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Preface

Conversely, soft computing methods do not rely on symbolic logical reasoning or numerical

modelling. Instead, they utilize approximate reasoning and processes to address complex real-life

problems that are difficult to model mathematically or are not adequately represented by conventional

methods. Soft computing integrates several computing paradigms mainly including probabilistic

reasoning, fuzzy logic, artificial neural networks and genetic algorithms. These paradigms are

complementary to each other and can be utilized concurrently to solve specific problems. Soft

computing emerged during the 1980s and has since been successfully applied in many domestic,

commercial, and industrial settings, making it a significant research area in automatic control

engineering.

The present reprint contains 10 of the total 31 articles submitted that were accepted and published

in the Special Issue “Advances and Applications of Soft Computing” of the MDPI Mathematics journal.

This Special Issue can be regarded as a continuation of the Special Issue “Fuzzy Sets, Fuzzy Logic and

their Applications” of the same journal containing, which contained a total of 57 papers and was also

published in the form of a book in three volumes (2020, 2021, and 2023). It is my hope that all these

67 articles, which cover a wide range of the theory and applications of soft computing, will provide

useful feedback for all those working in this area.

The ten papers of the present book are listed in the order that they were accepted and published

in Mathematics during the years 2023 and 2024. The first paper, authored by Anushree Bhattacharya

and Madhumangal Pal, presents an application of fuzzy graph theory to the facility location problem

with a case study in the Indian banking system.

The second paper, authored by Said Broumi, Raman Sundareswaran, Marayanagaraj

Shanmugapriya, Prem Kumar Singh, Michael Voskoglou, and Mohamed Talea, attempts a multi-criteria

decision analysis of faculty performance using interval-valued Fermatean neutrosophic sets.

The subsequent paper, authored by Na Chen, Shengling Gentg, and Yonming Li, presents a novel

approach for modeling and verifying uncertain cyber-physical systems. This approach utilizes decision

processes and employs fuzzy linear time properties.

The fourth paper, authored by Abdulaziz M. Alanaz, Gulam Muhiuddin, Bashair M. Alenazi,

Tonmoy Maharatra, and Madhumangal Pal, utilizes m-polar fuzzy saturation graphs to solve optimal

allocation problems.

The fifth paper, authored by Zanyar A. Ameen and Mesfer Algahtani, studies some classes of soft

functions defined by soft open sets modulo soft sets of the first category.

The subsequent paper, authored by Ahmed Al-Omari and Wafa Agurashi, introduces the concept

of soft ideal dense sets and examines their fundamental properties, with a focus on hyperconnectedness

and resolvability of soft ideal topological spaces.

In the seventh paper, authored by De Andres Sanchez, an intuitionistic fuzzy chain ladder method

is used to calculate insurance claim reserves.

In their subsequent paper, Hao Guan, Waheed Ahmed Khan, Amna Fida, Jana Shafi, and Aysha

Khan introduce some new types of dominations in intuitionistic fuzzy directed graphs. These new

types of domination are based on certain types of strong arcs. The authors discuss various useful

characteristics of these dominations and examine existing relations among them.

In the ninth paper, Dina Abuzaid, Samer Al-Ghour, and Monia Naghi introduce a novel class of

soft sets is introduced, called “soft ωδ – open sets”. This class constitutes a soft topological space, and

the authors prove some related decomposition theorems.

ix



In the final paper, the authors Panagiotis Mangenakis and Basil Papadopoulos present a formula

that, under specific conditions, produces new classes of strong fuzzy negations, fuzzy implications,

and copulas.

As the Guest Editor, I would like to express my gratitude to the authors and reviewers, as well

as the administrative staff of MDPI, for their support in completing this project. I would also like to

extend my special thanks to the Managing Editor, Ms. Grace Du, for her excellent collaboration and

assistance over the past five years (2018-2024).

Michael Voskoglou

Guest Editor
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A Fuzzy Graph Theory Approach to the Facility Location
Problem: A Case Study in the Indian Banking System

Anushree Bhattacharya † and Madhumangal Pal *,†
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Midnapore 721102, India; rsmo_ anumath96@mail.vidyasagar.ac.in
* Correspondence: mmpalvu@mail.vidyasagar.ac.in
† These authors contributed equally to this work.

Abstract: A fuzzy graph G is stated to have a set of trees as its tree cover if all the vertices of G
are in their union. The maximum weight tree in the tree cover is assumed to be the cost of a tree
cover for a fuzzy graph. For an integer β > 0, finding a set of trees to cover all the vertices of a
graph with minimum cost and at most β number of spanning trees is known as the β-tree cover
problem. Combining the tree-covering concept and facility location problem in a fuzzy environment
for solving critical real-life problems in the recent era is a more fruitful approach. This issue strongly
inspires us to develop a model with a practical algorithm. This paper provides an algorithm and
complexity analysis to determine the number of rooted trees s covering the given fuzzy graph. In
addition, a model is constructed with three optimization programming problems in the facility
location problem and a tree covering fuzzy graphs. The model includes two types of the facility
location problem, simultaneously addressing a variable covering radius and a fixed covering radius.
A numerical example is provided to further describe the model, then, in the application part of
the paper, the proposed model is applied to solve the real-life problem of maximizing demand
saturation by minimizing the number of small denominations in the Indian banking system. This
problem involves the data input of different indicators in the banking system along with details of
the denominations of banknotes.

Keywords: fuzzy graph; tree covers; covering problem; tree covering number; fuzzy optimization

MSC: 05C72

1. Introduction

Most of the problems with uncertainties in our daily life can be modelled by fuzzy
graphs. Fuzzy graph theory plays a salient role in making real connections between various
objects in a system, with applications in network routing, wireless sensor networks, com-
puter science, medical science, operations research, and more. In this introductory situation,
the concept of fuzzy graphs provided by Rosenfield [1] is presented as an interesting fuzzy
mathematical tool in graph theory.

A tree cover of a fuzzy graph G = (V, σ, μ), denoted by τ(G), is the set of the minimum
number of fuzzy trees as induced subgraphs that cover all the vertices of G. For a crisp
graph, the tree cover number is approximated as the maximum positive semi-definite
nullity as a conjecture. Although this graph parameter was first introduced as an essential
tool in 2011, there is very little information in the existing literature.

For minimizing the maximum cost of a tree cover, we are interested in finding a tree
covering of a fuzzy graph with at most s number of trees which span the whole graph, as it
is known that constant factor approximations to travelling salesperson tracks can be used
to find the minimum number of spanning trees.

The actual purpose of the facility location problem is to decide which node to allocate
to a set of facilities in order to provide full coverage to the service needed for several

Mathematics 2023, 11, 2992. https://doi.org/10.3390/math11132992 https://www.mdpi.com/journal/mathematics1
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demand nodes in a system in the most efficient way. In addition, a customer or demand
point may decide on the location of their facility nodes to cover the demand needed by every
customer in the fuzzy network. Nowadays, one of the crucial problems is the placement of
servers or data objects in any communication network to ensure that the latency of access
is optimized. However, the primary purpose of the problem is always the same; the aim is
to maximize the profit, that is, to minimize the allocation costs of different facility nodes in
the system.

Many facility location problems include possible locations for facility nodes to be built
on or opened at already-built facilities. In this case, information about the building or
opening cost for a facility in that location is supplied. A set of demand nodes or customers
can be considered, with detailed information about the amount to be covered and the
connection cost between the demand point and a certain facility point. On the other hand,
many conditions or restrictions in a facility’s location problem need to be satisfied. An
objective function which needs to be optimized is always present in such problems. One
objective function is generally based on the cost, which includes all types of costs, such as
demand, ordering, transportation, etc., for all system facilities.

In certain facility location problems, a profit can be associated with the assignment,
then the objective profit function is optimized. One critical way of characterizing the facility
location problem is on the basis of whether the facilities in the system are of variable-
covering radius or fixed-covering radius in terms of how many demand nodes are to be
covered by a facility within its covering radius. This kind of facility location problem is
difficult to solve; we handle such problems in this article.

Now, we have to go through the rich literature on covering problems, which is the
main topic of work within this article. The tree covering problems modelled and solved in
this article are closely associated with the works of Arkin, Hassin, and Levin [2], who have
dealt with various covering problems, including coverage of vertices for a crisp graph and
a subset of edges of a graph with a partition in walks, paths, or stars. There are a variety of
studies on approximation algorithms to minimize the number of objectives for covering
purposes (such as paths) by satisfying some restrictions on the cost of each covering object.

An efficient feasible solution includes k-tours for covering the vertices of a crisp graph
in the k-traveling salesperson problem. The main objective in this model is to minimize
the total tour length. It is possible to partition all vertices of a graph into several clusters,
and the weight of a star or low-cost spanning trees in the cluster is considered the weight
of the cluster in that graph. Rana et al. [3] worked on unweighted interval graphs with
conditional covering problems (CCP). In addition, Bhattacharya and Pal have presented
works on different types of covering problems involving fuzzy graphs [4–7].

Mordeson and Peng [8] discussed concepts around various operations on fuzzy graphs.
Samanta and Pal [9] have provided results on the fuzzy colouring of fuzzy graphs and
fuzzy tolerance graphs. Fuzzy planar graphs with m-polarity are discussed in the work
of Ghorai and Pal in [10]. Cardinal and Hoefer [11] have worked on various types of
covering games. Chang and Zadeh handled fuzzy mappings and control techniques
in [12]. Chaudhry introduced new heuristics for solving CCP in [13]. Chen and Chen [14]
have provided a new method of finding similarity measures between two fuzzy numbers.
Ghorai and Pal [15] have studied faces and dual m-polar fuzzy graphs. Jurji and Borut
combined research on the facility location and covering problems in [16]. Fuzzy graphs
were used in network optimization by Koczy [17]. In a similar way, Hakimi [18] worked on
communication networks. The problem of emergency service facility location was handled
by Toregas et al. [19]. Related problems on fuzzy graphs were studied and solved by
Bhattacharya and Pal in [20].

Nayeem and Pal [21] solved the shortest path problem on a network. Ni [22] worked on a
research area involving covering problems of edges having minimum weights. Pal et al. [23]
detailed new ideas with respect to modern trends in fuzzy graph theory. Pramanik et al. [24]
discussed interval-valued fuzzy planar graphs. A study on bipolar fuzzy graphs was revealed

2



Mathematics 2023, 11, 2992

by Rashmanlou et al. in [25]. The research area of Samanta et al. in [26] included vague graphs
and their strengths.

The motivation for the present article arises from the “Doctor station location” problem.
Consider the problem of a hospital that requires s doctors to be located in the campus area
for total coverage. A single doctor can be assigned to a particular number of patients, and
the doctors make their rounds in shifts during the morning. The purpose of the problem is
to find suitable locations for doctor stations and determine how to cover the requirement
of treating every patient in such a way that the time for completing the entire process
is minimized. Similar types of real-life problems motivate us to use the concept of tree
covering in a modelled graph.

The “doctor station location” problem is similar to the problem of covering a graph
with at most k number of tours while maintaining the minimum value of the maximum
length of a tour. A constant factor approximation for a minimum number of trees spans the
whole graph of travelling salesperson tours. We are interested in finding a covering of the
graph with at most k number of spanning trees and the minimum value of the maximum
weight of those trees. When a doctor must return to their station to pick up necessary
supplies without first visiting every patient, a variation occurs in the considered problem.
At such a point, the problem of covering the graph is formulated with the help of stars
in the graph. In addition, we can consider the possibility of the hospital already having
been built with all required doctor stations, in which case we only need to find the best
possible way of assigning patients to doctors. Thus, these problems are transformed into
the problem of finding rooted trees that covering the graph.

The idea described above inspires us to deal with tree-covering problems; for a realistic
level of imprecision, we include the flavour of fuzzy graphs in this article. In addition,
we chose the banking system as a case study in the application part, keeping in mind the
importance of a developed model in solving real-life problems involving a combination of
the facility location problem and tree covering of fuzzy graphs. The need to address such
circumstances and situations influence our construction of a model with three optimization
programming problems.

The main contributions in the sense of covering problems and real-life implications
are organized in this portion. There are two variations of the facility location problems, one
in which the covering radius is fixed for all facility vertices and one in which the covering
radius differs for the vertices of different facilities. Earlier works have addressed covering
radius variations and solved related problems involving a particular type of covering
radius. However, it is more practical to have the number of demand points be saturated by
a particular facility vertex of a fuzzy network depending on the covering radius type.

The contributions of this paper can be summarized as follows:

(i) This paper is the first to handle the two cases of a fixed covering radius and variable
covering radius simultaneously in one model. The concept behind our proposed
model is intended to cover all demand vertices. In this paper, we solve such complex
facility location problems by minimizing the number of facility vertices, minimizing
the total cost for all demand vertices, and maximizing the demand saturation of
facility vertices. All fuzzy solutions for the model are determined using ‘LINGO’
mathematical software 18.0.44.

(ii) We introduce new definitions of tree cover and tree covering numbers for a fuzzy
graph, design an efficient algorithm to determine the number of rooted trees s needed
to cover a fuzzy graph, and present the algorithm’s complexity analysis.

(iii) In the application part, we analyze the Indian banking system using our developed
model and algorithm. As an outcome of this real-life application, the conclusion is
reached that the number of small denominators (up to INR 100) is minimized. The
cost required to maintain the flow of denominations for the Indian banking system is
thereby minimized. Lastly, the demand saturation of denominations at the bottom
level is assessed in the interest of economic freedom.

3
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This article includes the following sections, excluding the present introduction. In
Section 2, necessary definitions and concepts are provided. The covering problem consid-
ered in this article is described in Section 3 with the mathematical formulation. Section 4
illustrates the mathematical formulation of the developed model. Section 5 illustrates
the model with a suitable example. A real-life application involving emergency aircraft
landing situations is analyzed using the proposed model in Section 6. Finally, our overall
conclusions are provided in Section 7.

2. Preliminaries

Several basic definitions and necessary aspects are provided in this portion of the
paper. These parameters are beneficial in developing the model for a fuzzy graph with a
facility location concept.

Here, all the components of a triangular fuzzy number (TFN) are normalized, i.e.,
between 0 and 1. Different types of scaling are used for the normalization process in
different situations. Additionally, the format of the TFN with the representation of its
components as in Definition 1 is followed throughout the article.

Definition 1 ([4]). Let P̃ = (p1, p2, p3) be a TFN that has the following function as its membership
function:

μP̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ p1
x− p1

p2 − p1
if p1 < x ≤ p2

1 if x = p2
p3 − x
p3 − p2

if p2 < x ≤ p3

0 if x ≥ p3.

Then, the defuzzified form of P̃ is denoted by |P̃|, defined as

|P̃| = 1
6
|(p1 + 4p2 + p3)|.

Definition 2 ([8]). A fuzzy graph G = (V, σ, μ) is a non-empty set which carries two functions,
σ : V → [0, 1] and μ : V ×V → [0, 1], for all x, y ∈ V, where σ is the vertex-membership function
and μ is the edge-membership function satisfying μ(x, y) ≤ min{σ(x), σ(y)}.

Definition 3 ([4]). A set of vertices ṼC(G) of a fuzzy graph G = (V, σ, μ) is said to be a fuzzy
vertex cover of G if each vertex of G = (V, σ, μ) is incident to every edge of G within a fuzzy
covering radius R̃g.

Definition 4. Consider a fuzzy graph G = (V, σ, μ). A coverage radius R̃g of G is defined as a
predefined number which reflects a distance in G. If d̃(u, v) ≤ R̃g for an arbitrary vertex u of G,
then this vertex v is covered by u in fuzzy graph G.

Definition 5. Let G be a crisp graph and let FG = {G1, G2, ....., Gn} be a collection of subgraphs
of G where Gi is a tree for all i = 1, 2, ...., n. If Gi ∈ FG exists for every edge e ∈ E(G) such that
e ∈ E(Gi), then FG is a tree cover of G.

Definition 6. The tree covering number for a crisp graph G is provided by

tC(G) = min{|FG| : FG is a tree cover of G}.

Definition 7. Let G = (V, σ, μ) be a fuzzy graph and let τ(G) = {T1, T2, ....Tn} be a collection
of subgraphs of G where Ti is a fuzzy tree for all i = 1, 2, ...., n. If there exists Ti ∈ τ(G) for every

4
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edge uv with σ(uv) �= 0 in G such that σ(uv) �= 0 in Ti, then τ(G) is a tree cover of fuzzy graph
G = (V, σ, μ).

Definition 8. The tree covering number of a fuzzy graph G = (V, σ, μ) is provided by

TC(G) = minTi in τ(G)

{
∑

σ(u)σ(v)
μ(uv)

: u, v ∈ V(Ti), μ(uv) �= 0
}

.

2.1. Notations and Symbols

This part clarifies all the necessary notations to signify the quantities used in the entire
paper in deducing the theories. The symbols and their meanings are provided in tabular
form in Table 1.

Table 1. Notations and their meanings.

Symbol Meaning

G fuzzy graph.
V non-empty vertex set for fuzzy graph G.
σ vertex membership function.
μ edge-membership function.

TCi i-th tree cover in any fuzzy graph.

Mμ(G)
spanning tree with minimum size with respect to edge-membership

function for a fuzzy graph G.
Fi i-th forest present in a fuzzy graph.

d(T, x) distance of the tree T from any arbitrary vertex x.

A considered fixed bin capacity of the proposed algorithm
FUZZY-BIN-PACK.

c(T) cost of the tree T.
τ(G) tree-cover set for a fuzzy graph.

I = {1, 2, ..., m} the set of possible choices of demand locations in a fuzzy graph.
J = {1, 2, ..., n} the collection of possible choices of facility locations.

yj fuzzy variable for indicating demand saturation for demand point j.

cij
the approximate number of days to saturate demand by a facility vertex i

to a demand vertex j, which is a fuzzy number.
δij it is 1, if the cost is paid by demand node j to facility node i, 0 otherwise.
fi the fuzzy cost (fuzzy) paid in facility node i for transportation.
dj fuzzy cost paid for demand ordering by demand point j.

K maximum number of possible vertices (locations) which will be allocated
in a fuzzy graph G.

M maximum limit of the total amount of facility supplied in a fuzzy system
for the developed model.

R̃g fuzzy covering radius.
TC(G) tree covering number.

F set of facility points of the fuzzy graph.
D set of demand points of the fuzzy graph.
xi fuzzy variable denoting the point for placing facility.
Fn total number of facility nodes in a fuzzy graph.
Zc total cost involved in the fuzzy system.
Ds demand saturation of fuzzy system.

w(u, v) weight associated to an arbitrary edge (u, v) of fuzzy graph G.
wi or, w(i) weight associated to an arbitrary vertex i.

c(u, v) fuzzy cost associated to an arbitrary edge (u, v).
c(u) fuzzy cost associated to an arbitrary vertex u.

2.2. Problem under Consideration

Consider a fuzzy graph G = (V, σ, μ), where V is the set of vertices. There are three
types of vertices in the graph: facility vertices, demand vertices, and free vertices. The
free vertices are neither demand vertices nor facility vertices. The graph is assumed to
contain some demand and facility vertices, while the free vertices may or may not exist.

5
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The facility vertices can store commodities (such as food, water, weapons, etc.) required for
emergency or regular distribution. These vertices may be hospitals, military camps/offices,
ration shops, or distribution centres. Demand vertices take such commodities for use, and
generally represent people, organizations, etc. Free vertices are neither demand vertices nor
facility vertices. Thus, new facility vertices may be initiated with respect to any free vertices.
Because these vertices have no demand, free vertices cannot be considered demand vertices.

There are two possible cases. The first is that all the demand vertices are covered by
at least one facility vertex (i.e., the required demand is fulfilled by any one of the facility
vertices), regardless of the cost or distance to reach the facility. In the second case, certain
demand vertices are not covered by facility vertices (as the demand vertices may be far
away from facility vertices, or transport or other costs may be too high).

In both situations, we insert more facility vertices to reduce the cost, distance, etc. It
is assumed that each facility vertex may cover all the demand vertices within a specific
circular region (i.e., provide the commodities to the demand vertices). The radius of this
circular region is called the covering radius. This radius may be the same for all facility
vertices (i.e., fixed) or different for different ones. In this case, the covering radius is variable
or dynamic.

Many parameters or situations may arise with respect to constructing new facility
vertices. Here, we select the free vertices as facility points under different assumptions,
objectives, and constraints.

The main assumptions are:

(a) The building cost for a facility point at an arbitrary vertex (say, i) can be taken as ci (a
fuzzy number).

(b) If a customer at vertex k has decided to take services from a facility point (at i), then a
cost δik (a combination of the establishment cost, ordering cost, and transportation
cost) is imposed on the demand point.

(c) There are two types of covering radius: the first is a variable covering radius in which
each facility serves unlimited customers, i.e., the covering radius is flexible depending
on the situation, while the second is a fixed covering radius in which each facility can
serve a maximum (say, u) number of demand points.

The objectives of our model are as follows:

(a) Minimize the total number of facilities.
(b) Minimize the total cost for all demand points.
(c) Maximize demand saturation by the facilities.

We use the following constraints or restrictions:

(a) The total number of facility nodes must be less than or equal to the maximum number
of locations allocated in the fuzzy graph.

(b) The sum of the value of supplying a service by an arbitrary facility point i to a
customer at demand point j is assumed to take a fixed value (say, M).

(c) The total demand cost in a certain period (say, t1) is less than or equal to the total
servicing cost in the fuzzy network.

(d) The servicing cost paid by an arbitrary demand point i is always a positive amount.
(e) The upper limit of the covering demand cost is the product of K and cij, where K is

the maximum number of possible vertices (locations) allocated in a fuzzy graph G
and cij is the approximate number of days needed by a facility vertex i to saturate
demand with respect to a demand vertex j, with j being a fuzzy number.

(f) The flexibility of a facility point j in terms of providing facilities is less than or equal
to the amount of the covering demand.

(g) There should always be a non-zero day for ordering demand and providing facilities
from a facility point.

6
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3. Problem Description

In this portion, the considered covering problem in a facility location model is de-
scribed in a broader sense. A simple connected fuzzy graph is taken as an example
throughout this article. The covering radius for the facility points is taken as a fuzzy
number. In a system with fuzziness, distances and other types of costs are taken as fuzzy
numbers as well.

Our model assumes that the resulting fuzzy system has two types of facility nodes.
(i) Facility location problem with variable covering radius. For the variable cover-

ing radius case, the following problem is considered: let N = {1, 2, ..., n} be a possible set of
locations, and let dij for i, j = 1, 2, ..., n be the distances between them. For possible choices
of points to open a facility, for each location j ∈ D, a subset F ⊆ N is supplied, while for
opened facility points a subset D ⊆ N is assigned to the demand points. Corresponding to
every location i ∈ F, the non-negative cost fi is assumed at location i. In addition, δij is the
cost of demand location j assigning an opened facility point at i per unit of demand.

It is assumed that these costs are symmetric and non-negative fuzzy numbers and that
they satisfy the following triangular inequality:

δij = δji for all i, j ∈ N and δij + δjk ≥ δik for all i, j, k ∈ N.
To minimize the total cost, finding a feasible assignment to an open facility point of

every location in the set D is required.
(ii) Facility location problem with fixed covering radius. In this case, we consider

the situation where every existing facility point produces a total demand less than or equal
to a positive integer. It is interesting to investigate whether we can prove that the adaptive
covering radius in our developed algorithm affects the capacity of the facility location
problems for finding the tree cover of a fuzzy graph and solving facility location problems
with a fixed covering radius.

When the optimal value of the total demand is given in the variable covering radius
type, the trivial problem is finding the corresponding facility points for the fuzzy graph. In
this case, anyone can assign each location j ∈ D to the location i such that δij provides the
minimum value among all possibilities ensuring that yi = 1.

There is sufficient capacity for the fixed covering radius to saturate the total demand
occurring in a fuzzy system. Two variants of facility location problems exist in our consid-
eration. The situations are selected depending on the demand condition for each vertex of
the fuzzy graph. An arbitrary facility point is allocated for only one demand point, or the
facility point is fractionally split among more than one demand point in the system.

First, we must determine the type of the problem, i.e., whether it is of variable or fixed
covering radius type. Then, we need to find an arrangement to ensure that there is a route
to a facility point by optimizing all parameters. For example, we can take the amount
of demand at each demand point together with an integer value representing the upper
bound of demand for a particular problem. A minimum cost assignment is determined if
the optimum value for total demand is supplied. In every problem, the presumption is that
corresponding weights (edge weights and vertex weights) for facility points are provided.

To solve the considered problem, one crucial task is to find a tree cover of a fuzzy
graph with an optimized cost different from the problem. In the next portion, we design an
algorithm for finding such a tree cover.

3.1. Algorithm to Find Rooted Trees Covering Fuzzy Graph G

The bin packing problem is an optimization problem in which items of different sizes
must be packed into a finite number of bins or containers, each of a fixed capacity and
depending on the covering radius, in a way that minimizes the number of bins used.
Generally, a BIN-PACK Algorithm refers to an approximation algorithm used to solve the
above bin packing problem.

In this portion of the paper, we modify an existing BIN-PACK algorithm designed
for crisp graphs for use with fuzzy graphs. We briefly describe the FUZZY-BIN-PACK
Algorithm used to find a tree cover for the fuzzy graph G = (V, σ, μ) with an optimized cost
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of at most 4A. It should be noted here that the set of vertices for locating the facility/demand
points is treated as a collection of elements in our modified algorithm.

In Algorithm 1, we take a fuzzy graph G = (V, σ, μ) with vertex and edge costs as
input. We provide a fixed capacity A for a fixed covering radius case of facility vertices (i.e.,
bin capacity) for the given graph. We aim to find a tree cover of G with an optimized cost
of at most 4A. In the first step, we compare the cost of any arbitrary vertex with A. If the
cost is higher than A, we remove it from the vertex set of G. Next, we find a spanning tree
with a minimum size in G, a transformed version of G when the roots in a given sample
set S of vertices to be either facility or demand nodes are contracted to a single vertex.
Then, we collect all uncontracting from the minimum spanning tree and obtain forests {Fi}i
for i = 1, 2, ..., z. Now, to decompose the edges of each forest, we can find trees and an
individual component such that the cost of the obtained trees must belong to [A, 2A) and
the cost of the other portion must be less than the fixed bin capacity A. In the next step, if
the distances from the obtained trees to an arbitrary vertex of G are less than or equal to A,
we check whether the trees are subgraphs or not for all possible cases. If all trees are not
subgraphs of G, then we can conclude that the considered bin capacity is too low in cost;
in this case, the process is repeated after modifying the value. On the other hand, if every
tree is a subgraph of G, a success statement is returned for the choice of this bin capacity
in obtaining an optimized tree cover of G. Finally, we obtain a set of trees which are all
subgraphs of G for which the number of roots of these trees is finite, i.e., a tree covering
with optimized bin capacity for the facility and demand vertices of the given fuzzy graph
with finite size.

Algorithm 1: FUZZY-BIN-PACK.

Input: A fuzzy graph G = (V, σ, μ) with associated costs to the vertices and edges.
Also, a fixed bin capacity ‘A’ and a sample set S of vertices for choosing as
facility and demand vertex are given.

Output: A tree cover for the fuzzy graph G = (V, σ, μ) with the optimized cost at most
4A.

Step 1: If c(u) > A, then
V(G) = V(G)\u for any arbitrary u ∈ V(G).

Step 2: For a fuzzy graph G = (V, σ, μ), find Mμ(G) (spanning tree with minimum
size) of G which is a transformed version of G when the roots in S are contracted
to a single vertex.

Step 3: In S, un-contracting roots from Mμ(G); obtain a forest {Fi}i for i = 1, 2, ...., z.
Step 4: Decompose edges of each tree Fi into trees {Ti

j}j + Ni such that c(Ti
j ) ∈ [A, 2A),

for every j and c(Ni) < A.
Step 5: If d(Ti

j , x) ≤ A for any arbitrary vertex x ∈ V(G).

Check whether Ti
j is a sub-graph of G for all j.

Step 6: If not all trees are sub-graph of G, then
Return failure: “A is a too low cost".

Step 7: If every tree is a sub-graph of G, then
Return to success and go to step 8.

Step 8: Get a set of trees where each tree consists of Ti
j , a sub-graph of G, the number

of roots is s, and the tree N (if any) in leftover, which contains the fuzzy root
graph G, denoted by r.

3.2. Complexity Analysis of the Proposed Algorithm

We next explore the complexity analysis of our proposed FUZZY-BIN-PACK algorithm.
In this algorithm, we fix the bin capacity to cover the whole fuzzy graph with the help
of trees by limiting the cost to most four times the bin capacity, as per our previous
considerations. If there are n number of vertices with non-zero membership values in the
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fuzzy graph, then the cost verification for the total number of vertices takes O(n) times. In
the next step, if there are m numbers of contracting roots in S to find a connected tree it takes
O(mn) times, as this is the most generalized possibility for finding trees to make a tree cover.
For other situations, every tree needs to be checked to determine whether it is a subgraph
of the considered fuzzy graph G by verifying the tree’s distance from any arbitrary vertex
of the main graph. For this purpose, the required time is O(mn). Therefore, the total time
required to perform the proposed algorithm is O(n)×O(mn)×O(mn) = O(m2n3). Thus,
the time complexity of our proposed FUZZY-BIN-PACK algorithm is O(m2n3).

3.3. Advantages of Proposed Algorithm

In brief, the approximation algorithm known as BIN-PACK can be used to solve
problems related to precise data. This algorithm helps to find the minimum number
of total bins needed to assign each item to a bin when considering a finite number of
items of different weights and a fixed capacity of bins in the system. This is useful in
finding the minimum number of facility vertices needed to saturate all the demand in a
system with crisp data and parameters, i.e., it is helpful for crisp graph scenarios under a
graph-theoretical approach.

Practically, however, such crisp models have little relation ro real-life problems which
involve several imprecise data types. Suppose that the number of the bins is not fixed;
in this scenario, the existing algorithm is not applicable, as it cannot find any parameter
with fuzziness. More clearly, it is obvious that in any network the accessible amount of
facilities and order of demand are uncertain, and depend on various circumstances within
the system. Therefore, it is notable that fuzzy graphs are a more practically justified tool
for modeling realistic problems. In these cases, the existing BIN-PACK algorithm fails to
compute the solution due to the need to handle fuzzy parameters. These more complex
situations motivate us to modify the BIN-PACK algorithm for fuzzy environments and
develop our proposed FUZZY-BIN-PACK algorithm. A complexity analysis of the proposed
modified algorithm is provided in Section 3.2.

4. Mathematical Formulation

In this article, we consider fuzzy systems modeled as fuzzy graphs. If any uncertain
or vague parameters are present in any system, it can be described as a fuzzy environment.
Vertices are chosen as facility or demand vertices based on the relevant information of a
particular case. It is obvious that in real life the available facilities and possible demand
must be imprecise. Thus, the vertices are fuzzy with regard to their respective membership
functions. Here, xi represents the number of fuzzy vertices that are facility vertices; on the
other hand, yj represents the amount of demand saturation by facility nodes. It is assumed
in the model that the maximum possible number for allocating demand or facility nodes is
K. The other notations and their proper meaning in the proposed model are provided in
Table 1. Next, we move through the mathematical formulation of objective functions subject
to all conditions in the model to find the solution of the problem described in Section 2.2.

The main objectives of the developed model are as follows:

(i) To construct the first objective function, we multiply the number of facilities n by the
corresponding fuzzy variable xi representing potential locations of facility vertices.
Meanwhile, several demand points m are multiplied by the fuzzy variable yj to repre-
sent demand saturation of the demand vertices. The operational cost is incorporated
in the calculation of the facility vertices through multiplication by the parameter δij.
In this way, the total number of facility and demand nodes provided by

Min Fn = ∑
j∈J

δijyjm + ∑
i∈I

δijxin

is minimized.
(ii) The second objective function related to total fuzzy cost is constructed by taking the

difference between two quantities, the first representing the product of the minimum
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number of days among cij needed to saturate demand in the fuzzy network based on
the amount of fuzzy cost fi paid by the facility node for transportation and the second
representing the product of the fuzzy cost dj paid for demand ordering, where the
maximum possible number for allocating demand or facility nodes in the network is
K. Therefore, we seek to minimize the total cost, which is represented by

Min Zc = ∑
i∈I

minj∈Jcij fi − K(maxj∈Jdj).

(iii) The last objective function seeks to maximize the total demand saturation of the
fuzzy network. The demand saturation of the network depends on the tree covering
number corresponding to the tree coverage of the network, the fuzzy transportation
and ordering costs, the fuzzy weights associated with demand, and the number of
facility points M for facilities available in the network. Thus, this objective function
involves four expressions: the first for fuzzy cost, the second for tree covering number
TC(G), the third corresponding to the fuzzy weights wi, and the last for the available
facilities. Therefore, we seek to maximize the demand saturation, as follows:

Max Ds = ∑
i∈I

∑
j∈J

cijδij + ∑
j∈J

djyjTC(G)−∑
i∈I

wi(∑
j∈J

δij)−M× fi.

The above-described functions are optimized in our model subject to certain conditions
that need to be satisfied. The constraints subjected to these objective functions are as follows:

(a) The total number of facility nodes must be less than or equal to the maximum number
of locations that can be allocated in the fuzzy graph

1 ≤ ∑
j∈J

yj ≤ K.

(b) The sum of the value of supplying services from an arbitrary facility node i to a
customer at demand point j is assumed to be a fixed value (say, M):

∑
j∈J

δijn ≤ M for i ∈ I.

(c) The amount of total demand cost in a certain period (say, t1) is less than or equal to
the total servicing cost in the fuzzy network:

∑
j∈J

(max dj)cij ≤ ∑
j∈J

∑
i∈I

fiyjm.

(d) The servicing cost paid by an arbitrary demand node i is always a positive amount:

0 ≤ fi ≤ 1.

(e) The upper limit of the covering demand cost is the product of K and cij:

TC(G)× (maxj∈Jdj)× fi ≤ K×∑
j∈J

cij

for i ∈ I.
(f) The flexibility amount when a facility node j provides facilities is less than or equal to

the amount of the covering demand

∑
j∈J

∑
i∈I

cijyj ≤ ∑
j∈J

djTC(G)

10
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(g) There should always be a non-zero day for ordering demand and for a facility node to
provide facilities:

0 ≤ cij ≤ 1.

5. Example Illustration

This section illustrates use of the proposed model for the fixed covering radius case of
the fuzzy graph G = (V, σ, μ) in Figure 1 along with its vertices and corresponding edges.
In this section, the parameters taken as fuzzy numbers in the description of the problem,
such as the covering radius, distances, weights, and the costs corresponding to the vertices
and edges of the fuzzy graph, are triangular fuzzy numbers. The proposed model can be
illustrated using other types of fuzzy numbers as well.

Figure 1. Considered fuzzy graph for illustration with the grey boxed value is the highest vertex-
membership value.

In this example, the fuzzy graph G = (V, σ, μ) in Figure 1 with 26 vertices and
29 edges and their corresponding membership values, weights, and fuzzy costs is taken as
an example. All of the weights and costs are triangular fuzzy numbers. We assume that all
required data are supplied in Table 2.

To assign the edge membership values in the fuzzy graph, it is maintained that

μ(u, v) ≤ min{σ(u), σ(v)},

w(u, v) ≤ min{w(u), w(v)},
c(u, v) ≤ min{c(u), c(v)},

for any arbitrary vertices u and v in V(G).
Using our developed algorithm, we can find a tree cover for the considered fuzzy

graph as follows:
τ(G) = {T1, T2, T3, T4}

where
T1 = {v1, v3, v4, v6, v7, v12, v13, v14, v27, v28},

T2 = {v8, v9, v10, v11, v19, v20},
T3 = {v17, v18, v21, v22, v23, v26},

T4 = {v2, v2, v5, v15, v16, v24, v25}.
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Table 2. Details of vertices for this illustration.

Vertices (vi) Membership Value (σ(vi)) Weights (w(vi)) Costs (c(vi))

v1 0.7 (0.6, 0.8, 0.9) (0.2, 0.5, 0.7)
v2 0.5 (0.3, 0.4, 0.7) (0.4, 0.5, 0.8)
v3 0.8 (0.9, 0.97, 0.99) (0.4, 0.52, 0.78)
v4 0.62 (0.7, 0.83, 0.88) (0.3, 0.48, 0.57)
v5 0.79 (0.27, 0.35, 0.48) (0.7, 0.82, 0.9)
v6 0.5 (0.4, 0.57, 0.63) (0.6, 0.73, 0.85)
v7 0.92 (0.4, 0.6, 0.7) (0.32, 0.46, 0.53)
v8 0.86 (0.2, 0.37, 0.42) (0.49, 0.58, 0.67)
v9 0.59 (0.3, 0.42, 0.59) (0.5, 0.63, 0.78)
v10 0.63 (0.49, 0.56, 0.64) (0.3, 0.5, 0.78)
v11 0.39 (0.53, 0.68, 0.72) (0.79, 0.82, 0.93)
v12 0.87 (0.48, 0.53, 0.6) (0.2, 0.37, 0.42)
v13 0.52 (0.3, 0.42, 0.53) (0.4, 0.5, 0.7)
v14 0.78 (0.5, 0.7, 0.9) (0.9, 0.95, 0.98)
v15 0.35 (0.7, 0.72, 0.8) (0.3, 0.34, 0.43)
v16 0.54 (0.2, 0.32, 0.45) (0.7, 0.81, 0.9)
v17 0.34 (0.4, 0.57, 0.62) (0.6, 0.72, 0.84)
v18 0.82 (0.6, 0.8, 0.9) (0.32, 0.46, 0.54)
v19 0.75 (0.4, 0.53, 0.67) (0.5, 0.62, 0.79)
v20 0.8 (0.3, 0.42, 0.53) (0.4, 0.5, 0.7)
v21 0.53 (0.5, 0.62, 0.73) (0.2, 0.35, 0.48)
v22 0.38 (0.6, 0.72, 0.83) (0.42, 0.57, 0.6)
v23 0.72 (0.47, 0.52, 0.68) (0.53, 0.68, 0.74)
v24 0.68 (0.52, 0.68, 0.79) (0.3, 0.4, 0.7)
v25 0.79 (0.58, 0.62, 0.84) (0.35, 0.48, 0.57)
v26 0.94 (0.39, 0.46, 0.79) (0.82, 0.87, 0.94)
v27 0.7 (0.28, 0.37, 0.42) (0.58, 0.62, 0.78)
v28 0.35 (0.45, 0.51, 0.67) (0.32, 0.48, 0.55)

The programming problem denoted as Problem 1 of the constructed model with three
objective functions and associated conditions is provided as follows:

Problem 1. Min Fn = ∑j∈J δijyjm + ∑i∈I δijxin
Min Zc = ∑i∈I minj∈Jcij fi − K(maxj∈Jdj)
Max Ds = ∑i∈I ∑j∈J cijδij + ∑j∈J djyjTC(G)−∑i∈I wi(∑j∈J δij)−M× fi
Subject to constraints
1 ≤ ∑j∈J yj ≤ K
∑j∈J δijn ≤ M for i ∈ I
∑j∈J(maxdj)cij ≤ ∑j∈J ∑i∈I fiyjm
0 ≤ fi ≤ 1
TC(G)× (maxj∈Jdj)× fi ≤ K×∑j∈J cij
for i ∈ I
∑j∈J ∑i∈I cijyj ≤ ∑j∈J djTC(G)
0 ≤ cij ≤ 1
We assume the following for this example:
δij = 1 for the payment situation of demand point j with respect to facility point i.
mincij is the approximate number of days needed by facility node i to saturate the demand of

demand node j=(0.58, 0.65, 0.79).
fi is the fuzzy amount to be determined; it is the approximated cost paid at facility node i for

transportation.
K = σ(v1) + σ(v7) + σ10 + σ18 = 0.7 + 0.92 + 0.63 + 0.82 = 3.07
maxj∈Jdj is the fuzzy cost paid for demand ordering by demand point j = (0.79, 0.82,0.95).
xi is a fuzzy variable used to identify many facility nodes in a fuzzy network, which is a fuzzy

number.
yj is a fuzzy variable used to identify many demand nodes in a fuzzy system.
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It is defined that TC(G) = min{TC1 , TC2 , TC3 , TC4}.
Now, we have to evaluate the values TC1 , TC2 , TC3 , TC4 corresponding to the trees T1, T2, T3, T4,

respectively, in the tree covering set of G.
TC1 = {σ(v1) + σ(v3) + σ(v4) + σ(v6) + σ(v7) + σ(v11) + σ(v12) + σ(v13) + σ(v14) +

σ(v27) + σ(v28)} = 7.15
TC2 = σ(v7) + σ(v11) + σ(v9) + σ(v8) + σ(v10) + σ(v19) + σ(v20) = 4.96
TC3 = σ(v10) + σ(v17) + σ(v18) + σ(v21) + σ(v22) + σ(v23) + σ(v26) = 4.36
TC4 = σ(v2) + σ(v4) + σ(v5) + σ(v15) + σ(v16) + σ(v10) + σ(v24) + σ(v25) = 4.9
TC(G) = min{7.15, 4.96, 4.36, 4.9} = 4.36, which corresponds to the tree TC3 . Thus, we

have to calculate the total summed weight of the tree for the tree covering number of G.
Therefore, ∑i∈I wi = w(v10) +w(v17) +w(v18) +w(v21) +w(v22) +w(v23) +w(v26) =

(0.49, 0.56, 0.64) + (0.4, 0.57, 0.62) + (0.6, 0.8, 0.9) + (0.5, 0.62, 0.73) + (0.6, 0.72, 0.83)
+(0.47, 0.52, 0.63) + (0.39, 0.46, 0.79) = (3.45, 4.25, 5.14).
In addition, the maximum fuzzy limit of the total amount of facilities supplied in the fuzzy

system is M = (8.92, 9.95, 10.98).

By solving the programming problems of the model with the help of the mathematical
software 18.0.44 ‘LINGO’, the variables to be determined are fi, xi, yj, m and n. These are
all fuzzy parameters, and are taken as triangular fuzzy numbers in this illustration. Then,
Problem 1 is reduced to Problem 2 below.

Problem 2. Min Fn = ∑j∈J yjm + ∑i∈I xin
Min Zc = (0.58, 0.65, 0.79) fi − 3.07× (0.79, 0.82, 0.95)
Max Ds = (0.58, 0.65, 0.79)m− (0.79, 0.82, 0.95)× 4.36yj − {(3.45, 4.25, 5.14)
−(8.92 f1, 9.95 f2, 1.98 f3)}
Subject to conditions

1 ≤ ∑
j∈J

yj ≤ 3.07

(n1, n2, n3) ≤ (8.92, 9.95, 10.98)

(0.79, 0.82, 0.95)× (0.58, 0.65, 0.79) ≤ ∑
j∈J

∑
i∈I

fiyjm

0 ≤ fi ≤ 1

4.36× (0.79, 0.82, 0.95)× fi ≤ 3.07× (0.58, 0.65, 0.79)

∑
j∈J

(0.58, 0.65, 0.79)yj ≤ 3.07× (0.79, 0.82, 0.95)

Using ‘LINGO’ mathematical software, we obtain the following solutions for these program-
ming problems.

fi = (0.78, 0.84, 0.97), xi = (2.84, 3.59, 4.01), yj = (0.98, 1.29, 3.02), m = (3.12, 4.39, 5.74),
n = (1.05, 2.71, 3.23). The minimum number of approximate choices for facility nodes is
MinFn = (2.97, 3.28, 5.72), the minimized total fuzzy cost for the fuzzy network is
Min Zc = (4.43, 5.12, 5.78), and the maximized demand saturation concerning weights and
fuzzy costs is Max Ds = (0.94, 2.37, 10.92).

6. Example Application

The recent COVID-19 pandemic has caused an abnormal situation for the global econ-
omy due to complicated circumstances such challenges within of the banking system and
other financial institutions. In the Indian banking system. there is an ongoing revolution in
the operations and services of banks and financial institutions due to the incorporation of
new and updated technologies.

The Reserve Bank of India functions as a sunshade for the entire Indian banking
industry, being responsible for the central banking system and regulatory processes. There
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are two types of banks in the Indian banking system, namely, commercial banks and
co-operative banks.

At present, different opportunities and challenges are faced by the Indian banking
system. According to the Annual Report of the RBI, the main opportunities and challenges
of the banking industry lie in continued development of the banking process to sustain the
Indian banking system while reducing bankruptcies and other negative parameters.

Compared to the previous year, the level of consumer awareness is significantly higher.
Today, consumers need internet banking, mobile banking, and ATM services with high
frequency and reliability.

In the banking system, the optimal number of banknotes per denomination is not
certain, and varies per year according to the annual report of the Reserve Bank of India.
Any banknote denomination can be represented with the help of many other banknotes,
a relation that is imprecise and varies over time. Thus, a great deal of vagueness and
uncertainty exist in the banking system, and problems related this can be represented and
solved with the help of fuzzy graphs. To construct a fuzzy graph related to this system, it is
first necessary to choose proper vertices and edges; this selection process is described in
the next portion.

6.1. Construction of Fuzzy Graph

In the last part of 2020–2021, the number of soiled banknotes needing to be disposed
of was severely affected by the COVID-19 pandemic, a phenomenon that was expedited
slowly in order to maintain a stable economic structure. Thus, there was a 32% decline in
the disposal process of soiled banknotes in that financial year compared to the previous
year.

Following the annual report of the Reserve Bank of India at the end of March 2021,
here we consider the denominations of banknotes as vertices of a fuzzy graph. To assign
vertex membership values, we first observed the denomination of banknotes from 2019 to
2021. Then, we took the average as the mean value of a triangular fuzzy number (TFN).
The fuzzy graph uses these triangular fuzzy numbers as vertex membership values. On the
other hand, if other banknotes can represent any banknote, then an edge exists between
those vertices corresponding to the same banknotes. For example, there is an edge between
the vertices corresponding to banknotes with values of INR 100 and 500. In addition, the
vertex membership values are used to assign edge membership values in the fuzzy graph.

First, we must find the average percentage of parameters which affect the banking
system, then turn this into a triangular fuzzy number. These TFNs are used to find similarity
measures with the vertex membership values in order to determine the corresponding fuzzy
weights for each vertex in the constructed fuzzy graph. The cost is taken as a fuzzy number
representing the difference between denominations in the year 2021 and the denominations’
averages corresponding to their vertices. Here, the facility points are assumed to be the
smaller denominations and the demand points are to be taken as larger denominations.
The edge membership values in the fuzzy graph must maintain the following:

μ(u, v) ≤ min{σ(u), σ(v)}.

After constructing the fuzzy graph, we have to find a fuzzy tree cover and its tree
covering number, then proceed to find the objectives and constraints of this particular part
of the example. We aim to find the minimum number of smaller banknote denominations,
minimize the fuzzy cost in the Indian banking system, and maximize demand saturation
with respect to banknote circulation.

6.2. Case Study

At 21.4 percent of GDP for the end of December 2020, India’s external debt remained
lower than that of its emerging-market peers. The external vulnerability indicators at the
end of March of 2021 are listed in Table 3, which reflect the approximate percentage unless
indicated otherwise.
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Table 3. Details of approximate percentage of parameters in the banking system.

Indicator 2013 2019 2020 End-March, 2021

Debt service ratio (debt service to current receipts) 5.9 6.4 6.5 9.0
Ratio of concessional debt to total debt 11.1 8.7 8.8 9.1

Ratio of short-term debt to reserves 33.1 426.3 22.4 17.7
Reserve cover of imports 7.0 9.6 12.0 18.6

External Debt to GDP ratio 22.4 19.9 20.6 21.4
Ratio of short-term debt to total debt 23.6 20.0 19.1 18.4

The number of frauds reported during the financial year 2020–2021 decreased by 15%
in terms of number and 25% in terms of value. There was a decrease in the share of PSBs
in terms of both value and number among the total number of frauds concerning private
sector banks during the corresponding period.

Banknotes in Circulation

During 2020–2021, there were increases of 16.8% and 7.2% in the value and volume,
respectively, in the circulation process of banknotes. The highest share in volume terms is
for the INR 500 denomination, whereas the lowest is for INR 10 banknotes, as of 31 March
2021. Table 4 shows the details on banknotes in circulation to the end of March of 2021.

Table 4. Approximate number of banknotes in circulation (end March, 2021) as vertices of a fuzzy
graph.

Denomination (Rs.) of Banknotes 2019 2020 2021 Average vi σ(vi)

2 and 5 Rs. notes 10.4 9.7 9.0 9.7 v1 (9.5, 9.7, 10.2)
10 Rs. notes 28.7 26.2 23.6 26.16 v2 (25.53, 26.16, 28.7)
20 Rs. notes 8.0 7.2 7.3 7.5 v3 (6.73, 7.5, 8.25)
50 Rs. notes 7.9 7.4 7.0 7.43 v4 (6.32, 7.43, 8.63)

100 Rs. notes 18.5 17.2 15.3 17 v5 (16.38, 17, 18.72)
200 Rs. notes 3.7 4.6 4.7 4.33 v6 (3.89, 4.33, 5.76)
500 Rs. notes 19.8 25.4 31.1 25.43 v7 (23.81, 25.43, 26.95)
2000 Rs. notes 3.0 2.4 2.0 2.46 v8 (2.37, 2.46, 3.54)

The fuzzy graph constructed using all these data is shown in Figure 2.y g p g g

Figure 2. Fuzzy graph G for this application.
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6.3. Formulation of the Problem

In this application area of our developed model, we have taken the Indian banking
system as a fuzzy network, considering banknote denominations as items to be supplied
from the facility to the demand vertices. The tree-like flow of denominations from the
Reserve Bank of India to the common people helps in modeling such a system using the
concept of tree cover in a fuzzy graph. The main problem is to minimize the number
of small denominations without affecting the flow of demand in the lower layer related
to the market level. For this purpose, we can use our proposed model with appropriate
assumptions related to the Indian banking system to find all the solutions to the problem.
The specific assumptions and considerations are described in the following portion.

Our objective for this application using the proposed model is to minimize the approx-
imate number of smaller denominators (Obj 1), minimize the approximate total fuzzy cost
in the Indian banking process concerning the corresponding weights mentioned earlier
(Obj 2), and maximize demand saturation with respect to the economic need of the people
through circulation of banknotes in the Indian economic system while accounting for
external vulnerability indicators (Obj 3).

For this application, the data are as follows.
δij = 1 for the payment situation of the larger denomination j with respect to the

smaller denomination i.
mincij is the approximate number of days needed to saturate demand using a small

denomination i with respect to a larger denomination j = (8.78, 9.35, 10.59).
fi is a fuzzy amount to be determined, representing the approximate cost of a smaller

denomination i for transportation from one bank to another.
K = σ(v3) + σ(v4) + σ(v1) + σ(v8) + σ(v5) = 7.5 + 7.43 + 9.7 + 2.46 + 17 = 44.09
maxj∈Jdj is a fuzzy cost paid for demand ordering due to circulation of the larger

denomination j = (8.29, 9.32, 12.57).
xi is a fuzzy variable used to identify a number of smaller denominations in the fuzzy

banking system, and is a fuzzy number.
yj is a fuzzy variable used to identify the number of larger denominations in the fuzzy

banking network.
It is defined that TC(G) = min{TC1 , TC2 , TC3}, where

TC1 = {v2, v1, v3, v4, v5},

TC2 = {v5, v7, v6, v2},
and

TC3 = {v8, v6, v3, v4},
TC(G) = min{27.52, 42.36, 24.74} = 24.74, which corresponds to the tree TC3 . Thus, we
have to calculate the total summed weight of the tree for the tree covering number of G.

Therefore, ∑i∈I wi = w(v8) + w(v6) + w(v3) + w(v4) = (3.49, 4.16, 5.34) + (2.34, 3.82,
4.32) + (5.26, 7.18, 8.39) + (4.35, 6.73, 9.81) = (15.44, 21.89, 27.86).

In addition, the maximum fuzzy limit of the total amount of facilities supplied in the
fuzzy system is M = (18.79, 19.65, 20.28).

By solving the programming problems of the model using ‘LINGO’ mathematical
software, the variables to be determined are fi, xi, yj, m, and n. In this illustration, all of
these fuzzy parameters are taken as triangular fuzzy numbers.

6.4. Solution of Programming Problems

Then the problem Problem 1 is reduced to the problem, namely Problem 3 given by
the following.

Problem 3. Min Fn = ∑j∈J yjm + ∑i∈I xin
Min Zc = (5.82, 6.35, 7.39) fi − 26.23× (7.39, 8.42, 9.92)
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Max Ds = (5.82, 6.35, 7.39)m − (8.72, 8.92, 9.25) × 24.69yj − {(12.45, 14.73, 15.48) −
(18.79 f1, 19.65 f2, 20.28 f3)}

Subject to conditions
1 ≤ ∑

j∈J
yj ≤ 33.947

(n1, n2, n3) ≤ (18.62, 19.25, 22.84)

(7.39, 8.42, 9.92)× (5.82, 8.57, 9.91) ≤ ∑
j∈J

∑
i∈I

fiyjm

0 ≤ fi ≤ 1

24.66× (7.39, 8.42, 9.92)× fi ≤ 33.947× (5.82, 6.35, 7.39)

∑
j∈J

(5.82, 6.35, 7.39)yj ≤ 3.07× (7.39, 8.42, 9.92).

Using the mathematical software ‘LINGO’, we have the following solutions for these program-
ming problems.

fi = (5.78, 6.84, 8.97), xi = (4.68, 5.79, 8.31), yj = (7.28, 9.89, 10.52), m = (8.16, 8.53, 9.24),
n = (10.35, 12.92, 14.23). The minimum number of approximate choices for facility nodes is Min
Fn = (9.27, 9.86, 9.23), the minimum total fuzzy cost for the fuzzy network of the banking system
is Min Zc = (14.38, 15.72, 16.98), and the maximum demand saturation concerning the weights
and fuzzy costs is Max Ds = (3.84, 4.37, 5.62).

6.5. Insightful Analysis

Based on the solutions obtained by the model in this application scenario, we can
conclude the following:

(i) The minimized number of total small denominations (i.e., banknotes of INR 2, 5, 10,
20, 50, and 100) provide a total coverage in the RBI banking system of (9.27, 9.86, 9.23),
which is a fuzzy volume, i.e., in lakh; that is, a minimum total number of new
banknotes of 9.27 lakh to 9.23 lakh per year in denominations of INR 2 to 100 need to
be supplied for a smooth flow of denominations in the optimized sense, with the best
results occurring for the case of 9.86 lakh.

(ii) The minimized total fuzzy cost in the fuzzy system representing the banking process
is (14.38, 15.72, 16.98) (in volume, i.e., INR notes in lakh) for smooth circulation of
banknotes in the coming financial year to sustain the economic development of
India. This objective function reflects the minimum denomination number needed to
calculate cost for maintaining flow in the Indian banking system per year, and ranges
from 14.38 lakh to 16.98 lakh, with 15.72 lakh being the best possibility.

(iii) The maximized demand saturation of banknote circulation in the Indian economic sys-
tem with respect to external vulnerability indicators can be deduced as (3.84, 4.37, 5.62),
which is a fuzzy approximation. With the above-mentioned minimized objective func-
tion values in (i) and (ii), the demand for denominations (number of banknotes) at the
population level is deduced as 3.84 lakh to 5.62 lakh. The best possible case is if the
deduction in the number of denominations is 4.37 lakh.

7. Conclusions

In this article, we have considered the tree-covering of fuzzy graphs using tree-
covering numbers. An efficient algorithm has been designed for evaluating tree cover
for fuzzy graphs in two different situations involving the facility location problem: first,
when the number of facility vertices in the fuzzy graph is variable, and second, when there
is a fixed covering radius. As a fruitful solution to a realistic problem, we have modified
the existing BIN-PACK algorithm to develop the FUZZY-BIN-PACK algorthm, which is
very effective in fuzzy environments. A complexity analysis was carried out, showing its
efficient performance. Most importantly, we have extended the common idea of tree cover
to construct a model with a series of programming problems for solving complex versions
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of the facility location problem in scenarios with fuzzy characteristics. The parameters
obtained by our developed algorithm can help with constructing objective functions and
relevant conditions to be maintained for developing the model for solving such facility
location problems involving fuzzy graphs. The useful ‘LINGO’ mathematical software
was used with the proposed model to separately find component-wise solutions and then
combine them to obtain fuzzy solutions. The model was applied to a case study involving
the circulation of banknotes in the Indian banking system, showing the usefulness of this
model in efficiently solving real-life problems.

In our upcoming work, we intend to develop models by combining the concepts of
graphoidal coverage and domination in fuzzy graphs. In addition, it might be interest-
ing to construct a algorithm to evaluate graphoidal covering numbers for fuzzy graphs.
Graphoidal coverage is an interesting topic in graph theory that can be extended to fuzzy
graphs by considering the role of vertex and edge membership functions, and may be a
better covering concept for path-related models. Incorporating the idea of domination can
help to model real-world decisionmaking and choose the best possibilities for any facility
vertices in a productive way. Further application to real-life problems related to sustainable
development goals needs to be considered in future studies as well.
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Abstract: The Neutrosophic Set (Nset) represents the uncertainty in data with fuzzy attributes beyond
true and false values independently. The problem arises when the summation of true (T r), false (Fa),
and indeterminacy (In) values crosses the membership value of one, that is, T r + In +Fa < 1.
It becomes more crucial during decision-making processes like medical diagnoses or any data sets
where T r + In + Fa < 1. To achieve this goal, the FNset is recently introduced. This study
employs the Interval-Valued Fermatean Neutrosophic Set (IVFNset) as its chosen framework to
address instances of partial ignorance within the domains of truth, falsehood, or uncertainty. This
selection stands out due to its unique approach to managing such complexities within multi-decision
processes when compared to alternative methodologies. Furthermore, the proposed method reduces
the propensity for information loss often encountered in other techniques. IVFNS excels at preserving
intricate relationships between variables even when dealing with incomplete or vague information.
In the present work, we introduce the IVFNset, which deals with partial ignorance in true, false, or
uncertain regions independently for multi-decision processes. The IVFNset contains the interval-
valued T rmembership value, Inmembership value, and Famembership for knowledge representation. The
algebraic properties and set theory between the interval-valued FNset have also been presented with
an illustrative example.

Keywords: Fermatean neutrosophic sets; interval-valued Fermatean neutrosophic sets; faculty
performance evaluation; multicriteria decision analysis

MSC: 03E72; 05C72; 90B50

1. Introduction

The acronyms given in the following Table 1 are used throughout the entire manuscript.
For the computation of linguistic words like tall or young, Zadeh proposed FS in 1965 [1].
Fset are used to represent the acceptance and rejection of fuzzy attributes by membership
values that lie in [0, 1]. The Nset helps to represent the hesitant part with the indepen-
dent values of T rmembership, Immembership, and Famembership such that −0 < T rmembership +
Immembership +Famembership < 3+ [2]. Later, interval-valued membership sets were intro-
duced, which dealt with the ignorance of partial data about the membership values [3,4].
Yager [5–7] coined a new kind of Fset called the PFset as an extension of the IFset. It has
many practical applications in MCDM [8,9]. It is based on the Fermatean fuzzy set [10],
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which was recently hybridized with the Nset [11–13] and Fermatean fuzzy graph [14]. Rani
and Mishra [15] studied the IVFFset. The IVFFset [16,17] is used in several fields for the
DM process because of its extensive properties [18,19].

Table 1. Acronyms.

Abbreviations Full Phrase

Fuzzy Set FS
Intuitionistic Fuzzy Set IFS
Neutrosophic Set NS
Interval valued Pythagorean neutrosophic sets IVPNS
Interval-valued Fermatean neutrosophic set IVFNS
Interval valued neutrosophic sets IVNS
Pythagorean Fuzzy Set PFS
Fermatean Fuzzy set FFS
Interval-valued Fermatean Fuzzy numbers. IVFFN
Interval-valued Fermatean Fuzzy sets IVFFS
Hesitant Fermatean fuzzy sets HFFS
Interval valued hesitant Fermatean fuzzy sets IVHFFS
Multi-Criteria decision-making MCDM
Technique for Order of Preference by Similarity to Ideal Solution TOPSIS
Interval-valued Fermatean fuzzy TOPSIS IVFFTOPSIS
Single valued neutrosophic set SVNS
Fermatean neutrosophic graph FNgraph

The Nset theory is introduced by Smarandache [2] as an extension of the IFset theory
to deal with indeterminacy. Wang [4] defined the IVSNset in 2010 as an extension of
interval fuzzy sets [20]. Zhang et al. [21] applied the concept of Interval neutrosophic
sets in multicriteria decision-making problems. Wang, T [22] introduced a projection
model with unknown weight information within an interval neutrosophic environment
and applied it to software quality-in-use evaluation. Another class of the Nset is the IVNPset
with the dependent interval-valued Pythagorean component, proposed by Stephy and
Helen [13]. Clearly, it is a generalization of the IVPNset and can handle more information
than the IVNset. Motivated by the FFset Jansi [11] defined the FNset and provided its various
properties. Jeevaraj [16] introduced the concept of the IVFFsets and derived mathematical
operations on the class of the IVFFset. Score functions in the IVFFset are introduced and
their properties are studied. Recently, PalaniKumar and Iampan [17] proposed the concept
of the spherical IVFFso f t set. Liu et al. [18] discussed Fermatean fuzzy linguistic term sets,
their basic operational laws, and aggregate functions. Broumi et al. [19] proposed the
IVFNgraph and presented some basic operational laws. He also [23] introduced the FNgraph
and RFNgraph, SFNgraph, and Fnumber product graphs.

For DM problems in the Neutrosophic context, the value of times squared of the sum
of the T r,Im, and Fa degrees does not exceed two. To deal with this issue, Sweety
and Jansi introduced the FNset [11]. Also, the FNset is a generalization of the PNset and
it is characterized by the condition that the cubes of their sum of their T rmembership,
Famembership, and Immembership degrees do not exceed them twice. Motivated by the
above literature, we develop the idea of the IVFNset and its algebraic operations. The major
findings of the present article are as follows:

• To establish and study the IVFNset and its algebraic operations.
• To introduce the accuracy and score functions (AF and SF) of the IVFNnumber.
• To illustrate the applications of the IVFNset.

Section 1 includes an introductory part; Section 2 deals with the basic algebraic
operations related to the IVFNset; Section 3 defines the AF and SF of the IVFNset; and
Section 4 discusses the application of the IVFNset and delivers recommendations for future
research.
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2. Prerequisites

In this section, we briefly introduce the necessary basic definitions and preliminary
results.

A Fset [1] A on A is of the form: APFS = {〈𝓀, μA(𝓀)〉|𝓀 ∈ A}where μA(𝓀) : A→ [0, 1] .
A PFS [5–7] A on A is of the form: APFS = {〈𝓀,T rA(𝓀),FaA(𝓀)〉|𝓀 ∈ A}, where
T rA(𝓀) : A→ [0, 1] denotes the membership degree (md) and FaA(𝓀) : A→ [0, 1] de-
notes the non −md, ∀𝓀 ∈ A to the set APFS, respectively, such that 0 ≤ (T rA(𝓀))

2 +

(FaA(𝓀))
2 ≤ 1. Corresponding to its mf, the indeterminacy degree is given by φA(𝓀) =√

1− T rA(𝓀)
2 −FaA(𝓀)

2,∀𝓀 ∈ A. A FFset [11] A on A is of the form as AFFS =
{〈𝓀,T rA(𝓀),FaA(𝓀)〉|𝓀 ∈ A} where T rA(𝓀) : A→ [0, 1] represents the md, and
FaA(𝓀) : A→ [0, 1] represents the non − md, ∀𝓀 ∈ A to the set A, respectively, such
that 0 ≤ (T rA(𝓀))

3 + (FaA(𝓀))
3 ≤ 1. Corresponding to its f, the indeterminacy degree

is given by πA(𝓀) =
√

1− T rA(𝓀)
3 −FaA(𝓀)

3, ∀𝓀 ∈ A.A Nset [2] A on A is defined by
its truth (T rA(𝓀)), indeterminacy (ImA(𝓀)) and falsity membership function (FaA(𝓀))
such that 0− ≤ T rA(𝓀) + ImA(𝓀) +FaA(𝓀) ≤ 3+ for all 𝓀 ∈ A , whose all the subset of
[0−, 1+].

