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Preface

The rapid advancement of big data and artificial intelligence (AI) has profoundly transformed

biomedical research and healthcare, enabling more precise diagnoses, personalized treatments, and

innovative medical solutions. This Special Issue, Biomedical Applications of Big Data and Artificial

Intelligence, aims to provide a comprehensive exploration of the intersection between AI, data science,

and medicine. It presents cutting-edge research on topics such as disease diagnosis, medical data

analysis, image processing, cognitive load assessment, survival prediction, and medical knowledge

extraction, offering both theoretical insights and practical applications.

The motivation for this reprint stems from the growing need to bridge the gap between AI-driven

analytics and biomedical challenges. While AI and big data techniques have shown immense potential

in medical applications, challenges such as interpretability, data integration, and robustness remain

critical. By curating state-of-the-art research, we aim to highlight the transformative power of AI and

big data in healthcare, fostering deeper understanding and further advancements in the field.

This reprint is primarily intended for researchers, practitioners, and graduate students in

biomedical engineering, AI, and healthcare technology. It serves as a valuable resource for those

seeking to understand the latest developments in AI-driven biomedical applications and the potential

of big data methodologies in improving patient outcomes.

We extend our heartfelt gratitude to all contributing authors for their insightful research and

dedication. We express special thanks to the peer reviewers for their meticulous evaluations, ensuring

the quality and integrity of the work herein. We also acknowledge the support from our academic

institutions and research communities in fostering an environment conducive to interdisciplinary

collaboration.

We hope that this reprint inspires future research and contributes to ongoing dialog at the

intersection of biomedical science, AI, and big data.

Yan Pei and Jijiang Yang

Guest Editors
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Editorial

Biomedical Applications of Big Data and Artificial Intelligence
Yan Pei 1,*,†,‡ and Jijiang Yang 2,‡

1 Computer Science Division, The University of Aizu, Aizuwakamatsu 965-8580, Japan
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Abstract: This Special Issue of Bioengineering is dedicated to the profound impact of big
data and artificial intelligence (AI) in the fields of biomedical research and healthcare.
In an age defined by the rapid evolution of technology, this Issue explores the dynamic
intersection of AI and data science with medicine. A total of 14 papers were accepted
after a thorough review process, with their topics including disease diagnosis, medical
data analysis, image processing, personalized medicine, pathological image segmenta-
tion, survival prediction, cognitive load assessment, and medical knowledge extraction.
These studies aim to enhance medical image analysis, signal processing, data prediction,
and interpretability to improve diagnostic accuracy, medical efficiency, and personalized
treatment plans for patients. We hope the publication of this Special Issue can offer a com-
prehensive view of the transformative power of these innovative approaches and enrich
research and investigations into the applications of big data and AI in biomedical research
and healthcare.

Keywords: artificial intelligence; big data; image processing; data mining; deep learning;
bioinformatics; bioengineering; healthcare

1. Introduction
The convergence of big data and artificial intelligence (AI) has catalyzed transformative

advancements in the biomedical field, enabling innovative solutions for complex healthcare
challenges [1]. This Special Issue, dedicated to exploring the “Biomedical Applications
of Big Data and Artificial Intelligence”, highlights significant advancements in research
and development, such as disease diagnosis, medical data analysis, image processing,
personalized medicine, pathological image segmentation, survival prediction, cognitive
load assessment, and medical knowledge extraction, etc. From improving diagnostic
accuracy to enhancing personalized treatment plans, these advancements underscore the
potential of integrating AI and big data to revolutionize biomedical research and healthcare.

The 14 articles featured in this Special Issue, including 12 research papers and 2 review
papers, encompass a wide range of topics such as healthcare big data analysis, diagnos-
tic tools, imaging techniques, survival prediction, and explainable AI. Together, these
contributions provide a comprehensive overview of how AI and big data are driving
precision medicine, optimizing healthcare delivery, and advancing our understanding of
complex biomedical phenomena. This editorial delves into the transformative power of
these technologies and their profound implications for the future of biomedical research
and healthcare.

Bioengineering 2025, 12, 207 https://doi.org/10.3390/bioengineering12020207
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2. An Overview of This Special Issue
The 14 papers accepted in this Special Issue can be categorized into four biomedical

research directions: intelligent diagnosis and disease prediction, medical image processing
and pathological analysis, medical signal processing and analysis, and survey and frontier
research perspectives. We summarize these 14 papers from these four perspectives.

2.1. Intelligent Diagnosis and Disease Prediction

The critical issue of diagnostic errors in fuzzy processing, a leading cause of mortality,
is addressed in the article “Trivial State Fuzzy Processing for Error Reduction in Healthcare
Big Data Analysis towards Precision Diagnosis”. This study introduces a Cooperative
Trivial State Fuzzy Processing method that employs fuzzy logic to mitigate uncertainties
and errors in healthcare data. By grouping diagnosis-relevant and irrelevant data, the
proposed method reduces trivial state errors, enhancing the precision of diagnostic out-
comes. This study demonstrates how optimization-based analysis can be effectively applied
to structured healthcare data, marking a significant step forward in reducing diagnostic
inaccuracies.

The study “Wearable 12-Lead ECG Acquisition Using a Novel Deep Learning Ap-
proach from Frank or EASI Leads with Clinical Validation” presents an innovative approach
to portable cardiovascular diagnostics. By reconstructing 12-lead ECGs using a novel deep
learning model, M2Eformer, this research overcomes the limitations of traditional portable
ECG devices. The validation results, including a 96% diagnostic consensus among cardi-
ologists, underscore the clinical utility of the reconstructed ECGs. This work exemplifies
the potential of AI-driven solutions in enhancing accessibility and accuracy in cardiovascu-
lar diagnostics.

The study “Personalized Explanations for Early Diagnosis of Alzheimer’s Disease
Using Explainable Graph Neural Networks with Population Graphs” emphasizes the
importance of explainability in AI-driven medical applications. By leveraging graph con-
volutional networks (GCNs) and population graphs, this research provides insights into
amyloid-beta positivity prediction and the heterogeneity of Alzheimer’s disease progres-
sion. The findings highlight the potential for more nuanced diagnoses and personalized
therapeutic strategies.

“GNN-surv: Discrete-Time Survival Prediction Using Graph Neural Networks” ex-
plores the application of graph neural networks (GNNs) in survival prediction for cancer
patients. By leveraging patient similarity networks built from genomic and clinical data,
GNN-surv achieved significant improvements in survival prediction performance com-
pared to traditional models. This study’s adaptability across various datasets and its
implications for personalized medicine underscore the transformative potential of GNNs
in oncology.

The study “Prediction of Cognitive Load from Electroencephalography Signals Us-
ing Long Short-Term Memory Network” proposes an attention-based LSTM network for
real-time cognitive load prediction using EEG signals. This method achieved the highest
accuracy, outperforming traditional algorithms, and can enable adaptive systems to dynam-
ically respond to users’ mental states, enhancing applications like personalized learning
and fatigue detection.

2.2. Medical Image Processing and Pathological Analysis

In “Elucidating Multimodal Imaging Patterns in Accelerated Brain Aging: Hetero-
geneity through a Discriminant Analysis Approach Using the UK Biobank Dataset”, the
authors explore the heterogeneity of accelerated brain aging (ABA). Utilizing multimodal
imaging data and semi-supervised heterogeneity analysis (HYDRA), this study identified

2
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three distinct ABA subtypes, each associated with unique structural and functional charac-
teristics. These findings highlight the potential for personalized neuroprotective treatments
targeting age-related neurological and neuropsychiatric disorders.

The article “RGGC-UNet: Accurate Deep Learning Framework for Signet Ring Cell
Semantic Segmentation in Pathological Images” addresses challenges in the diagnosis of
signet ring cell carcinoma. The proposed RGGC-UNet framework incorporates residual
ghost blocks and ghost coordinate attention to achieve high segmentation accuracy while
minimizing computational overhead. By enriching existing datasets with annotated mask
labels, this study provides a valuable resource for advancing pathological image analysis.
The results demonstrate the efficacy of deep learning frameworks in enhancing diagnostic
precision for complex pathological conditions.

The article “RGSB-UNet: Hybrid Deep Learning Framework for Tumor Segmentation in
Digital Pathology Images” proposes a novel UNet-based architecture that combines residual
ghost blocks and bottleneck transformers. This hybrid framework addresses the limitations of
traditional CNN-based methods by capturing global features and achieving state-of-the-art
segmentation performance. The integration of class-wise dice loss (CDL) further enhances the
model’s effectiveness, as demonstrated on multiple pathology datasets. Such advancements
are pivotal in automating and improving tumor segmentation processes.

“Exploring the Possibility of Measuring Vertebrae Bone Structure Metrics Using MDCT
Images: An Unpaired Image-to-Image Translation Method” tackles the challenge of evalu-
ating bone structure metrics in vivo. By employing an unpaired image-to-image translation
method, this study generated micro-CT-like images from MDCT scans, enabling accurate
measurement of bone metrics. The proposed approach demonstrates significant improve-
ments in both similarity and bone structure metrics, offering a practical solution for the
early diagnosis of fragility fractures.

The paper “GSN-HVNET: A Lightweight, Multi-Task Deep Learning Framework for
Nuclei Segmentation and Classification” presents GSN-HVNET, a compact deep learning
framework for simultaneous nuclei segmentation and classification in pathology images.
By integrating novel computational blocks, it improves efficiency and accuracy compared to
state-of-the-art methods. The model demonstrates practical value in pathological diagnosis
by reducing redundancy and computational costs.

2.3. Medical Signal Processing and Analysis

The paper “Physiological Noise Filtering in Functional Near-Infrared Spectroscopy
Signals Using Wavelet Transform and Long-Short Term Memory Networks” proposes a
method to filter physiological noise in fNIRS signals without using the desired hemody-
namic response function (dHRF). It employs wavelet transform to extract low-frequency
noise components from resting-state data, which are predicted and subtracted using an
LSTM network during task sessions. The technique offers a reliable alternative when
traditional methods are ineffective, particularly for passive brain–computer interfaces.

The study “Named Entity Recognition of Diabetes Online Health Community Data
Using Multiple Machine Learning Models” introduces the RoBERTa-BiLSTM-CRF model
to identify medical entities in diabetes online health community data. Using a dataset of
1889 texts, the model achieved 81.2% accuracy and outperformed traditional models. The
results demonstrate its potential for constructing medical knowledge graphs to support
personalized healthcare services.

2.4. Survey and Frontier Research Perspectives

The two review papers in this Special Issue provide a broader perspective on the
integration of big data and AI into biomedical applications, from multimodal data and

3
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AI technology [2] to machine learning and graph signal processing [3]. They discuss
the current state of the art, challenges, and future directions, offering valuable insights
for researchers and practitioners alike. These reviews serve as a foundation for further
exploration and innovation in the field.

3. Conclusions
This Special Issue on the “Biomedical Applications of Big Data and Artificial Intelli-

gence” showcases the profound impact of integrating AI and big data in healthcare. From
reducing diagnostic errors and enhancing imaging techniques to enabling personalized
treatments and explainable AI, the contributions highlighted here represent significant
advancements in the field. These studies not only address critical challenges but also pave
the way for future innovations in precision medicine and healthcare delivery.

These studies encompass areas such as intelligent diagnosis, medical image processing,
signal analysis, and text mining. The key contributions of these works are as follows: First,
numerous studies introduce novel models (e.g., UNet variants, GNN-surv, M2Eformer),
expanding the application boundaries of AI in healthcare. Second, these studies primarily
employ deep learning, graph neural networks, LSTM, and Transformer variants to enhance
prediction and analysis capabilities in structured and unstructured medical data. Finally,
some research concepts, such as a focus on precision medicine, personalized diagnosis,
explainable AI, and automated medical image analysis, which address challenges in ac-
curacy, efficiency, and explainability that traditional methods struggle to overcome, are
implemented in these works. These studies demonstrate that AI is increasingly becoming a
core driving force in biomedical computing and healthcare. Future challenges will include
improving explainability, reducing computational costs, enhancing model generalization,
and promoting the practical implementation of AI in clinical applications.

As we move forward into this new era of healthcare, our focus must remain on respon-
sible innovation, patient well-being, and equitable access. The intersection of compassion
and cutting-edge technology will truly unlock the potential of big data and AI in biomedical
applications, making a healthier world not just a dream, but an attainable reality [4]. The
diverse methodologies and applications presented in this Issue underscore the potential
of interdisciplinary research in advancing biomedical science. We hope this Special Issue
inspires further research and innovation in this dynamic and impactful field.

Conflicts of Interest: The authors declare no conflicts of interest.
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Trivial State Fuzzy Processing for Error Reduction in Healthcare
Big Data Analysis towards Precision Diagnosis
Mohd Anjum 1, Hong Min 2,* and Zubair Ahmed 3
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Abstract: There is a significant public health concern regarding medical diagnosis errors, which are a
major cause of mortality. Identifying the root cause of these errors is challenging, and even if one is
identified, implementing an effective treatment to prevent their recurrence is difficult. Optimization-
based analysis in healthcare data management is a reliable method for improving diagnostic precision.
Analyzing healthcare data requires pre-classification and the identification of precise information for
precision-oriented outcomes. This article introduces a Cooperative-Trivial State Fuzzy Processing
method for significant data analysis with possible derivatives. Trivial State Fuzzy Processing operates
on the principle of fuzzy logic-based processing applied to structured healthcare data, focusing on
mitigating errors and uncertainties inherent in the data. The derivatives are aided by identifying and
grouping diagnosis-related and irrelevant data. The proposed method mitigates invertible derivative
analysis issues in similar data grouping and irrelevance estimation. In the grouping and detection
process, recent knowledge of the diagnosis progression is exploited to identify the functional data
for analysis. Such analysis improves the impact of trivial diagnosis data compared to a voluminous
diagnosis history. The cooperative derivative states under different data irrelevance factors reduce
trivial state errors in healthcare big data analysis.

Keywords: big data; data grouping; fuzzy process; healthcare

1. Introduction

Big data analysis is a process that helps organize a massive amount of data. It also
correlates raw data to processed data, minimizing the complexity of the decision-making
process [1]. Healthcare applications contain various datasets that require proper analysis
processes to enhance the performance range of the systems [2]. Big data analysis in
healthcare improves the overall development and feasibility level of healthcare applications.
Medical health records maintained in healthcare contain necessary patient details [3],
including personal data, health conditions, types of diseases, medications, and the process
of diagnosing diseases for patients. An intelligent-enabled big data analysis technique
is commonly used in healthcare applications [4]. This technique analyzes structured
and unstructured healthcare data in the management system. The analyzed information
produces relevant data for further disease detection and diagnosis processes. The analysis
technique also increases the accuracy of disease prediction, reducing latency in providing
services to patients [5].

Error reduction is a crucial task to perform in the big data analytics process. Big
data analytics eliminates unwanted raw data from the database [6]. Error reduction in
data analytics is mainly used to improve the data quality required for further data pro-
cessing. Errors such as noisy data, negative data, and inconsistent data are present in
healthcare management systems [7]. Big data analytics produces optimal information for
healthcare applications. Natural language processing (NLP)-based big data analysis is used

Bioengineering 2024, 11, 539. https://doi.org/10.3390/bioengineering11060539 https://www.mdpi.com/journal/bioengineering
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in healthcare to reduce errors in computational processes [8]. The NLP data processing
tool analyzes the critical clinical data necessary for diagnosis [9]. The NLP identifies the
negative data that causes errors during data processing and analysis. The identified errors
are eliminated immediately to reduce unwanted challenges or issues in big data analytics
systems. The NLP-based technique improves the overall functional capability level of the
analytics process in healthcare applications [10,11].

Fuzzy methods are widely used in various fields to solve the problems presented in
systems. They are also employed in big data analytics to enhance the effectiveness of the
systems [12]. A fuzzy-optimized data management (FDM) approach is utilized in big data
analytics. This approach employs an extraction technique to extract useful information
from datasets [13]. The extracted information provides accumulated data to perform tasks
for healthcare systems. The FDM approach analyzes the exact relationship between data
and produces feasible data for further analysis [14], thereby improving the feasibility and
significance of the analytics process. Additionally, a novel big data analytic technique using
a fuzzy similarity measure model is employed in healthcare applications [15]. This analytic
technique analyzes the potential data required to perform specific tasks in healthcare
centers [16] and manages critical information collected from various divisions. The fuzzy-
based technique reduces the data analysis inaccuracy ratio, enhancing the significance of
healthcare applications [17].

Now, the key objectives and highlights of the research are stated as:

• To design a Cooperative-Trivial State Fuzzy Processing (CTSFP) method for significant
data analysis with possible derivatives.

• To apply fuzzy optimization techniques for grouping data based on functional and
irrelevant factors.

• To enhance diagnostic progression by employing various fuzzy derivatives to mini-
mize analysis errors.

• Conduct data and metrics analysis to assess the effectiveness and validate the proposed
method.

Hypothesis 1: Big data analytics positively impacts the innovation system of medical diagnosis.

Hypothesis 2: There will be a positive correlation between learning objectives and healthcare data
analytics abilities and between learning objectives and performance results in data analytics.

