
m+n

∏
i=m+1

(1 − θq−m+i−1)−1

=
m

∏
j=1

(1 − θq−j)−1
n

∏
j=1

(1 − θqj−1)−1,

are obtained as

E([X]m,q−1) =
[n + m − 1]m,qθmq−(m

2 )

∏m
i=1(1 − θq−j)

, m = 1, 2, . . . ,

where 0 < θ < 1 and 0 < q < 1. In particular, the q−1-mean is

E([X]q−1) =
[n]qθ

1 − θq−1 .

Also, by (13), the q−1-variance is obtained as

V([X]q−1) =
[n]q[n + 1]qθ2q−2

(1 − θq−1)(1 − θq−2)
+

[n]qθ

1 − θq−1

(
1 − [n]qθ

1 − θq−1

)
which, on using the expression [n + 1]q = q[n]q + 1, reduces to

V([X]q−1) =
[n]qθ

(1 − θq−1)(1 − θq−2)

(
1 +

[n]qθ(q−1 − 1)
1 − θq−1

)
.

The probability generating function of the negative q-binomial distribution of the
second kind, on using (14), is deduced as

P(t) =
n

∏
i=1

1 − θqi−1

1 − θtqi−1 , |t| < 1/θ, 0 < θ < 1, 0 < q < 1,

where PXi (t) = (1− θqi−1)(1− θtqi−1) is the probability generating function of a geometric
distribution. Therefore, according to Proposition 3(b), the negative q-binomial distribution
of the second kind may be expressed as a convolution of n independent (and not identically
distributed) geometric distributions.

More generally, the negative q-binomial distribution of the second kind may be ex-
pressed as a convolution of n independent negative q-binomial distributions of the second
kind. Specifically, let Xj, j = 1, 2, . . . , n, be a sequence of n independent random variables
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and assume that Xj, follows a negative q-binomial distribution of the second kind with

parameters rj, θqsj−1 , and q, where sj = ∑
j
i=1 ri, for j = 1, 2, . . . , n and s0 = 0. Clearly, the

probability-generating function of Xj is given by

PXj(t) =
rj

∏
i=1

1 − θqsj−1+i−1

1 − θtqsj−1+i−1 , |t| < 1/θ, 0 < θ < 1, 0 < q < 1.

Consequently, the probability-generating function of the sum Sn = ∑n
j=1 Xj, is deduced as

PSn(t) =
n

∏
j=1

rj

∏
i=1

1 − θqsj−1+i−1

1 − θtqsj−1+i−1 =
n

∏
j=1

sj

∏
i=sj−1+1

1 − θqi−1

1 − θtqi−1 ,

which, for sn ≡ m, simplifies to

PSn(t) =
m

∏
i=1

1 − θqi−1

1 − θtqi−1 , |t| < 1/θ, 0 < θ < 1, 0 < q < 1.

Therefore, the distribution of Sn is a negative q-binomial distribution of the second kind
with parameters m, θ, and q.

Finally, it is worth noticing that the probability-generating function of the Euler
distribution, with parameters λ and q,

PX(t) =
∞

∏
i=1

1 − θqi−1

1 − θtqj−1 , |t| < 1/θ, 0 < θ < 1, 0 < q < 1,

where θ = λ(1 − q) may be expressed as product, PX(t) = PXn(t)PYn(t), of the probabil-
ity generating function of the negative q-binomial distribution of the second kind, with
parameters n, θ, and q,

PXn(t) =
n

∏
i=1

1 − θqi−1

1 − θtqj−1 , |t| < 1/θ, 0 < θ < 1, 0 < q < 1,

and the probability generating function of the Euler distribution, with parameters λqn and q,

PYn(t) =
∞

∏
i=1

1 − θqn+i−1

1 − θtqn+j−1 , |t| < 1/θ, 0 < θ < 1, 0 < q < 1.

Therefore, an Euler distribution may be expressed as a convolution of a negative q-binomial
distribution of the second kind and an independent Euler distribution.

3.4. q-Logarithmic Distribution

The q-logarithmic distribution, with probability distribution (4), is a power series
q-distribution with a series function

g(θ) = −lq(1 − θ) =
∞

∑
j=1

θ j

[j]q
, 0 < θ < 1, 0 < q < 1.

Indeed, taking successively q-derivatives of the series function,

Dx
q g(θ) =

∞

∑
j=x

[j − 1]x−1,qθ j−x = [x − 1]q!
∞

∑
j=x

[
j − 1
j − x

]
q
θ j−x,

107



Mathematics 2024, 12, 712

and using the negative q-binomial formula

∞

∑
k=0

[
x + k − 1

k

]
q
θk =

x

∏
i=1

(1 − θqi−1)−1,

we find

Dx
q g(θ) = [x − 1]q!

x

∏
i=1

(1 − θqi−1)−1

and, by (6),

ax,q =
1

[x]q!
[Dx

q g(t)]t=0 =
1

[x]q
, x = 1, 2, . . . ,

and the probability function (7) reduces to (4).
The q-factorial moments, by (8) and since

dm
q g(θ)
dθm = [m − 1]q!

m

∏
i=1

(1 − θqi−1)−1,

are obtained as

E([X]m,q) =
[−lq(1 − θ)]−1[m − 1]q!θm

∏m
i=1(1 − θqi−1)

, m = 1, 2, . . . .

In particular, the q-mean value is

E([X]q) =
[−lq(1 − θ)]−1θ

1 − θ
.

Also, using (11), the q-variance is obtained as

V([X]q) =
[−lq(1 − θ)]−1θ

1 − θ

(
1

1 − θq
− [−lq(1 − θ)]−1θ

1 − θ

)
.

The q−1-factorial moments, on using (11) with

dm
q g(q−mθ)

dqθm = [m − 1]q!q−m2
m

∏
i=1

(1 − θq−m+i−1)−1,

are obtained as

E([X]m,q−1) =
[−lq(1 − θ)]−1[m − 1]q!θmq−(m

2 )

∏m
i=1(1 − θq−m+i−1)

, m = 1, 2, . . . .

In particular, the q−1-mean value is

E([X]q−1) =
[−lq(1 − θ)]−1θ

1 − θq−1 .

Also, using (13), the q−1-variance is obtained as

V([X]q−1) =
[−lq(1 − θ)]−1θ

1 − θq−1

(
1 +

θq−1

1 − θq−2 − [−lq(1 − θ)]−1θ

1 − θ

)
.

The probability generating function of the q-logarithmic distribution, using (14) is deduced

PX(t) =
−lq(1 − θt)
−lq(1 − θ)

, |t| < 1/θ, 0 < θ < 1, 0 < q < 1.
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Abstract: This paper investigates the transmission of educational attainment from parents to offspring
as a mediator of intergenerational class mobility in Europe. The study covers the last two decades
with data drawn from a cross-national large-scale sample survey, namely the European Social
Survey (ESS), for the years 2002–2018. Interest has focused on the question of the persistence of
inequality of educational opportunities by examining the attainment of nominal levels of education
and the association between the educational attainment of the parent with the highest level of
education and their descendants. The study also covers new trends in social mobility that consider
education as a “positional good”, and a novel method of incorporating educational expansion
into the transition probabilities is proposed, providing answers to whether the rising accessibility of
educational qualifications attenuates the association between social origin and educational attainment.
Therefore, the concept of positionality is taken into account in the estimation of intergenerational
transition probabilities, and to complement the analysis, mobility measures are provided for both
methods, nominal and positional. The proposed positional method is validated through a correlation
analysis between the upward mobility scores (nominal and positional) with the Education Expansion
Index (EEI) for the respective years. The upward mobility scores estimated via the positional method
are more highly correlated with the EEI for all years, indicating a better alignment with the broader
trends in educational participation and achievement.

Keywords: intergenerational social mobility; Markov processes; ESS

MSC: 60J20; 60G35; 62-07

1. Introduction

Intergenerational mobility encapsulates societal transitions spanning generations and
diverse socio-economic strata. It delineates individuals’ progressions and achievements
in comparison to the family’s social, occupational, educational, and economic heritage,
serving as a gauge for evaluating social justice and equal opportunities. Education stands
as a pivotal factor in measuring social mobility and is key in curbing the perpetuation
of disparities through the generations and acting as a mediator between socio-economic
classes. The literature has substantiated the prominence of education in understanding and
quantifying intergenerational mobility. Education is considered a significant factor due to
its enduring impact on subsequent generations, in contrast to income or occupation, which
can be more transient [1]. Moreover, the consistent data collection on education in various
studies enables a more comprehensive analysis of intergenerational mobility. The associa-
tion of education with concepts of social justice and equal opportunity further amplifies its
significance in societal structures [2]. Many years of research on class mobility [3–5] and
intergenerational mobility in relation to other indicators [6,7] have demonstrated that a
major moderator of the relationship between origin and destination classes is educational
achievement. Notably, studies such as those by Breen and Goldthorpe [8] and Blanden
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et al. [9] examine the persistent influence of education across generations and its role
in shaping social mobility. Such studies emphasise the importance of education in un-
derstanding and measuring intergenerational mobility or even the function of academic
establishments in influencing the movement of generations [10,11]. Moreover, Blanden
et al. [9] draw attention to the relationship between education and social mobility, high-
lighting the enduring impact of educational opportunities on upward mobility, while
Corak [12] explores intergenerational mobility from a multidimensional perspective, ac-
knowledging the significance of education among other factors. Cunha and Heckman [13]
examine the intergenerational transmission of both cognitive and noncognitive skills, illus-
trating how education acts as a channel for their transfer across generations. Blanden and
Machin [14] investigate the relationship between education and intergenerational mobility,
discussing the role of education in either facilitating or impeding social mobility. Moreover,
Symeonaki and Stamatopoulou [15], Symeonaki et al. [16], Stamatopoulou et al. [17], and
Stamatopoulou and Symeonaki [18] estimate intergenerational educational mobility across
European countries, allowing for a comparative study of discrepancies among countries in
social mobility, leveraging diverse large-scale European databases, while Symeonaki and
Tsinaslanidou [19] studied intergenerational educational mobility across countries with
different welfare regimes.

In most studies concerning intergenerational educational mobility, the focal point has
long been on the relationship between individuals’ social backgrounds and their educa-
tional achievements, estimating intergenerational educational mobility in absolute terms,
i.e., measuring education with the same nominal categories across all cohorts (e.g., using
the International Standard Classification of Education (ISCED) levels and distinguish-
ing categories of low (ISCED levels 0–2), medium (ISCED levels 3–4), and high (ISCED
levels 5–8) for both parents and offsprings), with the following outcomes indicating a
diminishing influence of social backgrounds on educational achievement across multiple
nations [18,20,21]. However, Goldthorpe [22] raises a pertinent question regarding the
extent to which the observation of a diminishing impact of social origins, as inferred from
nominal categories of educational qualifications, truly signifies a reduction in class dis-
parities within education. He posits that in societies where education is esteemed as a
positional good, individuals strive to outperform their peers in the pursuit of higher relative
educational attainment. The notion of positionality revolves around the concept that the
value of educational credentials is partly attributed to their relative scarcity within the
population, a concept originating from Hirsch [23]. With fiercer competition for educational
achievement, the influence of resources available to affluent and educated social strata
becomes more pronounced. Consequently, disparities in educational attainment between
social strata may persist even if the inequality of educational opportunities has ostensibly
declined in nominal terms. In essence, whether education is perceived as a positional
(relative) or nominal (absolute) good holds significant ramifications for understanding
temporal trends in inequality in educational opportunity. Recent studies have examined
intergenerational educational mobility, considering education as a positional good that
captures the effect of educational expansion. Rotman et al. [24] present evidence suggest-
ing divergent conclusions in Israel regarding trends in educational stratification between
relative and absolute measures. The analysis of nominal education and years of schooling
suggests consistent or decreased educational inequality, while positional measures show
an increase in educational disparity. Fujihara and Ishida’s [25] research in Japan reveals
differing trends in educational inequality based on whether education is measured in
relative or absolute terms. Using absolute measures, they note a reduced disparity between
respondents with fathers of different educational levels. However, with relative measures,
they observe a widening gap between respondents from distinct paternal education back-
grounds. Both studies consider position in the educational distribution or economic returns
for their assessments. Triventi et al. [26] present a consistent trend of declining educational
inequality in Italy, irrespective of the measurement—absolute or relative—used for ed-
ucation. Unlike studies in Britain, Israel, and Japan, their findings indicate a consistent
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decrease in educational disparity over time. While their measures of relative education
differ from those of other studies, the overarching theme of assessing education in relative
terms sparks inquiry into the differing trends among these countries. Moreover, Di Stasio
et al. [27] analyse education as a positional good, contrasting country contexts to identify
where education holds positional value. They find that strong vocational systems relate
to lower overeducation instances, suggesting reduced positional value in these settings.
Their study categorises countries based on overeducation and its returns, connecting these
groupings to various models of the education–occupation relationship.

The present study aims to investigate both nominal (absolute) and relative (positional)
patterns of intergenerational educational mobility in Europe by analysing transitions across
the educational levels of respondents and their parents in Europe using raw data drawn
from the European Social Survey (ESS) from the year 2002 and onwards. The objective
is to reveal challenges faced by particular social strata in progressing upward within the
educational framework using and comparing both nominal and positional methods. To our
knowledge, this is the first attempt to incorporate positionality in the estimation process of
the transition probabilities. To validate the proposed methodology for measuring mobility,
we compare the correlations of upward probability measures, both nominal and positional,
with the Educational Expansion Index (EEI) used in Araki [28]. Correlation coefficients are
examined, and the positional approach is identified as superior, as it consistently exhibits
higher correlations for all years.

The paper is outlined as follows. Section 2 reveals all the necessary information
concerning the proposed methodology and the ESS data that are utilised in order to
estimate intergenerational educational mobility in absolute and relative terms. Section 3
presents the measurement results of intergenerational educational mobility, nominal and
positional, and the validation tests performed. Section 4 gives the conclusions of the study
and provides the reader with a discussion concerning the comparison of absolute and
positional intergenerational mobility and aspects of future work.

2. Materials and Methods

In the present analysis, data were drawn from the European Social Survey (ESS), a
survey spanning over 40 countries since 2002, designed to track European public attitudes
and values and furnish European social and attitudinal indicators. The data was analysed
using IBM SPSS Statistics, Version 28.0. (IBM Corp, Armonk, NY, USA). The present
study measures nominal and positional intergenerational educational mobility in Europe,
making use of 5 rounds of ESS spanning a period of over 16 years (i.e., ESS1, ESS3, ESS5,
ESS7, ESS9). To ensure comparability, the work specifically includes European countries
that have participated in all rounds of the ESS, i.e., Belgium, Finland, France, Germany,
Hungary, Ireland, the Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland,
Slovenia, and the UK. Due to the different data collection methods used in ESS10 (face-to-
face interviews, self-completion questionnaire), the variable of parental education was not
measured; consequently, the most recent trends of mobility are not included in this analysis.
The study also aims to provide aggregated measures for these European countries.

Table 1 presents the socio-demographic characteristics of the respondents per round.
The realised sample sizes and basic socio-demographic characteristics of the samples are
presented in Table 1. As shown, most of the respondents for all the countries under
investigation were women, with a mean age from 41.90 (Ireland, ESS1) to 49.14 (Portugal,
ESS7) years, at least 39.03% (Ireland, ESS5) to 61.36% (Sweden, ESS3) were in a paid job,
while the percentage for participants in education, as the main activity within the last seven
days, ranged from 7.46% (UK, ESS1) to 15.33% (Slovenia, ESS1).
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Within the ESS, cross-national educational attainment variables for both parents and
individuals were generated from country-specific variables in order to be standardised and
to align with the latest International Standard Classification of Education (ISCED11). (The
production of the generated harmonised educational variable is particularly dependent
on the availability of sufficiently detailed country-specific education variables. For rounds
ESS 5–9, the 7-category variable “es-isced” is used in the analysis for both respondents and
parents. For rounds ESS 1–4, the same variable has not been produced for all parents and/or
for all countries. Thus, for these rounds, we used the previous harmonised 5-category
variable “edulvlva” in order to classify both respondents and parents into the educational
categories). To facilitate the analysis, educational attainment was transformed into three
educational categories using the transformation utilised by EUROSTAT, i.e., ISCED levels
0–2 = Low, ISCED levels 3–4 = Medium, and ISCED levels 5–8 = High. For parents, the
maximum educational level was taken into consideration for the analysis, assuming that
the highest educational level between parents will positively affect children’s educational
attainments. Because of the lack of a harmonised variable for the highest level of education
for specific counties in the datasets of ESS1 and ESS7, we do not display results for Norway
(2002) and for Hungary (2014). Table 2 outlines the ISCED levels and the categorisation to
three educational levels, indicated by the color shading of the cells.

Table 2. ISCED levels and educational categories.

ISCED Levels Description Recoded Educational Levels

ISCED level 0 Early childhood education (Primary education not completed)
LowISCED level 1 Less than lower secondary

ISCED level 2 Lower secondary
ISCED level 3 Lower tier upper secondary/Upper tier upper secondary
ISCED level 4 Advanced vocational, sub-degree Medium

ISCED level 5 Short-cycle tertiary education (lower tertiary education)

HighISCED level 6 Bachelor’s degree or equivalent
ISCED level 7 Master’s degree or equivalent
ISCED level 8 PhD degree or equivalent

Data weighting was performed using analysis weight (anweight). This specific weight
is suitable for all types of analysis as it corrects for differential selection probabilities
within each country as specified by sample design, for nonresponse, for noncoverage, and
for sampling error related to the four post-stratification variables and takes into account
differences in population size across countries (https://www.europeansocialsurvey.org/
methodology/ess-methodology/data-processing-and-archiving/weighting, accessed on
10 November 2023).

Using raw data drawn from the ESS, we first measure intergenerational educational
mobility in absolute terms, using the same educational levels both for parents and offspring.
We define parental education as the educational level of either the father or the mother,
based on the higher educational attainment between them. We employ Markov stochastic
models to quantify educational mobility across various European countries. A Markov
stochastic model describes a dynamic population system that evolves over time according to
probability laws [29]. The Markov property is used in the sense that each state depends only
on the previous one in time. In our case, a state represents the educational level of parents
and individuals at a given time t. In more detail, we begin by stratifying the population into
distinct categories according to their educational status. Let S = {1, 2, . . . , k} be the state
space of the proposed closed model (in our case k = 3), where no members enter or leave the
system. For each t, we estimate the transition probability matrices, the elements of which
depict the transitions occurring between educational states and across generations. Each
element pij(t), ∀i, j = 1, 2, 3 of the matrix P(t) describes the probability of an individual
to move from state i (parental educational level) to state j (individual’s educational level).
The off-diagonal elements of the P(t) matrix signify the shifts or movements of individuals,
while pii indicates the probability of individuals remaining static over time in relation to
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their parental educational status (see also [15,16]). The above model describes a closed Non-
Homogeneous Markov System, since our transition probabilities are estimated for each
time step t. For a comprehensive description of the theoretical background of the Markov
systems, see [29–37]. Figure 1 provides a graphical representation of the proposed model.

Figure 1. Transition diagram of the proposed closed Markov system.

Based on the transition probabilities of each transition matrix, mobility measures are
estimated for the selected years of the ESS data for each country. Hence, we calculate
indices for upward and downward mobility, as well as the immobility index [38,39] and
the Prais–Shorrocks index [40,41]. Equations (1)–(4) give the mathematical expressions of
the computed indices:

MPS(t) =
(

1
k − 1

)
(k − tr(P(t))) (1)

IM(t) =
tr(P(t))

k
(2)

UM(t) =
1
k ∑

j>i
pij(t) (3)

DM(t) =
1
k ∑

j<i
pij(t) (4)

Shifting from an absolute to a relative perspective in the evaluation of educational
attainment presents a notable challenge since “there is no obvious ‘one best way’ of pro-
ducing a relative measure” [42]. We aim to incorporate positionality into the measurement
of transition probabilities following the subsequent methodology.

The proposed method is comparable to that implemented by Triventi et al. [26] for
calculating the cumulative advantage associated with each educational level. To understand
how positionality has influenced educational attainment, we estimated the proportions
of individuals at all educational levels using EUROSTAT’s data available for the last two
decades and the classification described in Table 2. A logarithmic transformation of the
proportions is equal to the Educational Competitive Advantage Score (ECAS) used in
Triventi et al. [26], which “attributes to each educational level a measure of its competitive
advantage on the basis of how many individuals attained at least that qualification in a
given year”. Rather than employing the actual ECAS for a specific year t, we opt for using
the proportions of individuals in various educational levels as weights, denoted by w1(t),
w2(t), and w3(t), to maintain the stochastic properties of the transition probability matrices.
Thus, the proportion of individuals with low, medium, and high education at the time of
the survey is treated as a set of weights reflecting the relative prevalence or importance of
each educational category in the population. The transition probabilities are then calculated
by considering not only the likelihood of moving from one educational level to another
but also by incorporating the prevalence of individuals in each category as a weight. The
weights act as a scaling factor, influencing the contribution of each educational category to
the overall transition probabilities, and serve as a normalisation assigned to each (absolute)
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transition probability based on the factor of competitive advantage. Thus, we applied
proportional scaling to adjust the transition probabilities based on the proportions, using
the following equation to estimate the positional transition probabilities pij(t):

ppij(t) =
wj(t)pij(t)

∑j wj(t)pij(t)
(5)

The applied weights stem from the proportional representation of individuals within
various educational tiers across distinct time frames. These adjustments accommodate the
transition probabilities, ensuring alignment with the evolving educational landscape over
recent years. Through these weights, the impact of current educational distributions on pro-
jected transitions is highlighted, preserving the overall structure of transition probabilities.
Accounting for these educational distribution shifts can substantially refine the precision of
the analysis, enabling a more accurate and positional representation of intergenerational
educational mobility.

Having estimated both nominal and positional mobility rates, we undertake cluster
analysis, an exploratory method that categorises cases with akin characteristics into clusters.
The classification of surveyed countries utilises both nominal and positional upward
mobility. Initially, the agglomerative hierarchical method determines the optimal number
of clusters that best characterises the data. Subsequently, building on the outcomes of this
approach, a K-means analysis is applied to classify the countries into the suggested distinct,
mutually exclusive clusters.

To substantiate the proposed methodology, the upward mobility scores were subjected
to correlation analysis with the Education Expansion Index (EEI) for the corresponding
years, as computed using EUROSTAT’s data. The Educational Expansion Index is defined as
the percentage of individuals aged between 15 and 64 that possess tertiary degrees [28] and
serves as a metric encompassing the comprehensive expansion of educational attainment
across a population, offering insights into alterations in educational participation and
achievement. Examining the correlation between the upward mobility scores, calculated
using both absolute and relational approaches, and the Educational Expansion Index (EEI)
facilitates an evaluation of the extent to which the proposed measure aligns with the
broader shifts in educational participation and achievement over the specified timeframe.
The expectation is that the two upward mobility scores, nominal and positional, will exhibit
a strong correlation. The preferred methodology would be the one generating a higher
correlation coefficient between the upward mobility scores and the Education Expansion
Index (EEI) for the respective years.

3. Results

3.1. Nominal/Absolute Transition Probabilities

In this section, we estimate the transition probability matrices to portray the shifts
between educational categories for both parents and respondents, encapsulating the move-
ment between the same educational stages. Table A1 in the Appendix A presents the
nominal transition probability matrices for all countries and ESS rounds, as well as the
respective mobility indices. From the results, it is obvious that individuals from low-
educated backgrounds tend to gain better education than their parents, although they have
considerably fewer chances to complete tertiary education compared to those originating
from medium- or highly educated origins. Indeed, the access to tertiary education seems
unequal between people from different educational backgrounds in the majority of the
sample, as parents’ educational profile seems to matter in all countries. However, it is
notable that the upward movements predominate over the downward mobility, while the
immobility rates decrease over time.

Figure 2 provides a more comprehensive overview of the transitions between educa-
tional categories, illustrating the percentages of individuals moving upward, downward, or
remaining in the same educational category as their parents across all surveyed countries
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from 2002 to 2018. The figure reveals variations in educational flows across countries,
with Finland and Belgium displaying a steady trend of upward movement through ESS.
Furthermore, a noticeable increase in percentages of upwardly mobile individuals over
time is detected in the majority of the countries, especially in Ireland and Slovenia, where
the values of the upward mobility index rose sharply from 2002 to 2018. Some exceptions
also exist, such as Switzerland and Hungary, where a decrease in the overall mobility is
recorded from 2002 to 2018.

(a) (b) 

Figure 2. The percentages of people who moved upward or downward or had the same education as
their parents, by country, according to the (a) ESS1 dataset and the (b) ESS9 dataset.

The values of both the Prais–Shorrocks and immobility indices validate the observed
trend from 2002 to 2018 depicted in Figure 3, showing variations between countries and
years. In particular, Norway and the Netherlands seem to be steadily the most mobile in
the sample, while Hungary, Portugal and Switzerland show higher values of immobility,
even though a notable decrease is indicated from 2002 to 2018.

Figure 3. Changes in mobility rates by country: 2002 and 2018 (nominal mobility).
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3.2. Education as a “Positional Good”: Estimating Positional Transition Probabilities

In order to estimate the positional transition probabilities, the respective weights
were estimated. Figure 4 depicts the proportions of individuals belonging to the three
educational levels based on the data provided by EUROSTAT with the use of the EU-Labour
Force Survey (EU-LFS). The depicted trend in the proportions highlights intriguing shifts
in educational categories over this period (2002–2018). The proportions of low-educated
individuals (ISCED 0–2) display a steady fall, which suggests a decline in the prevalence
of lower educational levels over time and a diminishing number of individuals with
lower educational qualifications. On the contrary, the proportions of medium-educated
individuals (ISCED 3–4) exhibit relatively modest changes, suggesting stability rather than
cumulative advantages. Meanwhile, the rising trend in the proportions of highly educated
individuals (ISCED 5–8) implies a diminishing competitive advantage associated with
higher educational levels and a decreasing prominence or influence of higher educational
qualifications over the observed period.

Since transition probability matrices need to maintain their stochastic property, we
opted for the incorporation of proportions in the weighting scheme adhering to this prin-
ciple. Using Equation (1), the respective weights presented in Figure 4, and the nominal
transition probability matrices (Table A1), the positional transition probability matrices
P(t) =

[
pij(t)

]
, ∀i, j = 1, 2, 3 were estimated for the participating countries and years.

