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A Hybrid Competitive Evolutionary Neural Network Optimization
Algorithm for a Regression Problem in Chemical Engineering
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Abstract: Neural networks have demonstrated their usefulness for solving complex regression prob-
lems in circumstances where alternative methods do not provide satisfactory results. Finding a
good neural network model is a time-consuming task that involves searching through a complex
multidimensional hyperparameter and weight space in order to find the values that provide optimal
convergence. We propose a novel neural network optimizer that leverages the advantages of both an
improved evolutionary competitive algorithm and gradient-based backpropagation. The method
consists of a modified, hybrid variant of the Imperialist Competitive Algorithm (ICA). We analyze
multiple strategies for initialization, assimilation, revolution, and competition, in order to find the
combination of ICA steps that provides optimal convergence and enhance the algorithm by incorpo-
rating a backpropagation step in the ICA loop, which, together with a self-adaptive hyperparameter
adjustment strategy, significantly improves on the original algorithm. The resulting hybrid method is
used to optimize a neural network to solve a complex problem in the field of chemical engineering:
the synthesis and swelling behavior of the semi- and interpenetrated multicomponent crosslinked
structures of hydrogels, with the goal of predicting the yield in a crosslinked polymer and the
swelling degree based on several reaction-related input parameters. We show that our approach has
better performance than other biologically inspired optimization algorithms and generates regression
models capable of making predictions that are better correlated with the desired outputs.

Keywords: evolutionary algorithm; biologically inspired optimization; neural network optimization;
imperialist competitive algorithm; regression model

MSC: 68W50

1. Introduction

Natural sciences and their related fields of research are essential for providing key
answers to a wide range of real-world problems. Finding such answers nearly always in-
volves an experimental phase, where data is collected by observing real-world phenomena
or events, carrying out experiments within chemical and/or physical processes and noting
the reaction outcomes, or using various sources and sensor arrays. Such methods generally
produce large amounts of complex, multidimensional, and often unstructured data, which
are difficult to interpret and make sense of.

In particular, chemical engineering processes present difficulties in modeling for
several reasons. Often, the experiments are difficult to perform, being time-, material-, and
energy-consuming. The mechanisms of complex processes are either unknown or not fully
elucidated, which makes it difficult to apply material or energy balances specific to classic
modeling. If mathematical models can be obtained, they are often based on approximations
that affect their accuracy; they are complex models that are difficult to solve and, above all,

Mathematics 2022, 10, 3581. https://doi.org/10.3390/math10193581 https://www.mdpi.com/journal/mathematics1
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implement online. Thus, the use of “black box” models represents a beneficial approach for
many situations in chemical engineering.

Consequently, a wide diversity of numerical processing methods has emerged over the
years, which allow for structuring such data and deducing meaningful information from the
underlying values. The end goal of such methods is to generate a mathematical or numerical
model that describes the studied phenomenon/reaction/experiment as accurately as the
experimental data will allow. It is very common for the task of interpreting experimental
data to be reduced to a regression problem, where a relationship should be determined
among one or multiple inputs and one or multiple observed outcomes. A frequent solution
to such a problem is the development of a regression model that consists of a function that
maps the inputs to the outputs, given that the outputs are real values from continuous
domains. In instances where the data are of high dimensionality and complexity, a common
approach is to search for a regression model by numeric optimization of a regression
algorithm’s parameters. The choice in terms of an adequate algorithm is a difficult one,
as many pitfalls exist given the problematic nature of experimentally gathered data. To
this extent, neural networks have consistently proven their usefulness for solving complex
problems such as those found in natural sciences. Sufficiently tuned and trained neural
networks have demonstrated that they are capable of providing meaningful models of
the relationships found within the inputs and outputs of experimental data. Such models
allow for the generalization of the underlying phenomenon, given that enough effort was
invested in searching for the right parameters that provide optimal convergence.

Neural networks can model complex relationships otherwise not possible with more
basic alternatives. However, a neural network-based model requires searching through a
complex parameter space in order to determine a set of values for the network hyperpa-
rameters and weights that provides the optimal solution for the problem at hand. Finding
the right neural network architecture and the optimal weight values is often a tedious
and time-consuming task, particularly for complex data sets, which themselves require a
complex model to completely characterize them. Neural networks require extensive train-
ing, a comprehensive exploration of their hyperparameter space, and extensive validation
before the right architecture and weights are found for a particular regression problem.
Searching for the optimal neural network-based model is usually divided into two tasks:
searching through the hyperparameter space of the network to find its optimal architecture
and training the said architecture to find the optimal weight values. The former task, in
particular, requires extensive computational resources and takes a lengthy amount of time
before an optimal architecture is found, especially if an exhaustive exploration of the hyper-
parameter space is desired. Traditionally, searching through a neural network hyperspace
is carried out using either a grid search or a random search. The former involves separately
traversing through each hyperparameter domain by sampling each hyperparameter space
axis into a finite number of parameter values and iterating through them in order. For
each combination of parameter values, a new candidate model is trained and validated.
In the latter case, random parameter values are generated from each corresponding hy-
perparameter domain, producing a candidate model for each random combination of
hyperparameters to also be trained and validated. Ultimately, the model that minimizes
the loss function or otherwise meets the desired convergence criterion is chosen. Grid
searches are useful for systematically iterating through the hyperparameter space or a
relevant portion of it, particularly in cases where an even sampling of the space is desired.
A finer sampling of each axis yields mode candidate models and a greater chance of finding
the optimal one at the cost of more computational time and power required to validate a
greater number of models. Random searches are useful when the hyperparameter space is
too vast for a systematic grid search. The number of generated candidate models increases
the probability of finding the optimal model; however, there is little guarantee that this will
occur within a reasonable search time frame and a certain amount of “luck” is required
for a good candidate model to be found. In both scenarios, a significant amount of time is
required for a good neural network model to be identified.
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For this reason, other search methods have been developed to more efficiently search
through vast parameter spaces, of which the most notable are evolutionary algorithms.
These are usually inspired by natural evolution, where animal and plant species sustain and
propagate based on the “survival of the fittest” principle. Given a certain environment with
certain characteristics, out of a population, only the individuals most suited to living in
that environment survive and reproduce. Therefore, each generation statistically originates
from the fittest individuals from the previous one. The evolution of organisms in the
natural environment translates well to the evolution of candidate solutions to a given
problem that can be mathematically modeled. A multitude of potential solutions that form
a population of individuals is subjected within an evolutionary algorithm to mechanisms
that mimic transformations occurring in the natural world, such as reproduction, gene
crossover, and mutation. The fittest individuals are the ones who offer better solutions
to the problem at hand and they are the ones who statistically propagate throughout the
iterations of the evolutionary algorithm. For regression problems, finding the solution
is often reduced to a minimization problem, where the optimal solution is the one that
minimizes an error/loss/cost function. The fitness of a solution, therefore, translates to a
lower error value, with the optimal solution being the one with the highest fitness, i.e., the
lowest error value.

Evolutionary algorithms have consistently proven to be capable of solving difficult
multidimensional problems due to their ability to efficiently explore vast complex solution
spaces [1]. An evolutionary-based approach offers more room for experimenting with
various random sampling, mutation, and crossover population combination functionalities,
which means that they are highly configurable and customizable to specific problems of
high complexity. This means that a carefully customized evolutionary algorithm often
succeeds at locating the global minimum within a minimization problem and therefore
finding the optimal solution, where alternative methods generally fail. Here we would also
like to mention gradient descent-based solutions, which tend to get stuck in local minima
and are difficult to use for problems with complex search spaces [2].

Considering the abovementioned context, this paper deals with a problem within the
field of chemical engineering—the synthesis of polyacrylamide-based multicomponent
hydrogels, with the goal of modeling the yield and swelling degree as functions of the
reaction conditions. Consequently, the objective can be formulated as a multivariate re-
gression problem, where we want to find a relationship/correlation between the inputs
and the output variables. Despite the relatively small size of the available dataset, this
regression problem has proven resilient to simple, commonly used regression methods.
Therefore, we resort to finding a regression model based on optimizing a fully connected
neural network that offers sufficient flexibility for exploring the complex solution space of
our available data. In order to optimize the neural network, we propose an evolutionary
algorithm that is based on the popular Imperialist Competitive Algorithm (ICA) [3], which
we customize and modify so as to effectively explore the hyperparameter and weight space
of the neural network and find the optimal architecture and weight values that should min-
imize the loss for our regression problem. Customization involves making modifications
to the more essential steps of the traditional ICA to improve the convergence results, and,
where possible, convergence speed. Furthermore, we combine the modified version of the
ICA with a backpropagation-based approach by incorporating partial backpropagation
training steps within the iterations of the modified ICA. As we describe in the subsequent
sections, such an approach has proven to improve convergence effectiveness and speed
and therefore lead to better neural network configurations. We use backpropagation as
a boosting mechanism, which is meant to slightly “push” the solutions within an ICA
iteration toward the optimum. The resulting hybrid algorithm generates neural network
models that minimize the Root Mean Squared Error (RMSE) for our dataset to within
an order of magnitude less than alternative algorithms while maintaining decent conver-
gence times. We further improve the proposed approach by incorporating adaptive and
self-adaptive strategies within the algorithm pipeline. These strategies form a two-part

3
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parameter control mechanism: the parameters of the hybrid ICA are adapted along the
iterations of the algorithm using methods that are aimed at improving the convergence
results and speed; and along with the adapted phase, we employ a self-adaptive strategy,
where the parameters of the algorithm are incorporated into the chromosome of the candi-
date solutions, in which situation the algorithm searches through its own hyperparameter
space while also exploring the solution space of the neural network. This self-adaptive
strategy means that the hybrid ICA optimizes itself along with the neural network. Such
mechanisms added to the basic ICA have shown to improve the convergence results and
speed for our problem, as we detail in the subsequent sections.

Our contributions can be summarized as follows:

• We propose a variant of the ICA with alternative versions of some of its fundamental
components. To this extent, we analyzed several versions of assimilation, revolution,
and competition in order to find the ones that provide the best convergence for our
problem.

• We test several initialization strategies in order to find the one that disperses the
initial population as evenly as possible throughout the solution space. This allows
us to generate initial populations that offer good coverage while having a relatively
small individual count. Furthermore, we employ adaptive and self-adaptive strategies
to dynamically tune the hyperparameters of the evolutionary algorithm during its
iterations.

• We incorporate a backpropagation-boosting mechanism into the iterations of the
modified ICA, where each neural network candidate is slightly steered in the direction
of the optimal solution using a gradient-based optimizer. This significantly contributes
to improving convergence and to minimizing the RMSE. The resulting combination
of the modified evolutionary algorithm and the backpropagation-based optimization
forms our hybrid method.

The paper is structured as follows. After the Introduction, Section 2 presents the
chemical engineering problem and the underlying mechanisms from which our data set
originates, as well as the relevant experimentally determined parameters that constitute the
inputs and outputs of our regression model. Section 3 presents the most significant results
from related state-of-the-art models, in terms of using evolutionary algorithms for general-
purpose problems, optimizing neural networks, and achieving good convergence results
for difficult regression problems. In Section 4 we present the modified hybrid ICA and
provide detailed descriptions of the steps involved in the ICA iterations, the modifications
made to the basic algorithm, the particularities of the hybrid aspect of our method, as well
as the adaptive and self-adaptive strategies used for parameter control. In Section 5 we
present the results of our work, demonstrate the benefits of our customized version of ICA
considering all aspects involved, and provide a comparison to other similar approaches
from the related literature in terms of convergence effectiveness and speed. The paper ends
with the Conclusions, where we provide a closing discussion related to our method and
highlight the limitations and possible future improvements of the algorithm.

2. The Case Study

Multicomponent hydrogels are materials characterized by a high swelling capacity
and possess special properties (mechanical, diffusion, and absorption), which make their
use in various domains possible —food, cosmetics, the pharmaceutical industry, medicine,
tissue engineering, agriculture, electrotechnics, electronics, etc.

For many applications, e.g., controlled-release systems, agrochemical products, multi-
component hydrogels are required to present a high capacity of biodegradation under the
action of the biologic fluids or the microorganisms present in the soil. In addition, these
materials present selective biodegradability under the action of gastrointestinal juices so
they can be used as a covering agent for tablets to protect the active principle, conceal the
non-agreeable taste and smell, as well as control the release of the active principle. Three-
dimensional networks based on polyacrylamide are used in ophthalmology as mechanical

4
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protectors for the iris, retina, and corneal endothelia. These are just a few examples that
justify the choice of this process for study through modeling and simulation.

From the point of view of modeling action, a high-molecular-weight polymer system
represents complex classes of materials and is very difficult to model. Besides being highly
nonlinear, there are a large number of parameters that need to be accurately defined if
such systems are to be properly characterized. The relationships between the parameters
being modeled and the actual behavior of these variables in the real world must be cor-
related as precisely as possible. However, in most cases, this is not possible and several
approximations and simplifications are often made at various stages. Considering the
lack of complete knowledge about the phenomenology of the process, the main reasons
why a phenomenological model for the addressed process could not be developed were
highlighted.

In some previous papers, we reported the synthesis and swelling behavior of semi-
and interpenetrated multicomponent crosslinked structures based on polyacrylamide [4–6].
For this process, the yield in the crosslinked polymer and the swelling degree were deter-
mined as a function of the monomer (acrylamide) concentration, initiator concentration,
crosslinking agent (formaldehyde) concentration, amount of inclusion polymer (starch,
poly(vinyl alcohol) (PVA), gelatin), temperature, and reaction time. The experimental
results containing 177 data are given in Curteanu et al. [4].

The results obtained using the previous approaches were encouraging but suscepti-
ble to error. Consequently, in the current research, improved methods are proposed for
modeling the main property of hydrogels, namely the degree of swelling, along with the
efficiency of the process.

Seven input variables were considered: CM (monomer concentration), CI (initiator
concentration), CA (crosslinking agent concentration), PI (amount of inclusion polymer),
T (temperature), t (reaction time), and type of included polymer codified as 1—no polymer
added, 2—starch, 3—PVA, and 4—gelatin. The two outputs were η (yield in the crosslinked
polymer) and α (swelling degree). Thus, the neural network modeling established the
influence of the initial conditions on the reaction yield and swelling degree.

The predictions of the two outputs are useful in practice because they are related to
process efficiency (yield) and they can replace experiments that necessitate a great number
of materials and, especially, time (a determination of the swelling degree takes around
20 days).

3. Related Work

Neuroevolution (NE) is a procedure in which an evolutionary algorithm (EA) is
used to optimize an artificial neural network and is an alternative to classical training
(i.e., gradient-based algorithms). It can also evolve the hyperparameters of neural networks,
such as the number of hidden layers, the number of neurons in each layer, biases, and the
activation functions. Interestingly, neuroevolutionary methods achieve promising results
using simple evolutionary algorithms [7], and proposing new strategies for these simple
algorithms can significantly improve the convergence of training a neural network and its
prediction performance. Although neuroevolutionary methods are generally computation-
ally expensive, especially in deep learning [8], they are still preferred because they also
offer flexibility in choosing the cost function (e.g., reward maximization [9]).

Various studies have been carried out in the literature on small-sized neural networks
with fixed topologies in addition to studies that have addressed the evolution of neural
network architecture.

Three neural network models, namely Multi-Layer Perceptron (MLP), Recurrent Neu-
ral Network (RNN), and Evolutionary Neural Networks (Neuroevolution: MLP-ABC),
were used in [10] to predict the output of a photovoltaic panel. The authors used the Artifi-
cial Bee Colony (ABC) algorithm to optimize the neural network weights. The experimental
results showed that the MLP-ABC model provided the best results.

5
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In [11], four evolutionary algorithms, i.e., Multi-Verse Optimizer (MVO), Moth–flame
optimization (MFO), Cuckoo Search (CS), and Particle Swarm Optimization (PSO), were
used to train and optimize MLPs. The trained MLPs were then used to navigate an
autonomous robot. The authors proposed two strategies for avoiding the local optimum,
which were applied to each algorithm. In the first proposed strategy, 20% of the worst
solutions were reinitialized at each iteration. The second strategy consisted of a mutation
operator that randomly changed the genes of some solutions with a 20% chance. The
experimental results showed that MFO had the lowest mean square error value and the
fastest convergence speed. Also, MFO had a superior ability to avoid local optimum
and good optimization efficiency. PSO, in particular, has seen extensive use for neural
architecture search with applications for convolutional neural networks [12,13], deep belief
networks [14,15], and autoencoders [16,17]. In most cases, the encoding of the particles
only encompassed the hyperparameters of the neural networks, leaving the tuning of the
optimal architecture to a more traditional backpropagation-based approach.

In [18], the authors solved an electrical load problem using a 1D convolutional neural
network tweaked using a variant of Enhanced Grey Wolf Optimization (EGWO). Like
many other evolutionary algorithms, this optimizer draws inspiration from the behavior
of an animal in its natural habitat, specifically, the hunting behavior of wolves. The
solution candidates were divided into hierarchical categories (such as alpha and beta
individuals) and they interacted throughout the solution space via a mathematical model
that simulated a pack-like behavior. Aside from the actual optimization, the authors noted
the fast convergence of this meta-heuristic model and the low requirements in terms of
computational resources.

The Cellular Genetic Algorithm (CGA) was used in [19] to find optimal weights
of MLP to classify medical data accurately. The authors proposed a specially designed
crossover operator called Damped Crossover (DX) that used information related to the best
solution in the current iteration and the stage of the evolutionary process. The DX operator
had a greater influence on the changing variables at the beginning of the evolutionary
process and a reduced influence at the end of the iterations (i.e., the operator was more
accurate at the end of the evolutionary process).

The Biogeography-based Optimization algorithm (BBO) was used in [20] to train the
MLP to classify the sonar dataset, a high-dimensional problem. To improve the exploration
ability of BBO, the authors used various mutation operators based on Gaussian mutation,
Cauchy mutation, and exponential mutation and then proposed a novel mixed mutation
strategy called Neighborhood Search Trainer (NST). The NST strategy consisted of a
combination of Gaussian, Cauchy, and exponential mutations.

In [21], six neuroevolutionary classification techniques were used for the slope/failure
stability assessment problem. The MLP was trained with Ant Colony Optimization (ACO),
BBO, Evolutionary Strategy (ES), Genetic Algorithm (GA), Probability-based Incremental
Learning (PBIL), and PSO to improve classification accuracy in the stability assessment.
The experimental results showed that the MLP trained with the BBO algorithm obtained
the best classification accuracy.

Two optimization techniques, i.e., GA and Binary Particle Swarm (BPS) optimization,
were used in [22] to improve the predictive power of credit risk scorecards. GA and BPS
were used to find the optimal architecture of an MLP along with activation functions,
whereas the weights were optimized with the backpropagation algorithm. In terms of
predictability, the two optimization techniques outperformed the logistic regression and a
default neural network, but GA was more time-consuming than BPS.

In [23], a genetic algorithm was used with the ADAM optimizer to optimize the
architecture and parameters of small neural networks. The problem addressed was the
compact modeling of MOSFET devices using neural networks. Due to the requirements of
requiring a compact model, the optimization problem consisted of finding a neural network
of a small size that provided the most accurate answer. The authors used a genetic algorithm
to find the optimal topology of the neural network, and ADAM was used to optimize the
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weights and biases. The architecture of a neural network is defined using blocks of neurons,
and how these blocks are connected can lead to partially connected neural networks. By
limiting the number of connections between blocks of neurons, the authors minimized the
genetic algorithm’s search space and improved the network training’s convergence speed.

Neuroevolution has also been successfully used in modeling PID controllers [24]. The
authors used an MLP neural network with two hidden layers in a closed-loop feedback
control to replace a PID controller. The chosen neural network, i.e., the neurocontroller,
was subject to unsupervised learning because the optimal behavior of the developed
controller was unknown. The training consisted of using a genetic algorithm to optimize the
weights and biases of the neurocontroller so that specific closed-loop performance indices
were minimized. The experimental results showed that the neurocontroller provided
significantly better results than a linear PID controller.

A new algorithm, Evolutionary eXploration of Augmenting Memory Models (EX-
AMM), was proposed in [25] to evolve recurrent neural network (RNN) architectures with
various cell types to perform the prediction of large-scale, real-world time-series data from
the aviation and power industries. The EXAMM algorithm was further used in [26], where
a novel speciation strategy based on extinction and repopulation events was proposed
(specific strategy for island-based evolutionary algorithms).

Differential evolution (DE) is a popular approach used to optimize the hyperparam-
eters of a wide variety of neural networks. In [27], the authors used a DE algorithm to
optimize a pi-sigma neural network. This network drew from traditional MLPs and ex-
tended them by incorporating higher-order combinations of the inputs. The authors noted
that, although such networks may lead to better solutions for certain complex problems,
the added operations also increase the complexity of the network architecture and, conse-
quently, the resulting hyperparameter space. A DE-based approach was, therefore, chosen
to optimize the neural network to solve various forecasting problems, with accuracies
reported as being higher than those obtained using simpler network structures. In [28],
the authors optimized a neural network using differential evolution in order to tackle a
lithology identification problem from a geological field. They reported significantly better
accuracies compared to more traditional classification algorithms. At the same time, the
DE-based approach proved to be able to explore the solution space much more effectively
than using a more conventional exhaustive hyperparameter search.

Another category of problems where DE-based optimization is sometimes employed
is medical image processing. The authors from [29] presented a technique for medical
image fusion using a deep neural network derived from the Inception architecture. Unlike
other applications where the objective is to search for the optimal hyperparameters of the
network, in this case, a DE algorithm was used to search the feature map space for the best
features to be used within the fusion pipeline. In [30], the authors developed a classification
model for medical image-based diagnoses using an evolutionary algorithm to optimize
the pruning strategy of Generative Adversarial Networks (GAN). Notably, the resulting
model offered similar accuracies to the unpruned version, albeit using significantly reduced
computational resources. Other significant results in the above-mentioned approaches
focused on using DE and/or bio-inspired optimizers for handling global optimization
problems [31–33].

Some notable results handled problems involving supply chain management and the
related decision-making strategies using multiple exact optimization methods [34–39].

Another form of neural network hyperparameter optimization is cooperative neu-
roevolution, which has been successfully used in training RNNs for chaotic time-series
problems (e.g., signal processing, finance, weather forecasting, etc.) [40,41]. Cooperative
neuroevolution is more effective in predicting time-series problems than backpropagation
through time [40] or other standard evolutionary algorithms [41]. In this type of opti-
mization, a neural network is decomposed into subcomponents divided into different
subpopulations. Initially, the individuals in the created subpopulations do not have fitness
because an individual represents only a subcomponent of a neural network. The evaluation
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of an individual begins with sampling other individuals from the other subpopulations.
Afterward, all the chosen individuals are concatenated to reconstruct a neural network and
the fitness can be computed.

An increased interest in neuroevolution has also been seen in other fields, such as
medicine [42–45], chemistry [46,47], education [48], and games [49,50].

4. Method Description

Our approach focused on finding the optimal neural network architecture and weight
values that constitute the best model for describing the aforementioned regression problem.
Specifically, the method was intended for searching the combined hyperparameter and
parameter spaces of a fully connected neural network to find the best values resulting in the
optimal model. For this purpose, we developed an evolutionary algorithm that searched
through the network parameter space for the optimal parameter values as quickly and
efficiently as possible.

Throughout the paper, we use well-known and understood terminology with regard
to the key terms that define the architecture and functionality of a fully connected neural
network. The number of hidden layers and the size of each hidden layer in terms of
neuron count are hyperparameters, whereas the weights and biases of the network are
simply its parameters. We differentiate the hyperparameters of the neural network from
the hyperparameters of the evolutionary algorithm, which are the various variables that
influence the functionality of the evolutionary method. Among these are the parameters
of the various operators applied to the candidate solutions during the iterations of the
algorithms, for example, the mutation probability or the assimilation distance.

Our methodology involved combining the hyperparameters and parameters of the
neural network into a single network parameter space. Consequently, searching for the
optimal neural network involved simultaneously optimizing the architecture of the neural
network and its weights and biases, unlike traditional search-train-validate-test approaches,
where designing the neural network is a separate task from training it. Therefore, a solution
from the perspective of an evolutionary optimizer is a complete set of neural network
parameters. The optimal solution, which is the goal of the search, is the set of neural
network hyperparameters and parameters that fit the convergence criterion of the problem
at hand. In our case, we aimed to find the neural network that minimizes the RMSE of
the network predictions from the inputs of the dataset instances and the actual outputs
from the same instances. In evolutionary optimization language, a potential solution is
encoded as a chromosome containing the full set of neural network parameters, whereas
the fitness of an individual with a specific chromosome is the inverse of the RMSE resulting
from evaluating the corresponding neural network on the dataset corresponding to the
regression problem. Consequently, in our implementation, we considered that the fitter
individuals were the ones that generated lower RMSE values, or, in more general terms,
that had a lower cost.

Our proposed neural network optimizer was based on the Imperialist Competitive
Algorithm, to which we applied multiple modifications intended to improve the conver-
gence results and, where possible, convergence speed. In order to achieve this goal, we
implemented alternative versions of the fundamental ICA steps, incorporated a backpropa-
gation boosting mechanism that significantly improved convergence, and added parameter
control strategies meant to tweak and optimize the algorithm hyperparameters during
execution. We refer to the resulting algorithm as a hybrid of an evolutionary algorithm and
backpropagation-based optimization, which leverages the advantages of both approaches
to generate a neural network solution that is as close as possible to the optimal one. As we
shall illustrate in the subsequent sections, the behavior of this approach is twofold:

• The evolutionary algorithm has the advantage of thoroughly searching through the
parameter space of the neural network for a solution that minimizes the RMSE. As
we discovered after multiple attempts, the neural network space was sufficiently
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complex and had a high-enough dimensionality to make it difficult for the evolutionary
algorithm alone to explore it and settle in a global minimum.

• A backpropagation component was incorporated into the evolutionary algorithm’s
pipeline and significantly contributed to proper convergence. With each iteration, its
role was to “steer” the solutions in the direction of the optimum. Essentially, this com-
ponent involved partially training each neural network solution in a backpropagation
manner using gradient-based optimization.

4.1. Neural Network Encoding

As with most evolutionary algorithms, the solutions were represented via a 1D vector
of genes forming the solution’s chromosome. For our purposes, we required that each
neural network candidate be represented in the same manner. We achieved this by re-
organizing the parameters and hyperparameters into a “flattened” version of the neural
network, where the parameter values were arranged as a one-dimensional array. The
resulting two-part chromosome had the following structure:

• A header containing the hyperparameters—the number of hidden layers followed by
the hidden layer sizes in order from the input to the output layers.

• A larger body that contained the weights and biases in the same order as found in
the neural network layers—first, the flattened weight matrix between the input and
first hidden layer, followed by the bias vector of the input layer, followed by the next
weight matrix and the corresponding bias vector, and so on.

Note that we used constant-size chromosomes; therefore, the size of each chromosome
was the highest possible number of neural network parameters. For networks with fewer
parameters than the maximum, the extra values were simply ignored. We found no
advantage in using variable-size chromosomes, the only significant difference being a more
complex implementation.

The encoding procedure of a neural network is illustrated in Figure 1. The general
format of the chromosome shown in Figure 1a is presented for neural networks with a
maximum of two hidden layers. The length of the chromosome was set to accommo-
date the largest possible network with the highest parameter count. For example, if we
searched for a network with a maximum of 2 hidden layers and a maximum hidden layer
size of 10, considering 7 inputs and 2 outputs, the size of the chromosome would be
3 + 7 · 10 + 10 + 10 · 10 + 10 + 10 · 2 + 2 = 215, which accommodates a header size of 3 (the
number of hidden layers and the size of each hidden layer) and the values of the weights
and biases for the maximum-sized network. While searching for the best neural network
configuration, we represented any potential network candidate via the maximum-sized
chromosome. In cases where the optimal neural network had fewer parameters than the
maximum, the “extra” values from the chromosome were simply ignored when reconstitut-
ing the corresponding neural network. For example, if the optimal neural network had a
single hidden layer, the third value from the chromosome (which represents the size of the
second hidden layer) was ignored, despite it being present in the chromosome structure.
Likewise, a network with a single hidden layer would have fewer parameters than the max-
imum count. In this case, only the necessary values for rebuilding the neural network were
used and the other trailing ones were ignored. This allowed for the use of constant-sized
chromosomes within our evolutionary algorithm, which simplified the implementation
to a certain extent. We also experimented with variable-size chromosomes, where each
flattened neural network was sized according to the actual number of network parameters.
In our experience, there was no noticeable benefit to this approach. Considering that our
population was rather small (100 initial solutions), using fixed-size chromosomes did not
significantly impact memory use and computational requirements. Conversely, using
variable chromosome sizes complicated the implementation, particularly with regard to
the adaptive sampling strategy, which is discussed later in this paper. Consequently, the
population was formed from fixed-size solutions, where each corresponding chromosome
was large enough to store the values of any neural network candidates.
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Figure 1. Arranging (flattening) the parameters of a neural network into a 1D array forming a
chromosome. The flattening method is illustrated for neural networks with a maximum of two
hidden layers but is easily adaptable to larger architectures. (a) The general format, regardless of the
actual neural network architecture; (b) An example of flattening a single hidden layer network into a
chromosome.

4.2. The Evolutionary Competitive Algorithm

The evolutionary component of our method was an enhanced version of the Imperialist
Competitive Algorithm (ICA), to which we made several modifications and additions in
order to improve convergence in our dataset (Figure 2). The main task of the evolutionary
algorithm was to explore the parameter space of a fully connected neural network and
find a neural network architecture and weight values that come as close as possible to
the optimum. Consequently, in the context of the evolutionary algorithm, a solution
was a potential neural network configuration, represented by the configuration described
in Section 4.1. The optimal solution was the network configuration that minimized the
RMSE on our dataset, which could in more general terms be thought of as the cost of the
solution. Therefore, the evolutionary algorithm searched through the solution space for the
minimum-cost solution. The ICA was modeled on the interaction among countries and
empires in the course of which the empires compete for dominance. The solutions were
considered countries. Some of the solutions were imperialist countries, around which the
other countries, known as colonies, formed groups known as empires. Thus, the population
was formed from a few of the better solutions, the imperialist countries, which owned the
other solutions, the colonies. Each imperialist country competed for the accumulation of as
many colonies as possible until there was one dominant empire. Such interaction should
ultimately lead to the optimal solution while avoiding the pitfalls of complex, difficult-
to-explore solution spaces with multiple local minima. Although it is not the purpose of
this paper to describe the ICA in detail, we loosely outline the most significant steps of the
classic algorithm:

• As with any evolutionary algorithm, the population is initialized according to a specific
sampling policy. Empires and their colonies are also initialized.

• The countries are subjected to an assimilation step, where each empire strengthens
its hold on its colonies. Each colony moves closer to its imperialist owner, thereby
becoming more similar to it.
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• Some of the colonies undergo a revolution step, which is equivalent to a mutation
phase.

• Some of the empires undergo a change in leadership. If an imperialist country has a
higher cost than one of its colonies, the respective colony becomes the leader of the
empire, i.e., the imperialist country and the better colony swap positions.

• The empires compete for dominance. Empire competition can take several forms, but
in the simplest case, each empire takes the weakest colony from the weakest empire.
This step eventually leads to empires without colonies, which are eliminated (either
removed from the population entirely or reverted to a regular colony).

• Once the new empire grouping is established, a convergence criterion is tested. Com-
monly, the algorithm stops when there is only one empire left. Otherwise, a new
iteration begins, involving assimilation, revolution, competition, and all smaller in-
between operations.

Our main modifications to the standard ICA loop involved the following three compo-
nents:

• Alternative initialization, assimilation, revolution, and competition steps. We analyzed
several potential versions of these steps and ultimately used the ones that performed
the best on our dataset.

• A backpropagation-based boosting step. This involved slightly guiding the solutions of
each iteration toward the optimum using a mechanism similar to the backpropagation-
based training of a neural network. As such, at each iteration, the weights of each
solution were modified via backpropagation to ease convergence toward the optimal
weight values.

• An algorithm hyperparameter optimization strategy based on a mixed adaptive/self-
adaptive parameter control mechanism.

Figure 2. Diagram illustrating the steps of our algorithm: The country population was initialized
using Maximin Latin Hypercube Sampling, an approach chosen out of several others. Then, at the
start of each ICA iteration, backpropagation boosting was applied in order to steer the solutions
toward the optimum. The main loop largely followed the same progression as the traditional ICA;
however, the fundamental steps (assimilation, revolution, competition) were chosen out of several
possible versions. The choices were made following an analysis to determine the steps that best
suited our algorithm in terms of effectiveness, considering the problem described in Section 2.
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4.3. Sampling Methods for Population Initialization

In order to improve upon the classic ICA, we analyzed several modified versions of
some of the fundamental ICA steps to find the ones that best worked for our purposes.
We mainly targeted initialization, revolution, assimilation, and competition methods as
candidates for potential improvements.

Initialization is a frequently discussed and disputed aspect of evolutionary algorithms,
which are notorious for being overly sensitive to the configuration and distribution of the
initial population [51]. The main pitfall with regard to the initialization is the disproportion-
ality between the size of the solution space and the size of the initial solution population. It
is desired that the initial population be as representative as possible for its corresponding
value-domain. Although, theoretically, a larger population would better cover this space, a
practically large initial population would significantly impact performance, not necessarily
guaranteeing a better convergence to the optimal solution. In almost all scenarios, the size
of the initial population is orders of magnitude smaller than would be required to fully
cover the problem space.

Rather than having to rely on large initial populations for the initialization stage,
we aimed for small populations where the solutions were spread as evenly as possible
throughout the problem space. The most common initialization was carried out using
a uniform distribution, which did not generate evenly spread solutions [52]. For this
reason, along with uniform generation, we considered several sampling strategies that
could potentially generate initial populations with much better coverage of the problem
space. By “better coverage” we mean that the initialization relied on a sampling method
where the generated samples were spread as evenly as possible throughout their domain so
that the generated sample set was as representative as possible of the entire problem space.
Such a property is commonly expressed as the discrepancy in the sampling method. A low-
discrepancy approach has the property that any number of samples that fall into a certain
hypercube is nearly proportional to the measure of the hypercube. Roughly, this means
that a low-discrepancy sampling method produces a sample set of almost-even density,
whereas a high-discrepancy method has a greater chance of generating samples that are
locally grouped, as well as large regions void of samples. Low-discrepancy sampling is
a widely discussed topic in related fields [53] and is beyond the scope of this paper. For
our purposes, we tested a uniform initialization, as well as several other initialization
approaches that are known to rely on low discrepancy sampling:

• Halton sampling, which generates a population from a Halton sequence by applying
the radical inverse function to integers expressed in various bases. Halton sequences
have been demonstrated to produce low-discrepancy pseudo-random point sets de-
spite generating these points in a fully deterministic manner [54]. Due to the high
dimensionality of our solutions, we used a scrambled Halton sequence as our gen-
erator, where the actual sequence was built using permutations of the coefficients
corresponding to the standard sequence.

• Classic Latin Hypercube sampling (LHS), which spaces the solutions from one another
so that no two solutions are found in the same axis-aligned hyperplane within the
solution space [55]. In an equivalent 2D space, no two points generated via LHS would
be found on the same row or column.

• Centered Latin Hypercube sampling (CLHS): for each generated point, a hypercube
may be defined so that each point is centered within its respective hypercube.

• Maximin Latin Hypercube sampling (MLHS), which generates a point set so that, in
addition to the standard LHS criterion, the points are further away from each other to
maximize the minimum distance among them.

All four non-uniform sampling methods demonstrate low discrepancy and are reason-
ably capable of generating evenly distributed solutions within the solution space. Figure 3
illustrates this principle for a 2D space, where it can be seen that uniform sampling generally
does the poorest job at “filling out” the problem space with the available points, resulting
in regions of significantly varying densities (Figure 3a), whereas the other approaches
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generate points that provide comparatively better coverage of their spaces (Figure 3b–e).
In our experience, the low-discrepancy initialization methods were better suited to our
approach than standard uniform initialization, although there was little difference among
the methods themselves. We did however notice a slight improvement when using MLHS,
which we ultimately chose as the default initialization method for our algorithm.

Figure 3. Tested sampling methods exemplified by generating 30 points in a 2D point space: (a)
uniform sampling; (b) Halton sampling; (c) Classic Latin Hypercube sampling (LHS); (d) Centered
Latin Hypercube (CLHS); (e) Maximin Latin Hypercube (MLHS). The images illustrate that the
more advanced sampling methods (b–e) generated points that were much more evenly spread out
compared to uniform sampling (a), i.e., the image plane was much better covered by a relatively small
set of points. Thus, using a low-discrepancy sampling method allowed for the generation of sets of
relatively few individuals, which were more representative of their corresponding space compared to
using simpler sampling approaches.

4.4. Variations of the Fundamental ICA Steps

Although the classic ICA has been proven to perform well for a large number of
optimization problems, we analyzed various modified versions of the essential ICA steps
in order to find the best ones for our purposes.

Assimilation is a form of mutation in which the colonies are modified so that they
are more similar to the imperialist countries. Considering that imperialist countries are
constantly maintained to be the best in their respective empires, assimilation is equivalent
to moving the solutions toward the fittest local or global one(s). Considering the variables ci
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of any colony from the country population, which is assimilated by a destination imperialist
Idest, a new set of variables ci

’ is obtained by updating the current values ci using a parameter
adist, which signifies the maximum distance toward the assimilating imperialist, as shown
in Equation (1).

ci′ = ci + adist ·U(0, 1) · (Idest − ci) (1)

where U(0, 1) is a random uniform number from the (0, 1) interval.
In order to improve our algorithm, we considered the following types of assimilation:

• Local assimilation: Each colony moves toward its owner empire, equivalent to the
solutions moving toward the current local minimum (Figure 4b).

• Global assimilation: Most countries move toward the best imperialist country, re-
gardless of ownership. A smaller percentage maintains local assimilation to maintain
the relevance of other imperialists. This form of assimilation is equivalent to most
solutions moving toward the current global minimum. We find that a percentage of
75% of countries moving toward the best imperialist is suitable for our algorithm,
whereas the remaining 25% move toward their owners in a local fashion (Figure 4c).

• Free will assimilation: Each country is free to choose which imperialist they move
toward. The choice is made through a roulette wheel selection, where for each country,
its destination empire is chosen using a distribution determined from the inverse costs
of the empires. In this manner, each imperialist has a probability of being chosen,
which is inversely proportional to its cost and equivalent to the colonies being more
likely to choose better imperialists (Figure 4d).

Figure 4. Illustration of the tested assimilation types: (a) The imperialist–colony configuration, where
the imperialists are the larger points; the size of the imperialist points indicates their fitness; (b) local
assimilation, where each country moves towards its imperialist owner; (c) global assimilation, where
most countries move toward the best imperialist; (d) free will assimilation, where countries choose
which imperialist to move toward.

Our analysis showed that global assimilation proved to be the most useful approach
for our algorithm, primarily due to an improved convergence curve.

Revolution is a step where the countries typically change independently from each
other. We implemented this step as a mutation of the values of each respective country.
Specifically, we tested two types of revolution:

• Uniform revolution, where countries change via a uniform mutation operator. Consid-
ering that a country C is defined by variables ci, i ∈ {1, . . . , lc}, where ci are equivalent
to the genes of a chromosome from genetic algorithms and lc is the variable count
(equivalent to the length of the chromosome), a uniform revolution involves applying
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a uniform mutation operator to C with probability pr. This involves replacing variable
ci with a randomly generated value from a uniform distribution within its respective
domain [ci_min, ci_max], which for each ci occurs with probability prv (the probability of
per-variable revolution). Let α ~ U(0,1), βi ~ U(0,1) and γi ~ U(ci_min, ci_max). Then, the
ci values are updated as shown in Equation (2).

• Normal revolution: Countries change via a mutation operator that uses normal dis-
tribution. Considering the previously defined country C with variables ci, a normal
revolution occurs with probability pr, where each variable ci is modified via a normally
generated value centered in ci with a standard deviation of 1, scaled by step size sr.
Each variable is mutated with probability prv. The resulting value is then truncated
within the respective domain [ci_min, ci_max] of variable ci. Let α ~ U(0,1), βi ~ U(0,1)
and γi ~ N(ci, 1). Then, the mutated values ci’ are updated from the original ones, ci,
as shown in Equation (3).

ci′ =
{

γi if pr > α and prv > βi

ci otherwise
(2)

ci′ =
{

sr · γi if pr > α and prv > βi

ci otherwise
(3)

Competition is a step where imperialists attempt to gain additional colonies by taking
them from other imperialists. The type of competition typically has a strong influence on
convergence speed, as it is the main factor in controlling the rate at which imperialists
are eliminated. As with the previously mentioned steps, we analyzed several types of
competition, as follows:

• Weakest competition: At each iteration of the algorithm, an imperialist chosen by
roulette-wheel selection conquers the weakest colony of the weakest imperialist. Even-
tually, the weakest empire is left without colonies and is removed. Statistically, stronger
imperialists will accumulate the highest number of colonies. The total cost tcostI of
an imperialist I with ncI colonies is determined via a combination of the imperialist’s
own cost costI and a fraction fcost of the average cost of its colonies costCi, i ∈ {1, . . . ,
ncI} (Equation (4)).

• Strongest competition: At each iteration, the strongest imperialist conquers the weak-
est colony of an imperialist chosen by roulette-wheel selection. When choosing a
source imperialist, the distribution used for selection is generated so that imperialists
with a higher cost have a higher probability of being selected. Therefore, weaker
imperialists have a higher chance of yielding their weakest colony to the strongest
imperialist.

• Multiple competition: This version is a combination of the selection methods from
the weakest and strongest competition types. A conquering imperialist is chosen
by roulette-wheel selection, where the related distribution favors lower-cost imperi-
alists, and the conquered imperialist is also chosen by roulette-wheel selection but
using a distribution that favors weaker imperialists. Therefore, a statistically stronger
imperialist takes the weakest colony of a statistically weaker one.

• Aggressive competition: This approach is similar to the weakest competition, the
difference being that the weakest imperialist is conquered multiple times during the
same iteration. Each time, the weakest colony of the weakest imperialist is yielded
to a stronger imperialist chosen by roulette-wheel selection. This approach means
that weaker imperialists are depleted of their colonies at a faster rate, resulting in
an overall significantly faster convergence. The number of colonies nLC lost by the
weakest imperialist is decided by a hyperparameter of the algorithm, which we refer
to as compAg (competition aggression). compAg is defined in the interval [0,1] and its value
is used to determine the actual number of lost colonies nLC according to the number of
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initial countries nInitC, the number of initial imperialists nInitI, and the current iteration
it (Equation (5)).

tcostI = costI +
fcost

ncI

nc

∑
i=1

costCi (4)

nLC = [ln(compAg ·
nInitC
nInitI

· it + 1)] (5)

4.5. Backpropagation Boosting

Additionally, from the evolutionary approach described in previous sections, we
employed a backpropagation step that was incorporated into the modified ICA pipeline,
which served as a complementary boost for each country. At the beginning of each iter-
ation, we applied an additional partial optimization of each solution via gradient-based
backpropagation, where each neural network was trained in varying amounts to get closer
to the optimum. This operation served as a supplementary boosting mechanism that
slightly steered each solution in the “right” direction, i.e., toward the optimal solution. This
approach worked in tandem with the evolutionary pipeline, making the overall algorithm
a hybrid of two optimization strategies:

• The evolutionary approach contributed mainly to exploring the solution space and
ensuring the diversity of the solution population. To this extent, assimilation, revolu-
tion, and competition operators were applied to the solutions in order to regroup and
transform them accordingly. As described in previous sections, we analyzed multiple
versions of the fundamental ICA steps in order to find the ones that best suited our
needs in terms of convergence speed and efficiency, considering the complexity and
dimensionality of our data.

• Backpropagation boosting further “pushes” the solutions toward the optimum. We
found that, for our problem, this complementary approach had the most significant
contribution to minimizing errors and eventually reaching a solution that was as close
as possible to the optimum. As such, our approach leveraged the advantages of both
an evolutionary algorithm and traditional gradient-based neural network training.
Furthermore, the addition of backpropagation boosting added two hyperparameters
to our algorithm: a parameter that controlled the number of epochs (backpropagation
acceleration) and the learning rate used for backpropagation training.

4.6. Algorithm Parameters and Parameter Control Strategies

Considering the previously described steps and the versions of the said steps ulti-
mately chosen for our approach (as seen in Figure 2), we defined several hyperparameters
that impact the convergence of our hybrid evolutionary algorithm. For efficiency of discus-
sion, we henceforth refer to these hyperparameters as “algorithm parameters” or simply
“parameters” (Table 1). From the perspective of parameter control, we split the parame-
ters into two categories: static parameters, which were globally set from the start of the
algorithm, and variable parameters, whose values were steered during the iterations of the
algorithm. The parameters in the second category were applied locally for each solution
(they influenced countries at the individual level). These parameters were subjected to a
mixed adaptive/self-adaptive parameter control strategy.
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Table 1. The parameters of our algorithm, their values, and their role within the algorithm’s iterations.
The value “self-adaptive” refers to the fact that the values of the corresponding parameters were
optimized by the algorithm itself via the self-adaptive control mechanism.

Parameter Role Default Value

nInitC Initial population count 100

nInitI The initial imperialist count 10

compAg
Aggressiveness of the imperialist during the

competition phase 0.4

fcost
The fraction of the total imperialist cost contributed

by its colonies 0.3

pr Probability of revolution occurring for a country self-adaptive

prv
Probability of revolution occurring for each

individual value of a country self-adaptive

sr Step size used for normal revolution self-adaptive

adist
Maximum distance to the destination imperialist

during assimilation self-adaptive

bpa
Controls the number of epochs used for

backpropagation boosting self-adaptive

bpLR Learning rate used for backpropagation boosting self-adaptive

In order to aid in finding optimal values for some of the parameters in Table 1, we
used a mixed adaptive/self-adaptive parameter control strategy. When using the term
“adaptive”, we refer to the fact that during the iterations of the evolutionary algorithm,
certain parameters were modified according to the state of the algorithm in each respective
iteration in order to improve on the progress of the algorithm’s convergence. The topic of
adaptive parameters in the evolutionary algorithm has been widely discussed in the related
literature [56–58]. Consequently, for our approach we employed a few simple adaptive
parameter control strategies, as follows:

• During the aggressive competition phase, the number of colonies lost by the weakest
imperialist was adjusted according to the current iteration (Equation (5)). As the
evolutionary algorithm advanced and progressed toward the optimum solution, the
aggressiveness of the imperialists increased to speed up convergence.

• During the normal revolution phase, the actual step size used for normal mutation
was adjusted according to the current state of convergence. In order to achieve this, we
multiplied the base step size sr by the square of the lowest current cost. Consequently,
the step size decreased as the algorithm converged and lower-cost countries are found.
The justification for this modification is that, as the algorithm converged toward a
minimum, the mutation step size should be reduced so that the algorithm searches for
other solutions in narrower neighborhoods [58].

• The number of epochs used during the backpropagation boosting phase was influ-
enced by the current iteration. Specifically, the number of epochs was defined as round
(bpa·iter), i.e., we multiplied the backpropagation acceleration by the current iteration
and rounded the result. This means that the solutions were boosted further as the
algorithm converged in order to encourage finding the optimal one.

• The learning rate used during the backpropagation boosting phase was multiplied by
the current lowest cost. As the algorithm converged and lower-cost solutions were
found, the learning rate also decreased to permit more fine-grained backpropagation.

Aside from the adaptive measures, for the country local parameters we employed
a self-adaptive control strategy. This refers to the fact that the parameter values were
initialized and subjected to the same transformations as the solutions themselves (with the
notable exception of backpropagation boosting). In essence, the evolutionary algorithm
optimized its own parameters as it searched for the optimal solution. It is worth noting
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that self-adaptation in evolutionary algorithms is a well-known strategy that is frequently
used for parameter control [57].

We implemented self-adaptive parameter control by extending the chromosome of
each country with additional locations to represent the values of the self-adaptive param-
eters (Figure 5). Subsequently, we allowed the evolutionary algorithm to find both the
optimal parameter values and the optimal solution (i.e., the optimal neural network). This
means that, on the one hand, each country had its own set of self-adaptive parameters
as opposed to using a global parameter set. On the other hand, as the algorithm con-
verged, better countries with lower costs also contained better values of the self-adaptive
parameters.

Figure 5. The extended variables of each country with added self-adaptive parameters.

5. Experimental Results

Our evaluation methodology first involved assessing the usefulness of the various
alternative steps described in Section 4.4. To this extent, we tested several variations of
some of the most important operators applied to the population during the main ICA loop.
Secondly, we tested the contribution of the adaptive parameter control strategy as well as
of the backpropagation boosting used in conjunction with the main algorithm. Our data set
contained experimental data consisting of 177 instances with 7 input and 2 output values,
as described in Section 2. For our test methodology, we aimed to select the strategies, steps,
and parameter control mechanisms that produced a regression model that minimized the
RMSE on our dataset. Although our main goal was to obtain the lowest possible error
value, we also considered the convergence curve when evaluating the various employed
strategies.

With regard to population initialization, we tested several initialization methods, as
described in Section 4.3. The most commonly used sampling method used a uniform
distribution to generate the values for the chromosomes. However, we explored a few other
low-discrepancy alternatives. A low-discrepancy sampling method attempts to spread
the generated values as evenly as possible throughout their domain. As such, lower-
discrepancy sampling spaces out the initial population so that the density is relatively even
throughout the problem space. To this extent, we compared uniform initialization with
four other low-discrepancy initialization approaches. The resulting convergence curves
are shown in Figure 6. Our tests showed that uniform initialization performed the worst,
resulting in the highest RMSE, whereas the best initialization approach was Maximin
Latin Hypercube sampling (MLHS), with Centered Latin Hypercube sampling (CLHS)
coming close in terms of the results. Overall, using MLHS resulted in an improvement
of about 15% compared to uniform initialization, which we consider to be a noticeable
improvement, albeit not a dramatic one. The implementation overhead induced by one of
the initialization strategies is worthy because (a) the initialization was performed only once
at the beginning of the evolutionary algorithm, and (b) we consider a 15% improvement in
RMSE to be satisfactory.

We used similar reasoning when trying the various alternative steps throughout the
ICA loop. Of the three assimilation strategies tested, global assimilation demonstrated
the best results and generated the fastest convergence with the steepest curve (Figure 7),
whereas local assimilation performed the worst. Consequently, having most of the solutions
migrate toward the strongest overall imperialist resulted in the lowest overall error value,
whereas the classic approach where the solutions moved toward their owners provided
the worst convergence. We observed a 15–20% improvement in RMSE by choosing an
appropriate assimilation strategy.
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Figure 6. Comparison of convergence using multiple types of initialization methods: Uniform
sampling, Halton sampling, classic Latin Hypercube sampling, (LHS), Centered Latin Hypercube
sampling (CLHS), Maximin Latin Hypercube sampling (MLHS).

Figure 7. Comparison of convergence using different assimilation strategies: Local assimilation,
where countries move toward their imperialist owner; Global assimilation, where a large percentage
of the countries move toward the strongest imperialist; Freewill assimilation, where countries move
toward an imperialist chosen via roulette-wheel selection.

In terms of competition strategies, surprisingly, the four tested approaches did not
have substantial differences in terms of error minimization, resulting in an improvement
of below 10%. One can see in Figure 8 that the aggressive competition strategy resulted
in the fastest decreasing and overall lowest error value. These results were predictable
since aggressive competition statistically leads to the fastest elimination of imperialists
and therefore the imposed convergence criterion (one empire left) is reached the quickest.
Consequently, the chosen competition strategy unintuitively had the least effect in terms of
error minimization, though it ultimately proved to be an effective means of controlling the
convergence speed and steepness.

Adopting an adaptive parameter control strategy and using backpropagation boosting
to the population provided the biggest improvements to our method. Using a combination
of adaptive and self-adaptive parameter controls, as described in Section 4.6, made a
noticeable improvement to the resulting errors, compared to the non-adaptive approach.
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Incorporating the algorithm parameters into the evolutionary optimization loop did not
result in a noticeable penalty in terms of convergence speed, as the algorithm seemed
to effectively optimize its own parameters. However, incorporating a backpropagation-
based boosting led to the most significant improvement to our method. As presented in
Section 4.5, for each iteration of the evolutionary algorithm, we steered the solutions toward
the optimum via partial backpropagation-based training. We used the Adam optimizer
during each backpropagation epoch [59], whereas the number of epochs and learning rate
are part of the overall algorithm parameters. As such, the resulting algorithm was a hybrid
that incorporated both an evolutionary and a gradient-based backpropagation approach.
The convergence curves obtained using various improved and unimproved versions of
the algorithm are shown in Figure 9, where it is clear that the hybrid-adaptive approach
provided a significant improvement in terms of minimizing errors.

Figure 8. Comparison of convergence using various competition strategies: weakest—the highest-cost
imperialist loses a colony to one of the other imperialists; strongest—the lowest-cost imperial gains a
colony from one of the others; multiple—the conquering and conquered imperialists are both chosen
based on their costs; aggressive—the highest-cost imperialist loses several colonies to the others.

Figure 9. Comparison between the non-adaptive, adaptive, and hybrid adaptive versions of our
algorithm. In the adaptive version, adaptive and self-adaptive parameter control strategies were
employed. In the hybrid version, the solutions were subjected to backpropagation boosting.
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We also evaluated our algorithm by testing it against several evolutionary metaheuris-
tics from the related literature:

• Football Game Algorithm (FGA) [60];
• Imperialist Competitive Algorithm (the classic version of ICA [3];
• Simple Human Learning Optimization (SHLO) [61];
• Social Learning Optimization (SLO) [62];
• Teaching Learning-Based Optimization (TLBO) [63];
• Viral System (VS) [64];
• Virulence Optimization Algorithm (VOA) [65];
• Volleyball Premier League (VPL) [66].

These algorithms have also been compared in a previous work [67] for the optimization
of another industrial chemical process.

Our test methodology was as follows: first, we minimized the RMSE using the entire
dataset. Then, we minimized the RMSE on 70% of the data (the training subset) and tested
the resulting models on the 30% remaining instances (the test subset). We performed
these tests by optimizing both outputs simultaneously via multivariate regression, and
each output individually, therefore generating a separate regression model for each output
separately. The results obtained from optimizing both outputs are presented in Table 2,
whereas the results for the individual outputs are shown in Tables 3 and 4, respectively.
In each Table, we list the RMSE and the correlation coefficients r for the corresponding
outputs presented in Section 2: η (yield in the crosslinked polymer) and α (swelling degree).
The output values were obtained using all instances from the dataset (the columns titled
“all”), as well as using the training subset (“train”) and the test subset (“test”).

Table 2. RMSE and r metrics for the two outputs (η, α) resulting from applying the tested algorithms
for optimizing the neural network architecture and weights using the entire dataset (“all”), the
training split (“train”), and subsequently testing on the test split (“test”). The optimization was
carried out for both outputs simultaneously. ICAHY is our method.

Method RMSE All r η All r α All RMSE Train r η Train r α Train RMSE Test r η Test r α Test

FGA 0.03223 0.26 0.036 0.03828 0.24 0.033 0.05966 0.139 0.009

ICA 0.02157 0.662 0.411 0.02533 0.443 0.407 0.04087 0.296 0.226

SHLO 0.02417 0.476 0.25 0.02834 0.414 0.227 0.04603 0.271 0.184

SLO 0.02524 0.434 0.216 0.02998 0.472 0.216 0.04672 0.261 0.217

TLBO 0.01964 0.841 0.481 0.02274 0.625 0.465 0.03838 0.387 0.433

VOA 0.03322 0.43 0.132 0.04013 0.321 0.087 0.06513 0.164 0.104

VPL 0.03366 0.404 0.085 0.0402 0.299 0.056 0.06153 0.191 0.13

VS 0.03556 0.313 0.019 0.0408 0.304 0.023 0.06596 0.132 0.092

ICAHY 0.0089 0.96 0.843 0.01061 0.934 0.732 0.01641 0.755 0.672

Table 3. RMSE and r metrics for the yield in the crosslinked polymer η, resulting from applying the
tested algorithms for optimizing the neural network architecture and weights using the entire dataset
(“all”), the training split (“train”), and subsequently testing on the test split (“test”). ICAHY is our
method.

Method
RMSE η

All
r η All

RMSE η
Train

r η Train
RMSE η

Test
r η Test

FGA 0.02096 0.472 0.02478 0.45 0.03904 0.242

ICA 0.01067 0.875 0.01243 0.802 0.0205 0.532

SHLO 0.01572 0.715 0.01866 0.695 0.0291 0.342
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Table 3. Cont.

Method
RMSE η

All
r η All

RMSE η
Train

r η Train
RMSE η

Test
r η Test

SLO 0.01288 0.81 0.01512 0.725 0.02441 0.356

TLBO 0.01497 0.729 0.01779 0.717 0.02757 0.338

VOA 0.02172 0.432 0.0237 0.433 0.04675 0.265

VPL 0.01964 0.686 0.02429 0.397 0.03277 0.308

VS 0.0215 0.425 0.02625 0.347 0.03719 0.266

ICAHY 0.00374 0.984 0.00474 0.963 0.0058 0.825

Table 4. RMSE and r metrics for the swelling degree α, resulting from applying the tested algorithms
for optimizing the neural network architecture and weights using the entire dataset (“all”), the
training split (“train”), and subsequently testing on the test split (“test”). ICAHY is our method.

Method
RMSE α

All
r α All

RMSE α
Train

r α Train
RMSE α

Test
r α Test

FGA 0.02947 0.196 0.03466 0.187 0.05578 0.185

ICA 0.02221 0.587 0.02611 0.434 0.04205 0.343

SHLO 0.02579 0.437 0.03001 0.407 0.04983 0.338

SLO 0.02662 0.426 0.0309 0.409 0.05174 0.309

TLBO 0.02627 0.419 0.03077 0.411 0.05008 0.301

VOA 0.03172 0.214 0.0384 0.166 0.05614 0.103

VPL 0.02882 0.231 0.0339 0.329 0.05448 0.126

VS 0.03368 0.236 0.04058 0.106 0.06022 0.046

ICAHY 0.01142 0.828 0.01304 0.802 0.02012 0.659

These results cover all the above-mentioned algorithms, as well as our algorithm,
which is labeled ICAHY (ICA Hybrid). The results show that our algorithm outperformed
the others in terms of minimizing errors on all variations and splits of the data and the
outputs, often by as much as an order of magnitude. Furthermore, our approach allowed
for the optimization of the regression models, which provided the strongest correlations
between their predictions and the target values from the dataset. We, therefore, surmise
that our hybrid-evolutionary approach constitutes a dependable method for finding and
optimizing neural networks capable of generating reliable regression models.

Although in the previous articles that addressed the same database the accuracy was
satisfactory, from the point of view of the methodology, the present article has clear advan-
tages. Thus, in [5], the neural networks were designed by the trial-and-error method—an
expensive procedure that does not guarantee obtaining the best model. In [6], the successive
trials method was also used, adding neural network stacks as a type of model. The present
evaluation methodology automatically determined an optimal neural network model from
both points of view, structure, and parameters. In addition, the method showed flexibility
and generality and could be easily adapted and applied to other complex processes in
chemical engineering.

The simulation study of the synthesis process of multicomponent hydrogels benefitted
from the results obtained through the predictions for parameters difficult to determine
experimentally (swelling degree), which means significant savings in time, materials, and
energy.

Based on the data presented in Tables 2–4, we created some derived figures that can
help the reader to better visualize the results. They mainly show some relative values
of the error metrics employed. However, they have a qualitative character rather than a
quantitative one, because, e.g., the correlation coefficient r has a nonlinear definition and a
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relative r cannot be defined by a direct ratio between two such values. Therefore, we use
several quality indicators that can provide some insight into the results from a qualitative,
possibly managerial, point of view. The greater the value of an indicator, the better.

Figure 10 displays, for each algorithm, the improvements using two separate networks
to predict η and α (case 1) rather than using a single neural network with two outputs (case 2).
The results are considered for the testing set only. Thus, we use four quality indicators:

• QI1, defined as the ratio between the RMSE obtained in case 2 and the average of the
two RMSEs obtained in case 1.

• QI2, defined as the ratio between the correlation coefficient r obtained in case 1 for η
and the r obtained in case 2.

• QI3, defined as the ratio between the correlation coefficient r obtained in case 1 for α
and the r obtained in case 2.

• QI4, defined as the average of QI1, QI2, and QI3, as a global indicator.

Figure 10. Improvements of two separate networks for each output over a single network with two
outputs.

In the case of FGA, QI3 and consequently QI4 are outliers with very high values (about
20 and 7, respectively), therefore their values are cropped in order to provide a better level
of detail for the rest of the values. It can be seen that most, but not all, algorithms benefitted
from the separation of the models. In the case of the ICAHY, the values are close to 1, and
therefore the single network succeeded in providing results of approximately the same
quality as the two individual networks.

Figure 11 shows how much worse the results obtained for the testing set are compared
with those obtained for the training set. The purpose of this analysis is to estimate the
generalization capability of the models, and it is made for the separate models, i.e., one
network for the η output and another network for the α output. If the training results
are good and the testing results are bad, this is an indicator of overfitting. The closer
the two results are, the better the generalization capability of the model. However, one
can realistically expect the testing results to be (slightly) worse than the training results.
Consequently, we use another five quality indicators:

• QI5, defined as the ratio between the RMSE for η obtained for the training set and the
RMSE for η obtained for the testing set.

• QI6, defined as the ratio between the correlation coefficient r for η obtained for the
testing set and the r for η obtained for the training set.
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• QI7, defined as the ratio between the RMSE for α obtained for the training set and the
RMSE for α obtained for the testing set.

• QI8, defined as the ratio between the correlation coefficient r for α obtained for the
testing set and the r for α obtained for the training set.

• QI9, defined as the average of QI5, QI6, QI7, and QI8, as a global indicator.

Figure 11. A comparison of the results obtained for the training and testing sets.

It can be seen that the proposed algorithm ICAHY has the highest value for QI9 among
all the algorithms, which demonstrates that it can generalize very well.

Finally, in Figure 12, we compare the results of ICAHY obtained for the testing set
with those of the other eight algorithms, and we use:

• QI10, defined as the ratio between the RMSE for η obtained with ICAHY and the
RMSE for η obtained with each algorithm.

• QI11, defined as the ratio between the RMSE for α obtained with ICAHY and the
RMSE for α obtained with each algorithm.

• QI12, defined as the ratio between the correlation coefficient r for η obtained with each
algorithm and r for η obtained with ICAHY.

• QI13, defined as the ratio between the correlation coefficient r for α obtained with each
algorithm and r for α obtained with ICAHY.

• QI14, defined as the average of QI10, QI11, QI12, and QI13, as a global indicator.

We can see that ICAHY clearly shows better performance than the other algorithms
for every error metric. From the qualitative point of view defined by our conventions, its
average indicator value is about twice as good as the algorithm in second place, i.e., the
standard ICA.

This confirms that the proposed algorithm had very good potential for the optimization
problem considered in the present paper and likely also for other optimization problems.
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Figure 12. Relative quality of ICAHY results compared with the results of the other algorithms under
study.

6. Conclusions

We developed a hybrid evolutionary algorithm that optimized a fully connected
neural network, which successfully minimized the RMSE on a dataset from the field of
chemical engineering. The data were collected from the synthesis of polyacrylamide-
based multicomponent hydrogels; they consisted of 7 input parameters and 2 outputs and
had as a goal the modeling of the yield and swelling degree as functions of the reaction
conditions. In our experience, this dataset has proven difficult in terms of generating
a regression model that properly characterizes the underlying phenomenon. Existing
evolutionary metaheuristics have proven incapable of properly optimizing a neural network
architecture, considering the high dimensionality and complexity of the corresponding
neural network space. Consequently, we proposed a method that combined the advantages
of two optimization approaches: an evolutionary optimization algorithm that was capable
of thoroughly searching through the solution space and providing partial convergence
and backpropagation-based optimization, which constituted a necessary boost toward
minimizing errors further. For our evolutionary approach, we started with a loop inspired
by the Imperialist Competitive Algorithm (ICA) and modified several key steps of the
algorithm to better suit the requirements of our particular problem. To this end, we searched
and tested various types of initializations, assimilations, and competition strategies. At the
same time, we employed an adaptive/self-adaptive parameters control strategy so that the
parameters of the algorithm were optimized by the algorithm itself, on the one hand, as well
as altered during the algorithm’s iterations, on the other hand. The result of this analysis
was an ICA-based evolutionary algorithm that used global assimilation, during which
most of the colonies moved toward the strongest imperialist nation as opposed to their
owner imperialist; aggressive competition, where the imperialists repeatedly conquered
the weaker countries from the weakest empire, thus depleting it of colonies much faster
and contributing to the convergence speed; and Maximin Latin Hypercube initialization,
which used a low-discrepancy sampling method to initialize the population so that it
was relatively evenly dispersed throughout the solution space. All of the implemented
steps contributed in varying degrees to improving the resulting evolutionary algorithm.
Furthermore, the adaptive and self-adaptive strategies contributed in their own regard to
improving the performance of the method, while at the same time alleviating the need for
time-consuming parameter search and tuning. Ultimately, integrating a backpropagation
boost proved to be the most significant enhancement in terms of optimizing a reliable neural
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network. Over each iteration of the evolutionary algorithm, the neural network population
was slightly optimized with partial backpropagation-based training. This resulted in a
much-improved convergence and more reliable neural network candidates.

We tested our method on the dataset in multiple scenarios: for instance, we used
both the entire dataset for optimization, and a train/test split; we optimized the errors
on the two outputs simultaneously as well as on each of them individually. Our results
showed that the neural networks optimized using our approach minimized the RMSE
further than alternative evolutionary algorithms and demonstrated better correlations
among the predictions and the desired values of the outputs. We, therefore, conclude that
our algorithm constitutes a suitable method for finding optimal neural network models
that are capable of accurately characterizing the data and making reliable predictions.

Naturally, our work has limitations and there are still many ways to improve upon
the method, both in terms of the algorithms themselves and with regard to performance.
In terms of the actual approach, there are many versions and modifications of the ICA
in the related literature that may provide suitable candidates for a reliable evolutionary
algorithm. Currently, backpropagation-based optimization is integrated rather bluntly, and
we intend to search for more elegant ways to exploit it for faster convergence. There are
other optimizers that can be combined with the evolutionary algorithm to form even mode-
capable hybrid methods. Although our method is currently limited to fully connected
neural networks, in future work we plan to extend the use of evolutionary optimization to
other, potentially more useful architectures, such as sparse neural networks and/or convo-
lutional and recurrent networks. An additional direction for improvement is performance.
Hybrid algorithms combine the advantages of multiple methods but require most of the
computational resources of those methods. As such, the current implementation of our
method could be improved in terms of performance, especially considering runtimes. We
intend to expand this aspect of our work by searching for ways to reduce computational
times and parallelizing as much of the implementation as the algorithms will allow. This
may require possibly migrating the implementation to a GPGPU language to exploit the
advantages of GPU-based computation. Finally, neural networks may not be the best and
easiest to work with as candidates for regression models. Other functions/parametric
models may prove more reliable. We, therefore, intend to explore the related state-of-the-art
results for better alternatives that may converge easier or offer higher accuracies/fewer
errors. Fortunately, the literature in the related field of this paper provides many resources
for gathering information and which are reliable sources of inspiration and learning, for
the continuous improvement of our methods.
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Nomenclature

Notation Description

ci
The values of a country i (equivalent to the genes of an individual in
genetic algorithms)

lc
The number of variables of a country (equivalent to the size of a chromosome in
genetic algorithms)

Idest The destination imperial during the assimilation phase.
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Notation Description

costCi
The cost of country ci (countries with lower costs have higher “fitness”, in
genetic algorithm terms)

costI The cost of imperialist I

tcostI
The total cost of imperialist I (a combination of the imperialists’ own cost
and the costs of its colonies)

fcost
The fraction of the total cost of an imperialist represented by the average cost
of its colonies

ncI The number of colonies of imperialist I
nLC The number of colonies lost during the competition phase
it Index of an iteration of the ICA loop
nInitC Initial ICA population count
nInitI Initial ICA imperialist count
compAg Aggressiveness of the imperialist during the competition phase
fcost The fraction of the total imperialist cost contributed by its colonies
pr Probability of revolution occurring for a country
prv Probability of revolution occurring for each individual value of a country
sr Step size used for normal revolution (the ICA equivalent of mutation)
adist Maximum distance to the destination imperialist during assimilation

bpa
Scaling factor used to determine the number of epochs used for
backpropagation boosting

bpLR Learning rate used for backpropagation boosting

α
The swelling degree of the semi- and interpenetrated multicomponent
crosslinked structures

η The yield in the crosslinked polymer
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Abstract: With the development and progress of information technology, especially V2X technology,
the research focus of intelligent vehicles gradually shifted from single-vehicle control to multi-
vehicle control, and the cooperative control system of intelligent connected vehicles became an
important topic of development. In order to track the research progress of intelligent connected
vehicle cooperative driving systems in recent years, this paper discusses the current research of
intelligent connected vehicle cooperative driving systems with vehicles, infrastructure, and test sites,
and analyzes the current development status, development trend, and development limitations of
each object. Based on the analysis results of relevant references of the cooperative control algorithm,
this paper expounds on vehicle collaborative queue control, vehicle collaborative decision making,
and vehicle collaborative positioning. In the case of taking the infrastructure as the object, this
paper expounds the communication security, communication delay, and communication optimization
algorithm of the vehicle terminal and the road terminal of intelligent connected vehicles. In the case
of taking the test site as the object, this paper expounds the development process and research status
of the real vehicle road test platform, virtual test platform, test method, and evaluation mechanism,
and analyzes the problems existing in the intelligent connected vehicle test environment. Finally,
the future development trend and limitations of intelligent networked vehicle collaborative control
system are discussed. This paper summarizes the intelligent connected car collaborative control
system, and puts forward the next problems to be solved and the direction of further exploration.
The research results can provide a reference for the cooperative driving of intelligent vehicles.

Keywords: intelligent connected vehicle; cooperative driving system; V2X; communication technology

JEL Classification: 68T01

1. Introduction

Conducting research on intelligent connected vehicle systems will introduce a new
stage of development in China’s automotive industry and intelligent transportation indus-
try [1]. In recent decades, single-vehicle-based intelligent driving technology made great
progress. With sensors and processors loaded on the vehicles, some sample vehicles were
implemented for demonstration operations on the road. However, there are still many
problems to be solved [2], such as (1) inaccurate individual sensor readings; (2) the limited
detection distance of on-board sensors; (3) the existence of blind areas for on-board sensor
detection; (4) high costs of on-board computational processors; and (5) a lack of predictive
mechanisms for other vehicle behaviors.

Specifically, the direction of automobile development is intelligent and networked.
Intelligence includes the perception, decision making, and control of intelligent cars. Car
intelligence is usually through the radar system (laser radar, millimeter wave radar, and
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ultrasonic radar) and visual system (camera) to collect the surrounding environment,
and then through the vehicle computer and algorithm for data processing, it makes the
optimal decision, the decision signal goes to the vehicle chassis control system, and the
intelligent control is realized [3]. Networking refers to the function of communication
and real-time information between the network environment and real-time information
interaction, which can be divided into vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P). An intelligent connected
vehicle generally refers to a single vehicle to achieve intelligence through sensor technology.
At present, in order to improve the safety and comfort of intelligent vehicles, intelligent
connected vehicles, in addition to directly perceiving the environment to make decisions,
also need to have the ability to cooperate and act, and reflect the advantages of multi-vehicle
intelligence through the cooperation and coordination of vehicle to vehicle [4].

In the development and advancement in vehicle-to-everything (V2X) technologies,
including vehicle-to-vehicle communication technologies and vehicle and roadside infras-
tructure communication technologies, collaborative vehicle infrastructure systems (CVIS)
and information factors play an increasingly important role in transportation systems [5–7].
Intelligent collaborative vehicle control based on vehicle–road cooperation will enable
all-round information sensing and compensate for the lack of on-board computing power,
which is a future direction in this field. Under the conditions of intelligent networks,
vehicles on the road are no longer isolated individuals but multi-vehicle systems formed by
wireless communication networks. In the vehicle network environment, intelligent vehicles
can obtain information about other vehicles and roads within the communication range
based on workshop communication and vehicle–road communication, and they use this
information for distributed decision making and control in order to realize the collabora-
tive control of the whole system. At present, the development of technologies, such as
vehicle–road cooperation and vehicle–vehicle communication became a breakthrough in
the development of single-vehicle agents in the intelligent network environment [8]. The
European SAFESPOT project [9], the U.S. path project [10], and the Japanese Smartway
project [11], etc., researched and explored the field of vehicle–road cooperation from var-
ious aspects by establishing an experimental platform to verify the technical problems
in the process of vehicle–road cooperation in an effort to achieve intelligent information
sharing between vehicles and road facilities, and ultimately ensure traffic safety and im-
prove traffic efficiency. Among them, the intelligent connected vehicle formation, as a
kind of both traffic efficiency and traffic safety mode, through the real-time communica-
tion and coordination between vehicles, makes full use of road infrastructure, simplifies
the complexity of traffic control and management, improves road capacity, eases traffic
congestion, reduces environmental pollution, has great potential, and is the new way of
road vehicle traffic in the future. Intelligent connected vehicle formation is mainly for more
intelligent snatched vehicles in a complex traffic environment. By adjusting their driving
speed and steering, it makes itself and nearby intelligent connected vehicles keep relatively
stable geometric posture and the same movement, and meets the task requirements and
constraints (such as obstacle avoidance), so as to realize more intelligent connected vehicles
between wireless communication collaborative driving behavior. The main technologies
involved in the autonomous vehicle formation include: vehicle combination positioning
and multi-sensor and multi-source information fusion technology, collaborative formation
control technology, and cooperative perception and communication technology. In this
context, this paper focuses on the intelligent vehicle cooperative control system in the
vehicle networking environment.

In the 1980s, some scholars put forward the concept of formation system control.
After the 1990s, the problem of multi-vehicle formation gradually attracted more and more
researchers. At present, the formation control of multi-vehicle cooperative system mainly
includes following the pilot method, virtual structure method, artificial potential energy
field method, virtual pilot method, and behavior-based method. Benefits of a vehicle–road
collaborative intelligent system are as follows: firstly, from the perspective of safety, many
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bicycle intelligent scenarios can be easily solved through intelligent roads and powerful
cloud network facilities. Secondly, through the intensive construction of intelligent roads
and the intelligent cloud network, intelligent capabilities can be shared by all the cars on
the road to reduce the amount of cars, reduce the cost of the car, thus reducing the cost
of the whole automatic system. From the perspective of the three parts of autonomous
driving perception, decision making and control, the perception of bicycle intelligence
is only based on its own sensors, with blind spots and dead corners. The vehicle-road
collaborative “intelligent look” can be based on the sensor network on the road, namely
based on the 5G “car-road-side-edge-cloud” level 4 fusion data processing system network,
covering vehicle perception data, roadside perception data, edge, area, central cloud access
of traffic/road data, environment/public service data, and other basic service platform data,
no dead angle, and long distance, also called “god perspective”. The intelligent decision
of a bicycle vehicle can only be made based on its own incomplete information, which
cannot be taken into account by other vehicles, so the decision result is locally optimal.
Vehicle–road collaborative intelligence can comprehensively take into account the next
movement trend of all cars, so as to make a comprehensive and optimal decision result.
Based on such advantages, vehicle-to-road collaborative intelligence can achieve very good
driving safety and economy.

In this context, the research of this paper focuses on intelligent connected vehicle
cooperative driving development. The overall framework of the article is shown in Figure 1.
The intelligent vehicle cooperative driving system is discussed, and the latest developments
in vehicle network cooperative driving are introduced.

Figure 1. Structural framework.

The remainder of this paper is organized as follows: Section 2 presents the selection
methods of the references and details the literature screening process for the systematic
review and the preferred reporting guidelines for the meta-analysis. Section 3 describes
the details and problems of the collaborative control algorithms for intelligent vehicles.
Section 4 describes current situation and problems of the exit vehicle and internet com-
munication. Section 5 explains the test platform and evaluation system of the intelligent
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vehicle collaborative control system. Section 6 summarizes the current status of the study
and suggests directions for future research. Finally, the article is summarized in Section 7.

2. Research Method

In this paper, preferred reporting items for systematic reviews and meta-analysis
(PRISMA) are used to analyze the literature to review the cooperative development of
intelligent and connected vehicles [12,13].

2.1. Literature Search

Relevant Chinese and English literature of eight databases, including Google Aca-
demic, Web of Science Core Collection, Inspec, KCI-Korean Journal Database, SciELO
Citation Index, IEEE Xplore, and China Knowledge Network of China and Baidu Academic,
were searched. The following search keywords will include the following four categories:

(1) intelligent vehicle cooperative development, intelligent connected vehicles;
(2) vehicle queue, collaborative positioning, collaborative control and decision, multi-

vehicle, CACC;
(3) communication security, communication delay, and internet of vehicles;
(4) intelligent connected vehicle test platform, test software, experimental method and

evaluation system.

The selection of keywords can be divided into three levels: layer 1 is the Chinese
and English keywords related to intelligent vehicle cooperative development; layer 2 is a
general name, generic name or nickname, such as “vehicle collaborative control technol-
ogy”, “Intelligent connected vehicle communication”, “Intelligent connected test platform,
evaluation system” and its corresponding English name; layer 3 is the specific classification
name, such as the vehicle queue, communication security, vehicle road collaborative posi-
tioning, and selects their respective names as the search keywords. The above three layers
of keyword search and classification provide a complete summary of the collaborative
control system from the aspects of concept, general classification and classification, so a
comprehensive and detailed research literature can be obtained accordingly. Some of the
search keywords were not listed because there was no relevant literature under the entry,
or the retrieved literature was repeatedly recorded by other keywords.

2.2. Literature Screening

The literature screening process used in this paper and the literature screening situation
at each stage are shown in Figure 2, and the n is the number of documents. First, the relevant
literature of eight databases was searched according to the keywords mentioned above.
Secondly, the repeated literature between databases was eliminated and the subject and
content were screened. Finally, the evaluation indicators of these literature were scored for
quality, and the literature finally included in the review was determined according to the
scoring results.

In terms of literature quality scoring standards [14–16], this paper constructs the
literature quality evaluation indicators required by the research of the intelligent connected
vehicle cooperative control system, as shown in Table 1. Specifically, score 2 if the indicator
answers “Yes”, 1 if it answers “Not exactly Yes”, and 0 if the indicator answers “No”.
Among them, the literature quality score of 17 or above is excellent, while 12–17 is classified
as qualified, and that of 12 or below 12 points is unqualified. Only qualified and above
documents are retained, and unqualified documents are excluded. The whole literature
was scored by two authors, respectively, and the literature with a difference of less than
three and the final score was decided by two people through discussion. If the scoring
results of either literature are quite different (the score difference is greater than 3), the
remaining two authors will make a decision on the scoring results.
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Figure 2. Literature screening process.

Table 1. Measurement Indexs of Literature Quality.

Number Literature Quality Assessment Index Marking

1 Is the motivation clear? Yes is 2, Not exactly 1, No is 0

2 Are the hypotheses/questions under study clearly
and adequately stated? Yes is 2, Not exactly 1, No is 0

3 Is the study design suitable for the study purposes? Yes is 2, Not exactly 1, No is 0

4 Does the study clearly describe the type or
characteristics of collaborative control clearly? Yes is 2, Not exactly 1, No is 0

5 Is the test environment clearly described? Yes is 2, Not exactly 1, No is 0

6 Is the way of data collection is clear and reasonable? Yes is 2, Not exactly 1, No is 0

7 Are all the influencing factors strictly restricted in
the experimental studies? Yes is 2, Not exactly 1, No is 0

8 Are the data fully analyzed? Yes is 2, Not exactly 1, No is 0

9 Are the investigation or test results clearly stated? Yes is 2, Not exactly 1, No is 0

10 Are the study conclusions fully discussed? Yes is 2, Not exactly 1, No is 0

11 Is there any lack of research and prospects? Yes is 2, Not exactly 1, No is 0

2.3. Information Extraction

After eliminating the unqualified literature of all the literature included in the review
of standardized information extraction, the following data are extracted from the literature:
1© author and publication year, 2© country and region, 3© research object, 4© sample

size, 5© research length, 6© research method, 7© research index, 8© influence factors, and
9© literature conclusion. In order to ensure the accuracy of literature information extraction,

two authors were, respectively, responsible for the relevant literature information extraction,
and two other authors randomly selected 10 documents from each part for information
verification to ensure reliability.

2.4. Comprehensive Analysis of the Literature Results

Quantitative analysis cannot be performed directly due to the heterogeneity of the
different studies. Therefore, the results of the screened literature were systematically
summarized and reported by narrative comprehensive analysis. Specifically, the steps of
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this analysis include determining the review problem, sorting out and comparing the data,
and drawing conclusions.

3. Cooperative Control

3.1. Vertical Formation

The development of intelligent transportation technology has advantages in solving
the problems of low traffic efficiency, poor safety, and high energy consumption. V2X-based
traffic environment information sensing and interaction technology enables vehicles in
the road network to obtain real-time status information about other vehicles within com-
munication range, identify vehicle driving intentions through model predictive reasoning,
adjust driving strategies, and ensure vehicle driving safety [17]. V2X technology lays the
foundation for the development of vehicle group operation. Vehicle group operation is an
important means to improve road traffic efficiency; when vehicle group driving, on the one
hand, with the increase in the number of vehicles in line, the driving resistance coefficient
of each vehicle decreases, so the driving mode of the vehicle group can reduce the vehicle
driving resistance and reduce energy consumption. On the other hand, vehicle group
driving can reduce traffic stress by integrating vehicle driving states, reducing the vehicle
following distance, and improving road occupancy [18]. Therefore, the team operation
mode will be a future development trend in self-driving vehicles.

The vehicle platoon driving system is also called the cooperative adaptive cruise
system, and its structure is shown in Figure 3. Through the introduction of inter-vehicle
communication, the vehicle platoon driving system realizes the information transmission
and sharing between connected vehicles, and can achieve continuous tracking control of
multiple vehicles, ensure vehicle safety, and improve the performance of the entire vehicle
plat. The research on vehicle platoons began in the early 1990s with the Partnership for
Advanced Transportation Technology (PATH) project in the United States [19,20], as shown
in Figure 4a. Japan and Europe also launched related projects on vehicle platoons, such
as Japan’s Energy ITS project [21], the Grand Cooperative Driving Challenge (GCDC) in
Europe as shown in Figure 4b [22,23], etc. In recent years, there were many studies related
to vehicle queues in China. For example, the vehicle platoon of Chang’an Automobile
CS55 is shown in Figure 4c, and the Baidu 6-vehicle mixed fleet is shown in Figure 4d
shown [24,25].

 
Figure 3. Vehicle platoon structure.

The ideal distance between vehicles is also referred to as the geometric configuration.
It is used to describe the relative position or attitude between the controlled vehicle and the
driver’s vehicle in a steady state. Different spacing control strategies can affect the safety
and stability of the vehicle queue. By maintaining a reasonable distance, aerodynamics can
effectively use the traction effect to improve fuel economy. In the 1890s, scholars such as
Loannou P.A. and Swaroop D. proposed a fixed forward constant time headway (CTH)
strategy to maintain a distance between front and rear vehicles. In 1997, Yanakiev [26] also
considered the vehicle speed and acceleration when developing a headway control strategy.
In 2004, Fred Browand [27], a scholar at the University of Southern California, considered
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the situation of two trucks tailing each other. The model predictive control (MPC) approach
has three typical features: model prediction, rolling optimization, and feedback correction.
It allows for better advanced control and online roll optimization calculations. It is suitable
for complex systems where it is difficult to build accurate numerical models. Memon [28]
developed a continuous time-domain vehicle model based on MPC techniques that can
capture the steady state and transient states of the vehicle in real time. It focuses on
the critical state characteristics of the vehicle response of adaptive cruise control (ACC).
Through simulation, it was verified that the ACC model controlled by MPC has high
sensitivity and can truly reflect the behavior of the actual vehicle.

  
(a) (b) 

  
(c) (d) 

Figure 4. Vehicle queue display [25]: (a) US path truck queue; (b) European GCDC mixed queue
driving competition; (c) driving demonstration of 55 Chang’an Cs55; and (d) Baidu 6-car mixed
queue driving display.

In recent years, with the gradual maturity of the ACC system, its cost reduced, and
ACC technology fell to the 100,000 range. For example, Nissan’s Sylphy and Versa are
equipped with an ACC system. Pan Chaofeng et al. [29] detailed the components, design
methods, and research hotspots of the ACC, and reviewed future research directions and
development trends. In addition, CACC can realize collaboration with traffic signals, and
alvert Simeon C et al. [30] realized the interaction with intelligent traffic signals by queuing
suburban trunk lines in real traffic. In addition, YuanHeng Zhu et al. [31] proposed a new
control structure for the vehicle queue with multiple front vehicles, transforming the hetero-
geneous CACC problem into the adjustment problem of each error dynamic, and ensuring
the stability of the minimum front time distance of the vehicle queue through the sum of
square planning. Shuaidong Zhao et al. [32] proposed a model predictive control method
based on distributed robust stochastic optimization for collaborative adaptive cruise control
under uncertain traffic conditions, which then improves the stability, robustness, and safety
of longitudinal collaborative autonomous driving with multiple CAVs. In the process of car
following, CACC’s coordination ability and adaptability of various goals are a very impor-
tant part in the complex and changeable driving environment. Yang, Ld et al. [33] adjusts
the weighted value according to the deceleration duration and the deceleration change,
and increases the relative distance between the two cars under a deceleration condition. In
addition, Chen JZ et al. [34] proposed an improved variable front time distance strategy for
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the collaborative cruise control system, which redesigned the second-layer controller on
the basis of existing technologies, and verified the effectiveness of the strategy through the
simulation of two traffic scenarios. Liang H et al. [35] proposed a new consensus-based
input saturation and variable workshop time–distance control method, considering the
communication delay in the algorithm. At present, some researchers carried out the study
of applying the communication between the multiple front vehicles to the collaborative
adaptive cruise system, so that the communication between the target vehicles and the mul-
tiple front vehicles is made. The current research on the CACC technology control method
is mainly divided into classical control method, optimal control method, synovial control
method, and machine learning-based method, which is the latest development trend.

3.2. Vehicle Collaborative Decision-Making and Control Strategy

Traffic congestion in signal road intersections became a central problem in both devel-
oped and developing countries. Collaborative decision making of vehicle control can solve
this problem very well and reduce the traffic congestion problem at highway and road inter-
sections [36]. Based on vehicle–road communication technology, vehicle–road cooperative
decision making became a research hotspot within intelligent traffic organization systems.
Vehicle–road collaborative decision making needs to realize active vehicle safety control
and road collaborative management. Vehicle active safety control is divided into three
directions, namely no signal intersection, road section between the adjacent intersection
and road network. Seeking effective ways to maximize traffic at intersections, maximizing
traffic flow, while considering various factors, the rapid development of truth–time strategy,
signal timing limit, traffic system, speed, and other actual implementation are our goals [37].
First, for non-signalized crossing, autonomous intersection management (AIM) is more
effective than signal timing assignment (STA) [38]. Research on the spatial dispersion
of road intersections is mostly based on the first-come-first-served (FCFS) traffic princi-
ple [39–41], which is more prone to delays than STA. Based on the analysis of intersection
conflict points, one can overcome the shortage of reserved space for an intelligent driving
vehicle at the whole intersection [42–46]. Some researchers study methods that are different
from FCFS by optimizing the departure sequences of intelligent vehicles at intersections,
such as optimizing the departure sequence of conflict traffic flow [47–51], sharing control
based on the real-time traffic state at intersections [52], adaptive traffic decision making
based on insertion [53], distributed conflict resolution mechanisms [54], etc. Secondly,
for the adjacent intersection link, the trajectory can be optimized by speed coordination.
Hamilton and Euler–Lagrange equations are constructed to obtain the analytical expres-
sions of vehicle motion parameters [55]. On this basis, the vehicle trajectories between
two intersections are optimized [56], the trajectory solving process is extended [57], and
the existence of feasible solutions is proven. Bichiou et al. [58] estimated the arrival time
of vehicles at intersections and solved the convex programming problem of the vehicle
movement process according to the minimum principle. Finally, for the road network,
the road network traffic organization method for intelligent driving vehicles is still in the
initial stage of research. Guo et al. [59] focused on the road network scenario with multi-
ple intersections, and Huasknecht et al. [60] introduced the internet of vehicles to study
the performance of aim. Huang et al. [61] studied the design and evaluation of vehicle
trajectory planning methods in a multi-intersection traffic network using an integrated
simulator, and Chu et al. [62] studied vehicle trajectory optimization in road networks
based on dynamic variable lanes. Milanes et al. [63] used vehicle-to-vehicle (V2V) commu-
nication technology to determine the vehicle speed and location at a signalized intersection,
estimated the intersection location through these data, designed a fuzzy logic decision
algorithm according to vehicle speed, and predicted the optimal vehicle speed trajectory
by using short-range radar and traffic signal information. Liu et al. [64] regarded drivers
and signalized intersections as automatic agents in a multi-agent system, and elaborated
new mechanisms to imitate traffic signals and stop signs in the system. Since the factors
influencing the collaborative control of vehicles exhibit complex interactions, these factors
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must be identified to propose solutions that can address this complexity and still need to
be implemented.

In terms of road collaborative management, the accurate and effective prediction of
vehicle traffic flow plays an important role in the construction and planning of signal inter-
sections. The application of the AI prediction model in traffic flow performance prediction
achieves positive results. However, there is still great uncertainty in determining which AI
approach can effectively solve traffic congestion problems. Isaac Oyeyemi Olayode [36]
et al. compared an artificial neural network trained by a particle swarm optimization model
(ANN-PSO) and a heuristic artificial neural network model (ANN) for vehicle traffic flow
prediction, using the South Africa transportation system as a case study. Results show that
the ANN-PSO model is more efficient than the neural network model in predicting vehicle
traffic flow at four-way signal intersections, and is robust enough to predict traffic flow.
This research idea provides traffic flow information and guidance for the collaborative
control system to optimize its travel time decision.

In the multi-vehicle queue forming control system, the system needs to be specially
designed when individual vehicles need to leave or join the fleet. Ying ZB et al. [65] added
a dynamic AVP management protocol to the control system for how to effectively manage
the addition of vehicles and the leaving of vehicles in the vehicle queue. Vehicles joining
and leaving the queue will need to communicate with the queue leader, and all the mes-
sages will be related to the corresponding transactions specified by the smart contract. Cai
MC et al., for the real-time collaborative lane change and queue switching problems, [66]
proposed a dynamic staggered hierarchical queue generation method, which introduces the
lane change function of all vehicles, establishes the optimal problem model, and develops
the on-board local controller of vehicles to ensure a safe distance between vehicles. Gao
W et al. [67] proposed a spectrum-aware scheduling scheme for queue communication
resource management for the problems of communication between queues when vehicles
join queues, and shown through simulation results that the scheme achieves a smaller
queue error when vehicles join multi-vehicle queues. Won M [68] proposed the concept
of L-Platooning for especially long heavy trucks, the first queuing protocol that can seam-
lessly, reliably, and quickly form a long platoon, introducing a new concept—the virtual
leader, a vehicle that acts as a platoon leader, to support the addition and departure of the
long platoon. Fina NA [69] proposes an improved multi-mobility management protocol
(IMMP) for queue, join, leave, and disrupt scheduling operations, where IMMP manages
multiple connections and leave operations through vehicle-to-vehicle infrastructure and
vehicle-to-vehicle communication, simultaneously. By verifying the design features of
various systems using PROMELA and SPIN validation tools, the logical flow of IMMP is
proposed, and the simulation results and analysis verify the behavior of the connection and
departure process without affecting the safety of the entire system, this study shows that
IMMP works successfully within an acceptable duration of mobility. Santini S et al. [70]
proposed a longitudinal controller based on distributed consensus, while maintaining
the stability and performance of the formation topology and control gain, showing the
dynamic characteristics of the system and the addition, leaving performance in the middle
of a typical set of queue maneuvers, and finally the simulation confirmed the feasibility of
the strategy. Liu B et al. [71], for multi-vehicle queue forming control problem, proposed a
distributed reinforcement learning method based on the deep Q-network and consensus
algorithm; the queue problem is decomposed into multiple bicycle tasks, each car by in-
teracting with the front and rear car accumulated experience data samples, and then uses
the consensus algorithm to make all the vehicles in the scattered queue close to each other,
which only needs to directly connect the communication between vehicles. Li LH et al. [72]
combined graph theory and safety potential field (G-SPF) theory and proposed a new
model of networked automatic vehicle (cav) under different vehicle distribution, which
compared with previous studies, innovatively introduced the concept of safety potential
field, better described the actual driving risk, ensured the absolute safety of the vehicle, put
forward the four-step team optimization strategy, realized the optimization control of team
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pre-formation and team drive, and finally verified the effectiveness of the vehicle queue
forming method based on G-SPF theory through simulation results. Dai SL et al. [73] uses
the prescribed performance control methods, neural network approximation, interference
observer, dynamic surface control technology, and Lyapunov method to comprehensively
propose an adaptive formation control strategy to ensure the internal stability of the closed-
loop system while guaranteeing the specified performance. In the vehicle collaborative
decision making and control, the researchers gradually study the indicators, such as ride
comfort and fuel economy, on the premise of ensuring the vehicle safety. Multi-objective
optimization is now the future development trend.

3.3. Collaborative Positioning

The vehicle–road collaboration technology in the automotive internet integrates mod-
ern communication technology and network platforms. Through information sharing
among vehicles, roads, and people, it realizes complex environmental sensing, collabora-
tive decision making, and intelligent control functions to build a safe, comfortable, and
energy-efficient automotive internet platform. Vehicle GPS technology is usually used
to achieve positioning. Due to signal blockage and the multiplex effect, GPS positioning
technology often suffers from missing signals or insufficient accuracy to achieve lane-level
positioning accuracy and cannot meet the requirements of vehicle–road collaboration appli-
cations [74]. Cooperative positioning (CP) technology is another method to improve the
positioning accuracy of vehicle–road collaboration networks [75].

Currently, using various methods to obtain more and more meters or even centimeter-
level high precision position information research, based on the global navigation satellite
system positioning technology, based on computer vision sensor positioning technology,
based on the laser radar sensor positioning technology, and based on super broadband
signal positioning technology, the four methods are the mainstream of the high-precision
positioning technology route.

The global navigation satellite system is the existing and widely used positioning
technology in the field of road traffic, and the GPS, Beidou, and other systems are integrated
to improve the positioning accuracy and reliability of the positioning system. Zeng Qinghua
and others of Nanjing University of Aeronautics and Astronautics proposed that the
positioning method of multi-constellation-combined navigation can improve the accuracy
of users. [76]. Robert Odolinski and others of Otago University also did relevant research
in order to reduce the cost of RTK and improve the positioning accuracy, and proposed
that [77] uses the measurement antenna to improve the positioning accuracy of the receiver.
However, the impact on the interference of streamers and tall buildings on satellite signals
is [78], and satellite signals are vulnerable to road conditions and weather, which will cause
signal drift and signal loss, affect normal driving, and even cause safety accidents, which
cannot meet the conditions of the high reliability requirements of the positioning system.

Computer visual positioning can be divided into: monocular visual positioning navi-
gation, binocular visual positioning navigation, and multiocular visual positioning naviga-
tion [79–82]. These positioning and navigation technologies achieved good results in the
research of visual positioning. However, bad weather can lead to poor work normally, and
existing technology can only well solve the identification of specific targets. The complex
scene of the social road cannot well identify any problems, nor can it meet the requirements
of real-time and the reliability of the positioning system.

Lidar positioning technology uses adjacent point cloud data to derive the rigid body
transformation [83] between two adjacent frames through feature extraction and a regis-
tration algorithm. Compared with other sensors, lidar has incomparable advantages in
the unmanned positioning system, and the positioning algorithm, based on lidar sensors,
plays an important role in the intelligent driving positioning module of [84,85].

Ultra wiband technology is a new wireless communication technology. Its positioning
technology has low system complexity, low power consumption, good anti-interference
ability, high multi-path resolution, and high positioning accuracy [86,87]. Kegen et al. [88]
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proposed that in order to locate and track the target, we applied the Kalman filtering
algorithm in an ultra-wideband positioning system.

Car–car and car–road information collaborative interaction drives multiple collabora-
tive positioning applications, for example, car–car collaborative positioning [89], based on
roadside positioning enhancement [90], car–car collaborative integrity monitoring [91], and
beyond visual distance detection perception [92]; at the same time, it also greatly expands
the traditional bicycle autonomous positioning weight calculation based on the perceptual
range in the weight distribution and actual satellite observation quality level to establish
closer correlations. Liu [93] et al. established the overall framework of vehicle satellite
positioning and collaborative positioning enhancement based on vehicle–road information
interaction for the tracking and adaptation of navigation satellite positioning and weight
allocation in a complex dynamic operating environment. Based on high-precision map-
ping and multi-sensor fusion positioning technology, Yao [94] and others complement the
advantages of various sensing and positioning methods, such as the global navigation
satellite system and roadside multi-sensor sensing, and realize the continuous tracking and
high-precision positioning of vehicles in urban ground and underground garage scenes.
In view of the problem of large positioning errors of unmanned vehicles in unstructured
scenarios, combined with on-board lidar and a roadside binocular camera, the dual-layer
fusion collaborative positioning algorithm is adopted to achieve high-precision positioning.

Figure 5 [95] shows a typical cooperative localization system in which the participating
nodes include vehicles and roadside infrastructure. The location of the roadside infrastruc-
ture is known and can receive GPS signals. The vehicle with a brighter color knows its GPS
location, while the vehicle with a darker color does not obtain sufficient GPS signals to
obtain its location information. However, it can estimate its own position data from the
position information of neighboring nodes, i.e., it calculates its own position information
from the position information of neighboring nodes received from neighboring nodes
and the estimated distance between neighboring nodes. Positioning observation data are
limited, and the evaluation of a collaborative localization system based on GPS/RSS/CFO
can effectively improve the localization accuracy.