In the following, Figure 1 depicted the graphical visualization between the Intuitionis-
tic, Pythagorean, and Fermatean Fuzzy sets.

Figure 1. A graphical visualization of the Intuitionistic, Pythagorean, and Fermatean Fuzzy sets.

The SVNset [3] A on A is is of the form: ASVNS = {〈𝓀,T rA(𝓀),ImA(𝓀),FaA(𝓀)〉|𝓀 ∈ A},
where T rA(𝓀) : A→ [0, 1] represents the md, ImA(𝓀) : A→ [0, 1] represents the
indeterminacy−md, and FaA(𝓀) : A→ [0, 1] represents the non−md, ∀𝓀 ∈ A to the
setA, respectively, with 0 ≤ T rA(𝓀) +ImA(𝓀) +FaA(𝓀) ≤ 3. The PNset [8] is defined as,
0 ≤ (T rA(𝓀))

2+(ImA(𝓀))
2 ≤1 and 0 ≤ (FaA(𝓀))

2 ≤1 then 0 ≤ (T rA(𝓀))
2+(ImA(𝓀))

2+
(FaA(𝓀))

2 ≤ 2. Sweety et al. [11] introduced the FNset as: 0 ≤ (T rA(𝓀))
3+(ImA(𝓀))

3 ≤1
and 0 ≤ (FaA(𝓀))

3 ≤1 then 0 ≤ 𝓀 ∈ A to the set A, with (T rA(𝓀))
3+(ImA(𝓀))

3+

(FaA(𝓀))
3 ≤2 ∀𝓀 ∈ A. An IVFset [19] set

∼
A on A is a function

∼
A : A→ Int([0, 1]) and

the set of all IVFset on A is denoted by 𝓀(A). Suppose that
∼
A ∈ 𝓀(A), ∀𝓀 ∈ A,μ∼

A
(𝓀) =[

μ−∼
A
(𝓀) , μ+

∼
A
(𝓀)

]
is the md of an element 𝓀 to

∼
A, μ−∼

A
(𝓀), μ+

∼
A
(𝓀) are the least and greatest

bounds of md𝓀 to
∼
A, where 0 ≤ μ−∼

A
(𝓀) ≤ μ+∼

A
(𝓀) ≤ 1. The IVPFS [10] A onA is of the form as:

AIVNPset =
{〈

𝓀,
[
T r−A(𝓀),T m+

A(𝓀)
]
,
[
Fa−A(𝓀),F+

A(𝓀)
]〉

: 𝓀 ∈ A
}

where 0 ≤ T r−A(𝓀) ≤
T r+A(𝓀) ≤ 1, 0 ≤ Fa−A(𝓀) ≤ Fa+

A(𝓀) ≤ 1 and 0 ≤
(
T r+A(𝓀)

)2
+
(
Fa+

A(𝓀)
)2 ≤ 1, ∀𝓀 ∈

A. IVFFset [13] A on A of the form as: AIVNPset =
{〈
𝓀,
[
T r−A(𝓀),T r+A(𝓀)

]
,
[
Fa−A(𝓀),Fa+A(𝓀)

]〉
:∀𝓀∈A

}
where 0 ≤ T r−A(𝓀) ≤ T r+A(𝓀) ≤ 1, 0 ≤ Fa−A(𝓀) ≤ Fa+

A(𝓀) ≤ 1 and 0 ≤
(
T r+A(𝓀)

)3
+(

Fa+
A(𝓀)

)3 ≤ 1, ∀𝓀 ∈ A. A IVNset [24] A for every point x ∈ A,T rA(𝓀),ImA(p),FaA(𝓀) ⊆
[0,1].
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AIVNset =
{〈[

T r−A(𝓀), T r+A(𝓀)
]
,
[
Im−A(𝓀),Im+

A(𝓀)
]
,
[
Fa−A(𝓀), Fa+A(𝓀)

]〉
: ∀𝓀 ∈ A

}
with 0≤ T r+A(𝓀)+Ir+A(𝓀)+Fa+

A(𝓀) ≤ 3. An IVNPset [25] A on A is of the form as
AIVNPset =

{〈[
T r−A(𝓀), T r+A(𝓀)

]
,
[
Im−A(𝓀),Im+

A(𝓀)
]
,
[
Fa−A(𝓀), Fa+A(𝓀)

]〉
: ∀𝓀 ∈ A

}
where

T r−A(𝓀), T r+A : A→ [0, 1] represents the least and greatest bounds of truth md,
Im−A(𝓀), Im+

A(𝓀) : A→ [0, 1] represents the least and greatest bounds of indeterminacy md,
and F a−A(𝓀), F a+A(𝓀) : A→ [0, 1] represents the least and greatest bounds of falsity md,

∀𝓀 ∈ A to the set A, with 0 ≤
[
T r−A(𝓀)+T r+A(𝓀)

2

]2
+
[
Im−A(𝓀)+Im+

A(𝓀)
2

]2
+
[
Fa−A(𝓀)+Fa+A(𝓀))

2

]2
≤

2. In Zhang et al. [21], the operators of set-theoretic on the INset are defined as follows:
The IVNset is contained in another IVNsetBIVNset , AIVNset ⊆ BIVNset , ⇔ T r−A(𝓀) ≤

T r−B (𝓀), T r+A(𝓀) ≤ T r+B (𝓀); Im−A(𝓀) ≥ Im−B (𝓀),Im+
A(𝓀) ≥ Im+

B (𝓀);Fa−A(𝓀) ≥
Fa−B (𝓀),
Fa+

A(𝓀) ≥ Fa+
B (𝓀), ∀𝓀 ∈ A.

Two IVNset, AIVNset = BIVNset ⇔ AIVNset ⊆ BIVNset and BIVNset ⊆ AIVNset ,
That is,

T r−A(𝓀) = T −rB(𝓀), T r+A(𝓀) = T r+B (𝓀) ;Fa−A(𝓀) = Fa−B (𝓀),Fa+
A(𝓀) ≥ Fa+

B (𝓀),
Im−A(𝓀) = Im−B (𝓀),Im+

A(𝓀) = Im+
B (𝓀),for all 𝓀 ∈ A.

The IVNset A is empty ⇔ T r−A(𝓀) = T r+A(𝓀) = 0, Fa−A(𝓀) = Fa+
A(𝓀) = 1 and

Im−A(𝓀) = Im+
A(𝓀) = 0, for all 𝓀 ∈ A.

A complement of the INVset is

AIVNC
set

=

⎧⎨⎩
p,
[
T r−A(𝓀),T r+A(𝓀)

]
,[

1− Im+
A(𝓀), 1− Im−A(𝓀)

]
,[

Fa−A(𝓀),Fa+
A(𝓀)

]
⎫⎬⎭,𝓀 ∈ A

AIVNset ∩ BIVNset , defined as follows:

AIVNset ∩ BIVNset =

⎧⎨⎩
〈 p,

[
T r−A(𝓀) ∧ T r−B (𝓀),T r+A(𝓀) ∧ T r+B (𝓀)

]
,[

Im−A(𝓀) ∨ Im−B (𝓀),Im+
A(𝓀) ∨ Im+

B (𝓀)
]
,[

Fa−A(𝓀) ∨Fa−B (𝓀),Fa+
A(𝓀) ∨Fa+

B (𝓀)
]
〉⎫⎬⎭,𝓀 ∈ A

AIVNset ∪ BIVNset , defined as follows:

AIVNset ∪ BIVNset =

⎧⎨⎩
〈k,

[
T r−A(𝓀) ∨ T r−B (𝓀),T r+A(𝓀) ∨ T r+B (𝓀)

]
,[

Im−A(𝓀) ∧ Im−B (𝓀),Im+
A(𝓀) ∧ Im+

B (𝓀)
][

Fa−A(𝓀) ∧Fa−B (𝓀),Fa+
A(𝓀) ∧Fa+

B (𝓀)
]
〉⎫⎬⎭, 𝓀 ∈ A.

The difference between two IVNset A and IVNset B is the IVNset AIVNset � BIVNset , de-
fined as A�B = < [T r−AIVNset�BIVNset

,T r+AIVNset�BIVNset
], [Im−AIVNset�BIVNset

,Im+
AIVNset�BIVNset

],

[Fa−AIVNset�BIVNset
,Fa+

AIVNset�BIVNset
]> where

T rL
AIVNset�BIVNset

= max
(
T r−A(𝓀),T r−B (𝓀) ), T r+AIVNset�BIVNset

= max
(
T r+A(𝓀),T r+B (𝓀)

)
ImL

AIVNset�2BIVNset
= max

(
Im+

A(𝓀), 1− Im+
B (𝓀) ), ImU

AIVNset�2BIVNset
= max

(
Im+

A(𝓀), 1− Im−B (𝓀)
)

FaL
AIVNset�2BIVNset

= max
(
Fa−A(𝓀),T r−B (𝓀)

)
, FaU

AIVNset�2BIVNset
= max

(
Fa+

A(𝓀),T r+B (𝓀)
)

The scalar division of the IVNsetA is AIVNset /a, defined as follows:

AIVNset /a ==

⎧⎨⎩
〈𝓀,

[
max

(
T r−A(𝓀)/a, 1), max

(
T r+A(𝓀)/a, 1)

]
,[

min
(
Im−A(𝓀)/a, 1), min

(
Im+

A(𝓀)/a, 1)
]
,[

min
(
Fa−A(𝓀)/a, 1), min

(
Fa+

A(𝓀)/a, 1)
]
〉⎫⎬⎭, 𝓀 ∈ A, a ∈ R+
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AIVNset .a, defined as follows:

AIVNset .a =

⎧⎨⎩
〈p,

[
max

(
T r−A(𝓀) .a, 1), max

(
T r+A(𝓀) .a, 1)

]
,[

min
(
Im−A(𝓀) .a, 1), min(Im(𝓀) .a, 1)

][
min

(
Fa−A(𝓀) .a, 1), min

(
Fa+

A(𝓀) .a, 1)
]
〉⎫⎬⎭,𝓀 ∈ A, a ∈ R+.

3. Interval-Valued Fermatean Neutrosophic Sets (IVFNset)

The concept of the IVFNset, IVFNumber, and their basic properties are introduced in
this section.

Definition 1. The IVFNset A on A is of the form A ={〈[
T r−A(𝓀), T r+A(𝓀)

]
,
[
Im−A(𝓀),Im+

A(𝓀)
]
,
[
Fa−A(𝓀), Fa+

A(𝓀)
]〉∣∣ 𝓀 ∈ A

}
where

T rA(p) = T r−A(𝓀), T r+A(𝓀) : A→ [0, 1] represents the least and greatest bounds of truthmd,
ImA(𝓀) =

[
Im−A(𝓀),Im+

A(𝓀)
]

: A→ [0, 1] represents the least and greatest bounds of
indeterminacy md, and FaA(𝓀) =

[
Fa−A(𝓀), Fa+

A(𝓀)
]

: A→ [0, 1] represents the least and
greatest bounds of falsity md, ∀ 𝓀 ∈ A to the set A, respectively, with0≤ (T rA(𝓀))

3+(FaA(𝓀))
3≤ 1

and 0 ≤ (ImA(𝓀))
3 ≤ 1, 0 ≤ (T rA(𝓀))

3+(FaA(𝓀))
3+(ImA(𝓀))

3 ≤ 2 means 0 ≤
(T rA(𝓀))

3+(FaA(𝓀))
3+(ImA(𝓀))

3 ≤ 2∀ 𝓀 ∈ A.

In the following, Figure 2 depicted the Geometric representation of the
IVNset, IVPNset, and IVFNset.

 

  
Geometric representation of the  Geometric representation of the  Geometric representation of the  

Figure 2. Geometric representation of the IVNset, IVPNset, and IVFNset.

Definition 2. For an IVFNnumberα =
([

T rA−
α ,T rA+

α

]
,
[
ImA−

α ,ImA+
α

]
,
[
FaA−

α ,FaA+
α

])
,

which satisfies
(
T r+A

α

)3
+

(
Im+A

α

)3
+

(
Fa+A

α

)3
≤ 2. Consider

α =
([

T rA−
α ,T rA+

α

]
,
[
ImA−

α ,ImA+
α

]
,
[
FaA−

α ,FaA+
α

])
= ([a, b], [c, d], [e, f ]) is a IVFNnumber.

Remark 1. The IVFNset is an extension of the IVFFset. The IVFNnumber occupies more space
than the IVFFnumber, IVIFnumber, and IVPFnumber. There is no doubt that the IVFNset is the
more appropriate tool for finding the best alternative in complex MCDM uncertainty problems
rather than the IVFFset, IVPFset, and IVIFset.

Definition 3. LetK and L be two IVFNset on A, defined by:

K= {〈𝓀,T rK(𝓀),ImK(𝓀),FaK(𝓀)〉|𝓀 ∈ A}
L= {〈𝓀,T rL(𝓀),ImL(𝓀),FaL(𝓀)〉|𝓀 ∈ A}

where T rK(𝓀) =
[
T r−K(𝓀),T r+K(𝓀)

]
,ImK(𝓀) =

[
Im−K(𝓀), Im+

K(𝓀)
]
,FaK(𝓀) =

[Fa−K(𝓀),Fa+K(𝓀)
]

and T rL(𝓀) =
[
T r−L(𝓀),T r+L(𝓀)

]
,ImL(𝓀) =

[
Im−L(𝓀),Im+

L(𝓀)
]
,

FaL(𝓀) = [Fa−L(𝓀),Fa+L(𝓀)
]
.
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Then for all 𝓀 ∈ A

i. K is contained in L if and only if T r−K(𝓀) ≤ T r−L(𝓀)

T r−K(𝓀) ≤ T r−L(𝓀),T r+K(𝓀) ≤ T r+L(𝓀),
Im−K(𝓀) ≥ Im−L(𝓀),Im+

K(𝓀) ≥ Im+
L(𝓀),

Fa−K(𝓀) ≥ Fa−L(𝓀),Fa+K(𝓀) ≥ Fa+L(𝓀)

ii. The union of K and L is the IVFNsetD, defined by

D = K∪ L= {〈𝓀,T rD(𝓀),ImD(𝓀),FaD(𝓀)〉|𝓀 ∈ A}where
T rD(𝓀) =

[
T r−D(𝓀),T r+D(𝓀)

]
,ImD(𝓀) =

[
Im−D(𝓀), Im+

D(𝓀)
]
,FaD(𝓀) =

[Fa−D(𝓀),Fa+D(𝓀)
]
and

Im−D(𝓀) =max
(
Im−K(𝓀),Im−L(𝓀)

)
, Im+

D(𝓀)= max
(
Im+

K(𝓀),Im+
L(𝓀)

)
,

Im−D(𝓀)= min
(
Im−K(𝓀),Im−L(𝓀)

)
, Im+

D(𝓀)= min
(
Im+

K(𝓀),Im+
L(𝓀)

)
,

Fa−D(𝓀)= min
(
Fa−K(𝓀),Fa−L(𝓀)

)
, Fa+D(𝓀)= min

(
Fa+K(𝓀),Fa+L(𝓀)

)
.

or simply we can write,

K∩ L=
{
𝓀,
[
max

(
T r−K(𝓀),T r−L(𝓀)

)
, max

(
T r+K(𝓀),T r+L(𝓀)

)]
,[

min
(
Im−K(𝓀),Im−L(𝓀)

)
, min

(
Im+

K(𝓀),Im+
L(𝓀)

)]
,[

min
(
Fa−K(𝓀),Fa−L(𝓀)

)
, min

(
Fa+K(𝓀),Fa+L(𝓀)

)]∣∣, 𝓀 ∈ A
}

iii. The intersection of K and L is the IVFNsetD, defined by

D = K∩ L= {〈𝓀,T rD(𝓀),ImD(𝓀),FaD(𝓀)〉|𝓀 ∈ A}
T rD(𝓀) =

[
T r−D(𝓀),T r+D(𝓀)

]
,ImD(𝓀) =

[
Im−D(𝓀),Im+

D(𝓀)
]
,

FaD(𝓀) = [Fa−D(𝓀),Fa+D(𝓀)
]

and
T r−D(𝓀) =min

(
T r−K(𝓀),T r−L(𝓀)

)
, T r+D(𝓀)= min

(
T r+K(𝓀),T r+L(𝓀)

)
,

Im−D(𝓀)= max
(
Im−K(𝓀),Im−L(𝓀)

)
, Im+

D(𝓀)= max
(
Im+

K(𝓀),Im+
L(𝓀)

)
,

Fa−D(𝓀)= max
(
Fa−K(𝓀),Fa−L(𝓀)

)
, Fa+D(𝓀)= max

(
Fa+K(𝓀),Fa+L(𝓀)

)
.

or simply we can write.

K∩ L=
{
𝓀,
[
min

(
T r−K(𝓀),T r−L(𝓀)

)
, min

(
T r+K(𝓀),T r+L(𝓀)

)]
,[

max
(
Im−K(𝓀),Im−L(𝓀)

)
, max

(
Im+

K(𝓀),Im+
L(𝓀)

)]
,[

max
(
Fa−K(𝓀),Fa−L(𝓀)

)
, max

(
Fa+K(𝓀),Fa+L(𝓀)

)]∣∣, 𝓀 ∈ A
}

iv. The complement of K is the IVFNsetK
c, defined by

Kc= {〈𝓀,T rKc (𝓀),ImKc (𝓀),FaKc (𝓀)〉|𝓀 ∈ A}where
T rKc (𝓀) = FaK(𝓀) =

[
Fa−K(𝓀),Fa+K(𝓀)

]
Im−Kc (𝓀) = 1− Im+

K(𝓀),Im+
Kc (𝓀) = 1− Im−K(𝓀)

FaKc (𝓀) = T rK(𝓀) =
[
T r−K(𝓀),T r+K(𝓀)

]
or simply we can write.

Kc=
{〈

𝓀,
[
Fa−K(𝓀),Fa+K(𝓀)

]
,
[
1− Im+

K(𝓀), 1− Im−K(𝓀)
]
,
[
T r−K(𝓀),T r+K(𝓀)

]〉∣∣𝓀 ∈ A
}

.

Definition 4. The IVFNset is known as an absolute IVFNset , denoted by 1A ,⇔ its membership
values are defined as [

T r−K(𝓀),T r+K(𝓀)
]
= [1, 1] ;[

Im−K(𝓀), Im+
K(𝓀)

]
= [0, 0][

Fa−K(𝓀),Fa+K(𝓀)
]
= [0, 0].

Definition 5. The empty IVFNset is denoted by 0A , if its membership values are defined as[
T r−K(𝓀),T r+K(𝓀)

]
= [0, 0];[

Im−K(𝓀), Im+
K(𝓀)

]
= [1, 1][

Fa−K(𝓀),Fa+
K(𝓀)

]
= [0, 0].

;

Example 1. Consider two IVFNset, defined over A as
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K=

{
〈p1, [0.85, 0.90], [0.80, 0.85], [0.80, 0.90]〉, 〈p2, [0.85, 0.85], [0.80, 0.80], [0.80, 0.90]〉,

〈p3, [0.90, 0.95], [0.83, 0.86], [0.82, 0.81]〉

}
L=

{
〈p1, [0.80, 0.90], [0.80, 0.80], [0.80, 0.90]〉, 〈p2, [0.81, 0.85], [0.82, 0.82], [0.84, 0.91]〉,

〈p3, [0.92, 0.95], [0.85, 0.87], [0.83, 0.85]〉

}

then

K∩ L=

{
〈p1, [0.80, 0.90], [0.80, 0.85], [0.80, 0.90]〉, 〈p2, [0.81, 0.85], [0.82, 0.82], [0.84, 0.91]〉,

〈p3, [0.90, 0.95], [0.85, 0.87], [0.83, 0.85]〉

}
K∪ L=

{
〈p1, [0.85, 0.90], [0.80, 0.80], [0.80, 0.90]〉, 〈p2, [0.85, 0.85], [0.80, 0.80], [0.80, 0.90]〉,

〈p3, [0.92, 0.95], [0.83, 0.86], [0.82, 0.81]〉

}
Kc=

{
〈p1, [0.80, 0.90], [0.15, 0.20], [0.85, 0.90]〉, 〈p2, [0.80, 0.90], [0.20, 0.20], [0.85, 0.85]〉,

〈p3, [0.82, 0.81], [0.14, 0.17], [0.83, 0.86]〉

}

Theorem 1. For any IVFNset,K is defined on the absolute IVFNsetA.

i.
K∪ 0A = K

K∩ 1A = K

}
(Identity Law)

ii.
K∩ 0A = 0A
K∪ 1A = 1A

}
(Domination Law)

Proof.

(i) Let K and 0A be two IVFNset on A, defined by

K=
{〈

𝓀,
[
T r−K(𝓀),T r+K(𝓀)

]
,
[
Im−K(𝓀),Im+

K(𝓀)
]
,
[
Fa−K(𝓀),Fa+K(𝓀)

]〉∣∣𝓀 ∈ A
}

0A, is defined as follows: 0A = {〈𝓀, [0, 0], [1, 1], [1, 1]〉|𝓀 ∈ A}
So, K∪ 0A =

{
𝓀,
[
max

(
T r−K(𝓀), 0

)
, max

(
T r+K(𝓀), 0

)]
,[

min
(
Im−K(𝓀), 1

)
, min

(
Im+

K(𝓀), 1
)]

,[
min

(
Fa−K(𝓀), 1

)
, min

(
Fa+K(𝓀), 1

)]∣∣𝓀 ∈ A
}

Therefore, K ∪ 0A =
{〈
𝓀,
[
T r−K(𝓀),T r+K(𝓀)

]
,
[
Im−K(𝓀),Im+

K(𝓀)
]
,
[
Fa−K(𝓀),Fa+K(𝓀)

]〉∣∣
𝓀 ∈ A}

K∪ 0A = K

In a similar way, we can prove K∩ 1A = K

(ii) Let K and 0A be two IVFNset on A, defined by

K=
{〈

𝓀,
[
T r−K(𝓀),T r+K(𝓀)

]
, [Im−K(𝓀), Im+

K(𝓀)
]
,
[
[Fa−K(𝓀),Fa+K(𝓀)

〉∣∣∣𝓀 ∈ A
}

0A, is defined as follows: 0A = {〈𝓀, [0, 0], [1, 1], [1, 1]〉|𝓀 ∈ A}
So, K∩ 0A =

{
𝓀,
[
min

(
T r−K(𝓀), 0

)
, min

(
T r+K(𝓀), 0

)]
,[

max
(
Im−K(𝓀), 1

)
, max

(
Im+

K(𝓀), 1
)]

,[
max

(
Fa−K(𝓀), 1

)
, max

(
Fa+K(𝓀), 1

)]∣∣𝓀 ∈ A
}

Therefore, K∩ 0A = {〈𝓀, [0, 0], [1, 1], [1, 1]〉|𝓀 ∈ A}

K∩ 0A = 0A

In the similar way, we can prove K∪ 1A = 1A
�
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Definition 6. Suppose

K =
{〈[

T r−K(𝓀),T r+K(𝓀)
]
,
[
Im−K(𝓀), Im+

K(𝓀)
]
,
[
[Fa−K(𝓀),Fa+K(𝓀)

]〉
: 𝓀 ∈ A

}
and

L =
{〈[

T r−L(𝓀),T r+L(𝓀)
]
,
[
Im−L(𝓀), Im+

L(𝓀)
]

, [Fa−L(𝓀),Fa+L(𝓀)
]〉

: 𝓀 ∈ A
}

be two IVFNset , then

AIVFNset + BIVFNset =⎧⎨⎩
〈𝓀1 +𝓀2,

[
T r−K(𝓀) + T r−L(𝓀)− T r−K(𝓀)T r−L(𝓀),T r+K(𝓀) + T r−L(𝓀)− T r+K(𝓀)T r+L(𝓀)

]
,[

Im−K(𝓀)Im−L(𝓀),Im+
K(𝓀)Im+

L(𝓀)
]
,[

Fa−K(𝓀)Fa−L(𝓀),Fa+K(𝓀)Fa+L(𝓀)
]

〉⎫⎬⎭,𝓀 ∈ A

AIVFNset ·BIVFNset =⎧⎨⎩
〈 𝓀1𝓀2,

[
T r−K(𝓀)T r−L(𝓀),T r+K(𝓀)T r+L(𝓀)

]
,[

Im−K(𝓀) + Im−L(𝓀)− Im−K(𝓀)Im−L(𝓀),Im+
K(𝓀) + Im+

L(𝓀)− Im+
K(𝓀)Im+

L(𝓀)
]
,[

Fa−K(𝓀) +Fa−L(𝓀)−Fa−K(𝓀)Fa−L(𝓀),Fa+K(𝓀) +Fa+L(𝓀)−Fa+K(𝓀)Fa+L(𝓀)
]

〉⎫⎬⎭,𝓀 ∈ A

Definition 7. Let α =
([

T rA−
α ,T rA+

α

]
,
[
ImA−

α ,ImA+
α

]
,
[
FaA−

α ,FaA+
α

])
,

α1 =
([

T rA−
α1

,T A+
α1

]
,
[
ImA−

α1
,IA+

α1

]
,
[
FaA−

α1
,FaA+

α1

])
and α2 =([

T rA−
α2

,T rA+
α2

]
,
[
ImA−

α2
,ImA+

α2

]
,
[
FaA−

α2
,FaA+

α2

])
be three IVFNnumber. Then

(i) α1 = α2 if and only if T rA−
α1

= T rA−
α2

,ImA−
α1

= ImA−
α2

,FaA−
α1

= FaA−
α2

(ii) α1 ≺ α2 if and only if

(iii) T rA−
α1
≤ T rA−

α2
,T rA+

α1
≤ T rA+

α2
;Im

A−
α1
≥ ImA−

α2
,ImA−

α1
≥ ImA−

α2
;Fa

A−
α1
≥ FaA−

α2
;

FaA+
α2
≥ FaA+

α2

(iv) α1
⊕

α2 =[
3
√(

T rA−
α1

)3
+
(
T rA−

α2

)3 −
(
T rA−

α1

)3
.
(
T rA−

α2

)3
, 3
√(

T rA+
α1

)3
+
(
T rA+

α2

)3 −
(
T rA+

α1

)3
.
(
T rA+

α2

)3
,[

ImA−
α1

ImA−
α2

,ImA+
α1

ImA+
α2

]
,
[
FaA−

α1
FaA−

α2
, FaA+

α1
FaA+

α2

]
]

(v) α1
⊗

α2 =⎡⎣
[
T rA−

α1
.T rA−

α2
,T rA+

α1
.T rA+

α2

][
3
√(

ImA−
α1

)3
+
(
ImA−

α2

)3 −
(
ImA−

α1

)3
.
(
ImA−

α2

)3
, 3
√(

ImA+
α1

)3
+
(
ImA+

α2

)3 −
(
ImA+

α1

)3
.
(
ImA+

α2

)3
]

[
3
√(

FaA−
α1

)3
+
(
FaA−

α2

)3 −
(
FaA−

α1

)3
.
(
FaA−

α2

)3
, 3
√(

FaA+
α1

)3
+
(
FaA+

α2

)3 −
(
FaA+

α1

)3
.
(
FaA+

α2

)3
]
⎤⎦

(vi) kα =⎛⎝⎡⎣ 3

√√√√1−
(

1−
(
(T r A−

α

)3
)k

)
, 3

√√√√1−
(

1−
(
(T r A+

α

)3
)k

)⎤⎦,
[(

ImA−
α

)k
,
(
ImA+

α

)k
]

,
[(

FaA−
α

)k
,
(
FaA+

α

)k
]⎞⎠

(vii) αk =⎛⎝[(T rA−
α

)k
,
(
T rA+

α

)k
]

,

⎡⎣ 3

√√√√1−
(

1−
(
(Im A−

α

)3
)k

)
, 3

√√√√1−
(

1−
(
(Im A+

α

)3
)k

)⎤⎦,

⎡⎣ 3

√√√√1−
(

1−
((

FaA−
α1

)3
)k

)
, 3

√√√√1−
(

1−
((

FaA−
α2

)3
)k

)⎤⎦⎞⎠.

Remark 2.

i. If α = ([a, b], [c, d], [e, f ]) = ([1, 1], [0, 0], [0, 0]) and k > 0 then,

kα =

([
3

√
1−

(
1− (a3)

k
)

, 3

√
1−

(
1− (b3)

k
)]

,
[
(c)k, (d)k

]
,
[
(e)k, ( f )k

])
= ([1, 1], [0, 0], [0, 0])αk

=

([
(a)k, (b)k

]
,

[
3

√
1−

(
1−

(
c)3

)k
)

, 3

√
1−

(
1−

(
d)3

)k
)]

,

[
3

√
1−

(
1−

(
(e)3

)k
)

, 3

√
1−

(
1−

(
( f )3

)k
)])

= ([1, 1], [0, 0], [0, 0])

ii. If α = ([a, b], [c, d], [e, f ]) = ([0, 0], [1, 1], [1, 1]) and k > 0 then,
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kα =

([
3

√
1−

(
1− (a3)

k
)

, 3

√
1−

(
1− (b3)

k
)]

,
[
(c)k, (d)k

]
,
[
(e)k, ( f )k

])
= ([0, 0], [1, 1], [1, 1])αk

=

([
(a)k, (b)k

]
,

[
3

√
1−

(
1−

(
c)3

)k
)

, 3

√
1−

(
1−

(
d)3

)k
)]

,

[
3

√
1−

(
1−

(
(e)3

)k
)

, 3

√
1−

(
1−

(
( f )3

)k
)])

= ([0, 0], [1, 1], [1, 1])

iii. If k = 1 then kα = α; αk = α

Definition 8. Consider αj =
([

T rA−
αj

,T rA+
αj

]
,
[
ImA−

αj
,ImA+

αj

]
,
[
FaA−

αj
,FaA+

αj

])
is a set of

the IVFNnumber where j = 1, 2, . . . , r. Then, the IVFNWaverage operator is as follows:

IVFNWA(α1, α2, ..αr) = �r
j=1wjαj where wj is weight value with wj ∈ [0, 1] and ∑r

j=1 wj = 1

IVFNWA(α1, α2, ..αr) =

⎡⎣(1−
r

∏
j=1

(
1−

(
T rA−

αj

)3
)wj

) 1
3

,

(
1−

r
∏
j=1

(
1−

(
T rA+

αj

)3
)wj

) 1
3
⎤⎦,[

r
∏
j=1

(
ImA−

αj

)wj
,

r
∏
j=1

(
ImA+

αj

)wj

]
,

[
r

∏
j=1

(
FaA−

αj

)wj
,

r
∏
j=1

(
FaA+

αj

)wj

]

Definition 9. Consider αj =
([

T rA−
αj

,T rA+
αj

]
,
[
ImA−

αj
,ImA+

αj

]
,
[
FaA−

αj
,FaA+

αj

])
is a set of

the IVFNnumber where j = 1, 2, . . . , r. Then, the IVFNWgraph operator is as follows:

IVFNWG(α1, α2, ..αr) = �r
j=1α

wj
j where wj is weight value with wj ∈ [0, 1] and ∑r

j=1 wj = 1

IVFNWgraph(α1, α2, ..αr)

=

⎛⎝[ r
∏
j=1

(
T rA−

αj

)wj
,

r
∏
j=1

(
T rA+

αj

)wj

]
,

⎡⎣(1−
r

∏
j=1

(
1−

(
ImA−

αj

)3
)wj

) 1
3

,

(
1−

r
∏
j=1

(
1−

(
ImA+

αj

)3
)wj

) 1
3
⎤⎦,⎡⎣(1−

r
∏
j=1

(
1−

(
FaA−

αj

)3
)wj

) 1
3

,

(
1−

r
∏
j=1

(
1−

(
FaA+

αj

)3
)wj

) 1
3
⎤⎦⎞⎠

4. Score and Accuracy Function for the IVFNnumber

Finding the solutions to Multi-Criteria Decision-Making (MCDM) problems in an un-
certainty situation is a challenging task in today’s world. In real-time situations, the mem-
bership values of T r, Fa and In for a certain problem cannot be an exact value but are de-
fined by possible interval values. So, researchers introduced the IVFset, IVIFset and IVNset.
There are many studies available in the literature about grouping operators and deter-
mination methods in Table 2. In the Decision-Making (DM) process, one can find the
best alternative among a set of feasible ones by using MCDM techniques. HWang and
Yoon [26] introduced TOPSIS, which is another well-known MCDM approach to finding the
best alternative. To date, the IFset, IVIFset, and IVNset are widely used in DM problems.
Additionally, the SNset and IVNset are extensions of the Nset.

Singh et al. [24] defined score and accuracy functions using Nset to solve problems in
MCDM for ranking the SVNset and IVNset.
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Table 2. Literature Survey.

Authors Topic Year

Nayagam et al. [27,28] Ranking method on the IVIFset. 2007 and 2008
Xu, Liu, and Xie [29,30] Weighted SF and AF to rank the IVIFset. 2007 and 2009

Ye [31] Novel AF for ranking the different alternatives
under the IFset and IVIFset.

2009

Yager [6] Aggregation operators in the Pythagorean
environment. 2013

Ye [32] Correlation coefficient under SVNset. 2013
Yager [7] PFset. 2014
Garg [9] AF for the IVPFset. 2016

Garg [25] IPFWaverage and IPFWgraph operators in the DM
problem in the IVPFset environment. 2016

Garg [25] Correlation coefficient between the PFset. 2016

Definition 10. Score functions of the SVNset. Let A ={〈
𝓀,

[
T r−A(𝓀), T r+A(𝓀)

]
,
[
Im−A(𝓀), Im+

A(𝓀)
]
,
[
Fa−A(𝓀), Fa+

A(𝓀)
]〉∣∣,𝓀 ∈ A

}
. That is,

∼
A = ([a, b], [c, d], [e, f ]) be an INnumber. The Score function (SF) of the SVNset is interpreted as
S(α) = 2+a+b−2c−2d−e− f

4 , where S(α) ∈ [0, 1] (Şahin and Nancy [33–35])

S(α) =
4 + (a + b− 2c− 2d− e− f )(4− a− b− e− f )

8

where S(α) ∈ [0, 1] (Singh et al. [2])

S(α) = (2 + a + b− 2c− 2d− e− f )(2(4− a− b− c− d)),

where S(α) ∈ [0, 1] and a + b + c + d �= 4 as 0 ≤ a ≤ b ≤ 1, 0 ≤ c ≤ d ≤ 1.

H(α) =
(a + b− d(1− b)− c(1− a)− f (1− c)− e(1− d)

2
,

H(α) ∈ [0, 1] (Sahin [34]).

Definition 11. An Accuracy functions of the SVNset. Let A =
{〈𝓀, T rA(𝓀), ImA(𝓀), FaA(𝓀)〉|𝓀 ∈ A} be the SVNset. For convenience, the Nset A =
〈 a, b, c 〉, (ahin and Nancy [34,35] is defined as S(α) = 1+a−2b−c

2 , S(α) ∈ [0, 1]

S(α) =
1 + (a− 2b− c)(2− a− c)

2
, S(α) ∈ [0, 1]

The Accuracy function (AF) of SVNsetf (Nancy and Şahin [34,35]) is interpreted as

H(α) = a− b(1− a)− c(1− b), H(α) ∈ [0, 1]
H(α) = a− 2b− c, H(α) ∈ [0, 1].

Definition 12. Score and accuracy functions of the IVPFset and IVPFnumber. Score function of the
PFset A on S is given by Zhang et al. [21], who introduced the (SF) as S(α) = (T rA)

2 – FaA,
where α = (T rA,FaA) and S(α) ∈ [−1, 1]. The AF is (α) = (T rA)

2 + (FaA)
2, where

H(α) ∈ [0, 1].
Score and Accuracy functions of the IVPFset

S(α) = 〈[a, b], [c, d]〉 where[a, b] ⊆ [0, 1], [c, d] ⊆ [0, 1] and b2 + d2 ≤ 1.

The score function of the IVPFnumber is S(α) = a2+b2–c2−d2

2 , where S(α) ∈ [−1, 1]
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The accuracy function for the IVPFnumber is (α) = a2+b2+c2+d2

2 , where H(α) ∈ [ 0, 1]. Garg [31]
observed that the above SF and AF for the IVPFnumber are suitable for certain cases; for example,
α1 = 〈 [0, 0.5], [0.1, 0.7]〉 and α2 = 〈 [0.3, 0.4], [0.5, 0.5] 〉 are the two IVPFset, then we obtain,
S(α1) = S(α2) = −0.1250 and H(α1)) = H(α2) = 0.3750. Hence, he proposed an improved
score function as follows:

L(α) =

(
a2 − c2) (1 +

(√
(1− a2 − c2)

))
+
(
b2 − d2) (1 +

(√
(1− b2 − d2)

))
2

,

where L(α) ∈ [−1, 1]
Based on the improved score function, he gave the following comparison law for the DM process

by the IVPFnumber
if L(α) < L (β), then α < β, L(α) > L (β), then α > β, L(α) = L(β), then α = β. He

also verified this with the above two examples,

L(α1) = −0.1912 and L(α2) = −0.2246, the alternative α1 is better than α2 and
L(α1) = −0.3368andL(α2) = −0.3233, the alternative α2 is better than α1.

Definition 13. Score and accuracy functions of the FFset and IVFFnumber. Senapati and Yager [10]
proposed the FFset in 2019. They have also compared it to other kinds of Fset. Complement operator
and set of operations for the FFset were found. They defined SF and AF for the FFset ranking
and applied it to the DM problem. Score function of the FFset is S(α) = (T rA)

3 − (FaA)
3

where α = (T rA,FaA) and S(α) ∈ [−1, 1]. The accuracy function of the FFset is H(α) =

(T rA)
3 + (FaA)

3 where H(α) ∈ [0, 1]. Senapati and Yager [10] explained the SF and values lie
between [−1,1]. Later, Laxminarayan Sahoo [36] observed that SF(F) ∈ [−1, 1] and the function
are positive when SF(F) ∈ [0, 1] and negative when SF(F) ∈ [−1, 0). To score functions when
score values lie in the interval between 0 and 1, he has also introduced the following formulae.

(Type 1) S1F(
∼
F) = 1+T r3

A−Fa3
A

2

(Type 2) S2F(
∼
F) = 1+2T r3

A−Fa3
A

3

(Type 3) S3F(
∼
F) = (1+T r3

A−Fa3
A)(|T rA−FaA |)
2

Rani et al. [15] introduced the following:
The score function of the IVFFnumber λ = 〈[a, b], [c, d]〉where [a, b] ⊆ [0, 1], [c, d] ⊆ [0, 1]

and b3 + d3 ≤ 1. S(α) = a3+b3−c3−d3

2 where S(α) ∈ [−1, 1]
The accuracy function for the IVFFnumber is H(α) = a3+b3+c3+d3

2 where H(α) ∈ [ 0, 1]
Jeevaraj [16] introduced a new score function for comparing such types of IVFFnumber,

as follows:

S(α) =
−a3 + b3 + c3 − d3

2
where S(α) ∈ [−0.5, 0.5]

The accuracy function for the IVFFnumber is H(α) = −a3+b3−c3+d3

2 where H(α) ∈ [- 0.5, 0.5]
Rani et al. [15] introduced a new score function for comparing such types of IVFFnumber,

as follows:

S(α) =

(
a3 − c3)(1 +

√
(1− a3 − c3)

)
+
(
b3 − d3) (1 +

√
(1− b3 − d3)

)
2

, where S(α) ∈ [−1, 1].
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Definition 14. Proposed Score Functions of the IVFNset(IVFNset)}〈[
T r−A(𝓀), T r+A(𝓀)

]
,
[
Im−A(𝓀), Im+

A(𝓀)
]
,
[
Fa−A(𝓀), Fa+

A(𝓀)
]〉

= α =
〈[a, b], [c, d], [e, f ]〉where[a, b] ⊆ [0, 1], [c, d] ⊆ [0, 1], [e, f ] ⊆ [0, 1] and b3 + d3 + f 3 ≤ 1.

The score functions of the IVFNset

S1(α) =
(a3+b3−c3−d3−e3− f 3)

2 where S1(α) ∈ [−1, 1]

S2(α) =
(a3+b3+c3+d3+e3+ f 3)

2 where S2(α) ∈ [0, 1]

S3(α) =
4+(a3+b3−2c3−2d3−e3− f 3)(4−a3−b3−c3−d3−e3− f 3)

8 where S3(α) ∈ [0, 1]

For maximum property, 〈[0, 0], [0, 0], [1, 1]〉 and minimum property, 〈[1, 1], [0, 0], [0, 0.]〉
See in Table 3.

Table 3. Values of score functions for different membership values.

a b c d e f S1 S2 S3

0.8 0.85 0.85 0.8 0.9 0.92 −0.753833 0.46999225 0.420965198

0.8 0.85 0.85 0.85 0.9 0.91 −0.792348 0.47961825 0.442667238

0.8 0.8 0.85 0.85 0.9 0.95 −0.8953125 0.479828125 0.439103631

0.8 0.85 0.82 0.85 0.9 0.91 −0.7609695 0.471773625 0.4243537

0.8 0.85 0.85 0.85 0.85 0.91 −0.7349105 0.465258875 0.406265978

0.85 0.9 0.8 0.8 0.8 0.85 −0.4545625 0.449421875 0.397060871

5. Applications of Interval-Valued Fermatean Neutrosophic Numbers

MCDM techniques are used to solve real-world problems in the context of uncertainty.
There are two famous methods that help determine the solution to MCDM problems. The
Analytical Hierarchy Process (AHP) is one of these two methods that can be used to analyze
such problems by branching techniques to identify the best solution through the weight of
the criterion. TOPSIS is another of the most popular MCDM models that helps select the
best solutions. But in the AHP model, the number of criteria does not give clear information,
whereas TOPSIS determines the ranking based on several criteria. In this technique, ideal
values are either positive or negative based on the shortest and farthest distances.

In this section, we study the lecturer evaluation along with the IVFNset. This study
presents a ranking of the six different lecturers who work at one of the leading institutions
in Tamil Nadu based on weighted performance evaluation criteria.

Anh Duc Do et al. [37] divided the criteria for evaluating the efficiency and talent
of lecturers in an educational institution into four main groups: self-evaluation, manager
valuation, peer evaluation, and student-based evaluation (Wu et al. [38]), as shown in the
below Figure 3.

It is noted that the above-listed criteria may differ with respect to the infrastructure,
level of students, salary given to the faculty, and workload of each institution. So, we
have modified the above list of criteria and sub-criteria. We follow the following criteria
structure for the lecturer evaluation in Figure 4 and Table 4:
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Figure 3. Lecturer evaluation—criteria.

Figure 4. Modified criteria used in lecturer evaluation.

32



Mathematics 2023, 11, 3817

Table 4. Criteria and sub-criteria—Lecturer evaluation framework.

Name and Number Criteria Description

Scientific publication (C11)

Faculty research publication in reputed journals is an important factor in the
academic community in developing countries. The proportionality of the
number of published articles in the last two years with the total in a year is
measured by this criterion.

Supervising research scholars (C12)

Guiding the scholar is an essential criterion for the evaluation of a lecturer in
any academic institution. Scholars expect their supervisors to be more efficient
people and should have updated knowledge to perform their research
activities. The number of scholars under a lecturer is also one of the key factors
for this criterion. If the supervisor needs the minimum time to publish an
article with their scholars, this reflects the capability of the lecturer.

Serve Journal reviewer ( C13)

Becoming a peer reviewer in an indexed journal is one of the most important
steps to reaching academic success as a lecturer. This will happen only when a
lecturer has more knowledge in their research field. Lecturers’ feedback about
the submitted articles, suggestions to improve the article, and
recommendations to the editors of the journal about the status of the articles.

Lecturing activities (C21)

It represents the number of hours a lecturer has spent teaching the subject to
their students according to the allotted slot. In general, at the institutions, the
duration of each lecture is about 50 mins to 1h. The number of publications can
be considered with lecture time.

Language of instruction (C22) This criterion measures the use of the lecturer’s non-native language.

Lecturing attitude (C23)
Lecturing attitude includes coming to class late, canceling classes without a
reason, etc.

Cooperation in research (internally funded)
projects (C31)

Under this criterion, the lecturer gives importance to maintaining research
records and involvement to reduce the time spent complementing the projects
while also exchanging their knowledge.

Teamwork in scientific and teaching
activities(C32)

This criterion includes the lecturer’s contribution in various fields and the
number of resources to increase the count of research publications as a team.
Inter-department research publications contribute more to the institutional
ranking system.

Participation in institutional meetings and
events (C33)

Organizing institutional events like convocation, college day, scholarship day,
and sports day will be successful only when lecturers build good relationships
with their co-workers and students.

The content of the lessons (C41)
The teaching and learning process involves the quality of the teaching
materials given, and lecturers should elaborate on real-world problems during
their lectures.

Student–Lecturer (C42)

A healthy relationship between Lecturer–student includes the expectation that
the lecturer should share their experience and knowledge among all the
students without any special treatment or discrimination. Lecturers should
maintain a decent relationship with their students and respect the decorum of
their institution.

Motivating the students (C43)
Each lecturer acts as a mentor for at least a small group of students. Lecturers
should advise the students regarding internal problems like the interactions of
each student with their classmates, family issues, and disciplinary actions.

Using the TOPSIS method, the solution of the MCDM problem concludes the relation-
ship between the shortest distance from the positive ideal solution and the farthest distance
from the negative ideal solution. The ideal classical TOPSIS method can be presented using
the following five levels:

Level 1: Construct the DM matrix
(

C =
[
cij
]

m×n

)
.

Level 2: Find the Normalized DM
(

R =
[
rij
]

m×n

)
.

Level 3: Find the +ve and −ve ideal solutions (PIS and NIS).
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Level 4: Calculate the separation measures for both ideal solutions.
Level 5: Finalize the best alternative.
Any educational institution needs to evaluate the quality of the faculty members in

the four different positions A = (A1, A2, A3, A4) according to four criteria: self-evaluation
(C 1), managerevaluation (C 2), peer evaluation (C3), and student-based evaluation (C 4).
In every appraisal of the institution, we must measure the quality and quantity of the work
performed by different designations of the faculty members. This is mandatory for the
gradual growth of the institution. Based on the past five years of data in an educational
institution, we construct a decision matrix in terms of the Interval-valued Fermatean
Neutrosophic values. Since measuring the faculty’s strength is not based on an exact single
value and these values fail under the uncertainty environment, we use IVFFset. The past
five years data was obtained through a questionnaire prepared and circulated among all
faculty members at a leading education institute in south India.

Level 1: For a multiple attribute decision-making problem, let C = (C1, C2, C3, C4)
be a discrete set of alternatives. A = (A1, A2, A3, A4) be the set of attributes. W =

(w1, w2, w3, w4)
T be the weighting vector of the attributes, and ∑4

j=1 wj=1 where

ω = (0.30, 0.30, 0.20)T be unknown.
In Level 1, the construct decision matrix, C =

[
cij
]

m×n is the decision matrix, where〈[
T r−A(𝓀),T r+A(𝓀)

]
,
[
Im−A(𝓀),Im+

A(𝓀)
]
,
[
Fa−A(𝓀),Fa+A(𝓀)

]〉
and is in the form of the

IVFFset.
See in Table 5.

Table 5. Criteria and alternatives with interval-valued Fermatean Neutrosophic values.

Alternatives\
Criteria

A1 A2 A3 A4

C1
([0.85, 0.90], [0.85, 0.85],
[0.80, 0.80])

([0.85, 0.85], [0.85, 0.87],
[0.83, 0.85])

([0.81, 0.91], [0.86, 0.89],
[0.82, 0.86])

([0.87, 0.92], [0.85, 0.85],
[0.80, 0.80])

C2
([0.85, 0.91], [0.85, 0.86],
[0.80, 0.84])

([0.82, 0.90], [0.80, 0.85],
[0.80, 0.80])

([0.85, 0.92], [0.85, 0.85],
[0.80, 0.83])

([0.85, 0.91], [0.80, 0.85],
[0.81, 0.85])

C3
([0.85, 0.93], [0.85, 0.87],
[0.80, 0.81])

([0.85, 0.91], [0.81, 0.85],
[0.80, 0.80])

([0.85, 0.91], [0.85, 0.87],
[0.80, 0.82])

([0.80, 0.90], [0.85, 0.85],
[0.80, 0.80])

C4
([0.85, 0.94], [0.85, 0.88],
[0.80, 0.82])

([0.85, 0.92], [0.82, 0.85],
[0.80, 0.80])

([0.82, 0.92], [0.85, 0.85],
[0.82, 0.82])

([0.80, 0.94], [0.83, 0.85],
[0.80, 0.80])

That is, the DM matrix

C =

⎛⎜⎜⎝
([0.85, 0.90], [0.85, 0.85], [0.80, 0.80]) ([0.85, 0.85], [0.85, 0.87], [0.83, 0.85]) ([0.81, 0.91], [0.86, 0.89], [0.82, 0.86]) ([0.87, 0.92], [0.85, 0.85], [0.80, 0.80])
([0.85, 0.91], [0.85, 0.86], [0.80, 0.84]) ([0.82, 0.90], [0.80, 0.85], [0.80, 0.80]) ([0.85, 0.92], [0.85, 0.85], [0.80, 0.83]) ([0.85, 0.91], [0.80, 0.85], [0.81, 0.85])
([0.85, 0.93], [0.85, 0.87], [0.80, 0.81]) ([0.85, 0.91], [0.81, 0.85], [0.80, 0.80]) ([0.85, 0.91], [0.85, 0.87], [0.80, 0.82]) ([0.80, 0.90], [0.85, 0.85], [0.80, 0.80])
([0.85, 0.94], [0.85, 0.88], [0.80, 0.82]) ([0.85, 0.92], [0.82, 0.85], [0.80, 0.80]) ([0.82, 0.92], [0.85, 0.85], [0.82, 0.82]) ([0.80, 0.94], [0.83, 0.85], [0.80, 0.80])

⎞⎟⎟⎠

The numbers ([0.85, 0.90], [0.85, 0.85], [0.80, 0.80]), corresponding to A1 and C1, rep-
resent that the degree of A1 supports C1, which lies in [0.85, 0.90], but the degree of A1
does not support C1, which lies in [0.85, 0.85]. Also, the degree of A1 neutral to C1, which
lies in [0.80, 0.80]. All other degrees of alternativehave the same meaning.

In general, benefit and cost fall into these two categories. Normalize these values into
a dimensionless matrix through which criteria can be compared easily. The construction of
a Normalized Decision Matrix (NDM) is obtained at the next level by using the rule below:

R =
[
rij
]

m×n is the NDM, where R =

{
dij, i f criterion Cij is o f the bene f it type

dij, i f criterion Cij is o f the cost type
dij =

〈[
F−A(p),F+

A(p)
]
,
[
1− I−A(p), 1− I+

A(p)
]
,
[
T −A(p),T +

A(p)
]〉

Level 2: As the criteria of C2 and C4 are the cost criteria and C1 and C3 are the benefit
criteria, the NFM-DM of R is given by
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R =

⎛⎜⎜⎝
([0.85, 0.90], [0.85, 0.85], [0.80, 0.80]) ([0.83, 0.85], [0.15, 0.13], [0.85, 0.85]) ([0.81, 0.91], [0.86, 0.89], [0.82, 0.86]) ([0.80, 0.80], [0.15, 0.15], [0.87, 0.92])
([0.85, 0.91], [0.85, 0.86], [0.80, 0.84]) ([0.80, 0.80], [0.20, 0.15], [0.82, 0.90]) ([0.85, 0.92], [0.85, 0.85], [0.80, 0.83]) ([0.81, 0.85], [0.20, 0.15], [0.85, 0.91])
([0.85, 0.93], [0.85, 0.87], [0.80, 0.81]) ([0.80, 0.80], [0.19, 0.15], [0.85, 0.91]) ([0.85, 0.91], [0.85, 0.87], [0.80, 0.82]) ([0.80, 0.80], [0.15, 0.15], [0.80, 0.90])
([0.85, 0.94], [0.85, 0.88], [0.80, 0.82]) ([0.80, 0.90], [0.18, 0.15], [0.85, 0.92]) ([0.82, 0.92], [0.85, 0.85], [0.82, 0.82]) ([0.80, 0.80], [0.17, 0.15], [0.80, 0.94])

⎞⎟⎟⎠

Level 3: Converting R into their collective score matrix—using S3(α)

M =

⎛⎜⎜⎝
0.3919 0.4892 0.4397 0.4183
0.4224 0.4412 0.4208 0.4548
0.4280 0.4273 0.4170 0.4505
0.4458 0.4665 0.4056 0.4319

⎞⎟⎟⎠
Level 4: In this level, ideal solutions consist of selecting the best values for each

attribute from all alternatives.
Generally, the values of l+ are complements of l− and vice versa. The degree

of l+ to 1 and 0 is fixed, but the decision-maker may vary it. Hence, we consider
IVFNPIsetl+ and IVFNNIsetl− as follows:

l+ =
〈
[max

(
aij
)
, max

(
bij
)]

;
[
min

(
cij
)
, min

(
dij
)]

;[min
(
eij
)
, min

(
fij
)] 〉

l− =
〈
[min

(
aij
)
, min

(
bij
)]

;
[
max

(
cij
)
, max

(
dij
)]

;[max
(
eij
)
, max

(
fij
)] 〉

among all attributes.

The PIS and NIS of two alternatives are found as

l+ = {〈[0.85, 0.94]; [0.82, 0.85]; [0.80, 0.80]〉, 〈[0.85, 0.92]; [0.80, 0.85]; [0.80, 0.80]〉,
〈[0.85, 0.92]; [0.85, 0.85]; [0.80, 0.82]〉, 〈[0.87, 0.94]; [0.80, 0.85]; [0.80, 0.80]〉}

l− = {〈[0.85, 0.90]; [0.85, 0.88]; [0.80, 0.84]〉, 〈[0.82, 0.85]; [0.85, 0.87]; [0.83, 0.85]〉,
〈[0.81, 0.91]; [0.86, 0.89]; [0.83, 0.86]〉, 〈[0.80, 0.90]; [0.85, 0.85]; [0.81, 0.85]〉

S3(l+) =
(
0.4127 0.3537 0.4161 0.4194

)
S3(l−) =

(
0.4245 0.3593 0.4459 0.3863

)
The distance between Ai and the ideal solution is calculated in level 5

M+
i =

n
∑

j=1
d
(

Aij, A+
j

)
=

√
n
∑

j=1

[
wj
(
S3(l+)− S3

(
rij
))2

]2

M−i =
n
∑

j=1
d
(

Aij, A−j
)
=

√
n
∑

j=1

[
wj
(
S3
(
rij
)
− S3(l−)

)2
]2

Level 5: To compute the closeness coefficient (CC):

CCK =
M−K

M−K + M+
K

, K = 1, 2, 3, 4

See in Table 6.

Table 6. Closeness coefficient for each alternative.

Bi M+
i M−i CCi

A1 0.0055 0.0051 0.4793

A2 0.0023 0.0022 0.4902

A3 0.0016 0.0071 0.8134

A4 0.0038 0.0597 0.9396

Level 6: Based on the values of Ci, we rank the alternatives and select the best al-
ternative(s). Therefore, the final and optimized ranking of the four major alternatives is
A4 � A3 � A2 � A1, and thus, the best alternative is A4.
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6. Results and Discussion

In this approach, we describe a combination of quantitative assessment and multi-
criteria decision-making models to evaluate lecturers’ performances from various per-
spectives: self-assessment, peer assessment, managerial assessment, and student-based
evaluation. This approach aims to overcome the challenge of differentiating between
lecturers’ potential capacities and their actual teaching effectiveness. In our article, we
have introduced a new variant of the Nset called Interval-Valued Fermatean Neutrosophic
Set (IVFNset). This new variant specifically deals with situations where there is partial
ignorance, leading to uncertainty about whether something is true, false, or exists in an
uncertain region. This concept is applied independently to a multi-decision process. This
study expands upon the concept of Fermatean Neutrosophic Set (FNset), presenting an
extension in the form of the IVFNset. The article highlights the algebraic properties and
set theoretical aspects of the IVFNset, likely discussing how this new variant handles and
represents partial ignorance in more detail. This research appears to be addressing a crucial
challenge in education by proposing an innovative approach that considers various assess-
ment perspectives and handles uncertainty effectively through the IVFNset. The presented
results highlight the practical application and effectiveness of our methodology in making
informed decisions about lecturers’ performances.

Faculty evaluation is a crucial component of higher education institutions and plays a
significant role in shaping educational goals and national development strategies. Eval-
uating faculty performance is essential for maintaining teaching competency, promoting
scientific research, and creating a conducive learning environment. The importance of
evaluating faculty performance in terms of teaching competency as a tool for decision-
making, including employment and dismissal in this assessment, is seen as a means to
ensure the quality of education and contribute to the overall development of the country’s
education system. Higher educational institutions should function as scientific research
centers and encourage faculty to engage in research activities. This dual role of teaching
and research contributes to the institution’s credibility and the advancement of knowledge.
Faculty evaluation is seen as a way to create an equal environment that fosters cooperative
strategies among faculty members and nurtures the learning spirit of each student. This
suggests that a well-structured evaluation system can positively impact the overall educa-
tional atmosphere. Assessing faculty performance provides a comprehensive perspective
on the institution’s achievements, including improving learning outcomes, identifying
and nurturing young talents, and indirectly contributing to the country’s wealth. Such
assessments also establish the institution’s reputation at both global and local levels. The
evaluation process involves various complex factors such as personal interests, devel-
opment strategies, and fairness in assessment. It is acknowledged that fair and accurate
assessment is challenging and requires a multi-dimensional approach, including input from
principals/managers, students, and peer reviews. The absence of appropriate standards
and tools can lead to inaccuracies and subjectivity in evaluating faculty competence. We
suggest that a well-rounded, multi-dimensional assessment process can enhance faculty
knowledge, teaching capabilities, and professional development. As a whole, the multi-
faceted nature of faculty evaluation, its significance in the educational landscape, and the
challenges associated with implementing a fair and effective assessment system place an
emphasis on considering local context, fostering research, and promoting a cooperative
learning environment. This underscores the holistic approach required to evaluate and
enhance faculty performance in higher education institutions.

The criteria and methods used in a Multi-Criteria Decision-Making (MCDM) process
assess the performance and relative importance of lecturers. We have mentioned two
popular MCDM models—the Analytical Hierarchy Process (AHP) and the Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS)—that are commonly used to
handle such assessments. The assessment process involves evaluating lecturers based
on standards related to research capacity, teaching capacity, and service activities. These
criteria are likely important aspects in determining the overall performance of lecturers.
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MCDM involves making decisions based on multiple criteria that might be conflicting or
competing. It is a way to handle complex decision scenarios that cannot be addressed using
single criteria. AHP is a widely used MCDM method that breaks down complex problems
into a hierarchical structure of criteria and sub-criteria. It allows assigning weights to these
criteria based on their relative importance and then comparing alternatives based on these
weighted criteria. AHP is particularly useful for dealing with structured problems and
hierarchical decision contexts. The application of Neutrosophic Sets and related concepts in
the context of lecturer evaluation uses Multi-Criteria Decision-Making (MCDM) techniques.
Smarandache [2] introduced the concept of a Neutrosophic Set, which is characterized
by three membership degrees: truth membership (T), indeterminacy membership (I), and
falsity membership (F). These membership degrees are defined within the real standard
or nonstandard unit interval. This concept allows for dealing with uncertainty and im-
precision in various domains, including education. Neutrosophic Sets can be applied to
educational problems when dealing with ranges that fall within the defined interval. This
approach can help address issues related to imprecision and uncertainty in educational
contexts. Wang et al. [3] introduced the concepts of a single-valued Neutrosophic Set
and an interval-valued Neutrosophic Set. The interval-valued Neutrosophic Set extends
the concept of the Neutrosophic Set by incorporating interval values for the membership
degrees. This approach has been used in various fields, including decision-making sciences,
social sciences, and the humanities, to handle problems involving vague, indeterminate,
and inconsistent information. Ye [31] introduced the interval Neutrosophic Linguistic Set,
which involves new aggregation operators for interval Neutrosophic linguistic information.
This concept contributes to handling uncertain linguistic information. Broumi et al. [39] ex-
tended the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method
to accommodate uncertain linguistic information within interval Neutrosophic Sets. This
extension allows for decision-making when dealing with complex and uncertain data. The
passage highlights that there is a lack of research integrating hierarchical TOPSIS with
interval Fermatean Neutrosophic Sets, especially in the context of lecturer evaluation. This
integration could address the limitations of traditional approaches to evaluating lecturers,
which often face complexity and uncertainty. The study presented in the passage focuses
on evaluating lecturers using MCDM models. The goal is to combine the hierarchical
Neutrosophic TOPSIS technique, and the interval-valued complex set in a Neutrosophic
environment to improve lecturer evaluation. The application of Neutrosophic Sets and
related concepts to address the challenges of uncertainty and imprecision in lecturer eval-
uation uses MCDM techniques. By combining these innovative approaches, this study
aims to provide a more effective and robust framework for assessing and ranking lecturers’
performances.

Comparing with other models: The following table lists the results of the comparison.
The proposed method and the classic TOPSIS method can solve problems in uncertain envi-
ronments. However, the TOPSIS and AHP techniques have some disadvantages in terms of
calculation methods and results. Moreover, the extent of the interval-valued Neutrosophic
TOPSIS does not consider the capacity of each lecturer in the specific time period.

Method Ranking

Interval neutrosophic TOPSIS (Chi and Liu [40]).
Chi, P., and Liu, P. (2013). An extended TOPSIS method for the multiple
attribute decision making problems based on interval neutrosophic set.
Neutrosophic Sets and Systems, 1, 1–8.

A2 > A3 > A5 > A1 > A4

AHP (Saaty [41])
Saaty, T. L. (1980). The analytic hierarchy process. New York, NY:
McGraw-Hill Inc, 17–34.

A3 > A2 > A5 > A4 > A1
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Method Ranking

TOPSIS (Hwang and Yoon [26])
Hwang, C.-L., and Yoon, K. (1981). Multiple Attribute Decision Making:
Methods and Applications A State-of-the-Art Survey. Berlin Heidelberg:
Springer-Verlag.

A3 > A2 > A5 > A4 > A1

Interval complex Neutrosophic set (Anh Duc Doet al. [36])
Anh Duc Doa, Minh Tam Pham, Thi Hang Dinh, The Chi Ngo, Quoc Dat
Luue, Ngoc Thach Phamf, Dieu Linh Hag, and Hong Nhat Vuong,
Evaluation of lecturers’ performance using a novel hierarchical
multi-criteria model based on an interval complex Neutrosophic set,
Decision Science Letters 9 (2020) 119–14.

A1 > A3 > A2 > A5 > A4

The present work evaluates the quality of the faculty members in the four
different positions A = (A1, A2, A3, A4 ) according to four criteria, namely
self-evaluation (C 1), managerevaluation (C 2), peer evaluation (C3), and
student-based evaluation (C 4).

A4 � A3 � A2 � A1

7. Conclusions

In this article, our study developed a comprehensive assessment methodology using
a hierarchical structure and a hierarchical TOPSIS (Technique for Order of Preference by
Similarity to Ideal Solution) approach, incorporating interval-valued complex Neutrosophic
Sets for evaluating lecturer capability. The goals of this study seem to include addressing the
potential competition between lecturers that can arise from such evaluations and ensuring
fairness and transparency in the process. This study’s methodology is designed to handle
the complexity of assessment and decision-making in education and management systems.
The hierarchical approach is then compared with other related methods to highlight its
advantages and practicality. The results indicate that the proposed approach is effective
and not limited to just lecturer evaluation; it can potentially be applied to other decision-
making problems as well. However, as mentioned, there are certain limitations to this
study. Unfortunately, you have not specified what those limitations are. Nonetheless, you
also mentioned that future work is proposed to enhance the accuracy of lecturer evaluation.
This improvement could be valuable for supporting real-world, dynamic decision-making
in educational contexts. In summary, this study appears to contribute a novel approach
to lecturer evaluation using a hierarchical structure and TOPSIS methodology, with an
emphasis on fairness and transparency. The results suggest its efficiency and broader
applicability, though there are acknowledged limitations that may guide future research.