Based on these positional transition probabilities, the upward and downward mobility
indices were reconstructed and calculated in order to be compared with the nominal results.
The rest of the mobility indices are estimated as aforementioned [38–41]. The respective
matrices are exhibited in Table A1 in the Appendix A. In general, from the results, it is
evident that concerning the transition probabilities, the relative measure of mobility is
more robust than the absolute counterpart. In particular, for the majority of the countries,
p12 takes higher values in the positional matrices compared to the nominal ones, and p11
seems to be overrated in the nominal results. Thus, shifting from a nominal to a relative
perspective, people with low educational backgrounds appear to have greater chances of
moving upwards and attaining a medium level of education. However, a reversed pattern
is detected in Spain and Portugal. Likewise, the observed mobility appears to overestimate
the chances of people from highly educated backgrounds attaining tertiary education
since transition probabilities p33 are considerably lower after the weights are applied. A
noticeable example of this trend is the case of Hungary, where p33 falls from 0.569 to 0.292
(ESS3) after the adjustment. However, Belgium and Ireland show no significant differences
between nominal and positional transition matrices.

Figure A1 presents the differences in upward mobility indices before and after the
adjustment. As shown, in all countries (except Germany), this difference between nominal
and positional results takes positive values, which indicates that the nominal measure
seems to exaggerate the upward movements compared to each relative measure. Between
the countries, the Netherlands and France show greater differences when nominal and
positional upward rates are compared, while the results for Switzerland, Norway and UK
show no significant variations between the rates. On the other hand, smaller differences
are observed for the case of the Prais–Shorrocks and immobility indices, in the comparison
of nominal and positional mobility (Figure A2). This trend might be attributed to the fact
that both MPS and IM have been constructed based on the chances of people moving
upwards or downwards in the social space and not on the actual flows, and for that reason,
it better reflects the relative mobility. However, Poland, Hungary, and Slovenia seem to be
exceptions to this trend, as the difference in MPS takes significant higher values for these
countries. Also, an interesting trend was detected for Portugal, where the difference in
mobility rates decreased over time, reaching convergence, probably because of the changes
that occurred in the participation of Portuguese in the different levels of education through
the years 2002–2018 (as shown also in Figure 3).
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Figure 4. Country-wise distribution of proportions in educational attainment levels, 2002–2020
(EUROSTAT, based on the EU-LFS data).
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3.3. Validation

To validate the proposed methodology, the upward mobility scores underwent corre-
lation analysis, with the Education Expansion Index (EEI) calculated using EUROSTAT’s
data for the corresponding years. Evaluating the correlation between the upward mobility
scores, computed through both nominal and positional approaches, and the Educational
Expansion Index (EEI) enables an assessment of the alignment of the proposed measure
with broader shifts in educational participation and achievement over the specified period.
Table 3 presents Pearson’s correlation coefficient between nominal and positional upward
mobility, and Table 4 shows the respective correlations among nominal and positional
upward mobility and EEI for the respective year. The two upward mobility indices exhibit
a strong correlation, as anticipated. Notably, positional upward mobility demonstrates
a higher correlation with EEI, indicating a better alignment with the broader trends in
educational participation and achievement.

Table 3. Pearson’s correlations coefficients among nominal upward mobility UPN and positional
upward mobility UPP per ESS round.

ESS 1 ESS 3 ESS 5 ESS 7 ESS 9

r = 0.650 **, p = 0.006 r = 0.715 **, p = 0.003 r = 0.604 *, p = 0.013 r = 0.599 *, p = 0.018 r = 0.846 **, p < 0.001

** Correlation significant at the 0.001 level. * Correlation significant at the 0.05 level.

Table 4. Pearson’s correlations coefficients among nominal upward mobility UPN , positional upward
mobility UPP and the respective Educational Expansion Index (EEI) per ESS round.

ESS 1 ESS 3 ESS 5 ESS 7 ESS 9

UPN × EEI r = 0.373 r = 0.580 * r = 0.593 * r = 0.516 * r = 0.718 **
UPP × EEI r = 0.521 * r = 0.707 ** r = 0.604 * r = 0.697 ** r = 0.773 **

** Correlation significant at the 0.001 level. * Correlation significant at the 0.05 level.

To enhance the credibility of the proposed methodology, we conducted a cluster
analysis utilising both hierarchical clustering and the K-means method and using both
absolute and positional upward mobility scores across countries. Presented here are the
findings from the most recent ESS data. The hierarchical process identified four clusters
of counties when considering both nominal and positional upward mobility rates. This
aligns with the welfare regime typology observed in European countries to a great extent.
Specifically, based on the latest ESS data, the resulting clusters are as follows: Cluster 1
includes Belgium, Switzerland, Spain, France, and Slovenia; Cluster 2 comprises Germany
and Hungary; Cluster 3 encompasses Finland, Norway, Ireland, Netherlands, Poland,
Sweden, and the UK; and Cluster 4 consists of Portugal, a standalone cluster, distinguished
by its exceptionally low values of the variables in comparison to the others (Figure 5).

The simulation conducted for both upward positional mobility scores and absolute
scores stands as a robust validation of the theoretical framework outlined in the paper. The
variables used were the educational levels of the father, mother, and respondent, and the
simulation spanned across the examined year, 2018. The simulation was conducted for the
selected countries—Ireland, Belgium, Germany, and Portugal—which emerged as repre-
sentatives of distinct clusters through prior clustering analysis. By aligning the simulated
outcomes with our theoretical predictions, this comprehensive approach provides evidence
of the consistency and applicability of the proposed model. The convergence of theoretical
insights with simulated results in these representative countries enhances the credibility
of the findings, emphasising the robustness of the approach in capturing the nuances of
upward mobility dynamics.
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Figure 5. Clusters of countries based on nominal and positional upward mobility, ESS, 2018.

4. Discussion

The present section interprets the presented results and provides insights into the
patterns of intergenerational educational mobility, considering both nominal and positional
perspectives. The aim was to examine the relationship between parental and individuals’
educational outcome in relative terms in order to better understand the influence of educa-
tion across generations. In this context, the proposed methodology is based on the concept
of positionality, where the educational expansion and the rising accessibility of educational
qualifications are taken into account. It is assumed that this novel additional element
in the measurement of mobility would produce a more reliable picture of educational
inequalities. In order to explore this hypothesis, raw data were drawn from the European
Social Survey for the 15 participated in all rounds of the surveyed countries to capture
trends in educational transitions from 2002 to 2018.

The analysis of nominal transition probability matrices reveals distinct tendencies
in educational mobility across European countries. More specifically, individuals from
lower-educated backgrounds show a propensity to attain higher education than their
parents, although access to tertiary education appears unequal. As upward mobility
surpasses downward movements, a decline in immobility rates over time suggests a
notable enhancement in educational opportunities. This trend signifies a propensity for
individuals to progressively distance themselves from their parents’ educational level.
Notable exceptions, such as Switzerland and Hungary, exhibit a decrease in overall mobility.
The examination of specific countries, including Finland and Belgium, underscores diverse
trends in upward mobility.

The novel approach of incorporating positionality in transition probabilities enhances
the understanding of mobility patterns. Weighted positional matrices demonstrate the
robustness of relative measures compared to absolute ones. Low-educated individuals
exhibit greater chances for upward mobility, challenging conventional findings. However,
Spain and Portugal deviate from this trend. Discrepancies in the likelihood of highly
educated individuals attaining tertiary education emerge after adjustment, exemplified by
Hungary’s notable shift.
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To validate the proposed methodology, correlations between upward mobility indices
and the Educational Expansion Index (EEI) were examined. The positional approach
exhibits stronger alignment with broader trends in educational participation and achieve-
ment, as indicated by higher correlations with EEI for all examined ESS rounds. Differences
between nominal and positional measures vary across countries, emphasising the need for
a nuanced understanding of mobility patterns.

Apparently, the observed trends hold implications for policymakers and researchers.
Acknowledging education as a positional good necessitates tailored policy interventions
to address relative mobility. Future research should investigate the subtle dynamics driv-
ing educational shifts, considering socio-economic, cultural, and policy-related factors.
Furthermore, longitudinal analyses can offer a more profound insight into the changing
patterns of mobility, complementing the aforementioned findings with new results deriving
from the intermediate ESS rounds (e.g., ESS round 2). The presented findings contribute
to the discourse on intergenerational educational mobility, offering valuable insights for
policymakers, aiming to foster equitable educational opportunities.
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Figure A2. The differences in MPS and IM between nominal and positional mobility by country and
ESS round (ESS1, ESS3, ESS5, ESS7, ESS9).
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Abstract: When studying Markov chain models and semi-Markov chain models, it is useful to know
which state vectors n, where each component ni represents the number of entities in the state Si, can be
maintained or attained. This question leads to the definitions of maintainability and attainability for
(time-homogeneous) Markov chain models. Recently, the definition of maintainability was extended
to the concept of state reunion maintainability (SR-maintainability) for semi-Markov chains. Within
the framework of semi-Markov chains, the states are subdivided further into seniority-based states.
State reunion maintainability assesses the maintainability of the distribution across states. Following
this idea, we introduce the concept of state reunion attainability, which encompasses the potential of a
system to attain a specific distribution across the states after uniting the seniority-based states into the
underlying states. In this paper, we start by extending the concept of attainability for constant-sized
Markov chain models to systems that are subject to growth or contraction. Afterwards, we introduce
the concepts of attainability and state reunion attainability for semi-Markov chain models, using
SR-maintainability as a starting point. The attainable region, as well as the state reunion attainable
region, are described as the convex hull of their respective vertices, and properties of these regions
are investigated.

Keywords: semi-Markov model; Markov model; attainability; maintainability; state reunion;
manpower planning

MSC: 60K15; 91D35; 60J20

1. Introduction

The notion of attainability first took root in the context of manpower planning [1,2].
While it is possible to study attainability in any (semi-)Markov chain model that allows
for inflow, outflow, and internal transitions, our discussion will conform to the established
norms and use the language typically linked to the context of manpower planning. In a
Markov model, the system’s states represent homogeneous groups that are characterised
by intra-group homogeneity with similar likelihoods of transitioning from one state to
another. For more context regarding population models and Markov chains we refer the
reader to [3,4].

In this domain, the system’s states are often aligned with hierarchical levels in the
organisation, which we call the “organisational states”. Let us denote the organisational
states as S = {S1, . . . , Sl}. The distribution of personnel across these states is captured by
a vector s = (si), which we call the personnel structure. The central question in control
theory within this context is whether a desired distribution of personnel across these states
can be sustained (maintainability) or attained (attainability) through strategic adjustments
to manageable parameters. When investigating maintainability and attainability, one has
to start by precisely defining what should be maintained or attained and how this can be
accomplished. Note, however, that the concepts of maintainability and attainability can be
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used for every discrete-time Markov process that allows for leaving the system, for entering
the system, and for making transitions within the system.

Regarding the means of control, control theory typically considers three primary types
of personnel movements, as outlined in [5]: wastage, internal transitions, and recruitment.
An employee in the organisation at time t is either still in one of the organisational states or
has left the organisation through wastage at time t + 1. The wastage probability from state
Si is denoted as wi, and the wastage probabilities are gathered in the wastage vector w.
Internal transitions account for movements within the organisation, such as promotions or
demotions, and are represented by a transition matrix PI . Recruitment reflects the process
of recruiting new members into the organisation, with a recruitment vector r. In this paper,
only systems with a finite number of states are considered.

The field of control theory is well established and has a significant history within
the engineering domain, as highlighted in [6,7], among others, while the foundations for
control theory in Markov models were first explored in the context of manpower planning
in [5,8–11].

While there are three main approaches to influencing the personnel structure within
organisations, recruitment control is often preferred. Controlling through recruitment is
viewed as a more ethical alternative compared to using wastage, which involves dismissing
employees and can negatively affect morale and job satisfaction. Adjusting promotion and
demotion rates can also lead to dissatisfaction, particularly among those who perceive it as a
hindrance to their career advancement [12]. Such adjustments may also result in promoting
underqualified individuals or demoting competent ones. Therefore, recruitment control is
generally favoured as it avoids immediate negative impacts on existing employees, as was
already discussed in Bartholomew’s work [5].

Investigations into attainable configurations under different Markov system conditions
have been conducted by a number of researchers, including continuous-time Markov
chains [13] and non-homogeneous Markov chains [14–16].

However, variations in control methods have been explored in the literature, including
the concept of pressure in states introduced by [17] and restricted recruitment as discussed
in [18]. Control theory in the context of semi-Markov processes has received limited
attention. The concepts of attainability and maintainability in non-homogeneous semi-
Markov chains, particularly through maintaining the number of members in each seniority
class within an organisational state, was first examined by [19], where Vassiliou and
Papadopoulou extended the concept of maintainability by imposing that the number of
members is maintained for each seniority class within an organisational state. Recently,
a new concept of maintainability was developed for semi-Markov chains [20], namely state
reunion maintainability (SR-maintainability), where the number of members is maintained
for each organisational state. Building upon this foundation, our work introduces the
parallel concept of state reunion attainability, wherein we explore the possibility of reaching
a specified distribution of members across organisational states.

The definition of SR-maintainability will be our starting point to discuss attainability
in the setting of time-homogeneous semi-Markov chains, as maintainability and attain-
ability go hand in hand. In practical scenarios, the goal may involve initially achieving a
specific personnel structure and subsequently ensuring its sustainability over time using
consistent control mechanisms. Alternatively, starting from an already maintainable per-
sonnel structure, the objective might shift towards transforming this stable configuration
to achieve a different, desired personnel structure, all while employing adaptive control
strategies to navigate the complexities of such a transition. These processes necessitate a
thorough understanding of how control strategies can be effectively applied to first reach
the desired state distribution and then to preserve it. The dual focus on attainability and
maintainability underscores the importance of strategic planning in managing population
dynamics, where the initial phase of reaching an optimal structure is seamlessly followed
by efforts to maintain that structure through careful control and management practices.
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In Section 3 we first review the concept of attainability for Markov chains and extend
this work to systems with a growth factor 1 + α, where the parameter α signifies the rate of
change in the size of the system over time. When α is negative, this indicates a contraction
in the system size, i.e., a decline of the number of people in the system. Conversely, when α
is positive, the system expands over time. Thereafter, in Section 4, we introduce and study
attainability as well as state reunion attainability for semi-Markov chains starting from the
concept of SR-maintainability for semi-Markov chains. We show that a general approach
to state reunion attainability, where a structure is said to be state reunion attainable if there
exists an arbitrary initial structure from which it can be attained, is not appropriate and
introduce the concept of (n-step) state reunion attainability starting from a subset S of
structures. We provide a method to determine the associated region of attainable structures
and illustrate these results.

2. Time-Homogeneous Markov Chain and Semi-Markov Chain Models

In this section, we provide fundamental concepts and notations that are common in
previous studies on Markov and semi-Markov chain models [3,4].

For a Markov chain model with states S1, . . . , Sl :

• Let PI ∈ Rl×l denote the internal transition matrix, where the ijth element PI
ij repre-

sents the probability of transitioning from state Si to state Sj within one time unit.
• The vector w = (wi) ∈ Rl captures the wastage probabilities for each state, where wi

is the probability of an entity leaving the system from state Si within one time unit.
• The recruitment vector r = (ri) ∈ Rl gathers the probabilities ri of entering the system

into state Si.

Let us further introduce Δk−1 as the (k − 1)-probability simplex, i.e., the set of all
vectors x ∈ Rk where xi ≥ 0 for all i, and ∑k

i=1 xi = 1. This set represents the space of
all possible population structures in a k-state system. In this paper, we will be primarily
interested in Δl−1.

Population structures at times t and t + 1 are represented by vectors s(t) and s(t + 1),
respectively, where s(t), s(t + 1) ∈ Δl−1. These vectors describe the distribution of entities
across l states at specific time points.

Then, the evolution of the population structure in a constant-sized Markov chain from
time t to t + 1 is described by the following equation:

s(t + 1) = s(t)(PI + w′r)

where the notation w′ refers to the transpose of the row vector w.
A population structure s ∈ Δl−1 is said to be attainable with respect to a constant-

sized Markov process defined by the internal transition matrix PI if there exists a structure
y ∈ Δl−1 such that s can be achieved from y in one step using control by recruitment,
formally stated as follows:

∃ y, r ∈ Δl−1 : s = y(PI + w′r)

Semi-Markov chain models are extensions of Markov chain models that can take
into account the duration of stay in the states. Define Jn as the state following the nth
transition and Tn as the time at which the nth transition occurs in a semi-Markov process.
The semi-Markov kernel q is then given by the following [21]:

qij(k) = Pr(Jn+1 = Sj, Tn+1 − Tn = k|Jn = Si)

where qij(k) represents the probability that the process transitions from state Si to state Sj
after exactly k time units. The semi-Markov kernel q can be used to obtain the sequence of
transition matrices {P(k)}k in the following way:
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Theorem 1 ([22]). For all k such that ∑h∈S ∑k−1
m=0 qih(m) �= 1, we have the following:

Pij(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qij(k)

1 − ∑h∈S ∑k−1
m=0 qih(m)

if i �= j

1 − ∑i �=j
qij(k)

1 − ∑h∈S ∑k−1
m=0 qih(m)

if i = j

Let K denote the maximum seniority level considered within the system. The sequence
of matrices {P(k)}K

k=0, with each P(k) ∈ Rl×l , is derived from the semi-Markov kernel
q. Here, P(k) specifically represents the transition probabilities for entities with state
seniority k.

3. Attainability for Markov Chains

3.1. Attainability for Constant-Sized Markov Systems

When examining attainability, one needs to clarify three things: a starting structure,
the means to attain a certain structure, and an optional time limit to attain the desired struc-
ture. Regarding the means to attain a certain structure, we assume that the system is under
control by recruitment. The starting point and the optional time limit will be discussed in
the next sections. Bartholomew [5] defined the concept of attainability as follows:

Definition 1 ([5]). A structure s is called attainable with respect to a constant-sized Markov
process defined by PI if there exists a structure y such that s is reachable from y in one step using
control by recruitment.

The attainable region, which we will denote as A RM, was characterised for a constant-
sized system as well [5]. We restate the theorem and formulate a slightly different proof,
which will be the basis of the remainder of the results, where we will write ei for the
standard basis vectors in Rl .

Theorem 2 ([5]). The attainable region for a constant-sized Markov system, A RM, is the convex
hull of the vectors {eiP

I + wiej}i,j, i.e., the following is true:

A RM = conv{eiP
I + wiej}i,j

Proof. Suppose that a is an arbitrary attainable structure. This implies that there exist
probability vectors y = ∑l

i=1 yiei and r = ∑l
j=1 rjej such that the following is true:

a = y(PI + w′r)

Rewriting this equation, we obtain the following equalities:

a =y(PI + w′r)

=
( l

∑
i=1

yiei

)
(PI + w′r)

=
l

∑
i=1

yi

(
eiP

I + (ei · w)r
)

=
l

∑
i=1

yi

(
eiP

I + wi

( l

∑
j=1

rjej

))

=
l

∑
i=1

yi

( l

∑
j=1

rj

(
= eiP

I + wiej

))
(1)
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where we use ei · w as the notation for the scalar product of ei and w. We conclude
that a ∈ conv{eiP

I + wiej}i,j. Note that the reverse inclusion is trivial, as every convex
combination of vectors of the set {eiP

I + wiej}i,j can be rewritten in the form y(PI + w′r),
where y and r are probability vectors.

This region can be useful as we know for certain that the points that belong to the
complement of A RM are definitely not attainable, no matter what the starting point y is.
One can also define the concept of attainability starting from a set of structures S .

Definition 2 (n-step attainability from S ). A structure s is called n-step attainable from S
with respect to a constant-sized Markov process defined by PI if there exists a structure y ∈ S such
that s is reachable from y in n steps using control by recruitment.

Since Equation (1) can be rewritten as ∑l
j=1 rj

(
yPI + (y · w)ej

)
, the following lemma

holds:

Lemma 1. If S = {v}, it follows that, for a constant-sized Markov process defined by PI , the one-
step attainable region from S is given by the following:

A R1,S
M = conv{vPI + (v · w)ej}j

Lemma 1 can be used to determine, in a straightforward way, the attainable region for
a finite set S . If the set S is a convex set, the same technique yields the following:

Lemma 2. If the starting region S is a convex set with vertices {v1, v2, . . . , vk}, it follows that,
for a constant-sized Markov process defined by PI , the one-step attainable region from S is given
by the following:

A R1,S
M = conv{viP

I + (vi · w)ej}i,j

To obtain A Rn,S
M , one could calculate A R1,S

M and use this as the new starting region
to calculate A R2,S

M , and by iteratively following this procedure, one can obtain the desired
A Rn,S

M .

3.2. Attainability for Markov Systems Subject to Growth and Contraction

In his doctoral dissertation [3], Bartholomew suggested the extension of these findings
to organisations that experience growth or contraction. This research gap will be addressed
in this section.

The evolution of the total size of a system that is subject to growth or contraction can
be described by the following:

N(t + 1) = (1 + α)N(t)

where N(t) corresponds to the total number of people in the organisational states at time
t, and the parameter α refers to the rate of change in the size of the system over time.
When α is negative, this indicates a contraction in the system size; conversely, when α is
positive, this signifies growth. Note that in the case of growth or contraction, starting from
a personnel structure y(t) at time t, y(t + 1) is given by the following

y(t + 1) = y(t)PI
M + r+(t)

where the additive recruitment vector r+(t) is chosen such that the sum of the components
of y(t + 1) equals 1 + α instead of 1. So, when talking about the structures, we need to
normalise with respect to the L1 norm and consider y(t+1)

||y(t+1)||1 . Observe that the vector r+(t)
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should not be confused with the classical recruitment vector r(t), which is a probability
vector that corresponds to r+(t)

||r+(t)||1 .
Now, note that the maximal amount of contraction is limited by maxi wi, as being part

of the wastage vector is the only way to leave the system, i.e., α ≥ −maxi wi. Furthermore,
note that the procedure sketched in the proof of Theorem 2 is rooted in the fact that the
vectors of the form eiP

I have to be supplemented to achieve the desired vector, which has
to sum to 1, as a constant-sized system is considered in Theorem 2. As long as wi ≥ −α
holds for all i, the same reasoning can be repeated, i.e., we need to supplement the vectors
eiP

I to achieve the desired vector, of which the elements have to sum to 1 + α. This
immediately yields the following:

Theorem 3. The attainable region for a Markov system with growth factor 1 + α, where wi ≥ −α
for all i, A RM(1 + α), is the convex hull of the vectors {eiP

I + (wi + α)ej}i,j, i.e., the following
is true:

A RM(1 + α) = conv{eiP
I + (wi + α)ej}i,j (2)

This result covers the case of a growing system, as α > 0 implies that wi ≥ −α.
However, this result does not indicate how to compute the attainable region for contracting
systems with wi < −α for some i. In the latter case, the sums of the components of some
of the vectors of the form eiP

I are simply too big, i.e., their L1 norm exceeds (1 + α);
therefore, they cannot be used as building blocks of the attainable region. Now, suppose
that there exist just one i for which wi < −α. For all j �= i, we can still supplement ejP

I

with the [(wj + α)el]l to take into account all of the attainable convex combinations where
ejP

I contributes with a non-zero coefficient. But, for eiP
I , it is impossible to do this, as

‖eiP
I‖1 > (1 + α). Simply discarding eiP

I is no option either, as there might still exist
convex combinations of eiP

I with the ejP
I that do result in attainable structures. To resolve

this problem, we should simply take into account these convex combinations. If we write

{β0eiP
I + ∑

i �=j
β jejP

I}β :=

{β0eiP
I + ∑

i �=j
β jejP

I | ∑
s

βs = 1; ∀s : 0 ≤ βs ≤ 1, β0 �= 0, with

||β0eiP
I + ∑

i �=j
β jejP

I ||1 = (1 + α)}

we can use this result to state the following theorem, which includes growth as well as
contraction:

Theorem 4. The attainable region for a Markov system with growth factor 1 + α, A RM(1 + α),
is the convex hull of the vectors {eiP

I∗}i, where

eiP
I∗ =

{
{eiP

I + (wi + α)ej}j, if wi ≥ −α,
{β0eiP

I + ∑i �=j β jejP
I}β, if wi < −α.

With the use of Theorem 4, one can easily generalise Lemmas 1 and 2 to systems with
growth factor 1 + α.

Although this definition can be used for general starting regions S , we argue that it
can often be useful in practice to use the maintainability region MRM as a starting region,
as a maintainable structure might already be in place within the company, or a company
could be actively working towards such a structure. Furthermore, the maintainable region
is the a priori smallest known state reunion attainable set, regardless of the starting position.
Note that in this case, A Rn−1,S

M ⊂ A Rn,S
M .
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4. SR-Maintainability and SR-Attainability for Semi-Markov Chains

4.1. State Re-Union Maintainability

In order to study the attainability of a semi-Markov chain, we need to incorporate all of
the information in the matrices P(k) into one matrix PSM that characterises the semi-Markov
(SM) model. This involves segregating the states S by their levels of organisational state
seniority, with PSM serving as the transition matrix for these seniority-based disaggregated
states. This leads to Definitions 3 and 4, which were initially developed to facilitate the
study of maintainability for semi-Markov chains [20]. Suppose we have l organisational
states and one state that corresponds to leaving the system, which is called the wastage
state. If the sequence {P(k)}k is of length K + 1, we define the following:

Definition 3. The set of seniority-based states is given by

SSB = {Sa(b) | 0 ≤ a ≤ K and 1 ≤ b ≤ l}

where the state Sa(b) corresponds to the staff in organisational state b that has organisational state
seniority equal to a.

Definition 4. For 0 ≤ k ≤ K, the elements of PSM are equal to the following:

(PSM)ij = 0 for i − 1 �≡K+1 k

and, if i − 1 ≡K+1 k, then the following is true:

(PSM)ij =

⎧⎨⎩ P(k)� i
K+1 �,� i

K+1 � if � i
K+1� = � j

K+1� and (j − 1 − i) ≡K+1 0

P(k)� i
K+1 �,� j

K+1 �
if � i

K+1� �= � j
K+1� and (j − 1) ≡K+1 0

If we redefine the state set, we can view this matrix PSM as the transition matrix
with state space SSB. In this way, all of the information regarding transitions is stored
in one matrix PSM, which can be used to elegantly state the definitions of state reunion
maintainability and attainability. By writing the state vector at time t as nSB(t) and the
non-normalised recruitment vector, which entails the absolute recruitment counts, at time t
as r+SB(t), we obtain the following equations that describe the evolution of the stock vector
for a system with a growth factor 1 + α:

nSB(t + 1) = nSB(t)PSM + r+SB(t)

N(t + 1) = (1 + α)N(t)

The concepts of state reunion maintainability as well as state reunion attainability can
be stated by the use of a reunion matrix U, which encodes the specific seniority-based states
that are to be fused.

Definition 5. For a transition matrix PSM with state space SSB, a (K + 1)l × l matrix U = (Uij)

is called the reunion matrix if each of its l columns
[
U
]

j consists of K + 1 ones through the following:

Uij =

{
1 if (j − 1)(K + 1) ≤ i ≤ j(K + 1)
0 else

We can now restate the concept of state reunion maintainability.