Figure 5. Collaborative positioning system in urban scene showing the block diagram of the system,
consisting of four parts: RSS filter, GPS filter, decision center, and integrated Kalman filter.

In 2006, Europe achieved a breakthrough in the information exchange between vehicles
and roadside units. In the preset platform, researchers initially achieved a mutual balance
between the traffic infrastructure and vehicles, and freely used the information of various
vehicles [96]. A weighted least squares algorithm based on the maximum likelihood
estimation of the distance between the sensor and the target was proposed [97]. A simple
filtering algorithm based on least squares was proposed, but the positioning accuracy was
not high [98]. A total least squares target location algorithm based on the time difference of
arrival (TDOA) and the angle of arrival (AOA) was proposed [99], but it had low accuracy
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and complex steps. The iterative constrained weighted least squares localization algorithm
based on TDOA and frequency difference of arrival (FDOA) measurement was adopted
in reference [100], which has high accuracy but complex implementation. Sensor-based
location is a common method of vehicle location. However, the high cost, sensitivity to
the environment, and the mapping and updating of maps also limit the rapid diffusion
and spread of sensor-based positioning. No single technology, such as global navigation
satellite systems (GNSS) or sensors, can guarantee high-accuracy positioning performance
for vehicles in any environment, so a combination of inertial navigation, high-accuracy
maps, and other complementary methods, such as cellular networks, is used to improve the
positioning accuracy and stability. Among them, cellular networks are very important for
improving positioning performance, such as real-time kinematic (RTK) data and sensor data
transmission and high-precision map downloads. In addition, the positioning capability of
5G also provides strong support for the high-accuracy positioning of vehicles.

Due to the high technical difficulty and rich application scenarios of vehicle–road
collaboration, the positioning research and application of vehicle–road collaboration in
China is still in the stage of exploration and attempting, with more design schemes, less
implementation, and no unified standard formed. Pilot application is in the Beijing–
Hong Kong–Macao expressway Zhuozhou service section of the vehicle–road collaborative
demonstration area construction. Four millimeter-wave radars will be installed in the pilot
demonstration area, which are fixed to the surveillance lever or gantry by the back-to-
back installation mode, and the installation position is close to the surveillance camera
and millimeter-wave radar. China Mobile built 65G base stations in the vehicle–road
collaborative demonstration area, realizing the full coverage of 5G signals. A total of 3 V2X
roadside units were installed, with a single coverage radius of 800 m and a coverage range
of 3 km. According to the application scenario of the expressway, the Zhuozhou service
section of the G4 Beijing–Hong Kong–Macao expressway conducted the pilot application
of the expressway collaborative positioning construction mode based on “5G + Beidou
high-precision positioning”, and the system functions of the typical application scenario
are verified.

The development direction of the collaborative orientation for road cloud integration
control, 5G + fusion high-precision positioning is based on AI multi-source heterogeneous
data fusion, holographic simulation and consistency test public service platforms, and other
key technologies, such as the formation of “car-road-road-edge-cloud” level 4 fusion of data
processing, 5G + beidou dynamic cm/static millimeter-level high-precision positioning,
real-time interaction, and all-round decision management of collaborative system.

4. Vehicle Communication

As one of the key technologies in this field, vehicle communication refers to the use
of wireless communication, physical terminals, and intelligent sensors to realize V2V,
vehicle–road communication (V2I), to enhance traffic efficiency, improve traffic safety and
travel experiences, and construct the vehicle network (IOV) or vehicle self-organization
network (VANET).

The frequency band of on-board communication is mainly divided into low frequency,
intermediate frequency, and high frequency, and the name and scope are shown in Table 2.
The application representative of low-frequency technology mainly includes automobile
anti-theft and keyless systems. The product application of this technology mainly includes
vehicle remote control keys; high-frequency communication mainly includes Bluetooth
communication, mobile communication, dedicated short-range communication (DSRC),
ultra-wideband (UWB) communication, etc.
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Table 2. Name and range of frequency bands [101].

Classification/
Characteristics

Frequency Band Band Range Frequency Range

Ultra-long-wave VLF 105~104 m 3~30 kHz

Long-wave Low frequency 104~103 m 30~300 kHz

Medium-wave Intermediate
frequency 103~102 m 300~3000 kHz

Short-wave High frequency 102~10 m 3~30 MHz

Ultra-short-wave VHF 10~1 m 30~300 MHz

Microwave

Extra-high frequency 100~10 cm 300~3000 MHz
UHF 10~1 cm 3~30 GHz

Very high frequency 10~1 mm 30~300 GHz
Ultra-high frequency <1 mm >300 GHz

The beginning of the development of vehicle communication systems can be traced
back to a patent introduced in the United States in 1922 on the use of peer-to-peer (P2P)
wireless communication vehicle alarm systems [102]. In recent years, with the development
of wireless communication technology, on-board communication technology attracted
increasing attention from a number of fields. The United States (CAMP/VSC-2) [103],
Japan [104], and the European Union (SAFESPOT) successively carried out relevant research
projects, taking place around 2010. As early as the 10th five-year plan, China began to
strengthen its focus on and planning of intelligent transportation-related fields. Since 2010,
a number of “863” projects and National Nature Science Foundation of China (NSFC)
projects related to vehicle communication were launched. Collaborative data processing
and security privacy are key issues in wireless sensor networks. We focus on network
delays, external interference, impulsive behavior, and structural instability.

4.1. Communication Security

With the rapid development of wireless communication technology, intelligent vehicle
communication is becoming more vulnerable to potential security attacks [105]. Due to
the openness of wireless channels, the signal exposed in the open environment is likely
to be stolen, interfered with, or even modified by the attacker [106]. If the attacker mali-
ciously impersonates the vehicle to release false information and mislead other vehicles to
form incorrect judgments, serious consequences may result. In 2018, the U.S. Department
of transportation took the lead in proposing the security credential management system
(SCMS), exploring the security process of V2X certificate management through a small-scale
pilot. Vijayakumar et al. [107,108] proposed a dual group key management scheme, which
distributes the group key to each vehicle and ensures the update of the group key when the
vehicle joins or leaves the VANET. Combined with fingerprint authentication technology
and hash codes, it improves the security of the vehicle terminal in the VANET environment
and effectively prevents malicious vehicles from participating in communication. Ma
et al. [109] proposed an energy-saving cooperative communication model for wireless sen-
sor networks based on the genetic algorithm. In 2018, Kang et al. [110], drawing upon fog
computing, constructed a privacy protection pseudonym scheme, which used the resources
at the edge of the network for effective pseudonym management, in order to prevent the
occurrence of overly centralized pseudonym management, resulting in large communica-
tion delays and high costs. Yang et al. designed a security architecture for the internet of
vehicles based on digital signatures. Through in-depth study of the internal mechanism of
the security framework, and the detailed design of the architecture, the whole life cycle’s
security mechanism is integrated into the design, and the identity authentication service
in the whole life cycle of multiple scenarios is realized. Hubaux et al. [111] focused on the
privacy protection and GPS positioning of vehicles, analyzed the main security problems
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in the internet of vehicles from different perspectives, and highlighted the relationship
between the message accountability mechanism and the message anonymity mechanism.

Data privacy and scheme efficiency are the basic requirements for the application
of the internet of vehicles system. In this section, various security and privacy threats
are discussed from three aspects: the signature stage of the internet of vehicles, the data
collection and transmission stage of the internet of vehicles users, and the data processing
stage of the cloud platform. The characteristics and major security threats at the various
stages of the internet of vehicles are shown in Table 3.

At present, the homomorphic aggregation scheme [112], elliptic curve encryption
algorithm [113], and Chinese residual theorem [114] are often used to achieve data ag-
gregation. The homomorphic encryption algorithm is the most commonly used technical
method of data aggregation [115] because it satisfies the cipheric homomorphism operation
properties. Homomorphic encryption (HE) refers to the specific calculation of the ciphertext
after homomorphic encryption, and the ciphertext calculation results are equivalent to the
same calculation [116] after the corresponding homomorphic data. Although the scheme
in literature [117,118] can meet the basic privacy protection requirements and efficiency
requirements in the internet of vehicles, it still has some deficiencies. The homomorphic
encryption algorithm used in the scheme includes the elliptic curve-based encryption
algorithm and the Paillier homomorphic encryption algorithm. The scheme based on the
Paillier homomorphic encryption algorithm is not based on an elliptical curve.

Scheme [119] also adopts a homomorphic encryption algorithm and a data aggregation
scheme based on heterogeneous fog layer nodes. The scheme uses resource-rich buses
as dynamic fog nodes, and the roadside units are static fog nodes. At the same time, the
scheme still does not support anti-collusion attack, and there is no reasonable and efficient
method in the selection of dynamic fog nodes. In order to solve the above problems, Liu
et al. [120] proposed the selection problem of dynamic fog nodes. The scheme adopted
a heuristic algorithm to optimize the selection of core vehicles, and proposed a vehicle
mobility measure based on relative average speed and a Convolutional Neural Networks
(CNN)-based destination prediction method. Unfortunately, the programme also does not
support anti-collusion attacks and has a high demand for resources. The current commonly
used data aggregation schemes are limited by the computing performance of homomorphic
encryption algorithms. Although the aggregation schemes basically meet the needs of data
privacy protection, they still need to be optimized in terms of computational efficiency. At
the same time, the related privacy and security issues caused by the highly centralized
internet of vehicles also deserve the attention of researchers.

To protect the privacy of the internet of vehicles, there should be the following points:
First, ensure that all the vehicles received by the nodes in the vehicle ad hoc network
send and receive messages can be verified. The authentication is a method to determine
whether the information received is true when the receiving vehicle successfully receives
the information sent to it, as well as a method to determine whether the vehicle sending
the message is a registered vehicle in the network. Second, ensure the integrity of the
messages in the vehicle self-group network. Integrity refers to the message, from sending
to receiving, not being tampered with by unauthorized vehicle nodes, add, delete, or
packaging. However, a message integrity defect is not necessarily caused by an attacker,
but also may be caused by the roadside units, relay vehicle node, routing, and other
network line hardware or software equipment failure leading to timeout, packet loss, and
other phenomena. Third, ensure that the communication of vehicles in the ad hoc network
is confidential. Communication confidentiality means that only the parties sending and
receiving the information can correctly interpret the information content, and other vehicle
nodes or devices that relay the message cannot obtain the true content of the message.
Fourth, ensure the traceability of messages in the vehicle ad hoc network. Traceability
means that any message sent, received, relayed, or forwarded by the sender, relay, or
receiver of the information will be recorded and retained. The vehicle cannot change or
delete the sending, receiving, or relay records, nor can it deny the message sent, received,
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or relay by itself. Traceability plays an important role in investigating traffic crimes and
confirming vehicle tracks. Fifth, it must be ensured that the spatiotemporal correlation of
the vehicle’s location is cut off for the attacker in the network. The spatial and temporal
correlation of the location is cut off, which means that the attacker cannot know the
name, position, and corresponding time of the vehicle at the same time. Once the attacker
knows the three points, the location information of the owner or the vehicle can be judged
according to the spatial and temporal correlation of the vehicle. There are two kinds of
types of privacy protection for in-car ad hoc networks, namely the protection of information
privacy and location privacy.

Table 3. Characteristics of each stage and major security threats [121].

Classification Frequency Band
Data Security and

Privacy Threats
Security Research

Methods Addressed

The internet of vehicles
signature phase

Calculation
consumes large
resources, dynamic
changes of user
attributes, diverse
data types, etc.

Fake attack, witch
attack, location
attack, mission
related attack

Homomorphism
encryption,
fuzzy generalization

Data collection and
transmission stage of
internet of
vehicles users

Network topology
changes frequently,
data rights and user
permissions
are complex

Middle node attack,
witch attack,
position attack,
background
knowledge attack

Secure multi-party
computing,
homomorphic
encryption

Cloud platform
processing data stage

Easy to be
vulnerable to
malicious attacks,
the security and
benefit game
between users, the
vehicle parties to
seek benefit
maximization,
highly centralized

Plot attack, time
association attack

Game theory method,
blockchain technology

With the development of 5G technology, information sharing among the complete
internet of vehicles system is promoted. After the information is collected, it is processed
and analyzed in a timely manner to recommend the best route for drivers to bypass
congested roads. Boban et al. [122] analyzed the use cases and requirements of 5G-V2X,
highlighted the gaps in existing communication technology, and provided guidance on
how to overcome these gaps. Hameed et al. [123] used machine learning to enhance fog
computing-related applications and services, effectively reduced the latency and energy
consumption, improved the security, and provided more efficient resource management.

4.2. Control Strategy for Communication Delay

At present, the limited computing resources of vehicles are unable to meet the comput-
ing resource requirements of many delay-sensitive messages [124]. In order to cope with the
expanding computing requirements of this vehicle terminal, the existing cloud computing
technology can process a large amount of data information, which effectively reduces the
local computing burden to a certain extent. However, when the security message is sent
to the cloud server for processing through the core network, the processing delay of the
message may be greatly affected. At the same time, the transmission of security messages
often displays the phenomenon of redundant propagation, which causes a broadcast storm
during message transmission and leads to the poor performance of message transmis-
sion. Generally, the transmission of emergency messages involves directional propagation,
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and the emergency messages are broadcast to the farthest receiving vehicles within the
communication range [125].

The existence of communication delay will affect the following performance of the
vehicle, and even threaten the driving safety. Therefore, it is necessary to design [126]
for CACC control strategy for communication delay. On the one hand, the internal per-
formance of the network can be studied from the perspective of communication, and the
communication efficiency and quality can be improved by designing a reasonable network
scheduling algorithm and communication protocol, so as to reduce its adverse impact on
the control system. On the other hand, the optimization design of the control strategy under
limited communication restriction gradually became a research hotspot, and a variety of
solutions [127–130] were formed.

From the perspective of communication, Yin et al. designed a PID controller with a
Smith estimation compensator to effectively control the [131] for the delay system. Xing
et al. used the Smith estimator to effectively estimate the vehicle dynamics time delay
and communication time delay, thus achieving the vehicle formation control [132] with
a smaller following time distance. However, the delay estimation compensation control
has some disadvantages, that is, it needs a more accurate prior cognition of the estimation
system, and requires a high degree of accuracy and invariance.

Sun et al. [133] proposed a new multi-objective coverage optimization complex alliance
strategy (CASMOC) algorithm, which can effectively improve the coverage of nodes. Wang
et al. [134] proposed a dynamic clustering and cooperative scheduling algorithm based
on SINR analysis of the signal-to-noise ratio in V2V communication for a two-way road
data service. This algorithm can enable vehicles to dynamically join or leave a cluster
according to the actual time and place. Yang et al. [135] proposed a system that can relax the
communication attributes of the vehicle–road system by considering the time dependence.
If the vehicle generates multiple signatures in the same time period, it indicates that the
vehicle can be connected. Guo et al. [136] established delay constraints by introducing a
delay index, and redistributed and controlled resources and power by using the method of
distribution solution, so as to realize the high demand of the security mechanism of the
vehicle network on the delay.

According to the relevant team of Intel [137], in the future, each intelligent vehicle will
generate 4000 GB of data per day, which is equivalent to the amount of data consumed
by around 3000 mobile users. Such prediction studies show that the future development
of transportation systems will face severe challenges, and efficient sensor data processing
needs reliable and efficient underlying technology to support the system. Therefore, in the
face of this challenge, the vehicle edge information system (VEIS), which integrates vehicle
communication technology and edge technology architecture, is proposed [138]. This
vehicular edge information system is a new application that imposes strict requirements
for communication and computing resources in the future intelligent transportation system
by enhancing the communication, storage, and computing capabilities at the edge of the
vehicular network and realizing the corresponding vehicular communication, edge cache,
edge computing, and other technologies.

From the control point of view, due to the inevitable existence of wireless communica-
tion delay, the string stability of the cooperative adaptive cruise control queue system may
not be guaranteed if the controller gain is not adjusted in time. Zhang Yuqin et al. [139]
considered a dynamic gain regulation algorithm based on local traffic characteristics in col-
laborative adaptive cruise control considering wireless communication delay. The stability
of CACC string is guaranteed by a dynamic C gain setting algorithm, which outperforms
traditional methods and can significantly suppress interference along the upstream di-
rection of the fleet. Vite Leopoldo et al. [140] proposed an adaptive cruise control based
on dynamic predictors for input delay compensation, a filtered version of the standard
finite spectrum allocation method, which overcomes the robustness problem, especially
caused by the approximation of the distributed delay term, and finally, demonstrates the
effectiveness of the study by performing simulations on five vehicles. Wang CJ et al. [141]
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proposed ideas to dynamically optimize the IFT for CACC to optimize the string stability
of the queue under environmental traffic conditions. When the CACC system is oper-
ating, the communication failure should be prepared at any time, because the CACC is
too dependent on the communication quality, and is very sensitive to the communication
failure. The safety impact of cooperative adaptive cruise control vehicle degradation under
disruption of spatial continuous communication is described in paper [142] by Yu Weijie
et al. Liu Yi et al. [143] proposed a safety-enhanced collaborative adaptive cruise control
strategy for dynamic vehicle–vehicle communication failure, in which the safety-enhanced
platoon control system is embedded with a dual-branch control strategy. When a fatal
wireless communication failure is detected and confirmed, the SR-CACC system will auto-
matically activate an alternative sensor-based adaptive cruise control strategy, which can
significantly improve the safety performance of organized vehicle rows in extremely harsh
communication environments. In order to reduce the impact of security vulnerabilities
and network attacks possible when wireless communication networks work, Petrillo A
et al. [144] handles and solves the network security tracking problem of a queue, embedding
a distributed malicious information mitigation mechanism. Fiengo G et al. [145] investi-
gated the leader tracking problem of connected autonomous vehicle queues in the presence
of both uniform time variable parameter uncertainty and vehicle workshop time-varying
communication delay.

Literature [146] proposes a strategy to mitigate communication delays between vehicle
queues by using expected information from the lead and following vehicles. Literature [147]
devised a strategy to mitigate communication latency in various traffic situations by pro-
viding flexible ad hoc links. Some researchers proposed a consensus strategy to alleviate
the vehicle queue stability problem by designing more effective queue controllers or fol-
lower control strategies, such as the literature [148], as a dynamic network affected by
time-varying heterogeneous communication delays. In addition, the distributed control
protocol is derived based on graph theory. For example, literature [149] proposes a vehicle
tracking control strategy based on considering the time-varying communication delay, and
deduces and proves the sufficient conditions for local stability and serial stability in the
frequency domain. Furthermore, the literature [150–152], to handle communication and
parasitic delays, models the vehicle queue as multiple delay linear systems under various
time-varying network topologies, investigating internal and serial stability, proposing
an adaptive control method and a consensus method designed to mitigate the impact of
communication delays.

Asadi and Muller [153] used an online machine learning algorithm to solve the prob-
lem of beam selection in vehicle millimeter-wave communication, which reduced the
complexity of directional millimeter-wave communication and allowed a better applica-
tion effect to be achieved in vehicle communication scenarios. Samarakoon and Bennis
et al. [154] set up a distributed federated learning algorithm for the delay and reliability
requirements of the edge side, especially in the vehicle dynamic scene, to ensure the sta-
bility of the queue by estimating the tail distribution of the length of the communication
queue. Gyawali and Qian et al. [155] improved the reliability, safety, and stability of on-
board communication by establishing an abnormal behavior detection mechanism based
on machine learning. Hasselt et al. [156] evaluated the temporal and spatial patterns of
traffic network flow using a multi-task learning architecture. Zhao et al. [157] combined
a CNN with a deep Q-learning network (DQN) based on LSTM to identify surrounding
vehicles by extracting features from input images to help vehicles identify the positions of
adjacent vehicles and detect lane changes, and then to feed these features into the DQN
based on LSTM, which can learn the optimal driving sequence of vehicles through input
features after training. It can be seen that the application of artificial intelligence in vehicle
edge information systems mainly focuses on distributed algorithms, online algorithms,
and other intelligent learning algorithms, which require lower data training costs. At the
same time, it also meets the requirements of data processing efficiency and response time in
vehicle scenes. However, there are still many challenges in future research. Deep learning
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technology needs a large number of accurately labeled data for training, and the efficiency
of processing largely depends on the training algorithm. On the other hand, due to the
randomness of driver behavior and environmental impacts, the system may encounter
many emergencies, which may lead to a system response delay. Therefore, the core deep
learning method must ensure the robustness of the system through a large amount of
learning so that the system can effectively deal with emergencies and be rapidly adjusted
to account for them.

5. Test Method and Evaluation

5.1. Real Vehicle Road Test Platform

The real vehicle road test of an intelligent network includes three test scenarios: a
closed scene test, a semi-open road test, and an open road test. Firstly, the representative
closed test sites in foreign countries include the following: the Asta Zero test site in Sweden,
which contains complete experimental facilities and has the capacity to test vehicle dynam-
ics, driver behavior, and V2X technology; the Mria City Circuit test site in the UK, whose
main features are simulated signal masking and various V2X communication facilities,
with the flexible design of traffic lights and transmitting towers, and is oriented towards
the testing of intelligent transportation systems and intelligent networked vehicles [158];
the Willow Run test site in Michigan, U.S., which is suitable for the extreme testing of V2X
technology and autonomous driving technology, etc. [159]. The closed test sites also occupy
a large proportion of the domestic real-world test sites. On July 30, 2021, the Ministry of
Industry and Information Technology, the Ministry of Public Security, and the Ministry
of Communications jointly issued the “Management Specification for Road Testing and
Demonstration Application of Intelligent Connected Vehicles (Trial)” [160], adding the
demonstration application of manned vehicles and special operating vehicles, and opening
some expressway tests. At present, there are around 50 test sites in a state of completion
or under construction, 30 of which are equipped with testing capability for intelligent
networked vehicles. The intelligent driving test base of the Ministry of Transport in Beijing
contains traffic scenes of various road shapes and surfaces, such as urban and rural roads,
high-speed roads, and their ramps, and is equipped with street lights, traffic lights, weather
simulation equipment, and other facilities, which can be used for intelligent driving, intelli-
gent road networks, and other tests. Changsha, Wuhan, and other cities within intelligent
network pilot demonstration areas can simulate a variety of road conditions, including wet
roads, mountain roads, woodlands, high-speed roads, masonry, bridges, etc.; equipped
with intelligent sensors and other monitoring equipment, they can be used for intelligent
networked vehicle testing. Secondly, the domestic open test sites mainly include the follow-
ing: the Shanxi (Yangquan) autonomous driving vehicle–road cooperation demonstration
area, where roadside sensing, collection, and transmission systems are being built, and
the deployment of the vehicle–road cooperation cloud control platform and autonomous
driving vehicle supervision platform based on Baidu’s public cloud was completed, so
as to realize object detection technology based on environmental sensing and V2X com-
munication technology to support L4-level autonomous driving vehicle over the horizon,
etc. The Yongchuan Baidu Western Autonomous Driving Open Test Base is an open test
and demonstration operation base for L4-level autonomous driving. The base deploys 5G
communication in the road network environment in all aspects and includes more than
30 typical open road test scenarios in the mountain city, such as interchanges, tunnels, and
bridges, with the unique traffic terrain of Chongqing, and it can accommodate 200 intelli-
gent driving vehicles for testing at the same time. The efficient data transmission based on
5G technology and intelligent data processing based on artificial intelligence technology
are of great significance for the application of intelligent connected vehicles. The Changsha
test demonstration area has a wealth of intelligent connected vehicle test scenarios, and 5G
widely covers the intelligent connected vehicle test area. It is the first [161] demonstration
area to carry out high-speed tests and manned tests in China.
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Domestic test areas are constructed in the following ways: 1. leading by applica-
tion scenarios; 2. leading testing and demonstration application by standard formulation;
3. promoting the integrated development of intelligent connected vehicles and intelligent
transportation with 5G commercialization; 4. policy exploration and demonstration op-
eration promoting each other; and 4. national intelligent transportation comprehensive
test base.

5.2. Virtual Test Platform

The simulation test experiments of intelligent network connected systems seek to
establish a real static scene and carry out dynamic scene modeling according to the ac-
tual situation through computer simulation technology, so as to realize the model and
algorithm of the network-connected vehicle. The system can carry out a variety of test
verification experiments in the simulated traffic scene, reducing the dependence on real
vehicle experiments to a certain extent, such as the current mainstream of intelligent driving
vehicle sensor physical model simulation authenticity, intelligent transportation system
V2X model construction, and the construction of dynamic traffic flow in the simulation
scene. At present, a new generation of intelligent driving simulation systems integrating
physical characteristic information is being gradually developed, which cannot only verify
and iterate intelligent driving algorithms more effectively, but also meet the overall test
requirements of intelligent driving simulation platforms for physical information systems
more comprehensively. With the rapid development of advanced driver assistance systems
(ADAS) and intelligent driving, the development of simulation software underwent the
following stages: The early simulation test software mainly used dynamic simulation.
The Simulink module of control design simulation software MATLAB was used to build
the vehicle dynamics model and carry out real-time simulation, such as Carmaker [162],
CarSim, Panosim [163], and other simulation software. With the further development of
the ADAS function, simulation and test software to assist this function began to appear,
such as Prescan [164]. In recent years, the ability of unreal engines to restore the virtual
environment became stronger, and more researchers paid attention to the open-source
simulators, such as AirSim [165], CARLA [166], and Unity. However, due to the diversity
and functional complexity of the current mainstream intelligent driving simulation tools,
most of them cannot support multi-agent co-simulation or simulation in large-scale sce-
narios, so the test verification of the off-vehicle networking system in large-scale complex
traffic environments is not yet realized. At present, the optimization control of urban traffic
in intelligent vehicle network systems is mainly concentrated within single-point traffic
control, lacking real-time linkage control. However, the simulation of intelligent driving in
large-scale open scenes shifted from macro-centralized control to meso-edge-side coordina-
tion control, and then to micro-single-car intelligent control. Therefore, it is necessary to
develop simulation tools that can support this hierarchical control model. A microscopic
traffic flow simulation model takes vehicles as the description unit, which can describe in
detail the car-following and lane-changing behavior between vehicles. At present, the more
common ones include SUMO [167] and PTV-Vissim [168], both of which have correspond-
ing interfaces for secondary development. An intelligent driving simulation simulator
based on SUMO and Unity3D [169] was proposed through the TraCI protocol. It can be
seen that the use of intelligent driving simulation tools to provide single-vehicle intelligent
decision making, traffic flow simulation models to provide specific traffic scene modeling
and design, and the combination of the two through an interface, can support intelligent
networked vehicle collaborative simulation in large-scale open scenes.

Elrofai et al. [170] believes that the scene is the dynamic interaction of various elements
over a continuous period of time, and divides the scene into three main elements, namely,
the tested vehicle, passive environment (such as road topology, traffic signs, etc.) and active
environment (such as traffic lights, weather, etc.); De Gelder et al. [171] further defines the
scene as a collection of internal movement, static environment, and actions related to the
environment and autonomous vehicles. It can be seen that the above literature emphasizes
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that the test scenario is time-varying, and includes driving tasks, dynamic environment,
and other elements of the environment. On this basis, this paper defines the test scenario
as the dynamic description and abstraction of the behavior and operating environment of
autonomous vehicles in certain times and airspace, with the characteristics of inexhaustible,
extremely complex, infinite and rich, and difficult to predict [172]. The scale size of time and
airspace needs to be formulated according to the specific test requirements. For example,
the time domain of the lane change scene generally lasts from tens of seconds to several
minutes; the space domain of the follow scene is a road network composed of several
roads. Further decomposed from the elements, the scene generally includes the input flow
of the road, weather, traffic rules and traffic popularity, as well as the output flow of the
autonomous driving car to the environment.

In the construction of virtual scenes, the influence of the complexity of public trans-
portation should be considered. Researchers will generally set up various traffic simulation
scenarios, among which, rain and fog weather is an important environmental scenario in
the traffic simulation scenarios. In the extreme environment test area of the project, there
is an extreme environment warehouse and a signal-shielding warehouse, combined with
augmented reality (AR) technology. The extreme environmental warehouse will simulate
extreme weather conditions, such as “wind, rain, thunder and electricity”, allowing vehicles
to be tested under extreme weather conditions. When the intelligent car passes by from
the warehouse, the warehouse can accurately adjust the rain and fog visibility that the
vehicle can feel, observe the operation of the car when “being in it”, so as to accelerate the
research and development efficiency of intelligent vehicles, and provide effective support
for improving the performance of intelligent vehicles. The signal-shielding warehouse will
simulate the car communication environment after the tunnel, intelligent connected car into
the tunnel, tunnel traffic internally and out of the tunnel, and the communication signal
strength will present “strong-weak-no signal-weak-strong” change, thus the intelligent
connected car in the case of weak signal control and operation status of the research and
evaluation work.

In order to fully expose the design defects of autonomous vehicles, it is necessary to
build a workflow, including a simulation test, closed site test, and open road test based on
the scene, and solve the technical problems in scene definition, classification, data mining
and analysis, scene generation, and other aspects. Table 4 shows the performance of virtual
test, closed site test and real car road test under test specification.

Table 4. Virtual test, closed site test, real car road test comparison [173].

Test Specification Virtual Test Closed Site Test Real Car Road Test

Test the truth

Depending on the
authenticity of the
model, the
authenticity is
relatively low
in comparison.

More real, but not
the real dynamic
elements of other
traffic participants.

Real, consistent with
the actual driving
environment of
autonomous cars on
the road.

Test cost
Low, the cost of the
software systems is
relatively low.

The construction cost
of the test site is
relatively high.

High, it requires too
many people and
over a long
time to drive.

Testing efficiency

High, multi-core
parallel testing can
greatly improve the
simulation speed.

High, can be
targeted to
strengthen the test
for key scenarios.

Low, road
mileage-based test
methods require
long driving times
with multiple people
and multiple cars.
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Table 4. Cont.

Test Specification Virtual Test Closed Site Test Real Car Road Test

Repeatability

Strong, you can
build the same test
scenario according to
the defined data.

Strong, the scene
elements can be
reconstructed
through the scene
configuration
requirements.

Poor, not a
reproducible test on
the public road.

Number of test scenarios

Many, any number
of test scenarios can
be generated given
the logical scenario
parameter space.

Less often, although
as many scenarios
can be built as
possible according to
scene element
changes, the number
of virtual test and
open road test
scenarios is still low.

Many, as many
required test
scenarios can be
encountered
long enough.

Test purpose

Embedded in each
link of the system
development,
massive scene
testing, to verify the
boundaries of the
autonomous
driving function.

At the same time, the
scene type that is not
encountered or with
low probability in
reality can be built
by configuring the
field and the scene
elements to verify
the operation of the
system under the
boundary situations.

Clarify the statistical
laws of related
events, verify the
system boundaries
in practical
situations, detect the
interaction between
autonomous vehicles
and traditional
vehicles, and find
new scenarios that
were not considered.

5.3. Test Method and Evaluation

The test and evaluation of intelligent connected vehicles is an important stage in the
development of its vehicle functions. Similar to human drivers, the test method can be
divided into three parts: the perception function test, the decision function test based
on perception information, and the action function test. Vargas et al. [174] proposed a
conceptual sensor testing framework for automatic driving vehicles, which is oriented
towards different types of sensors and communication mechanisms, and provides a means
of performing test scenarios similar to those occurring in the physical world. Wei et al. [175]
implemented a parallel computing framework and system for intelligent driving tests
and verification. It constructs a set of intelligent test models, which enables the system to
develop a cognitive mechanism of automatic self-upgrading under the guidance of human
experts, and further improves the ability of intelligent driving vehicles to adapt to complex
environments. In order to speed up the scene testing, virtual environment simulation
can be used. The mainstream virtual environment simulation software includes Prescan,
Carmaker, dSpace, etc. At present, most of the tests only cover intelligent driving, and the
test methods for intelligent driving vehicles in static, dynamic, and uncertain environments
are not perfect. The vehicle decision-making ability test and V2X-based traffic integration
test also need to be improved.

The evaluation mechanism design of intelligent driving vehicles is an important
link in the research field. The evaluation of intelligent driving vehicles is affected by the
interaction between the intelligent driving system, static traffic environment, and dynamic
traffic environment, which is a more complex type of system engineering. At present,
the main test and evaluation mechanisms are mostly for auxiliary intelligent driving. For
example, the American Highway Safety Insurance Association issued the test procedures
for automatic emergency braking systems in 2013, with the reduction in collision speed
as the evaluation parameter. EU evaluation regulations for new cars cover most ADAS

50



Mathematics 2022, 10, 3635

functions. In the process of continuously enriching the functional test scenarios, a rich and
complete ADAS test and evaluation method system was gradually formed. In China, the
2021 evaluation regulations for new cars cover the ADAS test and evaluation system with
automatic emergency braking, lane departure alarms, speed assist systems, and blind spot
detection as the main content, and communication evaluation systems are rarely involved.

Domestic and foreign scholars and institutions carried out a lot of basic research
work in simulation test methods, test scenarios, simulation modeling, tool chain reliability,
and other aspects of [176–179]. For the different stages of the product, different types of
simulation and simulation test methods are not only applied to the development process
of intelligent and connected vehicles, but also gradually play an important role in the
product verification, confirmation, and evaluation. The UN is in the automatic lane keeping
system for L3 automated lane keeping systems (ALKS)-type approval regulations for test
verification, and put forward the relevant requirements for the simulation tools and mod-
els [180,181]. Japan explicitly introduced the software in the rings in its software-in-the-loop
(SIL) and hardware-in-the-loop (HIL) to test the [182]. The new test assessment method
proposed by the United Nations Informal Working Group on Autonomous Driving Verifica-
tion Methods requires the use of a proven simulation tool chain to conduct simulation tests
to evaluate the safety of autonomous driving systems, and proposes SIL testing for driving
safety and critical safety scenario assessment [183]. In the draft regulation on the type ap-
proval requirements of autonomous driving systems, the EU made it clear that simulation,
closed sites, and practical law can be adopted, and roads introduced the United Nations
study of [184] on the credibility of simulation tests. The vehicle dynamics simulation model
and test methods developed by ISO provide the basic [185,186] for the vehicle dynamics
simulation test and verification. The research of SCHONER et al. [187] proposed that SIL
testing is an effective means to solve the verification of control algorithms, behavior, and
rule compliance verification in complex and difficult scenarios. Domestic relevant institu-
tions propose a set of intelligent connected vehicle safety tests and evaluation methods from
the perspective of a third party, and clearly states that the simulation test is used to evaluate
the function and performance verification of intelligent connected vehicles in diversified
scenarios and complex conditions. Ahamed et al. [188] designed a framework for freely
constructing vehicle models, and developed the SIL simulation platform in Gazebo using
a robot operating system. Bachuwar et al. [189] proposed a software-in-loop simulation
framework based on the open source autonomous driving software Autoware [190], which
uses Simulink to communicate with the robot operating system (ROS). The above research
shows that, with the maturity of technology and simulation tests for intelligent connected
car safety test evaluation, among them, SIL test with its low cost, low risk, high advantages,
high efficiency, and high coverage, become intelligent car safety, especially the lack of
function and important means of algorithm defects. Hardware-in-loop simulation is a
semi-physical test method where some components or systems of autonomous vehicles
adopt real physical equipment, and the scene and charged objects are digital models. Hard-
ware in loop simulation combines mathematical model and physical hardware equipment,
and introduces the nonlinear physical characteristics, such as time delay, saturation, and
friction, which significantly improves the confidence of the test results and overcomes the
shortcomings of the model and data in MIL/SIL test to some extent.

At present, about 30 closed test sites for autonomous vehicles were built in China,
basically covering typical traffic environments, such as rural areas and urban roads. Some
of the closed sites also established a heterogeneous network of the internet of vehicles, [191].
However, the existing closed site has an inconsistent service level, high operating costs,
mutual recognition, and other test results are very prominent. The main reason behind
this is the lack of standard specifications. The specific performance, in two aspects, is as
follows: The first is the lack of standard site construction. Construction levels are uneven,
some site scenes have single scenes, are unable to support IoV testing, and fell behind the
technological development level of self-driving cars. Secondly, the test passing standards
are not uniform. For example, test preparation, vehicle technical status, scene setting,
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vehicle end, and roadside data collection and processing methods are inconsistent. This
directly leads to the differences in the evaluation results among the closed sites. It restricts
the development of test mutual recognition work.

Considering the complexity of the actual working conditions, the evaluation results
of the simulation and the closed site may deviate from the real situation. Therefore, self-
driving vehicles must be continuously tested on open roads before mass production. It is
a necessary part for self-driving vehicles to accumulate test data, improve their technol-
ogy, and ultimately commercialize it. However, there is still a lack of norms for testing
autonomous driving vehicles on most open roads, especially highways.

Compared with simulation and site testing, the actual road test method is still in the
preliminary exploration stage. The actual road test of autonomous driving can use the
randomization characteristics of various targets and events on the actual road to verify
the autonomous vehicles: (1) the safety impact of the vehicle and the surrounding traffic
environment when running on the actual road; (2) whether the response to various typical
goals and random dynamic events meets the expectations; and (3) the impact on the
overall road traffic efficiency. Therefore, the actual road test is an indispensable link in
the testing and evaluation process of autonomous vehicles. Since 2017, the major auto
industry countries launched the exploration of the actual road testing of autonomous
driving. In 2018–2019, 36 companies in California completed 5.635 million km of public
road autonomous driving tests. Auto companies in Germany, Britain, Finland, Japan, and
other countries also carried out a large number of practical road tests under the framework
of their own autonomous driving-related laws and regulations. By October 2021, more
than 3200 km of test roads were opened, more than 700 test licenses were issued, and the
total length of road testing exceeded 5.3 million km. Shanghai and Beijing carried out
demonstration applications of manned cargo loads. However, the current international
actual, general road testing to improve the single model technology scheme for the purpose,
due to the diversity of autonomous driving research and development technology, leads
to strong research and development test scheme pertinence, test index, and research and
development technology scheme correlation; such a test evaluation scheme does not have
typical universality standardization characteristics.

6. Expectations

After decades of development, the vehicle collaborative driving system made great
progress in all aspects. Facing the future intelligent vehicle collaboration technology under
the network environment, it is suggested to carry out further work from the following
three aspects:

(1) Multi-vehicle intelligence, instead of bicycle intelligence. became a current devel-
opment trend, in addition to realizing comprehensive perception driving decision and
control execution function, it is suggested to further enhance the intelligent road infrastruc-
ture, realize comprehensive intelligent cooperation between vehicles, namely vehicle–road
collaborative perception, vehicle–road collaborative prediction decision and vehicle–road
collaborative control system integration function, improve the commercial landing, thus
forming the comprehensive development of car and road, and jointly promote the realiza-
tion of automatic driving.

(2) Wireless communication delay inevitably exists in the internet of vehicles system.
The collaborative system can consider the communication delay, the middle section, and
other factors in the policy planning of the control system. The application of AI algorithms
in vehicle communication became a new research hotspot. It is suggested that, to improve
the quality of the data set, reduce the interference caused by emergencies, improve and
optimize the control algorithm, and improve the ride comfort of the road.

(3) Scene-based test theories and methods became the mainstream technical route to
deal with this challenge, but the research in this field is in its initial stage and is yet to
receive enough attention from the academic community, which still needs to be further
studied and explored. At present, the high-level automatic driving car test evaluation index,
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evaluation model, and evaluation system of research is still in its infancy; in the future,
there is a need to test scene classification, test task classification, improve the test system,
and speed up the unified evaluation standards to further strengthen the comprehensive
evaluation system of the integration of subjective and objective research.

7. Conclusions

This paper analyzes the collaborative control system of intelligent connected vehicles
from three aspects of the collaborative control of intelligent vehicles, communication tech-
nology in vehicle networking environment, connected vehicle test platform, and evaluation
system. At present, the future development of the collaborative control of intelligent con-
nected vehicles has limitations, which are as follows: First, price restriction; the related
hardware and software facilities, such as the internet of vehicles system and intelligent
connected vehicles, are expensive, which poses great obstacles to the test of the intelligent
networked collaborative control system. At present, most tests are still based on simulation.
Second, laws and regulations limit it. At present, only a very small part of the intelligent
connected vehicle testing sites are open in China, and the real vehicle testing sites and the
testing process are greatly limited. Third, there is no uniform test standard. This paper puts
forward the next urgent problems and the direction of in-depth exploration, and its related
research can provide a reference for the intelligent vehicle–road collaboration technology.
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Abstract: This paper addresses the issue of optimal redundancy allocation in hybrid structure large
binary systems. Two aspects of optimization are considered: (1) maximizing the reliability of the
system under the cost constraint, and (2) obtaining the necessary reliability at a minimum cost. The
complex binary system considered in this work is composed of many subsystems with redundant
structure. To cover most of the cases encountered in practice, the following kinds of redundancy
are considered: active redundancy, passive redundancy, hybrid standby redundancy with a hot or
warm reserve and possibly other cold ones, triple modular redundancy (TMR) structure with control
facilities and cold spare components, static redundancy: triple modular redundancy or 5-modular
redundancy (5MR), TMR/Simplex with cold standby redundancy, and TMR/Duplex with cold
standby redundancy. A classic evolutionary algorithm highlights the complexity of this optimization
problem. To master the complexity of this problem, two fundamentally different optimization
methods are proposed: an improved evolutionary algorithm and a zero-one integer programming
formulation. To speed up the search process, a lower bound is determined first. The paper highlights
the difficulty of these optimization problems for large systems and, based on numerical results, shows
the effectiveness of zero-one integer programming.

Keywords: redundancy allocation; hybrid structure binary systems; Markov chains; evolutionary
algorithms; RELIVE algorithm; zero-one integer programming

MSC: 68M15; 68T20; 90C26

1. Introduction

The problem of reliability optimization in large hybrid systems mainly refers to the
type of the system (binary or multi-state), type of solution (reliability allocation and/or
redundancy allocation), or the kind of redundancy, which can be static (TMR or 5MR, for
example), dynamic (active redundancy or standby redundancy), or hybrid (TMR/Simplex
or TMR/Duplex with spare components, etc.). Useful overviews covering models and
methods for these reliability optimization problems (ROPs), including reliability allocation,
redundancy allocation, and reliability-redundancy allocation can be found in many works,
such as [1–3].

The mathematical formulation of a reliability optimization problem requires the specifi-
cation of three elements: decision variables, imposed constraints, and objective function(s).

The decision variables describe those elements that can be changed or adjusted or the
decisions that can be made to improve system performance, as expressed by the objective
function(s). As examples of decision variables one can mention the types of components
and their characteristics (reliability, cost, etc.), the type of redundancy for each subsystem,
the number of spare components for each subsystem, etc.

The constraints reflect practical design limitations, e.g., a required level of reliability
or the available budget, which occur in almost all cases. But in practice there may be other
limitations, related to the volume or weight of the system, for example.
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The objective function measures the performance of the system for a set of values of
the decision variables. Thus, by optimizing the objective function(s) under the specified
constraints it is possible to identify the combination of values of the decision variables that
leads to the best possible design solution for the studied system.

Usually for ROPs, the goal of optimization is to maximize system reliability or mini-
mize system cost. In reliability engineering the problem of system reliability maximization
under two or more constraints often arises, e.g., under cost constraints, but also under
weight and/or volume constraints. When an analytical approach is possible (e.g., in the
case of active-redundancy-only subsystems), to ensure that two or more constraints are
satisfied, Lagrangian multipliers are often introduced as part of the objective function [4–6].

In this paper we address a class of redundancy allocation problems (RAPs) where
the decision variable is the number of redundant components for each subsystem in a
series redundant reliability model. RAP is one of the most studied reliability optimization
problems, because it has been proven to be quite difficult to solve, and many different
optimization approaches have been used to determine optimal or near-optimal solutions.
As [7] demonstrates, RAPs belong to the NP-hard class of optimization problems.

The RAPs we consider involves hybrid structures with no less than eight types of
redundancy; these are conditions where the optimization problems are difficult to solve,
even if we limit ourselves to single-constraint optimization problems. More specifically,
our goal is to highlight the difficulty of these RAPs for large systems, when the number of
subsystems grows to the order of tens or even hundreds.

In order to master the complexity of RAPs in case of large systems, for which the
difficulty of the problem increases, special research efforts have been made in recent
years. In addition, to cover a wide range of techniques used to increase the reliability
encountered in practice, many hybrid reliability models have been considered for which
the RAPs get even more complicated. For example, [8] investigates a complex reliability-
redundancy allocation problem with a component mixing strategy, which changes the
traditional RAP model to a heterogeneous one. Moreover, in the hybrid reliability models
proposed in [9], the choice of redundancy strategy is considered as a decision variable. So,
for each subsystem, an active or cold standby redundancy may be considered. In addition,
components of different types can be used in each subsystem, i.e., a component mixing
strategy. Consequently, this RAP involves determining a solution that maximizes system
reliability in terms of the type of redundancy and the number of spare components of each
type (for each subsystem). To solve this RAP, a genetic algorithm is developed. Also, a
reliability model based on cold standby redundancy combined with component mixing is
investigated by [10]. For this complex problem, the author proposes a simplified swarm
optimization method in which a multi-role resource sharing strategy is adopted to provide
the diverse system components. Another reliability model based on active or cold standby
redundancy combined with component mixing is investigated in [11]. To solve this RAP,
the authors propose a parallel stochastic fractal search algorithm. Other RAPs involving a
heterogeneous structure and/or component allocation strategy of a different type can be
found in [12–14].

Such a hybrid reliability model is also considered in this paper. In the previously
cited works, RAPs are formulated by considering redundant systems with hybrid re-
dundancy strategies and/or reliability models with heterogeneous components, which
means that each component of a subsystem can have its own failure rate. In this paper
we limit ourselves to the case where subsystems include homogeneous components, but
we extend RAPs to cover more redundancy strategies (not just active redundancy or cold
standby), including static redundancy or reconfigurable structures such as TMR/Simplex
or TMR/Duplex with cold standby redundancy.

To solve redundancy allocation problems of this type, several techniques can be ap-
plied, such as heuristic methods [15–18], Lagrange multiplier analytical methods, and
branch-and-bound techniques, especially for active redundancy [5,6,19,20], dynamic pro-
gramming [21–23], evolutionary algorithms [9,10,24–27], linear programming methods [28–30]
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or a mix of integer and nonlinear programming [31]. As the RAPs we considered are com-
plex, two evolutionary algorithms and a special model of zero-one integer programming
are used.

As the highlights of our contribution we can mention:

• The formalization of two RAPs for binary systems with hybrid structure, which include
no less than eight types of redundancy, where reliability modeling of redundant and
reconfigurable structures is based on Markov chains;

• The design and implementation of two evolutionary algorithms and the formulation
of a zero-one integer program for solving these complex optimization problems;

• Conducting an extensive performance evaluation study of the three proposed tech-
niques on thousands of problems, which demonstrates the effectiveness of the zero-one
integer programming approach for large systems with tens or even hundreds of sub-
systems.

This paper is organized as follows. Section 2 presents the issue addressed, whereas
the types of redundancy considered here and the models or equations used for reliabil-
ity evaluation are presented in detail in Section 3. Some related works are mentioned
in Section 4. The algorithms used for these optimal allocation issues are described in
Section 5. The objective functions adopted for the evolutionary algorithms and for the
linear programming model are reported in Section 6, whereas in Section 7 a lower bound
solution is proven. Experimental results are presented in Section 8. Further discussion
is the subject of Section 9. The conclusions of the paper and several directions of future
research are included in Section 10.

2. Problem Description

For systems with a large number of components without redundancy, reliability is
often very low. To achieve the required reliability, a certain type of redundancy is applied
to a certain element, depending on technical particularities, which can be static, dynamic,
or hybrid redundancy. All of these types of redundancy are considered in this paper.
The reliability model for this redundant system is a series-redundant one as presented in
Figure 1.

Figure 1. Series-redundant reliability model for a complex hybrid system.

The notations used to describe the redundant structures and their reliability evaluation
models are presented at the end of the paper. Along with these notations we include a
short nomenclature and some assumptions under which the reliability models are valid.

Typically, in this allocation process the criterion may be reliability, cost, weight, or
volume. One or more criteria can be considered in an objective function, while the others
may be considered constraints, as considered by [22] (pp. 331–338). In this paper, the criteria
we consider are reliability and cost, and in this situation, two optimization problems are
frequently encountered in practice:

1. Minimizing the cost of the redundant system for which a required reliability must be
achieved;

2. Maximizing the reliability of the system within a maximum allowed cost.
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In both cases, from the mathematical point of view, one must solve an optimization
problem with an objective function and constrains. More exactly, for the first problem, one
must minimize the cost function:

Crs = f (C1, C2, · · · , Cn) =
n

∑
i=1

Ci (1)

with the constraint of reliability:

Rrs =
n

∏
i=1

Ri ≥ R∗. (2)

For the second problem, one must maximize the reliability function:

Rrs = f (R1, R2, · · · , Rn) =
n

∏
i=1

Ri (3)

with the cost constraint:
n

∑
i=1

Ci ≤ C∗. (4)

For example, when for all the subsystems an active redundancy is considered, for the
redundant system a series-parallel reliability model results. Thus, the cost and reliability
functions can be expressed by the equations:

Crs =
n

∑
i=1

ciki (5)

Rrs = 1−
n

∏
i=1

(1− ri)
ki (6)

Thus, we have to determine the values k1, k2, . . . , kn that minimize the cost function
in Equation (5) with the reliability constraint in Equation (2), or maximize the reliability
function in Equation (6) with the cost constraint in Equation (4), as the case may be.

3. Types of Redundancy

To cover most situations encountered in practice, the following types of redundancy
are considered in this study, namely:

• active redundancy (tr = A);
• passive redundancy (or cold standby redundancy) (tr = B);
• hybrid standby redundancy with a hot reserve (tr = C) or a warm one (tr = D) and

possibly other cold ones;
• hybrid redundancy consisting of a TMR structure with control facilities and possibly

cold reserves (tr = E);
• static redundancy: TMR or 5MR (tr = F);
• reconfigurable TMR/Simplex type structure with possible other cold-maintained spare

components (tr = G);
• reconfigurable TMR/Duplex type structure with possible other cold-maintained spare

components (tr = H).

The reliability model and the equations used to evaluate the reliability for a subsystem,
depending on the type of redundancy, are presented in this section. Since the time to failure
for a component is assumed to have a negative exponential distribution, the following
equations are valid:

r = e−λT (7)

64



Mathematics 2022, 10, 3698

and
λT = − ln r (8)

Remember that for any redundant subsystem the spare components are considered
identical to the basic ones.

3.1. Active Redundancy (tr = A)

For this parallel reliability model where all components operate simultaneously, the
well-known equation is applied:

R = 1− (1− r)k, k = 2, 3, . . . (9)

3.2. Passive Redundancy (tr = B)

In this case, one component is in operation and all other identical k− 1 spare compo-
nents are maintained in a cold state, which means that a spare component is switched off
until it is needed to replace the defective one (i.e., a redundant component does not fail in
cold standby mode). The following equation can be applied to this model:

R =
k−1

∑
j=0

(λT)j

j!
e−λT = r

k−1

∑
j=0

(− ln r)j

j!
, k ≥ 2 (10)

Note that Equation (10) is the sum of the first k terms of the Poisson distribution of the
parameter λT.

3.3. Hybrid Standby Redundancy with a Hot (tr = C) or a Warm (tr = D) Spare and Possibly
Other Cold Ones

In this case of standby redundancy, a component is in operation, a spare component
is active or kept in a warm state, and possibly other spare components are kept in cold
conditions as illustrated in Figure 2.

Figure 2. Standby redundancy with a hot/warm spare component and possibly other cold ones.

A warm component may fail before being put into operation and its failure rate is
less than that of the same component in active mode. Therefore, let αλ, 0 < α ≤ 1, be the
failure rate for this reserve. For this type of redundancy, the subsystem reliability function
is obtained based on the Markov method, depending on the total number of components,
as shown below.

3.3.1. Case 1: k = 2

Consider a subsystem consisting of a component in operation and a warm-maintained
reserve. The evolution of this redundant subsystem until failure is illustrated by the Markov
chain presented in Figure 3.
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Figure 3. Markov chain for subsystem reliability evaluation (k = 2).

To begin with, let us refer to a general Markov model. Let S1, S2, . . . , SN be the
states of the Markov chain and A =

[
ax,y

]
N×N be the matrix of state transition rates, where

ax,y, x �= y, represents the rate of transition from state Sy to state Sx, while an element of
the main diagonal (i.e., x = y) is the negative value of the sum of all the other elements in
the column.

Let s(t) be the state of the subsystem at the time t, and

px(t) =prob(s(t) = Sx), x ∈ {1, 2, . . . , N}. (11)

To obtain the probability functions px(t), x = 1 : N, the following system of differen-
tial equations must be solved:

P′ = A× P, (12)

where P = [p1(t) p2(t) · · · pN(t)]
T , and P′ =

[
p′1(t) p′2(t) · · · p′N(t)

]T .
Note that the state probabilities for t = 0 are also known.
Let us resume the analysis of the subsystem under study. In the Markov chain

presented in Figure 3, S1 and S2 are successful states, while S3 is a failure state. Thus, the
reliability function of this redundant subsystem can be defined as

R(t) = p1(t) + p2(t), t ≥ 0. (13)

As the transition rate matrix is:

A =

⎡⎢⎢⎣
−(1 + α)λ 0 0

(1 + α)λ −λ 0

0 λ 0

⎤⎥⎥⎦, (14)

to determine the probability functions p1(t) and p2(t), the following system of differential
equations must be solved: {

p′1(t) = −(1 + α)λp1(t)

p′2(t) = (1 + α)λp1(t)− λp2(t)
(15)

With the initial values: p1(0) = 1 and p2(0) = p3(0) = 0, by applying the Laplace
transform (L), the following system of algebraic equations results:{

sP1(s)− 1 = −(1 + α)λP1(s)

sP2(s) = (1 + α)λP1(s)− λP2(s)
(16)

where Pi(s) = L {pi(t)}, i ∈ {1, 2}, are functions in the frequency domain, and s is the
Laplace operator. Based on (16), after some algebraic operations, the following functions
are obtained:

P1(s) =
1

s + (1 + α)λ
, P2(s) =

(1 + α)λ

s + (1 + α)λ
· 1
s + λ

(17)
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After a partial-fraction-expansion, the function P2(s) can be expressed as follows:

P2(s) = −
1 + α

α

1
s + (1 + α)λ

+
1 + α

α

1
s + λ

(18)

As the functionR(s) = L{R(t)} = P1(s) + P2(s), the following expression results:

R(s) = 1 + α

α

1
s + λ

− 1
α

1
s + (1 + α)λ

(19)

The reliability function R(t) can then be obtained by applying the inverse Laplace
transform, R(t) = L−1{R(s)}. Thus, the reliability function has the following form:

R(t) =
1 + α

α
e−λt − 1

α
e−(1+α)λt, t ≥ 0, 0 < α ≤ 1. (20)

For a certain period of time T, the component reliability is r = e−λT , so that the
subsystem reliability R as a function of r and α is given by the equation:

R(r, α) =
1 + α

α
r− 1

α
r1+α = r +

1
α

r(1− rα), 0 < α ≤ 1. (21)

For a redundancy subsystem with a larger number of components, the reliability
function can be obtained based on the Markov method in the same way, but algebraic
operations are more complicated. The results for the other two cases are presented below.

3.3.2. Case 2: k = 3

Take a redundant subsystem composed of an active component, a hot/warm spare
component, and another one maintained in cold conditions. For this case, the following
reliability function results:

R(r, α) =
(1 + α)2

α2 r−
(

1 + 2α

α2 − 1 + α

α
ln r

)
r1+α, 0 < α ≤ 1. (22)

3.3.3. Case 3: k = 4

For a redundant subsystem with an active component, a hot/warm spare component,
and two other ones maintained in cold conditions, the reliability function is given by the
following equation:

R(r, α) =
(1 + α)3

α3 r−
(

1 + 3α + 3α2

α3 − 1 + 3α + 2α2

α2 ln r +
(1 + α)2

2α
(ln r)2

)
r1+α, 0 < α ≤ 1. (23)

3.4. TMR Structure with Control Facilities and Cold Spare Components (tr = E)

In this case, another hybrid redundancy is considered. Thus, a redundant system
is composed of a TMR structure with control facilities as a basic structure (i.e., static
redundancy) and possibly one or more components maintained in cold conditions (i.e.,
standby redundancy). This type a hybrid redundancy is illustrated in Figure 4.

The decision logic works on the principle of majority logic, 2 out of 3, called voter and
represented by the symbol V in Figure 4. When one of the three components in operation
(CO1, CO2 or CO3) fails, an error signal indicates the faulty component. Thus, the faulty
component can be replaced with a cold-maintained standby one as soon as possible. In this
way, this redundant hybrid subsystem can tolerate one or more defective components, as
the case may be. For additional decision and control block the failure rate, denoted by λdc,
is expressed based on the basic component rate, λ. In this study, the following expression
is used:

λdc =
λ

β
, β > 1. (24)
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Figure 4. TMR structure with control facilities and cold spare components.

Consequently, the reliability function for logical decision and control block, denoted
by rdc, is expressed as:

rdc = e−λdcT = e−
λ
β T

=
(

e−λT
)β−1

= rβ−1
, β > 1. (25)

3.4.1. Case 1: TMR Structure without Standby Redundancy

In case of a TMR structure without reserves (i.e., k = 3), the redundant subsystem can
tolerate only one faulty component, so the subsystem reliability function is given by the
well-known equation:

R(r, β) = (3r2 − 2r3)rdc = (3r2 − 2r3)rβ−1
, β > 1 (26)

3.4.2. Case 2: TMR Structure and One Cold Spare Component

A redundant subsystem with hybrid redundancy composed of a TMR structure and
one CSC (i.e., k = 4) may tolerate two faulty components. For a start, for the logical block
of decision and control, the possibility of failure is neglected. The reliability evaluation is
made based on the Markov graph given in Figure 5.

Figure 5. Markov chain for subsystem reliability evaluation (k = 4).

In this graph, S1, S2 and S3 are successful states, while S4 is a failure one. Given these
aspects, the reliability function of this redundant subsystem is expressed as:

R(t) = p1(t) + p2(t) + p3(t), t ≥ 0. (27)
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As the transition rate matrix is:

A =

⎡⎢⎢⎢⎢⎢⎣
−3λ 0 0 0

3λ −3λ 0 0

0 3λ −2λ 0

0 0 2λ 0

⎤⎥⎥⎥⎥⎥⎦, (28)

by applying Equation (12) in order to determine the probability functions p1(t), p2(t) and
p3(t), the next system of differential equations results:⎧⎪⎪⎨⎪⎪⎩

p′1(t) = −3λp1(t)

p′2(t) = 3λp1(t)− 3λp2(t)

p′3(t) = 3λp2(t)− 2λp3(t)

(29)

With the initial values: p1(0) = 1, and p2(0) = p3(0) = 0, by applying the Laplace
transform, the following system of algebraic equations is obtained:⎧⎪⎪⎨⎪⎪⎩

sP1(s)− 1 = −3λP1(s)

sP2(s) = 3λP1(s)− 3λP2(s)

sP3(s) = 3λP2(s)− 2λP3(s)

(30)

By solving the system, the following functions in the frequency domain result:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P1(s) = 1

s+3λ

P2(s) = 3λ

(s+3λ)2

sP3(s) = 9λ2

(s+3λ)2 · 1
s+2λ = 9

s+2λ − 9
s+3λ − 9λ

(s+3λ)2 .

(31)

As the function

R(s) = L{R(t)} = P1(s) + P2(s) + P3(s), (32)

the following expression results:

R(s) = 9
s + 2λ

− 8
s + 3λ

− 6λ

(s + 3λ)2 (33)

The reliability function R(t), obtained by applying the inverse Laplace transform, is of
the form:

R(t) = 9e−2λt − 8e−3λt − 6λte−3λt, t ≥ 0. (34)

Finally, taking also into account the reliability of the decision and control logic, the
subsystem reliability R as a function of r and β is given by the equation:

R(r, β) = (9r2 − r3(8− 6 ln r))rdc = (9r2 − r3(8− 6 ln r))rβ−1
, β > 1 (35)

For a hybrid redundancy subsystem with a larger number of CSCs, the reliability
function can be obtained by applying the Markov method in the same way, but algebraic
operations are more complicated. A result obtained for another case is presented as follows.

3.4.3. Case 3: TMR Structure and Two Cold Spare Components

Take a redundant subsystem with hybrid redundancy composed of a TMR structure
and two CSCs (i.e., k = 5). This redundant subsystem can tolerate three defective compo-
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nents. A Markov-based approach similar to the one presented above gives the following
subsystem reliability as a function of r and β:

R(r, β) =
(

27r2 − r3(26− 24 ln r + 9(ln r)2)
)

rβ−1
, β > 1 (36)

3.5. Static Redundancy: TMR or 5MR (tr = F)

This type of redundancy refers to those subsystems for which a static redundancy with
majority logic (TMR or 5MR) can be adopted, depending on the desired level of reliability.
Thus, in the process of finding an optimal solution, the valid values for variable k are 1, 3
and 5.

3.5.1. Case 1: TMR Structure

This case where k = 3 was also considered in Section 3.4, Case 1, so that the reliability
function for this redundant subsystem is given by Equation (25).

3.5.2. Case 2: 5MR Structure

When a 5MR redundancy is adopted (i.e., k = 5), as [22] (pp. 165–176) appreciates,
the additional logic of decision and control is more complex than that used for TMR
redundancy. Consequently, the failure rate, denoted by λ′dc, expressed on the basis of the
failure rate of the basic components, is considered of the form:

λ′dc =
λ

γ
, γ > 1 (37)

where the reduction factor γ is lower than the reduction factor β used for the TMR redun-
dancy. Because the 5MR structure can tolerate two defective components, the reliability of
the subsystem can be calculated as follows:

R(r, γ) = (r5 + 5r4(1− r) + 10r3(1− r)2)λ′dc
=

(
10r3 − 15r4 + 6r5)rγ−1

, γ > 1.
(38)

3.6. TMR/Simplex and Cold Standby Redundancy (tr = G)

This is another case of hybrid redundancy in which the basic structure is reconfig-
urable. Specifically, the redundant subsystem consists of a TMR structure with control and
reconfiguration facilities and other possible CSCs, as shown in Figure 6.

If one of the three components in operation fails, the subsystem continues to operate
successfully based on redundancy, and the control logic generates an error signal indicating
the faulty component. The status of the active component (good or failed) is reflected by
three dedicated flip-flops. For example, Figure 6 illustrates the case where components
CO1 and CO3 work successfully and component CO2 is defective.

When an error signal is activated, the defective component must be replaced with a
spare one as soon as possible to restore the initial fault tolerance state. Let us suppose this
replacement is done quickly enough so reliability is not significantly affected. When only
two components remain in good state, in order to increase the reliability, it is preferable for
only one component to continue to work, not both. This reconfigurable structure is known
as TMR/Simplex [32] (p. 233) or TMR 3-2-1 [22] (p. 152). Note that after a component has
failed, the control logic can no longer correctly indicate another fault, so the values of the
status flip-flops must be preserved until the fault tolerance is restored. This is the role of
the 3-input NAND logic gate in Figure 6.
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Figure 6. Reconfigurable TMR structure with cold redundancy.

For an additional decision, control and reconfiguration logic block, the faulty rate
denoted by λdcr is expressed based on the basic component rate. In this study, the following
equation is used:

λdcr =
λ

δ
, δ > 1 (39)

where the reduction factor δ is lower than the reduction factor β used for TMR redundancy.
Consequently, the reliability function for the logic of decision, control and reconfiguration
denoted by rdcr is expressed as:

rdcr = e−λdcrT = e−
λ
δ T =

(
e−λT

)δ−1

= rδ−1
, δ > 1. (40)

The reliability of the redundant subsystem depends on the number of CSCs, as shown
below.

3.6.1. Case 1: TMR/Simplex without Standby Redundancy

In case of TMR/Simplex redundancy without spare components (i.e., k = 3), the
subsystem reliability function is given by the well-known equation [32], (p. 233):

R(r, δ) = (1.5r− 0.5r3)rdcr = (1.5r− 0.5r3)rδ−1
, δ > 1. (41)

3.6.2. Case 2: TMR/Simplex and One Cold Reserve

For this case of hybrid redundancy, the reliability evaluation is made by applying the
Markov method. For starters, for the logical block of decision, control and configuration
the possibility of failure is neglected. In this condition, the evolution of the redundant
subsystem to failure is illustrated by the Markov chain shown in Figure 7.
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Figure 7. Markov chain for TMR/Simplex and one CSC (k = 4).

In this graph, S1, S2 and S3 are states of success, while S4 is a failure state. Conse-
quently, the subsystem reliability is defined as:

R(t) = p1(t) + p2(t) + p3(t), t ≥ 0. (42)

Since the transition rate matrix is:

A =

⎡⎢⎢⎢⎢⎢⎣
−3λ 0 0 0

3λ −3λ 0 0

0 3λ −λ 0

0 0 λ 0

⎤⎥⎥⎥⎥⎥⎦, (43)

based on (12), the following system of differential equations results:⎧⎪⎪⎨⎪⎪⎩
p′1(t) = −3λp1(t)

p′2(t) = 3λp1(t)− 3λp2(t)

p′3(t) = 3λp2(t)− λp3(t)

(44)

With the initial values: p1(0) = 1, and p2(0) = p3(0) = 0, by applying the Laplace
transform, the following system of algebraic equations is obtained:⎧⎪⎪⎨⎪⎪⎩

sP1(s)− 1 = −3λP1(s)

sP2(s) = 3λP1(s)− 3λP2(s)

sP3(s) = 3λP2(s)− λP3(s)

(45)

By solving this equation system, the following functions in the field of Laplace trans-
form are obtained:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P1(s) = 1
s+3λ

P2(s) = 3λ

(s+3λ)2

sP3(s) = 9λ2

(s+3λ)2 · 1
s+λ = 9

4(s+λ)
− 9

4(s+3λ)
− 9λ

2(s+3λ)2

(46)

The reliability function in the field of Laplace transform is:

R(s) = P1(s) + P2(s) + P3(s) =
9

4(s + λ)
− 5

4(s + 3λ)
− 3λ

2(s + 3λ)2 (47)

The reliability function R(t), obtained by applying the inverse Laplace transform, is of
the form:

R(t) =
9
4

e−λt − 5
4

e−3λt − 3
2

λte−3λt, t ≥ 0. (48)
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Finally, taking also into account the reliability of the logical block of decision, control
and configuration, the reliability of the subsystem R as a function of r and δ is given by the
equation:

R(r, δ) =
(
2.25r− r3(1.25− 1.5 ln r)

)
rdcr

=
(
2.25r− r3(1.25− 1.5 ln r

)
)rδ−1

, δ > 1
(49)

3.6.3. Case 3: TMR/Simplex and Two Cold Reserves

Take a reconfigurable subsystem with hybrid redundancy composed of a TMR/Simplex
structure and two CSCs (i.e., k = 5). This redundant subsystem can tolerate three defective
components. A Markov-based approach similar to the one presented above gives the
following subsystem reliability as a function of r and δ:

R(r, δ) =

(
27
8

r− 1
8

(
19− 30 ln r + 18(ln r)2

)
r3

)
rδ−1

, δ > 1 (50)

3.7. TMR/Duplex and Cold Standby Redundancy (tr = H)

As in the previous case, the redundant subsystem has a hybrid redundancy consisting
of a reconfigurable TMR structure and possibly other CSCs, as shown in Figure 6. But this
reconfigurable structure also aims at high operational safety. Thus, when one component
of the TMR structure fails, the other two good components are put into operation in duplex
mode. Specifically, the two components operate in parallel and their outputs are compared
continuously. When the two components no longer generate the same response, an error
signal is activated (as shown in Figure 6), so that the operation is stopped in safe mode.
This reconfigurable structure is called by [32] TMR/Duplex.

Regarding the reliability assessment, note that this redundant subsystem can tolerate
the same number of faulty components as the TMR structure presented in Section 3.4 for
type E redundancy. Consequently, depending on the total number of components (k),
Equations (26), (35) or (36) are valid in this case as well, with the only difference that the
reduction factor β is replaced by δ.

4. Related Work

The problems of maximizing reliability with a cost constraint or minimizing cost with
a reliability constraint can be solved using various methods. One is by solving an analytical
model based on Lagrange multipliers with an alternative indicator for reliability [4]. The
resulting system of algebraic equations can be solved but involve some approximate
relations which may impact the accuracy of the solution. Also, this method gives real-
valued results which must be converted into integers, and this may have a strong impact
on solution quality. Therefore, heuristic methods can be appropriate. For example, one
such technique described by [22] (p. 335) is a greedy approach that tries to make an optimal
choice at each step: starting with the minimum system design, the system reliability is
increased by adding one component to the subsystem with the lowest reliability. This
process is repeated as long as the cost constraint is met.

Another method described by [33] (pp. 499–532) tries to accelerate the allocation
process by noticing that the subsystem with the highest reliability should have the smallest
number of components, and the least reliable subsystem should have the greatest number
of components. Starting with the initial system, the reliability is increased by adding one
component to each subsystem as long as the cost constraint is met. For the most reliable
subsystem, this is the final allocation. The process continues with the other subsystems,
until no allocation is possible any longer.

Pairwise Hill Climbing (PHC) [29] adapts the idea of classic hill climbing to the
reliability-cost problem. Two candidate solutions are generated for each pair of subsystems.
The first candidate is created by adding one component to the first subsystem, i.e., the
direct hill climbing operation. The second is created by adding one component to the first
subsystem and subtracting one from the second subsystem, i.e., a swapping operation. A
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hybrid approach starting from an approximate, but nearly-optimal solution given by the
analytical approach, further improved by PHC was found to provide good results.

The problem can also be expressed as a quadratic unconstrained binary optimization
(QUBO). This formulation has the potential of being solved by the D-Wave quantum
computer as shown by [29] or [34].

The problem must be stated in the form of:

O(q; a, b) = ∑
i

aiqi + ∑
(i, j)

bijqiqj. (51)

The user needs to specify the parameters ai (the weights associated with each qubit)
and bij (the strengths of the couplers between qubits). The expression is minimized by
quantum annealing when run on the quantum computer and the observed qi values of
either 0 or 1 represent the solution. A special procedure is required to transform the
inequality constraint into additional terms to be optimized together with the main objective
function in the same expression [29].

5. The Optimization Algorithms

The experimental studies presented in Section 9 are based on three approaches: a
classical real-valued evolutionary algorithm, an improved evolutionary algorithm called
RELIVE, that combines global search with local search, and a zero-one integer programming
model, i.e., a special case of linear programming. While these techniques have been
extensively used for various optimization problems, an original contribution of the current
paper is the design of the objective functions corresponding to the problem under study,
described in Section 6.

5.1. Classic Evolutionary Algorithm

Evolutionary algorithms (EAs) are inspired by biological natural selection [35,36].
They maintain a population of individuals (or chromosomes) which are potential solu-
tions, i.e., different values of the x input of the objective function f (x) that needs to be
optimized. There are three main genetic operators which are repeatedly applied for a
pre-specified number of generations or until a convergence criterion is satisfied: selection
(which identifies “parents”, such that individuals with better objective functions have a
higher probability of being selected), crossover (which combines the genes of two parents
and creates an offspring), and mutation (which may change some genes of a child before it
is inserted into the new population). All these operators are stochastic, but the constant
favoring of better individuals to reproduce drives the algorithm towards increasingly better
solutions, while random changes in the chromosomes try to prevent it from convergence
into local optima. For the experiments in Section 8, the standard evolutionary algorithm
(SEA) uses the following types of operators and parameters:

• tournament selection with two individuals;
• elitism is used, i.e., the best individual is directly copied into the next generation;
• arithmetic crossover, where a child chromosome is a linear combination of the parent

chromosomes, with a probability of 0.9;
• mutation by gene resetting, where the value of a randomly selected gene is set to a

random number from a uniform distribution defined on its domain of definition, with
a probability of 0.2;

• stopping criterion with a fixed number of generations; depending on the experiment
1000 or 10,000 generations are used.

5.2. RELIVE

The cross-generational evolutionary algorithm with local improvements (RELIVE) [4]
is an original evolutionary algorithm which performs secondary local searches in addition
to the main global search and includes the concept of personal improvement of individuals
that survive for several generations, instead of just one. Since the lifespan of individuals is
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no longer fixed, the size of the population is variable. Personal improvement is based on
a number of hill climbing steps in each generation. During a generation, the individuals
undergo the classic evolution based on selection, crossover and mutation. Another typical
feature of RELIVE is the way in which it encourages exploration. This has proved particu-
larly useful for difficult optimization problems such as the one addressed in our work. First,
a few newly created chromosomes are added in each generation. Secondly, to generate a
neighbor state in the hill climbing stage, three types of mutation are used with different
probabilities: Gaussian mutation, resetting mutation, and pairwise mutation, where two
genes exchange a unit, i.e., one’s value is incremented and the other’s value is decremented.
The latter type is again specifically designed for problems involving integer solutions, such
as the present one. For the experiments in Section 8, RELIVE uses the following parameter
values:

• the initial size of the population is 50;
• the fraction of newly generated chromosomes in a generation is 0.25;
• the life span of an individual is 4;
• the number of neighbors generated for hill climbing is 20;
• the number of hill climbing steps is 20;
• the probability of overall mutation is 0.2, divided into:

� Gaussian mutation, with a probability of 0.05, where the value of a randomly
selected gene is set to a normal random number with the mean equal to the
original gene value and a standard deviation of 2;

� resetting mutation, with a probability of 0.05, where the value of a randomly
selected gene is set to a random number from a uniform distribution defined on
its domain of definition is 0.25;

� pairwise mutation, with a probability of 0.1, where two genes exchange a unit.

For the rest of the operators RELIVE uses, like SEA, tournament selection with two
individuals, elitism, arithmetic crossover, with a probability 0.9, and a maximum number
of 100 or 1000 generations.

5.3. Linear Programming

Linear programming (LP) is an optimization method aimed at problems with a lin-
ear objective function and linear constraints. There are several specific LP algorithms
implemented in various libraries and programs. For our experiments, lpsolve [28] was
used, which implements an optimized version of the simplex algorithm proposed by [37].
Depending on the nature of the optimization problem, it can select either the primal or the
dual method, with factorization and scaling procedures to increase numerical stability. The
problem we address in this paper is in fact cast as a zero-one integer programming (01IP)
problem, a special case of LP.

6. Designing the Objective Functions

6.1. Evolutionary Algorithms
6.1.1. Problem Definition

For the two evolutionary algorithms, the objective (or fitness) function closely follows
the definition of the two correlated problems stated in Section 3 and repeated here for
convenience.

The maximization of the reliability with a maximum cost limit can be expressed as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Maximize :

n
∏
i=1

Ri

subject to :
n
∑

i=1
Ci ≤ C∗

(52)
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The minimization of the cost of the redundant system with a required reliability can
be expressed as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Minimize :
n
∑

i=1
Ci

subject to :
n
∏
i=1

Ri ≥ R∗
(53)

As Ci and Ri are computed by means of the equations detailed in Section 3, which
depend on the number of components for each subsystem, the optimization problem
reduces to finding k1, k2, . . . , and kn.

For the two evolutionary algorithms, the fitness functions are the expressions in (52)
and (53) that need to be optimized. Since an EA maximizes the fitness function by default,
in case of (53), the negative of the sum of costs is actually used as the fitness function.
The encoding of the problem uses real values, thus the chromosomes have n real genes,
corresponding to ki. The domain of the genes is [1, kmax], i.e., 1 ≤ ki ≤ kmax. It depends on
the problem and therefore kmax needs to be chosen by the user.

6.1.2. Genotype-Phenotype Mapping

The real values involved in the evolutionary search are interpreted as integer values
for ki before the computation of the fitness function. Therefore, the first step is to round the
real values to the nearest integer:

kp
i =

⌊
kg

i + 0.5
⌋

(54)

where kg
i reflects the genotype (the actual value of the gene), and kp

i reflects the phenotype
(its interpretation for further use).

Because in our case studies, for some types of redundancy we limited ourselves to a
certain number of spare components as sufficient, another important issue is related to the
unsuitability of some values of ki for certain subsystems. Therefore, the adjustment rules in
Table 1 are used to interpret the values of ki as valid ones.

Table 1. Adjustment rules for phenotype interpretation.

Redundancy Type Adjustment Rule

tr = A or tr = B No adjustment

tr = C if kp
i > 5 then kp

i ← 5

tr = D if kp
i > 4 then kp

i ← 4

tr = E
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

tr = F
if kp

i < 4 then kp
i ← 3

else kp
i ← 5

tr = G
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

tr = H
if kp

i < 3 then kp
i ← 3

if kp
i > 5 then kp

i ← 5

It must be mentioned that trying to enforce a valid domain for each subsystem gene a
priori would have caused discontinuities in the evolutionary search, would have decreased
the genetic diversity, and thus would have led to inferior results.
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6.1.3. Chromosom Repairing Procedure

Although expressed with a very simple equation, because of the possibly large size of
a problem (e.g., n = 50 or n = 100, as considered in our case studies), the constraints are
actually difficult to satisfy.

A naïve approach based on penalties for constraint violation decreases the genetic
diversity to such an extent that the algorithms usually fail to find any solution at all, or find
feasible solutions very far from the optimum.

Therefore, one can apply a repairing procedure for the chromosomes, such that even
if a certain individual resulted from the application of the genetic operators is initially
unfeasible, it can be slightly modified to become feasible. In this way, all the individuals
in the population represent feasible solutions and the evolutionary algorithm focuses on
optimizing the fitness function.

For the reliability maximization problem with cost constraints, a random repairing
method is applied. Iteratively, a subsystem whose ki > 1 is randomly selected and its ki is
decreased by 1, until the overall cost of the system becomes smaller than C∗.

Alternative methods were also attempted, but they were slower with no significant
improvement of results:

• The selection of the subsystem with the highest cost. Because of the genotype-
phenotype distinction, this could sometimes lead to infinite loops (e.g., the repairing
procedure decrements a value, and the corresponding adjustment rule increments it);

• The selection of the subsystem with the highest reliability. This is even slower because
it requires the recomputation of the system reliability after each ki is decremented,
with i from 1 to n.

The repairing procedure for the cost minimization with reliability constraints proved
much more challenging. Eventually, a random repairing method was also applied in this
case. Iteratively, a subsystem whose ki < kmax is randomly selected and its ki is increased
by 1, until the overall reliability of the system becomes greater than R∗. However, the
way in which this increment affects the overall system reliability is nonlinear. Simple
random selection may be very slow, because it may take several trials to choose the proper
subsystem whose increased reliability may turn the overall reliability above the imposed
threshold. That is why a specified number of repairing attempts trials is imposed (e.g., 10).
If after these repeated trials the reliability does not exceed R∗, the individual is penalized
with a very low value for its fitness function (e.g., −106) and thus becomes likely to be
excluded from the evolutionary selection process.

Several other alternative methods were attempted as well, but they all had various
drawbacks compared to the random method presented above:

• The selection of the subsystem with the lowest reliability. This method is slower and
its results are not much better;

• A more elaborate method, where the number of components is increased on layers,
with subsystems taken in a random order. When one layer of incrementation is
completed, the next one begins. This method was the slowest, about an order of
magnitude slower than random selection.

6.2. Linear Programming

The objective function is transformed in a different way in order to apply 01IP opti-
mization. This is based on the idea proposed by [29]. The maximization of the product
is equivalent to the maximization of the sum of logarithms. The desired solutions of the
problem, i.e., ki, i = 1 : n, are included as separate terms, one for each possible result, from
1 to kmax:

Maximize :
n

∑
i=1

kmax

∑
j=1

xij· ln Ri(j) (55)
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where xij ∈ {0, 1}, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , kmax}, is a binary variable that shows
that for subsystem i, j components are needed to maximize reliability. The notation Ri(j)
signifies the reliability of subsystem i when it contains j redundant components.

For a subsystem i, only one solution is possible, i.e., its binary indicator must be 1, and
the rest must be 0, and this can be written as an additional constraint:

kmax

∑
j=1

xij = 1, ∀i ∈ {1, . . . , n} (56)

The main constraint of the problem is also expressed by using a different term for each
possible solution:

n

∑
i=1

kmax

∑
j=1

xij·j·ci ≤ C∗ (57)

For the cost minimization problem, the formulation becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize :

n
∑

i=1

kmax
∑

j=1
xij·j·ci

subject to :

n
∑

i=1

kmax
∑

j=1
xij· ln Ri(j) ≥ R∗

kmax
∑

j=1
xij = 1, ∀i ∈ {1, . . . , n}

(58)

The genotype-phenotype mapping described above is also used here to compute
the reliability of the subsystems by handling the ki values that are not allowed for the
corresponding subsystem type.

7. Lower Bound Solution

The minimum system design represents the first step toward achieving an optimized
system design. Let us consider the optimization problem in which the required reliability
R∗ must be achieved at a minimum cost. To obtain a lower bound solution expressed by
the values k′i, i = 1 : n, as the first step for optimization, an improved version of Albert’s
method [22,38] is used. Albert’s method assumes that as spare elements are added, the
reliability of the subsystems tends to become more uniform. This method involves the
following steps:

Step 1. The components are renumbered so that the reliabilities are in increasing order:

r1 ≤ r2 ≤ · · · ≤ rn. (59)

Step 2. Let m be the lower limit to which all subsystems certainly require an additional
allocation. According to Albert’s method, the limit m is adopted so that

rm ≤ R∗ < rm+1, (60)

or m = n in case of rn ≤ R∗.
As an improved version, we propose that the limit m be adopted as the highest value

for which the following condition is met:

rmrm+1 · · · rn < R∗. (61)
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Let R be the reliability level that the first m subsystems must reach. Based on the
condition that:

Rmrm+1rm+2 · · · rn ≥ R∗, (62)

for R the following condition results:

R ≥ (R∗/(rm+1rm+2 · · · rn))
m−1

. (63)

Step 3. With this intermediate result (reliability value R), for each subsystem i, i = 1:m,
depending on the redundancy type, the lower bound k′i is then determined. For example,
for a subsystem i with active redundancy (tr = A), the following equations apply:

1− (1− ri)
ki ≥ R = (1− ri)

ki ≤ 1− R, i = 1 : m (64)

After applying the logarithm we get:

ki ln(1− ri) ≤ ln(1− R), (65)

and then:

ki ≥
ln(1− R)
ln(1− ri)

, i = 1 : m (66)

So, the lower bound as an integer value is:

k′i =
⌊

ln(1− R)
ln(1− ri)

⌋
+ 1, i = 1 : m (67)

where the equations are too complicated, the lower bound is determined iteratively, and
not algebraically.

For other components with higher reliability, the lower bound corresponds to the
non-redundant variant, so that:

k′i = 1, i = m + 1 : n (68)

Based on this lower bound solution, the search for an optimal solution can decrease
significantly.

8. Experimental Results

In order to evaluate the effectiveness of the proposed algorithms, a large number of
optimization problems of the order of thousands were analyzed. For all these optimization
problems, all eight types of redundancy presented in Section 3 are considered. For any of the
n subsystems, the type of redundancy is randomly generated based on the predetermined
weights, as shown in Table 2.

Table 2. Weights for types of redundancy considered in experimental studies.

Type of Redundancy A, B, C, D E, F, G, H

Weight 15% 10%

Component reliabilities and costs are also randomly generated. In terms of cost, the
values are in the range of [1, 50] units for all n subsystems. In terms of reliability, the value
ranges depend on the type of redundancy, as shown in Table 3.

Table 3. Value ranges for component reliability by type of redundancy.

Type of Redundancy A, B, C, D E, F, G, H

Weight [0.9, 1) [0.95, 1)

79



Mathematics 2022, 10, 3698

Regarding the coefficient α and the reduction factors β and δ, the values are randomly
generated in the ranges:

0 < α < 1, 50 ≤ β ≤ 100, 40 ≤ δ ≤ 80 (69)

In the case of type F redundancy subsystems, the value of the reduction factor γ is
taken as half of the value for β (γ = β/2).

For the optimization problems we address, two levels of complexity were taken into
account, when n = 50 and n = 100. For each case, extensive experimental studies were
performed, including thousands of optimization problems.

For each reliability model, the proposed algorithms were tested taking into account
both optimization problems. Specifically, for any reliability model, the study on the optimal
allocation of redundancy was conducted in this way. First, the issue of redundancy alloca-
tion is considered to maximize system reliability at a maximum allowable cost C∗ = 3×Cns.
Let Rmax be the maximum system reliability obtained in this way. Then, another redundancy
allocation problem is solved to obtain the required reliability R∗ = Rmax at a minimum
cost. In this way, either the solution from the first optimization problem is validated, or an
improved solution is obtained.

This is the final allocation that we consider, reflected by the vector k and for which the
reliability and cost are Rrs and Crs, respectively. For any allocation solution, the redundancy
efficiency is then calculated as follows:

E f =
1− Rsn

1− Rrs
. (70)

Efficiency is a more intuitive indicator that shows how often the risk of a failure for
the redundant system decreases compared to the basic, non-redundant one.

To illustrate this approach, the numerical results of four experimental studies (problems
P1 − P4) are presented below. First, two reliability models for a system with 50 subsystems
are considered (problems P1 and P2). All the details of these models are presented in
Tables 4 and 5.

Each problem is defined by a set of n tuples corresponding to the parameters of
its subsystems. In Table 4, we define a problem with 50 subsystems, therefore we have
50 tuples. The first number in the tuple, i, goes from 1 to 50. The second item of a tuple is
the subsystem type. It is identified by a letter following the convention defined in Section 3.
For example, the first tuple (1: D, 0.989, 39; α = 0.55) has tr1 = D, which corresponds
to hybrid standby redundancy with a warm reserve and possibly other cold ones. The
following two numbers identify the reliability and the cost of a single component. Again,
for the first tuple, the reliability is r1 = 0.989 and the cost is c1 = 39.

Table 4. Problem P1 for n = 50 subsystems.

Structural Details: Tuples of (i: tri,ri, ci) Extended with Parameters αi, βi, or as Appropriate, i = 1:n.

(1: D, 0.989, 39; α = 0.55), (2: C, 0.958, 25), (3: C, 0.905, 41), (4: E, 0.952, 46; β = 50), (5: C, 0.975, 44), (6: A, 0.984, 14),
(7: D, 0.939, 43; α = 0.86), (8: A, 0.944, 13), (9: G, 0.987, 48; δ = 74), (10: A, 0.914, 9), (11: H, 0.955, 32; δ = 65), (12: A, 0.986, 41),
(13: D, 0.957, 16; α = 0.84), (14: D, 0.920, 1; α = 0.31), (15: C, 0.913, 27), (16: A, 0.985, 8), (17: A, 0.902, 9), (18: F, 0.956, 26; β = 80, γ = 40),
(19: B, 0.910, 32), (20: F, 0.986, 42; β = 95, γ = 48), (21: F, 0.968, 47; β = 80, γ = 40), (22: D, 0.965, 47; α = 0.24), (23: H, 0.981, 31; δ = 72),
(24: H, 0.982, 31; δ = 53), (25: F, 0.953, 45; β = 77, γ = 39), (26: B, 0.959, 18), (27: H, 0.962, 13; δ = 49), (28: E, 0.974, 46; β = 98),
(29: C, 0.915, 26), (30: D, 0.983, 18; α = 0.74), (31: H, 0.975, 8; δ = 47), (32: A, 0.988, 12), (33: A, 0.971, 21), (34: C, 0.909, 17),
(35: C, 0.953, 7), (36: C, 0.926, 7), (37: D, 0.989, 8; α = 0.74), (38: C, 0.906, 43), (39: H, 0.971, 11; δ = 66), (40: C, 0.944, 16),
(41: E, 0.989, 21; β = 79), (42: A, 0.907, 36), (43: B, 0.942, 5), (44: C, 0.975, 18), (45: F, 0.961, 42; β = 95, γ = 48), (46: G, 0.979, 8; δ = 60),
(47: E, 0.970, 38; β = 82), (48: H, 0.952, 23; δ = 48), (49: G, 0.958, 15; δ = 68), (50: C, 0.975, 7)

Cns = 1241, C∗ = 3× Cns = 3723
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Table 5. Problem P2 for n = 50 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, or as Appropriate, i = 1:n.

(1: D, 0.925, 39; α = 0.42), (2: B, 0.985, 31), (3: E, 0.968, 29; β = 67), (4: A, 0.969, 35), (5: B, 0.904, 36), (6: A, 0.909, 18),
(7: F, 0.973, 6; β = 92, γ = 46), (8: C, 0.976, 10), (9: C, 0.947, 19), (10: C, 0.940, 33), (11: A, 0.931, 22), (12: G, 0.970, 35; δ = 62),
(13: H, 0.966, 14; δ = 69), (14: B, 0.989, 31), (15: A, 0.945, 41), (16: C, 0.974, 17), (17: B, 0.980, 47), (18: H, 0.972, 4; δ = 79),
(19: C, 0.917, 44), (20: B, 0.902, 32), (21: B, 0.981, 1), (22: C, 0.983, 34), (23: F, 0.983, 12; β = 92, γ = 46), (24: G, 0.960, 12; δ = 54),
(25: D, 0.936, 28; α = 0.41), (26: G, 0.965, 11; δ = 56), (27: F, 0.976, 7; β = 53, γ = 26), (28: B, 0.978, 10), (29: H, 0.972, 21; δ = 55),
(30: C, 0.980, 2), (31: G, 0.975, 46; δ = 41), (32: B, 0.901, 46), (33: H, 0.972, 26; δ = 56), (34: C, 0.928, 7), (35: A, 0.909, 5), (36: A, 0.977, 49),
(37: D, 0.973, 22; α = 0.72), (38: C, 0.918, 42), (39: A, 0.930, 29), (40: B, 0.986, 37), (41: G, 0.968, 37; δ = 60), (42: G, 0.977, 31; δ = 41),
(43: F, 0.981, 41; β = 84, γ = 42), (44: G, 0.975, 33; δ = 40), (45: B, 0.975, 25), (46: E, 0.965, 37; β = 81), (47: B, 0.941, 20),
(48: F, 0.979, 8; β = 86, γ = 43), (49: F, 0.964, 40; β = 58, γ = 29), (50: E, 0.967, 25; β = 64)

Cns = 1287, C∗ = 3× Cns = 3861

The rest of the parameters depend on the subsystem type. They were defined in the
mathematical description in Sections 3.1–3.7, but for convenience we include a summary
here with the list of the parameters used for each type of subsystems:

• active redundancy (tr = A), passive redundancy (or cold standby redundancy) (tr = B),
and hybrid standby redundancy with a hot reserve (tr = C) and possibly other cold
ones: no additional parameters;

• hybrid standby redundancy with a warm reserve (tr = D) and possibly other cold
ones: parameter α (the coefficient of reduction of the failure rate for a warm-maintained
reserve compared to the failure rate of the component in operation);

• hybrid redundancy consisting of a TMR structure with control facilities and possibly
cold reserves (tr = E): parameter β (the reduction factor used to express the failure
rate of the decision and control logic of a TMR structure based on the failure rate of
the basic components);

• static redundancy: TMR or 5MR (tr = F): parameters β (as above) and γ (the reduction
factor used to express the failure rate of the decision and control logic of a 5MR
structure based on the failure rate of the basic components);

• reconfigurable TMR/Simplex type structure with possible other cold-maintained spare
components (tr = G) and reconfigurable TMR/Duplex type structure with possible
other cold-maintained spare components (tr = H): parameter δ (the reduction factor
used to express the failure rate of the decision, control and reconfiguration logic of
a TMR/Simplex or a TMR/Duplex structure based on the failure rate of the basic
components).

For example, in Table 4, since subsystem 1 is of type D, its parameter α1 is 0.55. Since
subsystem 4 is of type E, its parameter β4 is 50. The subscripts were omitted to avoid
cluttering the table, but the parameters have distinct values for each subsystem, i.e., they
are αi, βi, γi or δi.

On the last line, one can see the cost of the non-redundant system Cns and the maxi-
mum allowable cost of the system C∗, chosen to be three times greater than Cns. C∗ could
have in fact any value, but greater values do not make the problem harder, because the
main difficulty lies in finding the proper distribution of redundant components in the
“upper” part of the allocation. Greater values for C∗ would lead to a certain number of
redundant components included for all subsystems, and then the main issue would also lie
in this “upper” part of the allocation.

The redundancy allocation for these problems generated by the three proposed al-
gorithms after the first optimization process, that tries to maximize system reliability at a
maximum allowable cost C∗, is presented in Tables 6 and 7.
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Table 6. Best solutions to problem P1 after first optimization (maximizing reliability under cost
constraint: C∗ = 3723).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA 2, 2, 3, 4, 2, 2, 3, 4, 3, 5, 4, 2, 3, 3, 3, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3,
2, 5, 4, 3, 2, 4, 3, 2, 3, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 2 3719 0.973398 33.714

RELIVE 2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

LP 2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

Table 7. Best solutions to problem P2 after first optimization (maximizing reliability under cost
constraint: C∗ = 3861).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA 3, 2, 4, 2, 3, 3, 3, 2, 3, 3, 4, 4, 5, 2, 3, 3, 2, 5, 3, 3, 8, 2, 3, 4, 3,
4, 3, 2, 4, 5, 3, 3, 4, 5, 4, 2, 4, 3, 3, 2, 3, 3, 3, 3, 2, 4, 3, 3, 3, 4 3856 0.978930 41.911

RELIVE 3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

LP 3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

The solutions after the second optimization process trying to minimize the cost under
the reliability constraint Rrs ≥ R∗ = Rmax are presented in Tables 8 and 9.

Table 8. Best solutions to problem P1 after second optimization (minimizing cost under reliability
constraint R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R* = 0.973398

2, 3, 3, 4, 2, 2, 3, 3, 3, 3, 4, 2, 3, 4, 3, 3, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 5, 3, 3, 2, 4, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 3 3658 0.973465 33.798

RELIVE
R* = 0.977724

2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

LP
R* = 0.977724

2, 3, 3, 4, 2, 2, 3, 3, 3, 4, 4, 2, 3, 4, 3, 2, 4, 3, 3, 3, 3, 2, 3, 3, 3,
3, 4, 4, 3, 2, 4, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 4, 4, 3 3719 0.977724 40.260

Table 9. Best solutions to problem P2 after second optimization (minimizing cost under reliability
constraint R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R* = 0.978930

3, 2, 4, 3, 3, 4, 3, 2, 3, 3, 3, 3, 4, 2, 3, 2, 2, 5, 3, 3, 2, 2, 3, 4, 3,
4, 3, 2, 4, 4, 3, 3, 4, 3, 5, 2, 3, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3819 0.979250 42.556

RELIVE
R* = 0.981474

3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

LP
R* = 0.981474

3, 2, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 4, 2, 3, 3, 2, 5, 3, 3, 4, 2, 3, 4, 3,
4, 3, 2, 4, 3, 3, 3, 4, 4, 4, 2, 2, 3, 3, 2, 4, 3, 3, 3, 2, 4, 3, 3, 3, 4 3861 0.981474 47.666

For the second experiment, more complex reliability models corresponding to a system
with 100 subsystems are considered (problems P3 and P4). These models are presented in
Tables 10 and 11.
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Table 10. Problem P3 for n = 100 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, γi or as Appropriate, i = 1:n.

(1: F, 0.987, 9; β = 75, γ = 38), (2: H, 0.970, 16; δ = 40), (3: F, 0.959, 20; β = 82, γ = 41), (4: C, 0.984, 40), (5: B, 0.919, 23),
(6: D, 0.953, 9; α = 0.34), (7: G, 0.985, 8; δ = 44), (8: A, 0.966, 23), (9: H, 0.978, 38; δ = 48), (10: B, 0.908, 5), (11: C, 0.919, 23),
(12: A, 0.946, 18), (13: A, 0.969, 42), (14: F, 0.970, 15; β = 94, γ = 47), (15: B, 0.921, 17), (16: B, 0.913, 32), (17: D, 0.905, 15; α = 0.41),
(18: H, 0.958, 14; δ = 58), (19: B, 0.963, 12), (20: B, 0.930, 29), (21: A, 0.954, 18), (22: C, 0.989, 27), (23: A, 0.990, 7), (24: C, 0.983, 23),
(25: D, 0.928, 10; α = 0.22), (26: E, 0.958, 13; β = 93), (27: A, 0.962, 25), (28: F, 0.967, 20; β = 53, γ = 27), (29: G, 0.970, 36; δ = 67),
(30: B, 0.972, 20), (31: C, 0.943, 23), (32: G, 0.982, 43; δ = 58), (33: H, 0.978, 45; δ = 64), (34: B, 0.952, 20), (35: A, 0.944, 7),
(36: C, 0.969, 19), (37: F, 0.953, 43; β = 57, γ = 29), (38: G, 0.953, 18; δ = 47), (39: H, 0.987, 25; δ = 54), (40: A, 0.940, 25), (41: B, 0.962, 43),
(42: H, 0.958, 31; δ = 77), (43: A, 0.947, 26), (44: E, 0.984, 48; β = 57), (45: E, 0.969, 6; β = 87), (46: A, 0.900, 46), (47: C, 0.945, 47),
(48: G, 0.967, 8; δ = 52), (49: F, 0.961, 27; β = 64, γ = 32), (50: E, 0.971, 44; β = 82), (51: B, 0.912, 47), (52: F, 0.968, 34; β = 52, γ = 26),
(53: G, 0.978, 19; δ = 51), (54: E, 0.966, 32; β = 69), (55: B, 0.946, 35), (56: C, 0.983, 32), (57: H, 0.970, 10; δ = 50),
(58: D, 0.926, 46; α = 0.61), (59: H, 0.975, 30; δ = 77), (60: D, 0.902, 10; α = 0.99), (61: D, 0.982, 33; α = 0.30), (62: A, 0.940, 38),
(63: C, 0.922, 37), (64: F, 0.986, 19; β = 78, γ = 39), (65: G, 0.975, 32; δ = 59), (66: D, 0.938, 30; α = 0.22), (67: B, 0.974, 22),
(68: H, 0.958, 22; δ = 70), (69: E, 0.951, 9; β = 75), (70: G, 0.969, 48; δ = 77), (71: D, 0.905, 38; α = 0.21), (72: E, 0.989, 47; β = 64),
(73: H, 0.962, 38; δ = 63), (74: B, 0.923, 37), (75: H, 0.976, 36; δ = 53), (76: A, 0.937, 36), (77: B, 0.942, 2), (78: C, 0.913, 8),
(79: E, 0.968, 18; β = 69), (80: C, 0.928, 14), (81: B, 0.962, 16), (82: C, 0.924, 17), (83: A, 0.913, 42), (84: A, 0.987, 41), (85: A, 0.960, 22),
(86: D, 0.902, 39; α = 0.72), (87: H, 0.953, 24; δ = 54), (88: B, 0.925, 13), (89: H, 0.953, 35; δ = 65), (90: E, 0.972, 24; β = 86),
(91: D, 0.924, 9; α = 0.48), (92: B, 0.971, 46), (93: H, 0.969, 37; δ = 66), (94: D, 0.980, 15; α = 0.11), (95: E, 0.972, 41; β = 80),
(96: B, 0.922, 6), (97: E, 0.988, 44; β = 54), (98: C, 0.955, 7), (99: F, 0.960, 16; β = 90, γ = 45), (100: A, 0.904, 25)

Cns = 2579, C∗ = 3× Cns = 7737

Table 11. Problem P4 for n = 100 subsystems.