2. Related Works

This literature review highlights significant strides in healthcare data analytics and
machine learning applications. In [18], the authors developed a specialized data analytics
suite for the management of type 2 diabetes. This suite comprised multi-tier classifiers
and advanced analytical methods such as exploratory, predictive, and visual analyses to
elucidate the complex interplay between patients’ biological markers, enabling more accu-
rate disease classification and streamlined decision-making processes. A sensor-based data
analytics (SBDA) model for real-time patient monitoring in connected healthcare systems
addresses the growing need for timely emergency detection and improved efficiency in
healthcare applications [19]. Big data analytics gathers various biomedical sensor data for
disease detection and prediction. The proposed model is commonly used for real-time
patient monitoring, providing feasible emergency detection datasets. These advancements
underscore the potential of data-driven approaches to revolutionize disease management
and enhance patient care outcomes. Similarly, another study [20] crafted a specialized
big data analytics technique for facilitating decision-making within healthcare centers.
This technique was designed to gather data from structured and unstructured sources,
streamlining the complexity of detection processes. Big data management ensures the
generation of optimal datasets, which are essential for effective decision-making. Conse-
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quently, the developed technique has been shown to improve the accuracy rate in clinical
decision-making, thereby enhancing the feasibility of diagnostic services.

In addressing the pressing concern of data privacy in healthcare, Elayan et al. pre-
sented a novel privacy-preserving framework, namely deep federated learning [21]. This
framework ensures the safety and confidentiality of patient data while maximizing perfor-
mance and reducing operational costs by leveraging Internet of Things-enabled devices.
Furthermore, a hybrid deep learning technique for healthcare data analytics focuses mainly
on disease diagnosis [22]. This technique demonstrates promising results in improving
diagnostic accuracy and enhancing the efficiency of diagnostic services, highlighting the
transformative impact of machine learning in healthcare. In recent years, wearable sen-
sors have emerged as vital technology applications for monitoring users’ physiological
signs, offering valuable insights into health trends. This capability to gather and analyze
physiological data has significant implications for enhancing healthcare solutions. An Un-
Synchronized Sensor Data Analytics (USDA) model has been developed [23], addressing
the need to effectively manage wearable device data, particularly in time-sensitive health-
care scenarios. By classifying data based on timing and occurrence frequency, coupled with
a diagnosis module, the USDA model identifies defects and addresses missing sensor data
crucial for accurate analyses. Utilizing sophisticated machine learning methods enhances
diagnostic accuracy and enables timely healthcare solutions, ultimately improving system
efficiency and reducing complications in healthcare performance assessment.

In recent literature, researchers have unveiled a groundbreaking healthcare facility
management approach by integrating Building Information Modeling (BIM) with big data
analytics. This innovative method, rooted in BIM, is designed to harness the information
available within building models, thereby generating optimal data for improved detection
and diagnosis within healthcare facilities [24]. By leveraging this BIM-based approach,
healthcare systems can be transformed, offering enhanced efficiency and effectiveness in pa-
tient care delivery. Moreover, a sophisticated smart health monitoring system, grounded in
big data principles, has been developed to advance patient care [25]. The proposed model
applies Hybrid Dingo Coyote Optimization (HDCO) for optimal feature selection and
utilizes a Deep Ensemble Learning algorithm (DEL). This model (HDCO-DEL) accurately
classifies various types and classes of medical data, ensuring precise analysis. Integration
with Internet of Medical Things devices enables seamless data collection from wireless sen-
sors, thereby minimizing latency in the classification process. Through these innovations,
the proposed model significantly elevates the performance standards of healthcare moni-
toring systems, promising enhanced efficiency and effectiveness in the delivery of patient
care. Similarly, Feng et al. introduced a pioneering approach, the confidential information
coverage hole prediction, tailored for collecting healthcare big data [26]. Primarily applied
within large-scale hybrid wireless sensor networks, this model monitors essential data
for detection. Its core objective is leveraging sensor nodes to forecast prior information,
mitigating energy consumption in subsequent processes.

Nowadays, healthcare policies worldwide are increasingly emphasizing the impor-
tance of leveraging information instruments and digital technologies to enhance public
health and quality of life. Therefore, health policies have evolved to incorporate big data
analytics as a key driver of digital social innovation in healthcare. In the study [27], the
authors introduced digital social innovation-based big data analytics for healthcare ap-
plications. Critical analysis is used here to analyze the necessary features and data from
medical information. Digital social innovation is mainly used to enhance society’s overall
well-being, increasing the efficiency of digital data in smart cities. The introduced method
increases the development range of healthcare centers.

Similarly, Khan et al. [28] introduced a systematic analysis framework for healthcare
big data analytics to enhance the accuracy and efficiency of disease diagnosis. The model
integrates a feature extraction technique to extract pertinent medical data crucial for dis-
ease prediction and detection. Notably, the proposed model demonstrates an expanded
effectiveness scope for healthcare centers compared to existing approaches.
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The prevalence of diabetes mellitus, a chronic metabolic disorder, remains a signifi-
cant global health challenge, with a concerning proportion of cases going undiagnosed.
Early detection and effective management are pivotal in preventing complications and
improving patient outcomes. Many studies have focused on the early detection of diabetes
by leveraging various machine learning and deep learning models, including stacking
algorithms. Therefore, a diabetes patient classification model utilizing the stacking en-
semble method is introduced for local healthcare centers [29]. Employing cross-validation
techniques enhances the precision of patient classification. By leveraging medical data
sourced from local healthcare centers, the model bolsters the robustness of the detection
process, ultimately elevating the accuracy of disease detection. In [30], the authors have
presented a novel approach to predicting obstructive sleep apnea visit costs in healthcare
settings. The method generates viable data inputs for prediction by leveraging electronic
healthcare records and Transformer models. These inputs are derived from short visit
histories maintained within healthcare centers. Introducing this method maximizes the
precision ratio in obstructive sleep apnea prediction, significantly enhancing the robustness
of the predictive systems.

Furthermore, Razzak et al. introduced multimedia big data analytics tailored for
healthcare centers to improve outcomes in healthcare applications [31]. This automated
data processing framework analyzes patients’ health condition data, commonly employed
for decision-making and prediction tasks to mitigate computational costs. The experimental
findings indicate that the proposed model enhances the quality of patient care, marking a
significant advancement in healthcare analytics.

Data storage and transmission formats used by healthcare information technology
systems based on CTSFP might be inconsistent and based on diverse standards. Obstacles
to interoperability must be overcome so that different systems can communicate data
without difficulties and integrate these systems. Unstructured text data, such as patient
reports, social media conversations, clinical notes, and medical literature, may be analyzed,
and insights may be extracted using NLP algorithms. NLP techniques make it possible to
glean useful information from unstructured text, making it easier to accomplish things like
sentiment analysis, entity identification, and document summarization.

3. Data Collection

The data used in this article is acquired from the “health score” electronic health
record for assessment (https://www.kaggle.com/datasets/hansaniuma/patient-health-
scores-for-ehr-data, accessed on 15 March 2024). The temperature, pulse, respiratory,
blood pressure, dialysis, and imagery information are stored under 79,540 entries. This
data is used to classify patient health as severe (or) normal using individual score values.
Figure 1 illustrates the acquisition and utilization of healthcare data.
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This analysis filters the complete data based on its continuity and field availability.
This filtered data is utilized for data grouping and invertible assessments. Of the acquired
79,540 entries, 54,000 are used for this analysis as they possess full values (refer to Figure 1).
The progression is analyzed if the detected “severity” is similar to the filtered data entry.
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The mis-detected (severity as normal (or) vice versa) is regarded as an error in analysis.
The CTSFP approach is implemented in real-time scenarios to preprocess the healthcare
big data and reduce errors. This process involves noise reduction, outlier detection, data
normalization, or fuzzy logic-based processing to enhance data quality and accuracy.

4. Cooperative-Trivial State Fuzzy Processing Method

In healthcare management systems, the trivial state reduces big data analytics errors. It
defines some significance or uncertainty in the medical data, which decreases the precision
of diagnosis. The data points and states are deployed to this trivial state, reducing the
importance of the healthcare data. It involves data grouping in this approach where the
trivial state data are detected in the healthcare management system and provide efficient
results. This concept indicates the big data input and forwards to the detection phase,
where the state and data points are recognized. The key idea of this work is to reduce errors
and improve the precision of diagnosis. This analysis (CTSFP) is proposed along with this
fuzzy model to address the error rate and enhance the diagnosis. In Figure 2, the functional
parts of the proposed method are described. Computer resources for the proposed trivial
state fuzzy processing include processing power with multi-core processors and adequate
memory space for storing healthcare data.
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This detection category illustrates the relevant and irrelevant data that are matched
with the history of medical data. This analysis is carried out from the stored data, including
the diagnosis, which holds the patient’s previous history and the progression report, which
illustrates the patient’s update of the prior observation. Based on this stored data, the
grouping is performed to handle trivial states better. In this process, a fuzzy processing
model is developed to find the n-number of derivations; based on this, invertible and
non-veritable are differentiated and the result is provided. The preliminary step in this
paper is to handle the trivial state of the healthcare data formulated below.

hn =
(
mg + ot + dp

)
∗ Ha + (mg + ot + dp/gi/∑ Ha) ∗

[
(Ha + gi) ∗

(
mg + ot

)]
− dp +

(
Ha/∑gi

(
mg + ot + dp

)) (1)

The trivial state of healthcare data processing, including precision diagnosis and
handling, is represented as hn, the healthcare data is Ha, which includes the missing value,
outlier, and data points, and they are symbolized as mg, ot, and dp. The diagnosis is
described as gi. Based on this approach, missing and inconsistent data are detected. This is
used to identify the healthcare data better, allowing for better data quality and reliability
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in this proposed work. This processing step involves the data points where the outliers
are detected in this methodology, and from this processing, reduction is observed. In this
computation step, trivial data is handled to detect better precision among inconsistent and
missing values.

The missing value, outlier, and data points are used to deploy the healthcare data and
provide the efficient handling of constraints, which is formulated as (mg + ot + dp/gi/∑ Ha). In this
category, the analysis examines the trivial state and provides a better progression report for
diagnosing the healthcare data. Medical history is analyzed for precision diagnosis, and
based on this, the fuzzy model is developed for the n-number of derivations. This trivial state
illustrates the derivation from the fuzzy process where the analysis is carried out appropriately.
In this method, handling is based on the trivial state of the healthcare data and illustrates the
missing value and outlier in the data. From the trivial state handling, the analysis is performed
for the varying healthcare data in the stored format, which is equated below.

α = (hn + Ha/ot + dp + mg/∏ω
(Ts + gi)) +

{[
(Ts + Ha) ∗ ω + ct/∑mg

Ha

]}
∗ [(gi + Ha) + hn]−

(
ct + mg

)
+ ω(Ha + gi) (2)

The missing and inconsistent data are reasonable in the handling phase, and from
this, the analysis is performed, and it is equated as α. A trivial state is represented as Ts,
detection is ω, and inconsistent is described as ct. Here, it states that better processing of
the diagnosis of healthcare data is needed and provides reliable computation. In this case,
the analysis is carried out to improve the data processing. By examining this analysis, the
healthcare data are fetched from the database, and from that, matching is achieved with
the previous history, and the data is detected similarly to this analysis procedure.

The handling of the trivial state is observed in this approach where the error rate is in-
cluded, and from this, diagnosis is carried out and is represented as (hn + Ha/ot + dp + mg/∏ω(Ts + gi)).
In this category, the pragmatic data is analyzed for the better output from this trivial state
of healthcare data. The existing process detects missing values, and the upcoming method-
ology is addressed here. In this concept, the trivial state is handled to deploy the quality
and reliability of the medical data. Thus, the analysis is carried out for the varying data
computation methods in this field, and from this ω(Ha + gi) is performed. Then comes the
data grouping process in this work, illustrated in the Equation below.

β = 1/ω(p′+ gi)+





(
dv + aq

)
∗ ∥Ts + α∥+ (Ha + aq/∏hn Ts), ∀ Ir

dv
∑
α

(
aq + dn

)
∗
〈
mg + Ts

〉
+ ct − α, ∀ Fu

(3)

The data grouping classification is derived from irrelevant data and functional data,
which are symbolized as Ir and Fu. The data grouping classification is labelled as β, ac-
quiring is aq, the progression report is represented as p′, and the n-number of derivations
is dn. The first stage regards the irrelevant data acquired from the progression report
and diagnosis. This history of data and the update of the current scenarios are stored
in the database and used for the classification process. The first case indicates the ir-
relevant process that deploys the acquisition of the data from the dataset and performs
a better analysis rate. Handling trivial data involves healthcare data, and it is repre-
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sented as (Ha + aq/∏hn Ts). The pseudocode for data grouping is presented in Algorithm 1.

Algorithm 1: Pseudocode for β
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This is used to acquire specific data from storage derived from the data grouping. 
The n-number of derivations is used to perform the better role in this healthcare data pro-
cessing step, which is described as  𝜌𝜌. This approach includes the classification model for 
reliable computation of trivial data. Acquiring this data indicates the patient’s previous 
history, where the matching is processed with the current scenario. In this case, the com-
putation rate is improved by deploying the progression report and diagnosis. This pro-
gression report analyses the regular updates for the upcoming process. In Table 1, the 
input data state is classified and represented. 

Table 1. Input data state classification. 

 
F1 F2 F3 F4 F5 F6 

State Low/Normal/ 
High 

Normal/ 
Abnormal 

Low/High 
Low/Normal/ 

High 
Normal/ 

Abnormal 
Available/ 

Unavailable 
𝑑𝑑𝑝𝑝       𝛽𝛽 
𝐼𝐼𝑟𝑟        𝛼𝛼 
𝐹𝐹𝑢𝑢       𝛽𝛽 
𝑐𝑐𝑡𝑡       𝛼𝛼 

Table 1 represents the 𝛽𝛽 or  𝛼𝛼 state analysis of the healthcare data accumulated. The 
𝐹𝐹1 to 𝐹𝐹6 indicates the fields used in the filtered data; their range values are regarded in 
red (or) green or yellow. Green color denotes the health state low, normal and available 
ranges from [0,1,2]. Red color indicates the health state high, abnormal and unavailable 
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𝑉𝑉𝑒𝑒𝑎𝑎𝑖𝑖𝑜𝑜𝑖𝑖𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖 (𝑔𝑔𝑖𝑖 + 𝐻𝐻𝑎𝑎) == 𝑇𝑇𝑠𝑠 
𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔 𝛽𝛽 𝑎𝑎𝑖𝑖 �𝑚𝑚𝑔𝑔 + 𝑇𝑇𝑠𝑠� = �𝑚𝑚𝑔𝑔 + 𝑔𝑔𝑖𝑖 + 𝐻𝐻𝑎𝑎� 
𝑁𝑁𝑒𝑒𝑡𝑡 𝐻𝐻𝑎𝑎  𝑎𝑎𝑖𝑖𝑑𝑑 𝑖𝑖𝑒𝑒𝑎𝑎𝑖𝑖𝑜𝑜𝑣𝑣 𝑚𝑚𝑔𝑔||𝑂𝑂𝑡𝑡  
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This trivial state indicates healthcare data that includes inconsistent and missing val-
ues. The acquisition of the desired data is used to provide trivial data, and the analysis is 
followed up for the missing value, in which the inconsistency is examined. The second 
condition is derived from the stored data in which the trivial data are used to better detect 
the diagnosis among the patients. This approach uses detection to classify the irrelevant 
and function values. Both classifications are grouped and fetch the data from the storage 
space. Thus, the data grouping is classified in this concept, and from this, the stored data 
is observed in the Equation below. 

𝜌𝜌 =

⎩
⎨

⎧
�� (𝑑𝑑𝑛𝑛 + 𝛼𝛼)

𝐻𝐻𝑎𝑎 𝑔𝑔𝑖𝑖�

𝛽𝛽

� ∗ [(𝑇𝑇𝑠𝑠 + ℎ𝑛𝑛) ∗ (𝑔𝑔𝑖𝑖 + 𝑝𝑝′)] + 𝑎𝑎𝑞𝑞
⎭
⎬

⎫
∗ �

∑�𝐻𝐻𝑎𝑎 + 𝑎𝑎𝑞𝑞�
𝑇𝑇𝑠𝑠
� � (4) 

This is used to acquire specific data from storage derived from the data grouping. 
The n-number of derivations is used to perform the better role in this healthcare data pro-
cessing step, which is described as  𝜌𝜌. This approach includes the classification model for 
reliable computation of trivial data. Acquiring this data indicates the patient’s previous 
history, where the matching is processed with the current scenario. In this case, the com-
putation rate is improved by deploying the progression report and diagnosis. This pro-
gression report analyses the regular updates for the upcoming process. In Table 1, the 
input data state is classified and represented. 

Table 1. Input data state classification. 

 
F1 F2 F3 F4 F5 F6 

State Low/Normal/ 
High 

Normal/ 
Abnormal 

Low/High 
Low/Normal/ 

High 
Normal/ 

Abnormal 
Available/ 

Unavailable 
𝑑𝑑𝑝𝑝       𝛽𝛽 
𝐼𝐼𝑟𝑟        𝛼𝛼 
𝐹𝐹𝑢𝑢       𝛽𝛽 
𝑐𝑐𝑡𝑡       𝛼𝛼 

Table 1 represents the 𝛽𝛽 or  𝛼𝛼 state analysis of the healthcare data accumulated. The 
𝐹𝐹1 to 𝐹𝐹6 indicates the fields used in the filtered data; their range values are regarded in 
red (or) green or yellow. Green color denotes the health state low, normal and available 
ranges from [0,1,2]. Red color indicates the health state high, abnormal and unavailable 

This trivial state indicates healthcare data that includes inconsistent and missing
values. The acquisition of the desired data is used to provide trivial data, and the analysis
is followed up for the missing value, in which the inconsistency is examined. The second
condition is derived from the stored data in which the trivial data are used to better detect
the diagnosis among the patients. This approach uses detection to classify the irrelevant
and function values. Both classifications are grouped and fetch the data from the storage
space. Thus, the data grouping is classified in this concept, and from this, the stored data is
observed in the Equation below.