This paper introduces the concept of the IVFNset and its algebraic properties with an
example. Also, we introduce a new set of score functions for the IVFNset and use these
functions to evaluate the lectures’ performances that were studied.

8. Further Study

1. To define interval-valued Fermatean Neutrosophic Numbers.
2. To study the interval-valued Triangular Fermatean Neutrosophic Linear Programming

Problem.
3. To study the interval-valued Fermatean trapezoidal and Fermatean triangular Neu-

trosophic numbers.
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Abstract: Currently, there is uncertainty in the modeling techniques of cyber-physical systems (CPS)
when faced with the multiple possibilities and distributions of complex system behavior. This
uncertainty leads to the system’s inability to handle uncertain data correctly, resulting in lower
reliability of the system model. Additionally, existing technologies struggle to verify the activity and
safety of CPS after modeling, lacking a dynamic verification and analysis approach for uncertain
CPS properties.This paper introduces a generalized possibility decision process as a system model.
Firstly, the syntax and semantics of generalized possibility temporal logic with decision processes are
defined. Uncertain CPS is extended by modeling it based on time-based differential equations and
uncertainty hybrid time automaton. After that, model checking is performed on the properties of
activity and safety using fuzzy linear time properties. Finally, a cold–hot hybrid constant-temperature
system model is used for simulation experiments. By combining theory and experiments, this
paper provides a new approach to the verification of uncertain CPS, effectively addressing the state
explosion problem. It plays a crucial role in the design of uncertain CPS and offers a key solution for
model checking in the presence of uncertainty.

Keywords: cyber-physical system; uncertain hybrid timed automaton; generalized possibilistic
decision processes; scheduler; activity; safety; Ptolemy II; modeling; simulation

MSC: 68Q10

1. Introduction

The cyber-physical system (CPS) is a cutting-edge technology that combines com-
puting, communication, and remote control functions [1,2]. It represents the latest ad-
vancement in complex embedded information and physical network systems [3]. The CPS
comprises three main components: the physical entity, computing entity, and interactive
entity [4], as illustrated in Figure 1. By incorporating artificial intelligence (AI) into its
hardware, the CPS enables automatic control, decision-making, and judgment capabilities,
thereby influencing both the computing entities and physical entities through a feedback
mechanism. Furthermore, the CPS facilitates human–computer interaction [5] to achieve
optimal outcomes.

Model checking [6,7], as a formal and automatic verification technique, has found ex-
tensive applications in diverse domains such as computer software and hardware systems,
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communication protocols, control systems, and security authentication protocols. During
the verification process of complex concurrent systems, it is common to encounter uncertain
and inconsistent information. For instance, complex computing tasks generated by au-
tonomous vehicles in intelligent autonomous transport systems [8], among others. Classic
model checking, which is based on the probability measure, may face challenges when
dealing with uncertain verification problems in practical systems [7]. While it has been
widely used for analyzing and verifying stochastic systems [9], there are situations where
non-additivity problems arise, and these cannot be adequately addressed or measured by
traditional probability-based models.

To overcome these limitations, Li et al. [10,11] proposed a possibility measure-based
model-checking approach. The possibility measure is a branch of fuzzy set theory and a
generalization of the probability measure. Unlike the probability measure, the possibility
measure does not adhere to the principle of additivity. In their approach, Li et al. apply
fuzzy mathematics, which is rooted in the possibility measure, to model checking [12].
By doing so, they provide a framework for analyzing and verifying uncertain systems
that cannot be effectively measured or verified using traditional probability models. The
possibility measure-based model-checking approach allows for a more flexible handling of
uncertainty by considering the degree of membership or likelihood of events occurring.
This approach expands the range of problems that can be addressed and provides an
alternative method for analyzing and verifying stochastic systems in practical scenarios
where non-additivity problems arise.

A lot of quantitative model-checking techniques have been proposed in the modeling
of a system with uncertain information [13], but there are still some important unsolved
issues. The problem lies in the uncertainty of system behavior when confronted with
multiple possibilistic distributions of complex systems. For example, multi-agent sys-
tems possess complex dynamic structures and behavioral characteristics, necessitating the
incorporation of additional quantifiable information to depict their dynamic behavioral
features [14,15]. Moreover, these possibilistic distributions are not always measurable. The
purpose of modeling is to interface with the environment by uncertain actions to satisfy the
properties of the system. Thus, it is necessary to consider the uncertain information of those
actions. In order to permit both possibilistic and uncertain choices, we introduce the notion
of generalized possibilistic decision processes (GPDP) and schedulers selecting actions that
will be performed [16]. The GPDP serves as a theoretical foundation for the uncertainty
verification of complex systems by enabling transitions between states to satisfy multiple
possibilistic distributions.

Figure 1. CPS structure.
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Ptolemy II is an open-source simulation modeling tool that has gained popularity
for its ability to address challenges related to uncertainty modeling, management, and
optimal decision control in CPS [3]. While other tools like Simulink/Stateflow and UML
are widely used, their close integration and lack of specialized features make it difficult
to effectively handle uncertainty in CPS. Ptolemy II [17], developed by researchers at UC
Berkeley, offers a comprehensive solution for system design, modeling, and simulation
in hierarchical and heterogeneous systems. It provides powerful functionalities and a
design environment that supports the entire development phase. This integrated approach
allows for a smooth transition from a conceptual model to a real system design, resulting
in a shorter design process and improved component reuse. By leveraging Ptolemy II,
designers and researchers can enhance the consistency between the authenticity of the
system and its simulation results [18]. This capability is crucial for validating the perfor-
mance and behavior of complex CPS, where uncertainty and dynamic interactions play a
significant role.

The main contributions of this paper include the following aspects:

(1) Construct a CPS system model based on the generalized possibility decision process,
and define the CPS syntax and semantics of the generalized possibility linear temporal
logic in the CPS system model;

(2) By introducing clock invariants, the extended modeling of CPS system model is carried
out based on differential equations of time and uncertainty hybrid time automaton,
and the uncertain CPS extended model is obtained;

(3) Based on the possibility measure theory and the CPS syntax and semantics of general-
ized possibility linear temporal logic, the activity and security of the uncertain CPS
extended model are verified dynamically, and the execution path of the uncertain CPS
extended model is optimized according to the dynamic verification results;

(4) Used preset modeling tools to model and simulate the uncertain CPS extended model,
analyze the CPS dynamic execution process of the uncertain CPS extended model,
and refine the dynamic behavior output of the uncertain CPS extended model based
on the analysis results of the CPS dynamic execution process.

This article includes the following sections, excluding the present introduction.
In Section 2, the necessary basic concepts and definitions are provided. In Section 3, the
semantics of the generalized possibility decision process are presented. In Section 4, the
CPS syntax and semantics of generalized possibility linear temporal logic are defined.
Section 5 introduces clock invariants to extend the uncertainty CPS. In Section 6, a dynamic
verification analysis is carried out on the attributes of uncertain CPS. Section 7 uses preset
modeling tools to model and simulate the extended model of uncertain CPS. Finally, our
overall conclusions are presented in Section 8.

2. Preliminaries

In this section, we give some basic knowledge about the hybrid system and the
generalized possibility theory introduced in [10,12].

2.1. Hybrid System

A hybrid system is a type of system that combines continuous dynamics and discrete
events. It represents a system where both continuous processes, such as physical processes
governed by differential equations, and discrete events, such as state changes or mode
switches, are present. This combination allows for the modeling and analysis of complex
systems that exhibit both continuous and discrete behaviors. A hybrid automaton is
commonly used to describe the system’s behavior. A hybrid automaton is a mathematical
model that captures the dynamics of a hybrid system. In the context of CPS, a hybrid
system typically refers to a system that integrates physical processes with computational
and communication elements. It can be defined as follows.
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Definition 1 (see [19]). A hybrid automaton can be represented by a six-element tuple, denoted as
H = (I, O, T, Init, M, E), where:

(1) I: The set of input ports represents external signals or inputs that can influence the behavior of
the automaton. These inputs can trigger state transitions or affect the continuous dynamics of
the system.

(2) O: The set of output ports represents the signals or information that the automaton produces as
a result of its internal dynamics and interactions with the environment. These outputs could
be measurements, control signals, or any relevant information about the system.

(3) T: The set of state variables represents the internal variables or parameters that define the state
of the system, which capture the internal state of the system and can change continuously
over time. The state set QT is a mathematical representation of all possible values that these
variables can take.

(4) Init: This component is responsible for initializing the distribution operation within the hybrid
automaton. It sets the initial conditions or constraints on the state variables.

(5) M: The set of control modes represents different operational modes or behaviors that the
automaton can exhibit. Each control mode specifies a set of continuous dynamics and discrete
transitions that govern the system’s behavior in that mode.

(6) E: The set of internal actions represents the transformational relations between between
different control modes or states in the hybrid automaton. They describe the instantaneous
transitions or jumps between modes that can occur based on certain conditions or events.

Remark 1. The port mentioned in the definition facilitates communication between the system and
its external environment. The communication port operates in two modes: read and write, which
are denoted by “?” and “!”, respectively. For example, “port?” indicates input data received by the
port, while “port!” represents output data transmitted by the port.

Our hybrid process model is built upon extensive research on the hybrid automaton,
which is considered as an encapsulated intelligent agent [20,21]. This research focuses on
developing a formal model for hybrid systems by combining discrete transition systems
with differential equations. By incorporating continuous evolution and discrete updating,
CPS are capable of representing real-world scenarios and describing the system’s state
transition relationships [22]. As a result, the hybrid automaton assumes a crucial role in
establishing a strong foundation for CPS studies.

2.2. Generalized Possibility Theory

Possibility measure theory [23] deals with the incomplete information and uncertain
information of the system. Unlike probability measure theory, possibility measure theory
contains possibility measure and necessity measure, which can deal with fine information
better. In addition, the possibility measure is non-additive, to deal with the practical
application system makes more sense.

Definition 2 (see [16]). Let us assume that U is a nonempty set with measurable subsets. In this
context, a possibility measure is defined as a function Π from the power set 2U to the interval [0, 1]
with the following properties.

(1) Π(∅) = 0;
(2) Π(U) = 1;
(3) Π(

⋃
Ei) =

∨
Π(Ei).

For any subset family {Ei} of the universe set U, we can denote the supremum or least upper
bound of the real number family {ai}i∈I as

∨
i∈I ai. Similarly, the infimum or largest lower bound

of the real number family {ai}i∈I can be represented as
∧

i∈I ai.
If Π satisfies only conditions (1) and (3), it is referred to as a generalized possibility measure.
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2.3. Generalized Possibilistic Kripke Structure

A generalized possibilistic Kripke structure refers to an extension of the traditional
Kripke structure that incorporates possibilistic reasoning. It combines the principles of
Kripke semantics with possibilistic logic to capture uncertainty and possibility in a more
flexible and nuanced manner. In a generalized possibilistic Kripke structure, the set of
possible worlds represents different states or scenarios of a system, similar to a traditional
Kripke structure. However, instead of assigning a binary truth value (true or false) to
propositions in each world, a generalized possibilistic Kripke structure assigns a degree of
possibility or belief to each proposition in each world. A generalized possibilistic Kripke
structure is defined as follows.

Definition 3. A generalized possibilistic Kripke structure (GPKS, in short) is a tuple M =
(S, P, I, AP, L), where

(1) S is a countable, nonempty set of states;
(2) P: S× S→ [0, 1] is a function, called a possibilistic transition distribution function;
(3) I: S→ [0, 1] is a function, called a possibilistic initial distribution function;
(4) AP is a set of atomic propositions;
(5) L: S × AP → [0, 1] is a possibilistic labeling function, which can be viewed as function

mapping a state s to the fuzzy set of atomic propositions, which are possible in the state s, i.e.,
L(s, a) denotes the possibility or truth value of atomic proposition a that is supposed to hold
in s.

Furthermore, if the set S and AP are finite sets, then M = (S, P, I, AP, L) is called a
finite GPKS.

Remark 2. If we require the transition possibility distribution and initial distribution to be normal,
i.e.,

∨
s′∈S P(s, s′) = 1 and

∨
s∈S I(s) = 1, and the labeling function L is also crisp, i.e., L :

S× AP→ {0, 1}, then we obtain the notion of possibilistic Kripke structure [16]. In this case, we
also say that M is normal. This is one of the reasons why we call the structure a defined generalized
possibilistic Kripke structure.

3. Generalized Possibility Decision Processes

The differences between GPDP and the Markov decision processes [24,25] are as
follows: (1) the transfer weight of the Markov decision process reflects the frequency of
events, while the transfer weight of GPDP feeds back the possibility of reaching the target
state; (2) In the Markov decision processes, the sum of transfer weights starting from the
same state is 1, but GPDP does not have this constraint; (3) The label function in the Markov
decision process is clear, while the label function in GPDP is fuzzy. Therefore, in this
paper, a GPDP similar to Markov decision processes is proposed as a model of uncertainty
systems, which is specifically defined as follows.

Definition 4 (see [16]). A GPDP is a tuple with six elements M′ = (S, Act, P, I′, AP, L) where

(1) S is a countable, nonempty set of states;
(2) Act is a set of actions;
(3) P: S× Act× S→ [0, 1] is a transition possibility function such that for all states s ∈ S and

actions α ∈ Act, there is a state t ∈ S, such that P(s, α, t) > 0;
(4) I′: S→ [0, 1] is a possibilistic initial distribution function, with an existing state s such that

I′(s) > 0;
(5) AP is a set of the atomic propositions;
(6) L: S× AP→ [0, 1] is a possibilistic labeling function, where L(s, a) denotes the possibility or

truth value of atomic proposition a that is supposed to hold in s.
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An action α is considered enabled in state s if and only if
∨

t∈S
P(s, α, t) > 0. We define

the set Act(s) = {α ∈ Act | ∨
t∈S

P(s, α, t) > 0}. It is a requirement that for any state s ∈ S,

the set Act(s) �= ∅. We refer to each state t for which P(s, α, t) > 0 as an α-successor of s.

Remark 3.

(1) The possibilistic transition function P, which maps from S× Act× S to the interval [0, 1],
can be conveniently represented by a fuzzy matrix, also denoted as P, i.e.,

Pα(s, t) = (P(s, α, t))s,t∈S. (1)

Pα is also called the fuzzy possibility α- transition matrix of M′.
(2) The direct successors and predecessors of a state can be defined as follows. For a given state s

from the set S, an action α from the set Act, and a subset T of states from S, the possibility of
transitioning from state s to a state in T via action α is denoted as P(s, α, T), i.e.,

P(s, α, T) =
∨
t∈T

P(s, α, t). (2)

The set of α-successors of a state s, denoted as Post(s, α), can be defined as follows. Post(s, α)
represents the collection of states that can be reached from state s by taking action α, i.e.,

Post(s, α) = {t ∈ S | P(s, α, t) > 0}. (3)

It should be noted that the set of α-successors of state s, denoted as Post(s, α) = ∅ if and
only if action α is not a member of the enabled action set Act(s). On the other hand, the set Pre(t),
which represents the pairs (s, α) where state s belongs to S and action α belongs to Act(s) such that
t ∈ Post(s, α), can be expressed as follows.

Pre(t) = {(s, α) ∈ S× Act | P(s, α, t) > 0}. (4)

Example 1. Figure 2 depicts a 3-state GPDP M′, where the circle represents the state, the symbol
outside the circle represents the state name, the symbol inside the circle represents the true value of
the atomic proposition in the state, the labeled arc represents the transition, and the circle with the
input arrow represents the initial state.

Figure 2. A GPDP M′.
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Then, the state space of M′ is S = {s0, s1, s2, s3};
State s is the only initial state, i.e., I(s0) = 1 and I(s1) = I(s2) = 0;
The set of atomic propositions is AP = {A, B};
The sets of enabled actions are Act(s0) = {α, β} with P(s0, α, s1) = 0.7,

P(s0, β, s2) = 0.4; Act(s1) = {α, β} with P(s1, α, s1) = 1, P(s1, β, s0) = 0.6, P(s1, β, s2) = 0.3;
Act(s2) = {α, β} with P(s2, β, s2) = 0.8, P(s2, α, s0) = 0.5, P(s2, α, s1) = 0.7;

The labeling functions are L(s0, A) = 0.6, L(s0, B) = 0.3, L(s1, A) = 0.8, L(s2, B) = 0.4;
For state s0, Post(s0, α) = {s1}, Post(s0, β) = {s2}, Pre f (s0) = {(s1, β), (s2, α)}.
By using the state order s0 < s1 < s2, the matrix P and the vector I is given by:

Pα =

⎛⎝ 0 0.7 0
0 1 0

0.5 0.7 0

⎞⎠, Pβ =

⎛⎝ 0 0 0.4
0.6 0 0.3
0 0 0.8

⎞⎠, I =

⎛⎝ 1
0
0

⎞⎠.

Definition 5. (Path in a GPDP). In GPDP M = (S, Act, P, I, AP, L), an infinite path fragment is
an infinite sequence s0α1s1α2s2α3 · · · ∈ (S × Act)ω, satisfying the condition that
P(si, αi+1, si+1) > 0 for all i � 0. A finite path fragment is any finite prefix of π that ends in a
state. The set Paths(s) represents the collection of infinite path fragments that start in state s, while
Paths f in(s) denotes the set of finite path fragments that start in s. Let Paths(M) =

⋃
s∈S

Paths(s)

and Paths f in(M) =
⋃

s∈S
Paths f in(s).

Reasoning about the possibilities of path sets in a GPDP relies on the resolution of uncertainty.
This resolution is performed by a scheduler. Once α has been chosen, there are no constraints
imposed on the possibilistic choice that is resolved.

Definition 6. (Scheduler). In a GPDP M = (S, Act, P, I, AP, L), a scheduler for M is a function
S : S+ → Act, where S(s0s1 · · · sn) belongs to Act(sn) for s0s1 · · · sn ∈ S+. A path (fragment)

π = s0
α1−→ s1

α2−→ s2
α3−→ · · ·

is referred to as an S- path (fragment) if αi = S(s0 · · · si−1) for all i > 0.

Definition 7. Let M′ be a GPDP with state space S. Scheduler S on M′ is memoryless if and only
if for each sequence s0s1 · · · sn ∈ S+ and t0t1 · · · tm ∈ S+ with sn = tm, such that

S(s0s1 · · · sn) = S(t0t1 · · · tm).

In this case, S can be viewed as a function S : S → Act. Stated in words, scheduler S is
memoryless if it always simply selects one alternative (i.e., action) per state while ignoring all others.

Example 2. For instance, the scheduler Sα always selects the action α in state s. Scheduler Sβ

always selects the action β in state s, as shown in Figure 3.

Figure 3. GPDP M′.

The only Sα-path in M′ is s α−→ t
γ−→ s α−→ · · · . The path s

β−→ s
β−→ s

β−→ u
γ−→ s

β−→ u · · ·
is a Sβ-path. Let S be a scheduler that selects action α when returning from state u, and
action β otherwise. Thus, S(s0 · · · sns) = α if sn = u, and S(s0 · · · sns) = β otherwise.
Additionally, let S(s) = α. It is important to note that this scheduler makes decisions based
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on the one-but-last visited state. In states u and t, the only enabled action γ is chosen. The

GPDP M′Sβ
can be represented as an infinite chain: s

β−→ u
γ−→ s

β−→ u · · · .

Definition 8. Given a GPDP M′, the cylinder set of π̂ = s0α1s1α2 · · · snαn+1 ∈ S-Paths f in(M)
is defined as:

Cyl(π̂) = {π ∈ S-Paths(M) | π̂ ∈ Pre f (π)}, (5)

where Pre f (π) = {π′ |π′ is a finite prefix of π}. Then, as shown in [10], Ω = 2S-Paths(M)

is an algebra generated by {Cyl(π̂) | π̂ ∈ S-Paths f in(M)} on S-Paths(M). That is to say,
Ω = 2S-Paths(M) is the unique subalgebra of 2S-Paths(M), which is closed under arbitrary unions
and arbitrary intersections containing {Cyl(π̂) | π̂ ∈ Pre f (π)}.

Definition 9. For a GPDP M′, a function PoM′ : S-Paths(M′)→ [0, 1] is defined as follows:

PoM′(π) = I(s0) ∧
∞∧

i=0

P(si,S(π̂i), si+1) (6)

for any π = s0α1s1α2 · · · ∈ S-Paths(M). π̂n= s0s1 · · · sn, such that P(sn−1,S(π̂n−1), sn) > 0.
Hence, the execution sequence is

s0
S(π̂0)−−−→ s1

S(π̂1)−−−→ s2
S(π̂2)−−−→ · · · .

We often identify π = s0S(π̂0)s1S(π̂1)s2S(π̂2) · · · Furthermore, for any
E ⊆ S-Paths(M′), we define

PoM′(E) =
∨
{PoM′(π) | π ∈ E}. (7)

Then, we have a well-defined function.

PoM′ : 2S-Paths(M) → [0, 1],

PoM′ is called the generalized possibility measure over Ω = 2S-Paths(M′) .

4. Generalized Possibilistic Linear-Temporal Logic with Schedulers

Definition 10 (see [26]). Given the atomic proposition AP, the generalized possibilistic linear-
temporal logic (GPoLTL) syntax of an uncertain CPS is defined as follows:

S�ϕ� ::= r | a | S�ϕ1 ∧ ϕ2� | S�¬ϕ� | S�©ϕ� | S�ϕ1 � ϕ2�,

where r ∈ [0, 1] and a ∈ AP.

Under GPDP, the semantics of the GPoLTL formula are related to schedulers, pos-
sibility information, and fuzzy logic on the set of atomic propositions AP. We give the
semantics of GPoLTL in two aspects in the following.

Definition 11. Let ϕ be a GPoLTL formula. The language semantics of ϕ over the alphabet
Σ=[0, 1]AP (or Σ=lAP for some finite subset l ∈ [0, 1]) is a fuzzy ω-language; i.e., ‖S�ϕ�‖: Σω →
[0, 1], which is defined iteratively as follows, for σ = A0 A1 · · · ∈ Σω, write σj = Aj Aj+1 · · · .

Then, the GPoLTL language semantics of an uncertain CPS is defined as follows.

‖r‖(σ) = r; (8)

‖a‖(σ) = A0(a); (9)

‖S�ϕ1 ∧ ϕ2�‖(σ) = ‖S�ϕ1�‖(σ) ∧ ‖S�ϕ2�‖(σ); (10)
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‖S�¬ϕ�‖(σ) = 1− ‖S�ϕ�‖(σ); (11)

‖S�©ϕ�‖(σ) = ‖S�ϕ�‖(σ1); (12)

‖S�ϕ1 � ϕ2�‖(σ) =
∨
j�0

(‖S�ϕ2�‖(σj) ∧
∧
i<j
‖S�ϕ1�‖(σi)); (13)

‖S�♦ϕ�‖(σ) =
∨
j�0

‖S�ϕ�‖(σj); (14)

‖S��ϕ�‖(σ) =
∧
j�0

‖S�ϕ�‖(σj). (15)

Definition 12. Let M′ = (S, Act, P, I, AP, L) be a GPDP, a ∈ AP, and S be the scheduler
defined in M′. For atomic propositions r, a, regardless of resolution of the uncertainty, its path
semantics over M′ are fuzzy sets on Paths(M′); i.e., ‖ϕ‖:Paths(M)→ [0, 1].

For any path, the path semantics of GPoLTL with schedulers are interpreted as

‖r‖(π) = r; (16)

‖a‖(π) = L(s0, a). (17)

For a path formula ϕ, its semantics depend on the schedulers, and its path semantics over M are
‖S�ϕ�‖ : S-Paths(M) → [0, 1], which is defined recursively for π = s0S(π̂0)s1S(π̂1)s2 · · ·
as follows.

‖S�ϕ1 ∧ ϕ2�‖(π) = ‖ϕ1‖S(π) ∧ ‖ϕ2‖S(π); (18)

‖S�ϕ1 � ϕ2�‖(π) =
∨
j�0

(‖ϕ2‖S(πj) ∧
∧
i<j
‖ϕ1‖S(πi)); (19)

‖S�¬ϕ�‖(π) = 1− ‖ϕ‖S(π); (20)

‖S�©ϕ�‖(π) = ‖© ϕ‖S(π); (21)

The until operator allows derivation of the temporal modalities ♦ (“eventually”, sometimes in
the future) and � (“always”, from now on forever) as usual.

♦ϕ = true � ϕ, �ϕ = ¬♦¬ϕ, here, true = 1.
Let Q be an uncertain CPS model operating under a specific scheduler. π represents an execu-

tion trace of Q, while ϕ denotes an attribute description formula. The notation ||ϕ||(π) represents
the execution trace of Q that satisfies the attribute ϕ. In other words, ||ϕ||Q : Paths(Q)→ [0, 1]
quantifies the possibility of Paths(Q) satisfying the attribute ϕ. Here, π refers to an infinite path,
π ∈ Paths(Q), which can be expressed as π = s0s1s2 · · · . πj denotes the suffix of the trace starting
from step j, i.e., π = sjsj+1 · · · . The value of the variable y in step j of x is denoted as V = (π, j, y).

In the uncertain CPS system Q, an infinite path is expressed as π = s0s1s2 · · · ∈ Sω, and a
finite path is denoted as π = s0s1 · · · sn(n ∈ N). The notation Paths(Q) denotes the set of infinite
paths in the uncertain CPS system Q, while Paths f inQ represents the set of finite paths.

Definition 13. For a GPDP without terminal states, i.e., for any state s, there exists a state t
such that P(s, t) > 0. The trace of the infinite path fragment π = s0α0s1α1 · · · is defined as
trace(π) = L(s0)L(s1) · · · .

To simplify notation, we use L(π) to represent the trace of the infinite path π. Similarly, for a
finite path fragment π̂ = s0α0s1α1 · · · sn, the trace is defined as L(π̂) = L(s0)L(s1) · · · L(sn).
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The execution of a system model starts from an initial state and serves as a means to
validate the model. During each step of execution, the model selects a single enabled action
from the current state, and the actions are executed in an uncertain order.

The dynamic execution trace π of an uncertain CPS can be represented as either a
finite or an infinite sequence:

s0
l1−→ s1

l2−→ s2 · · · sk−1
lk−→ · · ·

Here, each state si is connected to the next state si+1 by an action label li. The sequence
can continue indefinitely if it is an infinite trace, capturing the ongoing behavior of the
system. In this representation, sk =< pk, vk > represents the state of the system, where
pk is the control mode of the system and vk is the current variable value. Additionally,
lk indicates the duration of time that the system stays at state si. This trace captures the
sequence of states, control modes, variable values, and durations of the system’s behavior
over time.

Definition 14. Let P be a fuzzy linear-time property over AP and M = (S, Act, P, I, AP, L) be a
finite GPDP without terminal states. Then, the possibility of M′ = (S, Act, P, I, AP, L) satisfies P
at state s, denoted by PoS(s |= P), and is defined as

PoS(s |= P) =
∨

π∈S-Paths(s)

Po(π) ∧ P(L(π)). (22)

5. Extended of an Uncertain CPS Model

The Uncertain CPS Extended Model describes a CPS as a complex embedded network
system that integrates physical, computing, and interactive entities. The motion process
in the physical world is represented using dynamic time continuity. Meanwhile, the
system behavior is modeled using a finite state machine to capture event-driven discrete
processes in the computational world [4]. This paper aims to perform CPS modeling and
simulation by employing the uncertain hybrid time automaton. In this way, not only the
informatization and discretization can be effectively achieved, but also the physicalization
and continuation of the discrete event model can be realized.

5.1. Differential Equation Modeling Based on Time

In an uncertain CPS, the state of a physical entity exhibits a clear and continuous
dynamic continuity, with its state transformation relying on continuous time [17].

For instance, let us consider the thermostat state model (as depicted in Figure 4) as
an example. By utilizing time-based differential equations, the dynamic behavior of an
uncertain CPS can be modeled in the following manner.

Figure 4. Thermostat model of uncertain hybrid timed automaton.

Ṫ = k1(40 ◦C− T) (23)

Ṫ = −k2 (24)

In Equation (23) , the temperature variable T represents a continuous-time variable,
with the constraint (T � 40 ◦C). It is important to note that the dynamic behavior follows
a linear pattern, with k1 representing a constant quantity. In Equation (24) describes the
dynamics of temperature change, with k2 also being a constant quantity.
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5.2. Hybrid Timed Automaton Modeling Based on Uncertainty

Uncertainty is crucial in the operation of a CPS [19]. CPS components are intercon-
nected rather than isolated. Modeling a CPS solely using the embedded control approach
is inadequate due to the close integration of software and hardware [18]. To address this
challenge, introducing a clock invariant and incorporating the notion of possibility into
the classic hybrid automaton becomes necessary. This approach helps resolve the issue of
closeness and enables the definition of an uncertain hybrid timed automaton system model.

Definition 15. The uncertain hybrid timed automaton HP is defined by a tuple consisting of nine
elements, as shown below.

Hp = (I, O, T, Init, M, Ax|x ∈ I, Ay|y ∈ O, A, CI).

• I represents a set that includes the values of the input ports. For example, an input set x?v
contains input values v, where x ∈ I.

• O represents a set that includes the values of the output ports. For instance, an output set y!v
contains output values v, where y ∈ O.

• T represents the set of state variables, and QT represents the defined state set.
• Init represents the possibility initialization distribution operation, which determines the

possibility of the initial state set, denoted as [Init] ≤ QT.
• M corresponds to the set of control modes.
• {Ax| ∈ I} signifies that, for each input port x, the input task set Ax describes the input

actions using a guard condition on T. The update of the input action set is defined as t x?v−−→ t′

, transitioning from the read set T ∪ {x} to the write set T. In other words, it follows the

pattern Guard x?v−−→ Update.
• {Ay|y ∈ O} indicates that, for each output port y, each output task in the output task set Ay

defines the update description of the output action set as t
y!v−→ t′ , transitioning from the read

set T ∪ {y} to the write set T based on the guard condition on T. In other words, it follows the

pattern Guard
y!v−→ Update.

• A represents the set of internal actions, where each action is determined by a guard condition
on T and is updated from the read set T to the write set T. These internal actions may also
include an output action in the form of t ε−→ t′.

• CI represents a clock invariant, which is a Boolean expression on the state variable T. Given
a state t and a positive real value of time δ > 0, if the state t + δ satisfies the expression CI

for all values of t′ within the range 0 ≤ t′ ≤ δ, then the transition t δ−→ t + δ is considered a
time action.

6. Uncertain CPS Dynamic Verification and Analysis

A reactive CPS can be impacted by factors like fairness issues, input/output handling,
and system execution correctness. These problems could be solved by temporal logic,
which is a very effective formal method. Fuzzy temporal logic is capable of extending
propositional and predicate logic for it takes the infinite behavior of feedback in uncertain
CPS into consideration. A fuzzy (or possibilistic) temporal logic, say, the fuzzy liner-
time property (LT property), provides an intuitive and accurate annotation system for
establishing relationships and execution as well.

6.1. Activity

Activity indicates that something good will happen eventually in the operation of
an uncertain CPS. Checking whether an attribute satisfies the activity involves evaluating
whether a model fulfills the properties specified by temporal logic. GPoLTL is used here in
this paper to describe the activity. The definition of GPoLTL suggests that there are four
types of activity, namely, eventually reachability, always reachability, repeated reachability,
and persistence reachability.
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Remark 4.

(1) Eventually reachability can be represented by the “eventually” operator, which is symbolized
as ♦. The “eventually” operator can be nested to enforce a sequence of events in a specific
order. When an assignment on a path satisfies a formula ϕ, it means that the path conforms to
the GPoLTL formula ♦ϕ. For example, if an assignment in the path π = (x1, y1)(x2, y2) · · ·
satisfies the expression (x = y), indicating that for some j, xj = yj, the path π satisfies the
GPoLTL formula ♦(x = y). Thus, the formula ♦(x = y) represents the requirement that
eventually, at a certain step, the values of variables x and y are equal.

(2) Always reachability is represented by the “always” operator, which is symbolized as � .
When all assignments on the path meet the requirement of ϕ, the path satisfies the GPoLTL
formula �ϕ. For instance, if all assignment on path π = (x1, y1)(x2, y2) · · · satisfy the
expression (x = y), meaning that xj = yj for each j, then the path satisfies the GPoLTL
formula �(x = y). That is to say that the formula �(x = y) represents the requirement that
variables x and y should always be equal.

(3) Repeated reachability is represented by the “always-eventually” operator , which is symbolized
as �♦ϕ. If every position i on the path satisfies the formula ♦ϕ, it implies that for each
position i, there exists a future position j ≥ i, where ϕ is satisfied. Moreover, there exists an
infinite sequence of positions j1 < j2 < j3 · · · , where ϕ is satisfied at each position. In simpler
terms, if ϕ is satisfied recursively or repeatedly, then the formula �♦ is satisfied. For instance,
the path π = (x1, y1)(x2, y2) · · · satisfies the recursive formula �♦(x = 0). For an infinite
number of positions j, when xj = 0, x needs to be repeatedly assigned 0.

(4) Persistence reachability is represented by “eventually always”, which is expressed as ♦�ϕ. If
there exists a position j that satisfies the always formula �ϕ, meaning that every position after
j satisfies ϕ, then ♦�ϕ is satisfied. In other words, the formula ♦�ϕ must be continuously
satisfied and held. For example, if for a specific position j, every k ≥ j satisfies xk = 0 (or if it
is not equal to 0, for a finite number of positions), then the path π = (x1, y1)(x2, y2) · · · has
the persistence formula ♦�ϕ(x = 0).

An uncertain CPS is a system that incorporates a perception and control feedback loop
to achieve repeated environmental perception for controlling physical equipment. In an
uncertain CPS, each program within the system will repeatedly enter its key part. The key
part represents the state of the system, denoted as si, forming an execution trace π, which
can be a finite or infinite sequence: < s0, t0 > �→< s1, t1 > �→ · · · �→< sn, tn > �→ · · · The
system needs to run continuously to maintain its activity. The primary challenge lies in
calculating the measure of the system satisfying the desired path to a specific state set B.

Definition 16. Suppose that Q is an uncertain CPS model that satisfies the property ϕ, where ϕ
is a GPoLTL formula. The possibility measure of Q is denoted as Po(Q |= ϕ), which is defined
as Po(Q |= ϕ) = Pos{π ∈ Paths(s)|π |= ϕ}. Here, B ⊆ S represents a state set within the
uncertain CPS model.

The reachability analysis using GPDP Q as the system model calculates the possibility
of reaching state set B. The state set B refers to the possibility of rarely accessing to the bad
state set or the possibility of repeatedly accessing to the good state set. It is expressed by
the mapping function as B : S→ [0, 1].

Then, ♦B,�B,�♦B,♦�B can be regarded as a fuzzy linear property on the set of state
s. The definition is as follows: ♦B(π) =

∨
j≥0

B(sj),�B(π) =
∧

j≥0
B(sj),

�♦B(π) =
∧

i≥0

∨
j≥i

B(sj), ♦�B(π) =
∨
j≥i

∧
i≥0

B(sj).

With a given GPDP and fuzzy linear property P, calculate the probability that the path
with scheduler S satisfies P. We consider four properties, namely, eventually reachability,
always reachability, repeated reachability, and persistence reachability.
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(1) The possibility measure for eventually reachability in an uncertain system model Q,
satisfying the property ♦B, is expressed as follows.

PoS(♦B) = PoS(s |= ♦B)s∈S

=
∨

π∈S-Paths(s)

PoS(π) ∧♦B(π)

=
∨

π=s0s1···∈S-Paths(s)

∧
∞∨

j=0

P(sj,S(π̂j), sj+1) ∧
∞∨

j=0

B(sj);

(2) The possibility measure for always reachability in an uncertain system model Q,
satisfying the property �B, is expressed as follows.

PoS(�B) = PoS(s |= �B)s∈S

=
∨

π∈S-Paths(s)

PoMs
S (π) ∧�B(π)

=
∨

π=s0s1···∈S-Paths(s)

PoMs
S (π) ∧

∞∧
j=0

P(sj,S(π̂j), sj+1) ∧
∞∧

j=0

B(sj);

(3) The possibility measure of repeated reachability in an uncertain system model Q,
satisfying the property �♦B, is expressed as follows.

PoS(�♦B) = PoS(s |= �♦B)s∈S

=
∨

π∈S-Paths(s)

PoS(π) ∧�♦B(π)

=
∨

π=s0s1···∈S-Paths(s)

PoS(π) ∧
∧
i≥0

∨
j≥i

B(sj);

(4) The possibility measure for persistence reachability in an uncertain system model Q,
satisfying the property ♦�B, is expressed as follows.

PoS(♦�B) = PoS(s |= ♦�B)s∈S

=
∨

π∈S-Paths(s)

PoS(π) ∧♦�B(π)

=
∨

π=s0s1···∈S-Paths(s)

PoS(π) ∧
∨
i≥0

∧
j≥i

B(sj).

Property 1. In an uncertain CPS model Q with the PoLTL formula ϕ, if a state is reachable along
any path starting from the initial state q0, then the following condition applies:

(1) �ϕ↔ ϕ ∧©�ϕ
(2) �♦ϕ↔©�♦ϕ↔ ♦�♦ϕ

The first equivalent expression of the property can be summarized by the following
three points. (i) If a path satisfies the formula �ϕ, it implies that the path satisfies ϕ at all
positions, regardless of the specific choice of ϕ. (ii) The formula �ϕ is more expressive
than ϕ, meaning it captures a broader range of possible behaviors. (iii) If both the current
position satisfies ϕ and the next position satisfies �ϕ, then �ϕ is considered satisfied,
indicating a persistent satisfaction of the property.

The second equivalent of the property can be summarized as follows. (i) Irrespective
of the position, if a path satisfies the recursive formula �♦ϕ at a specific position (e.g., the
first position), then the subsequent position along the path also satisfies the same recursive
formula �♦ϕ, and vice versa. (ii) In fact, for any given path π and any positions i and j
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along that path, the satisfaction of �♦ϕ at position (π, i) is equivalent to the satisfaction of
�♦ϕ at position (π, j).

Please note that these equivalences have been provided in a more concise form. For a
detailed explanation and proof, please refer to the specific reference [27] mentioned.

6.2. Safety of the Fuzzy Regular Language

The safety possibility measure of a fuzzy regular language is determined by assessing
whether the language satisfies the defined safety requirements. It involves analyzing the
behaviors exhibited during limited execution and verifying if they violate the specified
requirements. The aim is to ensure that no harmful or unwanted outcomes occur. This
analysis helps in evaluating the degree of possibility for the fuzzy regular language to be
considered safe, based on the absence of bad prefixes in infinite strings that satisfy the LT
property Psa f e [10].

This study analyzes nonconforming behaviors using limited execution to verify if they
violate safety requirements. Safety requirements aim to prevent any undesirable outcomes.
In classic examples, the security property is defined such that if any infinite string σ in the
LT property Psa f e does not contain a bad prefix, then this LT property is considered safe
(i.e., σ ∈ Psa f e). In general, we can express this property as follows.

Let Psa f e be a fuzzy LT property. If, for every σ ∈ Psa f e, there exists a finite prefix σ̂i
(where i ∈ N) such that every infinite string σ′ in the form σ′ = θ1θ2 · · · θi · · · , where θi
belongs to the set σ̂i, is contained in Psa f e, then the fuzzy language Σ∗ −→ [0, 1] satisfying
Psa f e is considered safe. Here, each finite string σ̂i is referred to as a good prefix of Psa f e. In
other words, if every string σ in Psa f e can be extended indefinitely by appending symbols
from its corresponding good prefix σ̂i, and all resulting infinite strings are also contained
within Psa f e, then the fuzzy language Σ∗ −→ [0, 1] satisfying Psa f e is deemed safe.

Definition 17. Let HP = (I, O, T, Init, M, {Ax|x ∈ I}, {Ay|y ∈ O}, A, CI) represent an
uncertain hybrid timed automaton, and N = (Q, Σ, δ, J, F) denote a fuzzy finite automaton. The
tensor product of these two automata is defined as HP ⊗ N = (M×Q, I′, O′, T′, Init′, {A′x|x ∈
I′}, {A′y|y ∈ O′}, A′, CI′). Here, for any (m, q) ∈ M × Q, A′(m, q) = (m, q), I′(m, q) =
I(m) ∧ ∨

q0∈Q
J(q0) ∧ δ(q0, A(m), q). The transfer possibility distribution of Hp ⊗ N is given by

P′sa f e((m, q), (m′, q′)) = Psa f e(m, m′) ∧ δ(q, A(m′), q′).

Theorem 1. Suppose that Psa f e is a fuzzy regular safety attribute that ensures the acceptance of
Pre f (Psa f e) by a deterministic fuzzy finite automaton N. HP represents an uncertain hybrid timed
automaton, where m is a state within HP. Then, PoHP(m |= Psa f e) = PoHP⊗N(m, qm) |= �B,
which qm = δ(q0, A(m)), B = M× F = ∑

m∈M,q∈Q
F(q)/(m, q).

In this context, we are considering a scenario in which Psa f e guarantees that the require-
ments specified by Pre f (Psa f e) are fulfilled by the deterministic fuzzy finite automaton N.
In simpler terms, for any state (m, q) in the combined automaton HP ⊗ N, the value B(m, q)
is equal to F(q). This means that the possibilisty of satisfying Psa f e in HP is determined
by the possibilistic of satisfying the corresponding property �B in the tensor product,
where B is calculated based on the states and accepting states of N. For a more detailed
understanding and comprehensive analysis, it is recommended to refer to the specific
literature [10] mentioned.

Theorem 2. Suppose Psa f e is a fuzzy ω regular property, guaranteeing that it is accepted by
the fuzzy Buchi finite automaton N, denoted as Aω(N) = Psa f e. In this case, we can define
PoHP(m |= Psa f e = PHPm⊗N(I′ |= �♦B)), where B = M× F = ∑

m∈M,q∈Q
F(q)/(m, q).
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Proof. Po(m |= Psa f e) =
∨

π∈Paths(M)
PoHPm (π) ∧ Psa f e(A(π))

=
∨

π∈Paths(M)
PoHPm (π) ∧ A(N)(A(π))

=
∨

π=m0m1···∈Paths(M)
PoHPm (π) ∧ ∨{J(q0) ∧

∧
i≥0

δ(qi, σi+1, qi+1) ∧
∧

i≥0

∨
j≥i

F(qj)\qi ∈ Q(∀i ≥

0)}
=

∨
π∈m0m1···∈Paths(M)

∨
q0∈Q

∨
q1q2···∈δω(q0,A(π))

J(q0) ∧ δ(q0, A(m0), q1) ∧
∧

i≥0
Psa f e(mi, mi+1)

∧ δ(qi, A(mi), qi+1)
∧

i≥0

∨
j≥i

F(qj)

=
∨

q1∈Q

∨
π′=(m0,q1)(m1,q2)···∈Paths(HPm⊗N(m,q1))

I′(m0, q1) ∧ ∧
i≥0

P′sa f e((mi, qi+1, (mi+1, qi+2)) ∧∧
i≥0

∨
j≥i

B(mj, qj+1)

= PoHPm⊗N(I′ |= �♦B)
Hence, PoHP(m |= Psa f e = PHPm⊗N(I′ |= �♦B)).

In simpler terms, this indicates that in the uncertain hybrid timed automaton, we can
calculate the possibility Po(m |= Psa f e) by considering the possibilistic of event �♦B in the
HPm ⊗ N structure, where B is defined as the Cartesian product of M and F.

6.3. Model Checking Algorithm

For the properties of reachability, f =Po(♦B), f =Po(�B), f =Po(�♦B), f =Po(♦�B),
we could use the fixpoint techniques to calculate the value, see Algorithm 1.

Algorithm 1 The Fixpoint.
Input: A function f from the set of possibility distributions over the state set S into itself.
Output: The fixpoint f .

procedure FIXPOINT(B, f )
B := False *the Least Fixpoint*
B := True *the Greatest Fixpoint*
B′ := f (B)

while B �= B′ do
B← B′

B′ ← f (B)
end while
return B

end procedure

What is the time complexity of possibilities-based model checking? Different prop-
erties bear different time complexity. For the fixpoint techniques of Po(♦B), Po(�B),
Po(�♦B), Po(♦�B), each fixpoint requires O(|S|3), see [12].

7. Case-Study

In this section, we use the example of uncertainty thermostats in CPS to illustrate the
application of model checking techniques in generalized possibility decision processes.
We can describe the thermostat model by an uncertain hybrid time automaton, and use
Ptolemy II for modeling and simulation. A dynamic execution sequence of the uncertain
CPS thermostat system is analyzed using a simulation diagram to ensure their consistency
and effectiveness.

7.1. Hybrid Timed Automaton Model Based on Uncertain

The thermostatic control system is a feedback control system in CPS that regulates
heating and ventilation automatically. It can be represented by an uncertain hybrid timed
automaton, as depicted in Figure 4. The output of the thermostat model process is the
temperature. The formal model of the system can be expressed as follows.
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• The system does not have any input variables.
• The system includes an output variable, T, of continuous type (cont type, in short)

that undergoes continuous changes over time.
• The system has a discrete state variable, M, which can take values from the set

{cooling, heating}.
• There is an initial possibility value assigned to the variable M, which is set to cooling.

The initial possibility value for T can be any value within the range of 30 ◦C to 40 ◦C.
• There is no discrete action involved in transmitting the temperature value as an

output task.
• Two internal tasks are present for two-mode switching. The first task guards the

condition (M = cooling ∧ T � 32 ◦C) and updates M to heating. The second task
guards the condition (M = heating ∧ T � 38 ◦C) and updates M to cooling.

• The output variable T is identical to the state variable T.
• The derivative of T is defined as −k2 if assigning the value cooling to M, otherwise it

is defined as k1(40 ◦C− T).
• The continuous time invariant CI is defined as M = cooling implies T � 30 ◦C and

M = heating implies T � 40 ◦C.

The thermostat operates in two modes: (1) when M is set to heating, the heater
is activated, and (2) when M is set to cooling, the heater is turned off. In the heating
mode, the initial temperature value generates a unique response signal, reflecting how the
temperature changes over time based on the continuous temperature variation described
by the differential equation Ṫ = k1(40 ◦C−T). It is important to note that the system can
only remain in the heating mode if the constraint (T � 40 ◦C) is satisfied. If the constraint
is violated, the mode must be switched to the cooling mode. The condition (T � 38 ◦C)
ensures the mode switching, meaning that whenever the temperature exceeds 38 ◦C, the
mode will immediately switch to cooling.

When the thermostat is in cooling mode, the temperature follows the differential
equation Ṫ = −k2, resulting in a linear decrease over time. If the temperature falls below
30 ◦C, the system must switch to the heating mode to meet the constraint (T � 30 ◦C). The
mode switching from cooling to heating occurs whenever the temperature drops below
32 ◦C, as indicated by the guard condition (T � 32 ◦C). It is important to note that the
system temperature ranges between 30 ◦C and 40 ◦C, which is influenced not only by
the temperature itself but also by the system’s state. When the temperature is around the
desired set value, there may be small fluctuations or jitter caused by the switching on or off
of the heater. This jitter occurs because the system is trying to maintain the temperature
within a narrow range. As the temperature approaches the set value, the heater may turn
on to raise the temperature or turn off to prevent overheating. However, the overall strategy
of switching between cooling and heating modes effectively manages these fluctuations .

In this thermostat model, mode switching takes place at unpredictable times. This
means that, even with a fixed initial temperature, there are multiple possible operational
scenarios. The presence of uncertain transitions is particularly valuable for modeling
malfunctions in CPS where fault information may be unavailable.

7.2. Simulation Based on Ptolemy II

Ptolemy II, as an open-source modeling and simulation tool, stands out from other
modeling tools by offering support for hierarchical modeling of heterogeneous systems.
As a result, Ptolemy II serves as a suitable modeling environment for designing uncertain
CPS. In this study, Ptolemy II is utilized to model a CPS thermostat with uncertainty and
failure, as depicted in Figure 5. In the heating state of the Finite State Machine (FSM), both
outgoing transitions become feasible when their execution conditions (i.e., both being true)
are satisfied. The two uncertain transitions are highlighted in red.

The results of executing the uncertain thermostat model are presented in Figures 6 and 7.
It is important to note that the heater can only be activated for a brief period, maintaining the
temperature around the threshold of 30 ◦C. The initial temperature of the system (T0) is set
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within the range of 30 ◦C to 40 ◦C, and the system mode is initially set to cooling. Taking
T0 = 40 ◦C, k1 = 0.1, and k2 = −0.05 as constants, the execution of the thermostat process can
be divided into two stages: cooling and heating. The system mode remains unchanged within
each stage, while the temperature varies continuously over time according to the differential
equation corresponding to the current mode. Any mode switch results in a discontinuous
change in the system’s state.

Figure 5. Uncertain CPS thermostat model.

Figure 6. Temperature variation of the uncertain CPS thermostat model.
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Figure 7. Rate variation of the uncertain CPS thermostat model.

If the system switches to cooling mode at time t∗, with the temperature at that time
denoted as T∗, the temperature remains at T∗ − k2(t − t∗) until the next mode switch.
Assuming T∗ is at least 32 ◦C, the process remains active in cooling mode for a duration
ranging from (T∗ − 32)/k2 seconds to (T∗ − 30)/k2 seconds.

On the other hand, if the system switches to heating mode at time t∗ with the tempera-
ture at that time as t∗, the temperature at time t remains at 40− (40− T∗)e−k1(t−t∗) until
the next mode switch occurs. Assuming T∗ is at least 38 ◦C, the process remains active for a
minimum duration of ln(2/(40− T∗))/k1 seconds in the heating mode. If the temperature
remains below 40 ◦C, the system may stay in this mode indefinitely.

7.3. Uncertain CPS Dynamic Execution Based on the Hybrid Timed Automaton

The results of the uncertain CPS thermostat model depicted in Figures 6 and 7 demon-
strate the initiation of CPS possibility execution within the hybrid timed automaton, starting
from the initial state. At each step, the execution requires the performance of an input
action, an output action, an internal action, or a time action. A dynamic execution sequence
of the model corresponding to the alternating time and internal actions is shown as follows:

(cooling, 36) 0.14−−→(cooling, 30) ε−→(heating, 30) 0.1−→ (heating, 40) ε−→ (cooling, 40) 0.3−→
(cooling, 30) ε−→ (heating, 30) 0.1−→ (heating, 40).

During each time action, the hybrid process consistently generates the temperature
value as output. For example, in the first time action lasting 0.14 units of time, the temper-
ature signal is determined by T̄(t) = 36− (−0.05)t. Similarly, in the second time action
with a duration of 0.1 units of time, the temperature signal is defined by 40− 9e−0.1t.

A CPS combines the event-driven, discrete behavior model of a state machine with a
dynamic continuous model based on time. This integration involves refining the current
state of an uncertain hybrid timed automaton by considering the dynamic behavior of the
output in relation to the dynamic behavior of the next input [4]. In most CPS applications,
a clock variable is used to measure the system’s dynamic changes at specific times. The
transition state of this clock variable is linear, enabling the timed automaton to construct
both simple and complex systems based on the clock.

In conclusion, the behavior of the system is contingent upon the mode it operates in,
whether it is cooling or heating. It is important to acknowledge that the precise mechanism
and algorithm for mode switching may vary depending on the system’s complexity. Real-
world implementations might incorporate additional factors such as hysteresis, which helps
prevent frequent mode toggling, and feedback control loops to ensure stable and efficient
temperature regulation. These details offer a deeper comprehension of the cooling and
heating modes, their respective temperature dynamics, and the conditions that determine
their activation and duration.

This paper integrates the uncertainty of intelligent thermostats in typical feedback
control systems in CPS based on the framework of generalized possibility measures. It
demonstrates the application of model checking techniques in the decision-making process
under generalized possibility and analyzes how uncertain CPS can integrate physical sys-
tems with digital intelligence, real-time data analysis, and autonomous decision-making to
enhance efficiency, reliability, and performance in various environments. However, there
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are certain limitations. In the next steps, we will combine possibility model checking tech-
niques and their related attributes, along with specific real-world examples, to investigate
the uncertainty of CPS in complex uncertain environments.

8. Conclusions

This paper presents the modeling and verification of uncertain CPS based on decision
processes, building upon a previous international conference paper [27]. Considering the
complexity and uncertainty factors in real-life scenarios, along with the uncertainty and
dynamic characteristics of CPS, this paper proposes new methods for handling uncertain
data using possibility processing. We first introduce the concept of GPDP to describe
uncertain CPS behavior. Furthermore, we define the syntax and semantics of CPS using
GPoLTL with decision processes. The theoretical validation of the system’s liveness and
safety properties is performed, and a model checking algorithm is presented. Finally, an
intelligent thermostatic system is modeled, and simulation experiments are conducted.
The dynamic continuous properties of the system are described using time-based dif-
ferential equations, and the modeling of uncertain hybrid systems is represented using
time-based state machines, allowing for the refinement of each state using time-based state
refinement [28]. This paper ensures the consistency between theory and experiments by
combining both approaches.

The uncertainty in CPS is effectively addressed by utilizing the uncertain hybrid timed
automaton as a formal modeling tool. The establishment of a formal modeling language
using GPoLTL for uncertain CPS attributes is a significant contribution. This language
enables precise specification and reasoning about uncertain CPS properties, facilitating a
thorough analysis of system behavior. The syntax and semantics of GPoLTL are precisely
defined, providing a solid foundation for reasoning about uncertain CPS. The utilization of
possibility measure calculation in the proposed model serves as a means of verification. This
approach quantitatively measures the likelihood of different system behaviors, considering
the uncertainties present in the CPS. By incorporating possibility measures, the model
enhances the verification process, providing a more comprehensive understanding of
system reliability, liveness, and safety properties.

This study effectively utilizes decision processes to address the problem of handling
possibility information in uncertain CPS. It not only mitigates the issue of state space
explosion but also provides a solution for dealing with possibility information in CPS. This
provides a significant opportunity for advancing the design of uncertain CPS and holds
great importance in the study of uncertainty in CPS within complex systems. While this
research has shed light on several important aspects, it has also raised numerous questions
that warrant further investigation. Future studies should delve into exploring uncertainty
in CPS within the context of fuzzy mathematics, while considering the relevant properties
of its algorithm and computation tree logic.
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Abstract: It is well known that crisp graph theory is saturated. However, saturation in a fuzzy
environment has only lately been created and extensively researched. It is necessary to consider m
components for each node and edge in an m-polar fuzzy graph. Since there is only one component for
this idea, we are unable to manage this kind of circumstance using the fuzzy model since we take into
account m components for each node as well as edges. Again, since each edge or node only has two
components, we are unable to apply a bipolar or intuitionistic fuzzy graph model. In contrast to other
fuzzy models, mPFG models produce outcomes of fuzziness that are more effective. Additionally,
we develop and analyze these kinds of mPFGs using examples and related theorems. Considering
all those things together, we define saturation for a m-polar fuzzy graph (mPFG) with multiple
membership values for both vertices and edges; thus, a novel approach is required. In this context, we
present a novel method for defining saturation in mPFG involving m saturations for each element in
the membership value array of a vertex. This explains α-saturation and β-saturation. We investigate
intriguing properties such as α-vertex count and β-vertex count and establish upper bounds for
particular instances of mPFGs. Using the concept of α-saturation and α-saturation, block and bridge
of mPFG are characterized. To identify the α-saturation and β-saturation mPFGs, two algorithms are
designed and, using these algorithms, the saturated mPFG is determined. The time complexity of
these algorithms is O(|V|3), where |V| is the number of vertices of the given graph. In addition, we
demonstrate a practical application where the concept of saturation in mPFG is applicable. In this
application, an appropriate location is determined for the allocation of a facility point.

Keywords: m-polar fuzzy graph; saturated fuzzy graph, α-saturation; β-saturation; saturation in
m-polar fuzzy graph.

MSC: 05C72; 03E72

1. Introduction

Graph theory is a powerful mathematical framework used to model relationships and
connections among objects. In many real-world applications, it is essential to understand
the strength or degree of association between various elements within a graph. Saturation is
a concept that plays a crucial role in quantifying this degree of connection and is particularly
significant in both traditional graphs and fuzzy graphs.

In traditional graph theory, saturation refers to the level of connectivity or complete-
ness within a graph. More formally, the saturation of a vertex in a graph is a measure of
how many edges are incident upon that vertex concerning the total possible number of
edges it could have. In simpler terms, it tells us how closely a particular vertex is connected
to others in the graph.
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1.1. Research Background and Related Work

Fuzzy graph theory extends the traditional graph theory to capture uncertainty and
imprecision in relationships. In fuzzy graphs, saturation takes on a more nuanced meaning.
Instead of sharp connectivity values (0 or 1), vertices in fuzzy graphs are associated with
degrees of membership that represent the strength of connections.

Saturation in fuzzy graphs involves quantifying the degree to which a vertex is related
to other vertices in a fuzzy and uncertain context. It allows us to express the level of
association between vertices as fuzzy values, which can be continuous and gradual. This
approach is particularly valuable in situations where the connections between elements are
not binary but exhibit varying degrees of affinity.

Applications of saturation in fuzzy graphs can be found in fields such as decision-
making, pattern recognition, image processing, and artificial intelligence, where imprecise
information needs to be modelled and analyzed.

In both traditional and fuzzy graphs, the concept of saturation offers valuable insights
into the structure and dynamics of networks and relationships. Whether dealing with
crisp, well-defined connections in traditional graphs or handling uncertainty and fuzzi-
ness in fuzzy graphs, saturation provides a quantitative measure for characterizing the
strength and extent of associations, enabling more informed decision-making and analysis
in various domains.

Zadeh [1], in 1965, discovered the ambiguity of the real-life situation and the phe-
nomenon of uncertainty and introduced a fuzzy set that changed how science and technol-
ogy were portrayed. Zhang [2] explained the bipolar fuzzy set idea as well as presented the
possibility of bipolar fuzzy sets in different environmental analyses [3]. First, Kaufman [4]
studied the fuzzy graph concept. After that, Rosenfeld [5] supplied the possibility of
nodes and edges along with several theoretical ideas such as paths, connectedness, cycle,
etc., in fuzziness. Different concepts are presented after that on fuzzy graphs [6]. Several
definitions and real-life applications have been studied in [7]. Some new concepts of the
fuzzy graph and their generalization are also discussed by Mordeson and Mathew [8]. Nair
and Cheng [9] provided fuzzy graphs with fuzzy cliques. Saturation on the fuzzy graph is
presented first by Mathew et al. [10]. Chen et al. [11] first presented mPFG. Later on, Ghorai
and Pal [12] first introduced density on mPFG. Akram et al. [13,14] studied on a few edge
properties of mPFG. Next, Mahapatra et al. [15] studied fuzzy fractional colouring on fuzzy
graphs. They also discussed the threshold graph on mPF environment [16]. They also initi-
ated the mPF tolerance graph [17]. Mandal et al. [18] studied the application of strong arcs
on mPFG. They also worked on different types of arcs on mPFG [19]. Subrahmanyam [20]
also introduced different types of products on mPFG. Several works on fuzzy graphs and
their generalization were developed by Nagoorgani et al. [21–24]. For more terminology
on fuzzy graphs and its generalized concept, one can see [25–30].

1.2. Framework of This Study

This paper is structured as follows: Section 2 describes some useful definitions in
these manuscripts. In Section 3, we have discussed the definitions of the strong node as
well as strong edge (SE) count, α-node as well as α-edge count, β-node as well as β-edge
count of mPFG and give the lower and upper bound of them in an mPFG. In Section 3.1, we
investigate node and edge counts of some well-known mPFG. In Section 4, we introduced
saturation in mPFG with the help of α-saturation and β-saturation. Section 5 describes
algorithms used to find α-saturated and β-saturated mPFG. Here, we also developed
saturation in mPFG. Saturation in mPFG has been used to resolve an application in real life
based on an allocation problem, which has been given in Section 6. Finally, a conclusion
has been made in Section 7.

1.3. Motivation of the Work

Many issues in daily life have been resolved utilising data from various sources or
origins. The multi-polarity of this data collection is represented. We might not be well
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structured in this sort of polarity by the concepts of fuzzy models or bipolar fuzzy models.
For example, we consider a graph model on social groups to explain whether the group is
active or not with respect to attributes of cooperation, team spirit, awareness, controlling
power, good behaviour, creativeness, etc. We need to express this situation using the 3-polar
fuzzy model because these terms are inherently uncertain. A fuzzy model, an intuitionistic
fuzzy model, or a bipolar fuzzy model cannot be used to deal with this problem. Thus,
the m-polar fuzzy model is more suitable than any fuzzy model. The development and
analysis of these kinds of mPFGs with relevant instances and theorems is also quite fascinat-
ing. The previous theories about the saturation of mPFGs are unquestionably improved by
these definitions and theorems, and they are more trustworthy when it comes to resolving
any challenging real-world issue. If anyone considers an example to model a location
problem such that there are three components of each node and edge, where the edges
MV are given depending on the following criteria: {Condition of roads, traffic jams on the
roads, and the communication system between two cities}. This real-life problem can be
solved with the help of saturation in mPFG.

1.4. Notations and Symbols

In this section, we revise some of the significant and practical notations that are utilised
throughout the whole work to establish the theories. Table 1 provides the abbreviated
forms and their meanings.

Table 1. Abbreviation form of some terms.

Full Name Abbreviation Form

Fuzzy graph FG

m-polar fuzzy graph mPFG

Underlying crisp graph UGC

Membership value MV

m-polar fuzzy set mPFS

Strength of connectedness SC

Strong edge SE

Maximal spanning tree MST

2. Preliminaries

In this section, we quickly review several terminologies related to mPFG, such as
complete mPFG, strong mPFG, path in mPFG etc.

This article’s current ps : [0, 1]m → [0, 1] denotes sth projection mapping material and
s = 1, 2, . . . , m stands for s = 1(1)m.

Definition 1 ([12]). An mPFG is denoted as H = (Ṽ, σ, γ) over a crisp graph H∗ = (Ṽ, Ẽ),
where Ṽ and Ẽ respectively denote the set of vertices and edges of H∗. The functions σ : Ṽ → [0, 1]m

and γ : Ṽ × Ṽ → [0, 1]m represent the membership value of vertices and edges, respectively. Also,
pi ◦ γ(x, t) ≤ pi ◦ σ(x) ∧ pi ◦ σ(t) for every i = 1(1)m and (x, t) ∈ Ṽ × Ṽ, while γ(x, t) = 0
for every (x, t) ∈ (Ṽ × Ṽ − Ẽ).

Definition 2 ([12]). An mPFG H = (Ṽ, σ, γ) is called a complete mPFG if ps ◦ γ(x, t) =
{ps ◦ σ(x) ∧ ps ◦ σ(t)}, for each x, t ∈ Ṽ and s = 1(1)m.

Definition 3 ([12]). An mPFG H = (Ṽ, σ, γ) is called an mPF strong graph if

ps ◦ γ(x, t) = {ps ◦ σ(x) ∧ ps ◦ σ(t)},
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for every (x, t) ∈ Ẽ and s = 1(1)m.

Definition 4 ([13]). Let H = (Ṽ, σ, γ) be an mPFG and let P : x1, x2, . . . , xk be a path in H.
S(P) denotes the strength of P, which is defined as S(P) = (γk

1(xt, xj), γk
2(xt, xj), . . . , γk

m(xt, xj)),
where γk

s (xt, xj) = min
1≤t<j≤k

ps ◦ γ(xt, xj).

The strength of connectedness of the path between x1 and xk is given as follows:
CONNG(x1, xk) = (p1 ◦ γ(xt, xj)

∞, p2 ◦ γ(xt, xj)
∞, . . . , pm ◦ γ(xt, xj)

∞), where
(ps ◦ γ(xt, xj)

∞) = max
n∈N
{ps ◦ γn(xt, xj)}.