Structural Details: Tuples of (i: tri, ri, ci) Extended with Parameters αi, βi, γi or as Appropriate, i = 1:n.

(1: D, 0.974, 45; α = 0.98), (2: B, 0.902, 13), (3: C, 0.955, 24), (4: D, 0.958, 21; α = 0.91), (5: E, 0.954, 39; β = 82), (6: A, 0.923, 46),
(7: D, 0.952, 8; α = 0.23), (8: B, 0.900, 33), (9: A, 0.926, 19), (10: D, 0.933, 3; α = 0.55), (11: D, 0.973, 4; α = 0.13), (12: E, 0.976, 2; β = 100),
(13: D, 0.912, 12; α = 0.43), (14: G, 0.963, 19; δ = 45), (15: B, 0.975, 27), (16: D, 0.985, 11; α = 0.23), (17: C, 0.984, 34), (18: B, 0.940, 47),
(19: F, 0.981, 35; β = 79, γ = 40), (20: F, 0.961, 20; β = 79, γ = 39), (21: D, 0.929, 17; α = 0.36), (22: H, 0.989, 7; δ = 63),
(23: E, 0.977, 1; β = 57), (24: A, 0.943, 44), (25: F, 0.965, 40; β = 97, γ = 48), (26: E, 0.982, 34; β = 97), (27: F, 0.974, 49; β = 79, γ = 39),
(28: H, 0.969, 12; δ = 42), (29: D, 0.949, 45; α = 0.44), (30: G, 0.977, 11; δ = 56), (31: D, 0.915, 2; α = 0.48), (32: C, 0.975, 10),
(33: A, 0.904, 10), (34: A, 0.928, 16), (35: H, 0.976, 49; δ = 65), (36: E, 0.958, 25; β = 55), (37: D, 0.962, 47; α = 0.15), (38: B, 0.909, 1),
(39: H, 0.960, 37; δ = 44), (40: B, 0.923, 49), (41: C, 0.907, 32), (42: E, 0.985, 49; β = 63), (43: B, 0.918, 4), (44: F, 0.964, 38; β = 90, γ = 45),
(45: A, 0.952, 36), (46: B, 0.945, 41), (47: C, 0.906, 16), (48: D, 0.915, 24; α = 0.70), (49: B, 0.905, 21), (50: A, 0.902, 20), (51: C, 0.969, 15),
(52: H, 0.964, 24; δ = 51), (53: D, 0.916, 44; α = 0.68), (54: E, 0.973, 37; β = 53), (55: C, 0.945, 13), (56: D, 0.976,38; α = 0.23),
(57: D, 0.931, 13; α = 0.09), (58: B, 0.912, 30), (59: F, 0.960, 31; β = 71, γ = 35), (60: A, 0.925, 5), (61: B, 0.958, 46), (62: E, 0.954, 46; β = 57),
(63: F, 0.968, 38; β = 85, γ = 43), (64: B, 0.955, 8), (65: H, 0.958, 1; δ = 59), (66: B, 0.988, 44), (67: D, 0.954, 42; α = 0.19), (68: C, 0.974, 46),
(69: G, 0.977, 19; δ = 47), (70: D, 0.958, 3; α = 0.04), (71: A, 0.922, 13), (72: A, 0.975, 33), (73: C, 0.918, 10), (74: D, 0.946, 36; α = 0.42),
(75: C, 0.918, 38), (76: H, 0.968, 18; δ = 70), (77: F, 0.981, 3; β = 93, γ = 46), (78: H, 0.963, 12; δ = 78), (79: A, 0.981, 8),
(80: D, 0.980, 48; α = 0.97), (81: B, 0.967, 19), (82: C, 0.939, 26), (83: F, 0.967, 40; β = 55, γ = 27), (84: C, 0.947, 25),
(85: D, 0.982, 46; α = 0.07), (86: E, 0.982, 28; β = 84), (87: G, 0.976, 15; δ = 66), (88: D, 0.941, 22; α = 0.44), (89: F, 0.983, 3; β = 97, γ = 49),
(90: C, 0.972, 12), (91: A, 0.976, 13), (92: B, 0.950, 18), (93: D, 0.976, 20; α = 0.07), (94: G, 0.989, 32; δ = 42), (95: H, 0.974, 3; δ = 66),
(96: E, 0.989, 36; β = 93), (97: G, 0.967, 11; δ = 45), (98: H, 0.974, 46; δ = 68), (99: G, 0.956, 38; δ = 74), (100: G, 0.974, 42; δ = 73)

Cns = 2506, C∗ = 3× Cns = 7518

The numerical results after the two optimization processes described above are pre-
sented in Tables 12–15.
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Table 12. Best solutions to problem P3 after first optimization (maximizing reliability under cost
constraint: C∗ = 7737).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA

5, 3, 3, 2, 4, 3, 5, 3, 3, 7, 4, 4, 2, 3, 3, 3, 4, 3, 3, 3, 2, 4, 7, 2, 3,
4, 3, 3, 3, 5, 2, 3, 4, 3, 2, 3, 3, 5, 3, 2, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 3, 2, 4, 3, 3, 2, 2, 4, 5, 3, 3, 3, 3, 3, 3,
3, 5, 3, 3, 5, 2, 3, 3, 2, 2, 3, 4, 2, 3, 3, 4, 2, 3, 3, 3, 4, 3, 5, 3, 3

7722 0.894261 9.375

RELIVE

3, 4, 3, 2, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 3,
5, 2, 3, 3, 2, 3, 3, 4, 3, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 5, 3, 2, 4, 3, 3,
3, 3, 4, 3, 3, 2, 4, 2, 3, 4, 2, 3, 2, 3, 3, 2, 2, 4, 5, 4, 3, 3, 4, 2, 4,
3, 8, 4, 4, 4, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 4

7737 0.927214 13.619

LP

3, 4, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 2, 2, 2, 3,
4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 4, 3, 3, 4, 3, 4,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 2, 3, 3, 3, 3, 3, 2, 4, 4, 3, 3, 3, 4, 3, 3,
3, 3, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 3

7737 0.947769 18.979

Table 13. Best solutions to problem P4 after first optimization (maximizing reliability under cost
constraint: C∗ = 7518).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA

2, 3, 3, 3, 4, 3, 4, 4, 3, 3, 4, 4, 4, 3, 3, 3, 2, 2, 3, 3, 4, 3, 4, 2, 3,
4, 3, 4, 2, 4, 4, 4, 4, 5, 3, 4, 2, 5, 4, 3, 3, 3, 8, 3, 3, 2, 3, 3, 4, 4,
3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 3, 2, 5, 2, 2, 2, 5, 3, 3, 4, 5, 2, 3,
5, 3, 5, 3, 2, 3, 5, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 2, 4, 5, 3, 5, 4, 3, 3

7499 0.930610 14.281

RELIVE

3, 3, 2, 3, 4, 3, 3, 3, 4, 4, 2, 5, 4, 4, 2, 2, 2, 2, 3, 3, 3, 4, 3, 2, 3,
3, 3, 5, 3, 4, 4, 3, 5, 4, 3, 4, 2, 6, 4, 3, 4, 3, 4, 3, 3, 2, 4, 3, 3, 4,
3, 4, 3, 3, 3, 2, 3, 3, 3, 4, 3, 4, 3, 2, 5, 2, 3, 2, 4, 4, 4, 2, 4, 3, 3,
4, 5, 5, 3, 2, 2, 3, 3, 3, 2, 4, 4, 3, 3, 3, 3, 3, 2, 3, 5, 3, 4, 3, 4, 3

7518 0.952116 20.695

LP

2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 5, 3, 4, 2, 2, 2, 3, 3, 3, 3, 4, 5, 3, 3,
3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4,
3, 4, 3, 4, 3, 2, 3, 3, 3, 4, 2, 4, 3, 3, 5, 2, 2, 2, 4, 3, 4, 2, 3, 3, 3,
4, 3, 4, 3, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 4, 3, 4, 4, 4, 3

7518 0.962884 26.699

Table 14. Best solutions to problem P3 after second optimization (minimizing cost under the constraint
of reliability R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R∗ = 0.894261

3, 5, 3, 2, 2, 2, 3, 3, 4, 2, 2, 3, 2, 5, 3, 3, 4, 4, 2, 2, 3, 2, 3, 2, 4,
5, 4, 5, 3, 2, 2, 3, 3, 2, 7, 2, 3, 5, 3, 4, 2, 5, 3, 3, 4, 3, 2, 5, 3, 3,
3, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 3, 4, 2, 3, 5, 3, 3, 3, 4, 2, 3,
2, 8, 3, 4, 5, 3, 3, 3, 2, 2, 3, 5, 4, 4, 3, 4, 2, 3, 3, 3, 6, 3, 5, 3, 3

7735 0.896609 9.588

RELIVE
R∗ = 0.927214

3, 4, 3, 2, 3, 4, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 3,
5, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 5, 3, 2, 5, 3, 5,
2, 3, 3, 4, 2, 2, 5, 3, 4, 4, 2, 2, 3, 3, 3, 2, 2, 4, 4, 3, 3, 3, 4, 2, 3,
2, 3, 5, 5, 3, 3, 3, 3, 2, 3, 3, 4, 3, 4, 5, 4, 2, 3, 2, 3, 3, 3, 5, 3, 3

7622 0.927251 13.626

LP
R∗ = 0.947769

3, 4, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 2, 2, 2, 3,
4, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 4, 3, 3, 2, 4, 3, 3, 4, 3, 3, 4, 3, 4,
3, 3, 3, 4, 2, 2, 4, 3, 4, 4, 2, 3, 3, 3, 3, 3, 2, 4, 4, 3, 3, 3, 4, 3, 3,
3, 3, 4, 4, 3, 2, 3, 3, 2, 3, 3, 4, 3, 4, 4, 3, 2, 4, 2, 4, 3, 3, 3, 3, 3

7737 0.947769 18.979
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Table 15. Best solutions to problem P4 after second optimization (minimizing cost under the constraint
of reliability R∗).

Algorithm Optimal Allocation: k1, k2, . . . , kn Crs Rrs Ef

SEA
R∗ = 0.930610

2, 3, 5, 2, 4, 3, 4, 4, 2, 4, 2, 5, 3, 4, 4, 3, 3, 3, 5, 3, 3, 5, 4, 3, 3,
3, 3, 3, 3, 5, 4, 5, 6, 5, 5, 5, 2, 8, 3, 3, 3, 3, 8, 3, 3, 2, 5, 4, 4, 4,
5, 4, 3, 3, 4, 3, 2, 4, 3, 4, 2, 3, 3, 5, 5, 2, 2, 3, 5, 3, 4, 2, 4, 2, 3,
4, 5, 5, 3, 4, 2, 5, 3, 4, 2, 5, 3, 2, 5, 4, 2, 5, 2, 4, 3, 3, 5, 4, 3, 3

8213 0.932688 14.722

RELIVE
R∗ = 0.952116

2, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 4, 2, 2, 2, 2, 3, 3, 3, 5, 5, 3, 3,
3, 3, 5, 3, 5, 4, 3, 4, 4, 3, 4, 2, 3, 4, 2, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3,
3, 4, 3, 4, 3, 2, 3, 3, 3, 3, 2, 4, 3, 3, 4, 2, 2, 2, 4, 3, 4, 2, 3, 3, 3,
5, 5, 4, 3, 2, 3, 3, 3, 3, 2, 3, 5, 3, 5, 3, 3, 3, 2, 3, 4, 3, 4, 3, 4, 3

7384 0.952135 20.703

LP
R∗ = 0.962884

2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 5, 3, 4, 2, 2, 2, 3, 3, 3, 3, 4, 5, 3, 3,
3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 4, 2, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 4,
3, 4, 3, 4, 3, 2, 3, 3, 3, 4, 2, 4, 3, 3, 5, 2, 2, 2, 4, 3, 3, 2, 4, 3, 3,
4, 3, 4, 3, 2, 2, 3, 3, 3, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 4, 3, 4, 4, 4, 3

7518 0.962884 26.699

For each algorithm, the reliability found by maximization was set as the threshold for
the minimization problem. The goal is to find systems with a lower total cost for the same
reliability. During maximization, if there are more candidates with the same reliability
but different costs, the choice between them is indifferent from the point of view of the
objective function. Therefore, a solution with a higher cost but still less or equal to the cost
threshold can be selected. The second optimization can identify better solutions from both
points of view. This is often the case for SEA, which usually gives suboptimal results for
the first optimization. On the contrary, LP likely finds the optimal solution every time, and
therefore, the results of the second optimization are the same as for the first.

The three optimization algorithms considered in our study generate different solutions.
The following three examples illustrate how we can determine whether one is superior to
the other:

• Consider problem P1 for which the best solutions generated by the three optimization
algorithms are shown in Table 6. All three solutions require 3719 cost units, but the
solution given by SEA achieves lower reliability (0.973398) compared to that given by
RELIVE and LP (0.977724);

• Consider problem P3 for which the best solutions generated by the three optimization
algorithms are shown in Table 12. The solutions given by RELIVE and LP both require
7737 cost units, but the solution generated by LP achieves higher reliability (0.947769)
compared to that given by RELIVE (0.927214);

• Consider problem P4 for which the best solutions generated by the three optimization
algorithms are shown in Table 15. Please note that the solution given by SEA requires
the highest cost and offers the lowest reliability compared to the solutions given by
RELIVE and LP.

For a better comparison of the three proposed optimization algorithms, 1000 randomly
generated problems were considered for both n = 50 and n = 100. The corresponding
results are presented in Figures 8–11. Each graph presents the mean values as the height of
the bars, with the standard deviations represented as two sigmas (one up from the mean,
and one down from the mean).

First, the reliability maximization case for n = 50 was considered. Figure 8 shows some
statistics of the final system reliability obtained by the algorithms. Since the performance
of the evolutionary algorithm greatly depends on the number of generations, two versions
were considered: 1000 and 10,000 generations for SEA, and 100 and 500 generations for
RELIVE.

It must be mentioned that RELIVE performs additional function evaluations during
the hill climbing procedure, therefore it is normal that its number of generations be less
than for SEA. Figure 8a presents the actual efficiency values obtained by the algorithms.
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Figure 8b includes a comparison relative to LP, where in each of the 1000 trials the efficiency
found by LP was considered to correspond to 100% and the efficiency found by the other
algorithms is represented as a percentage of that found by LP. It can be seen that the results
of LP and RELIVE are very close, with LP being slightly better, while those of SEA are of a
lower quality.

It can also be seen that there is no significant difference between the results of SEA
and RELIVE with different numbers of generations: most likely, 1000 and 100 generations,
respectively, are sufficient for such problems.

Similar statistics are displayed in Figure 9 for systems with n = 100. In this case,
since the problems are more difficult, there are greater differences between algorithms. LP
remains the best, while the relative average efficiency of RELIVE solutions is around 75%,
and that of SEA is around 45%.

Figures 10 and 11 show the results obtained for the cost minimization problems. Since
an increase in the number of generations does not seem to be a decisive factor, only 100
and 500 generations were considered for SEA and RELIVE, respectively. The relative
performance of algorithms is similar: LP provides the best results, RELIVE results are
comparable, slightly worse especially for n = 100, while SEA gives an average minimum
cost around 120–130% higher than the optimal solution.

In addition, in order to better verify the effectiveness of the proposed algorithms,
for the 2000 problems studied, the results obtained for the initial variant were compared
with those for two other variants in which the order of the subsystems changed, being
sorted by reliability. The LP algorithm provided the same results for all 2000 problems
checked, which highlights its stability for this type of stress. This is not the case with the
two evolutionary algorithms, RELIVE and SEA, but the differences that occurred were not
statistically significant.

  
(a) (b) 

Figure 8. Comparison between algorithms performance for reliability maximization on systems with
n = 50: (a) the average efficiency for 1000 random problem instances; (b) the results relative to the
maximum efficiency found by LP considered as 100%.
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(a) (b) 

Figure 9. Comparison between algorithms performance for reliability maximization with systems
with n = 100 subsystems: (a) average efficiency; (b) results relative to LP.

  
(a) (b) 

Figure 10. Comparison between the performance of the algorithms for cost minimization with
systems of n = 50 subsystems: (a) average cost; (b) results relative to LP.
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(a) (b) 

Figure 11. Comparison between the performance of the algorithms for cost minimization with
systems of n = 100 subsystems: (a) average cost; (b) results relative to LP.

9. Discussion

In the mathematical model, we assume that the time to failure of a component follows
a negative-exponential distribution. For electronic components or electronic modules,
especially for integrated circuits, the time to failure is usually considered to have such
a distribution. This means that, for a given operating regime, the average failure rate
is constant (and not a function of time). But for mechanical elements, for example, this
assumption must be accepted with caution because of the physical wear and tear that
can occur during system operation. In this case, a Weibull distribution may be more
appropriate.

This assumption is important only for specifying the reliability of the redundant
system. Only under this assumption the reliability function for most of the redundant
structures we considered can be determined analytically, using Markov models, as pre-
sented in Section 3. For other distributions, the evaluation of subsystem reliability is more
complicated and can be done in other ways, e.g., by using a Monte Carlo simulation.

The optimization methods used in this study are not fundamentally affected by this
simplifying assumption. The only change concerns the calculation of the objective function,
which otherwise should be done in a different way. Thus, we appreciate that the compara-
tive performance results of the three optimization methods presented in this article are not
significantly affected by this simplifying assumption.

The systems discussed in this paper are all series-aligned subsystems. Our study does
not cover cases where a system component may have a redundant structure composed of
elements other than the base component, as shown in Figure 12.

Figure 12. Alternative redundant subsystem structure.

In this situation, the optimization problem must be formulated differently, and it
involves the inclusion of more types of components than those that form the non-redundant
system.

Such cases are encountered in complex systems, e.g., with a network structure. Unfor-
tunately, the conclusions regarding the performance of the three optimization algorithms
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compared in this paper cannot be extended to these more general cases. There is no
evidence to support this.

Another point of discussion is needed about the number of generations used by the two
evolutionary algorithms. The specific number of generations used in the study are powers
of ten so that the reader can have an intuitive view about the results. A fairer comparison
would need to assess their performance, e.g., with the same number of objective function
evaluations, a common setting in the area of biologically-inspired optimization algorithms.
The number of function evaluations is easy to determine in case of SEA. If the population
consists of 50 chromosomes and 10,000 generations are used, then 500,000 evaluations are
needed. However, RELIVE does not have a constant population size. Additional function
evaluations are performed in the hill climbing step, although at most one of these solutions
will be actually used subsequently in the next generation, i.e., the best local improvement.
It was empirically estimated that RELIVE with 100 generations needs about 27 times more
function evaluations than SEA with 1000 generations. Thus, a comparison could be made
with SEA with about 27,000 generations. Still, from the statistical analysis presented above,
we hypothesize that the poorer results of SEA are not caused by a smaller number of
generations than required. The performance in both cases with 1000 and 10,000 generations
is quite similar. Also, the main issue is not execution time, because this is not a real-time
application, but the fact that SEA usually gets stuck into a local optimum because, e.g.,
at the “top” part of the allocation, one cannot include any more components without
exceeding the cost limit. It would require one to add one component to a subsystem and
remove one component from another subsystem in order to improve the optimization.
SEA lacks any mechanisms to do so, and such improvements can come only from “lucky”
mutations and removals of components during the chromosome repairing procedure. On
the other hand, RELIVE has an especially designed mutation for this situation, based on
exchanging a unit between a pair of genes. Because of this, we eventually chose to use the
lower number of generations, i.e., 1000 for SEA and 100 for RELIVE, because in this case
the optimization is faster and it seems to show the hierarchy of the used methods quite
well.

Since evolutionary algorithms are stochastic, more runs may be necessary to obtain a
good solution. In the case studies presented above, we used the following methodology:

• For the results presented in Figures 8–11, each algorithm was run a single time for
a problem and 2000 problems were used, i.e., 1000 problems for n = 50 and another
1000 problems for n = 100. Due to the high number of problems, the results are
statistically significant to assess the performance of the algorithms. These figures show
this statistical analysis in terms of mean and standard deviation;

• For the results presented in Tables 6–9 and 12–15, the best out of ten runs was selected
for SEA and RELIVE, because we were interested in the best solution. The LP algorithm
was run only once.

10. Conclusions

Extensive experimental studies on the allocation of redundancy in large binary systems
with a hybrid structure, which include a number of optimization problems of the order
of thousands, highlight the difficulty of these optimization problems as the number of
subsystems increases. Three algorithms were used for optimization: zero-one integer
programming, a classic evolutionary algorithm and an original evolutionary algorithm,
RELIVE, which combines global search with local fine tuning and includes a number of
mutation strategies in order to escape from local optima.

The proposed algorithms are compared, but their effectiveness was also verified by
solving two optimization problems, properly correlated. Specifically, a converse problem
of minimizing cost for the reliability threshold found in the first case was also attempted as
a means to verify the optimality of the solution and when the solution was not optimal,
to attempt to improve it from either the cost or reliability perspectives, and possibly both.
Experimental results demonstrate that for large instances of the reliability maximization
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problem, zero-one integer programming yields the best results, followed by RELIVE. The
differences become apparent when the number of subsystems is large, e.g., when n = 100.

As future research, the authors intend to extend the study on the optimal allocation of
reliability in hybrid structure binary systems in several directions, as shown below.

For the optimization issues considered in this paper, the type of redundancy is pre-
determined for all subsystems, as shown in Table 4, Table 5, Table 10 or Table 11. But for
certain reliability models this condition may be relaxed. For example, if a redundancy
technique based on majority logic is appropriate for a subsystem, then one of the following
solutions can be adopted: TMR, TMR/Simplex or 5MR, with or without cold-maintained
spare components. The same is true for dynamic redundancy, where active redundancy
or hybrid standby redundancy with a hot component and other passive spare ones can be
adopted. Therefore, the optimization process can be extended to find an optimal solution
that refers to both the type of redundancy and the number of components for each of the n
subsystems.

On the other hand, some redundant structures often adopt the technical solution in
which the components are functionally compatible but different in design to avoid common
errors. For example, this idea applies to majority logic structures (TMR, TMR/Simplex and
5MR) or duplex structure. A future direction of research also refers to these redundant
subsystems with heterogeneous structure.

In reliability engineering the problem of system reliability maximization under two or
more constraints often arises; for example, under cost constraints, but also under weight
and/or volume constraints. We intend to extend the research to also cover this important
problem of maximizing system reliability under two or more constraints.

We also plan to study the transformation of the problem into a multi-objective opti-
mization problem, e.g., maximize the system’s reliability while minimizing the associated
cost. The solutions to be considered would be the solutions around the imposed threshold
for cost or reliability. Previously we saw that an increase in the cost limit of only 5% can lead
to a larger increase in system reliability. By using a multi-objective optimization approach,
such analysis could be more principled.

Another direction of investigation would be to assess the effect of integer-based
representation for the evolutionary algorithms instead of the real-valued representation
used so far.
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Nomenclature

Reliability
The probability that a component or a system works successfully within
a given period of time

Binary system A system in which each component can be either operational or failed

Series-redundant model
A reliability model that reflects a redundant system composed of
subsystems consisting of basic components or redundant structures, and
possibly other spare components
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Notations

n
The number of components in the non-redundant system or the number
of subsystems in the redundant system, as appropriate

T A certain period of time for which reliability is assessed

ri
The reliability of a component of type i, i ∈ {1, . . . , n}, for a given
period of time T

ci The cost of a component of type i
λi The failure rate for a component of type i
ki The number of components that make up the redundant subsystem i
Ri The reliability of subsystem i (subsystem with redundant structure)
Ci The cost of subsystem i
tri The type of redundancy for subsystem i

α, 0 < α < 1
The coefficient of reduction of the failure rate for a warm-maintained
reserve compared to the failure rate of the component in operation

β, β > 1
The reduction factor used to express the failure rate of the decision and
control logic of a TMR structure based on the failure rate of the basic
components

γ, γ > 1
The reduction factor used to express the failure rate of the decision and
control logic of a 5MR structure based on the failure rate of the basic
components

δ, δ > 1
The reduction factor used to express the failure rate of the decision,
control and reconfiguration logic of a TMR/Simplex or a TMR/Duplex
structure based on the failure rate of the basic components

Rns
The reliability of the non-redundant system (system with series
reliability model)

Cns The cost of the non-redundant system

Rrs
The reliability of the redundant system (system with series-redundant
reliability model)

Rrs
The reliability of the redundant system (system with series-redundant
reliability model)

Crs The cost of the redundant system
R∗ The required level of reliability of the system
C∗ The maximum allowable cost of the system
CO A component in operation (active component)
WSC A warm-maintained spare component
CSC A cold-maintained spare component
Note: For notations ri to tri, when the subsystem is not indicated the index is not necessary,
therefore the notations used are r, c, λ and so on.
Assumptions

• For any redundant subsystem, the spare components are considered identical to the basic
one/ones.

• For the components in operating mode or for the spare components maintained in warm
conditions, the time to failure has a negative-exponential distribution.

• The events of failure that may affect the components of the system are stochastically
independent.
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Abstract: With the popularity of posting memes on social platforms, the severe negative impact of
hateful memes is growing. As existing detection models have lower detection accuracy than humans,
hateful memes detection is still a challenge to statistical learning and artificial intelligence. This
paper proposed a multi-task learning method consisting of a primary multimodal task and two
unimodal auxiliary tasks to address this issue. We introduced a self-supervised generation strategy
in auxiliary tasks to generate unimodal auxiliary labels automatically. Meanwhile, we used BERT
and RESNET as the backbone for text and image classification, respectively, and then fusion them
with a late fusion method. In the training phase, the backward guidance technique and the adaptive
weight adjustment strategy were used to capture the consistency and variability between different
modalities, numerically improving the hateful memes detection accuracy and the generalization and
robustness of the model. The experiment conducted on the Facebook AI multimodal hateful memes
dataset shows that the prediction accuracy of our model outperformed the comparing models.

Keywords: hateful memes; deep learning; multimodal data; multi-task learning; self-supervised

MSC: 68T07

1. Introduction

Memes are an element of a cultural or behavioral system transmitted from one person
to another through imitation or other non-genetic behaviors. Memes come in various types
and formats, including but not limited to images, videos, or posts, which are increasingly
influential on social platforms. The vast amount of memes on the Internet constitutes an eye-
catching problem. Memes not only express people’s natural emotions but may also cause
emotional damage to someone. The most popular form of memes is images containing
text, which is the type we are interested in. Usually, an ordinary sentence or a picture does
not have any special emotional meaning, but when combined, they become meaningful.
Hateful memes thus emerge and are becoming an increasingly serious problem in modern
society. People with malignant motives use such memes, with misleading content, hateful
speech, and harmful images, to attack vulnerable people or target people.

Nowadays, social giants such as Facebook, Twitter, and Weibo, are engaged in identi-
fying hateful memes and removing thousands of hateful memes to protect users. However,
it is impossible to have humans detect every meme on a massive Internet scale manually.
Researchers have explored statistical tools [1,2] and machine learning techniques [3,4] with
optimization algorithms [5] to address this issue. The probability upper bounds of the
generalization errors of simple models are well studied [6,7], but statisticians are still strug-
gling to explain the generalization ability of large artificial neural networks [8]. Meanwhile,
machines cannot understand contextual information like humans, and detecting hateful
memes is still a challenging study for statistical learning and artificial intelligence. Owing to
the development of sentiment analysis (hate is one emotion) and artificial intelligence, we

Mathematics 2022, 10, 4525. https://doi.org/10.3390/math10234525 https://www.mdpi.com/journal/mathematics94



Mathematics 2022, 10, 4525

can build our research on the work of previous researchers [9–12]. However, the available
sentiment analysis methods have limited usefulness in practice because hate is not always
as easy to identify as other emotions, and they do not explain generalization ability statis-
tically. Most early studies for hateful memes focused on unimodal hateful text detection,
classifying hateful, abusive, or offensive texts against individuals or groups according
to gender, nationality, or sexual orientation [13,14]. These studies for hate detection are
enlightening, but they cannot handle hateful memes detection, which combines visual and
textual elements. In addition, some hateful attacks against specific groups are very subtle.
To further improve the accuracy of detecting hateful memes, we have to extend them to
multimodal learning.

Baltrušaitis et al. [15] figured that difficulties and challenges in multimodal learning
are representation, translation, alignment, fusion, and co-learning, while representation
learning may be the most critical impact on multimodal learning. According to the differ-
ence of guidance in representation learning, the existing methods are divided into forward
guidance and backward guidance. The forward guidance projects unimodal represen-
tations together into a shared subspace [16] with the interaction module for obtaining
information on different modalities [10,17–19]. However, the uniformity of multimodal
labels makes it difficult to get information in a single modality. Backward guidance adds
extra regularization terms to the optimization objectives [20] to guide feature learning by
gradient descent and thus learn the variability across modalities [21,22], and we prefer
this method.

Multi-task Learning is a learning paradigm in machine learning that learns multi-
ple related tasks jointly and leverages useful information contained in multiple related
tasks [23]. It can learn multiple related tasks together simultaneously and maximize the use
of information from each modal in multimodal data. Therefore, it can be further used to
enhance the accuracy of hateful meme detection. Usually, multi-task learning is designed
with a primary classification task and some auxiliary tasks to enhance the feature learning
capability. Nevertheless, this leads to a problem coming with a requirement of independent
labels for auxiliary tasks, which is time-consuming and labor-intensive [22] by manual
labeling. Yu et al. [24] designed a self-supervised unimodal label generation module to
overcome this problem. This method can automatically get appropriate labels without
requiring access to any further data.

Thus, we proposed a new idea to detect hateful memes using a multi-task learning
method to balance the unilateral information exacting from different modalities separately
and the fuzzy information from the multimodal without introducing further data or man-
ual labels and reduce the generalization errors. We conducted a primary task to learn
multimodal features and classify hateful memes. Meanwhile, two auxiliary tasks were used
in the training phase to learn unimodal features and classify the hate of text and images.
Moreover, we used two self-supervised label generation modules to generate unimodal
labels in auxiliary tasks automatically. Finally, we applied our method to the Facebook
AI hateful memes data sets [25] and achieved competitive results. In contrast with the
previous works, the main contributions of this work are as follows:

• A new artificial intelligence model is proposed for hateful memes detection. It effec-
tively improved the hateful memes detection accuracy in that our model outperformed
the comparing models.

• The multi-task strategy and adaptive weight adjustment strategy used in our model
captured the consistency and variability between different modalities and numerically
improved the generalization and robustness of the model.

• Our auxiliary tasks using self-supervised unimodal auxiliary label generation mod-
ule enhanced the feature learning capability without human-defined labels or addi-
tional data.

The remaining part of this paper is organized as follows. Section 2 introduces related
works. Section 3 shows our hateful memes detection model’s framework and algorithm.
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Next, experiments with real data and their results are presented in Section 4. Section 5
summarizes this work.

2. Related Works

Hateful memes detection is a binary classification task from multimodal data contain-
ing text and images. As detection accuracy is still a big challenge for this task, we want to
introduce a multi-task learning strategy into our model to address it. So we review some
text, image, and multimodal classification models and bring ideas from them together with
multi-task learning.

2.1. Datasets

As research on multimodal sentiment analysis constantly evolves, many multimodal
sentiment analysis datasets have emerged. The CMU-MOSEI dataset [26] is one of the
enormous trimodal sentiment analysis datasets and has both sentiment and emotion labels.
It contains seven categories of sentiment, from negative to positive, and six categories of
emotion, including anger, happiness, sadness, surprise, fear, and disgust. This CMU-MOSEI
dataset has been extensively studied in the literature.

However, hate is a special emotion, and the expression of hateful emotion is subtle
and not easy to detect, requiring more appropriate reasoning. A growing number of
researchers are focusing on the study of hate analysis, especially for multimodal hateful
memes detection. MMHS150K [27] is another multimodal hateful speech dataset collected
and annotated from Twitter, consisting of images and text. Facebook announced the launch
of a competition called the “Hateful Memes Challenge” with over 10,000 “hateful memes,”
which will be used as a data set [25]. It is also a multimodal dataset consisting of images
and text, but it uses methods such as “benign confounders” to make its hateful samples
challenging to distinguish by unimodal methods.

2.2. Textual Model

Much of the early research on hate detection was related to hateful text detection.
Warner et al. [28] developed a support vector machine (SVM) classifier to detect offensive
languages. The classifier can distinguish the features extracted from the text and classify
whether a given text is malicious. At the same time, Djuric et al. [29] proposed using
N-gram features to classify whether the text is offensive. As hateful text detection is a
binary classification problem, many deep learning models are also available. TextCNN [30]
has been proven to have good performance early, and a variety of more advanced models
related to the task [31–36] have emerged in recent years. Among them, the best-performing
model is BERT (Bidirectional Encoder Representation from Transformers) [37]. It is a pre-
trained model proposed by Google AI Research to learn bidirectional representations with
the help of Transformer [38]. By using an attention mechanism with Transformer, BERT
can process entire sequences in parallel to collect information about the context of a word
and encode it in a rich vector to represent it. The commonly used BERT has two versions,
BERTBASE (L = 12, H = 768, A = 12, Total Parameters = 110 M) and BERTLARGE (L = 24,
H = 1024, A = 16, Total Parameters = 340 M), where L is the number of layers (Transformer
blocks), H is the hidden size, and A is the number of self-attention heads. The pre-trained
BERT is a highly generalizable model that no longer needs to be trained with large datasets
in a specific task, saving time and efficiency. Figure 1 shows the architecture of BERT.
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Figure 1. The structure of BERT using the structure of bidirectional transformer [37].

2.3. Visual Model

Another important part of memes is the image. Among many developed image
classification models, they have their unique characteristics, and the research with the
most significant progress is on neural networks for extracting image information. Early
researchers focused on the analysis of convolutional neural networks, such as VGG (Visual
Geometry Group) [39] and RESNET (Residual Neural Network) [40]. VGG is a large
model with a few fully connected 3 × 3 convolution kernels, and it is famous for regularly
designed, simple, and stackable convolution blocks. Compared with VGG and other
neural networks, the most significant advantage of RESNET is that it introduces an identity
mapping to construct a Residual Unit to calculate the residuals and solve the degradation
problem generated by the high number of layers. RESNET has different versions depending
on the number of convolution layer blocks, and five standard versions are RESNET18,
RESNET34, RESNET50, RESNET101, and RESNET152. Figure 2 shows the architecture of
RESNET18 as an example. Recently, many studies proved that the dependence on CNNs
is unnecessary, and the Transformer model based on attention strategy can also perform
well [41]. Currently, both of them are extensively applied to image classification tasks.

Figure 2. The structure of RESNET18 for ImagNet [40].

2.4. Multimodal Model

As hateful memes detection is a multimodal classification task, fusion techniques and
attention strategies for multimodal models can be used. Many late fusion models have
outstanding performance, such as the concatenation model [42] and the multiplicative
combining model [43]. This concatenation fusion model [42] fused image features based
on the VGG16 with text features based on BERT to train a multi-Layer perception network
for hate detection. This multiplicative combining model [43] may automatically focus on
information from more reliable modalities while reducing the emphasis on the less reliable
modalities during the training process. Later more advanced multimodal models [44–50]
were studied and designed. They extracted visual-textual relationships by introducing an
attention strategy. These models can be divided into two main categories, single-stream
models and dual-stream models. In the single-stream model, the language information and

97



Mathematics 2022, 10, 4525

the visual information were fused at the beginning and fed directly into the encoder together.
A typical single-stream model is VisualBERT [49], which inputs both text and images into
the model, then aligns and fuses the text and image information through Transformer’s
self-attention. In the dual-stream model, the language and vision information first passed
through two separate encoder modules, and then the different modal information was fused
through the cross transformer, for example, the ViLBERT [50] model. It is a representative
dual-stream model, which does not directly fuse linguistic and image information at the
beginning. Instead, the image and text go through two different streams into the co-
attention transformer layer first. Then the two streams pass through multiple layers of
intersecting co-transformer and transformer layers. This allows the corresponding visual
information to be embedded when generating text features by attention and vice versa.

2.5. Multi-Task Learning

Multi-task learning is prevalent in multimodal sentiment analysis [22,51–53], but few
people have applied multi-task learning to hateful meme detection. As multi-task learning
can improve performance on a primary task by using information from auxiliary tasks [23],
we want to bring this idea to hateful memes detection. We can learn similarity information
from multimodal tasks and differentiation information from unimodal tasks to improve
classification accuracy. There are two main challenges to multi-task learning in the training
phase compared to single-task learning. The first is how to share network parameters,
and the leading solutions are soft parameter sharing and hard parameter sharing methods.
Hard parameter sharing is achieved by sharing the hidden layer among all tasks while
keeping a few task-specific output layers. For soft parameter sharing, each task has a
separate model with its exclusive parameters. The distance between the model parameters
is used as a regularization term to ensure that the parameters are as similar as possible.
Another challenge is to solve the problem of inconsistent convergence speed and training
importance of different tasks. We can refer to some optimization methods to solve this
problem, such as Gradnorm [54]. So, we introduced two unimodal auxiliary tasks to help
the primary task improve its accuracy in the hateful memes detection task. Meanwhile, we
used the hard parameter sharing method and an adaptive weight adjustment strategy to
solve the two challenges we faced.

3. Method

This paper aims to design a model that can balance the unilateral information exacting
from different modalities separately and the fuzzy information from the multimodal with-
out introducing further data or manual labels and reduce generalization errors. Nowadays,
modern methods for predicting and understanding data are rooted in both statistical and
computational thinking, and algorithmics are put on equal footing with intuition, proper-
ties, and the abstract arguments behind them [55]. So we proposed a new hateful memes
detection method combing statistic theory with modern neural nets and optimization
algorithms. And we will describe it detailly in this section.

First, we introduced the setup of our model to illustrate the inputs and outputs. Next,
we constructed the multi-task learning model with a primary multimodal task and two
unimodal auxiliary tasks to capture the consistency and variability between different
modalities. As we only have manually labeled labels (ym) in the dataset for the primary
task, we adopt a self-supervised method [24] to generate the unimodal labels (yu). And
then, we designed an adaptive weight in our objective function to optimize this model and
reduce the generalization errors. In the following, we call multimodal labels m-labels and
unimodal labels u-labels, where u = t, v.

3.1. Setup

Hateful memes detection is a binary classification task that uses text and image signals
to judge whether a meme is hateful. Our designed model takes It and Iv as inputs after
data processing and the hateful intensity ŷm ∈ R as outputs. In addition to the primary
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multimodal classification output ŷm, two unimodal auxiliary task outputs ŷt and ŷv are
also set to improve the accuracy in the training phase. Obviously, ŷm is the final result we
are interested in.

3.2. Architecture

We designed a multi-task learning model that can generate auxiliary labels in a self-
supervised way to detect multimodal hateful memes, as shown in Figure 3. The network
consists of a primary multimodal task using BERT and RESNET to extract features and
two unimodal auxiliary tasks that share the bottom feature learning network in a hard
parameter sharing method.

Figure 3. The architecture of our method. ym is the labeled multimodal label in the dataset, and yt, yv

are the auxiliary labels generated by the self-supervised label generation module for the unimodal
text and image auxiliary tasks, respectively. ŷm is the predicted output of the primary multimodal
task, ŷt, ŷv are the predicted outputs of the unimodal text and image auxiliary tasks, respectively.

The primary task part is a multimodal classification net, which consists of three steps,
the extraction of features, the fusion of features, and the output of classification. Pre-trained
models have performed very well in recent years, so we used two pre-trained models as
the backbone for two unimodal tasks in the hateful memes detection task.

For text processing, we use the pre-trained twelve-layers BERT [37] to extract text
feature Ft.

Ft = BERT
(

It; θbert
t

)
,

where It is the text input, θbert
t is all parameters of the BERT we used.

For image processing, we use the pre-trained RESNET101 [40] to extract image fea-
ture Fv.

Fv = RESNET
(

Iv; θresnet
v

)
,

where Iv is the image input, θresnet
v is all parameters of the RESNET we used.

Then, the text and image representations are concatenated as Fm = [Ft; Fv] and pro-
jected onto a low-dimensional space.

F∗m = σ(Wm
1 Fm + bm

1 ),

where Wm
1 and bm

1 are the parameters of the first linear layer in the primary multimodal
task, σ is the activation function.

After that, we use the representation of fusion obtained from the linear layer and
activation function to detect whether the meme is hateful.
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ŷm = Wm
2 F∗m + bm

2 ,

where W2 ∈ Rdm×1, and Wm
2 and bm

2 are the parameters of the second linear layer in the
multimodal primary task.

The auxiliary tasks are two unimodal classification tasks that detect the presence of
hateful sentiment in text and images, respectively. We project the unimodal features into
a new feature space, which reduces the impact of the dimensional difference between
different modalities. Moreover, the text and image auxiliary classification tasks share modal
features with the primary multimodal classification task.

F∗u = σ(Wu
1 Fu + bu

1 ),

where u ∈ {t, v}, Wu
1 and bu

1 are parameters of the first linear layer in the unimodal
auxiliary task.

Then, the results of unimodal auxiliary tasks are obtained by

ŷu = Wu
2 F∗u + bu

2 ,

where u ∈ {t, v}, Wu
2 and bu

2 are parameters of the second linear layer in the unimodal
auxiliary task.

3.3. Unimodal Label Generation Module

While we need corresponding labels to guide the training in the two unimodal auxil-
iary tasks, and manual labeling is too costly, we adopt a strategy of self-supervised label
generation to obtain u-labels. We call this module the “Unimodal Label Generation Module”
(ULGM), that is

yu = ULGM(ym, F∗m, F∗u ),

where u ∈ {t, v}.
The ULGM generates labels for unimodal auxiliary tasks based on multimodal labels

and the feature of each modality. The unimodal label generation module does not have
any parameters, which makes it a stand-alone module without any impact on the multi-
task network. Based on the fact that unimodal labels are closely related to multimodal
labels, this module calculates the offset value based on the distance between each modal
representation to the center of the hateful class and the non-hateful class.

Here, we calculate the relative distance rather than absolute distance values, which
overcomes the error introduced by different modal features in different feature spaces.
First, we keep the center of the hateful class (Ch

k ) and the center of the not-hateful class (Cn
k )

unchanged for different modal features in the training phase. And the hateful class center
and the not-hateful class center can be defined as:

Ch
k =

∑N
j=1 I

(
ykj > c

)
· Fg

kj

∑N
j=1 I

(
ykj > c

) ,

Cn
k =

∑N
j=1 I

(
ykj < c

)
· Fg

kj

∑N
j=1 I

(
ykj < c

) , (1)

where k ∈ {m, t, v}, N is the sample size of the training set. I(·) is an indicator function
and Fg

kj is the global representation of the j-th sample in modality k, and c is a threshold
value, which we chose it as 0.5 in our experiment.
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Then we use the L2 norm to calculate the distance between features and the hateful/not-
hateful class centers, that is

Dh
k =

∥∥∥F∗k − Ch
k

∥∥∥2

2√
dk

,

Dn
k =

∥∥F∗k − Cn
k

∥∥2
2√

dk
, (2)

where k ∈ {m, t, v}, dk is a scaling factor used to represent the dimensions.
After doing the above calculations, we can calculate the relative distance αk between

the modality representation and the hateful/not-hateful center with

αk =
Dn

k − Dh
k

Dh
k + ε

, (3)

where k ∈ {m, t, v}, ε is a very small number to avoid zero exception.
Obviously, αk is positively related to yk, then the ratio relationship between yu and ym

can be summarised as:
yu

ym
∝

ŷu

ŷm
∝

αu

αm
⇒ yu =

αu · ym

αm
. (4)

To avoid the “zero value problem”, the difference relationship between ys and ym
should also be considered, which means:

(yu − ym) ∝ (ŷu − ŷm) ∝ (αu − αm)⇒ yu = ym + αu − αm. (5)

By equal-weight summation Equations (4) and (5), we obtain the unimodal supervi-
sions as follows.

yu =
ym · αu

2αm
+

ym + αu − αm

2

= ym +
αu − αm

2
· ym + αm

αm

= ym + δum,

(6)

where u ∈ {t, v}, δum is the offset value of the unimodal supervision values to the given
multimodal labels.

3.4. Optimization Objectives

In the case of a binary classification task, since there are only positive and negative
cases, and the probability sum of both is 1, it is not necessary to predict a vector, but
only a probability. We choose the cross-entropy loss of binary classification as the base
optimization objective, and the loss function is defined in a simplified way as follows.

lossk = −[yk · log(ŷk) + (1− yk) · log(1− ŷk)], (7)

where k ∈ {m, t, v}.
As the hateful memes data are complicated with two modalities, we designed multi-

task learning to make the statistical inference. When we optimize the model, the extracted
information may be fuzzy if we pay too much attention to the multimodal part. However,
if we pay too much attention to the unimodal part, the extracted information may be
much unilateral and weaken our primary task. In addition, the gradient magnitudes of the
backpropagation of several tasks’ losses may differ. When backpropagating to the shared
bottom part, the task with a small gradient magnitude has less weight to update the model
parameters, making the shared bottom not learn enough for that task. Of course, we can
simply introduce static weights to balance the gradients for different tasks. However, this
does not work well. If we assigned a fixed weight for a task with a large gradient magnitude

101



Mathematics 2022, 10, 4525

at the beginning of training, this small weight would keep limiting this task by the end
of the training, making this task not learned enough and enhancing the generalization
errors [56,57]. Meanwhile, information may be with different intensities among different
samples. Suppose the difference between the multimodal label y(i)m and the generated
unimodal label ŷ(i)u is large. In that case, the results from different modalities are diverging,
and we should impose a larger weight on this sample to learn more information. Therefore,
a data-driving weight should be imposed on different samples so that the objective function
can be adaptively adjusted to balance the learning process.

Thus, we use the absolute difference between the generated unimodal label and
the existing multimodal label as a measure for weight adjustment, that is, |y(i)u − ym|.
As we want to make more significant adjustments for samples with large distances and
slight adjustments for samples with small distances, an ‘S’-type function ∈ (0, 1) may
be preferred, such as tanh(·), eliot(·), arctan(·) and logit(·). We chose tanh(·) here to get
more adjustment for the samples with large distances with rapid change, and the weight
of ith sample for auxiliary task u can be expressed as ωi

u = tanh(|y(i)u − ym|). Then the
optimization objective is

L =
1
N

N

∑
j

(
lossj

m +
{t,v}
∑
u

ω
j
u ∗ lossj

u

)
, (8)

where N is the sample size, lossj
m is the binary cross-entropy loss between multimodal

labels and multimodal predictions of the j-th sample, lossj
u is the binary cross-entropy loss

between the self-supervised generated unimodal labels and the unimodal predictions of
the j-th sample.

While the modal representations are changing dynamically, so the generated auxiliary
labels are unstable. In order to mitigate the influence of this disadvantage, a momentum
update strategy is introduced.

y(i)u =

{
ym i = 1
i−1
i+1 y(i−1)

s + 2
i+1 yi

s i > 1
, (9)

where u ∈ {t, v}, i means the i-th epoch [58].
Finally, supervised by the m-labels in the dataset and the u-labels generated by the

self-supervised module, the final result ŷm for detecting whether each meme is hateful or
not can be obtained. Overall, the entire algorithm (Algorithm 1) of our model is defined
as follows:
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Algorithm 1: The algorithm of our model in training stage [24]
Input: m-labels ym and unimodal inputs Iu, where u ∈ {t, v}
Output: predicted u-labels ŷu and predicted m-labels ŷm

1 Initialize all the parameters θ of the model ;

2 Initialize y(1)u = y(1)m , where u ∈ {t, v} ;
3 Initialize global representations Fg

k = 0, where k ∈ {m, t, v} ;
4 for n ∈ [1, end] do

5 for batch in TrainDataLoader do

6 Compute modality represenations of each batch F∗k , where k ∈ {m, t, v} ;
7 Compute loss L using Equation (8) ;
8 Compute parameters gradient ∂L

∂θ ;
9 Update parameters of model θ = θ − η ∂L

∂θ , where η is the learning rate ;

10 Compute the predicted labels ŷ(n)k , where k ∈ {m, t, v} ;
11 if n �= 1 then

12 Compute αk using Equations (1) ∼ (3), where k ∈ {m, t, v} ;
13 Compute yu using Equation (6), where u ∈ {t, v} ;

14 Update y(n)u using Equation (9), where u ∈ {t, v} ;
15 end

16 Update Fg
k using F∗k , where k ∈ {m, t, v} ;

17 end

18 end

19 return

4. Experiments

4.1. Dataset

To validate the performance of our model, we choose the hateful memes dataset in the
“Hateful Memes Challenge” [25] published by Facebook AI as our experimental dataset. It
is a dataset of over 10,000 strictly labeled memes, where the memes are manually labeled
as hate or not with a strict definition. The researchers carefully designed each meme
and confounded the hateful memes with the benign memes by methods such as “benign
confounders”, as shown in Figure 4. These subtle designs make each meme challenging to
detect accurately by unimodal detection methods and must be reasoned about both text
and image to obtain accurate detection results.

Figure 4. Example pictures in the experimental dataset. The memes in the first column are all hateful
memes, the second column replaces only their images to make them not hateful, and the third column
replaces only their text to make them not hateful.
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4.2. Compared Models

We compared our model with different advanced unimodal, multimodal models
described in [59]. All models can be classified into two categories, unimodal models and
multimodal models.

Unimodal models include the image and text classification models, while image
classification models include Image-Grid and Image-Region regarding different features.
Features of Image-Grid are ResNet-152 [40] convolutional features and are based on res-5c
with average pooling. Features of Image-Region are from the fc6 layer of Faster-RCNN [60]
and are based on ResNeXt-152. The text classification model is the Twelve-layer BERT.

Multimodal models include Late Fusion, Concat BERT, MMBT-Grid, MMBT-Region,
ViLBERT, and VisualBERT. Late Fusion is a model that fused the mean of outputs of the
unimodal text model BERT and the unimodal image model ResNet-152 through simple
fusion methods. Concat BERT is a model that concatenates the unimodal image model
ResNet-152 feature with the unimodal text model BERT. MMBT-Grid and MMBT-Region are
both supervised multimodal transformers models, the former using Image-Grid features
and the latter using Image-Region features. VisualBERT [49] is a single-stream model
in which the text and image features are fused at the beginning of the model. ViLBERT
and VisualBERT can be pretrained on unimodal and multimodal datasets. ViLBERT [50]
model is a dual-stream model, where text and image features are first passed through
two separate encoding modules. Then the different modal information is fused through
a co-attention mechanism. We use VisualBERT and ViLBERT with unimodal pretraining,
Visualbert COCO is VisualBERT trained on multimodal dataset COCO [61] and ViLBERT
CC is ViLBERT trained on multimodal dataset Conceptual Captions [62].

4.3. Results

We compared the results of our model with all kinds of unimodal and multimodal
models on the hateful memes dataset. The activation function in our model is selected
as ReLU, and the threshold value to calculate the hateful/not-hatful class center is set as
0.5. The results of compared models on the dataset were from [59]. For the unimodal
models, it can be found that their performance is generally less satisfactory. In addition,
the unimodal text model outperformed the unimodal image model, reflecting the fact
that the text features may contain more information. For the multimodal models, they
outperformed the unimodal models. We also found that the fusion method affects their
performance, while models using early fusion methods outperformed those using later
fusion methods. For the multimodal pretrained process, there was little difference between
the multimodal pretrained model and the unimodal pretrained model.

In contrast to the models mentioned above, our model used a late fusion method and
two unimodal pre-training models. Although the late fusion method generally performed
worse than the early fusion method, our model outperformed those early fusion models.
Thanks to the additional auxiliary learning, which validated the idea that adding multi-task
learning to hateful meme detection can improve the accuracy of the task. Moreover, it may
help to fuse different unimodal pre-training models using our method in future studies for
similar tasks. Prediction accuracy results of these models are presented in Table 1.
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Table 1. The prediction accuracy of different models on the “Hateful Memes Challenge” data set.

Type Model Validation Test

Unimodal
Image-Grid 52.73% 52.00%

Image-Region 52.66% 52.13%
Text BERT 58.26% 59.20%

Multimodal

Late Fusion 61.53% 59.66%
Concat BERT 58.60% 59.13%
MMBT-Grid 58.20% 60.06%

MMBT-Region 58.73% 60.23%
ViLBERT 62.20% 62.30%

Visual BERT 62.10% 63.20%
ViLBERT CC 61.40% 61.10%

Visual BERT COCO 65.06% 64.73%

Our model 65.92% 66.30%
The results of compared models on the dataset are from [59]. We show the best performance results
of our model on Accuracy.

4.4. Ablation Study

We added a self-supervised multi-task learning of generating auxiliary labels to the
task of hateful memes detection, which did greatly improve its accuracy. However, we
wanted to further investigate the effect of each unimodal auxiliary learning on the overall
model. Therefore, we set up this experiment to test the model by adding each unimodal
auxiliary task separately and comparing the results in Table 2.

Table 2. The prediction accuracy of the multi-task learning models with the addition of different
unimodal auxiliary tasks.

Model Validation Test

M 61.92% 63.40%
M,TE 62.67% 63.10%
M,VE 62.05% 62.24%
M,T 62.83% 63.45%
M,V 62.33% 62.60%

M,TE,VE 63.00% 64.65%
M,T,V 65.92% 66.30%

M is the model with the primary task of a multimodal classification only; M, TE is the model with a primary task
of multimodal classification and an auxiliary task of text classification using equal weights with ω

j
u = 1; M, VE is

the model with a primary task of multimodal classification and an auxiliary task of image classification using
equal weights with ω

j
u = 1; M, T is the model with a primary task of multimodal classification and an auxiliary

task of text classification; M, V is the model with a primary task of multimodal classification and an auxiliary
task of image classification; M, TE, VE is the model with a primary task of multimodal classification and two
auxiliary tasks including text and image classification using equal weights with ω

j
u = 1; M, T, V is the model with

a primary task of multimodal classification and two auxiliary tasks including text and image classification.

These results indicated that the accuracy of the multi-task model only with the uni-
modal textual auxiliary or only with the unimodal visual auxiliary task is very similar in
hateful meme detection. Furthermore, both the results were also very close compared to
the multimodal task, which showed that the accuracy of detecting hateful memes could
hardly be improved by adding a single unimodal auxiliary task alone. In contrast, the
multi-task learning model was greatly enhanced with the addition of a unimodal textual
auxiliary task and a unimodal visual auxiliary task. Moreover, all the cases optimized
using equal weights with ω

j
u = 1 performed worse than the same model using the adaptive

weight adjustment strategy. In conclusion, the multi-task learning and the adaptive weight
adjustment strategy helped improve the testing accuracy and reduce the generation errors.

105



Mathematics 2022, 10, 4525

5. Conclusions

Our research aims to improve the accuracy and reduce generalization errors of detect-
ing hateful memes, which are widely available on the Internet and have severe negative
impacts. For this purpose, we selected a multimodal dataset of hateful memes published
by Facebook AI as our experimental dataset. Moreover, we designed a multi-task learning
model that can generate auxiliary labels self-supervised. A text classification model BERT
and an image classification model RESNET were selected as the backbone, and a late fusion
method was used. In the multi-task learning network, we added two unimodal auxiliary
learning tasks, the textual and the visual auxiliary task, to the primary classification task.
In order to solve the problem of lacking labels for the unimodal auxiliary tasks and the
high cost of manual labeling, we chose a strategy of self-supervised label generation for the
auxiliary tasks. In the phrase of optimization, we added a data-driving adaptive weight
adjustment strategy to balance the learning process and reduce the generalization errors.
By comparing our multi-task learning model with various advanced models for the de-
tection of hateful memes, we can find that our multi-task learning model achieved more
accurate results.

In the ablation experiments, we also found that it is difficult to improve the accuracy
of the final classification results by simply adding a single unimodal auxiliary task to the
multi-task learning network. Both the text and image auxiliary tasks should be introduced
to the model to achieve better results. In addition to the good performance of the results,
our method can easily be extended to fuse other unimodal models to solve similar problems.
Although our experiments achieved good results, there is still much room for improvement.
Our model and existing multimodal models are still far from reaching the accuracy of
humans (84.7%) for the task. We are trying to improve the accuracy of hateful meme
detection from other perspective. One is improving the adaptability of the backbone model
and the multi-task learning network. Another is improving the feature fusion methods.
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Abstract: The main idea of principal component analysis (PCA) is to transform the problem of
high-dimensional space into low-dimensional space, and obtain the output sample set after a series
of operations on the samples. However, the accuracy of the traditional principal component analysis
method in dimension reduction is not very high, and it is very sensitive to outliers. In order to
improve the robustness of image recognition to noise and the importance of geometric information
in a given data space, this paper proposes a new unsupervised feature extraction model based on
l2,p-norm PCA and manifold learning method. To improve robustness, the model method adopts
l2,p-norm to reconstruct the distance measure between the error and the original input data. When the
image is occluded, the projection direction will not significantly deviate from the expected solution
of the model, which can minimize the reconstruction error of the data and improve the recognition
accuracy. To verify whether the algorithm proposed by the method is robust, the data sets used in this
experiment include ORL database, Yale database, FERET database, and PolyU palmprint database.
In the experiments of these four databases, the recognition rate of the proposed method is higher
than that of other methods when p = 0.5. Finally, the experimental results show that the method
proposed in this paper is robust and effective.

Keywords: principal component analysis; manifold learning; features extracting; l2,p-norm;
neighborhood preserving embedding

MSC: 68U10

1. Introduction

To solve the problem caused by high dimensions, researchers have summarized many
dimensionality reduction methods [1–3], including principal component analysis (PCA) [4]
that belongs to unsupervised learning and linear discriminant analysis (LDA) [5] that
belongs to supervised learning, and these two methods generally project data from high-
dimensional space to low dimensional space first. In order to solve the problem of ignoring
the structure information embedded in the pixel when converting the two-dimensional
image data into one-dimensional image vector [6], 2DPCA [7] was proposed. Inspired by
2DPCA, 2DLDA [8] and multi-directional principal component analysis (MPCA) [9] have
also been proposed one after another. These algorithms can extract more effective features
from the image itself.

In recent years, l1-norm [10] has been greatly developed, and when the image is
noisy, the recognition accuracy of the image is still high [11–15]. To further improve the
robustness of subspace learning method, lp-norm is proposed, and because of it, PCA [16]
and LDA [17] are further developed. However, the above methods do not have the purpose
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of minimizing the reconstruction error. Therefore, Ding et al. [18] proposed a l1-norm
rotation invariant algorithm of PCA objective function, which is called rotation invariant
l1-norm PCA (R1-PCA). To further improve the performance of PCA algorithm, l2,p-norm [19]
is proposed. Bi et al. [20] proposed locally invariant robust principal component analysis
(LIRPCA), which uses l2,p-norm to constrain PCA to solve the problem of underwater image
recognition [21]. Although LIRPCA solves the problem of PCA in image reconstruction to
a certain extent, it also reduces the influence of large distance as much as possible. However,
LIRPCA is difficult to capture the nonlinear structure of manifolds, and there are also some
limitations, for example, it is unable to generalize new samples, and its training time is
too long.

The above methods can only deal with the dimensionality reduction of linear data.
Therefore, in order to solve some nonlinear image data dimensionality reduction problems,
scholars have proposed many dimensionality reduction methods that can solve nonlinear
problems, and manifold learning [22] is one of them. Isometric mapping (Isomap) [23] and
laplacian eigenmaps (LE) [24], which belongs to classical manifold learning methods, can
learn some nonlinear manifold structures, but these methods lack the ability of generaliza-
tion, in other words, it means that these algorithms have weak adaptability to new sample
databases. Locally linear embedding (LLE) [25] and neighborhood preserving embedding
(NPE) [26,27] based on manifold learning [28,29] solve this problem well. As a linear
approximation of LLE, NPE has a very good effect on image dimensionality reduction
and is easy to process new image samples. A manifold regularization is used to consider
non-linearity, so kernel PCA (KPCA) [30], which is another popular extension of PCA that
considers non-linearity, is proposed.

As we all know, images will be affected by various interferences in the process of
recognition, such as occlusion, blurring, etc. First of all, in order to extract important
features of an image, this paper improves the PCA algorithm, and proposes a new principal
component analysis method called manifold regularized principal component analysis
method using l2,p-norm (l2,p-MRPCA). This method uses l2,p-norm to reconstruct the dis-
tance measurement between the error and the original input data. If the noise of the
experimental data is relatively large, there is no obvious deviation between the expected
projection direction and the desired solution of l2,p-MRPCA, so as to minimize the recon-
struction error of the data and improve the recognition accuracy. Secondly, in order to
improve the modeling performance, manifold regularization terms are used. Manifold
learning shows that observations are always collected from low dimensional manifolds
embedded in high-dimensional environment space. l2,p-MRPCA is a generalized robust
metric learning method of PCA, and this method not only has strong robustness to outliers,
but also maintains the good characteristics of PCA. Finally, the structure of l2,p-MRPCA is
relatively simple, belonging to unsupervised subspace learning algorithm, and the ability of
model learning task is high. This paper mainly contains the following three contributions:

1. A new algorithm based on PCA is proposed. The model adopts l2,p-norm as the
function measure, which is a robust model.

2. This method combines the advantages of regularization and manifold learning, and
has higher robustness and recognition effect.

3. In the non greedy iterative algorithm, the weighted covariance matrix is considered
to further reduce the reconstruction error.

The following has four sections. Section 2 mainly presents the algorithms which
are related to this paper, including PCA, R1-PCA, NPE, and LIRPCA. Section 3 mainly
presents the objective function, algorithm optimization, and algorithm flow of l2,p-MRPCA.
Section 4 analyses experimental comparisons on the ORL, Yale, FERET, and PolyU palm-
print databases. Section 5 summarizes the full text.

2. Related Work

The related work includes the definition of the normal form mentioned in the paper
and some related algorithms, such as PCA, R1-PCA, NPE and LIRPCA.
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2.1. Symbols and Definitions

Let the data set X = (x1, x2, . . . , xn) to represent a standardized training sample matrix,
which contains n samples, and each sample is an m dimensional column vector. In this
paper, l2-norm, R1-norm and l2,p-norm are adopted. The definition of l2-norm is given
as follows:

‖X‖2 =

√
n

∑
i=1
|xi|2 (1)

R1-norm is defined as:

‖X‖R1
=

n

∑
i=1

√√√√ m

∑
j=1

∣∣xij
∣∣2 (2)

l2,p-norm is defined as:

‖X‖2,p =
1
p

√√√√√ n

∑
i=1

p
2

√√√√ m

∑
j=1

∣∣xij
∣∣2 (3)

2.2. Principal Component Analysis (PCA)

PCA is a common feature extraction algorithm, which is mainly used in image recog-
nition field. Assuming that U ∈ Rm×q is a projection matrix. This method uses l2-norm as
constraint, and we can obtain the optimal projection matrix U after finding the solution of
the following optimization problem:

min
U

n

∑
i=1

∥∥∥xi −UUTxi

∥∥∥2

2
s.t. UTU = Iq (4)

where Iq is a q × q identity matrix. Through matrix tracing operation, we can convert
Equation (4) into:

max
U

n

∑
i=1

∥∥∥UUTxi

∥∥∥2

2
= max

U
tr(UTGtU) (5)

where Gt =
n
∑

i=1
xi(xi)

T is called the image covariance matrix, and the projection matrix U

of Equation (4) is composed of Gt eigenvector corresponding to the maximum eigenvalue
of q. However, because l2-norm is sensitive to noise [31], and its robustness is low, and the
iterative process is cumbersome, the traditional PCA method is relatively limited.

2.3. Rotation Invariant L1-PCA (R1-PCA)

In R1-norm, we use l2-norm to measure spatial dimension and l1-norm to calculate the
sum of different data points. R1-PCA is not sensitive to noise [15], so it is easier to process
some blurred images. Here is the specific definition of R1-PCA:

min
U

n

∑
i=1

∥∥∥xi −UUTxi

∥∥∥
R1

s.t. UTU = Iq (6)

After a series of optimization iterative algorithms, we can obtain the optimal projection
matrix U. However, R1-PCA uses l2-norm to centralize the training samples, so it can not
guarantee that the final calculated mean is optimal, so there is still room for improvement.

2.4. Neighborhood Preserving Embedding (NPE)

The idea of NPE is the same as LLE, which is to keep the local linear structure of
manifold unchanged in the process of dimensionality reduction, so as to extract useful
information from data. The local linear structure is represented by the reconstruction of the
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weight matrix, which is the coefficient matrix of the linear reconstruction of the neighbors
to the nodes in the neighborhood.

Similar to other classical manifold learning algorithms, NPE has three steps:

1. Constructing Neighborhood Graph;
2. calculating Weight Matrix;
3. and computational mapping.

In conclusion, we can obtain the objective function of NPE in low dimensional space
as follows:

min
U

n

∑
i=1

∥∥∥∥∥UTxi −
m

∑
j=1

Wij ·UTxj

∥∥∥∥∥
2

2

s.t. UTXXTU = Iq (7)

where the weight matrix Wij mentioned in Formula (7) can be defined as:

m

∑
j=1

Wij = 1, i = 1, 2, . . . , n (8)

where Wij represents the weight value of the edge from node i to node j. If there is no such
edge, the value of Wij is 0.

2.5. Locally Invariant Robust Principal Component Analysis (LIRPCA)

LIRPCA hopes to minimize the deviation between the reconstructed image and the
original image of each projection data and further enhance the robustness of the model,
so as to ensure that the extracted features can well reflect the main information of the
original data space. Therefore, LIRPCA uses l2,p-norm to constrain PCA. In order to recover
low-dimensional information from high-dimensional environment space, we hope to find
a U that ensures that Uxk and Uxj are adjacent. Based on the above objectives, LIRPCA is
specifically defined as follows:

min
U

n

∑
i=1

⎛⎝∥∥xi −UUTxi
∥∥p

2

‖xi‖p
2

+
1
2

Ψ
m

∑
j=1

∥∥∥UT(
xi − xj

)∥∥∥2

2

Wij

⎞⎠ (9)

where Ψ > 0, and Wij is a weight matrix which can be defined as:

Wij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

exp
(
−‖xi−xj‖2

2
2σ2

)
, if xi ∈ Mh

(
xj

)
,

exp
(
−‖xi−xj‖2

2
2σ2

)
, if xj ∈ Mh(xi),

0 , otherwise,

(10)

where σ > 0, and Mh
(
xj

)
is the set of k nearest data of xi, Mh(xi) is the set of k nearest data

of xj and Wij represents the i-th, and the j-th column of the matrix W.

3. Manifold Regularized PCA Method Using l2,p-norm(l2,p-MRPCA)

This chapter mainly includes the definition of l2,p-MRPCA and its algorithm optimiza-
tion process and convergence analysis.
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3.1. Motivation and Objective Function

In order to reduce the influence of large distance as a measure and minimize the
reconstruction error, combining with the LIRPCA mentioned above, we use l2,p-norm
instead of l2-norm, and propose l2,p-PCA as follows:

min
U

n

∑
i=1

∥∥xi −UUTxi
∥∥p

2

‖xi‖p
2

s.t. UTU = Iq (11)

where p is 0 < p < 2. By solving this constrained optimization problem, the optimal
projection matrix U will be obtained.

However, considering the importance of considering the internal geometric informa-
tion of data space to improve the performance of the algorithm and ensuring the rotation
invariance of the data of the algorithm, popular learning, such as NPE, can be applied to
this method. The specific formula of NPE is shown in Formula (7) mentioned above.

To sum up, combining Equations (4) and (11), we can obtain the following objective
function:

min
U

n

∑
i=1

∥∥xi −UUTxi
∥∥p

2

‖xi‖p
2

+ φ
n

∑
i=1

∥∥∥∥∥UTxi −
m

∑
j=1

Wij ·UTxj

∥∥∥∥∥
2

2

s.t. UTU = Iq (12)

where ϕ > 0.

3.2. Optimization

Formula (12) is divided into two parts:
n
∑

i=1

‖xi−UUT xi‖p
2

‖xi‖p
2

and
n
∑

i=1

∥∥∥∥∥UTxi −
m
∑

j=1
Wij ·UTxj

∥∥∥∥∥
2

2

.

First, we simplify the
n
∑

i=1

‖xi−UUT xi‖p
2

‖xi‖p
2

part.

n
∑

i=1

‖xi−UUT xi‖p
2

‖xi‖p
2

=
n
∑

i=1

‖xi−UUT xi‖2
2‖xi−UUT xi‖p−2

2
‖xi‖p

2

=
n
∑

i=1
tr

[(
xi −UUTxi

)T(
xi −UUTxi

)]
qi

=
n
∑

i=1
tr

[(
(xi)

T − (xi)
TUUT

)(
xi −UUTxi

)]
qi

=
n
∑

i=1
tr

[
(xi)

Txi − (xi)
TUUTxi

]
qi

= tr
(
XDXT)

− tr
(
UTXDXTU

)

(13)

where qi =
‖xi−UUT xi‖p−2

2
‖xi‖p

2
and D is a diagonal matrix whose elements on diagonal are qi.

Then, we simplify the
n
∑

i=1

∥∥∥∥∥UTxi −
m
∑

j=1
Wij ·UTxj

∥∥∥∥∥
2

2

part.

n
∑

i=1

∥∥∥∥∥UTxi −
m
∑

j=1
Wij ·UTxj

∥∥∥∥∥
2

2

=
n
∑

i=1

(
UTxi −

m
∑

j=1
Wij ·UTxj

)T

·
(

UTxi −
m
∑

j=1
Wij ·UTxj

)
= tr

(
UTX(I −W)T(I −W)XTU

)
= tr

(
UTXMXTU

)
(14)
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where I is a q× q identity matrix.
Finally, Equations (13) and (14) are combined and we obtain the equation:

min
U

n

∑
i=1

tr
(

XDXT
)
− tr

(
UTXDXTU

)
+ λtr

(
UTXMXTU

)
(15)

where λ is a regularization parameter which should be set to a small real value.

3.3. Algorithm Optimization

Since the unknown variables U and D have a certain relationship with U, it is difficult
to directly solve the optimal projection matrix U. However, in this case, we can use non
greedy iterative algorithm to solve U and D. The Lagrangian function of Equation (15) is

L(U, ξ) = tr
(

XDXT
)
− tr

(
UTXDXTU

)
+ λtr

(
UTXMXTU

)
+ tr

(
ξ
(

UTU − I
))

(16)

where ξ ∈ Rd×d is a symmetric matrix. Then we can apply the Karush–Kuhn–Tucker (KKT)
condition to find the projection matrix. We set ∂L(U,ξ)

∂U = 0, then,

∂L(U,ξ)
∂U =

∂tr(XDXT)
∂U − ∂tr(UT XDXTU)

∂U + λ
∂tr(UT XMXTU)

∂U

+
∂tr(ξ(UTU−I))

∂U

= 0−
(

XDXTU +
(
UTXDXT)T

)
+ λ

(
XMXTU +

(
UTXMXT)T

)
+ξ(U +

(
UT)T

)

= −2XDXTU + 2λXMXTU + 2Uξ

= 0

(17)

and Equation (17) can be converted into(
XDXT − λXMXT

)
U = Uξ (18)

We set ∂L(U,ξ)
∂ξ = 0, then,

UTU = Iq (19)

We can substitute Equations (18) and (19) into Equation (15), and the projection matrix
U satisfies the objective function can be obtained. Algorithm 1 gives the whole flow of U
and qi calculation.

Algorithm 1. l2,p-MRPCA

Input: Training set X, iterations T, parameters λ, p, q, t = 1
Output: U(t+1) ∈ Rm×q

Compute: W ∈ Rn×n, D ∈ Rn×n and M ∈ Rn×n where M = I −W
Initialize: U(t) to a m× q orthogonal matrix
Repeat:

1. compute the diagonal matrix D by each diagonal element qi.
2. Compute the weighted covariance matrix XDXT − λXMXT

3. Update matrix U(t+1) which is called the optimal projection matrix by Equation (14).

4. If J
(

U(t)
)
− J

(
U(t+1)

)
≤ δ (δ is a small positive real number, such as 10−8), where

J(U) = tr
(
XDXT)

− tr
(
UT XDXTU

)
+ λtr

(
UT XMXTU

)
5. t← t + 1

Output the optimal projection matrix U(t+1), and the Algorithm 1 ends.
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Theorem 1. Let any two vectors et ∈ Rm, et+1 ∈ Rm, if 0 < p < 2, we can obtain the following
inequality: ∥∥∥e(t+1)

∥∥∥p

2∥∥e(t)
∥∥p

2

− p
2

∥∥∥e(t+1)
∥∥∥2

2∥∥e(t)
∥∥2

2

− 1 +
p
2
≤ 0 (20)

where et must be a non-zero vector, otherwise the denominator is zero, and the inequality is meaningless.

Proof of Theorem 1. Let f (y) = yp − p
2 y2 + p

2 − 1, through simple algebraic calculation,
we can obtain:

∂ f
∂y

= py
(

yp−2 − 1
)

(21)

It can be seen from Equation (21) that when y > 0 and 0 < p < 2, y = 1 is the only
extreme optimal solution of function f . In addition, we have f ′(y) > 0 (0 < y < 1) and
f ′(y) < 0 (1 < y). So y = 1 is the maximum point of function f . Substitute y = 1 into the
function y to obtain f = 0.

Combined with the previous analysis, we obtain that for any y > 0, f (y) ≤ 0,

Theorem 1 can be proved by setting y =
‖et+1‖2
‖et‖2

. �

Theorem 2. By using the iterative method which is described in Algorithm 1, we can obtain
that the value of Equation (12) decreases monotonically in each iteration until it converges to the
local optimum.

Proof of Theorem 2. As shown in Algorithm 1, in the t + 1 iteration, we have:

n
∑

i=1
tr

(
(xi)

Txiqi
(t)

)
−

n
∑

i=1
tr

((
U(t+1)

)T
xi(xi)

TU(t+1)qi
(t)

)
+λtr

((
U(t+1)

)T
XMXTU(t+1)

)
≤

n
∑

i=1
tr

(
(xi)

Txiqi
(t)

)
−

n
∑

i=1
tr

((
U(t)

)T
xi(xi)

TU(t)qi
(t)

)
+λtr

((
U(t)

)T
XMXTU(t)

)
(22)

Equation (22) can be transformed into:

n
∑

i=1

∥∥∥∥xi −U(t+1)
(

U(t+1)
)T

xi

∥∥∥∥2

2
qi
(t) + λtr

((
U(t+1)

)T
XMXTU(t+1)

)
≤

n
∑

i=1

∥∥∥∥xi −U(t)
(

U(t)
)T

xi

∥∥∥∥2

2
qi
(t) + λtr

((
U((t))

)T
XMXTU((t))

) (23)

Assuming that ei
(t+1) = xi − U(t+1)(U(t+1)T)xi, ei

(t) = xi − U(t)(U(t)T)xi and

v(t) = xi. As we already know that qi =
‖xi−UUT‖p−2

2
‖xi‖p

2
, so Equation (23) can be converted into

n
∑

i=1

‖ei
(t+1)‖2

2

‖vi
(t)‖p

2‖ei
(t)‖2

2

∥∥∥ei
(t)

∥∥∥p

2
+ λtr

((
U(t+1)

)T
XMXTU(t+1)

)
≤

n
∑

i=1

‖ei
(t)‖p

2

‖vi
(t)‖p

2

+ λtr
((

U(t)
)T

XMXTU(t+1)
) (24)
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Equation (24) can be transposition into

n
∑

i=1

‖ei
(t+1)‖2

2

‖vi
(t)‖p

2‖ei
(t)‖2

2

∥∥∥ei
(t)

∥∥∥p

2

≤
n
∑

i=1

‖ei
(t)‖p

2

‖vi
(t)‖p

2

+ λtr
((

U(t)
)T

XMXTU(t)
)
− λtr

((
U(t+1)

)T
XMXTU(t+1)

) (25)

According to the properties of Theorem 1, we multiply 1
‖vi

(t)‖p
2

> 0 on both sides of

Equation (20) to obtain the inequality of each index i:

n

∑
i=1

p
2

∥∥∥ei
(t+1)

∥∥∥2

2∥∥vi
(t)

∥∥p
2

∥∥ei
(t)

∥∥2
2

∥∥∥ei
(t)

∥∥∥p

2
≥

n

∑
i=1

∥∥∥ei
(t+1)

∥∥∥p

2∥∥vi
(t)

∥∥p
2

−
n

∑
i=1

∥∥∥ei
(t)

∥∥∥p

2∥∥vi
(t)

∥∥p
2

+
n

∑
i=1

p
2

∥∥∥ei
(t)
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Then, we multiply the whole of Equation (25) by p
2 and substitute it into Equation (26),

and we obtain
n
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i=1

‖ei
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2 λtr
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)T
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) (27)

We substitute ei
(t+1) = xi −U(t+1)(U(t+1)T)xi, ei

(t) = xi −U(t)(U(t)T)xi and v(t) = xi
into Equation (27), and we can obtain

n
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) (28)

Note that 0 < p < 2, so p
2 λ > 0 is true. Finally, ensuring that ξ = p

2 λ is established, and
combine Equation (28) with Equation (15) to obtain Equation (28):

n
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2
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)T
XMXTU(t)

) (29)

Equation (29) shows that the objective function of Equation (12) decreases monotoni-
cally in each iteration. Combining the convergence conditions given by Algorithm 1, it can
be determined that the objective function (12) has a lower bound, and finally converges to
the local optimal solution, so Theorem 2 is true. �

4. Experiments

The experiment part mainly includes the introduction of several databases, the presen-
tation of the experimental results on each database, and the analysis of the experimental
results. The whole experimental analysis is carried out under the windows system which
is configured with i5-1035G1 processor, 8G memory, PCI-E 1T solid state disk, and MX250
2G single display. All codes are compiled by using matlab tools.

4.1. Data Sets and Experimental Parameters

In order to verify the effectiveness of l2,p-MRPCA algorithm, this experiment compares
l2,p-MRPCA with PCA, R1-PCA, KPCA, NPE, and LIRPCA. The databases used in this
experiment include ORL face database, YALE face database and FERET face database,
and PolyU palmprint database. In order to verify the robustness of the algorithm under
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different levels of occlusion, we add 5 × 5 occlusion block and 10 × 10 occlusion block
to ORL face database and YALE face database respectively, and 5 × 5 occlusion block to
the FERET face database. The original images and continuous occlusion images of the
four libraries are shown in Figure 1. The ORL face database randomly selects training
samples n = 3, 4, 5, 6, YALE face database randomly selects training samples n = 4, 5,
and FERET face database randomly selects training samples n = 2, 3, 4, 5.

 
(a) 

 
(b) 

 
(c) 

Figure 1. Partial original image and continuous occlusion image on ORL, YALE, and FERET database
(a) ORL database (b) YALE database (c) FERET database.

For the parameters mentioned in l2,p-MRPCA algorithm, λ, p, and q are briefly de-
scribed. We select the optimal parameters of l2,p-MRPCA by crossing validation strategy,
and set parameters λ = 0.1 in the ORL face database, parameters λ = 0.08 in YALE face
database, parameters λ = 0.05 in FERET face database. Parameter p is chosen as 0.5 and 1,
and the two parameters values are substituted into the experiment to obtain the experimen-
tal results, so as to select better parameter values. The parameter q represents the number
of extracted feature information, which can be determined empirically through Cumulative
Percent Variance (CPV), and its formula is as follows:

CPV =

[
q

∑
i=1

λi

/
m

∑
j=1

λj

]
× 100%→ 90% (30)

In order to ensure that CPV can reach 90% during the experiment, the corresponding
q value is selected. In order to ensure the universality of the experimental results, the
experiments in each database are repeated at least 100 times.

4.2. The ORL Face Database

The database has 400 images, including 40 people with 10 images, and each image is
56 × 46 pixels. The shooting background of these images is relatively dark, which is the
front face collected in different time, light, facial expression, and facial detail environment
(some images have slight deviation). We obtain the broken line diagram of the recognition
rate of ORL database and its occlusion images in PCA, R1-PCA, KPCA, NPE, LIRPCA
(p = 1), LIRPCA (p = 0.5), l2,p-MRPCA (p = 1), and l2,p-MRPCA (p = 0.5), as shown in
Figure 2.
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(a) 

(b) 

(c) 

Figure 2. Recognition rate of PCA, R1-PCA, KPCA, NPE, LIRPCA (p = 0.5), LIRPCA (p = 1),
l2,p-MRPCA (p = 0.5), l2,p-MRPCA (p = 1) on ORL database (a) original image (b) occlusion
block = 5 × 5 (c) occlusion block = 10 × 10.
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First of all, it can be seen from Figure 2 that with the increase of the number of training
samples, the recognition rates of PCA, R1-PCA, KPCA, NPE, LIRPCA (p = 1), LIRPCA
(p = 0.5), l2,p-MRPCA (p = 1), and l2,p-MRPCA (p = 0.5) also increase. Secondly, we
compare the robustness of these algorithms. With the increase size of occlusion block, the
recognition rate of NPE is improved, which shows that the robustness of NPE algorithm is
relatively high, and it is suitable for recognizing occluded images. However, PCA, R1-PCA,
and KPCA reduce the recognition rate with the increase of occluded block size, which
indicates that the two methods are not suitable for recognizing occluded images. Finally,
the effect of parameter p on the experiment was observed. It can be seen from Figure 2
that the recognition rate of l2,p-MRPCA is higher than that of LIRPCA when the number of
training samples is the same, no matter whether the picture is occluded or not, no matter
p = 0.5 or p = 1. Moreover, the recognition effect of l2,p-MRPCA (p = 0.5) is higher than
that of l2,p-MRPCA (p = 1), which indicates that the value of p also has some influence on
the recognition rate.

4.3. The Yale Face Database

The face dataset contains 15 volunteers with 11 images, and each image is 80 × 100 pixels.
The shooting background of these images has more obvious changes in illumination, facial
expression, posture, and occlusion than ORL face database. We obtain the histogram of the
recognition rate of Yale database and its occlusion images in PCA, R1-PCA, KPCA, NPE,
LIRPCA (p = 1), LIRPCA (p = 0.5), l2,p-MRPCA (p = 1), and l2,p-MRPCA (p = 0.5), as
shown in Figure 3.

First of all, the pixels of YALE is 80 × 100 where the pixels of ORL is 56 × 46, so YALE
has a higher recognition rate than ORL. The reason may be that the shooting background of
ORL database is dark, while that of YALE database is bright. It may also be because YALE
database has high pixels. Secondly, in this experiment, the recognition rate of LIRPCA is
only slightly higher than that of PCA, or even lower than that of NPE. This may be because
LIRPCA is not able to capture the linear structure of manifolds. However, the recognition
rate of l2,p-MRPCA is still relatively high, which indicates that even if the methods are
based on l2,p-PCA, different regularization terms have a greater impact on the experimental
results. Finally, in the YALE experiment, the recognition rate of l2,p-MRPCA (p = 1) is
higher than that of LIRPCA (p = 0.5) when the training samples are the same, regardless
of whether the pictures are occluded or not. This shows that the robustness and stability
of l2,p-MRPCA are higher than that of LIRPCA. Therefore, the introduction of popular
regularization in l2,p-MRPCA has certain advantages.

(a) 

Figure 3. Cont.
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(b) 

Figure 3. Recognition rate of PCA, R1-PCA, KPCA, NPE, LIRPCA (p = 0.5), LIRPCA (p = 1),
l2,p-MRPCA (p = 0.5), l2,p-MRPCA (p = 1) on YALE database (a) Number of training samples n = 4
(b) Number of training samples n = 5.

4.4. The FERET Face Database

There are 1400 images in this face dataset, including 200 people, and 7 images for
each person, and each image is adjusted to 40 × 40 pixels. These images are collected
under different illumination, facial expression, posture, and age. Most of the subjects are
westerners, and the changes of face images contained by each person are relatively single.
We obtain the original image of FERET database, and the database when block size is 5 × 5.
The histogram of the recognition rate of the pictures of occlusion blocks in PCA, R1-PCA,
KPCA, NPE, LIRPCA (p = 1), LIRPCA (p = 0.5), l2,p-MRPCA (p = 1), and l2,p-MRPCA
(p = 0.5) is shown in Figure 4.

First of all, from the results, the recognition rate of the database is relatively low,
which may be because the database has more people but fewer images for each person,
insufficient training samples, or the database image pixel is low. Since the recognition rate
on the original data is low, the experiment is only carried out on the original database
and 5 × 5 occlusion block. Secondly, on FERET database, the recognition rate of NPE is
relatively low, but it is relatively high on ORL database and YALE database. This may
be because the stability of NPE is not very strong, so the recognition rate varies greatly
on different databases. The recognition rate of R1-PCA decreases suddenly when the
training sample is 3, and increases suddenly when the training sample is 4. Combined
with previous experiments, it may be because of some errors in the experimental process,
or because the stability of R1-PCA is not very strong. Third, KPCA performs better on
FERET database than on ORL database and YALE database, and it is greatly affected by the
database and the number of training samples. Finally, the recognition rate of most methods
in this experiment is lower when the training sample number is 5 than when the training
sample number is 4, which is related to the number of each sample on FERET database. As
the results of the previous two experiments, when the number of training samples is the
same, the recognition rate of LIRPCA (p = 0.5) is higher than that of LIRPCA (p = 1), the
recognition rate of l2,p-MRPCA (p = 0.5) is higher than that of l2,p-MRPCA (p = 1), which
once again shows that the recognition rate effect of p = 0.5 is higher than that of p = 1.
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(a) 

(b) 

Figure 4. Recognition rate of PCA, R1-PCA, KPCA, NPE, LIRPCA(p = 0.5), LIRPCA(p = 1), l2,p-MRPCA
(p = 0.5), l2,p-MRPCA (p = 1) on FERET database (a) original image (b) block size = 5× 5.

4.5. The PolyU Palmprint Verification Experiment

There are 600 images in this database, including the palmprint of 100 people. Each
person has 6 images, and each image is cut into 50 × 40 pixels. To better verify the
robustness of l2,p-MRPCA, we add 5 × 5, 10 × 10 and 20 × 20 occlusion blocks to the
database as shown in Figure 5, and three palmprint pictures of each person are selected
as training samples. Finally, the average recognition accuracy of each algorithm when the
number of training samples n = 3 can be obtained as shown in Table 1, the training time
on PolyU palmprint database is shown in Figure 6, classification recognition rate on PolyU
palmprint database is shown in Figure 7.

122



Mathematics 2022, 10, 4603

Figure 5. Partial original image and continuous occlusion image on the PolyU palmprint database.

Table 1. Experimental results of recognition rate (standard deviation)(%) on PolyU palmprint database.

TN 3

Occlusion Block Size None 5 × 5 10 × 10 20 × 20

PCA/% 76.32 (0.53) 67.32 (0.51) 61.98 (0.49) 43.12 (0.22)
R1-PCA/% 79.82 (0.42) 70.14 (0.44) 65.75 (0.53) 53.54 (0.35)
KPCA/% 77.23 (0.12) 73.04 (0.50) 58.33 (0.49) 40.98 (0.16)
NPE/% 83.06 (0.42) 71.17 (0.44) 67.38 (0.47) 54.17 (0.54)

LIRPCA (p = 1)/% 81.78 (0.27) 72.00 (0.33) 65.47 (0.35) 57.10 (0.41)
LIRPCA (p = 0.5)/% 86.53 (0.32) 73.15 (0.35) 66.56 (0.31) 57.64 (0.29)

l2,p-MRPCA (p = 1)/% 86.91 (0.30) 73.03 (0.38) 68.96 (0.32) 61.82 (0.07)
l2,p-MRPCA (p = 0.5)/% 89.01 (0.33) 74.54 (0.36) 69.34 (0.35) 63.01 (0.43)

Figure 6. Training time on the PolyU palmprint database.

First, it can be seen from Table 1 that l2,p-MRPCA (p = 0.5) has the best recognition
effect. With the increase of the number of occluded blocks, the recognition rate of PCA,
R1-PCA, KPCA, NPE, LIRPCA (p = 1), LIRPCA (p = 0.5), l2,p-MRPCA (p = 1), and
l2,p-MRPCA (p = 0.5) decreases gradually. Secondly, when the picture has no occlusion
block, the recognition rate of l2,p-MRPCA is only slightly higher than that of other al-
gorithms. However, as the size of the occlusion block becomes higher, the advantages
of l2,p-MRPCA become larger, which shows that the method is robust and suitable for
recognizing noisy images. Compared to PCA, R1-PCA, and KPCA, LIRPCA has a certain
recognition effect, but the recognition rate is always lower than that of l2,p-MRPCA. Al-
though LIRPCA, l2,p-MRPCA all use l2,p-PCA with good robustness, the regularization
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term of LIRPCA lacks a certain normalization ability, so the recognition effect is not as
good as that of l2,p-MRPCA. Finally, in general, l2,p-MRPCA has good recognition effect
and high robustness.

Figure 7. Classification recognition rate of PCA, R1-PCA, KPCA, NPE, LIRPCA (p = 0.5), LIRPCA
(p = 1), l2,p-MRPCA (p = 0.5), l2,p-MRPCA (p = 1) on the PolyU palmprint database.

4.6. Result Analysis

1. From the experimental results, R1-PCA, as an improved algorithm of PCA algo-
rithm, has a high recognition rate both in the original image database and in the
occluded database.

2. When the experimental data is occluded, NPE, as a manifold learning method, most
of the recognition rates are higher than PCA, indicating that the algorithm is less
affected by occlusion. When the image is occluded, the recognition effect is better.

3. Compared to LIRPCA, l2,p-MRPCA introduces manifold learning method, so the
recognition rate is more significant. In addition, it takes into account the advantages
of manifold regularization when the image is occluded, so the recognition effect is
better. As the clarity of each database in the experiment is different, the recognition
rate made by different databases is relatively different.

4. The training time on l2,p-MRPCA is longer than PCA, KPCA and NPE, and is shorter
than R1-PCA and LIRPCA. Considering the recognition rate, robustness, and algo-
rithm time of the algorithm, the training time on l2,p-MRPCA is acceptable.

5. The parameter p also has a certain impact on the recognition effect. Whether it is
LIRPCA or l2,p-MRPCA, the recognition efficiency is slightly higher when p = 0.5
than when p = 1.

In order to further verify the stability of l2,p-MRPCA, the algorithm is tested on PolyU
palmprint dataset. The results show that even in the case of occlusion, l2,p-MRPCA can still
have a high recognition rate, so it shows that the algorithm has good robustness.

5. Conclusions

In this paper, we propose a manifold regularization principal component analysis
method by using l2,p-norm constraints. This method effectively combines l2,p-PCA and
manifold learning methods. It is not only robust to outliers, but also maintains the rotation
invariance of the algorithm, and protects the true geometric information of the original
data space. In the non greedy iterative algorithm of the model, the weight covariance
matrix is considered to further reduce the reconstruction error. Therefore, the model has
good expression ability, and it can effectively extract the algebraic features of images. This
method is mainly divided into the following three steps:
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1. Optimize the formula of l2,p-MRPCA;
2. the equation of the optimal matrix is obtained by using KKT condition;
3. and according to the algorithm proposed in this paper, the convergence of the objective

function is obtained, and the optimal projection matrix is obtained.

The experimental results show that the recognition rate of l2,p-MRPCA algorithm is
higher than some of the existing advanced algorithms, and it still has good robustness
when there is occlusion. However, since this algorithm specifies many parameters in the
implementation, which limits its application in practice, the following research will focus
on parameter adjustment.
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Abstract: Trajectory prediction in urban scenarios is critical for high-level automated driving systems.
However, this task is associated with many challenges. On the one hand, a scene typically includes
different traffic participants, such as vehicles, buses, pedestrians, and cyclists, which may behave
differently. On the other hand, an agent may have multiple plausible future trajectories based on
complex interactions with the other agents. To address these challenges, we propose a multiagent,
multimodal trajectory prediction method based on neural networks, which encodes past motion
information, group context, and road context to estimate future trajectories by learning from the
interactions of the agents. At inference time, multiple realistic future trajectories are predicted. Our
solution is based on an encoder–decoder architecture that can handle a variable number of traffic
participants. It uses vectors of agent features as inputs rather than images, and it is designed to run
on a physical autonomous car, addressing the real-time operation requirements. We evaluate the
method using the inD dataset for each type of traffic participant and provide information about its
integration into an actual self-driving car.
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1. Introduction

Autonomous driving is an active research domain, pursued by both academia and
private companies. Although fully automated driving, corresponding to the fifth level of
automation [1], has not been achieved yet, progress has been made on the various sub-
problems underlying vehicle autonomous behavior, such as identifying and tracking objects,
handling occlusions and varying light or weather conditions, predicting the trajectories and
possible interactions of the agents in a traffic scene, route planning, and safety measures.

In this paper, we focus solely on the problem of trajectory prediction. This involves
evaluating the possible future motion of traffic participants based on observed indicators
in the recent past, such as positions, and sometimes heading angle, speed, or acceleration.

Trajectory prediction is a critical component of autonomous driving, allowing self-
driving vehicles to anticipate the movement and behavior of other agents on the road,
including other vehicles, pedestrians, bicycles, and more. It enables the vehicle to make in-
formed decisions such as avoiding collisions, adjusting its speed and path, and anticipating
traffic patterns.

To make accurate predictions, the vehicle must consider a wide range of inputs,
including its own motion, the motion of other objects, road geometry, traffic signs, and
environmental factors. By combining this information, the vehicle can build a predictive
model of the environment, which it can use to make informed decisions about how to
navigate the road safely and efficiently.
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The main difficulties of the problem are related to the interactions of the agents,
especially present in intersections, when a pedestrian approaches a crosswalk, or other
situations where maneuvers are important, e.g., overtaking decisions, and also to the fact
that trajectories may be multimodal, i.e., a common past set of observations may lead to
different future trajectories.

Since the set of all possible maneuvers is virtually impossible to enumerate and
evaluate exhaustively especially in situations with a large number of participants, the ego
car needs to have an estimation about the most probable future states. Additionally, when
the algorithms need to work in real time, i.e., on an actual autonomous car, computational
efficiency becomes very important.

Accurate trajectory prediction is crucial for safe navigation. For example, safety can be
increased if the ego car is able to predict whether another traffic participant will overtake
another agent or if an agent in front will suddenly break. Furthermore, if autonomous
vehicles are socially aware, their efficiency can be enhanced, and the overall traveling
experience can become more comfortable.

The main contribution of this work is a neural network-based solution for predicting
the future possible trajectories of traffic participants and their probabilities. By learning the
effects of interactions between traffic participants, road features, and agent trajectories with
different behavior patterns, the prediction quality can be improved.

This solution was developed as part of the PRORETA 5 project [2], which aimed to
build an autonomous vehicle that incorporates artificial intelligence methods. The trajectory
prediction presented in this paper is only a component of the full autonomy stack of an
actual self-driving car, which was demonstrated in Darmstadt, Germany, in October 2022.

The first component of the general architecture involved image processing based on
visual saliency models. It focused on traffic participant detection and also used driver
attention information. Object tracking was performed using radar and lidar data. The
following component was the trajectory prediction module that will be described in the
current paper. Based on the previous information, trajectory planning was performed using
a trajectory tree that was iteratively created using Monte Carlo tree search. Finally, there
was a safety check module based on classic logical rules rather than artificial intelligence
methods. Another aspect of the project addressed the hardware configuration of the vehicle,
including various sensors and cameras, as well as the human–machine interface.

The project addressed all the General Data Protection Regulation (GDPR) requirements
of the European Union for the data captured by cameras. The original images used for
training were only accessible to the image processing team and were stored in a secure
environment. Subsequent work, including trajectory prediction, was performed on vectors
of object data that no longer contained any user-sensitive information.

The rest of the paper is organized as follows. In Section 2, we present an overview of
the relevant literature. Section 3 details our methodology and the structure of the training
data. In Section 4, we describe the developed model, while in Section 5 we present the
experimental results. Finally, in Section 6 we include the conclusions and summarize the
main findings.

2. Related Work

Many works address the problem of trajectory prediction. We would like to mention
that the papers referenced for each category below are just examples and there are other
authors that use those particular techniques as well.