Definition 6 (State reunion maintainability [20]). A structure s is called state reunion main-
tainable (SR-maintainable) for a system with growth factor 1 + α under control by recruitment if
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there exists a path of seniority-based stock vectors (nSB(t))t and if a sequence of recruitment vectors
(r+SB(t))t can be chosen such that for every t ∈ N, the following is true:

nSB(t + 1) = nSB(t)PSM + r+SB(t) (3)

(1 + α)nSB(t)U = nSB(t + 1)U (4)

s =
nSB(t)U

||nSB(t)U||1 (5)

A sequence of seniority-based stock vectors (nSB(t))t that satisfies Equations (3)–(5) will be called
a seniority-based path associated to the SR-maintainable personnel structure s.

4.2. Attainability for Semi-Markov Chains

For semi-Markov chains, we follow a similar approach as the one in Section 3. This
would yield the following definition for attainability:

Definition 7. A structure sSB is called attainable with respect to a semi-Markov process defined
by PSM if there exists a structure ySB such that sSB is reachable from ySB in one step using control
by recruitment.

Remark 1. As recruitment is only allowed in the seniority-based states with state seniority zero,
most of the components of rSB are zero.

However, in the context of real-world applications, it might often be deemed less
restrictive and more efficacious to focus on preserving the proportions in the organisational
states instead, as is the case for state reunion maintainability.

4.3. State Re-Union Attainability

A natural way to define state reunion attainability would be the following.

Definition 8 (General state reunion attainability). A structure s = sSBU is called state reunion
attainable with respect to a semi-Markov process defined by PSM if there exists a structure ySB such
that sSB is reachable from ySB in one step using control by recruitment.

Yet, it turns out that this approach is not informative with regard to state reunion
attainability:

Lemma 3. All structures s = sSBU ∈ Δl−1 are state reunion attainable for every semi-Markov
process defined by PSM.

Proof. For the structure ySB with all the personnel in one of the SK(b) states at time t, we
know that none of these people will be in an internal state at time t + 1, i.e., the stock
vector at time t + 1 will be completely determined by the recruitment vector rSB, which
implies that under control by recruitment, each structure s = sSBU would be attainable in
this way.

A more suitable definition of state reunion attainability would be the n-step state
reunion attainability, starting from a set S .

Definition 9 (n-step state reunion attainability from S ). A structure s = sSBU is called
n-step state reunion attainable from S with respect to a semi-Markov process defined by PSM if
there exists a structure ySB ∈ S such that sSB is reachable from ySB in n steps using control
by recruitment.
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We will denote, for a system subject to a growth factor of (1 + α), the n-step attain-
able set starting from S and the n-step state reunion attainable set starting from S as
A Rn,S

SM (1 + α) and A Rn,S
SM (1 + α) · U, respectively.

Remark 2. Definition 9 is a generalisation of Definition 8 in the sense that they coincide for n = 1
with S = Δl−1.

To calculate the n-step state reunion attainable structures in practice, one could use
the same technique as in the proof of Theorem 2. Furthermore, this technique also yields
the following results:

Lemma 4. If S = {v}, it follows that the one-step state reunion attainable region from S for a
semi-Markov process with growth factor (1 + α) defined by PSM is given by the following:

A R1,S
SM (1 + α) · U = conv{vPSM + (v · wSB + α)ej}j|S0(b)

· U

Remark 3. Note that A R1,S
SM (1 + α) · U is empty if v · wSB < −α and that only the ej are

considered that correspond to states with zero seniority, as these are the only states were recruitment
can take place. We denote this restriction on the index j as j|S0(b)

.

Lemma 4 can be used to determine the attainable region for a finite set S = {v1, v2, . . . , vk}.
We will first introduce the following notation:

{β0viPSM + ∑
i �=j

β jvjPSM}β :=

{β0viPSM + ∑
i �=j

β jvjPSM | ∑
s

βs = 1; ∀s : 0 ≤ βs ≤ 1, β0 �= 0, with

||β0viPSM + ∑
i �=j

β jvjPSM||1 = (1 + α)}

If the set S is a convex set, we obtain the following:

Lemma 5. If the starting region S is a convex set with vertices {v1, v2, . . . , vk}, it follows that
the one-step state reunion attainable region from S for a semi-Markov process with growth factor
(1 + α) defined by PSM is given by the convex hull of the vectors {viP

∗
SM}i · U, where

{viP
∗
SM}i :=

⎧⎨⎩{viPSM + (vi · w + α)ej}j|S0(b)
, if wi ≥ −α,

{β0viPSM + ∑i �=j β jvjPSM}β, if wi < −α.

To obtain A Rn,S
SM one could calculate A R1,S

SM and use this as the new starting region
to calculate A R2,S

SM . By iteratively following this procedure, one can obtain the desired
A Rn,S

SM .

4.4. Illustrations

In this section, we illustrate our findings by constructing the attainable and state
reunion attainable regions for different growth factors (1 + α).

First, consider the Markov system defined by

PI =

⎛⎝ 0.5 0.4 0
0 0.6 0.3
0 0 0.8

⎞⎠, w = (0.1, 0.1, 0.2)

for which we determine the maintainable region for the cases α ∈ {0, 1,−0.15}.

139



Mathematics 2024, 12, 1227

For α = 0, Theorem 2 yields that

A RM(1) = conv{eiP
I + wiej}i,j

so it follows that A RM(1) is the convex span of the vectors (0.6, 0.4, 0), (0.5, 0.5, 0), (0.5,
0.4, 0.1), (0.1, 0.6, 0.3), (0, 0.7, 0.3), (0, 0.6, 0.4), (0.2, 0, 0.8), (0, 0.2, 0.8), and (0, 0, 1).

For α = 1, Theorem 3 implies that

A RM(2) = conv{eiP
I + (wi + 1)ej}i,j

which implies that A RM(2) is the convex span of the following vectors after normalisation:
(1.6, 0.4, 0), (0.5, 1.5, 0), (0.5, 0.4, 1.1), (1.1, 0.6, 0.3), (0, 1.7, 0.3), (0, 0.6, 1.4), (1.2, 0, 0.8), (0,
1.2, 0.8), and (0, 0, 2).

For α = −0.15, Theorem 4 implies that

A RM(0.85) = conv{eiP
I∗}i

which implies that A RM(0.85) is the convex span of the following vectors after normalisa-
tion: (0.25, 0.2, 0.4), (0, 0.3, 0.55), (0.05, 0, 0.8), (0, 0.05, 0.8), and (0, 0, 0.85).

These regions are shown in Figure 1.

Figure 1. A RM(0), A RM(1), and A RM(0.85).

Furthermore, we can use the maintainable region for the constant-sized Markov system
defined by PI as the starting set. We know that the maintainable region is given by the
following [20]:

MRM(1) = conv{
(2

7
,

2
7

,
3
7

)
, (0, 0.4, 0.6), (0, 0, 1)}

If we use this region as the set S0, following Lemma 2, we obtain the following:

A R1,S0
M =conv{viP

I + (vi · w)ej}i,j

=conv{(0.2, 0, 0.8), (0, 0.2, 0.8), (0, 0, 1), (0.16, 0.24, 0.6), (0, 0.4, 0.6),

(0, 0.24, 0.76),
(2

7
,

2
7

,
3
7

)
,
(1

7
,

3
7

,
3
7

)
,
(1

7
,

2
7

,
4
7

)
}

=conv{(0.2, 0, 0.8), (0, 0, 1), (0, 0.4, 0.6),
(2

7
,

2
7

,
3
7

)
,
(1

7
,

3
7

,
3
7

)
,
(1

7
,

2
7

,
4
7

)
}
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So, if we define S1 = {(0.2, 0, 0.8), (0, 0, 1), (0, 0.4, 0.6),
(

2
7 , 2

7 , 3
7

)
,
(

1
7 , 3

7 , 3
7

)
}, we obtain

the following:

A R2,S0
M =A R1,S1

M = conv{(0.28, 0.08, 0.64), (0.1, 0.26, 0.64), (0.1, 0.08, 0.82),

(0.2, 0, 0.8), (0, 0.2, 0.8), (0, 0, 1), (0.16, 0.24, 0.6), (0, 0.4, 0.6), (0, 0.24, 0.76),(2
7

,
2
7

,
3
7

)
,
(1

7
,

3
7

,
3
7

)
,
(1

7
,

2
7

,
4
7

)
,
(15

70
,

22
70

,
33
70

)
,
( 5

70
,

32
70

,
33
70

)
,
( 5

70
,

22
70

,
43
70

)
}

=conv{(0.28, 0.08, 0.64), (0.2, 0, 0.8), (0, 0, 1), (0, 0.4, 0.6),
(2

7
,

2
7

,
3
7

)
,(1

7
,

3
7

,
3
7

)
,
( 5

70
,

32
70

,
33
70

)
}

These regions are shown in Figure 2.

Figure 2. MRM = S0 , A R1,S0
M and A R2,S0

M .

Now, consider a semi-Markov system for which P(k) is given by the following:

P(0) =

⎛⎜⎜⎜⎝
0.2 0.5 0 0.3
0 0.7 0.2 0.1
0 0 0.9 0.1
0 0 0 1

⎞⎟⎟⎟⎠, P(1) =

⎛⎜⎜⎜⎝
0.6 0.3 0 0.1
0 0.5 0.45 0.05
0 0 0.9 0.1
0 0 0 1

⎞⎟⎟⎟⎠ and P(2) =

⎛⎜⎜⎜⎝
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎞⎟⎟⎟⎠
We obtain, following Definition 4, the following:

PSM =

S0(1) S1(1) S2(1) S0(2) S1(2) S2(2) S0(3) S1(3) S2(3)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S0(1) 0 0.2 0 0.5 0 0 0 0 0
S1(1) 0 0 0.6 0.3 0 0 0 0 0
S2(1) 0 0 0 0 0 0 0 0 0
S0(2) 0 0 0 0 0.7 0 0.2 0 0
S1(2) 0 0 0 0 0 0.5 0.45 0 0
S2(2) 0 0 0 0 0 0 0 0 0
S0(3) 0 0 0 0 0 0 0 0.9 0
S1(3) 0 0 0 0 0 0 0 0 0.9
S2(3) 0 0 0 0 0 0 0 0 0

and wSB = (0.3, 0.1, 1, 0.1, 0.05, 1, 0.1, 0.1, 1).
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Let S = conv{v1, v2, v3} with

v1 =

(
153,867
500,000

,
153,867

2,500,000
,

369,281
10,000,000

,
172,331

1,000,000
,

15,079
125,000

,
603,159

10,000,000
,

177,501
2,000,000

,
399,377

5,000,000
,

718,879
10,000,000

)

v2 =

(
0, 0, 0,

290,221
1,000,000

,
2,031,547
10,000,000

,
2,031,547
20,000,000

,
7,473,191
50,000,000

,
420,367

3,125,000
,

12,106,569
100,000,000

)

v3 =

(
0, 0, 0, 0, 0, 0,

36,900,369
100,000,000

,
8,302,583
25,000,000

,
29,889,299

100,000,000

)

Using Lemma 5, we obtain that A R1,S
SM = conv{a1, a2, a3, · · · , a9} with

a1 =(0.30773359, 0.06154672, 0.03692803, 0.17233081,

0.12063157, 0.06031578, 0.08875037, 0.07987533, 0.0718878)

a2 =(0, 0.06154672, 0.03692803, 0.4800644,

0.12063157, 0.06031578, 0.08875037, 0.07987533, 0.0718878)

a3 =(0, 0.06154672, 0.03692803, 0.17233081,

0.12063157, 0.06031578, 0.39648396, 0.07987533, 0.0718878)

a4 =(0.290221, 0, 0, 0, 0.2031547, 0.10157735, 0.14946382, 0.13451744, 0.12106569)

a5 =(0, 0, 0, 0.290221, 0.2031547, 0.10157735, 0.14946382, 0.13451744, 0.12106569)

a6 =(0, 0, 0, 0, 0.2031547, 0.10157735, 0.43968482, 0.13451744, 0.12106569)

a7 =(0.36900369, 0, 0, 0, 0, 0, 0, 0.33210332, 0.29889299)

a8 =(0, 0, 0, 0.36900369, 0, 0, 0, 0.33210332, 0.29889299)

a9 =(0, 0, 0, 0, 0, 0, 0.36900369, 0.33210332, 0.29889299)

A simple calculation shows that A R1,S
SM = conv{a1, a3, a5, a7}. Multiplying the

vectors a1, a3, a5, and a7 by U yields A R1,S
SM U, the one-step state reunion attainable region,

which is the convex combination of the following vectors:(
0,

58,494
98,317

,
39,823
98,317

)
,

(
59,469

603,901
,

166,010
469,913

,
428,471
781,529

)
,

(
60,941

150,024
,

166,010
469,913

,
126,519
526,037

)
,

(
100
271

, 0,
171
271

)

This region is shown in Figure 3.

Figure 3. A R1,S
SM · U.
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5. Conclusions and Further Research Avenues

In this study, we explore the concept of control through recruitment, broadening the
traditional concept of attainability for constant-sized Markov systems to systems subjected
to growth and contraction. Furthermore, we generalise this concept to semi-Markov chains.
Our exploration is characterised not only by its expansion of existing frameworks but also
by the introduction of an innovative concept known as state reunion attainability (SR-
attainability), based on the concept of state reunion maintainability [20]. This new concept
allows us to gain important theoretical insights and identify the SR-attainable regions. Our
work is distinguished by its novel method of broadening the scope of attainability and the
introduction of SR-attainability, providing both theoretical understanding and practical
algorithms, such as Theorem 4 and Lemma 5, for use in this field.

Future research could explore the broadening of reunion matrices, aiming to extend
SR-attainability to include the attainability of various state combinations based on senior-
ity, such as reclassification by overall seniority or pay scale. This opens the possibility
of preserving selective subsets of seniority-based states, rather than encompassing all
states, giving rise to a concept of partial (SR)-attainability. Consequently, this would
allow for the application of other and more diverse U-matrices, which encode the fu-
sion of seniority-based states (Definition 5), thereby expanding the practical use of the
SR-attainability framework.
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Abstract: In the present paper, we develop a non-homogeneous semi-Markov reward model, deriving
expressions for a healthcare system’s expected structure along with the expected costs generated
by medical services and patients’ holding times in the states. We provide a novel definition and
investigation for states’ availability, which is critical for capacity planning based on service demand
in an environment of limited resources. The study is based on patients’ mobility through hospital
care, where each patient spends an amount of time in every state of the hospital (emergency room,
short-term acute care, hospitalization, surgery room, and intensive care unit). Multiple outcomes,
such as discharge or death, can also be taken into account. We envisage a situation where any
discharges are immediately replaced by a number of new admissions that carry on the pathways of
the patients who exit. By assuming an expanding system, the new idea of states’ inflows is considered
due to new patients who create pathways through hospital care, along with internal entrances. The
theoretical results are illustrated numerically with simulated hospital data informed by aggregated
public data of the Greek public health sector. The framework can be used for both strategic planning
and cost evaluation purposes for hospital resources.

Keywords: healthcare; semi-Markov systems; population structure; cost evaluation

MSC: 60J10; 60J20; 60K15; 90B70; 91B70

1. Introduction

Systems appear in every discipline and deterministic or stochastic mathematical
modelling is applied for their study. For example, different population systems can be
divided into a set of states, taking into account some of their basic characteristics, such as
their socio-economic status, status or rank in a hierarchy system. Members of the system
usually transition through these states in a probabilistic manner based on historical data
of the visited states, as well as the duration of stay within each state. According to those
parameters, a semi-Markov chain can be developed for the study of those systems [1].
One example of a mathematical model is the non-homogeneous semi-Markov model,
that has been applied to numerous domains, such as manpower systems [2,3]. A broad
and accessible overview of non-homogeneous Markov chains and systems can be found
in [4]. Moreover, the addition of a reward process allows us to study the operational
characteristics of a wide variety of other systems as well. The attachment of a reward
structure in a semi-Markov model obviously increases the complexity of analysis but also
provides thoroughness in modelling because in real-life, every action generates a reward,
either positive or negative [5].

By using a Markov chain to study systems, we assume that the probability of tran-
sition from one category to another does not depend on the length of stay. Furthermore,
the Markovian models assume that the holding times follow exponential or geometric
distributions, in the continuous and discrete case, respectively. Thus, if the data do not fit
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well to the aforementioned distributions, the estimations of the sojourn times will turn out
to be unreliable. Hence, semi-Markov models generally provide better goodness-of-fit, as
they could incorporate arbitrary distributions for the holding times, allowing flexibility.
This holds true especially in cases where the holding times actually depend on the next
transition. On the other hand, semi-Markov chains require higher computational workload
for calculating the recursive and analytic relationships for the underlying process due
to the larger number of estimated parameters. On the contrary, time dependence is a
desirable characteristic to be included in the process since it provides additional useful
information. In this case, the transitions of such a system are not merely described by a
typical Markov chain procedure, therefore semi-Markov models are considered as more
rigorous stochastic tools that provide a framework accommodating a variety of applied
probability models [6–8]. Semi-Markov processes have found applications in different
domains, including manpower planning, financial credit risk, word sequencing and DNA
analysis [9–16].

Other stochastic models have found application in the finance and healthcare sectors.
Economic assessment of medical care often compares healthcare initiatives using cost
models and offers solutions that result in both cost-effective methods for the healthcare
provider and advantages for the patient. Since governments all over the world are con-
stantly faced with rising medical costs and are consequently unable to meet the demands
for greater resources, such approaches are especially important when it comes to providing
information that facilitates the efficient and fair allocation of limited resources [17]. In these
kinds of situations, a variety of modeling approaches have been used, mostly individual-
based micro-economic models like decision trees or Markov models, or population- or
cohort-based macro-economic models like regression [18–20].

Previous studies developed models of patient duration of stay incorporating the use
of Bayesian belief networks with Coxian phase-type distributions for modelling the length
of stay of a group of elderly patients in hospital [21]. Other results and applications of the
phase type distributions include modelling the cost of treating stroke patients within a
healthcare facility using a mixture of Coxian phase-type models with multiple absorbing
states [18,21]. Furthermore, the moments of total costs have also been obtained for an indi-
vidual assuming Poisson arrivals [22]. A previous study provided important information to
health service managers and policy makers to help them identify sequential patterns which
require attention for efficiently managing healthcare resources and developing effective
healthcare management policies via non-homogeneous Markov models [23].

Also, theoretical results for the moments and distribution of a semi-Markov cost
model with discounting have been provided in analytic form for an open healthcare
system [24], a Markov reward model for a healthcare system with a constant size, and in
addition, with fixed growth which declines to zero as time tends to infinity [25]. The same
researchers also presented a Markov reward model for a healthcare system with Poisson
admissions where expressions for the distribution, the mean and variances of costs are
derived [26]. A Markov model was used to describe the movements of geriatric patients
within a hospital system, where the spend-down cost of running down services is estimated
given that there are no more admissions and different costs assigned to states [27]. Finally,
a census approach to model bed occupancy for geriatric patients by the implementation of
a stochastic compartmental Markov model has been developed [28].

It has also been suggested that using Markov models for economic evaluation in
healthcare sectors is an intuitive approach to handle outcomes and costs concurrently.
Markov models can be easily modified in a variety of ways to expand beyond their limits,
despite being criticized for their narrow assumptions. For instance, within an analytical
framework like a semi-Markov model, the fundamental presumptions of the Markov
model, such as the Markov property, can be modified. This method is very adaptable and
can accurately capture the complexity and variety that are frequently present in diverse
healthcare systems. The expected population structure of the healthcare system and the
evaluation of costs generated by the hospital services of every kind (treatments, surgeries,
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medical care, etc.) are parameters of great importance, and hospital managers would
benefit immensely if they had advanced knowledge of patients’ duration of stay and the
corresponding derived costs [19,21–31].

In the present study, a non-homogeneous semi-Markov reward model is considered
where rewards are random variables associated with state occupancies and transitions.
The novel part of the current paper is derived from the inclusion of states’ inflows and
availability, which is critical for capacity planning based on services demand in an envi-
ronment of fixed resources. In Section 2, the theory of the model is provided and results
related to the population’s structure and states’ inflows are given and expressions related
to state’s current availability follow. Also, expressions for the expected costs generated by
the system and corresponding to patients’ paths are developed. Finally, in Section 3, most
of the theoretical results are illustrated numerically with simulated hospital data informed
from aggregated public data of the Greek public health sector. Finally, conclusions and
suggestions for further research are provided in Section 4.

2. Methods

2.1. Population Structure

Let us consider a population which is stratified into a set of states S = {1, 2, 3, . . . , k} ac-
cording to various characteristics. The states are assumed to be exclusive and exhaustive, so
that each member of the system may be in one and only one state at any given time. The pop-
ulation structure of the system at time t is described by a vector N(t) = [N1(t), . . . , Nk(t)],
where Ni(t) is the expected number of members of the system in state i at time t. Let T(t)
be the expected number of members of the system at time t.

In the present paper, time is considered to be a discrete parameter and we assume
that the individual transitions between the states occur according to a non-homogeneous
semi-Markov chain (embedded non-homogeneous semi-Markov chain). The embedded non-
homogeneous semi-Markov chain in the system defines the stochastic process which
describes the movements of every patient through the healthcare system. Thus, the patients’
pathways, which are made up from transitions and successive holding times between the
states, are governed by the sequence of the transition probability matrices of the Markov
chain {P(t)}∞

t=0 and the sequence of the holding time mass function matrices {H(m)}∞
m=0.

Moreover, we assume that the system is open and the population is expanding, i.e.,
ΔT(t) = T(t)− T(t − 1) > 0, so at every time unit three kinds of movements can occur:
internal transitions, new entrances and exits. In this respect, let us denote by {F(t)}∞

t=0, the
sequence of substochastic matrices where F(t) = { fij(t)}i,j∈S, where fij(t) define the transi-
tion probabilities between the states which are controlled by the entrance time t to state
i. Let also pk+1(t) be the row vector of wastage, whose ith element is the probability of
leaving the system from i, given that the entrance in state i occurred at time t and p0(t)
be the column vector of replacements, whose j-th element is the probability of entering
the system in state j as a replacement of a member who entered his last state at time t. We
consider that every member in the system holds a specific position (i.e., post in a company,
bed in a hospital) called “membership” [32] and initially there are T(0) memberships in
the system. Thus, a member entering the system creates a particular membership which
moves within the states with the other members. When a member leaves, the membership
is taken by a new recruit and moves within the system with the replacement, and so
on. Denote by {P(t)}∞

t=0, the sequence of stochastic matrices where P(t) = {pij(t)}ij∈S,
and pij(t) = fij(t) + pi,k+1(t)poj(t) define the transition probabilities for the memberships
which equivalently define transitions between the states either with actual transitions of
the members or by replacement of the leaving members by new recruits. The sequence of
stochastic matrices Q(n, t) =

{
qij(n, t)

}
i,j∈S, which define the interval transition probabili-

ties for the memberships of the embedded semi-Markov chain to the system, is described
by the following recursive Equation [2]:

Q(n, s) =>W(n, s)+∑n
m=1 C(s, m)Q(n − m, s + m) (1)
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where C(s, m) = P(s)◊H(m) is the Hadamard product of the matrices P(s) and H(m),
{H(m)}∞

m=0 is the holding time mass function matrix of the embedded semi-Markov chain,
>W(n, s) is a diagonal matrix with elements the survival functions of the holding times in
the states. It can be easily proved that C(s, m) the so-called Core matrix of the process, is
the most important parameter of the imbedded semi-Markov chain since it combines the
two stochastic processes imbedded in the system, the Markov process and the one of the
holding times. The analytic solution of the recursive Equation (1) is proven in [2] as follows

Q(n, s) =>W(n, s)+C(s, n)+∑n
j=2

[
C(s, j − 1) + ∑

j−2
k=1 Sj(k, s, mk)

]
[>W(n − j + 1, s + j − 1)

+C(s + j − 1, n − j + 1)]
(2)

where

Sj(k, s, mk) = ∑j−k
mk=2 ∑j−k+1

mk−1=1+mk
. . .∑j−1

m1=1+m2 ∏k−1
r=−1 C(s + mk−r − 1, mk−r−1 − mk−r)

for every j ≥ k + 2 while for every j < k + 2, Sj(k, s, mk) = 0. Furthermore, the system’s
expected population structure can be determined by the following equation just by the
basic parameters of the system as follows [2]:

N(t)= N(0)Q(t, 0)+∑t
m=1 ΔT(m)r0(m)Q(t − m, m), (3)

where r0(m) is the recruitment vector of the system. Relation (3) completely determines the
expected population structure of the system. The analytic solution for Equations (1) and (3),
in relation to the basic parameters of the system, is provided in [2].

2.2. States’ Inflows

In some models (e.g., healthcare modelling, manpower planning) the number of members
that enter a specific state either via recruitment without replacement or internal transitions
at any given time is crucial information for decision analysis and capacity planning based
on service demand in an environment of limited hospital resources. The aforementioned
expected number of members can be described by a vector M(t) = [M1(t), . . . , Mk(t)],
where Mi(t) is the expected number of the new recruits to state i at time t creating additional
memberships to the state plus the memberships which enter state i via internal transitions.
Using probabilistic arguments, the above-defined expectations can be recursively defined by
the following:

M(n) = N(0)E(n, 0)+ ∑n
m=1 ΔT(m)r0(m)E(n − m, m), (4)

where M(n) = [M1(n), . . . , Mk(n)] and E(n, s) is the matrix where its elements equal to the
entrance probabilities for the memberships for the interval [s, s + n) [33].

2.3. States’ Current Availability

The difference Ni(t)− Mi(t) is the mean number of memberships which entered state
i during the time interval [0, t) and remain at that state at least until time t. Therefore,
the above difference provides useful information related to the current availability of
the state. Moreover, if we assume that Ci defines state’s i capacity then the difference
Ci−[Ni(t)− Mi(t)] indicates the current availability of the state. Hence, the vector C −
[N(t)− M(t)], where C = [C1, . . . , Ck], provides estimations which are critical for capacity
planning based on service demand in an environment of scarce resources and investigating
optimal solutions.

2.4. Attachment of Costs

Define as yij(t) the cost that a membership generates at time t after entering state i
during the interval [t, t + 1) when its successor state is j and bij(m) as the cost generated by
the membership’s transition from state i to j, after holding time m time units in state i. Also,
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define as V(s, n, β) = [v1(s, n, β), . . . , vk(s, n, β)]T , the vector whose i-th element, vi(s, n, β),
is the expected present value of cost that is generated by a membership during the time
interval [s, s + n) under the condition that the membership entered state i at time s and
the discount factor equals β, 0 < β < 1. This coefficient is usually calculated by β = 1

1−r ,
where r is the interest rate, when referring to economic rewards. It is known from [4] that:

V(s, n, β) =>Y(s, n, β)+>R(s, n, β) + ∑n
m=1 P(s)◊H(m)βm+sV(s + m, n − m, β), (5)

where
>Y(s, n, β) =

[
>y1(s, n, β), . . . , >yk(s, n, β)

]T ,
>yi(s, n, β) = ∑k

x=1 ∑∞
m=n+1 pix(s)hix(m)yix(s, n, β),

yix(s, n, β) = ∑n−1
μ=0 βμ+syix(μ + s),

R(s, n, β) = [r1(s, n, β), . . . , rk(s, n, β)]T ,
ri(s, n, β) = ∑k

x=1 ∑n
m=1 pix(s)hix(m)[yix(s, m, β) + βm+sbix(m)].