ρ =

{(
Ha/gi

∑
β

(dn + α)

)
∗
[
(Ts + hn) ∗

(
gi + p′

)]
+ aq

}
∗ (∑

(
Ha + aq

)
/Ts) (4)

This is used to acquire specific data from storage derived from the data grouping. The
n-number of derivations is used to perform the better role in this healthcare data processing
step, which is described as ρ. This approach includes the classification model for reliable
computation of trivial data. Acquiring this data indicates the patient’s previous history,
where the matching is processed with the current scenario. In this case, the computation
rate is improved by deploying the progression report and diagnosis. This progression
report analyses the regular updates for the upcoming process. In Table 1, the input data
state is classified and represented.

Table 1. Input data state classification.

F1 F2 F3 F4 F5 F6
StateLow/Normal/

High
Normal/

Abnormal Low/High Low/Normal/
High

Normal/
Abnormal

Available/
Unavailable

dp ••• •• •• ••• •• • β

Ir ••• •• •• ••• •• • α

Fu ••• •• •• ••• •• • β

ct ••• •• •• ••• •• • α

Table 1 represents the β or α state analysis of the healthcare data accumulated. The
F1 to F6 indicates the fields used in the filtered data; their range values are regarded in
red (or) green or yellow. Green color denotes the health state low, normal and available
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ranges from [0,1,2]. Red color indicates the health state high, abnormal and unavailable
ranges from [3,4,5]. Considerably, the F6 determines the overall output of the state as α or
β. If the abnormal case is high, then α is yet to be completed, for which further derivations
are required. In the alternating case, if ct is the maximum possibility, then the data is Ts
to be denied. Therefore, the state of the data is functional/irrelevant for grouping. Here,
the diagnosis and the progressive report indicate a better computation factor and provide
efficient derivation matching with the processing history. The n-number of derivations
is associated with the analysis where the diagnosis and progressive report are included
for further processing, and it is formulated as

(
∑

Ha/gi

β (dn + α)
)

. Thus, stored data are used
in this trivial processing state where the error is reduced. Since the referred stored data
are used in this case, and from this step, the irrelevant and function are differentiated and
mapped using the fuzzy optimization model, which is deliberated in the section below.

5. Fuzzy Optimization for Fu and Ir Derivatives

The fuzzy optimization method finds reliable results in the healthcare system where the
irrelevant and function are differentiated. This fuzzy logic states whether it is 0 or 1; this paper
describes whether it is invertible or non-invertible. This process uses the decision-making
method, leading to error identification or improvement. Based on this decision-making
approach, the required data are acquired from the stored data, providing a better result. Here,
it deploys the trivial state of computation where it indicates the healthcare data for the data
grouping methodology. From this, the fuzzification is performed in Equation (5):

uc =
[(

Ha + aq
)
∗ wd

]
+ dn ∗ ∑

α

(ρ + β) (5)

The fuzzification is performed where the input is fetched from the previous step
and forwards to the n-number of derivations. The fuzzification is described as uc, the
forwarding is wd. This category uses the analysis to forward the necessary process and
provide a reliable classification. This classification states the progressive report and the
diagnosis of the healthcare data. Based on this section, the n-number of derivations provides
efficient processing in trivial states. For the n-number of derivations, the fuzzification is
pragmatic and from which the forwarding is examined in five stages, e.g., Ha + aq is large
positive, medium positive, small, medium negative, and significant negative.

All these are split in this fuzzification methodology, where healthcare data are acquired
for reliable computation from the existing step, including the data grouping. The data
grouping indicates the diagnosis and the progressive report, which deploys invertible
and non-invertible data. Based on this detection, the performance is measured to process
reliable results among the derivation values. The derivation is used to provide better
processing, which uses the fuzzy model in this Equation. This fuzzification output equates
to the defuzzification in Equation (6).

dz = (uc − Ha) + dn ∗
(

∑aq

(
gi + p′

)
/hn/ct

)
+ (Ts + ω) (6)

The defuzzification model is the reverse of the process from the fuzzification where the
crisp value is obtained. Equation (6) relies on the healthcare data acquisition and derives
the stored data as a diagnosis and progressive report, and the defuzzification is labelled as
dz. The fuzzification and defuzzification for the grouping are illustrated in Figure 3.
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derivation to the next level that indicates the handling phase, and it is formulated as 
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∑ �𝑔𝑔𝑖𝑖+𝑝𝑝′�𝑎𝑎𝑞𝑞

ℎ𝑛𝑛 𝑐𝑐𝑡𝑡�
�. Detecting this trivial state is associated with fuzzification, which computes 

the error reduction. The membership function is accomplished by formulating Equation 
(7) from above fuzzification and defuzzification. 

𝜇𝜇 = {�𝐻𝐻𝑎𝑎 , 𝜇𝜇(𝑚𝑚)(𝐻𝐻𝑎𝑎)�|𝐻𝐻𝑎𝑎 ∈ 𝛽𝛽} (7) 

The membership function in fuzzy logic is used to find the 0 or 1 here, and it is de-
fined as either an error or not. If it is not an error, then the improvement is performed. The 
membership function is 𝑚𝑚, and the value range from [0, 1] is invertible data and is repre-
sented as  𝜇𝜇. Universal information is healthcare data; the set of ordered pairs refers to 
the grouped classifications from the stored data. This observation is performed in the 
membership function to find the ordered pairs in the trivial state. Here, the invertible data 
are acquired from the derivation, where the analysis is carried out appropriately. Posted 
to this membership function in the fuzzy model, the separation is examined from the der-
ivation, whether invertible, non-invertible, or formulated in Equation (8). 

𝜗𝜗 =
(𝑔𝑔𝑖𝑖 + 𝑝𝑝′) ∗ �

𝛼𝛼 + 𝑑𝑑𝑛𝑛
(𝐻𝐻𝑎𝑎)𝐹𝐹𝑢𝑢

� + 𝑇𝑇𝑠𝑠 = 0

�(𝐼𝐼𝑟𝑟 + 𝑑𝑑𝑛𝑛)
𝑇𝑇𝑠𝑠

∗ (𝑔𝑔𝑖𝑖 + 𝑝𝑝′) + 𝛽𝛽 ≠ 0
⎭
⎪
⎬

⎪
⎫

 (8) 

The separation of trivial states depends on the data that is invertible and non-invert-
ible. Based on this process, the stored data are acquired and perform better data grouping 
for the irrelevant and function data. The separation is described as  𝜗𝜗, where the value 
equal to 0 states the invertible, whereas the value not equal to 0 defines non-invertible. 
The separation process pseudocode is presented in Algorithm 2. 

  

Figure 3. Fuzzification and defuzzification for β.

The uc process is initiated with dp input for F1 to F6 entries. This process is later de-
fuzzified through (Ts, wd) conditions:

(
Ha + aq

)
== Ts (or) (gi + Ha) ̸= Ts. The satisfying

conditions generate ω and dn which are the defuzzified derivatives used to analyze data
states. From these ρ sequences, maxdn and Ts = yes/no is obtained. The ρ outputs are
further used for sequence classification from uc to verify β knowledge satisfaction (Figure 3).
The inconsistent data are acquired from this category and forward the derivation to the next
level that indicates the handling phase, and it is formulated as (∑aq (gi + p′)/hn/ct). Detecting
this trivial state is associated with fuzzification, which computes the error reduction. The
membership function is accomplished by formulating Equation (7) from above fuzzification
and defuzzification.

µ = {(Ha, µ(m)(Ha))|Ha ∈ β} (7)

The membership function in fuzzy logic is used to find the 0 or 1 here, and it is
defined as either an error or not. If it is not an error, then the improvement is performed.
The membership function is m, and the value range from [0, 1] is invertible data and is
represented as µ. Universal information is healthcare data; the set of ordered pairs refers
to the grouped classifications from the stored data. This observation is performed in the
membership function to find the ordered pairs in the trivial state. Here, the invertible data
are acquired from the derivation, where the analysis is carried out appropriately. Posted
to this membership function in the fuzzy model, the separation is examined from the
derivation, whether invertible, non-invertible, or formulated in Equation (8).

ϑ =
(gi + p′) ∗ (α + dn/(Ha)Fu) + Ts = 0

∑
Ts

(Ir + dn) ∗ (gi + p′) + β ̸= 0

}
(8)

The separation of trivial states depends on the data that is invertible and non-invertible.
Based on this process, the stored data are acquired and perform better data grouping for the
irrelevant and function data. The separation is described as ϑ, where the value equal to 0
states the invertible, whereas the value not equal to 0 defines non-invertible. The separation
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process pseudocode is presented in Algorithm 2.

Algorithm 2: Pseudocode for ϑ
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 𝑆𝑆𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖 𝑜𝑜𝑜𝑜 𝐿𝐿𝑜𝑜𝑜𝑜𝑝𝑝: 1 𝑖𝑖𝑜𝑜 𝜌𝜌:𝑃𝑃𝑒𝑒𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑚𝑚   

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖:𝑑𝑑𝑧𝑧 = 𝑇𝑇𝑠𝑠 + 𝜔𝜔; (𝑖𝑖𝑐𝑐 − 𝐻𝐻𝑎𝑎) > 0  

𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔 ∶ 𝑖𝑖 = [𝐻𝐻𝑎𝑎 ,𝑖𝑖(𝑚𝑚)|𝐻𝐻𝑎𝑎 ∈ 𝛽𝛽]  

𝑂𝑂𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖𝐼𝐼𝑒𝑒: 𝑖𝑖 = (𝑔𝑔𝑖𝑖 + 𝑝𝑝′),𝑇𝑇𝑠𝑠 = 0  

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖 𝑜𝑜𝑎𝑎𝑖𝑖𝐼𝐼𝑖𝑖 (𝑖𝑖𝑐𝑐 − 𝐻𝐻𝑎𝑎) = 0  

𝐴𝐴𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔 (𝐼𝐼𝑟𝑟 + 𝑑𝑑𝑛𝑛) ∀ 𝜔𝜔 𝑖𝑖𝑖𝑖 𝜌𝜌  

𝑂𝑂𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 𝑎𝑎𝑐𝑐ℎ𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑖𝑖𝐼𝐼𝑒𝑒: 𝑖𝑖 = (𝐼𝐼𝑟𝑟 + 𝑑𝑑𝑛𝑛) + 𝛽𝛽; 𝑖𝑖 ≠ 0  

𝐸𝐸𝑖𝑖𝑑𝑑 𝑜𝑜𝑜𝑜 𝐿𝐿𝑜𝑜𝑜𝑜𝑝𝑝   

Based on this classification, trivial data are obtained. In this category, detection is 
observed on the irrelevant function from which the stored data are acquired. Here, data 
grouping classification is performed for the varying trivial state that deploys the big data 
as the input for this processing. This derivation is pragmatic for separating invertible and 
non-invertible data computation. This separation process evaluates the decision-making 
to find whether it is invertible, equated below. 

𝛿𝛿 = �
1, 𝑖𝑖𝑜𝑜 �(𝛼𝛼 + 𝐻𝐻𝑎𝑎) ∗ �

𝜇𝜇 − 𝜇𝜇′
𝑔𝑔𝑖𝑖 + 𝑇𝑇𝑠𝑠

�
𝛽𝛽

+ 𝜗𝜗 ∗ 𝑚𝑚

0, 𝑜𝑜𝑖𝑖ℎ𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑖𝑖𝑒𝑒
 (9) 

The separation of invertible and non-invertible data follows up the decision-making 
and provides the changes that occur during the trivial state dispensation, where non-in-
vertible is represented as  𝜇𝜇′. The decision-making is  𝛿𝛿, defined in if and otherwise con-
ditions where it deploys the trivial state for the pragmatic healthcare data in this method-
ology. These functional data are associated with the analysis where the derivations are 
used to provide better separation among the errors that occur due to the uncertainty due 
to the missing value. Based on the separation, the fuzzy outputs for  𝑇𝑇𝑠𝑠 are analyzed for 
F1 to F6 in Figure 4. 
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δ =





1, i f ∏
β
(α + Ha) ∗ (µ − µ′/gi + Ts) + ϑ ∗ m

0, otherwise
(9)

The separation of invertible and non-invertible data follows up the decision-making and
provides the changes that occur during the trivial state dispensation, where non-invertible
is represented as µ′. The decision-making is δ, defined in if and otherwise conditions where
it deploys the trivial state for the pragmatic healthcare data in this methodology. These
functional data are associated with the analysis where the derivations are used to provide
better separation among the errors that occur due to the uncertainty due to the missing value.
Based on the separation, the fuzzy outputs for Ts are analyzed for F1 to F6 in Figure 4.

In Figure 4 above, the classifications under β for different data input fields are vali-
dated. The Y-axis denotes the trivial state Ts and the X-axis indicates the data grouping
process β. Based on the available dz and it is corresponding uc, the Ha the analysis is
presented. If the uc and dz processes are tallied, then Ts is high, otherwise it is low. This
demands data acquisition for further ω and gi processes (Figure 4). These derivations
are used to examine the invertible, where it is associated with it, and the condition of the
otherwise function. This condition is followed through the decision-making process, in
which fuzzy optimization plays a significant role in this derivation. Here, the invertible
condition is satisfied after this identification of functional data runs through the analysis
and is equated below.

φ = ⟨[(ϑ + µ) ∗ (Ir − Fu)] + δ⟩+ u′(Ha) + dn (10)
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The identification of functional data is derived and is formulated as φ; in this stage, the
decision-making is carried out for the reliable computation based on the invertible data, and
the uncertainty is labelled as u′. The decisions are made from the n-number of derivations
and followed up. The healthcare data are integrated with the fuzzy processing in which the
membership function is introduced for precision diagnosis. The derivations are associated
with irrelevant and functional data processing in this stage. Here, extensive data analysis is
performed for the trivial state computation and continues towards the data grouping. Thus,
the identification of functional data is examined with the decision-making approach. Then
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the diagnosis and progression from the stored data are identified and updated based on the
current user details. This diagnosis and progression are expressed in Equation (11).

φ(g i, p′) = 1/dn ∗
[(

u′ + Ha
)
+ Ts + δ/µ ∗ wd

]
(11)

Here, the identification runs through the diagnosis and progression report that in-
cludes the status of the patient information. These processes are built into the stored data
function. The stored data reflects the changes if any update or changes occur during a short
time interval. These changes are identified based on the uncertainty occurrences in the
healthcare data for the varying derivations. The relationship between φ and φ(g i, p′) for
invertible analysis is tabulated in Table 2.

Table 2. Invertible analysis using φ and φ(g i, p′).

φ F1 F2 F3 F4 F5 F6 φ(gi,p’)

Low/Normal/
High

Normal/
Abnormal

Low/
High

Low/Normal/
High

Normal/
Abnormal

Available/
Unavailable

F1
0.65 0.52 0.58 0.65 0.71 0.82 Low

1 0.61 0.65 0.74 0.75 0.85 Normal

0.18 0.68 0.82 0.87 0.65 0.93 High

F2
0.25 1 0.91 0.91 0.74 0.87 Normal

0.36 0.15 0.86 0.85 0.72 0.87 Abnormal

F3
0.25 0.17 1 0.96 0.81 0.95 Low

0.41 0.21 0.25 0.87 0.92 0.97 High

F4
0.39 0.35 0.31 0.92 0.98 0.97 Low

0.42 0.36 0.42 1 0.97 0.95 Normal

0.39 0.41 0.52 0.41 0.84 0.97 High

F5
0.42 0.5 0.42 0.48 1 0.99 Normal

0.45 0.36 0.11 0.32 0.5 0.87 Abnormal

F6
0.48 0.29 0.28 0.36 0.48 1 Available

0.39 0.31 0.32 0.24 0.42 0.49 Unavailable

In Table 2, the relationship between ψ and ψ(gi, P′) based on valued dz is presented.
The field-to-field with normal/available conditions represents the highest relationship
(i.e., ψ = ψ(gi, P′)). The rest of the cases are validated based on dn across v = 0 and
v ̸= 0 separations. These two cases are derived from multiple uc and dz derivatives such
that the u′ is mitigated. Thus, the separation for ψ = ψ(gi, p′) incurring instances (above)
are high compared to u′ incurring cases (below). This process is repeated until the least
possible derivatives u′ are extracted/identified. The n derivations are associated with the
trivial state in which the decision-making concept is used for the state forwarding. Based
on the update, the changes in the derivation are observed, and the trivial state is used to
define the processing step for the different states of the approach. Thus, the identification is
carried out for the diagnosis and the progressive report, and the invertible data is detected
from the decision-making approach and is equated in the Equation below.