Trajectory prediction methods can be broadly classified into two categories [3]: model-
based and data-driven methods. Model-based methods use mathematical models to
represent the motion of agents on the road and to predict their future trajectories based
on physical or kinematic principles. Several authors use, e.g., Kalman filters [4], particle
filters [5], and non-linear models [6]. On the other hand, data-driven methods rely on data to
learn patterns and relationships in the motion of traffic participants and to make predictions
based on these patterns. The most straightforward way of prediction is represented by
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rule-based methods, which use predefined rules to make predictions based on the behavior
of road agents [7]. Although a positive aspect is that they rely on explicit knowledge, in
general, identifying the proper rules may take time and they may not generalize very well
in various traffic conditions. Probabilistic methods model the uncertainty and variability
in the motion of road agents and make predictions based on probability distributions,
e.g., employing Partially Observable Markov Decision Processes (POMDPs) or Gaussian
mixture models (GMMs), especially for maneuver-based trajectory prediction [8–10].

The methods based on deep learning are arguably the most popular at this time and
have contributed to a large extent to the state of the art. They use various kinds of deep
neural networks to learn complex patterns from large amounts of training data and make
predictions based on these patterns. A review of recent papers reporting such methods
is [11].

Recurrent Neural Networks (RNNs) are well-suited for sequential data and have
been applied to trajectory prediction by encoding the past motion of agents into a hidden
state and using this state to make predictions about their future motion. Long-Short Term
Memory (LSTM) models, in particular, have been successfully used [12–16]. The main
advantage of recurrent networks is their ability to capture temporal dependencies, which is
particularly relevant in the context of trajectory prediction, where the state of the traffic
participants changes over time. Therefore, the models can incorporate complex patterns
and trends in the data. Additionally, they can handle varying trajectory lengths. However,
RNNs are complex models that usually require large amounts of data and may need long
training times.

Convolutional Neural Networks (CNNs) are commonly used in trajectory prediction
by utilizing image information from regular cameras, lidar sensors, or higher-level map
projections [17–19]. This type of neural network is well-suited to handle spatial information
efficiently. Due to their use of parameter sharing, they typically have shorter training times
for larger datasets and faster predictions. Still, CNNs have limitations when it comes to
temporal information and context because they typically consider only a fixed window of
input data at a time. In many cases, CNNs are used to process video inputs while LSTMs
contribute to the encoding and decoding of trajectories.

Other papers have reported the use of Conditional Variational Autoencoders (CVAEs)
[20–23]. CVAEs can generate diverse trajectories by sampling from the learned latent
space, which can be advantageous in dealing with complex and diverse traffic scenarios
where multiple plausible trajectories exist. They can also estimate uncertainty in the
predictions by providing a probability distribution over the possible trajectories and can
reconstruct missing or corrupted inputs that may occur when sensor data are affected by
noise. Nevertheless, CVAEs are complex models that can be challenging to train and may
not be suitable for real-time applications due to the computational expense of generating a
diverse set of trajectories. Additionally, the quality of the learned latent space representation
is critical to the model’s performance. If the latent space representation does not capture
the underlying structure of the data, this can affect the output quality.

Generative Adversarial Networks (GANs) [24–26] can also be used for trajectory
prediction. They can also generate diverse trajectories by training the model to create
realistic trajectories that are expectantly indistinguishable from real ones. Many of the
advantages and disadvantages of CVAEs apply to GANs as well. However, an additional
issue related to both architectures is mode collapse, when the model generates only a small
subset of possible trajectories while ignoring the rest, and this can lead to similar and
unrealistic results.

Attention mechanisms [12,27] can also be used in conjunction with various models for
trajectory prediction. They can capture global context by allowing the model to attend to
different parts of the input sequence when generating the output sequence. This can be
advantageous when dealing with complex and diverse traffic situations, where the context
of the entire scene can be important for prediction. In many works, attention mechanisms
refer to social attention, which can selectively aggregate information from nearby agents to
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predict the trajectory of the target agent. In this way, they capture the dependencies between
the target agent and the scene context. This model has shown improved performance
over other social pooling methods. Conversely, attention mechanisms can increase the
complexity of the model and make it more difficult to train. They can also suffer from
attention drift, where the model attends to irrelevant parts of the input sequence as the
output sequence progresses, resulting in the model generating unrealistic trajectories.

Graph Neural Networks (GNNs) are suitable for modeling complex interactions
between traffic participants by encoding the relationships between nodes (representing
agents) and edges (representing interactions) in a graph structure [28–31]. GNNs can
incorporate spatial information by using the relative positions of the nodes in the graph,
which can be useful for trajectory prediction in complex scenarios. They can also scale to
large graphs, which is important for modeling intricate traffic scenes. Yet GNNs require
a large amount of data and are computationally expensive to train, especially for large
graphs with many nodes and edges.

Transformer networks [32–34] represent a relatively recent architecture where opera-
tions can be highly parallelized, leading to faster training and inference times compared
to sequential models such as LSTMs. Like the latter, they can capture both long-term
dependencies and global context by attending to all positions in the input sequence. A
disadvantage is that transformer networks may require large amounts of data to learn
effective representations of the input sequence and may struggle to generalize to new and
unseen scenarios, as they can be sensitive to the specific structure of the input sequence.

It must be emphasized that most approaches actually use hybrid methods, which
combine the strengths of multiple techniques to make predictions.

Another direction related to reinforcement learning (RL)—in fact, inverse RL—is to
use imitation learning to find out driving policies by estimating the cost function of human
drivers [35].

Depending on the abstraction of level on which prediction is made, there are physics-
based, maneuver-based, and interaction-aware motion models [36]. Physics-based models
apply the laws of physics to estimate the trajectory, based, e.g., on speed, acceleration,
steering, etc. They are useful as classic fail-safe techniques, but in general they are reliable
only for short-term predictions. Maneuver-based models try to identify the maneuvers of
the road agents but usually in isolation, while interaction-aware models take into account
the influence of the neighbors on an agent but are more computationally complex.

Multiagent systems have also been used in the context of trajectory prediction to
model the behavior of multiple agents in a scene, such as pedestrians or vehicles, and
predict their future movements based on their past behavior and interactions with other
agents. They are especially valuable for the latter, because interactions between agents play
a crucial role in determining their future movements. Various methods have been proposed
to model them, such as social force [37] or game theoretic [38] models.

Even if research on trajectory prediction constantly evolves, there are several key
issues that still pose some challenges to the public use of autonomous vehicles. First, one
can mention interpretability, i.e., the development of methods for making the predictions
of autonomous vehicles explicit, so that the reasoning behind their decisions can be un-
derstood by humans. Secondly, one can think of interaction and cooperation between
autonomous vehicles, i.e., how they can communicate and cooperate with one another to
improve safety and efficiency on the road. Thirdly, there is the problem of unstructured
and dynamic environments, which creates the need to develop prediction models that
can handle complex, dynamically changing scenarios, such as urban environments with
heavy traffic.

3. The Structure of the Training Data

The trajectory prediction problem can be formalized as follows. Let Xi
t be an observa-

tion vector with the position and possibly other motion indicators for agent i at time step t.
If p designates the present time step, then for agent i the past trajectory (the input of the
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machine learning model) is a sequence of nin vectors {Xi
p−nin+1, . . . , Xi

p−1, Xi
p}. The output

of the model is the predicted trajectory, which is another sequence of nout vectors {

(

Yi
p+1,

(

Yi
p+2, . . . ,

(

Yi
p+nout

}. In our case, the output consists of a set of such future trajectories, each
with its corresponding probability.

The data that serves as an input to the model results after the segmentation and
identification of the objects in the scene. The inputs refer to the representation of traffic
participants (agents) and the representation of the road. In this approach, we considered the
past information about an agent, the group context information, i.e., the surrounding agents,
and the road context. An overview of the method is presented in Figure 1. The training
phase uses information about the current agent’s past trajectory and its desired trajectory,
the group context that includes information about the past states of the surrounding agents,
and road context that includes information about the road structure. The inference phase
uses information about the past trajectory of the current agent, the group context, and the
road context.

Figure 1. An overview of the multimodal method.

3.1. The Input Vectors
3.1.1. Agent Trajectory Representation

The presented approach aims to handle a variable number of agents of different types.
Since the inputs to the neural model have a fixed size, we use a maximum number of agents
nmax (Figure 2). When an observation is processed, the identified objects are considered
“real” agents, and the rest, the unused placeholders, are considered “dummy” agents.
The information corresponding to the dummy agents is ignored in the processing using a
mechanism described in Section 4.1. In our case studies, nmax = 10.

Figure 2. The structure of an input vector. The vector is divided into nmax blocks, each block
corresponding to an agent.
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The first components of an input block corresponding to an agent are displayed in
Figure 3.

Figure 3. The identification of an agent. Each of the six attributes of the input instance has a binary
value designating the presence or absence of a feature. The first attribute is 1 if the block identifies
a real agent and 0 if it identifies a dummy agent. The following five attributes constitute a one-hot
encoding of the agent type, e.g., the second attribute is 1 if the agent is a car and 0 if it not a car, and
so on.

The rest of the input vector contains information about the past trajectory of the agent,
including the present state. The trajectory is discretized into nin samples (in our case,
nin = 10), as shown in Figure 4.

Figure 4. The representation of the past trajectory. Each trajectory sample is defined by the (x, y)
position, a tuple (sin(a), cos(a)) representing the heading angle a, and the instantaneous speed.

For our problem, the x coordinate is normalized between –10 m and 10 m relative to
the center line of the road. The y coordinate is normalized between –150 m and 150 m. Thus,
the positions of the agents are in fact Frenet coordinates (described in the next paragraph)
relative to the present position of the ego vehicle: x corresponds to the lateral displacement
(the Frenet coordinate d) relative to the center line of the road, and y corresponds to the
longitudinal displacement (the Frenet coordinate s) but relative to the ego agent position.
The use of Frenet coordinates has the advantage that it avoids special cases caused by the
change of perspective in curves and which may need more training data to cover various
types of curves. Using the presented approach, curves are handled in the same way as
straight road segments.

If the coordinates of the points representing the curve are in a Cartesian coordinate
system, the Frenet transformation (Figure 5) interpolates linearly between the supporting
points of the base curve. For the transformation of a 2D pose from Cartesian to Frenet
coordinates, it is necessary at first to find the closest linear segment to the Cartesian
coordinate. To find the point where the object is projected on this line, the perpendicular
vector of the reference path is generated and it is intersected from the object position with
the reference path. This results in the distance of the object to the reference path and the
distance from the beginning of the path. The Cartesian points can fall onto areas where
no perpendicular line can be drawn to a linear spline segment of the base curve, or where
a perpendicular line can be drawn to two adjacent linear spline segments; a curve at that
point is either convex or concave. In that case, the point is always projected on the first of
the two segments. To transform a 2D pose from Frenet to Cartesian coordinates, a linear
interpolation is used between the supporting points of the base curve even with the heading
angle. A continuous distance function is employed, so that every point in the coordinate
system is well defined.
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Figure 5. Cartesian frame to Frenet frame transformation.

For the heading angle, simply normalizing a value between [0, 2π) or [0◦, 360◦)
introduces a discontinuity when the angle is around 0. This may happen very often since
the “moving straight ahead” angle is considered 0. Therefore, a tuple (sin(a), cos(a)) is used
to represent the angle. In this way, the variations are continuous for any value of the angle.

Finally, a trajectory sample contains the instantaneous speed measured in m/s.
An improvement of the representation of the y coordinate takes into account the fact

that drivers usually pay more attention to the traffic participants nearby than to those
situated at longer distances, especially in urban scenarios with lower speeds than highways
and with more agents at lower distances.

Therefore, a technique that we name “focused normalization” can be used, which
warps the longitudinal coordinate space in order to provide more details about the short-
distance agents and fewer details about the long-distance ones (Figure 6).

 

Figure 6. The effect of focused normalization.

This transformation uses a sigmoid function to change the y coordinate:

y′ = λ · (2y− 1)

y′′ =
1
2
·
(

1− e−2y′

1 + e−2y′ + 1

)
(1)

where λ is a coefficient that controls the width of the non-saturated region of the sigmoid
function. In our case studies, λ = 2.5.
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3.1.2. Group Context Representation

The group context is considered in a similar way as the agent trajectory representa-
tion. For each agent, the surrounding agents that can influence the behavior in traffic are
considered, and we are including the ones that are around the current agent, e.g., 50 m
around. As mentioned before, because the number of agents in the nearby area is variable
and the inputs to the neural model have a fixed size, we use a maximum number of context
agents nn. For each agent included in the context, we have the agent type: (flags [0/1]
[real/dummy agent] [is car] [is obstacle] [is bicycle] [is pedestrian] [is truck/bus]). For
example, a truck can be defined as 100,001 and a bicycle as 100,100. For each past point,
we consider the coordinates x, y, the pair sin(a), cos(a), where a is the heading angle, and
the speed.

3.1.3. Road Context Representation

The road representation takes into account information about a general area (e.g.,
40 m) around the ego agent (longitudinally) and complete information on the width of
the road (transversally). Each traffic participant is considered ego in turn for trajectory
prediction; therefore, road information may be slightly different for each traffic participant.
Each road segment is encoded taking into account the following:

• The segment type: driving lane (100), parking (010), sidewalk (001). One-hot encoding
is used, and more types can be included (e.g., crosswalks);

• The distinction between a real road segment or a dummy one (in the form of a binary
flag), to account for a variable number of segments.

For each lane in the sight of view, five waypoints are encoded on the center of the lane,
at −20 m, −10 m, 0 m, 10 m and 20 m relative to the y coordinate of the ego vehicle. Each
waypoint is identified by (x, y, sin(a), cos(a)), where a is the angle of the road segment (e.g.,
0 for “up”/the same direction as the ego, π or 180◦ for “down”/opposite direction). For a
straight road, only 0◦ and 180◦ values are possible, therefore (sin(a), cos(a)) may be replaced
by a binary 0/1 flag or a 01/10 encoding. For intersections, actual angle values are useful.

Each road segment, roughly defined by a quadrilateral, is also encoded by means of
the four defining points (xi, yi) also relative to the ego agent. Their y coordinates are always
clipped to the (−20 m, 20 m) range.

In addition, eight values are included for the corners of the rectangle. All in all, there
are 32 values for a lane.

For the situation displayed in Figure 7, the following road information would be used:

• S1 (parking lane): [1] [0 1 0] [−5 −20 0 0] . . . [−5 20 0 0] [−6 −20] . . . [−6 20];
• S2 (driving lane): [1] [1 0 0] [−2 −20 0 −1] . . . [−2 20 0 −1] [−4 −20] . . . [−4 20];
• S3 (driving lane): [1] [1 0 0] [2 −20 0 1] . . . [2 20 0 1] [0 −20] . . . [0 20];
• S4 (parking lane): [1] [0 1 0] [5 −20 0 0] . . . [5 20 0 0] [4 −20] . . . [4 20].

 

Figure 7. An example of road segment encoding.
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In the model, each road segment is encoded into an embedding, as shown in Section 4.1.
All the real (non-dummy) segment embeddings are encoded into segment embeddings
using max pooling. The resulting road segment features are concatenated with the embed-
dings of the traffic participants, as part of the context.

3.2. The Output Vectors

Most of the information is contained in the input vectors. Comparatively, the structure
of the output vectors is much simpler. It provides predictions for nout steps into the future
(in our case, nout = 20). The predictions are made only for the ego agent; therefore, an
output vector is a list of nout tuples of (x, y, sin(a), cos(a), speed).

The ego car needs estimates about the future trajectories of all active traffic participants.
Thus, for prediction, each non-dummy agent becomes the ego agent in turn and the
model presented in Section 4.1 predicts its possible future trajectories. All these predicted
trajectories are further used by the actual ego vehicle for trajectory planning.

4. The Proposed Model

As a distinct feature of the present approach, we use vectors of agent features as
inputs into our model, rather than images, because we assume that a segmentation of
the image has been performed in a previous step. This was conducted by a different
team in the PRORETA 5 project mentioned in the Introduction. However, a large part
of the existing work on trajectory prediction takes images as input. Although this may
seem like an insignificant difference, working with vectors instead of images proved to
have a big influence on the performance of the learning models, because several models
proposed as recent state of the art performed worse than expected on this modified problem.
Additionally, generative models such as CVAE need some time for sampling to assess the
probabilities of different modes, and this may hinder their use for real-time applications.
These are the reasons that lead us to develop the model described in this section.

4.1. Network Architecture

In order to correctly predict the movement of the surrounding agents, the system
needs to account for their multimodal nature. Thus, we capture the idea that the same
history may lead to multiple possible futures. For example, a car closing in behind the ego
vehicle may follow it in the next predictable future or may overtake it. Both futures are
possible, but the past trajectory of the approaching vehicle is the same in both cases. Based
on such previous situations found in the training set, the model needs to compute multiple
future trajectories (i.e., modes) and their probabilities.

The proposed model is therefore a neural network with n output heads, one for each
mode. Its architecture is presented in Figure 8.

There is an encoding part for the ego vehicle and also for the rest of the agents (the
closest nn agents to the ego agent; in our case, nn = 9). That consists in three fully connected
layers with a leaky ReLU (leaky rectified linear unit) activation function for each case to
encode the input information.

For the rest of the agents, a symmetric function must be used to represent the context,
because such a function is insensitive to the order in which its operands are considered.
In our case, a max pooling component is applied to the embeddings of the other traffic
participants. When an agent is a dummy, its embedding is ignored: the embedding is
multiplied by the 1/0 flag that shows whether the agent is real or a dummy; therefore,
the embedding of a dummy agent becomes a vector of zeros. The context embedding is
responsible for capturing the interactions between agents in an implicit form.

The road information is embedded using a similar approach like in the group context.
That consists in three fully connected layers with a leaky ReLU activation function for each
case to encode the input information, followed by the max pooling component.
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Figure 8. The architecture of the neural network.

The decoding part of the network extracts the information for future trajectories using
three fully connected layers with a leaky ReLU activation function and a second fully
connected layer with a sigmoid (logistic) activation function.

The outputs represent the future trajectories with a probability for each mode: m
trajectories each with my steps into the future plus one value denoting its probability. In
our case, m = 3 for the multimodal and of course m = 1 for the unimodal case.

4.2. The Conditional Loss Function

The training of the model is based on a conditional loss function (inspired by [39])
made up of two terms:

• L1. A general loss, applied for all modes, which tries to decrease the mean square error
(MSE) for the trajectories weighted by the mode probabilities:

L1 = ∑
i

pi · ei (2)

where pi is the probability of mode i and ei is the MSE between the desired trajectory
vector and the trajectory vector predicted by mode i. By minimizing L1, when pi is high
(the mode matches the current instance well), ei will further decrease, but when pi is low,
the influence on ei will be small. Therefore, the effect of L1 is especially strong for the
modes with high probabilities. This is in fact a mixture-of-experts loss, where the computed
value is an expected MSE given the probabilities of individual “experts”, in our case, the
individual modes.

• L2. A special loss used only for the best mode (the best mode is the one with the
smallest MSE):

L2 = ebest − log(pbest) (3)

On the one hand, L2 tries to decrease the MSE, that is, to bring the predicted trajectory
closer to the desired trajectory for that mode. On the other hand, it tries to increase the
probability of the best mode. If the probability of one mode increases, the probabilities
of the other modes automatically decrease. This second term of the L2 loss function is
actually a form of cross-entropy loss. Ideally, the best mode should match the current
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instance perfectly, and, therefore, its target value for the probability is 1, so the second term
in Equation (3) is actually −1 · log(pi). The other modes should not predict the instance,
and so their target values for the probability are 0, which cancel the terms −0 · log(pi). The
term ei imposes that the best mode becomes even closer to the desired trajectory of the
current instance.

One implementation note may be useful. Since the neural network model was devel-
oped with PyTorch [40], the conditional loss involving the finding of the best mode is not
straightforward, because a function involving “if” branches may not be continuous and
thus not differentiable. Therefore, a matrix A is computed for each mode such that Aji = 1 if
mode i is the best mode for instance j and 0 otherwise. The implemented expression for L2
is actually

L2 = ∑
i
(ei − log(pi)) · Aji (4)

The loss function is computed for one instance at the time; that is why j does not
appear explicitly in Equation (4), but the losses corresponding to all instances in a training
batch are eventually summed together.

The final composite loss is the sum of these two functions:

Lc = L1 + L2 (5)

It causes the modes to specialize on distinct classes of agent behaviors, e.g., going
straight or turning. Implicitly, this composite loss function encourages a clustering behavior
of the modes over the predicted trajectories.

Computing the Mode Probabilities

The values computed by the neural networks for each mode must be converted into
a valid probability distribution. This may seem simple at first sight, but it needs special
attention because the training process is very sensitive to small probabilities given their
use in the loss function, especially when it handles the situations when probabilities are
very small, in fact close to 0, and this is often the case for unimodal trajectories. It was
empirically found that different transformation formulas for avoiding the cases of 0/0 or
log(0) lead to quite different results.

For example, a simple way of avoiding a zero division is to use a small non-zero
number ε in the denominator when normalizing the probabilities:

pi
′ =

pi

∑
i

pi + ε
(6)

However, when the values provided by the neural networks are all very small, this
equation may lead to invalid results. Let us assume a situation with two modes, with
the computed values (0, 0). The probabilities according to Equation (6) are (0, 0). If the
computed values are (0, ε), the probabilities according to Equation (6) are (0, 0.5). Since
their sum is not 1, this is not a valid probability distribution.

The variant finally chosen for probability normalization is presented below:

pi
′ = pi · (1− 2ε) + ε

pi
′′ =

pi
′

∑
i

pi
′

(7)

First, the values from the neural network are scaled such that 0 becomes ε and 1
becomes 1 − ε. The middle value of 0.5 remains unchanged. This is possible because
the sigmoid activation function of the neural network provides values only in the [0, 1]
interval. Secondly, the values are normalized to create a valid probability distribution, but
without the risk of having a division by zero. In this case, (0, 0) becomes (0.5, 0.5) and
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(0, ε) becomes (0.33, 0.67). Larger values provide normally expected results, e.g., (0.4, 0.7)
becomes (0.36, 0.64).

4.3. The Fine-Tuning Loss Function

Since the training instances may be affected by noise and variability, a dilemma appears
between fitting the training data as well as possible vs. ensuring a good generalization for
new situations, especially because the model is meant to be used in a real-world urban
scenario on an actual car. A similar problem is present, e.g., when assessing the value of
the C parameter for support vector machine (SVM) models, where it controls the balance
between trying to create a precise model and allowing training errors to increase the
generalization capability.

In our case, if the trajectory points are not identical, overfitting causes mode collapse,
where all instances are assigned to a single mode. However, a model with incomplete
training may not be affected by this, and thus similar past histories may be assigned
multiple modes, but also the training error is larger than desired.

Therefore, we decided to train the model for fewer training epochs, and finally added
a fine-tuning phase to decrease the error of the predicted trajectories without changing
their probabilities.

For this purpose, a mask M is calculated that identifies the dominant mode for each
training instance. The outputs corresponding to the predicted trajectory points only for the
mode with the lowest MSE are assigned a value of 1, and the rest remain 0. The outputs
related to the probabilities also have their mask values equal to 0. Thus, the fine-tuning
loss is defined as the mean square loss only for the elements identified by the mask:

L f t =

∑
k

((
yk − yd

k

)
·Mjk

)2

∑
k

Mjk
(8)

where k is the index of the elements of vectors y (the predicted network output), yd (the
desired output), and the columns of M (the mask), while j denotes a training instance.
Basically, Lft computes the MSE only for the elements included in the mask.

Although only two training cycles were adopted in the present case studies. i.e., one
conditional training phase and then one fine tuning phase, it is possible to have more
such alternating phases iteratively, in order to enhance both the multi-modal trajectory
probabilities and the quality of the trajectories.

5. Case Studies

5.1. Simple Bimodal Trajectories

In this section, we include two very simple problems to demonstrate more clearly the
type of problems addressed in our work and the obtained results. These trajectories have
only two modes, and the network architecture is simpler, with a (3:24:3) configuration, i.e.,
3 inputs, 24 neurons in a hidden layer, and 3 outputs.

First, let us consider a dataset of 1D trajectories with three points in the past and
present and three points to be predicted in the future, as displayed in Table 1. These
instances correspond to the multimodal trajectory problem displayed in Figure 9. One
can see that the first five points are common between the two possible trajectories that
diverge afterwards. Since only three points are considered in an instance, the model should
identify the two possible trajectories for the inputs in instances 1–3, which are the same
as in instances 6–8. Then, the inputs in instances 4–5 and 9–10 should uniquely identify a
specific trajectory.

The obtained results are presented in Figure 10. The instances with the same inputs
are not repeated, because the results would be the same. These results can be interpreted as
follows. The unindented lines represent the three inputs’ points. Then, the next two lines
represent the computed outputs. In each such line, the three output values are presented.
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In the brackets, p (the probability of a mode) and the MSE between the model output
and the actual output are included. The content of lines 1–3 corresponds to instance 1 in
Table 1; that is why the MSE in line 2 is much smaller than that in line 3, because the MSE is
computed for the desired output of instance 1. If we had repeated the inputs for instances
6–8, the MSE corresponding to the second mode would have been close to 0.

Table 1. The dataset for a simple symmetric bimodal trajectory problem.

Instance Input Output

1 0.00 0.10 0.20 0.30 0.40 0.50
2 0.10 0.20 0.30 0.40 0.50 0.60
3 0.20 0.30 0.40 0.50 0.60 0.70
4 0.30 0.40 0.50 0.60 0.70 0.80
5 0.40 0.50 0.60 0.70 0.80 0.90
6 0.00 0.10 0.20 0.30 0.40 0.41
7 0.10 0.20 0.30 0.40 0.41 0.42
8 0.20 0.30 0.40 0.41 0.42 0.43
9 0.30 0.40 0.41 0.42 0.43 0.44
10 0.40 0.41 0.42 0.43 0.44 0.45

Figure 9. Simple bimodal trajectories.

 
Figure 10. The prediction results for the symmetric bimodal problem.

Because the dataset is balanced between the two modes, the probabilities for the first
three cases are close to 0.5. The last four cases are the situations where the future trajectory
can be uniquely determined from the inputs, thus the result is unimodal. The probability
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of the dominant mode is close to 1, and the other mode, with a probability close to 0, is
represented in gray. Still, it is interesting to see that the inactive modes continue the trends
of their learned trajectories, either with a larger slope (the red one) or with a smaller slope
(the blue one).

The dataset in Table 2 shows a similar situation, but the first five instances are repeated
at the end in order to give them a higher weight in the computation of probabilities, because
the network will encounter that case more frequently.

Table 2. The dataset for a simple asymmetric bimodal trajectory problem.

Instance Input Output

1 0.00 0.10 0.20 0.30 0.40 0.50
2 0.10 0.20 0.30 0.40 0.50 0.60
3 0.20 0.30 0.40 0.50 0.60 0.70
4 0.30 0.40 0.50 0.60 0.70 0.80
5 0.40 0.50 0.60 0.70 0.80 0.90
6 0.00 0.10 0.20 0.30 0.40 0.41
7 0.10 0.20 0.30 0.40 0.41 0.42
8 0.20 0.30 0.40 0.41 0.42 0.43
9 0.30 0.40 0.41 0.42 0.43 0.44
10 0.40 0.41 0.42 0.43 0.44 0.45
11 0.00 0.10 0.20 0.30 0.40 0.50
12 0.10 0.20 0.30 0.40 0.50 0.60
13 0.20 0.30 0.40 0.50 0.60 0.70
14 0.30 0.40 0.50 0.60 0.70 0.80
15 0.40 0.50 0.60 0.70 0.80 0.90

The results included in Figure 11 show that the probability of the corresponding
mode increases to 0.67 as expected, while the unimodal trajectories are still identified by
probabilities close to 1.

 

Figure 11. The prediction results for the asymmetric bimodal problem.

Again, the non-selected modes still capture an approximation of the other “would-be”
trajectory, e.g., going to 0.78 in the last case (according to the red trend), or to 0.47 in the
penultimate one (according to the blue trend).
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5.2. The inD Dataset

Our main case of study is based on the inD dataset (Intersection Drone Dataset) [41], a
recently compiled collection of vehicle trajectories recorded at intersections in Germany
using a drone. This method of data collection eliminates the limitations commonly encoun-
tered with conventional traffic data collection techniques, such as occlusions. Utilizing
modern computer vision algorithms, the positional error is typically within 10 cm. Traffic
was recorded at four different intersections and the trajectories of each road agent and its
respective type have been extracted. The types of the traffic participants available are cars,
buses or trucks, bicyclists, and pedestrians.

5.2.1. Implementation Details

For the InD dataset, for intersection A, information about each class of agent was
extracted separately because a distinct model was trained for each type. The dataset
contains 135,956 instances, of which 74,530 correspond to cars, 4518 correspond to buses
or trucks, 51,121 correspond to pedestrians, and 5787 correspond to bicyclists. Of these
instances, 25% were used for testing. Overall, 101,967 instances were used for training, and
33,989 instances were used for testing. The results presented in Section 5.2.2 were obtained
only for the testing set.

The predicted trajectories correspond to a 5 s time horizon with 20 trajectory points,
each at 0.25 s intervals. To train a model, 100,000 epochs are used, which are split into two
parts: the conditional training phase and the fine-tuning phase, as described in Sections 4.2
and 4.3. For each model, the process takes approximately 4 h on a HP Z4 G4 station with a
3.6 GHz Intel 4 Core Xeon W-2123 processor, 32 GB of RAM, and an nVidia GeForce RTX
2080 graphics card.

During the experiments, different optimizers were used, including RMSProp (Root
Mean Squared Propagation) and SGD (Stochastic Gradient Descent), as well as different
types of activation functions for the hidden layers, such as sigmoid, hyperbolic tangent,
ReLU (Rectified Linear Unit), and ELU (Exponential Linear Unit), together with different
learning rates. Empirically, it was found that the configuration displayed in Figure 8 and
the Adam optimization algorithm with a learning rate of 10−3 provided the best results.

5.2.2. Evaluation Metrics

The average displacement error (ADE) and the final displacement error (FDE) are the
two most commonly applied metrics to measure the performance of trajectory prediction.

ADE is the average Euclidian distance between the desired data and the predicted
data, summed over all time steps:

ADE =

T
∑

t=1

√
(xd

t − xt)
2
+ (yd

t − yt)
2

T
(9)

where T is the number of prediction steps, x and y are the predicted coordinates and xd and
yd are the desired values, i.e., the ground truth.

FDE measures the Euclidian distance between the desired final position and the
predicted final position:

FDE =

√
(xd

T − xT)
2
+ (yd

T − yT)
2 (10)

It measures the ability of a model to predict the destination and is more challenging as
errors accumulate over time.

In our experiments, we evaluate the unimodal approach prediction and the best
prediction for multimodal approach. We consider the best prediction the one that has the
smallest ADE and FDE among the three predicted trajectories.

141



Mathematics 2023, 11, 1923

For each type of traffic participant such as car, truck, bicyclist, or pedestrian, a different
model is trained in order to learn the specific behavior that depends on the class of the
agent. In Tables 3 and 4, the results for each type of agent in unimodal and multimodal
settings are presented.

Table 3. Unimodal results for different agent types.

Unimodal

Agent Type ADE (m) FDE (m)

Car 0.356 0.602
Truck and bus 0.355 0.571

Bicyclist 0.788 0.474
Pedestrian 0.274 0.473

Table 4. Multimodal results for different agent types.

Multimodal (3 Modes)

Agent Type ADE (m) FDE (m)

Car 4.532 23.912
Truck and bus 7.798 31.418

Bicyclist 7.571 32.632
Pedestrian 1.533 5.784

In Figure 12, some results are displayed using the unimodal approach when the
current agent type is a car. Then, we show some predictions when the current agent type is
a bus (Figure 13), a bicyclist (Figure 14), and a pedestrian (Figure 15). The past trajectory of
the ego agent is drawn in red, the desired trajectory is drawn in blue, and the predicted
trajectory is drawn with light blue. The surrounding agents are represented in blue and
yellow. These color codes are the same for all unimodal scenarios.

Figure 12. Traffic scene prediction with the unimodal approach. In this scenario, the car is changing
the lane.
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Figure 13. Traffic scene prediction with the unimodal approach. In this scenario, the bus is stopping
at the bus station.

Figure 14. Traffic scene prediction with the unimodal approach. In this scenario, the bicyclist is going
to the sidewalk part of the road.
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Figure 15. Traffic scene prediction with the unimodal approach. In this scenario, the pedestrian is
crossing the street on the sidewalk.

Similar results are presented as follows, this time considering the multimodal predic-
tion. In these scenarios, the predicted trajectory is drawn with light blue, magenta, and
green. The current agent types are a car (Figure 16) and a bicyclist (Figure 17).

 

Figure 16. Traffic scene prediction with the multimodal approach. In this scenario, the car has the most
probable maneuver with light blue (turning right) and the second one with magenta (turning left).
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Figure 17. Traffic scene prediction with the multimodal approach. In this scenario, the bicyclist has
the most probable maneuver drawn with magenta (going to the sidewalk), the second one drawn
with green (going to the bus station), and the third one drawn with blue (following the lane).

5.2.3. Decreasing the Number of Predicted Points

An idea for a faster prediction of future trajectories for different traffic participants is
to reduce the number of predicted points and to interpolate the values in order to obtain
the entire trajectory. This can be observed in Figure 18.

Figure 18. Traffic scene prediction with the unimodal approach and a reduced number of prediction
points.
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Table 5 contains the results corresponding to fewer predicted points for cars with the
unimodal approach.

Table 5. Unimodal results with fewer predicted points.

Unimodal

Agent Type ADE (m) FDE (m)

Car 0.355 0.601

5.2.4. Comparison with Other Models

In this section, we include some results obtained in recent years (2021–2023) by other
researchers using various methods on the inD dataset. Tables 6–8 organize the results by
paper, subset of the database used (e.g., certain intersections), and by model type. The
same metrics (ADE and FDE) are considered. When a paper reports multiple results for a
certain class of scenarios, only the best ones are included in Tables 6–8, i.e., the best results
rather than the average results are selected. It is important to note that the data refer to the
trajectory prediction for all vehicles, while our approach also takes into account the type of
traffic participants for prediction.

It should be noted that these values should not be directly compared, as different
authors use different parts of the inD dataset, different prediction horizons, or even certain
predefined data splits to test the models’ prediction capabilities. Therefore, a comparison
with the results reported in the previous section should be considered from a qualitative
point of view. Nevertheless, evaluating different methods for the same dataset can provide
the reader with a general idea of the order of magnitude of the obtained errors.

There are other authors who focus only on trajectory prediction for pedestrians,
e.g., [34], which uses the general inD dataset. The results are displayed in Table 9.

Upon analysis of the values presented by these authors, we observe that our results
are comparable, and even better, in the unimodal case. However, it should be emphasized
that our main goal was not solely to minimize some metric, but to create a model that can
feasibly run in a real autonomous car. Due to real-time constraints, we were unable to
explore more computationally expensive methods that may have resulted in lower errors.
Nonetheless, we believe that the prediction quality obtained by our proposed model is on
a par with other complex techniques that contribute to the current state of the art.

Table 6. Performance of vehicle trajectory prediction models on the inD dataset reported in [33].

Subset of inD Model ADE (m) FDE (m)

General inD

S-LSTM 1.88 4.47

S-GAN 2.38 4.66

AMENet 0.73 1.59

DCENet 0.69 1.52

Vanilla-TF 1.07 2.65

Oriented-TF 1.02 2.57

Intersections
(mixed)

Vanilla-TF 2.09 5.85

Oriented-TF 1.81 4.98

Roundabouts
(mixed)

Vanilla-TF 2.75 7.78

Oriented-TF 2.31 6.38
S-LSTM = Social Long Short-Term Memory; S-GAN = Social Generative Adversarial Network; AMENet =
Attentive Maps Encoder Network; DCENet = Dynamic Context Encoder Network; TF = Transformer network.
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Table 7. Performance of vehicle trajectory prediction models on the inD dataset reported in [23].

Subset of inD Model ADE (m) FDE (m)

Intersection A

S-LSTM 2.04 4.61

S-GAN 2.84 4.91

AMENet 0.95 1.94

DCENet 0.72 1.50

Intersection B

S-LSTM 1.21 2.99

S-GAN 1.47 3.04

AMENet 0.59 1.29

DCENet 0.50 1.07

Intersection C

S-LSTM 1.66 3.89

S-GAN 2.05 4.04

AMENet 0.74 1.64

DCENet 0.66 1.40

Intersection D

S-LSTM 2.04 4.80

S-GAN 2.52 5.15

AMENet 0.28 0.60

DCENet 0.20 0.45
S-LSTM = Social Long Short-Term Memory; S-GAN = Social Generative Adversarial Network; AMENet =
Attentive Maps Encoder Network; DCENet = Dynamic Context Encoder Network.

Table 8. Performance of vehicle trajectory prediction models on the inD dataset reported in [42].

Subset of inD Model ADE (m) FDE (m)

Bendplatz
intersection

VectorNet 3.80 7.52

MTP (based on MLP) 1.10 2.13

Frankenburg
intersection

VectorNet 2.19 4.44

MTP (based on MLP) 1.85 3.62
MTP = Multi-vehicle Trajectory Prediction; MLP = Multi-Layer Perceptron.

Table 9. Performance of pedestrian trajectory prediction models on the inD dataset reported in [34].

Model ADE (m)

Vanilla-LSTM 1.38

Vanilla-TF 1.07

Context-LSTM 1.03

Context-TF 0.80
LSTM = Long Short-Term Memory; TF = Transformer network.

5.3. Vehicle Integration within the PRORETA 5 Project

A separate dataset was created for vehicle integration, as no dataset was available that
matched the specific scenarios required by the project. For this reason, the dataset was cre-
ated based on real measurements from the vehicle and by using the CARLA simulator [43]
with QGIS [44] with the same interfaces as in the real vehicle. The simulated scenarios were
created to have more variation in the dataset.

The network models were developed using the PyTorch framework in Python. The
trained networks were then exported in the ONNX (Open Neural Network Exchange)
format and imported for use with the C language on the car computer.
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By using the Frenet coordinate system, the reference path was considered to be the
center of the road. This was extracted with a converter from a measurement as we can see
in Figure 19. This is the test track that was used to develop the solution in the PRORETA
5 project.

 

Figure 19. Reference path used for the Frenet transformation.

Beside the difficulties arising from the fact that there were not enough data available
for training, another challenge was to synchronize the module with the other modules
running on the vehicle. In this case, the prediction approach was implemented to have two
options, one to be input-triggered and the other one to be time-triggered (once every 100
ms). For the input-triggered concept, which was eventually used, the prediction module
is triggered by the perception module which has a variable frequency of sending output
data. Since the prediction must provide a predicted trajectory with a fixed timestamp, in
our case 0.2 s, time synchronization is necessary. In order to accomplish this, an additional
interpolation module was implemented.

Another important aspect is to check whether a predicted trajectory is valid or not,
e.g., if some points are off road or if the distance between the current position and the first
predicted point is too large. If it is not valid, it should be replaced by a backup trajectory
that is computed based on the specific situation. This is important to ensure a valid output
in a real vehicle and to improve the planned trajectory of the ego vehicle that takes into
account the predicted trajectories of the other traffic participants.

In Figure 20, one can see some results from the real vehicle that include the planned
trajectory of the ego vehicle and the predicted trajectory of the other agents.

 

Figure 20. Cont.
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Figure 20. Two examples of traffic scene prediction from the vehicle.

6. Conclusions

In this paper, we propose a method for predicting the trajectories of various types of
traffic participants using vectors and an original design of a neural network. This technique
was developed using the inD dataset and a dataset created from real-world scenarios.
One of the main advantages of this approach is that it is integrated and can be run on a
real vehicle.

An important aspect of this research was the dataset used to develop and train the
model. In this particular case, vectors were necessary, as opposed to images, because the
information from the sensors was assumed to have already been created. Another challenge
was that most of the available vector datasets did not match the scenarios required for the
project. After studying and implementing various vector approaches, we discovered that
some of them did not produce the desired results. This makes a fair comparison between
the presented method and other methods difficult to achieve.

The paper shows that the unimodal implementation performs better than the mul-
timodal implementation because most maneuvers follow the lane, and, therefore, many
variations in the trajectories cannot be learned. In the case of bicyclists, there are more
variations, resulting in better results.

We included many practical details about using prediction in a real-world case, pro-
viding a more hands-on approach to the topic. This level of detail is often omitted in other
papers, but we have found that different approaches to handling these details can have a
significant impact on the overall performance of prediction.

Our method takes into account the constraints related to real-time operation in an
actual self-driving car, ensuring that the predictions made are feasible and relevant in a
practical setting. Synchronization with other modules, such as the perception and trajectory
planning module, is crucial for a successful implementation of this technique.

As future research directions, this method can be extended to newer vector-based
datasets and can be applied to other time series, further increasing its scope and potential
impact in the field. An additional parameter can be added to measure the level of noise
and variation in the data for the multimodal case, in order to create a balance between
trying to fit data to a conservative trajectory or allowing several different trajectories to be
generated. This would provide a more comprehensive understanding of the data and its
reliability, allowing for more informed predictions. An explicit analysis of the uncertainty
of predictions is another valuable area for further investigation. This analysis can provide
insight into the confidence level of the predictions made by the model and allow for a
better understanding of its limitations. It can improve the reliability of the predictions and
increase the confidence in the system.
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Abstract: Gaussian process-based Bayesian optimization (GPBO) is used to search parameters in
machine learning, material design, etc. It is a method for finding optimal solutions in a search space
through the following four procedures. (1) Develop a Gaussian process regression (GPR) model using
observed data. (2) The GPR model is used to obtain the estimated mean and estimated variance for
the search space. (3) The point where the sum of the estimated mean and the weighted estimated
variance (upper confidence bound, UCB) is largest is the next search point (in the case of a maximum
search). (4) Repeat the above procedures. Thus, the generalization performance of the GPR is directly
related to the search performance of the GPBO. In procedure (1), the kernel parameters (KPs) of
the GPR are tuned via gradient descent (GD) using the log-likelihood as the objective function.
However, if the number of iterations of the GD is too high, there is a risk that the KPs will overfit
the observed data. In this case, because the estimated mean and variance output by the GPR model
are inappropriate, the next search point cannot be properly determined. Therefore, overtuned KPs
degrade the GPBO search performance. However, this negative effect can be mitigated by changing
the parameters of the GPBO. We focus on the weight of the estimated variances (exploration weight)
of the UCB as one of these parameters. In a GPBO with a large exploration weight, the observed
data appear in various regions in the search space. If the KP is tuned using such data, the GPR
model can estimate the diverse regions somewhat correctly, even if the KP overfits the observed data,
i.e., the negative effect of overtuned KPs on the GPR is mitigated by setting a larger exploration
weight for the UCB. This suggests that the negative effect of overtuned KPs on the GPBO search
performance may be related to the UCB exploration weight. In the present study, this hypothesis was
tested using simple numerical simulations. Specifically, GPBO was applied to a simple black-box
function with two optimal solutions. As parameters of GPBO, we set the number of KP iterations
of GD in the range of 0–500 and the exploration weight as {1, 5}. The number of KP iterations
expresses the degree of overtuning, and the exploration weight expresses the strength of the GPBO
search. The results indicate that, in the overtuned KP situation, GPBO with a larger exploration
weight has better search performance. This suggests that, when searching for solutions with a small
GPBO exploration weight, one must be careful about overtuning KPs. The findings of this study are
useful for successful exploration with GPBO in all situations where it is used, e.g., machine learning
hyperparameter tuning.

Keywords: machine learning; Bayesian optimization; Gaussian process; overfitting

MSC: 68T01; 62J02

1. Introduction

Gaussian process-based Bayesian optimization (GPBO) optimizes black-box functions
and is adopted to save time and/or reduce costs. For example, it is used for concrete
design [1,2], material design [3–5], and tuning hyperparameters in machine learning (for
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support vector machines [6–8], random forest models [9,10] and neural networks [9,11,12],
etc.). Appropriate parameters can be obtained more rapidly using GPBO compared with
simple methods such as grid search. For example, Wu et al. [9] reported that the compu-
tation time of hyperparameter tuning in machine learning can be reduced significantly
using GPBO. Snoek et al. [11] reported that when GPBO was used for tuning, the devel-
oped convolutional neural networks had higher generalization scores than networks with
parameters tuned by an expert of machine learning.

To perform GPBO, a Gaussian process regression (GPR) model must be developed, which
is computationally expensive. The computational cost of the kernel inverse matrix required in
GPBO isO(n3) for a data size of n [13]. Due to the fact that n increases with each successive
GPBO iteration, the computational cost increases. Therefore, sparse matrix methods [13–16]
and mini-batch methods [17] have been proposed for reducing the computational cost.

In the log-likelihood-based objective function, the kernel inverse matrix is used to
tune the hyperparameters of the GPR model [18]. Gradient-based methods [17,19,20],
evolutionary algorithms [21,22], and Markov chain Monte Carlo methods [23] have been
adopted for hyperparameter tuning of the GPR model. Cross-validation [18] is adopted
for tuning the kernel parameters (KPs) to avoid overfitting to the observed data. However,
because the size of the observed data gradually increases, performing cross-validation
at the beginning of GPBO is difficult. Therefore, we cannot perform cross-validation
at the beginning of GPBO to tune the hyperparameters of the GPR model. Moreover,
cross-validation increases the computational cost [18].

In the early stages of GPBO, the sample size is insufficient. Additionally, it is difficult
to properly tune a GPR model by a small sample size [24,25]. Therefore, consider the
situation wherein the KPs are tuned using all samples instead of using a method that
reduces the number of data, such as cross-validation. In this case, because there are no data
for validation, it is not known to what extent the KPs should be fitted to the observed data.
Thus, there is a risk of overtuning the GPR model. Overtuned GPR models can correctly
estimate observed regions but cannot properly estimate unobserved regions [26]. GPBO
is an algorithm that searches for the optimal solution in unobserved regions. Therefore,
if unobserved areas cannot be correctly estimated, a proper search cannot be performed.
From this viewpoint, the search performance of Bayesian optimization using an overfitted
GPR model is expected to be poor.

The negative effect of overtuned KPs on the search performance depends on other
parameters of GPBO. We focus on the exploration weight of the upper confidence bound
(UCB) [27,28], which is a GPBO parameter. Generally, when the exploration weight is set
to a large value, the next search point tends to be selected from regions with insufficient
observations; therefore, the observed samples appear in various areas. In this case, even if
the KPs are overfitted to the observed samples, the GPR model can correctly estimate the
various input domains. In contrast, with a small exploration weight, because the observed
samples appear in only limited regions, the overfitted GPR model only estimates limited
regions; therefore, its generalization score is worse.

This implies that the risk of overtuned KPs degrading the search performance depends
on the exploration weight. We verified this hypothesis by analyzing the relationships
among the overtuned KPs, exploration weight, and GPBO search performance. The results
indicated that, for GPBO, more attention must be paid to the overtuning of the KPs in the
case of smaller exploration weights. Additionally, it is necessary to pay attention to avoid
overtuning KPs when searching for the solution via GPBO with a small exploration weight.
These findings are useful for successful exploration with GPBO in all situations where it is
used, e.g., hyperparameter tuning in machine learning.

As indicated by previous studies [21,24,25], the likelihood function in GPR may have
multiple minimal solutions, making it difficult to find a globally optimal solution. Therefore,
we focused on gradient descent (GD), which can rapidly obtain a local minimal solution,
as a method for tuning the KPs. This method is widely used for tuning the KPs of GPR
models [17,19,20].
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2. Gaussian Process-Based Bayesian Optimization

2.1. Surrogate Model

In this study, we use the GPR model as a surrogate model for Bayesian optimization,
which we call GPBO. This method outputs the estimated average and variance by assuming
a Gaussian distribution from the dataset D consisting of pairs of observed input and
output values.

Here, the output value y is obtained as

y = f (x) + ε, (1)

where x = [x1 · · · xD]
� is the D-dimensional input vector, f (x) is a black-box function,

and ε denotes observation noise. In addition, we consider a situation in which a dataset

D = {(xn, yn)|n = 1, · · · , N} (2)

is collected via N observations. In the case of GPR, assuming that the average of y is
zero, the average and variance values of the output y′ for the new input data x′ are given
as follows:

E[y′|x′,D, θ] = k′(θ)�K(θ)−1y, (3)

V[y′|x′,D, θ] = k′′(θ)− k′(θ)�K(θ)−1k′(θ) (4)

where y = [y1 · · · yN ]
�. K(θ) is a kernel matrix defined as follows:

K(θ) =
[
k(xi, xj; θ)

]
∈ R

N×N
>0 (5)

where k(xi, xj; θ) denotes the kernel function. For Gaussian kernels, the kernel function is
defined as

k(xi, xj; θ) = θ1 exp

(
−
||xi − xj||22

θ2

)
+ θ3δ(i, j), δ(i, j) =

{
0, i �= j
1, i = j

, θ ∈ R
3
>0 (6)

where θ = (θ1, θ2, θ3) is a vector comprising three KPs. Due to the fact that the estimation
accuracy depends on the KPs, appropriate tuning is important. k′′(θ) and k′(θ) are the
kernels related to the observed samples xi and new sample x′, respectively, and are defined
as follows:

k′′(θ) = k(x′, x′; θ), k′(θ) =
[
k(xi, x′; θ)

]
∈ R

N
>0. (7)

2.2. Tuning Kernel Parameters

As stated in the Introduction, the KP vector θ is tuned using GD. Due to the fact that
the θ that maximizes the generation probability of the observed output y is desirable, using
the log-likelihood, the objective function L is defined as

L(θ) = log p(y|θ)
= logN (0, K(θ)) (8)

= log

(
1√

(2π)N |K(θ)|
exp

(
−1

2
y�K(θ)−1y

))
∝ − log |K(θ)| − y�K(θ)−1y.

We assume that p(y|θ) is a Gaussian distribution consisting of the average 0 and the
covariance matrix K(θ). When we adopt the gradient method for the objective function, θ
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may be negative. Due to the fact that the Gaussian KP θ requires a plus (see Equation (6)),
θ is redefined as follows:

θ = g(θ′)

= exp(θ′), θ′ = [θ′1 θ′2 θ′3]
� (9)

where the map g is

g : R3 �→ R
3
>0. (10)

Therefore, when the gradient method is run as the search target θ′ and the obtained
parameter is transformed into θ using Equation (9), θ will certainly be positive. Therefore,
we use the update equation for the KPs, as follows:

θ′(tg+1) = θ′(tg) + γ∇L
(

exp(θ′(tg))
)

(11)

where tg represents the iteration count, θ′(tg) is the tg-th specific value of θ′, and γ represents
the learning rate. This partial differentiation is as follows:

∇L
(
exp(θ′)

)
=− tr

(
K(exp(θ′))−1∇K(exp(θ′))

)
+

(
K(exp(θ′))−1y

)�
∇K(exp(θ′))

(
K(exp(θ′))−1y

)
. (12)

Due to the fact that K is the matrix consisting of kernel functions, i.e., ∇K(exp(θ′)), the
partial derivative of k(xi, xj; exp(θ′)) with respect to θ′1, θ′2, θ′3 is required, i.e.,

∂k(xi, xj; exp(θ′))
∂θ′1

= exp(θ′1) exp

(
−
||xi − xj||22

exp(θ′2)

)
, (13)

∂k(xi, xj; exp(θ′))
∂θ′2

=
exp(θ′1)
exp(θ′2)

||xi − xj||22 exp

(
−
||xi − xj||22

exp(θ′2)

)
, (14)

∂k(xi, xj; exp(θ′))
∂θ′3

= exp(θ′3)δ(i, j). (15)

This calculation technique was described by Mochihashi et al. [29].
After the parameter is updated Tg times, we obtain θ′(Tg). Substituting this into

Equation (9) yields the tuned KP θ(Tg). According to Equation (10), the obtained parameter
θ(Tg) satisfies the condition of R3

>0.

2.3. Optimization Algorithm for Experiments

Using Equations (3) and (4), the acquisition function of GPBO is defined as

A(x′; β, θ) = E[y′|x′,D, θ] + β
√
V[y′|x′,D, θ] (16)

and it is called the UCB [27,28]. Here, with N observed samples, the N + 1-th (next)
observation sample is determined as follows:

xN+1 = argmax
x′∈Ψ

A(x′; β, θ), (17)

yN+1 = f (xN+1) + ε (18)
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where Ψ represents the domain of the input x′. The second term of the acquisition function,
which is defined in Equation (16), controls the search weight. When β is set to a large value,
exploration is emphasized. Subsequently, the observation dataset is updated as

D = D ∪ {(xN+1, yN+1)}. (19)

By performing this process Tb times, we obtain the maximum value ymax and the approxi-
mate solution xmax as follows:

ymax = maxDy, xmax = argmax
x∈Dx

Dy (20)

where Dy and Dx are the sets consisting of the output and input values, respectively, of the
set D. This procedure is presented in Algorithm 1.

Algorithm 1 Verification-targeted optimization algorithm

Input:
Initial observation dataset D, maximum number of BO iterations Tb,
maximum number of GD iterations Tg, GD learning rate γ, exploration weight β,
black-box function f (x), observation noise ε,
search space Ψ, initial KP θ(0) = exp(θ′(0))

Output:
Solution xmax and its value ymax
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: for tb = 1 to Tb do
2: for tg = 0 to Tg − 1 do

3: θ′(tg+1) ← θ′(tg) + γ∇L
(

exp(θ′(tg))
)

4: end for
5: θ(Tg) ← exp

(
θ′(Tg)

)
6: xN+1 ← argmax

x′∈Ψ

A(x′; β, θ(Tg))

7: yN+1 ← f (xN+1) + ε
8: D ← D ∪ {(xN+1, yN+1)}
9: end for

10: ymax ← maxDy, xmax ← argmax
x∈Dx

Dy

11: return xmax, ymax
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notes:
· Lines 2–4: Tuning the KPs via GD;
· Lines 6–8: Decisions regarding the next search point and observation;
· Lines 10–11: Obtain an approximate solution.
“GD”: gradient descent, “BO”: Bayesian optimization

2.4. Indices

The GPBO search performance depends on the training and generalization errors of
the surrogate model. Therefore, the training and generalization errors are, respectively,
defined as

Et(θ) =
1
N

N

∑
n=1

(yn −E[yn|xn,D, θ])2, (21)

Ev(θ) =
1
|Ψ| ∑

x∈Ψ

( f (x)−E[y|x,D, θ])2. (22)

Moreover, the GPBO search performance depends on whether the next search point xN+1
and past observed points x1, · · · , xN are close, i.e., if the search is performed only near past
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observation points, the search performance is poor. Therefore, we determine whether they
are close to each other as follows:

min{||xN+1 − xn||2 | n = 1, · · · , N} < ω (23)

where ω denotes the threshold value. When the minimum distance on the left side is less
than ω, the next search point xN+1 is close to the previously observed points x1, · · · , xN .

Furthermore, whether the KP vector θ′(Tg) obtained as Tg times GD has converged is
determined as follows:

||θ′(Tg) − θ′(Tg−1)||2
||θ′(Tg−1)||2

< τ (24)

where τ is the threshold for the convergence criterion. The term on the left side is called the
“relative change in parameters,” and it is widely used as a convergence criterion [30–32].

Table 1. Input values for Algorithm 1. {·} is a set consisting of multiple elements, i.e., multiple
patterns were adopted.

Parameters Value(s)

Maximum number of GD iterations Tg {0, 50, 100, · · · , 500}
GD learning rate γ 0.01

Maximum number of BO iterations Tb 50
Exploration weight β {1, 5}

Initial KP θ(0) [1 1 1]�

Search space Ψ Equation (25)
Black-box function f (x) Equation (25)

Observation noise ε 0
Initial observation dataset D Four points randomly selected in Ψ

3. Experiments

3.1. Objective and Outline

From the definition of A(x′; β, θ), the search performance of GPBO depends on the
KP θ. Due to the fact that the KP is obtained via GD, the maximum number of iterations
for updating Tg significantly affects the GPBO search performance. When the number of
iterations Tg is too high, the surrogate model is overfitted to the observation samples. In
such cases, a relatively poor search performance is expected. When the exploration weight
is set to a large value, because the observed samples occur in various regions in the input
domain, the generalization error caused by overfitting may be mitigated. In contrast, when
a small value is used for the exploration weight, because observation samples only occur in
limited regions, the generalization error can be larger. Due to the fact that the generalization
performance of the surrogate model affects the GPBO search performance, we consider
that the negative effect of the overfitted KPs on the search performance depends on the
exploration weight β. This hypothesis was verified through a simple numerical simulation.

We adopted the black-box function f (x) and its search space Ψ as follows:

f (x) =
1
3

sin
x1

3
sin

x2

3
− (x1)

2

300
− (x2)

2

300
+

5
6

, x ∈ Ψ := [−10, 10]× [−10, 10]. (25)

For simplicity, we set the observation noise to ε = 0. The black-box function is shown
in Figure 1. The adopted black-box function had two optimal solutions.

We used GPBO based on Algorithm 1, and the values of the input parameters are
presented in Table 1. To verify the aforementioned hypothesis, the effects of the degree of
kernel-parameter tuning and the exploration weight on the GPBO search performance were
analyzed. Therefore, we adopted multiple values for the maximum number of GD iterations
Tg and exploration weight β. Moreover, the initial observation dataset D comprised four
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randomly selected points x1, · · · , x4 from the search space Ψ. To enhance the reliability of
the results, we performed 20 experiments in which the same parameter conditions were
used but the random seed identification was changed.

Figure 1. Adopted black-box function f (x) defined by Equation (25).

3.2. Results and discussions

The relationship between the maximum number of GD iterations and the kernel-
parameter tuning is presented in Figure 2A. The figure shows the rate at which the KPs
θ(Tg) obtained via the GD of each Bayesian optimization step of 50 iterations converged. We
investigated whether the convergence was determined by Equation (24) for τ = 0.01. The
results represent the averages of 20 trials with different seeds. For β = 1 and 5, Figure 2A
suggests that the log-likelihood converged when the maximum number of GD iterations
Tg was set as more than approximately 300. Therefore, we regarded the KPs as overtuned
at >300 GD iterations.

Figure 2. Relationships between the maximum number of GD iterations and other indices. Figure (A)
presents the convergence achievement rates for Equation (24). (First, we averaged the results of all
the Bayesian optimization steps (Tb = 50). Then, the averages and standard deviations of the results
for 20 seeds were calculated.) Figure (B) presents the rates of finding two optimal solutions (total
of 20 seeds). Figure (C) presents the average number of optimization steps needed for finding two
optimal solutions calculated with only the results where two optimal solutions were successfully
found (total of 20 seeds). The error bars indicate the standard deviations.

Figure 2B shows the rate of finding the two optimal solutions in 20 trials with different
seeds. The maximum number of GD iterations was the degree of kernel-parameter tuning
via GD. For β = 1, a larger maximum number of GD iterations corresponded to worse
search performance. In contrast, for β = 5, even when the maximum number of GD
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iterations was large, the rates of finding solutions remained high. Therefore, we consider
that even if KPs are overtuned to the observation dataset, in cases of a large exploration
weight, GPBO can adequately search for solutions (of course, it is desirable to avoid
overfitting). Figure 2C presents the average number of Bayesian optimization steps needed
for finding two optimal solutions calculated using only the results where two optimal
solutions were successfully found. As shown, for a smaller value of β and a larger number
of KPs tuned, the optimal solutions were found faster. However, as shown in Figure 2B,
the rate of correctly finding the optimal solutions was lower. Therefore, for a small β, the
KPs should not be excessively tuned. In contrast, for a large β, the negative effect caused
by the overtuned KPs was not observed.

Next, we verified the training error Et(θ) and generalization error Ev(θ) defined
by Equations (21) and (22) for analyzing the effect of the exploration weight β on the
GPBO search performance. Figure 3A,B show the training errors. Figure 3C,D show
the generalization errors. We transformed them into log errors, that is, using log Et(θ)
instead of Et(θ). As the maximum number of GD iterations Tg and number of Bayesian
optimization steps tb increased, the training errors decreased. In contrast, in the latter
half of the Bayesian optimization process, a higher number of tuned KPs (i.e., larger Tg)
corresponded to larger generalization errors. When the generalization error of the surrogate
model was large, because the reliability of the first term of the acquisition function defined
by Equation (16) was low, the GPBO search performance was poor. From these results, for
β = 1, we attribute the degradation of the GPBO search performance to the overtuning
of the KPs, which increased the generalization error. For β = 5, even when the KPs were
overtuned, there were many regions with small generalization errors. Therefore, in this
case, we consider that the GPBO search performance was not degraded.

When observation samples occur in a limited region, the generalization error is large,
because the surrogate model based on these data cannot correctly estimate the output values
of various regions in the search space. To verify this hypothesis, we used Equation (23) with
ω = 0.5 and calculated the rate at which the next search point determined by Equation (17)
and the observed points were close. The results are presented in Figure 3E,F. Figure 3E
suggests that, when the exploration weight was set as β = 1, the GPBO searched for areas
close to previously observed samples. This was particularly true when large numbers
of KPs were tuned. For example, in the case of β = 1 and Tg = 500, when the number
of Bayesian optimization steps exceeded approximately 35 (tb > 35), the search area of
GPBO remained close to the previously observed samples. This trend was weaker for a
smaller value of Tg. Thus, there was a stronger tendency to search close to the previously
observed samples when the KPs were overtuned. Therefore, we considered the GPBO
search performance to be poor. Figure 3F suggests that, for β = 5, the GPBO searched
various areas even if the KPs were overtuned. In summary, from Figure 3E,F, the degree
of kernel-parameter tuning affected whether GPBO searched areas close to previously
observed samples. Moreover, a smaller exploration weight β corresponded to a higher risk.
Thus, for a smaller value of β, there should be more focus on kernel-parameter tuning.

Next, we present the changes in the surrogate model for each Bayesian optimization
step in Figures 4 and 5. These values were β = 1, 5, respectively. Due to the fact that we
cannot show the results for all the seeds, the results for a specific seed are shown. In the
case where no KPs were tuned, that is, Tg = 0, appropriate searches were not performed
regardless of β. For Tg = 0, Figure 3A–D indicate that the training and generalization errors
were large. We believe that, because the surrogate model was inappropriate, the GPBO
search was inappropriate.

With a small number of KPs tuned, i.e., Tg = 50, the average E generated from the
surrogate model nearly succeeded in reproducing the black-box function f (x) regardless of
β. Therefore, the rate of correctly finding the optimal solution was high (see Figure 2B).

Figures 4 and 5 suggest that, when the number of iterations of KP tuning was Tg = 500,
the search results depended on the exploration weight β. For β = 1, because the GPBO
searched only the neighborhood of the best point from the initial solutions, even if the
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search progressed, the output from the surrogate model E could not reproduce the black-
box function f (x). In contrast, for β = 5, because observation samples appeared in various
areas, even if the KPs were overtuned, the output of the surrogate model E reproduced the
black-box function f (x). The results indicate that the negative effect of overtuning the KPs
on the GPBO search performance can be mitigated by increasing the exploration weight β.

However, in both the β = 1 and 5 cases, when the number of iterations of KP tuning
increased (Tg = 500), the surrogate model output was inappropriate when the number of
BO steps tb was approximately 30–35 (the cases of Tg = 500 are shown in Figures 4 and 5).
In general, overfitting parameters to observed data increases the risk of reduced estimation
performance in areas where there are no observed data. Therefore, overfitting can easily
occur with high Tg values. Due to the fact that this occurs in both the cases of β = 1 and 5,
it is important not to overtune the KPs, regardless of the exploration weight. Although the
negative effects of overtuned KPs can be mitigated by increasing the exploration weight,
they cannot be completely eliminated.

Figure 3. (A,B) Training errors of surrogate models calculated using Equation (21) for each maximum
number of GD iterations; (C,D) generalization errors calculated using Equation (22); (E,F) rates of
exploring the neighborhood of past observed samples. The values of (A–D) are the averages of
20 seeds, and those of (E,F) are the rates of 20 seeds. The white markers indicate the timings of
finding two optimal solutions, and the percentages are the success rates of finding them in 20 trials
with different seeds. These results are presented in Figure 2B,C. In the cases of β = 1, with a larger
maximum number of GD iterations, although a solution was found faster, the success rate was worse.
At β = 5, no such trend was observed.
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Figure 4. Average E, standard deviation
√
V of the surrogate model, and the acquisition function

E+ β
√
V for the maximum number of GD iterations Tg and exploration weight β = 1 calculated

using Equations (3), (4) and (16). The white circles represent initial points, and the black circles
represent observation points selected by the acquisition function.
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Figure 5. Average E, standard deviation
√
V of the surrogate model, and the acquisition function

E+ β
√
V for the maximum number of GD iterations Tg and exploration weight β = 5 calculated

using Equations (3), (4) and (16). The white circles represent initial points, and the black circles
represent observation points selected by the acquisition function.

4. Conclusions

The exploration weight affects the degree of exploration of GPBO. Therefore, the
GPBO search performance depends on the exploration weight. In this study, we analyzed
the mitigation of the negative effect of overtuning KPs as another effect of the exploration
weight. The results indicate that we should pay attention to overtuning the KPs in the case
of Bayesian optimization with a small exploration weight. It is preferable to use methods
for avoiding the overtuning of KPs, e.g., early stopping of the GD. In contrast, for large
exploration weights, the solution discovery rate is high even when overtuning the KPs.
These findings are useful in all situations wherein GPBO is used, e.g., hyperparameter
tuning in machine learning.

The results and discussions presented in this paper are entirely based on the black-
box function defined by Equation (25). The function has two optimal solutions clearly
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visible in the domain. However, it is not known whether the results of this study would
be reproduced if flat functions such as the Beale function [33] or the Goldstein–Price
function [34] (the minimum search) were adopted. As shown in Figure 6, the structure of
these functions is apparent after log transformation. A similar result can be obtained with a
flat function, or a logarithmic transformation may have to be performed. These points are
unclear and will be discussed in a future work.

Figure 6. (A) Beale function [33], (B) log-transformed Beale function, (C) Goldstein–Price function [34],
and (D) log-transformed Goldstein–Price function. The white diamond mark represents the global
optimal solution.
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Abstract: Three contributions are proposed. Firstly, a novel hybrid classifier (HHO-SVM) is intro-
duced, which is a combination between the Harris hawks optimization (HHO) and a support vector
machine (SVM) is introduced. Second, the performance of the HHO-SVM is enhanced using the
conventional normalization method. The final contribution is to improve the efficiency of the HHO-
SVM by adopting a parallel approach that employs the data distribution. The proposed models are
evaluated using the Wisconsin Diagnosis Breast Cancer (WDBC) dataset. The results show that the
HHO-SVM achieves a 98.24% accuracy rate with the normalization scaling technique, outperforming
other related works. On the other hand, the HHO-SVM achieves a 99.47% accuracy rate with the
equilibration scaling technique, which is better than other previous works. Finally, to compare the
three effective scaling strategies on four CPU cores, the parallel version of the proposed model
provides an acceleration of 3.97.

Keywords: support vector machine; Harris hawks optimization; scaling techniques; parallel processing

MSC: 68T05; 68Q32

1. Introduction

Breast cancer is the most common disease in men and women of all ages, accounting
for 11.7 percent of all cancer cases in 2020 [1]. It is the most common cancer in women
worldwide, accounting for 24.5 percent of all new cases diagnosed in 2020. Breast cancer
must be detected early in order to receive appropriate treatment and to reduce the number
of fatalities caused by the disease.

Expert systems and artificial intelligence techniques can aid breast cancer detec-
tion professionals in avoiding costly mistakes. These expert systems can review med-
ical data in less time and provide assistance to junior physicians. Breast cancer has
been detected with excellent accuracy using a variety of artificial intelligence techniques.
Marcano-Cedeo et al. [2] proposed the artificial metaplasticity MLP (AMMLP) method
with a 99.26 percent accuracy. An RS-SVM classifier for breast cancer diagnosis was used
by Chen et al. [3] and achieved 100% and 96.87% for the highest and average accuracy,
respectively. Hui-Ling Chen et al. [4] obtained a 99.3% accuracy using a PSO-SVM. For the
breast cancer dataset, Liu and Fu [5] presented the CS-PSO-SVM model, which merged
a support vector machine (SVM), particle swarm optimization (PSO), and cuckoo search
(CS) and obtained an accuracy of 91.3% versus 90% for both the PSO-SVM and GA-SVM
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models. Bashir, Qamar, and Khan [5] achieved a 97.4% accuracy with ensemble learning
algorithms. Tuba et al. [6] proposed an adjusted bat algorithm to optimize the parameters
of a support vector machine and showed that compared to the grid search, it led to a
96.49% better classifier versus 96.31% for the WDBC dataset. Shokoufeh Aalaei et al. [7]
introduced a feature selection strategy based on GA, which achieved a 96.9% accuracy. In
S. Mandal [8], different cancer classification models (naïve Bayes (NB), logistic regression
(LR), decision tree (DT)) were compared to find the smallest subset of features that could
warrant a high-accuracy classification of breast cancer. The author concluded that logistic
regression classifier was the best classifier with the highest accuracy of 97.9%. The particle
swarm optimization (PSO) algorithm was used as a feature option and to improve the C4.5
algorithm by Muslim et al. [9]. The accuracy of C4.5 was 95.61% versus 96.49% for the PSO
C4.5 algorithm for the WBC dataset. Liu et al. [10] suggested an improved cost-sensitive
support vector machine classifier (ICS-SVM), which took into consideration the unequal
misclassification costs of breast cancer intelligent diagnosis and tested the approach on
the (WBC) and (WDBC) breast cancer datasets. They scored 98.83% on the WDBC dataset.
Agarap [11] performed a comparison of six ML techniques and obtained a 99.04% accuracy
rate. The fruit fly optimization algorithm (FOA) enhanced by the Levy flight (LF) strategy
(LFOA) was proposed by Huang et al. [12] to optimize the best parameters of an SVM
and build an LFOA-based SVM for breast cancer diagnosis. Xie et al. [13] introduced a
new technique based on an SVM, with a combined RBF and polynomial kernel functions,
and the dragonfly algorithm (DA-CKSVM). Harikumar and Chakravarthy [14] proposed
a model that applied two machine learning (ML) algorithms, a decision tree (DT) and
the K-nearest neighbors (KNN) algorithm to the WDBC dataset after a feature selection
using a principal component analysis (PCA), and the results of the comparative analysis
indicated that the KNN classifier outperformed the DT classifier. Habib [15] used genetic
programming and machine learning algorithms and achieved a 98.24% classification accu-
racy. Hemeida et al. [16] proposed four distinct optimization strategies for the classification
of two datasets, the Iris dataset and the Breast Cancer dataset, using ANN. Telsang and
Hegde [17] presented a prediction of breast cancer using various machine learning algo-
rithms and compared the accuracy of their predictions using the WDBC dataset. After
analysis, the SVM model had an accuracy of 96.25 percent. Umme and Doreswamy [18]
proposed a hybrid diagnostic model that combined the bat method, gravitational search
algorithm (GSA), and a feed-forward neural network (FNN). When training and testing,
the accuracy on the WDBC dataset was found to be 94.28 percent and 92.10 percent, respec-
tively. Singh et al. [19] proposed the grey wolf–whale optimization algorithm, a hybrid
metaheuristic-swarm-intelligence-based SVM classifier (GWWOA-SVM). The hyperparam-
eters of the SVM were tuned using the WOA and GWO. The WDBC dataset was used to
test the effectiveness of the GWWOA-SVM. The model obtained a classification accuracy
of 97.721 percent. Badr et al. [20] proposed three contributions. They used a recent grey
wolf optimizer (GWO) to improve the performance of an SVM for diagnosing breast cancer
utilizing efficient scaling strategies in contrast to the traditional normalization technique.
They made use of a parallel technique that used task allocation to boost GWO’s efficiency.
The suggested model was tested on the WDBC dataset and obtained an accuracy rate of
98.60 percent with normalization scaling, and using scaling strategies also resulted in a fast
convergence and a 99.30 percent accuracy rate. On four CPU cores, the parallel version of
the proposed model provided a speedup of 3.9.

Scaling strategies can help classifiers become more accurate. For the SVM optimization,
Elsayed Badr et al. [21] presented ten efficient scaling approaches. For linear programming
approaches, these scaling techniques were effective [22–31]. On the WDBC dataset, they
utilized the arithmetic mean and de Buchet scaling techniques for three cases (p = 1, 2, ∞),
and the equilibration, geometric mean, IBM MPSX, and Lp-norm scaling techniques for
three cases (p = 1, 2, ∞).

The parallel swarm technique was created by the authors of [32] for two-sided bal-
ancing problems. In [33], a parallel approach was applied to data testing in order to
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achieve massive passing. The authors of [34] introduced and discussed parallel dynamic
programming methods. Reference [35] gives a survey of numerous strategies for paral-
lelizing algorithms. Reference [36] introduces a parallel approach to constraint-solving
methods. Polap et al. [37] proposed three strategies for improving traditional procedures
that reduced the solution space by using a neighborhood search. The second was to reduce
the calculation time by limiting the number of possible solutions. In addition, the two
procedures indicated above were combined. Metaheuristic algorithms such as ABC, FPA,
BA, PSO, and MFO have been used to optimize SVMs and extreme learning machines,
allowing them to readily overcome local minima and overfitting difficulties. The reader can
refer to [38,39], which present the advantages and disadvantages of traditional machine
learning methods such as SVMs and deep learning methods.

Three achievements are presented in this work. The first is a new hybrid classifier
(HHO-SVM) that combines the Harris hawks optimization (HHO) and support vector
machine (SVM) techniques. In order to increase the HHO-SVM performance, the sec-
ond contribution compares three efficient scaling algorithms with the usual normalizing
methodology. The final contribution is to improve the efficiency of the HHO-SVM by
adopting a parallel approach that employs the data distribution. The proposed models are
tested on the Wisconsin Diagnosis Breast Cancer (WDBC) dataset. The results show that
the HHO-SVM achieves a 98.24% accuracy rate with the normalization scaling technique
outperforming the results in [6–8,15,17–19]. On the other hand, the HHO-SVM achieves
a 99.47% accuracy rate with the equilibration scaling technique, better than the results
in [6–8,10,11,15,17–20]. Finally, the parallel version of the suggested model achieves a
speedup of 3.97 on four CPU cores.

The sections that follow are grouped as such: Section 2 delves into SVM and HHO.
Section 3 contains an explanation of the suggested model. Section 4 provides a complete
study of three unique scaling methods: the equilibration, arithmetic, and geometric means.
Section 5 explains the parallel version of the HHO-SVM. Section 6 has an experimental de-
sign that includes data descriptions, experimental setup, performance evaluation measures,
and a comparative analysis. The experimental results and discussion are found in Section 7.
Finally, Section 8 provides a conclusion as well as future work.

2. Preliminaries

Support vector machines (SVM) and the Harris hawks optimization (HHO) are intro-
duced and studied in this section.

2.1. Support Vector Machine (SVM)

The goal of an SVM is to find an N-dimensional hyperplane that classifies the available
data vectors with the least amount of error. An SVM employs convex quadratic program-
ming to avoid local minima [40]. If we assume a binary classification problem and have a
training dataset with a class label: (x1, y1) . . . (xn, yn), xi ∈ Rd and yi ∈ (−1,+1) where
xi is the class label and yi is the input or feature vector, the best hyperplane is as follows:

wxT + b = 0 (1)

such that w, x, and b indicate the weight, input vector, and bias, respectively. The letters w
and b fulfill the following requirements:

wxT
i + b ≥ +1 i f yi = 1 (2)

wxT
i + b ≤ −1 i f yi = −1 (3)

The goal of the SVM model training is to find the w and b that maximize the margin 1
‖w‖2 .

Nonlinearly separable problems are common. To transform the nonlinear problem to
a linear one, the input space is converted into a higher-dimensional space.
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Kernel functions [41] could be used to extend the data’s dimensions and turn the prob-
lem into a linear one. The linear and nonlinear SVMs are depicted in Figure 1. Furthermore,
kernel functions may be useful in speeding up calculations in high-dimensional space. For
example, in the extended feature space, the linear kernel can be used to compute the dot
product of two features. The most frequent SVM kernels are RBF and polynomial. They
can be expressed as:

K
(
xi, xj

)
= e−γ‖xi−xj‖2

(4)

K
(
xi, xj

)
=

(
1 + xT

i xj

)p
(5)

such that the parameters γ and p are the width of the Gaussian kernel and the polynomial
order, respectively. Setting proper model parameters has been demonstrated to increase the
accuracy of SVM classification [42]. The adjustment of SVM parameters is a very delicate
process. These parameters are C, gamma, and the SVM kernel function which finds the
mapping from the nonlinear to linear problem by increasing the dimension.

(a) (b) 

Figure 1. (a) Linear support vector machine and (b) nonlinear support vector machine.

2.2. Harris Hawks Optimization (HHO)

Heidari et al. [43] developed an algorithm called HHO (Harris hawks optimization). It
derives from the hunting style and cooperation of Harris’s hawks. Some hawks cooperate
when attacking their prey from different directions to surprise and disable it. Furthermore,
to aid in the selection of different hunting strategies, it is dependent on various sceneries
and kinds of prey flying. Exploring a prey, transitioning from exploration to exploitation,
and exploitation are the three primary phases of the HHO. In this diagram, all phases of
the HHO are depicted (Figure 2). The following is a diagram of each phase:

 

Figure 2. All phases of the HHO algorithm.
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2.2.1. Exploration Phase

This phase is mathematically modeled primarily for waiting, searching, and prey
detection. Harris’s hawks are the alternative or best at every step. Harris’s hawks’ position
X(i + 1) can be formulated according to Equation (6):

X(i + 1) =
{

(X rand(i))− r1|Xrand(i)− 2r2X(i)| i f q ≥ 0.5
(Xrabbit(i)− Xm(i))− badrr3(LB + r4(UB− LB)) i f q < 0.5

(6)

where i is the current iteration, Xrabbit is the rabbit’s position, Xrand is a randomly chosen
hawk at the current population, rj, j = 1, 2, 3, 4, q are random numbers between 0 and 1,
and Xm is the average position of the hawks, which can be calculated by:

Xm(i) =
1
N ∑N

j=1 Xj(i) (7)

where the vector Xj denotes the position of each hawk j, and N is the number of hawks.

2.2.2. Transition from Exploration to Exploitation

The HHO alternates between exploration and exploitation depending on the rabbit’s
escaping energy. Moreover, the rabbit’s energy can be calculated using the formula below:

E = 2E0

(
1− i

T

)
(8)

where E indicates the rabbit’s escaping energy, T denotes the maximum size of the iterations,
and E0 ∈ (−1, 1) presents the initial energy at each step.

E0 = 2 rand( ) − 1 (9)

The HHO can determine the state of a rabbit based on the direction of E0 (the HHO
enters the exploration phase in order to locate the prey when |E| ≥ 1, otherwise, during
the exploitation steps, this strategy seeks to exploit the solutions’ proximity).

2.2.3. Exploitation Phase

At this phase, hawks besiege the prey from all directions to hunt it, and this siege is
hard or soft according to the remaining prey’s energy. During this siege, the prey’s escape
depends on the chance r (it succeeds in escaping if r < 0.5). Moreover, if |E| ≥ 0.5, the
HHO is besieging softly, otherwise, it is besieging hard. According to the phenomenon
of prey escape and hawks–hawks’ strategies in pursuit, the HHO implements four attack
strategies: a soft siege, a hard siege, a soft siege with progressive rapid dives, a hard
siege with progressive rapid dives. In particular, the rabbit has enough energy to escape
if |E| ≥ 0.5; however, the prey’s ability to escape or not depends on both values of |E| and r.

Soft Siege (r ≥ 0.5 and |E| ≥ 0.5)

This procedure can be written as:

X(i + 1) = ΔX(i)− E|JXrabbit(i)− X(i)| (10)

ΔX(i) = Xrabbit(i)− X(i) (11)

where ΔX(i) indicates the difference between the rabbit’s current location and the rabbit’s
location vector at the i iteration, J = 2(1− r5) is the intensity of the rabbit’s random
jumping during the escape process, and r5 ∈ (0, 1) is a random number.
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Hard Siege (r ≥ 0.5 and |E| < 0.5)

In this strategy, current positions can be updated with the following formula:

X(i + 1) = Xrabbit(i)− E|ΔX(i)| (12)

Soft Siege with Progressive Rapid Dives (|E| ≥ 0.5 and r < 0.5)

As for the soft siege, hawks decide their next move with the following equation:

Y = Xrabbit(i)− E|JXrabbit(i)− X(i)| (13)

The hawks dive according to the following rules based on the LF-based patterns:

Z = Y + S× LF(D) (14)

in which D indicates the dimension of problem, and S1×D denotes a random vector.
The levy flight (LF) can be calculated by Equation (15):

LF(D) = 0.01× μ× σ

|v|
1
β

, σ =

⎛⎝ Γ(1 + β)sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

⎞⎠, β = 1.5 (15)

where μ and v represent a range of random numbers between 0 and 1. As a result, Equation (16)
can be used to describe the final strategy of this phase, which is to update the positions of
the hawks:

X(i + 1) =
{

Y i f F(Y) < F(X(i))
Z i f F(Z) < F(X(i))

(16)

Hard Siege with Progressive Rapid Dives (|E| < 0.5 and r < 0.5)

The hawk is always in close proximity to the prey during this step. The following is a
model of the behavior:

X(i + 1) =
{

Y i f F(Y) < F(X(i))
Z i f F(Z) < F(X(i))

(17)

The following formulas can be used to calculate Y and Z:

Y = Xrabbit(i)− E|JXrabbit(i)− Xm(i)| (18)

Z = Y + S× LF(D) (19)

where Xm(i) =
1
N

N

∑
i=1

Xi(i) (20)

The main purpose of this study was to employ new scaling approaches to scale breast
cancer data, compute the SVM parameter using the HHO algorithm to efficiently classify
breast tumors, and use a parallel approach to reduce the proposed model’s execution time.

3. The Proposed HHO-SVM Classification Model

The HHO-SVM system is implemented in two stages. The HHO algorithm determines
the SVM parameters automatically for the first phase. The optimized SVM algorithm
diagnoses a breast tumor as benign or malignant in the second phase. To obtain the best
accurate result, a ten-fold cross-validation (CV) is used. To test the SVM parameters, the
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HHO-SVM model applies the root-mean-square error (RMSE) as the fitness function. The
following formula is used to calculate the RMSE:

RMSE =

√
∑N

i=1( Predictedi − Actuali)

N
(21)

such that N is the number of entities in the test dataset.
In the HHO-SVM algorithm for breast cancer, the population size is set to N, and each

hawk represents Xi (i = 1, 2, . . . , N), the maximum number of iterations is set to T, the
number of dimensions is set to dim, the upper bound is set to ub, the lower bound is set to
lb, and the boundary of positions is set to Xrabbit. Xrabbit is the position of the rabbit, and
all hawks update their positions. After that, random values are used to form the initial
population (N*dim). After the data have been loaded, we use one of the scaling strategies to
modify it. It uses a k-fold cross-validation and conducts several procedures for each fold
to evaluate the model’s efficiency. If the number of iterations does not equal T, the model
repeats the steps below for each iteration.

To begin, it passes each bird through two specified functions and sets its output to
the SVM (C and γ) parameters, then trains the SVM and classifies the test set. Then, it
calculates the fitness function (RMSE) from Equation (21), updates Xrabbit, according to the
smallest fitness value, and update the initial energy E0, jump strength J, and the position of
the current hawk according to the Xrabbit, E0 , J, E, and r values, where r is a random value
and E is the energy. Then, the algorithm checks whether ( |E| ≥ 1); if it is, then it enters
the exploration phase and updates the location vector using Equation (6); if ( |E| < 1),
then it enters the exploitation phase, which may be a soft siege, hard siege, soft siege with
progressive rapid dives or a hard siege with progressive rapid dives.

Therefore, the algorithm checks whether ( |E| ≥ 0.5 and r ≥ 0.5); if true, then it is a soft
siege, and the location vector is updated using Equation (10). If ( |E| < 0.5 and r ≥ 0.5), then it
is a hard siege, and the location vector is updated using Equation (12). If ( |E| ≥ 0.5 and r < 0.5),
then it is a soft siege with progressive rapid dives and the location vector is updated using
Equation (16), F(Y) and F(Z) are calculated by passing Y or Z to two particular functions,
and the parameters of the SVM (C and γ) are equal to its output. Then, the algorithm trains
the SVM and classifies the test set. It computes the RMSE from Equation (21) as the value
of F(Y) or F(Z). If ( |E| < 0.5 and r < 0.5), then it is a hard siege with progressive rapid
dives. The location vector is updated using Equation (17), F(Y) and F(Z) are calculated
by passing Y or Z to two particular functions, and the parameters of the SVM (C and γ)
are equal to its output; then, the algorithm trains the SVM and classifies the test set. It
computes the RMSE from Equation (21) as the value of F(Y) or F(Z). Then, if the number
of iterations does not surpass T, it goes back to step 4 in the process (Algorithm 1). We
move on to the next fold and return to step 3 if T is satisfied. If T and the fold number k
are equal, we proceed to step 5. Finally, we compute the averages of the RMSE and the
accuracy of the k folds and return them.
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Algorithm 1: HHO-SVM Algorithm

Input: N The population size
T Maximum number o f Iterations
lb Lower_Bound
ub Upper_Bound
dim No. o f dimensions
k No. o f f olds

Output: Average RMSE: Average classi f ication accuracy rates

1. Initialize the random population Xi (i = 1, 2, . . . , N)
2. Apply one of the scaling techniques after loading the data.
3. for (each fold j) do

Divide the data into train and test subsets randomly
4. while (t < T) do

for (each hawk (Xi)) do
Pass Xi to particular functions
Set function’s output to parameter of SVM (C, γ)
Train and test the SVM model
Evaluate the fitness Xi with EQ (21)
Update Xrabbit as the position of the rabbit (best position based on the fitness value)

end (for)

for (every hawk (Xi)) do
Update E0 and J (initial energy and jump strength)
Update the E by EQ (8)
if (|E| ≥ 1) then � Exploration phase

Update the position vector by EQ (6)
if (|E| < 1) then � Exploration phase

if (r ≥ 0.5 and |E| ≥ 0.5) then � Soft siege

Update the position vector by EQ (10)
else if (r ≥ 0.5 and |E| < 0.5) then � Hard siege

Update the position vector by EQ (12)
else if (r < 0.5 and |E| ≥ 0.5) then
� Soft siege with PRD

Update the position vector by EQ (16)
�F(Y), F(Z) and F(Xi) calculated by using RMSE

else if (r < 0.5 and |E| < 0.5) then � Hard siege with PRD

Update the position vector by EQ (17)
end (for)

t=t+1
end (while)

t=0
end (for)

5. Return averages of RMSE and classification accuracy for all folds

4. Scaling Techniques

Before introducing the scaling techniques, some of the necessary mathematical sym-
bols should be presented. We treat the breast cancer data as a matrix and present some
mathematical symbols as shown in Table 1. The final scaled matrix is denoted by RAS,
where R = diag (r1, . . . , rm) and S = diag (s1, . . . , sn).
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Table 1. Some mathematical terms for scaling techniques.

Term Meaning

A
(

aij

)
m× n matrix (with m entities and n attributes)

ri The scaling factor of row i

sj The scaling factor of row j

R R = diag
(

r1, . . . , rm) (diagonal matrix)

S S = diag
(

s, . . . , sn) (diagonal matrix)

Ni Ni = {j|Aij �= 0}, such that 1 ≤ i ≤ m

Mj Mj = {i|Aij �= 0}, such that 1 ≤ j ≤ n

ni The cardinality of the set Ni

mj The cardinality of the set Mj

AR(a R
ij

)
The scaled matrix by row R scaling factor

ARS(a RS
ij

)
The scaled matrix in its final form.

All of the scaling approaches presented in this section scale the rows first, then the
columns. Equations (22) and (23) show the steps for scaling the matrix.

AR = RA (22)

ARS = ARS (23)

(1) Arithmetic mean:

The variance between nonzero entries in the coefficient matrix A is reduced using
the arithmetic mean scaling technique. As shown in Equation (24), the rows are scaled by
dividing each row by the mean of the absolute value of the nonzero values:

ri =
ni

∑
j∈Ni

aij
(24)

Each column (attribute) is scaled by dividing the modulus value of the nonzero items
in that column by the mean of the modulus of the nonzero entries in that column as shown
in Equation (25):

sj =
mi

∑
i∈Mj

aij
R (25)

(2) Equilibration scaling technique:

This scaling method’s cornerstone is the largest value in absolute value. The row
scaling is done by dividing every row (instance) of matrix A by the absolute value of the
row’s largest value. Then, we divide every column of the matrix by the absolute value of
the largest value in that column, which is scaled by the row factor. The final scaled matrix
A has a range of [−1, 1].

(3) Geometric mean:

To begin, Equation (26) depicts the scaling of the rows, in which every row is split by
the geometric mean of the nonzero elements in that row.

ri =

(
max
j∈Ni

aij min
j∈Ni

aij

)−1/2
(26)
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Second, Equation (27) represents the column scaling where every column is divided
by the geometric mean of the modulus of the nonzero elements in that column.

sj =

(
max
j∈Mj

aR
ij min

j∈Mj
aR

ij

)−1/2

(27)

(4) Normalization [−1, 1]:

Equation (28) represents the normalization within the range [−1, 1] where a, a′, maxk,
and mink are the initial value, the scaled value, the maximum value, and the minimum
value of feature k, respectively.

.
a =

(
a−mink

maxk −mink

)
× 2− 1 (28)

5. The Parallel Metaheuristic Algorithm

We implemented a parallel metaheuristic algorithm based on the population, where the
population is divided into different parts that are easy to exchange, that evolve separately,
and that are then later combined. In this paper, the parallel approach was implemented by
dividing the population into several sets on different cores. The number of cores, Nc, was
identified. The starting population consisted of n particles randomly initialized. The group
size was calculated as follows:

ng =
[ n

Nc

]
(29)

The proposed model steps are shown in Algorithm 2.

Algorithm 2: Parallel Approach

1: Begin
2: Identify Nc (no. of cores);
3: Randomly initialize the population;
4: Compute ng particles with Equation (20);
5: Make Nc sets;
6: Distribute the particles on cores.

7: Run the HHO-SVM model on each core
8: Choose the optimal particles from all cores;

9: Update the model’s parameters and particle positions;
10: For all folds, return the average accuracy.

11: End

The ceil function was used to obtain an integer number of particles to be distributed
on the cores. The basic algorithm steps were executed for all sets in a standalone thread. Nc
best particles were chosen as a solution for the optimization problem when these phases
were completed. Moreover, these particles were combined to obtain the best particles in
general on all cores and update the position according to them.

6. Experimental Design

This part contains a description of the data, a performance evaluation measure, as
well as a comparative study.

6.1. Data Description

The proposed model was tested on the Wisconsin diagnostic Breast Cancer (WDBC)
dataset, which is available at the University of California, Irvine Machine Learning Repos-
itory [44]. There are 569 examples in the dataset, which are separated into two groups
(malignant and benign). There are 357 cases of malignant tumors and 212 cases of benign
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tumors, respectively. Each database record has thirty-two attributes. Table 2 lists the
thirty-two qualities.

Table 2. Description of dataset.

No Attribute Name Description

3 Radius The range between the center and point on
the perimeter

4 Texture Gray-scale values’ standard deviation

5 Perimeter The total distance between the points that
make up the nuclear perimeter

6 Area The average of the cancer cell areas

7 Smoothness
The distance between a radial line’s length
and the mean length of the lines that
surround it.

8 Compactness Perimeter2/area− 1.0

9 Concavity The severity of the contour’s concave parts

10 Concave points The number of concave contour parts

11 Fractal dimension (“coastline approximation”—1)

12 Symmetry
In both directions, the length difference
between lines perpendicular to the major axis
and the cell boundary.

6.2. Experimental Setup

MATLAB was used to create the suggested HHO-SVM detection method. Chang and
Lin [45] created the SVM method, and their implementation was improved. The computing
environment for the experiment is described in Table 3.

Table 3. Computational environment.

Center Processing Unit Intel (R) Core (TM) i5—7200U CPU@ 2.70 GHz

RAM size 4 GB RAM

MATLAB ver. R2015a

The k-fold CV was proposed by Salzberg [46], and it was used to ensure that the results
were genuine. k = 10 in this study. The following are the HHO-SVM’s detailed settings:
1000, 19, 25, and 10 were the values for the iterations, search agents, dimensions, and k-fold,
respectively. The [lb, ub] lower and upper bounds were set to [−5, 5].

6.3. Performance Metrics

Six metrics, sensitivity, specificity, accuracy, precision, G-mean, and F-score, were used
to assess the efficacy of the suggested HHO-SVM model. These metrics are defined as
follows according to the confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (30)

Sensitivity =
TP

TP + FN
× 100 (31)

Speci f icity =
TN

TN + FP
× 100 (32)
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Precision =
TP

TP + FP
× 100 (33)

Gmean =
√

Sensitivity× Speci f icity (34)

Fmeasure = 2× Precision× Sensitivity
Precision + Sensitivity

(35)

If the dataset has two classes (“M” for malignant and “B” for benign), then the true
positives (TP) are the total number of cases with classification result “M” when they are
actually “M” in the dataset; the true negatives (TN) are the total number of cases with
classification result “B” when they are actually “B” in the dataset; the false positives (FP)
are the total number of cases with classification result “M” when they are “B” in the dataset;
and the false negatives (FN) are the total number of cases with classification result “B”
when they are “M” in the dataset.

6.4. Comparative Study

In this study, the efficiency of the presented HHO-SVM algorithm was compared to
the SVM algorithm with the grid search technique. Figure 3 shows how the SVM algorithm
works with the grid search technique

Figure 3. SVM algorithm with the grid search technique.

7. Empirical Results and Discussion

In this study, the abbreviations S0, S1, S2, S3, and S4 are used to denote no scaling, a
normalization in [−1, 1], the arithmetic mean, the geometric mean, and the equilibration
scaling techniques, respectively. Experiments on the WBCD dataset were used to assess the
efficacy of the proposed HHO-SVM model for breast cancer against the SVM algorithm with
a grid search technique. First and foremost, our findings show the value of the grid search
methodologies, the usefulness of the HHO-SVM model that was developed sequentially,
and the superiority of the most recent scaling strategies over the previous normalizing
methodology. Finally, the results show that the parallel version of the proposed model
achieves a speedup of 3.97 for four cores.

Tables 4–6 demonstrate a comparison of the SVM classification accuracies using the
grid search algorithm with S0, S1, S2, S3, and S4. Tables 4 and 5 show that the average
accuracy rates obtained by the SVM using S3 (98.59%) are higher than those produced by
the SVM using S1 (96.66%) (98.59%). On the other hand, the S4 technique outperforms
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all other scaling techniques with an accuracy of 98.95% compared to that obtained by the
SVM.

Table 4. SVM using S0 and S1.

Fold
(S0) (S1)

C γ Accuracy % C γ Accuracy %

1 23 2−13 94.76 211 21 94.64

2 27 2−15 91.59 215 21 92.98

3 215 2−13 100 213 21 100

4 25 2−13 97.18 213 21 98.25

5 21 2−11 96.23 215 21 96.49

6 2−1 2−9 91.29 215 2−1 96.49

7 211 2−15 97.59 213 21 100

8 29 2−15 98.60 215 21 96.49

9 29 2−15 97.59 213 21 94.74

10 215 2−9 96.23 213 2−1 96.49

Avg. 6877.9 0.00049 96.10 17408 1.7 96.66

Time 52.62167 19.208797

Table 5. SVM using S2 and S3.

Fold
(S2) (S3)

C γ Accuracy % C γ Accuracy %

1 23 2−7 100.00 21 2−5 100

2 215 2−9 98.25 29 2−5 98.25

3 29 2−5 96.49 29 2−5 96.49

4 2−1 2−5 96.49 2−1 2−5 96.49

5 29 2−9 100.00 29 2−9 100

6 25 2−5 98.25 27 2−5 98.25

7 27 2−7 98.25 23 2−3 100.00

8 2−1 2−3 98.25 215 2−3 98.25

9 29 2−9 100.00 29 2−9 100

10 215 2−9 98.25 25 2−3 98.25

Avg. 6724 0.024 98.42 3498.7 0.0535 98.59

Time 7.237509 6.822561

Table 6. SVM using S4.

Fold
(S4)

C γ Accuracy %

1 25 2−1 100.00

2 23 21 98.25

3 25 2−1 100.00

4 215 21 98.25
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Table 6. Cont.

Fold
(S4)

C γ Accuracy %

5 21 2−1 100.00

6 29 2−1 98.25

7 215 21 100.00

8 215 21 100.00

9 23 21 94.74

10 23 21 100.00

Avg. 9890.6 1.4 98.95

CPU Time 6.066946

Tables 7–11 and Figure 4 show the importance of the data scaling techniques in
improving classification accuracy, with the average classification accuracy rate without
scaling the data (89.11%) being lower than the average classification accuracy rate when
using any other scaling technique, and when comparing the normalization and other scaling
techniques, we found that the novel scaling techniques outperformed the normalization
in terms of both accuracy rates and CPU time. It is obvious that the HHO-SVM with the
arithmetic mean scaling approach (98.25) achieved higher average accuracy rates than the
HHO-SVM with normalization and the scaling strategy in the range [−1, 1] (98.24%). With
an accuracy of 99.47 percent, the equilibration scaling technique outperforms all the other
scaling strategies, including the HHO-SVM.

Table 7. Grid-SVM accuracy with S0, S1, S2, S3, and S4.

No Symbol Accuracy CPU Time

1 (S4) 98.95 6.066946

2 (S3) 98.59 6.822561

3 (S2) 98.42 7.237509

4 (S1) 96.66 19.208797

6 (S0) 96.10 52.62167

Table 8. Different metrics for the HHO-SVM model with S0.

Fold

HHO-SVM (S0)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

1 91.07 90.48 91.43 91.07

2 98.98 81.82 100 98.98

3 100 100 100 100

4 96.49 95.24 97.22 96.49

5 63.16 0 100 63.16

6 92.98 80.95 100 92.98
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Table 8. Cont.