Definition 5 ([19]). Suppose H = (V, α, μ) is an mPFG and let (x, z) be an edge in G. If ∀
s = 1(1)m, ps ◦ μ(x, z) > ps ◦ CONNH−(x,z)(x, z) holds, then (x, z) is called α-strong.
∀ s = 1(1)m, if

ps ◦ μ(x, z) = ps ◦ CONNH−(x,z)(x, z) holds,

then (x, z) is called β-strong.

∀ s = 1(1)m, if
ps ◦ μ(x, z) < ps ◦ CONNH−(x,z)(x, z) holds,

then (x, z) is called δ-strong, respectively.

Definition 6 ([18]). An mPFG H = (V, σ, μ) is said to be mPF tree if there exists a span-
ning mPF subgraph H′ = (V, σ′, μ′), which is an mPF tree and ps ◦ μ′(a, c) = 0 means
ps ◦ CONNH′(a, c) > ps ◦ μ′(a, c), for s = 1(1)m.

Definition 7 ([18]). Suppose H = (V, α, μ) is an mPFG. An arc (a, c) is said to be an mPF bridge
if deletion of it decreases the SC between some other pair of nodes of H.

Definition 8 ([12]). Suppose H = (V, σ, μ) as well as H′ = (V′, σ′, μ′) are two mPFGs. If there
exists a mapping φ : H → H′ such that s = 1(1)m

(i) ps ◦ σ(a) = ps ◦ σ′(φ(a)), ∀ a ∈ V.

(ii) ps ◦ μ(a, c) = ps ◦ μ′(φ(a), φ(c)), ∀ (a, c) ∈ Ṽ ×V.

Then H, as well as H′, are called isomorphic. We write it as H ∼= H′.

3. Node as Well as Edge Saturation Counts of mPFG

The node and edge saturation counts in mPFG are defined here and characterized also.
An mPFG’s node saturation count and edge saturation count both show the proportion
of SEs in the mPFG and the mPFG’s mean strong degree, respectively. Here, we consider
σ(u) = 1 = (1, 1, . . . , 1), ∀u ∈ V.

Definition 9. Suppose H is an mPFG. Then the strong node count of H is indicated by SV(H)
and given as

ps ◦ SV(H) =
Sum o f sth components o f MV o f all SE o f H

|V|

=
Sum o f sth components o f MV o f all α− strong edge or β− strong edge o f H

|V|

∀s = 1(1)m.
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The SE count of H is indicated by SE(H) as well as given by

ps ◦ SV(H) =
Sum o f sth components o f MV o f all SE o f H

|E|

=
Sum o f sth components o f MV o f all αstrong edge or β− strong edge o f H

|E|

∀s = 1(1)m.

Definition 10. Let H be an mPFG having UCG H∗. Then the α-node count αV(H) of H is defined
as

ps ◦ αV(H) =
Sum o f sth components o f MV o f all α− SE o f H

|V|
∀s = 1(1)m.

The α-SE count αE(H) of H is given by

ps ◦ αE(H) =
Sum o f sth components o f MV o f all α− SE o f H

|E|

∀s = 1(1)m.

Definition 11. Let H be an mPFG having UCG H∗. Then the β-node count βV(H) of H is defined as

ps ◦ βV(H) =
Sum o f sth components o f MV o f all β− SE o f H

|V|

∀s = 1(1)m.
The β-SE count βE(H) of H is given by

ps ◦ βE(H) =
Sum o f sth components o f MV o f all β− SE o f H

|E|

∀s = 1(1)m.

Example 1. Here, we take a 3PFG, shown in Figure 1, to depict the above definitions. Here, we
take into account all crisp nodes.

Figure 1. A 3PFG H for illustration of Example 1.

Here, the classified edges are given in Table 2.
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Table 2. Classification of edges of Figure 1.

Edge Classification

(a, b) β-strong

(b, c) α-strong

(a, d) β-strong

(b, d) α-strong

(a, c) δ-strong

(d, c) δ-strong

α-node count of H is

αV(H) = (
0.6 + 0.4

4
,

0.7 + 0.5
4

,
0.8 + 0.6

4
) = (0.25, 0.3, 0.35)

and α-edge count of H is

αE(H) = (
0.6 + 0.4

6
,

0.7 + 0.5
6

,
0.8 + 0.6

6
) = (0.16, 0.2, 0.23)

β-node count of H is

βV(H) = (
0.2 + 0.2

4
,

0.3 + 0.3
4

,
0.4 + 0.4

4
) = (0.1, 0.15, 0.2)

and β-edge count of H is

βE(H) = (
0.2 + 0.2

6
,

0.3 + 0.3
6

,
0.4 + 0.4

6
) = (0.067, 0.1, 0.13)

Strong-node count of H is

SV(H) = (
1.4
4

,
1.8
4

,
2.2
4
) = (0.35, 0.45, 0.55)

and Strong-edge count of H is

SE(H) = (
1.4
6

,
1.8
6

,
2.2
6
) = (0.23, 0.3, 0.36)

Every edge in a mPF tree is α-strong, according to Theorem 3.18 of [19]. Therefore,
ps ◦ αV(G) = n−1

n and ps ◦ αE(G) = n−1
n−1 = 1, where n = no. of nodes in a mPF tree G as

a whole.
The number of α-strong nodes never surpasses the number of nodes for any other

mPFG than the mPF tree. For a complete mPFG, all possible edges can be made β-strong

by allotting the same MV to the nodes. Then ps ◦ βV(G) =
(n

2)
2 and ps ◦ βE(G) =

(n
2)

(n
2)

= 1,

s = 1(1)m.
Depending on the above observation, we can say the following:

Proposition 1. Suppose H is an mPFG where |V| = n. Then

(i) 0 ≤ ps ◦ αV(H) ≤ n−1
n .

(ii) 0 ≤ ps ◦ αE(H) ≤ 1.

(iii) 0 ≤ ps ◦ βV(H) ≤ (n
2)
2 .

(iv) 0 ≤ ps ◦ βE(H) ≤ 1.

(v) 0 ≤ ps ◦ SV(H) ≤ (n
2)
2 .

(vi) 0 ≤ ps ◦ SE(H) ≤ 1.

s = 1(1)m.
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Proposition 2. Suppose H is an mPF tree. Then 0 ≤ ps ◦ αV(H) ≤ ps ◦ αE(H), s = 1(1)m.

Proof. As H is an mPF tree, therefore ps ◦ αV(H) = n−1
n , s = 1(1)m and ps ◦ αE(H) =

n−1
n−1 = 1, s = 1(1)m. Hence, 0 ≤ ps ◦ αV(H) ≤ ps ◦ αE(H), s = 1(1)m.

3.1. Vertex and Edge Counts of Some Well-Known mPFG

In this portion, we talk over saturation counts of mPFG structures such as mPF cycles,
trees as well as blocks in mPFG. Some necessary parts for these structures are also obtained.

Theorem 1. Suppose H is an mPFG where |V| = w. Then, the following condition is identical:

(i) H be an mPF tree.
(ii) ps ◦ αV(H) = w−1

w as well as ps ◦ αE(H) = 1, s = 1(1)m.
(iii) w× ps ◦ αV(H) = (w− 1)× ps ◦ αE(H), s = 1(1)m.

Proof. (i)⇒ (ii) is completed previously. (ii)⇒ (iii) Suppose that ps ◦ αV(H) = w−1
w and

ps ◦ αE(H) = 1, s = 1(1)m.

ps ◦ αV(H) =
w− 1

w
⇒ w× ps ◦ αV(H) = (w− 1)

⇒ w× ps ◦ αV(H) = (w− 1)× 1

⇒ w× ps ◦ αV(H) = (w− 1)× ps ◦ αE(H) [As ps ◦ αE(H) = 1]

Hence, n × ps ◦ αV(H) = (w − 1) × ps ◦ αE(H), s = 1(1)m. (iii) ⇒ (i) Suppose that
w× ps ◦ αV(H) = (w− 1)× ps ◦ αE(H), s = 1(1)m.

Since,
w× ps ◦ αV(H) = (w− 1)× ps ◦ αE(H)

⇒ ps ◦ αV(H)

ps ◦ αE(H)
=

(w− 1)
w

⇒ ps ◦ αV(H)

ps ◦ αE(H)
=

(w− 1)
w

= ps ◦ αV(H),

this shows that ps ◦ αE(H) = 1, s = 1(1)m.
Hence, H is connected and acyclic only when every edge is α-strong; therefore, H is

a tree.

Theorem 2. Suppose H is a connected mPFG. H is an mPF tree iff ps ◦ αV(H) = ps ◦ SV(H) as
well as ps ◦ αE(H) = ps ◦ SE(H), s = 1(1)m.

Proof. Suppose H is a connected mPFG as well as an mPF tree. Now, from Theorem 3.19
of [18], we know that H is free from β-SEs. Therefore,

ps ◦ βV(H) =
0
|V| = 0, s = 1(1)m

and
ps ◦ βE(H) =

0
|E| = 0, s = 1(1)m.

Therefore,
ps ◦ αV(H) = pi ◦ SV(H), s = 1(1)m

and
ps ◦ αE(H) = ps ◦ SE(H), s = 1(1)m.
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Conversely, let ps ◦ αV(H) = ps ◦ SV(H) and ps ◦ αE(H) = ps ◦ SE(H), for s = 1, 2, . . . , m.
Whenever H defines a cycle, then H is an mPF tree. Take C to represent a cycle in H. Hence,
C must have only α-strong and δ-SEs only. Again, consider that H does not have all α-SEs.
Therefore, H contains at least one δ-SE. Suppose e is an δ-SE. Then, we remove it from C.
If a unique MST is found, then the condition is complete. Otherwise, we remove each δ-SE
individually from C until we get a specific MST of H.

Theorem 3. Let a connected mPFG H be an mPF tree iff ps ◦ αV(H) = ps ◦ αV(F), s = 1(1)m ,
where F is MST of G.

Proof. Let H be an mPF tree. So, H and F are isomorphic. Therefore,

ps ◦ αV(H) =
count o f α− SE o f H

no. o f nodes

=
count o f α− SE o f F

no. o f nodes

= ps ◦ αV(F)

s = 1(1)m.

Now, we consider another case. Let H contain a cycle C. Then, it is not free from δ-SE.
Let q be a δ-SE . If H − q is a tree, then H − q and F are isomorphic. Therefore,

ps ◦ αV(H) = ps ◦ αV(F), s = 1(1)m.

If H − q is not a tree, then we delete the δ-SEs in H − e in a similar way to obtain an MST F
of H, such that ps ◦ αV(H) = ps ◦ αV(F), s = 1(1)m.

Conversely, let ps ◦ αV(H) = ps ◦ αV(F), s = 1(1)m, in which F corresponds to H’s
MST. We have to show that H is an mPF tree. Supposing H is not an mPF tree, it must have
one β-SE, say (a, b). Let c− d be another path P in H for which ps ◦ μ(c, d) ≥ ps ◦ μ(a, b),
s = 1(1)m and ∀ (c, d) ∈ P. Now, the joining of P and (a, b) creates a cycle in H. Let k
be the count of α-SEs, which are incident at a. To find F, take (a, b) out of H since it has
the least weight in C. Then the count of α-SEs connected to c in F is k + 1. Suppose the
remaining counts of α-SEs are k1. Hence, ps ◦ αV(H) = k+1

|V| as well as ps ◦ αV(F) = k+k1+1
|V| ,

s = 1(1)m, which is a contrast. This contradiction leads to the theorem.

4. Saturation in m-Polar Fuzzy Graph

Here, saturation in terms of the node and edge counts is presented. In this section, we
also studied some of its interesting facts. We also studied saturated blocks in mPFG.

Definition 12. Suppose H is an mPFG. Then H is called α-saturate (α− S) if it must have one
α-SEs incident with each node of H. H is said to be β-strong saturate if it must have one β-SE
incident with each node of H.

Definition 13. Suppose H is an mPFG. H is called a saturate graph if it has at least one α-SE as
well as β-SEs incident with every node of H. Otherwise, H is called an unsaturated mPFG.

Example 2. To illustrate the above definition, we consider a 3PFG H displayed in Figure 2 whose
nodes all have MV (1, 1, 1).
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Figure 2. 3PFG H having four nodes.

Here, we see that the edges (a, b), (c, d) are α-SEs and (c, b), (a, d) are β-SEs. The edges (a, c)
are δ-SE. Each node is connected with α-SE and β-SE. Therefore, H is a saturated 3PFG.

Theorem 4. Suppose H as well as H′ = (V′, σ′, μ′) are two isomorphic mPFGs. If H is saturated,
H′ is also saturated.

Proof. Let φ : H → H′ be the isomorphism between two mPFGs. To show H′ is saturated,
we have to show that each node is connected with at least one α-SE as well as β-SEs. Let
w′ ∈ V′. Then there must be a node, say w, in H for which φ(w) = w′. Since H is saturated,
therefore w is incident with at least one α-SE and one β-SE. Since, H and H′ are isomorphic
with each other, therefore, w′ is also incident with at least one α-SE and one β-SE. Hence,
H′ is also saturated.

Let H be an mPFG having UCG H∗ where |V| = k. We define a finite collection
αS(H) = (n1, n2, . . . , nk) called α-strong sequence where, nj = is the count of α-SEs con-
nected to node vj. We define a finite collection βS(H) = (n1, n2, . . . , nk) called β-strong
sequence where, nj = count of β-SEs connect at node vj. Since the count of SEs of H = (the
count of α-SEs of H + the count of β-SEs of H), therefore,

∑
nj∈αS(H)

nj + ∑
nj∈βS(H)

nj = ∑
nj∈SS(H)

nj

Theorem 5. Suppose H is an mPFG having UGC H∗ where |V| = k. Then H is α-saturated iff
∑

nj∈αS(H)

nj ≥ k.

Proof. Suppose H is an α-saturated mPFG. Therefore, at least one α-SE is incident with
each node of H. Thus,

∑
nj∈αS(H)

nj ≥ 1 + 1 + . . . + 1

⇒ ∑
nj∈αS(H)

nj ≥ k

Conversely, let ∑
nj∈αS(H)

nj ≥ k. Then, all k nodes of H are connected with at least one α-SE.

Therefore, H is α-saturated mPFG.
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Theorem 6. Suppose H is an mPFG where |V| = k. Then H is β-saturated iff ∑
nj∈βS(H)

nj ≥ k.

Proof. Similar to the above theorem.

Theorem 7. Suppose H is an mPFG where |V| = k. If H is β-saturated, then ∑
nj∈SS(H)

nj ≥ 2k.

Proof. Let H be saturated. Therefore, each node of H is connected with at least one α-SE
and one β-SE. Thus, ∑

nj∈SS(H)

nj ≥ 2k.

Theorem 8. Suppose H is an mPFG with UGC H∗ where |V| = w. If

(i) ps ◦ αV(H) ≥ 0.5 if α-saturated.
(ii) ps ◦ βV(H) ≥ 0.5 if β-saturated.
(iii) ps ◦ SV(H) ≥ 1 if saturated.

s = 1(1)m.

Proof. (i) Let H be α-S. Then every node of H is incident with at least one α-SE. Therefore,

H must have w
2 , α-SEs. Therefore, ps ◦ αV(H) ≥

w
2
w = 0.5. (ii) Similar to the above. (iii) Let

H be saturated. Therefore, every node of H is connected, having a minimum of α-SEs and
β-SEs. Therefore, the count of SEs of H = (the count of α-SEs of H + the count of β-SEs of
H)≥ w

2 + w
2 = n. Hence, ps ◦ SV(H) ≥ w

w = 1.

In Figure 3, all the nodes have MV (1, 1, 1), that is σ(aj) = (1, 1, 1), f or j = 1, 2, . . . , 12.
The edges MV are μ(aj, ak) = (0.6, 0.6, 0.6), where 1 ≤ j < k ≤ 12 and j is odd and k is even.
The edges MV is μ(aj, ak) = (0.4, 0.4, 0.4), where 1 < j < k < 12 and j is even and k is odd.
The edge MV between a1 and a12 is (0.4, 0.4, 0.4).

Figure 3. 3PFG H having an even number of nodes.

In Figure 3, we see that all the edges having MV (0.6, 0.6, 0.6) are α-strong and the
edges having MV (0.4, 0.4, 0.4) are β-strong. Therefore, Figure 3 is saturated.

In Figure 4, all the nodes have MV (1, 1, 1), that is σ(aj) = (1, 1, 1), f or j = 1, 2, . . . , 9.
The edges MV is μ(aj, ak) = (0.5, 0.5, 0.5), where 1 ≤ j < k ≤ 9 and j is odd and k is even.
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The edges MV are μ(aj, ak) = (0.7, 0.7, 0.7), where 1 < j < k < 9 and j is even and k is odd.
The edge MV between a1 and a9 is (0.5, 0.5, 0.5).

In Figure 4, we see that all the edges having MV (0.7, 0.7, 0.7) are α-strong and the
edges having MV (0.5, 0.5, 0.5) are β-strong. Therefore, Figure 4 is unsaturated as the node
a1 connected with both the β-SEs.

One simple observation of the above discussion is that Figure 3 has an even number
of nodes while Figure 4 has an odd number of nodes. Thus, the next hypothesis applies.

Figure 4. 3PFG G having odd number of nodes.

Theorem 9. Suppose Cn is an mPF cycle. If the next two hold, it is saturated:

(i) n = 2t, t is a positive integer.
(ii) α-SE as well as β-SEs occur as an alternate Cn.

Proof. Let Cn be an mPF cycle. Therefore, it is free from δ-SEs. All arcs occurring on Cn are
α-SE or β-SE. Let us assume that Cn is saturated. Therefore, each node is connected with at
least one α-SE and one β-SEs. Hence, the count of α-SEs = t = the count of β-SEs. Therefore,
n = 2t. Again, every node connected with both α-SEs as well as β-SEs happen if they occur
as an alternate Cn.

Conversely, let Cn be a fuzzy cycle with an even number of nodes in which each node
is connected with both α-SEs and β-SEs alternatively. Therefore, each node is connected
with precisely one α-SE and β-SEs. Hence, Cn is a saturated fuzzy cycle.

Theorem 10. Suppose G is an mPF cycle. If H is saturated, it must be a block.

Proof. Since H is saturated, each node is connected with at least one α-SE as well as one β-
SE. Again, since H is an mPF cycle, every node is connected with just two nodes. Therefore,
each node contains precisely one alpha-SE and one beta-SE. Hence, removing any node
from H may not decrease SC between other nodes. This shows that H is free from mPF cut
node; therefore, H is a block.

Theorem 11. Let H be an mPF cycle. If H is an mPF block, then either it is β-saturated or it
is saturated.

Proof. Let a block be H. We demand that H is free from δ-SEs. If possible, let e be a δ-SE.
Then the remaining edges must be α-SE; therefore, G contains n− 2 fuzzy cut nodes, which
is an irrelevance. So, H has no δ-SEs. Thus, H is free from δ-SEs.
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If H has only α-SEs as well as β-SEs, they appear alternatively; otherwise, the block
shape will not be found. If the count of α-SEs = the count of β-SEs = n

2 , then H is α-saturated
as well as β-saturated; therefore, it is saturated. If the count of α-SEs is less than the count
of β-SEs, then H must be only β-S. For another case, when the count of α-SEs is greater
than the count of β-SEs, this will not be true as it does not form a block. If every of arc is
β-strong of H, then it must be β-saturated. Therefore, the theorem is proved.

Theorem 12. A complete mPFG has no δ-arcs.

Proof. Suppose G is a complete mPFG. Let G have a δ-arc. Let (p, q) be the δ-arcs. Then
we have,

ps ◦ μ(p, q) < ps ◦ CONNG−(p,q)μ(p, q), s = 1(1)m.

In G, a stronger path P that excludes the arc (p, q) must exist. Suppose ps ◦ μ(p, q) = ti,
s = 1(1)m and the strength of P are (u1, u2, . . . , um). Therefore, we have ti < ui, s = 1(1)m.
Suppose r is the first node after u in the path P. Then, we have

ps ◦ μ(p, r) > ti, ∀ s = 1(1)m (1)

In a similar way, let s be the last node before q in the path P. Again, we also have

ps ◦ μ(s, q) > ti, ∀ s = 1(1)m (2)

Since G is a complete mPFG, we therefore have ps ◦ μ(p, t) = min{ps ◦ σ(p), ps ◦ σ(t)},
s = 1(1)m as well as ∀ (p, t) ∈ E. Therefore, at least one of ps ◦ σ(p) or ps ◦ σ(t) is ti,
s = 1(1)m.

Therefore, (1) will contradict if ps ◦ σ(p) = ti, s = 1(1)m and (2) will contradict if
ps ◦ σ(t) = ti, for s = 1(1)m.

Hence, we conclude the theorem.

Theorem 13. Suppose H is an mPFG. An arc (a, c) is a bridge if it is α-strong.

Proof. Suppose (a, c) is an mPF bridge. Then we have from the definition of mPF bridge,

ps ◦ CONNH−(a,c)(a, c) < ps ◦ CONNH(a, c), f or s = 1(1)m (3)

Again, from Theorem 3.11 of [19], we have

ps ◦ μ(a, c) = ps ◦ CONNH(a, c), s = 1(1)m (4)

From Equations (3) and (4), we get ps ◦ μ(a, c) > ps ◦ CONNH−(a,c)(a, c), s = 1(1)m.
Hence, (a, c) be α-SE.

Conversely, suppose (a, c) is an α-SE. Then, we have (a, c) as the one and only strongest
path in between a and c, and the removal of (a, c) will decrease the SC of a and c. Therefore,
(a, c) is a bridge.

Theorem 14. A complete mPFG has at most one α-SE.

Proof. We know that complete mPFG have at most one mPF bridge. Again, from Theorem 13,
we have an arc (a, b) that is an mPF bridge iff it is α-SE. Hence, a complete mPFG has at most
one α-SE.

Proposition 3. Every complete mPFG has at most (w
2) or (w

2)-1 β-SEs.

Theorem 15. If H is a complete mPFG having w nodes, then few disparities hold.
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(i) 0 ≤ ps ◦ αV(H) ≤ 1
w .

(ii) w2−w−2
2w ≤ ps ◦ βV(H) ≤ w−1

2 .

s = 1(1)m.

Proof. With the help of Theorem 14, we conclude that H can have at most one α-SE. Hence,
we have ps ◦ αV(H) ≤ 1

w , s = 1(1)m. Again, clearly ps ◦ αV(H) ≥ 0, s = 1(1)m. Therefore,
0 ≤ ps ◦ αV(H) ≤ 1

w , s = 1(1)m.
Again, from Proposition 3, we are aware that the minimal number of β-SEs is (w

2)−1.
Therefore,

ps ◦ βV(H) ≥ w(w−1
2 )− 1
w

≥ w2 − w− 2
2w

Thus, w2−w−2
2w ≤ ps ◦ βV(H) ≤ w−1

2 , s = 1(1)m.
Next, we will try to find out the upper limit of the α-node count for a block in

mPFG.

Theorem 16. If H is an mPF block, we have ps ◦ αV(G) ≤ 0.5, s = 1(1)m.

Proof. To prove this, we first try to determine the maximum count of α-SEs of H. Let
|V| = n. We know that if more than one α-SEs are connected with a common node,
then the node is a mPF cut node. Since H is an mPF block, it therefore has no mPF cut
node. Therefore, the maximum count of α-SEs of H is w

2 . Thus, ps ◦ αV(H) ≤
w
2
w = 0.5,

s = 1(1)m.

Theorem 17. An mPF block H is α-saturated then ps ◦ αV(H) = 0.5, s = 1(1)m.

Proof. Let H be α-saturated. Since H is an mPF block, it therefore has no mPF cut node.
Hence, every node is incident with exactly unique α-SE. Therefore, H contains exactly w

2

the count of α-SEs. Thus, ps ◦ αV(H) =
w
2
w = 0.5, for s = 1(1)m.

5. Algorithms

In this section, three algorithms are designed to find α-saturated mPFG, β-saturated
mPFG and saturated mPFG.

Let H∗ = (V, E) be the crisp graph for the given mPFG.
Step 1 assigns the membership values to all nodes, and Step 2 does the same for

all edges. So, the time complexities for these steps are O(|V|) and O(|E|), respectively.
Finding connectedness between a pair of vertices is equivalent to finding all pairs’ shortest
paths. Many algorithms are available to find all pairs of shortest paths, and their time
complexity depends on the specific algorithm, data structure and type of graphs. Let such
time complexity be O(χ(G)). So, the time complexity of Step 3 is O(χ(G)). Step 4 and Step
5 take O(|E|) and O(|V|), respectively. Step 6 takes only O(|V|) time. Hence, the total time
complexity of Algorithm 1 is O(|V|+ |E|) + O(χ(G)) = O(|E|+ χ(G)). In the worst case,
O(χ(G)) = O(|V|3). So, the worst case time complexity of Algorithm 1 is O(|V|3), as the
maximum value of |E| is |V|2.

The time complexities of Algorithms 2 and 3 are the same as in Algorithm 1.
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Algorithm 1 An algorithm to find α-saturation in mPFG
Input: A mPFG H = (V, σ, μ).
Output: Finding α-saturated mPFG.
Step 1: Put the MV of nodes aj, j = 1(1)w .
Step 2: Put the MV of edges that satisfied ps ◦ μ(aj, ak) ≤ inf{ps ◦ σ(aj), ps ◦ σ(ak)},
s = 1(1)m.
Step 3: Calculate ps ◦ CONNH−((aj ,ak))

(aj, ak), f or s = 1(1)m, ∀(aj, ak) ∈ E.
Step 4: Verify ps ◦ μ(aj, ak) > ps ◦ CONNH−(aj ,ak)

(aj, ak), ∀(aj, ak) ∈ E.
Step 5: Select all α-SEs in H.
Step 6: Check whether every node is connected with at least one α-SE or not.

Algorithm 2 An algorithm to find β-saturation in mPFG
Input: A mPFG H = (V, σ, μ).
Output: Finding β-saturated mPFG.
Step 1: Put the MV of nodes aj, j = 1(1)w .
Step 2: Put the MV of edges that satisfied ps ◦ μ(aj, ak) ≤ inf{ps ◦ σ(aj), ps ◦ σ(ak)},
s = 1(1)m.
Step 3: Find ps ◦ CONNH−((aj ,ak))

(aj, ak), f or s = 1(1)m, ∀(aj, ak) ∈ E.
Step 4: Verify ps ◦ μ(aj, ak) = ps ◦ CONNH−(aj ,ak)

(aj, ak), ∀(aj, ak) ∈ E.
Step 5: Select all β-SEs in H.
Step 6: Check whether every node is connected with at least one β-SE or not.

Algorithm 3 An algorithm to find saturation in mPFG
Input: A mPFG H = (V, σ, μ).
Output: Finding saturated mPFG.
Step 1: Put the MV of nodes aj, j = 1(1)w.
Step 2: Put the MV of edges that satisfied ps ◦ μ(aj, ak) ≤ inf{ps ◦ σ(aj), ps ◦ σ(ak)},
s = 1(1)m.
Step 3: Using Algorithms 1 and 2 identified all α-strong as well as β-SEs in G.
Step 4: Check whether every node is connected with at least one α-SE as well as β-SEs or
not.

6. Application

Decision-making in allocation problems is a multifaceted process that requires a
systematic approach, consideration of various factors, and a balance between optimizing
objectives and meeting constraints. Effective decision-making in allocation can lead to
improved resource utilization, cost savings, and overall better outcomes for organizations
and society. The mPFG is a fundamental mathematical framework that depicts facts from
real life that are related by graphical systems, where nodes and edges are made up of
m-polar fuzzy information. In this section, we attempt to resolve a specific allocation
problem using saturation in mPFG.

6.1. Model Construction

Education is a crucial concern for everyone in the current world. Everyone gets the
chance to read and write thanks to the 2005 Right to Education (RTE) law. IIT (Indian
Institute of Technology) is one of the most significant universities in India’s educational
system. Therefore, it is not a simple undertaking for any Government to construct an IIT in
a town among other towns.

In this case, nine towns (a1, a2, . . . , a9) are regarded as nodes. If there is a road link
between two nodes, then there will be an edge. Here, we use saturation in 3PFG G to
solve the allocation problem. Since the town is fixed in nature, we can therefore assign
the MV of each node (1, 1, 1), that is, σ(ai) = (1, 1, 1), for i = 1, 2, . . . , 9. The edge MVs are
calculated depending on three criteria. Those criteria are as follows: {Condition of roads,
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traffic jams on the roads, communication system between two cities}. All the indicators of
an edge between two towns are uncertain in nature. We can calculate the edge MVs by
remembering the relation ps ◦ μ(a, c) ≤ in f {ps ◦ σ(a), ps ◦ σ(c)}, s = 1(1)m. The model
3PFG is shown in Figure 5.

Figure 5. Model 3PFG G.

Here, the edges MV are given in Table 3.

Table 3. The edge membership value of Figure 5.

Edge Membership Value

(a1, a2) (0.5, 0.4, 0.3)

(a2, a3) (0.5, 0.4, 0.3)

(a3, a4) (0.3, 0.2, 0.1)

(a4, a5) (0.3, 0.2, 0.1)

(a5, a7) (0.6, 0.5, 0.4)

(a7, a8) (0.5, 0.4, 0.3)

(a8, a9) (0.3, 0.2, 0.1)

(a1, a9) (0.7, 0.6, 0.5)

(a7, a9) (0.6, 0.5, 0.4)

(a6, a9) (1, 0.9, 0.8)

(a6, a7) (0.6, 0.5, 0.4)

(a5, a6) (0.6, 0.5, 0.4)

(a2, a6) (0.8, 0.7, 0.6)

(a3, a6) (0.5, 0.4, 0.3)

(a4, a7) (0.7, 0.6, 0.5)

6.2. Illustration of Membership Values

Here, the model network system contains nine nodes and fifteen edges. It can be seen
from the given 3PFG that every town is connected to others through some paths. So, first,
we want to check whether the connections between towns are α, β or δ-strong. Next, we
find out the saturation node in Figure 5. After calculating CONNG−(a,b), for all (a, b) ∈ E,
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we find out which edges are α, β or δ-strong. Then, by the routine computations, we get
the classification of edges. Here, the classified edges are given in Table 4.

Table 4. Classification of edges of Figure 5.

Edge Classification

(a1, a2) δ-strong

(a2, a3) δ-strong

(a3, a4) δ-strong

(a4, a5) δ-strong

(a5, a7) δ-strong

(a7, a8) α-strong

(a8, a9) δ-strong

(a1, a9) α-strong

(a7, a9) δ-strong

(a6, a9) α-strong

(a6, a7) δ-strong

(a5, a6) δ-strong

(a2, a6) α-strong

(a3, a6) β-strong

(a4, a7) α-strong

We can observe that the model 3PFG G only has one β-SE. The node a6, which is
incident with at least one α-SE and one β-SE, is the sole saturation node in the model
3PFG G.

6.3. Decision Making

The town a6 is the most favourable location to set up the IIT (Indian Institute of
Technology) among all the towns taken into consideration in our suggested model since it
is the sole saturation node in the model 3PFG G. Decision-making in allocation problems
is critical to operations management and resource allocation across various domains,
including business, logistics, healthcare, and government. Allocation problems involve
distributing limited resources among competing demands or tasks in an optimal or efficient
manner. These decisions play a significant role in determining the overall performance,
cost-effectiveness, and fairness of an allocation process.

We know that saturation in mPFG plays an important role in this allocation problem
through the above discussion. Moreover, we also recognize that saturation in mPFG is
more applicable than saturation in FG in the allocation problem.

Comparative study

First, Mathew et al. [10] introduced a saturation graph in the light of fuzziness. Later
on, Mathew et al. [6,7] also worked on different properties of saturated FGs. So, none
of the results discussed earlier are applicable when the model is considered in another
environment, such as in m-polar fuzzy sets. This is why the proposed model in this paper
plays a significant role in such situations to give better results.
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Advantages and limitations of the proposed Work

Some of the advantages of the proposed work are as follows:

(i) This work mainly depends on m-polar fuzzy logic network system.
(ii) Many important definitions and theorems are presented in this study, which are

very useful.
(iii) A real application of a m-polar fuzzy saturation graph is presented in the allocation

problem system.

Some of the limitations of this study are given as follows:

(i) This work mainly focuses on the m-polar fuzzy graph.
(ii) If the membership value of the character is given in a different interval-valued

m-polar fuzzy environment, then the m-polar fuzzy threshold graph cannot be
used.

(iii) This type of work is mainly used in allocation problems.

7. Conclusions

In this paper, α-saturation and β-saturation in mPFG, along with its several properties,
are initiated. Node, as well as edge saturation count in mPFG and a few of its facts on
some well-known mPFGs, are also introduced. The upper and lower bound of a node
and edge saturation count in mPFG are also investigated. Saturation in mPFG by using
α-saturation and β-saturation are also discussed here, along with some of its intersecting
properties. Using saturation in mPFG, an application is also given in the last part of this
paper. Depending on the mPFG, our research will be expanded to uncover other traits and
potential uses. To the best of our knowledge, no work has been conducted on α-saturation
and β-saturation before this present work on mPFG. Several results have been presented
in this paper. The connection between α-saturation and β-saturation is not established
here. This should be conducted in later work. Until now, the saturation on interval-
valued m-polar fuzzy soft graphs, saturation on balanced IVmPF graphs, and saturation on
self-centered IVmPF graphs were not investigated by any researchers.
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Abstract: Soft continuity can contribute to the development of digital images and computational
topological applications other than the field of soft topology. In this work, we study a new class
of generalized soft continuous functions defined on the class of soft open sets modulo soft sets of
the first category, which is called soft functions with the Baire property. This class includes all soft
continuous functions. More precisely, it contains various classes of weak soft continuous functions.
The essential properties and operations of the soft functions with the Baire property are established.
It is shown that a soft continuous with values in a soft second countable space is identical to a soft
function with the Baire property, apart from a topologically negligible soft set. Then we introduce
two more subclasses of soft functions with the Baire property and examine their basic properties.
Furthermore, we characterize these subclasses in terms of soft continuous functions. At last, we
present a diagram that shows the relationships between the classes of soft functions defined in this
work and those that exist in the literature.

Keywords: soft set of the first category; soft set of the second category; soft set with the Baire property;
soft function with the Baire property

MSC: 54A99; 54E52; 54F65; 03E99

1. Introduction

The reduction in uncertainty is one of the most crucial features that must be addressed
in order to improve the robustness of the results acquired from data analysis. However,
breaking down the existing uncertainty in order to remove it is frequently a difficult task.
For this reason, numerous mathematical techniques created for data analysis ended up
short of fulfilling these objectives. Fuzzy sets [1], rough sets [2], and probability are a
few of the key mathematical techniques that try to remove uncertainty from data analysis.
Divergences from classical mathematics with the goal of removing uncertainty have been
made as a result of getting better results with various set types. The decision-making
procedures have experienced certain issues as a result of their inability to effectively
represent uncertainty. Considering that the lack of a parameterization tool is the primary
cause of these challenges, the authors of [3] proposed soft sets. Soft sets represent a
particularly effective mathematical model for processing decision-making procedures that
focus on the selection of the best alternative since objects supplying parameters can be
described in this way. This prompts the fast development of the theory of soft sets and
its related field in a short measure of time and gives different applications of soft sets in
real-world applications (see, [4–9]).

Then, various mathematical branches have been studied in soft set environments.
Soft topology is one of the branches introduced in [10,11] as a fresh generality of classi-
cal topology. The aforementioned work was crucial to the development of soft topology.

Mathematics 2023, 11, 4368. https://doi.org/10.3390/math11204368 https://www.mdpi.com/journal/mathematics79



Mathematics 2023, 11, 4368

After that, in soft set contexts, many traditional topological properties have been gener-
alized, for instance, soft separation axioms [12], soft second countable spaces [13], soft
separable spaces [12], soft connected spaces [14], soft compact spaces [15], soft extremally
disconnected spaces [16], soft submaximal spaces [17], and soft paracompact spaces [14].

It is understood that soft open sets are the building blocks of soft topology, but other
classes of soft sets can contribute to the growth of soft topology. Namely, soft dense [18],
soft codense [19], soft somewhat open [20], soft nowhere dense [18], soft meager (first
category soft set) [18], soft semiopen [21], soft α-open [22], and soft sets with the Baire
property [23].

In addition to soft topology, soft continuity is useful in the development of com-
putational topological applications and digital images [24]. Soft continuity of functions
was defined by Zorlutuna et al. [25] in 2012. Afterwards, multiple generalized forms of
soft continuous functions started to appear in the literature. Namely: soft U -continuous
functions [26], soft C-continuous functions [27], soft ω-continuous functions [28], soft some-
what continuous functions [20], soft α-continuous functions [22], soft semicontinuous
functions [29], etc.

The concept of functions with the Baire property was studied by many mathematicians
as a tool for developing several fields of mathematics, such as (descriptive) set theory,
general topology, and measure theory (see [30–32]). In an analogous manner, studying
functions with the Baire property in soft settings will have an interchangeable role in
soft topology and soft measure theory. The latter statement and the rich literature on the
generalized classes of soft continuous functions with their applications motivate us to
investigate the so-called “soft functions with the Baire property”with two more subclasses
of such soft functions.

The primary contributions of this paper are follows:

• We introduce a wide class of soft functions, named soft functions with the Baire
property, via a mix of topological and algebraic structures, which includes various
classes of generalized soft continuous functions.

• We find some conditions under which the class (or a subclass) of soft functions with
the Baire property is identical to soft continuity.

• We characterize a subclass of soft functions with the Baire property in terms of the set
of soft points of soft discontinuity.

We arrange the content of the paper as follows: Section 2 recalls some properties
and operations of soft set theory and some soft topology. Section 3 collects and studies
some classes of soft sets with the Baire property in soft topological spaces. In Section 4,
we introduce the concept of soft functions with the Baire property and characterize them
in terms of soft continuity. In Section 5, we define two subclasses of soft functions with
the Baire property and study them. After that, we find their connections to some known
classes of generalized soft continuous functions. In Section 6, we finish this work with a
brief conclusion.

2. Preliminaries

We start with an overview of soft sets along with some operations.

Definition 1 ([3]). Let F be a set-valued mapping from a subset A of a set of parameters E into the
power set 2X of an initial universe X. An ordered pair (F, A) = {(a, F(a)) : a ∈ A} is called the
soft set over X.

The class of all soft subsets of X along with A is denoted by SS(X, A).

Definition 2 ([7]). The soft complement (F, A)c of a soft set (F, A) is a soft set (Fc, A), whereas
Fc : A→ 2X is a mapping for which Fc(a) = X− F(a) for each a ∈ A.
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Remark 1. One can easily extend a soft set (F, A) to the soft set (F, E) by assuming F(a) = ∅ for
all a ∈ E− A.

Definition 3 ([33]). A null soft set with respect to A, (Φ, A), is soft set (F, A) over X if
F(a) = ∅ for each a ∈ A. An absolute soft set with respect to A, (X, A), is a soft set (F, A)
such that F(a) = X for each a ∈ A. The null and absolute soft sets are denoted by (Φ, E) and
(X, E), respectively.

Notice that ((F, A)c)c = (F, A), (Φ, A)c = (X, A), and (X, A)c = (Φ, A).

Definition 4 ([13]). A finite (resp. countable) soft set (F, A) is such a soft set that F(a) is finite
(resp. countable) for each a ∈ A. Otherwise, it is called infinite (resp. uncountable).

Definition 5 ([34]). A soft set (F, A) over X is said to be a soft point, referred to xa, if F(a) = {x}
and F(a′) = ∅ for each a′ ∈ A such that a �= a′, a ∈ A. The collection of all soft points in X
associate with A is denoted by SP(X, A).

Definition 6 ([7,35]). Let (F, A), (G, B) be soft sets, where A, B ⊆ E. Then (F, A) is a soft subset
of (G, B), denoted by (F, A)⊆̃(G, B), if A ⊆ B and F(a) ⊆ G(a) for all a ∈ A. The two soft sets
are said to be equal, denoted by (F, A) = (G, B), if (F, A)⊆̃(G, B) and (G, B)⊆̃(F, A).

Definition 7 ([33]). Let {(Fi, A) : i ∈ I} be a family of soft sets over X, where I is any index set.

1. The soft union of (Fi, A) is defined to be the soft set (F, A) =
⋃̃

i∈I(Fi, A) such that
F(a) =

⋃
i∈I Fi(a) for each a ∈ A.

2. The soft intersection of (Fi, A) is defined to be the soft set (F, A) =
⋂̃

i∈I(Fi, A) such that
F(a) =

⋂
i∈I Fi(a) for each a ∈ A.

Definition 8 ([33,36]). Let (F, A), (G, A) ∈ SS(X, A). Then

1. The soft set difference (F, A) and (G, A) is defined to be the soft set
(H, A) = (F, A)− (G, A), where H(a) = F(a)− G(a) for all a ∈ A.

2. The soft symmetric difference of (F, A) and (G, A) is defined by
(F, A)Δ̃(G, A) = [(F, A)− (G, A)]∪̃[(G, A)− (F, A)].

One can easily check that (F, A)− (G, A) = (F, A)∩̃(G, A)c.

In what follows, by two distinct soft points xa, ya′ we mean either x �= y or a �= a′ and
by two disjoint soft sets (F, A), (G, A) over X, we mean (F, A)∩̃(G, A) = (Φ, A).

Definition 9 ([11]). A family θ⊆̃SS(X, A) is called a soft topology over X if

1. (Φ, A), (X, A) ∈ θ,
2. (F, A), (G, A) ∈ θ implies (F, A)∩̃(G, A) ∈ θ, and
3. {(Fi, A) : i ∈ I}⊆̃θ implies ∪̃i∈I(Fn, A) ∈ θ.

The triple (X, θ, A) is called a soft topological space. The elements of θ are called soft open sets,
and their complements are called soft closed sets. The set of all soft closed sets is denoted by θc.

Definition 10 ([11]). Let (Y, A) �= (Φ, A) be a soft subset of (X, θ, A). Then
θ(Y,A) = {(G, A)∩̃ (Y, A) : (G, A) ∈ θ} is called a relative soft topology over Y and (Y, θ(Y,A), A)
is a soft subspace of (Y, θ, A).

Lemma 1 ([11]). Let (Y, θ(Y,A), A) be a soft subspace of (Y, θ, A) and let (F, A)⊆̃(Y, A) ∈ θ.
Then (F, A) ∈ θ(Y,A) iff (F, A) ∈ θ.

Definition 11 ([10]). A (countable) soft base for a soft topology θ is a (countable) family B⊆̃θ such
that elements of θ are soft unions of elements of B.
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Lemma 2 ([11]). Let (X, θ, A) be a soft topological space, then for each a ∈ A, the collection
θ(a) = {F(a) : (F, A) ∈ θ} is a (crisp) topology on X.

Definition 12 ([37]). A soft topology generated by a collection C⊆̃SS(X, A) is the intersection of
all soft topologies over X including C.

Definition 13 ([38]). Let (G, A)⊆̃(X, θ, A). Then (G, A) is a soft neighborhood of xa ∈ SP(X, A)
if there exists (U, A) ∈ θ(xa) such that xa ∈ (U, A)⊆̃(G, A), where θ(xa) is the family of all soft
open sets containing xa.

Definition 14 ([11]). Let (W, A)⊆̃(X, θ, A). Then

1. cl(W, A) = ∩̃{(F, A) : (W, A)⊆̃(F, A), (F, A) ∈ θc} is called the soft closure of (W, A).
2. int(W, A) = ∪̃{(F, A) : (F, A)⊆̃(W, A), (F, A) ∈ θ} is called the soft interior of (W, A).

Lemma 3 ([39]). Let (F, A), (G, A)⊆̃(X, θ, A). Then

1. int((F, A)∩̃(G, A)) = int(F, A)∩̃int(G, A).
2. cl((F, A)∩̃(G, A))⊆̃cl(F, A)∩̃cl(G, A).

Lemma 4 ([39]). Let (F, A)⊆̃(X, θ, A). Then

int((F, A)c) = (cl((F, A)))c and cl((F, A)c) = (int((F, A)))c.

Definition 15 ([39,40]). Let (F, A)⊆̃(X, θ, A). The soft boundary of (F, A) is given by
b(F, A) = cl(F, A)− int(F, A).

Definition 16. Let (F, A), (G, A)⊆̃(X, θ, A). Then (F, A) is called

1. soft clopen [41] if (F, A) is both soft open and soft closed.
2. soft regular open [42] if int(cl(F, A)) = (F, A).
3. soft Gδ [19] if (F, A) = ∩̃∞

n=1(Gn, A), where (Gn, A) ∈ θ.
4. soft Fσ [19] if (F, A) = ∪̃∞

n=1(Fn, A), where (Fn, A) ∈ θc.
5. soft dense in (G, A) [18,19] if (G, A)⊆̃cl(F, A).
6. soft nowhere dense [18] if int(cl(F, A)) = (Φ, A).
7. soft semiopen set [21] if (F, A)⊆̃cl(int(F, A)).
8. soft α-open set [22] if (F, A)⊆̃int(cl(int(F, A))).
9. soft meager [18,43] (or a soft set of the first category) if (F, A) = ∪̃∞

n=1(Fn, A), where each
(Fn, A) is soft nowhere dense, otherwise (F, A) is of the second category.

The collection of all soft sets of the first category (resp. soft sets of the second cate-
gory, soft nowhere dense sets) over X is denoted byM(X, A) (resp. S(X, A),N (X, A)).
Examples on the aforementioned classes of soft sets can be found in [43], Example 1.

Definition 17 ([18,19]). A soft topological space (X, θ, A) is called soft Baire if the soft intersection
of each countable collection of soft open dense sets in (X, θ, A) is soft dense. Equivalently, each
non-null soft open set in (X, θ, A) is of the second category.

Definition 18 ([44]). A non-null class Ĩ⊆̃SS(X, A) is called a soft ideal over X if Ĩ satisfies the
following conditions:

1. If (F, A), (G, A) ∈ Ĩ, then (F, A)∪̃(G, A) ∈ Ĩ.
2. If (G, A) ∈ Ĩ and (F, A)⊆̃(G, A), then (F, A) ∈ Ĩ.

Ĩ is called a soft σ-ideal if (1) holds for many (countable) soft sets. We denote the family of soft
ideals over X by I(X, A).
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Remark 2 ([43]). For any soft topological space (X, θ, A), M(X, A) forms a soft σ-ideal and
N (X, A) forms a soft ideal.

Definition 19 ([45]). A collection Σ⊆̃SS(X, A) is a soft algebra over X if:

1. (Φ, A) ∈ Σ,
2. (F, A) ∈ Σ implies (F, A)c ∈ Σ, and

3. (Fn, A) ∈ Σ, for all n = 1, 2, . . . , k, implies
⋃̃k

n=1(Fn, A) ∈ Σ.

If (3) holds true for many (countable) members of Σ, Σ is said to be a soft σ-algebra on
X (see [46]).

Definition 20 ([47]). Let F⊆̃SS(X, A). The soft intersection of all soft σ-algebras over X con-
taining F is a soft σ-algebra and it is called the soft σ-algebra generated by F and is referred
to as σ(F ).

Definition 21 ([15]). A soft topological space (X, θ, A) is called soft compact if every cover of
(X, A) by soft open sets has a finite subcover.

Definition 22 ([11]). A soft topological space (X, θ, A) is called soft regular if each xa ∈ SP(X, A)
and each (G, A) ∈ θ, there exists (H, A) ∈ θ such that xa ∈ (H, A)⊆̃cl(H, A)⊆̃(G, A).

Definition 23 ([13]). A soft topological space (X, θ, A) is called soft second countable if it has a
countable soft base.

Definition 24 ([25,48]). Let SS(X, A), SS(Y, B) be collections of soft sets, and let p : X → Y, q :
A→ B be mappings. The image of a soft set (F, A)⊆̃(X, A) under g : SS(X, A)→ SS(Y, B) is a
soft subset g(F, A) = (g(F), q(A)) of (Y, B) which is given by

g(F)(b) =

⎧⎨⎩
⋃

a∈q−1(b)∩A
p(F(a)), q−1(b) ∩ A �= ∅

∅, otherwise,

for each b ∈ B.
The inverse image of a soft set (G, B)⊆̃(Y, B) under g is a soft subset g−1(G, B) = (g−1(G),

q−1(B)) such that

(g−1(G)(a) =

{
p−1(G(q(a))), q(a) ∈ B
∅, otherwise,

for each a ∈ A.
The soft mapping g is injective (resp. surjective, bijective) if both p and q are injective (resp.

surjective, bijective).

Lemma 5 ([25]). Let g : SS(X, A)→ SS(Y, B) be a soft function and (W, B) ∈ SS(Y, B). Then

g−1((W, B)c) = (g−1(W, B))c.

Definition 25. A soft function g : (X, θ, A)→ (Y, ϑ, B) is said to be

1. soft continuous [25] if g−1(G, B) ∈ θ for each (G, B) ∈ ϑ.
2. soft semicontinuous [29] if g−1(G, B) is soft semiopen for each (G, B) ∈ ϑ.
3. soft α-continuous [22] if g−1(G, B) is soft α-open for each (G, B) ∈ ϑ.
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3. Classes of Soft Sets with the Baire Property

We recall and study some properties of certain classes of soft sets that have the
Baire property.

Definition 26 ([23,36]). Let (F, A)⊆̃(X, θ, A). It is said that (F, A) is soft open moduloM(X, A)
if there exists (G, A) ∈ θ such that (F, A)Δ̃(G, A) ∈ M(X, A). Soft open sets moduloM(X, A)
are named soft sets with the Baire property. The family of all soft sets over X with the Baire property
is denoted by B(X, θ, A).

One can easily check that (F, A) has the Baire property iffit is of the form
(F, A) = (G, A)Δ̃(P, A), where (G, A) ∈ θ and (P, A) ∈ M(X, A).

Lemma 6 ([23]). Let (F, A)⊆̃(X, θ, A). The following properties are equivalent:

1. (F, A) ∈ B(X, θ, A).
2. if (F, A) = (H, A)Δ̃(P, A), where (H, A) is soft regular open and (P, A) ∈ M(X, A).
3. if (F, A) = (K, A)Δ̃(Q, A), where (K, A) ∈ θc and (Q, A) ∈ M(X, A).
4. if (F, A) = [(D, A)− (R, A)]∪̃(S, A), where (D, A) ∈ θc and (R, A), (S, A) ∈ M(X, A).
5. if (F, A) = [(G, A) − (M, A)]∪̃(N, A), where (G, A) ∈ θ and

(M, A), (N, A) ∈ M(X, A).
6. if (F, A) = (U, A)∪̃(L, A), where (U, A) is a soft Gδ set and (L, A) ∈ M(X, A).
7. if (F, A) = (W, A)− (T, A), where (W, A) is a soft Fσ set and (T, A) ∈ M(X, A).
8. if there exists (V, A) ∈ M(X, A) such that (F, A)− (V, A) is soft clopen in (V, A)c.

Lemma 7 ([23]). Let (F, A)⊆̃(X, θ, A). If (F, A) ∈ B(X, θ, A), then (F, A)c ∈ B(X, θ, A).

Lemma 8 ([23]). Let (F, A), (Y, A)⊆̃(X, θ, A). If (F, A) ∈ B(X, θ, A), then
(F, A)∩̃(Y, A) ∈ B(X, θ(Y,A), A).

Lemma 9 ([23]). Let (F, A), (Y, A)⊆̃(X, θ, A). If (F, A) ∈ B(X, θ(Y,A), A), (Y, A) ∈ B(X, θ, A),
then (F, A) ∈ B(X, θ, A).

We are now in a position to define two subclasses of soft sets of the Baire prop-
erty. We have seen that (F, A) ∈ B(X, θ, A) iff (F, A) = (G, A)− (P, A)∪̃(Q, A), where
(G, A) or (G, A)c ∈ θ and (Q, A) ∈ M(X, A). From this representation, we introduce the
following soft sets:

Definition 27. Let (F, A)⊆̃(X, θ, A). Then (F, A) is said to be of the first type if
(F, A) = (G, A)− (P, A), where (G, A) or (G, A)c ∈ θ and (P, A) ∈ M(X, A). And it is of the
second type if (F, A) = (H, A)∪̃(Q, A), where (H, A) or (H, A)c ∈ θ and (Q, A) ∈ M(X, A).
We will hereafter refer to soft sets of the first and second types as ST1-sets and ST2-sets, respectively.

Lemma 10. Let (F, A)⊆̃(X, θ, A). Then (F, A) is an ST1-set iff (F, A)c is an ST2-set.

Proof. Let (F, A) be an ST1-set. Then (F, A) = (G, A) − (P, A) for some (G, A) or
(G, A)c ∈ θ and (P, A) ∈ M(X, A). Now, (F, A)c =

(
(G, A)− (P, A)

)c
= (G, A)c∪̃(P, A),

where (G, A)c or (G, A) ∈ θ and (P, A) ∈ M(X, A). Thus, (F, A)c is an ST2-set.
The converse is similar.

Lemma 11. Let (F, A), (G, A)⊆̃(X, θ, A) such that (G, A) ∈ θ or (G, A) ∈ θc. If (F, A) is an
STi-set, then (F, A)∩̃(G, A) is an STi-set, for i = 1, 2.

Proof. Straightforward.
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Lemma 12. Let (D, A)⊆̃(X, θ, A). If (D, A) is soft dense in (X, A), then
cl[(G, A)∩̃(D, A)] = cl(G, A) for each (G, A) ∈ θ.

Proof. Let (G, A) ∈ θ. Since (G, A)∩̃(D, A)⊆̃(G, A), so cl[(G, A)∩̃(D, A)]⊆̃cl(G, A). On
the other hand, we need to show cl(G, A)⊆̃cl[(G, A)∩̃(D, A)]. Consider the following with
applying Lemma 3:

(G, A)− cl[(G, A)∩̃(D, A)] = (G, A)∩̃(cl[(G, A)∩̃(D, A)])c

= int(G, A)∩̃int([(G, A)∩̃(D, A)]c)

= int(G, A)∩̃int[(G, A)c∪̃(D, A)c])

= int([(G, A)∩̃(D, A)c]∪̃[(G, A)∩̃(G, A)c])

= int[(G, A)∩̃(D, A)c]

= (G, A)∩̃int[(D, A)c]

= (G, A)− cl(G, A)

= (G, A)− (X, A)

= (Φ, A).

This proves that (G, A)⊆̃cl[(G, A)∩̃(D, A)] implies cl(G, A)⊆̃cl[(G, A)∩̃(D, A)]. Thus,
cl(G, A) = cl[(G, A)∩̃(D, A)].

Lemma 13. Let (F, A)⊆̃(X, θ, A). Then (F, A) is a soft α-open set iffthen
(F, A) = (G, A)− (N, A), where (G, A) ∈ θ and (N, A) ∈ N (X, A).

Proof. Suppose (F, A) is a soft α-open set. Consider the identity

(F, A) = int(cl(int(F, A)))− [int(cl(int(F, A)))− (F, A)].

Since (F, A)⊆̃int(cl(int(F, A))), then int(F, A)⊆̃int(cl(int(F, A))). Therefore, we have
int(cl(int(F, A))) −(F, A)⊆̃int(cl(int(F, A))) − int(F, A), which implies
int(cl(int(F, A))) −(F, A) ∈ N (X, A) since int(cl(int(F, A)))− int(F, A) ∈ N (X, A). If
we set (G, A) = int(cl(int(F, A))) and (N, A) = int(cl(int(F, A)))− (F, A), then we con-
clude that (F, A) = (G, A)− (N, A) for some (G, A) ∈ θ and (N, A) ∈ N (X, A).

Conversely, if (F, A) = (G, A) − (N, A), where (G, A) ∈ θ and (N, A) ∈ N (X, A).
Now, (F, A) = (G, A)∩̃(N, A)c. Therefore, applying Lemma 3 , we have
int(F, A) = int(G, A)∩̃ int((N, A)c) = (G, A)∩̃int((N, A)c). Since int((N, A)c) is soft
dense, it follows from Lemma 12, cl(int(F, A)) = cl(G, A)⊇̃(G, A) and thus
(G, A)⊆̃int(cl(int(F, A))). But, clearly, (F, A)⊆̃(G, A). Hence, (F, A) is soft α-open.

Proposition 1. Let (F, A)⊆̃(X, θ, A). If (F, A) is a soft α-open set, then (F, A) is an ST1-set.

Proof. It follows from the fact that N (X, A)⊆̃M(X, A).

Proposition 2. Let (F, A)⊆̃(X, θ, A). If (F, A) is a soft semiopen set, then (F, A) is an ST2-set.

Proof. Suppose (F, A) is a soft semiopen set in (X, θ, A). From Theorem 3.1 in [29], one can
find (G, A) ∈ θ such that (G, A)⊆̃(F, A)⊆̃cl(G, A). Consider, the identity
(F, A) = (G, A)∪̃((F, A)− (G, A)). Since (G, A) is soft open, then cl(F, A) − (G, A) ∈
N (X, A) and so cl(F, A) − (G, A) ∈ M(X, A). But (F, A) − (G, A)⊆̃cl(F, A) − (G, A),
therefore (F, A) − (G, A) ∈ M(X, A). Set (N, A) = (F, A) − (G, A). Therefore,
(F, A) = (G, A)∪̃(N, A). Hence, (F, A) is an ST2-set.

This is a suitable place to illustrate the connections between the previously stated
soft sets.
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Generally, none of the above arrows are reversible, as is shown in the following
example:

Example 1. Let R be the set of real number and A be a set of parameters. Let θ be the soft
topology on R generated by {(a, F(a)) : F(a) = (t, s); t, s ∈ R; t < s, a ∈ A}. The soft set
(F, A) = {(a, [(−1, 0)−Q] ∪ [(0, 1) ∩Q]) : a ∈ A} has the Baire property but is neither an
ST1-set nor an ST2-set, where Q is the set of rationals. The soft set (G, A) = {(a,R−Q) : a ∈ A}
is an ST1-set but not soft α-open. The soft set (H, A) = {(a, (−1, 0) ∪ (0, 1) ∪ {2}) : a ∈ A} is
an ST2-set but not soft semiopen. The soft set (D, A) = {(a, C) : a ∈ A} is an ST2-set but not an
ST1-set, where C is the ternary Cantor set. While (G, A) is an ST1-set but not an ST2-set.

The counterexample for other cases are available in the literature.

4. Soft Functions with the Baire Property

Definition 28. A soft function g : (X, θ, A) → (Y, ϑ, B) is said to have the Baire property if
g−1(H, B) ∈ B(X, θ, A) for each (H, B) ∈ ϑ.

The Baire property is evidently present in all soft continuous functions. There are, on
the other hand, soft functions that have the Baire property but are not soft continuous.

Example 2. Consider the soft topological space (X, θ, A) given in Example 1. Define a soft function
g : (X, θ, A)→ (X, θ, A) by

g(xa) =

⎧⎪⎨⎪⎩
xa, if xa /∈ {0a, 1a};
0a, if xa = 1a;
1a, if xa = 0a.

One can easily show g has the Baire property because the inverse image of any soft open set is either
a soft open set or a soft open sets union a soft set containing one of the soft points and both though
are soft sets the Baire property. On the other hand g cannot be soft continuous. Take the soft open
set (G, A) = {(a, (−ε, ε)) : a ∈ A}, where ε < 1. Then

g−1(G, A) = {(a, (−ε, 0) ∪ (0, ε) ∪ {1}) : a ∈ A}.

not a soft open set and hence g is not a soft continuous function.

Theorem 1. A soft function g : (X, θ, A) → (Y, ϑ, B) has the Baire property iff
g−1(R, B) ∈ B(X, θ, A) for each (R, B) ∈ ϑc.

Proof. It follows from Lemma 7.

Proposition 3. Let g : (X, θ, A) → (Y, ϑ, B) have the Baire property and (F, A)⊆̃ (X, θ, A).
Then g|(F,A) has the Baire property.

Proof. Let (H, A) ∈ ϑ. Then g−1|(F,A)(H, A) = g−1(H, A)∩̃(F, A). By hypothesis, we have
g−1(H, A) ∈ B(X, θ, A) and, by Lemma 8, g−1|(F,A)(H, A) ∈ B(X, θ(F,A), A)

Theorem 2. Let g : (X, θ, A)→ (Y, ϑ, B) be a soft function and let (X, θ, A) be soft compact. If
g|(H,A) has the Baire property for each (H, A) ∈ θ, then g has the Baire property.

Proof. Let {(Hi, A) : i ∈ I} be a soft open cover of (X, A). Let (V, B) ∈ ϑ. By assumption,(
g|(Hi ,A)

)−1
(V, B) has the Baire property in (Hi, A) for each i. Since each soft open set

has the Baire property, by Lemma 9,
(

g|(Hi ,A)

)−1
(V, B) = g−1(V, B)∩̃(Hi, A) ∈ B(X, θ, A).
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And, by soft compactness of (X, θ, A), one can find a finite subset I0 ⊆ I such that (X, A) =
∪̃i∈I0(Hi, A). Now,

g−1(V, B) = g−1(V, B)∩̃
(⋃̃

i∈I0
(Hi, A)

)
=

⋃̃
i∈I0

(
g−1(V, B)∩̃(Hi, A)

)
=

⋃̃
i∈I0

[(
g|(Hi ,A)

)−1
(V, B)

]
.

Therefore, since B(X, θ, A) is closed under finite soft unions, g−1(V, B) ∈ B(X, θ, A) and
thus, g has the Baire property.

Proposition 4. Let g : (X, θ, A) → (Y, ϑ, B) , h : (Y, ϑ, B) → (Z, η, C) be soft functions. If g
has the Baire property and h is soft continuous, then h ◦ g has the Baire property.

Proof. Let (V, C) ∈ η. By soft continuity of h, h−1(V, C) ∈ ϑ. Since g has the Baire
property, so g−1(h−1(V, C)

)
∈ θ. But

(
h ◦ g

)−1
= g−1(h−1(V, C)

)
. Hence, h ◦ g has the

Baire property.

Proposition 5. Let (F, A)⊆̃(X, θ, A). Then (F, A) ∈ B(X, θ, A) iff the characteristic soft func-
tion χ(F,A) of (F, A) has the Baire property.

Proof. The characteristic soft function χ(F,A) of (F, A) is a soft function χ(F,A) : (X, θ, A)→
({0, 1}, ϑdiscrete, B), which is defined by

χ(F,A)(xa) =

⎧⎪⎨⎪⎩
1b if xa ∈ (F, A);

0b′ if xa /∈ (F, A),

where ϑdiscrete is the soft discrete topology on {0, 1}. Suppose (F, A) ∈ B(X, θ, A). Let
(V, B) ∈ ϑdiscrete. Then

χ−1
(F,A)

(V, B) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(X, A), if 1b, 0b′ ∈ (V, B)
(F, A), if 1b ∈ (V, B), 0b′ /∈ (V, B)
(F, A)c, if 1b /∈ (V, B), 0b′ ∈ (V, B)
(Φ, A), if 1b, 0b′ /∈ (V, B).

All those soft sets are in B(X, θ, A) since B(X, θ, A) is a soft σ-algebra. Thus, χ(F,A) has the
Baire property.

Conversely, since {1b} ∈ ϑ and it contains 1b, by assumption,
χ−1
(F,A)

({1b}) = (F, A) ∈ B(X, θ, A). The proof is finished.

Theorem 3. Let g : (X, θ, A) → (Y, ϑ, B) be a soft function such that (Y, ϑ, B) is soft second
countable. Then g has the Baire property iffthere exists (P, A) ∈ M(X, A) such that g|(P,A)c is
soft continuous.

Proof. Assume g has the Baire property. We need to construct (P, A) ∈ M(X, A) for which
h = g|(P,A)c is soft continuous. Let (H, B) ∈ ϑ and let B = {(Gn, B) : n = 1, 2, · · · } be a
countable soft base of (Y, ϑ, B). Then (H, B) = ∪̃∞

i=1(Gi, B) for some (Gi, B) in B. Since g
has the Baire property, so g−1(Gn, B) ∈ B(X, θ, A) for each n. By Lemma 6,

g−1(Gn, B) = (Un, A)− (Pn, A)∪̃(Qn, A),
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where (Un, A) ∈ θ, (Pn, A), (Qn, A) ∈ M(X, A). Set (P, A) = ∪̃∞
n=1(Pn, A)∪̃(Qn, A). Then

(P, A) ∈ M(X, A) since M(X, A) is a soft σ-ideal. It remains to show that h is soft
continuous. Since

h−1(H, B) = g−1(H, B)∩̃(P, A)c,

then

h−1(H, B) = g−1
(⋃̃∞

i=1
(Gi, B)

)
∩̃(P, A)c

=
⋃̃∞

i=1
g−1(Gi, B)∩̃(P, A)c

=
⋃̃∞

i=1

(
(Ui, A)− (Pi, A)∪̃(Qi, A)

)
∩̃(P, A)c.