Furthermore, the analytic solution of Equation (5) can be derived if we follow the
corresponding steps of a similar proof in [4]. The result is given below

V(s, n, β) =>Y(s, n, β)+>R(s, n, β)+∑n
j=2

[
C(s, j − 1, β) + ∑

j−2
k=1 Sj(k, s, mk, β)

]
[>Y(s + j − 1, n − j + 1, β) + R(s + j − 1, n − j + 1, β)],

(6)

where Sj(k, s, mk) = ∑
j−k
mk=2 ∑

j−k+1
mk−1=1+mk

. . .∑
j−1
m1=1+m2

∏k−1
r=−1 C(s + mk−r − 1, mk−r−1 − mk−r)

for every j ≥ k+ 2 while for every j < k+ 2, Sj(k, s, mk) = 0. Let us now define as TV(s, n, β) =

[TV1(s, n, β), . . . , TVk(s, n, β)]T, the vector whose i-th element, TVi(s, n, β), is the expected
present value of cost that is generated by the memberships of the system during the time
interval [s, s + n) under the condition that the memberships entered the system in state i at
time s and the discount factor equals β [4]. Then we have

TV(0, t, β) = [N(0)]T◊V(0, t, β) + ∑t
m=1 ΔT(m)[r0(m)]T◊V(m, t − m, β), (7)

where
TV(0, t, β) = [TV1(0, t, β), TV2(0, t, β), . . . , TVk(0, t, β)]T ,

V(s, t, β) = [v1(s, t, β) v2(s, t, β) . . . vk(s, t, β)]T ,
N(0) = [N1(0) N2(0) . . . Nk(0)]and
r0(m) [r01(m), r02(m), . . . , r0k(m)].

Last, the total cost generated in the system by the memberships’ pathways until time t
equals to the sum of the elements of TV(0, t, β).

3. Illustration

For the illustration, the data regarding patients’ stay within each state, and the corre-
sponding generated costs, were informed by public data of the Greek public health sector,
considering a public hospital and a population of patients which are stratified into a set of
hospitals’ states. We denote by S = {Emergency Room (ER), Short-Term Acute Care (STAC),
Hospitalization (H), Surgery Room, (SR), Intensive Care Unit (ICU)} the set of states that
are assumed to be exclusive and exhaustive, so that each patient of the hospital may be in
one and only one state at any time given. The possible trajectories within the hospital are
visualized in Figure 1. We assume that the internal transition probabilities are governed by
the following substochastic matrix:

F =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎣
0.00 0.00 0.10 0.07 0.03
0.00 0.00 0.15 0.10 0.05
0.00 0.00 0.00 0.25 0.05
0.00 0.00 0.70 0.00 0.25
0.00 0.00 0.90 0.05 0.00

⎤⎥⎥⎥⎥⎦.
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Figure 1. Visualization of the patients’ pathways through the semi-Markov model.

It is assumed that a patient enters the hospital either through ER with probability 0.75
or through STAC with probability 0.25, defining p0 = [0.75, 0.25, 0, 0, 0]. The death of
the patient, the transition of the patient in other hospital or rehabilitation home for various
medical reasons and the discharge to normal residence could be considered as exits from
the hospital, and so the loss vector is assumed to be pk+1 =[0.80, 0.70, 0.70, 0.05, 0.05].
As a consequence, the matrix of the embedded Markov chain P is the following:

P =

ER
STAC

H
OR
ICU

⎡⎢⎢⎢⎢⎣
0.6000 0.2000 0.1000 0.0700 0.0300
0.5250 0.1750 0.1500 0.1000 0.0500
0.5250 0.1750 0.0000 0.2500 0.0500
0.0375 0.0125 0.7000 0.0000 0.2500
0.0375 0.0125 0.9000 0.0500 0.0000

⎤⎥⎥⎥⎥⎦.

One can notice that according to the matrix P, some patients’ pathways correspond to
zero probabilities. We assume that the transition probability matrix P is non-homogeneous,
hence we add a Gaussian noise term eij(t) ∼ N

(
0, σ(t) := 1

1000+t2

)
, in each cell, in order

to create a sequence of matrices P(t), in order to impose small random deviations to
the estimated transition probabilities, reflecting the irregularities that can be observed in
detailed real data. The choice of a Gaussian distribution is twofold. First, the noise term
has zero expectation, therefore the average point estimates of the transition probabilities
are not influenced by noise. Second, the variance of the noise term converges to zero, when
t → ∞ , hence the process evolves into a homogeneous semi-Markov chain after a long
time period. The waiting time of the patients in the states ER, STAC and SR is one day.
The stochastic matrix P is irreducible, therefore, the lim

t→∞
Pt exists and is equal to the stable

matrix P*, which is the asymptotic matrix of the embedded Markov chain:

P∗ =

ER
STAC

H
OR
ICU

⎡⎢⎢⎢⎢⎣
0.4835 0.1611 0.1958 0.1018 0.0578
0.4835 0.1611 0.1958 0.1018 0.0578
0.4835 0.1611 0.1958 0.1018 0.0578
0.4835 0.1611 0.1958 0.1018 0.0578
0.4835 0.1611 0.1958 0.1018 0.0578

⎤⎥⎥⎥⎥⎦.

Patients that exit the hospital are replaced by some of the incoming patients who
occupy their corresponding memberships in the hospital. Let us also note that the rest of
the incoming patients that enter the hospital through its expansion according to ΔT(t),
create new memberships either through ER or STAC with probabilities 0.75 and 0.25,
respectively, i.e., r0 = [0.75, 0.25, 0, 0, 0]. In addition, based on the semi-Markov
reward model, the expected healthcare cost that is generated by the patients is estimated
up to a specific time point. This cost is assumed to be independent of time and includes
the total daily healthcare cost that is generated by the patients, as well as the medical
consumables that are necessary for their treatment.

In 2012, the Diagnosis-Related Groups (DRG) table was created, which presents the
maximum budget that can be sponsored to a public hospital for all possible cases of
diseases and treatments. For each disease, the DRG includes the daily healthcare cost,
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the cost of health examinations, the cost of use or maintenance of medical equipment,
such as respirators, stretcher chairs and any other cost associated for the treatment of the
patient. According to the ministerial decree, which is published in the Government Gazette
(ΦEK 946B’/27 March 2012), for any disease, the average daily healthcare cost is EUR
140. The DRG does not include the cost of medical consumables. According to a recent
balance sheet of large public hospital in Greece, EUR 2,275,023.83 are spent annually for
medical consumables, and on average, we assume that the cost of the medical consumables
that correspond to each patient is EUR 10.62. Thus, the cost that is earned from a patient
occupying either STAC or H is equal to EUR 150.62. The DRG does not include the daily
healthcare cost in the ICU, as well as the cost of surgeries. According to the Government
Gazette (ΦEK 4898B’/1 November 2018), the daily healthcare cost in the ICU is EUR 800 for
each one of the first three days and EUR 550 for each day from the fourth day of occupying
and onwards. Moreover, according to the United Mobility System, the cost of a surgery is
EUR 1215.61 on average.

In this implementation, this cost is independent of patients’ holding time in the states.
Moreover, if the patient does not transition from the ICU to H, then the cost of transition to
H as well as the cost of transition to SR is equal to the cost of use/maintenance of stretcher or
chair which transfers the patient. The cost that the patient generates for making a transition
from the ICU to H or SR include the cost of use/maintenance of a medical machine such
as respirator that may be used due to the patient’s health problem. We assume that the
cost of use/maintenance of these medical machines per patient is calculated at EUR 10 on
average. If the patient moves to the hospital with a private means of transportation, i.e., an
ambulance is not used for the transition of the patient to hospital and also the patient does
not use a stretcher or chair for the transition to ER or to STAC, then the cost of transition
to ER or to STAC is zero. More generally in the current illustration, we assume that cost
is generated in a hospital for the transition of the patient to the ER or to the STAC. The
specific cost includes the cost of use/maintenance of the stretcher or the chair and the cost
of ambulance’s fuel, which according to Government Gazette is defined to be EUR 0.15/km
and a patient traverses 50 km on average by ambulance. Thus, the cost of the transition of
a patient to the hospital by ambulance is equal to EUR 7.5 on average and we assume that
the cost of use/maintenance of the stretcher or the chair is EUR 5. As a result, the cost of
the transition a patient to the ER or to the STAC is defined to be EUR 12.50. Summarizing
the above information, we define the following matrix of patients’ memberships, as ={

bij
}

i,j∈S:

B =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎣
12.50 12.50 5.00 5.00 5.00
12.50 12.50 5.00 5.00 5.00
12.50 12.50 0.00 5.00 5.00
12.50 12.50 5.00 0.00 5.00
12.50 12.50 15.00 15.00 0.00

⎤⎥⎥⎥⎥⎦.

In the following, we present the estimated healthcare system’s structure along with the
estimated cost for three scenarios with different initial population structure, expansion rate,
and holding time distributions. All the calculations have been made through R (version 4.3).

3.1. Scenario 1

In a simple scenario, we assume that the expansion of the system is equal to a constant,
ΔT(t) = 20, the initial system population vector is N(0) = [231, 152, 106, 34, 77], and the
holding time distribution of the states are described by geometric distributions, as follows:

H(1) =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎣
1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00

1
8

1
8 1.00 1

6
1

10
1.00 1.00 1.00 1.00 1.00

1
5

1
5

1
3

1
3 1.00

⎤⎥⎥⎥⎥⎦,
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while for m > 1, we have

H(m) =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎢⎢⎣

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

1
8
( 7

8
)m−1 1

8
( 7

8
)m−1

0.0000 1
6
( 5

6
)m−1 1

10
( 9

10
)m−1

0.0000 0.0000 0.0000 0.0000 0.0000
1
5

(
4
5

)m−1 1
5

(
4
5

)m−1 1
3
( 2

3
)m−1 1

3
( 2

3
)m−1

0.0000

⎤⎥⎥⎥⎥⎥⎥⎦.

The estimated system structure over time N(t) is presented in Figure 2 for the first
100 days by visualizing each of the components Ni(t) of the five-dimensional vector. The
relationship between time (measured in days) and the state size approximates a linear
form. By assuming a simpler method, a linear regression model can be applied, in order to
predict the number of patients within each state for a given day. For instance, based on the
estimated regression coefficients (Table 1), it is expected that when t = 10, the estimated
state size will be 62 patients within the ICU.

Figure 2. Evolution of Ni(t), i = 1, . . . , 5, t = 1, . . . , 100, ΔT(t) = 20, N(0) = [231, 152, 106, 34, 77].

Table 1. Estimated linear regression coefficients between state size and time.

Intercept β (Slope)

Emergency 143.275 3.976
Short-term acute care 49.262 1.314

Hospitalization 312.6 12.4
Surgery room 27.6764 0.8401

Intensive Care Unit 47.142 1.465

Figure 3 illustrates the number of occupied beds in both hospitalization and the
intensive care unit for a period of 100 days.

Figure 3. Expected number of occupied beds within H and the ICU for 100 days, with ΔT(t) = 20, and
N(0) = [231, 152, 106, 34, 77]..
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Patients’ memberships generate costs associated with their stay within each state, and
we consider the following matrix Y =

{
yij
}

i,j∈S that summarizes these costs as:

Y =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎣
10.62 10.62 10.62 10.62 10.62

150.62 150.62 150.62 150.62 150.62
150.62 150.62 0.00 150.62 150.62

1215.61 1215.61 1215.61 0.00 1215.61
800.00 800.00 800.00 800.00 0.00

⎤⎥⎥⎥⎥⎦.

During the initial time period, patients’ cost within the ICU state is higher than the
other costs, but after a week and onwards, the expected healthcare cost of all patients is
higher for the state ER (Figure 4). In addition, the cost that is associated with medical
services in the surgery rooms is the lowest for the whole time period.

Figure 4. Expected healthcare cost for N(0) = [231, 152, 106, 34, 77] and ΔT(t) = 20.

The estimation of the average cost generated by a patient’s treatment within a state in
the hospital in the long-term is equal to EUR 218.58, and this could be calculated by the
column matrix Q∗W−1R [4], where:

Q∗ =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎣
0.20040 0.06681 0.61637 0.04220 0.07421
0.20040 0.06681 0.61637 0.04220 0.07421
0.20040 0.06681 0.61637 0.04220 0.07421
0.20040 0.06681 0.61637 0.04220 0.07421
0.20040 0.06681 0.61637 0.04220 0.07421

⎤⎥⎥⎥⎥⎦,

W−1 =

⎡⎢⎢⎢⎢⎣
1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.32

⎤⎥⎥⎥⎥⎦, and R =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎣
21

160
1151
1220
2505

⎤⎥⎥⎥⎥⎦.

3.2. Scenario 2

Expanding the previous scenario, it is assumed that the system’s expansion rate is
larger for smaller values of t, and decreases later on. Hence, initially, there is an increased
inflow in the hospital, however as t increases in size, we expect the number of new patients
in the hospital to converge to 1, with the following rate ΔT(t) =

⌊
20
t + 100

t2

⌋
+ 1, while

the holding time distributions are the same with the first scenario. Starting with an
empty healthcare system, with N(0) = [0, 0, 0, 0, 0], Figure 5 presents the evolution
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of the expected structure of the system for a given period of 100 days. At 100 days,
the population size reaches 327 patients, while the patients are distributed according to
N(100) = [67, 22, 200, 14, 24]. Initially, it is observed that the populations within the
emergency room and STAC unit increase, but reach a certain threshold where they drop and
then remain at an approximately stable level. On the other hand, the number of patients
that are hospitalized increase rapidly at the beginning, however, after two weeks the rate
of increase is constant.

Figure 5. Evolution of Ni(t), i = 1, . . . , 5, t = 1, . . . , 100, ΔT =
⌊

20
t + 100

t2

⌋
+ 1, N(0) = [0, 0, 0, 0, 0].

By assuming that the hospital’s resources are limited, we also consider a hospital that
contains a maximum of 103 ICU beds, and the initial structure of the hospital is not empty,
according to N(0) = [231, 152, 106, 34, 77]. The initial occupancy of the ICU is 74.76% and
the total number of patients within the hospital is T(0) = 600. The results of the system’s
structure are illustrated in Figure 6, which presents that in the current hospital there is
always ICU availability, and according to the initial population vector N(0), the number of
patients in the ER is higher than the number of the patients in any other state.

Figure 6. Evolution of Ni(t), i = 1, . . . , 5, t = 1, . . . , 100, ΔT =
⌊

20
t + 100

t2

⌋
+ 1, N(0) = [231,

152, 106, 34, 77].

Assuming the same population structure and expansion rate, we estimated the number
of beds which are occupied in H as well as the ICU (Figure 7). Firstly, we observe that
the estimated number of beds which are occupied in H is higher than the corresponding
number of beds in the ICU. Initially, 106 beds are occupied in H, but for the second day,
this number is estimated to be 92, and this is the only daily decrease in the number of beds
occupied in H, while from the third day and onwards, we estimate that the above number
is either increasing or remaining constant. The maximum daily increase in occupancies in
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hospitalization beds is equal to 68 beds. Moreover, the estimated number of beds which are
occupied in the ICU decreases for about 18 days and then increases linearly. In more detail,
regarding the ICU, the maximum daily decrease is equal to 25 beds, since initially 77 beds
are occupied, whereas for the second day, 52 beds are occupied.

Figure 7. Expected number of occupied beds within H and the ICU for 100 days, ΔT =
⌊

20
t + 100

t2

⌋
+ 1

and N(0) = [231, 152, 106, 34, 77].

According to Figure 8, the increase in the cost generated by patients’ pathways through
time has an approximately linear form. Initially, the cost of the ICU section appears to be
the highest across all states, however, later on, the cost associated with ER surpasses all
the other states, followed by STAC, while patients entering the surgery room generate the
lowest cost.

Figure 8. Expected healthcare cost for N(0) = [231, 152, 106, 34, 77] and ΔT(t) =
⌊

20
t + 100

t2

⌋
+ 1.

3.3. Scenario 3

For the last scenario, the initial structure vector is considered to be N(0) = [300, 152, 106,
34, 50], thus we assume a reduced number of patients within the ICU. Also, the holding time
distributions were assumed to be different for the ICU state, e.g., the average holding time
within the ICU before discharge is assumed to be 7 days, while the average holding time before
a surgery operation or hospitalization is assumed to be 5 days. From the visualization, one can
observe that the occupied ICU beds surpass the hospital’s capacity (N = 103) approximately
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after 5 days, then exceeds slightly after 16 days and then the number of patients within the
ICU continues to increase (Figure 9).

Figure 9. Evolution of Ni(t), i = 1, . . . , 5, t = 1, . . . , 100, ΔT =
⌊

20
t + 100

t2

⌋
+ 1, N(0) =

[300, 152, 106, 34, 50], dotted line represents ICU capacity (N = 103 wards).

Figure 10 illustrates the number of occupied beds in both hospitalization and the
intensive care unit for a period of 100 days and the visualization of the associated costs for
each state are presented in Figure 11.

Figure 10. Expected number of beds which are occupied in H and the ICU.

It is observed that the healthcare cost that is generated initially while patients enter in
any state does not exhibit strong daily changes. The expected long-term patient cost for
this scenario is EUR 247.11. Therefore, a 2-day increase in the average patient’s stay within
the ICU results in a 13% larger patient cost in the long-run, compared to the first scenario,
which is given by Q∗W−1R, where:

Q∗ =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎣
0.19126 0.06376 0.58823 0.04028 0.11647
0.19126 0.06376 0.58823 0.04028 0.11647
0.19126 0.06376 0.58823 0.04028 0.11647
0.19126 0.06376 0.58823 0.04028 0.11647
0.19126 0.06376 0.58823 0.04028 0.11647

⎤⎥⎥⎥⎥⎦,
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and

W−1 =

⎡⎢⎢⎢⎢⎣
1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.13 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.20

⎤⎥⎥⎥⎥⎦, and R =

ER
STAC

H
SR

ICU

⎡⎢⎢⎢⎢⎣
21

160
1151
1220
4109

⎤⎥⎥⎥⎥⎦

Figure 11. Expected healthcare cost for N(0) = [300, 152, 106, 34, 50] and ΔT(t) =
⌊

20
t + 100

t2

⌋
+ 1.

4. Conclusions

The aim of the current study was to examine patients’ pathways in an open healthcare
system via the lens of a non-homogeneous semi-Markov reward system with discounting.
The proposed model incorporated two novel components, namely states’ inflows and
availability. The inclusion of the inflows allows for the measurement of the expected
number of new recruits of every state (i.e., new members in the system plus entrances
through internal transitions), at every time point, providing an estimation of the patients’
inflows to the hospital’s states. This leads to the estimation of various attributes of the
system, such as the capacity and the availability of the states. The model also incorporated
information about costs associated with patients’ transitions or stay within the states.

The theoretical results were accompanied with different case illustrations of open
healthcare systems with various characteristics (initial structure, holding times distributions,
and expansion rates). To our knowledge, this is the first time that the aforementioned
theoretical framework is accompanied with an application to a healthcare system based
on aggregated data from the Greek public health sector. Three different scenarios were
developed to simulate a real healthcare system including open systems with constant or
non-linear decreasing expansion rates. Through the findings, one can examine and predict
the upcoming structure of the system for each state separately, aiming to assist resource
allocation in healthcare units.

Through the illustration, the availability of each state is calculated providing useful
information for capacity planning in a healthcare environment with limited resources.
More specifically, the current availability of wards in critical units within a hospital can be
estimated, such as the intensive care unit or surgery rooms. For example, in cases where the
modelling procedure suggests that the number of patients exceeds the hospitals’ capacity
after a time period, this may serve as a warning that the current healthcare resources are
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not adequate to provide medical services for all patients. Last, expressions for the expected
costs generated by the system and corresponding to patients’ paths are estimated as well as
the average patient’s long-term cost that is generated.

Our application can guide healthcare policy makers to configure different strategies
in order to optimize the resources of a healthcare system, and also provide estimations
of future costs under various scenarios. The results encourage the use of this model in
exploring cost sensitivity arising from different treatment strategies and investigating
optimal solutions.
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The Arsenal of Perturbation Bounds for Finite
Continuous-Time Markov Chains: A Perspective
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alex.mitrophanov@nih.gov or mitrophanov.alex@gmail.com

Abstract: Perturbation bounds are powerful tools for investigating the phenomenon of insensitivity to
perturbations, also referred to as stability, for stochastic and deterministic systems. This perspective
article presents a focused account of some of the main concepts and results in inequality-based
perturbation theory for finite state-space, time-homogeneous, continuous-time Markov chains. The
diversity of perturbation bounds and the logical relationships between them highlight the essential
stability properties and factors for this class of stochastic processes. We discuss the linear time
dependence of general perturbation bounds for Markov chains, as well as time-independent (i.e., time-
uniform) perturbation bounds for chains whose stationary distribution is unique. Moreover, we prove
some new results characterizing the absolute and relative tightness of time-uniform perturbation
bounds. Specifically, we show that, in some of them, an equality is achieved. Furthermore, we
analytically compare two types of time-uniform bounds known from the literature. Possibilities for
generalizing Markov-chain stability results, as well as connections with stability analysis for other
systems and processes, are also discussed.

Keywords: Markov stochastic process; Kolmogorov equation; differential equation; perturbation
theory; sensitivity analysis; stability; robustness; ergodicity coefficient; stationary distribution

MSC: 60J27; 60J35; 34D10; 60J28; 34D20

1. Introduction

Perturbation bounds and related approaches for continuous-time Markov chains have
been applied in research fields as diverse as reliability theory [1–3], queuing theory [4–8],
quantum physics [9–12], climate science [13], biochemical kinetics [14–19], economics [20],
population genetics [21], and health insurance modeling [22]. In principle, such bounds
can be useful in any field where continuous-time Markov chains and their generalizations
are used as mathematical models. At the same time, Markov chain perturbation bounds
represent noteworthy theoretical developments that have connections with many directions
of mathematical research. In this perspective article, we will summarize and highlight some
distinguishing features of Markov chain perturbation bounds that illustrate both the inner
logic of this research area and its usefulness for current and future applications. Specifically,
we will discuss exponential vs. linear time dependence for perturbation bounds, as well as
their possible time-independence (or, time-uniformity) and the connection with the rate
of exponential convergence to the stationary distribution. Moreover, we will provide new
results characterizing the tightness of time-uniform perturbation bounds. Additionally,
we will outline the relationships between different perturbation-theory results for Markov
chains and other processes and systems.

Perturbation bounds, their properties, and the connections between them constitute
inequality-based perturbation theory, which can be developed for Markov chains and,
generally, for stochastic and deterministic processes (i.e., mathematical objects representing
systems changing over time). This complements the more traditional approach to per-
turbations that focuses on continuity and differentiability results, as well as asymptotic
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expansions [23–28]. For quantitative studies, both perturbation bounds and perturbation
expansions have their respective advantages; a comparison between them has been at-
tempted in the case of discrete time [29]. For the purposes of this article, we emphasize that
Markov chain perturbation bounds provide (1) a compact and convenient representation
of the essential features defining the chain’s sensitivity to perturbations and (2) a bound
for the magnitude of the perturbation in the Markov chain’s state probabilities given the
magnitude of the perturbation in the chain’s parameters and initial distribution. This
magnitude is often a “summary” of the perturbation magnitudes for the chain’s individual
parameters, which allows the bound to hold for perturbations of different structure but the
same magnitude. Note that, while the discovery of informative lower perturbation bounds
would be very insightful, current research focuses on upper bounds, which is what we
discuss in this article.

The primary reason for the focus on continuous time (in this perspective article, as
well as in most of the author’s research) is that physical time is continuous. This makes
continuous-time Markov chains a natural choice for the stochastic modeling of real-world
phenomena and systems. One prominent example is provided by physics and chemistry,
where the (forward) Kolmogorov equations, which govern temporal changes in the Markov
chain’s state probabilities, have a special name: the master equation [15,30]. Yet another
reason is the close connection with a powerful branch of mathematics—the theory of
differential equations. Indeed, the Kolmogorov equations are a system of differential
equations. One could thus anticipate that the general perturbation theory for differential
equations would guide us toward the perturbation bounds we need. One of the well-
known results in differential-equation theory is Gronwall’s inequality and its different
versions [31,32]. The application of this inequality to Markov chains (which has been
attempted more than once, including an article in this Special Issue [22]) is what motivated
us to write this perspective article.

Herein, we consider finite, time-homogeneous chains, because they provide excellent
opportunities for illustrating the main concepts of perturbation analysis and also due to the
considerable importance of such chains for applications. The possibility of generalizations
to countable state spaces and time-inhomogeneous Markov chains will be indicated in the
comments. Furthermore, this article focuses on regular perturbations, which correspond to
cases where expected perturbation magnitudes can be regarded as small. This smallness
is, often, not a strict mathematical requirement but a reflection of situations where such
bounds can be useful. In contrast, singular perturbations correspond to cases where some
state transitions in a Markov chain are considerably faster than others, so we could think
of “large-magnitude perturbations” or multiple time scales. While the typical approach to
singular perturbations centers on asymptotic expansions [25,26,28], perturbation-bound
approaches to singular perturbations have also been developed [33,34]. Thus, some of the
results that we discuss could, in principle, be applied to singular-perturbation problems.

This perspective article describes what can be regarded as deterministic perturbations
of the Kolmogorov equations. Thus, we are in effect considering deterministic pertur-
bations of a stochastic process (i.e., the Markov chain under study). One could possibly
imagine perturbation scenarios involving various deterministic or stochastic systems under
deterministic or stochastic perturbations. Clearly, each scenario would require its own
theoretical developments. Yet, the types of results we discuss could be relevant in a broader
context and may be applicable to other possible (and, as it might happen, far more com-
plex) perturbation scenarios. At the very least, they can provide a relevant standard for
comparison or even help generate a viable working hypothesis [35,36].