µ(α) = (dn + wd) ∗ ∏[(oa + u′) + (β ∗ δ)] (12)

The invertible data analysis is pragmatic based on the diagnosis and progressive
report update. In this approach, functional data is identified, and it is labelled as oa; in this
classification, it is followed up for the decision-making concept from the fuzzy model. This
analysis is executed for the data grouping model and the decision-making of data, whether
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it is invertible or not. This Equation is used to acquire the input from the big data where
the function changes to irrelevant, and then it is said to be invertible; on the other hand,
if irrelevant changes to function are observed, it is non-invertible. Thus, the analysis is
processed for the invertible data in a trivial state, and the error is detected from this data
computation which is equated below.

ω = [(Ts + Fu) ∗ (hn + oa)/∑α

ϑ
(µ + Ha)+ (φ ∗ mv)]− er (13)

The trivial state error is detected from Equation (13), where the functional data are
handled for functional usage. The detection is formulated as ω, the error is symbolized as
er, and improvement is described as mv, where the diagnosis is executed from the derivation
from the fuzzy process. In this, the membership function is used to provide the reduction
phase for the derivation and order of the pairs. Thus, the error rate is detected in the first
derivative and addressed to the upcoming derivations. Based on this error detection in the
trivial state, precision diagnosis is improved using this method. With the v for Oa and er using
ρ under data grouping towards progression, an error is analyzed, as shown in Figure 5.
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In the above assessment for Oa and er under v = 0 and v ̸= 0, the β impacts the
performance using ρ. The derivatives are abrupt through the max dn and Ts = yes con-
ditions for ω improvements. Under different β knowledge conditions, the v separation
is performed such that uc = dz ∀ρ is satisfied. Hence, the case of β for v = 0 is high (Oa)
and low (er) under different data inputs. The filtered data thus is utilized for its intense
field-to-field matching for different β (refer to Figure 5). The possible biases caused by
fuzzy processing in healthcare data include sampling, measurement, patient selection, and
algorithmic biases.

6. Performance Assessment

The performance assessment uses analysis rate, data grouping, irrelevance estimation,
error, and analysis time. The number of data records considered is 52K, filtered from the
dataset inputs, and a maximum of 120 groups are formed. In this assessment, the existing
USDA [23], SBDA [19], and HDCO-DEL [25] methods are added along with the proposed
CTSFP method for efficacy verification. The data used in this article were acquired from
the “health score” electronic health record for assessment (https://www.kaggle.com/
datasets/hansaniuma/patient-health-scores-for-ehr-data, accessed on 15 March 2024). The
temperature, pulse, respiratory, blood pressure, dialysis, and imagery information are
stored under 79,540 entries. This data is used to classify patient health as severe or normal
using individual score values.

17



Bioengineering 2024, 11, 539

In healthcare data analysis, the CTSFP method outperforms existing methods like
USDA [23], SBDA [19], and HDCO-DEL [25] in terms of error reduction capabilities.
Improved diagnosis accuracy and reliability are the results of the proposed method’s use
of fuzzy logic-assisted processing to reduce the impact of uncertainties and mistakes in the
structure of healthcare data.

By surpassing previous methods in detecting and classifying data important to di-
agnosis and unrelated data, the technique demonstrates notable advancements in data
grouping and irrelevant estimation. The suggested approach improves data classification
accuracy and relevance identification by relying on a recent understanding of diagnosis
progression and using fuzzy logic in decision-making processes. CTSFP outperforms
state-of-the-art approaches regarding concerns about managing healthcare data with trivial
states. Compared to more traditional methods, this method can identify and fix data issues,
including missing values, inaccurate information, and errors, making it a better foundation
for accurate diagnosis and evaluation.

6.1. Analysis Rate

The analysis rate for the proposed work increases for the varying trivial state that deploys
the fuzzy processing to detect the healthcare data. This approach is based on functional data,
which provides the n-number of derivations. Here, the invertible concept is used to find
the improvement in the detection process. The big data input is fetched from the healthcare
system, and the diagnosis is processed precisely. In this stage, the analysis rate is enhanced
by detecting the invertible in the data, which is proposed by the fuzzy optimization method.
In this work, data storage is developed for the diagnosis that includes the history of patient
data and the progression reports that hold the update of the patient’s health. The trivial state
handling of healthcare data addresses the error or the outlier in the input data. This trivial
state includes missing or inconsistent datapoints, and it is discussed in Equation (1) and is
represented as (Ha/∑gi

(
mg + ot + dp

)
). The execution of the analysis rate in this work is improved

by processing this fuzzy processing under healthcare data (Figure 6).
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6.2. Data Grouping

In Figure 7, data grouping is improved by the classification phase equated in Equation (3).
Here, this computation relates to the n-derivation in the fuzzy process and determines the
invertible under the input data. In this case, data forwarding to the end process relies on the
precision of diagnosis. This concept is proposed to provide irrelevant and functional data in
the healthcare system. The evaluation step includes the invertible and non-invertible data used
to find the n-number of derivations and provides a better precision diagnosis. The detection
process is used to improve the recommendation for the data grouping for healthcare data. The
invertible is input to the improvement if the fuzzy process runs accurately for the big data
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analysis, and it is formulated as (α + Ha) ∗ (µ − µ′/gi + Ts). Here, the invertible and non-invertible
data are examined to find the trivial state. This data grouping is used to represent the diagnosis
and the progression report from the invertible data processing. This data grouping is extracted
from the stored data, which shows better improvement.
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6.3. Irrelevance Estimation

The irrelevant estimation shows better improvement based on the trivial state data
computation. Here, the decision-making approach, followed by fuzzy logic, is deployed.
This fuzzy logic illustrates the membership function that defines the invertible and the
data grouping. The irrelevant estimation is identified in this category based on these
two structures. This is one approach; the precision diagnosis is used to define the better-
stored data and find the trivial state by examining the missing value. The inconsistent
and missing values are detected from the trivial state, providing better identification. The
diagnosis and progressive report are based on the trivial state handling under healthcare
data management, and it is represented as ⟨[(ϑ + µ) ∗ (Ir − Fu)] + δ⟩. The classification
phase is used in this work for the functional data and irrelevant identification from the data
grouping. From this case, the irrelevant estimation shows the higher value range extracted
from the data grouping concept. This estimation phase relies on detecting trivial states for
the healthcare data (Figure 8).
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6.4. Error

In Figure 9, the error is detected, and a lesser range is shown for the trivial state by
deploying recommendations under the healthcare data. This analysis defines the irrelevant
data extraction from the healthcare data and provides the invertible process. This approach
is observed for the n-derivation, where the trivial state is examined to find the missing
and the inconsistent data from the trivial state handling. This error detection is used to
illustrate the data point and the classification under the reduction of constraint for the
healthcare data. The detection is followed up for uncertainty and improves the invertible
data computation in this approach. The n-derivation is associated with invertible data
processing, where the trivial state is used to deploy the fuzzy model. Fuzzification and
defuzzification are better used to reference the fuzzy model’s trivial state. Equation (13) is
used to find the trivial state of detection and reduce the error factor, and it is equated as
(Ts + Fu) ∗ (hn + oa)/

α

∑
ϑ
(µ + Ha). Here, the trivial state and functional data are acquired, and the

invertible is found, reducing the error.
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6.5. Analysis Time

In Figure 10, the analysis time for the proposed work is reduced based on the data
grouping concept. This approach indicates the n-derivation forwarding and provides
reliable fuzzy processing. The diagnosis precision is improved in this work by reducing the
error in this healthcare data. The uncertainty means the healthcare big data analysis where
the identification provides functional data under fuzzy processing. This fuzzy processing is
used to provide the invertible under the functional data. This stored data is used to define
the diagnosis and the progression report to acquire the data grouping. The derivation is
computed by classifying irrelevant or functional data in this optimization process. This
identification is used to develop a precision diagnosis with reduced errors. From this stage,
the analysis is used to propose the trivial state handling under the irrelevant computation.
The analysis time is calculated for the healthcare data processing, and it is reduced and
represented as [(gi + Ha) + hn]−

(
ct + mg

)
.
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This study utilizes p-values to determine whether the sample estimate differs con-
siderably from a hypothesized value. If there was no actual impact, the p-value indicates
the probability that the observed effect within the research occurred by chance. Statistical
significance is traditionally conferred upon data with a p-value of <0.05 or <0.01. Within
a specified confidence level (e.g., 95%), a confidence interval gives a range of values, one
of which is the precise value of the statistical constraint within the specified population.
A confidence interval is a range that includes the most likely lower and upper bounds of
a connection or difference for a given population. Confidence intervals, as opposed to
p-values, provide greater evidence about the accuracy of an estimate; for example, a 95%
confidence interval would mean that the range would include the real value in 95% of
cases.

In this performance evaluation, the recommended CTSFP is selected for comparison
assessment with the existing state-of-the-art methods like USDA, SBDA, and HDCO-DEL
methodologies because of their significant advantages to healthcare big data analytics.
Important vital aspects covered by each approach include managing data from wearable
devices, monitoring patients in real-time, and using an advanced selection of features
for accurate evaluation. Essential insights for healthcare management decision-making
can be derived from analyzing their performance concerning accuracy, analysis rate, data
grouping efficiency, irrelevance estimation, error detection and appropriateness of analysis
time for healthcare applications.

In this comparison evaluation, the results across the considered metrics reveal the
advantages and disadvantages of each strategy, giving helpful information about the best
method to put them into practice in analyzing healthcare big data. For efficient and precise
processing of missing information from sensors, the USDA model performs exceptionally
well in the real-time monitoring of patients. Disease detection and forecasting are two
areas where the SBDA model shines, demonstrating its strength in times of crisis. In
contrast, the HDCO-DEL model is scalable and displays remarkable accuracy in medical
data classification, making healthcare surveillance techniques more dependable.

Despite the methods’ strengths, they all have drawbacks, such as computational
inefficiency and problems with data analysis. In contrast, the suggested CTSFP approach
is used to preprocess healthcare big data to increase accuracy, data analysis time, and
resilience to overcome these restrictions. The CTSFP method is an innovative new direction
for healthcare management practices since it uses data normalization, noise reduction, and
outlier detection to enhance healthcare analytics. Additional empirical testing is required
to determine the method’s practical usefulness. Still, it offers a fresh perspective on the
challenges associated with big data healthcare analysis and could lead to more reliable
decision-making in the healthcare domain.
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7. Conclusions

This article introduces the CTSFP method to improve the efficacy of healthcare data
analytics. The proposed method separates healthcare data analysis toward invertible
improvement and error reduction. This method utilizes fuzzy optimization to identify
irrelevant and functional data based on real-time measures. The fuzzy derivatives sat-
isfying invertible conditions are utilized under error reduction and diagnosis-oriented
improvements. Based on the separation, data grouping for irrelevant and functional input
is validated under fuzzification and defuzzification processes that extract data deviations
separately. Therefore, the functional data for diagnosis improvements are augmented for
further irrelevant data reduction. Thus, the proposed method is introduced for signifi-
cant data analysis with the possibility of derivatives detected using the fuzzy optimization
method. Since the trivial state error rate is reduced, healthcare big data analysis is enhanced.
Data storage and transmission formats used by healthcare information technology systems
might be inconsistent and based on diverse standards. The proposed scheme has overcome
obstacles to interoperability so that different systems can communicate data without any
problems, integrating these systems.

Author Contributions: Conceptualization, M.A. and H.M.; methodology, M.A. and H.M.; software,
M.A. and H.M.; validation, Z.A. and H.M.; formal analysis, M.A. and Z.A.; resources, Z.A. and H.M.;
data curation, Z.A.; writing—original draft preparation, M.A. and H.M.; writing—review and editing,
M.A. and Z.A.; visualization, Z.A. and H.M.; funding acquisition, Z.A. and H.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2021R1F1A1055408).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study is available from Kaggle at the following
link: https://www.kaggle.com/datasets/hansaniuma/patient-health-scores-for-ehr-data.

Acknowledgments: The authors express their sincere appreciation to the Researcher Supporting
Project Number (RSPD2024R1113) King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yan, L.; Huang, W.; Wang, L.; Feng, S.; Peng, Y.; Peng, J. Data-enabled digestive medicine: A new big data analytics platform.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 18, 922–931. [CrossRef] [PubMed]
2. Biswas, R. Outlining big data analytics in health sector with special reference to COVID-19. Wirel. Pers. Commun. 2022, 124,

2097–2108. [CrossRef] [PubMed]
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Abstract: The 12-lead electrocardiogram (ECG) is crucial in assessing patient decisions. However,
portable ECG devices capable of acquiring a complete 12-lead ECG are scarce. For the first time,
a deep learning-based method is proposed to reconstruct the 12-lead ECG from Frank leads (VX,
VY, and VZ) or EASI leads (VES, VAS, and VAI). The innovative ECG reconstruction network called
M2Eformer is composed of a 2D-ECGblock and a ProbDecoder module. The 2D-ECGblock module
adaptively segments EASI leads into multi-periods based on frequency energy, transforming the 1D
time series into a 2D tensor representing within-cycle and between-cycle variations. The ProbDecoder
module aims to extract Probsparse self-attention and achieve one-step output for the target leads.
Experimental results from comparing recorded and reconstructed 12-lead ECG using Frank leads
indicate that M2Eformer outperforms traditional ECG reconstruction methods on a public database.
In this study, a self-constructed database (10 healthy individuals + 15 patients) was utilized for
the clinical diagnostic validation of ECG reconstructed from EASI leads. Subsequently, both the
ECG reconstructed using EASI and the recorded 12-lead ECG were subjected to a double-blind
diagnostic experiment conducted by three cardiologists. The overall diagnostic consensus among
three cardiology experts, reaching a rate of 96%, indicates the significant utility of EASI-reconstructed
12-lead ECG in facilitating the diagnosis of cardiac conditions.

Keywords: deep neural network; EASI lead system; electrocardiogram; 12-lead ECG reconstruction

1. Introduction

Heart disease is the leading cause of mortality worldwide [1]. Electrocardiogram
(ECG) monitoring serves as an effective means for the early detection of cardiovascular
disease [2]. In clinical practice, the 12-lead ECG plays a pivotal role in assessing and
guiding patient management decisions [3]. In order to record prolonged cardiac activity,
ambulatory ECG was introduced in 1961 [4]. However, due to its influence on daily life,
which stems from the number and placement of recording points and its relatively short
recording duration (most 20 to 48 h [5]), there is an urgent need for new measurement
methods to capture long-term cardiac activity.

The wearable ECG, while meeting long-term monitoring and comfort demands [6],
falls short of meeting clinical requirements as the standard 12-lead ECG. Existing wearable
ECG devices predominantly capture single leads (two electrodes [7] or optical sensors [8]) or
three-lead ECG (four electrodes [2] or five electrodes [9]). Compared with standard 12-lead
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ECG, wearable ECG offers limited intuitive cardiac information (as shown in Figure 1) and
is currently primarily used to diagnose arrhythmias [10–12]. To our knowledge, no specific
diagnostic standards have yet been established for wearable ECG in clinical practice. The
reconstruction of a standard 12-lead ECG from wearable ECG data can enhance the clinical
utility of wearable ECG. As a result, the reconstruction of 12-lead ECG from a reduced
number of leads has become a research hotspot.
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Figure 1. Schematic illustration of the 12-lead ECG reconstruction.

The theoretical foundation for the reconstruction of ECG was established by Frank [13–15]
and Dower et al. [9,16–18]. Frank et al. introduced the Frank-XYZ orthogonal spatial
vector ECG (VX, VY, and VZ) [13], but it is not suitable for dynamic cardiac monitoring.
Based on Frank et al.’s theory, Dower et al. proposed the EASI lead system (VES, VAS,
and VAI), which is suitable for dynamic acquisition, and theoretically demonstrated the
feasibility of reconstructing the 12-lead ECG using EASI leads [16]. As shown in Figure 1,
the EASI system consists primarily of four electrodes (E-A-S-I) that can capture three
bipolar leads (VES, VAS, and VAI), each containing information from both the transverse
and coronal planes. Notably, not all three-lead systems can reconstruct a 12-lead ECG. For
example, limb leads only contain information from the coronal plane and do not provide
the necessary information to derive chest leads, theoretically lacking the feasibility to
derive precordial leads [17,19,20]. Dower et al. introduced the “Dower universal transform”
method, which achieves a linear transformation of EASI data to derive 12-lead ECG using a
biased matrix [16]. Field et al. then enhanced the “Dower universal transform” coefficients
originally proposed by Dower et al. [18], and Nelwan et al. observed significant differences
between 12-lead ECGs reconstructed using improved EASI coefficients and the recorded
ones [21]. Similarly, Schreck et al. employed a straightforward nonlinear approach to
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construct a universal matrix to reconstruct missing leads [22,23]. The foundational leads
used to reconstruct the remaining 12 ECG leads initially included I, aVF, and V2 [22],
with subsequent work incorporating I, II, and V2 [23]. This method represents an ideal
“one-size-fits-all” solution but may not adapt well to interferences from factors such as
equipment, biological variations, and environmental conditions [24].

The least squares regression (LSR) method was used by Trobec et al. to estimate the
transformation to generate a 12-lead ECG from three differential leads (DLs) [25]. This
method yielded the best results in generating 12 leads from the three DLs proposed by the
authors, with an average correlation coefficient of 0.954. However, this method exhibited a
lower correlation coefficient of 0.71 in lead aVL, and the root mean square error reached
115.3 µV in lead V5. Their study aligns with the approach of Dower et al., resulting in
limited generalization capabilities. Mulyadi et al. proposed reconstructing the 12-lead ECG
using a segment-based approach (divided into P, QRS, and T segments) through LSR [26].
Unfortunately, abnormal ECG can exhibit phenomena such as P wave disappearance,
QRS-wave distortion, and low-amplitude T wave, which can cause reconstruction failure.
Despite attempts to use neural networks to synthesize ECG [27], including the application of
focused time-delay neural networks used for speech recognition to ECG reconstruction [28],
as reported in their results, the generalizability of ECG reconstruction has improved but
still requires further enhancement.