Fold

HHO-SVM (S0)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

7 96.49 95.24 97.22 96.49

8 63.16 0 100 63.16

9 96.49 95.24 97.22 96.49

10 98.25 100 97.22 98.25

Avg. 89.11 73.90 98.03 89.11

CPU Time 1.88 × 104

Table 9. Different metrics for the HHO-SVM model with S0.

Fold

HHO-SVM (S0)

Recall
%

F-Score
%

G-Mean
%

RMSE

1 90.48 90.95 0.2988 90.48

2 81.82 90.45 0.2649 81.82

3 100 100 0.00 100

4 95.24 96.23 0.1873 95.24

5 0.00 0.00 0.6070 0.00

6 80.95 89.97 0.2649 80.95

7 95.24 96.23 0.1873 95.24

8 0.00 0.00 0.6070 0.00

9 95.24 96.23 0.1873 95.24

10 100 98.60 0.1325 100

Avg. 73.90 75.87 0.2737 73.90

CPU Time 1.88 × 104

Table 10. Different metrics for the HHO-SVM model with S1.

Fold

HHO-SVM (S1)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

1 94.64 95.24 94.29 90.91

2 98.25 100 97.14 95.65

3 96.49 100 94.29 91.67

4 100 100 100 100

5 98.25 95.24 100 100

6 100 100 100 100

7 100 100 100 100
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Table 10. Cont.

Fold

HHO-SVM (S1)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

8 94.74 85.71 100 100

9 100 100 100 100

10 100 100 100 100

Avg. 98.24 97.62 98.57 97.82

CPU Time 1.13 × 105

Table 11. Different metrics for the HHO-SVM model with S1.

Fold
HHO-SVM (S1)

Recall % F-Score % G-Mean % RMSE

1 95.24 93.02 94.76 0.2315

2 100 97.78 98.56 0.1325

3 100 95.65 97.1 0.1873

4 100 100 100 0

5 95.24 97.56 97.59 0.1325

6 100 100 100 0

7 100 100 100 0

8 85.71 92.31 92.58 0.2294

9 100 100 100 0

10 100 100 100 0

Avg. 97.62 97.63 98.06 0.0913

CPU Time 1.13 × 105

 

Figure 4. The accuracy and CPU time of Grid-SVM with S0, S1, S2, S3, and S4.
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Tables 8–17 show the importance of the data scaling techniques in improving the
classification accuracy, with the average classification accuracy rate without scaling the
data (89.11 percent) being lower than the average classification accuracy rate when using
any other scaling technique, and when comparing the normalization and other scaling
techniques, we found that the novel scaling techniques outperformed the normalization
in terms of both accuracy rates and CPU time. The HHO-SVM with the arithmetic mean
scaling approach (98.25) clearly outperformed the HHO-SVM with the normalization
scaling strategy in the range [−1, 1] (98.24%). With an accuracy of 99.47%, S4 outperformed
all other scaling procedures.

Table 12. Different metrics for the HHO-SVM model with S2.

Fold

HHO-SVM (S2)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

1 100 100 100 100

2 100 100 100 100

3 94.74 90.91 97.14 95.24

4 98.25 95.24 100 100

5 100 100 100 100

6 100 100 100 100

7 100 100 100 100

8 94.74 90.48 97.22 95

9 98.25 95.24 100 100

10 96.49 90.48 100 100

Avg. 98.25 96.23 99.44 99.02

CPU Time 2.20 × 104

Table 13. Different metrics for the HHO-SVM model with S2.

Fold
HHO-SVM (S2)

Recall % F-Score % G-Mean % RSME

1 100 100 100 0

2 100 100 100 0

3 90.91 93.02 93.97 0.2294

4 95.24 97.56 97.59 0.1325

5 100 100 100 0

6 100 100 100 0

7 100 100 100 0

8 90.48 92.68 93.79 0.2294

9 95.24 97.56 97.59 0.1325

10 90.48 95 95.12 0.1873

Avg. 96.23 97.58 97.81 0.0911

CPU Time 2.20 × 104
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Table 14. Different metrics for the HHO-SVM model with S3.

Fold

HHO-SVM (S3)

Accuracy
%

Sensitivity
%

Specificity
%

Precision
%

1 96.43 90.48 100 100

2 100 100 100 100

3 96.49 90.91 100 100

4 100 100 100 100

5 96.49 90.48 100 100

6 100 100 100 100

7 96.49 95.24 97.22 95.24

8 98.25 100 97.22 95.45

9 98.25 95.24 100 100

10 100 100 100 100

Avg. 98.24 96.23 99.44 99.07

Time 2.71 × 104

Table 15. Different metrics for the HHO-SVM model with S3.

Fold
HHO-SVM (S3)

Recall % F-Score % G-Mean % RSME

1 90.48 95 95.12 0.1890

2 100 100 100 0

3 90.91 95.24 95.35 0.1873

4 100 100 100 0

5 90.48 95 95.12 0.1873

6 100 100 100 0

7 95.24 95.24 96.23 0.1873

8 100 97.67 98.60 0.1325

9 95.24 97.56 97.59 0.1325

10 100 100 100 0

Avg. 96.23 97.57 97.80 0.1016

CPU Time 2.71 × 104

Table 16. Different metrics for the HHO-SVM model with S4.

Fold
HHO-SVM (S4)

Accuracy % Sensitivity % Specificity % Precision %

1 100 100 100 100

2 96.49 90.91 100 100

3 100 100 100 100

4 100 100 100 100

5 100 100 100 100
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Table 16. Cont.

Fold
HHO-SVM (S4)

Accuracy % Sensitivity % Specificity % Precision %

6 100 100 100 100

7 100 100 100 100

8 100 100 100 100

9 100 100 100 100

10 98.25 95.24 100 100

Avg. 99.47 98.61 100 100

CPU Time 8.14 × 103

Table 17. Different metrics for the HHO-SVM model with S4.

Fold
HHO-SVM (S4)

Recall % F-Score % G-Mean % RMSE

1 100 100 100 0

2 90.91 95.24 95.35 0.1873

3 100 100 100 0

4 100 100 100 0

5 100 100 100 0

6 100 100 100 0

7 100 100 100 0

8 100 100 100 0

9 100 100 100 0

10 95.24 97.56 97.59 0.1325

Avg. 98.61 99.28 99.29 0.0320

CPU Time 8.14 × 103

The results of all scaling strategies obtained by the HHO-SVM in terms of accuracies
and CPU times are summarized in Table 18 and Figures 5 and 6. In terms of accuracy
and CPU time, the equilibration scaling technique clearly outperformed all other scaling
techniques. In terms of precision, however, the equilibration scaling technique was the
least accurate. According to CPU time, the normalization scaling in the range [−1, 1] was
the greatest.

Table 18. The accuracy of the HHO-SVM model with S1, S2, S3, and S4.

No Symbol Accuracy CPU Time

1 (S0) 89.11 18,800

1 (S1) 98.24 113,000

2 (S2) 98.25 22,000

3 (S3) 98.24 27,100

4 (S4) 99.47 8140
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Figure 5. Accuracy of the HHO-SVM model with S0, S1, S2, S3, and S4.

 
Figure 6. CPU time of the HHO-SVM model with S0, S1, S2, S3, and S4.

The accuracy rate of the proposed HHO-SVM model was compared to that of the
conventional SVM employing a grid search technique in Table 19. For the scaling procedures
S4, S2, S3, and S1, the accuracy rates of the proposed HHO-SVM model were 99.47, 98.25,
98.24, and 98.24, respectively. For the scaling approaches S4 and S1, the accuracy rates of
the classic SVM with a grid search algorithm were 98.95 and 96.49, respectively.

184



Mathematics 2023, 11, 3251

Table 19. Accuracy comparison between HHO-SVM and Grid-SVM.

Symbol Scaling Techniques HHO-SVM Accuracy Grid-SVM Accuracy

(S1) Normalization [−1, 1] 98.24 96.49

(S2) Arithmetic mean 98.25 98.42

(S3) Geometric mean 98.24 98.59

(S4) Equilibration 99.47 98.95

The parallel version of the HHO-SVM algorithm was provided to reduce its running
time. CPU timings for all scaling strategies produced by the HHO-SVM on different cores
are shown in Table 20 and Figure 7.

Table 20. CPU time comparison between HHO-SVM and Grid-SVM.

Symbol
Scaling

Techniques

HHO-SVM

Core1 Core2 Core4

(S1) Normalization
[−1, 1] 91,600 47,461.14 23,073.04

(S2) Arithmetic mean 8560 4703.30 2338.80

(S3) Geometric mean 11,000 5820.11 2941.18

(S4) Equilibration 3500 2023.12 980.39

 

Figure 7. CPU time of the parallel HHO-SVM model for different cores.

In addition, Table 21 and Figure 8 show the speedup obtained by the HHO-SVM for
all scaling strategies.
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Table 21. Speedup on the WBCD database using the HHO-SVM with S1, S2, S3, and S4.

Symbol
HHO-SVM

Core1 Core2 Core4

(S1) 1 1.93 3.97

(S2) 1 1.82 3.66

(S3) 1 1.89 3.74

(S4) 1 1.73 3.57
For the scaling techniques S4, S3, S2, and S1, the speedups for four cores were 3.57, 3.74, 3.66, and 3.97, respectively.

 

Figure 8. CPU time of the parallel HHO-SVM on different cores for all scaling techniques.

Table 22 shows that the performance of the presented HHO-SVM model against other
related models developed in the literature, demonstrating the usefulness of our method.
Table 22 shows that the classification accuracy of our created HHO-SVM diagnostic system
is equivalent to or better than that of existing classifiers on the WBCD database.

Table 22. A comparison between related works against to our model.

Study Year Method Accuracy (%)

Tuba et al. [6] (2016) ABA-SVM 96.49 %

Aalaei et al. [7] (2016) GA-ANN 97.30%

S. Mandal [8] (2017) Logistic regression 97.90%

Liu et al. [10] (2018) ICS-SVM 98.83%

Agarap [11] (2018) GRU-SVM 93.80%

Dhahri et al. [15] (2019) GA-AB 98.23%

Telsang et al. [17] (2020) SVM 96.25%

Umme et al. [18] (2020) BATGSA-FNN 92.10%

Singh et al. [19] (2020) GWWOA-SVM 97.72%

Badr et al. [20] (2021) GWO-SVM 99.3%

Our study (2023) HHO-SVM 99.47%

8. Conclusions

Three achievements were proposed. The first achievement was a novel hybrid classifier
(HHO-SVM), which was a combination of the Harris hawks optimization (HHO) and a
support vector machine (SVM). In order to increase the HHO-SVM performance, the second
goal was to compare three efficient scaling algorithms to the old normalizing methodology.
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The final contribution was to improve the efficiency of the HHO-SVM by adopting a
parallel approach that employed the data distribution. On the Wisconsin Diagnosis Breast
Cancer (WDBC) dataset, the proposed models were tested. The results showed that the
HHO-SVM achieved a 98.24% accuracy rate with the normalization scaling technique, thus
outperforming the results in [6–8,11,15,17–19]. On the other hand, the HHO-SVM achieved
a 99.47% accuracy rate with the equilibration scaling technique, outperforming the results
in [6–8,10,11,15,17–20]. Finally, on four CPU cores, the parallel HHO-SVM model delivered
a speedup of 3.97. The proposed approach will be evaluated in various medical datasets in
future research. In addition, we are attempting to incorporate various measuring techniques
that will reduce the running time and improve the proposed diagnostic system’s efficiency.
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Abstract: With the growing scale of pre-trained language models (PLMs), full parameter fine-tuning
becomes prohibitively expensive and practically infeasible. Therefore, parameter-efficient adaptation
techniques for PLMs have been proposed to learn through incremental updates of pre-trained weights,
such as in low-rank adaptation (LoRA). However, LoRA relies on heuristics to select the modules
and layers to which it is applied, and assigns them the same rank. As a consequence, any fine-tuning
that ignores the structural information between modules and layers is suboptimal. In this work,
we propose structure-aware low-rank adaptation (SaLoRA), which adaptively learns the intrinsic
rank of each incremental matrix by removing rank-0 components during training. We conduct
comprehensive experiments using pre-trained models of different scales in both task-oriented (GLUE)
and task-agnostic (Yelp and GYAFC) settings. The experimental results show that SaLoRA effectively
captures the structure-aware intrinsic rank. Moreover, our method consistently outperforms LoRA
without significantly compromising training efficiency.

Keywords: pre-trained language models; parameter-efficient fine-tuning; low-rank adaptation;
intrinsic rank; training efficiency

MSC: 68T50

1. Introduction

With the scaling of model and corpus size [1–5], large language models (LLMs) have
demonstrated an ability for in-context learning [1,6,7] in various natural language process-
ing (NLP) tasks, that is, learning from a few examples within context. Although in-context
learning is now the prevalent paradigm for using LLMs, fine-tuning still outperforms it
in task-specific settings. In such scenarios, a task-specific model is exclusively trained
on a dataset comprising input–output examples specific to the target task. However, full
parameter fine-tuning, which updates and stores all the parameters for different tasks,
becomes impractical when dealing with large-scale models.

In fact, LLMs with billions of parameters can be effectively fine-tuned by optimizing
only a few parameters [8–10]. This has given rise to a branch of parameter-efficient fine-
tuning (PEFT) techniques [11–16] for model tuning. These techniques optimize a small
fraction of the model parameters while keeping the rest fixed, thereby significantly reducing
computational and storage costs. For example, LoRA [15] introduces trainable low-rank
decomposition matrices into LLMs, enabling the model to adapt to a new task while
preserving the integrity of the original LLMs and retaining the acquired knowledge. Fun-
damentally, this approach is built upon the assumption that updates to the weights of the
pre-trained language model have a lower rank during adaptation to specific downstream
tasks [8,9]. Thus, by reducing the rank of the incremental matrices, LoRA optimizes less
than 0.5% of the additional trainable parameters. Remarkably, this optimization achieves
comparable or even superior performance to that of full parameter fine-tuning.
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However, despite its advantages, LoRA also comes with certain limitations that warrant
consideration. One limitation lies in LoRA’s reliance on heuristics to select the modules and
layers to which it is applied. Though heuristics can be effective under specific circumstances,
their lack of generalizability is a concern. This lack of generalizability can result in suboptimal
performance, or even complete failure, when applied to new data. Another limitation is the
assignment of the same rank to incremental matrices across different modules and layers. This
tends to oversimplify the complex structural relationships and important disparities that exist
within neural networks. This phenomenon is illustrated in Figure 1.

Figure 1. Fine-tuning performance of LoRA across different modules and layers with varying
ranks on MRPC.

In this paper, we propose a novel approach called structure-aware low-rank adapta-
tion (SaLoRA), which adaptively learns the intrinsic rank of each incremental matrix by
removing rank-0 components. As shown in Figure 2, we introduce a diagonal gate matrix
G = diag(g1, . . . , gr) for each incremental matrix. The modified incremental matrix can be
represented as Δ W = BGA. The incremental matrix is divided into triplets, where each
triplet Ti contains the i-th column of B, the i-th gate mask of G and the i-th row of A. Here,
gi represents the binary “gate” that indicates the presence or absence of the i-th triplet.
Although incorporating the active triplet count as a penalty term in the learning objective is
unfeasible, we employ a differentiable relaxation method to selectively remove non-critical
triplets by considering the L0 norm [17,18]. The L0 norm is equal to the number of non-zero
triplets and encourages the model to deactivate less essential triplets. This strategy assigns
a higher rank to crucial incremental matrices to capture task-specific information. Con-
versely, less significant matrices are pruned to possess a lower ranks preventing overfitting.
However, A and B are not orthogonal, implying potential dependence among the triplets.
Removing these triplets can result in a more significant deviation from the original matrix.
To enhance training stability and generalization, we introduce orthogonality regularization
for B and A. Furthermore, we integrate a density constraint and leverage Lagrangian
relaxation [19] to control the number of valid parameters.

We conduct extensive experiments on a wide range of tasks and models to evaluate
the effectiveness of SaLoRA. Specifically, we conduct experiments on the General Language
Understanding Evaluation [20] benchmark in a task-oriented setting to assess the model’s
performance. In addition, we evaluate the model’s performance in a task-agnostic setting
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by fine-tuning LLaMA-7B with a 50K cleaned instruction-following dataset [21], and then
perform zero-shot task inference on two text style transfer tasks: sentiment transfer [22]
and formality transfer [23]. The experimental results demonstrate that SaLoRA consistently
outperforms LoRA without significantly compromising training efficiency.

Figure 2. Structure-aware low-rank adaptation.

2. Backgound

Transformer Architecture. The Transformer [24] is primarily constructed using two
key submodules: a multi-head self-attention (MHA) layer and a fully connected feed-
forward (FFN) layer. The MHA is defined as follows:

MHA(Q, K, V) = Concat(head1, . . . , headh)WO,

headi = Atention(QWQ
i , KWK

i , VWV
i )

(1)

where Q, K, V ∈ Rn×d are input-embedding matrices; WO ∈ Rd×d is an output projection;
WQ

i , WK
i , WV

i ∈ Rd×dk are query, key and value projections of head i, respectively; n is
sequence length; d is the embedding dimension; h is the number of heads and dk = d/h
is the hidden dimension of the projection subspaces. The FFN consists of two linear
transformations separated by a ReLU activation:

FFN(x) = ReLU(xWU + bU)WD + bD (2)

where WU ∈ Rd×dm and WD ∈ Rdm×d.
Parameter-Efficient Fine-Tuning. With the growing size of models, recent works have

developed three main categories of parameter-efficient fine-tuning (PEFT) techniques. These
techniques optimize a small fraction of model parameters while keeping the rest fixed, thereby
significantly reducing computational and storage costs [10]. For example, addition-based
methods [11–13,25,26] introduce additional trainable modules or parameters that are not
part of the original model or process. Specifcation-based methods [14,27,28] specify certain
parameters within the original model or process as trainable, whereas the others remain
frozen. Reparameterization-based methods [15,16,29], including LoRA, reparameterize existing
parameters into a parameter-efficient form by transformation. In this study, we focus on
reparameterization-based methods, with particular emphasis on LoRA.

Low-Rank Adaptation. LoRA, as introduced in the work of Hu et al. [15], represents a
typical example of a reparameterization-based method. In LoRA, some pre-trained weights
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of LLMs’ dense layers are reparameterized by injecting trainable low-rank incremental
matrices. This reparameterization only allows low-rank matrices to be updated, while
keeping the original pre-trained weights frozen. By reducing the rank of these matrices,
LoRA effectively reduces the number of parameters during the fine-tuning process of LLMs.
Consider a pre-trained weight matrix W ∈ Rd×k, accompanied by a low-rank incremental
matrix Δ W = BA. For h = Wx, the modified forward pass is as follows:

h = W x +
α

r
ΔWx = Wx +

α

r
BAx (3)

where B ∈ Rd×r, A ∈ Rr×k, with the rank r � min(d, k), and α is a constant scale hyperpa-
rameter. The matrix A adopts a random zero-mean Gaussian initialization, while the matrix
B is initialized as a zero matrix. Consequently, the product ΔW = BA is initially set to zero
at the beginning of training. Let B∗j and Aj∗ denote the j-th column of B and the j-th row
of A, respectively. Using this notation, ΔW can be expressed as ΔW = ∑r

j=1 B∗j Aj∗.

3. Method

In this section, we will first give a brief introduction to parameter-efficient fine-tuning,
and then discuss our proposed model based on the problem definition.

3.1. Problem Formalization

We consider the general problem of efficiently fine-tuning LLMs for specific down-
stream tasks. Firstly, let us introduce some notations. Consider a training corpus
D = (xi, yi)

N
i=1, where N represents the number of samples. Each sample consists an

input, xi, and its corresponding output, yi. We use the index i to refer to the incremental
matrix, i.e., ΔW i = Bi Ai for i = 1, . . . , K, where K is the number of incremental matrices.
However, LoRA’s assumption of identical ranks for each incremental matrix overlooks
structural relationships and the varying importance of weight matrices across different
modules and layers during fine-tuning. This oversight can potentially impact overall model
performance. Our objective is to determine the optimal {rank∗(ΔW i)}K

i=1 on the fly. The
optimization objective can be formulated as follows:

min
W
R(W) � 1

N
(

N

∑
i=1
L( f (xi;W), yi))

s.t. rank(ΔW i) ≤ r, k = 1, . . . , K.

(4)

where W = {ΔW i, . . . , ΔWK} represents the sets of trainable parameters and L corre-
sponds to a loss function, such as cross-entropy for classification. Note that rank(ΔW i) ∈
{0, 1, . . . , r} is an unknown parameter that needs to be optimized.

3.2. Structure-Aware Intrinsic Rank Using L0 Norm

To find the optimal {rank∗(ΔW i)}K
i=1 on the fly, with minimal computational overhead

during training, we introduce a gate matrix G to define the structure-aware intrinsic rank:

ΔW = BGA =
r

∑
j=1

gjB∗j Aj∗ (5)

where the gj ∈ {0, 1} serves as a binary “gate”, indicating the presence or absence of the j-th
rank. The gate matrix G = diag(g1, . . . , gr) is a diagonal matrix consisting of the pruning
variables. By learning the variable gj, we can control the rank of each incremental matrix
individually, rather than applying the same rank to all matrices. To deactivate non-critical
rank-0 components, the ideal approach would be to apply L0 norm regularization to the
gate matrix G:
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||G||0 =
r

∑
j=1

gj (6)

where r is the rank of incremental matrices. The L0 norm measures the number of non-
zero triplets; thus, optimizing L0 would encourage the model to deactivate less important
incremental matrices.

Unfortunately, the optimization objective involving ||G||0 is computationally in-
tractable due to its non-differentiability, making it impossible to directly incorporate it
as a regularization term in the objective function. Instead, we use a stochastic relaxation
approach, where the gate variables g are treated as continuous variables distributed within
the interval [0, 1]. We leverage the reparameterization trick [30,31] to ensure that g remains
differentiable. Following prior studies [17,19], we adopt the Hard-Concrete (HC) distri-
bution as a continuous surrogate for random variables g, illustrated in Figure 3. The HC
distribution applies a hard-sigmoid rectification to s, which can easily be sampled by first
sampling u ∈ U(0, 1) and then computing as follows:

s = Sigmod
( log u

1−u + log θ

τ

)
× (ζ − γ) + γ

g = min(1, max(0, s))
(7)

where θ is the trainable parameter of the distribution and τ is the temperature. The interval
(γ, ζ), with γ < 0 and ζ > 1, enables the distribution to concentrate probability mass at
the edge of the support. The final outputs g are rectified into [0, 1]. By summing up the
probabilities of the gates being non-zero, the L0 norm regularization can be computed via a
closed form, as follows:

E[||G||0] =
r

∑
j=1

E
[
gj > 0

]
=

r

∑
j=1

Sigmod
(

log θj − τ log
−γ

ζ

) (8)

Figure 3. Hard-Concrete distribution with different parameters.
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As g now represents the output of the parameterized HC distribution function and
serves as an intermediate representation for the neural network, gradient-based optimiza-
tion methods can perform gradient updates for θ = {θ1, . . . , θr}. For each training batch,
we sample the gate mask and then share it across the training examples within the batch to
enhance sampling efficiency.

3.3. Enhanced Stability Using Orthogonal Regularization

In deep networks, orthogonality plays a crucial role in preserving the norm of the orig-
inal matrix during multiplication, preventing signal vanishing or exploding [32]. However,
in LoRA, where B and A are not orthogonal, the dependence can lead to larger variations
when removing certain columns or rows through L0 regularization. This, in turn, leads to
training instability and the potential for negative effects on generalization [16]. For this, we
turn to orthogonal regularization, which enforces the orthogonality condition:

Rorth(B, A) = ||BT B− I||2F + ||AAT − I||2F (9)

where I is the identity matrix.
Now, let us substitute Equations (8) and (9) into Equation (4) to derive the new training

objective:

min
W ,Θ
R(W , Θ) � 1

N
(

N

∑
i=1
L( f (xi;W), yi)) + λ

K

∑
i=1

E[||Gi||0] + β
K

∑
i=1
Rorth(Bi, Ai) (10)

where Θ = {θi, . . . , θK} represents the sets of trainable parameters, and λ and β are two
constant hyperparameters.

3.4. Controlled Budget Using Lagrangian Relaxation

If we only rely on Equation (10) to learn the intrinsic rank for each incremental matrix,
the resulting parameter budget cannot be directly controlled. This limitation becomes
problematic in many real-world applications that require a specific model size or parameter
budget. To address this issue, we further introduce an additional density constraint on
R(W , Θ) to guide the network towards achieving a specific desired budget.

min
W
R(W) � 1

N
(

N

∑
i=1
L( f (xi;W), yi)) + β

K

∑
i=1
Rorth(Bi, Ai)

s.t. C(Θ) �
K

∑
i=1

E[||Gi||0]× (di + ki)

#(Bi) + #(Ai)
= b

(11)

where b represents the target density and #(x) counts the total number of parameters in
matrix x. ΔW i = Bi Ai, where Bi is of di × ri, and Ai is of ri × ki. However, lowering the
density constraint poses a challenging and (not necessarily strictly) constrained optimiza-
tion problem. To tackle this challenge, we leverage Lagrangian relaxation as an alternative
approach, along with the corresponding min-max game:

max
λ

min
W ,Θ
L(W , Θ, λ) � R(W , Θ) + λ(C(Θ)− b)2 (12)

where λ ∈ R is the Lagrangian multiplier, which is jointly updated during training. The
updates to λ would increase the training loss unless the equality constraint is satisfied,
resulting in the desired parameter budget. We optimize the Lagrangian relaxation by simul-
taneously performing gradient descent on (W, Θ) and projected gradient ascent (to R+) on
λ, as demonstrated in previous works [19,33]. During the experiments, we observed that the
term λ(C(Θ)− b)2 converged quickly. To enhance training efficiency, we only optimize (Θ, λ)
between Tstart and Tend time steps. We provide a summarized algorithm in Algorithm 1.
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Algorithm 1 SaLoRA

Input: Dataset D; total iterations T; target density b; hyperparameters τ, γ, ζ, β, ηp, ηc.
Output: The fine-tuned parameters {W , Θ}.

for t = 1, . . . , T do
Sample a mini-batch from D
if Tstart ≤ t < Tend then

Sample a gate mask set G from HC distribution and share it across the mini-batch
Compute the gradient L(W , Θ, λ)

Update W (t+1) = W (t)−ηp∇WL(W (t), Θ(t), λ(t))

Update Θ(t+1) = Θ(t)−ηc∇ΘL(W (t), Θ(t), λ(t))

Update λ(t+1) = λ(t)+ηc∇λ(t)L(W (t), Θ(t), λ(t))
else

Compute the gradient L(W)

Update W (t+1) = W (t) − ηp∇WL(W (t))
end if

end for
return The fine-tuned parameters {W (T), Θ(T), λ(T) }.

3.5. Inference

During training, the gate mask gi is a random variable drawn from the HC distribution.
At inference time, we first calculate the expected value of each gi in G. If the value of gi is
greater than 0, we retain the corresponding i-th low-rank triplet. This procedure enables us
to obtain the deterministic matrices B and A.

4. Experiments

We evaluated the effectiveness of the proposed SaLoRA on RoBERTa [34] and LLaMA-
7B in both task-oriented and task-agnostic settings.

Baselines. We compared SaLoRA with the following methods:

• Fine-tuning (FT) is the most common approach for adaptation. To establish an upper
bound for the performance of our proposed method, we fine-tuned all parameters
within the model.

• Adapting tuning, as proposed by Houlsby et al. [25], incorporates adapter layers
between the self-attention module (and the MLP module) and the subsequent residual
connection. Each adapter module consists of two fully connected layers with biases
and a nonlinearity in between. This original design is referred to as AdapterH . Re-
cently, Pfeiffer et al. [11] introduced a more efficient approach, applying the adapter
layer only after the MLP module and following a LayerNorm. We call it AdapterP.

• Prefix-tuning (Prefix) [12] prepends a sequence of continuous task-specific activations
to the input. During tuning, prefix-tuning freezes the model parameters and only
backpropagates the gradient to the prefix activations.

• Prompt-tuning (Prompt) [13] is a simplified version of prefix-tuning, allowing the
additional k tunable tokens per downstream task to be prepended to the input text.

• LoRA, introduced by Hu et al. [15], is a state-of-the-art method for parameter-efficient
fine-tuning. The original implementation of LoRA applied the method solely to query
and value projections. However, empirical studies [16,35] have shown that extending
LoRA to all matrices, including WQ, WK, WV , WO, WU and WD, can further improve
its performance. Therefore, we compare our approach with this generalized LoRA
configuration to maximize its effectiveness.

• AdaLoRA, proposed by Zhang et al. [16], utilizes singular value decomposition (SVD)
to adaptively allocate the parameter budget among weight matrices based on their
respective importance scores. However, this baseline involves computationally in-
tensive operations, especially for large matrices. The training cost can be significant,
making it less efficient for resource-constrained scenarios.
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4.1. Task-Oriented Performance

Models and Datasets. We evaluated the performance of different adaptive methods
on the GLUE benchmark [20] using pre-trained RoBERTa-base (125M) and RoBERTa-large
(355 M) [34] models from the HuggingFace Transformers library [36]. See Appendix A for
additional details on the datasets we used.

Implementation Details. For running all the baselines, we utilized a publicly available
implementation [37]. We evaluated the performance of LoRA, AdaLoRA and SaLoRA at r = 8.
To maintain a controlled parameter budget, we set the desired budget ratio (b) to 0.50 for both
SaLoRA and AdaLoRA. During training, we used the AdamW optimizer [38], along with the
linear learning rate scheduler. During our experiments, we observed that using a larger learning
rate (ηc) significantly improved the learning process for both the gate matrices and Lagrange
multiplier. Therefore, we set ηc to 0.01 for all conducted experiments. We fine-tuned all models
using an NVIDIA A100 (40 GB) GPU. Additional details can be found in Appendix B.

Main Results. We compared SaLoRA with the baseline methods under different model
scale settings, and the experimental results on the GLUE development set are presented in
Table 1. We can see that SaLoRA consistently achieved better or comparable performance
compared with existing approaches for all datasets. Moreover, it even outperformed the FT
method. SaLoRA’s superiority was particularly striking when compared with LoRA, despite
both models having a similar parameter count of 1.33 M/3.54 M for base/large model scales.
After training, SaLoRA effectively utilized only 0.5× 1.33 M/0.5× 3.54 parameters, yet still
attained superior performance. This observation emphasizes the effectiveness of our method in
learning the intrinsic rank for incremental matrices.

Table 1. Results with RoBERTa-base and RoBERTa-large on GLUE development set. We report the
Pearson correlation for STS-B, Matthew’s correlation for CoLA, and accuracy for other tasks. We
report the mean and maximum deviation of 5 runs using different random seeds. The best results are
shown in bold. † indicates numbers published in prior works.

Model and Method
# Trainable MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B ALL
Parameters ACC ACC Mathew ACC ACC ACC ACC Pearson Avg

RoBbase(FT) † 125.00 M 87.6 94.8 63.6 91.9 92.8 78.7 90.2 91.2 86.4
RoBbase(Prefix) 1.33 M 82.58±0.24 91.65±0.44 47.45±4.47 85.98±0.11 85.91±0.44 60.47±0.54 88.09±1.37 87.49±0.63 78.70
RoBbase(Prompt) 0.62 M 79.14±0.99 88.33±1.44 42.35±5.12 73.30±5.84 80.51±1.64 55.81±2.67 69.75±0.59 76.94±3.59 70.77
RoBbase(LoRA) 1.33 M 87.49±0.44 94.77±0.53 61.22±2.09 91.39±0.18 92.85±0.28 79.24±.21 89.46±1.23 90.89±0.18 85.91
RoBbase(AdaLoRA) 1.33 M 87.93±0.20 94.59±0.21 59.29±1.06 90.94±0.13 92.61±0.10 76.39±1.30 87.35±0.39 90.87±0.15 85.00
RoBbase(SaLoRA) 1.33 M 87.83±0.04 95.14±0.73 63.39±1.79 91.46±0.09 92.99±0.21 81.01±0.87 90.20±0.74 91.13±0.17 86.64

RoBlarge(FT) † 356.05 M 90.2 96.4 68.0 92.2 94.7 86.6 90.9 92.4 88.9
RoBlarge(AdaptP) † 4.05 M 90.2±0.3 96.1±0.3 68.3±1.0 91.9±0.1 94.8±0.2 83.8±2.9 90.2±0.7 92.1±0.7 88.4
RoBlarge(AdaptH) † 7.05 M 89.5±0.5 96.2±0.3 66.5±4.4 92.1±0.1 94.7±.2 83.4±1.1 88.7±2.9 91.0±1.7 87.8
RoBlarge(Prefix) 3.02 M 88.61±0.12 94.70±0.44 60.06±1.44 87.57±0.25 89.60±0.37 77.33±1.37 89.85±.88 89.97±3.37 84.71
RoBlarge(Prompt) 1.09 M 85.65±2.54 93.95±0.83 58.34±2.63 83.98±1.45 84.92±3.28 58.70±4.83 74.22±2.65 80.47±0.71 77.53
RoBlarge(LoRA) 3.41 M 89.96±0.12 96.10±0.11 68.76±1.75 88.67±0.88 94.86±0.07 85.49±1.51 90.93±0.74 92.25±0.17 88.38
RoBlarge(AdaLoRA) 3.54 M 90.84±0.03 96.29±0.19 67.61±0.12 91.12±0.26 94.82±0.11 86.28±0.36 89.89±0.31 92.27±0.16 88.64
RoBlarge(SaLoRA) 3.54 M 90.67±0.07 96.63±0.28 68.37±0.34 91.95±0.08 94.98±0.09 87.80±1.29 91.81±1.57 92.43±0.18 89.33

4.2. Task-Agnostic Performance

Models and Datasets. We present the experiments conducted to evaluate the per-
formance of the self-instruct tuned LLaMA-7B models on instruction-following data [21].
Our objective was to assess their capability in comprehending and executing instructions
for arbitrary tasks. We evaluated model performance on two text style transfer datasets:
Yelp [22] and GYAFC [23]). Text style transfer refers to the task of changing the style of a
sentence to the desired style while preserving the style-independent content. The prompts
used in these experiments can be found in Appendix C.

Implementation Details. We tuned the learning rate ηp from {8× 10−5, 3× 10−5, 1× 10−4,
3× 10−4, 8× 10−4, 1× 10−3} and kept the following hyperparameters fixed: r = 8, b = 0.5,
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ηc = 0.01, β = 0.1, τ = 1.0, γ = −0.1 and ζ = 1.1. All models were fine-tuned on an
NVIDIA A800 (80 G) GPU.

Furthermore, we compared the performance of SaLoRA with dataset-specific style
transfer models, including StyTrans [15], StyIns [16] and TSST [17]. In contrast to SaLoRA,
these models were trained on a specific dataset. To evaluate the performance of style transfer
models, we used the following metrics: (1) Transfer accuracy (ACC) using a fine-tuned
BERT-base [39] classifier with each dataset. (2) Semantic similarity to human references via
BLEU [40] score. (3) Sentence fluency (PPL) via perplexity, as measured by KenLM [41].

Main Results. Table 2 presents our experimental results on the Yelp and GYAFC datasets.
Compared with LoRA, our method SaloRA achieved better or comparable performance
across all directions on both datasets. This demonstrates the effectiveness of our method. In
the negative-to-positive transfer direction, though SaloRA’s transfer accuracy was lower than
the dataset-specific models (e.g., StyIns achieved 92.40 compared with SaloRA’s 71), it still
aligned with the human reference accuracy of 64.60. Furthermore, SaloRA exhibited a lower
perplexity (PPL) compared with dataset-specific models. These results show that SaLoRA
(including LoRA) aligns more closely with human writing tendencies. In the formal-to-informal
transfer direction, we also observed that our transfer accuracy was lower than dataset-specific
models. This disparity may be attributed to the inherent bias of a large model for generating
more formal outputs. This can be verified from the fact that SaLoRA exhibited a significant
improvement in the transfer accuracy compared with dataset-specific models.

Table 2. Automatic evaluation results on Yelp and GYAFC datasets. ↑ indicates that higher values mean
better performance, and vice versa.

Model and Method
Yelp GYAFC

Negative to Positive Positive to Negative Informal to Formal Formal to Informal
ACC ↑ BLEU ↑ PPL ↓ ACC ↑ BLEU ↑ PPL ↓ ACC ↑ BLEU ↑ PPL ↓ ACC ↑ BLEU ↑ PPL ↓

Reference 64.60 100 102.62 93.80 100 77.53 88.44 100 66.86 87.63 100 105.28

StyTrans 88.40 25.85 173.35 94.20 24.90 141.88 32.81 54.91 144.15 80.86 27.69 201.78
StyIns 92.40 25.98 116.01 89.60 26.08 105.79 54.73 60.87 96.53 80.57 30.25 132.54
TSST 91.20 28.95 112.86 94.40 28.83 101.92 65.62 61.83 87.04 85.87 33.54 128.78

LaA7B 2.20 33.58 208.69 0.80 31.12 156.14 12.01 60.18 189.78 7.75 34.61 145.43
LaA7B(LoRA) 71.00 25.96 82.20 92.80 31.83 83.03 89.34 61.06 68.52 34.45 41.59 82.96
LaA7B(SaLoRA) 73.20 24.76 76.49 94.60 31.96 87.41 89.63 61.76 67.53 39.04 40.91 79.54

4.3. Analysis

The Effect of Rank r. Figure 4 illustrates the experimental results of fine-tuning
RoBERTa-large across different ranks. We see that the rank r significantly influenced the
model’s performance. Both large and small values of r led to suboptimal results. This
observation emphasizes that selecting the optimal value for r through heuristic approaches
is not always feasible. Notably, SaLoRA consistently improved performance across all ranks
when compared with the baseline LoRA. This suggests that SaLoRA effectively captured
the “intrinsic rank” of the incremental matrix.

The Effect of Sparsity b. Figure 5 shows the experimental results of fine-tuning
RoBERTa-large across various levels of sparsity. Remarkably, SaLoRA consistently exhibited
enhanced performance across all sparsity levels compared with the baseline. This result
suggests that SaLoRA’s modifications facilitated the acquisition of the “intrinsic rank” of the
incremental matrix under different sparsities. It is noteworthy that SaLoRA’s performance
even surpassed the results of LoRA under low sparsity conditions (0.125). The fact that
SaLoRA can outperform LoRA even under low sparsity conditions highlights its capacity
to capture and leverage parameters with a constrained budget. Consequently, SaLoRA’s
efficacy could be expanded on a limited budget, making it a versatile method with a broader
range of applications.
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Figure 4. Fine-tuning performance under different ranks.

Figure 5. Fine-tuning performance under different sparsity levels.

Ablation Study. We investigated the impact of Lagrangian relaxation and orthogonal
regularization in SaLoRA. Specifically, we compared SaLoRA with the following variants:
(i) SaLoRAλ=0: SaLoRA without Lagrangian relaxation; (ii) SaLoRAβ=0: SaLoRA without
orthogonal regularization. These variations involved the fine-tuning of the RoBERTa-base
model on the CoLA, STS-B, and MRPC datasets. The target sparsity was set to 0.5 by default.
SPS represented the expected sparsity of the incremental matrix. From Table 3, we see that:

1. Without Lagrangian relaxation, the parameter budget was uncontrollable, being 0.37,
0.42 and 0.43 on the three datasets, respectively. Such results highlight the pivotal
role that Lagrangian relaxation plays in controlling the allocation of the parameter
budget. Nonetheless, it is worth noting that omitting Lagrange relaxation may lead to
slight enhancements in performance. However, given the emphasis on control over
the parameter budget, this incremental enhancement should be disregarded.

2. Without orthogonal regularization, the performance of SaLoRA degenerated. These results
validate that incorporating orthogonal regularization into SaLoRA ensures the independence
of doublets from one another, leading to a significant enhancement in its performance.

Table 3. Ablation studies on Lagrangian relaxation and orthogonal regularization.

Method
MRPC STS-B CoLA

ACC SPS ACC SPS ACC SPS

SaLoRA 90.20±0.74 0.51±0.00 91.13±0.17 0.52±0.00 63.39±1.79 0.52±0.00
SaLoRAλ=0 89.95±0.49 0.37±0.02 91.20±0.12 0.42±0.03 63.65±3.39 0.43±0.02
SaLoRAβ=0 90.00±0.94 0.51±0.00 90.78±0.27 0.52±0.00 62.89±2.16 0.52±0.00
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Visualization of Four Components. We plotted the visualization of expected sparsity
b̂, the Lagrangian multiplier λ and ||AT A− I||2F and ||BT B− I||2F to show whether these
four components were regularized by Lagrangian relaxation and orthogonal regularization,
respectively. Specifically, we fine-tuned the RoBERTa-base using SaLoRA on the CoLA,
STS-B and MRPC datasets. The initial Lagrangian multiplier λ was 0 and the target sparsity
b was 0.5. From Figure 6, we see that:

1. The expected sparsity b̂ decreased from 0.92 to about 0.50, and the Lagrangian multi-
plier λ kept increasing during training. The results indicate that the SaLoRA algorithm
placed more emphasis on satisfying the constraints, eventually reaching a trade-off
between satisfying the constraints and optimizing the objective function.

2. The values of ||AT A− I||2F and ||BT B− I||2F could be optimized to a highly negligible
level (e.g., 0.001). Therefore, this optimization process enforced orthogonality upon
both matrices A and B, guaranteeing the independence of doublets from one another.

(a) (b)

(c) (d)

Figure 6. Visualization of expected sparsity b̂ and the Lagrangian multiplier λ under Lagrangian
relaxation, and ||AT A− I||2F and ||BT B− I||2F under orthogonal regularization: (a) expected sparsity
b̂; (b) Lagrangian multiplier λ; (c) A of WO at the first layer; and (d) B of WO at the first layer.

Comparison of Training Efficiency. We analyzed the efficiency of SaLoRA in terms
of memory and computational efficiency, as shown in Table 4. Specifically, we selected two
scales of the RoBERTa model, that is, RoBbase and RoBlarge, and measured the peak GPU
memory and training time under different batch sizes on an NVIDIA A100 (40 GB) GPU.
From Table 4, we see that:

1. The GPU memory usages of both methods were remarkably similar. Such results
demonstrate that SaLoRA does not impose significant memory overhead. The reason
behind this is that SaLoRA only introduces gate matrices in contrast to LoRA. The
total number of parameters was r× L×M. In this experiment, r denotes the rank of
the incremental matrix (set at 8), L corresponds to the number of layers within the
model (12 for RoBbase and 24 for RoBlarge) and M stands for the number of modules in
each layer (set at 6).
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2. The training time of SaLoRA increased by 11% when using a batch size of 32 compared
with LoRA. This suggests that the additional computational requirements introduced
by SaLoRA are justified by its notable gains in performance. This is because SaLoRA
is only utilized during a specific training phase (Tstart to Tend) comprising 30% of the
overall training time. With the remaining 70% being equivalent to LoRA, the overall
impact on training time remains manageable.

Table 4. Comparison of training efficiency between LoRA and SaLoRA on the MRPC dataset.

Model BS Method GPU Mem Time

RoBbase

16 LoRA 3.54 GB 15 min
SaLoRA 3.54 GB 20 min

32 LoRA 5.34 GB 14 min
SaLoRA 5.35 GB 15 min

64 LoRA 9.00 GB 13 min
SaLoRA 9.00 GB 14 min

RoBlarge

16 LoRA 7.44 GB 44 min
SaLoRA 7.46 GB 53 min

32 LoRA 12.16 GB 40 min
SaLoRA 12.18 GB 44 min

64 LoRA 21.80 GB 38 min
SaLoRA 21.82 GB 41 min

The Resulting Rank Distribution. Figure 7 shows the resulting rank of each incremental
matrix obtained from fine-tuning RoBERTa-base with SaLoRA. We observed that SaLoRA always
assigned higher ranks to modules (WU, WO and WV) and layers (4, 5, 6 and 7). This aligns with
the empirical results shown in Figure 1, indicating that modules (WU, WO and WV) and layers
(4, 5, 6 and 7) play a more important role in model performance. Hence, these findings not only
validate SaLoRA’s effective prioritization of critical modules and layers, but also emphasizes its
capacity to learn the structure-aware intrinsic rank of the incremental matrix.

Figure 7. The resulting rank of each incremental matrix obtained from fine-tuning RoBERTa-base on
MRPC with SaLoRA. The initial rank is set at 8, and the target sparsity is 0.5. The x-axis is the layer
index and the y-axis represents different types of modules.

5. Conclusions

In this paper, we present SaLoRA, a structure-aware low-rank adaptation method that
adaptively learns the intrinsic rank of each incremental matrix. In SaLoRA, we introduced a
diagonal gate matrix to adjust the rank of the incremental matrix by penalizing the L0 norm
based on the count of activated gates. To enhance training stability and model generalization,
we orthogonally regularized B and A. Furthermore, we integrated a density constraint and
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employed Lagrangian relaxation to control the number of valid ranks. In our experiments,
we demonstrated that SaLoRA effectively captures the structure-aware intrinsic rank and
consistently outperforms LoRA without significantly compromising training efficiency.
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Abbreviations

The following abbreviations are used in this manuscript:

PLMs Pre-trained language models
LLMs Large language models
NLP Natural language process
LoRA Low-rank adaptation
MHA Multi-head self-attention
FFN Feed-forward network
FT Fine-tuning
PEFT Parameter-efficient fine-tuning
HC Hard-concrete distribution

Appendix A. Description of Datasets

Table A1. Description of datasets.

Dataset Description Train Valid Test Metrics

GLUE Benchmark

MNLI Inference 393.0k 20.0k 20.0k Accuracy

SST-2 Sentiment analysis 7.0k 1.5k 1.4k Accuracy

MRPC Paraphrase detection 3.7k 408 1.7k Accuracy

CoLA Linguistic acceptability 8.5k 1.0k 1.0k Matthews correlation

QNLI Inference 108.0k 5.7k 5.7k Accuracy

QQP Question answering 364.0k 40.0k 391k Accuracy

RTE Inference 2.5k 276 3.0k Accuracy

STS-B Textual similarity 7.0k 1.5k 1.4k Pearson correlation

Text Style Transfer

Yelp-Negative
Negative reviews of
restaurants and
businesses

17.7k 2.0k 500
Accuracy
Similarity
Fluency

Yelp-Positive
Positive reviews of
restaurants and
businesses

26.6k 2.0k 500
Accuracy
Similarity
Fluency

GYAFC-
Informal

Informal sentences from
the Family and
Relationships domain

5.2k 2.2k 1.3k
Accuracy
Similarity
Fluency

GYAFC-
Formal

Formal sentences from
the Family and
Relationships domain

5.2k 2.8k 1.0k
Accuracy
Similarity
Fluency
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Appendix B. Training Details

We tuned the learning rate ηp from {5× 10−5, 7× 10−5, 9× 10−5, 2× 10−4, 3× 10−4, 4×
10−4, 5× 10−4, 7× 10−4} and selected the best learning rate.

Table A2. The hyperparameters we used for RoBERTa on the GLUE benchmark.

Model MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B

# Epoch RoBbase 15 20 20 20 15 40 40 30
RoBlarge 15 20 20 20 15 40 40 30

ηp
RoBbase 9× 10−5 4× 10−4 5× 10−4 4× 10−4 5× 10−4 4× 10−4 4× 10−4 7× 10−4

RoBlarge 9× 10−5 5× 10−4 4× 10−4 4× 10−4 4× 10−4 5× 10−4 2× 10−4 4× 10−4

Tstart = 0.2× # Epochs, Tend = 0.5× # Epochs. r = 8, b = 0.5, α = 16, ηc = 0.01, β = 0.1, τ = 1.0, γ = −0.1,
ζ = 1.1.

Appendix C. Prompts

Table A3. The prompts used in text style transfer.

Yelp: Negative → Positive

“Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{Please change the sentiment of the following sentence to be more positive.}

### Input:
{$Sentence}

### Response:”

Yelp: Positive→ Negative

“Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{Please change the sentiment of the following sentence to be more negative.}

### Input:
{$Sentence}

### Response:”

GYAFC: Informal→ Formal

“Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{Please rewrite the following sentence to be more formal.}

### Input:
{$Sentence}

### Response:”

GYAFC: Formal→ Informal

“Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{Please rewrite the following sentence to be more informal.}

### Input:
{$Sentence}

### Response:”
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Abstract: Recent advancements in deep learning have led to various challenges, one of which is
the issue of data privacy in training data. To address this issue, federated learning, a technique
that merges models trained by clients on servers, has emerged as an attractive solution. However,
federated learning faces challenges related to data heterogeneity and system heterogeneity. Recent
observations suggest that incorporating pre-trained models into federated learning can mitigate some
of these challenges. Nonetheless, the main drawback of pre-trained models lies in their typically
large model size, leading to excessive data transmission when clients send these models to the server.
Additionally, federated learning involves multiple global steps, which means transmitting a large
language model to multiple clients results in too much data exchange. In this paper, we propose a
novel approach to address this challenge using adapters. Adapters demonstrate training efficiency by
training a small capacity adapter layer alongside a large language model. This unique characteristic
reduces the volume of data transmission, offering a practical solution to the problem. The evaluation
results demonstrate that the proposed method achieves a reduction in training time of approximately
20–40% and a transmission speed improvement of over 98% compared to previous approaches.

Keywords: federated learning; deep learning; transfer learning; adapter transformer

MSC: 68T50

1. Introduction

Deep learning has emerged as a powerful and evolutionary technology, improving
the quality of life across various fields. The demand for a proficient understanding of
deep learning models has surged, driven by the availability of vast datasets. However, this
pursuit has raised concerns about data privacy during the training process. One attractive
method to mitigate these costs is federated learning [1]. In federated learning, each client
trains its own model and shares only the trained model’s parameters with the server,
without actually sending raw data. Since the server only receives the model parameters,
it cannot access the clients’ data directly. Therefore, federated learning enables training
that ensures the privacy of client data. While federated learning mitigates privacy risks,
it is not without its drawbacks. In comparison to conventional learning methods, it often
experiences performance degradation due to client heterogeneity. And data transfer costs
are required for model aggregation. In this paper, we propose a novel methodology aimed
at ameliorating the transmission challenges, with a specific focus on mitigating large data
transmission needs. Our approach involves the use of adapters, which serve to enhance
the efficiency of data transmission, thus addressing a key limitation of federated learning.

In general, federated learning, which combines the results from multiple clients, often
exhibits a lower performance compared to the traditional centralized learning methods.
This performance degradation can be attributed to the heterogeneity of the systems and
data in federated learning. Since clients train models using their own devices (systems)
and individual data, variations in device performance can lead to differences in learning
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speed. In extreme cases, due to some clients’ performance limitations, they cannot even
participate in the learning process. Furthermore, in federated learning each client trains
models using its own diverse data, where the quantity and quality of data held by each
client may differ. For example, in tasks that require various labels, certain clients may lack
data for some labels, causing problems.

Many methodologies have been proposed to solve the heterogeneity of federated
learning. Many methodologies have improved the aggregation method and training
method of federated learning. There were methods for resolving heterogeneity based
on model weight, such as FedProx [2] and FedDyn [3]. Feature-based heterogeneity
solutions, such as FedUFO [4] and MOON [5], have been proposed. Some tried to solve
the heterogeneity problem by improving the global model performance, and the APFL
algorithm [6] was proposed through this. Also, incorporating pre-trained models into
federated learning has proven to mitigate the performance degradation caused by data
heterogeneity [7].

In [7], it was experimentally confirmed that the pre-trained model solves various
problems of federated learning without using any special aggregation method. Pre-trained
models are models trained on general and large-scale datasets. In the field of natural
language processing, the methodology of fine-tuning these pre-trained language models
for downstream tasks through transfer learning has shown state-of-the-art performance in
most areas. Moreover, in federated learning pre-trained models consistently outperform
non-pre-trained deep learning models [7].

In the field of natural language processing, pre-training generally utilizes large-scale
language models. The recent rapid development of deep learning is closely related to the
increase in model capacity. Each year, the size of the model is increasing, which leads to an
increase in performance. For example, the BERT-base [8] model proposed in 2018, a large-
scale language model commonly used in natural language processing, has a parameter
number of about 340 M. The T5 model [9] proposed in 2019 has a size of 11 B. In addition,
the GPT-3-base [10] and Megatron-Tuning [11] models proposed in 2020 have parameter
numbers of up to 175 B and 530 B, respectively. In federated learning, however, sending
large-scale language models can be burdensome, since the trained parameters need to be
transmitted over the network. In federated learning, during each global epoch, the trained
models need to be downloaded from all clients, and then the models are aggregated and
uploaded. However, uploading/downloading large-scale language models during each
global epoch poses challenges in terms of time and network resources.

In this paper, we propose a novel methodology to address these issues and save net-
work transmission time in federated learning. The proposed method applies Adapters [12],
which were introduced for efficient transfer learning, to federated learning. This allows
federated learning to proceed with less model transmission. We conduct experiments in
the areas of natural language processing and computer vision to demonstrate how the
proposed methodology can significantly reduce the network transmission time compared
to existing approaches.

The main contributions of our paper are three-fold: First, we identify that pre-trained
models can mitigate the data heterogeneity problem in federated learning but render a
new challenge of large data transmission requirements. Second, we introduce the adapter
mechanism, which involves training large language models using smaller-sized adapters.
This approach effectively addresses the problem of excessive data transmission issues in
federated learning that uses transformer-based pre-trained models. Finally, we conduct
extensive experiments on diverse federated learning datasets in both natural language
processing and computer vision domains, to demonstrate the efficiency and performance
of our proposal. The evaluation results highlight a significant reduction in training time of
approximately 20–40% and a remarkable improvement in transmission speed, surpassing
98% compared to previous approaches.

The structure of the remainder of this paper is outlined as follows. Section 2 provides
an overview of the related work in the field. Section 3 elaborates on the details and design of
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the proposed approach. Section 4 presents the results of the evaluation conducted. Finally,
Section 6 concludes the paper.

2. Related Work

2.1. Federated Learning

Deep learning has emerged as a powerful and evolutionary technology, revolutioniz-
ing various research fields across the spectrum. By leveraging large-scale neural networks
and vast amounts of data, deep learning has made significant contributions to diverse
domains, ranging from healthcare and finance to computer vision and natural language
processing. While it is easy to collect massive amounts of data for some tasks to effectively
train deep learning models, there are often difficulties in collecting data for certain tasks due
to security concerns. In the case of medical or conversational data, data privacy is crucial,
requiring extensive security measures and de-identification processes for data collection.

Solving security and privacy issues incurs significant costs, thus increasing the cost
of collecting privacy-preserving data. One attractive method to mitigate these costs is
federated learning [1]. The process of federated training is divided into clients with
private data and servers for model aggregation. The client trains the local model through
private learning data. Then, the trained model parameter is transmitted to the server.
The server aggregates the received model parameters and overwrites them on the global
model. This method can protect privacy by not sending raw data directly to the server.
Federated learning, which gained significant attention after its initial introduction in [1],
was officially introduced in a 2017 Google AI Blog [13] and has been successfully applied in
technologies such as the Mobile G Keyboard. Federated learning is a methodology in deep
learning that enables data decentralization by utilizing multiple local clients and a central
server to train a global model. In this approach, each local client possesses its own data
and trains each local model, which is then transmitted to the central server and aggregated
by the central server to form the global model.

However, in federated learning some problems occurred instead of protecting data
privacy. One of them is performance degradation due to model aggregation. In the process
of aggregating the model, the performance was degraded by various factors, such as the
data heterogeneity and system heterogeneity of each client. Until recently, various aggrega-
tion methodologies and training methodologies have been proposed as a way to solve this
problem. In general, the most basic aggregation method is FedAvg [1], which averages and
aggregates the value of each local model. Since then, FedProx [2] and FedNova [14], which
are aggregation methodologies, have been proposed to solve data heterogeneity. FedProx
adds near-field terms to the local objective function to limit local updates to be closer to the
global model. FedNova uses momentum to accurately weight local models when updating
global models. FedDyn [3] modifies the local goal with a dynamic normalizer consisting
of linear terms based on primary conditions and Euclidean distance terms so that the
local minimum matches the global minimum. FedUFO [4] shares client models with each
other to sort features and log outputs. In addition, some tried to solve the heterogeneity
problem by improving the global model performance, and, through this, the APFL algo-
rithm [6] was proposed. There have been attempts to solve heterogeneity in various ways.
Since then, [7] has tried to solve the problem using a pre-trained model. According to [7], it
was experimentally confirmed that various heterogeneity problems were solved despite
the use of FedAvg when using the pre-trained model in federated learning.

2.2. Adapter

Recently, transfer learning-based methodologies have shown state-of-the-art perfor-
mances in natural language processing. Transfer learning approaches pre-train large-scale
language models on readily available and commonly collected massive datasets, such
as the wiki dataset. In turn, these pre-trained language models are fine-tuned for down-
stream tasks.

208



Mathematics 2023, 11, 4479

Most pre-trained language models require large model capacity. BERT, a representative
pre-trained language model with transfer learning, has a significantly higher capacity
than LSTM; newer models, like GPT3 [10] and T5 [9], require even larger capacities than
BERT. While these large-scale language models exhibit high performances, they demand
considerable resources and time for training.

To address these challenges, Dosovitskiy et al. [12] proposed the fine-tuning method-
ology using adapters. Instead of training all the parameters of a pre-trained language
model, they demonstrated that training only the proposed adapter layers for downstream
tasks can achieve a comparable performance. Many pre-trained language models form
stacked transformer blocks, where self-attention and feed-forward networks are inter-
connected. In AdapterFusion [15], adapter layers with lower capacities were inserted
between each transformer block of the pre-trained model. Furthermore, it was shown that
training only these adapter layers can yield a similar performance to previous methods.
Subsequently, structurally enhanced adapters, such as the Houlsby adapter [12] and
LoRA [16], were proposed to achieve a high performance with a smaller adapter capacity.

3. Methodology

This paper proposes to use adapters in federated learning, to improve transmission
efficiency during the process of federated learning with large transformer-based pre-trained
language models. Ref. [7] has shown that using a large language model can solve vari-
ous problems with federated learning. Various problems caused by heterogeneity were
alleviated and the performance of the global model was improved. However, federated
learning is trained using model transmission of servers and clients. At this time, using a
large model causes network overload from transmission. The proposed method of this
paper uses adapters to solve the transmission problem. The reason is that the adapter
can train the large language model with fewer parameters. Experiments on NLP and CV
are conducted to confirm the efficiency and performance of the methodology. They also
measure the amount of reduction in transmission.

One of the biggest issues of federated learning is performance degradation due to
data heterogeneity and system heterogeneity. The study [7] showed that the pre-trained
large language model could improve the problem. However, pre-trained large language
models require a high model capacity. When a large-capacity deep learning model is used
in federated learning, a very large amount of transmission is required. Federated learning
requires the parameters of clients to be uploaded/downloaded at each global step, so using
a large capacity model increases the amount of transmission exponentially.

For example, popular transformer models in natural language processing and com-
puter vision, such as BERT-base [8] and ViT-base [17], have sizes of 440 MB and 330 MB,
respectively. In federated learning, it is necessary to transmit and receive the trained model
parameters to and from each client at every global epoch. Therefore, transmitting and
downloading large model parameters multiple times becomes problematic in federated
learning. For instance, if 10 clients perform federated learning for 30 global epochs using
BERT-base, it would result in a total transmission of approximately 264,000 MB, or 263 GB.

T = 2EgNcC (1)

The amount of transmission in federated learning is calculated as shown in Equation (1).
Federated learning should upload/download to all clients at every global step. Therefore,
the total transmission amount T of federated learning is calculated by multiplying the
global epoch Eg, the number of clients Nc, and the capacity C of the model transmission
size and then doubling the result (upload and download).

Hence, we propose using adapters to reduce the size of the model parameters that
need to be transmitted.

The overall structure of the proposed methodology is illustrated in Figure 1, which
consists of three main steps. The first step is the preparation and downloading of the
pre-trained model. In the first step, the pre-trained model is downloaded so that each
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client has the same model structure and parameter value before starting the first global
step of federated learning. The second step is the client model training and upload. In the
second step, clients train the local model. After that, each client uploads the trained adapter
and classification head to the server.The final step is the aggregation and download of the
models. In the final step, the learned models are merged. The learned model parameter
value transmitted in the second step is aggregated to the global model. Each client then
downloads the aggregated global model to start the next global step. Each step is described
in Sections 3.2–3.4.

Figure 1. Overall architecture of federated learning with adapter.

3.1. Pre-Trained Model with Adapter

In this section, we discuss the deep learning model used in this paper. Firstly, the paper
employs a pre-trained large language model. A pre-trained language model refers to a
model that has been trained on a large-scale dataset and is typically divided into pre-trained
transformer layers and embedding layers. The pre-trained large language model is fine-
tuned to fit the downstream task. The classification head is added to classify the label for
the purpose of each downstream task. The classification head is typically implemented as a
one-layer feed-forward network. The classification head derives the probability for each
label in the downstream task. For example, next word prediction predicts the probability
that each word in every word will be used as the next word. Image classification predicts
probabilities for all candidate categories.

Ref. [12] confirms that learning with adapter layers can achieve a similar perfor-
mance. In this paper, we reduce the amount of training parameters by using adapter layers.
The adapter mechanism trains only the adapter layer and classification head while freezing
the pre-trained language model. As a result, the adapter mechanism can achieve a similar
performance even with a small amount of training resources. The adapter layer, trained
using adapter models, such as LoRA [16], Houslby [12], and Preffier [15], is an additional
layer used to train the language model. In other words, the model to be used for federated
learning in this paper consists of an embedding layer, transformer layer, adapter layer,
and classification head. And according to [12], the model training process freezes the
embedding and transformer layers.

3.2. Prepare Pre-Trained Language Model

In this section, we provide detailed explanations on the first steps shown in Figure 1.
The first step is the preparation of the model for client training. In our proposed federated
learning approach, each client performs downstream task training using a pre-trained large
language model with adapters. Federated learning use the global model and the local
model. The global model is a deep learning model owned by the server, and the local
model is a deep learning model owned by each client. Federated learning is when each
client trains the local model through their dataset and aggregates it to the global model at
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the server. Therefore, each local model and global model have the same model structure.
You must also have the same parameter value at the beginning of the training of the
local model.

In summary, in the proposed methodology all clients receive the full model (pre-
trained large language model) from the server before starting federated learning. Note that
this is a one-time download. This ensures that all clients begin with the same pre-trained
parameters for federated learning.

3.3. Train Local Model

The next step involves clients training the local model and uploading it to the server.
Each client fine-tunes the local model for the downstream task. After the local learning
epoch, each client uploads the model parameter value to the server. However, using the pre-
trained large language model in conventional federated learning requires a large amount
of transmission capacity to be uploaded to the server, because federated learning involves
servers and clients transmitting the full model. Typically, pre-trained large language models
have hundreds of MB or several GB of capacity, which requires too much transmission.
In addition, the server is required to receive trained model parameter values from all clients,
which creates a network bottleneck.

In this paper, learning is conducted using adapters to reduce transmission. For learning
with adapters, such as that explained in Section 3.1, the pre-trained model is frozen. There
is no change in the model parameter values of the transformer layer and embedding layer
because only the adapter layer and classification head are learned. Only the adapter layer
and the model parameter value of the classification head change. In this step, clients train
the local model as much as the local epoch through each of their datasets. As a result
of clients learning their respective datasets from the local model, only the adapter layer
and classification head are learned. Therefore, clients send only the adapter layer and
classification head to the server. Compared to the transformer layer and embedding layer,
the capacities of the adapter layer and the classification layer are very small, which can
increase transmission efficiency.

3.4. Aggregation into Global Model

Lastly, the server aggregates the trained parameters, and the clients download them.
The final step aggregates the adapter layer uploaded by clients in the second step and the
model parameter value of the classification head layer. The aggregated model parameter
value is overwritten on the global model. The above process completes the global model
learning in one global step. In this process, the federated learning aggregation method uses
FedAvg [1]. FedAvg is the most basic method of averaging model parameter values for
each local model. At this point, the server aggregates only adapter layers and classification
heads, because the transformer layer and embedding layer did not change the values at
client’s training step.

After one global step is completed, all clients must synchronize their model parameter
value before starting learning for the next global step. Therefore, all clients download
the global model learned on the server. The downloaded parts are the adapter layer and
classification head, because the transformer layer and embedding layer did not change
the values at aggregation step. Therefore, each client downloads only the model pa-
rameter values of the adapter layer and the classification head layer, which can increase
transmission efficiency.

The proposed methodology solves the increased network transmission problem when
using pre-trained large language models in federated learning. Instead of training the
transformer layers and embedding layers, which takes most of the model capacity in the
pre-trained language model, the proposed approach trains and transmits only the smaller-
sized classification head and adapter layers. In result, the proposed method reduces the
network transmission and the number of parameters to be trained and potentially decreases
the overall training time.
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4. Experiments

In this section, we conduct experiments on two types of datasets, namely, natural
language processing and computer vision, to demonstrate the efficiency and performance
of the proposed methodology.

4.1. Datasets and Downstream Task

For the experiments in natural language processing, the federated Stack Overflow
dataset [18] and federated Shakespeare dataset [18], which are federated learning datasets
for natural language processing, are used for training. The federated Stack Overflow dataset
consists of question posts and their corresponding answers uploaded on Stack Overflow.
The Shakespeare dataset contains various phrases from Shakespeare’s literary works.
We use the titles and contents of the posts in these datasets as input and then measure
the performance of the next word prediction task [7]. Next, word prediction predicts the
n + 1th word when up to n words are entered. The accuracy of the predicted word is
measured for performance evaluation of the next word prediction task.

For the experiments in computer vision, the EMNIST dataset [19] and CIFAR100
dataset [20], which are computer vision federated learning datasets, are used for training.
EMNIST is a dataset of handwritten characters and digits, while CIFAR100 is an image
classification dataset with 100 classes. The performance of image classification is measured
using these datasets. All datasets were downloaded using the TensorFlow Federated
API [18].

4.2. Experiment Setup

We detail the experiment setup in this section. We conduct federated learning us-
ing large language models. For natural language processing, we use a pre-trained lan-
guage model in the form of a transformer decoder for the next word prediction task.
We utilize the gpt2-base [21] pre-trained language model, which has a parameter size of
approximately 490 MB.

For computer vision image classification, we use a large encoder-based language
model called ViT [17]. We use ViT-base [17] for training, which has a parameter size of
approximately 330 MB. Additionally, we perform the experiment using three different types
of adapters. For the experiment, we use the Pfeiffer adapter [15], Houlsby adapter [12],
and LoRA [16].

The baseline uses the methodology proposed by [7]. Ref. [7] confirmed that using the
pre-trained language model to conduct federated learning showed a high performance.
The baseline uses a large language model as a global model and a local model for federated
learning. Before starting federated learning, all clients download the model parameter
value of the pre-trained large language model. After that, in each global step, clients
pull-train the large language model and upload/download the large language model.

We also employ the experiments from [1] for comparison with traditional federated
learning. The deep learning model for CV performance measurement is a 3-layer CNN
(5 × 5 kernelsize) with ReLu activation and max pooling (2 × 2 kernelsize). And the
classification layer is a 2-layer feed-forward network. The first layer has 1000 dimensions.
In addition, the embedded layer and the 2-layer LSTM or RNN in 768 dimensions are used
as models for measuring the performance of NLP, and the 1-layer feed-forward network
for the classification head is used at the end.

The federated learning setup for this experiment is as follows. We conduct federated
learning on both IID and non-IID datasets. For non-IID training, we use a total of 9 clients
datasets for 9 clients. For IID training, we convert a total of 27 client datasets into 9 clients
by grouping them in sets of 3. The experiments in this paper were conducted in a local
environment; thus, the real transmission rate was not measured. The experiments were
performed on a total of 4 RTX3090 GPUs, with 3 GPUs used for parallel training on
3 clients. The server independently uses 1 GPU for aggregating client model parameters
and conducting tests for performance evaluation.
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The hyperparameters used in the experiment are shown in Table 1. Since each ex-
periment was conducted with different models and environments, we experimented with
various learning rates and considered the highest performance achieved by each model
as its performance. The learning rates used in the experiment are 0.005, 0.001, 0.0005, and
0.0001, and the differences between each learning rate are mentioned in Section 4.3.2.

Table 1. Hyperparameters used in the experiments.

Hyperparameter Value

Global epoch (NLP) 30
Global epoch (CV) 50
Local step 5
Number of clients 9
Optimizer Adam
Epsilon 0.0005
Batch size (NLP) 16
Batch size (CV) 12
Pre-trained model (NLP) gpt2-base
Pre-trained model (CV) ViT-base
GPU RTX 3090 × 4

4.3. Experimental Results
4.3.1. Accuracy

We examine the accuracy of the next word prediction to verify the performance of
the pre-trained model. The results of the Stack Overflow dataset are shown in Table 2.
We conduct next word prediction using the gpt2 model, employ federated learning for
training, and compare the performance with and without adapters. Traditional federated
learning methods using an RNN and LSTM without using the pre-trained large language
model showed performance of about 13.26 and 14.66. In contrast, when the pre-trained
large language model was used the performance improvement was more than 10 compared
to traditional combined learning. When adapters were not used, an accuracy of 26.97
was observed. When adapters were used, the performances with the Pfeiffer, LoRA,
and Houlsby adapters were 26.69, 25.87, and 26.58, respectively. In summary, not using
adapters results in a slight accuracy improvement compared to using adapters, but the
performance is comparable.

Table 2. Next word prediction accuracy of Stack Overflow non-IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] RNN 0.005 X X 13.26
LSTM 0.005 X X 14.66

Nguyen et al. [7] gpt2-base 0.0005 O X 26.97

gpt2-base 0.0001 O Pfeiffer adapter 26.69
Proposed gpt2-base 0.0001 O LoRA adapter 25.87

gpt2-base 0.0001 O Houlsby adapter 26.58

We next examine the performance of image classification in computer vision (CV),
and the results on CIFAR100 are presented in Table 3. In this experiment, ViT and adapters
were used. Traditional federated learning methods using a CNN without using the pre-
trained large language model showed performance of about 19.5. The Cifar-100 dataset is
difficult to solve with a small model, and when using the baseline ViT without adapters
an accuracy of 61.51 was achieved. When federated learning was performed with adapters,
the performances were 64.09, 60.91, and 64.19, respectively. The Pfeiffer and Houlsby
adapters showed better performances than the baseline, while the LoRA adapter had a
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similar performance to the baseline. The accuracy graphs from using the pre-trained large
language model for each epoch are shown in Figures 2 and 3.

Table 3. Image classification accuracy of CIFAR100 non-IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] CNN 0.001 X X 19.5

Nguyen et al. [7] ViT-base 0.0005 O X 61.51

ViT-base 0.005 O Pfeiffer adapter 64.09
Proposed ViT-base 0.005 O LoRA adapter 60.91

ViT-base 0.005 O Houlsby adapter 64.19

Figure 2. Test accuracy graph of Stack Overflow IID dataset using GPT2-base.

Figure 3. Test accuracy graph of CIFAR100 IID dataset using ViT-base.

To ensure the reliability of the experimental results, additional experiments were
conducted on the Shakespeare dataset in NLP and the EMNIST dataset in CV. The results
and accuracy graphs for these experiments are presented in Tables 4 and 5 and Figures 4
and 5. Overall, these experiments showed similar trends to the results in Tables 2 and 3
and Figures 2 and 3.

214



Mathematics 2023, 11, 4479

Table 4. Next word prediction accuracy of Shakespeare non-IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] RNN 0.005 X X 16.49
LSTM 0.001 X X 17.48

Nguyen et al. [7] gpt2-base 0.0001 O X 28.46

gpt2-base 0.0005 O Pfeiffer adapter 29.18
Proposed gpt2-base 0.0005 O LoRA adapter 27.75

gpt2-base 0.0005 O Houlsby adapter 28.29

Table 5. Image classification accuracy of EMNSIT non-IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] CNN 0.005 X X 94.64

Nguyen et al. [7] ViT-base 0.0005 O X 99.17

ViT-base 0.005 O Pfeiffer adapter 100
Proposed ViT-base 0.001 O LoRA adapter 95.83

ViT-base 0.005 O Houlsby adapter 100

Figure 4. Test accuracy graph of Shakespeare non-IID dataset.

Figure 5. Test accuracy graph of EMNIST non-IID dataset.
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The results of experiments on IID datasets are shown in Tables 6 and 7, which present
the results assuming that each client has datasets from three individuals. Overall, the IID
datasets showed better performances compared to the non-IID datasets in Tables 2 and 3.
In the Stack Overflow dataset, when using the pre-trained large language model the perfor-
mance improvement was more than 10 compared to traditional federated learning using
an RNN and LSTM. And the highest performance was achieved with the Pfeiffer adapter,
with an accuracy of 28.71. Similarly, in the CIFAR100 dataset the highest performance was
achieved with the Pfeiffer adapter, with an accuracy of 79.0. Also, when the model was
not pre-trained it showed a low performance. In summary, we observe that using adapters
generally improves the performance in IID datasets. Even in cases where the performance
degraded, it still showed a comparable performance to the baseline. The accuracy graphs
from using a pre-trained large language model for each epoch are shown in Figures 6 and 7.

Table 6. Next word prediction accuracy of Stack Overflow IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] RNN 0.001 X X 14.94
LSTM 0.005 X X 16.96

Nguyen et al. [7] gpt2-base 0.001 O X 28.57

gpt2-base 0.0001 O Pfeiffer adapter 28.71
Proposed gpt2-base 0.0005 O LoRA adapter 28.16

gpt2-base 0.0001 O Houlsby adapter 28.04

Table 7. Image classification accuracy of CIFAR100 IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] CNN 0.0001 X X 249

Nguyen et al. [7] ViT-base 0.0005 O X 74.8

ViT-base 0.001 O Pfeiffer adapter 79.0
Proposed ViT-base 0.001 O LoRA adapter 76.3

ViT-base 0.005 O Houlsby adapter 76.9

We conduct additional experiments on the Shakespeare dataset and EMNIST dataset,
to further investigate non-IID datasets. The results of these experiments are presented in
Tables 8 and 9 and Figures 8 and 9. Overall, these experiments showed similar trends to
the results in Tables 6 and 7 and Figures 6 and 7.

Figure 6. Test accuracy graph of Stack Overflow IID dataset.
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Figure 7. Test accuracy graph of CIFAR100 IID dataset.

Table 8. Next word prediction accuracy of Shakespeare IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] RNN 0.005 X X 19.83
LSTM 0.005 X X 19.79

Nguyen et al. [7] gpt2-base 0.0001 O X 31.10

gpt2-base 0.0005 O Pfeiffer adapter 30.6
Proposed gpt2-base 0.001 O LoRA adapter 30.73

gpt2-base 0.0005 O Houlsby adapter 31.01

Table 9. Image classification accuracy of EMNIST IID dataset.

Method Language Model lr Pre-Trained Adapter Accuracy

McMahan et al. [1] CNN 0.0005 X X 98.21

Nguyen et al. [7] ViT-base 0.0001 O X 99.10

ViT-base 0.005 O Pfeiffer adapter 100
Proposed ViT-base 0.005 O LoRA adapter 99.10

ViT-base 0.005 O Houlsby adapter 100

Figure 8. Test accuracy graph of Shakespeare IID dataset.
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Figure 9. Test accuracy graph of EMNIST IID dataset.

4.3.2. Learning Rate

In this section, we conduct experiments with various learning rates. Figures 10 and 11
present the performance tables of the Stack Overflow dataset and CIFAR100 non-IID
experiments, respectively, based on different learning rates. In Stack Overflow, which
is an NLP dataset, there was not a significant change in performance according to the
learning rate. However, in the CV dataset, CIFAR100, using adapters generally showed
better performance at higher learning rates, while in smaller datasets, it showed a better
performance at lower learning rates. This trend was observed to some extent in the
Shakespeare dataset, but in EMNIST, where most adapters achieved an accuracy of 100,
no significant differences were observed based on the learning rate. The corresponding
performance and accuracy graphs of these experiments are provided in Figures 12 and 13.

Figure 10. Test accuracy graph of each learning rate in Stack Overflow non-IID dataset.

Figure 11. Test accuracy graph of each learning rate in CIFAR100 non-IID dataset.
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Figure 12. Test accuracy graph of each learning rate in Shakespeare non-IID dataset.

Figure 13. Test accuracy graph of each learning rate in EMNIST non-IID dataset.

4.4. Time Efficiency
4.4.1. Training Time

When using adapters in training a large language model, optimization is achieved
with fewer parameters. This means there are fewer weights to compute gradients and to
update. Therefore, fine-tuning only the adapters consumes less time compared to fine-
tuning the entire model. This experiment measures the training time in federated learning,
excluding the transmission time. This experiment shows the reduced local model training
time due to the use of adapters. Note that in our experiments we measure the training time
without considering the transmission time, since the experiments were conducted on a
local machine. This allowed us to measure the efficiency in terms of pure training time.

The results are presented in Tables 10 and 11. In this experiment, only the case of using
the same language model was compared because the structure and size of the model greatly
affect the training speed. Table 10 measures the time taken for federated learning on the
Stack Overflow dataset, for 30 epochs at the server. The results showed that using adapters
allowed for a faster training time. For the Stack Overflow dataset, using the adapter
methodology resulted in an approximately 20% reduction in training time compared to
the baseline. The training speed results for the Shakespeare dataset are shown in Table 11.
In this dataset, it was found that using adapters could save up to 40% of the training time.
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Table 10. Training time in local environment with Stack Overflow non-IID dataset.

Method
Language

Model
Pre-

Trained
Adapter

Training
Time

Time
Compared
to Baseline

Nguyen et al. [7] gpt2-base O X 2 h 10 m
59 s 1

gpt2-base O Pfeiffer adapter 1 h 38 m
43 s 0.75

Proposed gpt2-base O LoRA adapter 1 h 45 m
28 s 0.80

gpt2-base O Houlsby adapter 1 h 43 m
54 s 0.79

Table 11. Training time in local environment with Shakespeare non-IID dataset.

Method
Language

Model
Pre-

Trained
Adapter

Training
Time

Time
Compared
to Baseline

Nguyen et al. [7] gpt2-base O X 12 m 20 s 1

gpt2-base O Pfeiffer adapter 7 m 11 s 0.58
Proposed gpt2-base O LoRA adapter 7 m 43 s 0.65

gpt2-base O Houlsby adapter 7 m 42 s 0.65

4.4.2. Transmission Time

Although we did not conduct experiments to measure the actual transmission time,
the transmission efficiency can be computed based on the model’s size. Table 12 presents
the transmission sizes of the pre-trained models and adapters used in this paper.

Table 12. Transmission size for each model.

Model Name Size

RNN 219.34 MB
LSTM 241.87 MB

Nguyen et al. [7] (gpt2-base) 487.82 MB
gpt2+Pfeiffer adapter 3.41 MB
gpt2+LoRA adapter 1.12 MB

gpt2+Houlsby adapter 6.82 MB

CNN 18.36 MB
Nguyen et al. [7] (ViT-base) 330.96 MB

ViT+Pfeiffer adapter 3.41 MB
ViT+LoRA adapter 1.12 MB

ViT+Houlsby adapter 6.82 MB

Firstly, gpt2-base, which is the NLP pre-trained model, had a large size of 487 MB,
while each of the three adapters had sizes of 3.41 MB, 1.12 MB, and 6.82MB, respectively,
which are significantly smaller. In the federated learning methodology used in this paper,
after the initial download of the pre-trained large language model, only the adapters need to
be transmitted at each global epoch, resulting in an efficient transmission time. In addition,
the model sizes of the RNN and LSTM are 219 MB and 241 MB, respectively. Because the
embedding layer of the NLP shows a very large model size, the proposed methodology in
NLP shows better time efficiency than traditional federated learning that uses RNNs and
LSTM. A similar trend is shown in the CV model ViT-base. Compared to the full model size
of the large language model, the model size of the adapter is very small. Since the CNN
model does not include an embedding layer, the model size is significantly small at 18 MB.
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Based on the above Table 12, we measure the efficiency of transmission. Equation (1)
shows the calculation of the amount of transmission in the federated learning methodology.
In an experiment using gpt2-base, about 262,980 MB of transmission is required if federated
learning is conducted using the Table 1 environment. However, when using an adapter,
the transmission size decreases, as shown in Table 12. However, the transmission size
is reduced when the proposed methodology is used. The transmission amount of the
proposed methodology is calculated using the following Equation (2).

T = CpNc + (2Eg − 1)NcC (2)

Cp is the model capacity of the large pre-trained loan model. Eg is the global peer, and
Nc is the number of clients. C is the size of the model transmission. As in Section 3.2, Cp
and Nc are multiplied to calculate the amount of transmission that clients initially use to
download the pre-trained model. Then, it is multiplied by the number of up/downloads
for the global epoch, excluding the initial download by the transfer model capacity C. If
the LoRA adapter is used, only about 4977 MB of transmission is required. If the server
could perform 10 MBps of upload/download speed, it would take approximately 7 h and
18 min for gpt2-base transmission but only approximately 8 min and 17 s for LoRA adapter
transmission. In addition, the amount of transmission in traditional federated learning
using LSTM calculated through (1) is 130,610 MB, or 128 GB. If the server could perform
10 MBps of upload/download speed, it would take approximately 3 h and 37 min. Using
the proposed method in NLP can show better time efficiency than traditional federated
learning using LSTM.

We can expect the same time efficiency for the CV pre-trained model. In the conven-
tional federated learning methodology, if ViT-base is used for federated learning, then
a total of 297,000 MB of transmission would be required. However, when conducting
federated learning using the LoRA adapter, only approximately 3967 MB of transmission
would be needed. This means that with a capability of 10 MBps of upload/download
speed the conventional federated learning methodology would require 8 h and 15 min of
transmission time, while using adapters would only require approximately 6 min and 36 s,
enabling efficient federated learning. In addition, transmission in traditional federated
learning using CNN is 16,524 MB, or 16 GB, which takes approximately 27 min and 32 s.
Therefore, the proposed methodology can save time than traditional federated learning.

5. Discussion and Limitations

The evaluation of the proposed method in this paper revolves around two primary
issues. Firstly, it addresses the question of whether the use of the adapter mechanism can
effectively decrease both the data transmission and learning time. Secondly, it investigates
whether the reduction in training time and data transmission does not lead to performance
degradation. These aspects are rigorously examined through experiments conducted using
the federated learning datasets of both computer vision and natural language processing.

This paper validates the reduction in training time and data transmission detailed
in Section 4.4.2. Adapters significantly reduce the size of the model to be transferred by
up to 98%. We mathematically calculated the decrease in transmission when the model
size is reduced, which causes the reduction in transmission time during the training
time. As a result, the reduction in transmission time shows is about 98%. Furthermore,
the use of adapters reduces the training time of the local model by minimizing the number
of layers that need training. In this paper, we experimentally check the reduction in
training time when the transmission time is excluded in the local environment through
Section 4.4.1. This shows that the reduction in training time, excluding the transmission
time, can be about 20%. This confirms that the proposed methodology may show a
reduction in training time and transmission time. In addition, Section 4.3.1 shows that
performance degradation does not occur despite the reduced training time. Experimental
results of NLP generally show a slight performance degradation. Experiments with CV
generally show performance improvements. We confirm from the experimental results
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that the proposed method represents a reduction in training time, and this does not lead to
significant performance degradation.

In this paper, experiments on CV tasks were not described, which prevented us from
confirming the reduction in training time for these applications. Despite our efforts in
conducting the experiments, we were unable to observe a decrease in the training time,
regardless of whether the adapter was used or not. This limitation arose due to the
speed discrepancy on the CPU-based image pre-processing and training speed using the
GPU. Unfortunately, our computational resources did not permit us to bridge the gap
effectively. In addition, we note that the experiments were conducted solely in a local
environment. We did not perform transmission speed experiments on an actual network
due to these limitations. Instead, we calculated the reduction in transmission speed based
on our experiments in the local settings. Addressing these constraints in future studies will
provide a more comprehensive understanding of the proposed methodology’s applicability
and effectiveness across diverse scenarios.

Furthermore, note that our methodology operates exclusively during the fine-tuning
process and is not applicable in the pre-training phase. This limitation arises from the
need to individually train the pre-trained large language model. Consequently, even
though pre-training demands the most extensive dataset, the proposed method cannot be
employed during this crucial phase. Additionally, while this paper successfully reduces
the training time, there is a slight performance degradation observed in the NLP tasks.
For future work, there is a need for research focused on reducing both the training time and
data transmission during the full training of large language models in federated learning.
Simultaneously, efforts should be directed towards eliminating performance degradation
in NLP tasks through advancements in the adapter mechanism research.

6. Conclusions

In this paper, we addressed the problem of the increased transmission time caused
by the pre-trained large language model in federated learning. To overcome this issue, we
proposed and experimented with a federated learning approach using adapters, which
previously have been suggested as an efficient fine-tuning method. As a result, the transmis-
sion time was reduced by about 98% compared to the methodology using the pre-trained
large language model without adapters. In addition, the training time was also reduced by
20–40% as the number of parameters to be learned decreased. Nevertheless, the predictive
performance was similar. Through this, it was confirmed that time-efficient federated
learning is possible without performance degradation when an adapter is used in federated
learning using a large language model, such as [7]. Also, the proposed methodology
showed lower transmission sizes than traditional federated learning without a large lan-
guage model. In addition, because the proposed methodology uses a large language model,
it showed a higher predictive performance than traditional federated learning. Through
this, it was confirmed that the proposed methodology can induce performance improve-
ments with the same or lower transmission amount as traditional federated learning.

The significance of our proposed method lies in its ability to improve the transmission
efficiency of federated learning. Therefore, it enables the use of a large language model, such
as ChatGPT, powered by the GPT-3 model, in real-world federated learning environments.
While large language models, such as ChatGPT, have shown impressive performances,
it is practically challenging to use GPT-3 in an actual federated learning environment.
This is mainly due to the substantial time and transmission costs incurred by clients with
limited computational resources when learning and transmitting the large GPT-3 model.
In contrast, the proposed methodology offers an attractive solution to significantly reduce
the transmission costs. Furthermore, our experiments showed that the training time was
partially mitigated. In summary, our proposal stands as a key enabler, facilitating the use
of large models in a real-world federated learning environment.
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Abstract: Cancer remains a formidable global health challenge, claiming millions of lives annually.
Timely and accurate cancer diagnosis is imperative. While numerous reviews have explored cancer
classification using machine learning and deep learning techniques, scant literature focuses on tra-
ditional ML methods. In this manuscript, we undertake a comprehensive review of colorectal and
gastric cancer detection specifically employing traditional ML classifiers. This review emphasizes the
mathematical underpinnings of cancer detection, encompassing preprocessing techniques, feature ex-
traction, machine learning classifiers, and performance assessment metrics. We provide mathematical
formulations for these key components. Our analysis is limited to peer-reviewed articles published
between 2017 and 2023, exclusively considering medical imaging datasets. Benchmark and publicly
available imaging datasets for colorectal and gastric cancers are presented. This review synthesizes
findings from 20 articles on colorectal cancer and 16 on gastric cancer, culminating in a total of
36 research articles. A significant focus is placed on mathematical formulations for commonly used
preprocessing techniques, features, ML classifiers, and assessment metrics. Crucially, we introduce
our optimized methodology for the detection of both colorectal and gastric cancers. Our performance
metrics analysis reveals remarkable results: 100% accuracy in both cancer types, but with the lowest
sensitivity recorded at 43.1% for gastric cancer.

Keywords: traditional machine learning; cancer detection; colorectal cancer; gastric cancer;
mathematical formulation; preprocessing; feature extraction

MSC: 68T07

1. Introduction

Cancer, a longstanding enigma in human history, has experienced a notable upsurge
in its prevalence in recent decades due to several contributing causes. These reasons
encompass the inexorable aging of populations, the embracing of detrimental lifestyles,
and heightened exposure to carcinogens in the environment, food, and beverages [1,2]. The
term “cancer” has its origins in the Greek word “kapkivoc”, which carries a dual meaning,
referring to both a neoplasm and a crustacean of the crab genus. This nomenclature was first
introduced in the medical lexicon in the 17th century and signifies a condition characterized
by the invasive spread of cells to different anatomical sites, potentially causing harm [3–5].
In the human anatomy, composed of countless innumerable cells, cancer can emerge
in diverse locations, from the extremities to the brain. While cells typically divide and
multiply to meet the body’s needs and undergo programmed cell death, when necessary,
deviations can lead to the uncontrolled replication of damaged or abnormal cells, resulting
in the formation of a neoplasm or tumor. These tumors can be categorized as benign
(non-malignant) or malignant (cancerous), with the latter having the potential to travel
to distant body parts from the original location, often affecting nearby tissues along the
way. Notably, blood cancers, like leukemia, do not follow the typical pattern of solid tumor
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formation but rather tend to involve the proliferation of abnormal blood cells that circulate
within the body and may not form solid masses as seen in other types of cancer. Cancer
arises from genetic anomalies that disrupt the regulation of cellular proliferation. These
genetic anomalies compromise the natural control mechanisms that prevent excessive cell
proliferation. The body has inherent mechanisms designed to remove cells that possess
damaged DNA, but, in certain cases, these fail, allowing abnormal cells to thrive and
potentially develop into tumors, disrupting regular bodily functions; these defenses can
diminish with age or due to various factors [6].

Each instance of cancer exhibits a distinct genetic modification that evolves as the
tumor grows. Tumors often showcase a diversity of genetic mutations across various cells
existing within the same cluster. Genetic abnormalities primarily affect three types of genes:
DNA repair genes, proto-oncogenes, and tumor suppressor genes. Proto-oncogenes are
typically immersed in healthy cell division and proliferation. The transformation of these
genes into oncogenes, brought on by specific alterations or increased activity, fuels uncon-
trolled cell growth and plays a role in cancer development. Meanwhile, tumor suppressor
genes meticulously manage cellular division while imposing restraints on unbridled and
unregulated cellular proliferation, and mutations in these genes disable their inhibitory
function, increasing the risk of cancer. Mutations in DNA repair genes are significant in
rectifying DNA damage, and these genes can lead to the accumulation of further genetic
abnormalities, making cells more prone to developing cancer. Metastasis is the movement
of cancer cells from the initial site to new parts. It includes cell detachment, local tissue
invasion, blood or lymph system entry, and growth in distant tissues [7,8]. Understanding
the genetic and cellular mechanisms underlying cancer development and metastasis is
crucial for improving diagnostics, developing effective treatments, and advancing cancer
research. Researchers can work toward better strategies for prevention, early detection,
and targeted therapies by unraveling the intricacies of cancer at the molecular level. The
early diagnosis of cancer developments across different body areas requires accurate and
automated computerized techniques. While numerous researchers have made significant
strides in cancer detection, there remains substantial scope for improvement in this field. In
this manuscript, we have scrutinized colorectal and gastric cancers employing conventional
ML techniques solely based on medical imaging datasets. Medical images offer finer and
more specific details compared to other medical data sources.

Literature Review

This section provides an evaluative comparison of the most recent review articles
available, analyzing current review articles dedicated to the utilization of machine learning
and deep learning classifiers for cancer detection across diverse types. The objective is to
summarize the positive aspects and limitations of these review articles, as per the review
presented, on various cancer types. The papers selected for analysis include those that cover
more than two cancer types, are peer-reviewed, and were published between 2019 and 2023.
This present study extends our prior works [9,10] by providing an extensive review that
now encompasses seven distinct cancer types. Levine et al. (2019) [9] focused on cutaneous,
mammary, pulmonary, and various other malignant conditions, emphasizing radiological
practices and diagnostic workflows. The study detailed the construction and deployment of
a convolutional neural network for medical image analysis. However, limitations included a
relative underemphasis on malignancy detection, sparse literature sources, and examination
of a limited set of performance parameters. Huang et al. (2020) [10] explored prostatic,
mammary, gastric, colorectal, solid, and non-solid malignancies. The study presented a
comparative analysis of artificial intelligence algorithms and human pathologists in terms
of prognostic and diagnostic performance across various cancer classifications. However,
limitations included a lack of literature for each malignancy category, the absence of
consideration for machine learning and deep learning classifiers, and a lack of an in-depth
literature review. Saba (2020) [11] examined mammary, encephalic, pulmonary, hepatic,
cutaneous, and leukemic cancers, offering concise explanations of benchmark datasets and
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a comprehensive evaluation of diverse performance metrics. However, limitations included
a combined treatment of machine learning and deep learning without a separate analysis
and the absence of a comparative exploration between the two methodologies. Shah et al.
(2021) [12] proposed predictive systems for various cancer types but had limitations. It
used a data, prediction technique, and view (DPV) framework to assess cancer detection.
The focus was on data type, modality, and acquisition. However, the study included a
limited number of articles for each cancer type, lacked a performance evaluation, and only
considered deep learning-based methods.

Majumder and Sen (2021) [13] centered its focus on the domains of mammary, pul-
monary, solid, and encephalic malignancies. The findings embraced the demonstration of
artificial intelligence’s application in the domains of oncopathology and translational oncol-
ogy. However, limitations included a limited consideration of cancer types and literature
sources, along with variations in performance metrics across different sources. Tufail et al.
(2021) [14] evaluated astrocytic, mammary, colorectal, ovarian, gastric, hepatic, thyroid,
and various other cancer types, emphasizing publicly accessible datasets, cancer detection,
and segmentation. However, the exclusive focus on deep learning-based cancer detection
limited a comprehensive examination of each cancer type. Kumar and Alqahtani (2022) [15]
examined mammary, encephalic, pulmonary, cutaneous, prostatic, and various other malig-
nancies, detailing diverse deep learning models and architectures based on image types.
However, limitations included the exclusive focus on deep learning methods and variations
in performance metrics across different literature sources. Kumar et al. (2022) [3] evaluated
various malignancies, offering comprehensive coverage across diverse cancer categories.
The study drew from numerous literature sources, presenting a wide array of performance
metrics and acknowledging challenges. However, limitations included the amalgamation
of all cancer types in a single analysis and the absence of a separate assessment of machine
learning and deep learning approaches. Painuli et al. (2022) [16] concentrated on mammary,
pulmonary, hepatic, cutaneous, encephalic, and pancreatic malignancies. The study exam-
ined benchmark datasets for these cancer types and provided an overview of the utilization
of machine learning and deep learning methodologies. The research identified the most
proficient classifiers based on accuracy but unified the examination of deep learning and
machine learning techniques instead of offering individual assessments.

Rai (2023) [17] conducted a comprehensive analysis of cancer detection and segmenta-
tion, utilizing both deep neural network (DNN) and conventional machine learning (CML)
methods, covering seven cancer types. The review separately scrutinized the strengths and
challenges of DNN and CML classifiers. Despite limitations, such as a limited number of
research articles and the absence of a database and feature extraction analysis, the study
provided valuable insights into cancer detection, laying the foundation for future research
directions. Maurya et al. (2023) [18] assessed encephalic, cervical, mammary, cutaneous,
and pulmonary cancers, providing a comprehensive analysis of the performance parame-
ters and inherent challenges. However, it lacked an independent assessment of machine
learning and deep learning techniques and a dataset description. Mokoatle et al. (2023) [19]
focused on pulmonary, mammary, prostatic, and colorectal cancers, proposing novel de-
tection methodologies utilizing SBERT and the SimCSE approach. However, limitations
included the study’s focus on four cancer types, the lack of a dataset analysis, and reliance
on a single assessment metric. Rai and Yoo (2023) [20] enhanced cancer diagnostics by
classifying four cancer types with computational machine learning (CML) and deep neural
network (DNN) methods. The study reviewed 130 pieces of literature, outlined benchmark
datasets and features, and presented a comparative analysis of CML and DNN models.
Limitations included a focus on four cancer types and reliance on a single metric (accuracy)
for classifier validation.

This study offers an expansive and in-depth examination of the current landscape and
potential prospects for diagnosing colorectal and gastric cancers through the application of
traditional machine learning methodologies. The key contributions and highlights of this
review can be distilled into the following key points.
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• Mathematical Formulations to Augment Cognizance: Inaugurating the realm of
mathematical formulations, meticulously addressing the most frequently utilized
preprocessing techniques, features, machine learning classifiers, and the intricate
domain of assessment metrics.

• Mathematical Deconstruction of ML Classifiers: Engaging in a profound exploration
of the mathematical intricacies underpinning machine learning classifiers commonly
harnessed in the arena of cancer detection.

• Colorectal and Gastric Cancer Detection: Dedicating an analytical focus to the nu-
anced landscape of colorectal and gastric cancer detection. Our scrutiny unfurled a
detailed examination of the methodologies and techniques germane to the diagnosis
and localization of these particular cancer types.

• Preprocessing Techniques and Their Formulation: Penetrating the intricate realm of
preprocessing techniques and probing their pivotal role in elevating the quality and
accuracy of models employed in cancer detection.

• Feature Extraction Strategies and Informative Features: Embarking on a compre-
hensive journey, scrutinizing the multifaceted domain of feature extraction tech-
niques, meticulously counting and discerning the number of features wielded in
research articles.

• A Multidimensional Metrics Analysis: Conducting an holistic examination encom-
passing a spectrum of performance evaluation metrics, encapsulating accuracy, sensi-
tivity, specificity, precision, negative predictive value, F-measure (F1), area under the
curve, and the Matthews correlation coefficient (MCC).

• Evaluation Parameters for Research Articles: Systematically analyzing diverse pa-
rameters, including publication year, preprocessing techniques, features, techniques,
image count, modality nuances, dataset details, and integral metrics (%).

• Prominent Techniques and Their Effectiveness: Expertly identifying the techniques
most prevalently harnessed by researchers in the realm of cancer detection and metic-
ulously pinpointing the most effective among the gamut of options.

• Key Insights and Ongoing Challenges: Highlighting key insights from the scruti-
nized research papers, encompassing advances, groundbreaking revelations, and
challenges in cancer detection using traditional machine learning techniques.

• Architectural Design of Proposed Methodology: Laying out in meticulous detail an
architectural blueprint derived from the reviewed literature. These architectural for-
mulations present invaluable guides for the enhancement of cancer detection models.