Since (Pi, A)∪̃(Qi, A)⊆̃(P, A), therefore,(
(Ui, A)− (Pi, A)∪̃(Qi, A)

)
∩̃(P, A)c = (Ui, A)∩̃(P, A)c.

This implies that h−1(H, B) =
(
∪̃∞

i=1(Ui, A)
)
∩̃(P, A)c. Since ∪̃∞

i=1(Ui, A) is soft open in
(X, A), so h−1(H, B) is a soft open set in (P, A)c. Thus, h is soft continuous.

Conversely, suppose there exists (P, A) ∈ M(X, A) such that g|(P,A)c is soft con-
tinuous. Let (V, B) ∈ ϑ. By assumption, h−1(V, B) = g−1(V, B)∩̃(P, A)c. That is,
g−1(V, B)∩̃(P, A)c = (U, A)∩̃(P, A)c, where (U, A) ∈ θ. Now,

g−1(V, B) = [g−1(V, B)∩̃(P, A)c]
⋃̃
[g−1(V, B)∩̃(P, A)]

= [(U, A)∩̃(P, A)c]
⋃̃
[g−1(V, B)∩̃(P, A)].

Since (P, A) ∈ M(X, A), (Q, A) = g−1(V, B)∩̃(P, A)⊆̃(P, A) implies (Q, A) ∈ M(X, A).
Therefore, g−1(V, B) = (U, A)− (P, A)∪̃(Q, A). By Lemma 6, g−1(V, B) ∈ B(X, θ, A) and
hence, g has the Baire property.

5. Subclasses of Soft Functions with the Baire Property

We introduce two subclasses of soft functions with the Baire property in this section
and discuss their fundamental properties.

Definition 29. A soft function g : (X, θ, A) → (Y, ϑ, B) is said to be the Baire soft function of
the first type (or shortly, BST1) if g−1(H, B) is an ST1-set for each (H, B) ∈ ϑ. It is the Baire soft
function of the second type (or shortly, BST2) if g−1(H, B) is an ST2-set for each (H, B) ∈ ϑ.

By the use of Proposition 5, one can construct the following:

Example 3. Consider the soft topological space (R, θ, A) given in Example 1 and let ϑdiscrete be
the soft discrete topology on {0, 1}. Assume the soft function g : (X, θ, A)→ ({0, 1}, ϑdiscrete, B)
is defined by

g(xa) =

⎧⎪⎨⎪⎩
1b if xa ∈ (G, A);

0b′ if xa /∈ (G, A),

where (G, A) = {(a,R−Q) : a ∈ A} such that Q is the set of rationals. Then, g is a BST1-
function but not BST2 since g−1({1b}) = (G, A) is an ST1-set but not an ST2-set, see Example 1.
If we replace (G, A) by the soft set (D, A) = {(a, C) : a ∈ A}, where C is the ternary Cantor set,
we obtain a BST2-function but not BST1. On the other hand, if we replace (G, A) by the soft set
(F, A) = {(a, [(−1, 0)−Q] ∪ [(0, 1) ∩Q]) : a ∈ A}, we obtain a soft function with the Baire
property but neither BST1 nor BST2.

88



Mathematics 2023, 11, 4368

Proposition 6. A soft function g : (X, θ, A)→ (Y, ϑ, B) is BSTi iff g−1(H, B) is an STj-set for
each (H, B) ∈ ϑc, i, j = 1, 2 and i �= j.

Proof. We only prove when i = 1 and j = 2, the other case is the same. Suppose g is BST1.
Let (H, B) ∈ ϑc. Then (H, B)c ∈ ϑ. By assumption, g−1((H, B)c) is an ST1-set. But, by
Lemma 5, g−1((H, B)c) = (

g−1(H, B)
)c. By Lemma 10, g−1(H, B) is an ST2-set.

The converse is clear.

Proposition 7. A soft function g : (X, θ, A)→ (Y, ϑ, B) is BST1 if it is soft α-continuous.

Proof. Apply Proposition 1.

Proposition 8. A soft function g : (X, θ, A)→ (Y, ϑ, B) is BST2 if it is soft semicontinuous.

Proof. Apply Proposition 2.

The earlier two propositions and Figure 1 imply

SBP-set

ST1-set ST2-set

soft α-open soft semiopen

soft open

Figure 1. Generalized soft open sets.

Where an SBP-set means a soft set with the Baire property.

Corollary 1. If g : (X, θ, A) → (Y, ϑ, B) is a soft continuous function, then it is BSTi, for
i = 1, 2.

Theorem 4. Let g : (X, θ, A)→ (Y, ϑ, B) be a soft function such that (X, θ A) is soft Baire and
(Y, ϑ, B) is soft regular. Then g is BST1 iffg is soft continuous.

Proof. Suppose g is BST1 and xa ∈ SP(X, A). Let (H, B) ∈ ϑ that contains g(xa). By soft
regularity of (Y, ϑ, B), there exists (V, B) ∈ ϑ such that g(xa) ∈ (V, B)⊆̃cl(V, B)⊆̃(H, B).
Since g is BST1, so g−1(V, B) = (G, A) − (P, A) for some (G, A) ∈ θ and
(P, A) ∈ M(X, A). Evidently, xa ∈ (G, A). To show the soft continuity of g, it suf-
fices to show that g(G, A)⊆̃cl(V, B). Suppose otherwise that g(x′a′) /∈ cl(V, B) for some
x′a′ ∈ (G, A). This means that there exists (W, B) ∈ ϑ containing g(x′a′) such that
(V, B)∩̃(W, B) = (Φ, B) and g−1(W, B) = (U, A) − (Q, A), where (U, A) ∈ θ and
(Q, A) ∈ M(X, A). Since x′a′ ∈ (G, A)∩̃(U, A), so (Φ, A) �= (G, A)∩̃(U, A) ∈ θ. Now,
we have

(Φ, A) = g−1(V, B)∩̃g−1(W, B)

= (G, A)− (P, A)∩̃(U, A)− (Q, A)

= [(G, A)∩̃(U, A)]− [(P, A)∩̃(Q, A)].

This means that (G, A)∩̃(U, A)⊆̃(P, A)∩̃(Q, A), which is not possible since (X, θ A) is a
soft Baire space. Hence, we must have g(G, A)⊆̃cl(V, B)⊆̃(H, B) which implies g is soft
continuous.
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Conversely, if g is soft continuous, then for each (V, B) ∈ ϑ, g−1(V, B) ∈ θ. Clearly
g−1(V, B) can be written as g−1(V, B)(G, A) − (Φ, A) and thus g−1(V, B) is an ST1-set.
Hence, g is BST1.

Lemma 14. Let g : (X, θ, A) → (Y, ϑ, B) be a soft function and let {(Gi, B) : i ∈ I} be a soft
base of ϑ. The set D(g) of all soft points of soft discontinuity of g is of the form

D(g) =
⋃̃

i∈I

(
g−1(Gi, B)− int

(
g−1(Gi, B)

))
(1)

Proof. Let xa ∈ SP(X, A). If xa is a soft point of soft discontinuity of g, then there
exists (Hyb , B) ∈ ϑ containing yb = g(xa) such that xa is not a soft interior point of
g−1(Hyb , B). That is, xa ∈

[
g−1(Hyb , B) − int(g−1(Hyb , B))

]
. Since {(Gi, B) : i ∈ I}

is a soft base of ϑ, one can find some (Gi, B) such that (Gi, B)⊆̃(Hyb , B). Therefore,
xa ∈ ∪̃i∈I

[
g−1(Gi, B)− int(g−1(Gi, B))

]
.

Conversely, if for a soft point xa ∈ SP(X, A), there exists i ∈ I such that
xa ∈

[
g−1(Gi, B) − int(g−1(Gi, B))

]
. This implies that (Gi, B) ∈ ϑ containing g(xa) for

which g−1(Gi, B) is not a soft open set over X, and thus g is not soft continuous at xa.

Proposition 9. Let g : (X, θ, A)→ (Y, ϑ, B) be a soft function. If the set D(g) of all soft points
of soft discontinuity of g is inM(X, A), then g is BST2.

Proof. Suppose D(g) ∈ M(X, A). Let (H, B) ∈ ϑ. Since the soft set
(F, A) = g−1(H, B) − int(g−1(H, B))⊆̃D(g), then (F, A) ∈ M(X, A). Therefore,
g−1(H, B) = int(g−1(H, B))∪̃ (F, A) implies g−1(H, B) is ST2. Hence, g is BST2.

Proposition 10. Let g : (X, θ, A) → (Y, ϑ, B) be a soft function. If g is BST2 and (Y, ϑ, B) is
soft second countable, then the set D(g) of all soft points of soft discontinuity of g is inM(X, A).

Proof. Let {(Gn, B) : n = 1, 2, · · · } be a countable soft base of ϑ. By (1) in Lemma 14,

D(g) =
⋃̃∞

n=1

(
g−1(Gn, B)− int

(
g−1(Gn, B)

))
.

Since g is BST2, so g−1(Gn, B)− int
(

g−1(Gn, B)
)
∈ M(X, A), and thus D(g) ∈ M(X, A)

asM(X, A) is closed under countable soft unions.

From Propositions 9 and 10, we have the following result:

Theorem 5. Let g : (X, θ, A) → (Y, ϑ, B) be a soft function such that (Y, ϑ, B) is soft second
countable. Then g is BST2 iff D(g) is inM(X, A).

We conclude this work by presenting the Figure 2 below:

SBP-function

BST1-function BST2-function

soft α-continuous soft semicontinuous

soft continuous

Figure 2. Generalized soft continuous functions.

Where SBP-function means a soft function with the Baire property.
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One can derive from Proposition 5 and Examples 1 and 3 that the remaining examples
demonstrating the opposites of the aforementioned arrows are untrue.

6. Conclusions and Future Work

Soft continuity is one of the most natural topics in the field of soft topology, which is a
combination of topology and soft set theory. Soft continuity between soft topological spaces
has a rich literature. After recalling and studying certain classes of soft sets with the Baire
property, we have first started by defining the concept of soft functions having the Baire
property. A soft function with the Baire property sends soft open sets back to soft sets with
the Baire property. Basic operations on soft functions with the Baire property are discussed,
along with some basic properties. We have seen that each soft continuous function is a soft
function with the Baire property. The converse is generally false. We have shown that a
soft function from a soft topological space into a soft second countable space has the Baire
property if and only if there exists a soft set of the first category such that the restriction of
the soft function to its complement is soft continuous. Secondly, we have introduced two
subfamilies of soft functions with the Baire property called soft functions with the first and
second types. We have studied these types of soft functions and established some of their
characterizations. In particular, we have proved that a soft function from a soft Baire space
into a soft regular space is of the first type if and only if it is soft continuous. And a soft
function is of the second type if and only if the set of its discontinuous soft points is a soft
set of the first category, provided that the range of the soft function is soft second countable.
Moreover, we have shown that soft functions with the first type or second type are weaker
than certain natural classes of generalized soft continuous functions, like soft α-continuous
and soft semicontinuous functions. Lastly, we have built the relationships between the
classes of soft functions mentioned above and have offered some counterexamples that
disprove the reverse of the relationships.

The conclusions in this article are preliminary, and more study will be necessary. These
findings can also be seen as the foundation for researching new topics in soft topology and
soft measure theory. Since the soft σ-algebra of soft set of the Baire property [43], a soft
function with the Baire property can be considered a soft measurable function within the
context of soft measure theory. As a result, soft functions can contribute to the growth of
soft measure theory. Furthermore, by virtue of Proposition 5, one can study the determinacy
of the Banach-Mazur game on a certain soft topological space when the characteristic soft
function of each soft subset has the Baire property.
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Abstract: This paper introduces and explores the concept of soft ideal dense sets, utilizing soft open
sets and soft local functions, to examine their fundamental characteristics under some conditions
for the following notions: soft ideal hyperconnectedness, soft ideal resolvability, soft ideal irresolv-
ability, and soft ideal semi-irresolvability in soft ideal topological spaces. Moreover, it explores the
relationship between these notions if τ " Ī = φE is obtained in the soft set environment.

Keywords: soft open set; soft dense; soft ideal; soft ideal hyperconnected; soft ideal resolvable; soft
ideal irresolvable; soft ideal semi-irresolvable
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1. Introduction

In 1999, Molodtsov [1] initially suggested the idea of soft sets as a broad mathemat-
ical tool for handling uncertain situations. Molodtsov effectively utilized soft theory
in some areas, including probability, theory of measurement, smoothness of functions,
Perron integration, operations research, Riemann integration, and so on, in [2].

Shabir and Naz [3] started researching soft topological spaces in 2011. They defined
the topology on the collection τ of soft sets over X. Thus, they developed many features of
soft regular spaces, soft normal spaces, soft separation axioms, soft open and soft closed
sets, soft subspace, soft closure, and soft nbd of a point. They also defined the fundamental
concepts of soft topological spaces.

Kandil and colleagues introduced the concept of the soft ideal for the first time [4].
Additionally, they presented the idea of soft local functions. These ideas are presented
with the goal of identifying new soft topologies, termed soft topological spaces with soft
ideal (XE, τ, I), from the original one. Numerous mathematical structures, such as soft
group theory [5], soft ring theory [6], soft primals [7], soft algebras [8,9], soft category
theory [10], ideal spaces [11], ideal resolvability [12], and so on, have been addressed by soft
set theory. Similarly, the notion of soft topology through soft grills was introduced in [13].
Additionally, a large number of academics and researchers developed gentle versions of
the traditional topological ideas, such as soft resolvable spaces [14], soft hyperconnected
spaces [15], suitable soft spaces [7], soft ideal spaces [4,16,17], soft extremally disconnected
spaces [18], soft Menger spaces [19], soft countable chain condition, and soft caliber [20].
From here on, we shall refer to a soft ideal topological space (XE, τ, I), a soft ideal space.
The way this work is set out is as follows: Following the introduction, we discuss the
definitions and findings that are necessary to understand the data in Section 2. Next, we
recall the notion of soft local functions in Section 3. We study the fundamental operations
on soft local functions. The definitions of soft hyperconnected and soft hyperconnected
modulo ideal spaces, as well as a soft ideal topological space, are provided in Section 4.
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We look at the basic characteristics and connections between soft hyperconnected and soft
hyperconnected modulo ideals. A soft ideal resolvable space is defined in Section 5 and it
is demonstrated that soft ideal resolvable topologies over soft ideal resolvable subspace
are also soft ideal resolvable. The concept of soft ideal semi-irresolvable space and an
overview of its properties are provided in Section 6. In Section 7, we finish off by providing
an overview of the major contributions and some recommendations for the future.

2. Preliminary

Here, we provide the fundamental concepts and the outcomes of soft set theory that
are required for the follow-up.

Definition 1 ([1]). Let X be an initial universe and E be a set of parameters. Let P(X) denote the
power set of X and A be a non-null subset of parameters E. A pair (F, A) symbolized by FA is a soft
set over XE, where F is a mapping given by F : A→ P(X). Otherwise put, a soft set over XE is a
parameterized family of subsets of the universe XE. For a particular e ∈ E, F(e) might be regarded
as the set of e-approximate elements of the soft set (F, E) = FE and, if e /∈ E, then F(e) = φ, i.e.,
FE = {F(e) : e ∈ E, F : E→ P(X)}. The collection of all these soft sets is symbolized by SS(X)E.

Definition 2 ([21]). Let FE, GE ∈ SS(X)E. Then

1. FE is called a soft subset of GE, denoted by FE # GE, if F(e) ⊆ G(e), for all e ∈ E.
2. FE is called absolute, symbolized by XE, if F(e) = X for all e ∈ E.
3. FE is called null, symbolized by φE, if F(e) = φ for all e ∈ E.

In this case FE is said to be a soft subset of GE and GE is said to be a soft superset of FE,
FE # GE.

Definition 3 ([22]). 1. A soft set FE ∈ SS(X)E is called a soft point in XE if there exist x ∈ X
and e ∈ E such that F(e) = {x} and F(ec) = φ for each ec ∈ E− {e}. This soft point FE is
denoted by xe.

2. Let Δ be an arbitrary index set and Ω = {(Fα)E : α ∈ Δ} be a subfamily of SS(X)E. Then:

(a) The union of all (Fα)E is the soft set HE, where H(e) = ∪α∈Δ(Fα)E(e) for each e ∈ E.
We write �α∈Δ(Fα)E = HE.

(b) The intersection of all (Fα)E is the soft set ME, where M(e) = ∩α∈Δ(Fα)E(e) for
each e ∈ E. We write "α∈Δ(Fα)E = ME.

3. A soft set GE in a soft topological space (XE, τ) is called a soft neighborhood of the soft point
xe ∈ XE if there exists a soft open set HE such that xe ∈ HE # GE.

Definition 4 ([3]). Let (XE, τ) be a soft topological space and FE ∈ SS(X)E.

1. The soft closure of FE, symbolized by cl(FE), is the intersection of all soft closed supersets of
FE, i.e., cl(FE) = "{HE : HE is soft closed and FE # HE}.

2. The soft interior of FE is the set Int(FE) = �{HE : HE is soft open and HE # FE}.
3. A difference of two soft sets FE and GE over the common universe XE, symbolized by FE −GE,

is the soft set HE for all e ∈ E, H(e) = F(e)− G(e).
4. A complement of a soft set FE, symbolized by Fc

E, is defined as follows. Fc : E → P(X) is a
mapping given by Fc(e) = XE(e)− F(e), for all e ∈ E, and Fc is called a soft complement
function of FE.

5. Let FE be a soft set over XE and xe ∈ XE. We say that xe ∈ FE denotes that xe belongs to the
soft set FE whenever xe(e) ∈ F(e), for all e ∈ E.

For more details of soft set theory and its applications in a variety of mathematical
structures, see [18,23–27].

3. Soft Local Functions

Definition 5 ([4]). The non-null collection of soft subsets I of SS(X)E is called a soft ideal on XE if
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(a) FE ∈ I and GE # FE, then GE ∈ I .
(b) FE ∈ I and GE ∈ I , then FE � GE ∈ I .

Definition 6 ([4]). Let (XE, τ, I) be a SIT S . Then, FE
∗
(I , τ) (or F∗E) = �{xe ∈ XE : Oxe "

FE /∈ I for every soft open set Oxe} is called a soft local function of FE with respect to I and soft
topology τ, where Oxe is a soft open set containing xe.

A soft subset AE of a soft ideal topological space “symbolized SIT S” (XE, τ, I) is
said to be soft ideal dense if every soft point of XE is in A∗E, i.e., if A∗E = XE.

Remark 1. For a SIT S (XE, τ, I), if DE # XE is soft ideal dense, then XE is also soft ideal
dense, i.e., XE

∗
= XE.

A soft set SE ∈ SS(X)E is called soft co-dense [28] if Int(SE) = φE.

Theorem 1. Let (XE, τ, I) be a SIT S . Then, the next characteristics are interchangeable:

(a) τ " I = φE, where φE is a null soft set;
(b) If SE ∈ I , then Int(SE) = φE;
(c) For any soft open FE, we have FE # F∗E;
(d) XE = X∗E.

Proof. (a) → (b): Assume that τ " I = φE and SE ∈ I . Suppose that xe ∈ Int(SE).
Then, there exists a soft open set UE such that xe ∈ UE # SE. Since SE ∈ I , UE ∈ I . This is
contrary to τ " I = φE. Therefore, Int(SE) = φE.
(b)→ (c): Assume that xe ∈ FE. Let xe /∈ F∗E; then, there exists soft open set Uxe containing xe
such that FE "Uxe ∈ I . Since FE is a soft open set, by (b) xe ∈ FE "Uxe = Int[FE "Uxe ] = φE.
This is incoherent, and so xe ∈ F∗E and FE # F∗E.
(c)→ (d): Since XE is a soft open set, XE = X∗E.
(d)→ (a): XE = X∗E = {xe ∈ XE : UE "XE = UE /∈ I for all soft open sets UE and xe ∈ UE}.
Then, τ " I = φE.

4. Soft Hyperconnected Spaces

Definition 7. Let (XE, τ, I) be a SIT S . We say that this space is:

1. Soft hyperconnected “symbolizedHC” [17] if every pair of non-null soft open sets of XE has
non-null intersection.

2. SoftHC modulo I if the intersection of every two non-null soft open sets is not in I .
3. Soft idealHC if every non-null soft open set is soft ideal dense in XE.

Lemma 1. A SIT S (XE, τ, I) is softHC modulo I iff there are no proper soft closed sets GE and
HE such that XE − (GE � HE) ∈ I .

Proof. If there are proper soft closed sets GE and HE such that XE − [GE � HE] ∈ I .
If HE = φE, then XE − GE ∈ I . XE − GE and XE are non-null soft open sets with XE "
(XE − GE) = (XE − GE) ∈ I . This is incoherent. Hence, GE �= φE and HE �= φE are
both proper soft closed sets. Then, XE − GE and XE − HE are non-null soft open sets.
So, (XE − GE) " (XE − HE) = XE − (GE � HE) ∈ I , which contradicts.

Conversely, assume that AE �= φE and BE �= φE are soft open sets in XE. So, XE − AE
and XE − BE are proper soft closed sets in XE and XE − [(XE − AE) � (XE − BE)] /∈ I .
This implies that XE − [XE − (AE " BE)] /∈ I . Thus, (AE " BE) /∈ I . Hence, (XE, τ, I) is
softHC modulo I .

Theorem 2. Let (XE, τ, I) be a SIT S and τ " I = φE. Then, (XE, τ, I) is softHC modulo I
if and only if (XE, τ) is softHC.
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Proof. Assume that (XE, τ, I) is a softHC modulo I . So, since φE ∈ I , (XE, τ) is softHC.
Conversely, let (XE, τ) be a soft HC and AE, BE be non-null soft open sets. Then,

AE " BE is a non-null soft open set in (XE, τ). Since τ " I = φE, AE " BE /∈ I . Thus,
(XE, τ, I) is softHC modulo I .

The following example show that, if τ " I �= φE, Theorem 2 is not true.

Example 1. Let (XE, τ, I) be a SIT S , where X = {h1, h2}, E = {e1, e2} τ = {XE, φE, {(e1,
{h1}), (e2, {h2})}, {(e1, XE), (e2, {h2})}, {(e1, {h1}), (e2, {XE})}}, and I = {φE, {(e1, {h1})},
{(e2, {h2})}, {(e1, {h1}), (e2, {h2})}}. Then, τ " I �= φE.

Since every pair of non-null soft open sets of XE has non-null soft intersection, (XE, τ, I) is
softHC. But it is clear that it is not softHC modulo I .

Theorem 3. A soft topological space (XE, τ) is softHC iff the union of two not soft dense sets is a
not soft dense set.

Proof. Assume that (XE, τ) is soft HC and GE, FE are two not soft dense sets in (XE, τ).
Then there exist two non-null soft open sets UE and VE such that UE " GE = φE and
VE " FE = φE. Since (XE, τ) is soft HC, UE " VE �= φE. But (UE " VE) " (GE � FE) = φE
and, hence, GE � FE is not soft dense in (XE, τ).

Conversely, if the condition is true in (XE, τ) but (XE, τ) is not soft HC, then there
exist two non-null soft open sets UE and VE such that UE "VE = φE. Hence, UE # XE −VE
and VE # XE −UE. Then, XE −UE and XE −VE are not soft dense in (XE, τ). But (XE −
UE) � (XE −VE) = XE. This contradicts the assertion that a union of two non-soft dense
sets is also not a soft dense set. The theorem is therefore now proven.

Lemma 2. Let (XE, τ, I) be a SIT S . Then, (XE, τ, I) is soft idealHC if and only if (XE, τ) is
softHC and τ " I = φE.

Proof. Clearly, every soft idealHC space is softHC. Let UE be a non-null soft open set in
the soft ideal. Then, U∗E = XE. Conversely, yet, since UE ∈ I , U∗E = φE. Hence, XE = φE.
There is inconsistency here. Consequently, τ " I = φE.

Conversely, let UE be a non-null soft open set. Let xe ∈ XE. Due to the soft HC
property of (XE, τ), every soft open set VE containing xe meets UE. Moreover, UE "VE is a
soft open set and UE "VE /∈ I because τ " I = φE. Thus, xe ∈ U∗E. This shows that UE is
soft ideal dense.

Theorem 4. Let (XE, τ, I) be a SIT S , where τ " I = φE. Then, a set DE is soft ideal dense if
and only if (UE − AE) " DE �= φE whenever UE is non-null soft open and AE ∈ I .

Proof. Let DE be soft ideal dense. So, UE "DE /∈ I for all non-null soft open sets UE. Hence, for
all AE ∈ I, (UE − AE) " DE �= φE, for, otherwise, (UE − AE) " DE = φE and, hence, φE =
UE " (XE − AE) " DE = (UE " DE) " (XE − AE). Therefore, UE " DE # AE. Since AE ∈ I,
UE " DE ∈ I, which is contrary to UE " DE /∈ I. Therefore, (UE − AE) " DE �= φE.

Conversely, let (UE − AE) " DE �= φE whenever UE is a non-null soft open set and
AE ∈ I . Next, we assert that DE is soft ideal dense. Let DE be not soft ideal dense.
Then, there exists some non-null soft open set UE such that UE "DE ∈ I . Let UE "DE = AE.
So, since τ "I = φE, UE− AE is non-null but (UE− AE)"DE = φE. This defies everything
we had assumed.

Theorem 5. Let (XE, τ, I) be a SIT S , where τ "I = φE. Then, (XE, τ, I) is softHC modulo I
if and only if (UE− AE)"DE �= φE whenever UE and DE are non-null soft open sets and AE ∈ I .

Proof. From Lemma 2 and Theorem 4, the proof follows.
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5. Soft Ideal Resolvable Spaces

A soft space (XE, τ) is soft resolvable [14], symbolized (RS), if XE is the union of two
soft dense subsets which are disjoint.

A SIT S (XE, τ, I) is soft idealRS if it has two disjoint soft ideal dense sets; alterna-
tively, it is claimed to be soft ideal irresolvable, symbolized (IRS).

Lemma 3. Let (XE, τ, I) be a SIT S .

(1) (XE, τ, I) is soft idealRS iff XE is the union of two disjoint soft ideal dense sets.
(2) If (XE, τ, I) is soft idealRS , then τ " I = φE.

Proof. (1) Let AE and BE be disjoint soft ideal dense sets. Then, A∗E = XE and XE = B∗E #
(XE − AE)

∗
E, and, hence, XE = (XE − AE)

∗
E. Therefore, XE is the union of soft ideal dense

sets AE and XE − AE. The opposite is evident.
(2) Let AE and BE be disjoint soft ideal dense sets. So, by Theorem 3.2 of [4], we have

XE = A∗E # X∗E. Therefore, XE is soft ideal dense. Thus, by Theorem 1, τ " I = φE.

Remark 2. In citekandil it was obtained that Cl
∗
(AE) = AE � A∗E is a soft Kuratowski closure

operator. We will denote by (XE, τ∗, I) the soft topology generated by Cl
∗
, that is, τ∗ = {UE #

XE : Cl
∗
(XE −UE) = XE −UE}.

Theorem 6 ([29]). Let (XE, τ, I) be a SIT S . Then β(τ∗, I) = {VE − I : VE is soft open set
of (XE, τ), I ∈ I} is a basis for (XE, τ∗).

Theorem 7. A SIT S (XE, τ, I) is soft ideal RS if and only if (XE, τ∗) is soft RS and
τ " I = φE.

Proof. Let (XE, τ, I) be soft idealRS . So, by Lemma 3 (1), XE = AE � BE, where AE and
BE are disjoint soft ideal dense sets of XE. Note that Cl

∗
(AE) = AE � A∗E = AE � XE = XE.

Hence, AE and BE are soft dense in (XE, τ∗). Thus, (XE, τ∗) is soft RS . By Lemma 3 (2),
τ " I = φE.

Conversely, let (XE, τ∗) be soft RS and τ " I = φE. Suppose that XE = AE � BE,
AE " BE = φE, and both AE and BE are soft dense in (XE, τ∗). Let xe ∈ XE and xe /∈ A∗E;
then, there exists a soft open set UE containing xe such that VE = UE " AE ∈ I . Since BE
is soft dense in (XE, τ∗) and τ " I = φE, VE is non-null and also UE �# AE. Hence, by
Theorem 6, WE = UE −VE ∈ (XE, τ∗) is a non-null set and WE " AE = φE. This contradicts
the fact that AE is soft dense in (XE, τ∗). Thus, xe ∈ A∗E and, hence, AE is soft ideal dense.
A related argument demonstrates that BE is soft ideal dense. Thus, (XE, τ, I) is soft ideal
RS .

Definition 8 ([3]). Let YE �= φE be a soft subset of (XE, τ, E); then, τYE = {GE "YE : GE ∈ τ}
is called a relative soft topology over Y and (YE, τYE , E) is a soft subspace of (XE, τ, E).

Lemma 4. Let YE # XE and I be soft ideal in XE. Then, IYE = {I ∈ I : I ⊆ YE} = {I " YE :
I ∈ I} is soft ideal in YE.

Lemma 5. Let (XE, τ, I) be a SIT S . The non-null soft τ∗-open subspace of a soft ideal RS
space is a soft idealRS space.

Proof. First, we know that the intersection of a soft dense and a soft open set is soft dense,
so the soft resolvability is a soft open hereditary. Also, for all AE ∈ τ∗ we have τ∗|A = (τ|A)

∗.

Thus, by Theorem 7, if (XE, τ, I) is soft idealRS and A is τ∗-open, then (XE, τ∗) is softRS ;
hence, (AE, τ∗|A) = (AE, (τ|A)

∗) is softRS and, thus, (AE, τ|A, IAE) is soft idealRS .
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Theorem 8. Let (XE, τ, I) be a SIT S . Simple expansion of soft ideal RS topologies over soft
idealRS subspace are soft idealRS .

Proof. Let (XE, τ, I) be soft ideal RS and SE # XE be a soft ideal RS subspace. Let
(DE, D′E) be the soft ideal resolution of (SE, τ|S, ISE). We examine the next two instances:

Case (1): SE is soft τ∗-dense in (XE, τ, I); that is, XE = SE � S∗E. We first establish that DE

is soft ideal dense in (XE, τ, I). Let xe ∈ XE. Suppose that for some soft open
set UE with xe ∈ UE we have UE " DE ∈ I . The two subcases that follow are
ours.

Subcase (a): xe ∈ SE. Then, VE = UE " SE ∈ τ|S is a soft open set of xe in (SE, τ|S, ISE)

such that VE " DE = UE " SE " DE ∈ I due to the heredity of I . This defies
the assertion that DE is soft ideal dense in (SE, τ|S, ISE). So, DE is soft ideal
dense in (XE, τ, I).

Subcase (b): xe /∈ SE. Since XE = SE � S∗E, xe ∈ SE. To demonstrate that xe ∈ D∗E, we
believe the opposite, i.e., there exists a soft open set UE with xe ∈ UE such
that UE " DR ∈ I . Note that UE " SE �= φE; otherwise, xe /∈ S∗E. Pick ye ∈
UE " SE ∈ τ|S. Since UE " DE ∈ I , then, by heredity of I , UE " SE " DE ∈ I .
So, DE is not soft ideal dense in (SE, τ|S, ISE). By contradiction xe ∈ D∗E,
i.e., DE is soft ideal dense in (XE, τ, I). So, we have demonstrated that
D∗E = XE. Using a comparable defense, D

′∗
E = XE. Let xe ∈ XE and let

UE � (VE " SE) be a soft open set of xe in (XE, τ(SE), I), where τ(SE) is
the simple expansion of τ over SE. If (UE � (VE " SE)) " DE ∈ I , then, by
heredity of I , (VE " SE) " DE is a member of I so that VE is a null set. Of
course, (VE " SE) " DE cannot be a member of I if VE is non-null since then
VE must contain an element of SE. So, xe belongs to UE " DE, which is also
not eligible to join with I since D∗E = XE. This contradiction shows that
DE is soft τ(SE)-dense. Using a comparable defense of D

′
E, we determine

that (XE, τ(SE), I) is soft idealRS .

Case (2): SE is not soft τ∗-dense in (XE, τ, I). Then, S
′
E = XE \ Cl∗(SE), so it is τ∗-open

and non-null. By Lemma 5, S
′

is soft ideal RS (more precisely said soft ideal
RS with respect to SE). Let (AE, BE) be the soft ideal resolution of S

′
. By using

reasoning akin to that of Case (1), we can prove that (DE � AE, DE � BE) is a soft
ideal resolution of (XE, τ, I). Additionally, employing the same method as at the
conclusion of Case (1), we find that (XEτ(SE); I) is soft idealRS .

Theorem 9. A SIT S (XE, τ, I) is soft ideal RS iff there exists a soft ideal dense set DE such
that, for all non-null soft open sets UE and all AE ∈ I , UE − AE �= φE implies (UE − AE) �#DE.

Proof. Let (X, τ, I) be soft ideal RS . So, by Remark 1 and Theorem 1, τ " I = φE.
Now, there exist two disjoint soft ideal dense sets, say D

′
E and D

′′
E. We demonstrate

that (UE − AE) �#D
′
E whenever UE − AE �= φE for all non-null soft open sets UE and

AE ∈ I . If possible, let (UE − AE) # D
′
E for some non-null soft open set UE and AE ∈ I .

Then, (UE − AE) " D
′′
E = φE. Now, since τ " I = φE, by Theorem 4 D

′′
E is not soft ideal

dense. This is contrary to D
′′
E being soft ideal dense. Hence, (UE − AE) �#D

′
E whenever

UE − AE �= φE for all non-null soft open sets UE and AE ∈ I .
However, allow the condition to persist in (XE, τ, I). Then, there exists a soft ideal

dense set DE such that (UE − AE) � DE if UE − AE �= φE for all non-null soft open sets
UE and AE ∈ I . We show that XE − DE is soft ideal dense. Let XE − DE be not soft ideal
dense. Then there exists a non-null soft open set VE such that VE " (XE −DE) ∈ I . Clearly,
VE " (XE − DE) �= φE, for otherwise VE # DE, which is contrary to our assumption. Let
AE = VE " (XE − DE). Then, VE − AE �= φE. For if VE − AE = φE then VE # AE and,
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hence, VE ∈ I , which suggests VE " DE ∈ I . Contrary to that, this DE is soft ideal dense.
Therefore, VE − AE # DE. It goes against our presumption once more. Thus, XE − DE is
soft ideal dense and so (XE, τ, I) is soft idealRS .

Corollary 1. A SIT S (XE, τ, I) is soft ideal IRS iff, for each soft ideal dense set DE, there
exist a soft open set UE and A ∈ I such that φE �= (UE − AE) # DE.

Theorem 10. If (XE, τ, I) is a SIT S such that τ " I = φE and if DE is soft ideal dense in
(XE, τ, I), then, for all YE = UE − AE, where UE is non-null soft open and AE ∈ I , YE " DE is
soft ideal dense in (YE, τYE , IYE).

Proof. Clearly, we suppose that τ " I = φE. Then, by Proposition 11 of [3], a soft open
set in YE is of the form YE "OE = (UE − AE) "OE = (UE "OE) − AE, where OE is a
soft open set in (XE, τ). Let φE �= UE "OE − AE. Consider φE �= ((UE "OE)− AE)− BE,
BE ∈ IYE . Then, since DE is soft ideal dense and UE "OE is a soft open set in (XE, τ), by
Theorem 4, (UE "OE − (AE � BE)) " DE �= φE. Hence, (((UE "OE)− AE)− BE) " DE �=
φE. Therefore, again by Theorem 4, YE " DE is soft ideal dense in (YE, τYE , IYE).

Theorem 11. Let (XE, τ, I) be a SIT S such that τ " I = φE and PE # YE = UE − AE,
where UE is a non-null soft open set, AE ∈ I . Then, PE is soft ideal dense in (YE, τYE , IYE) if and
only if PE = YE " DE, where DE is soft ideal dense in (XE, τ, I).

Proof. Assume that PE is soft ideal dense in (YE, τYE , IYE). Consider the set PE � (XE −
YE). Then, (PE � (XE − YE)) "OE = (PE "OE) � ((XE − YE) "OE), where OE is a non-
null soft open set. Now, if OE # XE − YE, then PE # YE and PE "OE = φE, and we
have (PE � (XE −YE)) "OE = OE which is not in I because τ " I = φE. Moreover, if
OE "YE �= φE, then, since PE is soft ideal dense in (YE, τYE , IYE), PE " (OE "YE) /∈ IYE and
so PE "OE /∈ I . Therefore, (PE � (XE − YE)) "OE /∈ I . Thus, (PE � (XE − YE)) = DE,
say, is soft ideal dense in (XE, τ, I) and, hence, PE = YE " DE. Next, let PE = YE " DE,
where DE is soft ideal dense in (XE, τ, I). Hence, by Theorem 10, PE is soft ideal dense in
(YE, τYE , IYE). This completes the proof of the theorem.

Note that, as per the condition in Theorem 11, for DE soft ideal dense is necessary
because if DE is not soft ideal dense then PE = φE for some non-null soft open set UE,
AE ∈ I and, hence, PE is not soft ideal dense in (YE, τYE , IYE).

6. Soft Ideal Semi-Irresolvable Spaces

Next, we will define and go over the characteristics of a soft ideal semi-IRS space.

Definition 9. A SIT S (XE, τ, I) is a said to be soft ideal semi- IRS if for each soft ideal dense
set DE and each non-null soft open set UE and AE ∈ I such that UE − AE is non-null set, there
exists a non-null soft open set VE and BE ∈ I such that φE �= (VE − BE) # (UE − AE) " DE.

Theorem 12. A SIT S (XE, τ, I) is a soft ideal semi- IRS , iff the intersection of soft ideal
dense sets is a soft ideal dense set, where τ " I = φE.

Proof. Assume that (XE, τ, I) is a soft ideal semi- IRS and τ " I = φE. Let D
′
E and

D
′′
E be two soft ideal dense sets in (XE, τ, I). We demonstrate that D

′
E " D

′′
E is soft ideal

dense. Consider UE − AE, where U is a non-null soft open set and AE ∈ I . As we
demonstrate, (UE − AE) " D

′
E " D

′′
E �= φE. Since D

′
E is soft ideal dense, by Theorem 4,

(UE − AE) " D
′
E �= φE. Since (XE, τ, I) is soft ideal semi- IRS , there exists a non-null

soft open set V
′
E and B

′
E ∈ I such that φE �= (V

′
E − B

′
E) # (UE − AE) " D

′
E. Again,

since D
′′
E is soft ideal dense, there exists a non-null soft open set V

′′
E and B

′′
E ∈ I such
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that φE �= (V
′′
E − B

′′
E) # (V

′
E − B

′
E) " D

′′
E. Hence, φE �= V

′′
E − B

′′
E # (UE − AE) " D

′
E " D

′′
E.

Therefore, (UE − AE) " (D
′
E " D

′′
E) �= φE and, by Theorem 4, D

′
E " D

′′
E is soft ideal dense.

Conversely, assume that the intersection of soft ideal dense sets is soft ideal dense.
Assume that (XE, τ, I) is not soft ideal semi- IRS . Then, there exists a soft ideal dense
set D

′
E, and a non-null soft open set UE and AE ∈ I , where φE �= UE − AE, such that

(UE − AE) " D
′
E does not contain VE − BE, for any non-null soft open set VE and BE ∈ I .

Consider the set D
′′
E = (XE− (UE− AE))� ((UE− AE)− (UE− AE)"D

′
E). By Theorem 4,

D
′′
E is soft ideal dense since (VE − BE) " D

′′
E �= φE. But (UE − AE) " D

′
E " D

′′
E = φE.

This contradicts the reality that the intersection of two soft ideal dense sets is a soft ideal
dense set. Hence, (XE, τ, I) must be soft ideal semi- IRS . This concludes the theorem’s
proof.

Example 2. Let (XE, τ, I) be a SIT S , where X = {h1, h2, h3}, E = {e}. Consider τ =
{XE, φE, {(e, {h1, h2})} and I = {φE, {(e, {h2})}, {(e, {h3})}, {(e, {h2, h3})}}. Then, we have
the following.

1. τ " I = φE.
2. The collection of all soft ideal dense sets are XE, {(e, {h1})}, {(e, {h1, h2})} and {(e, {h1, h3})}.
3. The soft intersection of any soft ideal dense sets is soft ideal dense.

Hence, by Theorem 12, (XE, τ, I) is soft ideal semi- IRS .

Theorem 13. Let (XE, τ, I) be a SIT S and τ " I = φE. If (XE, τ, I) is soft ideal semi- IRS ,
then (YE, τYE , IYE) is soft ideal semi- IRS whenever YE = UE − AE, for every non-null soft open
set UE and AE ∈ I .

Proof. Assume that DE and GE are soft ideal dense sets in (YE, τYE , IYE). Then, by Theorem 11,
DE = (UE − AE) " D

′
E and GE = (UE − AE) " D

′′
E, where D

′
E and D

′′
E are soft ideal dense

sets in (XE, τ, I). Hence, DE " GE = (UE − AE) " D
′
E " D

′′
E and, since D

′
E " D

′′
E is a soft ideal

dense set in (XE, τ, I), once more by Theorem 11, DE " GE is soft ideal dense in (YE, τYE , IYE).
So, by Theorem 12, (YE, τYE , IYE) is soft ideal semi-IRS .

Definition 10. A SIT S (XE, τ, I) is said to be soft ideal semi-HC if each UE− AE �= φE, where
UE is a soft open set and AE ∈ I is a soft ideal dense set.

Theorem 14. A SIT S (XE, τ, I) is soft ideal semi-HC iff it is soft idealHC and τ " I = φE.

Proof. Let (XE, τ, I) be soft ideal semi-HC. Clearly, (XE, τ, I) is soft idealHC. Let UE �= φE
be a non-null soft open set and a member of the soft ideal I . Then, UE

∗
= XE since (XE, τ, I)

is soft idealHC. Conversely, yet, since UE ∈ I , UE
∗
= φE, it is paradoxical. So τ " I = φE.

Conversely let (XE, τ, I) be a soft ideal HC and τ " I = φE. Let UE − AE, where
UE is a non-null soft open set and AE ∈ I . Then UE − AE �= φE because τ " I = φE.
We show that UE − AE is soft ideal dense. Let xe ∈ XE and VE be a soft open set containing
xe. By Lemma 2, (XE, τ) is soft HC and VE " (UE − AE) �= φE because VE " (UE − AE) =
VE "UE − AE �= φE and τ " I = φE. Thus, (XE, τ, I) is soft ideal semi-HC.

Example 3. Let (XE, τ, I) be a SIT S , where X = {h1, h2, h3}, E = {e}. Consider τ =
{XE, φE, {(e, {h1, h2})} and I = {φE, {(e, {h2})}, {(e, {h3})}, {(e, {h2, h3})}}. Then

1. τ " I = φE.
2. Every non-null soft open set is soft ideal dense. So, (XE, τ, I) is soft idealHC.

Hence, by Theorem 14, (XE, τ, I) is soft ideal semi- IRS .

Theorem 15. If a SIT S (XE, τ, I) is soft ideal semi-HC and soft ideal IRS , then it is soft ideal
semi-IRS .
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Proof. By Theorem 14, τ " I = φE. Let D
′
E and D

′′
E be two soft ideal dense sets in (XE, τ, I).

We demonstrate that D
′
E ∩ D

′′
E is soft ideal dense. By Theorem 4, it suffices to demonstrate

that (D
′
E ∩ D

′′
E) " (UE − AE) �= φE for all non-null soft open sets UE and AE ∈ I . So, since

(XE, τ, I) is soft ideal IRS , by Corollary 1, there exists a non-null soft open set VE and
BE ∈ I such that φE �= VE − BE # D

′
E. Similarly, there exists a non-null soft open set

WE and CE ∈ I such that φE �= WE − CE # D
′′
E. Now, (XE, τ) is soft HC by Lemma 2

and Theorem 14; we have VE "WE �= φE. Since τ " I = φE, (VE − BE) " (WE − CE) =

(VE "WE)− (BE � CE) �= φE and, hence, (VE "WE)− (BE � CE) # D
′
E " D

′′
E. Therefore,

by the soft ideal semi-HC property of (XE, τ, I), (VE "WE)− (BE � CE) is soft ideal dense
and, by Theorem 4, we have φE �= (UE − AE) " [(VE "WE) − (BE � CE)] and, hence,
(UE − AE) " (D

′
E " D

′′
E) �= φE. Therefore, D

′
E " D

′′
E is soft ideal dense. So, by Theorem 12,

(XE, τ, I) is soft ideal semi-IRS .

Remark 3. For a SIT S (XE, τ, I), if τ " I �= φE. Then, no soft ideal dense set exists, because,
if τ " I �= φE and there exists DE, any soft ideal dense, then D∗E = XE, so by Remark 1 we have
X∗E = XE. Hence, by Theorem 1, τ " I = φE, which is a contradiction. Therefore, if τ " I �= φE
then no soft ideal dense set exists.

Question: Is there any example of soft ideal topological space such that τ " I �= φE,
and Theorems 10–14 are true?

7. Conclusions and Future Work

As an extension of the classical (crisp) topology, the idea of a soft topology on a univer-
sal set was independently proven by Shabir and Naz [3], and Çaǧman et al. [30]. The study
of this topological generalization has becoming more fascinating. Numerous techniques for
building soft topologies have been documented in the literature. We have added to the body
of knowledge in soft topology by delving into the ideas of soft hyperconnected modulo
ideal, soft ideal resolvable, and soft ideal semi-irresolvable spaces. This research is based
on the hyperconnectedness and resolvability of soft ideal spaces. We spoken about several
fundamental operations on soft ideal spaces. A concept of a soft ideal semi-irresolvable
space and an overview of its properties are provided. Furthermore, we have determined
the basic characteristics of soft ideal resolvable spaces and connections between the other
concepts. The findings presented in this work are preliminary and further research will
examine additional aspects of the soft ideal resolvable space. By integrating these two
approaches, our work creates opportunities for potential contributions to this trend using
hyperconnectedness and resolvability structures with generalized rough approximation
spaces, as well as the resolvability of primal soft topologies and the resolvability of fuzzy
soft topologies in classical and soft settings.
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The following abbreviations are utilized in this document:

SIT S soft ideal topological space
HC hyperconnected
IRS irresolvable
RS resolvable
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Abstract: Estimating loss reserves is a crucial activity for non-life insurance companies. It involves
adjusting the expected evolution of claims over different periods of active policies and their fluc-
tuations. The chain-ladder (CL) technique is recognized as one of the most effective methods for
calculating claim reserves in this context. It has become a benchmark within the insurance sector
for predicting loss reserves and has been adapted to estimate variability margins. This variability
has been addressed through both stochastic and possibilistic analyses. This study adopts the latter
approach, proposing the use of the CL framework combined with intuitionistic fuzzy numbers (IFNs).
While modeling with fuzzy numbers (FNs) introduces only epistemic uncertainty, employing IFNs
allows for the representation of bipolar data regarding the feasible and infeasible values of loss
reserves. In short, this paper presents an extension of the chain-ladder technique that estimates the
parameters governing claim development through intuitionistic fuzzy regression, such as symmetric
triangular IFNs. Additionally, it compares the results obtained with this method with those derived
from the stochastic chain ladder by England and Verrall.

Keywords: loss reserving; chain ladder; probability–possibility transformation; intuitionistic fuzzy
numbers; symmetric triangular intuitionistic fuzzy numbers; intuitionistic fuzzy regression

MSC: 91G05; 62P05; 90C05; 62A86; 90C70

1. Introduction

The estimation of loss reserves is a fundamental process in the management of insur-
ance companies. It consists of setting a prudent value on claims not yet made on active
policies, which will ultimately impact the financial statements and the required capital
to continue with the current insurance portfolio [1]. Thus, a prudent estimation of these
provisions, which ultimately requires the application of so-called actuarial judgement,
needs to use a value of maximum reliability but, at the same time, estimate the possible
variability around that expected value [2]. The final estimated value for reserves, although
it should tend to overestimate them and cover possible unfavorable deviations from their
expected value, should not be excessive [3].

Within claim-reserving methods, the actuarial literature often distinguishes between
deterministic and stochastic methods. While the former provides a point value of reserves
that can be considered the “expected” or maximum confidence value, stochastic methods
allow the variability around that reasonable value to be measured [2]. To this commonly
accepted typology, we can add fuzzy methods [4].

Among the various applications that fuzzy set theory (FST) has had in insurance math-
ematics, we can outline the modeling of uncertain and vague parameters with possibility
distributions [5,6]. In these applications, fuzzy modeling allows the quantification of epis-
temic uncertainty, that is, a measure of the reliability with which a certain variable A takes
a specific value x [7]. In the context of determining loss reserves, this vagueness may be
induced, first, by the imprecision of some of the data available to the insurance company [8].

Mathematics 2024, 12, 845. https://doi.org/10.3390/math12060845 https://www.mdpi.com/journal/mathematics104
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An additional source to consider is the scarcity of the sample used for reserve calculation;
since it is not advisable to use data too far from the present, it can bias estimates due to
factors such as changes in judicial practices and public awareness of liability issues [9].

The literature on the variability of loss reserves starts from a scheme used in practice
that allows loss reserves to be obtained as a point value. A very common scheme for
calculating the value of reliable mathematical reserves is the chain-ladder (CL) method, or
variants of this method, such as the London CL or the Bornhuetter–Ferguson methods [10].
The chain-ladder method has been the subject of adaptations that allow modeling of the
variability of reserves stochastically [11,12] but also with possibility distributions [13–15].

As shown in Table 1, among the most commonly used schemes for quantifying loss re-
serves, in addition to the CL method, we can highlight the geometric separation method [16]
and methods that model incremental claims in a two-way manner, such as in [17]. The
methodology for adjusting the parameters governing the evolution of claims over time can
be performed heuristically [4,14,15,18] or with fuzzy regression methods that apply both
the principle of minimum fuzziness [19,20] and the fuzzy least-squares approach [21,22].

Table 1. A revision of contributions to claim reserve modeling with fuzzy mathematics.

Method to Fit Fuzzy Parameters Note Extensions Taylor’s Separation Method Two-Way Methods

Heuristically [4,14,15,18] --- ---

FR-MFP [3,13] [23,24] [19,20,25]

FR-FLS [26] [21] [22]

Note: FR-MFP stands for fuzzy regression with the minimum fuzziness principle, and FR-FLS stands for fuzzy
least squares.

All of the methods reviewed in Table 1 model the uncertainty of parameters with
type-one fuzzy numbers, i.e., simple fuzzy numbers (FNs), that is, through possibility
distributions that allow introducing epistemic uncertainty about the real value of the
parameters [27]. However, FNs do not allow the introduction of negative information
about these parameters that the evaluator might have, i.e., about what the parameters
“are not”. This paper extends fuzzy loss reserving to the use of bipolar information, i.e.,
imprecise estimations about the values that the parameters of interest can take and about
those they cannot take. Bipolarity does not introduce additional uncertainty but provides
new information [28].

Our paper uses the chain-ladder scheme to capture the dynamics of claiming processes
and the concept of intuitionistic fuzzy numbers (IFNs) that model uncertain quantities [29]
within Atanassov’s theory of intuitionistic fuzzy sets [30,31]. Thus, this work expands the
practical applications of IFNs, which are relatively scarce in finance and insurance. Among
such applications, we can highlight the following:

1. Capital budgeting [32–35];
2. Option pricing [36–38];
3. Productivity measurements [39–41];
4. Actuarial field: while Uzhga-Rebrov and Grabusts [42] use intuitionistic fuzzy values

to address environmental risk analysis, Andrés-Sánchez [43] does so to price the life
contingencies of people with impaired life expectancies.

This paper falls within the fourth domain, specifically in the field of claim reserving.
In this regard, our aim is threefold. First, we demonstrate that the estimation of stochastic
loss reserves can be interpreted as estimates made through possibility distributions with
type-one fuzzy numbers. Subsequently, we introduce intuitionistic fuzzy regression in
claim-reserving calculations. Although fuzzy regression has been applied in several areas
of actuarial analysis, such as mortality adjustment [44,45], the use of intuitionistic fuzzy
regression in actuarial science is nonexistent. We do so by employing the intuitionistic
fuzzy regression method [46], which extends the possibilistic regression models [47–49].
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Similarly, we compare the results of the proposed method to those obtained with the
stochastic chain-ladder (SCL) method [12].

2. Intuitionistic Fuzzy Numbers

2.1. Fuzzy Numbers and Intuitionistic Fuzzy Numbers

Definition 1. A fuzzy set (FS) in a referential set X,
..
A, is defined as follows [50]:

..
A = {〈x, μA(x)〉, x ∈ X}, (1)

where μA : X −→ [0, 1] is the membership function of
..
A.

Definition 2. The fuzzy set
..
A can be represented through level sets or α-cuts, Aα [50]:

Aα = {x|μA(x) ≥ α, 0 < α ≤ 1}. (2)

Definition 3. A fuzzy number (FN),
..
A, is a fuzzy subset of the real line [51] such that

i. is normal, i.e., ∃x|μA(x) = 1 ;
ii. is convex, i.e.,∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, μA(λx1, (1− λ)x2) ≥ min(μA(x1), μA(x2)).

Remark 1. As a consequence, the α-cuts of
..
A and Aα are confidence intervals:

Aα = {x|μA(x) ≥ α, 0 < α ≤ 1} =
[
Aα, Aα

]
, (3)

where Aα is an increasing function of α and Aα is a decreasing function.

Remark 2. The membership function of
..
A, μA(x) is also called the possibility distribution function.

Fuzzy set theory commonly relies on fuzzy numbers (FNs) to represent imprecise
quantities [51]. Specifically, triangular fuzzy numbers are very common in practical appli-
cations because the grading of the membership level is linear. This approach is reasonable
because it applies the principle of parsimony when dealing with vague information [52].

Definition 4. A symmetric triangular fuzzy number (STFN) is a particular case in which a
triangular fuzzy number (TFN) can be represented by the couple

..
A = (A, rA), rA ≥ 0. Then, the

membership function is

μA(x) =

⎧⎪⎨⎪⎩
1− |x−A|

rA
|x− A| < rA

1 x = A
0 otherwise

, (4)

with the following being its α-cut representation:

Aα =
[
Aα, Aα

]
= [A− rA(1− α), A + rA(1− α)], 0 ≤ α ≤ 1. (5)

Within TFNs, shapes are of special interest when the available information about the
reference variable is scarce and can be summarized in a center and plausible deviations
from it [53,54]. Symmetric triangular fuzzy numbers (STFNs) allow for a good balance
between comprehensiveness in capturing the available information and the use of the
parsimony principle [54]. In insurance modeling, the usefulness of STFNs has been shown
in several papers [13,14,55].
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Definition 5. Let us take a continuous random variable A and a family of confidence intervals Aα,
such that P(x ∈ Aα) ≥ 1− α and P(·) is a probability measure. Therefore, an equivalent fuzzy
quantity

..
A has the following α-cut, Aα [56]:

Aα =
[
Aα, Aα

]
=
[{

x|F(A ≤ x) =
α

2

}
,
{

x|F(A ≤ x) = 1− α

2

}]
, (6)

where F(·) is the distribution function.

Remark 3. Consequently, the possibility distribution function of
..
A equivalent to A is μA(x) =

sup{α|xεAα}.

It should be emphasized that the interpretation of probabilistic confidence intervals as
α-level sets of possibility distributions has been widely argued in the literature [53,54,56–61].
Buckley [58] justified the transformation of a set of probabilistic confidence intervals into
fuzzy numbers with the fact that in subsequent calculations, more information is used than
simple point estimates or confidence intervals.

Definition 6. The intuitionistic fuzzy set (IFS)
∼
A defined in a referential set X is

∼
A = {〈x, μA(x), vA(x)〉, x ∈ X}, (7)

where μA : X −→ [0, 1] measures the membership of x in
∼
A and vA : X −→ [0, 1] is nonmem-

bership. These functions must accomplish 0 ≤ μA(x) + vA(x) ≤ 1.

Remark 4. The degree of hesitancy, hA(x), of
∼
A is hA(x) = 1− μA(x)− vA(x).

Remark 5. An IFS generalizes the concept of an FS such that if hA(x) = 0 ∀x,
∼
A is a conventional

FS
..
A.

Definition 7. An IFN can be expressed using 〈α, β〉-levels or 〈α, β〉-cuts, as A〈α,β〉:

A〈α,β〉 = {x|μA(x) ≥ α, vA(x) ≤ β, 0 ≤ α + β ≤ 1, α, β ∈ [0, 1]}. (8)

Remark 6. A〈α,β〉 can be decoupled into two level sets [62], such as Aα = { x|μ A(x) ≥ α} and
A∗β = {x|vA(x) ≤ β}, in such a way that

A〈α,β〉 =
〈

Aα = { x|μ A(x) ≥ α} , A∗β = {x|vA(x) ≤ β}, 0 ≤ α + β ≤ 1, α, β ∈ [0, 1]
〉

. (9)

Definition 8. An intuitionistic fuzzy number (IFN) is an IFS defined on real numbers, such that

i. is normal, i.e., ∃x|μA(x) = 1⇒ vA(x) = hA(x) = 0 ;
ii. μA(x) is convex, ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, μA(λx1, (1− λ)x2) ≥ min(μA(x1), μA(x2));
iii. vA(x) is concave, ∀x1, x2 ∈ R, 0 ≤ λ ≤ 1, vA(λx1, (1− λ)x2) ≤ max(vA(x1), vA(x2)).

Remark 7. The 〈α, β〉-cuts of
∼
A and A〈α,β〉 can be decoupled as follows: Aα = { x|μ A(x) ≥ α} =[

Aα, Aα

]
and A∗β = {vA(x) ≤ β} =

[
A∗β, A∗β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1).

Remark 8. Thus, from Remark 7, an 〈α, β〉-level of A〈α,β〉 can be represented as

A〈α,β〉 =
〈

Aα =
[
Aα, Aα

]
, A∗β =

[
A∗β, A∗β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
, (10)

107



Mathematics 2024, 12, 845

where Aα and A*
β increase with their arguments, α and β, respectively. Similarly, Aα and A*

β are
decreasing with respect to these arguments.

Remark 9. In an IFN, μA(x) can be interpreted as the lower possibility distribution function of the
quantity of interest A, and μA∗(x) = 1− vA(x) is the upper distribution function of that quantity.

The functions μA∗(x) and μA(x) can be interpreted as bipolar possibility distribution
measurements, in such a way that μA∗(x) accounts for the potential possibility and μA(x)
quantifies the real possibility of A being x [28].

Definition 9. A symmetric triangular intuitionistic fuzzy number (STIFN) is a particular case

of a triangular intuitionistic fuzzy number (TIFN) that can be denoted as
∼
A =

(
A, rA, r∗A

)
, with

membership and nonmembership functions:

μA(x) =

⎧⎪⎨⎪⎩
1− |x−A|

rA
|x− A| < rA

1 x = A
0 otherwise

, (11)

and

υA(x) =

⎧⎪⎨⎪⎩
|x−A|

r∗A
|x− A| < rA

0 x = A
1 otherwise

, (12)

where rA ≤ r∗A. Figure 1 depicts the shape of an STIFN and the relationship between the embed-
ded functions μA(x) (the actual possibility distribution function), vA(x), μA∗(x) (the potential
possibility distribution function), and hA(x).

Figure 1. Triangular intuitionistic fuzzy numbers.

Remark 10. The level sets A〈α,β〉 of a TIFN can be decoupled into

Aα =
[
Aα, Aα

]
= [A− rA(1− α), A + rA(1− α)], (13)

A∗β =
[

A∗β, A∗β

]
= [A− r∗Aβ, A + r∗Aβ]. (14)

Thus, STIFNs are an extension of STFNs such that if rA = r∗A, we deal with conven-
tional TFNs [63]. Thus, the use of symmetrical TFNs based on the principle of parsimony
to justify their use can be extended to the use of STIFNs.
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2.2. Intuitionistic Fuzzy Number Arithmetic

The fuzzy loss-reserving methods in Table 1 calculate provisions based on the assump-
tion that the parameters governing the claiming process are determined by fuzzy numbers.
Performing arithmetic operations with FNs requires the application of Zadeh’s extension
principle, which can be implemented through α-cuts [64].

Zadeh’s extension principle and its compatibility with α-cuts arithmetic can be ex-
tended to the evaluation of functions defined in real numbers when the parameters are
IFNs instead of FNs [65]. This paper considers the case of continuous and differentiable
functions y = f (x1, x2, . . . , xn), such that the values of the input variables are given as the

means of IFNs
∼
A(i), i = 1, 2, . . . , n. This generates an IFN

∼
B,
∼
B = f

(∼
A(1),

∼
A(2), . . . ,

∼
A(n)

)
.

Thus, the membership and nonmembership functions of
∼
B are as follows:

μB(y) = max
y= f (x1,x2,...,xn)

min
{

μA(1)
(x1), μA(2)

(x2), . . . , μA(n)
(xn)

}
, (15)

vB(y) = min
y= f (x1,x2,...,xn)

max
{

vA(1)
(x1), vA(2)

(x2), . . . , vA(n)
(xn)

}
. (16)

Therefore, if
∼
A(i), i = 1, 2, . . . , n are FNs, it is only necessary to obtain μB(y) using the

usual max/min principle. However, we can fit
∼
B thoughout B〈α,β〉 from A(i)〈α,β〉 by calculating

B〈α,β〉 = f
(

A(1)〈α,β〉, A(2)〈α,β〉, . . . , A(n)〈α,β〉

)
. Thus, given that f is continuous, the 〈α, β〉-cuts of

∼
B are defined as B〈α,β〉 =

〈
Bα =

[
Bα, Bα

]
, B*

β =
[
B*

β, B*
β

]
, 0 ≤ α + β ≤ 1,α, β ∈ [0, 1]

〉
, where

Bα = inf
{

y
∣∣∣y = f (x1, . . . , xn), xi ∈ A(i)α

}
, Bα = sup

{
y
∣∣∣y = f (x1, . . . , xn), xi ∈ A(i)α

}
, (17)

B*
β = inf

{
y
∣∣∣∣y = f (x1, . . . , xn), xi ∈ A*

(i)β

}
, B*

β = sup
{

y
∣∣∣∣y = f (x1, . . . , xn), xi ∈ A*

(i)β

}
. (18)

Following [66], when f monotonically increases with respect to xi, i = 1, 2, . . . m and
monotonically decreases in xi, i = m + 1, m + 2, . . . , n, m ≤ n, Bα =

[
Bα, Bα

]
is as follows:

Bα = f
(

A(1)
α
, A(2)

α
, . . . , A(m)

α
, A(m+1)α

, . . . , A(n)α

)
and

Bα = f
(

A(1)α
, A(2)α

, . . . , A(m)α
, A(m+1)

α
, . . . , A(n)

α

)
.

(19)

By analogy, the β-cut representation of B∗β =
[

B*
β, B*

β

]
is

B*
β = f

(
A*
(1)

β
, A*

(2)
β
, . . . , A*

(m)
β
, A*

(m+1)β
, . . . , A*

(n)β

)
and

B*
β = f

(
A*
(1)β

, A*
(2)β

, . . . , A*
(m)β

, A*
(m+1)

β
, . . . , A*

(n)
β

)
.