The EASI-lead ECG represents a simplified expression of cardiac status, while the
12-lead ECG provides a richer and more clinically informative representation. This result
is analogous to the task of machine translation, where understanding the semantics of
one language and translating it into another is required. The Transformer model and its
variants are currently among the state-of-the-art models in the field of machine translation.
Furthermore, they have also shown good performance in time-series forecasting [29–32].
With the assistance of attention mechanisms, they can uncover hidden pairwise temporal
dependencies between time points. Zhou et al. introduced the application of the Trans-
former model to the prediction of long sequence time series, using its attention mechanism
to capture long-term dependencies within the sequence [29]. However, it is challenging
for attention mechanisms to directly identify reliable dependencies from scattered time
points [31].

In this study, we analyze ECG signals from a multicycle perspective. Sinus ECG
exhibits quasiperiodic behavior. However, the conduction of abnormal cardiac electrical
activity is influenced by the current cardiac cycle and the increased excitability of ectopic
rhythm points or the reentrant excitement from the last cycle, presenting a multicycle
pattern. Consequently, the detected abnormal ECG signal results from the superimposition
of sinus rhythms and ectopic rhythms, exhibiting multicycle characteristics. However,
raw ECG sequences have a one-dimensional structure that captures changes only between
adjacent time points, making it challenging to explicitly extract both types of variation
simultaneously. We employ Fourier Transformation to dissect 1D time series into several
segments based on the ECG frequency composition, stacking them into a 2D structure.
At this juncture, the rhythms within each segment predominantly represent within-cycle
variations, whereas the variances in the ECG at identical positions across segments are
shaped by between-cycle variations. This enables us to represent within-cycle and between-
cycle variations concurrently in a 2D space, resulting in temporal 2D variations.

Motivated by the abovementioned considerations, we propose a multichannel-based
2D-variation ECG reconstruction network (M2Eformer). This network comprises two
primary modules as follows: the 2D-ECGblock and the ProbDecoder. With the support of
the 2D-ECGblock, M2Eformer can identify the multicyclic nature of ECG sequences and
fuse information into the attention-based ProbDecoder to achieve target leads. We evaluated
the algorithm’s performance in publicly available databases [33] using quantitative metrics
such as the Pearson coefficient r (Pr) and mean absolute error (MAE), as well as macro-
level evaluations provided by cardiologist annotations. Furthermore, regarding practical
application value, we collected synchronous EASI and 12-lead ECG from cardiac patients
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who required 12-lead ECG monitoring. We analyzed the consistency in the diagnoses made
by cardiac experts for the reconstructed and recorded 12-lead ECG.

As illustrated in Figure 1, this document establishes a mapping relationship between
EASI and the 12-lead ECG using the deep learning model M2Eformer.

• For the first time, a deep learning-based ECG reconstruction network is presented,
which deeply extracts latent cardiac information from EASI leads and reconstructs a
standard 12-lead ECG consistent with the diagnostic practices of cardiac experts. This
provides a feasible approach to the application of wearable ECG for clinical diagnosis.

• We propose a 2D-ECGblock module for the reconstruction network that transforms
time-domain signals into multiperiod 2D tensors based on spectral energy. This
module simultaneously extracts dependent information from both within-cycle and
between-cycle components in the ECG. Additionally, we designed the ProbDecoder
module, which employs a sparse attention mechanism to achieve ECG reconstruction
in a residual-like manner.

• We conducted a clinical diagnostic validation study of 25 cases using a 12-lead ECG
reconstructed from EASI leads. Next, focusing on four cardiac conditions, namely,
atrial fibrillation, atrial flutter, coronary artery disease, and myocardial infarction,
which require 12-lead ECG monitoring, three experts were invited to participate in a
double-blind diagnostic experiment comparing the reconstructed 12-lead ECG with
standard recorded ones. The overall consistency coefficient reached 96%.

The remaining parts of the paper are structured as follows: Section 2 outlines the
framework of this paper, encompassing the composition of the dataset, the network archi-
tecture, and the evaluation methodologies employed. Section 3 presents the results. Then,
Section 4 provides the discussion. Finally, Section 5 summarizes the conclusion.

2. Materials and Methods

The general framework of this study, as depicted in Figure 2, comprises three modules
as follows: data preparation, model construction, and results analysis. The aim is to
reconstruct a standard 12-lead ECG using EASI leads (VES, VAS, and VAI). The following
two databases were used in this research: a publicly available database (Frank-XYZ +
12-lead ECG) [33] and a self-constructed database (EASI leads + 12-lead ECG), each serving
different experimental purposes including the algorithm comparison experiment (Task 1)
and the EASI practicality analysis experiment (Task 2).

To construct the M2Eformer model, we initially calculated the correlation coefficient
distribution between input signals (VX, VY, and VZ, or VES, VAS, and VAI) and target signals
on the training set. The lead with the highest correlation was selected as the input for the
corresponding ProbDecoder model. Subsequently, we used M2Eformer to reconstruct the
12-lead ECG. Finally, a results analysis was conducted. The details of each component are
further elaborated below.

2.1. Databases

In this study, we used the publicly available PhysioBank Physikalisch-Technische
Bundensanstalt Diagnostic (PTB-DN) ECG database [33] to compare the performance of the
Task 1 algorithm. The main reasons for this choice are as follows: 1. the PTB-DN database
includes synchronous Frank-XYZ leads and standard 12-lead ECG, with Frank-XYZ leads
forming the theoretical basis for EASI; 2. the PTB-DN database is the largest publicly
available database known to contain both synchronous Frank-XYZ leads and standard
12-lead ECG, comprising 549 records from 290 subjects; and 3. many previous studies on
ECG reconstruction have also utilized this database [16,22,23,27,28], which facilitates our
algorithm comparison experiments.
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Figure 2. The research framework of this paper. Data1 (Frank-XYZ and 12-lead ECG) was employed
to optimize the M2Eformer model and to conduct a comparative performance analysis with prior
algorithms. Subsequently, M2Eformer was validated on Data2 to ascertain the reliability of the
12-lead ECG reconstructed from EASI leads for clinical diagnosis.

PTB-DN data were sampled at a rate of 1000 Hz with a 16-bit resolution, and the
least significant bit represented 0.5 µV. Before use, all ECG records were preprocessed
in 8 s windows, involving a 50 Hz notch filter and 20th-order polynomial filtering to
eliminate powerline noise and baseline drift. In order to eliminate the influence of high-
frequency noise, local regression smoothing filtering was applied with a smoothing window
of 10 sample points. Furthermore, despite preprocessing, some records still contained
significant artifacts (ECG drowned by noise or existing severe wandering baseline) or
missing information (missing leads or diagnostic information) and were excluded from
this study. The data composition used for the algorithm evaluation is detailed in Table 1.

Table 1. Details of the PTB-DN database. The ratio of training to validation to test sets: 3:1:1.

Training Validation Test Total

Healthy controls 35 11 11 57
Myocardial infarction 127 43 43 213
Bundle branch block 7 2 2 11

Myocardial hypertrophy 6 2 2 10
Valvular heart disease 2 1 1 4

Cardiomyopathy 4 1 1 6
Total 183 61 61 305

Among these, each category of ECG records was roughly divided into training, valida-
tion, and test sets in a ratio of approximately 3:1:1 [29,34]. It should be noted that the data
for the training and test sets were strictly derived from different individuals.
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In order to validate the reliability of the 12-lead ECG reconstructed by EASI for
monitoring purposes, Task 2 involved the collection of synchronized EASI leads (VES, VAS,
and VAI) and standard 12-lead ECG. As depicted in Figure 1, thirteen electrodes were
attached to the patient’s body, where ten electrodes were used to capture the 12-lead ECG,
and four electrodes, with one overlapping electrode A and V6, were utilized for capturing
EASI leads (VES = VE − VS, VAS = VA − VS, and VAI = VA − VI). Heart disease patients were
arranged for ECG collection at the First Affiliated Hospital of Nanjing Medical University.
As shown in Table 2, the types of heart diseases among the patients included atrial flutter
(1 case), atrial tachycardia (2 cases), myocardial infarction (3 cases), and coronary heart
disease (9 cases). There were also ten healthy participants from Nanjing Medical University.
Data were collected using medical equipment (NaLong RAGE-18P) with a sampling rate of
1000 Hz. Healthy individuals were monitored for 10 min, while patients were monitored
for 5 min. It is important to emphasize that the selected types of heart disease required joint
assessment using a 12-lead ECG. Ethics approval was obtained from the Nanjing Medical
University Ethics Committee.

Table 2. Details of the EASI database. The ratio of the training to test sets is 4:1.

Age ± Std Training Test Total

Healthy controls 26.2 ± 7.2 8 2 10

Atrial flutter 73

12 3 15
Atrial tachycardia 76.5 ± 7.5

Myocardial infarction 66.2 ± 7.9
Coronary heart disease 59.3 ± 17.6

Total 50.5 ± 22.2 20 5 25

2.2. Multichannel 2D-Variation ECG Reconstruction Network (M2Eformer)

Figure 3 illustrates the network architecture of the proposed 12-lead ECG reconstruc-
tion model. M2Eformer consists of two modules, namely, the 2D-ECGblock and the Prob-
Decoder module. In the 2D-ECGblock module, the ECG data are adaptively transformed
into a 2D representation based on frequency domain energy, thus enabling simultaneous
extraction of within-cycle and between-cycle variations. In the ProbDecoder module, initial
sparse-attention calculations are performed on the input signal (Max Correlation Lead)
to extract relevant information from the ECG. Subsequently, in the Encoder–Decoder At-
tention layer, the extracted data are fused, providing the foundational knowledge for the
reconstruction of target leads.

As shown in Figure 3, the input to M2Eformer consists of a three-lead ECG represented
by VX, VY, and VZ. For a cardiac sequence of length L, the original 1D structure is denoted as
X1D ∈ RL × 3. The collected ECG vectors represent the projection of the vectorcardiography
at that moment onto the coordinate axes of the electrodes and the cardiac dipole. Therefore,
to extract cardiac information at time t, we designed the multichannel fusion layer, and the
computational method is as follows:

Xdmodel
1D = Conv1d3×3

(
XEin

1D

)
(1)

By mapping the original three-channel ECG into a high-dimensional vector Xdmodel
1D

and simulating the distribution of vectorcardiograms at time t, we enhanced the model’s
generalization capability.
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Figure 3. Schematic illustration of the 12-lead ECG reconstruction. Max correlation lead refers to the
lead exhibiting the highest correlation with the target lead among the three input leads, as statistically
determined based on the training set.

In order to capture between-cycle variations in the ECG sequences, it is essential to first
identify their periods. Inspired by the work of Hu et al. [34], we designed the adaptive 2D
unfolding module, referred to as the 2D-ECGblock. This method utilizes the Fast Fourier
Transform to identify the highest m frequency bands with the highest energy in the ECG
sequence, as shown below:

A f∗ = Amp
(

FFT
(

Xdmodel
1D

))
, f∗ ∈ {1, · · · , L/2} (2)

{ f1, · · · , fm} = Top
(

Avg
(

A f∗

))
(3)

pi =
T
fi

, i ∈ {1, · · · , m} (4)

In the above context, FFT(·) represents the Fast Fourier Transform, and Amp(·) is
used for the calculation of the amplitude. A f∗ denotes the amplitudes calculated for each
frequency band, and their mean across the dmodel dimensions is obtained through the Avg(·)
function. Given the sparsity in the frequency domain, we sought to avoid the noise impact
of irrelevant high frequencies; thus, we selected only the top m amplitudes, obtaining the
most significant frequency bands {f 1, . . ., fm} along with their corresponding amplitudes{

A f1 , · · · , A fm

}
. These selected frequency bands correspond to the durations of k period

lengths {p1, . . ., pm}. Due to the conjugate symmetry in the frequency domain, we only use
frequencies within the {1, . . ., L/2} range. Based on the selected period lengths {p1, . . ., pm}
and frequencies {f 1, . . ., fm}, we can reconstruct the 1D time sequence X1D ∈ RT×dmodel into
a 2D tensor using the following formula:

Xi
2D = Reshape2D, pi , fi

(
Padding

(
Xdmodel

1D

))
, i ∈ {1, · · · , m} (5)

In the above formula, Padding(·) extends the time sequence by padding zeros along
the time dimension to evenly divide Xdmodel

1D into fi segments along the time dimension.
Next, pi and fi represent the number of rows and columns in the resulting 2D tensor
after transformation, where each row represents between-cycle variation and each column
represents within-cycle variation. Xi

2D ∈ Rpi× fi×dmodel is the i-th 2D tensor obtained based
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on frequency fi. After transformation, an efficient Inception block was applied [35] to
process the 2D tensor, denoted as Inception(·). In our implementation of Inception(·), we
include 2D convolution kernels of three scales including 1, 3, and 5. The calculation formula
is as follows:

X̂i
2D = Inception

(
Xi

2D

)
, i ∈ {1, · · · , m} (6)

The Inception(·) module here is shared among m layers of Xi
2D tensors to improve

parameter efficiency.

Finally, we need to transform the
{

X̂1
2D, · · · , X̂m

2D

}
back into 1D representations for

the next layer and perform information fusion. Inspired by Wu et al. [31], the amplitude
of each frequency band reflects its relative importance. Here, we base the fusion on the
transformed m 1D tensors after amplitude-based fusion. The formula is as follows:

X̂i
1D = Reshape1D, pi , fi

(
X̂i

2D

)
, i ∈ {1, · · · , m} (7)

XEout
1D =

m

∑
i=1

Â fi
× X̂i

2D, Â f∗ = Softmax
(

A f1 , · · · , A fm

)
(8)

Due to the within-cycle and between-cycle dependency information encapsulated
in the m highly structured 2D tensors, the 2D-ECGblock can extract multiscale temporal
2D variations through the Inception module. Compared with the original Transformer,
which obtains interelement dependencies through attention mechanisms, the 2D-ECGblock
enables more efficient representation learning.

The ProbDecoder has two input components. The first part of the input consists of
one of the Frank-XYZ leads (VX, VY, and VZ). In the training dataset, we computed the Pr
between the Frank-XYZ leads and the target lead, as shown in Figure 4. When training the
corresponding model, the lead from VX, VY, or VZ with the highest correlation coefficient
to the target lead is selected as the input for the ProbDecoder. According to the statistical
results in Figure 4, the final correspondence for the ProbDecoder input is as follows: I-X,
II-Y, III-Y, aVR-X, aVL-X, aVF-Y, V1-Z, V2-Z, V3-Z, V4-Z, V5-X, and V6-X. From the graph,
it can be observed that the leads with the highest correlation are negatively correlated
with the standard 12 leads, specifically aVR, V1, V2, V3, and V4. This is because aVR-X,
V1-Z, V2-Z, V3-Z, and V4-Z represent vectors located on the opposite side of the heart with
opposite polarities.
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First, we encode the input XDin
1D for the ProbDecoder:

Q, K, V = Linear
(

Conv1d
(

XDin
1D

))
(9)

where Q, K, and V, respectively, represent the query, key, and value matrices in the Trans-
former, with K being the same size as Q (LK = LQ = L). Since the input ECG for the
ProbDecoder itself is sparse, with a small portion of physiologically significant cardiac
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signals and a larger portion of baseline signals, we were inspired by Zhou et al. [29] to
propose a Probsparse self-attention calculation for the encoded cardiac data. Q only needs
to perform dot products with ln(LK) key matrices randomly, and the remaining LK–ln(LK)
pairs are filled with zeros. The calculation process is as follows:
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In the computed L × L matrix, only ln(L) columns have numerical values. Therefore,
in the ProbDecoder, self-attention only needs to calculate O(L × ln(L)) dot products. Max-
mean measurements are performed on the computed L × L matrices:

Mh = max
{

x1
h, · · · , xL

h

}
− 1

L

L

∑
j=1

xj
h, h ∈ {1, · · · , L} (12)

Next, based on the sorting of {M1, · · · , ML}, we select the top-u
{

x1
u, · · · , xdmodel

u

}

vectors of Q to form Q, where u = C × ln L.
Here, C is a hyperparameter, and it was chosen as C = 5 based on results from [29].

The self-attention matrix computed for the sparse matrix Q, K, and V, is also sparse, with
the remaining rows of the V matrix filled with the mean of that row. This approach helps
to emphasize the importance of the positions, where the ECG waveforms are located while
reducing the model’s focus on baseline waveforms. The final Probsparse self-attention
matrix still has a size of L × L, which is calculated as follows:

Attention =

{
Softmax

(
QKT

√
dmodel

)
V, Mean(V)

}
(13)

As mentioned above, periodic variations are extracted from the VX, VY, and VZ
three-lead ECG signals through the 2D-ECGblock. Based on this information, we perform
attention mechanism calculations in the Encoder–Decoder layer and correct central ECG
waveforms in the value matrix, achieving reconstruction of the target lead electrocardio-
gram in a residual-like manner. Therefore, based on this attention calculation, a new value
matrix V is computed as follows:

V̂ = Norm
(

Attention + XDin
1D

)
(14)

Q̂, K̂ = Linear
(

Conv1d
(

XEout
1D

))
(15)

The second part of ProbDecoder’s input is the output XEout
1D from the 2D-ECGblock.