• Recognizing Opportunities for Improvement: Executing a methodical comparative
analysis of an array of metrics, meticulously scrutinizing their zenith and nadir val-
ues, as well as the interstitial chasm. This granular evaluation aids in the strategic
pinpointing of areas harboring untapped potential for enhancement in cancer detec-
tion practices.

2. Materials and Methods

2.1. Literature Selection Process

In this section, we will provide a broad overview of the procedures involved in
selecting and employing research articles for the purpose of cancer classification through
traditional ML approaches. These selection criteria encompass both inclusion and exclusion
standards, which we will delineate in depth. The PRISMA flow diagram delineates the
systematic review process employed for the detection of colorectal and stomach (gastric)
cancer utilizing conventional machine learning (CML) methodologies, as illustrated in
Figure 1. Commencing with an initial identification of 571 records through meticulous
database searching, the subsequent removal of 188 duplicates yielded 383 distinct records.
Through a rigorous screening process, 197 records were deemed ineligible, prompting a
detailed assessment of eligibility for 186 full-text articles. Within this subset, the exclusion
of 150 articles on various grounds culminated in the inclusion of 36 studies. This select
group of 36 studies served as the foundational basis for the scoping review, offering a
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comprehensive exploration of cancer detection methods employing CML approaches for
both colorectal and stomach cancers.
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Figure 1. PRISMA flow diagram for the literature selection process.

2.1.1. Inclusion Criteria

The inclusion criteria for the review of research articles focused on cancer detection
were defined across several specific parameters. Firstly, the articles had to pertain exclu-
sively to the classification of cancer using conventional machine learning classifiers. These
articles were specifically chosen if they were peer-reviewed and published between 2017
and 2023. The selection was limited to journal articles, omitting conference papers, book
chapters, and similar sources to maintain the analytical scope. The studies selected for
review utilized medical image datasets related to colorectal and gastric cancers. Addition-
ally, a key criterion was the inclusion of accuracy as a performance metric in the chosen
articles. Accuracy stands as a fundamental measure in evaluating the effectiveness of
cancer detection models. The selected studies also strictly employed traditional machine
learning classifiers for their classification tasks. The review was narrowed down to studies
covering two specific high-mortality cancer types: colorectal and gastric cancer. Further-
more, articles were required to be in the English language, a criterion implemented to
ensure the enhanced accessibility and comprehension of the research, thereby contributing
to clarity and accuracy in the assessment process. Figure 2 illustrates the parameters gov-
erning the inclusion and exclusion of research articles in the selection process employed in
this manuscript.
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Figure 2. Parameters governing the inclusion and exclusion of research articles in the selection process.

2.1.2. Exclusion Criteria

The exclusion criteria, a pivotal aspect of the research review process for cancer
detection, served as a strategic filter to ensure the selection of high-quality, pertinent
articles. Omitting conference papers and book chapters was a deliberate choice to uphold a
superior standard, guided by the in-depth scrutiny and comprehensive nature typically
associated with peer-reviewed journal articles. Additionally, the requirement for digital
object identifiers (DOIs) within the selected studies aimed to guarantee the reliability and
accessibility of the articles, facilitating easy citation, retrieval, and verification processes.
The temporal boundary set the scope within a specific timeframe, excluding research
published before 2017 or after 2023, with the intention of focusing on the most recent
advancements within the field of cancer detection. Language limitations were incorporated,
allowing only English publications to ensure a consistent understanding and analysis.
Moreover, the exclusion of deep learning classifiers in favor of traditional machine learning
methods aligned with the specific objective of assessing the performance and effectiveness
of the latter in cancer detection. By narrowing the focus exclusively to colorectal and
gastric cancers, the exclusion criteria aimed to ensure a concentrated and comprehensive
analysis across these specific high-mortality cancer types. This approach facilitated a deeper
understanding of the efficacy of traditional machine learning methods in the context of
different cancer types.

To illuminate the research hotspots, we have detailed the quantity of literature refer-
ences pertaining annually to each cancer category (colorectal and gastric), along with the
cumulative total, visually represented in Figure 3. This visual aid is designed to aid readers
in identifying pertinent literature related to these specific cancer categories, fostering a
more nuanced analysis within the specified years.

2.2. Medical Imaging Datasets

Data collection is the essential first step in any machine learning endeavor, and the
performance of classifiers and detection tasks depends on the characteristics of the datasets
used. The approach for identifying or classifying diseases, particularly cancers, is closely
linked to the nature of the dataset. Various data types, such as images, text, and signal
data, may require distinct processing methods. In the context of cancer detection, medical
image datasets are of paramount importance. These datasets contain images that provide
valuable information about the presence and characteristics of cancerous tissues. Spe-
cialized techniques, including image segmentation and feature extraction, are applied to
extract relevant information for classification or detection. Analyzing image datasets differs
significantly from text or signal datasets due to differences in data structures and feature
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extraction techniques. Dataset availability can be categorized as offline or real-time. In the
domain of cancer detection, most research relies on offline datasets sourced from healthcare
institutions, research centers, and platforms like Kaggle and Mendeley. Researchers often
use local datasets from these sources to conduct studies and develop innovative cancer
detection methods. In Table 1, we have described some benchmarked imaging datasets of
lung and colorectal cancers.

Table 1. Benchmark and public medical imaging datasets for colorectal and gastric cancer with
download links.

Dataset
Cancer
Category

Modality Downloadable Link
No. of Data
Samples

Pixel Size

NCT-CRC-HE-100K

Colorectal

H&E
https://zenodo.org/record/
1214456 (accessed on
15 September 2023)

100,000 224 × 224

Lung and colon
histopathological
images (LC25000)

H&E

https://academictorrents.
com/details/7a638ed187a618
0fd6e464b3666a6ea0499af4af
(accessed on
15 September 2023)

10,000 768 × 768

CRC-VAL-HE-7K H&E
https://zenodo.org/record/
1214456 (accessed on
15 September 2023)

7180 224 × 224

Kather-CRC-2016
(KCRC-16) H&E

https://zenodo.org/record/
53169#.W6HwwP4zbOQ
(accessed on
15 September 2023)

5000
10

150 × 150
5000 × 5000

Kvasir V-2 dataset
(KV2D)

Stomach
(Gastric)

Endoscopy
https://dl.acm.org/do/10.1
145/3193289/full/ (accessed
on 15 September 2023)

4000 720 × 576 to
1920 × 1072

HyperKvasir dataset
(HKD) Endoscopy

https://osf.io/mh9sj/
(accessed on
15 September 2023)

110,079 images
and 374 videos ----

Gastric histopathology
sub-size image
database (GasHisSDB)

H&E https://gitee.com/neuhwm/
GasHisSDB 245,196 160 × 160, 120

× 120, 80 × 80

 

Figure 3. Temporal Analysis of Literature Utilization Across Cancer Categories (2017–2023).
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2.3. Preprocessing

In cancer detection, preprocessing is essential to prepare data for analysis and clas-
sification. It refines diverse data types, like medical images and genetic and clinical data,
addressing noise and inconsistencies. Medical image preprocessing includes noise reduc-
tion, enhancement, normalization, and format standardization. Augmentation enhances
data diversity. Quality preprocessed data improves cancer detection model performance.
Common tasks include noise reduction, data cleaning, transformation, normalization, and
standardization. Preprocessing optimizes data for analysis, contributing to effective cancer
diagnosis. Key preprocessing techniques are summarized in Table 2.

Table 2. Fundamental preprocessing techniques, associated formulas, and detailed descriptions.

Preprocessing
Technique

Formula Description

Image Filtering Ifiltered(A, B) =
N
∑

x=−N

N
∑

y=−N
I(A− x, B− y) · K(x, y)

Ifiltered(A, B) epitomizes the clean image
pixel at location (A, B). I(A− x, B− y) is the
pixel significance at location (A− x, B− y)
in the original image. K(x, y) is the value of
the convolution kernel at location (x, y). The
summation is performed over a window of
size (2N + 1)× (2N + 1) centered at (A, B).

Image Denoising Idenoised = argmin(E(Idenoised) + R(Idenoised))

Idenoised represents the denoised image.
E(Idenoised) is the data fidelity term, which
measures how well the denoised image
matches the noisy input image. R(Idenoised)
is the regularization term, which imposes a
prior on the structure of the denoised
image [21].

Gaussian Filtering Filteredvalue =
1

(2πσ2)
∗ e

−(x2+y2)
2σ2

Filteredvalue represents the resulting value
after applying Gaussian filtering. x and y are
the spatial coordinates. σ is the standard
deviation, controlling the amount of
smoothing or blurring.

Contrast Enhancement
of Images (CEI) PixelOP = PixelIP−MinIP

(Max IP−MinIP)
∗ (MaxOP −MinOP)+ MinOP

PixelOP is the enhanced pixel value, derived
from PixelIP in the input image. MinIP and
MaxIP are the minimum and maximum pixel
values in the input image. MinOP and
MaxOP represent the desired minimum and
maximum pixel values in the output
image [22].

Linear Transformation T(v) = Av
where T is the transformation operator, v is
the input vector, and A is a matrix defining
the transformation.

Contrast Limited
Adaptive Histogram
Equalization (CLAHE)

O(A, B) = T(I(A, B))

O(A, B) is the enhanced output pixel at
(A, B) using contrast-enhancing
transformation function T(·) based on pixel
intensity using cumulative distribution
function (CDF).

Discrete Cosine
Transform (DCT) X[m] =

N−1
∑

k=0
x[k] · cos

(
π(2k+1)m

2N

) X[m] represents the DCT coefficient at
frequency index m. x[k] is the input signal. N
is the number of samples in the signal. The
summation is performed over all samples in
the signal

Wavelet Transform
(WT) W(x, y) =

N−1
∑

a=0

M−1
∑

b=0
I(a, b) · ψx,y(a, b)

W(x, y) is the DWT coefficient, (I(a, b)) is the
pixel value at (a, b), and ψx,y(a, b) is the 2D
wavelet function.
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Table 2. Cont.

Preprocessing
Technique

Formula Description

RGB to Gray
Conversion (RGBG)

Gray_value = (0.2989 ∗ Redvalue) +
(0.5870 ∗ Greenvalue) + (0.1140 ∗ Bluevalue)

Grayvalue is the converted gray value from
RGB channels (Redvalue, Greenvalue, Bluevalue).
Coefficients 0.2989, 0.5870, and 0.1140 are
weights assigned to the R, G, and B channels,
respectively [23].

Cropping (ROI) Icropped = I[y : y + h, x : x + w]
The cropped image Icropped is obtained by
cropping the input image I at coordinates
(x, y) with width w and height h.

2.4. Feature Engineering

Feature engineering is a critical component in solving classification problems, particu-
larly with traditional machine learning methods. Features represent dataset attributes used
by the model to classify or predict. Instead of using the entire dataset, relevant features are
extracted and serve as classifier inputs, delivering the desired outcomes. Proper prepro-
cessing is essential before feature engineering to ensure data quality. Feature engineering
involves selecting which features to extract, choosing methods, defining the domain, and
specifying the number of features. Categories of feature engineering include extraction,
selection, reduction, fusion, and enhancement. Commonly used features for predicting
lung and colorectal cancers in medical images are outlined below.

2.4.1. Histogram-Based First-Order Features (FOFs)

These are statistical features extracted from an image’s histogram, providing valuable
information about the distribution and characteristics of pixel intensities [24]. Here are some
significant FOFs, along with their mathematical formulae presented in Equations (1)–(4).

Skewness (s): Skewness quantifies the asymmetry of the histogram and is calcu-
lated as:

s =
1
σ3

Gmax

∑
i=1

{
(i− μ)3 ∗ hi

}
(1)

Here, i is the gray level, hi is its frequency, Gmax is the highest grayscale intensity, and
μ and σ2 are the mean and variance, respectively.

Excess Kurtosis (k): Excess kurtosis measures the peakedness of the histogram and is
calculated as:

k =
1
σ4

Gmax

∑
i=1

{
(i− μ)4 ∗ hi

}
− 3 (2)

Energy: Energy reflects the overall intensity in the image and is computed as:

Energy =
Gmax

∑
i=1

{
[hi]

2
}

(3)

Entropy (HIST): Entropy quantifies the information or randomness in the histogram
and is calculated as:

Entropy =
Gmax

∑
i=1
{hi ∗ ln(hi)} (4)

2.4.2. Gray-Level Co-Occurrence Matrix (GLCM) Features

GLCM is a technique used for texture analysis in image processing. It assesses the
association between pixel values in an image, relying on the likelihood of specific pixel
pairs with particular gray levels occurring within a defined spatial proximity [25–27]. Here
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are some important GLCM features, along with their mathematical formulas as provided
in Equations (5)–(10).

Here, (x, y) pairs typically refer to the intensity values of adjacent or neighboring pixels.
Sum of Squares Variance (SSV): SSV quantifies the variance in gray levels within

the texture.
SSV = ∑

x,y
(x− μ)2 ∗ GLCM(x, y) (5)

Inverse Different Moment (IDM): IDM measures the local homogeneity and is higher
for textures with similar gray levels.

IDM = ∑
x,y

1

1 + (x− y)2 ∗ GLCM(x, y) (6)

Correlation (Corr): Correlation quantifies the linear dependency between pixel values
in the texture. It spans from −1 to 1, with 1 signifying flawless positive correlation.

Corr =
∑x,y(x ∗ y ∗ GLCM(x, y))(μa ∗ μb)

σa ∗ σb
(7)

Dissimilarity: Dissimilarity quantifies how different neighboring pixel values are.

Dissimilarity = ∑
x,y
|(x− y)| ∗ GLCM(x, y) (8)

Autocorrelation (AuCorr): Autocorrelation measures the similarity between pixel
values at different locations in the texture.

AuCorr = ∑
x,y

x ∗ y ∗ GLCM(x, y) (9)

Inverse Difference (ID): ID measures the local homogeneity and is higher for textures
with similar gray levels at different positions.

ID = ∑
x,y

GLCM(x, y)
1 + |(x− y)| (10)

2.4.3. Gray-Level Run Length Matrix (GLRLM)

This is a statistical procedure employed in image processing and texture assessment
to quantify the distribution of run lengths of specific gray levels within an image. Here are
some significant GLRLM features along with their corresponding mathematical formulas,
as presented in Equations (11)–(22).

Short Run Emphasis (SRE): SRE evaluates the dispersion of shorter runs character-
ized by lower gray-level values.

SRE = ∑
x,y

C(x, y)
x2 (11)

Here, (x, y) are gray levels, and C(x, y) is the co-occurrence matrix value reflecting the
frequency of each gray-level combination.

Long Run Emphasis (LRE): LRE assesses the presence of extended runs marked by
higher gray-level values [28].

LRE = ∑
x,y

C(x, y) ∗ x2 (12)
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Gray Level Nonuniformity (GLN): GLN Quantifies the nonuniformity of gray-level
values in runs.

GLN = ∑
x,y

C(x, y)2 (13)

Run Length Nonuniformity (RLN): RLN evaluates the irregularity in the lengths
of runs.

RLN = ∑
x,y

C(x, y)
y2 (14)

Run Percentage (RP): RP represents the percentage of runs in the matrix.

RP = ∑
x,y

C(x, y)
N2 (15)

Run Entropy (RE): RE calculates the entropy of run lengths and gray levels.

RE = −∑
x,y

(C(x, y) ∗ log C(x, y) + ∈) (16)

Low Gray-Level Run Emphasis (LGRE): LGRE accentuates shorter runs with lower
gray-level values.

LRGE = ∑
x,y

C(x, y)
y2 , for y ≤ N + 1

2
(17)

High Gray-Level Run Emphasis (HGRE): HGRE highlights longer runs with higher
gray-level values.

HRGE = ∑
x,y

C(x, y) ∗ y2, for y >
N + 1

2
(18)

Short Run Low Gray-Level Emphasis (SRLGLE): SRLGLE highlights shorter runs
that contain lower gray-level values.

SRLGLE = ∑
x,y

C(x, y)

(x 2 ∗ y2
) , for x, y ≤ N + 1

2
(19)

Short Run High Gray-Level Emphasis (SRHGLE): SRHGLE highlights shorter runs
that contain higher gray-level values.

SRHGLE = ∑
x,y

C(x, y) ∗ x2

y2 , for x, y ≤ N + 1
2

, y >
N + 1

2
(20)

Long Run Low Gray-Level Emphasis (LRLGLE): LRLGLE emphasizes longer runs
featuring lower gray-level values.

LRLGLE = ∑
x,y

C(x,y)
x2

y2 , for x >
N + 1

2
, y ≤ N + 1

2
(21)

Long Run High Gray-Level Emphasis (LRHGLE): LRHGLE highlights extended
sequences with higher gray-level values.

LRHRGLE = ∑
x,y

C(x, y) ∗ x2 ∗ y
2
, for x, y >

N + 1
2

(22)
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2.4.4. Neighborhood Gray-Tone Difference Matrix (NGTDM)

This is another texture analysis method used in image processing to characterize the
spatial arrangement of gray tones in an image. Here are some key NGTDM features along
with their respective mathematical formulas, as outlined in Equations (23)–(27).

Coarseness: Measures the coarseness of the texture based on differences in gray tones.

Coars = ∑Ng
x=1

C(x, y)

(Δx)2 (23)

Ng refers to the highest achievable discrete intensity level within the image.
Contrast (NGTD): Quantifies the contrast or sharpness in the texture.

ContrastNGTD = ∑Ng
x=1∑

Ng
y=1C(x, y) ∗ |x− y| (24)

Busyness: Represents the level of activity or complexity in the texture.

Busyness = ∑Ng
x=1∑

Ng
y=1C(x, y) ∗ y (25)

Complexity: Measures the complexity or intricacy of the texture.

Complexity = ∑Ng
x=1∑

Ng
y=1

P(x, y)
1 + |x− y|2

(26)

Texture Strength (TS): Quantifies the strength or intensity of the texture.

TS =

√
∑Ng

x=1∑
Ng
y=1P(x, y) ∗

(
x

Ng
− y

Ng

)2
(27)

These features provide a detailed analysis of texture patterns in images, making them
valuable for various applications, including image classification, quality control, and texture
discrimination in fields such as geology, material science, and medical imaging.

2.5. Traditional Machine Learning Classifiers

Machine learning-based classifiers, renowned for their advanced capabilities in detect-
ing cancer, notably stand out in their effectiveness when harmonized with non-invasive
diagnostic techniques, providing a significant edge in the domain of cancer detection.
Researchers have employed a range of ML classifiers to identify different malignancies and
disorders. Some commonly used classifiers include:

2.5.1. K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a widely used and simple machine learning algorithm,
suitable for classification and regression tasks. It relies on the assumption that similar
inputs lead to similar outputs, assigning a class label to a test input based on the prevalent
class among its k closest neighbors. The formal definition involves representing a test
point ‘x’ and determining its set of ‘k’ nearest neighbors, denoted as ‘Nx’, where ‘k’ is a
user-defined parameter.

The Minkowski distance is a flexible distance metric that can be tailored by adjusting
the value of the parameter ‘p.’ The Minkowski distance between two data points ‘x’ and ‘z’
in a ‘d’-dimensional space is defined by Equation (28):

dist(x, z) =

(
d

∑
r=1
|xr − zr|p

)1/p

(28)

The “1-NN Convergence Proof” states that, as your dataset grows infinitely large,
the 1-Nearest Neighbor (1-NN) classifier’s error will not be more than twice the error of
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the Bayes optimal classifier, which represents the best possible classification performance.
This also holds for k-NN with larger values of k. It highlights the ability of the K-Nearest
Neighbors algorithm to approach optimal performance with increasing data [29]. As n
approaches infinity, ZNN converges to Zt, and the probability of different labels for Zt when
returning (ZNN)’s label is described in Equation (29) [30].

∈NN= P(y∗|Zt)(1− P(y∗|ZNN)) + P(y∗|ZNN)(1− P(y∗|Zt)) ≤ (1− P(y∗|ZNN)) + (1− P(y∗|Zt))
= 2(1− P(y∗|Zt)) = 2 ∈BO

(29)

Here, BO is the Bayes optimal classifier. If the test point and its nearest neighbor are
indistinguishable, misclassification occurs if they have different labels. This probability is
outlined in Equation (30) and Figure 4 [29,31].

(1− p(s|x))p(s|x) + p(s|x)(1− p(s|x)) = 2p(s|x)(1− p(s|x)) (30)

 

Figure 4. Probabilistic analysis of misclassification for identical test point and nearest neighbor scenario.

Equation (30) represents the misclassification probability when the test point and its
nearest neighbor have differing labels.

2.5.2. Multilayered Perceptron (MLP)

In contrast to static kernels, neural network units have adaptable internal parameters
for an adjustable structure. A perceptron, inspired by biological neurons, comprises three
components: (i) weighted edges for individual multiplications, (ii) a summation unit for
calculating the sum, and (iii) an activation unit applying a non-linear function [32–34].
The single-layer unit function involves a linear combination passed through a non-linear
activation, represented by Equation (31) and Figure 5 [33,34].

y(1) f =

(
w0

(1) +
N

∑
j=1

wj
(1)xj

)
(31)
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(a) (b) 

Figure 5. Contrasts (a) biological neurons, showcasing intricate neural architecture, with (b) ar-
tificial perceptrons in neural networks, depicting simplified representations and emphasizing
structural differences.

In a single-layer neural network unit, y(1) f is the output, w(1)
0 is the bias, and ∑N

j=1 wj
(1)xj

is the weighted sum of inputs. In general, we compute U1 units as feature transformations in
learning models, described in an Equation (32) [33,34].

model(x, w) = w0 + y(1)1 (x)w1 + · · ·+ y(1)U1
(x)wU1 (32)

The input vector x can be denoted as represented in Equation (33) [33,34].

x =

⎡⎢⎢⎢⎢⎢⎢⎣

1
x1
.
.
.

xN

⎤⎥⎥⎥⎥⎥⎥⎦ (33)

The vector representation comprises input values x1 to xN , and an additional element
of 1. Internal parameters of single-layer units include bias w(1)

0,j and weights w(1)
1,j through

w(1)
N,j. These parameters form the jth column of a matrix W(1) with dimensions (N + 1)×U1,

as demonstrated in Equation (34) below [34]:

W1 =

⎡⎢⎢⎢⎢⎢⎣
w(1)

0,1 w(1)
0,2 · · · w(1)

0,U1

w(1)
1,1 w(1)

1,2 · · · w(1)
1,U1

...
...

...
...

w(1)
N,1 w(1)

N,2 · · · w(1)
N,U1

⎤⎥⎥⎥⎥⎥⎦ (34)

Notably, the matrix–vector product WT
1 x encompasses all linear combinations within

our U1 units as given in Equation (35) [33].

(
WT

1 x
)

j
= w(1)

0,j +
N

∑
n=1

w(1)
n,j xn, j = 1, . . . , U1 (35)
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We extend the activation function f to handle a general d × 1 vector v in
Equation (36) [34]:

f (v) =

⎡⎢⎣ f (v1)
...

f (vd)

⎤⎥⎦ (36)

In Equation (37), f
(
WT

1 x
)

is a U1× 1 vector containing all U1 single-layer units [33,34]:

f
(

WT
1 x

)
j
= f

(
w(1)

0,j +
N

∑
n=1

w(1)
n,j xn

)
, j = 1, . . . , U1 (37)

The mathematical expression for an L-layer unit in a general multilayer perceptron,
built recursively from single-layer units, is given by Equation (38) [33,34].

y(L)(x) = f

⎛⎝w(L)
0 +

U(L−1)

∑
i=1

w(L)
i f (L−1)

i (x)

⎞⎠ (38)

2.5.3. Support Vector Machine (SVM)

SVMs, employed for regression and classification tasks, stand out in supervised
machine learning for their precision with complex datasets. Particularly effective in binary
classification, SVMs aim to discover an optimal hyperplane, maximizing the boundary
between classes. Serving as a linear classifier, SVMs build on the perceptron introduced by
Rosenblatt in 1958 [35–37]. Unlike perceptrons, SVMs identify the hyperplane (H) with the
maximum separation margin, defined in Equation (39).

h(x) = sign
(

wTx + b
)

(39)

The SVM classifies in {+1,−1}, emphasizing the key concept of finding a hyperplane
with maximum margin σ. Figure 6 illustrates this importance, with the margin expressed
in Equation (40) [35]

σ = min
(xj ,yj)εD

∣∣w.xj
∣∣ (40)

where input vectors xj are within the unit sphere, σ is the closest data point from the
hyperplane, and the vector w resides on the unit sphere.

 

Figure 6. Separating Hyperplanes and Maximum Margin Hyperplane in Support Vector Machines.
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Max Margin Classifier: We formulate our pursuit of the maximizing-margin hyper-
plane as a constrained optimization task, aiming to enhance the margin while ensuring
correct classification of all data points. This is expressed in Equation (41) [35,37]:

[ max
u,δ

σ(u, δ)︸ ︷︷ ︸
maximize margin

such that ∀i yi

(
uTxi + δ

)
≥ 0︸ ︷︷ ︸

separating hyperplane

] (41)

Upon substituting the definition of σ, Equation (42) is derived, as given below.

[max
u,δ

1
‖u‖2

min
xi∈D

∣∣∣uTxi + δ
∣∣∣︸ ︷︷ ︸

σ(u,δ)︸ ︷︷ ︸
maximize margin

s.t. ∀i yi

(
uTxi + δ

)
≥ 0︸ ︷︷ ︸

separating hyperplane

] (42)

Scaling invariance enables flexible adjustment of u and δ. Smart value selection

ensures
(

min
x∈D

∣∣uTx + δ
∣∣ = 1

)
, introduced as an equality constraint in the objective per

Equation (43) [37]: [
max

u,δ
1 · |u|2 = min

u,δ
|u|2 = min

u,δ
u�u

]
(43)

Utilizing the fact that f (z) = z2 is monotonically increasing for z ≥ 0 and |u |≥ 0 ,
where u maximizing |u |2 also maximizes u� u. This reformulates the optimization problem
in Equation (44), and a structural diagram of a multi-SVM has been visualized in Figure 7.

min
u,δ

u�u subject to ∀i, yi

(
uTxi + δ

)
≥ 0, min

i

∣∣∣uTxi + δ
∣∣∣ = 1 (44)

Figure 7. Structural diagram of the multi-class support vector machine (SVM).

2.5.4. Bayes and Naive Bayes (NB) Classifier

The Bayes classifier, an ideal algorithm, assigns class labels based on class probabil-
ities given observed features and prior knowledge. It predicts the class with the highest
estimated probability, often used as a benchmark but requiring complete knowledge of un-
derlying probability distributions. To estimate P(y|x) for the Bayes classifier, the common
approach is maximum likelihood estimation (MLE), especially for the discrete variable y,
as outlined in Equation (45) [37]:

P(y|x) = ∑m
k=1 I(xk = x ∧ yi = y)

∑n
i=1 I(xi = x)

(45)
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Naive Bayes addresses MLE’s limitations with sparse data by assuming feature indepen-
dence. It estimates P(y) and P(x|y) instead of P(y|x) using Bayes’ rule (Equation (46)) [37]:

P(y|x) = P(x|y)P(y)
P(x)

(46)

Generative learning estimates P(y) and P(x|y), with P(y) resembling tallying occur-
rences for discrete binary values (Equation (47)).

P(y = c) =
∑n

i=1 I(yi = c)
n

= πc (47)

To simplify estimation, the Naive Bayes (NB) assumption is introduced, a key element
of the NB classifier. It assumes feature independence given the class label, formalized in
Equation (48) for P(x|y).

P(x|y) =
d

∏
α=1

P(xα|y) (48)

Here, xα is the value of feature α, assuming feature values, given class label y, are
entirely independent. Despite potential complex relationships, NB classifiers are effec-
tive. The Bayes classifier, defined in Equation (49), further simplifies to (50) due to P(x)
independence from y, and using logarithmic property, it can be expressed as (51).

h(x) = argmaxyP(y|x) = argmaxyP(x|y)P(y) (49)

h(x) = argmaxy

n

∏
α=1

P(xα|y)P(y) (50)

h(x) = argmaxy

n

∑
α=1

log(P(xα|y)) + log(P(y)) (51)

Estimating log(P(xα|y)) is straightforward for one dimension. P(y) remains unaf-
fected and is calculated independently. In Gaussian NB, where features are continuous
(xα ∈ R), P(xα|y) follows a Gaussian distribution (Equation (52)). This assumes each fea-
ture (xα) follows a class-conditional Gaussian distribution with mean μαc and variance
σ2
αc (Equations (53) and (54)), using parameter estimates in the Gaussian NB classifier for

each class [37].

P(xα|y = d) =
1√

2πσ2
αc

exp

(
− (xα − μαc)

2

2σ2
αc

)
(52)

μαc =
1

nd

n

∑
k=1

I(yk = d)xiα (53)

σ2
αc =

1
nd

n

∑
k=1

I(yk = d)(xiα − μαc)
2 (54)

2.5.5. Logistic Regression (LR)

Logistic regression, commonly used in classification, calculates the probability of a
binary label based on input features. In logistic regression (LR), the logistic (sigmoid)
function transforms a linear combination of input features x, weights w, and a bias term b
into a likelihood estimate between 0 and 1. Mathematically, logistic regression is defined in
Equation (55) [38]:

P(y = 1|x) = 1
1 + e−(wT x+b)

(55)
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Equation (71): P(y = 1|x)) is the likelihood of class 1 given features x. w and b
are estimated using statistical methods, minimizing assumptions about P(xi|y), allowing
flexibility in underlying distributions [38].

The Maximum Likelihood Estimate (MLE): MLE maximizes P(y | x, w), the probabil-
ity of observing y ∈ Rn given feature values xi. It aims to find parameters maximizing this
function, assuming independence among yi given xi and w. Equation (56) captures the
mathematical expression for the conditional data likelihood.

P(y|x, w) =
m

∏
k=1

P(yk|xk, w) (56)

Now, by taking the logarithm of the product of Equation (57), we obtain Equation (73):

log

(
m

∏
k=1

P(yk|xk, w)

)
= −

m

∑
k=1

log
(

1 + e−ykwT xk
)

(57)

To find the MLE for w, we aim to minimize the function provided in Equation (58):

wMLE = argmax(w)−
m

∑
k=1

log
(

1 + e−ykwT xk
)
= argmin(w)

m

∑
k=1

log
(

1 + e−ykwT xk
)

(58)

Minimizing the function in Equation (58) is our goal, achieved through gradient
descent on the negative log likelihood in Equation (59).

L(w) =
m

∑
k=1

log
(

1 + e−ykwT xk
)

(59)

Maximum a Posteriori (MAP): In maximum a posteriori (MAP), assuming a Gaussian
prior, the objective is to find wMAP that maximizes the posterior probability, represented
mathematically in Equation (60). Reformulating, this becomes an optimization problem, as
shown in Equation (61), where λ = 1

2σ2 , and gradient descent is employed on the negative
log posterior l(w) for parameter optimization [32,37].

wMAP = argmax
w

log(P(y|x, w)P(w)) ∝ P(y|x, w)P(w) (60)

wMAP = argmin
w

m

∑
k=1

log
(

1 + e−ykwT xk
)
+ λwTw (61)

2.5.6. Decision Tree (DT)

Decision trees, used for regression and classification, form a hierarchical structure
with nodes for decisions, branches for outcomes, and leaves for predictions. The goal
is a compact tree with pure leaves, ensuring each contains instances from a single class.
Achieving consistency is computationally challenging due to the NP-hard complexity of
finding a minimum-size tree [37]. Impurity functions in decision trees, evaluated on a
dataset D with pairs (a1, b1), . . . , (an, bn), where bi takes values in {1, . . . , m} representing
m classes, are crucial for assessing tree quality.

Gini Impurity: Gini impurity in a decision tree is calculated for a leaf using Equa-
tion (62), and the Gini impurity for the entire tree is given by Equation (63).

I(D) =
k

∑
m=1

qm(1− qm) (62)

GT(D) =
|DL|
|D| GT(DL) +

|DR|
|D| GT(DR) (63)
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where: D = DL ∪DR, DL ∩DR = ∅, |DL |
|D| represents the fraction of inputs in the left subtree,

and |DR |
|D| represents the fraction of inputs in the right subtree. The binary decision tree with

class levels has been visualized in Figure 8.

Figure 8. Binary Decision Tree with Sole Storage of Class Labels.

Entropy in Decision Trees: Entropy in decision trees measures disorder using class
fractions. Minimizing entropy aligns with a uniform distribution, promoting random-
ness. KL-Divergence KL(p||q) gauges the closeness of p to a uniform distribution q, as in
Equation (64).

KL(p||q) =
c
∑

n=1
pnlog pn

qn
> 0← KL− Divergence

= ∑
n

pnlog(pn)− pnlog(qn), where qn = 1
c

= ∑
n

pnlog(pn) + pnlog(c)

= ∑
n

pnlog(pn) + log(c)∑
n

pn, where log(c)← constant, ∑
n

pn = 1

max
p

KL(p||q) = max
p

∑
n

pnlog(pn) = min
p
−∑

n
pnlog(pn) = min

p
H(s)← Entropy

(64)

ID3 Algorithm: The ID3 algorithm stops tree-building when all labels are the same
or no more attributes can split further. If all share the same label, a leaf with that label is
created. If no more splitting attributes exist, a leaf with the most frequent label is generated
(Equation (65)) [39].

ID3(S) :

{
i f ∃ →y s.t. ∀(x, y) ∈ S, y =

→
y , return lea f with label

→
y

i f ∃ →x s.t. ∀(x, y) ∈ S, x =
→
x return lea f without mode (y : (x, y) ∈ S)

(65)

CART (Classification and Regression Trees): CART (classification and regression trees)
is suitable for continuous labels (yi ∈ R), using the squared loss function (Equation (66)). It
efficiently finds the best split (attribute and threshold) by minimizing the average squared
difference from the average label ys [37].

L(S) =
1
|S| ∑

(i,j)∈S

(
y− →yS

)2
← Average squared difference from average label (66)

where
→
yS = 1

|S|∑(i,j)∈S y← average label

2.5.7. Ensemble Classifier (EC)

Ensemble classifiers represent a sophisticated class of machine learning techniques
aimed at enhancing the precision and resilience of predictive models. Their fundamental
premise revolves around the amalgamation of predictions from multiple foundational
models. Below, we delve into several prominent types of ensemble classifiers, each with its
distinct modus operandi.
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Bagging (Bootstrap Aggregating): Bagging orchestrates the training of multiple foun-
dational models in parallel. Each model operates independently on distinct, resampled
subsets of the training data. This decomposition helps us understand the sources of error
in our models. Bias/variance decomposition is described by Equation (67) [37,40]:

E
[
( fk(x)− b)2

]
︸ ︷︷ ︸

Error

= E
[
( fk(x)−

→
f (x))

2]
︸ ︷︷ ︸

Variance

+ E
[
(
→
f (x)−→c ())

2]
︸ ︷︷ ︸

Bias

+ E
[
(
→
c (x)− d(x))

2
]

︸ ︷︷ ︸
Noise

(67)

In Equation (67), we decompose the error into four components: “Error”, “Variance”,
“Bias”, and “Noise”. Our primary objective is to minimize the “Variance” term, which is
expressed as Equation (68):

E[( fk(x)−
→
f (x))

2
]︸ ︷︷ ︸

Variance

(68)

Ensemble learning minimizes variance by averaging individual predictions fk(x).
Bagging enhances ML classifiers by creating multiple datasets, training individual classifiers
hi(), and aggregating predictions in the final ensemble classifier h(z), through averaging
(Equation (69)) [40]:

h(z) =
1
n

n

∑
i=1

hi(z) (69)

In practice, a larger value of n often leads to a better-performing ensemble, as it
leverages diverse base models for more robust predictions.

Random Forest (RF): RF stands as one of the most renowned and beneficial bagging
algorithms. The RF algorithm entails creating multiple datasets, building decision trees
with random feature subsets for each dataset, and averaging their predictions for the final
classifier [37,40]

((
h(x) = 1

m ∑ hj(x)
))

.
Boosting: Boosting addresses high bias in machine learning models, specifically when

dealing with the hypothesis class H. Boosting reduces bias by iteratively constructing an
ensemble of weak learners

(
HT

(→
x
)
= ∑T

t=1 αtht

(→
x
))

with each iteration introducing a
new classifier, guided by gradient descent in function space [37,41].

Gradient descent: Gradient descent in functional space optimizes the loss function
� within hypothesis class H by finding the appropriate step size α and weak learner h
that minimizes l(H + αh). The technique uses Taylor approximation to approximate the
optimal weak learner h with a fixed α around 0.1 (Equation (70)) [34].

argminh∈Hl(H + αh) ≈ argminh∈H < ∇l(H), h ≥ argminh∈H

n

∑
i=1

∂l
∂[H(xi)]

h(xi) (70)

Here, each prediction serves as an input to the loss function. The function �(H) can be
expressed by Equation (71).

l(H) =
nl

∑
i = 1

(H(xi)) = l(H(x1), . . . , H(xn)) (71)

This approximation enables the utilization of boosting as long as there exists a method,
denoted as A, capable of solving Equation (72).

ht+1 = argminh∈H

n

∑
i=1

∂l
∂[H(xi)]︸ ︷︷ ︸

ri

h(x) (72)
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where A({(x1, r1), . . . , (xn, rn)}) = argminh∈H∑n
i=1 rih(xi); progress is made as long as

∑n
i=1 rih(xi) < 0, even if h is not an excellent learner.

AnyBoost (Generic Boosting): AnyBoost, a versatile boosting technique, iteratively
combines weak learners, prioritizing challenging data points for enhanced accuracy. It cre-
ates a strong learner from weak ones, effectively reducing bias and improving predictions.
See Algorithm 1 for the pseudo-code [41].

Algorithm 1: Pseudo-code for the AnyBoost.

Input: l, a, {(xi, yi)}, A
H0 = 0
for t = 0: T − 1 do

∀I : ri =
∂l((Ht(x1),y1),...,(Ht(xn),yn)

∂H(xi)

ht+1 = A({(x1, r1), . . . ., (xn, rn)}) = argminh∈H∑n
i=1 rih(xi)

if ∑n
i=1 riht+1(xi) < 0 then
Ht+1 = Ht + α t+1ht+1

else

return Ht (Negative gradient orthogonal to descent direction.)
end

end

return HT

Gradient Boosted Regression Trees (GBRT): GBRT, a sequential regression algorithm,
combines decision trees to correct errors iteratively for precise predictions. Applicable to
both classification and regression, it uses weak learners, often shallow regression trees,
with a fixed depth. The step size (α) is a small constant, and the loss function (l) must be
differentiable, convex, and decomposable over individual samples. The ensemble’s overall
loss is defined in Equation (73) [41].

L(H) =
n

∑
i=1

l(H(xi)) (73)

GBRT minimizes the loss by iteratively adding weak learners to the ensemble. Pseudo-
code is in Algorithm 2 [41].

Algorithm 2: Pseudo-code for GBRT

Input: l, α, {(xi, yi)}, A
H = 0
for t = 1: T do

∀i : ti = yi − H(xi)
h = argminh∈H(h(xi)− ti)

2

H ← H + αh
end

return H

AdaBoost: AdaBoost is a binary classification algorithm utilizing weak learners h
producing binary predictions. Key components include step-size α and exponential loss
�(H), given by Equation (74):

l(H) =
n

∑
i=1

e−yi H(xi) (74)

The gradient function ri needed to find the optimal weak learner is computed using
Equation (75).

ri =
∂L

∂H(xi)
= −yie−yi H(xi) (75)
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Introducing wi =
1
Z e−yi H(xi), for clarity and convenience, where Z = ∑n

i=1 e−yi H(xi),
normalizing the weights. Each wi signifies the role of (xi, yi) in the global loss. To find
the next weak learner, we solve the optimization problem in Equation (76) with h(xi) ∈
{+1,−1} [42].

h(xi) = argminh∈H
n
∑

i=1
rih(xi)

(
substitute in : ri = e−H(xi)yi

)
= argminh∈H −

n
∑

i=1
yie−H(xi)yi h(xi)

(
substitute in : wi =

1
Z e−H(xi)yi

)
= argminh∈H −

n
∑

i=1
wiyih(xi) (yih(xi) ∈ {+1,−1}with h(xi)yi = 1⇐⇒ h(xi) = yi)

= argminh∈H ∑
i:h(xi) �=yi

wi − ∑
i:h(xi)=yi

wi

(
∑

i:h(xi)=yi

wi = 1− ∑
i:h(xi) �=yi

wi

)
= argminh∈H ∑

i:h(xi) �=yi

wi (This is the weighted classification error.)

(76)

In (76), ε = ∑i:h(xi) �=yi
wi, representing the weighted classification error. AdaBoost

seeks a classifier minimizing this error without requiring high accuracy. The optimal step
size, denoted as α, minimizes the loss l most effectively in the closed-form optimization
problem (77) [41].

α = argminαl(H + αh)

= argminα

n
∑

i=1
e−yi [H(xi)+αh(xi)] (77)

Taking the derivative with respect to α and setting it to zero, as shown by
Equations (78)–(80):

n

∑
i=1

yih(xi)e−yi [H(xi)+αyih(xi)] = 0 (yih(xi) ∈ {+1 or− 1}) (78)

− ∑
i:h(xi)yi=1

e

−(yi H(xi)+αyih(xi)︸ ︷︷ ︸
1

)

+ ∑
i:h(xi)yi �=1

e

−(yi H(xi)+αyih(xi)︸ ︷︷ ︸
−1

)

= 0
(

wi =
1
Z

e−yi H(xi)

)
(79)

− ∑
i:h(xi)yi=1

wie−α + ∑
i:h(xi)yi �=1

wieα = 0

⎛⎝ε = ∑
i:h(xi)yi=−1

wi

⎞⎠ (80)

For further simplification, with ε representing the sum over misclassified examples, as
given in Equation (81):

−(1− ε)e−α + εeα = 0 (81)

Solving for α, as shown in Equation (82):

e2α =
1− ε

ε
(82)

α =
1
2

ln
1− ε

ε
(83)

The optimal step size α, derived from the closed-form solution in (83), facilitates
rapid convergence in AdaBoost. After each step Ht+1 = Ht + αh, recalculating and re-
normalizing all weights is crucial for the algorithm’s progression. The pseudo-code for
AdaBoost Ensemble classifier is presented in Algorithm 3 [37,41].
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Algorithm 3: Pseudo-code for AdaBoost

Input: l, α, {(xi, yi)}, A
H = 0
∀i : wi =

1
n

for t = 1: T do

h = A (w1, x1, y1), . . . . . . . . . , (wn, xn, yn)
ε = ∑

i:h(xi) �=yi

wi

if ε < 1
2 then

α = 1
2 ln 1−ε

ε

Ht+1 = Ht + αh
∀i : wi ← wie−αh(xi )yi

2ε(1−ε)
1
2

else

return (Ht)
end

return H
end

2.6. Assessment Metrics

The crucial next step in evaluating machine learning classifiers is the use of a separate
test dataset that has not been part of the training process. Evaluation involves various
parameters, with the confusion matrix being a widely adopted tool. This matrix forms
the basis for determining assessment metrics, essential for validating model performance,
whether it is a traditional or deep neural network classifier. In cancer prediction tasks,
numerous metrics are employed to assess effectiveness, including error rate, accuracy,
sensitivity, specificity, recall, precision, predictivity, F1 score, area under the curve (AUC),
negative predictive value (NPR), false positive rate (FPR), and false negative rate (FNR), and
Matthews correlation coefficient (MCC) [43]. These metrics quantify predictive capabilities
and are vital for diverse prediction tasks. Multiple performance evaluation metrics rely on
the confusion matrix, as visualized in Figure 9, for multiclass classification.

Figure 9. Confusion Matrix for Multiclass Classification Evaluation.

Accuracy (Acc): This metric is a fundamental indicator of a model’s overall perfor-
mance. It measures the ratio of accurately categorized cases (both cancer and non-cancer) to
the overall cases in the test dataset. It may not be suitable when the dataset is imbalanced.

Accuracy (%ACC) =
(TP + TN)

Total Samples
× 100
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Error Rate (ER): The reciprocal of accuracy equates to the error rate. It quantifies the
proportion of instances that the model incorrectly classifies. A lower error rate suggests
a more accurate model, and it is especially useful when you want to know how often the
model makes incorrect predictions.

Error rate (ER) = 1− Acc

%ER =
FP + FN

Total Samples
× 100 = 100− (%ACC)

Specificity (% Spe): True negative rate, commonly known as specificity, is a metric
that evaluates a model’s accuracy in correctly identifying true negative cases. This is crucial
in minimizing false alarms.

Speci f icity(%Sp) = True Negative Rate (%TNR) =
TN

Total Negative
× 100

Sensitivity (% Sen): This metric, also termed recall or the true positive rate (TPR),
gauges the model’s capability to accurately identify true positive values, which correspond
to cases of cancer, among the total positive cases within a dataset [42].

Sensitivity(%Sen) = Recall(%Re) = True Positive Rate (%TPR) =
TP

Total Positive
× 100

Precision (% Pr): Precision, also recognized as positive predictive value (PP), denotes
the ability to accurately predict positive values among the true positive predictions. A high
precision score signifies that the model effectively reduces false positive errors.

Precision(%Pr) = Positive Predictivity(%PP) =
TP

True Prediction
× 100

F1 Score (% F1): An equitable metric that amalgamates positive predictive value and
recall forms the F1 score [44]. It is particularly valuable when you require a singular metric
that contemplates both incorrect positive predictions and missed positive predictions.

F1-score (%F1) =
2× TP

(2× TP + FP + FN)
× 100 =

2PP × TPR
(PP + TPR)

×100

Area Under the Curve (AUC): The AUC assesses the classifier’s capacity to differen-
tiate between affirmative and negative occurrences. It gauges the general efficacy of the
model concerning receiver operating characteristic (ROC) graphs. A superior AUC score
signifies enhanced differentiation capability.

Negative Predictive Value (% NPV): It measures the classifier’s capability to accu-
rately predict negative instances among all instances classified as negative. A high NPV
suggests that the classifier is effective at identifying non-cancer cases when it predicts them
as such, reducing the likelihood of unnecessary treatments.

Negative Predictive Value (%NPV) =
TN

Total Negative
×100

False Positive Rate (%FPR): This quantifies how often the classifier falsely identifies
a negative instance as positive. It provides insights into the model’s propensity for false
positive errors. In cancer detection, a high FPR can lead to unnecessary distress and
treatments for individuals who do not have cancer.

False Positive Rate (%FPR) =
FP

Total Negative
×100
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False Negative Rate (%FNR): It determines the classifier’s tendency to falsely identify
a positive instance as negative. It reveals the model’s performance regarding false negative
errors, which is critical in cancer detection to avoid missing real cases. High FNR can lead
to undiagnosed cancer cases and potentially delayed treatments.

False Negative Rate (%FNR) =
FN

Total Positive
× 100

Matthews Correlation Coefficient (MCC): The Matthews correlation coefficient (MCC)
represents a pivotal metric utilized for evaluating the effectiveness of binary (two class) predic-
tions, prominently beneficial when dealing with scenarios where classes are asymmetrically
distributed in their volume and representation within the dataset. The formula to calculate
MCC is:

[(TN ∗ TP)− (FN ∗ FP)]√
((True Prediction) ∗ (False Predication) ∗ (Total Positive) ∗ (Total Negative))

where TN (True Negative) is accurately recognized negatives, TP (True Positive) is ac-
curately recognized positives, FP (False Positive) is negatives incorrectly identified as
positives, FN (False Negative) is positives incorrectly recognized as negatives, Total Posi-
tive is the Sum of TP and FN (all actual positives), Total Negative is the Sum of TN and FP
(all actual negatives), True Prediction: Sum of TP and FP (correctly identified positives),
False Predication: Sum of FN and TN (incorrectly identified negatives), Total Samples: Sum
of TP, TN, FP, and FN (entire dataset).

3. Review Analysis

In this section, we present a thorough and extensive analysis of cancer detection
utilizing conventional machine learning models applied to medical imaging datasets. Our
study is focused exclusively on the detection of two specific types of cancer: colorectal
and stomach cancer. For each of these cancer types, we have meticulously compiled a
comprehensive review table that encompasses the relevant literature published during
the period spanning 2017 to 2023. This table encompasses a range of crucial review
parameters, including the year of publication, the datasets utilized, preprocessing methods,
feature extraction techniques, machine learning classifiers employed, the number of images
involved, the imaging modality, and various performance metrics. In total, our review
encompasses 36 research articles that have harnessed medical imaging datasets to detect
these specific types of cancer. Our primary emphasis lies in scrutinizing the utilization of
traditional machine learning methodologies in the context of cancer detection using image
datasets. We have conducted this analysis based on the meticulously assembled review
tables. Subsequent subsections provide in-depth and comprehensive reviews for both
colorectal and stomach cancer. Within our analysis, we delve into the intricate application
of machine learning approaches for the intent of cancer prediction. Our overarching goal
is to furnish valuable insights into the efficacy and constraints of conventional machine
learning models when applied to the realm of cancer detection using medical imaging
datasets. Through a meticulous examination and comparative analysis of results derived
from various studies, our objective is to make a meaningful contribution to the evolution of
cancer detection methodologies and to offer guidance for future research endeavors in this
critical domain.

3.1. Analysis of Colorectal Cancer Prediction

Table 3 showcases 20 studies conducted from 2017 to 2023, focusing on machine
learning-based colorectal cancer detection. These studies underscore the vital role of pre-
processing methods in enhancing detection accuracy. The highest accuracy achieved is
100%, with the lowest at 76.00%. Various techniques, including cropping, stain normal-
ization, contrast enhancement, smoothing, and filtering, were employed in conjunction
with segmentation, feature extraction, and machine learning algorithms like SVM, MLP,
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RF, and KNN. These approaches successfully detect colorectal cancer using modalities
such as endocytoscopy, histopathological images, and clinical data. The studies employed
varying quantities of images, patients, or slices, ranging from 54 to 100,000. The “KCRC-16”
datasets are prominently featured in these analyses.

In a comparative analysis of colorectal cancer detection studies, (Talukder et al., 2022) [45]
stood out with an impressive accuracy of 100%. Their approach included preprocessing
steps like resizing, BGR2RGB conversion, and normalization. Deep learning models such as
DenseNet169, MobileNet, VGG19, VGG16, and DenseNet201 were employed. Performance
assessment was conducted using a combination of voting, XGB, EC, MLP, LGB, RF, SVM,
LR, and hybrid techniques on a dataset comprising 2800 H&E images from the LC25000
dataset. Their best model achieved a flawless 100% accuracy. In contrast, (Ying et al., 2022) [46]
achieved thelowest accuracy of 76.0% in colorectal cancer detection. Their approach involved
manual region of interest (ROI) selection and various preprocessing techniques. They leveraged
multiple features, including FOS, shape, GLCM, GLSZM, GLRLM, NGTDM, GLDM, LoG,
and WT. Classification was carried out using the MLR technique on a dataset consisting of
276 CECT images from a private dataset. Their least-performing model achieved an accuracy
of 76.00%. Moreover, their study exhibited a sensitivity of 65.00%, specificity of 80.00%, and
precision of 54.00%, indicating relatively suboptimal performance in accurately identifying
colorectal cancer cases.

(Khazaee Fadafen and Rezaee 2023) [47] conducted a remarkable colorectal cancer
detection study by utilizing a substantial dataset (the highest number of images among all)
comprising a total of 100,000 medical images sourced from the H&E NCT-CRC-HE-100K
dataset. Their preprocessing methodology encompassed the conversion of RGB images
to the HSV color space and the utilization of the lightness space. For classification, they
harnessed the dResNet architecture in conjunction with DSVM, which resulted in an out-
standing accuracy rate of 99.76%. (Jansen-winkeln et al., 2021) [48] conducted a study with
a notably smallest dataset, comprising only 54 medical images. Their preprocessing ap-
proach included smoothing and normalization. For classification purposes, they employed
a combination of MLP, SVM, and RF techniques. This approach yielded commendable
results with an accuracy of 94.00%, sensitivity at 86.00%, and specificity reaching 95.00%.
Notably, their analysis identified MLP as the most effective model in their study.

Within the corpus of 20 studies dedicated to the realm of colorectal cancer detection,
researchers have deployed an array of diverse preprocessing strategies encompassing
endocytoscopy, cropping, IPP, stain normalization, CEI, smoothing, normalization, filtering,
THN, DRR, augmentation, UM-SN, resizing, BGR2RGB, normalization, scaling, labeling,
RGBG, VTI, HOG, RGB to HSV, lightness space, edge preserving, and linear transforma-
tion. These sophisticated methodologies collectively served as the linchpin for optimizing
machine learning-based colorectal cancer detection, ushering in a new era of precision
and accuracy. However, it is captivating to note that, within the comprehensive assess-
ment of 23 studies, a select quartet of research endeavors chose to forgo the utilization
of any specific preprocessing techniques. This exceptional cluster includes the works of
(Bora et al., 2021) [49], (Fan et al., 2021) [50], and (Lo et al., 2023) [51]. Astonishingly, these
studies defied conventional wisdom by attaining commendable accuracies that spanned
the spectrum from 94.00% to an impressive 99.44%. Such outcomes suggest that, in cases
where the dataset is inherently pristine and impeccably aligned with the demands of the
classification task, the impact of preprocessing techniques on the classifier’s performance
might indeed exhibit a marginal influence.

In the comprehensive analysis of the research studies under scrutiny, it is noteworthy
that only the works of (Grosu et al., 2021) [52] and (Ying et al., 2022) [46] registered
accuracy figures falling below the 90% threshold, specifically at 84.7% and 76%, respectively.
This observation underscores the intriguing possibility that traditional machine learning
models can indeed yield highly accurate cancer detection performance, provided they are
meticulously optimized.
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Table 3. Performance comparison of traditional ML-based colorectal cancer prediction methods.

Year References Pre-
Processing

Features Techniques Dataset Data
Samples

Train
Data

Test
Data

Modality Metrics (%)

2017 [53] Endocytoscopy Texture,
nuclei

SVM Private 5843 5643 200 ENI Acc 94.1
Sen 89.4
Spe 98.9
Pre 98.8
NPV 90.1

2019 [54] IPP CSQ, Color
histogram

WSVMCS Private 180 108 72 H&E Acc 96.0

2019 [55] Cropping Biophysical
characteristic,
WLD,

NB, MLP, OMIS
data

316 237 79 OMIS Acc 92.6
Sen 96.3
Spe 88.9

2021 [56] Filtering HOS, FOS,
GLCM, Gabor,
WPT, LBP

ANN,
RSVM,

KCRC-16 5000 4550 450 H&E Acc 95.3

2021 [57] IPP, Augmen-
tation

VGG-16 MLP KCRC-16 5000 4825 175 H&E Acc 99.0
Sen 96.0
Spe 99.0
Pre 96.0
NPV 99.0
F1 96.0

2021 [50] --- AlexNet EC, SVM,
AlexNet,

LC25000 10,000 4-fold cross
validation

H&E Acc 99.4

2021 [58] THN, DRR BmzP NN MALDI
MSI

559 Leave-One-Out
cross-validation

H&E Acc 98.0
Sen 98.2
Spe 98.6

2021 [52] Filtering Filters,
Texture,
GLHS, Shape

RF Private 287 169 77 CT Acc 84.7 *
Sen 82.0
Spe 85.0
AUC 91.0

2021 [49] --- GFD,
NSCT, Shape

MLP
LSSVM,

Private 734 five-fold
cross-validation

NBI,
WLI

Acc 95.7
Sen 95.3
Spe 95.0
Pre 93.2
F1 90.5

2021 [48] Normalization,
smoothing

Spatial
Information

MLP,
SVM, RF

Private 54 Leave-One-Out
cross-validation

HSI Acc 94.0
Sen 86.0
Spe 95.0

2022 [59] VTI Haralick, VTF RF Private 63 cross-validation
method

CT Acc 92.2
Sen 88.4
Spe 96.0
AUC 96.2

2022 [60] RGBG GLCM ANN, RF,
KNN

KCRC-16 5000 4500 500 H&E Acc 98.7
Sen 98.6
Spe 99.0
Pre 98.9

2022 [45] Resize,
BGR2RGB,
Normaliza-
tion,

Deep Features EC,
Hybrid,
LR, LGB,
MLP, RF,
SVM,
XGB,
Voting

LC25000 2800 10-fold
cross-validation

H&E Acc 100.0

2022 [46] ROI FOS, GLCM,
GLDM,
GLRLM,
GLSZM, LoG,
NGTDM,
Shape, WT

MLR Private 276 194 82 CECT Acc 76.0
Sen 65.0
Spe 80.0
Pre 54.0
NPV 86.0
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Table 3. Cont.

Year References Pre-
Processing

Features Techniques Dataset Data
Samples

Train
Data

Test
Data

Modality Metrics (%)

2022 [61] UM-SN HIM, GLCM,
Statistical

LDA,
MLP, RF,
SVM,
XGB,
LGB

LC25000 1000 900 100 H&E Acc 99.3
Sen 99.5
Pre 99.5
F1 99.5

2022 [26] --- Color Spaces,
Haralick

ANN, DT,
KNN,
QDA,
SVM

KCRC-16 5000 3504 1496 H&E Acc 97.3
Sen 97.3
Spe 99.6
Pre 97.4

2023 [62] Filtering,
linear Trans-
formation,
normalization

Color
characteristic,
DBCM,
SMOTE

CatBoost,
DT, GNB,
KNN, RF

NCT-
CRCHE-
7K

12,042 8429 3613 H&E Acc 90.7
Sen 97.6
Spe 97.4
Pre 90.6
Rec 90.5
F1 90.5

2023 [51] --- Clinical,
FEViT

SEKNN Private 1729 tenfold
cross-validation

ENI Acc 94.0
Sen 74.0
Spe 98.0
AUC 93.0

2023 [47]
Lightness
space, RGB to
HSV

dResNet DSVM
KCRC-16 5000 4000 1000 H&E Acc 98.8

NCT-
CRC-HE-
100
K

100,000 80,003 19,997 H&E Acc 99.8

2023 [63] HOG, RGBG,
Resizing

Morphological SVM Private 540 420 120 ENI Acc 97.5

* Not given in the paper, calculated from the result table, bold font signifies the best model in the ‘Techniques’
column. Abbreviations: BGR2RGB, Blue-Green-Red to Red-Green-Blue; BmzP, Binning of m/z Points; catBoost,
Categorical Boosting; CECT, Contrast-Enhanced CT; CSQ, Color Space Quantization; DBCM, Differential Box
Count Method; DSVM, Deep Support Vector Machine; dResNet, Dilated ResNet; DRR, Dynamic Range Reduction;
DSVM, Deep Support Vector Machine; ENI, Endomicroscopy Images; FEViT, Feature Ensemble Vision Transformer;
FOS, First-Order Statistics; GFD, Generic Fourier Descriptor; GNB, Gaussian Naive Bayes; GLDM, Gray-Level
Dependence Matrix; GLHS, Gray Level Histogram Statistics; GLSZM, Gray Level Size Zone Matrix; GNB,
Gaussian Naive Bayes; HOG, Histogram of Oriented Gradients; HOS, Higher-Order Statistic; HIM, Hu Invariants
Moments; HSI, Hyperspectral Imaging; HSV, Hue-Saturation-Value; LBP, Local Binary Pattern; LDA, Linear
Discriminant Analysis; LGB, Light Gradient Boosting; LoG, Laplacian of Gaussian; LSSVM, Least Square Support
Vector Machine; MLR, Multivariate Logistic Regression; NGTDM, Neighboring Gray Tone Difference Matrix;
NSCT, Non-Subsampled Contourlet Transform; OMIS, Optomagnetic Imaging Spectroscopy; QDA, Quadratic
Discriminant Analysis; SEKNN, Subspace Ensemble K-Nearest Neighbor; THN, TopHat and Normalization;
UMSN, Unsharp Masking and Stain Normalization; VTF, Vector Texture Features; VTI, Vector Texture Images;
WLD, Wavelength Difference; WLI, White Light Imaging; WPT, Wavelet Packet Transform; WSVMCS, Wavelet
Kernel SVM with Color Histogram; XGB, Extreme Gradient Boosting.

The analysis of colorectal cancer detection using traditional machine learning tech-
niques reveals a notable disparity in model performance across various crucial metrics,
showcasing substantial discrepancies between the models with the highest and lowest val-
ues as shown in Figure 10. The most proficient model achieved an extraordinary accuracy
of 100.0%, whereas the least effective model achieved an accuracy of 76.0%, resulting in a
substantial difference of 24.0%. When considering sensitivity, the top-performing model
reached an impressive 99.5%, whereas the lowest-performing model registered a mere
65.0%, leading to a remarkable disparity of 34.5%. Similarly, concerning specificity, the
superior model attained 99.6%, while the inferior model managed only 80.0%, resulting
in a significant difference of 19.6%. In terms of precision, the best model demonstrated
99.5%, while the worst model exhibited a precision of only 54.0%, resulting in a substantial
difference of 45.5%. When examining the F1-score, the model with the highest performance
achieved 99.5%, whereas the least proficient model attained a score of 63.2%, yielding a
notable difference of 36.3%. Lastly, in the case of the area under the curve (AUC), the
top model achieved a score of 96.2%, while the bottom model scored 76.0%, marking a
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significant difference of 20.2%. These conspicuous differences underscore the pivotal role
of choosing appropriate machine learning techniques and feature sets in the effectiveness
of colorectal cancer detection. Effective cancer detection has far-reaching implications,
influencing not only patient outcomes but also the operational efficiency of healthcare
systems and the allocation of valuable medical resources.

 

Figure 10. Metrics comparison for the prediction of colorectal cancer.

3.2. Analysis of Gastric Cancer Prediction

Table 4 meticulously encapsulates 16 distinct studies conducted within the temporal
frame of 2018 to 2023, each ardently devoted to machine learning-based gastric cancer
detection. These investigations collectively underscore the pivotal role of preprocessing
in elevating the accuracy of stomach cancer detection models. Notably, the pinnacle of
achievement in this realm reached a remarkable 100.0% accuracy, whereas the lowest
point stood at 71.2%. This diverse spectrum of performance underscores the profound
influence of preprocessing techniques, spanning resizing, filtering, cropping, and color
enhancement. These preprocessing strategies, in harmony with segmentation, feature
extraction, and the adept utilization of machine learning algorithms encompassing SVM,
MLP, RF, and KNN, have collectively converged to engender a triumphant era of stomach
cancer detection. This progress extends across diverse modalities such as endoscopy, CT,
MRI, and histopathology images. The quantity of images, patients, or slices underpinning
these studies spanned a substantial range, from 30 to a staggering 245,196. It is intriguing
to note that the enigmatic “Private” dataset emerged as the most recurrently harnessed
resource in this insightful analysis.

The research conducted by (Ayyaz et al., 2022) [64] achieved outstanding results in
stomach cancer detection, with a remarkable accuracy of 99.80%. They employed var-
ious preprocessing techniques, including resizing, contrast enhancement, binarization,
and filtering. However, the segmentation method used was not specified in the study.
Feature extraction was carried out with deep learning models like VGG19 and AlexNet.
For classification, they used multiple techniques such as DT, NB, KNN, SVM, and more.
Among these, the cubic SVM model performed the best, achieving an accuracy of 99.80%.
This model also had a high sensitivity, precision, F1-score, and an AUC of 100.0%. On
the other hand, the study conducted by (Mirniaharikandehei et al., 2021) [65] achieved
comparatively lower performance in stomach cancer detection, with an accuracy of 71.20%.
Their preprocessing techniques involved filtering and ROI selection, and they utilized the
HTS segmentation method. Feature extraction was done using radiomics features such as
GLRLM, GLDM, and WT LoG. The classification was carried out using various machine
learning models, including SVM, LR, RF, DT, and GBM. The worst-performing model in
their analysis was GBM, with an accuracy of 71.20%. This model had lower sensitivity but a
higher specificity, precision, and F1-score. (Hu et al., 2022) [66] conducted a stomach cancer
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detection study with a large dataset of 245,196 medical images. They used various prepro-
cessing techniques, including ROI selection, cropping, filtering, rotation, and disruption.
The study extracted features such as color histograms, LBP, and GLCM. For classifica-
tion, they applied RF and LSVM classifiers, achieving an accuracy of 85.99%. RF was the
best-performing model in their analysis. On the other hand, (Naser and Zeki 2021) [67]
conducted a stomach cancer detection study with a smaller dataset of only 30 medical
images. They applied DIFQ-based preprocessing techniques, and their study used FCM for
classification and achieved an accuracy of 85.00%. Table 4 provides an overview of different
machine learning-based techniques for stomach (gastric) cancer detection, encompassing
16 reviewed studies. Notably, three of these studies specifically, namely, (Korkmaz and
Esmeray 2018) [68], (Nayyar et al., 2021) [69], and (Hu et al., 2022a) [70], opted not to
employ any preprocessing techniques. Surprisingly, they achieved noteworthy accuracies
of 87.77%, 99.8%, and 85.24%, respectively. This demonstrates the potential for effective
stomach cancer detection even in the absence of preprocessing methods. However, it is
essential to highlight that a significant portion of the studies examined in the table chose
to implement various preprocessing techniques, including CEI, filtering, resizing, Fourier
transform, cropping, ROI selection, rotation, disruption, binarization, augmentation, and
RSA. These preprocessing steps underscore their pivotal role in enhancing the performance
of machine learning models for stomach cancer detection.

Out of the 16 studies focused on gastric cancer detection, 50% of them (8 studies)
achieved an accuracy rate of over 90%, indicating highly accurate results. However, the
other 50% of the studies received less than 90% accuracy. This discrepancy in performance
might be attributed to the utilization of private datasets in these studies. Private datasets
may not undergo the same level of processing or standardization as publicly available
datasets, potentially leading to variations in data quality and affecting the performance of
the machine learning models.

Table 4. Performance comparison of traditional ML-based gastric cancer prediction methods.

Year References Preprocessing Features Techniques Dataset Data
Samples

Train
Data

Test
Data

Modality Metrics (%)

2018 [71] Fourier
transform

BRISK, SURF,
MSER

DT, DA Private 180 90 90 H&E Acc 86.7

2018 [72] Resizing LBP, HOG ANN, RF Private 180 90 90 H&E Acc 100.0

2018 [68] --- SURF, DFT NB
Private 180 90 90 H&E Acc 87.8

Private 720 360 360 H&E Acc 90.3

2018 [73] CEI, filtering,
resizing

GLCM SVM Private 207 126 81 NBI Acc 96.3
Sen 96.7
Spe 95.0
Pre 98.3

2019 [74] Resizing,
cropping

GLCM, Shape,
FOF, GLSZM

SVM Private 490 326 164 CT Acc 71.3
Sen 72.6
Spe 68.1
Pre 82.0
NPV 50.0

2021 [67] DIFQ SMI FCM,
KMC

Private 30 --- --- MRI Acc 85.0

2021 [75] Resizing Extract HOG RF, MLP Private 180 90 90 H&E Acc 98.1

2021 [76] Resizing TSS BP,
BPSVM,
SVM

Private 78 --- --- MRI Acc 94.6

2021 [69] --- Deep Features CSVM,
Bagged
Trees,
KNNs,
SVMs

Private 4000 2800 1200 WCE Acc 99.8
Sen 99.0
Pre 99.3
F1 99.1
AUC 100
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Table 4. Cont.

Year References Preprocessing Features Techniques Dataset Data
Samples

Train
Data

Test
Data

Modality Metrics(%)

2021 [65] Filtering, ROI LoG, WT,
GLDM,
GLRLM

GBM, DT,
RF, LR,
SVM.

Private 159 Leave-One-Out
cross-validation

CT Acc 71.2
Sen 43.1
Spe 87.1
Pre 65.8

2022 [77] Augmentation,
resizing,
filtering

InceptionNet,
VGGNet

SVM, RF,
KNN.

HKD 10,662
(47,398
Augm-
neted)

37,788 9610 Endoscopy Acc 98.0
Sen 100
Pre 100
F1 100
MCC 97.8

2022 [70] --- GLCM, LBP,
HOG,
histogram,
luminance,
Color
histogram

NSVM,
LSVM,
LR, NB,
RF, ANN,
KNN

GasHisSDB 245196 196,157 49,039 H&E Acc 85.2
Sen 84.9 #
Pre 84.6 #
Spe 84.9 #
F1 84.8 #

2022 [64] Binarization,
CEI, filtering,
resizing

VGG19
Alexnet

Bagged
Tree,
Coarse
Tree,
CSVM,
CKNN,
DT, Fine
Tree,
KNN, NB

Private 2590 10-fold
cross-validation

EUS Acc 99.8
Sen 99.8
Pre 99.8
F1 99.8
AUC 100

2022 [66] Cropping,
disruption,
filtering, ROI,
Rotation

Color
histogram,
GLCM, LBP

LSVM,
RF

GasHisSDB 245,196 196,157 49,039 H&E Acc 85.9
Sen 86.2 #
Spe 86.2 #
Pre 85.7 #
F1 85.9 #

2023 [78] Augmentation,
CEI

MobileNet-
V2

Bayesian,
CSVM,
LSVM,
QSVM,
Softmax

KV2D 4854 10-fold
cross-validation

Endoscopy Acc 96.4
Pre 97.6
Sen 93.0
F1 95.2

2023 [79] RSA RSF PLS-DA,
LOO,
SVM

Private 450 Leave-One-Out
cross validation

H&E Acc 94.8
Sen 91.0
Spe 100
AUC 95.8

# Calculated by averaging the normal and abnormal class, Bold Font techniques represent the best model.
Abbreviations: BPSVM, Binary Robust Invariant Scalable Keypoints; BRISK, Binary Robust Invariant Scalable
Keypoints; CKNN, Cosine K-Nearest Neighbor; CSVM, Cubic SVM; DA, Discriminant Analysis; DIFQ, Dividing
an image into four quarters; FCM, Fuzzy C-Means; GGF, Global Graph Features; HOG, Histogram of Oriented
Gradients; HTSS, Hybrid Tumor Segmentation; KMC, K-Means Clustering; LOO, Leave-One-Out; LSVM, Linear
Support Vector Machine; MSER, Maximally Stable Extremal Regions; NSVM, Non-Linear Support Vector Machine;
OAT, Otsu Adaptive Thresholding; PLS-DA, Partial Least-Squares Discriminant Analysis; QSVM, Quadratic
SVM; RSA, Raman Spectral Analysis; RSF, Raman Spectral Feature; SM, Seven Moments Invariants; SMI, Seven
Moments Invariants; SURF, Speeded Up Robust Features; TSS, Tumor Scattered Signal.

The analysis of gastric cancer detection reveals substantial variations in model perfor-
mance across key metrics, with significant differences observed between the highest and
lowest values as shown in Figure 11. Accuracy (Acc) showcased a noteworthy contrast,
with the best-performing model achieving a flawless 100.00% and the least effective model
scoring 71.20%. This substantial 28.80% difference underscores the pivotal role of model
selection in achieving accurate gastric cancer detection. Sensitivity (Sen) displayed a con-
siderable gap, with the top model achieving a perfect 100.00%, while the lowest model only
reached 43.10%. This marked difference of 56.90% emphasizes the necessity of sensitive
detection techniques in identifying gastric cancer. Similarly, specificity (Spe) followed suit,
with the highest model reaching 100.00% and the lowest model achieving 68.10%. The
substantial 31.90% difference highlights the importance of correctly identifying non-cancer
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cases in diagnostic accuracy. Precision (Pre) also exhibited a significant disparity, with
the best model achieving 100.00%, and the least effective model achieving 65.80%. The
difference of 34.20% underscores the significance of precise identification of gastric cancer
cases. It is noteworthy that the negative predictive value (NPV) remained constant at
50.00% for both the highest and lowest models, signifying that neither model excelled in
ruling out non-cancer cases. However, since NPV is only used in a single article, its impact
on the overall analysis may be limited.

Additionally, the F1-score showed a substantial difference, with the top model achiev-
ing a perfect 100.00%, while the lowest model reached 84.80%. The 15.20% difference
emphasizes the balance between precision and sensitivity in gastric cancer detection. Lastly,
in terms of the area under the curve (AUC), the best model achieved a near-perfect 100.00%,
while the lowest model attained a still impressive 95.80%. The modest 4.20% difference
indicates that both models performed well in distinguishing between gastric cancer and
non-cancer cases. It is also worth noting that the area under the curve (AUC) metric was
utilized in only three articles, and the differences in AUC were relatively modest. There-
fore, the impact of AUC on the overall analysis may be less generalized. These findings
underscore the critical role of model choice and feature selection in the effective detec-
tion of gastric cancer. Accurate and sensitive diagnostic tools are crucial for improving
patient outcomes and optimizing healthcare resources. While NPV and AUC may have a
limited impact in this context due to their restricted usage, the other metrics highlight the
significance of selecting appropriate models for reliable gastric cancer detection.
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Figure 11. Metrics comparison for the prediction of gastric cancer.

4. Proposed Methodology

In this section, we delineate our proposed methodology for the detection of colorectal
and gastric cancer through the application of traditional machine learning techniques.
These approaches have been meticulously crafted based on the discerning insights and
observations gleaned from the comprehensive review tables. Our primary goal is to
introduce a Proposed (optimized) approach, accompanied by the most suitable parameters,
in order to attain the most superior results. Our endeavor is to provide an efficient, effective,
automated, and highly precise technique for the detection of colorectal and gastric cancer.

4.1. Detection of Colorectal Cancer

Figure 12 is a comprehensive visualization of the architectural framework that un-
derpins our proposed model for the detection of colorectal cancer. This blueprint draws
its inspiration from the wealth of insights extracted from Table 3, which provides a foun-
dational understanding of the methodologies that have proven effective in this domain.
While we have opted to use the H&E modality as an illustrative example, it is imperative
to recognize that our model can seamlessly accommodate other modalities. This flexibility
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is a testament to the adaptability and robustness of our approach, as it allows for the
incorporation of diverse data sources to enrich the depth and scope of our analysis. At the
crux of our methodology lies the preprocessing phase, an instrumental step that sets the
stage for the rigorous examination of input images. Within this phase, we meticulously
execute four pivotal steps: Image Enhancement, Pixel Enhancement, RGB-to-Gray Con-
version, and Image Segmentation. These sequential operations are not arbitrary but have
been thoughtfully selected and implemented to systematically prepare the input images.
Their collective objective is to optimize the images, ensuring they are in a suitable form
for efficient feature extraction and subsequent in-depth analysis. The realm of feature
engineering is where our approach truly shines. Here, we introduce an innovative and
nuanced strategy. Instead of relying solely on one type of feature, we merge two distinct
categories: deep learning-based features, which are often referred to as “deep features”, and
a varied assortment of other features. This assortment includes Discrete Wavelet Transform
(DWT), Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), Texture,
and Gray Level Size Zone Matrix (GLSZM). The fusion of these diverse feature sets is not a
random choice but a deliberate effort to enhance the robustness and comprehensiveness
of our analysis. This fusion is designed to ensure that our model captures both the intri-
cate, high-level representations obtained through deep learning and handcrafted features
meticulously tailored to highlight specific aspects of tumor characteristics. By incorporat-
ing these different types of features, our model becomes versatile, capable of effectively
identifying patterns and characteristics in the data that may not be discernible when using
only one type of feature. By executing this innovative approach, we aim to enhance the
model’s ability to interpret and understand the complex information contained within
medical images. This, in turn, contributes to the accuracy and efficiency of colorectal cancer
detection. Furthermore, it enables our model to adapt and excel in different scenarios and
datasets, making it a powerful tool for healthcare professionals and researchers working in
the field of cancer detection.

 

Figure 12. Proposed architectural flow diagram for the detection of colorectal cancer using traditional
machine learning models from imaging database.
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The combination of these diverse features enhances the model’s capability to en-
compass both intricate, high-level representations acquired through deep learning and
meticulously tailored handcrafted features that accentuate distinct tumor characteristics.
Moving forward in the workflow, we encounter the crucial stages of feature selection and
optimization. This pivotal process serves a dual role: it reduces feature redundancy while
enhancing the overall model performance by focusing on the most distinctive attributes.
Our model evaluation process is underpinned by a rigorous data-partitioning strategy,
effectively splitting the dataset into training and testing subsets. The training dataset
undergoes additional scrutiny through a k-fold cross-validation approach, fortifying the
model’s training and facilitating a robust performance assessment. This approach not
only guards against overfitting but also assesses the model’s adaptability to various data
scenarios. The test dataset becomes the arena for predicting colorectal cancer, with the
cubic support vector machine (SVM) taking the lead in this classification task. The SVM is a
formidable presence among traditional machine learning classifiers, known for its prowess
in handling high-dimensional data and executing binary classification tasks, making it
ideally suited for the intricacies of cancer detection. In summary, our proposed model
architecture harmoniously integrates advanced image preprocessing techniques, innovative
feature-engineering methodologies, and the proven machinery of a traditional machine
learning classifier. This synthesis yields an efficient and accurate framework for colorectal
cancer detection. Pending further validation and testing on diverse datasets, this approach
has the potential to revolutionize early cancer detection and diagnosis, potentially leading
to improved patient outcomes and a transformation in healthcare effectiveness.

4.2. Detection of Gastric Cancer

The system architecture flow diagram, as depicted in Figure 13, outlines our compre-
hensive and adaptable approach to stomach cancer (Gastric) detection employing tradi-
tional machine learning classifiers. Informed by the top-performing models scrutinized in
Table 4, our proposed architecture is intentionally crafted to accommodate both endoscopy
video datasets, which have gained prominence in recent years, and static image datasets.
Initiating with endoscopy video datasets as the primary data source, our architecture
seamlessly extends its capabilities to image datasets by extracting individual frames from
the video sequences. Subsequently, these extracted frames undergo preprocessing, which
encompasses various techniques such as noise reduction, RGB-to-grayscale conversion,
or other pertinent methods contingent on the specific application and dataset attributes.
Acknowledging the potential constraint of limited video datasets, we introduce data aug-
mentation techniques as part of our solution. This augmentation process generates an
ample supply of augmented image datasets, enabling the model to undergo training on a
more diverse and representative set of samples. This augmentation strategy empowers the
model to generalize better, ultimately leading to enhanced performance outcomes. Moving
into the feature extraction phase, we advocate the simultaneous use of deep features and
texture-based features. Deep features are sourced from state-of-the-art deep learning mod-
els, while texture-based features encompass attributes like GLCM, GLRLM, and GLSZM,
harnessed through conventional feature extraction methods. This fusion of diverse feature
types ensures that the model possesses the capability to encapsulate both abstract high-level
representations and the specific characteristics embedded in the stomach cancer data.

Upon the amalgamation of these features, the subsequent step in our approach in-
volves feature optimization. Here, we employ well-suited algorithms to meticulously select
the most pertinent attributes among the fused features. This optimization process serves
a dual function: firstly, it mitigates the peril of overfitting, a common pitfall in machine
learning endeavors, and secondly, it bolsters the overall efficiency of the model. The care-
fully curated selection of features enhances the model’s capacity to discriminate between
different classes, resulting in improved classification accuracy. Following the optimization
phase, the dataset undergoes a deliberate partitioning into two distinct subsets: the training
set and the testing set. This partitioning is a strategic maneuver that ensures the robust
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training and rigorous evaluation of traditional machine learning classifiers. The distribu-
tion of the dataset is thoughtfully orchestrated to prevent any data leakage and to create a
reliable foundation for our model’s assessment. Depending on the specific nature of the
classification task and the unique requirements of the application, we employ a range of
classifiers known for their effectiveness in various scenarios. These classifiers include but
are not limited to support vector machines (SVM), Random Forest (RF), logistic regression
(LR), backpropagation neural networks (BPNN), and artificial neural networks (ANN).
Each of these classifiers is chosen judiciously to cater to the specific characteristics of the
dataset and the intricacies of the task at hand. These classifiers excel in categorizing stom-
ach cancer into distinct types, thereby providing valuable insights essential for accurate
diagnosis and tailored treatment. A standout feature of our proposed system architecture
is its inherent adaptability. This architectural flexibility empowers the system to seamlessly
accommodate both image and video datasets, thereby rendering it versatile and suitable
for a wide spectrum of applications. By harnessing the capabilities of traditional machine
learning methods and integrating the novel approaches of feature fusion and optimization,
our system architecture exhibits substantial potential for delivering heightened efficiency
and heightened accuracy in the realm of stomach cancer detection. Nonetheless, it is
imperative to emphasize the essentiality of conducting further validation and in-depth
evaluation of our system’s performance.

 

Figure 13. Proposed architectural flow diagram for the detection of stomach cancer using traditional
machine learning models from imaging dataset.
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4.3. Key Observations

The comprehensive assessment of colorectal and gastric cancer detection techniques
using traditional machine learning methods and medical image datasets has revealed
several key insights:

Dataset Diversity: Evaluation includes colorectal and gastric cancer datasets, ranging
from 30 to 100,000 images. The varied dataset sizes showcase machine learning classifier
effectiveness with appropriate tuning.
Exceptional Model Performances: Models achieve 100% accuracy for both colorectal and
gastric cancer, with perfect scores in key metrics like sensitivity, specificity, precision, and
F1-score, showcasing the potential of traditional ML classifiers with optimal parameters.
Preprocessing Techniques: Researchers employ various preprocessing techniques, includ-
ing image filtering, denoising, wavelet transforms, RGB-to-gray conversion, normalization,
cropping (ROI), sampling, and binarization, to optimize model performance and minimize
biases during data manipulation.
Literature Review Significance: This analysis spans 36 literature sources related to col-
orectal and gastric cancer, underscoring the significant interest in cancer detection through
traditional ML classifiers. Researchers have explored an extensive range of cancer types,
diverse evaluation metrics, and datasets, collectively advancing the field.
Dominant Traditional ML Techniques: SVM is a commonly used traditional ML classifier
in cancer detection tasks, emphasizing the need to understand each classifier’s strengths
and limitations for optimal selection.
Insightful Dataset and Feature Analysis: Reviewed studies predominantly utilized bench-
mark medical image datasets, with researchers employing feature extraction techniques
like GLCM for informative feature extraction in cancer detection.
Prudent Model Architecture Design: Optimal results in cancer detection require thought-
ful and optimized model architectures, which can enhance accuracy, generalizability, and
interpretability, addressing challenges in medical image analysis.

4.4. Key Challenges and Future Scope

Traditional ML classifiers have shown remarkable potential in cancer detection. How-
ever, several challenges and the future scope in their application have been identified:

Variability in Accuracy: Traditional ML classifiers exhibit variable accuracy rates across
cancer types, ranging from 76% to 100%. Overcoming these variations poses a challenge,
underscoring the need for enhanced models. Future research should prioritize refining
models for consistent and accurate performance across diverse cancer types.
Metric Disparities: Metric variations, especially in sensitivity (43.1% to 100%) for gastric
cancer, suggest potential data imbalance challenges. Addressing these issues is crucial
for accurate model assessments. Future research should focus on developing strategies to
handle imbalanced data and improve model robustness.
Preprocessing Challenges: Balancing raw and preprocessed data is crucial to ensure input
data quality and reliability, contributing to robust cancer detection model performance.
Future research should explore advanced preprocessing techniques and optimization
methods to further enhance model robustness.
Limited use of evaluation metrics: Limited use of metrics like NPV, AUC, and MCC
in the reviewed literature highlights the challenge of comprehensive model assessment.
Addressing this limitation and exploring a broader range of metrics is crucial for future
research to enhance understanding and effectiveness in cancer detection tasks.
Generalizing to novel cancer types: The literature primarily focuses on colorectal and
gastric cancers, posing a challenge for extending traditional ML classifiers to less-explored
cancer types. Future research should aim to develop versatile ML models with robust
feature extraction techniques to adapt to diverse cancer types and domains.
Addressing overfitting and model selection: The diversity in ML classifiers poses chal-
lenges in model selection for specific cancers, emphasizing the need for careful evaluation
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to avoid overfitting. Future research should focus on refining model selection strategies to
enhance the robustness of cancer detection techniques and improve diagnostic accuracy.

5. Conclusions

In this manuscript, a thorough review and analysis of colorectal and gastric cancer de-
tection using traditional machine learning techniques are presented. We have meticulously
scrutinized 36 research papers published between 2017 and 2023, specifically focusing on
the domain of medical imaging datasets for detecting these types of cancers. Mathematical
formulations elucidating frequently employed preprocessing techniques, feature extraction
methods, traditional machine learning classifiers, and assessment metrics are provided.
These formulations offer valuable guidance to researchers when selecting the most suitable
techniques for their cancer detection studies. To conduct this analysis, a range of criteria
such as publication year, preprocessing methods, dataset particulars, image quantities,
modality, techniques, best models, and metrics (%) were considered. An extensive array
of metrics was employed to evaluate model performance comprehensively. Notably, the
study delves into the highest and lowest metric values and their disparities, highlighting
opportunities for enhancement. Remarkably, we found that the highest achievable value for
all metrics reached an astonishing 100%, with gastric cancer detection registering the lowest
sensitivity at 43.10%. This underscores the potential of traditional ML classifiers, while
indicating areas for further refinement. Drawing from these insights, we present a proposed
(optimized) methodology for both colorectal and gastric cancer detection, aiding in the
selection of an optimized approach for future cancer detection research. The manuscript
concludes by delineating key findings and challenges that offer valuable directions for
future research endeavors.

In our future research endeavors, we plan to implement the proposed optimized
methodology for the detection of colorectal and gastric cancer within the specified exper-
imental framework. This proactive approach aligns with our commitment to enhancing
the effectiveness of cancer detection methodologies. Furthermore, we will conscientiously
incorporate and address the challenges and limitations identified in this study, ensuring a
comprehensive and iterative improvement in our investigative efforts.
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Abstract: In this paper, we present a novel multi-target feature selection algorithm that incorporates
adaptive graph learning and target correlations. Specifically, our proposed approach introduces the
low-rank constraint on the regression matrix, allowing us to model both inter-target and input–output
relationships within a unified framework. To preserve the similarity structure of the samples and
mitigate the influence of noise and outliers, we learn a graph matrix that captures the induced sample
similarity. Furthermore, we introduce a manifold regularizer to maintain the global target correlations,
ensuring the preservation of the overall target relationship during subsequent learning processes.
To solve the final objective function, we also propose an optimization algorithm. Through extensive
experiments on eight real-world datasets, we demonstrate that our proposed method outperforms
state-of-the-art multi-target feature selection techniques.

Keywords: feature selection; multi-target regression; graph learning

MSC: 68T09

1. Introduction

Multi-target regression (MTR) aims to predict multiple target (response) variables
by a common set of features. Unlike the Multi-Label Classification (MLC), where the
multivariate outputs are all binary variables, the multi-outputs in MTR are all real-valued
variables. Recently, MTR is enjoying increasing popularity in machine-learning community
because of its ability to predict multiple outputs simultaneously and better generalization
performance. Moreover, due to its superior ability, MTR has been widely employed
in solving challenging problems in numerous applications such as data mining [1–4],
computer vision [5], medical diagnosis [6], stock price prediction [7], load forecasting [8].
MTR takes into account the relationship between features and targets and the underlying
correlation among targets, ensuring a better representation and interpretability of real-
world problems. Another advantage of MTR is that it can generate cleaner models with
better computational efficiency.

In order to obtain desirable and reliable predictions for multiple target variables, many
potentially relevant variables are typically involved in the formulation of high-dimensional
data which would represent and explain the target variables. However, high dimensional
input features not only induce a complex correlation structure between features and targets
but also result in the problem of the “curse of dimensionality”. In addition, unrelated
and redundant features adversely affect the effectiveness of the modeling and reduce the
generalization performance. As an efficient dimensionality reduction technique to choose a
subset of features from the primitive high-dimensional data, feature selection contributes to
prevent the “curse of dimensionality” and enables the selection of an optimal subset from
the primitive feature space with specific criterion. As feature selection does not modify the
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primitive semantics of the original variables, it makes the model more interpretable with
reduced training time and space requirements [9].

The Multi-Target Feature Selection (MTFS) methods generally fall into one of three
categories [10]: filter [11,12], wrapper [13,14] and embedded approaches [15,16]. The filter
approaches use specific evaluation metrics such as mutual information [11] and Laplacian
score [12] to measure the importance of features and select the most relevant features to
form a subset. The family of filter methods is independent of the algorithm, which makes
them computationally efficient. They can effectively remove irrelevant features from a
dataset. However, one limitation of filter methods is that they may include redundant fea-
tures in the selected subset since they ignore the correlation between features. On the other
hand, wrapper methods select a subset of features by inputting them into a specific model
for training. This process continues until satisfactory performance is achieved. Wrapper
methods take into account the correlation between features and consider their impact on the
model performance. Wrapper methods can be computationally expensive since the perfor-
mance of the selected subset needs to be verified after each feature selection. To balance the
trade-off between filter and wrapper methods, embedded methods treat feature selection
as an optimization problem. Embedded methods can select the most informative features
with a relatively low computational cost compared to wrapper methods. By embedding
feature selection within the model building process, embedded methods are able to take
into account the correlation between features while also minimizing computational costs.
These methods weigh the importance of each feature and select the most relevant ones by
optimizing the model performance. As a result, embedded methods often lead to better
model performance compared to filter methods, while still being more computationally
efficient than wrapper methods. Therefore, embedded methods are increasingly drawing
attention due to their superior performance.

Closely related to MTR, multi-label learning is generally viewed as a particular case
of MTR in statistics analysis [17]. Inspired by the intimate relationship between multi-
label classification (MLC) and MTR, Various MTR models have been proposed based on
the thought of handling label relevance in the context of MLC, such as the ensemble of
regressor chains (ERC), stacked single-target (SST), Random Linear Target Combinations
(RLC) [18,19]. Spyromitros-Xioufis et al. discrete the output space by product quantization
and thus convert the MTR problem into a MLC problem [11]. It is evident that there are
favorable similarities between MLC and MTR, and various methods of MLC have been
transferred to handle MTR problems with excellent performance. However, there are a few
approaches to solving the feature selection problem in MTR by exploiting various feature
selection strategies in MLC. Indeed, various supervised, semi-supervised and unsupervised
feature selection methods in MLC can also be transferred to feature selection tasks in MTR
scenarios, such as incorporating local and global correlation structures of labels, features or
samples into the learning process to improve the feature selection performance, which is
inspiring for MTFS [20–22].

The significant challenges of MTR arise from jointly addressing input–output and
inter-target correlations [23]. By exploring the correlation information between the targets
accurately and effectively, the MTR model can obtain improved performance compared to
the single-target model. Therefore, most existing MTR models focus on exploring target
correlations. The general technique imposes various sparse regularizer or low-rank con-
straints on the regression matrix [6,23,24]. However, the above methods do not consider the
structure information of features or samples. Both the global and local structures of features
and samples have been previously demonstrated in the literature to provide complemen-
tary information for reinforcing the performance of feature selection [20,22,25]. Specifically,
preserving the geometric structure of samples can strengthen the feature selection perfor-
mance since the effects of noises and outliers could be mitigated [21,22]. Moreover, in MTR
scenarios, the intrinsic inter-target relationships can also provide discriminate information
to feature selection and discover the essential features that are highly correlated to the
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relationships between targets. Incorrect inter-target relationships could also deteriorate the
generalization capability of feature selection model.

To address the above-mentioned issues, we design a novel MTFS method by integrat-
ing an adaptive graph structure learning and manifold learning of global target correlations
into a general multi-target sparse regression model. The key contributions of this paper are
highlighted below:

• A novel MTFS method with low-rank constraint is designed to generate low redun-
dancy yet informative feature subset for MTR by imposing a low-rank constraint on
the regression matrix, to conduct subspace learning and thus decouple the inter-input
as well as the inter-target relationships, which can reduce the influence of redundant
or irrelevant features.

• Based on the nearest neighbors of the samples, the similarity-induced graph matrix
is learned adaptively, and the local geometric structure of the data can be preserved
during the feature selection process, thus mitigating the effects of noise and outliers.

• A manifold regularizer based on target correlation is designed by considering the statistical
correlation information between multiple targets over the training set, which is beneficial
to discover informative features that are associated with inter-target relationships.

• The alternative optimization algorithm is proposed to solve the proposed objective
function, and the convergence of the algorithm is proved theoretically. Extensive
experiments are conducted on a benchmark data sets to validate the feasibility and
effectiveness of the proposed method.

The rest of this paper is organized as follows. In Section 2, some related works on
multi-objective feature selection and multi-label classification feature selection methods are
briefly reviewed. The proposed multi-objective feature selection method is described in
detail in Section 3, followed by the proposed optimization algorithm in Section 4. Section 5
proves the convergence of the proposed algorithm and analyzes the corresponding time
complexity. In Section 6, experimental results are reported and analyzed to demonstrate the
effectiveness of the proposed method. Finally, a brief conclusion is summarized in Section 7.

2. Related Work

To date, different MTFS methods have been proposed. Hashemi et al. [26] proposed
a feature selection method incorporating the VIKOR algorithm to rank the features in
the MTR problem. Sechidis et al. [11] proposed a feature selection method for both MLC
and MTR. The method considers correlation, redundancy and complementarity between
features by calculating the interaction among targets, thus ensuring that the acquired
subset of features can have less redundancy and higher correlation. Petkovic et al. [27]
proposed a feature-ranking method based on predictive clustering tree integration and
RReliefF method extensions, and the optimal feature ranking is determined by integrating
the feature scores of these two groups of methods. Masmoudi et al. [28] presented a multi-
target feature ranking method based on regression chain ensemble and random forest; the
final feature ranking is obtained by combining the feature importance information from
both methods.

Recently, different embedded approaches have also been proposed. Yuan et al. [29] pro-
posed an embedded Sparse Structural Feature Selection (SSFS) model based on a multi-layer
multi-output framework. This model achieves improved feature selection performance
by simultaneously applying sparsity constraints on the objective function, regression co-
efficients, and structure matrix. Similarly, Zhu et al. [30] utilized low-rank constraint to
identify correlations between output variables and impose �2,1-norm regularization on
regression matrix to achieve feature selection. The above-mentioned methods impose spar-
sity or low rank on the loss function or parameter matrix to achieve the feature selection.
However, these embedded methods either consider the similarity structure of samples or
the statistical correlations between different targets, which may constrain the performance
of feature selection.
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In fact, the feature selection method in MLC tasks can also be deployed in MTR tasks
when the model can handle continuous output variables. Fan et al. [31] proposed a feature
selection method based on both label correlations and feature redundancies; the label
correlations are explored through low-dimensional embedding, which maintains the global
and local structure of the original label space. Xu et al. [32] proposed to perform feature
extraction by maximizing feature variance and feature–label dependence to achieve better
performance in MLC problems. Zhu et al. [21] proposed a robust unsupervised spectral
feature selection method that maintains the local structure of features by exploiting the
self-representation of features and maintains the global structure of samples as features
via imposing low-rank constraints on the weight matrix. Mahsa et al. [33] proposed a low-
redundant unsupervised feature selection method based on data structure learning and
feature orthogonalization. Obviously, the above method introduces other information such
as the local and global structure of the labels, the structure of the data and the relationship
between the features by considering not only the relationship between the features and the
labels in the feature selection process.

Recently, graph-based methods, such as spectral clustering, graph learning and hy-
pergraph learning, have played an important role in machine learning due to their ability
to encode similarity relationships among data. Ma et al. [34] proposed a feature selection
method named discriminative multi-label feature selection with adaptive graph diffusion,
and the graph embedding learning framework is constructed with adaptive graph diffu-
sion to uncover a latent subspace that preserves the higher-order structure information.
Zhang et al. [35] proposed a novel unsupervised feature selection via adaptive graph
learning and constraint. Zhu et al. [36] proposed an unsupervised spectral feature selection
method with dynamic hypergraph Learning. You et al. [37] proposed an unsupervised fea-
ture selection method via Neural Networks (NN) and self-expression with adaptive graph
constraint. Deepak et al. [38] extended the feature selection algorithm presented in via
Gumbel softmax to Graph Neural Networks (GNN). It can be seen that graph learning can
effectively mine the similarity or structural relationship between data, and thus improve
the performance of feature selection.

From the above research, it is evident that maintaining the various structural infor-
mation contained in the original data, such as the geometric or similar structure of the
samples, the structural information among the features and different outputs, can provide
supplementary information for feature selection in different perspectives, thereby improve
the feature selection performance. However, existing MTFS methods rarely consider the
above information simultaneously.

3. The Proposed Approaches

3.1. Notations

For a n× m matrix A =
[
ai,j

]
∈ Rn×m, and ai,j denotes the (i, j)-th entry of A. AT

denotes its transpose. tr(A) is A’s trace. The Frobenius norm of A is defined as ‖A‖F =√
∑n

i=1 ∑m
j=1 a2

i,j , and the �p,q-norm of matrix A is defined as

‖A‖p,q =

⎡⎣ n

∑
i=1

(
m

∑
j=1

∣∣ai,j
∣∣p

) q
p
⎤⎦

1
q

(1)

and hence the �2,1-norm of A is defined as

‖A‖2,1 =
n

∑
i=1

√√√√ m

∑
j=1

a2
i,j (2)

For a n-dimensional vector c ∈ Rn, ‖c‖2 =
√

∑n
i=1 c2

i is its �2-norm, I denotes an

identity matrix, and let H = I− 1
n 1n1T

n denote the center matrix, where 1n ∈ Rn and the
value of each element is 1.
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3.2. MTR Based on Low-Rank Constraint

Given a training set consisting of n instances {(xi, yi)}n
i=1, and X = [x1, . . . , xn]

T ∈
Rn×d represents feature or input matrix, where xi =

[
xi,1, . . . , xi,q

]T ∈ Rd, and Y =

[y1, . . . , yn]
T ∈ Rn×q represents target or output matrix, where yi =

[
yi,1, . . . , yi,q

]T ∈ Rq

is the multi-target output corresponding to xi. The traditional ridge regression can be
extended to multi-dimension, and we reach the following objective function:

min
W,b
‖XW + 1nbT − Y‖2

F + α‖W‖2
F (3)

where W ∈ Rd×q is the regression coefficients, b ∈ Rq is the bias, and α > 0 is the
regularization parameter. d and q are dimensions of features and targets. To select the
features, the �2,1-norm regularizer is imposed on regression matrix W, and we have

min
W,b
‖XW + 1nbT − Y‖2

F + α‖W‖2,1 (4)

where the sparse learning of W based on �2,1-norm encourages the row sparsity to unselect
the irrelevant features in the original feature matrix X. Evidently, Equation (4) does not
take into account the correlation among targets, which leads to poor performance in MTFS.
Therefore, we impose a low-rank constraint on W, i.e., W = AB, where A ∈ Rd×r, B ∈ Rr×q,
r ≤ min(d, q). Hence, Equation (4) is modified to

min
A,B,b

‖XAB + 1nbT − Y‖2
F + α‖AB‖2,1 (5)

In Equation (5), the parameter matrix A can be viewed as transforming the original
feature space Rd into an latent variable space Rr geometrically, and then parameter matrix
B transforms XA to the target space Rq. Considering the correlation among q targets,
B can be served to encode inter-target correlations explicitly. Thus, the low-rank constraint
takes into account global target correlations to leverage subspace learning and enables the
simultaneous modeling of input–output correlations as well as inter-target relationships.
In addition, the effects of redundant features and anomalous variables can be mitigated by
low-rank learning, resulting in the output of robust feature selection models [39,40].