2. Continuous-Time Markov Chains and Perturbations: Notation and Some Basic
Properties

Let S = {0, 1, . . . , N}, where N ≥ 1 is an integer, be a finite set. On this set, regarded
as the state space, consider a continuous-time Markov chain X = {X(t), t ≥ 0} with
constant generator (also known as the transition-rate matrix) Q =

(
qij
)

and vector of state
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probabilities p(t) = (pi(t)). Here, qij is the rate of transitions from state i to state j (i �= j),
and pi(t) is the probability that X(t) will be in state i, given an initial distribution p(0) (see,
e.g., the definition of a continuous-time Markov chain in Refs. [37,38]). On the same state

space, consider another Markov chain,
∼
X =

{∼
X(t), t ≥ 0

}
, with generator

∼
Q =

(∼
qij

)
and vector of state probabilities

∼
p(t) =

(∼
pi(t)

)
. We will refer to the chains X and

∼
X as

the unperturbed and perturbed chains, respectively, and the matrix E :=
∼
Q − Q is the

perturbation. To measure the magnitude of perturbations, we will use the l1 norm (absolute
entry sum) for vectors, which will be regarded as row vectors (per the tradition existing
in the Markov chain literature). For matrices, we will use the corresponding subordinate
norm, which is the maximum absolute row sum. We will denote l1 vector and matrix
norms by ‖ · ‖. Thus, for a vector x = (xi) and a matrix A =

(
aij
)
, the norms are defined

as follows:
‖x‖ = ∑

i
|xi|, ‖A‖ = sup

‖x‖=1
‖xA‖ = max

i
∑

j

∣∣aij
∣∣.

Importantly, for differences between probability vectors, this choice of norm corre-
sponds to variation distance, which arguably is the most widely used distance in contempo-
rary Markov chain theory (at least in the case of finite state spaces). For probability vectors p
and

∼
p representing distributions on S, the variation distance, dTV(., .), is commonly defined

as follows:
dTV

(∼
p, p

)
:= sup

A⊆S

∣∣∣∼p(A)− p(A)
∣∣∣ = 1

2

∥∥∥∼p − p
∥∥∥,

where
∼
p(A) and p(A) are the measures on S induced by

∼
p and p, respectively. Sometimes,

the quantity 2dTV

(∼
p, p

)
=

∥∥∥∼p − p
∥∥∥ is used as the variation distance [18,19]. Because any

two norms in a finite-dimensional space are equivalent, a bound on
∥∥∥∼p − p

∥∥∥ will imply
a bound on the vector difference in any other norm of interest, but the corresponding
absolute constant may not be readily available. And even if it is, the resulting bound may
not be tight (i.e., it might considerably overestimate the actual perturbation magnitude).
A preferred approach would be to follow the proof of a bound in the l1 norm and see if
the same proof, perhaps with small modifications, also works for another norm of interest,
such as an lp norm (see, e.g., Ref. [39]).

Define z(t) :=
∼
p(t)− p(t), so ‖z(t)‖ is the magnitude of the perturbation in the state-

probability vector of the chain X at time t ≥ 0. To avoid the trivial case, we will assume
throughout the article that E �= 0; this assumption is necessary for some of the perturbation
bounds to be strict inequalities. However, cases where z(0) = 0 will not be excluded. The
perturbation bounds that we discuss will typically be uniform over a (finite or infinite) time
interval and have the form

sup
t∈[0,T)

‖z(t)‖ ≤ κ1(T)‖z(0)‖+ κ2(T)‖E‖, 0 < T ≤ ∞, (1)

where κ1(T) and κ2(T) are the condition numbers (this term was borrowed from numeri-
cal linear algebra, where perturbation bounds are prevalent [40]). If these numbers are
sufficiently small, then the chain X is well conditioned and insensitive to perturbations.
While large condition numbers do not necessarily mean that the chain is sensitive, it is
often implied and might as well be true. In any event, for our sensitivity assessment to be
accurate, we want the bound in Equation (1) to be as tight as possible.
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The use of the l1 norm in Equation (1) offers some analytic advantages. First, because
‖p(t)‖ ≡ 1 (due to p(t) being a probability vector), Equation (1) naturally provides a bound
involving relative perturbations:

sup
t∈[0,T)

‖z(t)‖
‖p(t)‖ ≤ κ1(T)

‖z(0)‖
‖p(0)‖ + κ2(T)‖Q‖ ‖E‖

‖Q‖ . (2)

Equation (2) shows that the perturbation in p(t) will be small if the relative pertur-
bations in p(0) and Q are both sufficiently small. In fact, using the l1 norm, the absolute
and relative perturbations of p(t) are equivalent due to ‖p(t)‖ ≡ 1. At the same time, for
the chain X to be well conditioned with respect to absolute perturbations in the generator,
κ2(T) needs to be sufficiently small, whereas for it to be well conditioned with respect to
relative perturbations in the generator, κ2(T)‖Q‖ needs to be sufficiently small, as follows
from Equation (2).

A second advantage of the l1 norm is that Equation (1) can be divided by N + 1 (i.e.,
the size of the state space) and thereby provide a bound on the average perturbation in
a state probability of the chain X (averaged over all state-probability perturbations). For
some applications, the metric ‖z(t)‖/(N + 1) might be more informative than ‖z(t)‖ (cf.
Ref. [14]). The division by N + 1 also allows one to control the growth of the right-hand
side of Equation (1) with N, which can occur due to the nature of norm-based bounds.

Moreover, the use of the l1 norm allows us to obtain simple perturbation bounds for
the moments of the random variable X(t), as demonstrated by the following statement (in
which E( .) and var( .) denote expectation and variance, respectively).

Statement 1. The following bounds hold for all t ≥ 0 and every positive integer m:∣∣∣∣E(∼
X

m
(t)

)
− E(Xm(t))

∣∣∣∣ ≤ Nm‖z(t)‖,∣∣∣∣var
(∼

X(t)
)
− var(X(t))

∣∣∣∣ ≤ 3N2‖z(t)‖.

Proof. The perturbation bound for the non-central moments is a direct generalization of
the corresponding result for the expectation [4]:∣∣∣∣E(∼

X
m
(t)

)
− E(Xm(t))

∣∣∣∣ ≤ N

∑
k=0

km
∣∣∣∼pk(t)− pk(t)

∣∣∣ ≤ Nm‖z(t)‖.

Next, from the basic properties of variance, we have

∣∣∣∣var
(∼

X(t)
)
− var(X(t))

∣∣∣∣ ≤
∣∣∣∣∣ N

∑
k=0

k2
(∼

pk(t)− pk(t)
)∣∣∣∣∣+

∣∣∣∣∣∣
(

N

∑
k=0

k
∼
pk(t)

)2

−
(

N

∑
k=0

kpk(t)

)2
∣∣∣∣∣∣.

Here, the first term on the right-hand side does not exceed N2‖z(t)‖. For the second
term, we have∣∣∣∣∣

(
N
∑

k=0
k
∼
pk(t)

)2

−
(

N
∑

k=0
kpk(t)

)2
∣∣∣∣∣

=

∣∣∣∣ N
∑

k=0
k
∼
pk(t)−

N
∑

k=0
kpk(t)

∣∣∣∣×(
N
∑

k=0
k
∼
pk(t) +

N
∑

k=0
kpk(t)

)≤ N‖z(t)‖ × 2N.

Putting everything together, we obtain∣∣∣∣var
(∼

X(t)
)
− var(X(t))

∣∣∣∣ ≤ N2‖z(t)‖+ 2N2‖z(t)‖ = 3N2‖z(t)‖.
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This completes the proof. �

Notice that, in Statement 1, the mth non-central moment for both X and
∼
X is bounded by

Nm, and this bound is attained for distributions concentrated in the state N. And if, instead of the

absolute moment difference, we consider the relative difference
∣∣∣∣E(∼

X
m
(t)

)
− E(Xm(t))

∣∣∣∣/Nm,

then, from Statement 1, we obtain a perturbation bound without the explicit dependence on
Nm on the right-hand side. Similar relative differences can also be considered for the variances,
each of which is bounded by 2N2.

3. Time Dependence in Perturbation Bounds: From Exponential to Linear

The forward Kolmogorov equations for chains X and
∼
X have the following form:

dp(t)
dt

= p(t)Q,
d
∼
p(t)
dt

=
∼
p(t)

∼
Q, t ≥ 0.

When Gronwall’s inequality is applied to these equations, Equation (1) holds on finite
time intervals and takes the following explicit form [1,14,22]:

sup
t∈[0,T)

‖z(t)‖ ≤ e‖Q‖T‖z(0)‖+
(

e‖Q‖T − 1
) ‖E‖
‖Q‖ , 0 < T < ∞. (3)

The right-hand side of Equation (3) tends to ‖z(0)‖ as T → 0 , suggesting that the bound
may be informative on short- or moderate-length time intervals. However, for increasing T,
the right-hand side grows exponentially, which can make the bound arbitrarily loose.

The possibility of obtaining perturbation bounds with a sub-exponential dependence
on T was realized quite early [1]. This sub-exponential dependence turns out to be linear.
Indeed, the following bound holds [1,14,33]:

sup
t∈[0,T)

‖z(t)‖ ≤ ‖z(0)‖+ T‖E‖, 0 < T < ∞. (4)

The derivation of Equation (4) is rather straightforward and relies on the integral
representation of z(t) (using the fact that the Kolmogorov equations are linear) together
with some standard norm-based bounds. Using simple calculus, one can show that the right
side of Equation (4) is smaller than that of Equation (3) for any ‖Q‖ and T [14]. Overall,
replacing the exponential dependence on T with a linear dependence offers tremendous
improvements in bound tightness. However, there is another important conceptual differ-
ence between Equations (3) and (4). Specifically, in Equation (3), the condition numbers
κ1(T) and κ2(T) depend on the parameters of X via ‖Q‖; in other words, Equation (3)
distinguishes between more well-conditioned and less well-conditioned Markov chains.
However, Equation (4) does not make that distinction, and its condition numbers are the
same for all Markov chains. Ideally, we would like to combine the tightness of the bound
in Equation (4) with the chain-specific nature of the bound in Equation (3). How can this
be achieved?

One simple and natural strategy involves reflecting chain-specific information in the
choice of T, which has been suggested in the context of Markov-chain modeling of the
frequently encountered biochemical reaction A + B � AB (binary-complex formation
and dissociation) [14]. That work investigated the nearness between the quadratic (full)
and the linear (approximate) model for the reaction, and the latter was regarded as the un-
perturbed Markov chain. The author used the fact that the expectation of the unperturbed
chain, E(X(t)), approached its unique stationary state E(X(∞)) exponentially fast, with
exponential rate μ independent of the initial conditions:

Δ(t) = Δ(0)e−μt,
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where Δ(t) := E(X(t))− E(X(∞)). Thus, we can define

TΔ :=
1
μ

,

with TΔ being the relaxation time for Δ(t). It is analogous to relaxation times studied in
physics (cf. Ref. [41]), and such terminology has also been adopted in Markov chain
convergence research.

Quite intuitively, the relaxation time TΔ represents a relevant time scale for temporal
changes in X, so we can set T = TΔ in Equation (4) and thereby obtain a chain-specific—
rather than generic—perturbation bound with increased tightness. Note, however, that in
Markov chain research, relaxation time is typically defined as the inverse of the spectral gap,
which is the spectral characteristic of the generator that defines the rate of convergence of
a Markov chain to the stationary distribution [37,42]. In the case of continuous time, the
spectral gap can be defined as the minimum absolute real part among all the generator’s
nonzero eigenvalues [18,19,37]. Notably, when the unperturbed chain is a Prendiville
process, which was the case in the binary-complex formation modeling study [14], the
spectral-gap definition of the relaxation time coincides with TΔ [18]. Whereas the intro-
duction of TΔ assumed uniqueness of the steady state, this approach can be extended to
situations where the stationary distribution of the unperturbed chain X is not necessarily
unique. Indeed, Equation (4), being general, applies to such cases. All we need is a way to
assess the range of relevant time scales for the unperturbed chain. This can be achieved, for
example, based on subject-matter expertise in the research field where the Markov chains
in question are used as mathematical models.

Setting T = TΔ in Equation (4) provides a chain-specific value for κ2(T). At the same
time, the value κ1(T) ≡ 1 in Equation (4) is still generic. As we will see in the next section,
in perturbation bounds suitable for very long time intervals, we also have κ1(T) ≡ 1. This
essentially is a consequence of the requirement that the bound in Equation (1) be uniform
over a certain time interval. When this requirement is absent, the equivalent of κ1(T) can
tend to 0 in the infinite-time limit. See, e.g., the bound derivation details in Refs. [18,33].

An important question in the development of Markov chain perturbation theory is the
generalizability of the results to time-inhomogeneous and infinite state-space chains. The
definition of time-inhomogeneity simply involves Markov chain generators that depend on

the time variable: Q(t) and
∼
Q(t), t ≥ 0 [4,22,38]. The perturbation bound in Equation (3)

was very recently extended to the case of finite, time-inhomogeneous Markov chains [22].
The bound in Equation (4) can be generalized to time-inhomogeneous chains with a count-
able state space [7]. While the main focus of Ref. [7] is on Markov chains demonstrating
various types of infinite-time convergence (termed ergodicity), the finite-time bound, such
as Equation (4), holds in the general case. The main necessary condition is that the theory of
differential equations in the Banach (specifically, l1) space is applicable, and a requirement
for that is that the generators of the chains under consideration should be bounded. It is
worth noting, however, that infinite-time convergence results can be extended to chains
with unbounded generators, which serve as mathematical models, e.g., in biology [43].
Likewise, developing a perturbation theory for the case of unbounded generators could
benefit some applications.

4. From Linear Time Dependence to Time Independence for Ergodic Markov Chains
by Using Convergence Bounds

It turns out that bounds of the form as in Equation (4) can sometimes be consid-
erably strengthened. For this, we need to make an additional assumption: throughout
the remainder of this article, we will assume that the stationary distribution of X (i.e., a
distribution π = (πi) satisfying πQ = 0) is unique. This assumption is not restrictive,
because finite, time-homogeneous, continuous-time Markov chains used in applications
very often possess this property. For example, in physics and chemistry, this unique sta-
tionary distribution can represent the often-studied state of thermodynamic or chemical
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equilibrium. For stationary-distribution uniqueness, a frequently used sufficient condition
is the irreducibility of X (or, in some applications, the positivity of all transition rates qij
(i �= j), which is sufficient for irreducibility), but it is not required for our purposes. What
is required is a rigorous (and, preferably, tight) convergence bound for X.

If X has a unique stationary distribution, π, then there exist positive numbers C, b
such that, for all initial distributions p(0) and t ≥ 0, we have

‖p(t)− π‖ ≤ Ce−bt. (5)

This convergence to a unique stationary distribution is the manifestation of ergodicity.
Importantly, Equation (5) implies that C ≥ 1 [19]. If Equation (5) holds, then for all initial
distribution vectors p1(0) and p2(0) and all t ≥ 0, we have

‖p1(t)− p2(t)‖ ≤ 2Ce−bt, (6)

where p1(t) and p2(t) are the distributions of X(t) corresponding to the initial distributions
p1(0) and p2(0), respectively. In the finite, time-homogeneous case, Equations (5) and (6)
are equivalent convergence conditions, and they can be proven, e.g., using the properties
of the l1 ergodicity coefficient (also known as Dobrushin’s ergodicity coefficient) for chain
X [33]. However, Equation (6) is particularly convenient for generalizing perturbation and
convergence results to the time-inhomogeneous case. That is why some perturbation results
in the literature explicitly use a convergence bound in the form given by Equation (6). The
l1 ergodicity coefficient, τ1( . ), is defined for any real square matrix A as follows:

τ1(A) := sup
‖x‖ = 1
xeT = 0

‖xA‖ =
1
2

max
i,j

∑
k

∣∣∣aik − ajk

∣∣∣,

where e = (1 1 . . . 1) and T denotes transpose. For a continuous-time chain X, er-
godicity coefficients are applied to, and calculated for, the chain’s transition matrices
P(t) := exp(Qt).

Since the 1990s, explicit and computable Markov chain convergence bounds have
been an active research topic, and numerous such bounds have been obtained for the
finite state-space case [16,18,37,44–46]. Their utility in perturbation analysis follows from
Equation (5). Indeed, for any x > 0, define the mixing time, θ(x), as follows [37]:

θ(x) := inf
t≥0

{ t : ‖p(t)− π‖ ≤ x for all p(0) }.

For any extent of convergence to the stationary distribution (i.e., for any distance from
the stationary distribution), the mixing time θ(x) is the time when this extent of convergence
is achieved. To define a characteristic time of convergence (which is meaningful yet
arbitrary), let us choose x = 1/e. From Equation (5), it follows that

θ
(

e−1
)
≤ b−1(log C + 1). (7)

Combining this with Equation (4), we obtain

sup
t∈[0,T)

‖z(t)‖ ≤ ‖z(0)‖+ b−1(log C + 1)‖E‖, T = b−1(log C + 1). (8)

We could have obtained a simpler version of this bound if we had used the relaxation
time definition T = 1/b in Equation (4). However, the relaxation time is only a proxy for the
mixing time [42], whereas Equation (7) provides a rigorous bound for it. The main reason
to use the right-hand side of Equation (8), however, is not the rigor of the mixing-time
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estimate. Rather miraculously, it turns out that the right-hand side of Equation (8) provides
a perturbation bound that is uniform over t ≥ 0:

sup
t≥0

‖z(t)‖ ≤ ‖z(0)‖+ b−1(log C + 1)‖E‖; (9)

moreover, this inequality is strict for C > 1 [18,19]. Two sufficient conditions for C > 1
are that: (1) N > 1 and (2) N = 1 and the stationary distribution of the chain X is non-
uniform [19]. Thus, C > 1 is—by far—the prevalent case.

Besides the obvious significance of the time-uniform bound, such as Equation (9), in
the analysis of regular perturbations, this time-uniformity is essential in the derivation
of bounds for singular perturbations [33]. Equation (9) eliminates the time-dependency
on the right-hand side altogether, while preserving the chain-specific nature of the bound.
This bound delivers a clear message: if, for a Markov chain, we have a convergence bound
of the type shown in Equation (5) (or Equation (6)), then we “automatically” obtain a
perturbation bound for that Markov chain. Moreover, (1) if a chain converges fast to its
stationary distribution, then it is stable under perturbations in its generator, and (2) the
main determinant of this stability is the exponential convergence rate b. Thus, obtaining
perturbation bounds is another reason why mathematicians should study Markov chain
convergence, which complements the list of such reasons given in the preface to the first
edition of Ref. [37].

Because the derivation of Equation (9) yields a bound that holds on an infinite time
interval, that approach also works for stationary distributions. Indeed, if

∼
π is a (not

necessarily unique) stationary distribution of
∼
X, then∥∥∥∼

π − π
∥∥∥ ≤ b−1(log C + 1)‖E‖; (10)

if C > 1, then this inequality is strict [18]. The perturbation bounds in Equations (9)
and (10) were derived specifically for the Kolmogorov equations and use some unique
features of their solutions. They rely on the notion of the ergodicity coefficient, which
plays an important role in the theory of stochastic matrices [39,40,47]. (See Ref. [33] for a
perturbation analysis in continuous time with more extensive use of ergodicity coefficients.)
These bounds illustrate how, by exploiting the special structure of the governing equations
for different classes of stochastic (and deterministic) processes, one can obtain increasingly
informative and accurate perturbation and approximation results.

The strictness of the inequalities in Equations (9) and (10) for C > 1 helps us to avoid
the futile, in this case, search for examples of equality, which the non-strict inequality
in Equation (8) could encourage (and which, in general, can be very meaningful for a
perturbation bound). At the same time, if the bounds in Equations (9) and (10) turned out
to be strict for all possible C, including C = 1, then we would have been motivated to try to
improve these bounds using an absolute multiplicative constant (which is another meaning-
ful pursuit in general perturbation theory). However, this is impossible, as demonstrated
by the following statement.

Statement 2. There exist two-state Markov chains X and
∼
X for which, in Equations (9) and (10),

an equality is attained.

Proof. First, consider Equation (10), which is non-strict for N = 1, suggesting that, in
this case, an equality is possible. Choose N = 1 and choose Q so that q01 = q10 = 1 (the
other two entries of Q are determined from the condition that row sums for any generator
Q are all equal to 0). Due to this symmetry, the stationary distribution of X is uniform,

i.e., π = (1/2 1/2). Now, on the same state space S = {0, 1}, choose
∼
Q so that

∼
q01 = 1

and
∼
q10 = 0. Obviously, the corresponding stationary distribution is unique and equal

to
∼
π = (0 1). Direct calculation shows that ‖E‖ = 2 and

∥∥∥∼
π − π

∥∥∥ = 1. The chain X is
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a special case of the Prendiville process on S = {0, 1}, and an explicit formula for its l1
ergodicity coefficient, β(t), is known [18]:

β(t) = e−(q01+q10)t = e−2t.

It can be demonstrated (see Refs. [18,33]) that

‖p1(t)− p2(t)‖ ≤ β(t)‖p1(0)− p2(0)‖,

where p1(t) and p2(t) are the distributions of X(t) corresponding to arbitrary initial dis-
tributions p1(0) and p2(0), respectively. Using this inequality together with the general
bound ‖p1(0)− p2(0)‖ ≤ 2, we obtain

‖p1(t)− p2(t)‖ ≤ 2e−2t.

Therefore, we can choose C = 1 and b = 2 in Equation (6). We thus have an explicit
expression for every quantity on both sides of Equation (10). Substituting them all into that
non-strict inequality, we obtain an equality.

Now, for the chosen chains X and
∼
X, and the chosen C and b, suppose that Equation (9)

is a strict inequality. Additionally, assume that ‖z(0)‖ = 0. Then, from Equations (9) and (10),
we have

sup
t≥0

‖z(t)‖ <b−1(log C + 1)‖E‖ = 1 =
∥∥∥∼

π − π
∥∥∥ = lim

t→∞
‖z(t)‖,

which is a contradiction. �

5. Related Results and Extensions

Equation (9) is not the only time-uniform bound with a logarithmic dependence on C
reported in the literature. Even though it was the first to be published [18], another bound
had, in fact, been derived (and submitted for publication) earlier [19]:

sup
t≥0

‖z(t)‖ ≤ ‖z(0)‖+ inf
0<y<1

b−1 log(C/y)
1 − y

‖E‖. (11)

The question then becomes, which bound is sharper—Equation (9) or Equation (11)?
The following statement shows that the bound provided by Equation (9) is sharper than
the one provided by Equation (11).

Statement 3. If C > 1, then

log C + 1 < inf
0<y<1

log(C/y)
1 − y

,

and this expression becomes an equality for C = 1.

Proof. First, assume that C > 1. Define

fC(y) :=
log(C/y)

1 − y
.

It follows that the infimum of fC(y) over y ∈ (0, 1) is attained at an internal point y0
of this interval, such that

C = y0 exp
(

1 − y0

y0

)
(12)
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(Proposition 1 in Ref. [19]). Taking the logarithm of Equation (12), we obtain

log C + 1 = log y0 +
1
y0

.

Therefore, because 0 < y0 < 1, we have that log y0 < 0 and thus

log C + 1 <
1
y0

.

At the same time, from the definition of fC(y) and Equation (12), it follows that

fC(y0) =
1
y0

.

This equality, together with the inequality preceding it, proves Statement 3 for C > 1. If
C = 1, then fC(y) monotonically decreases on (0, 1) and approaches 1 as y ↑ 1 (Proposition
1 in Ref. [19]), from which Statement 3 follows. �

Equation (9) and the related bounds reflect the fact that fast convergence to the station-
ary distribution implies insensitivity to perturbations. Intuitively, the chain X will be fast
converging if all the transition rates in Q are sufficiently large. This begs the question: is it
possible to obtain a perturbation bound with the condition number expressed explicitly in
terms of the transition rates, qij? This question has been answered in the affirmative for
cases where certain additional assumptions are satisfied [19]. A particularly simple answer
exists for Markov chains possessing a strongly accessible state, i.e., a state that can be reached
from every other state in one transition. An example of such a chain is one whose transition
rates qij (i �= j) are all positive. If X has a strongly accessible state, then, in Equation (1), we
can set T = ∞, κ1(T) = 1, and κ2(T) = 1/δ, where δ is the sum, over all columns, of the
off-diagonal column-minimum entries of Q [19].

A related question is: if the exponential-convergence parameter, b, in Equations (9)
and (10) is so influential, then could it be possible to obtain perturbation bounds where
the condition number κ2(∞) depends only on b or a related quantity? It turns out that the
quantity N/λ, where λ is the spectral gap of Q, is a condition number for perturbations of
the stationary distribution [19]. (Generally, we have that b ≤ λ [19], but this can become an
equality in many practical situations). A time-uniform perturbation bound with a condition
number of 66eN/((e − 1)λ) has been obtained under the additional assumption that the
unperturbed chain X is reversible (i.e., is an irreducible chain such that πiqij = πjqji for
all i, j ∈ S) [48]. Reversible chains form a special class of time-homogeneous Markov
chains that is important in many applications, such as models of physical processes that
possess the property of detailed balance [18,37,42,48,49]. Easily interpretable condition
numbers, containing quantities such as N/λ, are very valuable for qualitative insights into
determinants of Markov chain insensitivity to perturbations. At the same time, the bounds
in Equations (9) and (10) are likely to be tighter due to the logarithmic dependence on
C [48].

Equation (9) appears to possess all of the desired perturbation-bound attributes. How-
ever, upon a closer look, we may find that there is room for improvement. Indeed, whereas
‖z(t)‖ → ‖z(0)‖ for t → 0 , the right-hand side of Equation (9) does not approach ‖z(0)‖
for small t, because it does not depend on t at all. Therefore, the bound in Equation (4),
and even Equation (3), can be sharper than Equation (9) for small t. How can we handle
this situation? Evidently, the only way to maximize tightness is to use Equation (9) on
long time intervals and Equation (4) on short ones. For an ergodic unperturbed chain X,
the inequality in Equation (4) is strict [18,33]. Thus, from Equations (4) and (9), for the
prevalent case C > 1 we have
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sup
t∈[0,T)

‖z(t)‖ <

{
‖z(0)‖+ T‖E‖ if 0 < T ≤ b−1(log C + 1),
‖z(0)‖+ b−1(log C + 1)‖E‖ if b−1(log C + 1) ≤ T ≤ ∞.

An alternative way to improve Equation (9) via a combination of bounds allows
one to handle cases differing in the balance between the magnitude of z(0) and that of E.
Specifically, for C > 1, the following bound holds [18]:

sup
t≥0

‖z(t)‖ <

{
b−1(log C + 1)‖E‖ if ‖E‖ ≥ b‖z(0)‖,
‖z(0)‖+ b−1(log C)‖E‖ otherwise.

The intriguing property of the bound above is that, for b‖z(0)‖ small enough relative
to ‖E‖, the dependence of the right-hand side on ‖z(0)‖ disappears altogether.

Analogs of the bound in Equation (9), including the limiting distributions (as t → ∞ ),
have been derived for time-inhomogeneous Markov chains on finite and infinite state
spaces [4–6,50], and convergence bounds for such general cases are also available [16,51]. It
turns out, however, that obtaining explicit convergence bounds, such as Equation (5), in
the case of an infinite state space (i.e., requiring uniform ergodicity in continuous time; cf.
Ref. [52]) can be problematic. Actually, the unperturbed Markov chain of interest may not
even be uniformly ergodic. An alternative strategy is to use perturbation bounds that rely
on specially selected classes of norms other than the l1 norm (such as weighted norms), and
this is an active research direction in Markov chain theory and applications [4,5,8,53–56].