After a linear transformation, new query Q and key K matrices are obtained. The ECG
waveform correction is performed in the Encoder–Decoder Attention layer, and after
passing through a feedforward layer and a linear layer, the target lead ECG is obtained
as follows:

Target = Linear

(
Feed

(
Softmax

(
Q̂K̂T

√
dmodel

)
V̂

))
(16)
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In order to ensure that the training process of each lead ECG reconstruction net-
work does not interfere with each other, we trained 12 separate M2Eformer models, each
dedicated to reconstructing the corresponding lead ECG signal.

2.3. Evaluation

Based on previous research, we used the Pearson coefficient r (Pr) and the mean value
of absolute error value (MAE) to quantify the differences between the predicted ECG leads
and the recorded leads. Pr measures the degree of linear correlation between two sets of
data, variables X and Y, and is calculated as follows:

Pr =

n
∑

i=1

(
Xi − X

)(
Yi − Y

)

√
n
∑

i=1

(
Xi − X

)2
√

n
∑

i=1

(
Yi − Y

)2
(17)

where X represents the reconstructed ECG leads, Y represents the recorded ECG leads, and
n denotes the duration of each record.

MAE provides a better reflection of the actual amplitude error in the reconstructed
ECG, with smaller values indicating greater reconstruction precision. It is calculated
as follows:

MAE =
1
n

n

∑
i=1

|Xi − Yi| (18)

3. Results
3.1. A Comparison of Training Results

The proposed M2Eformer model employs an attention-based Transformer architecture.
It utilizes a single layer of the 2D-ECGblock module as the Encoder and a single layer of
the ProbDecoder module as the Decoder. The embedding dimension was set to 512. We
initially conducted grid search experiments on the PTB-DN validation set with epochs of
100 and 200, and learning rates of 0.001, 0.0001, and 0.00001. An epoch of 100 and a learning
rate of 0.0001 were selected, taking into account both training speed and reconstruction
performance. Subsequent experiments were conducted on the validation set to evalu-
ate various configurations, including the number of layers in the 2D-ECGblock module
(0, 1, and 2 layers) and the ProbDecoder module (1, 2, and 4 layers), as well as different
embedding dimensions (64, 256, and 512). Based on these tests, we ultimately selected a
setup with one layer for the 2D-ECGblock module, one layer for the ProbDecoder module,
and an embedding dimension of 512. The batch size for training was set to 200, determined
by the GPU’s memory capacity of 24 G. To prevent model overfitting and enhance the
generalization capability of the training model, we employed the Dropout function as the
regularization method, with the dropout rate set to 0.1. The training process utilized the
Adam optimizer and the MSE (Mean Squared Error) Loss function [30–32,34].

The loss curves on the validation set are depicted in Figure 5, where gray represents the
original Transformer, blue represents the T-Transformer, which embeds the 2D-ECGblock
into the Transformer while keeping the Decoder unchanged, and red represents the pro-
posed M2Eformer.

From Figure 5, we can observe that in leads aVR, aVL, V1, and V4, the proposed
M2Eformer achieves a lower validation loss in the validation set, significantly outperform-
ing both the Transformer and T-Transformer. With other leads, the convergence results are
relatively close. The minimum validation loss values and their corresponding best epochs
for each of the three models are listed in Table 3. As indicated in Table 3, the proposed
M2Eformer has a slightly higher validation loss on lead V5 compared with the Transformer
(0.0001) but achieves better or consistent results on the remaining leads. Moreover, Figure 5
demonstrates that M2Eformer does not exhibit a noticeable overfitting phenomenon in all
leads despite its slower convergence compared with the other two frameworks.
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Table 3. Best epoch and minimal validation loss for M2Eformer, T-Transformer, and Transformer.

Model
Best Epoch/Min Loss

I II III aVF V2 V3 V5 V6

M2Eformer 64/0.0027 98/0.0009 97/0.0022 98/0.0008 55/0.0229 74/0.0215 66/0.0050 85/0.0016
T-Transformer 12/0.0028 70/0.0010 91/0.0024 95/0.0009 93/0.0236 10/0.0219 94/0.0054 66/0.0027
Transformer 18/0.0027 51/0.0010 97/0.0038 70/0.0009 28/0.0243 10/0.0215 15/0.0049 89/0.0016

In Figure 5, when comparing the validation loss between the Transformer and the
T-Transformer, we notice that the Transformer exhibits a more pronounced overfitting
issue (especially in leads aVR, V2, and V4). The cause of overfitting may be attributed to
the attention mechanism in the encoder failing to capture reliable temporal dependencies
within the signal [31]. Our parameter analysis revealed that the total number of parameters
in the Transformer (4.2 million) is smaller than that in the T-Transformer (13.4 million). This
result suggests that the phenomenon of overfitting is not caused by excessively large model
parameters, further confirming the effectiveness of the 2D-ECGblock in extracting hidden
cardiac information.

3.2. ECG Reconstruction Effect Comparison

To validate the performance of M2Eformer, we compared it with various algorithms
using two key metrics including Pr and MAE. The algorithms compared included Trans-
former, T-Transformer, as well as algorithms mentioned in previous studies, such as Linear
transformation [16,22,23] and least squares regression (LSR) [25]. We also included the
commonly used Long Short-Term Memory (LSTM) network for comparison in time series
tasks [36–38].

The results demonstrate that several methods used in the experiments can reconstruct
the 12-lead ECG, with superior overall performance achieved by deep learning-based
approaches. Tables 4 and 5 present the Pr and MAE between the reconstructed ECG and
the recorded ECG obtained using these six algorithms in the test dataset, where the ratio of
training, validation, and testing was set at 3:1:1.

Table 4 reveals that the proposed M2Eformer exhibits the best overall reconstruction
performance for the 12-lead ECG (total Pr = 0.8785), followed by the T-Transformer (total
Pr = 0.8579). M2Eformer surpasses the Transformer in performance across leads II-V1 and
V3-V6 for each lead, underscoring the efficacy of the 2D-ECGblock.
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Table 4. Pearson’s correlation r (Pr) in test dataset.

Model I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Total

M2Eformer
(ours) 0.8465 0.9588 0.7817 0.8921 0.8447 0.8321 0.9105 0.8930 0.9420 0.8641 0.8554 0.9215 0.8785

M2Eformer
(ours) 0.8441 0.9207 0.7496 0.8534 0.7875 0.8647 0.8932 0.9052 0.9220 0.8409 0.8326 0.8814 0.8579

Transformer 0.8568 0.9063 0.6705 0.7983 0.7036 0.8748 0.8865 0.9133 0.9217 0.7883 0.7895 0.9004 0.8342
LSTM 0.6573 0.6357 0.4625 0.6181 0.6273 0.6366 0.7009 0.5212 0.5600 0.5341 0.5612 0.6926 0.6006
LSR 0.8507 0.8266 0.5891 0.9224 0.6456 0.6741 0.9015 0.8835 0.9516 0.8552 0.8594 0.9621 0.8268

Linear 0.8087 0.9485 0.6381 0.8642 0.6155 0.8534 0.9068 0.8795 0.9440 0.7759 0.6735 0.9220 0.8192

Table 5. Mean absolute error (MAE) in test dataset.

Model I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Total

M2Eformer
(ours) 0.0399 0.0215 0.0395 0.0266 0.0370 0.0241 0.0619 0.1044 0.0815 0.0730 0.0629 0.0406 0.0511

M2Eformer
(ours) 0.0401 0.0260 0.0368 0.0316 0.0465 0.0252 0.0632 0.0972 0.0879 0.0827 0.0688 0.0465 0.0544

Transformer 0.0380 0.0265 0.0430 0.0343 0.0474 0.0241 0.0638 0.1003 0.0933 0.1045 0.0635 0.0457 0.0570
LSTM 0.0479 0.0576 0.0507 0.0488 0.0373 0.0464 0.0789 0.1410 0.1403 0.1147 0.0853 0.0620 0.0759
LSR 0.0352 0.0422 0.0491 0.0234 0.0401 0.0487 0.0517 0.0980 0.0655 0.0756 0.0570 0.0311 0.0515

Linear 0.0516 0.0212 0.0470 0.0322 0.0478 0.0257 0.0432 0.0753 0.0582 0.0954 0.0997 0.0358 0.0528

Although LSR achieves the highest Pr in a few leads (aVR, V3, V5, V6), the average
correlation coefficient in leads III, aVL, and aVF is less than 0.7. This finding indicates that
the ECG reconstructed by LSR in leads III, aVL, and aVF deviates significantly from the
recorded ECG (as shown in Figure 6), especially in lead III, where the amplitude difference
in the S wave reaches 1mV. This divergence could potentially lead to a misdiagnosis
(e.g., patients with reduced ECG amplitudes suggestive of myocardial injury in cases of
coronary artery disease).
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The MAE can characterize the actual errors in the predicted values, with smaller values
indicating a smaller amplitude difference between the reconstructed ECG and the recorded
ECG. In Table 5, M2Eformer only exhibits the lowest MAE in a few leads (aVL, aVF, V4).
However, its overall MAE to reconstruct the 12-lead ECG is the lowest (total MAE = 0.0511).
Although the Linear method achieves the lowest MAE in leads II, V1-V3, its performance
in terms of Pr in Table 4 is not outstanding. This is because the Linear method better fits
the waveforms with larger amplitudes (Q and S waves) in these four leads. As depicted
in Figure 7, the amplitudes of the R and S waves reconstructed in leads III and aVL for
Linear assessment differed significantly. This result can also result in a misdiagnosis by
cardiologists (e.g., diagnosing coronary artery disease as myocardial injury).
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Figure 7. Comparison of 12-lead ECG reconstructed by (a) Linear (above) and (b) M2Eformer (below)
in the test dataset. (The same segment of the ECG is shown in Figure 6.)

In general, considering the results in Tables 4 and 5, M2Eformer achieves the best
overall performance in reconstructing the 12-lead ECG, and the T-Transformer shows
improvement compared with the original Transformer. This result demonstrates that the
2D-ECGblock meets our expectations for effectively extracting ECG information.

Figure 8 presents box plots of Pr in the test set for the Transformer, the T-Transformer,
and M2Eformer. The mean Pr for each lead in Table 4 is also represented in the figure as
squares (□). In Figure 8, M2Eformer shows a more concentrated Pr distribution in most
leads (II, III, aVR, aVL, and V3-V6), with higher mean and median values. This result
indicates that the ECG reconstructed by M2Eformer shows more consistent waveform
changes (synchronously rising and falling) with the recorded ECG.

The Transformer performs better in lead I, but compared with the other two algorithms,
it does not show statistically significant differences at a confidence level of p = 0.05. The
Transformer only shows statistically significant superiority (higher mean) in leads aVF
and V2. By comparing the Transformer and M2Eformer training processes (Figure 5 and
Table 3), we observe that M2Eformer achieves a lower loss in the validation set and does
not exhibit overfitting. We believe that this might be due to the limited size of the validation
dataset, which may not fully reflect the real training process.
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In summary, Figure 8 further demonstrates the superior performance of M2Eformer.
The performance of M2Eformer in reconstructing the ECG is shown in Figure 9. This

segment (1.25 s) of the ECG data was collected from a patient with a myocardial infarction.
The red line represents the reconstructed ECG, while the black line represents the recorded
ECG. We presented a 10 s segment containing this ECG snippet to a cardiac specialist for
diagnosis. The diagnosis based on the reconstructed ECG (red line) indicates “old anterior
myocardial infarction (V1-3 leads exhibit QS morphology)” and “lateral myocardial ischemia
(ST-segment depression in leads I, V5-6)”. The diagnosis based on the recorded ECG (black
line) is “anterior myocardial injury (poor R-wave progression in V1-3 leads)” and “lateral
myocardial ischemia (ST-segment depression in leads I, V5-6)”. Among them, “old anterior
myocardial infarction” and “anterior myocardial injury” correspond to the same cardiac injury,
but the expression is different. In the reconstructed ECG, there is a noticeable discrepancy in the
0.5–1 s region of leads V2 and V3 compared with the recorded ECG. However, these differences
are mainly in terms of amplitude, with their waveforms being nearly synchronous, indicating
that M2Eformer captures the periodic variations in the ECG signal and reflects them in the
output. However, there is room for improvement in M2Eformer in terms of the extraction and
representation of waveform amplitude information.
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In the test dataset, we performed an analysis of the consistency between the diagnostic
results of the reconstructed ECG and the recorded ECG, as shown in Table 6. We selected
10 s ECG segments that demonstrated the highest average Pr between the reconstructed
and recorded 12-lead ECG on that record, resulting in 61 segments of reconstructed ECG
and 61 segments of recorded ECG. Diagnostics were performed using a double-blind
method. When the diagnostic results of the recorded ECG and the reconstructed ECG for
the same segment were consistent with the cardiologists, we considered the reconstructed
ECG to have no impact on clinical diagnosis. Overall agreement (OvA) is a method used to
assess the consistency in diagnoses among three experts. For example, in the case of the
reconstructed and recorded ECG segments, if two experts arrive at the same diagnostic
conclusion, the segment is considered to have consistent OvA, even if the third expert’s
diagnosis diverges.

Table 6. Diagnostic results from the cardiologists in the test dataset.

Data
Cardiologist 1 Cardiologist 2 Cardiologist 3 Overall Agreement (OvA)

CS/AS PoC CS/AS PoC CS/AS PoC CS/AS PoC

Healthy controls 9/11 81.8% 9/11 81.8% 10/11 90.9% 9/11 81.8%
Myocardial infarction 41/43 95.3% 41/43 95.3% 39/43 90.7% 43/43 100%

Dysrhythmia 2/2 100% 2/2 100% 2/2 100% 2/2 100%
Bundle branch block 2/2 100% 2/2 100% 2/2 100% 2/2 100%

Myocardial hypertrophy 1/1 100% 1/1 100% 1/1 100% 1/1 100%
Valvular heart disease 1/1 100% 1/1 100% 0/1 0% 1/1 100%

Cardiomyopathy 1/1 100% 1/1 100% 1/1 100% 1/1 100%
Total 57/61 93.4% 57/61 93.4% 55/61 90.2% 59/61 96.7%

AS: all sample; CS: consistent sample; PoC, percentage of consistency.

As shown in Table 6, the percentage of consistency for cardiologist 1 was 93.4%, for
cardiologist 2 was 93.4%, and for cardiologist 3 was 90.2%. We calculated the overall
consistency among the three experts, which reached 96.7%, with only two cases of inconsis-
tency among the diagnoses of healthy individuals; the reasons for these inconsistencies are
examined in the Section 4.

3.3. EASI Leads to 12-Lead ECG

In order to further validate the reliability of the 12-lead ECG reconstruction through
the EASI lead configuration for monitoring purposes, we conducted simultaneous data
collection of EASI leads and standard 12-lead ECG. Furthermore, to comply with clinical
requirements, we selected patients with various cardiac conditions that require a combined
12-lead diagnosis. Ultimately, we obtained effective ECG data from 10 healthy individuals
and 15 patients, including those with atrial fibrillation, atrial flutter, coronary artery disease,
and myocardial infarction. Moreover, due to the limited sample size, we employed 5-
fold cross-validation for our analysis. The hyperparameters of the M2Eformer model
(epoch = 100, learning rate = 0.00001, batch size = 200) remained unchanged.

The experimental results are presented in Figure 10, where (a) shows the histogram
distribution of Pr between the reconstructed ECG and recorded ECG, (b) displays the
boxplot distribution of Pr and MAE between the reconstructed ECG and recorded ECG,
and (c) illustrates the consistency results of the annotations by cardiac experts for the
reconstructed ECG and recorded ECG.
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Figure 10. Comparison of the 12-lead reconstructed ECG with EASI vs. the recorded signal. (a) The
histogram distribution of Pr; (b) median (interquartile range) of Pr and MAE; and (c) expert labeling
results. (In-CS: inconsistent, CS: consistent, OvA: overall agreement). OvA is a method used to
analyze the consistency in diagnostic outcomes among three experts as a majority voting mechanism.

Figure 10a reveals that in more than half of the leads (lead I, aVR, V2, V4, V5, and V6),
the proportion of Pr greater than 0.8 exceeds 90%. Among the remaining leads, in leads II,
aVF, and V3, more than 80% of the Pr values are greater than 0.8, while in leads III, aVL,
and V1, the proportion of Pr values exceeding 0.8 is around 70%. Combining Figure 10a,b,
we observe that in more than half of the leads (lead I, II, aVR, aVF, and V2–V6), the median
Pr exceeds 0.9, with even lead V1 having a median Pr of 0.9044. Although Figure 10b shows
that the median Pr values for leads III and aVL are below 0.9, their median MAE values are
0.0326 and 0.0302 mV, indicating small differences in amplitude.

We engaged three cardiologists to annotate the reconstructed ECG and the recorded
ECG for a macro evaluation. We selected 10 s ECG segments for each record, comprising
25 segments of reconstructed ECG and 25 segments of recorded ECG. The diagnostic re-
sults are shown in Figure 10c, with individual diagnosis consistency rates of 96%, 96%,
and 92% for the three experts. Notably, among them, inconsistent samples from cardiol-
ogist 2 and cardiologist 3 are interlaced. Importantly, the samples identified as In-CS by
cardiologists 1 and 2 are identical, indicating that the OvA classification for this particular
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sample is marked as In-CS. Conversely, the samples identified as In-CS by cardiologist 3 do
not overlap with those deemed In-CS by cardiologists 1 and 2, thereby not impacting the
final OvA analysis. Therefore, the OvA among the diagnostic results from three cardiac
experts achieved 96% (24/25).