3.3. Adaptive Graph-Learning Based on Local Sample Structure

So far, the majority of studies have shown that, in addition to characterizing the significance
of features in the regression model through sparse learning, the local structural information of the
sample can also contribute additional information to feature selection [20–22,25]. By preserving
the nearest neighbour structure of instances, the distribution of samples in the learned low-
dimensional space can maintain consistency with the original sample space [21,22]. Even
for a MTR problem with a complex correlation structure, The output Y can be reasonably
hypothesized to be a continuous and smooth function of the input X. It is natural to expect
close samples xi and xj to have close output values yi and yj; thereby, the corresponding
prediction outputs ŷi and ŷj should also be adjacent to each other [41]. Based on the
hypothesis, the geometric structure information of different instances in the feature space
is leveraged to ensure that the predicted output of the model also maintains a similar
geometric structure.

The existing literature obtains the local distribution structure and information of
samples by learning the graph matrix S between samples, and given the input matrix X

and the corresponding weight coefficients W, according to the literature [42], we have:

min
W

n

∑
i,j=1
‖xT

i W− xT
j W‖2

2si,j (6)

where W ∈ Rd×q and S =
[
si,j

]
∈ Rn×n, and si,j represents the similarity between xi and

xj. Traditional methods are often based on heat kernel functions to calculate the similarity
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between nearest neighbors samples, the similarity between nearest neighbor samples xi
and xj is defined as

si,j = exp

(
−
‖xi − xj‖2

2

2σ2

)
(7)

otherwise si,j = 0. Although Equation (7) has been widely applied, the similarity matrix is
highly sensitive to the existence of noise and outliers in the original data [21,22]. To deal
with this, we learn the similarity matrix of the target space adaptively to mitigate the effect
of noise and outliers. The hypothesis in manifold learning is that if two samples are close
in the dimension reduction space, then their corresponding multivariate prediction outputs
should also be closed in target space, which gives rise to

min
S,A,B

n

∑
i,j=1

(
‖xT

i W− xT
j W‖2

2si,j + γ‖si‖2
2

)
s.t. ∀i, 1Tsi = 1, si,i = 0,

si,j ≥ 0 if j ∈ N (i), otherwise 0.

(8)

where γ is a tuning parameter, The second item in (8) deals with avoiding trivial solutions.
N (i) represents the nearest neighbours set of the ith sample, and 1Tsi = 1 has been proved
to reinforce the robustness for noises and outliers in [43], where si is the ith column of
matrix S. Combining the low-rank constraint and Equation (8), which leads to

min
S,A,B

n

∑
i,j=1

(
‖xT

i AB− xT
j AB‖2

2si,j + γ‖si‖2
2

)
s.t. ∀i, 1Tsi = 1, si,i = 0,

si,j ≥ 0 if j ∈ N (i), otherwise 0.

(9)

Based on Equation (9), we can ensure that the nearest neighbour relationship in the
predicted output is consistent with the original data, which benefits the subsequent learning
of different output correlation structures. Moreover, preserving the nearest neighbour
relationship between samples is beneficial to lessen the impact of redundant or irrelevant
features to improve the performance of feature selection.

3.4. Manifold Regularization of Global Target Correlations

Since different target correlation structures can also affect the performance of MTFS,
we propose a manifold regularization term for global target correlations, which automati-
cally exacts the correlations from the target matrix. By incorporating the target manifold
regularization via exploiting the correlation of the target variables to filter out the noises of
target variables indirectly. First, we use the commonly used cosine similarity to measure
the similarity between target variables, which is calculated as follows,

s̃i,j =
〈y:,i, y:,i〉
‖y:,i‖‖y:,j‖

, i, j = 1, . . . , q (10)

where y:,i and y:,i are the ith and jth column of Y, respectively. We assume that for the
coefficient matrix B ∈ Rr×q , if the target output vectors y:,i and y:,j are similar to each
other, their corresponding weight vectors bi and bj should also be close. Based on the
assumptions, we have:

min
B

q

∑
i,j=1
‖bi − bj‖2

2 s̃i,j (11)

where bi and bj are the ith and jth column of B. Equation (11) encourages the similarity of
the weight vectors corresponding to similar target outputs. The advantage of Equation (11)
is that it can use the similarity information among different target outputs, thus improving
the feature selection performance in MTR problems.
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3.5. Objective Function

By incorporating the model (9) and (11) into the generalized low-rank MTR model (5),
we can obtain the final feature selection model based on adaptive graph learning and global
target correlations for MTR, which is described as follows:

min
A,B,S,b

‖XAB + 1nbT−Y‖2
F + α‖AB‖2,1

+ β
n

∑
i,j=1

(
‖xT

i AB− xT
j AB‖2

2si,j + γ
n

∑
i=1
‖si‖2

2

)

+ λ
q

∑
i,j=1
‖bi − bj‖2

2 s̃i,j

s.t.
{ ∀i, 1Tsi = 1, si,i = 0,

si,j ≥ 0 if j ∈ N (i), otherwise 0.

(12)

where α, β, γ and λ are tuning parameter. The proposed objective function (12) has the
following important characteristics. On the one hand, the low-rank constraint on the regres-
sion matrix can decouple the input–target and inter-target correlations and enables robust
learning of the correlation. On the other hand, by integrating the adaptive graph learning
based on local sample structure and manifold regularization of global target correlations,
we can consider both local sample structure and global target correlations. Moreover, the
graph structure and regression parameter matrices learning could be iteratively updated
by each other, and the global target correlations can be extracted from data automatically.

Consequently, given the optimal parameter matrix A and B, we evaluate the impor-
tance of each feature based on the �2-norm of (AB)i, and rank them in descending order,
then the top-ranked subset of features can be obtained.

4. Optimization Algorithm

This section presents an alternating optimization algorithm to solve the problem (12),
i.e., iteratively optimizing each variable while fixing the others until convergence.

First, by setting the derivative of Equation (12) w.r.t. b to zero, we have

bT =
1
n

(
1T

n Y− 1T
n XAB

)
(13)

Substituting the result of Equation (13) into (12), and the objective function can be rewrit-
ten as

min
A,B,S
‖H(XAB−Y)‖2

F + α‖AB‖2,1

+ β
n

∑
i,j=1

(
‖xT

i AB− xT
j AB‖2

2si,j + γ
n

∑
i=1
‖si‖2

2

)

+ λ
q

∑
i,j=1
‖bi − bj‖2

2 s̃i,j

s.t.
{ ∀i, 1Tsi = 1, si,i = 0,

si,j ≥ 0 if j ∈ N (i), otherwise 0.

(14)

where H is a symmetric center matrix. Since Equation (14) is convex for each parameter
matrix while fixing others. Hence, the alternating optimization algorithm is introduced.

4.1. Fix S Update A and B

With S is fixed, problem (14) can be rewritten as follows:

min
A,B
‖H(XAB−Y)‖2

F + α‖AB‖2,1

+ β
n

∑
i,j=1
‖xT

i AB− xT
j AB‖2

2si,j + λ
q

∑
i,j=1
‖bi − bj‖2

2 s̃i,j

(15)
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To prevent the non-differentiable problem in (15), we transform problem (15) as follows,

min
A,B
‖H(XAB− Y)‖2

F + αtr
(

BTATDAB
)

+ βtr
(

BTATXTLXAB
)
+ λtr(BL̃BT)

(16)

where L and L̃ are the Laplacian matrices corresponding to si,j and s̃i,j, respectively. D ∈
Rd×d is the diagonal matrix and

Di,i =
1

2‖(AB)i‖2
2

, i = 1, 2, . . . , d (17)

where (AB)i is the ith row of matrix AB. Similarly, by fixing B, we set the derivative of
Equation (16) with respect to A to zero and further to obtain

A∗ = P−1XTHYBT
(

BBT
)−1

(18)

where P = XTHX+ αD+ βXTLX. In the same way, by fixing A we can obtain the following
expression,

min
B

tr
(

BTATPAB− 2BTATXTHY
)
+ λtr

(
BL̃BT

)
(19)

We set the derivative of Equation (19) w.r.t. B to zero and obtain

ATPAB + λBL̃ = ATXTHY (20)

Obviously, Equation (20) is a standard Sylvester equation AΘ + ΘB = C, where Θ
is the unknown corresponding to B, A = ATPA, B = λL̃, and C = ATXTHY. Therefore,
Equation (20) has a closed-form solution and can be solved analytically. The optimization
of A and B is shown in Algorithm 1.

Algorithm 1 The procedure of optimizing A and B

Input: X ∈ Rn×d, Y ∈ Rn×q, L ∈ Rn×n, L̃ ∈ Rq×q, α, β, λ, k and r;
Output: A ∈ Rd×r, B ∈ Rr×q;
1. Initialize D = I ∈ Rd×d;
2. Update the matrix P;
3. repeat:

3.1. Calculate B by Equation (18);
3.2. Update A by Equation (20);
3.3. Update D and P by Equation (17);

until converge;

4.2. Fix A and B Update S

With fixed A and B we have:

min
S

n

∑
i,j=1

(
‖xT

i AB− xT
j AB‖2

2si,j + γ‖si‖2
2

)
s.t. ∀i, 1Tsi = 1, si,i = 0,

si,j ≥ 0 if j ∈ N (i), otherwise 0.

(21)

Initially, we set the value of si,j = 0 if j /∈ N (i), where N (i) is the k nearest neighbors
of sample i. Otherwise, the si,j value can be calculated by the following Equation (22). Since
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different si (i = 1, ..., n) are independent of each other, the solutions of si can be solved
separately by parallel optimization. Therefore, rewrite Equation (21) as

min
1Tsi=1,si,i=0,si,j≥0

n

∑
j=1

(
‖xT

i AB− xT
j AB‖2

2si,j + γs2
i,j

)
(22)

By denoting G = [g1, . . . , gn] ∈ Rn×n where gi,j = ‖xiAB − xjAB‖2
2, and rewrite

Equation (23) as follows:

min
1Tsi=1,si,i=0,si,j≥0

1
2
‖si +

1
2γ

gi‖2
2 (23)

Then we further derive the Lagrangian function of Equation (23) as

L(si, ζ, η) =
1
2
‖si +

gi
2γ
‖2

2 − ζ
(

1Tsi − 1
)
− ηTsi.

=
1
2

n

∑
j=1

(
si,j +

gi,j

2γ

)2
−ζ

(
n

∑
j=1

si,j − 1

)
−

n

∑
j=1

ηjsi,j

(24)

where ζ and η be the Lagrangian multipliers. By using the Karush–Kuhn–Tucker (KKT)
conditions, we further achieve⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀j, si,j +
gi,j
2γ − ζ − ηj = 0

∀j, si,j ≥ 0
∀j, si,jηj = 0
∀j, ηj ≥ 0

(25)

According to the KKT conditions, we can summarize the following three scenarios
based on Equation (25):⎧⎪⎨⎪⎩

scenario 1: si,j > 0, ηj = 0⇔ si,j = −
gi,j
2γ + ζ > 0

scenario 2: si,j = 0, ηj > 0 ⇔ −ηj = −
gi,j
2γ + ζ < 0

scenario 3: si,j = ηj = 0⇔ − gi,j
2γ + ζ = 0

(26)

Finally we have si,j =
(
− gi,j

2γ + ζ
)
+

. To ensure the sparsity of the similarity matrix

and thus improve the model robustness, we only consider the k-nearest neighbours of each
training sample. Without loss of generality, we suppose that gi,1 ≤ gi,2 ≤ . . . ≤ gi,n, ∀i.
For the vector si we have {

si,k > 0⇒ − gi,k
2γ + ζ > 0

si,k+1 ≤ 0⇒ − gi,k+1
2γ + ζ ≤ 0

(27)

according to the constraint 1Tsi = 1, we have

k

∑
j=1

(
−

gi,j

2γ
+ ζ

)
= 1⇒ ζ =

1
k
+

1
2kγ

k

∑
j=1

gi,j (28)

based on Equation (27) and (28), we can induce that

kgi,k −
k
∑

j=1
gi,j

2
< γ ≤

kgi,k+1 −
k
∑

j=1
gi,j

2
(29)
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let γ =
kgi,k+1−∑k

j gi,j
2 , the closed-form solution of si,j can be yielded as

si,j =

⎧⎨⎩
gi,k+1−gi,j

kgi,k+1−∑k
j=1 gi,j

, j ≤ k,

0, j > k.
(30)

In summary, the overall pseudo-code of the proposed algorithm to solve the prob-
lem (14) is concluded in Algorithm 2.

Algorithm 2 MTFS Method based on Alternating Optimization Algorithm

Input: X ∈ Rn×d, Y ∈ Rn×q, α, β and λ, k and r;
Output: A ∈ Rd×r, B ∈ Rr×q, S ∈ Rn×n

1. Calculate k nearest neighbors of all training samples;
2. Initialize S by Equation (8) where W is an identity matrix;
3. Update the Laplacian matrix L̃;
4. repeat:

4.1. Update A and B via Algorithm 1;
4.2. Calculate S via Equation (27);
4.3. Calculate the Laplacian matrix L corresponding to S;

until converge;

5. Convergence and Complexity Analysis

To demonstrate the convergence of the proposed algorithm, a Lemma is first listed as
follows [44]:

Lemma 1. For any two non-zero vectors u, v ∈ Rm, the following equation is always holds.

‖u‖2 −
‖u‖2

2
2‖v‖2

≤ ‖v‖2 −
‖v‖2

2
2‖v‖2

(31)

5.1. Convergence Analysis of Algorithm 2

The convergence of Algorithm 2 is guaranteed by the following Theorem.

Theorem 1. The value of objective function (15) is monotonically decreases until Algorithm 2
converges.

Proof. Denote J
(

A(t), B(t)

)
as the objective function of (15) in tth iteration. W(t) =

A(t)B(t), where A(t) and B(t) are the A and B in the tth iteration, respectively. After fixing
S, according to Algorithm 1, we can obtain〈

A(t), B(t)

〉
=arg min

A,B
‖H

(
XW(t) − Y

)
‖2

F + αtr
(

WTDW
)

+ βtr
(

WT
(t)X

TLXW(t)

)
+ λtr

(
B(t)L̃BT

(t)

) (32)

Since ‖W‖2,1 = ∑d
i=1 ‖wi‖2, hence

‖H
(

XW(t+1) − Y
)
‖2

F + βtr
(

WT
(t+1)X

TLXW(t+1)

)
+ λtr

(
B(t+1)L̃BT

(t+1)

)
+ α‖W(t+1)‖2,1 + α

d

∑
i=1

(
‖wi(t+1)‖2

2

2‖wi(t)‖2
− ‖wi(t+1)‖2

2

)
≤ ‖H

(
XW(t) − Y

)
‖2

F + βtr
(

WT
(t)X

TLXW(t)

)
+ λtr

(
B(t)L̃BT

(t)

)
+ α‖W(t)‖2,1 + α

d

∑
i=1

(
‖wi(t)‖2

2

2‖wi(t)‖2
− ‖wi(t)‖2

2

)
(33)
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where wi(t) and wi(t+1) denote the ith row of W(t) and W(t+1), respectively. According to
Lemma 1, we have

‖wi(t+1)‖2 −
‖wi(t+1)‖2

2

2‖wi(t)‖2
≤ ‖wi(t)‖2 −

‖wi(t)‖2
2

2‖wi(t)‖2
(34)

By plugging Equation (34) into Equation (33), we have
‖H

(
XW(t+1) − Y

)
‖2

F + βtr
(

WT
(t+1)X

TLXW(t+1)

)
+ α

d

∑
i=1
‖wi(t+1)‖2

2 + λtr
(

B(t+1)L̃BT
(t+1)

)
≤ ‖H

(
XW(t) − Y

)
‖2

F + βtr
(

WT
(t)X

TLXW(t)

)
+ α

d

∑
i=1
‖wi(t)‖2

2 + βtr
(

B(t)L̃BT
(t)

)
(35)

and further we have

‖H
(

XW(t+1) − Y
)
‖2

F + βtr
(

WT
(t+1)X

TLXW(t+1)

)
+ α‖Wi(t+1)‖2,1 + λtr

(
B(t+1)L̃BT

(t+1)

)
≤ ‖H

(
XW(t) − Y

)
‖2

F + βtr
(

WT
(t)X

TLXW(t)

)
+ α‖Wi(t)‖2,1 + λtr

(
B(t)L̃BT

(t)

)
(36)

Hence, we have the following inequality:

J
(

A(t+1), B(t+1)

)
≤ J

(
A(t), B(t)

)
.

Therefore, J
(

A(t), B(t)

)
is monotonically decreasing until convergence, and Theo-

rem 1 proved.

5.2. Convergence Analysis of Algorithm 1

Likewise, we also prove the convergence of Algorithm 1 according to the following
Theorem 2.

Theorem 2. The objective function (21) monotonically decreases with each optimization step until
Algorithm 1 converges.

Proof. According to Theorem 1, after the tth iteration, the optimal A(t), B(t) and S(t)
have obtained, we need to calculate S(t+1) by fixing A(t) and B(t) in the (t + 1)th itera-
tion. Furthermore, the S(t+1) can converge to the globally optimal solution according to

Equation (30) since s(t+1)
i,j has the closed-form solution. Therefore, we have

275



Mathematics 2024, 12, 372

‖H
(

XW(t) − Y
)
‖2

F + α‖W(t)‖2,1

+ β

(
n

∑
i,j=1
‖xT

i W(t) − xT
j W(t)‖2

2s(t+1)
i,j + γ

n

∑
i=1
‖s(t+1)

i ‖2
2

)

+ λ
d

∑
i,j=1
‖b(t)

i − b
(t)
j ‖2

2 s̃i,j

≤ ‖H
(

XW(t) − Y
)
‖2

F + α‖W(t)‖2,1

+ β

(
n

∑
i,j=1
‖xT

i W(t) − xT
j W(t)‖2

2s(t)i,j + γ
n

∑
i=1
‖s(t)i ‖2

2

)

+ λ
d

∑
i,j=1
‖b(t)

i − b
(t)
j ‖2

2 s̃i,j

(37)

where s
(t)
i and s

(t+1)
i are the ith row of S(t) and S(t+1), respectively. When fixing S(t+1) to

update A(t+1) and B(t+1), we have the following inequality,

‖H
(

XW(t+1) − Y
)
‖2

F + α‖W(t+1)‖2,1 + λ
d

∑
i,j=1
‖b(t+1)

i − b
(t+1)
j ‖2

2 s̃i,j

+ β

(
n

∑
i,j=1
‖xT

i W(t+1) − xT
j W(t+1)‖2

2s(t+1)
i,j + γ

n

∑
i=1
‖s(t+1)

i ‖2
2

)

≤ ‖H
(

XW(t) − Y
)
‖2

F + α‖W(t)‖2,1 + λ
d

∑
i,j=1
‖b(t)

i − b
(t)
j ‖2

2 s̃i,j

+ β

(
n

∑
i,j=1
‖xT

i W(t) − xT
j W(t)‖2

2s(t+1)
i,j + γ

n

∑
i=1
‖s(t+1)

i ‖2
2

)
(38)

By combining Equation (37) and (38), we obtain

‖H
(

XW(t+1) − Y
)
‖2

F + α‖W(t+1)‖2,1

+ β

(
n

∑
i,j=1
‖xT

i W(t+1) − xT
j W(t+1)‖2

2s(t+1)
i,j + γ

n

∑
i=1
‖s(t+1)

i ‖2
2

)

+ λ
d

∑
i,j=1
‖b(t+1)

i − b
(t+1)
j ‖2

2 s̃i,j

≤ ‖H
(

XW(t) − Y
)
‖2

F + α‖W(t)‖2,1

+ β

(
n

∑
i,j=1
‖xT

i W(t) − xT
j W(t)‖2

2s(t)i,j + γ
n

∑
i=1
‖s(t)i ‖2

2

)

+ λ
d

∑
i,j=1
‖b(t)

i − b
(t)
j ‖2

2 s̃i,j

(39)

According to Equation (38), the value of objective function monotonically decreases
after each iteration of Algorithm 1, Theorem 2 is proved.

5.3. Complexity Analysis

We further analyze the computational complexity of the proposed algorithm. In each

iteration, the computation cost of Algorithm 1 focuses on calculating P−1XTHYBT
(

BBT
)−1

and solving the Sylvester function, the corresponding complexity are
max

{
O

(
r3),O

(
d3),O(ndq),O(dqr)

}
and O

(
q3), respectively. The complexity of Algo-
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rithm 2 stems from calculating the matrix G, the computation cost is max
{
O

(
n2d

)
,O

(
n2q

)}
.

Since r ≤ min(d, q), n, d  r, q, and it is experimentally observed that Algorithm 1 can
converge within 30 iterations on different data sets. Hence, the computational complexity
of the proposed method is approximate O

(
td3 + tnd2), where t (n, d t) is the iteration

of the whole alternating optimization.

6. Experiments

6.1. Datasets

We test the proposed approach on eight high-dimensional datasets (http://mulan.
sourceforge.net/datasets-mtr.html, accessed on 18 January 2024), which are all from the
public website Mulan [45]. All selected datasets are commonly used benchmark datasets
for measuring MTR modeling performance. The detailed statistics of these datasets are
shown in Table 1. We follow the strategies in [18] to impute the datasets with missing
values, i.e., RF1 and RF2, which are replaced with sample means in the datasets.

Table 1. Characters of the datasets.

Datasets Instances Features Targets #-Fold Domains

ATP1d 337 411 6 10 Price prediction
ATP7d 296 411 6 10 Price prediction
OES10 403 298 16 10 Artificial
OES97 334 263 16 10 Artificial

RF1 9125 64 8 2 Environment
RF2 9125 576 8 2 Environment

SCM1d 9803 280 16 2 Environment
SCM20d 8966 61 16 2 Environment

6.2. Compared Methods

In this paper, different MTFS methods are selected to compare the performance with
the proposed approach.

• MTFS [44]: The row sparsity constraint is imposed on the weight matrix by �2,1-norm
regularization,

min
W
‖XW− Y‖2

F + λ‖W‖2,1 (40)

where λ is the tuning parameter, we set the parameters to range as
{

10−3, 10−2, . . . , 103}
empirically.

• RFS [46]: By jointly imposing �2,1-norm regularization on the loss function and the
weight matrix, the objective function of RFS is:

min
W
‖XW− Y‖2,1 + λ‖W‖2,1 (41)

where the parameter λ range as
{

10−3, 10−2, . . . , 103}.
• SSFS [29]: The multi-layer regression structure is constructed by low-dimensional

embedding, and the loss function, weight matrix and structure matrix are joint �2,1-
norm regularized, and the objective function is:

min
W,U
‖ZU− Y‖2,1 + λ‖W‖2,1 + β‖U‖2,1 (42)

where Z = XW, λ and β are tuning parameters. All tuning parameters’ range as
10[−3:1:3].
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• HLMR-FS [47]: The method introduces a hyper-graph Laplacian regularization to
maintain the correlation structure between samples and find the hidden correlation
structure among different target variables via the low-rank constraint.

min
A,B
‖Y− XAB‖2

F + α‖AB‖2,p + βtr
(

BTATXTLHXAB
)

s.t. ATA = I

(43)

where LH is the graph Laplacian matrix between the predicted output vectors of
different training samples. α and β searched in the grid 10[−3:1:3], and p searched in
the grid {0.1, . . . , 1.9}.

• LFR-FS [30]: The method captures the correlation between different objectives
through low-rank constraint, and by designing �2,p-norm regularization on the loss
function and the regression matrix, the learning of the orthogonal subspace enables
multiple outputs to share the same low-rank data structure to obtain the corresponding
feature selection results.

min
A,B
‖Y− XAB‖2,p + α‖A‖2,p

s.t. ATA = I
(44)

where α searched in the grid 10[−3:1:3], and p varied in {0.1, . . . , 1.9}.
• VMFS [26]: VMFS ranks each feature in MTR via the famous Multi-Criteria Decision-

Making (MCDM) method called VIKOR.
• RSSFS [48]: RSSFS uses the mixed convex and non-convex �2,p-norm minimization

on both regularization and loss function for joint sparse feature selection, and the
objective function is:

min
W,H,Q

∥∥∥XTW− Y
∥∥∥p

2,p
+ α‖W‖p

2,p + β‖W−QH‖2
F

s.t.QTQ = I

(45)

In the experiments, the regularization parameter α and β were set in 10[−3:1:3], and
p varied in {0.1, . . . , 0.9}.
In addition to choosing the above-compared methods, we also perform regressions

by using the original data without feature selection as a Baseline to test and validate the
effectiveness of the proposed method. We adopt the Multi-output Kernel Ridge Regression
(mKRR) [49] to obtain the regression result corresponding to feature subsets obtained by
different MTFS methods. In mKKR, Radial Basis Function (RBF) is utilized as the kernel
function, and the kernel parameter and the regularization parameter range as 10[−3:1:3] on
the training data [29]. For different data sets, 70% of the samples are selected as the training
set and the rest as the test set. As is shown in Table 1, we use two-fold cross-validation for
RF1/RF2 and SCM1d/SCM20d and five-fold cross-validation on the training data for the
rest of the datasets to conduct model selection.

6.3. Evaluation Metrics

Two evaluation metrics are employed in experiment, including average Correlation
Coefficient (aCC) and average Relative Root Mean Squared Error (aRRMSE) [47]. The
definition of aCC is as follows,

aCC =
1
q

q

∑
i=1

∑Ntest
j=1

(
y(j)

i − ȳi

)(
ŷ(j)

i − ỹi

)
√

∑Ntest
j=1

(
y(j)

i − ȳi

)2
∑Ntest

j=1

(
ŷ(j)

i − ỹi

)2
(46)
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where y(j)
i and ŷ(j)

i are the real and predicted values of the jth sample on the target i, ȳi
and ỹi are the mean of true value and the predicted value on target i over the test set,
respectively. Likewise, the formula for aRRMSE is given:

aRRMSE =
1
q

q

∑
i=1

√√√√√√∑Ntest
j=1

(
y(j)

i − ŷ(j)
i

)2

∑Ntest
j=1

(
y(j)

i − yi

)2 (47)

where yi is the average value of the training samples on the ith target.

6.4. Results on the Data Sets

Figures 1 and 2 show the aRRMSE and aCC values for different MTFS methods on
different data sets, respectively. For ATP1d and ATP7d, we choose 60, 70, 80, 90, 100,
110 features. For OES10, RF2 and SCM1d, we choose 60, 70, 80, 90, 100 and 110 features.
For OES97, we choose 40, 60, 80, 100, 120 and 140 features. For RF1, we choose 10, 15, 20,
25, 30 and 35 features. For SCM20d, we choose 20, 25, 30, 35, 40 and 45 features.

Meanwhile, the best aCC and aRRMSE values of compared MTFS methods on var-
ious datasets are ranked, and the average rank of different methods on all datasets is
calculated. The Friedman test [50] with the significant level α = 0.05 is employed, and we
utilize Bonferroni-Dunn test [50] as the post hoc test to further analysis of the comparison.
The critical difference (CD) is calculated to measure the difference between the proposed
method and other algorithms. The calculation of CD is as follows:

CD = qα

√
n(n + 1)

6T
. (48)

where n is the number of algorithms compared, and T is the number of datasets. At signifi-
cance level α = 0.05, the corresponding qα = 3.73, thus we have CD = 2.41 (n = 9, T = 8).
Figures 3 and 4 show the average ranks of different feature selection methods based on
aRRMSE and aCC metrics.

Obviously, from Figures 1 and 2, we can observe that for different data sets, selecting
the correct number of feature subsets can achieve better results than the baseline, which
indicates that for MTR problems, a practical feature selection method can not only improve
the computational efficiency of the model but also improve the comprehensive performance
of the model on different targets. Furthermore, the regression performance does not
necessarily improve as the size of the selected features increases. On the contrary, in most
cases, such as OES97, RF1, SCM20d, etc., the performance decreases as the number of
selected features increases, indicating the presence of redundant or irrelevant features in
the original feature set may significantly reduce the performance of regression.

For most cases, SSFS, HLMR-FS and the proposed method can obtain a lower aRRMSE
and higher aCC than MTFS, RFS and VMFS. It shows that the performance of MTFS can
be improved via a low-rank constraint. The proposed method not only considers the
structural information of different samples in feature space but also uses the intrinsic
correlation information between targets to improve the performance of MTFS. Furthermore,
the proposed method can outperform the baseline in most cases, regardless of the number
of features. It indicates that the proposed method can effectively alleviate the influence of
redundant features, thereby maintaining outstanding performance on the selected subset
even if some redundant features are included.
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Figure 1. aRRMSE results compared with compared methods under different number of
selected features.
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Figure 2. aCC results compared with state-of-the-art methods under different number of
selected features.

281



Mathematics 2024, 12, 372

Figure 3. Average rank of different feature selection methods based on aRRMSE under Bonferroni–
Dunn test.

Figure 4. Average rank of feature selection methods based on aCC under Bonferroni–Dunn test.

6.5. Effect of Low-Rank Constraint

We also investigate the influence of different ranks over different data sets, set
r = 1, 2, . . . , q. The performance when r = q is taken as the performance of the algorithm at
full rank, on account of the condition r ≤ min{d, q}. The number of input features d in the
adopted data set is much larger than q, so the corresponding rank value of the regression
matrix at full rank is q. We set r = {1, 2, . . . , 6} in the ATP1d; r = {1, 2, . . . , 16} in the
OES10; r = {1, 2, . . . , 8} in the RF1; r = {1, 2, . . . , 16} in the SCM1d. By setting different
values of r to impose low-rank constraints on A and B. The fluctuations of aRRMSE and
aCC values of the algorithm with α fixed are shown in Figure 5.

From Figure 5, it is evident that performance of the proposed method can be effectively
improved by choosing the appropriate rank value for different data sets. In addition, most
of the rank values in different data sets are better than the performance at full rank,
which indicates that the regression matrix can decouple the inter-features and inter-target
correlation via embedding the latent space of different dimensions, and it is beneficial to
improve the regression performance and robustness of the model.
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Figure 5. Performance of feature selection methods under different low-rank constraints.

6.6. Parameter Sensitivity

In this section, we further perform sensitivity analysis on different parameters in the
proposed feature selection method. Since there is a closed-form solution for γ, we focus
on sensitivity analysis for the regularization parameters α, λ and β. First of all, we tuned
the parameter α within the range of

{
10−3, 10−2, . . . , 103} with λ = 0.01 and β = 0.01.

Likewise, we tuned parameters λ and β in
{

10−3, 10−2, . . . , 103} with α = 0.1, and the
results are shown in Figures 6 and 7.
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Figure 6. Sensitivity analysis of the parameter α with λ and β fixed.

Figure 7. Sensitivity analysis of the parameter λ and β with α fixed.
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In Figure 6, we can see that the variation of the parameter α will bring a certain
degree of fluctuation in the model performance with λ and β fixed, which indicates that
the proposed method is sensitive to α. Hence, parameter α is vital to determine the
performance of the proposed method. From Figure 7, it can be seen that the changes in
model performance after changes in parameters λ and β in ranges are not as significant as
that of parameter α. However, properly tuning parameters λ and β can still improve the
performance.

6.7. Convergence Study

We also plot the convergence curves of the objective function value of Equation (12)
when the algorithm is updated iteratively on different data sets. As shown in Figure 8, it can
be observed that ATP1d, ATP7d and RF1 can converge to the optimum within 20 iterations.
The rest of the datasets can converge within 30 iterations, and the objective function
converges quickly in the first few iterations. It indicates that the proposed alternating
optimization algorithm can efficiently converge to the global optimum. Moreover, the
monotone decrease of the objection function value demonstrates that the proposed problem
can converge well. It confirms the effectiveness of the alternating optimization algorithm
in addressing the proposed problem.

Figure 8. Convergence curves of the proposed method under different data sets.
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7. Conclusions

This paper has proposed a novel MTFS method based on adaptive graph learning and
global target correlations to perform feature selection in MTR problem. Considering the
existence of feature redundancy and noise in the original data, adaptive graph learning
based on the sample local structure is introduced. Meanwhile, a manifold regularizer
based on the target correlations is constructed to explore the inter-target correlation, which
enables the regression matrix to consider the correlation between targets in the sparse and
low-rank learning process. Finally, an alternating optimization algorithm is proposed to
solve the objective function of the MTFS problem, and the convergence of the algorithm
is demonstrated both theoretically and empirically. Through extensive experiments, it is
demonstrated that the proposed method has superior performance compared with other
mainstream embedding MTFS algorithms. The proposed method can effectively select
features for MTR data, and then improve the efficiency and accuracy of MTR modelling.

In the future, we will extend the proposed method to cope with the semi-supervised
and unsupervised feature selection tasks in MTR scenarios, we will try to introduce more
manifold constraints and low-rank structures to the feature selection problem of MTR and
test its performance and we will also explore whether it can solve the feature selection
problem in multi-task learning and MLC.
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Abstract: The imperative for swift and intelligent decision making in production scheduling has
intensified in recent years. Deep reinforcement learning, akin to human cognitive processes, has
heralded advancements in complex decision making and has found applicability in the production
scheduling domain. Yet, its deployment in industrial settings is marred by large state spaces,
protracted training times, and challenging convergence, necessitating a more efficacious approach.
Addressing these concerns, this paper introduces an innovative, accelerated deep reinforcement
learning framework—VSCS (Variational Autoencoder for State Compression in Soft Actor–Critic).
The framework adeptly employs a variational autoencoder (VAE) to condense the expansive high-
dimensional state space into a tractable low-dimensional feature space, subsequently leveraging
these features to refine policy learning and augment the policy network’s performance and training
efficacy. Furthermore, a novel methodology to ascertain the optimal dimensionality of these low-
dimensional features is presented, integrating feature reconstruction similarity with visual analysis to
facilitate informed dimensionality selection. This approach, rigorously validated within the realm of
crude oil scheduling, demonstrates significant improvements over traditional methods. Notably, the
convergence rate of the proposed VSCS method shows a remarkable increase of 77.5%, coupled with
an 89.3% enhancement in the reward and punishment values. Furthermore, this method substantiates
the robustness and appropriateness of the chosen feature dimensions.

Keywords: crude oil scheduling; efficient policy learning; state-space compression; reinforcement
learning

MSC: 68T05

1. Introduction

The orchestration of crude oil storage and transportation scheduling is pivotal at the
forefront of refinery operations, underpinning the safety of oil storage and transit, the
stability of production, and the operational efficiency of the refinery [1]. This complex
process encompasses the unloading of tankers, the coordination of terminal and factory
tank storage, and the seamless transfer of resources to the processing apparatus. Effective
scheduling requires intricate decision making across various operational phases, including
the timely and precise movement of crude oil to designated units [2]. Objectives focus on
maintaining uninterrupted processing, minimizing tanker delays, and optimizing resource
allocation across storage and processing units. Operational dispatch must also navigate
a myriad of practical considerations, from the punctuality of tanker arrivals to the pre-
paredness of storage facilities and the interconnectivity of various systems. Addressing
this large-scale, multiconstraint scheduling challenge is pivotal, representing a dynamic
research frontier demanding innovative and efficient solutions.
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Contemporary research methodologies addressing refinery crude oil scheduling pre-
dominantly draw upon operations research theory [3,4]. These approaches typically entail
the formulation of the problem into a mathematical model amenable to solution [5–7].
The strength of this strategy lies in its capacity for the precise mathematical articulation
of the scheduling process and production objectives, as well as in its ability to identify
provably optimal solutions. However, the timeliness of these solutions poses a significant
challenge. Presently, refinery crude oil scheduling is often represented and tackled as
a large-scale mixed integer programming model, characterized as an NP-hard problem.
Absent simplification, such models defy resolution within a practical timeframe.

Recent advancements in deep reinforcement learning have led to notable successes in
tackling complex planning problems [8], prompting numerous research initiatives and ap-
plications in the realm of production resource scheduling with promising outcomes [9–12].
This methodology models business challenges as Markov decision processes and learns
policies that maximize cumulative rewards through sustained interaction with the envi-
ronment. Its core strengths lie in its neural-network-based approximation capabilities,
rapid sequential decision making, and a degree of adaptability in addressing dynamic pro-
gramming challenges [13]. Yet, when applied to actual industrial problems, these methods
often grapple with expansive state spaces, extended training durations, and convergence
difficulties [14], signaling the need for more efficient methods.

This study introduces a novel approach, termed Variational Autoencoder for State
Compression in Soft Actor–Critic (VSCS), to model and expedite the training of deep
reinforcement learning for refinery scheduling tasks. Initially, this research delineates the
Markov decision process for refinery scheduling to lay the groundwork for subsequent
optimization. The VSCS methodology employs a variational autoencoder to transmute the
extensive, high-dimensional state space into a condensed, low-dimensional representation.
Utilizing these distilled features, the VSCS algorithm learns the optimal policies in the
reduced feature space, substantially enhancing both the learning efficiency and the efficacy
of the derived policies. The paper’s principal contributions are multifaceted, encompassing
the following key dimensions:

• A novel deep reinforcement learning framework, VSCS, is presented, employing a
variational autoencoder to distill the complex, high-dimensional state space of refin-
ery crude oil scheduling into a compact, low-dimensional feature space for optimal
policy identification.

• To address the challenge of selecting the dimensionality for low-dimensional features,
we devised a method that rigorously evaluates the similarity of feature reconstructions.
This approach, integrated with visual analytics, enables the precise determination of
the optimal dimensionality for low-dimensional features.

• The VSCS approach delineated herein underwent comprehensive experiments within
the crude oil scheduling problem, conclusively affirming the framework’s efficacy.
Experimental validation confirmed the appropriateness of the chosen low-dimensional
feature dimensions, establishing a robust empirical foundation for the methodology.

The remainder of this paper is organized as follows. A brief review of related work
is presented in Section 2. Section 3 shows the problem formulation. Section 4 presents
the details of the VSCS method. Section 5 delineates and deliberates upon the principal
experimental outcomes. Finally, some concluding remarks are given in Section 6.

2. Related Work

Crude oil storage and transportation scheduling are critically important to refinery
production. This sequential decision-making process encompasses oil tanker arrival and
unloading at the port, the conveyance of crude oil from terminal storage to in-plant tanks,
and the subsequent delivery of crude materials to processing units. The overarching objec-
tive of scheduling is to minimize the cumulative costs, such as operational expenses, while
adhering to the operational capabilities of each segment and maintaining the continuous,
planned operation of processing units [15].
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Production scheduling presents a multifaceted challenge extensively explored within
the mathematical programming sphere, with research bifurcating into modeling methodolo-
gies and algorithmic solutions. Shah et al. pioneered a discrete-time Mixed-Integer Linear
Programming (MILP) framework to navigate the intricacies of crude oil scheduling [16]. Ad-
vancing this groundwork, J.M. Pinto et al. crafted mixed-integer optimization models that
capture the dichotomy of continuous and discrete temporal dynamics for refinery schedul-
ing [17]. Jialin Xu’s team leveraged continuous-time models for the simulation optimization
of refinery operations, showcasing efficacy in scheduling and economic performance [1].
Further refining these approaches, Bernardo Zimberg et al. employed continuous-time
models with intricate multioperation sequencing, achieving hourly resolution in their anal-
yses [18]. Lijie Su introduced an innovative continuous–discrete-time hybrid model that
stratifies refinery planning and scheduling into hierarchical levels, focusing on multiperiod
crude oil scheduling with the aim of maximizing net profits, achieving solution times
that range from minutes to hours [19]. Algorithmically, solutions span from MILP-NLP
decomposition to solver-integrated responses [20–22] and rolling horizon strategies for
time-segmented problem-solving [23]. Additionally, intelligent search mechanisms like
genetic algorithms have been adopted to bolster solution throughput [24–27]. Traditional
algorithms have thus concentrated on the meticulous detail of model construction and im-
proving efficiency in confronting the complexities of refinery oil storage and transportation.
Modeling has progressed from linear representations to intricate nonlinear continuous-time
frameworks to mirror operational realities more closely. Nevertheless, the elevated com-
plexity of such models demands the decomposition of problems into tractable subproblems
suitable for solver optimization or the application of heuristics and genetic algorithms for
more rapid approximate solutions. Consequently, advancing the performance of solutions
in this domain remains an ongoing and formidable research challenge. Table 1 shows
the different scales and corresponding performances of the calculation examples in the
traditional method research of the crude oil scheduling problem.

Table 1. The scale and performance of traditional research methods in crude oil scheduling.

Technique Scale Performance

discrete-time MILP framework [16] Four crude types, two CDUs, seven refinery tanks, and eight portside
tanks; the time horizon of operation is one month, and a discretization
interval of one day is used

in a few minutes

continuous and discrete temporal
MILP [17]

Three CDUs, six storage tanks, and three oil pipelines; the time hori-
zon of operation is one day, at every hour

in reasonable time

continuous-time MINLP [1] One single docking berth, four storage tanks, four charging tanks,
and two CDUs; the time horizon of operation is 15 days

25.94 s

Many-objective optimization for
scheduling of crude oil operations
based on NSGA-III [26]

There are three distillers with nine charging tanks and a long-distance
pipeline; every time, it needs to produce a 10-day schedule

about 100 s–150 s

MILP framework with rolling hori-
zon strategy [23]

Eight tanks, where one tank is assumed in maintenance, five crude
qualities; the time horizon is 31 or 61 days (periods)

less than 5 min

Deep reinforcement learning (DRL) has emerged as a potent tool for complex decision-
making challenges, with its application broadening significantly in recent years [28]. The
method distinguishes itself through formidable learning and sequential decision-making
capabilities, facilitating swift, dynamic scheduling decisions in diverse real-world scenarios.
In the realm of manufacturing, Christian D. et al. employed DRL in the scheduling of
chemical production, adeptly managing uncertainties and facilitating on-the-fly processing
decisions, thereby surpassing the performance of MILP models [29]. Yong et al. pioneered
a DRL-based methodology for dynamic flexible job-shop scheduling (DFJSP), focused on
curtailing average delays through policy network training via the DDPG algorithm, thereby
eclipsing rule-based and DQN techniques [30]. Che et al. aimed to curtail total operational
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expenditures to minimize energy usage and reduce the frequency of operational mode
transitions, enhancing stability. For this, they utilized the PPO algorithm to train decision
networks, yielding quantifiable improvements in cost-efficiency and mode-switching [31].
Lee et al. harnessed DRL to orchestrate semiconductor production line scheduling to
align with production agendas, selecting DQN as the algorithm of choice and establishing
strategies apt for dynamic manufacturing environments [32]. In the transportation field,
Yan et al. addressed the intricacies of single-track railway scheduling, which encompasses
train timetabling and station track allocation, via a sophisticated deep learning framework,
securing superior results in large-scale scenarios in comparison with the commercial solver
IBM CPLEX [33]. Furthermore, Pan et al. implemented hierarchical reinforcement pric-
ing predicated on DDPG to solve the intricate distribution puzzles presented by shared
bicycle resources, consequently achieving enhancements in service quality and bicycle
distribution [34].

The extant research reveals that prevailing reinforcement learning methodologies face
constraints in their deployment for large-scale industrial applications. These constraints
arise from the considerable scale and intricacy of the scenarios, which give rise to extensive
state–action spaces, thus hindering the efficiency of learning processes [14,35,36]. Within
the domain of refinery crude oil scheduling, analogous challenges are encountered. To
mitigate these challenges, the present study proposes the VSCS framework, which trans-
poses the original, high-dimensional state space into a more compact, lower-dimensional
feature space, thereby improving the learning process for the complexities of crude oil
scheduling tasks.

3. Problem Formulation

3.1. Description of the Refinery Scheduling Problem

The refinery scheduling problem presented in this paper can be depicted as an opera-
tional process, as illustrated in Figure 1. It encompasses the arrival of crude oil tanker Va
at the port for unloading into designated port storage tanks. These tanks include owned
storage vessels Vd and commercial storage vessels Vb. Following the desalting and settling
operations of crude oil, the port storage tanks can transfer the oil to the in-plant tanks Vf
as required via the long-distance pipeline Vp. Terrestrial crude oil Vl enters the in-plant
storage tanks through the pipeline. The in-plant tank area is tasked with blending different
types m ∈ M of crude oil according to the processing schemes of the processing units Vu
and transporting them to the processing units for refining.

commercial tank
Onshore crude oil A

cdu1
long-distance 

pipeline
port B

port C

Onshore crude oil B

cdu2

crude oil tank

port A

owned crude oil tank

Figure 1. Schematic diagram of refinery crude oil scheduling scenario.

The initial conditions for the scheduling decision process include the anticipated
arrival time of oil tankers and the storage tanks projected for unloading, the type of crude
oil and the liquid level heights (Lm,t0

vi ) stored in each tank at the outset, the upper and lower
limits of tank liquid levels (CUb, CLb), the upper limit of the long-distance pipeline Cp,
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and the topology of the scheduling network. The operational constraints considered are
as follows:

• Within a single cycle, each tank must contain only one type of oil product.
• Communal storage tanks and dock tanks can only commence oil transfer operations

after completing static desalting.
• The liquid levels in all storage tanks must be maintained within the specified upper

and lower capacity limits.
• The transfer rates must remain within the safe transfer speed range.
• Crude oil transported via overland pipelines enters the factory tanks at a predeter-

mined rate.
• The processing units must operate continuously in accordance with the specified

processing schemes and plans.

3.2. Markov Modeling

The scheduling objective of this study is to devise a decision-making scheme that
minimizes scheduling costs within a short cycle of seven days (with each time step being
four hours) while considering the operational constraints of refinery scheduling and the
continuity of processing units. The decision scheme includes the oil transfer rates and
target tanks for each storage unit. The refinery crude oil scheduling issue can be viewed as
a sequential decision-making problem, where the operational process can be described by
the fact that the state of each node in the refinery’s crude oil storage and transportation
operation in the next period is based on the decisions made in the current period, hence the
scheduling issue can be modeled as a Markov decision process.

In the refinery scheduling Markov decision process, the type and level of materials
in each storage tank are closely related to the scheduling objectives following operational
execution. Moreover, the refinery’s processing units require continuous feeding according
to the processing plan; thus, the remaining processing volumes of various materials in the
units must also be considered. Based on these considerations, the state is defined as follows,
as illustrated in Equation (1).

S =
{

St
va, St

vb, St
vd, St

vp, St
v f , St

vu

}
(1)

where St
va includes Lm,t

va , which is the remaining unloading time of the tanker and other
attribute information (such as node name). St

vb, St
vd, St

v f , respectively, represent the corre-

sponding tank-level information Lm,t
vb , Lm,t

vd , Lm,t
v f , other attribute information (such as node

name), etc. St
vp represents the oil head information connecting the terminal pipe area and

the commercial storage pipe area, pipeline transportation volume Lt
p, etc.; St

vu includes the
processing plan and the remaining processing volume of the device.

For the refinery’s crude oil storage and transportation scheduling problem, the decision-
making network is required to determine the appropriate scheduling actions in response
to the varying states at each time period t. The action space is defined by the operational
requirements of each node, with the specific action definitions provided in Equation (2).

A =
{

At
Va

, At
Vb

, At
Vd

, At
Vp

, At
Vu

}
(2)

where At
Va

represents the joint decision-making action of the Va node, including the oil
unloading speed. At

Vb
, At

Vd
are the joint decision-making actions of Vb and Vd, respectively,

including the oil payment speed of commercial storage tanks and terminal tank node and
the oil payment target node. At

Vp
is the pipeline transportation speed, and At

Vu
includes

processing speed.
In the proposed refinery crude oil scheduling model, each action executed during a

scheduling step is assessed by the system through corresponding rewards, which serve to
evaluate the efficacy of the action strategy. The objective of this model is to concurrently
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minimize operational events and maximize adherence to production constraints, according
to the stipulated full-cycle processing plan. To facilitate the agent’s strategy enhancement
in alignment with this objective during training, the reward function is crafted to precisely
guide action decisions. This function is expressed through Equations (3)–(6). Given that the
algorithm aims to optimize the long-term average reward, the reward function is structured
with negative values that are proportional to associated costs.

R = −ω0R0 −ω1R1 −ω2R2 (3)

R0 = ∑
t∈T

∑
i∈{b,d, f }

(
Od ×

((
CUbvi

− Lm,t
vi

)
+

(
Lm,t

vi − CLbVi

)))
+ ∑

t∈T
Od ×

(
Lt

p − Cp

)
+ ∑

t>Ta

Oa × Lm,t
va (4)

R1 = Op ×
(

NPa + NPb + NPd + NPf

)
+ Ob ×

(
Nbd + Nbf + ∑

i∈Vu

Nbi

)
(5)

R2 = ∑
t∈T

OcLm,t
vi (6)

As shown in the above equation, R consists of three parts, where ω is the weight factor
of each part; R0 is the reward and punishment for exceeding the operation constraint, which
is composed of each storage tank and the pipeline exceeding the operation constraint and
the oil tanker overdue constraint; and R1 is the speed fluctuation reward and punishment,
that is, operation switching. The rewards and punishments are, respectively, composed of
the oil tanker speed unloading switching, the oil payment switching of each storage tank,
the processing device processing speed switching, and the reward and punishment for the
oil type switching. R2 is the reward and punishment for the inventory cost.

In our model, Oa denotes the cost coefficient associated with the delay in oil tanker
unloading, with Ta representing the corresponding delay time. Op is defined as the cost
coefficient for speed fluctuations, while NPv indicates the number of such fluctuations
at each node. The term Ob refers to the cost incurred due to switching between different
types of oil, with Nbv quantifying the frequency of these oil species switches at each
node. Lastly, Od represents the cost coefficient for instances when the liquid level exceeds
predetermined upper and lower limits, and Oc signifies the cost coefficient related to
inventory management.

4. The Proposed VSCS Algorithm

4.1. The Framework of VSCS

The VSCS framework introduced in this study comprises two primary modules: the
low-dimensional feature generation module and the policy learning module. The former
autonomously extracts a condensed, low-dimensional feature representation, while the latter
module leverages these features to facilitate efficient policy learning. Figure 2 delineates the
structural organization and operational sequence of the VSCS framework within the context
of refinery crude oil resource scheduling.

As depicted in Figure 2, the policy learning module, rooted in deep reinforcement
learning, principally employs the Soft Actor–Critic (SAC) framework. This framework
encompasses a policy network, a state value network, and an action value network. The ob-
jective is to deduce the appropriate reward feedback following state transitions within the
refinery’s crude oil storage and transportation scheduling environment. This is achieved
by reconstructing the state into a lower-dimensional representation for efficient network
training and subsequent action strategy formulation. The state low-dimensional feature
generation module functions as a pretraining mechanism, utilizing an encoder network
trained via the VAE architecture to transform the state space into a reduced feature space.
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This transformation is instrumental in facilitating the strategic training of the main frame-
work. Each module is expounded upon in the subsequent sections.

police network 

action-value network

D

the action vector feeds 
back into the 
environment

the reconstructed 
state vector network update

Z
X entropyLow dimensional feature

 generation module

action-value network 

target network 

target network 

Figure 2. Framework diagram of the proposed VSCS algorithm.

4.2. Low-Dimensional Feature Generation Module

The objective of the low-dimensional feature generation module is to transmute the
original, high-dimensional state space into a more tractable, low-dimensional state space
while preserving the integrity of the state information to the greatest extent possible. This
study employs a VAE to produce low-dimensional state features through unsupervised
learning [37]. The VAE operates as a probabilistic model grounded in variational inference,
comprising two primary components. The first is the encoder, which is tasked with
condensing the high-dimensional state X into a compact, low-dimensional representation
Z, which obeys Gaussian distribution and is composed of μ and σ generated by the encoder.
The complementary component of the VAE is the decoder, which functions to regenerate
the original features by reconstructing the latent variable Z back into the state transition
vector X′, as illustrated in Figure 3. More computation details are shown in Algorithm 1.

police network

experience 
buffer

state vector

policy network update training

…

state samples

LOSS

Encoder network Decoder network

Z

X X

Low dimensional state feature pre-training network 

the action vector 
feeds back into 
the environment

Figure 3. Framework diagram of the low-dimensional feature generation module.

In accordance with Bayesian principles, the joint probability distribution of the
observed state vector X and the latent variable Z can be represented as depicted in
Equation (7).

p(Z | X) = p(X | Z)p(Z)/p(X) (7)
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However, due to the intractability of p(X), this study introduces an alternative distri-
bution to approximate p(Z | X). This approximative distribution, denoted as qβ(Z | X),
serves as an estimation of the posterior model (encoder), whereby Z is derived from X. The
distribution denoted as pη(X | Z)pη(Z) corresponds to the generative model (decoder).
The encoder and decoder training process involves the concurrent learning of parameters β
and η.

A central aspect of this work is the simultaneous training of the approximate posterior
model and the generative model by maximizing the variational lower bound, which is
articulated in Equation (8).

ζ = −DKL
(
qβ(Z | X)‖pβ(Z)

)
+ Eqβ(Z|X(i))

[
log pη

(
X(i) | Z

)]
(8)

The framework presumes that pη(Z) adheres to a Gaussian distribution, delineated in
Equation (9), with Z derived through Gaussian sampling as per Equation (10). Herein, μ
represents the mean, σ denotes the variance, and i is the index of the sample.

pη(Z) ∼ N(0, 1) (9)

qβ

(
Z | X(i)

)
∼ N

(
μ(i), σ2(i)

)
(10)

The loss function of this model comprises two components: the Kullback–Leibler
(KL) divergence and the reconstruction loss, with the inferable outcomes delineated in
Equation (11). Here, xi signifies the encoder network’s input, and x′i denotes the output of
the decoder network.

ζ =
1

2n

n

∑
j=1

{
n

∑
j=1

μ2
j + σ2

j − 1− log σ2
j

}
+

1
2n

n

∑
i=1

∥∥Xi − X′i
∥∥2 (11)

From the foregoing equation, the term DKL
(
qβ(Z | X)‖pη(Z)

)
represents the approxi-

mation capability of the approximate posterior model, while Eqβ(Z|X(i))

[
log pη

(
X(i) | Z

)]
signifies the reconstructive ability of the generative model to regenerate X′ from Z. Con-
sequently, this methodology can be employed to derive low-dimensional features from
the initial state of crude oil storage and transportation dispatch, thereby attaining a recon-
structed state that mirrors the description of the original state information to the greatest
extent feasible.

Algorithm 1 Steps of computation in low-dimensional feature generation module

1: Initialize: D, qβ(Z | X), pη(X | Z), β, η
2: while (β, η) not convergence do
3: M∼ D
4: Z ← Random sample from Gaussian distributionN (μ, σ2)
5: Compute ζ and its gradients
6: Update (β, η)
7: end while
8: return β, η

4.3. Policy Learning Module

Leveraging the low-dimensional feature generation module, it is possible to produce a
low-dimensional feature vector of the environment’s original state, which facilitates the
ensuing policy learning process. To guarantee the efficiency of policy training, the policy
generation module in this study adopts the SAC framework as the principal structure for
policy learning. This framework, predicated on the theory of entropy maximization, ensures
that network updates equilibrate the maximization of expected returns with entropy,
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thereby enhancing the network’s exploration capabilities and expediting the learning
process. The objective function is articulated in Equation (12).

π∗ = arg max
π

Est ,at∼π

[
∞

∑
t=0

γtr(st, at) + αH(π(· | st))

]
(12)

H(π(· | st)) = E[− log π(· | st)] (13)

In Equation (12), r denotes the reward function, and γ is the discount factor, while α
signifies the entropy regularization coefficient, employed to modulate the significance of
entropy in the learning process. In Equation (13), H represents the entropy value. A greater
entropy value corresponds to a heightened level of exploration by the agent, promoting a
more thorough investigation of the action space.

The training network within this framework comprises a policy network πφ, an action
value network Qθ1,θ2(at, st), and a target network, which are parameterized by Φ, θ1, and
θ2, respectively. The action value network Qθ1,θ2(at, st) incorporates a dual Q-network
structure. The soft Q-value is determined by taking the minimum value from two Q-
value functions parameterized by θ1 and θ2. This approach is designed to mitigate the
overestimation of inappropriate Q-values and to enhance the speed of training. The soft
Q-value function is refined by minimizing the Bellman error, as detailed in Equation (15).

JQ(θ) = E(st ,at)∼D

[
1
2

(
Qθi=1,2(st, at)−

(
r(st, at) + γVϕ̄(st+1)

))2
]

(14)

Vϕ̄(st+1) = Qθ̄(st+1, at+1)− α log
(
πφ(at+1 | st+1)

)
(15)

where Vϕ̄(st+1) represents the state value of the agent at time t + 1, and Qθ̄(st+1, at+1) can
be estimated using the target network.

Policy network πφ is updated by minimizing the KL divergence, as shown in Equation (16).

Jπ(φ) = Eat∼π,st∼D

[
log πφ(st, at)−min

i=1,2
Qθi (st, at)

]
(16)

The proposed VSCS method is outlined in Algorithm 2.

Algorithm 2 The proposed VSCS Algorithm

1: Initialize: Nencoder in VAE, θ1, θ2, φ in Q network and policy network .
2: θ1 = θ1, θ2 = θ2. Initialize experience buffer D
3: for each iteration do
4: for each environment step do
5: at = πφ(at|st)
6: st+1 = p(st+1|st, at)
7: s′t = Nenc(st)
8: s′t+1 = Nenc(st+1)
9: D = D ∪ {s′t, at, rt, s′t+1}

10: end for
11: for each gradient step do
12: Sample from D;
13: Calculate the loss and update the action value network according to

Equations (14) and (15)
14: Calculate the loss and update the policy network according to Equation (16)
15: Update the entropy regularization coefficient α
16: Update the parameters of the target Q-network
17: end for
18: end for
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5. Experiment

To validate the efficacy of the proposed approach, this study conducts comprehensive
experiments on the crude oil scheduling problem. The experiments include the following:

• Comparing the VSCS method introduced in this study with baseline algorithms
using a dataset of refinery crude oil storage and transportation scheduling from an
actual scenario.

• Analyzing the performance of the algorithm at various compression scales to deter-
mine the optimal low-dimensional feature dimensionality.

• Conducting a similarity analysis between low-dimensional reconstructed state features
and original state samples and proposing a state reconstruction threshold for refinery
crude oil scheduling problems based on reconstruction similarity.

• Evaluating the performance of the proposed algorithm by visualizing the
low-dimensional features.

The goal of these experiments is to thoroughly assess the advantages and practical
applicability of the proposed VSCS method in real-world crude oil scheduling tasks.

5.1. Data for Simulator

This investigation employs a dataset from a bona fide operational context within an
oil company, encompassing various node types and their attributes, such as oil tankers,
terminal tanks, commercial storage tanks, in-plant tanks, and processing devices, as de-
lineated in Section 3. The dataset details encompass tanker oil load by type and volume,
the initial liquid levels in storage tanks, the types of oil they house, storage capacities,
transfer capabilities, and their processing apparatus’ schemes and capacities. Integral to
this study’s reinforcement learning framework, the simulator accurately emulates the intri-
cate and dynamic processes of crude oil storage and transportation within a refinery. The
experimental setup utilizes a single oil tanker, 14 terminal storage tanks, 9 in-plant storage
tanks, and 2 processing devices. This simulator facilitates an interactive learning milieu for
the proposed algorithm, enabling adaptive training against the evolving dynamics of the
refinery environment, providing continual feedback throughout the training phase, and
assessing the algorithm’s efficacy. The data input for the low-dimensional feature gener-
ation module is derived from sampling the experience pool within the aforementioned
simulation environment, with a sampling scale consisting of 2048 random state samples,
each with 61 dimensions.

In this study, the benchmark comparison is conducted against the SAC algorithm, a
model premised on entropy maximization theory [38,39]. This approach ensures that updates
to the training network balance the maximization of expected returns with entropy, thereby
enhancing the algorithm’s capacity for exploration and expediting the learning process.

5.2. Comparison with Baseline Algorithm

This section evaluates the enhanced performance of the proposed VSCS algorithm
with respect to training convergence speed and the value of the final reward obtained post
learning. To assess the stability of the algorithm following state reconstruction via VAE, the
SAC algorithm is employed for baseline comparison. The experimental procedure involved
multiple tests using diverse random seeds to determine the average learning efficacy of
both the proposed algorithm and the baseline algorithm across ten different sets of random
seeds. The learning performance is depicted through an average learning curve for clarity.
Furthermore, in the experimental results, the rewards are logarithmically transformed for
more coherent representation, as depicted in Figure 4. The principal parameters for the
proposed VSCS algorithm is summarized in Table 2.

298



Mathematics 2024, 12, 393

Figure 4. Learning curves of comparison methods. The solid lines show the means of 10 trials, and
lighter shading shows standard errors.

Table 2. Main experimental parameters.

Model
Number of
Neurons

Number of
Hidden Layers

Optimizer
Discount
Factor

Learning
Rate

Soft Update
Coefficient

Batch
Size

Entropy
Threshold

Experience
Buffer Size

Policy learning module 512 5 Adam [40] 0.99 0.03 0.005 128 0.9 100,000
Low−dimensional feature
generation module 40 1 Adam [40]

Table 2 demonstrates that the VSCS algorithm proposed in this study markedly out-
performs the baseline algorithm regarding the final reward value attained, showcasing
an 89.3% enhancement in the final average reward value. In terms of training efficiency,
the VSCS algorithm achieves the maximum reward in just 47 iterations. This represents a
77.5% increase in the rate at which training attains a stable state compared with the baseline
algorithm. Additionally, the VSCS algorithm exhibits superior training stability relative to
the baseline.

The reconstruction and compression of the state dimension prior to training the SAC
network results in a significant reduction in the required sample size during the training
process. This efficiency gain in sample size directly translates to enhanced network training
efficiency, as the model can achieve comparable or superior learning outcomes with fewer
data points.

5.3. Impact of Reconstruction with Different Compression Sizes

To assess the impact of the proposed VSCS algorithm on convergence speed and sta-
bility across varying compression scales, we conducted tests with dimensionalities set at 10,
15, 20, 25, 30, 35, 40, 45, 50, and 55. For each dimensionality, three sets of randomized trials
were performed, with the average learning curves serving as the evaluative metric. The
results of the learning curves are presented in Figure 5, and the algorithmic improvement
rates are detailed in Table 3.

Figure 5. Comparison of low-dimensional feature reconstruction performance in different dimensions.
The solid lines show the means of 3 trials, and lighter shading shows standard errors.
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Table 3. Results of Comparison Methods.

Iterations for Maximum Reward Final Reward Training Time to Steady State

SAC 209 −27,540,217 305
VSCS 47 −2,942,594 78
Improvement Rate (%) 77.5 89.3 74.4

Figure 5 reveals that the training process experiences increased instability when the al-
gorithm is compressed to scales of 10 and 20, which is attributable to excessive compression
that results in the loss of substantial state information. Conversely, compression scales of
30, 40, and 50 demonstrate relative stability, with the scale of 30 yielding the most effective
learning strategy.

Table 4 illustrates improvements in algorithm training efficiency for the VSCS al-
gorithm at various compression scales, with the exception of scale 15, over the baseline
algorithm. Notably, at scale 40, the VSCS algorithm required only 47 rounds to achieve the
cumulative maximum reward for the first time—a 77.51% increase in the rate of reaching a
steady training state compared with the baseline. Furthermore, the learning performance
of the VSCS algorithm was enhanced across all scales, showing an improvement rate ex-
ceeding 82%. The scales of 30 and 45 demonstrated the most significant enhancements,
with an improvement rate of 92.95% in leaning performance compared with the baseline.

Table 4. The VSCS algorithm improvement rate analysis.

Feature Dimension
Iterations for Steady
State

Convergence Speed
Improvement Rate

Final Reward
Reward Improvement
Rate

VSCS (10) 148 29.19% −4,040,694 85.33%
VSCS (15) 215 −2.87% −1,980,772 92.81%
VSCS (20) 158 24.40% −2,143,448 92.22%
VSCS (25) 134 35.89% −3,493,724 87.31%
VSCS (30) 147 29.67% −1,940,762 92.95%
VSCS (35) 170 18.66% −2,942,594 89.32%
VSCS (40) 47 77.51% −2,991,348 89.14%
VSCS (45) 87 58.37% −1,941,364 92.95%
VSCS (50) 105 49.76% −4,876,383 82.29%

5.4. Reconstructed State Vector Similarity Analysis

In this analysis, we investigate the fidelity of state reconstruction by examining the
similarity between the compressed and original states. We use the reconstruction distance
to elucidate the reasons behind the enhanced training performance observed with recon-
structed state vectors and introduce a threshold for reconstruction error tailored to the
challenges of refinery crude oil storage and transportation scheduling. The experiment
evaluates the encoder network of the VAE at compression scales of 10, 15, 20, 25, 30, 35,
40, 45, 50, and 55. We assess the congruence between 2048 original state samples and their
reconstructed counterparts, which are produced by the decoder network, using Euclidean
distance. The results, reflecting the similarity of output samples, are detailed in Table 5.

Table 5. Reconstruction distance analysis.

Dimensionality 55 50 45 40 35 30 25 20 15 10

Arithmetic Mean 12.66 12.72 12.66 12.61 12.67 12.47 12.52 12.55 12.53 12.54
Maximum 146.93 149.13 141.87 145.71 149.14 146.29 141.77 136.13 134.52 139.56
Minimum 0.23 0.27 0.33 0.44 0.38 0.56 0.61 1.17 1.36 0.59
Variance 608.91 620.99 617.28 608.06 619.23 606.81 611.70 614.83 614.93 611.88

Standard Deviation 24.67 24.92 24.85 24.66 24.88 24.63 24.73 24.80 24.80 24.74
Median 4.19 4.17 4.04 4.06 3.99 3.88 3.90 3.79 3.73 3.86
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The encoder network with a compression scale of 30 demonstrates notable perfor-
mance, yielding the highest mean similarity for reconstructed states. As detailed in Table 5,
the arithmetic mean of similarity scores stands at 12.47, with a variance of 606.8.

After rigorous experimental analysis, it was determined that the reconstruction error
threshold for refinery crude oil storage and transportation scheduling problems should be
set at 12.47. This threshold implies that when the similarity distance falls below 12.47, the
network is deemed to have achieved the standard of reconstruction.

5.5. Visual Analysis of Low-Dimensional Features

In this section, we delve into the characteristics of reconstructed states via low-
dimensional visualization to elucidate the optimal effect achieved by compressing to
30 dimensions. The experiment involved reducing the dimensionality of 500 reconstructed
state samples, across 10, 20, 30, 40, and 50 dimensions, down to a 2-dimensional plane using
the UMAP technique [41]. We then observed the distribution of samples within this plane,
employing cumulative average intracluster distance and intracluster density as metrics for
quantitative analysis of the low-dimensional spatial formation. For the UMAP method,
the approximate nearest-neighbor number parameter was set to 5, with the minimum
interpoint distance parameter fixed at 0.3. The outcomes, displayed in Figure 6, reveal
that in the two-dimensional space, the reconstructed states form clusters. Notably, the
clusters at 30, 40, and 50 dimensions are more densely packed, whereas those at 10 and
20 dimensions exhibit greater dispersion.

(a) (b) (c)

(d) (e)

Figure 6. Results of sample dimensionality reduction visualization: (a) 10-dimensional sample dimen-
sionality reduction visualization, (b) 20-dimensional sample dimensionality reduction visualization,
(c) 30-dimensional sample dimensionality reduction visualization, (d) 40-dimensional sample dimen-
sionality reduction visualization, (e) 50-dimensional sample dimensionality reduction visualization.

The quantitative analysis, utilizing the cumulative average intracluster distance (out-
lined in Equation (17)) and the intracluster density (specified in Equation (18)), is detailed
in Table 6. Throughout the analysis, five distinct parameter configurations were employed
for the assessment of means. As evidenced by Table 6, within the 30-dimensional re-
construction, the cumulative average intracluster distance is recorded at 64.10, with an
average intracluster density of 0.0968—both metrics represent the most favorable values
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among the five parameter sets examined. These findings indicate that the 30-dimensional
reconstruction yields the most cohesive cluster structure within the sample distribution.

davgdist = ∑
i∈D

∑
j∈D

dist
(
xi, xj

)
/nD (17)

davgcent = ∑
i∈D

dist(xi, xcenter )/nD (18)

Table 6. Quantitative analysis of visualization.

50 40 30 20 10

Intracluster Cumulative Distance (5, 0.3) 75.07 73.04 71.88 79.53 90.4
Intracluster Cumulative Distance (5, 0.15) 66.32 69.14 65.7 72.67 83.5
Intracluster Cumulative Distance (10, 0.15) 57.81 57.77 57.55 61.17 70.1
Intracluster Cumulative Distance (10, 0.10) 56.38 55.4 55.14 59.02 67.3
Intracluster Cumulative Distance (10, 0.50) 71.25 71.13 70.22 75.74 86.35
Average Intracluster Cumulative Distance 65.37 65.30 64.10 69.63 79.53
Intracluster Density (10, 0.50) 0.104 0.104 0.102 0.109 0.124
Intracluster Density (10, 0.15) 0.083 0.082 0.082 0.086 0.101
Intracluster Density (5, 0.3) 0.108 0.104 0.104 0.113 0.131
Intracluster Density (5, 0.15) 0.094 0.099 0.093 0.105 0.124
Average Intracluster Density 0.0984 0.0984 0.0968 0.1042 0.1208

6. Conclusions

This study introduces the VSCS algorithm to expedite the training process of deep
reinforcement learning models. The VSCS framework incorporates two key components:
a low-dimensional feature generation module and a policy learning module. The former
serves as a pretraining phase, leveraging a VAE to faithfully encapsulate the original state
information within a reduced feature space. Upon completion of the training, the low-
dimensional feature generation module integrates into the primary framework, furnishing
the policy learning module with compact feature representations for policy network train-
ing. This synergistic approach facilitates end-to-end learning across both modules. A novel
methodology was also developed to ascertain the optimal dimensionality for these low-
dimensional features, accounting for reconstruction fidelity and visual analysis outcomes.
A comprehensive experiment with the proposed method on the crude oil scheduling prob-
lem not only confirmed the efficacy of the framework but also empirically validated the
optimal selection of low-dimensional feature dimensions.

The methodology presented herein primarily addresses the enhancement of performance
in deep reinforcement learning when confronted with large-scale state representations. While
it has yielded promising results, the prospect of its application within the industrial sector
necessitates additional thorough investigation. Future research directives could include
conducting generalizability studies on scheduling decisions across various refineries to solidify
the method’s applicability and robustness in diverse industrial contexts.
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Abstract: Fine-tuning a pre-trained sequence-to-sequence-based language model has significantly
advanced the field of abstractive summarization. However, the early models of abstractive sum-
marization were limited by the gap between training and inference, and they did not fully utilize
the potential of the language model. Recent studies have introduced a two-stage framework that
allows the second-stage model to re-rank the candidate summary generated by the first-stage model,
to resolve these limitations. In this study, we point out that the supervision method performed in
the existing re-ranking model of the two-stage abstractive summarization framework cannot learn
detailed and complex information of the data. In addition, we present the problem of positional
bias in the existing encoder–decoder-based re-ranking model. To address these two limitations, this
study proposes a hierarchical supervision method that jointly performs summary and sentence-level
supervision. For sentence-level supervision, we designed two sentence-level loss functions: intra- and
inter-intra-sentence ranking losses. Compared to the existing abstractive summarization model, the
proposed method exhibited a performance improvement for both the CNN/DM and XSum datasets.
The proposed model outperformed the baseline model under a few-shot setting.

Keywords: abstractive summarization; text summarization; natural language processing; deep learning

MSC: 68T50

1. Introduction

Text summarization aims to create a concise summary containing the key information
of a given document. Text summarization is divided into extractive and abstractive summa-
rization, when generating a summary. In extractive summarization, the model extracts part
of the document and then concatenates it to create a summary. An abstractive summariza-
tion model generates a summary using a combination of new words. This study focuses on
abstractive summarization. Abstractive summarization has rapidly progressed through the
introduction of sequence-to-sequence [1] models. A sequence-to-sequence model receives a
token-level sequence as the input to an encoder and generates a token-level sequence as the
output of the decoder. In the training phase, the teacher-forcing method is used to input the
correct answer token into the decoder, rather than the token generated by the model, for
efficient training. By contrast, in the inference phase, the tokens generated by the model are
input into the decoder. Transfer learning [2], involving pre-training a language model and
then fine-tuning it, is a widely used training method for abstractive summarization models.
In the pre-training step, the language model learns general text generation through conduct-
ing self-supervised learning with a large unlabeled corpus. Subsequently, the pre-trained
language model is fine-tuned using a human-written downstream summarization dataset.

However, the early single-stage abstractive summarization model based on a language
model with a encoder–decoder structure has several limitations. The first is the training–
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evaluation gap. The objective function of the generative language model is based on token-
level prediction. However, the evaluation metric judges the overall similarity between the gold
summary and the summary generated by the model. In addition, the sequence-to-sequence
model adopts the teacher-forcing method during training, and auto-regressively generates
sequences in the inference phase. Therefore, a discrepancy occurs between the training and
inference phases, which is known as the exposure bias [3] problem. Second, the single-stage
abstractive summarization model has an insufficient ability for selecting the optimal output
summary from among candidate summaries. SimCLS [4] pointed out that current studies
on abstractive summarization do not fully utilize the potential of language models. SimCLS
demonstrated a significant difference in evaluation scores between the summary chosen by
the model as the final output and the summary most similar to the gold summary among the
candidate summaries. SimCLS revealed a difference of over 10 points in ROUGE-1 [5] score
based on fine-tuned BART [6] with a CNN/DM [7] dataset.

To overcome these limitations, research on a two-stage framework for abstractive
summarization is being conducted. A recent two-stage framework generated candidate
summaries in the first-stage model. The second-stage model then re-ranks the candidate
summaries to determine the final output summary. The two-stage framework uses the
sequence-level loss to train the second-stage model. Therefore, the training–inference gap of
the existing single-stage models can be resolved. This also allows the model to learn optimal
summary selection from a range of candidates. In a second-stage model, either a differently
structured model is introduced, or the first-stage model is reused. SimCLS and others used
an encoder-only model as the second-stage model, whereas BRIO [8] and others reused the
first-stage model, which is the encoder–decoder model, as the second-stage model.

In this study, we highlight two limitations of the existing second-stage re-rank model
of a two-stage abstractive summarization framework and propose a novel training method
to resolve them. First, the existing studies did not consider complex information in the
candidate summary. The candidate summary is the result generated by the deep learning
model. Therefore, as shown in Figure 1, well-generated and poorly generated sentences
coexist in the candidate summary. However, the existing re-ranking models generally
perform summary-level supervision, in which the loss is calculated using only one value
for a single-candidate summary. If only summary-level supervision is performed during
model training, it becomes difficult for the model to learn complex information from the
candidate summary. In this study, we argue that using only summary-level supervision for
training the re-ranking model is not an appropriate method.

The second limitation is the bias in the position of the sentence in the existing encoder–
decoder-based re-ranking models. The training and inference of the encoder–decoder-based
re-ranking models are executed based on a generation probability value for each token
in the candidate summary. The average of the generation probability values for all the
tokens constituting a single candidate summary is used as the predicted score for the
corresponding candidate summary. In this study, we confirmed that the existing encoder–
decoder-based re-ranking model tends to allocate lower prediction scores to sentences
located toward the end of the candidate summary.

In this study, we propose a re-ranking model that uses hierarchical supervision during
training to address these two limitations of the existing re-ranking model of the two-stage
abstract summary framework. The proposed model jointly uses sentence and summary-
level supervision during training. We designed two types of alternative sentence-level loss
for sentence-level supervision. Through the joint objective function, the model learns not
only the rank between the candidate summaries, but also the rank between the sentences
constituting the candidate summary. Our proposed method can resolve the limitation of
the existing re-ranking model, which overlooks the complex information in the candidate
summary. In addition, we can alleviate the positional bias problem of the existing encoder–
decoder-based re-ranking models. In experiments using two datasets, CNN/DM and
XSum [9], the proposed model showed a performance improvement over the existing
models in both fully supervised and few-shot settings. Through an additional analysis,
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we confirmed that the proposed method enables effective learning of the rank between
sentences and alleviates positional bias.

Figure 1. Example of similarity between the gold summary and each sentence in the candidate
summary. The higher the ROUGE-1 recall score of the gold summary and the sentence, the darker the
sentence is highlighted.

2. Related Work

2.1. Re-Ranking Model for Abstractive Summarization.

The two-stage framework for abstractive summarization has made significant progress
in abstractive summarization by alleviating the train–inference gap and enhancing the
potential of language models through a re-ranking model. SimCLS [4] proposes a model
for re-ranking candidate summaries using RoBERTa [10], an encoder-only pre-training
language model. SimCLS independently derives the representation of the source document,
gold summary, and each candidate summary. The model learns that the more similar
the candidate summary is to the gold summary, the closer it is to the corresponding
source document.Margin ranking loss is used as the loss function. SummaReranker [11]
proposed a multi-task learning model based on an encoder-only RoBERTa model, SimCLS.
SummaReranker used a multi-gate mixture-of-experts [12] to jointly learn the rank of the
candidate summary base on the ROUGE score [5], BART score [13], and BERT score [14].
Multi-label binary cross-entropy was used as the loss function for model training. BRIO [8]
reused the first-stage model as a second-stage re-ranking model. BRIO used the encoder–
decoder models BART [6] and PEGASUS [15] as re-ranking models. The model was trained
to assign a higher generation probability, because the candidate summary was similar to
the gold summary. A loss function based on the margin ranking loss was used for training.

2.2. Sentence-Level Supervision.

For several NLP tasks that primarily use document or passage-level supervision,
studies have been conducted to perform sentence-level supervision and document/passage-
level supervision. Open-domain passage retrieval aims to determine the most appropriate
passage in a passage pool to respond to a given query. Document-level supervision is
commonly used for training open-domain passage retrieval. DCSR [16] pointed out that
using only document-level supervision for training is not the optimal method, because
one passage has multiple sentences containing different information, and they suggested
performing sentence-level supervision. A similar approach was studied using a document-
level relation extraction task, which aimed to determine the relationship between two
entities in a document with multiple sentences. In existing studies, an entire document is
generally represented as a sequence or graph-based model to predict the relationship of
the entity pair. SIEF [17] designed a sentence focusing loss to ensure that the document
from which non-evidence sentences are removed and the original document have the
same output distribution. Through sentence focusing loss, the model learned to focus on
evidence sentences that are directly related to the relational information of the entity pair.
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2.3. Approaches to Reflecting Detailed Information in Text Summarization

In text summarization tasks, various attempts have been made to enable models
to learn detailed information contained in a text. SEASON [18] introduced a salience-
aware cross-attention module to allow the model to better focus on key sentences in the
source document. The model was learned by jointly performing extractive and abstractive
summarization. Some studies have emphasized that the summary should not change
the meaning of the source document. Thus, a model has been proposed that produces a
wide range of summaries, from completely extracted to highly abstractive summaries, by
allowing it control over copying [19]. There was also a study to make a more accurate and
realistic summary of life events by analyzing the role of sentiment in the generated text [20].

3. Methodology

In this study, we propose a hierarchical supervision method that jointly performs
sentence-level supervision and summary-level supervision to train a re-ranking model
for abstractive summarization. In other words, the proposed model in this study aims to
re-rank the candidate summary generated by the first-stage generation model by learning
to assign higher scores to the summary or sentence most similar to the gold summary.
Figure 2 illustrates the overall structure of the proposed model. The encoder takes the
source document as input, and the decoder takes a single candidate summary as input.
Subsequently, the decoder outputs a generation probability value for each token that
constitutes a candidate summary. The average of the generation probability values of
all tokens constituting the candidate summary is considered the predicted score of the
corresponding candidate summary. Similarly, the predicted score of a sentence is the
average of the generation probabilities of the tokens constituting the sentence. During
training, summary-level supervision and sentence-level supervision are performed for the
candidate summary and sentence scores predicted by the model, respectively. The model
learns the ranking of the candidate summaries through summary-level supervision. The
proposed method performs sentence-level supervision using two types of sentence ranking
loss: (1) Intra-sentence ranking loss, which aims to learn the ranking between sentences that
consist of the same candidate summary. (2) Inter-sentence ranking loss allows the model to
learn the ranking between the sentences that constitute the different candidate summaries.

Figure 2. Overall architecture of the proposed model. The proposed model performs sentence and
summary-level supervision simultaneously during training. Superscripts and subscripts associated
with the elements are the source document/candidate summary index and token index, respec-
tively. Generation probability values for tokens constituting the same sentence are expressed in
uniform colors.
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3.1. Problem Statement

In this study, we present two problems with the existing abstractive summarization re-
ranking model. The first problem is that complex information in the candidate summary can
be overlooked if the model is trained using only summary-level supervision. The existing
re-ranking models are typically trained using summary-level supervision. Re-ranking
models with encoder-only structures such as SimCLS [4], independently encode documents
and summaries to represent an entire single document or summary as a single vector
representation. In encoder–decoder re-ranking models, such as BRIO [8], the average of the
generated probability values of the tokens constituting the candidate summary is used as
the predicted score for the corresponding candidate summary. Therefore, model supervision
is performed using only one value for a candidate summary in existing studies. However,
as shown in Figure 1, well and poorly generated sentences coexist in the model-generated
candidate summary. Figure 3 shows a distribution plot of the score difference between the
sentence with the highest ROUGE-1 recall score and the sentence with the lowest ROUGE-1
recall score for the gold summary among all sentences constituting a single candidate
summary. Candidate summaries generated for the CNN/DM [7] test dataset through fine-
tuned BART [6] were used for statistical analysis. According to this distribution plot, we can
confirm that the quality of sentences generated by the model was diverse, even for a single
candidate summary. If the model is supervised using only summary-level supervision,
it becomes difficult to learn qualitative differences between sentences. In other words,
it becomes difficult to determine whether summary-level supervision is suitable for the
characteristics of candidate summaries with a combination of positive (well-summarized)
and negative (poorly summarized) elements.

Figure 3. Distribution plot of the maximum evaluation score gap of a sentence pair in a single
candidate summary. The plot shows the diversity of the quality of sentences in the single candidate
summary that the model generated. For the evaluation score of each sentence, the ROUGE-1 recall
score between the sentence and the gold summary was used. Candidate summaries generated for the
test dataset of CNN/DM through fine-tuned BART were used.

The second limitation is the bias according to sentence position in the encoder–decoder-
based abstractive summarization re-ranking model. Existing encoder–decoder re-ranking
models tend to allocate a lower predicted score when the sentence is located behind the
candidate summary. Figure 4 confirms the positional bias of the existing encoder–decoder
re-ranking model using the CNN/DM test set. Figure 4 is a bar chart comparing the position
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of the sentence to which the existing model (expressed as “Baseline”) assigned the lowest
prediction score in one candidate summary and the position of the sentence that least
resembled the gold summary (expressed as “Oracle”). “First” means the first sentence of
the summary, “Last” means the last sentence, and “Intermediate” means all the sentences
located between the first and last sentences. To confirm this bias, we stored the ROUGE
score with a gold summary for all the sentences constituting each candidate summary. We
then compared the ground-truth score of the sentence with the sentence score predicted
by the model (average of the generation probability values of all tokens that made up the
sentence). The analysis indicated that the probability of the last sentence of the candidate
summary having the lowest ground-truth score was approximately 45%. By comparison,
the rate at which the existing model (BRIO) allocated the lowest prediction score to the last
sentence was approximately 76%, which is a considerable difference. The analysis results
confirmed that the existing encoder–decoder re-ranking model has a bias in assigning lower
prediction scores to sentences toward the end of the candidate summary.

Figure 4. Bar chart of the positional bias of the existing encoder–decoder-based re-ranking model.
Oracle: ground-truth, baseline: existing model. First: first sentence of summary, last: last sentence of
summary, intermediate: all sentences located between first sentence and last sentence. Analysis was
conducted with the test dataset from CNN/DM.

This study proposes a hierarchical supervision method that concurrently executes su-
pervision across both narrow and wide ranges. The model learns the complex information
of sentences constituting the candidate summary through sentence-level supervision. Fur-
thermore, by independently supervising the predicted score of each sentence, we attempt
to alleviate the positional bias of existing encoder–decoder-based re-ranking models.

3.2. Problem Formulation

The re-ranking model of the two-stage abstractive summarization framework aims to
select the best summary among candidate summaries. Given a source document D and
m candidate summaries C = {C1, C2, . . . , Cm}, the model is trained to select the candidate
summary that most resembles the gold summary; the proposed model aims to identify the
best candidate summary Cbsum , which has the highest ROUGE score for the gold summary
G, based on the encoder–decoder structure. Therefore, the training objective of the model
is as follows:

bsum = arg max
bsum

R(Cbsum , G) (1)

θ = arg max
θ

log pθ(Cbsum |C, D) (2)
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In Equation (1), R(X, Y) is the ROUGE score of two sequences X, Y. In Equation (2), θ is a
learnable model parameter.

In this study, we propose a training method that uses hierarchical supervision to
simultaneously perform summary and sentence-level supervision. Therefore, a ground-
truth ranking is required between all candidate summaries and between all sentences in
each source document to train the model. Furthermore, we labeled the gold scores of the
candidate summaries and sentences as follows and used the corresponding ground-truth
ranking for training.

Summary gold score: The gold score of the candidate summary used for summary-
level supervision was labeled according to BRIO. Gold scores of the candidate summaries
were labeled using the mean of the ROUGE-1,2,L score or the harmonic mean of the
ROUGE-1,2 score.

Sentence gold score: The ROUGE-1 recall score of the gold summary for each sentence
was labeled as the gold score of the sentences used in sentence-level supervision. If the
summary comprised a single sentence, it was divided into two spans. We treated the first
half of the words as one sentence and the other half as another sentence.

3.3. Summary-Level Supervision

The model learns the ranks of candidate summaries by performing summary-level
supervision, which is a supervisory method, over a relatively wide range. Summary-
level supervision ensures that the summary score predicted by the model is consistent
with the ground-truth rank. The summary score is derived using the encoder–decoder
model. To obtain the summary score of the i-th candidate summary, the encoder takes
the source document D as the input, and the decoder takes the i-th candidate summary
Ci = {ti

1, ti
2, . . . , ti

li} as the input (t is a token, l is the length of the candidate summary).
The summary score of a specific candidate summary is the average of the generation
probability values for all tokens that constitute the corresponding candidate summary.
Thus, the summary score of the i-th candidate summary S(Ci) is

S(Ci) =
1

liα

li

∑
j=1

pθ(ti
j|ti
≤j−1, D) (3)

In Equation (3), li is the length of the i-th candidate summary. α is a hyperparameter that
represents a penalty for the length of the candidate summary.

The summary ranking loss for summary-level supervision is defined based on the
margin ranking loss. By optimizing the summary ranking loss, the model learns to allocate
the summary score of the candidate summary based on the ground-truth rank. The equation
for the summary ranking loss is as follows:

Lsum =
m

∑
i

m

∑
j

{
0, if R(Ci, G) ≤ R(Cj, G)

max(0,−(S(Ci)− S(Cj)) + μ ∗ gapi,j), otherwise
(4)

μ in Equation (4) is the hyperparameter that refers to the base margin for the summary
ranking loss, and gapi,j is the gap of the ground-truth rank for the candidate summary pair
Ci and Cj. The loss is calculated by assigning a larger margin to the candidate summary
pair with a large rank gap and a relatively small margin to the pair with a small rank gap.

3.4. Sentence-Level Supervision

Sentence-level supervision enables the model to learn the ranking of sentences that
comprise the candidate summary. Similarly to the summary score, the sentence score used
in sentence-level supervision is the generation probability value of each token constituting
the sentence derived using the encoder-decoder model. Here, each sentence is not input
into the decoder independently; rather, the entire single candidate summary is input into
the decoder. Subsequently, the average of the generation probability values of the tokens
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corresponding to each sentence is used as the sentence score. The sentence score of the j-th
sentence in the i-th candidate summary Ci

j is

S′(Ci
j) =

1

li
j
β

endi
j

∑
k=starti

j

pθ(ti
k|ti
≤k−1, D) (5)

In Equation (5), starti
j, endi

j mean the position of the first token of the j-th sentence of the

i-th candidate summary and the position of the last token, respectively. li
j is the length of

the j-th sentence in the i-th candidate summary; β is a hyperparameter that represents a
penalty for the length of the sentence.

In this study, two types of sentence ranking loss were designed to perform sentence-
level supervision. During training, one of the two sentence ranking losses was selected and
used. For each candidate summary, a set of sentences was organized based on the type of
sentence ranking loss, and the loss was calculated for all sentence pairs within this set.

3.4.1. Intra-Sentence Ranking Loss

One of the losses designed for sentence-level supervision is the intra-sentence ranking
loss. The intra-sentence ranking loss allows the model to learn the rank of sentences in a sin-
gle candidate summary. The intra-sentence set for the i-th candidate summary is defined as
Ii = {Ci

1, Ci
2, . . . , Ci

ni}. ni refers to the number of sentences in i-th candidate summary. The
model learns to assign the sentence score S′(Ii) = {S′(Ii

1), S′(Ii
2), . . . , S′(Ii

ni ))} according to
the ground-truth rank by optimizing the intra-sentence ranking loss. The intra-sentence
ranking loss is expressed as follows:

Lintra =
m

∑
i

ni

∑
j

ni

∑
k

{
0, if R(Ii

j , G) ≤ R(Ii
k, G)

max(0,−(S′(Ii
j)− S′(Ii

k)) + μ′ ∗ gapj,k), otherwise
(6)

μ′ in Equation (6) is a hyperparameter that signifies the base margin for the sentence
ranking loss, and gapj,k is the gap of the ground-truth rank for the candidate sentence pair
Ii
j and Ii

k. Similarly to for the summary ranking loss, the loss is calculated by assigning a
larger margin to a sentence pair with a large rank gap and a relatively small margin to a
pair with a small rank gap.

3.4.2. Inter-Intra-Sentence Ranking Loss

Another loss designed for sentence-level supervision is the inter-intra-sentence rank-
ing loss. Inter-intra-sentence ranking loss allows the model to learn not only the rank
between sentences in a single candidate summary, but also the rank of sentences consti-
tuting different candidate summaries. To balance the number of intra- and inter-sentence
pairs, we sampled r external sentences per candidate summary. Therefore, the inter-
intra-sentence set for the i-th candidate summary consists of all sentences in the cor-
responding candidate summary and r sentences randomly sampled from the external
candidate summary. The inter-intra-sentence set of the i-th candidate summary is defined
as I′i = {Ci

1, Ci
2, . . . , Ci

ni , Cx1
y1 , Cx2

y2 , . . . , Cxr
yr }. ni refers to the number of sentences in i-th can-

didate summary. x = {x1, x2, . . . , xr}and y = {y1, y2, . . . , yr} are a randomly sampled
candidate summary index and sentence index, respectively. Similarly to the intra-sentence
ranking loss, the inter-intra-sentence ranking loss is defined based on the margin ranking
loss. By optimizing the inter-intra-sentence ranking loss, the model learns to allocate the
sentence score S′(I′i) = {S′(I′i1 ), S′(I′i2 ), . . . , S′(I′ini+r))} according to the ground-truth rank.
The equation for the inter-intra-sentence ranking loss is as follows:
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Linter−intra =
m

∑
i

ni+r

∑
j

ni+r

∑
k

{
0, if R(I′ij , G) ≤ R(I′ik , G)

max(0,−(S′(I′ij )− S′(I′ik )) + μ′ ∗ gapj,k), otherwise
(7)

μ′ in Equation (7) is a hyperparameter that signifies the base margin for the sentence
ranking loss, and gapj,k is the gap of the ground-truth rank for the candidate sentence pair
I′ij and I′ik . The loss calculation is also varied based on the rank gap between sentence pairs:
a larger margin is assigned to pairs with a large rank gap, and a smaller margin to those
with a small rank gap.

The weighted sum of the summary ranking loss and sentence ranking loss is the final
loss used for training. For the sentence ranking loss, the intra-sentence ranking loss or
inter-intra-sentence ranking loss is used as an alternative. The final objective function is as
follows:

Ltotal = Lsum + γ ∗ Lsent (8)

γ in Equation (8) is the hyperparameter of the weight of the sentence ranking loss. Lsent is
Lintra or Linter−intra. As shown in the above equation, the model is trained using hierarchical
supervision, which not only uses summary-level loss but also sentence-level loss. Therefore,
the proposed method enables the model to learn the ranking between sentences such that
complex information in the candidate summary is considered during training. In addition,
because each sentence score is independently supervised, the positional bias of the existing
encoder–decoder-based re-ranking model can be alleviated.

4. Experiments

4.1. Experimental Settings
4.1.1. Datasets

In this study, we used two summarization datasets with a different average number of
sentences in the gold summary. We conducted experiments on a CNN/DM [7] dataset with
a multi-sentence gold summary and an XSum [9] dataset with only a single-sentence gold
summary. The CNN/DM and XSum datasets are some of the most commonly used datasets
in summarization tasks. In addition, the CNN/DM dataset has a relatively extractive
summary, and the XSum has a relatively abstractive summary, allowing experiments with
various types of summary. We explored the impact of hierarchical supervision through
two experimental setups: one using a dataset with multi-sentence summaries, and another
where all summaries consisted of single sentences. This approach aimed to evaluate the
effectiveness of hierarchical supervision with different summary structures.

CNN/DM contains news articles paired with highlights obtained from the CNN and
DailyMail newspapers. The average number of sentences constituting the gold summary is
approximately 3.6, which is relatively large. There are 287,227 document–summary pairs
for training, 13,368 for validation, and 11,490 for testing.

XSum consists of online articles with highly abstractive summaries from the BBC.
All the gold summaries are composed of a single sentence. There are 204,045 document–
summary pairs for training, 11,332 for validation, and 11,334 for testing.

Data statistics are specified in Table 1.

Table 1. Statistics of the two datasets. Doc.: document, Summ.: summary.

Dataset
# Data Points # Words # Sentences

Train Val Test Doc. Summ. Doc. Summ.

CNN/DM 287,113 13,368 11,490 766.56 54.78 33.98 3.59
XSum 204,045 11,332 11,334 414.51 22.96 19.77 1.00
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4.1.2. Implementation Details

We used the same backbone model in the first-stage generation model and the second-
stage re-ranking model of the two-stage abstractive summarization framework in the
experiment. The parameters of the backbone model were initialized using fine-tuned
BART-large and PEGASUS for the CNN/DM and XSum datasets, respectively. Using the
first-stage generation model, we generated 16 candidate summaries per source document
for the training, validation, and test sets, and then used them for training and inference of
the second-stage re-ranking model. A diverse beam search [21] was used as the decoding
strategy for the first-stage generation model.

Adam [22] was used as the optimizer and the learning rate was tuned using the
validation set. We followed BRIO for the summary length penalty and summary margin.
The summary length penalty α was 2.0 and 0.6 for CNNDM and XSum, respectively. The
summary margin μ was 0.001 for CNNDM and 0.1 for XSum. For both datasets, the sentence
length penalty β and the sentence margin μ′ used 1.0 and 0.4, respectively. γ was set to
0.007 on CNNDM and 0.01 on XSum (when γ was set like this, note that the average
summary ranging loss and average sentence ranging loss had an actual quantitative ratio
between 3:1 and 1:1). In the few-shot setting experiment, datasets were set to 100 and
1000 data sizes. For each size, a dataset was randomly sampled through 3 random seeds.

4.2. Main Results

In the main experiment, various abstractive summarization models were used as
baselines for comparison with the proposed model. The baseline could be divided into
three types. First, the single-stage models. BERTSumExtAbs [23] is a BERT [2]-based model
that first fine-tunes the encoder with the extractive summarization task and then fine-tunes
the decoder with the abstractive summarization task. BART [6] and PEGASUS [15] are
encoder–decoder-based pre-trained language models. SEASON [18] is a model that jointly
learns extractive and abstractive summarization based on BART. Second, SimCLS [4] and
SummaReranker [11] are two-stage models that use encoder-only models as second-stage
re-ranking models. The BRIO [8] is a two-stage model that uses a re-ranking model based
on the encoder-decoder model. The performance listed in the table is the ROUGE score
between the gold summary and the final output summary selected by each model. We did
not compare the proposed model with ChatGPT [24], which has received a lot of attention
recently. The first reason for this is that ChatGPT has not disclosed its performance. In
addition, a comparison between the proposed model and ChatGPT is not suitable because
of the difference in parameter size. The parameter size of the backbone model of the other
baseline models and the proposed model is less than 500 million, while the parameter
size of ChatGPT is about 175 billion, so a comparison with the proposed model was
considered inappropriate.