6. Discussion

This perspective article is about the properties of perturbation bounds for state-
probability vectors of continuous-time Markov chains. All in all, we find these properties
rather remarkable. Yet, perhaps the most remarkable of them is the availability and richness
of connections with perturbation theories for other classes of quantities, processes, and
systems. For example, a certain choice of the pre-exponential factor in a convergence
bound—i.e., the constant C in Equations (9) and (10)—can also be a condition number for
the eigenvalues and, therefore, for the spectral gap of the generator Q [13,18]. One and
the same quantity, expressed in terms of the ergodicity coefficients of chain X, can be used
as a condition number for the chain’s state-probability vectors and also for its ergodicity
coefficients [33]. As yet another powerful example, the perturbation bounds discussed
herein (particularly, Equation (9)) inspired the development of a perturbation theory for
general state-space, discrete-time Markov chains [52]. In recent years, that theory has
blossomed (see, e.g., Refs. [55–59]) and deserves a separate, detailed review (which, in fact,
is about to be published in the context of Markov chain Monte Carlo methodology [60]).
It should also be mentioned that perturbation bounds for the stationary distribution of
finite state-space, discrete-time Markov chains form a now-classic topic in matrix analysis,
which has been characterized by outstanding mutual enrichment of linear algebra and
applied probability [40]. Moreover, a theory has been developed that utilizes Markov
chain perturbation bounds as straightforward plug-ins to readily obtain sensitivity bounds
for hidden Markov models [61]. Continuing the topic of Markov processes, we should
mention finite-time perturbation bounds for diffusions [62]. Perturbation bounds for the
stationary distributions of diffusions have also been obtained [63,64]; interestingly enough,
they do not appear (unlike our Equation (10)) to be directly related to perturbation bounds
that are uniform over t ≥ 0. Thus, derivation and investigation of time-uniform pertur-
bation bounds for diffusions may be a promising research topic. Finally, an intriguing
interplay between established and new results can be found in the recent work on regime-
switching processes, where Markov chain considerations were used to gauge approaches
to perturbation analysis for processes with a more complex structure [35,36].

A different direction of perturbation research, which, conceptually, is closely related
to the material of this perspective article, has recently been developed in control theory
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for deterministic contractive systems. Such systems have convergence properties that can
be defined using a generalization of Equation (6) (a generalization containing an expres-
sion of the form C‖p1(0)− p2(0)‖ instead of the constant C) [65,66]. Perturbation and
approximation bounds for both regular [67,68] and singular [69] perturbations of contrac-
tive systems have been derived. Whereas this perturbation theory developed within the
domain of differential equations independently of Markov chain theory, there appear to
be possibilities for cross-fertilization. Importantly, for all of these systems, the exponential
rate of infinite-time convergence plays an essential role. This is a manifestation of the
pattern where the parameter governing the effects of perturbations in the initial conditions
also governs the effects of perturbations in the system’s parameter values, which could be
suggested as a general phenomenon for dynamical systems [70]. Perhaps, in the future,
such theories will converge, using the Kolmogorov equations as a shared research focus,
and will continue to strengthen each other, thereby benefiting diverse applications.

These developments concern deterministic perturbations of stochastic and deter-
ministic systems; the situation with stochastic perturbations has also been the focus of
intensive research. Random perturbations of dynamical systems are a now-classic subfield
of stochastic processes. Naturally for random perturbations, the rate of convergence to
the unperturbed, deterministic process is typically analyzed using large-deviations the-
ory [71,72] (as an illustration of new research, see Ref. [73]). Stochastic perturbations of
stochastic systems are an area where opportunities for a relevant theory are wide open.
One promising approach is to cast such a theory in the framework of stochastic processes
in a random environment, where the randomness in the environment represents the pertur-
bations, which are perhaps assumed to be small. Work in this direction has started [74,75]
(including approaches based on large deviations [72]), but further progress seems to be
needed before the theory is fully ready for broad applications.

7. Conclusions

The purpose of this perspective article is to illustrate the approaches and results
available in the inequality-based perturbation theory for continuous-time Markov chains.
Herein, our priority was to emphasize the logical interconnections between different ap-
proaches. By intention, this is not a comprehensive overview of this research field. A
systematic overview should include a broader discussion of the available bounds (includ-
ing the array of results centered on ergodicity coefficients for continuous-time chains [33]),
a more detailed analysis of the relationships between Markov chain perturbation results
in continuous and discrete time (including approaches focused on entrywise, rather than
norm-based, perturbation bounds), perhaps a deeper technical dive into the proofs for
the presented results, and a look into the numerical accuracy of the available perturbation
bounds on practically relevant examples. It would also be informative to consider cases of
unstructured perturbations of continuous-time Markov chains (i.e., cases where the per-
turbed system of differential equations is not a proper system of Kolmogorov equations)—a
situation that can arise in numerical solution problems [1]. Each of these topics deserves a
focused presentation and can motivate future studies. Contemporary perturbation theory
for Markov chains is an exciting example of interdisciplinary mathematics that draws ideas
and tools from probability theory, stochastic processes, differential equations, operator
theory, and matrix analysis, and has the potential to impact numerous areas of applied
research. We hope that this perspective article will facilitate the continued growth of this
promising research direction.
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Abstract: In this paper, we are concerned with the study of sequential interval reliability, a measure
recently introduced in the literature. This measure represents the probability of the system working
during a sequence of nonoverlapping time intervals. In the cited work, the authors proposed a recurrent-
type formula for computing this indicator in the transient case and investigated the asymptotic behavior
as all the time intervals go to infinity. The purpose of the present work is to further explore the
asymptotic behavior when only some of the time intervals are allowed to go to infinity while the
remaining ones are not. In this way, we provide a unique indicator that is able to describe the process
evolution in the transient and asymptotic cases as well. It is important to mention that this is not a
straightforward result since, in order to achieve it, we need to develop several mathematical ingredients
that generalize the classical renewal and Markov renewal frameworks. A numerical example illustrates
our theoretical results.

Keywords: sequential measures; convolution product; semi-Markov processes; asymptotic results

MSC: 60K15; 60K20; 90B25

1. Introduction

In this paper, we study a specific reliability indicator of discrete-time semi-Markov
systems called sequential interval reliability (SIR) which has been recently introduced in [1].

The choice for semi-Markov models has a twofold meaning: on the practical side, it
is important to consider flexible models able to describe real problems; on the theoretical
side, it is essential to provide mathematical results for general systems that encompass
interesting particular cases already studied or worthy to be investigated.

In this respect, it is well known that semi-Markov processes are among the most im-
portant modeling techniques for real-world issues in diverse applied fields, like reliability,
financial mathematics, earthquake studies, bioinformatics, etc. (see, e.g., [2–5]). Further-
more, there are valuable theoretical reasons supporting the semi-Markov choice. Indeed,
they generalize the Markov chain framework by taking into account the duration of stay
in the states. Hence, any result established in the semi-Markov case has a corresponding
particular result in the Markovian setting. The latter is recovered whenever the sojourn
time in a state of the process is modeled through a memoryless distribution, the exponential
one in continuous time or the geometric one in discrete time.

Several researchers have investigated the dependability metrics of semi-Markov systems.
In the literature, there is a distinction based on the choice of discrete-time or continuous-

time models.
The reliability methodology for continuous-time semi-Markov processes and the

corresponding statistical inference can be found in [2,6–10].
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The complexities that arise from the solution of semi-Markov models in continu-
ous time led to the development of numerical approximations based on the discrete
counterpart [11–14]. Also, for this last requirement, a study has recently emerged on
the theory of reliability for discrete-time semi-Markov systems and on their estimation
problem (see, e.g., [15–17]).

Numerical aspects related to a corresponding R package (https://cran.r-project.org/
web/packages/smmR/index.html and https://cran.r-project.org/web/packages/SMM,
accessed on 11 March 2024) can be found in [18].

Employing interval-based reliability indicators is a promising approach that allows us
to examine the dependency of reliability in response to a particular specification of the time
interval of interest expressed in terms of a starting point and a length. This was the original
idea that brought to light the notion of interval reliability for continuous-time semi-Markov
models [19,20]. The analogous discrete-time models were studied in [21,22] and recently
extended to include duration-dependent versions in [23]. In short, interval reliability is the
probability that the system will work at any time within a fixed time interval [t, t + p]. This
measure includes, in particular, the availability function at time t whenever p = 0 and the
reliability function at p whenever t = 0.

The present work is an extension of the work developed in [1], where we proposed a
new reliability measure called sequential interval reliability (SIR).

The SIR generalizes the notion of interval reliability as representing the probability
that a system is in a working state during a sequence of nonoverlapping intervals that
are not necessarily equi-spaced. This performance indicator is of importance in several
application domains where system performance is important only for specific temporal
intervals. As an example, we can think of the reliability of an air-conditioning system in an
office; it is recommended that the reliability be high on working days from 8 a.m. to 5 p.m.
Unreliability during the night or at the weekend is not a serious issue, and the engineer
can disregard it using the SIR indicator, which has been designed according to this scope.
Following the line in [24], we are also interested in taking into account the dependence on
the initial and/or final backward.

In [1], we proposed a recurrent-type formula for computing this indicator in the
transient case, and we investigated the asymptotic behavior as the first time point goes to
infinity, and hence, all the successive time points diverge to infinity as well. The purpose of
the present work is to further explore the asymptotic behavior as some other time points
are allowed to go to infinity. This means that we will consider a number of time intervals
over which we assess the reliability in the transient regime and the remaining ones, which
diverge to infinity, over which we measure the asymptotic sequential interval reliability.
This leads to a result of mixed type, simultaneously considering transient and asymptotic
behaviors in a unique formula.

It is very important to stress that this is not a straightforward work; in order to achieve
this, we needed to develop several mathematical ingredients, like proposing a specific
operator between two sets of functions (cf. Equation (11)), introducing a new matrix
convolution product (in Definition 2), investigating the relationship with the classical one
(in Proposition 2), and applying renewal-type arguments (like the key renewal theorem
and Markov renewal equation techniques) to the generalized framework formalized by
this new matrix convolution product (cf. the proof of Theorem 2).

The rest of this article is structured as follows: in the next section, we introduce the
semi-Markov framework and sequential interval reliability by recalling some previous
results. The main contribution of this article, presented in Section 3, is the investigation
of the asymptotic behavior of the sequential interval reliability as a time of interest goes
to infinity. A numerical example is provided in Section 4, illustrating some aspects of our
theoretical work.
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2. Mathematical Model and System Performance Metrics

This section introduces the mathematical framework by presenting a short description
of semi-Markov chains and known performability measures used in the reliability field.

2.1. Semi-Markov Chains

A semi-Markov chain is a random process that is frequently used in several applied
problems. It exhibits a particular type of time dependence between events where the
Markovian property holds not at every time point but only at moments when the system
changes its states. Consider a generic random system taking values in the finite state space
E = {1, . . . , s}. The system evolves in time, and its behavior can be described by two
sequences of random variables defined over a probability space (Ω,F ,P).

The first sequence of random variables is J = (Jn)n∈N, with Jn : Ω → E. It denotes the
states successively visited by the system. The successive points when the random system
changes its states are denoted by T = (Tn)n∈N, with Tn : Ω → N. Let us further introduce
N(t) := max{n ∈ N | Tn ≤ t} as the discrete-time counting process denoting the number
of transitions within time t. Then, the process (Zt)t∈N, defined by Zt = JN(t), is called a
semi-Markov chain.

If we assume that

P(Jn+1 = j, Tn+1 − Tn = k|Jn, . . . , J0, Tn, . . . , T0) = P(Jn+1 = j, Tn+1 − Tn = k|Jn), (1)

then the process Z = (Zk, k ∈ N) is a semi-Markov chain. Property (1) allows the joint
process (J, T) = (Jn, Tn)n to be a Markov renewal Chain. Whenever the probability
P(Jn+1 = j, Tn+1 − Tn = k|Jn = i) is independent of the number of transitions n, the
semi-Markov chain is time-homogeneous. When we relax this assumption, we deal with
time-inhomogeneous semi-Markov processes; see, e.g., [25,26]. This class of stochastic
processes has demonstrated high potential for describing real-life problems, among which
are credit risk and financial applications; see, e.g., [27–29].

A semi-Markov chain is uniquely determined (almost surely) through an initial dis-
tribution (μi)i∈E with μi = P(Z0 = i) = P(J0 = i) and a matrix of function q(t) =
(qij(t))i,j∈E,t∈N called the semi-Markov kernel. The latter collects the probabilities

qij(t) = P(Jn+1 = j, Tn+1 − Tn = t|Jn = i).

Simple probabilistic computations allow us to represent the semi-Markov kernel as

qij(k) = pij fij(k),

where pij = P(Jn+1 = j|Jn = i), and fij(k) = P(Tn+1 − Tn = k|Jn = i, Jn+1 = j).
Hence, the semi-Markov kernel can be identified by providing a transition probability

matrix P = (pij)i,j∈E for the embedded Markov chain Jn and a probability distribution
function fij(·) for each couple of states i, j. The element pij represents the conditional
probability of transitioning from state i to state j independently in time. The function fij(·)
identifies the probability distribution of the sojourn time length in state i before making the
next transition in state j.

The theory of semi-Markov chains is well developed, and the interested reader can
find several results described in [4].

2.2. Reliability Metrics

To assess the reliability behavior of a semi-Markov system, usually the state space
E is split into two subsets, U for the working states and D for the failure states; hence,
E = U ∪ D and E = U ∩ D = ∅.

The literature abounds with various measures of performance. One of the most
interesting is the sequential interval reliability introduced in [1]. The main interest of this
measure resides in its high generality, as it encompasses availability, reliability, and interval
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reliability at the same time. Here, we report some definitions and results given in [1] for
improving readability and understanding the new result that we are going to show in the
next section.

Let us consider two time sequences of nonnegative times t := (ti)i=1,...,N and p :=
(pi)i=1,...,N such that the following apply:

1. ti < ti+1 for all i = 1, . . . , N − 1;
2. ti + pi < ti+1 for all i = 1, . . . , N − 1.

Previous conditions guarantee that ∀i, j = 1, . . . , N with i �= j,

[ti, ti + pi]
⋂
[tj, tj + pj] = ∅.

Hence, they form a sequence of nonoverlapping time intervals.
Sequences t and p can be considered row vectors. Hereinafter, vectors will always be

intended as rows unless otherwise specified.
According to [1], for v ∈ N and k ∈ E, we can define the conditional sequential interval

reliability, SIR(N)
k (v; t, p), as the conditional probability that the system is in the up-states U

during the time intervals {[ti, ti + pi]}i=1,...,N , given the information set (k, v) := {JN(0) =
k, TN(0) = −v}, i.e.,

SIR(N)
k (v; t, p) := P(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N | JN(0) = k, TN(0) = −v) (2)

= P(k,v)(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N).

It is important to note that the SIR function ignores the behavior of the system
within two subsequent time intervals. In other words, for any discrete time point in the
set [ti + pi + 1, ti+1 − 1], the system is free to occupy up-states or down-states without
altering the indicator’s value.
A particular case of the former definition is obtained when v = 0; thus, we will set

SIR(N)
k (t, p) := SIR(N)

k (0; t, p) = P(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N | JN(0) = k).

A recursive formula for computing the sequential interval reliability of a discrete-time
semi-Markov chain is known.

Proposition 1 ([1]). Let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗ be two time sequences
such that {[ti, ti + pi]}i=1,...,N is a sequence of nonoverlapping real intervals. For any v ∈ N and
k ∈ E, the indicator SIR(N)

k (v; t, p) is given by the following:

SIR(N)
k (v; t, p) = g(N)

k (v; t, p) + ∑
r∈E

t1

∑
θ=1

qkr(v + θ)

Hk(v)
SIR(N)

r (0; t − θ11:N , p). (3)

Here, Hk(v) = ∑∞
s=v+1 ∑j∈E fkj(s), 11:N is a vector of 1s of length N, and g(N)

k (v; t, p) is
given by
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g(N)
k (v; t, p) := 1{k∈U}

[
Hk(tN + pN + v)

Hk(v)

+
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(v + θ)

Hk(v)
Rb

rm(v
′; t1 + p1 − θ)SIR(N−1)

m (v′; t2:N − 12:N(t1 + p1), p2:N)

+
N

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j+1)

r
(
0; (θ, tj+1:N − 1j+1:Nθ), (tj + pj − θ, pj+1:N)

)

+
N−1

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j)

r (0; tj+1:N − 1j+1:Nθ, pj+1:N)

⎤⎦, (4)

where 1{k∈U} is the indicator function of the event {k ∈ U}, and Rb
ij(v; t) is the reliability with the

final backward defined by

Rb
ij(v; t) := P(Zs ∈ U, for all s ∈ {0, . . . , t − v}, Zt = j, Bt = v | Z0 = i, TN(0) = 0). (5)

Remark 1. Equation (3) is a recurrent-type formula. The unknown function SIR(N)
k (v; t, p)

depends on itself but is evaluated at different values of the variables. First, we observe that the value
of the backward recurrence time process is v on the left-hand side of the formula and is reset to
zero on the right-hand side. This is due to the Markovian property of the semi-Markov process at
transition times. The vector t of the initial points of the N intervals is shifted according to the time
θ of the first transition when occurring before the initial time t1 of the first interval. This transition
occurs with probability qkr(v+θ)

Hk(v)
in the state r. The summations over all possible states r ∈ E and

times θ ∈ {1, 2, . . . , t1} consider all the possible cases.
The function g(N)

k (v; t, p) considers the remaining possibilities, which consist of transitions
inside one of the intervals [tj, tj + pj] or between two intervals, i.e., [tj + pj + 1, tj+1 − 1] or
exceeding the considered time horizon tN + pN. Then, a further recursion shows the dependence of
SIR(N)

k on SIR(M)
k for every positive integer M < N.

If v = 0, Equation (3) collapses into

SIR(N)
k (t, p) = g(N)

k (t, p) + ∑
r∈E

t1

∑
θ=1

qkr(θ)SIR(N)
r (t − θ11:N , p), (6)

where we have set g(N)
k (t, p) := g(N)

k (0; t, p).

In [1], the asymptotic analysis of the sequential interval reliability SIR(N)
k (v; t1:N , b1:N)

was also studied, allowing the time point t1 to go to infinity. As a result of the sequence
ti rising, we see that all these time points also diverge to infinity. The next result given in
Theorem 1 answers this question.

Theorem 1 ([1]). For an ergodic semi-Markov chain, under the previous notations,

lim
t1→∞

SIR(N)
k (v; t, p) = lim

t1→∞
SIR(N)

k (t, p) =
1

∑i∈E ν(i)mi
∑
j∈U

ν(j) ∑
t1≥0

g(N)
j (t, p), (7)

where (ν(i))i∈E represents the stationary distribution of the embedded Markov chain (Jn)n∈N, and
mi is the mean sojourn time in state i ∈ E, so it is the mean time of the distribution (hi(k))k∈N, i ∈ E.
The form of the function g(N)

j (t, p) is given in Equation (4).
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3. A Mixed Transient–Asymptotic Result for the Sequential Interval Reliability

It is possible to generalize and combine Proposition 1 with Theorem 1, allowing
th, h ≥ 2 to go to infinity at any time. Hence, the main question we want to answer is about
the value of

lim
th→∞

SIR(N)
k (t, p).

We observe that a positive answer to this problem will provide a mixed result be-
cause the part of the probability SIR(N)(t, p) corresponding to the time intervals {[ti, ti +
pi]}i=1,...,h−1 is devoted to the description of the behavior of the system in the transient case,
while the part containing the remaining intervals {[ti, ti + pi]}i=h,...,N , having considered
th → ∞, is responsible for the description of the asymptotic behavior of the system.

First, we present some definitions related to matrix convolution products and some
new operations necessary for the proof of our main result. Let ME be the set of real matrices
of dimension E, and let ME(N) be the set of matrix-valued functions defined on N, with
values in ME. A matrix of functions A ∈ ME(N) can be interpreted in two different ways.
First, if we fix any time t ∈ N, we obtain A(t) ∈ ME, which is a real-valued matrix. The
second possibility consists of fixing a couple of states i, j ∈ E, and then, the element Aij(·)
is a function of the time. A special element of ME(N) is the null matrix 0 := (0(t); t ∈ N),
with 0(t) := 0 for any t ∈ N.

Definition 1. Let A, B ∈ ME(N), where their matrix convolution product A ∗ B is defined as the
matrix-valued function C ∈ ME(N) such that

Cij(t) := ∑
r∈E

t

∑
s=0

Air(t − s) Brj(s), i, j ∈ E, t ∈ N. (8)

In matrix form,

C(t) :=
t

∑
s=0

A(t − s)B(s), k ∈ N.

Define a matrix-valued function δIδIδI = (dij(t); i, j ∈ E) ∈ ME(N) such that dii(0) = 1,
∀i ∈ E, and dij(t) = 0 otherwise. It is simple to realize that δIδIδI is the identity element for
the matrix convolution product. Hence, iterating the convolution operation, we can easily
obtain the n-fold convolution for any element A ∈ ME(N). Indeed, A(n) can be obtained
recursively as follows:

A(0) := δδδI, A(1) := A and A(n) := A ∗ A(n−1), n ≥ 2.

Second, let us introduce two sets of functions that will be useful in our proof. So, for
h, N ∈ N, first, let us define

A(h; N) :=
{

f : DA(h;N) → R

}
, (9)

where the domain DA(h; N) is defined by

DA(h; N) :=
{
(x, z, w) ∈ N

h−1 ×N
N−h ×N

N | x = (x1, . . . , xh−1), xi ≤ xi+1,

∀i = 1, . . . , h − 2; z = (zh+1, . . . , zN), zi ≥ 0, ∀i = h + 1, . . . , N − 1;

w = (w1, . . . , wN), 0 ≤ wi ≤ xi+1 − xi, ∀i = 1, . . . , h − 1,

0 ≤ wi ≤ zi+1, ∀i = h, . . . , N,

having set zN+1 := ∞}.
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Similarly, for h, N ∈ N, let us define a set of one-variable functions indexed by three
vectors of parameters

Bs,l,p(h; N) :=
{

f̃ : N → R | y = f̃ (t1; s, l, p)
}

, such that

t1 ∈ N,

s ∈ N
h−1, s = (s1, . . . , sh−1), 0 ≤ si ∀i = 1, . . . , h − 1,

l ∈ N
N−h, l = (lh+1, . . . , lN), 0 ≤ li, ∀i = h + 1, . . . , N,

p ∈ N
N , 0 ≤ pi ≤ si, ∀i = 1, . . . , h − 1

0 ≤ pi ≤ li+1, ∀i = h, . . . , N, having set lN+1 := ∞.

(10)

Let us consider an operator acting on these two sets, Φ : A(h; N) → Bs,l,p(h; N) such
that ∀y = f (x, z, w) ∈ A(h; N), we have that

Φ( f (x, z, w)) := f̃ (t1; s, l, p), (11)

where
t1 = x1; si = xi+1 − xi =: Δxi ∀i = 1, . . . , h − 1,

li = zi ∀i = h + 1, . . . , N,

pi = wi ∀i = h + 1, . . . , N,

and
f̃ (x1; Δx, z, w) = f (x, z, w).

The operator Φ maps any function f (x, z, w) ∈ A(h; N) to an element of the set of
functions Bs,l,p(h; N) in such a way as to preserve the values of the images. Hence, to
a vectorial function, we associate a scalar function, namely of the variable t1, with the
parameter set Θ = {s1:h−1, lh+1:N , w1:N}.

It is simple to realize that operator (11) is bijective and satisfies the following
two properties:

• the image of a product is equal to the product of the images:
∀ f (x1, z1, w1), h(x2, z2, w2) ∈ A(h; N), it results that

Φ( f (x1, z1, w1) · h(x2, z2, w2)) = Φ( f (x1, z1, w1)) · Φ(h(x2, z2, w2)),

This property is sometimes referred to as Cauchy’s multiplicative functional equation.
• The image of a sum is equal to the sum of the images:

∀ f (x1, z1, w1), h(x2, z2, w2) ∈ A(h; N), it results that

Φ( f (x1, z1, w1) + h(x2, z2, w2)) = Φ( f (x1, z1, w1)) + Φ(h(x2, z2, w2))

This property is sometimes referred to as Cauchy’s additive functional equation.

The last point before presenting our main result about the mixed transient–asymptotic
behavior of the SIR function is to introduce a new matrix convolution product, which
is important for our framework, and to see the relationship between the classical matrix
convolution product and the one defined in [1].

Definition 2. Let A ∈ ME(N) be a matrix-valued function, and let b = (b1, . . . , bs)T be a
vector-valued function such that every component br ∈ A(h; N), r ∈ E. Let t := (ti)i=1,...,N
and p := (pi)i=1,...,N , N ∈ N∗ be two time sequences such that {[ti, ti + pi]}i=1,...,N is a se-
quence of nonoverlapping real intervals, and set lh+1:N = (lh+1, . . . , lN) with li := ti − ti−1,
∀i = h + 1, . . . , N and x1:h−1 = (x1, . . . , xh−1) with xi := ti, ∀i = 1, . . . , h − 1.

The matrix convolution product ∗h is defined by
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(A∗hb)k(x1:h−1, lh+1:N , p1:N) := ∑
r∈E

t1

∑
θ=1

Akr(θ)br(x1:h−1 − θ11:h−1, lh+1:N , p1:N),

or, in matrix form,

(A∗hb)(x1:h−1, lh+1:N , p1:N) :=
t1

∑
θ=1

A(θ)b(x1:h−1 − θ11:h−1, lh+1:N , p1:N).

The next result presents a relationship between the new matrix convolution product
introduced above and the classical one defined in (8).

Proposition 2. Let q ∈ ME(N) be a semi-Markov kernel, and let f = ( f1, . . . , fs)T be a vector-
valued function such that every component fr ∈ A(h; N), r ∈ E. Then, ∀(x, z, w) ∈ Nh−1 ×
NN−h ×NN, it results that

Φ
(
(q∗hf)k(x, z, w)

)
=

(
q ∗ f̃

)
k(x1; s1:h−1, lh+1:N , w),

where si = xi+1 − xi, ∀i = 1, . . . , h − 1, and li+1 = xi+1 − xi, ∀i = h, . . . , N − 1.