In Figure 10c, for the only sample with In-CS OvA outcomes, the reconstructed
ECG interpretations varied as follows: healthy individuals with variants or old anterior
interwall myocardial infarction (cardiologist 1), coronary heart disease (cardiologist 2),
and healthy (cardiologist 3). Conversely, the recorded ECG was unanimously classified as
healthy by all three cardiologists. This ECG was obtained from a patient who had returned
to sinus rhythm following ablation for atrial flutter. Therefore, in this study, there is a
certain discrepancy between the reconstructed and recorded 12-lead ECG. Nonetheless, the
high consistency observed in the one-versus-all (OvA) outcomes (96%) underscores the
substantial adjunctive value of EASI-reconstructed 12-lead ECGs in the clinical diagnosis
of atrial fibrillation, atrial flutter, and coronary artery disease.

4. Discussion

This study is the first of its kind to propose a deep learning-based ECG reconstruc-
tion network that reconstructs 12-lead ECG from EASI leads, enabling EASI leads to
help diagnose a wider range of cardiac diseases. In this study, the designed novel ECG
reconstruction network involves the following key components: 1. the 2D-ECGblock,
which simultaneously extracts within-cycle and between-cycle dependencies from input
ECG, and 2. the ProbDecoder, which is a carefully designed generation component using
Probsparse self-attention mechanisms to achieve residual-like ECG reconstruction. Fur-
thermore, we conducted clinical diagnostic validation of the reconstructed 12-lead ECG on
our self-established database. The diagnostic results of the cardiologists indicate that the
EASI-reconstructed 12-lead ECG has the potential to assist in the diagnosis of atrial flutter,
atrial fibrillation, coronary artery disease, and myocardial infarction. Conversely, the use of
EASI leads in isolation offers minimal assistance in the diagnosis of these four conditions.

Linear regression (Linear) [15–18] and least square regression (LSR) [15,25,26] are
commonly used methods for the reconstruction of 12-lead ECG. Attention-based deep
learning networks have achieved promising results in time-series prediction tasks [29–32].
Consequently, this study presents M2Eformer, a novel attention-based model for 12-lead
ECG reconstruction, and conducts a comprehensive performance comparison with tradi-
tional methods, including Linear and LSR, widely utilized in prior research. The results in
Tables 4 and 5 and Figures 6 and 7 demonstrate that the proposed M2Eformer outperforms
LSR and linear methods in the overall performance of Frank-XYZ reconstruction of 12 leads
on the PTB-DN database. In Table 4, M2Eformer performs best in the reconstruction of
the ECG for most leads, although its performance is slightly lower than that of LSR in
the reconstruction of the aVR, V3, V5, and V6 leads. In future studies, the complexity
of the parameters required for each lead’s reconstruction can be explored. Additionally,
the dataset can be further expanded to optimize the M2Eformer model and enhance the
reconstruction performance of each lead model.

In Table 6, there were differing opinions among the three cardiologists regarding the
annotations for two healthy individuals. For the first inconsistent sample, the cardiologists
provided different annotations for the reconstructed ECG including bundle branch block
(cardiologist 1) and healthy (cardiologists 2 and 3). However, their annotations for the
recorded ECG were myocardial infarction (cardiologist 1), incomplete right bundle branch
block (cardiologist 2), and healthy (cardiologist 3). According to the PTB-DN database
records, this ECG was collected from a healthy individual. The inconsistency in the di-
agnostic results for this sample is primarily attributed to cardiologist 2’s interpretation
of the recorded ECG as RBBB, due to a significant error in the diagnosis by cardiologist
1 for this sample. In the second inconsistent sample, the cardiologists provided different
annotations for the reconstructed ECG including possible high lateral myocardial ischemic
injury (cardiologist 1), myocardial ischemia (cardiologist 2), and possible myocardial injury
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(cardiologist 3). However, their annotations for the recorded ECG were possible myocar-
dial ischemic injury (cardiologist 1) and healthy (cardiologists 2 and 3). According to the
database records of the PTB-DN, this ECG was also obtained from a healthy individual.
Based on the comprehensive annotations of the three experts, the reconstructed ECG was
annotated as “myocardial injury” (indicating myocardial infarction), while the recorded
ECG was annotated as “healthy”. The diagnostic inconsistencies observed in this sam-
ple may stem from the data imbalance within the PTB-DN database, characterized by a
discrepancy between myocardial infarction cases (213) and healthy individuals (57). This
imbalance, favoring myocardial infarction instances, might have led to the inadvertent inte-
gration of myocardial infarction-related features into the reconstructed ECG, culminating
in erroneous annotations.

The primary limitation of the proposed model is that the loss function employs a
generic calculation method and does not adjust specifically for abnormal ECG waveforms,
such as incorporating the error between the R waves of the reconstructed and recorded
ECG into the training loss for backpropagation. Another limitation of this study is the
relatively small sample size of our self-constructed database, and the issue of data balance
needs further resolution. In our subsequent work, we will address this issue by collecting a
more diverse range of clinical data.

5. Conclusions

This paper explores the clinical diagnostic value of using 12-lead reconstructed ECG
through EASI leads for wearable ECG monitoring. A novel network architecture de-
signed for ECG reconstruction, called M2Eformer, is proposed. This model utilizes the 2D-
ECGblock to synchronously extract information regarding within-cycle and between-cycle
dependencies. Information fusion is achieved through a specially designed ProbDecoder,
enabling the reconstruction of a 12-lead ECG. The experimental results demonstrate that
M2Eformer achieves the best overall reconstruction performance for 12 leads (Pr = 0.8785
and MAE = 0.0511), with Pr values higher than traditional methods such as the LSR and
Linear methods (0.0517 and 0.0593, respectively). Expert annotations obtained from the
recorded data (overall consistency of 96%) suggest the potential value of the reconstructed
12-lead ECG in aiding the clinical diagnosis of conditions such as atrial flutter, atrial
fibrillation, coronary artery disease, and myocardial infarction.
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Abstract: Leveraging recent advances in graph neural networks, our study introduces an application
of graph convolutional networks (GCNs) within a correlation-based population graph, aiming to
enhance Alzheimer’s disease (AD) prognosis and illuminate the intricacies of AD progression. This
methodological approach leverages the inherent structure and correlations in demographic and
neuroimaging data to predict amyloid-beta (Aβ) positivity. To validate our approach, we conducted
extensive performance comparisons with conventional machine learning models and a GCN model
with randomly assigned edges. The results consistently highlighted the superior performance of
the correlation-based GCN model across different sample groups in the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset, suggesting the importance of accurately reflecting the correlation
structure in population graphs for effective pattern recognition and accurate prediction. Furthermore,
our exploration of the model’s decision-making process using GNNExplainer identified unique sets
of biomarkers indicative of Aβ positivity in different groups, shedding light on the heterogeneity of
AD progression. This study underscores the potential of our proposed approach for more nuanced
AD prognoses, potentially informing more personalized and precise therapeutic strategies. Future
research can extend these findings by integrating diverse data sources, employing longitudinal data,
and refining the interpretability of the model, which potentially has broad applicability to other
complex diseases.

Keywords: graph neural networks; alzheimer’s disease; amyloid-beta positivity; population graph;
explainable graph neural networks

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized
by a series of changes in the brain that occur years or even decades before the first symptoms
of cognitive decline become evident [1–4]. Amyloid-beta (Aβ) is a protein that is implicated
in AD, one of the most common forms of dementia. Aβ deposition, which can be observed
via amyloid positron emission tomography (PET) imaging, is one of the earliest detectable
pathological changes and a pathological hallmark of AD. It precedes other biomarkers, such
as tau pathology, neuronal injury or neurodegeneration, and cognitive symptoms [5]. Once
amyloid plaques start to build up, there is a cascade of events, including the accumulation
of tau tangles inside neurons and eventual cell death, leading to brain atrophy, which
can be observed through magnetic resonance imaging (MRI). Detecting the presence or
predicting the onset of Aβ positivity can, therefore, be instrumental in the early diagnosis
and prevention of this debilitating disease.

Numerous studies have employed machine learning and deep learning methodologies
for predicting amyloid pathology and other AD phenotypes [1,6–20], typically classifying
individuals into the categories of cognitively normal (CN), mild cognitive impairment
(MCI), and Alzheimer’s disease (AD) [11–14]. Furthermore, several studies have proposed
machine learning frameworks designed to predict the conversion from MCI to AD [15–19],
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highlighting the potential of these methodologies in forecasting AD progression. Despite
these advances, a crucial area of focus remains the early detection of AD pathology, espe-
cially in cognitively unimpaired individuals. Aβ deposition, distinguishable before any
cognitive impairment becomes apparent, serves as a pivotal biomarker for identifying
individuals predisposed to AD. It is noteworthy that cognitively unimpaired individu-
als may not yet demonstrate significant Aβ deposition and are often categorized as Aβ
negatives. However, AD typically harbors an extended preclinical phase where, despite
an absence of overt cognitive symptoms, individuals may already possess considerable
Aβ deposition [21,22]. Thus, predicting Aβ positivity could significantly expedite AD
diagnosis, optimize participant selection for clinical trials of disease-modifying therapies,
and facilitate proactive monitoring and potential early intervention. Many researchers are
increasingly targeting the early stages and the preclinical phase of AD in an attempt to
curtail disease progression [1,8,20,23].

Various biomarkers, including demographic traits, genetic factors, and MRI imaging
features, are key tools in predicting Aβ positivity [24,25]. Age, a significant demographic
factor, is intrinsically linked with the risk of developing AD. As age advances, the probabil-
ity of both AD and other dementia forms, as well as Aβ plaque accumulation, increases.
Sex is another demographic characteristic of note, with women statistically more likely to
develop AD compared to men, a fact which is an active area of investigation. Educational
attainment, gauged as years of formal education completed, is associated with AD risk.
Those with higher education levels often exhibit a lower risk of AD, potentially attributed
to a bolstered cognitive reserve, which allows for increased tolerance of brain damage
before dementia symptoms manifest.

Genetic factors, particularly the apolipoprotein E (APOE) ε4 allele, have a significant
role in AD risk prediction [26–28]. Carriers of this allele are at elevated risk of developing
AD and often experience earlier onset of symptoms. This allele is believed to influence
AD by modifying Aβ processing or clearance in the brain. MRI features, including brain
atrophy and other structural changes linked to AD, offer powerful predictive tools for Aβ
positivity [29,30]. Changes such as specific regional brain shrinkage, ventricular expansion,
and alterations in white matter integrity can be detected by MRI. The combined utilization
of these biomarkers offers a comprehensive approach to predicting Aβ positivity. The multi-
faceted strategy facilitates earlier, more precise diagnosis; improved prognostic predictions;
and the potential for personalized treatment plans. It can also guide the design of clinical
trials and the development of new therapeutic interventions, underlining the enhanced
predictive model offered by their combined use.

Effective capture of the collective power of these biomarkers for the efficient diagnosis
and prognosis of AD can be achieved through graph-based machine learning, particularly
graph neural networks (GNNs). GNNs have made significant strides in the healthcare
sector, modeling interactions between biological entities, predicting potential disease-
associated genes, constructing patient similarity networks, and even playing a crucial
role in drug discovery [31–41]. GNNs have been utilized to model intricate correlations
between multiple biomarkers, such as genetic, clinical, and neuroimaging features, offering
valuable insights into the underlying mechanisms of AD progression [42–46]. The strength
of GNNs lies in their ability to interpret the interconnections between brain regions and
the impacts of changes in these regions on AD progression. These capabilities can enhance
understanding of the complex disease trajectory, allowing for more precise prediction of
AD prognosis.

One such tool that has proven to be powerful in graph-based deep learning is the subset
of GNNs known as graph convolutional networks (GCNs) [47]. They extend the concept of
convolutional operations from regular, grid-like structures—typical in images—to irregular
graph structures. Notably, GCNs have been shown to be useful in disease prediction,
particularly for autism spectrum disorder and AD [38]. They operate on a population graph,
where nodes represent individuals and edges symbolize similarity in certain characteristics,
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thereby facilitating the deciphering of population-level patterns and individual variations
in brain images.

Despite these advances, their inherent black-box nature poses a challenge due to
limited transparency. This opacity can hinder understanding of the models’ internal
decision-making processes—a significant concern in the medical field, where model inter-
pretability is crucial. To combat this issue, researchers are turning to explainable artificial
intelligence (XAI) to foster more comprehensible and transparent GNNs. Various tech-
niques, such as GradCAM-based explanation [48,49], PGExplainer [50], PGMExplainer [51],
XGNN [52], and GNNExplainer [53], have been developed to enhance the interpretability of
GNNs. However, the use of explainable GNNs remains largely restricted to medical image
analysis [54–56] and drug discovery [57–60], suggesting a need for broader application and
integration. Moreover, the comprehensive prioritization of personalized biomarkers, crucial
for personalized medicine in AD diagnosis and treatment, is a largely unexplored area.

This study aims to bridge this gap by leveraging GCNs [47] to offer accurate predic-
tions alongside interpretable results, thus contributing to a more holistic understanding of
individual AD prognoses. This study is motivated by the hypothesis that cohorts with anal-
ogous clinical or neuroimaging characteristics may show a correlation that extends beyond
the influence of prevalent biomarkers, such as the APOE genotype. Thus, we can build a
population graph where nodes symbolize individuals at risk and edges depict similarities
in demographic, genetic, and neuroimaging attributes. Our study highlights the utility
of GCNs in predicting Aβ positivity, a crucial early indicator of AD, by demonstrating
our proposed correlation-based population graph of cognitively unimpaired individuals.
Furthermore, we utilize GNNExplainer [53], an explainable GNN model, which optimizes
a subgraph within an individual’s neighborhood and pinpoints a set of crucial features
integral for the prediction. For each individual, we prioritize personalized AD risk factors,
allocating risk scores derived from the average importance values garnered from their
neighbors. This elucidation process further unveils a significant variation in the biomarkers
identified for AD prognosis across different sample groups. The overview of the proposed
model is illustrated in Figure 1. The main contributions of this study include:

MRI

Age
Sex
Edu

APOE 𝜖4

...

ReLU

Dropout ...

Correlation-based Population Graph Graph Convolutional Network
Age
Sex
Edu
APOE 𝜖4

A𝛽 positivity

A𝛽 negative

Output
representations

Input
representations

MRI

Prioritized
risk scores

...
...

...

Figure 1. Overview of the proposed model. First, we construct a population graph in which the
vertices represent individuals and are characterized by demographic features (age, sex, years of edu-
cation), genetic information (APOE ε4 status), and MRI imaging features (average cortical thickness
values for 69 brain regions of interest (ROIs). Edges are assigned when there is a high correlation
between a pair of individuals. Next, we employ graph convolutional networks (GCNs) to analyze the
population graph and predict the Aβ positivity for each individual. Finally, GNNExplainer provides
an explanation for each prediction, optimizing a subgraph of the individual’s neighborhood and
identifying a set of crucial features for the prediction. For each individual, we prioritize the top 10
personalized biomarkers by assigning risk scores based on the average importance values obtained
from their neighbors.
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• We demonstrate the effectiveness of using graph neural networks on population
graphs for early AD diagnosis in cognitively unimpaired individuals;

• We provide explanations of graph neural network predictions, offering sample-level
interpretations using demographic and neuroimaging features;

• We prioritized personalized risk factors for AD by explaining graph neural network
predictions, thereby characterizing groups of individuals based on their risk factors in
AD prognosis.

2. Materials and Methods
2.1. Dataset

In this study, we leveraged the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
GO/2 dataset (adni.loni.usc.edu, accessed on 21 May 2023). The ADNI was launched in
2003 as a public–private partnership led by principal investigator Michael W. Weiner, MD.
The primary goal of ADNI is to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date
information, see www.adni-info.org (accessed on 21 May 2023). Our selection targeted
individuals identified as either cognitively normal (CN) or with mild cognitive impairment
(MCI) status. We utilized a total of 506 samples from the ADNI cohort encompassing
214 CN and 292 MCI samples, with each sample characterized by 73 features.

These features included 3 demographic aspects (age, sex, and years of education),
APOE ε4 status, and 69 neuroimaging features derived from MRI scans. The APOE ε4
status, denoted by the count of ε4 alleles (0, 1, or 2), functions as a critical genetic biomarker
associated with elevated AD risk, with two ε4 alleles conferring the highest susceptibility.
The neuroimaging features derived from MRI provide a thorough representation of neu-
roanatomical alterations, encompassing metrics such as cortical thickness. In this study,
we utilized quantitative ADNI MRI data. The quantitative MRI data specifically repre-
sent the cortical thickness from T1-weighted MRI images obtained from the University of
California, San Francisco, and archived at the LONI Image and Data Archive (IDA). We
used average cortical thickness values for each of the 69 brain regions of interest (ROIs). A
comprehensive description of the MRI image data acquisition process can be found here:
https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/ (accessed on 21 May 2023).
As a result, there were 69 distinct numerical MRI features available for each individual.