(20)

The linear combination of STIFNs is also an STIFN. Therefore, from the STIFNs
∼
A(i) =

(
A(i), rA(i)

, r∗A(i)

)
,
∼
B = (B, rB, r∗B ), where [46]

B =
n

∑
i=1

λi A(i), rB =
n

∑
i=1
|λi|·rA(i)

, r∗B =
n

∑
i=1
|λi|·r∗A(i)

. (21)

The evaluation of nonlinear functions using STIFNs does not produce a new STIFN.
Despite this limitation, we feel that maintaining a linear shape is relevant. Following the
argument in [67] justifying the use of approximating linear fuzzy numbers, complicated
forms of IFNs may cause drawbacks in processing imprecise information modeled by these
fuzzy structures, and the interpretation of the results becomes more difficult. The same
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argument, based on the parsimony principle, can be used to maintain the symmetrical
structure of the input data.

Thus, we evaluate the approximation to
∼
B = f

(∼
A(1),

∼
A(2), . . . ,

∼
A(n)

)
with an STIFN

∼
BT =

(
B, rB, r*

B
)

when the inputs are
∼
A(i) =

(
A(i), rA(i)

, r*
A(i)

)
, i = 1, 2, . . . , n. To do this, we

rely on the results of [51] to approximate an LR fuzzy number to the result of a nonlinear
function of LR fuzzy numbers, which is based on the linear approximation of α-cuts
with a Taylor expansion. In the field of FNs, this methodology produces an STFN that
approximates the functions of STFNs, as shown in several actuarial applications [13–15,55].

The extremes of the α-cuts Bα =
[
Bα, Bα

]
in (19) are approximated by means of a Taylor

expansion to the first grade from α = 1 to any α ∈ [0, 1]. To do this, we use the gradient
∇ f (A) =

(
∂ f
∂x1

(A), ∂ f
∂x2

(A), . . . , ∂ f
∂xn

(A)
)

, such that A = (A1, A2, . . . , An). Therefore, Bα can
be developed as follows:

Bα ≈ BT
α = f (A) +

(
∑m

i=1
∂ f
∂xi

(A)·rA(i)

)
(α− 1)−

(
∑n

i=m+1
∂ f
∂xi

(A)·rA(i)

)
(α− 1)

= f (A)−
(

n
∑

i=1

∣∣∣ ∂ f
∂xi

(A)
∣∣∣·rA(i)

)
(1− α).

(22)

Analogously, we develop Bα as follows:

Bα ≈ BT
α = f (A)−

(
m
∑

i=1

∂ f
∂xi

(A)·rA(i)

)
(α− 1) +

(
n
∑

i=m+1

∂ f
∂xi

(A)·rA(i)

)
(α− 1)

= f (A) +

(
n
∑

i=1

∣∣∣ ∂ f
∂xi

(A)
∣∣∣·rA(i)

)
(1− α).

(23)

Similarly, B∗β =
[

B*
β, B*

β

]
, whose exact values are given in (20), can also be deter-

mined via Taylor expansion to the first grade from β = 0 to β ∈ (0, 1]. Therefore, for B*
β,

we state

B*
β ≈ BT*

β = f (A)−
(

m
∑

i=1

∂ f
∂xi

(A)·r∗A(i)

)
β +

(
n
∑

i=m+1

∂ f
∂xi

(A)·r∗A(i)

)
β

= f (A)−
(

n
∑

i=1

∣∣∣ ∂ f
∂xi

(A)
∣∣∣·r∗A(i)

)
β.

(24)

In the same manner, we expand B*
β as follows:

B*
β ≈ BT*

β = f (A) +

(
m
∑

i=1

∂ f
∂xi

(A)·r∗A(i)

)
β−

(
n
∑

i=m+1

∂ f
∂xi

(A)·r∗A(i)

)
β

= f (A) +

(
n
∑

i=1

∣∣∣ ∂ f
∂xi

(A)
∣∣∣·r∗A(i)

)
β.

(25)

Consequently, from (22), (23), (24), and (25), we find that

B = f (A), rB =
n

∑
i=1

∣∣∣∣ ∂ f
∂xi

(A)

∣∣∣∣·rA(i)
, r∗B =

n

∑
i=1

∣∣∣∣ ∂ f
∂xi

(A)

∣∣∣∣·r∗A(i)
. (26)

Analogous to [68], we evaluate the relative error measurement in the bounds of B〈α,β〉,
whose exact value can be calculated with (19)–(20), by those of its symmetrical triangular
approximation, BT

〈α,β〉, which must be stated by applying (26) in (11) and (12). Thus, the

deviations in Bα =
[
Bα, Bα

]
are

εα =

∣∣Bα − BT
α

∣∣
Bα

, εα =

∣∣∣Bα − BT
α

∣∣∣
Bα

, (27)
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and for B*
β =

[
B*

β, B*
β

]
,

ε*
β =

∣∣∣B*
β − BT*

β

∣∣∣
B*

β
, ε*

β =

∣∣∣B*
β − BT*

β

∣∣∣
B*

β

. (28)

2.3. Intuitionistic Linear Regression with the Minimum Fuzziness Principle and Symmetric Coefficients

Within the fuzzy field, there are a large number of regression methodologies that can be
divided into two main groups. In the first type, we can group those based on the minimum
fuzziness principle (MFP), and the second includes those based on the minimization of the
distance between observations and predictions, such as models that can be labeled fuzzy
least-squares models [69].

This dichotomy between the minimum fuzziness principle and distance minimization
is also observed in intuitionistic fuzzy regression models. For example, [46] extended the
minimum fuzziness principle to an intuitionistic regression setting, and [70] developed a
least-squares intuitionistic fuzzy regression methodology. Our paper uses the first approach.
Therefore, our model is based on fuzzy regression models with symmetric parameters.

Let us suppose that the equation to be fitted has a dependent factor dependent
on m real-value explanatory variables xi , i = 0, 1, 2, . . ., m, where x0 = 1 and xiεR,

i = 1, 2, . . ., n. The outcome is then a linear function of intuitionistic coefficients
∼
A(i) =(

A(i), rA(i)
, r∗A(i)

)
, i = 0, 1, . . . , m and, thus, an STIFN

∼
Y =

(
Y, rY, r∗Y

)
. This is obtained

from (21), as follows:

Y =
m

∑
j=0

A(i)xi, rY =
n

∑
i=0

rA(i)
|xi|, r∗Y =

n

∑
i=0

r∗A(i)
|xi|. (29)

Moreover, both the observations of the input variables and the output variable are
crisp, which is a common hypothesis in intuitionistic fuzzy regression models. Thus, for
the jth observation, the outcome is the crisp number yj, generated by the crisp income

(1, x1j, x2j, . . . , xij, . . . , xim). Therefore, yj is a possible value of a TIFN
∼
Yj =

(
Yj, rYj , r∗Yj

)
,

whose membership function μYj

(
yj
)

and nonmembership function νYj

(
yj
)

in (11)–(12) are
determined from (29)

Yj =
m

∑
i=0

A(i)xij, rYj =
m

∑
i=0

rA(i)

∣∣xij
∣∣, r∗Yj

=
m

∑
i=0

r∗A(i)

∣∣xij
∣∣. (30)

The objective is to fit for
∼
A(i), i = 0, 1, 2, . . . , m, an STIFN estimate

∼
a(i) =

(
a(i), ra(i) , r∗a(i)

)
,

i = 0, 1, 2, . . . , m that simultaneously maximizes the membership of the observations in
the fitted system and minimizes the uncertainty of that system. Therefore, to find

∼
a (i), the

following multiple-objective programming problem must be implemented:

minimize
A(i) ,rA(i)

r∗A(i)
,i=0,1,...,n

(
−α, β, z1 =

n

∑
j=1

rYj , z2 =
n

∑
j=1

r∗Yj

)
,

which is subject to

μYj

(
yj
)
≥ α, νYj

(
yj
)
≤ β, j = 1, 2, . . . , n, rA(i)

, r∗A(i)
≥ 0, i = 0, 1, . . . , m. (31)

0 ≤ α + β ≤ 1, α, β ∈ [0, 1].

To solve (31), we implement the following steps:
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Step 1: We state a minimum reachable value α = g and β = 1 − g − h. Like in
possibilistic regression models, g ∈ [0, 1) scales the total fuzziness of the estimated system.
If g = 0, the uncertainty of the system is minimal; conversely, the inclusiveness of the
observations may be low. On the other hand, a higher g causes all observations to be
included with greater intensity, and the predictions of the fitted system are less specific [49].

The value of h ∈ [0, 1 − g) reflects the level of hesitancy in the system. For h = 0, the
actual and potential possibility of a particular value are identical; therefore, we have a
conventional possibilistic regression. At this step, we decouple (31) as follows:

minimize
A(i) ,rA(i)

,i=0,1,...,n
z1 =

n

∑
j=1

rYj ,

subject to
μYj

(
yj
)
≥g, j = 1, 2, . . ., n, rA(i)

≥ 0, i = 0, 1, . . . , m, (32)

and

minimize
A(i) ,r∗A(i)

,i=0,1,...,n
z2 =

n

∑
j=1

r∗Yj
,

subject to
νYj

(
yj
)
≤ 1− g− h, = 1, 2, . . ., n, r∗A(i)

≥ 0, i = 0, 1, . . . , m. (33)

Step 2: We initially state for (32)–(33) that g = h = 0. This implies the minimum
fuzziness level and no hesitancy. Thus, we adjust a possibilistic regression model and
rA(i)

= r∗A(i)
. This leads us to obtain the estimates of A(i) and rA(i)

, which we denote as a(0)
(i)

and r(0)a(i) , respectively, where i = 0, 1, . . ., m. Thus, we must solve the following:

minimize
A(i) ,rA(i)

,i=0,1,...,n
z1 = z2 =

m

∑
i=0

rA(i)

n

∑
j=1

∣∣xij
∣∣ ,

subject to

m

∑
i=0

A(i)xij −
m

∑
i=0

rA(i)

∣∣xij
∣∣ ≤ yj ≤

m

∑
i=0

A(i)xij +
m

∑
i=0

rA(i)

∣∣xij
∣∣, j = 1, 2, . . . , n (34)

A(i), rA(i)
≥ 0, i = 0, 1, . . . , m.

Step 3: To fit the centers in (34), a(0)
(i) for A(i) and r(0)a(i) for rA(i)

i = 0, 1, . . ., m, the
literature proposes two alternatives:

• Alternative 1. The values of a(0)
(i) and r(0)a(i) are those that are solved in a unique step (34).

In this case, the centers a(0)
(i) are those that are obtained in a quantile regression at the

median, identical to [71].
• Alternative 2. The value a(0)

(i) in the first step is obtained by using ordinary least
squares [72]. However, there is no reason why any other method, such as the maximum
likelihood or weighted least-squares methods, cannot be used. In the second step,
r(0)a(i) is obtained by solving (34) and taking into account that this linear programming

problem is as follows, after independently stating a(0)
(i) :

minimize
rA(i)

,i=0,1,...,n
z1 = z2 =

m

∑
i=0

rA(i)

n

∑
j=1

∣∣xij
∣∣ ,
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subject to

−
n

∑
i=0

rA(i)

∣∣xij
∣∣ ≤ yj −

n

∑
i=0

a(0)
(i) xij ≤

n

∑
i=0

rA(i)

∣∣xij
∣∣, j = 1, 2, . . . , n (35)

rA(i)
≥ 0, i = 0, 1, . . . , m.

Step 4: We establish the optimal value of g based on this criterion. This value optimizes
what these authors refer to as the credibility of the system [73]. To achieve this, we define

the estimation of
∼
Yj, obtained from the parameters adjusted in Step 1 and Step 3 as

∼
y
(0)
j =(

y(0)j , r(0)yj , r(0)yj

)
, i.e.,

∼
y
(0)
j is an STFN where y(0)j = ∑m

i=0 a(i)xij, and r(0)yj = ∑m
i=0 r(0)a(i)

∣∣xij
∣∣. So,

g =

{
1
2

(
1− γ(0)

δ(0)

)
γ(0) < δ(0)

0 otherwise
, (36)

where γ(0) = ∑n
j=1

μ
y(0)j

(yj)

r(0)yj

, δ(0) = ∑n
j=1

1−μ
y(0)j

(yj)

r(0)yj

and then we state that

ra(i) =
r(0)a(i)

1− g
. (37)

Step 5: We subsequently proceed to obtain the estimates of r∗a(i) . To achieve this, the
decision maker must determine the degree of hesitancy in the system, where hε[0, 1− g).
In the case where h = 0, there is no hesitancy; if h→ 1− g , the level of hesitancy tends to
be at its maximum. Thus,

r∗a(i) =
r(0)a(i)

1− g− h
. (38)

3. An Intuitionistic Chain Ladder for Claim Reserving

3.1. Claim Reserving with the Chain-Ladder Method and Stochastic Variability and a
Probability–Possibility Transformation

The historical data illustrating the evolution of claims are typically presented in a
run-off triangle format, similar to Table 2 [10]. In this table, Ci,j represents the accumulated
claim cost of insurance contracts originating in the ith development period (i = 0, 1, . . ., n)
during the jth claiming period (j = 0, 1, . . ., n). Therefore, the accumulated claims Ci,j, i = 1,
2, . . ., n; j = n − i + 1, n − i + 2, . . ., n are unknown and must be fitted.

Table 2. Run-off triangle of accumulated claims.

Development/Payment Period
i|j 0 1 . . . j = n − i . . . n − 1 n

Occurrence/Origin Period

0 C0,0 C0,1 . . . C0,j . . . C0,n−1 C0,n
1 C1,0 C1,1 . . . C1,j . . . C1,n−1
...

...
...

...
...

...
i Ci,0 Ci,1 . . . Ci,n−i . . .
...

...
...

...
n − 1 Cn−1,0 Cn−1,1 . . .

n Cn,0 . . .

An alternative way to present historical data consists of the run-off triangle of incre-
mental claims, in a way similar to Table 3. Table 3 can be obtained from Table 2 by taking
into account that Si,j = Ci,j − Ci,j−1, i = 0, 1, 2, . . ., n − 1, j = 1, 2, . . ., n − i, and Si,0 = Ci,0.
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Therefore, the incremental claims Si,j, i = 1, 2, . . ., n; j = n − i + 1, n − i + 2, . . ., n are
unknown and must be fitted.

Table 3. Run-off triangle of incremental claims.

Development/Payment Period

0 1 . . . j = n − i . . . n − 1 n

Occurrence/Origin Period

0 S0,0 S0,1 . . . S0,j . . . S0,n−1 S0,n
1 S1,0 S1,1 . . . S1,j . . . S1,n−1
...

...
...

...
...

...
i Si,0 Si,1 . . . Si,n−i . . .
...

...
...

...
n − 1 Sn−1,0 Sn−1,1 . . .

n Sn,0 . . .

The triangle of accumulated claims (Table 2) is the input of several common methods
to fit claim reserves, such as the chain-ladder method or the Bornhuetter–Ferguson method.
The key concept of the CL method is the so-called link ratio between development year j
and j + 1, Fj, which allows us to obtain the cumulative claims of the (j + 1)th development
period from those of the jth period:

Ci,j+1 = Fj·Ci,j =⇒ Fj =
Ci,j+1

Ci,j
, (39)

where the available observations of Fj are as follows:

fi,j =
Ci,j+1

Ci,j
, i = 0, 1, . . . , n− j− 1 (40)

To obtain an average value of Fj, f j, we consider the widely used CL, which provides
an unbiased estimator of Fj [11]. Thus, the average development factor for the jth year is

f j =
∑

n−j−1
i=0 Ci,j+1

∑
n−j−1
i=0 Ci,j

. (41)

The terminal value of accumulated claims for the ith origin year Ci,n, i = 1, 2, . . ., n is
approximated by ci.n, as follows:

ci.n = Ci,n−i

n−1

∏
j=n−i

f j, (42)

and ci.n is an increasing function of development factors, since the partial derivative ∂ci.n
∂ f j

is

∂ci.n
∂ f j

= Ci,n−i

n−1

∏
k=n−i

k �=j

fk. (43)

Thus, the reserves are linked with the origin year i = 1, 2, . . ., n, ROi:

ROi = ci.n − Ci,n−i = Ci,n−i

(
n−1

∏
j=n−i

f j − 1

)
. (44)
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So, the overall provisions, R, are

R =
n

∑
i=1

ROi. (45)

The classical chain-ladder method is deterministic. However, this methodology is
flexible enough to generate stochastic estimates of fluctuations by applying the SCL method,
which is implemented in the following six steps:

1. Obtain the estimates of the observations Ci,j, ci,j, i = 0, 1, . . ., n; j < n − i by using f j
backwards from Ci,n−i.

2. Calculate an estimate of observed incremental claims (Table 2) by stating si,j = ci,j −
ci,j−1, in the case of si,0 = ci,0.

3. Calculate the descaled Pearson residuals due to fitting the real incremental claims in
Table 2, Si,j, with si,j:

mi,j =
Si,j − si,j√si,j

, i = 0, 1, . . . , n; j ≤ n− i.

4. Resample mi,j, i = 0, 1, . . ., n; j ≤ n− i. Therefore, we find mb
i,j, i = 0, 1, . . ., n; j ≤ n− i.

5. Calculate the incremental claims sb
i,j = si,j +

√si,jmb
i,j

, i = 0, 1, . . ., n; j ≤ n− i. This
implies adjusting a new Table 3.

6. From Table 3, in the above step, we can resample the accumulated claims and con-
struct Table 2. This new table allows us to obtain the development factors (40) and
reserves (44) and (45). These six steps can be implemented B times in such a way that
predictions of claiming reserves can be obtained as confidence intervals.

Note that Steps 1–6 allow B simulations of loss reserves to be obtained for every origin
year RO(bi)

i , bi = 1, 2, . . ., B and the whole reserve R(b) and b = 1, 2, . . . , B. Without losing

generality, let us suppose that in all the cases, RO(bi)
i ≤ RO(bi+1)

i . Then, the reserve ROi is
contained with a probability 1− α in the interval ROiα, such that

ROiα =
[

ROiα
, ROiα

]
=
[

RO(round[B· α2 ])
i , RO(round[B·(1− α

2 )])
i

]
, (46)

which can be interpreted as the α-cuts of a possibilistic estimate of the reserves of the ith
year

..
ROi.
Therefore, we can estimate a confidence interval for the overall reserves in two ways.

A conservative estimate, R′α, is R′α = ∑n
i=1 ROiα, such that R′α can be considered the α-cuts

of the possibility distribution
..

R′:

R′α =
[
R′α, R′α

]
=

[
n

∑
i=1

ROiα
,

n

∑
i=1

ROiα

]
(47)

A more specific approximation of the overall reserves implies inducing a confidence
interval with a probability level 1− α, Rα from R(b) ≤ R(b+1), b = 1, 2, . . ., B by calculating
the following:

Rα =
[
Rα, Rα

]
=
[

R(round[B· α2 ]), R(round[B·(1− α
2 )])

]
. (48)

Therefore, from the probabilistic confidence interval Rα, we can induce a possibility
distribution function

..
R by considering Definition 5.
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3.2. An Intuitionistic Fuzzy Chain-Ladder Method
3.2.1. Fitting Symmetrical Intuitionistic Triangular Fuzzy Development Factors

Let us express relation (39), in which, from a known accumulated claim amount in
the jth development period, we must obtain the accumulated quantity in the (j + 1)th
development period, which is uncertain because the development factor is an STIFN. So,

∼
Ci,j+1 =

∼
F(j)·Ci,j (49)

where
∼
Ci,j+1 =

(
Ci,j+1, rCi,j+1 , r*

Ci,j+1

)
and

∼
F(j) =

(
F(j), rF(j)

, r*
F(j)

)
. Therefore, from (21),

Ci,j+1 = F(j)·Ci,j, rCi,j+1 = Ci,j·rF(j)
and r*

Ci,j+1
= Ci,j·r*

F(j)
.

To fit
∼
F(j) by means of

∼
f (j) =

(
f(j), r f(j)

, r*
f(j)

)
, we consider the data in Table 2. The cou-

ples (y,x) are defined as
(
Ci,j+1, Ci,j

)
, i = 0, 1, . . . , n− j− 1. Therefore,

∼
f (j) =

(
f(j), r f(j)

, r*
f(j)

)
is first fitted, where f (0)

(j) = f(j) and r(0)f(j)
= r f(j)

= r*
f(j)

are the optimum values of the argu-

ments in the programming problem (32)–(33) for g = h = 0. Therefore, we must solve the
version of (34) for relation (49):

minimize
F(j) ,rF(j)

z1 = z2 = rF(j)

n−j−1

∑
i=0

Ci,j ,

which is subject to

F(j)Ci,j − Ci,jrF(j)
≤ Ci,j+1 ≤ F(j)Ci,j + Ci,jrF(j)

, i = 0, 1, . . . , n− j− 1. (50)

rF(j)
≥ 0.

By dividing the inclusion constraints in (50) by Ci,j, i = 0, 1, . . . , n− j− 1, the inde-

pendent terms turn into (40), fi,j =
Ci,j+1

Ci,j
. Likewise, the cost function of (50) has only one

argument. Therefore, the linear pro-gramming problem becomes

minimize
F(j) ,rF(j)

z1 = z2 = rF(j)
,

which is subject to

F(j) − rF(j)
≤ fi,j ≤ F(j) + rF(j)

, i = 0, 1, . . . , n− j− 1. (51)

rF(j)
≥ 0.

To solve (51), we can follow Alternatives 1 and 2 in Section 2.3. By using Alternative
1, the solution of that linear programming problem allows us to obtain f (0)

(j) as the result

of the quantile regression at the median and, simultaneously, r(0)f(j)
. Models (51) can be

implemented by Alternative 2 in Section 2.3 by prefixing f (0)
(j) with the CL formula (41). In

this case, the linear programming problem (51) becomes

minimize
rF(j)

z1 = z2 = rF(j)
,

which is subject to

−rF(j)
≤ fi,j − f (0)

(j) ≤ rF(j)
, i = 0, 1, . . . , n− j− 1. (52)

rF(j)
≥ 0,
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and so,
r(0)f(j)

= max
i=0,1,...,n−i−1

∣∣∣ fi,j − f (0)
(j)

∣∣∣. (53)

Then, the empirical estimates of
∼
F(j) =

(
F(j), rF(j)

, r*
F(j)

)
,
∼
f (j) =

(
f(j), r f(j)

, r*
f(j)

)
, j = 0, 1,

. . ., n − 1, are obtained as follows:

i. Considering that f(j) = f (0)
(j) ,

ii. r f(j)
is obtained by calculating g in Step 4 of Section 2.3 with (36) and (37).

iii. Finally, r∗f(j)
is adjusted in Step 5 of Section 2.3 by subjectively stating the degree of

system hesitancy, h, and using (38).

The structure of the data in Table 2 leads us to obtain the last development factor
∼
f (n−1)

with only the pair (C0,n, C0,n−1). Therefore, it is easy to verify that f(j) = f (0)
(j) =

C0,n
C0,n−1

,
but this approach also leads to the unrealistic conclusion that it is a certain parameter, i.e.,
r f(j)

= r∗f(j)
= 0. Mack [11], in his stochastic free-distribution modeling of reserves over the

CL model, addresses this issue based on the intuition that the absolute uncertainty of the
development factors tends to decrease over time, as does the expected value of these factors.
Thus, the standard deviation of the development factor Fn−1 is estimated as the minimum
of the standard deviation of Fn−3 and Fn−2 and the ratio between the variance of Fn−3 and
the standard deviation of Fn−2. Taking this idea into consideration and considering that k
times the standard deviation of random quantities can be interpreted as the radius of an

equivalent STFN [54,56],
∼
f (n−1) =

(
f(n−1), r f(n−1)

, r∗f(n−1)

)
, where

f(n−1) =
C0,n

C0,n−1
, (54)

and

r f(n−1)
= min

{
r f(n−3)

2

r f(n−2)

,r f(n−3)
, r f(n−2)

}
, r∗f(n−1)

= min

⎧⎨⎩ r∗f(n−3)

2

r∗f(n−2)

, r∗f(n−3)
, r∗f(n−2)

⎫⎬⎭. (55)

3.2.2. Fitting Reserves with Symmetric Triangular Intuitionistic Fuzzy Development Factors

To state the reserves, we must estimate the terminal value of the claims in every origin
year i = 1, 2, . . ., n,

∼
c i,n, which can be expressed through its 〈α, β〉-cuts as follows:

ci,n〈α,β〉 =
〈

ci,nα =
[
ci,nα

, ci,nα

]
, c*

i,nβ
=

[
c*

i,nβ
, c*

i,nβ

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
. (56)

Specifically, ci,n〈α,β〉 is obtained from Ci,n−i and the 〈α, β〉-cuts of
∼
f (j), f(j)〈α,β〉, j = n −

i, n − i + 1, . . ., n − 1 by adapting (42) to an intuitionistic setting:

ci,n〈α,β〉 = Ci,n−i

n−1

∏
j=n−i

f(j)〈α,β〉, (57)

and thus, ci,nα =
[
ci,nα

, ci,nα

]
is obtained considering that (42) is an increasing function of

development factors:

ci,nα =

[
Ci,n−i

n−1
∏

j=n−i
f(j)

α
, Ci,n−i

n−1
∏

j=n−i
f(j)α

]

=

[
Ci,n−i

n−1
∏

j=n−i

(
f(j) − r f(j)

(1− α )
)

, Ci,n−i
n−1
∏

j=n−i

(
f(j) + r f(j)

(1− α )
)]

.
(58)
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Similarly, c*
i,nβ

=

[
c*

i,nβ
, c*

i,nβ

]
is calculated as follows:

c*
i,nβ

=

[
Ci,n−i

n−1
∏

j=n−i
f ∗(j)

β
, Ci,n−i

n−1
∏

j=n−i
f ∗
(j)β

]

=

[
Ci,n−i

n−1
∏

j=n−i

(
f(j) − r∗f(j)

β
)

, Ci,n−i
n−1
∏

j=n−i

(
f(j) + r∗f(j)

β
)]

.
(59)

Note that
∼
c i,n is not an STIFN. However, by using derivatives (43) and (22)–(25), we

can approximate
∼
c i,n ≈

∼
c

T
i,n =

(
ci,n, , rci,n , r∗ci,n

)
, where the center is

ci,n = Ci,n−i

n−1

∏
j=n−i

f(j), (60)

and the radii are

rci,n = Ci,n−i

n−1

∑
j=n−i

⎛⎜⎜⎝ n−1

∏
k=n−i

k �=j

fk

⎞⎟⎟⎠r f(j)
, r∗ci,n

= Ci,n−i

n−1

∑
j=n−i

⎛⎜⎜⎝ n−1

∏
k=n−i

k �=j

fk

⎞⎟⎟⎠r∗f(j)
. (61)

Therefore, by using (44), we can obtain the intuitionistic reserves for the ith origin year
∼

ROi

through ROi〈α,β〉 =
〈

ROiα =
[
ROiα, ROiα

]
, RO*

i β =
[
RO*

i β
, RO*

i β

]
, 0 ≤ α+ β ≤ 1, α, β ∈ (0, 1)

〉
by calculating:

ROi〈α,β〉 = ci,n〈α,β〉 − Ci,n−i. (62)

Then,

ROiα =

[
Ci,n−i

(
n−1
∏

j=n−i

(
f(j) − r f(j)

(1− α )
)
− 1

)
, Ci,n−i

(
n−1
∏

j=n−i

(
f(j) + r f(j)

(1− α )
)
− 1

)]
,

RO*
i β =

[
Ci,n−i

(
n−1
∏

j=n−i

(
f(j) − r∗f(j)

(1− α )
)
− 1

)
, Ci,n−i

(
n−1
∏

j=n−i

(
f(j) + r∗f(j)

(1− α )
)
− 1

)]
.

(63)

The intuitionistic fuzzy estimate of reserves of the ith year is not an STIFN. However,

an STIFN approximate
∼

ROi ≈
∼

RO
T

i =
(

ROi, rROi , r*
ROi

)
is obtained by the following:

∼
RO

T

i = cT
i,n − Ci,n−i =

(
ci,n − Ci,n−i, rci,n , r*

ci,n

)
, (64)

and so, considering (60) and (61),

ROi =
∼
c

T
i,n − Ci,n−i = Ci,n−i

(
n−1
∏

j=n−i
f j − 1

)

rROi = Ci,n−i
n−1
∑

j=n−i

⎛⎜⎝ n−1
∏

k=n−i
k �=j

fk

⎞⎟⎠r f(j)
, r∗ROi

= Ci,n−i
n−1
∑

j=n−i

⎛⎜⎝ n−1
∏

k=n−i
k �=j

fk

⎞⎟⎠r∗f(j)
.

(65)
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Similarly, an intuitionistic fuzzy estimate of the overall reserve
∼
R is obtained with

(45) through R〈α,β〉 =
〈

Rα =
[
Rα, Rα

]
, R∗β =

[
R∗β, R∗β

]
, 0 ≤ α + β ≤ 1, α, β ∈ (0, 1)

〉
. By

implementing R〈α,β〉 =
n
∑

i=1
ROi〈α,β〉. Then,

Rα =

[
n

∑
i=1

ROiα
,

n

∑
i=1

ROiα

]
, R∗β =

[
n

∑
i=1

RO*
i β

,
n

∑
i=1

RO*
i β

]
. (66)

Therefore, an STIFN approximate to
∼
R ≈

∼
R

T
=

(
R, rR, r*

R
)

is obtained simply as
follows:

∼
R

T
=

n

∑
i=1

∼
RO

T

i =

(
n

∑
i=1

ROi,
n

∑
i=1

rROi ,
n

∑
i=1

r*
ROi

)
. (67)

4. Empirical Application

4.1. Estimating Loss Reserves with Deterministic and Stochastic Chain-Ladder Method

Below, we present an empirical application based on the run-off triangle of accumu-
lated claims shown in Table 4. These data were utilized in [74,75]. Table 4 also illustrates the
development factors found using (41). Thus, we observe that a crisp development factor f0
= 1.899 is estimated, indicating that the accumulated claims from development years zero
to one increase on average by 89.90% for all origin years. Similarly, we can interpret the
estimates of the development factors f1, f2, f3, and f4.

Table 5 presents the individual reserves obtained for each of the origin years i = 1, 2,
. . ., 5 and the total reserves with a deterministic CL. Thus, we can observe that as the origin
year increases, the reserve to be allocated increases, as claims from more development
years are pending. It can be noted that in both Tables 4 and 5, we obtain the expected
values of the link ratios and reserves, but we do not have any estimation of their variability.
This analysis is carried out in Tables 6 and 7, where reserves are estimated using the SCL
method, and the obtained possibilistic confidence intervals are interpreted as possibility
distributions, using Definition 5 of Section 2.

Table 6 displays a table of incremental claims analogous to Table 3 that is deduced
from Table 4. Table 4 also shows the theoretical table of incremental claims that are deduced
from the development factors of the chain-ladder method. The difference between the
observed and theoretical tables of incremental claims through descaled Pearson residuals
allows the implementation of the SCL method, described in Section 3.1, to fit the variability
of reserves by origin year and total reserves.

Table 7 presents the results obtained with B = 5000 bootstrapping resamples. The
confidence intervals were calculated with Equations (46)–(48). The upper endpoints of the
confidence intervals obtained for probability levels α = 0, 0.01, 0.05, and 0.1 are the 100%,
99.5%, 97.5%, and 95% estimated percentiles for the reserves, respectively. These quantiles
are commonly used to estimate extreme claim scenarios.

Within the total reserves, we distinguished two confidence intervals: R′α (47) and Rα

(48). The former arises from adding the confidence intervals associated with the reserves
of each origin year. Thus, as shown in Table 7, for a confidence level of 100% (α = 0), we
obtained the overall reserves R′0 = [63.68, 97.77] + [526.48, 628.62] + [1507.29, 1677.46] +
[2720.66, 2997.42] + [4641.72, 5105.40] = [9459.82, 10,506.67]. The most prudent reserve
value would be 10506.67 since it arises from the sum of the estimates of the value that
accumulates 100% probability of the reserves from each origin year. In contrast, Rα arises
from the application of (45) in each of the B = 5000 simulations, making it a narrower
confidence interval. Table 7 shows that R0 = [9533.03, 10,481.08], so the prudent value for
the reserve based on this confidence interval is 10,481.08.

Table 7 also shows that the reserves of each origin year, and the total reserves can be
estimated through a possibility distribution by gathering and fitting successive confidence
intervals (46)–(48) from α = ε (ε ≈ 0) to α = 1. By applying Definition 5 and Remark 3, we
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can adjust the reserves of the fifth period to a possibility distribution
..

RO5 whose core is
4826.23 and support [4641.72, 5105.40]. Likewise, Table 6 also shows that we can obtain a
possible estimate of overall reserves

..
R′ = ∑5

i=1

..
ROi whose center is 9899.31, supporting

[9459.82, 10,506.67].

Table 4. Run-off triangle of accumulated claims used in this paper.

i|j 0 1 2 3 4 5

0 1001 1855 2423 2988 3335 3403
1 1113 2103 2774 3422 3844
2 1265 2433 3233 3977
3 1490 2873 3883
4 1725 3261
5 1889

f j 1.899 1.329 1.232 1.120 1.020
Source: Faculty and Institute of Actuaries [74].

Table 5. Deterministic loss reserves obtained by using the chain-ladder method.

RO1 RO2 RO3 RO4 RO5 R

78.38 567.93 1584.67 2842.10 4826.23 9899.31

Table 6. Run-off triangles of observed incremental claims and theoretical incremental claims with
chain-ladder development factors (41).

Observed Incremental Claims Theoretical Incremental Claims

i|j 0 1 2 3 4 5 i|j 0 1 2 3 4 5

0 1001 854 568 565 347 68 0 957.27 861.02 598.44 561.04 357.24 68
1 1113 990 671 648 422 1 1103.37 992.43 689.78 646.66 411.76
2 1265 1168 800 744 2 1278.49 1149.95 799.26 749.30
3 1490 1383 1010 3 1538.06 1383.41 961.53
4 1725 1536 4 1716.81 1544.19
5 1889 5 1889

Source: Own elaboration from the Faculty and Institute of Actuaries [74].

Table 7. Estimates of reserves with bootstrapping confidence intervals and chain-ladder development
factors.

α RO1α RO2α RO3α RO4α

1 [78.38, 78.38] [567.93, 567.93] [1584.67, 1584.67] [2842.10, 2842.10]
0.25 [76.94, 79.83] [564.14, 571.63] [1577.02, 1592.89] [2830.92, 2852.36]
0.5 [75.08, 81.62] [560.41, 576.65] [1569.64, 1602.17] [2820.37, 2866.04]
0.75 [71.78, 87.40] [554.77, 583.26] [1558.79, 1613.60] [2804.07, 2883.77]
0.1 [69.09, 91.11] [548.46, 589.15] [1547.12, 1625.22] [2787.26, 2901.24]
0.05 [68.06, 92.87] [544.98, 593.35] [1539.65, 1633.24] [2775.83, 2915.09]
0.01 [66.74, 94.64] [537.02, 602.96] [1522.32, 1651.93] [2751.60, 2942.85]

0 [63.68, 97.77] [526.48, 628.62] [1507.29, 1677.46] [2720.66, 2997.42]

α RO5α R’
α Rα

1 [4826.23, 4826.23] [9899.31, 9899.31] [9899.31, 9899.31]
0.25 [4808.51, 4838.96] [9857.53, 9935.67] [9866.55, 9930.80]
0.5 [4792.94, 4859.91] [9818.44, 9986.38] [9834.38, 9972.34]

0.75 [4768.92, 4887.95] [9758.33, 10,055.97] [9786.68, 10,028.49]
0.1 [4739.83, 4918.17] [9691.76, 10,124.88] [9733.84, 10,078.13]

0.05 [4721.56, 4937.74] [9650.07, 10,172.29] [9702.70, 10,107.32]
0.01 [4682.60, 4994.47] [9560.29, 10,286.87] [9644.19, 10,193.22]

0 [4641.72, 5105.40] [9459.82, 10,506.67] [9533.03, 10,481.08]
Note: (a) 1 − α represents the confidence level of the probabilistic confidence interval, which can be interpreted
as the α-cut of the equivalent fuzzy number; (b) R′α is the overall reserve calculated by summing the confidence
intervals ∑5

i=1 ROiα and Rα, which are the confidence intervals of the reserves, by applying bootstrapping.
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4.2. Estimating Loss Reserves with a Symmetric Triangular Intuitionistic Fuzzy Chain Ladder

Next, we put into work the methodology developed in Section 3.2, which allows us to
estimate the claim reserves with STIFNs, with the data of the run-off triangle in Table 4.
We also compare the results obtained with those of the bootstrap estimates using the SCL
method in Table 6, which we reinterpret as α-cuts of possibility distributions. Therefore, to

obtain the estimates of
∼
F(0) =

(
F(0), rF(0) , r∗F(0)

)
and

∼
f (0) =

(
f(0), r f(0) , r∗f(0)

)
, we solve the

linear programming problem (51), whose constraints are built up with the link ratios of
each origin year i = 1, 2, . . ., 5, as shown in Table 8:

minimize
F(0) ,rF(0)

z1 = z2 = rF(0) ,

which is subject to
F(0) − rF(0) ≤ 1.853 ≤ F(0) + rF(0) ,

F(0) − rF(0) ≤ 1.889 ≤ F(0) + rF(0) ,

F(0) − rF(0) ≤ 1.923 ≤ F(0) + rF(0) ,

F(0) − rF(0) ≤ 1.928 ≤ F(0) + rF(0) ,

F(0) − rF(0) ≤ 1.890 ≤ F(0) + rF(0) ,

rF(0) ≥ 0.

Table 8. Run-off triangle of individual link ratios, fi,j, i = 0, 1, . . ., 4; j = 0, 1, . . ., n − i − 1.

i|j 0 1 2 3 4 5

0 1.853 1.306 1.233 1.116 1.020
1 1.889 1.319 1.234 1.123
2 1.923 1.329 1.230
3 1.928 1.352
4 1.890
5

Table 9 shows the STIFNs adjusted to development factors for j = 0, 1, 2, 3, 4. Thus,
if the estimate F(0) is not prefixed with (41), we obtain f (0)

(0) = 1.891 and r(0)f(0)
= 0.038, and

(36) and (37) allow us to obtain an optimum uncertainty level for membership functions of
development factor g = 0.14. Thus, from (38), r f(0) = 0.044. The degree of system hesitancy,
h, must be estimated subjectively by the decision maker. This may be linked, for example,
to the perceived reliability of the data or the predictability of the insurance environment.
The calculations in this numerical application are performed with h = 0.1, so we obtain
r∗f(0) = 0.049.

In Section 3.2, we also state that f (0)
(0) can be predefined with the deterministic CL

shown in Table 4. Therefore, f (0)
(0) = 1.899 , and by using (51), r(0)f(j)

= 0.046. Equations (36)

and (37) allow us to obtain an optimum uncertainty degree g = 0. Therefore, from (38)
r f(0) = 0.046 and by using the hesitancy level h = 0.1, r∗f(0) = 0.051.

Note that the spreads of
∼
f (4), r f(4) and r∗f(4) cannot be obtained from the sample in

Table 4 since only one individual link ratio exists. To fit these spreads, we use (55) and then
set the following:

r f(4) = min
{

0.00352

0.0067
; 0.0035; 0.0067

}
= 0.0035
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r∗f(4) = min
{

0.00422

0.0081
; 0.0042; 0.0081

}
= 0.0042.

Table 9. Symmetric triangular intuitionistic fuzzy number estimation of development factors with
h = 0.1.

Parameters of Intuitionistic Fuzzy Regression (Alternative 1)

j 0 1 2 3 4

f(j) 1.891 1.329 1.232 1.120 1.020

r(0)f(j)
0.038 0.023 0.002 0.004 ---

g 0.140 0.179 0.457 0.500 ---
r f(j)

0.044 0.028 0.003 0.007 0.003
r∗f(j)

0.049 0.031 0.004 0.009 0.004

Parameters of Intuitionistic Fuzzy Regression (Alternative 2)

j 0 1 2 3 4

f(j) 1.8995 1.3291 1.2321 1.1200 1.0204

r(0)f(j)
0.0463 0.0229 0.0020 0.0038 ---

g 0.0000 0.0000 0.4179 0.4274 ---
r f(j)

0.0463 0.0229 0.0035 0.0067 0.0035
r∗f(j)

0.0515 0.0255 0.0042 0.0081 0.0042

Table 10 shows the estimates of the overall loss reserves of the intuitionistic claim
reserves calculated with the two alternatives proposed in Section 3.2,

∼
R. Thus, first, we

compute the “exact” 〈α, β〉-cuts of both methods. This involves using (58) and (59) to

determine the terminal accumulated claims; (63) to find
∼

ROi; and i = 1, 2, . . ., 5 and (66)
to determine the total value. Table 10 also shows the STIFN approximation of the total

reserve,
∼
R

T
, which is obtained using the sequential use of (60), (61), (65), and (67). Table 10

also shows the errors calculated with (27) and (28). Their values suggest that the symmetric
triangular approximation is almost perfect. Note that the maximum error lies in the β-cuts
of the nonmembership function at β = 1 and does not exceed 0.15% in any case.

The results of Table 7, which come from bootstrapping resamples, can be interpreted
as α-level sets of possibility distributions. Therefore, they can be compared with fuzzy
intuitionistic estimates, which are constructed through two possibility distributions. In
other words, the probabilistic intervals obtained with bootstrapping and the 〈α, β〉-cuts can
be interpreted by the actuary in a similar manner. Thus, according to Table 7, the value
of reserves that includes 100% of their possible values could be given as 10,506.67 if we
sum the 100th percentile of the reserves associated with all origin years, and 10,481.08 if we
consider the 100th percentile of the bootstrap simulations of overall reserves. These results
are similar and comparable to those obtained with the membership function of the overall
reserves obtained in Table 10. We can observe in the α-cuts of the reserves, RT

α , that if they
are calculated with Alternative 1, their prudent estimate can range between 10,391.15 (at
the 0.25-cut) and 10,565.45 (at the 0-cut). The conclusions we can draw from the fit obtained
with Alternative 2 are similar, as the upper end of the 0-cut is 10,563.24 and that of the
0.25-cut is 10,397.25.

The β-cuts of the nonmembership functions complement the information provided
by the α-cuts of the membership functions, introducing the existence of bipolarity. Thus,
in Table 10, Alternative 1 for estimating the development factors offers an upper bound
at the 0-cut for the loss reserves of RT0 = 10,565.45 and an upper limit of the 1-cut of the
nonmembership function, RT*

1 = 10,688.71. Thus, the use of IFNs in reserve estimation
allows us to first obtain an estimation of the most extreme possible scenario (10,565.45),
whose adjustment does not use subjective information at any time but rather uses only
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run-off triangle data. That is, the meaning of the estimation is analogous to that obtained
with stochastic simulation or what we would obtain with the use of possibilistic regression.
However, the use of IFNs also allows us to obtain an estimation of the scenario that we
could classify as potentially more extreme through the higher value of the 1-cut of the
nonmembership function. The quantification of this scenario requires the participation
of the decision maker, who must indicate a perceived degree of hesitancy, which in this
numerical application was h = 0.1.

Table 10. 〈α, β〉-cuts of the intuitionistic fuzzy estimates of overall reserves with the two methodolo-
gies proposed in this paper.

Alternative 1 Alternative 2

α β Rα Rα R∗β R∗β Rα Rα R∗β R∗β

1 0 9868.25 9868.25 9868.25 9868.25 9899.31 9899.31 9899.31 9899.31
0.75 0.25 9694.52 10,043.12 9663.92 10,074.16 9733.86 10,065.82 9708.72 10,091.30
0.5 0.5 9521.94 10,219.16 9461.17 10,281.66 9569.46 10,233.40 9519.52 10,284.69
0.25 0.75 9350.50 10,396.36 9260.00 10,490.77 9406.10 10,402.04 9331.70 10,479.50

0 1 9180.19 10,574.72 9060.38 10,701.50 9243.80 10,571.76 9145.26 10,675.72

∼
R

T
= (9868.25, 697.21, 820.46)

∼
R

T
= (9899.31, 663.93, 765.15)

α β RT
α RT

α RT*
β RT*

β RT
α RT

α RT*
β RT*

β

1 0 9868.25 9868.25 9868.25 9868.25 9899.31 9899.31 9899.31 9899.31
0.75 0.25 9693.94 10,042.55 9663.13 10,073.36 9733.33 10,065.29 9708.02 10,090.60
0.5 0.5 9519.64 10,216.85 9458.01 10,278.48 9567.35 10,231.27 9516.73 10,281.88
0.25 0.75 9345.34 10,391.15 9252.90 10,483.59 9401.36 10,397.25 9325.45 10,473.17

0 1 9171.04 10,565.45 9047.78 10,688.71 9235.38 10,563.24 9134.16 10,664.46

α β εα εα ε*
β ε*

β εα εα ε*
β ε*

β

1 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.75 0.25 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
0.5 0.5 0.02% 0.02% 0.03% 0.03% 0.02% 0.02% 0.03% 0.03%
0.25 0.75 0.06% 0.05% 0.08% 0.07% 0.05% 0.05% 0.07% 0.06%

0 1 0.10% 0.09% 0.14% 0.12% 0.09% 0.08% 0.12% 0.11%

Note: The errors ε*
β, εα, and ε*

β, ε*
β are obtained with (27) and (28).

Using other types of modeling for the underlying link ratios in the run-off triangle,
such as LR or adaptive functions, allows us to obtain the same <0,1>-cut and <1,0>-cut as
our method if the IFN estimates have the same centers and radii. However, the rest of the
〈α, β〉-cuts, which can be assimilated to structured simulations of the variables involved
in the analysis, would change, varying their amplitude. In the case of using adaptive
functions, the linear functions used in this paper can be considered as a baseline, with
an order of m = 1. From this baseline, m < 1 implies a dilation of the 〈α, β〉-levels, and
thus, they will incorporate more uncertainty. In contrast, m > 1 indicates a contraction
of the results compared to those obtained with STIFNs. Thus, the 〈α, β〉-cuts will have a
smaller width.

Table 11 shows the estimated reserves associated with the five origin years and the
overall reserves through the STIFNs. The use of this type of IFN can be very useful for
applying the actuarial judgement required to set a definite crisp value for the loss reserves.
In the case of total reserves, if we take Alternative 2 from Section 3.2 as a reference for
decision making, the most reliable value is 9899.31, which coincides with (40). Possible
deviations of up to 663.93 are estimated, and deviations exceeding 765.15 are considered
not possible. Regarding deviations between 663.93 and 765.15, there is hesitancy about
their feasibility. When considering only the data in the run-off triangle, the conclusion must
be that they are not possible. On the other hand, they are possible based on the degree of
hesitancy perceived by the decision maker.
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Table 11. Symmetrical triangular intuitionistic fuzzy estimates of reserves.

Alternative 1 Alternative 2

∼
RO

T

1
(78.38, 12.28, 15.05) (78.38, 13.34, 16.11)

∼
RO

T

2
(567.93, 43.40, 53.90) (567.93, 42.66, 51.62)

∼
RO

T

3
(1584.67, 66.38, 82.21) (1584.67, 66.72, 80.69)

∼
RO

T

3
(2842.10, 200.87, 236.11) (2842.10, 179.74, 207.03)

∼
RO

T

4
(4795.16, 374.28, 433.19) (4826.23, 361.47, 409.70)

∼
R (9868.25, 697.21, 820.46) (9899.31, 663.93, 765.15)

5. Conclusions and Further Research

The determination of insurance loss reserves must be prudent, necessitating the
quantification of their expected value and potential deviations from that value. To ascertain
the most plausible value, a statistical method such as the chain-ladder (CL) method is
utilized to estimate the expected claim evolution. Subsequently, it is necessary to estimate
possible deviations from these values with greater reliability. The contributions of this work
include providing tools for estimating and interpreting such values using fuzzy set theory
and intuitionistic fuzzy set theory.

The first contribution of this work is to show that the information obtained through
stochastic models such as bootstrapping and the use of conventional fuzzy numbers
are similar. In fact, we can reinterpret the value and variability of reserves obtained
with the stochastic CL (SCL) methodology with possibility distributions. Therefore, both
instruments capture epistemic uncertainty.

The second and main contribution of our work is the generalization of developments
in claim reserving with fuzzy numbers to the use of intuitionistic fuzzy numbers (IFNs).
This tool allows the introduction of bipolar information about possible reserve variability
into the estimation, i.e., both “positive” information about feasible parameter values and
negative information about those that cannot be taken in any case.

This work assumes that the parameters governing the evolution of claims are sym-
metrical and triangular IFNs (STIFNs). Special attention is given to the approximation of
each IFN to be of the same nature as the results that arise from its functional handling.
Linear shapes often provide effective resolution in practical applications of fuzzy set theory.
Moreover, symmetry often allows for a good balance between parsimony and comprehen-
siveness in capturing available information and facilitates interpretability of the results by
end-users who may not necessarily have knowledge of fuzzy logic. The value of loss re-
serves when the development factors are estimated using the STIFN technique can be easily
approximated through the most likely scenario, obtained with conventional chain-ladder
methodology, and by evaluating the deviations from this value with the gradient function
of the terminal value of claims from each origin year in the spreads of the membership and
nonmembership functions of the link ratios.

The results provided by the proposed method can be very useful in actuarial practice
since they can be interpreted very intuitively by the person responsible for establishing
reserves, as there is no need for knowledge of fuzzy set theory. While the center of
an STIFN quantifies, in a very synthetic way, the most reliable value of reserves, the
two spreads provide an approximation of the maximum deviations from this value, the
maximum achievable deviation, and the first not-achievable deviation. On the other hand,
representing reserves through 〈α, β〉-cuts allows for the structuring of simulations on their
appropriate value in multiple scenarios, which can be of great help to decision makers.

Certainly, the limitation of using STIFNs is that they do not account for asymmetry
in the link ratios, and similarly, they do not allow for the introduction of more refined
calibration of possibility distributions, such as adaptive membership functions. This latter
issue implies that introducing nuances, such as concentration and dilation, is not possible.
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However, the proposed scheme can be adapted to accommodate more sophisticated forms
of membership and nonmembership functions.

Our extension of intuitionistic regression can be applied in other financial and actu-
arial contexts where possibilistic regression has already been used, such as, for example,
estimating the implied moments of options [76,77]. A natural extension of this work would
involve introducing intuitionistic uncertainty into the analysis of non-life insurance claims,
expanding the results obtained with fuzzy numbers to calculate discounted reserves [78],
the discounted values of non-life insurance liabilities [79], or the terminal values of an
insurance company [80,81].
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Abstract: In this manuscript, we introduce a few new types of dominations in intuitionistic fuzzy
directed graphs (IFDGs) based on different types of strong arcs (SAs). Our work is not only a direct
extension of domination in directed fuzzy graphs (DFGs) but also fills the gap that exists in the
literature regarding the dominations in different extended forms of fuzzy graphs (FGs). In the
beginning, we introduce several types of strong arcs in IFDGs, like semi-β strong arcs, semi-δ strong
arcs, etc. Then, we introduce the concepts of domination in IFDGs based on these strong arcs and
discuss its various useful characteristics. Moreover, the dominating set (DS), minimal dominating
set (MDS), etc., are described with some fascinating results. We also introduce the concept of an
independent set in IFDGs and investigate its relations with the DS, minimal independent set (MIS)
and MDS. We also provide numerous important characterizations of domination in IFDGs based on
minimal and maximal dominating sets. In this context, we discuss the lower and upper dominations
of some IFDGs. In addition, we introduce the terms status and structurally equivalent and examine a
few relationships with the dominations in IFDGs. Finally, we investigate the most expert (influential)
person in the organization by utilizing the concepts of domination in IFGs.

Keywords: IFDGs; strong arcs; domination in IFDG; independent set; minimal and maximal
dominating sets

MSC: 03E72; 05C72

1. Introduction

The term fuzzy sets (FSs) was first introduced by Zadeh [1] in 1965. The theory of
FSs has become useful in different areas, such as management sciences, medical and life
sciences, management sciences, social sciences, statistics, artificial intelligence, multiagent
systems, expert systems, etc. In FSs, each element has some membership value allocated
from the interval [0, 1]. Due to the flexibility of FSs, numerous generalizations of them has
been introduced. The very first generalization of FSs, named interval-valued fuzzy sets
(IVFSs), was introduced by Zadeh in [2]. In IVFSs, the membership value is a subinterval
of [0, 1] instead of a fixed number. Since the concept of the non-membership value is
not considered in FSs, it was also observed that in order to describe the particular type
of information, one component (i.e., a membership value) is not sufficient. To explain
such circumstances, Atanassov [3] introduced the concept of intuitionistic fuzzy sets (IFs),
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in which both the membership and non-membership values are considered, with the
restriction that their sum is less than 1.

On the other hand, fuzzy logic becomes more beneficial and important in describing
real-life problems with uncertainties. Recently, different types of networking have been
dealt with through fuzzy logic. Consequently, fuzzy graph (FG) theory has become an
important mathematical tool to address real-time issues more accurately. This new concept
includes the fuzziness of the vertices and edges in fuzzy graphs (FGs). FGs were first
introduced by Rosenfeld [4] and Kauffman [5]. They also introduced various graph theoretic
tools, such as paths, cycles, bridges, trees, connectedness, etc., in their articles. As compared
to classical graph theory, FGs are more effective because of their flexibility. In the literature,
numerous applications of FGs have been investigated because of their flexibility. In the
theory of FGs, many new terms were introduced by Bhattacharya [6]. In [7], some new
operations were initiated and applied to FGs. The notion of Cayley IVFGs was described
in [8]. In [9], the term complement of FGs was discussed. Poulik et al. [10] shifted the
term average connectivity from classical graphs to FGs. Overall, FGs have become useful
in several fields, like networking, modelling, social sciences, the recognition of different
patterns, etc. Among the other types of FGs, fuzzy directed graphs (FDGs) or fuzzy
digraphs have their own importance. Mordeson and Nair [11] introduced the notion of
FDG. FDGs were further discussed in [12]. Numerous new terms related to FDGs, along
with their applications, have been explored. Akram, Muhammad et al. [13] discussed the
concept of bipolar FDGs in decision support systems. In continuation, a generalization of
FGs, termed intuitionistic fuzzy graphs (IFGs), was introduced in [14]. Similarly, the notion
of complex intuitionistic fuzzy graphs, along with their application to networking, was
explored in [15]. Akram et al. [16–18] introduced many new terms, which included strong
IFGs, IF hypergraphs, IF cycles, and IF trees. Afterwards, Akram et al. [19] introduced
the concept of intuitionistic fuzzy digraphs (IFDGs) and their application in decision
support systems. The application of IFGs in a water supply system was explored in [20].
Interval-valued intuitionistic fuzzy competition graphs were explored in [21]. IVIF-(s, t)
graphs were discussed in [22,23]. The concepts of m-polar IFGs were introduced in [24].
Singh, Suneet et al. [25] discussed an interval-valued intuitionistic fuzzy directed graph
with application towards transportation systems. Nithyanandham et al. [26] discussed an
energy-based bipolar IFDG and presented its application in decision making theory. Some
of the main components of picture fuzzy graphs (PFGs) were explored in [27].

In classical graph theory, the term domination has its own importance. Many re-
searchers have presented several extended forms of domination in graphs, such as double
Roman domination [28], triple Roman domination [29], broadcast domination [30], outer-
convex domination [31], paired domination [32], etc. Kosari and Asgharsharghi introduced
different domination numbers of graphs [33]. The notion of influence graphs has also been
described in the literature to solve “influential problems” like the influence maximization
problem for unknown social networks [34,35], etc. Alternatively, the term domination in
FGs based on effective edges was introduced in [36]. The domination in FGs using strong
arcs (SAs) was discussed by Nagoorgani et al. [37]. The notion of global domination in FGs
based on SAs was discussed in [38]. Similarly, Shanmugam et al. [39] presented the idea of
bridge domination in FGs. In [40], domination in FDGs was examined. Recently, in [41], the
notions of broadcasts and dominating broadcasts were introduced, and they also provided
applications of these concepts in a transportation model. The concept of domination in
rough fuzzy digraphs was described by [42]. Similarly, domination in several types of
vague graphs was discussed in [43–46]. Domination in IFGs was discussed by Parvathi [47],
while double domination in IFGs was described by Nagoorgani [48]. The concept of domi-
nation in bipolar picture fuzzy graphs (BPPFGs) with application in social networks was
introduced in [49].

In this study, we introduce various types of domination based on different strong arcs
in intuitionistic fuzzy digraphs (IFDGs). Firstly, we describe various types of strong arcs
in IFDGs. Then, based on these arcs, we introduce the concepts of domination in IFDGs.
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These concepts are direct generalizations of the dominations in FDGs. We also provide
some important characteristics of dominations in IFDGs based on minimal and maximal
dominating sets. In addition, we introduce the terms status, structurally equivalent, and
the lower and upper domination number, etc., in the framework of IFDGs. At the end,
we provide the application of domination in IFDGs towards an organization in order to
identify the most influential person through domination in IFDGs.

Motivations and Novelty:

In an IFG, the membership and non-membership values extend the domain as com-
pared to the other extensions of FGs and make the circumstances more flexible to express
problems with uncertainties. The term domination in FGs, IFGs, and BPFGs has been
established in the literature, which motivated us to extend these terms towards IFDGs,
along with their application. Our study also fills the gaps existing in the literature. We can
summarize the novelty of our work as in the following points.

1. Firstly, we introduce different types of strong arcs in IFDGs, like semi-β strong arcs,
semi-δ strong arcs, etc. Then, we introduce the concepts of domination in IFDGs
based on these strong arcs. Different characterizations of some special IFDGs are
also explored.

2. We also provide numerous important characterizations of domination in IFDGs based
on minimal and maximal dominating sets. The lower and upper dominations of some
IFDGs are also investigated.

3. We introduce the terms status and structurally equivalent and find few relationships
with the dominations in IFDGs.

4. To demonstrate the usefulness of the terms that we have introduced, we offer their
application in the context of influence graphs.

This article consists of five sections. In Section 2, we add some useful definitions and
explanations related to FSs, FGs, FDGs, IFGs, etc. In Section 3, we introduce the concept
of domination in an intuitionistic fuzzy digraph (IFDG) based on different types of SAs,
which is a direct generalization of domination in FDGs. In the beginning, we introduce
different types of SAs, like semi-β strong arcs, semi-δ strong arcs, etc. Then, we provide
some important characterizations of domination in IFDGs based on minimal and maximal
dominating sets. We also introduce the terms status, structurally equivalent, and the lower
and upper domination number, etc., in the framework of IFDGs. At the end, we provide the
application of domination in IFDGs towards an organization in order to identify the most
influential person through domination in IFDGs. In Section 5, we provide the conclusions,
which also include the future prospects of our work.

2. Preliminaries

In this section, we provide some useful terms related to FSs and FGs and their exten-
sions. For the basics of classical graph theory, one may consult [50].

Definition 1 ([49]). An FS F described on a non-empty set Y is a pair F = {(s, σ(s)): s ∈ Y,
σ(s) ∈ [0, 1]}, where σ(s) is the membership function from Y to [0, 1].

Definition 2 ([51]). An intutionistic fuzzy set (IFS) N on a non-empty set Y is a pair
N = (βN , δN) : Y → [0, 1], where βN : Y → [0, 1] is said to be the degree of membership and
δN : Y → [0, 1] is the degree of non-membership satisfying the condition 0 ≤ βN(s) + δN(s) ≤ 1,
for all s ∈ Y .

Definition 3 ([51]). A function N = (βN , δN) : Y × Y → [0, 1] × [0, 1] is said to be an
intutionistic fuzzy relation (IFR) on Y if βN(s, t) + δN(s, t) ≤ 1, for all (s, t) ∈ Y×Y.

Definition 4 ([51]). Let N = (βN , δN) and M = (βM, δM) be IFSs on the set Y. If N = (βN , δN)
is an IFR on a set Y, then N = (βN , δN) is called an IFR on M = (βM, βM), if βN(s, t) ≤
min{βM(s), δM(t)} and δN(s, t) ≥ max{δM(s), δM(t)}, for all s, t ∈ Y. An IFR N on Y is said
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to be symmetric if βN(s, t) = βN(t, s) and δN(s, t) = δN(t, s), for all s, t ∈ Y.

Definition 5 ([49]). A fuzzy graph (FG) on a set V is a pair G•= (A, B), where A = {ρA} and
B = {ρB}, where ρA : V →[0, 1] and ρB : V ×V → [0, 1] with ρB(s, t) ≤ ρA(s) ∧ ρA(t), for all
s, t ∈ V.

Definition 6 ([49]). Let G• = (A, B), where A = {ρA} and B = {ρB}, is the FG of a crisp graph
G=(V, E). We say that s dominates t in the G•, if ρB(st) = ρA(s) ∧ ρA(t), for s, t ∈ V. A subset
V1 of V is said to be a dominating set (DS) of the FG G• if, for each s ∈ V1, there is t ∈ V − V1
such that s dominates t. A DS A1 in an FG G• is a minimal dominating set (MDS) if A1 has no
proper dominating subset. A DS in FG G• having the minimum (fuzzy) cardinality is known as the
domination number (DN) of FG G•.

Definition 7 ([49]). Let G• be an FG without an isolated vertex. Then, the DS V1 is known as
the total dominating set (TDS) if a vertex in V1 dominates all vertices of V. The minimum (fuzzy)
cardinality of the TDS is known as the total domination number (TDN).

Definition 8 ([49]). Two vertices s and t are called neighbors (Ns) in an FG G• if ρ(s, t) > 0.
The set of all Ns of s is denoted by Nbhd(s).

Definition 9 ([49]). A vertex s is known as a strong neighbor (SN) if the arc (s, t) is strong.
The collection of all strong neighbors (SNs) of s is said to be a strong neighborhood (SNbhd) of s and
is represented by NbhdS(s).

Definition 10. The closed strong neighborhood (CSNbhd) is defined as NbhdS[s] = NbhdS(s)∪{s}.

Definition 11 ([51]). An IFG with underlying set V is described as Ĝ = (N, M), where
N = {βN , δN} and M = {βM, δM}, where
(i) the function βN : V → [0, 1] represents the degree of membership of any element s ∈ V
and δN : V → [0, 1] represents the degree of non-membership of any element s ∈ V such that
βN(s) + δN(s) ≤ 1, for all s ∈ V;
(ii) the function βM : E ⊆ V ×V → [0, 1] is the degree of membership of any element (s, t) ∈ E,
while δM : E ⊆ V × V → [0, 1] is the degree of non-membership of any element (s, t) ∈
E satisfying βM(s, t) ≤ min{βN(s), βN(t)} and δM(s, t) ≥ max{δN(s), δN(t)} such that
0 ≤ δM(s, t) + δM(s, t) ≤ 1, for all (s, t) ∈ E.

Definition 12 ([51]). If s, t are any two vertices of the IFG Ĝ = (N, M), where N = {βN , δN}
and M = {βM, δM}, then the βM-strength of connectedness between s and t is β∞

M(s, t), where

β∞
M(s, t) = sup{βk

M : k = 0, 1, 2, 3......n}

and the δM-strength of connectedness between s and t is

δ∞
M(s, t) = in f {δk

M : k = 0, 1, 2, 3......n}.

If y and z are connected by means of paths of length k, then

βk
M(s, t) = sup{βM(s, t1) ∧ βM(t1, t2) ∧ ....βM(tk−1, t) : s, t1, t2, ...., tk−1, t ∈ V}

and

δk
M(s, t) = in f {δM(s, t1) ∧ δM(t1, t2) ∧ ....δM(tk−1, t) : s, t1, t2, ...., tk−1, t ∈ V}.

Definition 13 ([51]). If deleting any vertex s of connected IFG Ĝ decreases the strength of connect-
edness between several pairs of vertices (nodes), then such a vertex s is called a cut vertex.
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Definition 14 ([51]). Let Ĝ=(N, M) be an IFG. Then, |N| = ∑s∈N
1+βN(s)−δN(s)

2 is known

as the vertex cardinality of N, |M| = ∑(s,t)∈M
1+βM(s,t)−δM(s,t)

2 is the edge cardinality of M,
and |T| = |N|+ |M| is the cardinality of IFG Ĝ.