The main results for the CNN/DM are listed in Table 2. In the experiment on CNN/DM,
compared to the baseline models, ROUGE-1 improved by 0.07, ROUGE-2 by 0.24, and
ROUGE-L by 0.14 points with the proposed model. Table 3 lists the main results for
XSum. For the XSum dataset, the proposed model surpassed the baseline model in per-
formance, achieving improvements of 0.12, 0.09, and 0.03 points for ROUGE-1, ROUGE-2,
and ROUGE-L scores, respectively. The results showed that the performance of the model
improved for both the experiment on CNN/DM, which has a multi-sentence gold summary,
and the experiment on XSum, which only has a single-sentence gold summary. Therefore, it
is effective to use hierarchical supervision to train an abstractive summarization re-ranking
model. In addition, this result suggests that, not only is is effective to perform sentence-level
supervision, but also to perform span-level supervision, which is a supervision method
with a smaller unit. Additionally, we performed a t-test to prove the reliability of the
performance improvement of the proposed model. We derived the model performance
using five random seeds for the proposed model and the existing encoder–decoder-based
re-ranking model(BRIO), respectively, and performed a t-test with the average values of
the ROUGE-1, 2, and L scores. As the result of the t-test, the p-value was calculated as 0.004
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in CNN/DM and 0.011 in XSum. As the p-value was lower than the alpha level α = 0.05 in
both datasets, we confirmed that the results of this experiment were statistically significant.

Table 2. Results on CNN/DM. *: outperformed the baseline model results reported in the original
papers. proposed-intra: intra-sentence ranking loss used, proposed-inter + intra: inter-intra-sentence
ranking loss used. The highest performance for each metric is indicated in bold text.

Model R-1 R-2 R-L

BERTSumExtAbs 42.13 19.6 39.18
BART 44.16 21.28 40.90

PEGASUS 44.17 21.47 41.11
SEASON 46.27 22.64 43.08

SimCLS 46.67 22.15 43.54
SummaReranker 47.16 22.61 43.87

BRIO-Ctr 47.28 22.93 44.15

proposed-intra 47.35 * 23.17 * 44.29 *
proposed-inter + intra 47.31 * 23.13 * 44.22 *

Table 3. Results on XSum. *: outperformed the baseline model results reported in the original papers.
proposed-intra: intra-sentence ranking loss used, proposed-inter + intra: inter-intra-sentence ranking
loss used. The highest performance for each metric is indicated in bold text.

Model R-1 R-2 R-L

BERTSumExtAbs 38.81 16.50 31.27
BART 45.14 22.27 37.25

PEGASUS 47.21 24.56 39.25

SimCLS 47.61 24.57 39.44
SummaReranker 48.12 24.95 40.00

BRIO-Ctr 48.13 25.13 39.84

proposed-intra 48.25 * 25.22 * 39.99
proposed-inter + intra 48.19 * 25.13 39.87

In both datasets, the model using intra-sentence ranking loss outperformed the model
using inter-intra-sentence ranking loss. This is because sentence pairs constituting different
candidate summaries often contain similar meanings. It is rare for the meaning to duplicate
sentences constituting a candidate summary. However, sentences containing different
candidate summaries often have overlapping meanings. If the model encounters two
sentences with similar meanings but different assigned gold scores, it learns to recognize a
quality difference between them. This capability is crucial for nuanced understanding and
ranking of a content. Therefore, these experimental results were obtained because these
sentence pairs could act as noise when using the inter-intra-sentence ranking loss.

4.3. Few-Shot Results

In this study, we performed a few-shot experiment on a re-ranking model of abstractive
summarization using two data sizes: 100-shot and 1000-shot. We sampled the training and
validation sets thrice using three random seeds for each data size. The experiment was
conducted with three sampled datasets, and we describe the average performance derived
from the three experiments. We compared the proposed model with BRIO [8], which is a
two-stage model that uses a re-ranking model with an encoder–decoder structure as the
baseline. We also compared the proposed model to BART [6] and PEGASUS [15], which are
single-step models that do not use a re-ranking model (this can be considered as a 0-shot
setting because a re-ranking model does not exist). In this experiment, the few-shot setting
was only applied to the second stage re-ranking model based on the first-stage generation
model trained on the entire dataset.
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The few-shot results for the CNN/DM, Xsum are presented in Table 4. In the experi-
ments with 100-shot and 1000-shot settings for CNN/DM, the proposed model showed
a higher performance for both settings compared with the baseline. In the experiment on
XSum, the proposed model outperformed the baseline model in both the 100-shot and
1000-shot settings. The results indicated that the proposed method is effective, not only in
conditions where the amount of training data is large, but also in conditions where there is
a small amount of training data.

Table 4. Few-shot results on CNN/DM, XSum. proposed-intra: intra-sentence ranking loss used,
proposed-inter + intra: inter-intra-sentence ranking loss used. The highest performance for each
metric is indicated in bold text.

Model
100-Shot 1000-Shot

R-1 R-2 R-L R-1 R-2 R-L

CNN/DM

BART 44.16 21.28 40.90 44.16 21.28 40.90
PEGASUS 44.17 21.47 41.11 44.17 21.47 41.11

BRIO-Ctr 45.07 21.43 42.03 46.03 22.12 42.98

proposed-intra 45.51 21.78 42.45 46.30 22.38 43.22
proposed-inter + intra 45.56 21.80 42.51 46.26 22.32 43.20

XSum

BART 45.14 22.27 37.25 45.14 22.27 37.25
PEGASUS 47.21 24.56 39.25 47.21 24.56 39.25

BRIO-Ctr 47.22 24.71 39.34 47.34 24.70 39.39

proposed-intra 47.26 24.74 39.36 47.40 24.73 39.40
proposed-inter + intra 47.26 24.78 39.41 47.41 24.79 39.47

In the few-shot setting, the model using inter-intra-sentence ranking loss generally
showed a better performance than the model using intra-sentence ranking loss. This was
because, in the few-shot setting, the gain from the additional information played a greater
role than the loss from noise. Furthermore, the amount of information that could be obtained
from the data was failry small because the model was trained with a small amount of data.
Therefore, because the sentence pairs used in the inter-intra-sentence ranking loss were
more diverse than those in the intra-sentence ranking loss, the model using the former loss
function was able to learn more information than the model using the latter loss function.
The gains obtained through having more information outweighed the noise caused by the
inter-sentence pairs.

In addition, when comparing the performance of the proposed model and the baseline,
CNN/DM, which has multiple sentences, showed a significant performance improvement
compared to XSum, where the summary consists of a single sentence. These results can
also be interpreted as showing that it is effective to learn as many sentence pairs as possible
using a small amount of training data.

5. Analysis

In this section, we demonstrate the effectiveness of the proposed method by perform-
ing an additional analysis using a CNN/DM [7] test dataset. Through this analysis, we
check whether the proposed method resolves the two limitations of the existing re-ranking
model, as pointed out in this paper.

5.1. Sentence Ranking Performance

The first limitation is that the complex information of the sentences constituting
the candidate summary was overlooked in the existing studies. In previous studies that
performed summary-level supervision, it was difficult to determine whether a particular
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sentence in a candidate summary was well-generated. To address this limitation, the
proposed method uses hierarchical supervision methods that perform sentence-level and
summary-level supervision together in the training of the re-ranking model. Thus, the
proposed method allows the model to learn whether a particular sentence in a candidate
summary contains an important part of the original document.

Table 5 lists the accuracy when distinguishing the most or least similar sentences
from the gold summary among the sentences constituting the candidate summary. This
study attempted to confirm whether the proposed model effectively learned the superior
relationships between sentences through analysis. We compared the performance of the
proposed model with that of BRIO [8], which uses a re-ranking model with the same
encoder–decoder structure as the proposed model. Compared with the baseline, the pro-
posed model showed a performance improvement of approximately 7% in both cases. The
analysis results confirmed that the proposed model can learn the ranking of sentences
constituting the candidate summary. Regarding the type of sentence ranking loss, the
model showed a higher accuracy when using inter-intra-sentence ranking loss than
when using intra-sentence ranking loss. The reason for this is that the model learns more
diverse sentence pairs when using inter-intra-sentence ranking loss than when using
intra-sentence ranking loss. Thus, we can assume that the inter-intra-sentence ranking
loss allows the model to learn the ranking between sentences that consist of a single
candidate summary more effectively.

Table 5. Analysis results for the accuracy of identifying the best-generated sentence and worst-
generated sentence in a single candidate summary. Proposed-intra: intra-sentence ranking loss used,
proposed-inter + intra: inter-intra-sentence ranking loss used. Analysis was conducted for CNN/DM.
The highest performance for each metric is indicated in bold text.

Model best Sentence Accuracy (%) Worst Sentence Accuracy (%)

BRIO-Ctr 43.97 43.00

proposed-intra 49.81 50.05
proposed-inter + intra 50.91 50.66

5.2. Positional Bias

The second limitation highlighted in this study is the bias according to the position of
the sentence in the existing encoder–decoder structure re-ranking model. Existing models
are biased in assigning a lower prediction score because the sentence is located toward
the end of the candidate summary. This study attempted to alleviate this positional bias
by supervising the prediction score of a sentence to be aligned with the ground-truth
ranking. Figure 5 is a bar chart comparing the position of the sentence to which the
existing model BRIO [8] (expressed as “Baseline”) and the proposed model (expressed as
“Proposed”) assigned the lowest prediction score in one candidate summary and the gold-
truth (expressed as “Oracle”). “First” means the first sentence of the summary, “Last”
means the last sentence, and “Intermediate” means all the sentences located between
the first and last sentences. When comparing the baseline and proposed models, the
probability of predicting the last sentence of the candidate summary as the most poorly-
generated sentence was reduced by approximately 20%, from 76% to 57%. In addition,
the probability of predicting that the first or intermediate sentence was the least similar
to the gold summary increased. Through this analysis, we demonstrated that positional
bias is alleviated in the proposed model.
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Figure 5. Analysis result of whether the positional bias of the existing encoder–decoder-based re-
ranking model is alleviated. Oracle: ground-truth, baseline: existing model, proposed: proposed
model. First: first sentence of summary, last: last sentence of summary, intermediate: all sentences
located between first sentence and last sentence. Analysis was conducted for CNN/DM.

6. Conclusions

In this study, we proposed a re-ranking model for a two-stage abstractive summa-
rization framework that performs hierarchical supervision. The proposed method, by
concurrently implementing summary-level and sentence-level supervision, enables the
model to learn not just the ranking of candidate summaries but also the ranking among
sentences within each candidate summary. This dual-level approach enhances the capability
of the model to discern the relative importance of both summaries and their constituent sen-
tences. With hierarchical supervision, the model can learn complex information contained
in sentences that comprise a candidate summary. The proposed method also alleviates the
problem of positional bias in the existing encoder–decoder structure re-ranking model. The
proposed model demonstrated the effectiveness of the hierarchical supervision method
by outperforming existing studies on both the CNN/DM [7] and XSum [9] datasets. The
proposed model, in the few-shot setting experiment, demonstrated improved performance
over existing studies, indicating its effectiveness, even with a very small amount of training
data. This suggests that the methodology introduced in this study is robust and efficient in
data-constrained scenarios.

7. Limitation

The disadvantage of the proposed method is that it is difficult to tune the hyperpa-
rameters. The proposed model has various hyperparameters, such as summary sentence
margin, summary sentence length penalty, sentence margin, sentence length penalty, and
sentence loss function weight. Since there are many types of hyperparameters, it is a disad-
vantage that it takes a lot of time to adjust hyperparameters. However, the main limitation
of this study is that some of the hyperparameters of the proposed model are dependent
on each other. Because the sentence prediction score and summary prediction score are
derived using the same model output, optimizing the summary ranking loss or sentence
ranking loss affects the model’s derivation of both the sentence prediction score and the
summary prediction score. Therefore, the hyperparameters of the margin for the summary
ranking loss and sentence ranking loss are mutually dependent. In addition, the units of
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value of the summary prediction score and sentence prediction score vary according to
other hyperparameters, the summary length penalty, and the sentence length penalty. In
addition, even if the weight of the sentence ranking loss is constant, the ratio of the loss
value of the summary ranking loss to that of the sentence ranking loss varies depending on
the summary or sentence margins. Table 6 shows the results of hyperparameter tuning on
CNN/DM [7]. The results of this experiment show that the performance of the proposed
model varies greatly depending on the combination of hyperparameters; therefore, the
proposed model has a limitation in that it is very difficult to tune hyperparameters, because
they are deeply dependent on each other.

Table 6. Results of hyperparameter tuning for CNN/DM. α: summary length penalty, μ: summary
margin, β: sentence length penalty, μ′: sentence margin, γ: sentence loss function weight. The highest
performance is marked in bold text, and the lowest performance is underlined for each sentence
ranking loss.

Sentence
Ranking

Loss
α μ β μ′ γ R-1 R-2 R-L

intra 2 0.001

1
0.02 0.007 47.16 22.97 44.08

0.03 47.16 22.96 44.08

0.4 0.007 47.35 23.17 44.29
0.03 47.28 23.05 44.20

2
0.02 0.007 47.20 23.03 44.16

0.03 47.28 23.08 44.22

0.4 0.007 47.23 22.96 44.12
0.03 47.11 22.94 44.07

inter + intra 2 0.001

1
0.02 0.007 47.18 22.98 44.10

0.03 47.14 22.90 44.05

0.4 0.007 47.31 23.13 44.22
0.03 47.22 22.97 44.13

2
0.02 0.007 47.18 23.05 44.13

0.03 47.32 23.11 44.28

0.4 0.007 47.31 23.11 44.22
0.03 47.03 22.85 43.97
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Abstract: In this work, we highlight three different techniques for automatically constructing the
dataset for a time-series study: the direct multi-step, the recursive multi-step, and the direct–recursive
hybrid scheme. The nonlinear autoregressive with exogenous variable support vector regression
(NARX SVR) and the Gaussian process regression (GPR), combined with the differential evolution
(DE) for parameter tuning, are the two novel hybrid methods used in this study. The hyper-parameter
settings used in the GPR and SVR training processes as part of this optimization technique DE
significantly affect how accurate the regression is. The accuracy in the prediction of DE/GPR and
DE/SVR, with or without NARX, is examined in this article using data on spot gold prices from the
New York Commodities Exchange (COMEX) that have been made publicly available. According
to RMSE statistics, the numerical results obtained demonstrate that NARX DE/SVR achieved the
best results.

Keywords: Gaussian process regression (GPR); time-series analysis; differential evolution (DE);
support vector regression (SVR); New York Commodity Exchange; gold price forecasting
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1. Introduction

The global COVID-19 health crisis has caused misery and disaster ever since it started
in early 2020. On 11 March 2020, the World Health Organization (WHO) declared this
infectious disease to be a pandemic. As a result, several countries put in place a range
of policies to try and stop the spread of the illness. Governments implemented various
precautionary measures such as social distancing, workplace closures, travel limitations,
and lockdowns, all to stop the disease from spreading.

This pandemic has had serious economic ramifications in addition to deaths, infections,
and psychological damage. This unprecedented global health crisis has threatened the
entire world and wreaked havoc on the economy by creating financial instability. The entire
financial industry, including the insurance and banking sectors and the stock markets, has
been impacted by COVID-19 [1]. Since the start of the pandemic, the financial markets
have deteriorated and grown incredibly volatile, which has led to a drop in metal prices.
The pandemic has also led to an unprecedented collapse in commodities markets, which
are typically erratic. The COVID-19 outbreak caused borders to be closed and communi-
ties to be quarantined, which slowed down activity and restricted international trade in
goods and commodities. In these circumstances, the supply of commodities frequently
vastly outweighed their demand, leading to a decrease in commodity prices. Global in-
vestors shifted their holdings to commodities markets in the wake of the crisis and the
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ensuing market panic, which was accompanied by a chaotic macroeconomic and financial
environment [2–7].

Gold has historically been the main commodity that best represents the commodities
market [8]. According to several studies [9–11], gold is essentially the most highly valued
metal. It has historically had a big impact on both politics and the economy. Therefore,
the prices of gold and oil are the two most important indicators in the global markets [12].
Like gold, silver has many applications and can even be used as a hedge against inflation.
According to metal experts, silver is perceived to be more volatile than gold [13]. The
year 2020 saw a decline in the price of metals, something closely linked to the global
economy. Due to these conditions, investors are growing more and more worried about
the rise in commodity prices. Also, the price of gold increased rapidly in spite of a rise
in COVID-19 cases [14]. In light of these modifications, the pandemic has promoted the
buying of assets that serve as a safe haven [15]. Investor and regulatory interests in this
phenomenon have caused a spike in the demand for certain commodities as investments.
Therefore, understanding the relationships among the prices of gold, oil, and silver is
crucial for investors, portfolio managers, and policymakers [16]. Many investors, especially
novices, have traditionally placed their money in gold, which is considered a safe and
trouble-free haven, to avoid complications [12]. In the years after the financial crisis, a
common alternative in a variety of investment options was gold. Because it helps investors
of all types manage their financial and economic concerns in times of crisis, gold is regarded
as a safe-haven asset [15,17–22].

With the aforementioned points in mind, the current work attempts to explore the
correlation between the price of gold and its status as a safe haven in relation to the different
commodities indices under consideration. One volatility index is of particular interest to us:
the gold price index [23,24]. Indeed, gold is one of the naturally occurring elements with
the highest atomic number. It has the chemical symbol Au, and its atomic number is 79. In
its purest form, it is reddish-yellow and bright. It is a very dense metal, ductile, malleable,
and soft. Gold is a member of group 11 in the periodic table of chemical elements, and it is a
transition metal [25]. Very unreactive, it is solid in normal circumstances. It usually appears
as nuggets in veins, alluvial deposits, and rocks in its free elemental (native) form. It can
also be found alloyed with other metals like palladium and copper, with the native element
silver in solid solution series, and as mineral inclusions like those found in pyrite [25–27].
Gold is a precious metal used as a base material for coinage, jewelry, and other forms of art.
It is not a common element. In the past, monetary policy used a gold standard, but after
the 1930s, when gold was no longer used for coins as circulating currency, the world gold
standard disappeared in favor of a flat currency system [25–28].

About 50% of the new gold produced worldwide nowadays is used for jewelry, with
40% for investments and approximately 10% in industry (see Figure 1). Due to gold’s high
ductility, malleability, resistance to most other chemical reactions, particularly to corrosion,
and high electrical conductivity, its main industrial use, as corrosion-resistant electrical
connectors in all kinds of computers, has persisted. Additionally, the production of gold
leafing, colored glass, and restoration of teeth all use gold. In medicine, specific gold salts
are utilized as anti-inflammatories. China is the major producer with 440 tons of gold
annually as of 2017.

Raw materials are essential for taking the pulse of the global economy, and these
include precious metals. Some of these resources, like fossil fuels, are scarce. The demand,
supply, and prices of precious metals have a significant influence on the production of
precious metals. The London Metal Exchange (LME), the New York Commodity Exchange
(COMEX), and the Shanghai Futures Exchange (SHFE) are the three main physical futures
trading exchanges where gold is traded as a nonferrous metal [29–31]. Prices on these
exchanges are a measure of the global situation between gold demand and supply, though
they may be significantly impacted by investment flows and currency exchange rates,
both of which could lead to volatile price swings that are at least partially correlated with
changes in the business situation [32,33].
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Figure 1. Gold metallurgy factory.

Forecasting gold prices holds significant relevance within the current economic
context due to the metal’s multifaceted roles as a safe-haven asset, a store of value,
and an indicator of market sentiment. As evidenced by numerous studies [34–36],
gold prices are closely linked to geopolitical tensions, economic uncertainties, and
investor risk aversion, making them invaluable indicators of market dynamics. Amidst
the ongoing COVID-19 pandemic and its socio-economic ramifications, the demand
for safe-haven assets like gold has surged, driving up prices and highlighting gold’s
importance in hedging against inflation and market volatility [37]. Additionally, with the
global economy facing challenges such as inflationary pressures, geopolitical conflicts,
and monetary policy shifts, forecasting gold prices has become essential for investors,
financial institutions, and policymakers to make informed decisions and effectively
manage risks in their portfolios [17]. In this context, the accurate forecasting of gold
prices provides valuable insights into market trends, aids in risk management strategies,
and facilitates better allocation of resources, thereby contributing to greater overall
financial stability and resilience.

Various methods have been employed in the past to predict metal prices. Using two
time-series forecasting methods, Dooley and Lenihan (2005) [38] concluded that ARIMA
works slightly better than the lagged forward price modeling. Multicommodity models
were proposed [39] to assist in estimating long-term silver and copper prices. Artificial
neuronal networks (ANNs) for time series were promoted by Khashei et al. (2010) [40].
The consumption and import of iron ore by China was studied [41] using a grey model
with the particle swarm algorithm (PSO). To capture this cyclical behavior that dominates
the metal market, Kriechbaumer et al. (2014) [42] broke down time series into their time
domain and frequency. Finally, Sánchez Lasheras et al. (2015) [43] used the COMEX
copper spot price as an example and contrast the forecasting abilities of two different
neuronal networks and an ARIMA model.

Two new techniques to predict the COMEX gold spot are used in this article. The
nonlinear autoregressive with exogenous variable, in this case the non-energy index,
support vector regression (NARX DE/SVR) and the Gaussian process regression hy-
bridized with the differential evolution optimizer (DE/GPR) in time-series analysis are
new methodologies that are introduced in this paper for predicting the COMEX gold spot
price [44–49]. The approach suggested successfully identifies nonlinear input features,
tuning the parameters of SVR with RBF kernel.
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This work starts with stating the importance of gold, and then it goes on to explain
the experimental dataset used in this paper. The DE/GPR and NARX DE/SVR are
described in Section 2; we compare the DE/GPR and NARX DE/SVR outcomes with
the experimental values, and Section 3 explains the results. Finally, Section 4 presents a
summary of this paper’s main findings.

2. Materials and Methods

2.1. Experimental Dataset

The monthly COMEX gold spot closing price was the primary data source for the
current study, and, in fact, the dataset includes a time series of gold prices. Using
the RBF kernel with the SVR method [47–49] and also with GPR along with DE for
the parameter tuning [44], we estimated monthly gold prices for the years 2019 and
2020. The non-energy index was utilized to obtain a better model. The World Bank
Commodity Price Data (The Pink Sheet) (2021) [50] was the source of the dataset. The
goal of this project is to predict monthly gold prices for the full calendar years of 2019
and 2020.

2.2. Time-Series Analysis: Computational Procedures
2.2.1. Support Vector Machines Regression (SVR)

Here ε−SVR is presented [48,49]. If we have time-series data, we can extract a
training set that consists of a predicted variable yi ∈ R, ∀i = 1, 2, . . . , m that is continuous
and independent variables xi ∈ Rp, ∀i = 1, 2, . . . , m that can be built using p lags of yi.
As a result, the support vector regression (ε−SVR) technique creates f (x) = wTx + b
where w ∈ Rn denotes the hyperplane’s perpendicular vector, also known as the director
vector and b/‖w‖ denotes the distance between the hyperplane, with b ∈ R and the
origin of the coordinates. Additionally, for all xi training cases, this approximation must
give rise to a maximum deviation from the true value yi of ε and at the same time, must
also be as flat as possible. The problem is modeled imposing a penalty on the sum of
differences that exceeds ε, and flatness is attained finding the minimal Euclidean norm
‖w‖2. In fact, the SVR approach aims to resolve the problem [51–53]:

min
w,b,ξ+ ,ξ−

1
2
‖w‖2 + C

m

∑
i=1

(
ξ+i + ξ−i

)
(1)

that meets the conditions⎧⎪⎪⎨⎪⎪⎩
yi −

(
wTxi + b

)
≥ ε + ξ+i i = 1, . . . , m(

wTxi + b
)
− yi ≥ ε + ξ−i i = 1, . . . , m

ξ+i , ξ−i ≥ 0 i = 1, . . . , m

⎫⎪⎪⎬⎪⎪⎭ (2)

ξ+, ξ− ∈ Rm are the slack variables, and C is the regularization constant. The
penalty imposed on points that are not inside the interval ε is restrained by C in
Equation (1) that is positive, which helps to prevent overfitting. This quantity measures
the model complexity versus the function where we are optimizing horizontality [54–57].
For each training vector, slack variables are provided, allowing deviations that are
greater than ε, while penalizing the deviations in the function. The area that yi ± ε,
∀i encloses is called an ε− insensitive tube (see Figure 2).

We employed the kernelization method to address problems like this one that are
highly nonlinear. The foundation of this approach is the mapping of the initial dataset
to a higher-dimensional space H, referred to as the feature space. For this, we used the
kernel function K

(
xi, xj

)
for the dot product in H. This way, we formulated the primal

optimization problem given by Equation (1) in its dual form to solve it. Applying the
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Karush–Kuhn–Tucker (KKT) conditions resulted in the dual formulation of the optimization
problem [48,49,54–57]:

max
α+ ,α−

[
m

∑
i=1

yi
(
α+i − α−i

)
− ε

m

∑
i=1

(
α+i + α−i

)
− 1

2

m

∑
j=1

(
α+i − α−i

)(
α+j − α−j

)
K

(
xi, xj

)]
(3)

constricted to ⎧⎪⎪⎨⎪⎪⎩
m

∑
i=1

(
α+i − α−i

)
= 0,

0 ≤ α+i ≤ C, i = 1, . . . , m
0 ≤ α−i ≤ C, i = 1, . . . , m

⎫⎪⎪⎬⎪⎪⎭ (4)

We calculated the prediction for a new observation x [48,49,54–57] using:

f (x) =
m

∑
j=1

(
α+i − α−i

)
K

(
xi, xj

)
+ b (5)

The radial basis function (RBF) is also called Gaussian kernel. This is one of the available
kernel functions and is preferred in this study because of its better performance [48,49,54–57]:

K
(
xi, xj

)
= e−σ‖xi−xj‖2

(6)

so that the RBF kernel’s typology is determined by the σ parameter.
The model was created with SVR–ε. LIBSVM [58] was used, and the tuning of the

parameters was achieved with DE optimizer [44,59–61].

Figure 2. Illustration of the ε− insensitive tube.

2.2.2. Gaussian Process Regression (GPR)

A Gaussian process is a stochastic process, where a set of random variables is defined
with indices corresponding to time or space. For any finite linear combination, these random
variables follow a multivariate normal distribution. The Gaussian process distribution,
encompassing functions defined over a continuous domain such as space or time, represents
the collective distribution of all these random variables [47–49].

Using lazy learning and the kernel function, the algorithm that employs a Gaussian
process obtains a prediction for an unknown training data point. This estimation, which is
a one-dimensional Gaussian distribution, is more than a prediction; it also provides its level
of uncertainty. Multivariate Gaussian processes can be used for multi-output predictions,
and the multivariate Gaussian distribution for these processes is the marginal distribution
at each point [51].
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Suppose that the training dataset is D = {(xi, yi)/i = 1, 2, . . . , N}. The vectors xi ∈ Rn

include the relevant segregation parameters as well as the extracted or combined features.
The observed values give the filtered volume and outlet turbidity of the filtration process.
X = {xi}N

î=1 is the matrix of the training dataset, which is used as input for obtaining the
output vector y = {yi}N

i=1. Once we have some data, we can transform the prior over
functions that a Gaussian process f (x) converts into posterior over functions.

The mean m(x) and covariance function k(x, x′) of a Gaussian process are the way to
describe it. Then, the Gaussian process is [62,63]:

f (x) : GP
(
m(x), k

(
x, x′

))
(7)

and
m(x) = E[ f (x)]
k(x, x′) = E

[
( f (x)−m(x))( f (x′)−m(x′))T

] (8)

The function m(x) is the predicted value of f (x) for the point X. The covariance
function k(x, x′) measures the confidence level for m(x). The kernel k(·, ·) must be a
positive definite. To keep things simple, the mean function is typically set to zero, but
when there is no prior knowledge of the mean variable, as is the case in this work, it is also
reasonable to do so.

For the Gaussian process, the covariance function selection is crucial. It also goes by
the name “prior” because it contains the assumptions made about the latent regression
model [64]. The RBF covariance function and the affine mean function are expressed in this
study as follows [49,65]:

kSE
(
x, x′

)
= σ2

f exp

(
−‖x− x′‖2

2l2

)
(9)

where l is the length scale and σ2
f the signal variance. The performance of the Gaussian

process is directly impacted by the SE covariance function parameter. In this case, l controls
the function’s change in horizontal scale, while σ2

f controls its change in vertical scale. Most
applications cannot achieve the function values f (x). In actual use, only the noisy inputs
are provided by [62–65]:

y = f (x) + ε (10)

We assumed that Gaussian noise is independent and has an identical distribution
such that ε : N

(
0, σ2

n
)
, and that σn is this noise’s standard deviation. This will make ε the

additive white noise. An individual Gaussian process can also be made up of any finite
number of the input values, as shown by [62–65]:

y : GP
(

m(x), k
(
x, x′

)
+ σ2

nδij

)
= GP

(
0, k

(
x, x′

)
+ σ2

nδij

)
(11)

so that δij is the Kronecker delta function indicated below as:

δij =

{
1 i f i = j
0 otherwise

}
The goal is to predict, given the new point x∗, the function f

∗
and its variance COV( f ∗).

In this context, X∗ represents the test dataset’s input matrix and N∗ its size. The observed
and predicted values for a new point follow a joint Gaussian previous distribution [62–65]:[

y
f ∗

]
: N

(
0,

[
K(X, X) + σ2

n I K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
(12)

where
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• K(X, X) is the training dataset covariance matrix and K(X∗, X∗) is the test dataset
covariance.

• K(X, X∗) is the training and test dataset covariance matrix and K(X∗, X) = K(X, X∗)T .

Because y and f* are jointly distributed, it is possible to condition the prior on the
inputs and investigate how likely estimations for the f* are. That is [49,62–65]:

f*
∣∣∣X∗, X, y : N

(
f*

, cov
(

f*
))

(13)

where
f*
= E

[
f*|X∗, X, y

]
= K(X∗, X)

[
K(X, X) + σ2

n I
]−1

y (14)

cov
(

f*
)
= K(X∗, X∗)− K(X∗, X)

[
K(X, X) + σ2

n I
]−1

K(X, X∗) (15)

The prediction of new points can then be made using the ensuing distribution. In fact,

the GPR model-predicted output value for the test point is f*
. Additionally, the variance

cov
(

f*
)

is used to compute the confidence interval (CI) of the predicted output value.

For example, the 95% CI is
[

f* − 2×
√

cov
(

f*
)

, f*
+ 2×

√
cov

(
f*

)]
. As a result, the GPR

model provides both the estimated values as well as the confidence level.
Finally, because the forecasted outputs of the GPR model only depend on the inputs

xi and the values of y, this is a nonparametric model. Θ =
{

l, σf σn

}
are the GPR model

hyperparameters. The final regression model was constructed using the Gpy module from
the Gaussian process framework in Python [66].

2.2.3. Differential Evolution (DE) Optimizer

This is an approach used to optimize problems by making multiple attempts to
improve the quality of a potential solution. DE was first presented by Storn and Price in
the 1990s [44]. They are metaheuristic techniques because they have the ability to explore
extensive solution spaces without relying on specific assumptions about the problem [52].
In contrast to conventional optimization methods, such as gradient descent, which rely
on differentiability of the optimization problem, DE utilizes multidimensional real-valued
functions instead of the problem’s gradient to solve it [53,54,59–61,67]. DE keeps a group
of potential solutions and uses straightforward formulae to combine existing solutions
to produce new ones. Subsequently, it retains the candidate solution that possesses the
highest score, thus eliminating the need for a gradient. It also offers a quality estimation of
the possible solution [53,54,61,67].

Differential Evolution (DE) can be employed to optimize a problem by iteratively
enhancing the fitness of a possible solution. The efficiency of the Differential Evolution
(DE) optimizer extends to multidimensional real-valued data, as it can successfully handle
non-differentiable optimized functions. Additionally, the DE optimizer can be applied
to dynamic, noisy, or non-continuous problems, showcasing its versatility across various
challenging scenarios. DE optimization involves managing a potential solution population,
combining it through straightforward formulae. The method optimizes by retaining the
fittest solution for the given optimization problem [44]. The technique encapsulates the
variables of the optimization problem, representing them as a vector. The population
comprises NP vectors, representing the actual population, where the length of each vector,
n, is the input variable number for the problem at hand.

If p denotes the index of a vector within the population (p = 1, . . . , NP) and g repre-
sents the generation, we defined the vector as xg

p. The components of this vector represent
the input variables, denoted as xg

p,m, and m is the index (m = 1, . . . , n). The parameters
in the problem are constrained within intervals limited by xmin

m and xmax
m , representing
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the minimum and maximum bounds, respectively. The steps of the DE algorithm are as
follows [59–61,67]:

• Initialization;
• Mutation;
• Recombination;
• Selection.

After the initialization, the search begins. The mutation–recombination–selection
phases conclude when a stopping criterion, such as a specified number of generations, a
time threshold, or a desired level of solution attainment, is satisfied.

Initialization

During the initialization of the population in the first generation, each variable is
assigned a random value within its respective minimum and maximum bounds [59–61,67]:

x1
p,m = xmin

m + rand (0, 1)·
(

xmax
m − xmin

m

)
for p = 1, . . . , NP and m = 1, . . . , n (16)

where the random number within the interval [0, 1] is rand (0, 1).

Mutation

Creating the mutation involves selecting three individuals, randomly referred to as
target vectors xa, xb, and xc. These individuals are then used to generate NP new vectors.
The process for creating the nt

p new vectors is outlined below [59–61,67]:

nt
p = xc + F·(xa − xb) for p = 1, . . . , NP (17)

with the distinct individuals labeled as a, b, c, and p, the mutation rate is controlled by F,
which falls within [0, 2].

Recombination

After generating the NP new vectors, we obtained the trial vectors tg
m that are formed

by applying recombination in a random way and by comparing the outcomes with the
previous vectors xg

p [59–61,67]:

tg
p,m =

{
ng

p,m i f rand (0, 1) < GR

xg
p,m otherwise

}
for p = 1, . . . , NP and m = 1, . . . , n (18)

Regulated by the rate of recombination GR, the creation of trial vectors involves a
combination of updated and original vectors. This is performed individually for each variable.

Selection

To select the vectors for the subsequent generation, determined by the best values
obtained from the fitness function, a straightforward comparison is made between the test
vectors and the original vectors [59–61,67]:

xg+1
p =

⎧⎨⎩tg
p i f f it

(
tg

p

)
> f it

(
xg

p

)
xg

p otherwise

⎫⎬⎭ (19)

2.3. Accuracy of This Approach

The COMEX gold spot price is the variable we tried to predict. To ensure a reliable
forecast of the COMEX gold spot price using the selected input variables, we needed to
find the best model. Subsequently, we compared the observed values ti with the model-
estimated values yi. In this study, three criteria were examined to estimate fit quality:
the root mean square error (RMSE) [68], the mean absolute error (MAE), and the mean
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absolute percentage error (MAPE) [69,70]. These statistical measures are commonly utilized
to compute the accuracy of a mathematical model as well. Their expressions are [69,70]:

RMSE =

√
∑n

i=1(ti − yi)
2

n
(20)

MAE =
∑n

i=1|ti − yi|
n

(21)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ti − yi
ti

∣∣∣∣ (22)

If the RMSE is null, there is an exact match between the observed and predicted
values, implying no difference between them. MAE is the average of the absolute difference
between the target variable ti and the predicted variable yi. Finally, MAPE is frequently
employed as a loss function for regression problems and in the evaluation of models. This
is due to its highly intuitive interpretation in relation to relative error. Finally, R2 was also
calculated for the three models considered of the most interest [70].

2.4. Numerical Schemes

The monthly prices that were predicted began in January 2019 and ended in December
2019, and subsequently started in January 2020 and finished in December 2020. The dataset
used for training included information ranging from January 1960 to March 2021. Therefore,
in this specific instance, we needed to predict twelve future steps. As a result, we executed
a multi-step forecast. The following three methods are used to create the training data:

1. Direct multi-step;
2. Recursive multi-step;
3. Direct–recursive hybrid.

Since the beginning, we used only one variable, namely, the gold price in the previous
years. The non-energy index was added as an exogenous variable after this model was
created, resulting in the NARX model. Following that, we went over the three different
approaches to this multi-step forecasting problem. Here, the variables were standardized.

Direct multi-step (DM)

Under this approach, we built separate models for each prediction. If p stands for
prediction, o for observation, and m for model:

p(t + 1) = m1(o(t), o(t− 1), . . . , o(t− r))

p(t + 2) = m2(o(t), o(t− 1), . . . , o(t− r))
· · ·
p(t + 12) = m12(o(t), o(t− 1), . . . , o(t− r))

(23)

The training dataset remained the same across all models, as is evident. However,
twelve distinct models were created, with each model dedicated to a specific prediction.
Four variables affected how these models perform. The first is the lag, or the length of time
between observations. We employed r + 1 observations for each model in this situation.
One or more variables may be present in the observations at any given time. The gold price
was our sole variable when we began. The final three variables were those that relate to the
chosen method, SVR with an RBF kernel and/or GPR with an RBF kernel in this situation.
These four parameters were optimized using the DE optimizer.

Recursive multi-step (RM)

In this instance, we created a model that is potentially identical to the first model in
the previous technique. Then, we simply predicted the subsequent value at each step. We
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then took into account the predicted value, discarded the most recent value, and forecasted
the following value. Thus, following the model construction, if p stands for prediction, o
for observation, and m for model, the following prediction procedure is indicated as:

p(t + 1) = m(o(t), o(t− 1), . . . , o(t− r))

p(t + 2) = m(p(t + 1), o(t), o(t− 1), . . . , o(t− r + 1))

p(t + 3) = m(p(t + 2), p(t + 1), o(t), o(t− 1), . . . , o(t− r + 2))
· · ·
p(t + 12) = m(p(t + 11), p(t + 10), . . . , o(t− r + 12))

(24)

Indeed, we have a distinctive model, as is evident. When making predictions one
step forward, we took the most recent prediction into account and discarded the earliest
observation. The same factors applied as in the prior instance.

Direct–recursive hybrid (DH)

The two previous numerical systems were combined in this numerical scheme. For
each prediction, we developed a unique model, but during the prediction phase, the
models incorporated the forecasted values. In this instance, as we moved closer to the
prediction, the lag for each model grew. In other words, if the first model started with
r + 1 observations, the second model utilized an additional data point as it incorporated
the newly predicted value during the forecasting phase. If p stands for prediction, o for
observation, and m for model:

p(t + 1) = m1(o(t), o(t− 1), . . . , o(t− r))

p(t + 2) = m2(p(t + 1), o(t), o(t− 1), . . . , o(t− r))

p(t + 3) = m3(p(t + 2), p(t + 1), o(t), o(t− 1), . . . , o(t− r))
· · ·
p(t + 12) = m12(p(t + 11), p(t + 10), . . . , o(t− r))

(25)

In this instance, we did not discard earlier observations as we moved closer to
the prediction.

3. Results and Discussion

The methods for building the dataset used two distinct sets of variables: the gold price
and the non-energy index that is the exogenous variable.

The first 600 months were eliminated because they did not alter the outcomes. This
could be due to the fact that prices during a specific timeframe generally align with patterns
observed in the preceding cycles. The price of gold is influenced by numerous political,
social, and economic variables. They evolve over time, and similar situations from the past
do not recur today. The dataset used for training was built from the recorded monthly
gold prices spanning from January 1960 to March 2021. The lag affects how many training
samples are used. A smaller lag implies a higher number of samples with identical data,
as each sample encompasses a shorter time period and incorporates fewer observations.
During the training phase, no data pertaining to the forecasted period (including the
subsequent period) were employed. The objective was to predict monthly prices specifically
for the 12 months of 2019 and the 12 months of 2020.

Tables 1 and 2 present the mean absolute percentage error (MAPE) for the four distinct
models during the years 2019 and 2020.
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Table 1. The year 2019 MAPE error.

Method DH RM DM

DE/SVR 7.80 7.63 7.80
DE/GPR 8.06 8.69 5.06
NARX DE/SVR 7.61 6.72 5.92
NARX DE/GPR 7.51 6.72 7.48

Table 2. The year 2020 MAPE error.

Method DH RM DM

DE/SVR 22.60 20.61 19.80
DE/GPR 22.82 21.82 10.12
NARX DE/SVR 20.77 20.86 22.94
NARX DE/GPR 20.23 20.44 16.16

Tables 1 and 2 show the following:

• For 2020, the year of the pandemic, the MAPEs are the worst. It seems reasonable
to attribute this to the atmosphere of unpredictability brought on by the pandemic’s
numerous, unprecedented, and unexpected changes.

• The results obtained with only one variable are generally improved by the NARX
models, though this is not always the case.

• The best models were obtained by using strategy 1.

Next, we will now choose the two best models for 2019 and the best model for 2020,
and we will go into detail about their development and outcomes. The three top models
are presented in Table 3 with the ideal parameters chosen by DE.

Table 3. The best models from the years 2019 and 2020.

Type Year Optimal Parameters

Model 1 NARX DE/SVR 2019 Lag = 5, C = 9.2785× 100

ε = 1.0297× 100, σ = 7.0995× 10−3

Model 2 DE/GPR 2019
Lag = 4, σ2

f = 6.1384× 10−5

l = 1.7375× 10−1, σ2
n = 9.1358× 10−5

Model 3 DE/GPR 2020
Lag = 5, σ2

f = 1.5520× 10−5

l = 1.1629× 100, σ2
n = 3.2258× 102

The accuracy for these models is shown in Table 4.

Table 4. Accuracy of the best models.

Model MAE MAPE (%) RMSE R2

Model 1 83.841 5.92 92.700 0.152
Model 2 73.654 5.06 95.873 0.389
Model 3 177.32 10.12 192.68 0.301

Finally, Figure 3 displays the predicted and observed COMEX gold spot price values
for the years 2019 (Model 1), 2020 (Model 3), and 2021 (Model 2) using the NARX DE/SVR,
DE/GPR, and DE/GPR predictor methods, respectively.
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(a)

(b)

(c)

Figure 3. The COMEX gold spot price values, both observed and predicted, for three models:
(a) Model 1 (NARX DE/SVR in the year 2019); (b) Model 2 (DE/GPR in the year 2019); and
(c) Model 3 (DE/GPR in the year 2020).
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The outcomes of the gold price forecasting models hold significant implications for
both investors and policymakers within the realm of the gold market. For investors,
the accuracy and reliability of these models can serve as invaluable tools for decision-
making processes, particularly in portfolio diversification and risk management strategies.
By utilizing such forecasting models, investors can gain insights into potential future
movements in gold prices, enabling them to adjust their investment positions accordingly to
thereby optimize returns and mitigate risks. Moreover, the ability to anticipate fluctuations
in gold prices can aid investors in identifying opportune moments for buying or selling
gold assets, thus enhancing their overall investment performance.

On the other hand, for policymakers, the findings from these forecasting models offer
insights into the dynamics and drivers of gold price movements, which can inform policy
decisions related to economic stability and monetary policy formulation. Understanding
anticipated trends in gold prices can help policymakers assess their potential impact on
inflation, currency valuations, and overall market sentiment. Additionally, by incorporating
these forecasts into their policy frameworks, policymakers can adopt proactive measures
to mitigate adverse effects stemming from volatile gold prices, thereby fostering greater
economic resilience and stability. Overall, the integration of gold price forecasting models
into both investment and policymaking practices represents a critical advancement in
navigating the complexities of the gold market, ultimately enhancing decision-making
processes and fostering more robust market outcomes.

Taking into account the results obtained in this paper, it can be said that DE/GPR
leverages the robustness of GPR in handling noisy data and providing uncertainty estimates
alongside predictions. Through the incorporation of DE, an optimization algorithm inspired
by natural selection, DE/GPR efficiently adapts model parameters to fit complex data
distributions, offering enhanced robustness and flexibility. The synergy between GPR and
DE results in a computationally efficient approach with fewer hyperparameters to tune,
making DE/GPR particularly appealing for tasks where accurate modeling of uncertainty
and adaptability to diverse datasets are paramount.

In the case of NARX DE/SVR, this methodology combines the nonlinear modeling
capabilities of SVR with the efficiency and adaptability of DE. Please also note that SVR
excels in capturing intricate nonlinear relationships while maintaining robustness against
overfitting by means of implicit feature selection and structural risk minimization. When
coupled with Differential Evolution, NARX DE/SVR achieves superior generalization
performance and tolerance to outliers, rendering it suitable for diverse applications where
accurate predictions on unseen data instances are imperative. This amalgamation stands as
a good example of the effectiveness of combining evolutionary optimization with robust
regression techniques for addressing complex real-world problems.

But the proposed methodologies also have certain limitations that must be taken into
account. These limitations can profoundly influence their outcomes in diverse applications.
Firstly, DE/GPR’s utilization of GPR, while advantageous for handling noisy data and
providing uncertainty estimates, faces computational complexity challenges, particularly
with large datasets due to its time complexity. Despite the incorporation of DE for param-
eter optimization, this computational burden may limit scalability. Furthermore, GPR’s
sensitivity to hyperparameters like kernel choice and parameters can significantly impact
model performance, necessitating careful tuning. Additionally, the inherent complexity of
GPR models may hinder interpretability, posing challenges in understanding the reasoning
behind predictions, especially in domains where interpretability is crucial. On the other
hand, NARX DE/SVR’s amalgamation of SVR with DE introduces complexities in model
interpretation and parameter sensitivity. SVR’s tendency to produce complex models,
especially with high-dimensional or nonlinear data, poses interpretability challenges, and
tuning hyperparameters such as the regularization parameter and kernel parameters is
crucial for optimal performance. However, these constraints can influence outcomes by
necessitating trade-offs among model complexity, computational efficiency, and predictive
performance. Striking the right balance requires careful consideration of hyperparame-
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ter tuning, computational resources, and interpretability needs, ultimately impacting the
performance and suitability of DE/GPR and NARX DE/SVR for specific tasks and datasets.

4. Conclusions

The hybrid models constructed in this study utilized variables configured in three
different ways. The output variable of this proposed hybrid models, based on support
vector machines (SVM) [71] and GPR, is the COMEX gold spot price. The metaheuristic
optimizer differential evolution (DE) [44,59–61,67] was employed to obtain the optimal
parameters for SVM and GPR.

Based on the numerical results obtained from publicly available data on gold in the
COMEX market, it can be concluded that Model 1 (NARX DE/SVR technique) is the most
accurate predictor, as indicated by the RMSE statistic. Models 2 and 3 follow in terms of
accuracy. However, when considering the MAPE and MAE statistics, Model 2 emerges as
the best predictor, followed by Models 1 and 3. Additionally, it should be noted that the
direct multi-step scheme yields the most optimal models. In the case of the R2 metric, the
most accurate model is Model 1, followed by Model 3 and Model 1. Please also note that
although R2 values are low, the good MAE, MAPE, and RMSE obtained suggest the model
can make accurate predictions in terms of the magnitude and direction of the forecasted
values. In such cases, the model can be considered accurate for forecasting purposes,
especially if the primary goal is to minimize forecasting errors rather than explaining the
variance in the data.

The forecasted gold prices generated by the DE/GPR and NARX DE/SVR models hold
significant implications for all the stakeholders in the gold market. For example, investors
and traders can utilize these forecasts to strategize their buying, selling, or holding decisions
regarding gold assets. Through an analysis of the predicted price movements, investors
can devise trading strategies, leveraging the timing of purchases or sales based on expected
trends. Moreover, the forecasts empower traders to identify potential opportunities for
arbitrage or speculation within the gold markets, optimizing their investment portfolios
and capitalizing on market dynamics.

For gold mining companies, the forecasted gold prices offer invaluable insights for
optimizing production strategies. By anticipating future price trends, mining companies
can adjust production levels to maximize profitability. During periods of anticipated price
increases, ramping up production can capitalize on higher prices, while during downturns,
scaling back production helps minimize losses. Financial institutions, including banks
and investment firms, can integrate the forecasted gold prices into their risk management
and portfolio optimization strategies. By managing exposure to gold-related assets more
effectively and hedging against price fluctuations, financial institutions can offer gold-
linked financial products, such as exchange-traded funds (ETFs), tailored to client needs,
enhancing portfolio performance and risk mitigation.

Also, central banks and governments can leverage forecasted gold prices to inform
monetary policy decisions and reserve management practices. As gold prices often reflect
broader economic trends and market sentiment, monitoring these forecasts enables poli-
cymakers to adjust gold reserve holdings and implement policies effectively, stabilizing
economies and managing inflationary pressures. Jewelry and industrial manufacturers
relying on gold as a raw material can optimize procurement and production processes
through forecasted price insights. By negotiating better prices with suppliers and hedging
against price fluctuations with forward contracts or options, manufacturers minimize costs
and enhance operational efficiency. In essence, the forecasted gold prices derived from the
DE/GPR and NARX DE/SVR models provide invaluable guidance across the gold market
landscape, enabling stakeholders to make informed decisions and mitigate risks associated
with gold price volatility.

In conclusion, we hold the belief that there is a bright outlook for research endeavors
that merge hybrid models capable of harnessing the full potential of SVR and GPR models.
Such models have the potential to combine various machine learning techniques, paving
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the way for innovative advancements in the field. Furthermore, these innovative techniques
based on statistical machine learning have proven to be better than classical time-series
techniques such as the ARIMA model at foretelling the price of other metals such as
copper [43] and thermal coal [72] or even the forecasting of pollution incidents [73].

Finally, it can be said that researchers can explore various methodologies to develop
more accurate and reliable forecasting models for gold prices, including long short-term
memory (LSTM) [74], Prophet [75], ensemble methods, hybrid models, deep learning archi-
tectures [76], etc. LSTM is a type of recurrent neural network and is effective at capturing
long-term dependencies in sequential data, making it promising for forecasting tasks in
financial markets. Prophet, developed by Facebook, is tailored to handle time-series data
with strong seasonal patterns, making it suitable for forecasting gold prices, which exhibit
complex seasonal and cyclical patterns. Ensemble methods combine multiple models to
improve predictive performance, while hybrid models integrate different techniques to
leverage their complementary strengths. Deep learning architectures like convolutional
neural networks [77] and transformer-based models [78], offer additional avenues for
exploring and understanding gold price dynamics, enabling researchers to develop more
informed decision-making tools for the gold market.
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Abstract: Graph neural networks (GNNs) have been highly successful in graph representation
learning. The goal of GNNs is to enrich node representations by aggregating information from
neighboring nodes. Much work has attempted to improve the quality of aggregation by introducing
a variety of graph information with representational capabilities. The class of GNNs that improves
the quality of aggregation by encoding graph information with representational capabilities into
the weights of neighboring nodes through different learnable transformation structures (LTSs) are
referred to as implicit GNNs. However, we argue that LTSs only transform graph information into
the weights of neighboring nodes in the direction that minimizes the loss function during the learning
process and does not actually utilize the effective properties of graph information, a phenomenon that
we refer to as graph information vanishing (GIV). To validate this point, we perform thousands of
experiments on seven node classification benchmark datasets. We first replace the graph information
utilized by five implicit GNNs with random values and surprisingly observe that the variation range
of accuracies is less than ± 0.3%. Then, we quantitatively characterize the similarity of the weights
generated from graph information and random values by cosine similarity, and the cosine similarities
are greater than 0.99. The empirical experiments show that graph information is equivalent to
initializing the input of LTSs. We believe that graph information as an additional supervised signal to
constrain the training of GNNs can effectively solve GIV. Here, we propose GinfoNN, which utilizes
both labels and discrete graph curvature as supervised signals to jointly constrain the training of the
model. The experimental results show that the classification accuracies of GinfoNN improve by two
percentage points over baselines on large and dense datasets.

Keywords: graph neural network; graph information; joint training; graph curvature

MSC: 68-XX

1. Introduction

Graph neural networks (GNNs) have achieved great success on a wide range of
graph analysis tasks, such as recommender systems [1,2], traffic flow prediction [3,4],
and biochemistry research [5,6]. The success of GNNs is mainly attributed to adaptively
enriching the representations of target nodes by aggregating the features of neighboring
nodes in a supervised learning paradigm, which can be summarized as the message-passing
neural network framework (MPNN) [7]. The MPNN generates node representations by
iteratively transforming, aggregating, and updating the features of neighboring nodes.
The transformation and update operations usually correspond to linear transformations
and nonlinear activation functions, respectively, while the aggregation operation is more
complex and valuable. The aggregation operation involves two main aspects: defining the
neighboring nodes and measuring the importance of the neighboring nodes. Many works
designed GNNs that simply utilized the nodes directly connected to the target node as the
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neighboring nodes [8–10], and other designs employed the acquisition of neighboring nodes
by random walk in order to explore rich and diverse local topologies [11,12]. There are
usually three ways to define the weights of neighboring nodes: (1) consider the importance
of all neighboring nodes as equal [5,10,13], (2) use node degree to assign the importance of
neighboring nodes [8], and (3) assign the importance of neighboring nodes implicitly in a
data-driven manner [9,14].

The weights of neighboring nodes that are implicitly generated can adapt datasets
automatically. We refer to GNNs adopting this scheme as implicit GNNs. We reorganize
the pipeline of generating the weights of implicit GNNs into three parts: (1) the graph
information, (2) the learnable transformation structures (LTSs), and (3) the weights of
neighboring nodes, as shown in Figure 1. The graph information is the input of the LTS,
and the weights of neighboring nodes are the output. For example, CurvGN [14] takes
advantage of the Ricci curvature [15] and the multilayer perceptron (MLP) to generate
the weights.

Figure 1. An illustration of the forward propagation pipeline of LTSs in implicit GNNs. BP means
backward gradient propagation.

In general, the weights generated by implicit GNNs are not only adaptive to datasets
but also take advantage of the valuable properties of graph information to enhance the
quality of node representations. However, we argue that the LTSs only transform graph
information into the weights of neighboring nodes in the direction that minimizes the loss
function during training and does not utilize the unique properties of graph information, a
phenomenon that we refer to as graph information vanishing (GIV). To validate this point,
we select five implicit GNNs, CurvGN, PEGN [16], GAT, HGCN [17] and AGNN [18],
and conduct thousands of experiments on 7 node classification datasets. First, we replace
the graph information with the random values obtained by sampling from a 0–1 uniform
distribution. Surprisingly, we observe that the variation range of classification accura-
cies is less than ± 0.3%. Then, we visualize these two types of weights, the difference
between which is difficult to visually perceive. Moreover, we quantitatively characterize
the similarity of the weights generated from graph information and random values by
cosine similarity. The cosine similarities are greater than 0.99 under most conditions. The
experimental results indicate that the weights generated by the LTSs do not retain the
valuable properties of graph information, i.e., the mechanism of implicit GNNs cannot
properly utilize graph information.

We argue that GIV is triggered by the fact that the loss function is task-specific and
not associated with graph information. Assuming the existence of latent optimal weights
that minimize the task-specific loss, the goal of the LTSs is simply to update the learnable
parameters by back propagation so that the learned weights are as close to the latent
optimal weights as possible. If the fitting ability of the LTSs is strong enough, the input can
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be arbitrary in theory. Since the loss function is independent of the graph information, the
weights generated by the LTSs naturally do not retain the properties of graph information.

We also believe that graph information characterizing datasets is essential to improve
the performance of GNNs. According to the above analysis, GIV is caused by the lack of
connection between the loss function and graph information. Intuitively, graph information
can also be used as an auxiliary supervised signal to constrain the training of GNNs, thus
effectively utilizing graph information to enrich the knowledge of GNNs. Inspired by joint
learning [6], we propose GinfoNN, which is able to utilize both supervised signals provided
by labels and auxiliary supervised signals provided by graph information. GinfoNN
decomposes GNNs into two parts, a feature extractor and a task-specific head, while
adding a task–auxiliary head. The task-specific head and task–auxiliary head correspond
to task-specific loss based on the labels and task–auxiliary loss based on graph information,
respectively. In particular, we take the discrete graph curvature [14,19] as an auxiliary
supervised signal that quantifies the structural connectivity of node pairs. Experimental
results show that GinfoNN outperforms the baselines on large and dense datasets. The
ablation experiments also demonstrate the necessity of the discrete graph curvature for
improving the performance of GNNs.

The remainder of this paper is organized as follows. In Section 3, we review the
pipeline of implicit GNNs for computing the weights of neighboring nodes, rederive
five implicit GNNs, and illustrate GIV through empirical experiments. In Section 4, we
describe the framework GinfoNN and the discrete graph curvature in detail. In Section 5,
we evaluate the performance of GinfoNN on node classification benchmark datasets. In
Section 2, we briefly review the related work. Finally, Section 6 discusses several inspiring
issues related to this work, and Section 7 concludes the paper.

2. Related Work

GNNs. GNNs can be divided into spectral GNNs and spatial GNNs. The initial
concept of convolution on the graph [20] is defined based on the spectral graph theory.
This method cannot design spatially localized filters and needs intense computations due
to the matrix eigendecomposition. In order to avoid computing the eigendecomposition
of the graph Laplacian matrix, a truncated expansion of Chebyshev polynomials is em-
ployed to approximate the filter [21]. GCN [8] further simplifies the filter by fixing the
polynomials to 1 and using a renormalization trick. Since spectral GNNs focus on spe-
cific graphs, they face many insurmountable limitations, such as the inability of trained
models to generalize to other graphs, which can be handled well by spatial GNNs. Spa-
tial filters can directly work on the local structure of graphs, and different filters can be
designed for nodes with different-sized neighbors [5]. MoNet [22] proposes a mixture
model to successfully adapt CNN for the non-Euclidean domain and generalize some
previous models. GraphSAGE [10] samples fixed-size neighbors as receptive fields and
uses different methods to aggregate their representations. To assign specific weights for
neighborhood nodes, GAT [9] incorporates the self-attention mechanism into graph con-
volution. CurvGN [14] and PEGN [16] introduced the Ricci curvature and persistence
images as additional knowledge to assign specific weights to channels of node features,
respectively. With the exploration of the connection between GNN and the diffusion model,
diffusion-based GNNs open a new path to improving GNNs. HiD-Net [23] proposes a
new general diffusion framework for unifying GNNs and shows effectiveness on both
homophily and heterophily graphs.

Theoretical analysis. GNNs, as black-box models, arouse wide concern about their
power and limits. The mechanism and oversmoothing problem of GCN are explored and
explained by considering the convolution layer as symmetric Laplacian smoothing [24].
A theoretical framework is proposed for analyzing the discriminative power of GNNs to
distinguish different graph structures [13]. The expressive power of GCNs with deeper
layers is investigated, and a weight normalization strategy is proposed to improve their
expressive power [25]. The expressive power of GNNs for Boolean node classification is
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further analyzed, and adding readout functions acts as an efficient way to increase logical
expressiveness [26]. The explanation of GNNs is also investigated systematically [27].
Besides, some methods contribute to modifying network architectures to improve the
performance of GNNs. SGC [28] simplifies graph convolutional networks to adapt large-
scale graphs by removing nonlinearities weight matrices. Deepgcns [29] expands the layers
of GCN from 2 to 56 layers by referring to the concept of residual/dense connections
in CNN. For the graph classification task, the effect of attention on the readout phase is
analyzed, and a weakly supervised method is proposed to train attention [30]. Note that
the most of analysis works focus on GCN and its variants, which are regarded as explicit
GNNs in this paper. By contrast, the analysis of implicit GNNs is not nearly enough.

Joint learning. Joint learning aims at enriching the supervision signals by utilizing
various attributive and topological graph information. Utilizing attributive information
to generate pseudo labels can boost the adversarial robustness of GNNs [31]. M3S [32]
proposes a multistage joint-training mechanism by using the K-means clustering algorithm.
PairwiseDistance [33] regards the shortest distance between two nodes as the auxiliary
supervision signal. Centrality Score Ranking [34] recovers the relative order of centrality
scores between pairwise nodes as the auxiliary task. GPN [35] develops a bilevel opti-
mization framework to simultaneously optimize the graph generator and the downstream
predictor. Implementing an adversarial solution in the joint learning paradigm can learn
causal independence and achieve graph out-of-distribution generalization [36]. Joint learn-
ing has been shown to improve the performance and adversarial robustness of GNNs by
exploiting valuable graph information, which can actually utilize graph information and
solve GIV naturally.

3. Implicit GNNs

3.1. Implicit GNNs: A Unified View

In this section, we first summarize several key components of GNNs and further sort
out the pipeline for implicit GNNs to compute the weights of neighboring nodes.

Key components of GNNs. GNNs consist of a message-passing phase and a readout
phase in the message-passing neural network framework (MPNN) [7]. The message-
passing phase is on the node level, while the readout phase is on the graph level. We only
focus on the message-passing phase, on which the weights of neighboring nodes have a
significant effect. In general, the forward propagation formula for message passing can be
summarized as

hl
i = Υl

(
hl−1

i ,�j∈N (i)Φ
l
(

hl−1
i , hl−1

j , el−1
i,j

))
(1)

where hl−1
i ∈ RF is the representation of the node i on the l − 1 layer, F indicates the

dimension of the node feature, ei,j ∈ RD is the feature of the edge from node i to node j, D
indicates the dimension of the edge feature, N (i) is the neighboring nodes of node i, Υ and
Φ are differentiable functions, and � is a differentiable, permutation-invariant aggregation
function, e.g., sum, mean, or max.

hl
i = σl

(
�j∈N (i)

(
τl

i,jW
lhl−1

j

))
, (2)

τl
i,j = Δl−1

(
el−1

i,j

)
(3)

where σ is the activation function, W is a matrix of filter parameters, τi,j is the weight of the
node feature from node j to node i, and Δ is a transformation function.

The forward propagation formulas of mostly spatial GNNs can be simplified for the
aggregation part and the reweight part. The corresponding formulas are Equation (2) and
Equation (3), respectively. If Δ needs to be learned, such as MLP, the GNN is referred to as
an implicit GNN; otherwise, it is referred to as an explicit GNN. In other words, we classify
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GNNs as explicit GNNs or implicit GNNs according to whether the weights of neighbors
need to be learned.

The pipeline of generating the weights for implicit GNNs. For implicit GNNs,
edge feature ei,j is interpreted as graph information, which helps to assign the weights of
neighbors in aggregation, and Δ is referred to as the learnable transformation structure
(LTS). A common assumption behind implicit GNNs is that ei,j can help GNNs by learning
more knowledge about datasets, and the LTS ensures that τi,j automatically adapts datasets
in a data-driven manner. The pipeline of implicit GNNs is shown in Figure 2, and the
role of LTS is illustrated at the bottom of Figure 2. Some popular GNNs, such as CurvGN,
PEGN, GAT, HGCN, and AGNN, can be rederived into the pipeline. The benefit of this
protocol is to help us unify the analysis and the understanding of GIV for implicit GNNs.
The graph information ei,j and the corresponding LTSs utilized by these five models are
shown in Table 1.

Figure 2. A pipeline of implicit GNNs. The top part of the figure is the aggregation of GNNs, while
the bottom part of the figure is the reweight part. Given the dataset and the network architecture, we
assume the task-specific loss function forces the LTSs to learn the latently optimal weight distribution
during training.

Table 1. Summary of graph information and LTS for the five implicit GNNs.

Model Graph Information (ei,j) LTS (Δ)

CurvGN Ricci curvature MLP

PEGN Persistence image MLP

GAT
(

hi‖hj

)
Attention mechanism

HGCN
(

logK(hi)‖ logK
(

hj

))
MLP

AGNN cos
(

hi · hj

)
A learnable parameter

3.1.1. Special Case 1

When utilizing the CurvGN model, it is assumed that the Ricci curvature can endow
GNNs with more discriminative power. The Ricci curvature is a measure whose result
indicates whether the structural relationship between a pair of nodes is tight or alienated.
The neighbors of pairwise nodes in the same community often have many shortcuts and
largely overlap. If the Ricci curvature of edges connecting two communities is positive,
then information should be easily exchanged between the corresponding nodes, and if this
is negative, then information is not easily exchanged between the corresponding nodes.

The Ricci curvature is the graph information of CurvGN, and the two-layer MLP is
the LTS. The formula of the reweight part is
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τl
i,j = SOFTMAXj∈N (i)

(
MLPl(ei,j

))
(4)

where SOFTMAXj∈N i represents an individual normalization for each channel of the node
features. The dimension of τl is set to the same as hl . Therefore, τl can give separate
weights to each channel of the node features to make the model more discriminative. The
aggregation part of CurvGN is formulated as

hl
i = σ

⎛⎝ ∑
j∈N (i)

diag
(

τl
i,j

)
Wlhl−1

j

⎞⎠ (5)

3.1.2. Special Case 2

PEGN argues that local structural information of graphs can improve the adaptability
of GNNs to large graphs with heterogeneous topology. PEGN uses persistence homology, a
principled mathematical tool, to describe the loopiness of nodes’ neighbors, which measures
the information transmission efficiency of each node. PEGN utilizes persistence images to
quantitatively characterize the persistence homology of each edge.

PEGN refers to persistent images of graphs as graph information. The reweight part
and aggregation part of PEGN is the same as that of CurvGN. PEGN also selects a two-layer
MLP as the LTS of the model.

3.1.3. Special Case 3

GAT aims to address the limitations of spectral GNNs by implicitly computing the
weights of neighboring nodes. GAT introduces the self-attention mechanism to automati-
cally transform the hidden representation of nodes into the attention coefficients which are
treated as weights of neighbors.

The graph information introduced by GAT is the vector that concatenates the hidden
features of pair-wise nodes ei,j =

(
hi||hj

)
, ei,j ∈ R2F′ , and || represents the concatenation

operation. The formula of GAT’s reweight part is

τi,j = SOFTMAXj∈N (i)

(
�aTWei,j

)
(6)

where the weight matrix W ∈ R2F′×2F′ and the weight vector�a ∈ R2F′ are shared by all
information. The LTS of GAT is�aTW. To ensure the stability of training, GAT also utilizes a
K-head attention mechanism. The formula of the aggregation part is given by

hl
i = σ

⎛⎝ ∑
j∈N (i)

K

∏
k=1

(
τk

i,jW
khl−1

j

)⎞⎠ (7)

3.1.4. Special Case 4

HGCN extends GNNs from Euclidean space to hyperbolic space and aims to solve
the distorted deformation when graphs are hierarchical or scale-independent in Euclidean
space. HGCN first maps node features to the hyperboloid manifold by exponential mapping
and then maps node features in the hyperboloid space to the tangent space by logarith-
mic mapping. Since the tangent space is Euclidean and isomorphic to Rd, the whole
computation of the aggregation part is in the tangent space. The output generated by
aggregation is then mapped to the hyperbolic space by an exponential mapping. Finally,
HGCN implements GNN in hyperbolic space.

HGCN takes the concatenated vector of hidden features of two nodes on the edge in
the tangent space as graph information ei,j =

(
logK(hi)‖ logK(

hj
))

, where K denotes the
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hyperbolic curvature. To transform graph information as the weight of node features, MLP
is used as the LTS. So, the formula of the reweight part is

τl
i,j = SOFTMAXj∈N (i)

(
MLPl(ei,j

))
(8)

where τ ∈ R is the weight of node j to node i. The formula of the aggregation part is

hl
i = expK

⎛⎝ ∑
j∈N (i)

τl
i,j logK

(
hl−1

j

)⎞⎠ (9)

Note that some operations, such as the activation function in hyperbolic space, are
omitted to highlight the core of HGCN. For more details, please see [17].

3.1.5. Special Case 5

AGNN is a special kind of GNN, which does not use the weight matrix to transform
the node features in the aggregation process but only uses the attention propagation matrix
to aggregate the node features. The attention propagation matrix is generated by a special
attention mechanism in a data-driven mode. AGNNs argue that the mechanism is able to
gain more accurate predictions by learning the dynamic and adaptive weights of neighbors.

The AGNN uses the cosine of the hidden features of the two nodes on the edge as
graph information ei,j = cos

(
hi · hj

)
∈ R, and cos

(
hi · hj

)
= hT

i hj/‖hi‖
∥∥hj

∥∥. Then, the
attention mechanism of AGNN is the reweight part, which is calculated as

τl
i,j = SOFTMAXj∈N (i)

(
βl ei,j

)
(10)

where βl is a learnable scalar, which is the TLS of the AGNN. If node i and node j are not
connected, the corresponding value of the attention propagation matrix is 0. Therefore, the
formula of the aggregation can be rewritten as

hl
i = ∑

j∈N (i)
τl

i,jh
l−1
j (11)

3.2. Graph Information Vanishing of Implicit GNNs
3.2.1. The Effect of Random Values Substituting Graph Information

We explore the impact of replacing graph information with random values on implicit
GNNs. See Section 5.1 for more information on the datasets. To avoid randomness and
ensure reproducibility, we select three random seeds, which are 0, 10, 100. Then, we
randomly sample from a 0–1 uniform distribution and replace the generated random
values with graph information, with the corresponding models being model_0, model_10,
and model_100, respectively. We compare the classification accuracies of the five implicit
GNNs and their corresponding random-value substituting models on seven benchmark
datasets, as shown in Table 2. Experimental results suggest that replacing graph information
with random values causes almost no performance degradation of implicit GNNs. The best
results on different datasets are distributed between implicit GNNs and implicit GNNs
with random values among the five sets of models. Note that the difference in accuracies
between implicit GNNs and implicit GNNs with random values is small and less than
0.3 percent on most datasets. It illustrates that replacing the graph information with random
values has almost no impact on the performance of implicit GNNs. For the LTS, the roles
of graph information and random values appear to be equivalent, i.e., to provide the
initialization input of the LTS.

On large and dense datasets, the accuracies of the AGNN are slightly better than that
of AGNN_*. The reason is that the LTS of the AGNN is a learnable parameter that only
exponentially scales up or down the cosine values between neighboring nodes. Due to the
smoothing capability of GNNs, the node features tend to be similar and their corresponding
cosine values are relatively large when a pair of nodes shares more neighboring nodes.
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The cosine operation slightly enhances the discriminative power of the model when the
transformation power of LTS is insufficient. However, we also notice that the transformation
ability of LTS of AGNN is too weak, resulting in the accuracies on large and dense datasets
being much lower than that of other models with strong transformation ability of LTS. If
we change the LTS to a self-attention mechanism, i.e., change the AGNN to GAT, replacing
graph information with random values will have almost no impact on the performance of
implicit GNNs.

We note that no particular implicit GNNs perform optimally on all datasets. It sug-
gests that the possible direction to improve the performance of the GNN models may be
to explore novel network architecture with better generalization capability rather than
introducing different types of graph information as the input of LTS.

Table 2. Summary of statistic results in terms of comparing different implicit GNNs with the
corresponding GNNs with random values on seven benchmark datasets. OOM means out of memory.

Methods Cora CiteSeer PubMed Coauthor CS
Coauthor
Physics

Amazon
Computers

Amazon
Photo

CurvGN 82.1 ± 0.6 71.8 ± 0.6 79.0 ± 0.4 92.3 ± 0.3 93.3 ± 0.3 84.0 ± 0.6 91.2 ± 0.6
CurvGN_0 82.2 ± 0.4 71.5 ± 0.5 78.9 ± 0.4 92.3 ± 0.4 93.4 ± 0.2 84.1 ± 0.6 91.1 ± 0.6
CurvGN_10 82.1 ± 0.5 71.6 ± 0.5 78.9 ± 0.4 92.5 ± 0.3 93.4 ± 0.2 83.9 ± 0.6 91.2 ± 0.5

CurvGN_100 81.9 ± 0.5 71.6 ± 0.7 78.9 ± 0.3 92.4 ± 0.4 93.4 ± 0.3 83.8 ± 0.6 91.2 ± 0.6

PEGN 82.1 ± 0.6 71.7 ± 0.6 79.0 ± 0.3 92.5 ± 0.4 93.3 ± 0.3 82.3 ± 0.8 91.7 ± 0.6
PEGN_0 82.1 ± 0.6 71.6 ± 0.6 78.9 ± 0.3 92.3 ± 0.4 93.4 ± 0.3 83.6 ± 0.7 91.8 ± 0.5

PEGN_10 82.2 ± 0.7 71.6 ± 0.7 78.9 ± 0.3 92.5 ± 0.3 93.4 ± 0.3 83.2 ± 0.7 91.7 ± 0.5
PEGN_100 82.3 ± 0.5 71.7 ± 0.6 78.9 ± 0.4 92.3 ± 0.3 93.3 ± 0.3 83.3 ± 0.6 91.9 ± 0.6

GAT 82.7 ± 0.7 71.6 ± 0.8 77.7 ± 0.5 91.2 ± 0.4 92.5 ± 0.6 83.2 ± 1.0 91.9 ± 0.8
GAT_0 82.5 ± 0.7 71.6 ± 0.8 77.7 ± 0.4 91.2 ± 0.4 92.4 ± 0.3 83.3 ± 0.7 91.7 ± 0.4

GAT_10 82.6 ± 0.6 71.7 ± 0.7 77.7 ± 0.4 91.2 ± 0.4 92.5 ± 0.4 83.2 ± 0.8 91.7 ± 0.5
GAT_100 82.5 ± 0.7 71.5 ± 1.0 77.6 ± 0.4 91.2 ± 0.5 92.4 ± 0.4 83.3 ± 0.8 91.6 ± 0.6

HGCN 81.2 ± 1.5 67.8 ± 1.3 76.9 ± 0.7 91.3 ± 0.6 OOM 81.7 ± 1.2 91.2 ± 0.8
HGCN_0 81.4 ± 1.2 67.8 ± 1.6 77.2 ± 0.6 91.4 ± 0.6 OOM 81.3 ± 1.2 90.5 ± 0.8
HGCN_10 81.1 ± 1.3 68.1 ± 1.3 77.2 ± 0.8 91.5 ± 0.6 OOM 81.3 ± 1.3 90.4 ± 0.9
HGCN_100 81.2 ± 1.3 68.0 ± 1.3 77.0 ± 0.8 91.5 ± 0.5 OOM 81.2 ± 1.2 90.6 ± 0.8

AGNN 82.2 ± 0.6 71.0 ± 0.7 78.6 ± 0.3 90.5 ± 0.4 92.0 ± 0.2 77.4 ± 1.1 90.1 ± 0.8
AGNN_0 82.6 ± 0.6 71.5 ± 0.6 77.3 ± 0.4 89.6 ± 0.4 91.8 ± 0.3 76.6 ± 0.8 87.8 ± 0.8

AGNN_10 82.0 ± 0.6 70.7 ± 1.0 77.4 ± 0.2 89.7 ± 0.3 91.6 ± 0.3 76.5 ± 0.9 87.8 ± 0.7
AGNN_100 81.5 ± 0.8 71.5 ± 0.7 78.2 ± 0.3 89.9 ± 0.4 91.8 ± 0.3 76.1 ± 1.0 87.9 ± 0.7

3.2.2. Similarity of Weights of Neighbors

We qualitatively and quantitatively show that the weights of neighboring nodes
obtained from the random values models are highly similar to those obtained from the
original models. Without loss of generality, we select GATs and CurvGNs for detailed
analysis. Figure 3 visualizes the weights of neighbors of GAT, GAT_0, CurvGN, and
CurvGN_0 in the first layer on different datasets. Note that Citeseer is a relatively sparse
and small dataset, and Computer is a relatively dense and large dataset. Regardless of
the structure of the graphs, we hardly perceive the difference in the weights of neighbors
between GAT and GAT_0 with our eyes. The phenomenon is also present on CurvGN.
Due to the different network architectures between GAT and CurvGN, there are some
small observable differences in their weights of neighbors. It qualitatively illustrates that
even taking completely different graph information, LTS has the ability to transform it into
highly similar weights of neighboring nodes.

We quantitatively characterize the similarity of weights of neighbors through the
cosine similarity. Since the weights of neighboring nodes may be a matrix, we first need
to reduce the dimensionality from matrix form to vector form. We observe that there is
almost no difference in the colors of the same column of Figure 3, which indicates that
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the difference in the values of the weights in different channels is very small. Further, we
quantitatively measure the average variation in the weights across channels using

C(Am×n) =
∑n

j ∑m
i

∣∣∣ai,j −
∑m

k ak,j
m

∣∣∣
m× n

(12)

where A indicates the weights of neighboring nodes, m is the dimension of A, n is the
number of edges. The above formula actually measures the average absolute difference
between the values of different channels compared with the mean values. The average
absolute difference in hidden layers’ weights for different models on benchmark datasets
is shown in Table 3. We found that the average absolute difference in weights of different
channels is quite small and can be negligible. Therefore, we use averaging over channels
to reduce the weights of neighbors in matrix form to vector form �A and then compute the
cosine similarity to compare the similarity of different weights. The formula of the cosine
similarity is shown as

cosineSIM
(−→τ1 ,−→τ2

)
= 0.5

−→τ1 · −→τ2∣∣−→τ1
∣∣× ∣∣−→τ2

∣∣ + 0.5. (13)

Figure 3. An illustration of visualization of hidden layer’s weights of neighbors for different models
on different datasets: (a) Weights of neighbors on Citeseer and (b) weights of neighbors on Amazon
Computers. The vertical axis of each subgraph represents the dimension of the weights of neighbors.
The horizontal axis of the subgraph is divided into two parts, where 0 to 1 represents the weights of
edges, and 1 to 2 represents the weights of self-loops.

We select cosine similarity to quantify the high similarity of the weights of neighboring
nodes generated by graph information and random values, as shown in Table 4. For GAT,
CurvGN, and PEGN, Table 4 shows that the cosine similarity of the weights exceeds
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0.99 in most cases. We notice a small decrease in the similarity of the weights for GAT
on Coauthor CS and Coauthor Physics. The reason is that GAT uses 128-dimensional
vectors as graph information and the LTS has insufficient learning ability on relatively large
and dense datasets. Highly similar weights of neighbors illustrate that replacing graph
information with random values has almost no effect on implicit and also explains the
results of Table 2 and Figure 3. A large number of experiments confirm the existence of
GIV for implicit GNNs.

Table 3. Summary of consistency of hidden layers’ weights of neighbors for different models.

Methods Cora CiteSeer PubMed

GAT 6.7 × 104 1.6 × 104 5.9 × 104

GAT_0 9.8 × 103 7.6 × 103 9.1 × 103

CurvGN 1.2 × 104 1.6 × 104 8.7 × 106

CurvGN_0 1.5 × 104 1.5 × 104 6.9 × 105

Table 4. Summary of cosine similarity of hidden layer’s weights of neighbors for LTS with different
graph information. Keep 4 decimal places and round off the rest.

Methods Cora CiteSeer PubMed CS Physics

GAT, GAT_0 0.9998 1.0 0.9998 0.9972 0.9984
CurvGN, CurvGN_0 1.0 1.0 1.0 1.0 1.0

PEGN, PEGN_0 1.0 1.0 1.0 1.0 1.0

4. Ginfonn: Graph Curvature Boosts GNNs

In this section, we first detail a kind of graph information that characterizes the
structural relationship of pairwise nodes, the Ricci curvature, which is the same as the graph
information utilized by CurvGN. Inspired by Joint Training [33], we develop GinfoNN,
which effectively exploits the Ricci curvature by treating it as an auxiliary supervised
signal. This way inherently solves GIV, which means that GinfoNN exactly makes use of
graph information.

4.1. The Ricci Curvature

Curvature is able to qualitatively measure the degree of curvature in space. In Eu-
clidean space, curvature measures the degree to which a curve deviates from a straight line,
or a surface deviates from a plane. In Riemannian geometry, curvature measures the degree
to which a local manifold deviates from Euclidean space, and Ricci curvature portrays its
deviation in the orthogonal direction. Ollivier et al. [19] generalize the Ricci curvature from
continuous space to discrete space by means of optimal transport theory, e.g., graph.

The Ricci curvature on the graph measures the extent of overlap or connection of
pairwise nodes to neighboring nodes. The Ricci curvature treats the target node i and
its neighboring nodes as a kind of probability distribution mi. We consider any proba-
bility distribution as an object of mass 1. Now, we want to know the minimum average
mass-preserving transportation plan for transferring the mass of mi to mj, known as the
Wasserstein distance W

(
mi, mj

)
. Naturally, the larger the Wasserstein distance of a pair of

nodes, the weaker the connection between the two nodes, and vice versa. Besides, the Ricci
curvature also takes the shortest distance between two nodes d(i, j) into account. The Ricci
curvature of an edge eij can be formulated as

cij = 1−
W

(
mi, mj

)
d(i, j)

(14)
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We choose a simple and effective probability distribution with a hyperparameter α, as
in [15]. Following the existing work [37], we set α = 0.5. For an undirected and unweighted
graph G = (V , E), the probability distribution of the node j with degree k can be

mi(j) =

⎧⎨⎩
α if j = i

(1− α)/k if j ∈ N (i)
0 otherwise

(15)

The Ricci curvature contains a wealth of local structural information from the perspec-
tive of graph theory. In general, we consider the (infinitely extended) grid as a plane on
the graph, and all its nodes are structurally equivalent. The Ricci curvature, on the other
hand, portrays the direction and degree of deviation of the local structure with respect to
the grid. If the curvature is negative, the neighboring nodes of these two nodes tend to
be separated. If the curvature on the edges is positive, it indicates that these two nodes
are relatively closely connected structurally, as their neighboring nodes tend to converge.
Furthermore, a subgraph constitutes a community structure if the curvature of most of its
edges is positive [38]. Since the Ricci curvature can appropriately characterize the relation-
ship of pairwise nodes on the local structure, we choose the Ricci curvature as the auxiliary
supervision signal.

4.2. The Framework of GinfoNN

Inspired by joint learning, we developed GinfoNN, which can effectively exploit the
properties of graph information. The goal of joint learning is to improve the generalization
of the model by simultaneously minimizing the objective function of the downstream task
and the auxiliary task. We briefly introduce the workflow of joint learning on GNNs, as
shown in Figure 4. Joint learning can be divided into three parts: (1) a feature extractor;
(2) a downstream task head and (3) an auxiliary task head. First, we need a feature
extractor to transform node features into node representations, which can be arbitrary
types and numbers of layers of GNNs. Based on the extracted node representations, the
downstream task head transforms the features into prediction results and the auxiliary
task head transforms the features into the corresponding output. Both the downstream
task head and the auxiliary task head can be either a GNN or a linear transformation layer.
Finally, we jointly optimize the objective functions of the downstream and auxiliary tasks.

Figure 4. An overview of the GinfoNN framework.

Feature Extractor. The Feature extractor is a layer of spatial GNNs that learns the
weights of neighboring nodes and aggregates the node features of neighboring nodes
according to the weights. According to the experimental results of AGNN on large and
dense datasets, we want to utilize the node features as much as possible. Therefore, we
choose the 2-layer MLP as the LTS to convert the concatenated node features into weights.
The calculation formula is shown as
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τi,j = Softmax
(

MLP
(

Wh0
i ‖Wh0

j

))
(16)

where ||means the concatenation operator. The forward propagation formula of the feature
extractor is

h1
i = σ

⎛⎝ ∑
j∈N (i)

τi,jWh0
j

⎞⎠ (17)

where σ() means the activation function, which is the ReLU function.
Downstream Task Head. The downstream task head is a layer of spatial GNNs, which

transforms the latent node representations generated by the feature extractor into the target
node representations for a specific task. To improve the computational efficiency, we do not
calculate the weights of neighboring nodes in this layer, instead, use the weights obtained
by the feature extractor directly. The forward propagation formula of the downstream task
head is

h2
i = ∑

j∈N (i)
τi,jWh1

j (18)

Auxiliary Task Head. The auxiliary task head is a transformation function, which
transforms the latent node representations generated by the feature extractor into the Ricci
curvature. Then, we choose a two-layer MLP as the auxiliary task head. Note that the Ricci
curvature is edge-specific. We need to use the cosine function to transform the outputs of
those two nodes of an edge into a scalar. The forward propagation formula of the auxiliary
task head is shown as

gi,j = cos
(

MLP
(

h1
i

)
, MLP

(
h1

j

))
(19)

where cos indicates the cosine function.
Loss Function. The loss function of GinfoNN consists of the downstream task loss

and the auxiliary task loss. Since the benchmark datasets are for node classification, we
select the cross entropy as the downstream task loss. For the auxiliary task, we notice
that the Ricci curvature is continuous and is distributed in [−1, 1]. We select the mean
squared error (MSE) as the auxiliary loss function. Besides, we also adjust the importance
of task–auxiliary loss through the hyperparameter α. The loss function of GinfoNN is

Loss = CrossEntropy
(

h2
i , yi

)
+ α

∥∥gi,j − ci,j
∥∥

2 (20)

where yi is the one-hot encoding of node labels, and ci,j is the Ricci curvature of edge ei,j.
GinfoNN utilizes both label information and the Ricci Curvature to improve the

generalization of GNNs. Unlike CurvGN which uses the Ricci Curvature as the input
of LTS, GinfoNN uses it as the supervision signal of the auxiliary task head. GinfoNN
effectively solves GIV and improves the performance of the model by exploiting the Ricci
Curvature. In this way, we can easily and effectively take advantage of various graph
information to enrich and improve the performance and knowledge of GNNs.

5. Experiments and Results

5.1. Databases

We select seven node classification benchmark datasets: Cora, Citeseer, PubMed,
Coauthor CS, Coauthor Physics, Amazon Computers, and Amazon Photos. The detailed
statistics of these seven datasets are shown in Table 5. For all datasets, the training set con-
sists of 20 nodes per class, the validation set has 500 nodes, and the test set has 1000 nodes.
Cora, Citeseer, and PubMed [39] have been widely used to evaluate the performance of
GNNs, while these three benchmark datasets suffer from the disadvantages of a small
total number of nodes and sparse connections. We added four more datasets, Coauthor
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CS, Coauthor Physics, Amazon Computers, and Amazon Photos, with a relatively larger
number of nodes, number of edges, and average node degree. Coauthor CS and Coauthor
Physics are used in the KDD Cup 2016 challenge and are based on the co-authorship graphs
obtained from the Microsoft Academic Graph. The node features are word vectors extracted
from the keywords of all papers of each author, and the classes represent the most active
research areas of the authors. Amazon Computers and Amazon Photo are subgraphs of the
Amazon co-purchase graph [40] with nodes representing items, edges representing two
items often purchased at the same time, node features extracted from product reviews as
word vectors, and classes representing product categories. We use pytorch_geometric [41]
for the graph data loading and construction. In order to achieve better training for all
models, we adopt feature normalization. All datasets are partitioned in the same way as
in [42].

Table 5. Statistic details of the benchmark datasets used in the experiments.

Datasets Nodes Edges Features Classes Training Nodes Avg. Degree

Cora 2708 5429 1433 7 140 3.90
CiteSeer 3327 4732 3703 6 120 2.74
PubMed 19,717 44,338 500 3 60 4.50

CS 18,333 100,227 6805 15 300 8.93
Physics 34,493 282,455 8415 5 100 14.38

Computers 13,381 259,159 767 10 200 35.76
Photos 7487 126,530 745 8 160 31.13

5.2. Experimental Setup
5.2.1. Baselines

To fairly evaluate the performance of GinfoNN, we chose some other important
GNNs as baselines, in addition to the above five implicit GNNs: CurvGN, PEGN, GAT,
HGCN, and AGNN. These baselines include spectral GNNs and spatial GNNs. GCN
uses node degree to evaluate the importance of neighboring nodes. MoNet [22] not only
proposes a unified framework for GNNs but also generalizes CNNs to non-Euclidean
data, such as graphs and manifolds. GraphSAGE [10] proposed a neighboring sampling
technique and three ways to aggregate neighboring node features and generalize GNNs
from transductive learning to inductive learning. APPNP [11] introduces PageRank into
GNNs and constructs a high-level node propagation mechanism. CGNN [43] explicitly
transforms the Ricci curvature into weights in the aggregation process through the negative
curvature transformation module and the curvature normalization module.

5.2.2. Set-Up

To enhance the reproducibility of the experiments, we choose 2021 as the random seed.
We utilize the Adam stochastic gradient descent optimizer with a learning rate of 0.005
and L2 regularization of 0.0005 for training. We initialize the weight matrix with Glorot
initialization. We use an early stopping strategy based on the validation set’s accuracies
with a patience of 100 epochs. In this paper, for all statistic results (Tables 2 and 6), we
repeat 50 experiments (runs) for each model and use the average classification accuracy
of the test set and its standard deviation as the main evaluation metric. For GinfoNN, we
only adjust the hyperparameter α, which represents the importance of the auxiliary task
loss. We train all models on a single Nvidia 2080Ti, and the code for the models is built on
pytorch_geometric [41].
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Table 6. Summary of statistical results in terms of mean test set classification accuracies (in percent)
and standard deviation on seven node classification benchmark datasets. Red numbers mean the best
accuracies, and bolded numbers mean the second-best performance. OOM means out of memory.

Methods Cora CiteSeer PubMed Coauthor CS
Coauthor
Physics

Amazon
Computers

Amazon
Photo

GCN 81.5 ± 1.3 71.9 ± 0.9 77.8 ± 2.9 91.1 ± 0.5 92.8 ± 1.0 82.6 ± 2.4 91.2 ± 1.2
MoNet 81.3 ± 1.3 71.2 ± 2.0 78.6 ± 2.3 90.8 ± 0.6 92.5 ± 0.9 83.5 ± 2.2 91.2 ± 1.3

GraphSAGE 79.2 ± 7.7 71.6 ± 1.9 77.4 ± 2.2 91.3 ± 2.8 93.0 ± 0.8 82.4 ± 1.8 91.4 ± 1.4
GAT 82.7 ± 0.7 71.6 ± 0.8 77.7 ± 0.5 91.2 ± 0.4 92.5 ± 0.6 83.2 ± 1.0 91.9 ± 0.8

AGNN 82.2± 0.6 71.0± 0.7 78.6± 0.3 90.5± 0.4 92.0± 0.2 77.4± 1.1 90.1± 0.8
APPNP 83.3 ± 0.7 72.3 ± 0.4 80.2 ± 0.2 92.5 ± 0.2 93.3± 0.2 83.2± 0.7 91.7± 0.7
HGCN 81.2± 1.5 67.8± 1.3 76.9± 0.7 91.3± 0.6 OOM 81.7± 1.2 91.2± 0.8

CurvGN 82.1± 0.6 71.8± 0.6 79.0± 0.4 92.3± 0.3 93.3± 0.3 84.0 ± 0.6 91.2± 0.6
PEGN 82.1± 0.6 71.7± 0.6 79.0 ± 0.3 92.5± 0.4 93.3± 0.3 82.3± 0.8 91.7± 0.6
CGNN 81.6± 0.6 71.6± 0.6 78.2± 0.4 93.0 ± 0.3 93.5 ± 0.4 83.5± 0.6 91.6± 0.4

GinfoNN 83.2 ± 0.7 71.9 ± 0.5 79.0± 0.7 92.3± 0.5 93.7 ± 0.5 85.0 ± 0.7 93.1 ± 0.6

5.3. Curvature Boosts Generalization

The mechanism of GinfoNN and the structural property of the Ricci curvature improve
the generalization of GNNs together. The classification accuracies and F1-score of GinfoNN
and the baselines on the seven node classification benchmark datasets are shown in Table 6 and
Table 7, respectively. Experimental results evaluated by both accuracy and weighted F1-score
indicate that GinfoNN outperforms the baselines on large and dense datasets. The reason is
that Ricci curvature effectively describes the interactions between neighboring nodes within
the local topological structure, serving as a kind of unique and valuable graph information.
Preserving this information promotes the model to distinguish the categorical properties of
nodes and edges. Explicitly leveraging the learning of Ricci curvature as an auxiliary task
not only prevents the vanishing of graph information represented by Ricci curvature but
also acts as a supervision signal as a constraint of learning node representations. Therefore,
GinfoNN provides GNNs with the Ricci curvature as an auxiliary but valuable supervision
signal, effectively compensating for the shortcomings. It enables GinfoNN to perform the best
classification on large and dense datasets. As shown in Figure 5, it can be observed that the
four added datasets exhibit a significant imbalance of categorical distribution, which affects
the propagation of label information across the whole graph. Due to the small proportion
of labeled nodes (20 nodes per class), the supervision signal provided by labels on large-
scale datasets is insufficient to transmit to the full graph. This imbalance of global spatial
distribution makes it even more challenging for the signal to transmit effectively.

Table 7. Summary of statistical results in terms of mean test set classification F1-score (in percent) and
standard deviation on seven node classification benchmark datasets. We adopted the weighted form
of the F1-score. Red numbers mean the best accuracies, and bolded numbers mean the second-best
performance. OOM means out of memory.

Methods Cora CiteSeer PubMed Coauthor CS
Coauthor
Physics

Amazon
Computers

Amazon
Photo

GCN 79.2 ± 1.8 70.2 ± 1.4 76.6 ± 3.2 89.9 ± 0.6 91.3 ± 1.4 82.2 ± 3.0 90.3 ± 2.6
MoNet 79.2 ± 2.0 69.4 ± 2.8 78.0 ± 3.3 90.6 ± 1.3 91.1 ± 0.9 82.8 ± 3.2 90.2 ± 2.8

GraphSAGE 77.5 ± 6.8 70.7 ± 2.3 76.2 ± 2.6 91.1 ± 2.4 90.9 ± 1.2 81.9 ± 2.8 90.5 ± 2.0
GAT 81.9 ± 0.7 69.5 ± 1.1 77.6 ± 0.4 91.0 ± 0.5 91.1 ± 0.6 81.5 ± 2.1 91.0 ± 1.5

AGNN 81.6± 1.7 69.6± 1.7 75.9± 0.8 90.3± 0.4 91.0± 0.9 76.8± 2.7 89.6± 1.1
APPNP 82.5 ± 1.1 71.0 ± 1.6 79.0 ± 0.8 91.5 ± 0.4 91.2± 1.9 81.7± 1.4 91.3± 2.2
HGCN 78.9± 2.6 67.5± 1.6 76.0± 0.9 90.8± 1.6 OOM 80.9± 2.3 90.1± 1.4

CurvGN 81.6± 2.0 70.3± 1.4 78.5± 0.9 91.2± 1.4 90.8± 0.6 83.0 ± 1.4 90.1± 1.2
PEGN 81.4± 1.5 70.2± 1.5 78.7 ± 2.0 91.3± 0.8 91.1± 0.8 81.6± 2.2 90.9± 0.9
CGNN 79.8± 1.2 70.2± 1.4 77.4± 1.3 92.4 ± 1.0 92.0 ± 1.4 82.6± 1.7 90.6± 1.6

GinfoNN 82.0 ± 1.0 70.4 ± 1.3 78.7± 1.1 91.4± 0.9 91.5 ± 1.1 83.1 ± 1.6 91.9 ± 1.3
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(a) (b)

(c) (d)

Figure 5. The categorical distribution of four added datasets. The horizontal axis represents different
node categories, and the vertical axis indicates the number of nodes in each category: (a) Photos;
(b) Computers; (c) Physics; (d) CS.

Meanwhile, we find that the performance of APPNP is optimal on small datasets.
This is because APPNP improves the propagation mechanism of node features based on
PageRank, which gives the target node a larger perceptive field. However, GinfoNN still
achieves comparable classification accuracies compared with the baselines. This indicates
that the Ricci curvature as an auxiliary supervision signal does not interfere with the
supervision signal provided by the label and impairs the performance of GNNs. The
experimental results illustrate that auxiliary supervision signals are crucial for improving
the performance of GNNs when the dataset is large, dense, and relatively underlabeled.

5.4. Ablation Experiment

In this subsection, we design the ablation experiment to illustrate the necessity of the
auxiliary task head. If the auxiliary task head is removed, it would impair the generalization
of GinfoNN. Figure 6 shows the classification accuracies of GinfoNN with the auxiliary
task head and GinfoNN with the auxiliary task head removed on the seven benchmark
datasets. We find that the classification accuracies of GinfoNN and GinfoNN_Non are
close on relatively small and sparse datasets. Nevertheless, the classification accuracies of
GinfoNN are significantly better than GinfoNN_Non on the large and dense datasets. In
particular, on the Photo dataset, GinfoNN improves by 1.5 percentage points. This ablation
experiment illustrates that the auxiliary task head effectively improves the generalizability
of GNNs.
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Figure 6. Comparison of predicted accuracies of GinfoNN with and without the auxiliary task head.
GinfoNN_Non means GinfoNN without the auxiliary task head.

6. Discussion

Applications on real-world task scenarios. A graph is a crucial data type widely
present in various fields. Graph representation learning also holds significant practical
value, such as user classification in social networks, risk assessment in financial systems,
recommendation systems, etc. GinfoNN is a general graph representation learner, making
it applicable to various tasks across different domains. Additionally, Ricci curvature
represents different physical meanings in different fields. For example, in transportation
networks, Ricci curvature can be used to identify bottleneck segments [44]. Therefore,
understanding graph data and graph information in real-world applications enables better
adaptation of GinfoNN to practical applications while providing interpretable insights.

Extentions to more learning paradigms and other types of graph information. Ex-
plicitly incorporating the learning of Ricci curvature as a constraint during the model’s
representation learning process can help prevent the model from falling into the GIV
dilemma. In this paper, Ricci curvature is selected as a form of effective graph informa-
tion, and joint learning is chosen as the learning method, providing a preferable way for
addressing the GIV issue. In the future, new learning paradigms such as self-supervised
learning [45,46] and zero-shot learning, as well as the introduction of other types of graph
information, can be further explored.

Generalizations on heterophilic graphs. The selected datasets are all high-homophily,
which is also the main type in graph benchmark datasets. However, there exists a type
of high-heterophily dataset [47], where the interactions between neighboring nodes show
entirely different meanings. Whether Ricci curvature in heterophilic datasets will exhibit
different properties, and whether it can provide equally effective information are questions
that can be explored in the future.

7. Conclusions

In this paper, we find the existence of GIV for implicit GNNs, which leads to that
GNNs do not exploit the property of graph information. We first show that random
value substitution does not significantly affect the performance of implicit GNNs through
extensive experiments. Then, we find that the weights of neighbors generated by the
LTS using different graph information have high similarity from both qualitative and
quantitative perspectives. Empirical experiments suggest that GIV does exist for implicit
GNNs. Inspired by joint learning, we propose GinfoNN, which uses the Ricci curvature
as an auxiliary supervision signal to constrain the training of the feature extractor. The
experimental results show that GinfoNN outperforms baselines on heterogeneously large
and dense datasets. GinfoNN provides new insights into how GNNs can utilize various
valuable graph information.
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