Proof. By the definitions of the operator Φ and of the ∗h convolution product, we have

Φ
(
(q∗hf)k(x, z, w)

)
= Φ

(
∑
r∈E

x1

∑
θ=1

qkr(θ) · fr(x1:h−1 − θ11:h−1, lh+1:N , w1:N)
)

= ∑
r∈E

t1

∑
θ=1

Φ
(
qkr(θ) · fr(x1:h−1 − θ11:h−1, lh+1:N , w1:N)

)
, (12)

where the last equality is due to the additivity property of the Φ-operator. Next, we observe
that any function i : {1, 2, . . . , x1} → R can be seen as an element of the set of function
A(h; N) by simply observing that ∀θ ∈ {1, 2, . . . , x1}, we can write i(θ) = i(θ, 0, 0̃), where
θ = (θ, . . . , θ) ∈ Nh−1, 0 = (0, . . . , 0) ∈ NN−h, and 0̃ = (0, . . . , 0) ∈ NN . Thus, in also using
the second property of the Φ-operator (multiplicative property), Equation (12) becomes

= ∑
r∈E

t1

∑
θ=1

Φ
(
qkr(θ, 0, 0̃) · fr(x1:h−1 − θ11:h−1, lh+1:N , w1:N)

)
= ∑

r∈E

t1

∑
θ=1

Φ
(
qkr(θ, 0, 0̃)

) · Φ
(

fr(x1:h−1 − θ11:h−1, lh+1:N , w1:N)
)

= ∑
r∈E

t1

∑
θ=1

qkr(θ) · f̃r(x1 − θ; s1:h−1, lh+1:N , w1:N)), (13)

where si = xi+1 − θ − (xi − θ) = xi+1 − xi.

The proof is complete once we observe that Equation (13) coincides with the ordinary
convolution product (q ∗ f̃ )k(x1; s1:h−1, lh+1:N , w1:N).

Now, we are in the position of formulating the main result of this study, but first, we
introduce a notation that we will also use in the proof of our main result.

Assume for the moment that the limth→∞ SIR(N)
k (t, p) exists, and denote it by the

following notation:

lim
th→∞

SIR(N)
k (t, p) =

⎧⎪⎨⎪⎩
L(N)

k (t1:h−1, lh+1:N , p1:N) if 2 ≤ h ≤ N,
L(N)(l2:N , p1:N) if h = 1 ∧ N > 1
L(1)(p) if h = 1 ∧ N = 1 .
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Theorem 2. Assume that the semi-Markov chain is ergodic. Let t := (ti)i=1,...,N and p :=
(pi)i=1,...,N , N ∈ N∗ be two time sequences such that {[ti, ti + pi]}i=1,...,N is a sequence of nonover-
lapping real intervals. Then, ∀1 ≤ h ≤ N, it results that

L(N)
k (t1:h−1, lh+1:N , p1:N) := lim

th→∞
SIR(N)

k (t, p)

= ∑
r∈E

t1

∑
θ=1

ψkr(θ)G(N)
r (t1:h−1 − θ11:h−1, lh+1:N , p1:N), (14)

where the function G(N)
r (t1:h−1 − θ11:h−1, lh+1:N , p1:N) is fully determined in Equation (31), and

the convention x1:0 = ∅ is used.

Proof of Theorem 2. First, we observe that the theorem is true for h = 1, which was proved
in Theorem 1 in [1]. Indeed, the authors proved that

lim
t1→∞

SIR(N)(t, p) = lim
t1→∞

μψ ∗ g̃(t1; l2:N , p1:N) =: L(N)(l2:N , p1:N)

= ∑
i∈E

μi ∑
j∈U

1
μjj

∑
t1≥0

g(N)
j (t, p) =

1
∑i∈E ν(i)mi

∑
j∈U

ν(j) ∑
t1≥0

g(N)
j (t, p),

where μjj is the mean recurrence time to state j for the semi-Markov chain.
Now, we assume that the statement in the theorem is true ∀n ≤ N − 1, and we proceed

to verify its overall validity using the mathematical induction principle.
Based on Equation (3), and taking the limit for th going to infinity, we have

lim
th→+∞

SIR(N)
k (t, p) = lim

th→+∞
g(N)

k (t, p) + ∑
r∈E

t1

∑
θ=1

qkr(θ) lim
th→+∞

SIR(N)
r (t − θ11:N , p). (15)

Now, we begin to evaluate lim
th→+∞

g(N)
k (t, p).

According to Equation (4), we have

lim
th→+∞

g(N)
k (t, p) := lim

th→+∞

{
1{k∈U}

[
Hk(tN + pN)

+
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(θ)Rb
rm(v

′; t1 + p1 − θ)SIR(N−1)
m (v′; t2:N − 12:N · (t1 + p1), p2:N)

+
h−1

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ)SIR(N−j+1)
r

(
0; ((θ, tj+1:N)− 1j:N · θ), (tj + pj − θ, pj+1:N)

)

+
N

∑
j=h

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ)SIR(N−j+1)
r

(
0; ((θ, tj+1:N)− 1j:N · θ), (tj + pj − θ, pj+1:N)

)]

+
h

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ)SIR(N−j)
r (0, tj+1:N − 1j+1:N · θ, pj+1:N)

+
N−1

∑
j=h

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ)SIR(N−j)
r (0, tj+1:N − 1j+1:N · θ, pj+1:N)

}
, (16)

The next step is the computation of the previous limits for each of its components that
we are going to enumerate for the sake of clarity:

(1) lim
th→+∞

Hk(tN + pN) = lim
th→+∞

Hk(th +
N

∑
s=h+1

ls + pN) = Hk(∞) = 0. (17)
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(2) lim
th→+∞

t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(θ)Rb
rm(v

′; t1 + p1 − θ)

·SIR(N−1)
m (v′; t2:N − 12:N · (t1 + p1), p2:N) (18)

=
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(θ)Rb
rm(v

′; t1 + p1 − θ)

· lim
th→+∞

SIR(N−1)
m (t2:N − 12:N · (t1 + p1), p2:N), (19)

Here, in the last equality, we used the fact that ∀v′ ∈ N for an ergodic semi-Markov
process,

lim
th→+∞

SIR(N−1)
m (v′; t2:N − 12:N · (t1 + p1), p2:N) = lim

th→+∞
SIR(N−1)

m (t2:N − 12:N · (t1 + p1), p2:N).

Moreover, using the inductive hypothesis, we obtain

lim
th→+∞

SIR(N−1)
m (t2:N − 12:N · (t1 + p1), p2:N)

= lim
t∗h−1→+∞

SIR(N−1)
m (t∗1:N−1, p∗1:N−1) = L(N−1)

m (t∗1:h−2, l∗h:N−1, p∗1:N−1), (20)

where
t∗j = tj+1 − (t1 + p1) ∀j = 1, . . . , N − 1,

l∗j = t∗j − t∗j−1 ∀j = 2, . . . , N − 1,

p∗j = pj+1 ∀j = 1, . . . , N − 1.

A substitution of (20) in (18) produces

=
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(θ)Rb
rm(v

′; t1 + p1 − θ)L(N−1)
m (t∗1:h−2, l∗h:N−1, p∗1:N−1)

=
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

qkr(θ)Rb
rm(t1 + p1 − θ)L(N−1)

m (t∗1:h−2, l∗h:N−1, p∗1:N−1),

having observed that ∑
t1+p1−θ
v′=0 Rb

rm(v′; t1 + p1 − θ) = Rb
rm(t1 + p1 − θ).

(3) lim
th→+∞

h−1

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ)SIR(N−j+1)
r ((θ, tj+1:N)− 1j:N · θ), (tj + pj − θ, pj+1:N)

=
h−1

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ) lim
th→+∞

SIR(N−j+1)
r ((θ, tj+1:N)− 1j:N · θ), (tj + pj − θ, pj+1:N). (21)

Now, through a change in variables

ṫs =

{
0 if s = 1,
tj+s−1 − θ for s = 2, . . . , N − j + 1,

ṗs =

{
tj + pj − θ if s = 1,
pj+s−1 for s = 2, . . . , N − j + 1,

we obtain that
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lim
th→+∞

SIR(N−j+1)
r ((θ, tj+1:N)− 1j:N · θ), (tj + pj − θ, pj+1:N)

= lim
ṫh−j+1→+∞

SIR(N−j+1)
r (ṫ1:N−j+1, ṗ1:N−j+1) = L(N−j+1)

r (ṫ1:h−j, l̇h−j+2:N−j+1, ṗ1:N−j+1), (22)

where the last equality is due to the inductive hypothesis. A substitution of (22) in (21) produces

h−1

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ)L(N−j+1)
r (ṫ1:h−j, l̇h−j+2:N−j+1, ṗ1:N−j+1). (23)

(4)
N

∑
j=h

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ)SIR(N−j)
r (0, tj+1:N − 1j+1:N · θ, pj+1:N)

≤
N

∑
j=h

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ) =
N

∑
j=h

(Hk(tj + pj)− Hk(tj)). (24)

Now, observe that if th → +∞, all times ts with s ≥ h go to infinity as well; hence, we
have

lim
th→+∞

N

∑
j=h

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ)SIR(N−j)
r (0, tj+1:N − 1j+1:N · θ, pj+1:N)

≤ lim
th→+∞

N

∑
j=h

(Hk(tj + pj)− Hk(tj)) =
N

∑
j=h

lim
tj→+∞

(Hk(tj + pj)− Hk(tj)) = 0. (25)

(5) lim
th→+∞

h−1

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ)SIR(N−j)
r (tj+1:N − 1j+1:N · θ, pj+1:N)

lim
th→+∞

(
h−2

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ)SIR(N−j)
r (tj+1:N − 1j+1:N · θ, pj+1:N)

+
th−1

∑
θ=th−1+ph−1+1

∑
r∈E

qkr(θ)SIR(N−h+1)
r (th:N − 1h:N · θ, ph:N)

)
. (26)

Let us consider the above:

lim
th→+∞

th−1

∑
θ=th−1+ph−1+1

∑
r∈E

qkr(θ)SIR(N−h+1)
r (th:N − 1h:N · θ, ph:N).

To this end, we observe that

lim
th→+∞

SIR(N−h+1)
r (th:N − 1h:N · θ, ph:N)

= lim
t̃1→+∞

SIR(N−h+1)
r (t̃1:N−h+1, p̃1:N−h+1) = L(N−h+1)(l̃2:N−h+1, p̃1:N−h+1), (27)

where the last equality is a consequence of the inductive hypothesis and

t̃j = th−1+j − θ ∀j = 1, . . . , N − h + 1 ,

p̃j = ph−1+j ∀j = 1, . . . , N − h + 1 ,
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l̃s =
{

t̃s − t̃s−1 for s = 2, . . . , N − h + 1,
0 for s = 1,

Moreover, we observe that

th−1

∑
θ=th−1+ph−1+1

∑
r∈E

qkr(θ) =
th−1

∑
θ=th−1+ph−1+1

hk(θ) = Hk(th−1 + ph−1),

Then, from the key renewal theorem (see, e.g., [4]), we obtain that

lim
th→+∞

th−1

∑
θ=th−1+ph−1+1

∑
r∈E

qkr(θ)SIR(N−h+1)
r (th:N − 1h:N · θ, ph:N)

= Hk(th−1 + ph−1)L(N−h+1)(l̃2:N−h+1, p̃1:N−h+1).

It remains to compute

lim
th→+∞

h−2

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ)SIR(N−j)
r (tj+1:N − 1j+1:N · θ, pj+1:N)

=
h−2

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ) lim
th→+∞

SIR(N−j)
r (tj+1:N − 1j+1:N · θ, pj+1:N).

Now, set
t̂s = tj+s − θ ∀s = 1, . . . , N − j ,

p̂s = pj+s − θ ∀s = 1, . . . , N − j ,

and observe that

lim
th→+∞

SIR(N−j)
r (tj+1:N − 1j+1:N · θ, pj+1:N)

= lim
t̂h−j→+∞

SIR(N−j)
r (t̂1:N−j, p̂1:N−j) = L(N−j)

r (t̂1:h−j−1, l̂h−j+1:N−j, p̂1:N−j),

where in the last equality, we used the inductive hypothesis. Therefore, we may conclude
that limit (26) is equal to

Hk(th−1 + ph−1)L(N−h+1)(l̃2:N−h+1, p̃1:N−h+1)

+
h−2

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ)L(N−j)
r (t̂1:h−j−1, l̂h−j+1:N−j, p̂1:N−j). (28)

It remains to compute

(6) lim
th→+∞

N−1

∑
j=h

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ)SIR(N−j)
r (tj+1:N − 1j+1:N · θ, pj+1:N).

Clearly, this limit is upper bounded by

lim
th→+∞

N−1

∑
j=h

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ). (29)
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Now, set a = θ − (tj + pj + 1) to obtain the equality of (29) with

lim
th→+∞

N−1

∑
j=h

(tj+1−1)−(tj+pj+1)

∑
a=0

∑
r∈E

qkr(a + tj + pj + 1) =
N−1

∑
j=h

tj+1−tj−pj−2

∑
a=0

∑
r∈E

qkr(∞) = 0 (30)

The limits from (1) to (6) computed before provide the following result:

lim
th→+∞

g(N)
k (t, p) = 1k∈U

{
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

qkr(θ)Rb
rm(t1 + p1 − θ)L(N−1)

m (t∗1:h−2, l∗h:N−1, p∗1:N−1)

+
h−1

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(θ)L(N−j+1)
r (ṫ1:h−j, l̇h−j+2:N−j+1, ṗ1:N−j+1)

}

+Hk(th−1 + ph−1)L(N−h+1)(l̃2:N−h+1, p̃1:N−h+1)

+
h−2

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(θ)L(N−j)
r (t̂1:h−j−1, l̂h−j+1:N−j, p̂1:N−j) =: G(N)

k (t1:h−1, lh+1:N , p1:N). (31)

According to previous computations, Equation (15) can be expressed as

L(N)
k (t1:h−1, lh+1:N , p1:N) = G(N)

k (t1:h−1, lh+1:N , p1:N)

∑
r∈E

t1

∑
θ=1

qkr(θ)L(N)
r (t1:h−1 − 11:h−1 · θ, lh+1:N , p1:N). (32)

By applying the Φ-operator, we transform Equation (32) into an ordinary Markov
renewal equation:

L̃(N)
k (t1; s1:h−1, lh+1:N , p1:N) = G̃(N)

k (t1; s1:h−1, lh+1:N , p1:N)

∑
r∈E

t1

∑
θ=1

qkr(θ)L̃(N)
r (t1 − θ; s1:h−1, lh+1:N , p1:N). (33)

Equation (33) can be expressed in a more compact form denoted by Θ = {s1:h−1, lh+1:N ,
p1:N}, the set of parameters of the transformed function, and using a matrix-form
representation:

L̃(N)
k (t1; Θ) = G̃(N)

k (t1; Θ) + (q ∗ L̃(N))k(t1; Θ).

The solution of this Markov renewal equation is well known (cf. [4]), and it is given by

L̃(N)(t1; Θ) = (ψψψ ∗ G̃(N))(t1; Θ),

or element-wise,

L̃(N)
k (t1; Θ) = ∑

r∈E

t1

∑
θ=1

ψkr(θ)G̃(N)
r (t1 − θ; Θ)

= ∑
r∈E

t1

∑
θ=1

ψkr(θ)G(N)
r (t1:h−1 − 11:h−1 · θ, lh+1:N , p1:N)

= L(N)
k (t1:h−1, lh+1:N , p1:N) = lim

th→+∞
SIR(N)

k (t, p),

which concludes the proof.
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Remark 2. Observe that the function G(N) depends on the L(�) at the number of intervals � < N;
hence, it should be evaluated recursively in the number of intervals.

Example 1. As an application of Theorem 2, we can obtain an explicit representation of the mixed
transient–asymptotic result of the sequential interval reliability for N = 2:

lim
t2→∞

SIR(2)
k (t1:2, p1:2)

= ∑
r∈E

t1

∑
θ=1

ψkr(θ) ·
[

1{r∈U}
t1−θ+p1

∑
x=t1−θ+1

∑
v∈E

qrv(x)Rv(t1 − θ + p1 − x) + Hr(t1 + p1)

]
· IR(∞, p2),

where IR(∞, p2) is the asymptotic value of the interval reliability function, which can be recovered
from Theorem 1 once we observe that if ti + pi = ti+1 − 1 for all i = 1, . . . , N − 1 and v = 0, then
SIR(N)

k (0; t, p) = IR(t1, tN + pN − t1).

4. A Numerical Example

In this section, we will present a numerical example considering three semi-Markov
models that govern three different repairable systems. The difference among these systems
is located in the difficulty of repairing them through a repairability index (transition
probability). In order to make it clear, we fully present the setting of the experiment.
The state space of the systems consists of three possible states, E = {1, 2, 3}, where the
operational states are the first two, U = {1, 2}, and the non-working state is the last one,
D = {3}. The first state is considered to be a fully operational state, while the second one
is thought to be barely operational.

The transitions of the repairable semi-Markov models are shown in the following
flowgraph, Figure 1.

State 1

State 2State 3

f12 (.)

f21 (.)

f23(.)

f 31
(.)

Figure 1. Semi-Markov model.

The transition matrix P of the embedded Markov chain Jn along with the initial
distribution μ are given by

P =

⎛⎝ 0 1 0
p21 0 1 − p21
1 0 0

⎞⎠, μ = (1, 0, 0) .

Now, let Xij be the conditional sojourn time of the SMCs, and Z is state i, given that
the next state is j (j �= i). The conditional sojourn times are given as follows:
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X12 ∼ Geometric(0.3) ,

X21 ∼ discrete Weibull(0.9, 1.1) ,

X23 ∼ discrete Weibull(0.4, 1.3) ,

X31 ∼ discrete Weibull(0.6, 1.8) .

The difficulty of repairing the system is located in the transition probability p21 of going
from the barely operated state, 2, back to the fully operational state, 1. The three models
are classified according to the probability p21 (repairability index) as easily repairable for
p21 = 0.9 (Model 1), repairable for p21 = 0.5 (Model 2), and difficult to repair for p21 = 0.1
(Model 3).

Figures 2–4 illustrate each model’s conditional sequential interval reliability for two
time-varying intervals as the time t2 is moving forward through time. This is the proba-
bility that the system will be operational in the time intervals [1, 2] and [k + 2, k + 3] for
k ∈ {15, . . . , 30}. It can be easily identified that, as time t2 becomes large enough, each
system’s sequential interval reliability tends to converge to the asymptotic analogous
limt2→∞ SIR(N)

k (v; t, p). On the other hand, Figures 5–7 depict each model’s conditional
sequential interval reliability for two nonoverlapping, contiguous time intervals as the
time t1 is moving forward through time. Also, in this case, the sequential interval re-
liability function exhibits a tendency to converge asymptotically, as expected from our
theoretical result.
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Figure 2. Model 1. Sequential interval reliability plot with two separate time-varying intervals.
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Figure 3. Model 2. Sequential interval reliability plot with two separate time-varying intervals.
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Figure 4. Model 3. Sequential interval reliability plot with two separate time-varying intervals.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time k

Se
qu

en
ti

al
In

te
rv

al
R

el
ia

bi
lit

y

SIR(2)1 (0; (k, k + 2), (1, 1))

SIR(2)2 (0; (k, k + 2), (1, 1))

SIR(2)3 (0; (k, k + 2), (1, 1))

Figure 5. Model 1. Sequential interval reliability plot with two nonoverlapping, contiguous time intervals.
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Figure 6. Model 2. Sequential interval reliability plot with two nonoverlapping, contiguous time intervals.
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Figure 7. Model 3. Sequential interval reliability plot with two nonoverlapping, contiguous time intervals.

5. Conclusions

This paper presents a new result for the sequential interval reliability (SIR), an indicator
recently introduced in the literature. The new result provides a mixed transient and
asymptotic description for the system, merging these two aspects into a unique measure.
The achievement of this result needs dedicated mathematical development, which includes
several innovative aspects. Indeed, this paper introduces a specific operator acting between
two sets of functions, a new matrix convolution product, and the use of classical results
in probability theory such as the key renewal theorem and Markov renewal equation
techniques in the generalized framework. Future work may include an evaluation of this
indicator and related transient–asymptotic results in different applied problems involving
the use of real data.
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A Throughput Analysis Using a Non-Saturated Markov Chain
Model for LTE-LAA and WLAN Coexistence

Mun-Suk Kim

Department of Computer Science and Engineering, Sejong University, Seoul 05006, Republic of Korea;
msk@sejong.ac.kr

Abstract: To address the severe spectrum shortage in mobile networks, the 3rd Generation
Partnership Project (3GPP) standardized Long Term Evolution (LTE)-License Assisted
Access (LAA) technology. The LTE-LAA system ensures efficient coexistence with other
existing unlicensed systems by incorporating listen-before-talk functionality and conduct-
ing random backoff operations similar to those in the IEEE 802.11 distributed coordination
function. In this paper, we propose an analytical model to calculate the throughput of each
system in a scenario where a single LTE-LAA system shares an unlicensed channel with
multiple wireless local area network (WLAN) systems. The LTE-LAA system is utilized
for supplementary downlink transmission from the LTE-LAA eNodeB (eNB) to LTE-LAA
devices. Our proposed analytical model uses a Markov chain to represent the random
backoff operations of the LTE-LAA eNB and WLAN nodes under non-saturated traffic
conditions and to calculate the impact of the clear channel assessment (CCA) performed
by the LTE-LAA eNB. Through numerical results, we demonstrate how the throughput of
both the LTE-LAA and WLAN systems is determined by the contention window size and
CCA threshold of the LTE-LAA eNB.

Keywords: license assisted access; coexistence; clear channel assessment; Markov chain

MSC: 60J10

1. Introduction

The rapid growth of mobile devices and the rise of diverse mobile applications have
led to a severe spectrum shortage in mobile networks. To tackle this issue, the 3rd Gen-
eration Partnership Project (3GPP) has standardized Long Term Evolution (LTE)-License
Assisted Access (LAA) technology, enabling the use of unlicensed spectrum bands to
support downlink transmission in mobile networks [1,2]. LTE-LAA incorporates listen-
before-talk functionality to ensure efficient coexistence with other existing unlicensed
systems, especially widely deployed wireless local area networks (WLANs). LTE-LAA
with the listen-before-talk feature was established as a global standard in 3GPP Release 13
to facilitate coexistence in the unlicensed band [3].

Recently, numerous studies have been conducted to ensure reasonable coexistence
between LTE and WLAN systems in unlicensed bands [4–14]. Specifically, several studies
have evaluated the performance of LTE-LAA systems employing listen-before-talk and
random backoff mechanisms, similar to the IEEE 802.11 distributed coordination function,
for accessing unlicensed channels [11–14]. The studies [11,12] presented simulation results
on the throughput of LTE-LAA and WLAN systems under varying congestion conditions,
while the study [13] provided experimental results on interference between LTE-LAA and
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WLAN systems. The study [14] proposed an analytical model to evaluate the throughput
of each system under saturated conditions, where both LTE-LAA and WLAN systems
consistently have data to transmit.

In this paper, we propose an analytical model to calculate the throughput for each
system in a scenario where a single LTE-LAA system, dedicated to downlink transmission,
shares an unlicensed channel with multiple WLAN systems. Unlike prior studies on the
performance analysis of LTE-LAA and WLAN systems, our study employs a Markov
chain approach to model the random backoff operations of LTE-LAA eNodeB (eNB) and
WLAN nodes under non-saturated traffic conditions. The Markov chain approach is
limited by the need to define LTE-LAA eNB and WLAN node transmissions in discrete
timeslots. Nevertheless, it enables a clear and detailed analysis of all sequential random
backoff operations in the distributed coordination function of LTE-LAA and WLAN. In
addition, we analyze the throughput of LTE-LAA and WLAN systems by integrating the
impact of the clear channel assessment (CCA) threshold, which represents the sensitivity
level required to detect ongoing transmissions, with Markov chain modeling of random
backoff operations. Through numerical results, we demonstrate that the CCA threshold
and contention window size of the LTE-LAA eNB play a crucial role in balancing the
performance between LTE-LAA and WLAN systems. With a larger contention window size
set at the LTE-LAA eNB, the LTE-LAA eNB experienced a longer backoff period, allowing
WLAN nodes greater opportunities for channel access. As the CCA threshold set at the
LTE-LAA eNB decreased, the LTE-LAA eNB became more sensitive to concurrent WLAN
transmissions, which reduced its opportunities for channel access.

The remainder of this paper is organized as follows. Our proposed analytical model is
detailed in Section 2. Section 3 discusses the numerical results. Finally, Section 4 concludes
this paper.

2. Analysis of LTE-LAA and WLAN System Throughputs

We used a Markov chain model to analyze the throughput of LTE-LAA and WLAN
systems in a scenario where a single LTE-LAA system shares the unlicensed spectrum
with multiple WLAN basic service sets. Figure 1 shows an LTE-LAA eNB located at
the center, with multiple LTE-LAA devices distributed within the coverage area of the
LTE-LAA cell, which supports only downlink transmissions from the LTE-LAA eNB to
LTE-LAA devices. We define the CCA region as the area where WLAN transmissions are
detectable by the LTE-LAA eNB, with Rcca representing its radius. Additionally, we define
an interfering region, where WLAN transmissions can interfere with LTE-LAA devices but
remain undetectable by the LTE-LAA eNB; RI denotes the distance from the LTE-LAA eNB
to the outer boundary of this interfering region.

Figure 1. An example scenario where LTE-LAA and WLAN systems coexist.
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2.1. Random Backoff Operations in LTE-LAA eNB

LTE-LAA eNB competes with multiple WLAN nodes for channel access by utilizing
channel sensing and backoff mechanisms similar to those employed in WLAN systems, as
shown in Figure 2.

Figure 2. Example of the random backoff operations of LTE-LAA eNB.

The LTE-LAA eNB, when handling a new packet, first listens to the target channel to
measure the energy level over a duration equal to the distributed inter-frame space (DIFS).
If the measured energy level is below the predefined CCA threshold, the LTE-LAA eNB
initiates transmission. Otherwise, if the channel is detected as busy, the LTE-LAA eNB
continues monitoring until the channel is idle for a DIFS duration. Once the channel is
deemed idle, the LTE-LAA eNB generates a random backoff time before transmitting to
reduce the probability of collisions with packets transmitted by WLAN nodes. Furthermore,
to prevent channel capture, the LTE-LAA eNB must wait for a random backoff interval
between two consecutive new packet transmissions, even if the channel is sensed as idle
during a DIFS duration. The LTE-LAA eNB operates on a discrete-time backoff scale, where
the time following an idle DIFS is divided into fixed-length timeslots. The LTE-LAA eNB is
allowed to transmit only at the beginning of each timeslot. For each packet transmission, the
LTE-LAA eNB randomly selects a number from the range [0, W − 1], where W is referred
to as the contention window. The LTE-LAA eNB then counts down the corresponding
number of idle timeslots before initiating transmission. The backoff counter decreases
as long as the channel is sensed as idle. If a transmission is detected on the channel, the
counter is “frozen” and resumes only after the channel has been idle for a DIFS duration.
The LTE-LAA eNB initiates transmission when the backoff counter reaches zero.