Definition 15 ([40]). A directed simple graph is represented by GD = (Ṽ, Ẽ), where Ṽ is a
non-empty finite set of vertices and Ẽ = {(s, t) : s, t ∈ Ṽ, s �= t} is a set of directed edges. A pair
G•D = (A, B) is called a fuzzy digraph (FDG), where A = {ρA} and B = {ρB} are the mappings
ρA : Ṽ → [0, 1] and ρB : Ẽ → [0, 1], such that ρB(s, t) ≤ ρA(s) ∧ ρA(t), for all s, t ∈ Ṽ and
(s, t) ∈ Ẽ. We call a digraph GD = (Ṽ, Ẽ) a hidden directed graph of a fuzzy directed graph
G•D = (A, B).

Definition 16 ([40]). The sequence of strong arcs such that the end vertex of every arc is the same
as the starting vertex of the next arc in a sequence is called a fuzzy dipath (FDP) P.

Definition 17 ([40]). A dipath (DP) that begins and ends with the same vertex is called a fuzzy
dicycle (FDC) C.

Definition 18 ([19]). An intuitionistic fuzzy digraph (IFDG) of a digraph GD = (Ṽ, Ẽ) is a pair
G◦D = (N, M), where N = (Ṽ, βN , δN) represents an IFS in Ṽ and M = (Ṽ× Ṽ, βM, δM) represents
an IF relation on Ṽ such that

βM(st) ≤ min(βN(s), δN(t))

βM(st) ≥ max(βN(s), δN(t))

and 0 ≤ βM(st) + δM(st) ≤ 1, for all s, t ∈ Ṽ. We note that M may not be a symmetric relation.

3. Domination in Intutionistic Fuzzy Digraphs

In this section, firstly, we introduce the concepts of strong arcs and their types in IFDGs.
Based on these strong arcs, we present the concepts of domination in IFDGs. Moreover,
the dominating set (DS), minimal dominating set (MDS), etc., are also described with some
interesting results. Then, we also introduce the concept of an independent set in an IFDG
and its relations with the DS, minimal independent set (MIS) and MDS. At the end of this
section, we present the terms status and structurally equivalent and explore some relations
among these terms and the domination in IFDGs.

We begin our discussion with the definition of the degree of a vertex in an IFDG.

Definition 19. Let GD = (Ṽ, Ẽ) be a hidden digraph of an IFDG G◦D = (N, M). Then, the order
q of G◦D is defined as

q = (∑
s∈Ṽ

βN(s), ∑
s∈Ṽ

δN(s)).

Example 1. In the IFDG shown in Figure 1, we have q = (2, 0.6).

Now, we present the definition of the size of an IFDG.

Definition 20. Let GD = (Ṽ, Ẽ) be a hidden digraph of G◦D = (N, M). The size p of G◦D is
defined as

p = (∑
s �=t

βM(s, t), ∑
s �=t

δM(s, t))

for all (s, t) ∈ Ẽ.

Example 2. Referring to the IFDG shown in Figure 1, we have p = (1.6, 1.6).

Here, we present the definition of a strong arc in an IFDG, which plays a crucial role
in the rest of this paper.

132



Mathematics 2024, 12, 872

Definition 21. An arc (s, t) of an IFDG G◦D is said to be a strong arc if βM(s, t) = β∞
M(s, t) and

δM(s, t) = δ∞
M(s, t); otherwise, the arc (s, t) is non-strong.

Afterwards, we present different types of strong arcs in IFDGs, such as semi β-strong
arcs, semi δ-strong arcs, etc.

Definition 22. An arc (s, t) of an IFDG G◦D is a semi β-strong arc if βM(s, t) = β∞
M(s, t) and

δM(s, t) �= δ∞
M(s, t).

Definition 23. An arc (s, t) of an IFDG G◦D is a semi δ-strong arc if βM(s, t) �= β∞
M(s, t) and

δM(s, t) = δ∞
M(s, t).

In Example 3, we analyze the strong arcs among those depicted in the IFDG given in
Figure 1.

Figure 1. Intuitionistic fuzzy digraph.

Example 3. We determine which arcs in the IFDG shown in Figure 1 are considered strong arcs
and which ones are not.
Case (i) Consider the arc (k, l); βM(k, l) = 0.3 and δM(k, l) = 0.4. Now, β∞

M(k, l) = sup{βN(k, l)} = 0.3
and δ∞

M(k, l) = sup{δN(k, l)} = 0.4. Therefore, βM(k, l) = β∞
M(k, l) = 0.3 and δM(k, l) = δ∞

M(k, l) = 0.3.
Hence, the arc (k, l) is a strong arc.
Case (ii) Let us consider an arc (l, m); βM(l, m) = 0.4 and δM(l, m) = 0.3. Now, β∞

M(l, m) =
sup{βN(l, m)} = 0.4 and δ∞

M(l, m) = inf{δN(l, m)} = 0.3. Therefore, βM(l, m) = β∞
M(l, m) = 0.4

and δM(l, m) = δ∞
M(l, m) = 0.3. Hence, the arc (l, m) is a strong arc.

Case (iii) Let us consider the arc (m, n); βM(m, n) = 0.4 and δM(m, n) = 0.3. Now, β∞
2 (m, n) =

sup{β1(m, n)} = 0.4 and δ∞
M(m, n) = inf{δN(m, n)} =0.3. Therefore, βM(m, n) = β∞

M(m, n) = 0.4
and δM(m, n) = δ∞

M(m, n) = 0.3. Hence, the arc (m, n) is a strong arc.
Case (iv) Let us consider the arc (n, k); βM(n, k) = 0.3 and δM(n, k) = 0.4. Now, β∞

M(n, k) =
sup{βN(n, k)} = 0.3 and δ∞

M(n, k) = inf{δM(n, k)} = 0.4. Therefore, βM(n, k) = β∞
M(n, k) = 0.3

and δM(n, k) = δ∞
M(n, k) = 0.4. Hence, the arc (n, k) is a strong arc.

Case (v) Consider the arc (k, m); βM(k, m) = 0.2 and δM(k, m) = 0.2. Now, β∞
M(m, k) =

sup{βN(k, l)∧ βN(l, m)} = sup{0.3,0.4} = 0.4 and δ∞
M(k, m) = inf{δN(k, l)∨ δN(l, m)} = inf{0.4,

0.3} = 0.3. Therefore, βM(k, m) �= β∞
M(k, m) and δM(k, m) = δ∞

m (k, m) = 0.3. Hence, the arc
(k, m) is not a strong arc.

In Definition 24, we introduce the terms strong neighborhood (SNbhd) and closed
neighborhood (CNbhd) along with their types and cardinalities.
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Definition 24. Let GD = (Ṽ, Ẽ) be a hidden digraph of an IFDG G◦D = (N, M). Then,
(i) NbhdS(s) = {t ∈ Ṽ : arc(s, t) is strong arc} is the SNbhd of s ∈ Ṽ. Similarly, the CNbhd of s
is NbhdS[s] = NbhdS(s) ∪ {s}.
(ii) NbhdβS(s) = {t ∈ Ṽ : arc (s, t) is semi β-strong arc} is known as the semi β-SNbhd of s ∈ Ṽ
and CNbhd of s is NbhdβS[s] = NbhdβS(s) ∪ {s} .
(iii) NbhdδS(s) = {t ∈ Ṽ : arc(s, t) is semi δ-strong arc} is known as the semi δ-SNbhd of s ∈ Ṽ
and CNbhd of s isNbhdδS[s] = NbhdδS(s) ∪ {s}.
(iv) ηS(G◦D) = min{|NbhdS(s)| : s ∈ Ṽ(G◦D)} is the minimum cardinality of the SNbhd.
(v) θS(G◦D) = max{|NbhdS(s)| : s ∈ Ṽ(G◦D)} is the maximum cardinality of the SNbhd.

Theorem 1. If two nodes of an IFDG G◦D are linked by one dipath, then every arc of G◦D is a strong arc.

Proof. Let G◦D be a connected IFDG with n nodes. If we take n = 2, then s and t must
be adjacent by one arc (because G◦D is a connected IFDG). Clearly, βM(s, t) = βM

∞(s, t)
and δM(s, t) = δM

∞(s, t). Hence, an arc (s, t) is a strong arc. Let n > 2. In any IF di-
path, βM

∞(s, t) = βM(s, t) and δM
∞(s, t) = δM(s, t) for any arc in the dipath (s, t), as they

are connected through the same dipath. Thus, it is proven that βM(s, t) = βM
∞(s, t) and

δM(s, t) = δM
∞(s, t) for any number of arcs in a given dipath. Hence, all the arcs are strong.

Corollary 1. In an IF dipath, each arc is a strong arc.

Theorem 2. In a non-trivial connected IFDG G◦D with n nodes such that n ≥ 2, G◦D has at least
one strong arc.

Proof. Let G◦D be a connected IFDG with vertices n ≥ 2. Assume that s and t are the two
nodes of G◦D.
Case(i) : When n = 2: Because G◦D is a connected IFDG, s and t are two nodes such that
(s, t) is an arc. From Theorem 1, only one strongest dipath between s and t exists such that
βM(s, t) = βM

∞(s, t) and δM(s, t) = δM
∞(s, t). Hence, (s, t) is a strong arc.

Case(ii) : When n > 2: Assume that G◦D has at least one strong arc. Because G◦D is connected
with n > 2, there exists more than one dipath between s and t such that at least one strong
dipath exists. Thus, βM(s, t) = βM

∞(s, t) and δM(s, t) = δM
∞(s, t) (from Theorem 1). If this

does not hold, there is no dipath between s and t. Hence, G◦D is a disconnected digraph,
which contradicts our hypothesis that G◦D is connected. Therefore, if n ≥ 2, then non-trivial
connected IFDG G◦D has at least one strong arc.

Theorem 3. Let (s, t) be the arc of IFDG G◦D. Then, the following conditions are equivalent.
(i) In G◦D, an arc (s, t) is a strong arc.
(ii) An arc (s, t) must be semi β-strong and semi δ-strong.
(iii) The membership degree and non-membership degree of arc (s, t) must be in between the closed
interval [βSM, δLM], where the smallest value of the membership degree of the IFDG G◦D is βSM,
and the largest value of the non-membership degree of the IFDG G◦D is δLM.

Definition 25. Let G◦D be an IFDG and s, t be any two vertices of G◦D. Then, s dominates t, if the
arc (s, t) is a strong arc.

Example 4. Referring to the IFDG given in Figure 1, the arcs (k, l), (l, m), (m, n), (n, k) are strong
arcs but the arc (m, k) is a non-strong arc. Thus, l dominates m, m dominates n and n dominates k,
but m does not dominate k.

Definition 26. A DS of IFDG G◦D is a subset N1 of Ṽ if, for each t ∈ Ṽ−N1, there exists s ∈ N1
such that s dominates t. A DS N1 is an MDS if there is no proper subset of N1 that is a DS.
The minimum cardinality from all MDSs is a lower DN of G◦D and it is abbreviated as LD(G◦D).
The maximum cardinality from all MDSs is an upper DN of G◦D and is abbreviated as UD(G◦D).
The minimum fuzzy cardinality from all DSs of an IFDG is known as the strong arc DN and is
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symbolically written as ωS(G◦D). The corresponding DS is known as the minimum strong arc DS
and the number of elements in the minimum strong arc DS is known as n[ωS(G◦D)].

Example 5. Consider a set of vertices N = {a, b, c, d} in an IFDG, as shown in Figure 2. Let N1
= {a, c} be the DS lying in N. Let {b, d} be the set of vertices other than N1, such that each of its
vertices dominates at least one vertex in N, which implies that N1 is a DS. Again, consider that
N2 = {b, d} is the DS lying in N. Let {a, c} be the set other than N2 such that each of its vertices
dominates at least one vertex in N, which implies that N2 is a DS. Thus, the DSs are {a, c} and
{b, d}, while {b, d} is the MDS of minimum cardinality 1.25 and {a, c} is the MDS of maximum
cardinality 1.35.

Figure 2. Intuitionistic fuzzy digraph.

Definition 27. The open Nbhd of s in an IFDG G◦D is represented as ONbhd(s) and is defined as
ONbhd(s) = {t ∈ Ṽ : β(s, t) > 0, δ(s, t) > 0}. The vertex t is known as the SN of s if an arc
(s, t) is a strong arc, and the set of all SNs of s is known as the SNbhd of s and is abbreviated as
NbhdS(s). Similarly, NbhdS[s] = NbhdS(s) ∪ {s} is the CSNbhd of s.

Example 6. Referring to the IFDG given in Figure 1, one can easily deduce that the arcs
(k, l), (l, m), (m, n), (n, k) are strong arcs, while the arc (k, m) is a non-strong arc. The SN of
k is l. Thus, NbhdS[k] = {l} ∪ {k} = {l, k} is the CSNbhd of k.

Definition 28. Let G◦D be an IFDG and s, t be any two vertices of G◦D. Then,
(i) s semi β- dominates t, if the arc (s, t) is a semi β-strong arc;
(ii) s semi δ- dominates t, if an arc (s, t) is a semi δ-strong arc.

Remark 1. (i) Semi β- strong arc DN is ωβS(G◦D). The number of elements in the minimum semi
β- strong arc DS is symbolically written as n[ωβS(G◦D)].
(ii) Semi δ - strong arc DN is described as ωδS(G◦D). The number of elements in the minimum semi
δ - strong arc DS is represented as n[ωδS(G◦D)].

Definition 29. Two vertices s and t of an IFDG G◦D = (N, M) are called isolated vertices
if βM(s, t) = 0 and δM(s, t) = 0. Secondly, Nbhd(s) = ∅, which implies that there does not exist
any Nbhd of s. Thus, an isolated vertex cannot dominate any other vertex of G◦D.

Theorem 4. In an IFDG G◦D = (N, M), a DS N1 is an MDS if, for each s ∈ N1, one of the
following conditions holds.
(i) s is not an SN of any vertex in N1;
(ii) there exists a vertex t ∈ N − N1 such that Nbhd(t) ∩ N1 = {s}.

Proof. Assume that N1 is an MDS of G◦D. For each vertex s ∈ N1, N1 − s is not a DS. Then,
t ∈ (N1 − s) exists and is not dominated by any vertex in N1 − s. If t = s, then t is not an
SN of any vertex in N1. If t �= s, t is not dominated by N1 − t, but it is dominated by N1,
and there is a vertex t that is the only SN of s in N1. Hence, Nbhd(t) ∩ N1 = s.
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Conversely, consider that N1 is a DS. For every vertex s ∈ N1, one of the two given
conditions holds true. Assume that N1 is not an MDS. Thus, there exists a vertex s ∈ N1,
N1 − s that is a DS. Hence, s is an SN to one of the vertices in N1 − s, so condition (i) does
not hold true. If N1 − s is a DS, then each vertex of N− N1 is an SN to one of the vertices in
N1 − s, and condition (ii) also does not hold true. This is a contradiction of our hypothesis
that one of the two conditions holds true. Thus, N1 is an MDS.

Theorem 5. Let G◦D = (N, M) be an IFDG with no isolated vertex. Let N1 be an MDS. Then,
N − N1 is a DS of G◦D.

Proof. Assume that N1 is an MDS. Consider that t is a vertex of N1. As G◦D does not have
isolated vertices and there exists a vertex s ∈ Nbhd(t), t is dominated by one of the vertices
in N1 − t, i.e., N1 − t is a DS. From Theorem 4, s ∈ N − N1. Thus, each vertex in N1 is
dominated by one of the vertices in N − N1 and N − N1 is a DS.

Corollary 2. If there is no isolated vertex in an IFDG G◦D = (N, M), then LD(G◦D) ≤ q(G◦D)/2.

Proof. Let G◦D be an IFDG with no isolated vertex. Then, it has two disjoint DSs, i.e.,
LD(G◦D) ≤ q(G◦D)/2.

Definition 30. Two vertices s and t of an IFDG G◦D = (N, M) are called independent if there is
no strong edge between these two vertices. A subset N2 of N is known as an independent set (IS) of
an IFDG G◦D if the following conditions hold:

βM(s, t) < β∞
M(s, t) and δM(s, t) < δ∞

M(s, t)

for all (s, t) ∈ N2.

Definition 31. An IS N2 ⊆ N in an IFDG G◦D = (N, M) is called a maximal independent set
(MIS) if the set N ∪ {s} is not independent for every s ∈ N − N2. The minimum cardinality
between the MISs is called the lower independent number of an IFDG G◦D, represented by i(G◦D).
The maximum cardinality between the MISs is called the upper independent number of an IFDG
G◦D, represented as I(G◦D).

Theorem 6. An IS is an MIS in an IFDG G◦D = (N, M) if and only if it is an IS and DS.

Proof. Let N2 be an MIS of IFDG G◦D. Then, for each vertex s ∈ (N − N2), the set N2 ∪ s is
not independent. Moreover, for each vertex s ∈ (N − N2), there exists a vertex t ∈ N2 such
that t is an SN of s. Hence, N2 is a DS. Thus, N2 is both a DS and IS.

Conversely, let N2 be an IS and DS. If N2 is not an MIS, there is a vertex s ∈ N − N2
such that the set N2 ∪ {s} is independent. If N2 ∪ {s} is independent, then there is no vertex
in N2 that is an SN of s. Hence, N2 is not a DS, which contradicts our assumption. Thus, N2
is an MIS.

Theorem 7. Every MIS in an IFDG G◦D = (N, M) is an MDS.

Proof. Let N2 be an MIS of an IFDG. By assumption, N2 is a DS but not an MDS. Then,
there exists at least one vertex s ∈ N2 such that N2 − {s} is a DS. If N2 − {s} dominates
N − {N2 − (s)}, then there is at least one vertex in N2 − {s} that is necessarily an SN of t,
which contradicts our assumption. Hence, N2 is an MDS.

Definition 32. In IFDG G◦D, a subset of vertex set N is known as status S if each vertex g, h ∈ S
obeys the property that the vertex g dominates the vertices in N− S and is equal to the set of vertices
in N − S that is dominated by h.

Remark 2. Each vertex in status S dominates the same set of vertices outside the status. It can be
seen that the status must contain at least two vertices.
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Theorem 8. If a status S of a connected non-trivial IFDG G◦D is an MDS, then S is an independent
DS with cardinality 2.

Proof. Let S be a status that is an MDS. As G◦D is connected with no isolated vertex, then
there exists at least one vertex g ∈ N − S. As S is an MDS, g is adjoint at least in the S, and
since S is the status, each node of S is adjoint to the g. Additionally, every vertex of S is
adjoint to the each vertex in N − S. Thus, |S| ≥ 2, because S is the status. Now, consider
|S| ≥ 3 and assume that h belongs to S and g belongs to N − S. Since S is the status, it
implies that h is adjoint to each vertex of C− S and g is adjoint to every other vertex of
S. Hence, the DS is {g, h}, which contradicts our assumption that S is the minimal set.
Thus, |S| = 2. However, if h is adjoint to the g, then the DS of G◦D is g, which is again a
contradiction that S is the minimal set. Consequently, |S| = 2 is an IS.

Definition 33. Let g and h be any two vertices of an IFDG. Then, these two vertices are called
structurally equivalent if either NbhdS(g) = NbhdS(h) or NbhdS[g] = NbhdS[h]. A set S is
called structurally equivalent if each of the two vertices in S is structurally equivalent.

Corollary 3. Let G◦D be a connected IFDG. Let S be an MDS that is structurally equivalent. Then,
the set S has two independent vertices such that each vertex has a degree q(G◦D)− 1.

4. Application of Domination in IFDGs towards Social Networks

Graphs have various applications in many areas of science, such as chemistry, physics,
biology, mathematics, computer science and others. In the organization model, it has been
noted that, in a group, there is a connection between two workers. It is also necessary to
conclude that, in a graph, one worker is more dominant or influential. Using the graph,we
can draw this scenario. In a specific group, we can draw a graph in which each vertex
represents each worker. In the graph, the directed edges show the relationship between
two workers from one particular vertex (worker) to another. Multiple edges or loops are
not needed in these types of graphs. In classical graph theory, every vertex has equal
importance. It is not possible to draw such types of graphs in an organization model
accurately. Additionally, in classical graph theory, every organization in a social unit
(individual or organization) should have equal importance, but the situation is different in
real life. Similarly, in classical graph theory, every directed edge has equal strength. Thus,
the influence of the worker has fuzzy directed boundaries. It is useful to represent these
situations in fuzzy directed graphs. Every vertex represents a worker and the strength of
his influence in the organization model, and it is represented by the membership value in
the fuzzy directed influential graph. Since the developed form of FS is the IFS, domination
in IFDGs provides better results as compared to fuzzy directed graphs.

4.1. Fuzzy Influence Digraph

Let us consider an organization with workers and their designations. Let S = {BOD,
CEO, CTO, DM, DPD, DHR, Stt } be the set of workers for this organization, as shown in
Table 1. By conducting research on the organization, we conclude the following.

(i) The CEO has worked with the DM for about 8 years, and, on strategic initiatives, he
gives importance to his input.

(ii) The BOD has been chaired for about 8 years and is associated with the DM. Similarly
to the CEO, the BOD also values the DM.

(iii) In reorganization, the whole marketing scheme is vital but the DHR is more vital.
(iv) There is a history of disputes between the CTO and DHR.
(v) The CTO has more influence on the DPD.
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Table 1. Designations of workers in an organization and abbreviations used for their designations.

Designation Abbreviation

Board of Directors BOD
Chief Executive officer CEO

Chief Technology officer CTO
Director of Marketing DM

Director of Product Development DPD
Director of Human Resources DHR

Staff Stt

An influence digraph can be drawn by observing the above-mentioned points, but this
type of digraph does not show the power of the workers in an organization and also the
degree of influence of workers on one another. It is important to show them in fuzzy sets as
their influence and power have no definite limits. The influence of workers on one another
can be represented through a fuzzy digraph, but there exists hesitation in evaluating their
influence. We consider a fuzzy directed influential graph of this organization, shown in
Figure 3. The organization is represented by the nodes and its membership value represents
the degree of influence. The degree of membership represents how influential the worker
is? in the organization. The BOD has an 80% level of influence. In the digraph, the directed
edges show the influence level of one worker on the other workers within the organization.
The membership degree of the directed edges is considered as a positive percentage of
influence, e.g., the DM has a 50% influence on both the BOD and CEO. Thus, the DM
dominates both the BOD and CEO, which is why it is busier and more influential than
the others.

While dealing with the above circumstances through FDGs, we have only the degree
of acceptance and there is no information about the degree of non-acceptance of the lower
staff members. Hence, there is a lack of information that can be properly manipulated
through the IFDGs.

Figure 3. Fuzzy directed influence graph.

4.2. Intuitionistic Fuzzy Influence Digraph

Since the power and influence of workers cannot be properly described in fuzzy
digraphs, we use an IFDG, which gives better results as compared to FGs. In an IFDG,
the directed edges are used to show the influence. The resulting IFDG is shown in Figure 4,
and Table 2 shows the allocated membership and non-membership values. In the IFDG,
the vertices also represent the workers along with their power in terms of membership
and non-membership degrees, which are described by percentages. For instance, the CEO
has 80% power in the organization. Likewise, in the IFDG, the directed edges show the
influence of one worker on another. The membership and non-membership degrees can
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also be referred to as a positive influence and negative influence, respectively. For instance,
the BOD has a 50% influence on the DM’s opinion but he does not follow his opinion 30%
of the time. In Figure 4, it can be seen that the DM has an influence on both the BOD and
CEO. As the membership degrees in both cases are 0.5, which is 50%, his influence on
both of them is the same. In the case of the CEO, the hesitation degree is 0.2, which is
(π = 1− 0.5− 0.3), but it is 0.1 in the case of the BOD, which is (π = 1− 0.5− 0.4), which
shows that the CEO has more hesitation than the BOD. It is clear that the most influential
worker within the organization is the DM. He has a great influence on both the BOD and
CEO; each has 80% power. Clearly, all the arcs are strong but the DM dominates the BOD,
CEO and Stt. Hence, the most influential worker in the organization is the DM.

Table 2. Power of workers allocated in terms of membership and non-membership degrees.

BOD CEO CTO DM DPD DHR Stt

βN 0.8 0.8 0.7 0.6 0.5 0.5 0.4
δN 0.1 0.1 0.2 0.2 0.2 0.3 0.2

Figure 4. Intuitionistic fuzzy directed influence graph

5. Conclusions

In this article, we have introduced the notion of domination in IFDGs based on
SAs, along with several fundamental properties and applications. We have extended the
concepts of domination in FDGs. Since dominations in picture fuzzy graphs and bipolar
picture fuzzy graphs were introduced in the literature, but the concept of domination in
IFDGs was missing, we have also filled this gap the literature related to domination. At the
beginning of our study, we introduced several types of strong arcs in IFDGs, like semi-β
strong arcs, semi-δ strong arcs, etc. Then, we introduced the concept of domination in
IFDGs based on these strong arcs and discussed its various useful characteristics. Moreover,
the dominating set (DS), minimal dominating set (MDS), etc., were described with some
fascinating results. We have also introduced the concept of an independent set in an IFDG
and investigated its relations with the DS, minimal independent set (MIS) and MDS. We
have also provided numerous important characterizations of domination in IFDGs based on
the minimal and maximal dominating sets. In this context, we have discussed the lower and
upper dominations of some IFDGs. In addition, we have introduced the terms status and
structurally equivalent and explored a few relationships with the dominations in IFDGs.
Finally, we have investigated the most expert (influential) person in the organization by
using the concepts of domination in IFGs. One could extend these concepts towards other
extended forms of FGs, like spherical picture fuzzy graphs.
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Abstract: In this paper, we present a novel family of soft sets named “soft ωδ-open sets”. We find that
this class constitutes a soft topology that lies strictly between the soft topologies of soft δ-open sets
and soft ω0-open sets. Also, we introduce certain sufficient conditions for the equivalence between
this new soft topology and several existing soft topologies. Moreover, we verify several relationships
that contain soft covering properties, such as soft compactness and soft Lindelofness, which are
related to this new soft topology. Furthermore, in terms of the soft interior operator in certain soft
topologies, we define four classes of soft sets. Via them, we obtain new decomposition theorems for
soft δ-openness and soft θ-openness, and we characterize the soft topological spaces that have the soft
“semi-regularization property”. In addition, via soft ωδ-open sets, we introduce and investigate a new
class of soft functions named “soft ωδ-continuous functions”. Finally, we look into the connections
between the newly proposed soft concepts and their counterparts in classical topological spaces.
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1. Introduction and Preleminaries

In today’s complex world, accurate modeling and management of many types of
uncertainty are essential to tackle difficult issues in different fields, including environ-
mental science, economics, engineering, social sciences, and medicine. While well-known
techniques like probability theory, fuzzy sets [1], and rough sets [2] help handle ambiguity
and uncertainty, they are not without limitations. These mathematical methods all share
the same flaw, which is insufficient parameterization capabilities. In 1999, Molodtsov [3]
introduced soft set theory as a solution to the shortcomings of earlier uncertainty-handling
techniques. After that, the interpretation of soft sets for modeling uncertainty has been
conducted; advancements in this area are described in [4,5]. Equipped with soft sets, pa-
rameter sets offer a defined framework that is naturally adaptable, facilitating the modeling
of unclear data. Soft set theory and related fields have advanced greatly as a result very
soon. As may be observed in [6–12], this has led to several applications of soft sets in
real-world fields.

Numerous mathematicians have used soft set theory to introduce various mathe-
matical structures, including soft group theory [13], soft ring theory [14], soft convex
structures [15], and soft ideals [16]. These papers highlight the use of soft set theory in
handling challenging mathematical problems.

Shabir and Naz [17] created soft topology first, and since then, a lot of researchers
have focused on extending the topological concepts to include the field of soft topology.
For instance, soft metric spaces [18–20], soft connected spaces [21], soft covering proper-
ties [22–24], and generalized soft open sets [25–29] are a few of the notions mentioned.
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Recent papers [30–37] show that research in soft topology is currently ongoing and that
there is still an opportunity for important contributions.

The generalizations of soft open sets play an effective role in the structure of soft
topology by using them to redefine and investigate some soft topological concepts such as
soft continuity, soft compactness, and soft separation axioms. This paper follows this area
of research.

The arrangement of this article is as follows:
In Section 2, we define soft ωδ-open sets. We study the features of sets and show how

they relate to well-known other classes of soft sets, like soft δ-open sets and soft ω0-open
sets. Furthermore, we investigate the links between this class of soft sets and its classical
topology analogs. We also investigate several relationships that contain soft covering
properties, such as soft compactness and soft Lindelofness.

In Section 3, we define four new classes of soft sets. We use them to provide novel
decomposition theorems for soft δ-openness and soft θ-openness, as well as characterize
semi-regularized soft topological spaces.

In Section 4, via soft ωδ-open sets, we define soft ωδ-continuous functions as a new
class of soft functions and investigate some of their properties. We give several charac-
terizations of it. Also, we investigate the links between this class of soft functions and its
analogs in general topology. Moreover, we show that soft ωδ-continuity is strictly weaker
than soft ω0-continuity.

In Section 5, we give some findings and potential future studies.
Throughout this paper, we will use the concepts and terminology as they appear

in [38,39].
Here, we recall some basic definitions and results that will be needed in this sequel.
Let M be an initial universe and Z be a set of parameters. A soft set over M relative

to Z is a function T : Z −→ P(M), where P(M) is the power set of M. The collection of
all soft sets over M relative to Z is denoted by SS(M, Z). Let G ∈ SS(M, Z). If G(a) = ∅
for every a ∈ Z, then G is called the null soft set over M relative to Z and denoted by 0Z.
If G(a) = M for all a ∈ Z, then G is called the absolute soft set over M relative to Z and
denoted by 1Z. If there exist x ∈ M and a ∈ Z such that G(a) = {x} and G(b) = ∅ for
all b ∈ Z− {a}, then G is called a soft point over M relative to Z and denoted by ax. The
collection of all soft points over M relative to Z is denoted by SP(M, Z). If for some a ∈ Z
and X ⊆ M, G(a) = X and G(b) = ∅ for all b ∈ Z− {a}, then G will be denoted by aX.
If for some X ⊆ M, G(a) = X for all a ∈ Z, then G will be denoted by CX. G is called a
countable soft set over M relative to Z if G(a) is countable for all a ∈ Z. The collection of
all countable soft sets over M relative to Z will be denoted by C(M, Z). If G ∈ SS(M, Z)
and ax ∈ SP(M, Z), then ax is said to belong to G (notation: ax∈̃G) if x ∈ G(a).

Soft topological spaces were defined in [17] as follows: A triplet (M,Y , Z), where
Y ⊆ SS(M, Z), is called a soft topological space if 0Z, 1Z ∈ Y , and Y is closed under finite
soft intersections and arbitrary soft unions.

Let (M,Y , Z) be a soft topological space, and let H ∈ SS(M, Z). Then the members
of Y are called soft open sets. The soft complements of the members of Y are called soft
closed sets in (M,Y , Z). The family of all soft closed sets in (M,Y , Z) will be denoted by
Y c. The soft interior and the soft closure of H in (M,Y , Z) will be denoted by IntY (H) and
ClY (H), respectively. Let (M, λ) be a topological space, and let U ⊆ M. The interior and
the closure of U in (M, λ) will be denoted by Intλ(U) and Clλ(U), respectively.

Definition 1 ([40]). Let (M, λ) be a topological space, and V ⊆ M. Then V is said to be a δ-open
set in (M, λ) if for every x ∈ V, we find D ∈ λ such that x ∈ D ⊆ Intλ(Clλ(D)) ⊆ V. λδ

denotes the family of all δ-open sets in (M, λ).

It is well known that (M, λδ) is a topological space with λδ ⊆ λ.
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Definition 2 ([41]). Let (M, λ) be a topological space, and V ⊆ M. Then V is said to be a ωδ-open
set in (M, λ) if for every x ∈ V, we find D ∈ λ such that x ∈ D and D− Intλδ

(V) is a countable
set. λωδ

denotes the family of all ωδ-open sets in (M, λ).

It is proved in [41] that (M, λωδ
) is a topological space.

Definition 3 ([41]). A function g : (M, λ) −→ (N, γ) between the topological spaces (M, λ) and
(N, γ) is called ωδ-continuous if g−1(V) ∈ λωδ

for every V ∈ γ.

Definition 4 ([39]). Let (M,Y , Z) be a soft topological space and K ∈ SS(M, Z). Then
(a) K is a soft ω-open set in (M,Y , Z) if for any zm∈̃K, we find G ∈ Y such that zm∈̃G and

G− K ∈ C(M, Z). Yω will denote the family of all soft ω-open sets in (M,Y , Z).
(b) K is a soft ω-closed set in (M,Y , Z) if 1Z − K ∈ Yω.

It is proved in [39] that (M,Yω, Z) is a soft topological space, Y ⊆ Yω, and Y �= Yω

in general.

Definition 5. Let (M,Y , Z) be a soft topological space and H ∈ SS(M, Z). Then
Ref. [42] (a) H is a soft θ-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G⊆̃ClY (G)⊆̃H. The family of all soft θ-open sets in (M,Y , Z) will be denoted by Yθ .
Ref. [43] (b) H is a soft δ-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G⊆̃IntY (ClY (G))⊆̃H.
Ref. [39] (c) H is a soft ω-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G and G− H ∈ C(M, Z).
Ref. [44] (d) H is a soft ω0-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G and G− IntY (H) ∈ C(M, Z).
Ref. [45] (e) H is a soft ωθ-open set in (M,Y , Z) if for any zm∈̃H, we find G ∈ Y such that

zm∈̃G and G− IntYθ
(H) ∈ C(M, Z).

Ref. [46] (f) H is a soft regular-open set in (M,Y , Z) if H = IntY (ClY (H)).

Yδ (Yω , Yω0 , Yωθ
, and RO(Y)) will denote the family of all soft δ-open (resp. ω-open,

ω0-open, ωθ-open, and regular open) sets in (M,Y , Z).
It is known that Yθ , Yδ, Yω, Yω0 , and Yωθ

are all soft topologies such that Yθ ⊆ Yδ ⊆
Y ⊆ Yω0 ⊆ Yω and Yθ ⊆ Yωθ

⊆ Yω0 .

Definition 6. A soft topological space (M,Y , Z) is called:
Ref. [39] (a) Soft locally countable if it has a soft base K ⊆ C(M, Z).
Ref. [39] (b) Soft anti-locally countable (soft A-L-C) if Y ∩ C(M, Z) = {0Z}.
Ref. [24] (c) Soft Lindelof if for every H ⊆ Y such that ∪̃H∈HH = 1Z, there is a countable

subcollectionH1 ⊆ H such that ∪̃H∈H1 H = 1Z.
Ref. [47] (d) Soft nearly compact if for everyH ⊆ RO(Y) such that ∪̃H∈HH = 1Z, there is a

finite subcollectionH1 ⊆ H such that ∪̃H∈H1 H = 1Z.
Ref. [47] (e) Soft nearly Lindelof if for everyH ⊆ RO(Y) such that ∪̃H∈HH = 1Z, there is a

countable subcollectionH1 ⊆ H such that ∪̃H∈H1 H = 1Z.
Ref. [48] (f) Soft regular if for every ax ∈ SP(M, Z) and every G ∈ Y such that ax∈̃G, there

exists H ∈ Y such that ax∈̃H⊆̃ClY (H)⊆̃G.
Ref. [49] (g) Soft semi-regularization topology if Y = Y δ.

Definition 7 ([50]). A soft function fqv : (M,Y , Z) −→ (N,X , W) is called soft ω0-continuous
if f−1

qv (K) ∈ Yω0 for every K ∈ X .

Theorem 1 ([17]). For any soft topological space (M,Y , Z) and any a ∈ Z, the family

{G(a) : G ∈ Y}
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forms a topology on M. This topology is denoted by Ya.

Theorem 2 ([38]). For any family of topological spaces {(M, βa) : a ∈ A}, the family

{G ∈ SS(M, A) : G(a) ∈ βa for all a ∈ A}
forms a soft topology on M relative to A. This soft topology is denoted by ⊕a∈Aβa.

Theorem 3 ([38]). For any topological space (M, λ) and any set of parameters Z, the family
{G ∈ SS(M, Z) : G(z) ∈ λ for all z ∈ Z} defines a soft topology on M relative to Z. τ(λ) denotes
this soft topology.

2. Soft ωδ-Open Sets

Definition 8. Let (M,Y , Z) be a soft topological space and K ∈ SS(M, Z). Then
(a) K is a soft ωδ-open set in (M,Y , Z) if for any zm∈̃K, we find G ∈ Y such that zm∈̃G and

G− IntYδ
(K) ∈ C(M, Z). Yωδ

will denote the family of all soft ωδ-open sets in (M,Y , Z).
(b) K is a soft ωδ-closed set in (M,Y , Z) if 1Z − K ∈ Yωδ

.

Theorem 4. Let (M,Y , Z) be a soft topological space and H ∈ SS(M, Z). Then H ∈ Yωδ
if and

only if for each zm∈̃H, we find G ∈ Y and R ∈ C(M, Z) such that zm∈̃G and G− R⊆̃IntYδ
(H).

Proof. Necessity. Suppose that H ∈ Yωδ
. Let zm∈̃H. Then we find G ∈ Y such that

zm∈̃G and G − IntYδ
(H) ∈ C(M, Z). Let R = G − IntYδ

(H). Then R ∈ C(M, Z) and
G− R = IntYδ

(H)⊆̃IntYδ
(H).

Sufficiency. Suppose that for each zm∈̃H, we find G ∈ Y and R ∈ C(M, Z) such
that zm∈̃G and G − R⊆̃IntYδ

(H). Let zm∈̃H. Then, by assumption, we find G ∈ Y
and R ∈ C(M, Z) such that zm∈̃G and G − R⊆̃IntYδ

(H). Since G − R⊆̃IntYδ
(H), then

G− IntYδ
(H)⊆̃R ∈ C(M, Z), and thus, G− IntYδ

(H) ∈ C(M, Z). Therefore, H ∈ Yωδ
.

Theorem 5. For any soft topological space (M,Y , Z), Yδ ⊆ Yωδ
⊆ Yω0 .

Proof. To see that Yδ ⊆ Yωδ
, let G ∈ Yδ and zm∈̃G. Since G ∈ Yδ, then IntYδ

(G) = G.
Thus, we have zm∈̃G ∈ Y such that G− IntYδ

(G) = 0Z ∈ C(M, Z), and hence G ∈ Yωδ
.

To prove that Yωδ
⊆ Yω0 , let G ∈ Yωδ

and zm∈̃G. Then we find H ∈ Y such that zm∈̃H
and H− IntYδ

(G) ∈ C(M, Z). Since IntYδ
(G)⊆̃IntY (G), then H− IntY (G)⊆̃H− IntYδ

(G),
and so H − IntY (G) ∈ C(M, Z). Hence, G ∈ Yω0 .

Theorem 6. For any soft topological space (M,Y , Z), (M,Yωδ
, Z) is a soft topological space.

Proof. Since by Proposition 4.2 of [43], (M,Yδ, A) is a soft topological space, then 0Z,
1Z ∈ Yδ. Thus, by Theorem 5, 0Z, 1Z ∈ Yωδ

.
Let K, N ∈ Yωδ

and zm∈̃K∩̃N. Then zm∈̃K ∈ Yωδ
and zm∈̃N ∈ Yωδ

. So, we find
H, L ∈ Y such that zm∈̃H∩̃L ∈ Y and H − IntYδ

(K), L − IntYδ
(N) ∈ C(M, Z). Since

IntYδ
(K∩̃N) = IntYδ

(K)∩̃IntYδ
(N), then(

H∩̃L
)
−
(

IntYδ
(K∩̃N)

)
=

(
H∩̃L

)
−
(

IntYδ
(K)∩̃IntYδ

(N)
)

=
((

H∩̃L
)
− IntYδ

(K)
)
∪̃
((

H∩̃L
)
− IntYδ

(N)
)
∈ C(M, Z).

Hence, K∩̃N ∈ Yωδ
.

Let {Gα : α ∈ Δ} ⊆ Yωδ
and zm∈̃ ∪α∈Δ Gα. Then there exists α◦ ∈ Δ such that

zm∈̃Gα◦ . So, by Theorem 4 , we find H ∈ Y and R ∈ C(M, Z) such that zm∈̃H and
H − R⊆̃IntYδ

(Gα◦)⊆̃IntYδ
(∪̃α∈ΔGα◦). Hence, ∪̃α∈ΔGα◦ ∈ Yωδ

.

Theorem 7. If (M,Y , Z) is soft locally countable, then Yωδ
= SS(M, Z).
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Proof. Let (M,Y , Z) be soft locally countable. Let H ∈ SS(M, Z) and zm∈̃H. Choose
K ∈ C(M, Z) ∩ Y such that zm∈̃K⊆̃H. Thus, we have K ∈ C(M, Z), zm∈̃K ∈ Y , and
K− IntYδ

(H) ∈ C(M, Z). Hence, H ∈ Yωδ
.

Theorem 8. If (M,Y , Z) is a soft semi-regularization topology, then Yωδ
= Yω0 .

Proof. By Theorem 5, it is sufficient to see that Yω0 ⊆ Yωδ
. Let H ∈ Yω0 and zm∈̃H. Then

we find G ∈ Y such that zm∈̃G and G − IntY (H) ∈ C(M, Z). Since (M,Y , Z) is a soft
semi-regularization topology, then Yδ = Y , and so IntYδ

(H) = IntY (H). This shows that
H ∈ Yωδ

.

Theorem 9. For any soft topological space (M,Y , Z), Yωθ
⊆ Yωδ

.

Proof. Let G ∈ Yωθ
and zm∈̃G. Then we find H ∈ Y such that zm∈̃H and H − IntYθ

(G)

∈ C(M, Z). Since IntYθ
(G)⊆̃IntYδ

(G), then H − IntYδ
(G)⊆̃H − IntYθ

(G), and so H −
IntYδ

(G) ∈ C(M, Z). Hence, G ∈ Yωδ
.

Lemma 1. Let (M,Y , Z) be a soft topological space, and K ∈ SS(M, Z). Then, for each a ∈ Z,(
IntYδ

(K)
)
(a) ⊆ Int(Ya)δ

(K(a)).

Proof. Let m ∈
(

IntYδ
(K)

)
(a). Then am∈̃IntYδ

(K), and so, we find G ∈ Yδ such that
am∈̃G⊆̃K. Thus, we have m ∈ G(a) ⊆ K(a) and G(a) ∈ (Yδ)a. Since, by Theorem 30
of [51], G(a) ∈ (Ya)δ, then m ∈ Int(Ya)δ

(K(a)).

Theorem 10. Let (M,Y , Z) be a soft topological space. Then, for every a ∈ Z, (Yωδ
)a ⊆ (Ya)ωδ

.

Proof. Let a ∈ Z. Let V ∈ (Yωδ
)a and m ∈ V. Then, there exists K ∈ Yωδ

such that
V = K(a). Thus, am∈̃K ∈ Yωδ

, and by Theorem 4, we find G ∈ Y and R ∈ C(M, Z)
such that am∈̃G and G − R⊆̃IntYδ

(K). So, we have m ∈ G(a) ∈ Ya, R(a) is a countable
set, and G(a) − R(a) = (G− R)(a) ⊆

(
IntYδ

(K)
)
(a). On the other hand, by Lemma 1,(

IntYδ
(K)

)
(a) ⊆ Int(Ya)δ

(K(a)). This shows that V ∈ (Ya)ωδ
.

Corollary 1. Let (M,Y , Z) be a soft topological space, and K ∈ Yωδ
. Then K(a) ∈ (Ya)ωδ

for all
z ∈ Z.

Proof. Let s ∈ S. Since G ∈ Yωδ
, then G(s) ∈ (Yωδ

)s. Thus, by Theorem 9, G(s) ∈
(Ys)ωδ

.

Theorem 11. Let {(M, βz) : z ∈ Z} be a collection of topological spaces. Then (⊕z∈Zβz)ωδ
=

⊕z∈Z(βz)ωδ
.

Proof. To show that (⊕z∈Zβz)ωδ
⊆ ⊕z∈Z(βz)ωδ

, let H ∈ (⊕z∈Zβz)ωδ
. Let b ∈ Z. We

will show that H(b) ∈ (βb)ωδ
. Let m ∈ H(b). Then bm∈̃H. Since H ∈ (⊕z∈Zβz)ωδ

, we
find G ∈ ⊕z∈Zβz and R ∈ C(M, Z) such that bm∈̃G and G − R⊆̃Int(⊕z∈Z βz)δ

(H). Now,
by Theorem 31 of [51], (⊕z∈Zβz)δ = ⊕z∈Z(βz)δ. Thus, G − R⊆̃Int⊕z∈Z(βz)δ

(H) and so

G(b) − R(b) = (G− R)(b) ⊆
(

Int⊕z∈Z(βz)δ
(H)

)
(b). In contrast, by Lemma 4.9 of [52],(

Int⊕z∈Z(βz)δ
(H)

)
(b) = Int(βb)δ

(H(b)). Therefore, we have m ∈ G(b) ∈ βb, R(b) is a
countable set, and G(b)− R(b) = Int(βb)δ

(H(b)). Hence, H(b) ∈ (βb)ωδ
.

To show that ⊕z∈Z(βz)ωδ
⊆ (⊕z∈Zβz)ωδ

, let H ∈ ⊕z∈Z(βz)ωδ
. Let bm∈̃H. Then

m ∈ H(b) ∈ (βb)ωδ
. So, we find V ∈ βb such that m ∈ V and V − Int(βb)δ

(H(b))

is a countable set. By Lemma 4.9 of [52],
(

Int⊕z∈Z(βz)δ
(H)

)
(b) = Int(βb)δ

(H(b)) and

so
(

bV −
(

Int⊕z∈Z(βz)δ
(H)

))
(b) = V −

(
Int⊕z∈Z(βz)δ

(H)
)
(b) is a countable set. There-
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fore, we have bm∈̃bV ∈ ⊕z∈Zβz and bV −
(

Int⊕z∈Z(βz)δ
(H)

)
∈ C(M, Z). This shows that

H ∈ (⊕z∈Zβz)ωδ
.

Corollary 2. For any topological space (M, β) and any set of parameters Z, (τ(β))ωδ
= τ(βωδ

).

Proof. Let βz = β for every z ∈ Z. Then τ(β) = ⊕z∈Zβz. Thus, by Theorem 11,

(τ(β))ωδ
= (⊕z∈Zβz)ωδ

= ⊕z∈Z(βz)ωδ

= τ(βωδ
).

The following examples show that equality cannot be used to replace either of the two
soft inclusions in Theorem 5:

Example 1. Let M = Q, A = N, Y = {0A} ∪ {K ∈ SS(M, A) : M− K(a) is a finite set for
every a ∈ A}. Since (M,Y , A) is soft locally countable, then by Theorem 7, Yωδ

= SS(M, A).
Therefore, CZ ∈ Yωδ

−Yδ.

Example 2. Let M = R, Z = {a, b, d}, and Y =
{

0Z, 1Z, b(0,∞)

}
. Suppose that IntYδ

(
b(0,∞)

)
�=

0Z. Then we find m ∈ (0, ∞) such that bm∈̃IntYδ

(
b(0,∞)

)
. So, we find K ∈ Y such that

bm∈̃K⊆̃IntY (ClY (K))⊆̃b(0,∞). Thus, K = b(0,∞), and so IntY (ClY (K)) = IntY (1Z) =

1Z⊆̃b(0,∞). Hence, IntYδ

(
b(0,∞)

)
= 0Z. Suppose that b(0,∞) ∈ Yωδ

, then we find H ∈ Y
such that b1∈̃H and H − IntYδ

(
b(0,∞)

)
= H ∈ C(M, Z). Since H ∈ Y−{0Z}, then H ∈{

1Z, b(0,∞)

}
. But

{
1Z, b(0,∞)

}
∩ C(M, Z) = ∅. Therefore, b(0,∞) /∈ Yωδ

. In contrast, by
Theorem 5 of [44], b(0,∞) ∈ Yω0 .

Additionally, Example 2 demonstrates that Y need not always be a subset of Yωδ
.

The inclusion in Theorem 9 need not be equality in general:

Example 3. Let M = R, Z = N, and
Y = {K ∈ SS(M, Z) : K(a) ∈ {∅, M,Q∩ (1, 2),R−Q, (Q∩ (1, 2)) ∪ (R−Q)} for all

a ∈ Z}.
Then CR−Q ∈ Yωδ

−Yωθ
.

Theorem 12. Let (M,Y , Z) be a soft topological space. If CV ∈ (Y ∩ Yωδ
) − {0Z}, then

(Yωδ
)V ⊆ (YV)ωδ

.

Proof. Let K ∈ (Yωδ
)V and zm∈̃K. Choose T ∈ Yωδ

such that K = T∩̃CV . Since CV ∈ Yωδ
,

then K ∈ Yωδ
. So, we find D ∈ Y and E ∈ C(M, Z) such that zm∈̃D and D− E ⊆̃IntYδ

(K).
So, we have zm∈̃D∩̃CV ∈ YV , E∩̃CV ∈ C(V, A), and

(
D∩̃CV

)
−
(
E∩̃CV

)
⊆̃(D− E)∩̃CV

⊆̃IntYδ
(K)∩̃CV⊆̃Int(YV)δ

(K). This shows that K ∈ (YV)ωδ
.

Corollary 3. Let (M,Y , Z) be a soft topological space. If CV ∈ Yδ − {0Z}, then (Yωδ
)V ⊆

(YV)ωδ
.

Theorem 12 requires the condition “CV ∈ Y ∩ Yωδ
”, as the following example

demonstrates.
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Example 4. Let M = R, V = R − Q, Z = N, λ be the usual topology on M, and Y =
{CW : W ∈ λ}. Since C(3,∞) ∈ Y , then by Theorem 5 of [44], C(3,∞) ∈ Yω0 . Since (M,Y , Z)
is soft regular and C(3,∞) ∈ Y , then by Theorem 8, C(3,∞) ∈ Yωδ

. Thus, C(3,∞)∩̃CV =
C(3,∞)∩(R−Q) ∈ (Yωδ

)V. Suppose that C(3,∞)∩(R−Q) ∈ (YV)ωδ
. Let a = 1. Then we find

W ∈ λ and K ∈ C(V, A) such that a√11 ∈ CW and CW − K⊆̃Int(YV )δ

(
C(3,∞)∩(R−Q)

)
⊆̃IntYV(

C(3,∞)∩(R−Q)

)
= 0Z. Thus, CW⊆̃K, and hence CW ∈ C(V, A). Therefore, W is a countable set,

which is impossible. This shows that C(3,∞)∩(R−Q) /∈ (YV)ωδ
.

Theorem 13. Let (M,Y , Z) be soft Lindelof. Then for every W ∈ Yωδ
∩ Y c, we have W −

IntYδ
(W) ∈ C(M, Z).

Proof. Let W ∈ Yωδ
∩ Y c. Since W ∈ Yωδ

, for every zm∈̃W, we find Tzm ∈ Y such that
zm∈̃Tzm and Tzm − IntYδ

(W) ∈ C(M, Z). Since W ∈ Y c, W is a soft Lindelof subset of
(M,Y , Z). Set � ={Tzm : zm∈̃K}. Since W⊆̃∪̃zm∈̃KTzm , then we find a countable subfam-
ily �1 ⊆ � such that W⊆̃∪̃S∈�1 S. Since �1 is countable, then ∪̃S∈�1

(
S− IntYδ

(W)
)
∈

C(M, Z). Since W − IntYδ
(W)⊆̃ ∪̃S∈�1

(
S− IntYδ

(W)
)
, W − IntYδ

(W) ∈ C(M, Z).

Theorem 14. Let (M,Y , Z) be a soft topological space, and K ∈ (Yωδ
)c. Then we find H ∈ Y c

and T ∈ C(M, Z) such that ClYδ
(K)⊆̃H∪̃T.

Proof. If K = 1Z, then K⊆̃1Z∪̃0Z with 1Z ∈ Y c and 0Z ∈ C(M, Z). If K �= 1Z, then
we find zm∈̃1Z − K ∈ Yωδ

. So, we find G ∈ Y and T ∈ C(M, Z) such that zm∈̃G and
G − T⊆̃IntYδ

(1Z − K) = 1Z − ClYδ
(K) and thus ClYδ

(K)⊆̃1Z − (G− T) = (1Z − G)∪̃T.
Let H = 1Z − G. Then H ∈ Y c and ClYδ

(K)⊆̃H∪̃T.

Theorem 15. A soft topological space (M,Y , Z) is soft A-L-C if and only if (M,Yωδ
, A) is soft

A-L-C.

Proof. Necessity. Let (M,Y , Z) be soft A-L-C. To show that (M,Yωδ
, A) is soft A-L-C, on

the contrary, we find K ∈ (Yωδ
∩ C(M, Z))− {0Z}. Pick zm∈̃K. Since K ∈ Yωδ

, then we
find T ∈ Y and N ∈ C(M, Z) such that zm∈̃T and T − N⊆̃IntYδ

(K)⊆̃K. Thus, T⊆̃K∪̃N,
and hence T ∈ C(M, Z). Since zm∈̃T, then T ∈ Y − {0Z}. Since (M,Y , Z) is soft A-L-C,
then T /∈ C(M, Z), a contradiction.

Sufficiency. Clear.

Theorem 16. Let (M,Y , Z) be soft A-L-C. Then, for every K ∈ Yωδ
, ClY (K)⊆̃ClYωδ

(K).

Proof. Let K ∈ Yωδ
. By Theorem 5, Yωδ

⊆ Yω0 , and thus ClY
ω0 (K)⊆̃ClYωδ

(K). Since
(M,Y , Z) is soft A-L-C and H ∈ Yωδ

⊆ Yω0 , then by Theorem 21 of [44], ClY
ω0 (K) =

ClY (K). Hence, ClY (K)⊆̃ClYωδ
(K).

Corollary 4. Let (M,Y , Z) be soft A-L-C. Then for each K ∈ (Yωδ
)c, then IntYωδ

(K)⊆̃IntY (K).

Theorem 17. If (M,Y , Z) is soft Lindelof, then (M,Yωδ
, Z) is soft Lindelof.

Proof. Let K ⊆ Yωδ
such that 1Z = ∪̃K∈KK. For each zm∈̃1Z, choose Kzm ∈ K such that

zm∈̃Kzm . For each zm∈̃1Z, choose Hzm ∈ Y and Tzm ∈ C(M, Z) such that zm∈̃Hzm and
Hzm − Tzm⊆̃IntYωδ

(Kzm)⊆̃Kzm . Since (M,Y , Z) is soft Lindelof and 1Z = ∪̃zm∈̃1Z
Hzm , then

there exists a countable subset R ⊆ SP(M, Z) such that 1Z = ∪̃zm∈̃R Hzm and so
1Z = ∪̃zm∈̃R Hzm =

(
∪̃zm∈̃R(Hzm − Tzm)

)
∪̃
(
∪̃zm∈̃RTzm

)
⊆̃
(
∪̃zm∈̃RKzm

)
∪̃
(
∪̃zm∈̃RTzm

)
.
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Put S = ∪̃zm∈̃RTzm . Then S ∈ C(M, Z). For each bx∈̃S, choose Kbx ∈ K such that
bx∈̃Kbx . PutN ={Kzm : zm ∈ R} ∪

{
Kbx : bx∈̃S

}
. ThenN is a countable subcollection of K

such that 1Z = ∪̃N∈NN. Therefore, (M,Yωδ
, Z) is soft Lindelof.

But the converse of Theorem 17 is not always true:

Theorem 18. Let M = R, Z = N, and Y = {0Z}∪̃{K ∈ SS(M, Z) : (−∞, 1) ⊆ K(z) for all
z ∈ Z}. Let H =

{
C(−∞,1)∪{m} : m ∈ [1, ∞)

}
. Then H ⊆ Y , ∪̃H∈HH = 1Z, and for any

countable subcollection H1 ⊆ H, ∪̃H∈H1 H �= 1Z. Therefore, (M,Y , Z) is not soft Lindelof. In
contrast, since for any G ∈ Y−{0Z}, ClY (G) = 1Z, then Yδ = {0Z, 1Z} and so Yωδ

= {0Z, 1Z}.
Hence, (M,Yωδ

, Z) is soft Lindelof.

Theorem 19. If (M,Yωδ
, Z) is soft Lindelof, then (M,Y , Z) is soft nearly Lindelof.

Proof. Let K ⊆RO(Y) such that 1Z = ∪̃K∈KK. Then K ⊆ Y δ, and by Theorem 5, K ⊆ Yωδ
.

Since (M,Yωδ
, Z) is soft Lindelof, then we find a countable subfamily K1⊆ K such that

1Z = ∪̃K∈K1 K. This shows that (M,Y , Z) is soft nearly Lindelof.

In general, Theorem 19 cannot be reversed:

Theorem 20. Let M = R, Z = N, and
Y = {0Z}∪̃{K ∈ SS(M, Z) : 1 ∈ K(z) for all z ∈ Z}.
Since Yδ = {0Z, 1Z}, then (M,Y , Z) is soft nearly Lindelof. Since for each zm ∈ SP(M, Z),

zm∈̃z{1,m} ∈ Y∩C(M, Z), then (M,Y , Z) is soft locally countable. Thus, by Theorem 7, Yωδ
=

SS(M, Z). Since 1Z = ∪̃zm∈SP(M,Z)zm and for any countable subfamily H ⊆SP(M, Z), 1Z �=
∪̃zm∈Hzm, then (M,Yωδ

, Z) is not soft Lindelof.

Theorem 21. If (M,Yωδ
, Z) is soft compact, then (M,Y , Z) is soft nearly compact.

Proof. Let K ⊆RO(Y) such that 1Z = ∪̃K∈KK. Then K ⊆ Y δ, and by Theorem 5, K ⊆ Yωδ
.

Since (M,Yωδ
, Z) is soft compact, then we find a finite subfamily K1⊆ K such that

1Z = ∪̃K∈K1 K. This shows that (M,Y , Z) is soft nearly compact.

In general, Theorem 21 cannot be reversed.

Example 5. Let M = Q, Z = {a, b}, and Y = {0Z, 1Z}. Then Yδ = {0Z, 1Z}, and thus
(M,Y , Z) is soft nearly compact. Since (M,Y , Z) is soft locally countable, then by Theorem 7,
Yωδ

= SS(M, Z). Since 1Z = ∪̃zm∈SP(M,Z)zm and for any finite subfamily H ⊆SP(M, Z),
1Z �= ∪̃zm∈Hzm, then (M,Yωδ

, Z) is not soft compact.

Example 5 and the following example show that the soft compactness of a soft topolog-
ical space (M,Y , Z) is neither implied nor imply by the soft compactness of (M,Yωδ

, Z).

Example 6. Let M = R, Z = {a} and
Y = {0Z}∪̃{K ∈ SS(M, Z) : R− K(a) is countable}.
Since Yδ = {0Z, 1Z} = Yωδ

, then (M,Yωδ
, Z) is soft compact. In contrast, it is clear that

(M,Y , Z) is not soft compact.

3. Decompositions

Definition 9. Let (M,Y , Z) be a soft topological space and K ∈ SS(M, Z). Then K is
(a) Soft ωδ

δ-open set in (M,Y , Z) if IntYωδ
(K) = IntYδ

(K).
(b) Soft ω0

δ-open set in (M,Y , Z) if IntYωδ
(K) = IntY (K).

(c) Soft ωθ
δ-open set in (M,Y , Z) if IntYωδ

(K) = IntYθ
(K).

(d) Soft ωω
δ -open set in (M,Y , Z) if IntYωδ

(K) = IntYω
(K).
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In a soft topological space (M,Y , Z), the collections of soft ωδ
δ-open sets, soft ω0

δ-open
set, soft ωθ

δ-open sets, and soft ωω
δ -open sets will be denoted by ωδ

δ(Y), ω0
δ(Y), ωθ

δ(Y), and
ωω

δ (Y), respectively.

Theorem 22. Let (M,Y , Z) be a soft topological space. Then
(a) Yωδ

⊆ ωω
δ (Y).

(b) Yδ ⊆ ωω
δ (Y) ∩ωδ

δ(Y) ∩ω0
δ(Y).

(c) Yθ ⊆ ωδ
δ(Y) ∩ω0

δ(Y) ∩ωω
δ (Y) ∩ωθ

δ(Y).
(d) ωθ

δ(Y) ⊆ ωδ
δ(Y).

Proof. (a) Let K ∈ Yωδ
. Then IntYωδ

(K) = K. Also, by Theorem 5 and Theorem 5 of [44],
K ∈ Yω, and so IntYω

(K) = K. Therefore, IntYωδ
(K) = IntYω

(K). Hence, K ∈ ωω
δ (Y).

(b) Since by Theorem 5, Yδ ⊆ Yωδ
. Then, by (a), Yδ ⊆ ωω

δ (Y). Let K ∈ Yδ. Then
IntYδ

(K) = K. By Theorem 5, K ∈ Yωδ
, and thus, IntYωδ

(K) = K. Also, since Yδ ⊆ Y , then
K ∈ Y , and so IntY (K) = K. Therefore, we have IntYω

(K) = IntYδ
(K) = IntY (K). This

shows that K ∈ ωδ
δ(Y) ∩ω0

δ(Y).
(c) Since Yθ ⊆ Yδ, then by (c), Yθ ⊆ ωδ

δ(Y) ∩ ω0
δ(Y) ∩ ωω

δ (Y). Let K ∈ Yθ . Then
IntYθ

(K) = K. Since Yθ ⊆ Yδ, then by Theorem 2.3, K ∈ Yωδ
, and so IntYωδ

(K) = K.

Therefore, IntYωδ
(K) = IntYθ

(K), and hence K ∈ ωθ
δ(Y).

(d) Let K ∈ ωθ
δ(Y). Then IntYωδ

(K) = IntYθ
(K). In contrast, by Theorem 5, we have

Yθ ⊆ Yδ ⊆ Yωδ
, then IntYθ

(K)⊆̃IntYδ
(K)⊆̃IntYωδ

(K). Therefore, we have IntYδ
(K) =

IntYωδ
(K) and hence K ∈ ωδ

δ(Y).

As the next two examples show, in general, none of the inclusions in Theorem 22 can
be replaced by equality:

Example 7. Let M = R, A = {a}, and Y = {0A, 1A, aR−Q}. Let K = aN. Suppose that
IntYω

(K) �= 0A. Then there exists x ∈ M such that ax∈̃IntYω
(K) ∈ Yω . So, we find G ∈ Y such

that ax∈̃G and G− K ∈ C(M, A), which is impossible. Therefore, IntY (K) = IntYω
(K) = 0A.

In contrast, since Yδ = Yθ = Yωδ
= {0A, 1A}, then IntYωδ

(K) = IntYδ
(K) = IntYθ

(K) = 0A
and K /∈ Yθ ∪ Yδ ∪ Yωδ

. This shows that none of the inclusions in Theorem 22 (a), (b), and (c),
cannot be replaced by equality in general.

Example 8. Let M = R, Z = {a}, and
Y = {K ∈ SS(M, Z) : K(a) ∈ {∅, M,Q∩ (1, 2),R−Q, (Q∩ (1, 2)) ∪ (R−Q)}}.
Then aR−Q ∈ ωδ

δ(Y)−ωθ
δ(Y). As a result, equality in general cannot replace the inclusion

in Theorem 22 (d).

For a soft topological space (M,Y , Z), the first and second components of each of the
ordered pairs of classes of soft sets below are not comparable in general, as demonstrated
by the following three examples:

1.
(
Y , ωδ

δ(Y)
)
.

2.
(
Y , ω0

δ(Y)
)
.

3.
(
Y , ωθ

δ(Y)
)
.

4.
(
ωδ

δ(Y), ω0
δ(Y)

)
.

5.
(
ωδ

δ(Y), ωω
δ (Y)

)
.

6.
(
ωδ(Y), ωδ

δ(Y)
)
.

7.
(
ωδ(Y), ω0

δ(Y)
)
.

8.
(
ωδ(Y), ωθ

δ(Y)
)
.

9.
(
ω0

δ(Y), ωω
δ (Y)

)
.