Figure 2 illustrates an example scenario of the random backoff operations of an LTE-
LAA eNB. The LTE-LAA eNB and a WLAN node share the same unlicensed channel. After
completing a packet transmission, the LTE-LAA eNB waits for a DIFS duration and selects
a backoff counter value of 7 before transmitting the next packet. In this scenario, we assume
that the WLAN node transmits a packet in the middle of the timeslot corresponding to a
backoff counter value of 5 for the LTE-LAA eNB. As a result of the channel being sensed as
busy, the backoff timer is frozen at 5 and resumes decrementing only when the channel
is sensed as idle for a DIFS duration. As illustrated in Figure 2, the backoff counter of the
LTE-LAA eNB remains frozen during the transmission of a WLAN node, which can cause
the time interval between two consecutive timeslot beginnings to be significantly longer
than the timeslot size, σ. Specifically, this interval equals the timeslot size, σ, when no other
WLAN nodes are transmitting, but it corresponds to the time between two consecutive
backoff counter decrements when transmissions from other WLAN nodes are present.

2.2. Markov Chain Model for Random Backoff Operations in LTE-LAA eNB

In this section, referring to [15], we use a Markov chain model to study the random
backoff operations of the LTE-LAA eNB, as described in Section 2.1, under non-saturated
conditions where packets are not always present in the queue of the LTE-LAA eNB. We
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then derive the stationary probability τ, representing the probability of the LTE-LAA eNB
transmitting a packet during a randomly selected timeslot.

The LTE-LAA eNB shares an unlicensed channel with multiple WLAN nodes. To avoid
collisions with packets transmitted by other WLAN nodes, the LTE-LAA eNB generates
a random backoff counter before transmitting. Let c(t) denote the stochastic process
representing the backoff counter for the LTE-LAA eNB. A discrete, integer-based time scale
is adopted, where t and t + 1 represent the beginning of two consecutive timeslots. The
backoff counter of the LTE-LAA eNB decreases at the beginning of each timeslot.

Assuming non-saturated conditions where the LTE-LAA eNB does not always have
packets waiting in its queue for transmission, our Markov chain model, referring to [15],
includes two types of states: the post-backoff stage and the backoff stage. The post-backoff
stage represents the state where the LTE-LAA eNB has no packets in its queue awaiting
transmission, while the backoff stage corresponds to the state where a packet is waiting to
be transmitted. Let s(t) be the stochastic process indicating whether the LTE-LAA eNB is
in the post-backoff stage or the backoff stage at time t. Specifically, if s(t) = −1, it indicates
that the LTE-LAA eNB is in the post-backoff stage at time t, and if s(t) = 0, it indicates that
the LTE-LAA eNB is in the backoff stage at time t.

The bidimensional process {s(t), c(t)} can be represented using a discrete-time Markov
chain, as illustrated in Figure 3. The stochastic process s(t), representing the post-backoff
stage or the backoff stage, takes values of -1 or 0, while the stochastic process c(t), repre-
senting the backoff counter, ranges from 0 to W − 1. Thus, the state space, consisting of a
finite set of states, can be expressed as follows:

S = {(−1, 0), · · · , (−1, k2), · · · , (−1, W − 1), (0, 0), · · · , (0, k2), · · · , (0, W − 1)} (1)

-1,0
1-q

...

...

1-q 1-q

q q q q

1 1 1

q(1-Pidle)+qPidlep 

1-q

1/W 1/W1/W
1/W

1/W1/W 1/W 1/Wp+(1-p)q

1/W 1/W 1/W 1/W

qPidle(1-p)

(1-p)(1-q)

-1,1 -1,2 -1,W-1

0,0 0,1 0,2 0,W-1

Figure 3. Markov chain model for random backoff operations in LTE-LAA eNB.

Let P[k′1, k′2|k1, k2] denote the probability of transitioning from state (k1, k2) to state
(k′1, k′2). In our Markov chain model, since the transition probabilities are independent
of the time at which the transition occurs, the transition probability P[k′1, k′2|k1, k2] can be
expressed as follows:

P[k′1, k′2|k1, k2] = P[s(t + 1) = k′1, c(t + 1) = k′2|s(t) = k1, c(t) = k2], for any t = 0, 1, · · · (2)

In the backoff states, while the medium is sensed as idle, the state (0, k2) is decremented
by 1 to (0, k2 − 1) in each timeslot. However, in the post-backoff states, if there is at least
one packet awaiting transmission at the start of a timeslot, the state (−1, k2) transitions to
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the backoff state (0, k2 − 1). Otherwise, similar to the backoff states, the state (−1, k2) is
decremented by 1 to (−1, k2 − 1). Thus, we have for 1 ≤ k2 ≤ W − 1

P[0, k2 − 1 | 0, k2] = p1 = 1

P[−1, k2 − 1 | − 1, k2] = p2 = 1 − q

P[0, k2 − 1 | − 1, k2] = p3 = q

(3)

where q is the probability that there is at least one packet awaiting transmission at the start
of each backoff counter decrement.

In the backoff state (0, 0), the LTE-LAA eNB transmits; following the transmission, it
returns to the post-backoff state with a new k2, i.e., state (−1, k2), selected from [0, W − 1],
provided no collision occurs and there are no packets awaiting transmission in the queue.
Thus, this transition probability is

P[−1, k2 | 0, 0] = p4 =
(1 − p)(1 − q)

W
(4)

where p is the probability of a collision occurring between transmissions from the LTE-LAA
eNB and WLAN nodes within the CCA range. However, if a collision occurs, or if the
transmission is successful and there is at least one packet remaining in the buffer, the
LTE-LAA eNB reenters the backoff state with a new k2 chosen within the range [0, W − 1].

P[0, k2 | 0, 0] = p5 =
p

W
+

(1 − p)q
W

(5)

In addition, we consider the state (−1, 0), where post-backoff is complete but there
are no packets awaiting transmission in the buffer. Suppose a packet arrives in the buffer
while in state (−1, 0). If the medium is sensed as busy during an additional timeslot, the
LTE-LAA eNB enters a new backoff state (0, k2); otherwise, it transmits immediately. If
a collision occurs following the transmission, the LTE-LAA eNB again enters a backoff
state (0, k2). Therefore, the probability of this transition is

P[0, k2 | − 1, 0] = p6 =
q(1 − Pidle)

W
+

qPidle p
W

(6)

where Pidle represents the probability that the medium is sensed as idle during a timeslot. If
the transmission succeeds without a collision, the LTE-LAA eNB returns to the state (−1, k2),
where k2 is selected from [0, W − 1]. Thus, we have

P[−1, 0 | − 1, 0] = p7 = 1 − q +
qPidle(1 − p)

W

P[−1, k2 | − 1, 0] = p8 =
qPidle(1 − p)

W
, for 1 ≤ k2 ≤ W − 1

(7)

Let P denote the transition probability matrix of the Markov chain model illustrated
in Figure 3. Then, using Equations (3)–(7), we can express the transition probability matrix
P as shown in Figure 4.

Let b(0, k2) and b(−1, k2) denote the stationary probabilities of being in the states (0, k2)

and (−1, k2), representing the backoff and post-backoff states, respectively. Then, these
stationary probabilities can be expressed as follows:

b(0, k2) = lim
t→∞

P[s(t) = 0, c(t) = k2],

b(−1, k2) = lim
t→∞

P[s(t) = −1, c(t) = k2], for 0 ≤ k2 ≤ W − 1
(8)
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Taking into account all stationary state probabilities, we derive the following normal-
ization condition:

W−1

∑
k2=0

b(−1, k2) +
W−1

∑
k2=0

b(0, k2) = 1 (9)

Using Equations (3)–(7), we express all stationary state probabilities in terms of b(−1, k2).
Then, by applying the normalization equation in Equation (9), we can further express
b(−1, k2) in terms of p, Pidle, q, and W.

Figure 4. Transition probability matrix, P, of the Markov chain model for random backoff operations
in LTE-LAA eNB.

A transition into the state (−1, W − 1) from the state (−1, 0) occurs as described in
Equation (7). In addition, a transition into the state (−1, W − 1) from the state (0, 0) occurs
as described in Equation (4). Thus, the stationary probability of the state (−1, W − 1) is
given by

b(−1, W − 1) = b(−1, 0)
q(1 − p)Pidle

W
+ b(0, 0)

(1 − p)(1 − q)
W

(10)

Referring to Equation (3), for 1 ≤ k2 ≤ W − 2, we can express b(−1, k2) as b(−1, k2) =

(1 − q)b(0, k2 + 1)e + b(−1, W − 1), while for k2 = 0, the relation qb(−1, 0) = (1 −
q)b(−1, 1) + b(−1, W − 1) holds. By straightforward recursion, this leads to qb(−1, 0) =
b(−1, W − 1) · (1 − (1 − q)W)/q. Thus, using Equation (10), we have

b(−1, 0)
b(0, 0)

=
1 − q

q

(
(1 − p)(1 − (1 − q)W)

qW − Pidle(1 − p)(1 − (1 − q)W)

)
(11)

Using these equations, we determine the first sum in Equation (9),

W−1

∑
k2=0

b(−1, k2) = b(−1, 0) · qW
1 − (1 − q)W (12)

Referring to Equations (5) and (6), in the same manner as Equation (10), the stationary
probability of the state (W − 1) is given by

b(0, W − 1) = b(−1, 0) ·
(

q(1 − Pidle)

W
+

qPidle p
W

)
+ b(0, 0) ·

(
p

W
+

(1 − p)q
W

)
(13)

We can express b(0, k2) in terms of b(0, W − 1) and b(−1, W − 1) because b(0, k2) = b(0, k2 +

1) + b(0, W − 1) + qb(−1, k2 + 1) for 0 ≤ k2 ≤ W − 2. Thus, using Equations (10), (11), and
(13), the second sum in Equation (9) is
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W−1

∑
k2=0

b(0, k2) = b(−1, 0) ·
[

q2w − q + q(1 − q)W

1 − (1 − q)W +
(1 − q)2{1 − (1 − q)W−2} − q(1 − q)(W − 2)

1 − (1 − q)W

+
q2(W − 1)(W − 2)
2{1 − (1 − q)W} +

q(W + 1){1 − Pidle(1 − p)}
2

+

q(W + 1)[qW − Pidle(1 − p){1 − (1 − q)W}]{(1 − p)q + p}
2(1 − q)(1 − p){1 − (1 − q)W}

] (14)

The LTE-LAA eNB attempts transmission in the following two cases: (i) when a
packet arrives in the buffer and the medium is sensed as idle in the state (−1, 0), and
(ii) when the LTE-LAA eNB is in the state (0, 0). Thus, the transmission probability is
τ = qPidleb(−1, 0) + b(0, 0). Using Equation (11), it can be expressed as follows:

τ = b(−1, 0)
(

q2W − q2Pidle(1 − p)(1 − (1 − q)W)

(1 − p)(1 − q)(1 − (1 − q)W)

)
(15)

where τ can be expressed in terms of p, Pidle, q, and W from Equations (9), (12), and (14).
Thus, given p, Pidle, q, and W, we can calculate the transmission probability of the LTE-LAA
eNB using Equation (15). In Section 2.4, the transmission probability τ is used to calculate
the throughputs of both LTE-LAA and WLAN systems.

2.3. Interference Measured at an LTE-LAA Device

It is assumed that the LTE-LAA eNB uses an omnidirectional antenna, as illustrated
in Figure 5; its transmission power, denoted by Pe, is fixed in accordance with regulations
for unlicensed band usage. Let Prx,u represent the received signal power at an LTE-LAA
device u from the LTE-LAA eNB, and let PI denote the cumulative interference from
concurrent transmissions by multiple WLAN nodes. Then, Prx,u = Kr−η

u Pe, where K is a
constant and η is the propagation loss exponent [16]. The signal to interference plus noise
ratio (SINR) at the LTE-LAA device u can then be obtained as follows:

γ =
Prx,u

PI + PN
(16)

where PN is the noise.
To calculate PI , we approximate the interference from discrete WLAN nodes as a

continuous field with an equivalent node density [16,17]. In this model, the continuous
field is defined by the density of interfering WLAN nodes, denoted as λn. Let Ib represent
the set of WLAN basic service sets in the interfering region, and σi represent the channel
utilization of each WLAN basic service set i. Then, the density is given by λn = ∑i∈Ib

σi/AI ,
where AI is the area of the interfering region, calculated as AI = π(R2

I − R2
cca) [16].

We consider a scenario where an LTE-LAA device experiences interference from
transmissions by WLAN nodes located in the interfering region, as shown in Figure 5a.
Let ν represent the distance between the LTE-LAA device and an interfering WLAN node.
Figure 5b depicts a polar coordinate system centered at the LTE-LAA eNB. Let y be the
distance between the LTE-LAA eNB and an infinitesimal element of the interfering region,
which is given by

y = α(RI − Rcca) + Rcca (17)
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where α ∈ [0, 1] is a scaling factor. When α = 0 and α = 1, the infinitesimal element is
located at the boundary of the CCA range and the outer boundary of the interfering region,
respectively.

Figure 5. (a) A scenario where an LTE-LAA device is interfered by three WLAN APs and (b) esti-
mation of distance between the LTE-LAA device and an infinitesimal element in a polar coordinate
system (the shaded area is the interfering region).

Let θ denote a polar angle in the polar coordinate system; then, given a scaling factor α

and a polar angle θ, the distance ν can be obtained as follows:

ν(α, θ) =

⎧⎪⎪⎨⎪⎪⎩
|y − ru|, for θ = 0√

y2 + r2
u − 2 · y · ru · cos θ, for 0 < θ < π

y + ru, for θ = π,

(18)

As shown in Figure 5b, an infinitesimal element of the interfering region can be
given by

dAI = y · dydθ (19)

From the equation above, the total number of interfering WLAN nodes contained in the
infinitesimal element is given by λn · dAI = λn · y · dydθ; then, using Equation (18), their
interference power is PnKν(α, θ)−η · λn · dAI where Pn is the transmit power of a WLAN
node. Thus, in the interfering region, the average interference power measured at the
LTE-LAA device is

PI � 2λnPnK ·
∫ π

0

∫ 1

0
ν(α, θ)−η · (RI − Rcca)dαdθ (20)

Here, referring to Equation (17), we use the relation dy = (RI − Rcca) · dα.
Thus, using Equations (16) and (20), we can calculate the average SINR for each LTE-

LAA device, which will then be used to estimate the data rate of the LTE-LAA system in
Section 2.4. We adopt the Shannon capacity as the LTE-LAA rate function, allowing us to
estimate the LTE-LAA rate as follows [18,19]:

Rlaa(γ) ≈ κbw · κc · B log2(1 + γ/κsinr) (21)
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where B represents the bandwidth of a subchannel, and κbw is the system efficiency factor
accounting for various system-level overheads. The parameters κc and κsinr together adjust
for the SINR implementation efficiency of the modulation and coding schemes [19].

2.4. Throughput of LTE-LAA and WLAN Systems

In this subsection, we analyze the throughput of LTE-LAA and WLAN systems based
on the random backoff operations of WLAN nodes and the random backoff operations of
the LTE-LAA eNB, as explained in Section 2.2.

The WLAN nodes employ random backoff operations, similar to those of LTE-LAA
eNB described in Section 2.1, to control access to the shared wireless channel. The study
in [15] analyzed the random backoff operations of WLAN nodes using a non-saturated
Markov chain, with post-backoff and backoff stages denoted as (0, k2)e and (k1, k2), respec-
tively. Figure 6 illustrates the first two stages of the Markov chain model proposed in [15].
The following notations are used in this subsection:

• k1: Backoff stage number.
• k2: Value of the backoff counter.
• W0: Minimum contention window size.
• b(0, 0)e: Stationary probabilities of being in the post-backoff states (0, 0)e.
• pl : Collision probability of WLAN node l.
• ql : Probability of at least one packet awaiting transmission in the buffer of WLAN

node l in a timeslot.
• Pl

idle: Probability that WLAN node l senses the medium as idle in a timeslot.
• τl : Probability that WLAN node l is attempting transmission in a timeslot.
• L(T): Set of WLAN nodes located within the CCA ranges of the nodes in the set T,

which does not include the nodes in the set T.
• L′: Set of WLAN nodes located in the CCA range of the LTE-LAA eNB.

1-ql

(0,W0-1)e(0,0)e (0,1)e

(0,W0-1)(0,0) (0,1)

ql

(0,k2)e

(0,k2-1)

1-ql 1-ql 1-ql 1-ql

1 1 1 1 1

(1-pl)(1-ql)

pl

(1-pl)ql

1-ql

ql ql ql

1/W0 1/W0 1/W0

1/W0 1/W0 1/W0 1/W0

ql p
idle

pl
l

(1-pl)ql p
idle

l

ql p
idle

l

Figure 6. Markov chain model for the random backoff operations of a WLAN node.

Then, referring to [15], the transmission probability τl can be obtained as follows:

τl = b(0, 0)e ·
(

q2
l W0

(1 − pl)(1 − ql)(1 − (1 − ql)W0)
− q2

l Pl
idle

1 − ql

)
(22)

To simplify the analysis, we disregard the hidden-node problem; specifically, we assume
that, for any transmitting and receiving pair of WLAN nodes, the receiver can only sense
transmissions from WLAN nodes located within the CCA range of the transmitter. Thus,
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considering the transmissions of both the LTE-LAA eNB and WLAN nodes within the CCA
range of transmitter l, the collision probability pl in Equation (22) is given by

1 − pl = (1 − τ) · ∏
l′∈L({l})

(1 − τl′) (23)

where the transmission probability of the LTE-LAA eNB, τ, can be obtained from Equation (15).
Using Equation (23), Pl

idle = 1 − pl .
The probability that at least one WLAN node within the CCA range of the LTE-LAA

eNB attempts transmission is given by

τw = 1 − ∏
l′∈L′

(1 − τl′) (24)

The channel usage state may be occupied due to either a successful transmission or a
collision among transmissions; otherwise, the medium may be idle. Using Equations (15)
and (24), the probability that the LTE-LAA eNB or at least one of WLAN nodes will attempt
transmission is

Ptr = 1 − (1 − τ)(1 − τw) (25)

The probabilities that the LTE-LAA eNB and the WLAN nodes within the CCA range
transmit without collision are, respectively,

Pu,s = τ(1 − τw)

Pw,s = τw(1 − pw)(1 − τ)
(26)

The probability that the transmission from the LTE-LAA eNB is interfered with by
transmissions from WLAN nodes within the CCA range is given by

Pu,c = τw · τ (27)

The probability of a collision occurring among transmissions of WLAN nodes within
the CCA range is

Pw,c = τw · pw · (1 − τ) (28)

Suppose that nl WLAN nodes, labeled l1, l2, . . . , lnl , are attempting transmission in a
timeslot. For all these transmissions to succeed, the LTE-LAA eNB must remain idle, each
WLAN node must be outside the CCA range of the others, and none of the WLAN nodes
in the set L(l1, l2, . . . , lnl ) should transmit. Thus, the probability of all these transmissions
succeeding is

Psucc(T) = (1 − τ) · A(T) · ∏
l′∈L(T)

(1 − τl′) (29)

where T = {l1, l2, · · · , lnl} and A(T) is an indicator function. If each node in T is outside
the CCA range of every other node in T, then A(T) = 1; otherwise, A(T) = 0.

Using Equation (29), the probability that all transmissions succeed when some WLAN
nodes located within the CCA range of the LTE-LAA eNB transmit in a timeslot is

Pw,s = ∏
T⊂L′

(
Psucc(T) · ∏

l′′∈T
τl′′

)
(30)
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Using the equation above, the probability of a collision occurring among transmissions
from WLAN nodes located within the CCA range of the LTE-LAA eNB is

Pw,c = (1 − τ) · (τw − Pw,s) (31)

Let Tlaa denote the expected time for a transmission by the LTE-LAA eNB, and let Tw,s

and Tw,c denote the expected times for a successful transmission by a WLAN node and a
collision experienced by the WLAN node, respectively. Using Ptr, Pu,s, Pu,c, Pw,s, and Pw,c in
Equations (25)–(28), (30), and (31), respectively, the expected time spent per channel state is

Es = (1 − Ptr)σ + Pu,sTlaa + Pw,sTw,s + Pu,c · max{Tlaa, Tw,c}+ Pw,cTw,c (32)

where σ is the timeslot size.
Let RW denote the data rate of the WLAN system, as defined in the 802.11 standard [20].

The throughput of the WLAN system can then be obtained as follows:

Sw =
Pw,sTdata

w,s RW

Es
(33)

Here, Tdata
w,s represents the portion of Tw,s during which data is transmitted.

Unlike for the WLAN system, we account for throughput degradation due to colli-
sions to estimate the throughput of the LTE-LAA system. Let PI,in represent the average
interference power caused by WLAN nodes within the CCA range. Then, similarly to
Equation (20), we can calculate PI,in; however, in this case, y = α · Rcca and dy = Rcca · dα.
Thus, PI,in is given by

PI,in � 2λn,inPnK ·
∫ π

0

∫ 1

0
ν(α, θ)−η · Rccadαdθ (34)

where λn,in represents the average number of WLAN nodes transmitting simultaneously
within the CCA range. Let γin denote the SINR measured during a collision. Then, referring
to Equation (16), it is given by γin = Prx,u

PI+PI,in+PN
. Thus, using Equation (21), the throughput

of the LTE-LAA system is

Slaa =
Tdata

laa · {Pu,sRlaa(γ) + Pu,cRlaa(γin)}
Es

(35)

Here, Tdata
laa represents the portion of Tlaa during which data is transmitted, and γ denotes

the SINR measured when there is no interference from WLAN nodes within the CCA range,
which can be calculated using Equation (16). If multiple LTE-LAA devices are present, γ

and γin are computed as the average SINRs across all LTE-LAA devices.

3. Performance Evaluation

We obtained numerical results for the throughput of each system in a coexistence
scenario involving LTE-LAA and WLAN systems. As illustrated in Figure 1, we assumed
a scenario for performance evaluation where a single LTE-LAA small cell coexists with
multiple WLAN access points (APs) operating at a carrier frequency of 5.8 GHz over
a 20 MHz bandwidth. Within the LTE-LAA cell, 10 LTE-LAA devices were uniformly
distributed, and within a cell of radius RI , five or fifteen APs were also uniformly located.
Each AP was connected to five WLAN nodes. The urban micro non-line-of-sight model for
a hexagonal cell layout was used to estimate the path loss [12]. Here, with r representing
the distance in meters and fc the carrier frequency in GHz, the path loss was given by
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PL = 36.7 log10 (r) + 22.7 + 26 log10 ( fc) (dB). This yields the corresponding values of
K = 10−7.254 and η = 3.67 [18]. The other parameters required for our performance
evaluation were as follows: Pa = 20 dBm, Ps = 17 dBm, Pe = 30 dBm, PN = −90 dBm,
W0 = 16, RI = 40 m, κbw = 0.6726, κc = 0.75, κsinr = 1, B = 20 MHz, DIFS = 34 μs,
SIFS = 16 μs, σ = 9 μs.

The WLAN transmission rate, RW , was set to 72 Mbps, while the rate for LTE-LAA can
be calculated using Equation (21). The medium access control and physical layer header
sizes were set to 272 bits and 128 bits, respectively. The acknowledgment packet was
configured with 336 bits, and the payload size was 12,000 bits. The durations Tu,s, Tu,c, Tw,s,
and Tw,c were influenced by RW , RU , the sizes of headers, acknowledgments, and payload,
as well as DIFS, SIFS, and the propagation delay [21]. The propagation delay was set to
2 μs.

To examine how the contention window size W at the LTE-LAA eNB affects through-
put, Figures 7 and 8 present the average throughput versus W for LTE-LAA, WLAN, and
the total system (i.e., LTE-LAA+WLAN). It can be observed that, as W increases, the aver-
age WLAN throughput increases while the throughput of the LTE-LAA system decreases.
This is due to the LTE-LAA eNB experiencing longer backoff durations as W increases,
allowing WLAN nodes more frequent access to the channel. Moreover, Figures 7 and 8
illustrate that the average throughput of the LTE-LAA system is lower when fifteen APs
are positioned within a cell radius RI , compared to when only five APs are positioned. This
is due to the fact that having fifteen APs increases the number of WLAN basic service sets
within the CCA range compared to having only five APs.

Figures 9 and 10 demonstrate that the average throughput of both LTE-LAA and
WLAN systems is highly influenced by the CCA threshold, Pcca, at the LTE-LAA eNB.
These figures also reveal distinct operational behaviors between the two systems. For
WLAN, the average throughput continuously decreases as Pcca increases. In contrast, the
LTE-LAA throughput, shown in Figure 10, increases as Pcca approaches −79 dBm and then
gradually declines as Pcca continues to increase. Note that a higher CCA threshold reduces
the number of WLAN basic service sets within the CCA range, while the interference
experienced by the LTE-LAA device, caused by concurrent transmissions of WLAN nodes
in the interfering area, intensifies with an increase in Pcca.
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Figure 7. Average throughputs of LTE-LAA and WLAN systems versus W when five APs are
positioned within a cell radius RI .
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Figure 8. Average throughputs of LTE-LAA and WLAN systems versus W when 15 APs are posi-
tioned within a cell radius RI .
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Figure 9. Average throughputs of LTE-LAA and WLAN systems versus Pcca when 5 APs are posi-
tioned within a cell radius RI .
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Figure 10. Average throughputs of LTE-LAA and WLAN systems versus Pcca when 15 APs are
positioned within a cell radius RI .

205



Mathematics 2025, 13, 59

4. Conclusions

We proposed an analytical model using a Markov chain approach to represent the
random backoff and CCA operations of LTE-LAA and WLAN systems in a coexistence
scenario, thereby enabling throughput calculations for both systems. Numerical results
demonstrated that the CCA threshold and contention window size configured at the
LTE-LAA eNB were critical in balancing the throughput between LTE-LAA and WLAN
systems. A larger contention window size set at the LTE-LAA eNB led to longer backoff
periods, thereby increasing channel access opportunities for WLAN nodes. Similarly, a
lower CCA threshold at the LTE-LAA eNB heightened its sensitivity to concurrent WLAN
transmissions, resulting in fewer channel access opportunities for the LTE-LAA eNB.
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Abbreviations

Notations for our proposed throughput study.

Notation Description
P[k′1, k′2|k1, k2] Transition probability from state (k′1, k′2) to state (k1, k2)

b(0, k2) Stationary probability of being in backoff state (0, k2)

b(−1, k2) Stationary probability of being in post-backoff state (−1, k2)

W Contention window size of LTE-LAA eNB
Pcca CCA threshold of LTE-LAA eNB
q Probability of at least one packet awaiting transmission at the start of a timeslot
τ Probability that the LTE-LAA eNB is attempting transmission in a timeslot

τw
Probability that WLAN nodes located in the CCA range are attempting
transmission in a timeslot

Pidle Probability that the medium will be sensed as idle in a timeslot
p Collision probability of LTE-LAA eNB
pw Probability of a collision among WLAN nodes located in the CCA range

RI
Distance between LTE-LAA eNB and the outer boundary of the interfering
region

Rcca Radius of the CCA range of LTE-LAA eNB
Rlaa(·) Data rate of LTE-LAA eNB
RW Data rate of a WLAN transmission
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