10.
(
Yω, ωω

δ (Y)
)
.
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Example 9. Let M = {1, 2}, Z = {a}, and Y = {K ∈ SS(M, Z) : K(a) ∈ {∅, M, {1}}}.
Then a{1} ∈

(
Y ∩ωδ(Y) ∩ω0

δ(Y) ∩ωω
δ (Y)

)
−
(
ωθ

δ(Y) ∪ωδ
δ(Y)

)
and a{2} ∈ ωδ(Y) −(

ω0
δ(Y) ∪ωδ

δ(Y)
)
.

Example 10. Let (M,Y , Z) be as in Example 6. Then aR−N ∈ ωδ
δ(Y)−

(
ω0

δ(Y) ∪ωω
δ (Y)

)
.

Example 11. Let M = {1, 2}, Z = {a}, β be the usual topology onR, andY = {K ∈ SS(M, Z) :
K(a) ∈ β}. Then a{1} ∈

(
ωδ

δ(Y) ∩ω0
δ(Y) ∩ωω

δ (Y) ∩ωθ
δ(Y)

)
−Yω.

Theorem 23. Let (M,Y , Z) be a soft topological space. Then
(a) Yωδ

= Yω ∩ωω
δ (Y).

(b) Yδ = Yωδ
∩ωδ

δ(Y).
(c) Yθ = Yωδ

∩ωθ
δ(Y).

(d) Yθ = Yωθ
∩ωθ

δ(Y).
(e) Y ∩ω0

δ(Y) ⊆ Yωδ
.

(f) Yωδ
∩ω0

δ(Y) ⊆ Y .
(g) Y ∩ω0

δ(Y) = Yωδ
∩ω0

δ(Y).

Proof. (a) By Theorem 5 and Theorem 5 of [44], Yωδ
⊆ τω. In contrast, by Theorem

22 (a), Yωδ
⊆ ωω

δ (Y). Thus, Yωδ
⊆ Yω ∩ ωω

δ (Y). To see that Yω ∩ ωω
δ (Y) ⊆ Yωδ

, let
K ∈ Yω ∩ωω

δ (Y). Since K ∈ τω, then K = IntYω
(K). Since K ∈ ωω

δ (Y), then IntYωδ
(K) =

IntYω
(K). Thus, IntYωδ

(K) = K, and hence K ∈ Yωδ
.

(b) By Theorem 5 and Theorem 22 (b), we have Yδ ⊆ Yωδ
∩ ωδ

δ(Y). To see that
Yωδ
∩ωδ

δ(Y) ⊆ Yδ, let K ∈ Yωδ
∩ωδ

δ(Y). Then K = IntYωδ
(K) and IntYωδ

(K) = IntYδ
(K).

Thus, K = IntYδ
(K), and hence K ∈ Yδ.

(c) By Theorem 5, we have Yθ ⊆ Yδ ⊆ Yωδ
. Also, by Theorem 22 (c), Yθ ⊆ ωθ

δ(Y).
Thus, Yθ ⊆ Yωδ

∩ ωθ
δ(Y). To see that Yωδ

∩ ωθ
δ(Y) ⊆ Yθ , let K ∈ Yωδ

∩ ωθ
δ(Y). Then

K = IntYωδ
(K) and IntYωδ

(K) = IntYθ
(K). Thus, K = IntYθ

(K), and hence K ∈ Yθ .

(d) By Theorem 5 of [45], Yθ ⊆ Yωθ
. Also, by (c), Yθ ⊆ ωθ

δ(Y). Thus, Yθ ⊆ Yωθ
∩

ωθ
δ(Y). In contrast, by Theorem 9 and (c), Yωθ

∩ωθ
δ(Y) ⊆ Yωδ

∩ωθ
δ(Y) = Yθ .

(e) Let K ∈ Y ∩ ω0
δ(Y). Then K = IntY (K) and IntYωδ

(K) = IntY (K). Thus,
K = IntYωδ

(K), and hence K ∈ Yωδ
.

(f) Let K ∈ Yωδ
∩ ω0

δ(Y). Then K = IntYωδ
(K) and IntYωδ

(K) = IntY (K). Thus,
K = IntY (K), and hence K ∈ Y .

(g) We have Y ∩ ω0
δ(Y) ⊆ ω0

δ(Y). Also, by (e), Y ∩ ω0
δ(Y) ⊆ Yωδ

. Hence,
Y ∩ ω0

δ(Y) ⊆ Yωδ
∩ ω0

δ(Y). In contrast, we have Yωδ
∩ ω0

δ(Y) ⊆ ω0
δ(Y). Also, by (f),

Yωδ
∩ω0

δ(Y) ⊆ Y . Hence, Yωδ
∩ω0

δ(Y) ⊆ Y ∩ω0
δ(Y).

Corollary 5. Let (M,Y , Z) be a soft topological space and K ∈ ω0
δ(Y). Then K ∈ Y if and only if

K ∈ Yωδ
.

Proof. The proof follows from Theorem 23 (g).

Theorem 24. Let (M,Y , Z) be a soft topological space. Then (M,Y , Z) is a soft semi-regularization
topology if and only if Y ⊆ω0

δ(Y) ∩ωδ
δ(Y).

Proof. Necessity. Let (M,Y , Z) be a soft semi-regularization topology. Then
Yδ = Y . Thus, by Theorem 22 (b), Y ⊆ω0

δ(Y) ∩ωδ
δ(Y).

Sufficiency. Let Y ⊆ω0
δ(Y) ∩ ωδ

δ(Y). To see that Y ⊆ Yδ, let K ∈ Y . Then
K ∈ Y∩ω0

δ(Y)∩ωδ
δ(Y). So, we have IntY (K) = K, IntYωδ

(K) = IntY (K), and IntYωδ
(K) =

IntYδ
(K). Thus, IntYδ

(K) = K. Hence, K ∈ Yδ.

Theorem 25. A soft topological space (M,Y , Z) is soft regular if and only if Y ⊆ω0
δ(Y)∩ωθ

δ(Y).
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Proof. Necessity. Let (M,Y , Z) be soft regular. Then Yθ = Y . Thus, by Theorem 22 (c),
Y ⊆ω0

δ(Y) ∩ωθ
δ(Y).

Sufficiency. Let Y ⊆ω0
δ(Y) ∩ ωθ

δ(Y). To see that Y ⊆ Yθ , let K ∈ Y . Then
K ∈ Y∩ω0

δ(Y)∩ωθ
δ(Y). So, we have IntY (K) = K, IntYωδ

(K) = IntY (K), and IntYωδ
(K) =

IntYθ
(K). Thus, IntYθ

(K) = K. Hence, K ∈ Yθ .

4. Soft ωδ-Continuity

Definition 10. A soft function fqv : (M,Y , Z) −→ (N,X , W) is called soft ωδ-continuous if
f−1
qv (K) ∈ Yωδ

for every K ∈ X .

Theorem 26. For a soft function fqv : (M,Y , Z) −→ (N,X , W), the following are equivalent:
(1) fqv : (M,Y , Z) −→ (N,X , W) is soft ωδ-continuous.
(2) f−1

qv (T) ∈ (Yωδ
)c for every T ∈ X c.

(3) ClYωδ

(
f−1
qv (A)

)
⊆̃ f−1

qv (ClX (A)) for each A ∈ SS(N, W).

(4) f−1
qv (IntX (A))⊆̃IntYωδ

(
f−1
qv (A)

)
for each A ∈ SS(N, W).

(5) fqv : (M,Yωδ
, Z) −→ (N,X , W) is soft continuous.

(6) For each zm ∈ SP(M, Z) and each G ∈ X such that fqv(zm)∈̃G, we find H ∈ Yωδ
such

that zm∈̃H and fqv(H)⊆̃G.

Proof. (1)−→(2): Let T ∈ X c. Then 1W − T ∈ X . So, by (1), f−1
qv (1W − T) = 1Z − f−1

qv (T) ∈
Yωδ

. Hence, f−1
qv (T) ∈ (Yωδ

)c.
(2)−→(3): Let A ∈ SS(N, W). Then ClX (A) ∈ X c. So, by (2), f−1

qv (ClX (A)) ∈ (Yωδ
)c.

Since f−1
qv (A)⊆̃ f−1

qv (ClX (A)) ∈ (Yωδ
)c, then ClYωδ

(
f−1
qv (A)

)
⊆̃ f−1

qv (ClX (A)).
(3)−→(4): Let A ∈ SS(N, W). Then, by (3),

1Z − IntYωδ

(
f−1
qv (A)

)
= ClYωδ

(
1Z − f−1

qv (A)
)

= ClYωδ

(
f−1
qv (1W − A)

)
⊆̃ f−1

qv (ClX (1W − A))

= f−1
qv (1W − IntX (A))

= 1Z − f−1
qv (IntX (A))

and so f−1
qv (IntX (A))⊆̃IntYωδ

(
f−1
qv (A)

)
.

(4)−→(5): Let K ∈ X . Then IntX (K) = K, and by (4), f−1
qv (K)⊆̃IntYωδ

(
f−1
qv (K)

)
. Thus,

f−1
qv (K) = IntYωδ

(
f−1
qv (K)

)
. Hence, f−1

qv (K) ∈ Yωδ
. This shows that fqv : (M,Yωδ

, Z) −→
(N,X , W) is soft continuous.

(5)−→(6): Let zm ∈ SP(M, Z) and G ∈ X such that fqv(zm)∈̃G. Then, by (5), f−1
qv (G) ∈

Yωδ
. Put H = f−1

qv (G). Then H ∈ Yωδ
such that zm∈̃H and fqv(H) = fqv

(
f−1
qv (G)

)
⊆̃G.

(6)−→(1): Let K ∈ X . To show that f−1
qv (K) ∈ Yωδ

, let zm∈̃ f−1
qv (K). Then fqv(zm)∈̃K,

and by (6), we find H ∈ Yωδ
such that zm∈̃H and fqv(H)⊆̃K. Thus, we have zm∈̃H⊆̃ f−1

qv(
fqv(H)

)
⊆̃ f−1

qv (K). Hence, f−1
qv (K) ∈ Yωδ

.

Theorem 27. If fqv : (M,Y , Z) −→ (N,X , W) is soft ωδ-continuous, then q : (M,Ya) −→(
N,Xv(a)

)
is ωδ-continuous for every a ∈ Z.

Proof. Suppose that fqv : (M,Y , Z) −→ (N,X , W) is soft ωδ-continuous, and let a ∈ Z. By
Theorem 4.2 (5), fqv : (M,Yωδ

, Z) −→ (N,X , W) is soft continuous. So, by Proposition 3.8

of [38], q :
(

M, (Yωδ
)a
)
−→

(
N,Xv(a)

)
is continuous. Since, by Theorem 10, (Yωδ

)a ⊆
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(Ya)ωδ
, then q : (M, (Ya)ωδ

) −→
(

N,Xv(a)

)
is continuous. Hence, by Theorem 4.2 (5)

of [41], q : (M,Ya) −→
(

N,Xv(a)

)
is ωδ-continuous.

Theorem 28. Let {(M, βz) : z ∈ Z} and {(N, αw) : w ∈W} be two collections of topological
spaces. Let q : M −→ N and v : Z −→ W be functions where v is bijective. Then fqv :
(M,⊕z∈Zβz, Z) −→ (N,⊕w∈Wαw, W) is soft ωδ-continuous if and only if q : (M, βa) −→(

N, αv(a)

)
is ωδ-continuous for all a ∈ Z.

Proof. Necessity. Let fqv : (M,⊕z∈Zβz, Z) −→ (N,⊕w∈Wαw, W) be soft ωδ-continuous.

Let a ∈ Z. Then, by Theorem 27, q : (M, (⊕z∈Zβz)a) −→
(

N, (⊕w∈Wαw)v(a)

)
is ωδ-

continuous. But by Theorem 3.11 of [38], (⊕z∈Zβz)a = βa and (⊕w∈Wαw)v(a) = αv(a).

Hence, q : (M, βa) −→
(

N, αv(a)

)
is ωδ-continuous.

Sufficiency. Let q : (M, βa) −→
(

N, αv(a)

)
be ωδ-continuous for all a ∈ Z. Let

K ∈ ⊕w∈Wαw. By Theorem 11, it is sufficient to show that
(

f−1
qv (K)

)
(a) ∈ (βa)ωδ

for all

a ∈ Z. Let a ∈ Z. Since q : (M, βa) −→
(

N, αv(a)

)
is ωδ-continuous and K(v(a)) ∈ αv(a),

then
(

f−1
qv (K)

)
(a) = q−1(K(v(a))) ∈ (βa)ωδ

.

Corollary 6. Let q : (M, ξ) −→ (N, φ) and v : Z −→W be two functions where v is a bijection.
Then q : (M, ξ) −→ (N, φ) is ωδ-continuous if and only if fqv : (M, τ(ξ), Z) −→ (N, τ(φ), W)
is soft ωδ-continuous.

Proof. For each z ∈ Z and w ∈ W, put βz = ξ and αw = φ. Then τ(α) = ⊕z∈Zβz and
τ(φ) = ⊕w∈Wαw. By using Theorem 28, we get the result.

Theorem 29. Let fqv : (M,Y , Z) −→ (N,X , W) be soft ωδ-continuous and surjective. If
(M,Yωδ

, Z) is soft Lindelof, then (N,X , W) is soft Lindelof.

Proof. LetH ⊆ X such that ∪̃H∈HH = 1W. Then f−1
qv
(
∪̃H∈HH

)
= ∪̃H∈H f−1

qv (H) = f−1
qv (1W) =

1Z. Since fqv : (M,Y, Z) −→ (N,X , W) is soft ωδ-continuous, then{
f−1
qv (H) : H ∈ H

}
⊆ Yωδ

. Since (M,Yωδ
, Z) is soft Lindelof, then we find a countable sub-

familyH1 ⊆ H such that ∪̃H∈H1 f−1
qv (H) = f−1

qv
(
∪̃H∈H1 H

)
= 1Z. So, fqv

(
f−1
qv
(
∪̃H∈H1 H

))
=

fqv(1Z). Since fqv is surjective, then fqv(1Z) = 1W. Thus, 1W = fqv

(
f−1
qv
(
∪̃H∈H1 H

))
⊆̃∪̃H∈H1 H,

and hence 1W = ∪̃H∈H1 H. This shows that (N,X , W) is soft Lindelof.

Corollary 7. Let fqv : (M,Y , Z) −→ (N,X , W) be soft ωδ-continuous and onto. If (M,Y , Z) is
soft Lindelof, then (N,X , W) is soft Lindelof.

Proof. The proof follows from Theorems 17 and 29.

Theorem 30. Every soft ωδ-continuous function is soft ω0-continuous.

The following illustration shows that Theorem 30 ’s converse need not always hold
true:

Example 12. Let (M,Y , Z) be as in Example 2.14. Let q : M −→ M and v : Z −→ Z be
the identity functions. Since f−1

qv

(
b(0,∞)

)
= b(0,∞) ∈ Yω0 − Yωδ

, then fqv : (M,Y , Z) −→
(M,Y , Z) is soft ω0-continuous but not soft ωδ-continuous.
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5. Conclusions

We introduced five types of soft sets. Also, we introduced soft ωδ-continuous functions
as a new class of soft functions. We gave several characterizations, relationships, and
decomposition theorems. In addition, we investigated the links between our novel soft
topological notions and their classical topological analogs.

We intend to do the following in the next work: (1) To define soft separation axioms
via our new classes of soft sets; (2) To define new soft classes of functions via our new
classes of soft sets.
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Abstract: This paper presents new classes of strong fuzzy negations, fuzzy implications and Copulas.
It begins by presenting two theorems with function classes involving the construction of strong
fuzzy negations. These classes are based on a well-known equilibrium point theorem. After that, a
construction of fuzzy implication is presented, which is not based on any negation. Finally, moving
on to the area concerning copulas, we present proof about the third property of copulas. To conclude,
we will present two original constructions of copulas. All the above constructions are motivated by
a specific formula. For some specific conditions of the variables x, y and other conditions for the
function f(x), the formula presented produces strict and strong fuzzy negations, fuzzy implications
and copulas.

Keywords: fuzzy negation; fuzzy logic; fuzzy sets; strong fuzzy negation; rational function; formula
f(f−1(y) ∗ x); fuzzy implication; copula

MSC: 03B52

1. Introduction

It is well known that one of the most rapidly growing branches of modern applied
mathematics is fuzzy logic and its objects. More and more applications of fuzzy implica-
tion and fuzzy negations are widespread; negations either through these implications or
autonomously. Fuzzy implication is the generalization of classical (Boolean) implication
in the interval [0, 1]. It plays perhaps the most important role in the field of fuzzy logic,
decision theory and fuzzy control. The article presents new methods for constructing fuzzy
negations [1–4]. Furthermore, the creation of new fuzzy implications [5–14], and through
them, new fuzzy negations is necessary. Using the knowledge and information gained
through the study of relevant writings [15–19], the article proceeds to study other areas of
fuzzy logic. Other interesting objects of fuzzy logic are copulas [20–25]. Since new classes
of negations and implications can be defined, the generated negations will be used to
construct, additionally, two new classes of copulas.

Methodologically, this article’s analysis begins in Section 2 by listing all the theorems
and remarks that will be useful in the proof of the constructions below. Those definitions
are listed in the order they are used. Definitions 1–5 relate to the construction of the
fuzzy negations, Definitions 6 and 7 relate to the construction of fuzzy implications and
Definitions 8–12 are helpful in the construction of copulas.

Therefore, for practical reasons, the first object to deal with is the construction of strong
negations [1–4]. Some of the areas that strong negations apply are as follows:

1. Artificial Intelligence (AI): Particularly in designing systems that handle uncertain or
imprecise information.

2. Control Systems: For instance, in developing controllers for complex systems like
washing machines, air conditioners and automotive systems.

Mathematics 2024, 12, 2254. https://doi.org/10.3390/math12142254 https://www.mdpi.com/journal/mathematics156
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3. Decision Making: Assisting in multi-criteria decision-making processes where inputs
are not clear-cut.

4. Pattern Recognition: Helping in classifying patterns that are not crisply defined.
5. Robotics: Enabling robots to handle ambiguous or uncertain environments.
6. Data Mining: For analyzing and interpreting data that are noisy or incomplete.
7. Natural Language Processing (NLP): Managing the inherent ambiguity and impreci-

sion in human language.
8. Medical Diagnosis: Supporting systems that need to deal with uncertain or imprecise

medical data.

All the fuzzy negations that will be presented will have the form of a multi-branch
function and will be based on Definition 5 [1]. This definition constructs negations with the
help of the equilibrium point. Two classes of strong fuzzy negations will be constructed.
And every class of negations is followed by one example. The second example presents a
class of negations with a special property: it makes it very easy to calculate the equilibrium
point. This calculation will be obtained by solving a simple secondary equation.

What follows is the construction of a fuzzy implication [8–13,20,21,24] with an alterna-
tive way, without the use of fuzzy negations.

This will be achieved with the use of the formula f
(

f−1(y) ∗ x
)

. For every x, y into

the interval [0, 1] and the use of a decreasing function f(x), the formula f
(

f−1(y) ∗ x
)

helps
to construct fuzzy implications. In addition, the formula constructs one branch of a strong
fuzzy negation (Remark 1) and, autonomously, a strict fuzzy negation (Remark 2). The
construction of the implication will be achieved with the use of Definitions 6 and 7. Let us
mention some of the areas where fuzzy implications are important:

1. Artificial Intelligence (AI) and Machine Learning (Expert System, Knowledge Rep-
resentation) 2. Control Systems (Fuzzy Control) 3. Decision Support System (Multi-Criteria
Decision Making (MCDM), Risk Assessment) 4. Pattern Recognition and Image Processing
(Classification, Image Segmentation) 5. Robotics (Autonomous Navigation, Sensor Fusion)
6. Natural Language Processing (NLP) (Semantic Analysis, Text Mining) 7. Medical Diag-
nosis and Healthcare (Diagnostic Systems, Treatment Planning) 8. Economics and Finance
(Forecasting, Credit Scoring).

Finally, with the use of the fuzzy negations, newly constructed classes of copulas are
built. Making some adjustments to the functions used in the construction of the negations,
three-dimensional copulas [20–24] will be generated. Again, the formula f

(
f−1(y) ∗ x

)
will participate in the construction of a class of copulas, with some minor modifications.
It is well known that copulas find huge applications in economic problems, portfolio
management and risk analysis, specifically in the banking, insurance and investing fields.

In conclusion, this article aims to answer the following questions:

(1) Is there an easy way to calculate the equilibrium point in a two-branch strong negation?
(2) Are there real functions that can provide at the same time the construction of strong

negations, implications and copulas?
(3) Is there a point of convergence in the construction of fuzzy negations, fuzzy implica-

tions and copulas?
(4) Can the formula f

(
f−1(y) ∗ x

)
provide more alternative options?

(5) Can this article provide knowledge for future use in robotics kai AI technology?

The paper is organized as follows: Section 2 is a reminder of the basic concepts and
definitions used in the paper. Section 3 analyzes the newly constructed methods of strong
fuzzy negations, fuzzy implications and copulas. One example for every theorem given is
presented. Section 4 is about the discussion of the results, and Section 5 is the conclusion.

2. Materials and Methods

Some theorems of fuzzy logic and some definitions will be listed here. This will be
conducted so that the theorems concerning the upcoming constructions will be explained
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and proved. To help the readers get familiar with the theory, some of the concepts and
results employed in the rest of the paper shall be recalled below.

In this section all the theorems and propositions necessary to be able to present and
fully prove the constructions we have mentioned above will be given.

Theorems from the whole range of the literature concerning the structural definitions
of fuzzy negations, fuzzy implications and copulas will be given. In particular, Definitions
1–5 are concerned exclusively with the construction of negations, Definitions 6 and 7 are
concerned with the construction of fuzzy implications, and Definitions 8–12 are concerned
with the constructions to be presented in the area of copulas.

Note also that between Definitions 5 and 6 there is a table with reference to the most
important and best-known classes of fuzzy negations.

At this point, a special bibliographical reference could be made to the articles on the
construction of copulas, their properties, Archimedeans and fuzzy copulas [21,24,26].

Definition 1. (see [1–4,8–14] Definition 1.4.1). The function N : [0, 1]→ [0, 1] is a fuzzy
negation if the following properties are applied:

N(0) = 1, N(1) = 0 (1)

N : is decreasing (2)

Definition 2. (see [1–4,8–14] Definition 1.4.2 (i)). A fuzzy negation N is called strict if the
following properties are applied:

N is strictly decreasing (3)

N is continuous (4)

Definition 3. (see [1–4,8–14] Definition 1.4.2 (ii)). A fuzzy negation N is called strong if

N(N(x)) = x (5)

Definition 4. (see [1–4,8–14] Definition 1.4.2 (ii)). The solution of the equation N(x) = x is
called the equilibrium point of N. If the function N is continuous, the equilibrium point is unique.

Definition 5 ([1]). Strong branching fuzzy negations can be produced, while in every branch
is a decreasing function. If N1 is a fuzzy negation, which is not necessary, a strong negation and
N1(ε) = ε where ε is the equilibrium point of N1. So, if N1 is any continuous fuzzy negation in the
interval [0, 1], then the following form [12] product is strong fuzzy negations N2 and, in our case,
rational fuzzy negations (Figure 1).

N2(x) =

⎧⎨⎩
N1(x) , x ∈ [0, ε]

N−1
1 (x) , x ∈ (ε, 1]

(6)

The above formula will be generalized by using two functions (f, g), one decreasing
and one increasing.

Below is Table 1 listing the most well-known classes of fuzzy negations.
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Figure 1. A random example of the form of the negation N2(x).

Table 1. Some examples of known negation classes.

Name Fuzzy Negations

Yager class Nw(x) = (1− xw)
1
w ,

w > 0

Threshold class Nt(x) =

⎧⎨⎩
1, αν x < t

1 ή 0, αν x = t
0, αν x > t

, t ∈ (0, 1)

Standard negation N(x) = 1− x

The least fuzzy negation ND1(x) =
{

1, i f x = 0
0, i f x ∈ (0, 1]

The greatest fuzzy negation ND2(x) =
{

0, i f x = 1
1, i f x ∈ [0, 1)

Sugeno Class Nδ(x) = 1−x
1+δx , δ > −1

Fuzzy implications have probably become the most important operations in fuzzy
logic, approximate reasoning and fuzzy control. These operators not only model fuzzy
conditionals but also make inferences in any fuzzy rule-based system. These operators are
defined as follows:

Definition 6 (see [8–14] Definition 1.1.1). A function I : [0, 1]2 → [0, 1] is called a fuzzy
implication if it satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

x1≤ x2 ⇔ I(x1, y) ≥ I(x 2, y), i.e., I(·, y) is decreasing. (7)

y1 ≤ y2 ⇔ I(x, y1) ≤ I(x, y2), i.e., I(x, ·) is increasing. (8)

I(0, 0) = 1 (9)

I(1, 1) = 1 (10)

I(1, 0) = 0 (11)

Definition 7 (see [8–14] Definition 1.4.15 (ii)). If I is a fuzzy implication, then the func-
tion NI : [0, 1]→ [0, 1] with the form NI(x) = I(x, 0) is called natural negation of I.

Definition 8 ([26]). Let I be a nonempty interval of R. A function f from I to R is convex if, and

only if, ∂2 f
∂x2 ≥ 0.
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Definition 9 ([20–24,26]). A function C : [0, 1]2 → [0, 1] is called a copula if it satisfies the
following properties:

C(0, t) = C(t, 0) = 0 for each 0 ≤ t ≤ 1 (12)

C(1, t) = C(t, 1) = t for each 0 ≤ t ≤ 1 (13)

The C-volume of a rectangle must be not negative, e.g.,

VH = C(x1, y1)− C(x1, y2)− C(x2, y1) + C(x2, y2) ≥ 0 (14)

for each x1 ≤ x2 and y1 ≤ y2 where 0 ≤ x1, x2,y1, y2 ≤ 1.

Definition 10 ([20–24,26]). If the function C is a copula, then the function in form C∗(x, y) =
x + y− 1 + C(1− x, 1− y) for each 0 ≤ x, y ≤ 1 is also a copula, and it is called survival copula.

Definition 11 ([20–24,26]). If f is a decreasing function where f (1) = 0, then we define the
pseudo-inverse of function f

Given by f [−1] =

⎧⎪⎨⎪⎩
f−1(x) , i f 0 ≤ x ≤ f (0)

0 , i f f (0) ≤ x ≤ ∞

(15)

Definition 12 ([20–24,26]). Let f : [0, 1]→ [0, ∞] be a continuous, strictly decreasing and convex
function such that f (1) = 0, and let f [−1] be the pseudo-inverse. Let C : [0, 1]→ [0, 1], defined by

C(x, y) = f [−1]( f (x) + f (y)) (16)

Then, C is an Archimedean Copula.

3. Results

In this section, this article will present all the constructions resulting from the use
of the definitions in the previous section. All the proofs will be presented in detail, with
mathematical relations and explanations. In total, five theorems and an interesting proof on
the third property of copulas (increasing with respect to the variables x, y) will be presented.

The first theorem proves that a class of multi-branching functions will be a strong
fuzzy negation. An example of this follows. The second theorem presents another class of
possible fuzzy negations. This second class with some adjustments presents the formula
f
(

f−1(y) ∗ x
)

. The following example gives a class of strong fuzzy negations that presents
great ease in finding the equilibrium point.

The third proof concerns the presentation of a fuzzy implication using the same
formula f

(
f−1(y) ∗ x

)
, avoiding the use of some fuzzy negation.

This article then moves on to the spectrum of copulas.
First, a proof of some classes of copulas will be presented.
This will be followed by the proofs of two propositions on the definition of copulas

and, finally, another proof of a class of copulas containing the formula f
(

f−1(y) ∗ x
)

.

3.1. New Forms of Strong Fuzzy Negations

Strong branching fuzzy negations can be produced [1] while in every branch there
is a decreasing function. Let N1 be a fuzzy negation, not necessarily a strong negation,
and N1(ε) = ε where ε is the equilibrium point of N1. So, if N1 is any continuous fuzzy
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negation in the interval [0, 1], then the following form [12] produces strong fuzzy negations
N2 and, in our case, rational fuzzy negations.

N2(x) =

⎧⎪⎨⎪⎩
N1(x) , x ∈ [0, ε]

N−1
1 (x) , x ∈ (ε, 1]

(17)

In the Figure 2 below, consider N1(x) = f(x) and N−1
1 (x) = f−1(x)

 

Figure 2. The graph of the negation N2(x) for three random values of the ε when ε = 0.25, ε = 0.5 and
ε = 1.

The above formula will be generalized using two functions (f, g), one decreasing and
one increasing.

Generating Classes of Strong Fuzzy Negations

Theorem 1. Let ε the equilibrium point of NPM1, f : [0, 1]→ [0,+∞) continuous decreasing
function and g : [0, 1]→ [0,+∞) continuous increasing function with the conditions: f−1, g−1

well defined, f (0) = 1 and g(0) = 0 and k > 0 positive real number. Then, the following form is a
class of strong fuzzy negations:

NPM1(x) =

⎧⎪⎨⎪⎩
f(g(x)∗k) , 0 ≤ x ≤ ε

g−1
(

f−1(x)
k

)
, ε < x ≤ 1

(18)

Proof of Theorem 1. The proof that the class of strong negations above is a continuous
function will be given first. It is obvious that what is examined is the continuity in the
equilibrium point. Assuming that all the values x of the equilibrium points are the solution
of the equation NPM1(x) = x, then it implies:

f (g(x) ∗ k) = x⇔ f−1( f (g(x) ∗ k )
)
= f−1(x)⇔g(x) ∗ k = f−1(x), for k > 0 implies

that g(x) = f−1(x)
k and, finally, x = g−1

(
f−1(x)

k

)
. That proves that the two multi-branched

functions intersect on the line y = x at the equilibrium point. That proves that the negation
NPM1(x) is a continuous function in the interval [0, 1].

Boundary conditions

• For x ≤ ε implies that NPM1(x) = f (g(x) ∗ k)

NPM1(0) = f (g(0) ∗ k) = f (0) = 1
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• For x > ε implies that NPM1(1) = g−1
(

f−1(1)
k

)
= g−1(0) = 0

Monotony condition

• For x ≤ ε implies that NPM1(x) = f (g(x) ∗ k)
For every x1, x2 ∈ [0, ε] where

x1 ≤ x2
g↗⇔ g(x1) ≤ g(x2)

thus k > 0, g(x1) ∗ k ≤ g(x2) ∗ k
f↘⇔ f (g(x1) ∗ k) ≥ f (g(x1) ∗ k)

⇔ NPM1(x1) ≥ NPM1(x2)

So that proves that NPM1 is decreasing when x ≤ ε.

• For x > ε implies that NPM1(x) = g−1
(

f−1(x)
k

)
For every x1, x2 ∈ (ε, 1] where

for x1 ≤ x2 ⇔ f−1(x1) ≥ f−1(x2) and for
1
k
> 0 arises :

:
f−1(x1)

k
≥ f−1(x2)

k
and finally

g−1↗⇔ g−1
(

f−1(x1)

k

)
≥ g−1

(
f−1(x2)

k

)
.

So NPM1(x1) ≥ NPM1(x2). That concludes that NPM1 is decreasing when x > ε.

Synthesis condition
The most important condition for a negation to be strong is as follows:

NPM1(NPM1(x)) = x

Because of the way the negation class is constructed, the set of values of one branch
is mapped to the definition domain of the other branch. Thus, when synthesizing the
negation with itself, the type of one branch inside the other is placed and vice versa.

That equals the following:

f
(

g
(

g−1
(

f−1(x)
k

))
∗ k
)
= f

(
f−1(x)

k
∗ k
)
= f

(
f−1(x)

)
= x.

And vice versa the following:

g−1
(

f−1( f (g(x) ∗ k))
k

)
= g−1

(
g(x) ∗ k

k

)
= g−1(g(x)) = x.

The class of negations is continuous as an operation of continuous functions, and
it holds that for any x ∈ [0, 1] then NPM1(NPM1(x)) = x. Therefore, this class of fuzzy
negations is a strong one. �

Example 1. One example of fuzzy negations is presented, generated by Theorem 1.

Let the decreasing function f(x) be the function f(x) = 1
x+1 . It is easy to check that f(x)

is positive, decreasing, f (0) = 1 and continuous. Let g(x) =
√

x, g(x) ≥ 0 and increasing,
g(0) = 0 and k > 0. This means that f(g(x)∗k)= 1

k∗√x+1 . Let us now construct the fuzzy
negation proved before, which will be the following:
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Nk
PM1(x) =

⎧⎪⎨⎪⎩
1

k∗√x+1 , 0 ≤ x ≤ ε

( 1−x
kx )

2
, ε < x ≤ 1

(19)

where ε is the equilibrium point. Quite easily can someone find out that Nk
PM1(x) com-

pletes all the conditions needed.
Boundary conditions

Nk
PM1(0)=

1
k ∗
√

0 + 1
= 1/1 = 1 and Nk

PM1(1)=
(

1− 1
k ∗ 1

)2
= 0

Monotony conditions

• For x ≤ ε, every x1 ≤ x2 ⇔
√

x1 ≤
√

x2 ⇔ k ∗ √x1 ≤ k ∗ √x2 ⇔ k ∗ √x1 + 1 ≤ k ∗ √x2 + 1⇔

1
k ∗ √x1 + 1

≥ 1
k ∗ √x2 + 1

⇔ Nk
PM1(x1) ≥ Nk

PM1(x2) so, it is decreasing.

• For ε < x every x1 ≤ x2 ⇔
1 − x1 ≥ 1 − x2 (1) and again x1 ≤ x2 ⇔ k ∗ x1 ≤ k ∗ x2 ⇔ 1

k∗x1
≥ 1

k∗x2
(2) I multi-

ply (1) and (2):

1− x1

k ∗ x1
≥ 1− x2

k ∗ x2
⇔ (

1− x1

kx1
)

2
≥ (

1− x2

kx2
)

2
⇔ Nk

PM1(x1) ≥ Nk
PM1(x2)

it is decreasing.
Synthesis condition
The most important condition for a negation to be strong is the following:

NPM1(NPM1(x)) = x

Again, because of the way the negation class is constructed, the set of values of one
branch is mapped to the definition domain of the other branch. Thus, when synthesizing
the negation with itself, the type of one branch is placed inside the other and vice versa.

• For ≤ ε:

NPM1(NPM1(x)) =
1

k ∗
√
( 1−x

kx )
2
+ 1

=
1

k ∗ 1−x
kx + 1

=
1

1−x
x + 1

=
1
1
x
= x.

And vice versa:
• For ε < x

NPM1(NPM1(x)) = (
1− 1

k∗√x+1

k 1
k∗√x+1

)

2

= (

k∗√x
k∗√x+1

k 1
k∗√x+1

)

2

= (
√

x)2
= x

Theorem 2. Let ε the equilibrium point of NPM2, f : [0, 1]→ [0,+∞) continuous decreasing
function and k > 0 with the following conditions:
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f−1 well defined, f (0) = 1. Then, the following form is a class of strong fuzzy negations:

NPM2(x) =

⎧⎪⎨⎪⎩
f(k∗x) , 0≤x ≤ ε

f−1(x)
k , ε < x ≤ 1

(20)

Proof of Theorem 2. First of all, the proof that the class of strong negations above is a
continuous function must be given. It is obvious that the continuity in the equilibrium
point must be examined. So, let someone assume that all the values x of the equilibrium
points are the solution of the equation NPM2(x) = x. That implies the following:

f (k ∗ x) = x⇔ f−1( f (k ∗ x )
)
= f−1(x)⇔ k ∗ x = f−1(x), for g(x) > 0 then x = f−1(x)

k .
That proves that the two bifurcated functions intersect on the line y = x at the equilibrium
point. That proves that the negation NPM2(x) is a continuous function in the interval [0, 1].

Boundary conditions

• For x ≤ ε implies that

NPM2(x) = f (k ∗ x)⇔ NPM2(0) = f (k ∗ 0) = f (0) = 1

• For x > ε implies that NPM2(1) =
(

f−1(1)
k

)
= 0

k = 0

Monotony condition

• For x ≤ ε implies that NPM2(x) = f (k ∗ x)
For every x1, x2 ∈ [0, ε] where

x1 ≤ x2

and get k ∗ x1 ≤ k ∗ x2
f↘⇔ f (k ∗ x1) ≥ f (k ∗ x1) ⇔ NPM2(x1) ≥ NPM2(x2)

So, it is concluded that NPM2 is decreasing when x ≤ ε.

• For x > ε then NPM2(x) = f−1(x)
K

For every x1, x2 ∈ (ε, 1] where

for x1 ≤ x2
f−1 ↘⇔ f−1(x1) ≥ f−1(x2)

so, we have :
f−1(x1)

k
≥ f−1(x2)

k
and finally,

NPM2(x1) ≥ NPM2(x2)

So, we conclude that NPM2 is decreasing when x > ε.

Synthesis condition
The most important condition for a negation to be strong is the following:

NPM2(NPM2(x)) = x

Again, because of the way the negation class we are studying is constructed, the set of
values of one branch is mapped to the definition domain of the other branch. Thus, when
we synthesize the negation with itself, we place the type of one branch inside the other and
vice versa.

So, we have: f
(

f−1(x)
k ∗ k

)
= f

(
f−1(x)

)
= x. And vice versa, it is the following:

f−1( f (x ∗ k) )

k
=

x ∗ k
k

= x.
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The class of negations is continuous as an operation of continuous functions, and
it holds that for any x ∈ [0, 1] then NPM2(NPM2(x)) = x. Therefore, this class of fuzzy
negations is a strong one. �

Remark 1. Let k = f−1(y) > 0, for every 0 ≤ y < 1 then 0 < f−1(y) ≤ 1, so the negation takes the
following form:

NPM2(x) =

⎧⎪⎪⎨⎪⎪⎩
f
(

f−1(y)∗x
)

, 0 ≤ x ≤ ε

f−1(x)

f−1(y)
, ε < x ≤ 1

(21)

This is a strong fuzzy negation.

Remark 2. For y = 0 and f(1) = 0 the function NPM2(x) = f
(

f−1(y) ∗ x
)

is a strict fuzzy negation.

Remark 3. We will examine later the form f
(

f−1(y) ∗ x
)
, which we will prove is a fuzzy

implication. The same form of the g(x) function, g−1(g(y) ∗ x) will take part in the construction of
a copula.

Example 2. One example of fuzzy negations is presented, generated by Theorem 2.

Let the decreasing function f(x) be the function f(x) = 1
x+1 . It is easy to check that f(x)

is positive, decreasing, f (0) = 1 and continuous. Let k > 0. This means that f(k*x) = 1
k∗x+1 .

Let us now construct the fuzzy negation proved before, which will be the following:

Nk
PM2(x) =

⎧⎨⎩
1

kx+1 , 0 ≤ x ≤ ε

1−x
kx , ε < x ≤ 1

(22)

where ε is the equilibrium point. This means that finding the point x=ε is the target.
To achieve this someone has to solve the equation 1

kx+1 = x ⇔ kx2 + x − 1, which is a
second-degree equation. We use the type

x1,2=
−1±

√
4k + 1

2k

where the one solution is rejected x2 = −1−
√

4k+1
2k because it is negative. That means

ε =−1+
√

4k+1
2k . So, the formula takes the form of: i f ε = −1±

√
4k+1

2k then

Nk
PM2(x) =

⎧⎪⎨⎪⎩
1

kx+1 , 0 ≤ x ≤ −1+
√

4k+1
2k

1−x
kx , −1+

√
4k+1

2k < x ≤ 1

(23)

In this way, a strong negation has been constructed in which someone can quite easily
calculate the equilibrium point. That way, negations can exist that satisfy many types of
implications or other problems while the class of negations created has a great range of
values, easily calculated. For example (Figure 3):

• For k = 12, we calculate that ε = 0.25 and appears at the graph N12
PM(x).

• For k = 2, we calculate that ε = 0.5 and appears at the graph N2
PM(x).

• For k = 0.3125, we calculate that ε = 0.8 and appears at the graph N0.3125
PM(x)
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Figure 3. The graph of three specific examples of the negation Nk
PM2(x).

3.2. Constructing Non-Symmetric Fuzzy Implications without the Use of Fuzzy Negations

Already mentioned above are the conditions that must be met for a function to be
a fuzzy implication. In this section, there will be presented a construction of a fuzzy
implication, non-symmetric and without the use of fuzzy negation. To perform this, it is
necessary to use one of the two functions we have already used so far. The function f(x),
which is strictly decreasing, is continuous, and f(0) = 1.

Theorem 3. Let the function s f , f−1 continuous, well defined, then I : [0, 1]2 → [0, 1] as
I(x,y) = f

(
f−1(y)∗x

)
, and f(x) decreasing and f(0) = 1. Then, I(x,y) is a fuzzy implication.

Definition 13 ([20–24,26]). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y , y1, y2 ∈ [0, 1], the following conditions:

(a) x1≤ x2 ⇔ I(x 1 , y
)
≥ I(x 2 , y

)
, i.e., I(·, y) is decreasing.

(b) y1 ≤ y2 ⇔ I(x, y1) ≤ I(x, y2), i.e., I(x, ·) is increasing.

(c) I(0, 0) = 1

(d) I(1, 1) = 1

(e) I(1, 0) = 0

Proof of Theorem 3.

(a) For every x1≤ x2 ⇔ f−1(y) x1 ≤ f−1(y)x2 f or f−1(y) ≥ 0
f ↘⇔ f ( f−1(y)x1) ≥

f ( f−1(y)x2) so, I( x1,y)≥ I(x2, y)

(b) For every y1 ≤ y2
f−1 ↘⇔ f−1(y1) ≥ f−1(y2) ⇔ f−1(y1)x ≥ f−1(y2)x for x ≥ 0

f ↘⇔ f ( f−1(y1)x) ≤ f ( f−1(y2)x) so, I( x, y1) ≤ I(x, y2)
(c) I(0,0) = f

(
f−1(0) ∗ 0

)
= f (0) =1

(d) I(1,1) = f
(

f−1(1) ∗ 1
)
= f

(
f−1(1)

)
= 1

(e) I(1,0) = f
(

f−1(0) ∗ 1
)
= f

(
f−1(0)

)
= 0. �

This verifies all five properties of fuzzy implications. So, our function
I(x,y) = f

(
f−1(y) ∗ x

)
is a non-symmetric fuzzy implication.

Example 3. Now, one example will be presented of the theorem above.
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Let the function f(x) =
√

1− ( χ
2 ), which is decreasing, f(0) = 1 and f−1(x) = 2 ∗ (1− x2)

be well defined in the interval [0, 1]. Let us prove that I(x,y) =
√

1− (1− y2) ∗ x is a
fuzzy implication.

(1) For every x1≤ x2 ⇔ 2 ∗
(
1− y2)∗x1 ≤ 2 ∗

(
1− y2) ∗ x2

f ↘⇔
√

1− (1− y2) ∗ x1 ≥√
1− (1− y2) ∗ x2 so I( x1,y)≥ I( x2, y)

(2) For every y1 ≤ y2
f−1 ↘⇔ 2 ∗

(
1− y1

2) ∗ x ≥ 2 ∗
(
1− y2

2) ∗ x for x ≥ 0
f ↘⇔√

1− (1− y1
2) ∗ x ≤

√
1− (1− y22) ∗ x so I(x, y1) ≤ I( x, y2)

(3) I(0,0) =
√

1− (1− 02) ∗ 0 =
√

1 = 1
(4) I(1,1) =

√
1− (1− 12) ∗ 1 =

√
1 = 1

(5) I(1,0) =
√

1− (1− 02) ∗ 1 =
√

1− 1 = 0. That means that I(x,y) =
√

1− (1− y2) ∗ x is
a fuzzy implication.

3.3. Generating Copulas Using the Same Functions

In this section, the construction of copulas will be given, functions that are known
from their applications in economics and risk analysis, as well as in fuzzy logic in general.
So far, our constructions were based on two specific functions called f(x) and g(x) and given
some properties. Now, exactly the same functions will be used to construct the copulas. In
some of these cases, some additional properties will be given.

Theorem 4. Let the function g : [0, 1]→ [0,+∞) be continuous, strictly increasing and convex,
g(0) = 0, g(1) = 1, with g−1 continuous. The function C1 : [0, 1]2 → [0, 1] , when C1(x,y) =
g
(

g−1(x) ∗ g−1(y)
)

is a copula with the symmetric and incentive effect.

Proof of Theorem 4. Let us remember that there are three conditions that make C(x, y) a
copula.

(1) C(0, t) = C(t, 0) = 0 for each 0 ≤ t ≤ 1
(2) C(1, t) = C(t, 1) = t for each 0 ≤ t ≤ 1
(3) The C-volume of a rectangle must be not negative, e.g.,

VH = C(x1, y1)−C(x1, y2)−C(x2, y1) + C(x2, y2) ≥ 0

for each x1 ≤ x2 and y1 ≤ y2 where 0 ≤ x1, x2,y1, y2 ≤ 1.

For the proof of the first condition after replacing the following:

(1) C1(t, 0) = g
(

g−1(t) ∗ g−1(0)
)
= g

(
g−1(t) ∗ 0

)
= g(0) = 0

C1(0, t) = g
(

g−1(0) ∗ g−1(t)
)
= g

(
0 ∗ g−1(t)

)
= g(0) = 0

(2) C1(t, 1) = g
(

g−1(t) ∗ g−1(1)
)
= g

(
g−1(t) ∗ 1

)
= g

(
g−1(t)

)
= t

C1(1, t) = g
(

g−1(1) ∗ g−1(t)
)
= g

(
1 ∗ g−1(t)

)
= g

(
g−1(t)

)
= t

(3) There are two options for proving the third property. If the function g(x) is productive,
then it is relatively easy to prove the third property, provided that the derivative
∂2C(x,y)

∂xy ≥ 0 is positive. But, if the function g(x) is not productive, then the proof
becomes much more complex and difficult. Both cases will be listed. �

Proposition 1. Knowing that for a function to be 2-increasing, must satisfy the inequality

C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0. This inequality is equivalent to ∂2C(x,y)
∂xy ≥ 0

when C is a differentiable function.

Proof of Proposition 1. When someone applies the Mean Value Theorem for the function
C(x, y1) in the interval [x1, x2]

∃ ξ1 ∈ (x1, x2) :
∂C(ξ1 , y1)

∂x
=

C(x2, y1)− C(x1, y1)

x2 − x1
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Applying the Mean Value Theorem for the function C(x, y2) in the interval [x1, x2]

∃ ξ1 ∈ (x1, x2) :
∂C(ξ1 , y2)

∂x
=

C(x2, y2)− C(x1, y2)

x2 − x1

Let us suppose that C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0 then

∂C(ξ1, y2)

∂x
− ∂C(ξ1, y1)

∂x
≥ 0⇔ ∂2C(x, y)

∂xy
≥ 0.

�

(a) Considering g(x) is convex, we have that (g )′′(x) ≥ 0. So, we have the following:

∂C(x, y)
∂x

= (g)′
(

g−1(x) ∗ g(−1)(y)
)
∗
[

g−1
]
′(x) ∗ g−1(y).

And then,

∂2C(x,y)
∂xy =

(g)′′
(

g−1(x) ∗ g−1(y)
)
∗ g−1(x) ∗

[
g−1] ′(y) ∗ [g−1]′(x) ∗ g−1 (y)+

(g)′
(

g−1(x) ∗ g−1(y)
)
[g−1

] ′(x) ∗
[
g−1]′(y) =

[g−1] ′(x) ∗ [g−1]′(y) ∗ [ g−1(x) ∗ g−1(y) ∗ (g)′′
(

g−1(x) ∗ g−1(y)
)
+

(g)′
(

g−1(x) ∗ g−1(y)
)]
≥ 0

Indeed, because g(x) ≥ 0, g’(x) ≥ 0,
(

g−1)′ ≥ 0, (g)′′ ≥ 0,
(

g−1) ≥ 0.
(b) If function g(x) is not productive, the proof of the third property becomes very difficult

and interesting and comes with the help of the classical definition of convexity.

Definition 14. A function f : A→ R is convex if, for all (x, y) in the domain of f, and for all t in
[0, 1] when the inequality

(f (t ∗ x + (1 − t) ∗ y) ≤ t ∗ f (x) + (1 − t) ∗ f (y) (24)

holds.

Knowing that the copula we constructed is a three-dimensional function, the definition
is the following:

Definition 15. A function f : A2 → R is convex if, for all points (x1, y1), (x2, y2) in the domain
of f (x), and for all t ∈ [0, 1] when the inequality

f (t ∗ x1 + (1− t) ∗ x2, t ∗ y1 + (1− t) ∗ y2) ≤ t ∗ f (x1, y1) + (1− t) ∗ f (x2, y2) holds (25)

Proposition 2. Knowing that for a function to be 2-increasing, must satisfy the inequality
C(x1, y1) + C(x2, y2)− C(x 1, y2)− C(x2, y1) ≥ 0. If g(x) is convex and strictly increasing yet
non-productive, then the function C1 (x, y) = g

(
g−1(x) ∗ g−1(y)

)
is 2-increasing.

Proof of Proposition 2. First of all, let us give a proof that if g(x) is convex, then C(x, y) is
convex. Let

C1(x, y) =g
(

g−1(x) ∗ g−1(y)
)
, 0 ≤ x ≤1, 0 ≤ y ≤ 1, which also means that

0 ≤ g−1(x) ≤ 1, 0 ≤ g−1(y) ≤ 1.

Also, g(x) is strictly increasing
g↗⇔ , so let g−1(x) = u and g−1(y) = w. That means that

0 ≤ u ∗w ≤ 1.
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So, let u ∗w = v. That makes C1(x, y) =g
(

g−1(x) ∗ g−1(y)
)

= g(u ∗ w)=g(v), which
proves that if g(x) is convex, then C1(x, y) is convex.

Due to the monotony conditions, it is proved that
For every pair of y1, y2 ∈ A2, when

y1 ≤ y2
g−1 ↗⇔ g−1(y1) ≤ g−1(y2)⇔ g−1(x1)g−1(y1) ≤ g−1(x1) g−1(y2)

g−1↗⇔
g(g−1(x1) ∗ g−1(y1)) ≤ g( g−1(x1) ∗ g−1(y2))⇔ C1(x1, y1) ≤ C1(x1, y2)

(26)

For every pair of x1, x2 ∈ A2, when

x1 ≤ x2
g−1↗⇔ g−1(x1) ≤ g−1(x2)⇔ g−1(x1)g−1(y1) ≤ g−1(x2) g−1(y1)

g ↗⇔
g(g−1(x1) ∗ g−1(y1)) ≤ g( g−1(x2) ∗ g−1(y1))⇔ C1(x1, y1) ≤ C1(x2, y1)

(27)

For every pair of y1, y2 ∈ A2, when

y1 ≤ y2
g−1 ↗⇔ g−1(y1) ≤ g−1(y2)⇔ g−1(x2)g−1(y1)g−1(x2) g−1(y2)

g−1↗⇔
g
(

g−1(x2) ∗ g−1(y1)
)
≤ g( g−1(x2) ∗ g−1(y2))⇔ C1(x2, y1) ≤ C1(x2, y2)

(28)

For every pair of x1, x2 ∈ A2, when

x1 ≤ x2
g−1↗⇔ g−1(x1) ≤ g−1(x2)⇔ g−1(x1)g−1(y2) ≤ g−1(x2) g−1(y2)

g ↗⇔
g
(

g−1(x1) ∗ g−1(y2)
)
≤ g

(
g−1(x2) ∗ g−1(y2)

)
⇔ C1(x1, y2) ≤ C1(x2, y2)

(29)

Using the four inequalities above, someone can build the inequalities below:

C1(x1, y1) ≤ C1(x1, y2)≤ C1(x2, y2) (30)

C1(x1, y1) ≤ C1(x2, y1) ≤ C1(x2, y2) (31)

multiplying relation (30) by t, t ∈ [0, 1] and relation (31) by (1 − t), by (1 − t) ∈ [0, 1], and so

t ∗ C1(x1, y1) ≤ t ∗ C1(x1, y2) ≤ t ∗ C1(x2, y2) (32)

(1− t) ∗ C1(x1, y1) ≤ (1− t) ∗ C1(x2, y1) ≤ (1− t) ∗ C1(x2, y2) (33)

Adding by members the inequalities (32) and (33) it implies the following:

C1(x2, y2) ≥ t ∗ C1(x1, y2) + (1− t) ∗ C1(x2, y1) ≥ C1(x1, y1) (34)

Knowing that the function C(x, y) is a continuous function inside the domain of
[x1, y1] × [x2, y2], someone can make use of the intermediate value theorem, which means
that for every t ∈ [0, 1] there are points (xt, yt) ∈ [x1, y1] × [x2, y2] so that

C1(xt, yt) = t ∗ C1(x1, y2) + (1− t) ∗ C1(x2, y1) (35)

Remembering the definition of convexity for points (x1, y1 ), (x2, y2) in the domain of
f(x) and for all t ∈ [0, 1], then

C1(t ∗ x1 + (1− t) ∗ x2, t ∗ y1 + (1− t) ∗ y2) ≥ t ∗ C1(x1, y1) + (1− t) ∗ C1(x2, y2) (36)

It is assumed, without the limitation of generality and knowing, that the function
C(x, y) is symmetric

(C1(x, y) = C1(y, x)) that for every t ∈ [0, 1] and every x1 ≤ xt ≤ x2, y1 ≤ yt ≤ y2 that
xt = t ∗ x1 + (1− t) ∗ x2 and yt = t ∗ y1 + (1− t) ∗ y2. Thus, substituting in relation (36)

we obtain the following:
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C1(xt, yt) ≤ t ∗ C1(x1, y1) + (1− t) ∗ C1(x2, y2 ). Now the substitute from relation (35)
and obtain:

t ∗ C1(x1, y2) + (1− t) ∗ C1(x2, y1) ≤ t ∗ C1(x1, y1) + (1− t) ∗ C1(x2, y2) (37)

Relation (37) stands for every t ∈ [0, 1], so for t = 0.5, we obtain the following:

(0.5) ∗ C(x1, y2) + (0.5) ∗ C(x2, y1) + (0.5) ∗ C(x1, y1) + (0.5) ∗ C(x2, y2).

Multiply by two, and finally

C1(x1, y2) + C1(x2, y1) ≤ C1(x1, y1) + C1(x2, y2).

This is the third property needed to satisfy for C1(x, y) to be a copula. �

Remark 3. In addition, it should be noted that the copula constructed above matches both the
symmetric and the prefix property.

And that is because

C1(x, y) = g
(

g−1(x) ∗ g−1(y)
)
= g

(
g−1(y) ∗ g−1(x)

)
= C1(y, x)

also

C1(C1(x, y), w) = g
(

g−1
(

g
(

g−1(x) ∗ g−1(y)
))
∗ g−1(w)

)
= g

(
g−1(x) ∗ g−1(y) ∗ g−1(w)

)
And

C1(x, C1 (y, w))= g
(

g−1(x) ∗ g−1
(

g
(

g−1(y) ∗ g−1(w)
))

= g
(

g−1 (x) ∗ g−1(y) ∗ g−1(w)
)

thus
C1(C1(x, y) , w) = C(x, C1(y, w)).

Example 4. Let the function g(x) =
√

χ when 0 ≤ x ≤ 1, then, g−1(x) = x2 when 0 ≤ x ≤ 1.

So, we construct the copula C1 (x, y) =
(√

x ∗ √y
)2. Let us check the three conditions:

(1) C1(t, 0) =
(√

t ∗
√

0
)2

= 0 =

(√
0 ∗
√

t
)2

= C1(0, t)

(2) C1(t, 1) =
(√

t ∗ 1
)2

= 0 =
(√

1 ∗
√

t
)2

= C1(1, t)

(3) The function g(x) is productive, so it is relatively easy to prove the third property, provided
that the derivative

∂2C1(x,y)
∂xy ≥ 0 ⇔

∂C(x,y)
∂x =

(
1√
x ∗
√

y
)(√

x ∗ √y
)
= y and ∂2C(x,y)

∂xy = 1 ≥ 0 .C1 is a copula.

In the next theorem, we will try to combine the construction of the fuzzy implication
that we have already constructed with the construction of the last copulas.

Theorem 5. Let the function g : [0, 1]→ [0,+∞) continuous, strictly increasing and convex,
g(0) = 0, g(1) = 1 and g−1 continuous. The function C : [0, 1]2 → [0, 1] , when

C(x, y) = max
{

g
(

g−1(x) ∗ y
)

, g
(

g−1(y) ∗ x
)}

is a copula. (38)
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Proof of the Theorem 5.

(1) C(t, 0) = C(t, 0) = max
{

g
(

g−1(t) ∗ 0
)
, g
(

g−1(0) ∗ t
)}

= max{g(0), g(0 ∗ t)} =
max{g(0), g(0)} = max{0, 0} = 0
C(0, t) = max

{
g
(

g−1(0) ∗ t
)
, g
(

g−1(t) ∗ 0
)}

= max{g(0 ∗ t), g(0)} = max{0, 0} = 0,
which proves that C(t, 0) = C(0, t) = 0

(a) C(t, 1) = C(t, 1) = max
{

g
(
g−1(t) ∗ 1

)
, g
(
g−1(1) ∗ t

)}
= max

{
g
(
g−1(t)

)
, g(t)

}
= max{t, g(t)} = t.
and that is because g(x) is convex, which means that g(t) ≤ t.

(b) C(1, t) = C(1, t) = max
{

g
(
g−1(1) ∗ t

)
, g
(
g−1(t) ∗ 1

)}
= max

{
g(t), g

(
g−1(t)

)}
= max{g(t), t} = t. So, C(1, t) = C(t, 1) = t.

(2) Let g−1(x) ∗ y = u and g−1(y) ∗ x = w, which means that C(x, y) is either equal to
g(u) or g(w). It has already been proven before that if the function g(x) is convex,
the third property of the copulas is settled. So, there is no need to prove again, as the
proof is obvious. �

Example 5. Let the function g(x) = x
3−2x for every x in the interval 0 ≤ x ≤ 1 be continuous,

strictly increasing and convex, with g−1(x) = 3x
2x+1 continuous and strictly increasing. We will

prove the following:

The function C(x,y) = max{
3x

2x+1 y
3−2 3x

2x+1 y
,

3y
2y+1 x

3−2 3y
2y+1 x

} is a copula.

(1) C(x,0) = max{
3∗x

2x+1 0
3−2 3x

2x+1 0
,

3∗0
2∗0+1 x

3−2 3∗0
2∗0+1 x

} = max{0, 0} = 0

C(0,y) = max{
3∗0

2∗0+1 y
3−2 3∗0

2∗0+1 y
,

3y
2y+1 0

3−2 3y
2y+1 0
} = max{0,0} = 0

(2) C(x,1) = max{
3x

2x+1 1
3−2 3x

2x+1 1
,

3∗1
2∗1+1 x

3−2 3∗1
2∗1+1 x

} = max{x, x
3−2x } = x because x ≥ x

3−2x .

C(1,y) = max{
3∗1

2∗1+1 y
3−2 3∗1

2∗1+1 y
,

3y
2y+1 1

3−2 3y
2y+1 1
}= max{ y

3−2y ,y} = y again because y ≥ y
3−2y .

(3) As for the third property, we just have to prove that g(x) is convex. We can easily check that
g’(x) = 3

(3−2x)2 ≥ 0 and g′′ (x) = 4
(3−2x)3 ≥ 0, so g(x) is convex and the third property is

automatically proved.

4. Discussion

The primary main goal of this paper is to present fuzzy negations, fuzzy implications
and copulas through a common construction process, using very simple functions with
certain properties. In fact, by studying the paper in its entirety, one can see that the present
constructions could be performed using a single function.

In an attempt to detail the role played in these constructions by the formula f
(

f−1(y) ∗ x
)

,

the following points should be emphasized: f(x) is strictly decreasing, f(0) = 1 and f−1 (y) > 0.
Going ahead with the constructions, some additional properties are given to f(x), such as it is
convex, and f(1) = 0. These additional properties do not negate the previous constructions
but merely come to complement them. In Section 3 where the constructions are presented, a
reference to two functions is made, since, in addition to the decreasing function f(x), there is
also in use an increasing function g(x) with almost similar properties. To be precise, one can
easily assume that g(x) = f (1−x). So, what is achieved? The achievement is to represent all
of the above constructs by means of a single formula f

(
f−1(y) ∗ x

)
and a single function f(x).

Recall also that strong negations were constructed with the help of the use of the equilibrium
point. Negations that help to calculate exactly what the equilibrium point will be. In addition
to that, a very interesting construction is presented that is proved to be a copula, the C1(x,
y) = g

(
g−1(x) ∗ g−1(y)

)
. This copula formula is very similar to the other formula presented
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in Section 3 (C(x,y) = max
{

g
(
g−1(x) ∗ y

)
, g
(
g−1(y) ∗ x

)}
). A very detailed proof is given

concerning the fact that if the function g(x) is convex, C1(x, y) will always be a copula.
If we try to talk about the consequences of, for example, applying some of the copulas

proved in Section 3 to domains of fuzzy logic such as AI and robotics, this will be a signifi-
cant prospect. Other areas, such as “Control synthesis for discrete-time T-S fuzzy systems
based on membership function-dependent H∞ performance” [27] or “Finite-Time Mem-
bership Function-Dependent H∞ Control for T-S Fuzzy Systems via a Dynamic Memory
Event-Triggered Mechanism” [28] will have results that could be some of the below:

1. Uncertainty Handling: Copulas can be used to model the dependency between
different uncertainties in the system. By incorporating copulas into the T-S fuzzy
model, one can more accurately capture the interdependencies between different
sources of uncertainty, leading to more robust control designs.

2. Performance Enhancement: Copulas can help in designing membership function-
dependent H∞ controllers by accurately modeling the joint behavior of the system’s
uncertainties. This leads to better performance metrics, such as improved disturbance
rejection and enhanced stability under varying operating conditions.

3. Event-Triggered Mechanisms: The use of copulas can optimize event-triggering con-
ditions by better predicting the evolution of system states and disturbances. This
optimization can lead to more efficient control actions, reducing unnecessary compu-
tations and communications while maintaining desired performance levels.

- Modeling Dependencies: Both papers focus on enhancing control synthesis by consid-
ering the dependencies between uncertainties. Copulas offer a sophisticated way to
model these dependencies, leading to improved controller performance.

- Robustness and Adaptivity: By using copulas, controllers can be designed to be more
adaptive to varying conditions and more robust against disturbances, aligning with
the goals of H∞ performance and finite-time stability.

- Efficiency in Control: In event-triggered mechanisms, copulas can optimize the condi-
tions for control actions, leading to more efficient system operation without compro-
mising performance.

In essence, copulas provide a powerful tool to enhance the modeling and control of
T-S fuzzy systems by accurately capturing the dependencies between uncertainties, thus
improving the robustness and efficiency of control strategies discussed in both papers.

5. Conclusions

Fuzzy negations are necessary in many areas and especially in generating new fuzzy
implications. In this article, there have been proposed some novel construction methods of
strong fuzzy negations. This is achieved using a specific type of formula to construct at the
same time strong fuzzy negations, fuzzy implications and Copulas in an attempt to bring
those mathematical concepts a bit closer. Two theorems are presented in negations, one in
implications and two theorems in copulas. All of the above are accompanied by their own
proofs. Furthermore, there is presented one very interesting proof in the third property of
the copulas regarding how one non-productive function g(x) constructs a copula only if it
is convex.

The above constructions are intended to provide the mathematical community with
the following information:

(a) All of the above constructs can be represented by means of very simple functions,
common among the concepts used.

(b) A formula is presented that participates in all three mathematical concepts discussed
in this article.

(c) A proof in the area of copulas is presented.

All of the above is intended to bring all the mathematical concepts discussed in
this article closer together, from a mathematical point of view, and to give ground for
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future analysts to build on it and further investigate the convergence and application of
these concepts.

6. Patents

The formula f
(

f−1(y) ∗ x
)

, which can generate strict fuzzy negations, strong fuzzy
negations, fuzzy implications and copulas for a strictly decreasing, positive function,
convex with

f (0) = 1 (in some cases f(1) = 0 also).
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