Our study primarily focuses on predicting Aβ positivity in cognitively unimpaired
individuals. The levels of Aβ were quantified from 18F-florbetapir PET scans, which specifi-
cally bind to Aβ plaques present in the brain. The measurements of Aβ levels were obtained
from the LONI Image and Data Archive (IDA) at the University of California, Berkeley.
The burden of Aβ deposits was evaluated using the averaged value of the standardized
uptake value ratio (SUVR). A detailed description of the PET image analysis method can
be found here: https://adni.loni.usc.edu/methods/pet-analysis-method/ (accessed on
21 May 2023). If the averaged value exceeded a cutoff of 1.11, the individual was classified
as Aβ-positive, indicative of AD pathology [61,62]. The ADNI cohort contained 291 Aβ-
negatives and 215 Aβ-positives. Summary statistics of the clinical features for the CN and
MCI samples are presented in Table 1.

Table 1. Demographic and neuroimaging characteristics of cognitively normal (CN) and mild cogni-
tive impairment (MCI) groups from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.

CN (N = 214) MCI (N = 292)

Age 74.18 ± 6.14 73.14 ± 7.48
Sex 96 F/118 M 173 F/119 M

Education (years) 16.7 ± 2.54 16.13 ± 2.64
APOE ε4 144 neg/70 pos 173 neg/119 pos

Aβ positivity 139 neg/75 pos 152 neg/140 pos
N: Number of samples; F: Female; M: Male; pos: Positive; neg: Negative
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2.2. Population Graph Construction

In our study, we constructed a graph denoted by G = (V , E), where the vertex set
V = (v1, . . . , vn) signifies the collection of individuals. Each vertex vi is associated with
the i-th individual and is characterized by a feature vector xvi , which is composed of
demographic and neuroimaging features. Specifically, for each individual, we concatenate
features such as age, sex, years of education, APOE ε4 status (0, 1, or 2), and quantitative
MRI imaging features (average cortical thickness values for 69 brain ROIs), resulting in a
73-feature vector. The set E denotes the collection of undirected edges linking the vertices
in V .

Pearson’s correlation coefficient and associated p-values are computed for each vertex
pair’s feature vectors xv and xw. These metrics elucidate the magnitude, direction, and
statistical significance of the linear relationship between the data linked to each vertex
pair. Following this calculation, we rank all vertex pairs using two criteria: the absolute
correlation coefficient value (in descending order) and the p-value (in ascending order).
We identify the top M pairs, those exhibiting the highest absolute correlation and lowest
p-values, and assign them edges, evw = (v, w) ∈ E . These assigned edges signify the most
statistically significant and the strongest correlations within our population graph.

We introduced the proposed model, which employs GCNs and was termed GCN-
corr, to this correlation-based population graph. Its performance was contrasted with an
equivalently sized graph but with edges assigned randomly termed GCN-random. This
comparison elucidated the advantages of utilizing a correlation-based graph for predicting
Aβ positivity in cognitively unimpaired individuals as opposed to a graph with randomly
assigned edges. In the GCN-corr model, edges mirror the correlations between individual
nodes, thus enabling more precise prediction congruent with the population structure.

Through an ablation study, we ascertained the optimal number of edges (M) by
manipulating the network density. This density, calculated as 2M

N(N−1) , represents the
proportion of actual edges compared to the maximum possible in a fully connected network
of N nodes. We varied the density from a sparse 1% connectivity network to a maximally
interconnected network (100% connectivity), with each increment representing a 10%
increase. This methodology aids in striking an equilibrium between network complexity
and predictive accuracy, thereby refining the graph’s structure for enhanced prediction
efficacy using the GCN model. Additional discussions on the ablation study are expounded
upon in the Supplementary Materials.

2.3. Graph Convolutional Networks

In this study, we leveraged graph convolutional networks (GCNs), which were pro-
posed by [47], with a population graph G to discern the connections between the demo-
graphic and neuroimaging features of individuals. This study addresses the problem of
predicting Aβ positivity as a node (individual)-level prediction task within the GCN model.
An adjacency matrix A ∈ [0, 1]N×N representing pairwise correlations between nodes in a
population graph G, a feature matrix X ∈ RN×p, and labels y ∈ [0, 1]N (Aβ positivity) are
used as input to train the model.

GCNs are designed to learn robust node representations by aggregating information
from the local neighborhoods within the graph [47]. The core operation in GCNs, graph con-
volution, operates as a message-passing mechanism that facilitates information exchange
between adjacent nodes. Within each GCN layer, nodes gather, process messages from
their neighbors, and subsequently transform this information using a learnable weight
matrix. Diverging from the convolution concept used in convolutional neural networks
(CNNs), which apply a filter to localized input data segments, GCNs redefine convolution
as the process of aggregation of neighboring node information. This notion retains the
integral principle of incorporating local information, a concept fundamental to CNNs, thus
justifying its appellation as graph convolution. Within a single GCN layer, the operation
can be denoted as:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(1)

48



Bioengineering 2023, 10, 701

In this equation, H(l) and H(l+1) represent the feature matrices at the l-th and (l + 1)-th
layers, respectively, each encapsulating node representations. The matrix Ã, derived by
adding the identity matrix I (representing self-loops, which are edges from nodes to
themselves) to the original adjacency matrix A, is referred to as a self-loop inclusive
adjacency matrix. The degree matrix of Ã, D̃, is a diagonal matrix representing the degree
(number of connections) of each node. The learnable weight matrix at the l-th layer, W(l),
serves to transform the aggregated neighbor node information. σ signifies the activation
function; in this study, a rectified linear unit (ReLU).

The model is then trained to minimize the loss L using the ADAM optimizer and
learn the optimal parameters for the prediction task. The loss L represents a cross-entropy
function, which is computed as follows:

L = −(wy0 y log(h) + wy1(1− y) log(1− h)) (2)

In this equation, h denotes the model’s prediction output following softmax activation,
and y represents the ground-truth label. Given the higher number of Aβ-negative samples
in the cognitively unimpaired individuals dataset, the model could be impacted by class
imbalance. To address this issue, we assigned rescaling weights during model training,
which are inversely proportional to class frequencies as follows:

wyc =
N

2Nyc

(3)

Here, N represents the total number of samples, while Nyc denotes the number of
samples belonging to class c.

2.4. Interpretation with GNNExplainer

GNNExplainer [53] is a model-agnostic method specially designed to elucidate the
predictions made by graph neural networks (GNNs), including the GCN model. The
primary goal of GNNExplainer is to offer insights into the model’s decision-making process,
highlight significant features and relationships within the graph, and foster trust in the
model’s predictions.

The GNNExplainer method works by learning to extract a concise subgraph from
the original input graph. This subgraph is optimized to best explain the GNN model’s
prediction for a specific target node or graph. This is accomplished by formulating an
optimization problem where the objective is to minimize the difference between the original
GNN model’s prediction and the prediction made using the extracted subgraph. This
optimization process involves the use of a binary mask for nodes, edges, and features.
This mask determines whether to include or exclude graph elements, contingent on their
contribution to the prediction.

In this research, we employed GNNExplainer to provide interpretable explanations for
the predictions generated by our GCN model. This tool allowed us to explore individual
biomarkers that significantly contribute to the prediction of Aβ positivity. Additionally,
we identified distinct groups of individuals who share common biomarkers yet contain
unique prioritized features that differentiate them from other groups. We also detailed the
characteristics of each group based on their significant biomarkers.

2.5. Performance Evaluation

In this study, we formulated a supervised node classification problem, where our
objective was to predict the Aβ positivity for each individual within the test sets. We
assessed the classification performance by employing stratified five-fold cross-validation
repeated 10 times. This method ensured that the ratio of Aβ-positive to Aβ-negative
samples was maintained across all sets. During each iteration, we set aside one fold as the
test set, while the remaining four folds were randomly divided into an 80% training set and
a 20% validation set. We carried out this stratified partitioning to optimize and validate our
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model. Consequently, the data were split into a 64% training set, a 16% validation set, and
a 20% test set. We report the final classification performance as the mean area under the
curve (AUC) values over a total of 50 iterations.

3. Results
3.1. Experimental Setting

In the experiments, we assessed the performance of our proposed correlation-based
population graph model (GCN-corr) and compared it with an equivalently sized graph
but with edges assigned randomly (GCN-random). Furthermore, to provide a broader
perspective on the efficacy of GCN models applied to population graphs, our comparison
was not limited to GCN-random and GCN-corr. We expanded our analysis to include a
comparison with traditional machine learning algorithms. These encompassed the support
vector machine (SVM) using a radial basis function (RBF) kernel, the random forest (RF)
classifier, logistic regression (LR) with the L2 penalty (also known as ridge regularization),
and the multi-layer perceptron (MLP).

To achieve optimal performance in our analyses, we set certain hyperparameters
empirically for both the GCN and the MLP models. The GCN model was structured as
a two-layer network, which included a hidden layer comprising 32 units. The model
underwent training for a maximum of 550 epochs, with a learning rate set at 0.005. The L2
loss was set to 5× 10−10 , and a dropout rate of 0.5 was employed to prevent overfitting
and enhance generalization. Simultaneously, the MLP model was set up with the same
hyperparameters as the GCN model for a fair comparison.

Due to the predominance of Aβ-negative samples in our dataset, we utilized class
weights as outlined in Equation (3) to balance the classes. For fairness in comparison,
the same rescaling weights were applied to the conventional machine learning models
previously mentioned. This adjustment in weights ensured a balanced evaluation of each
model’s performance, despite the unequal sample sizes between the Aβ-positive and
Aβ-negative groups.

It is worth noting that, although we employed stratified cross-validation, a technique
which guarantees a proportionate class distribution across all validation folds, it did not
directly influence the model’s learning process. Conversely, class weights were incorpo-
rated during model training, conferring more emphasis to the less represented class and
thereby ameliorating the effects of imbalanced data. Therefore, these two methodologies,
while serving distinct roles, complement each other: stratified cross-validation augments
the accuracy of performance estimation, while class weighting refines the model’s capacity
to learn from imbalanced datasets.

3.2. Performance of Prediction of Aβ Positivity

We evaluated the performance in predicting Aβ positivity with comparative analyses
conducted across three distinct groups: cognitively normal (CN) individuals, individuals
with mild cognitive impairment (MCI), and a combined group of both CN and MCI
individuals. The performances for each model were evaluated across these sample groups
and are comprehensively displayed in Table 2 and Figure 2.

Upon analysis, we observed that the GCN models, when applied to the population
graph constructed in this study, consistently outperformed the conventional machine
learning models across all sample groups. Moreover, the correlation-based population
graph model (GCN-corr) consistently demonstrated superior performance compared to
the GCN model with randomly assigned edges (GCN-random). The GCN-corr model
outperformed all other models across all groups, achieving the highest mean AUCs of
0.8851, 0.8741, and 0.8632 for the CN, MCI, and CN + MCI groups, respectively. This was
particularly evident in the combined CN + MCI group, where the performance of the GCN-
random model showed a significant drop (0.7160 ± 0.0135), not just in comparison to the
GCN-corr model but also against most of the conventional machine learning models. This
suggests the potential of GCN models in significantly enhancing the predictive accuracy for
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Aβ positivity when used with well-crafted population graphs, affirming their proficiency
in handling complex biological data.

CN (n=214) MCI (n=292) CN+MCI (n=506)

A
U

C

SVM      RF        LR      MLP  GCN- GCN-
random    corr

SVM      RF      LR       MLP  GCN- GCN-
random    corr

SVM      RF      LR      MLP  GCN- GCN-
random    corr

Figure 2. Comparison of the performance of each model (represented in x-axis and different colors)
in predicting Aβ positivity across three sample groups: cognitively normal (CN) individuals, those
with mild cognitive impairment (MCI), and a combined group (CN + MCI). The performance was
measured with the area under the ROC curve (AUC) derived from 10 repetitions of five-fold cross-
validation. The compared models are support vector machine using a radial basis function kernel
(SVM), random forest (RF) classifier, logistic regression with ridge regularization (LR), multi-layer
perceptron (MLP), GCN model on a graph with randomly assigned edges (GCN-random), and GCN
model on a correlation-based population graph (GCN-corr).

Table 2. Summary of the performance of each model in predicting Aβ positivity across three sample
groups: cognitively normal (CN) individuals, those with mild cognitive impairment (MCI), and a
combined group (CN + MCI). The performance metrics were computed as the mean area under the
ROC curve (AUC), along with a 95% confidence interval, derived from 10 repetitions of five-fold
cross-validation. The highest performing result for each sample group is highlighted in bold text.

AUC (Mean ± 95% CI)

Model CN MCI CN + MCI

SVM (RBF) 0.7515 ± 0.0131 0.7531 ± 0.0137 0.7537 ± 0.0129
RF 0.7205 ± 0.0143 0.7226 ± 0.0140 0.7238 ± 0.0134
LR (ridge) 0.7490 ± 0.0129 0.7480 ± 0.0112 0.7500 ± 0.0144
MLP 0.7009 ± 0.0158 0.7013 ± 0.0137 0.7009 ± 0.0159
GCN-random 0.8110 ± 0.0185 0.7768 ± 0.0153 0.7160 ± 0.0135
GCN-corr 0.8851 ± 0.0154 0.8741 ± 0.0114 0.8632 ± 0.0115

To further illustrate the proficiency of the GCN model in accurately classifying Aβ-
positive and -negative samples within a population graph, we offer a visualization of the
final embedding of each GCN model in Figure 3. Notably, the GCN model with randomly
assigned edges (GCN-random) demonstrated difficulty differentiating between the two
classes across all three groups: cognitively normal (CN), mild cognitive impairment (MCI),
and the combined CN + MCI group.

In contrast, the correlation-based population graph model (GCN-corr) effectively
distinguished between the two classes across all sample groups, emphasizing the significant
contribution of our proposed correlation-based population graph to the enhancement of
Aβ positivity prediction using the GCN model.

The strength of these findings lends considerable support to our research hypothe-
sis. It suggests the existence of shared biomarkers within groups of individuals whose
demographic and neuroimaging features strongly correlate, thus positively influencing
Aβ positivity prediction and enriching our understanding of AD prognosis. These results
also suggest variability in AD risk factors across different individual groups, hinting at the
potential benefits of tailoring prediction models and preventative strategies.
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CN (v=214) MCI (v=292) CN+MCI (v=506)

GCN-corr

GCN-random

Group

Figure 3. Visual representation of the final node embedding of the GCN-random and GCN-corr
models across three groups: cognitively normal (CN), mild cognitive impairment (MCI), and a
combined CN + MCI group. Nodes representing Aβ-positive samples are colored blue, while those
representing Aβ-negative samples are in red. v represents the number of vertices (individuals).

3.3. Interpreting Predictions of Graph Neural Networks

In our endeavor to understand the intricate interplay between demographic and neu-
roimaging features, we utilized GNNExplainer. This tool helped us identify key biomarkers
that significantly contribute to the prediction of Aβ positivity within GCN models. This
investigation deepens our understanding of the model’s decision-making process and
bolsters our confidence in its predictive capabilities.

Figure 4 offers a visual representation of these prioritized biomarkers and their associ-
ated importance scores for each individual. For an improved visualization, we randomly
selected 50 individuals from the test set that delivered the most accurate predictions across
all cross-validation splits. Notably, these samples were correctly classified, which facilitated
the identification of the most influential biomarkers for accurate predictions. To further
enhance data interpretability, we employed both feature-wise and sample-wise clustering.
This analysis led to the identification of four distinct groups (A, B, C, and D), each distin-
guished by the significance of their biomarkers. We delineated the top 10 biomarkers based
on their averaged importance scores, uncovering unique patterns of significance across the
four groups, as detailed in Table S1.

In group A, the left precentral gyrus, known for its involvement in motor function,
emerged as the most significant biomarker with an average score of 0.9954. Additional no-
table biomarkers included the right precentral gyrus, the APOEe4 gene variant—associated
with an increased risk of AD—and the left caudal middle frontal gyrus, all scoring above
0.89. In group B, the left precentral gyrus was also the top biomarker. However, the
demographic feature of age was highlighted, receiving an average score of 0.7768. This
underlines the well-established link between advancing age and increased risk of AD. In
group C, the left precuneus, a brain region involved in episodic memory, stood out as the
most significant biomarker with a score of 0.7137. This group also prioritized demographic
features, such as the level of education (years) and the individual’s sex, with scores of 0.6725
and 0.6160, respectively. These results may indicate a potential influence of educational
attainment and biological sex on the disease’s onset and progression. Group D highlighted
the value of education (years) as the top biomarker, scoring a near-perfect 0.9970. This
aligns with the cognitive reserve theory, which suggests that higher levels of education
may offer a protective effect against cognitive decline. Neuroimaging biomarkers, such as
the right precuneus and left pars orbitalis, also held high priority in this group.
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Taken together, these findings underscore the complex interaction between structural
brain changes and demographic factors in predicting Aβ positivity. They shed light on the
heterogeneity of the disease, revealing different progression patterns across unique groups.

Figure 4. Heatmap visualization of the prioritized biomarkers derived from the GCN model with a
correlation-based population graph. Each row represents an individual, and each column represents
a biomarker. The color intensity indicates the importance score of each biomarker for Aβ-positivity
prediction. The individuals and biomarkers are clustered feature-wise and sample-wise, revealing
four distinct groups (A, B, C, and D) based on their important biomarkers.

4. Discussion

Our study illuminates the potential value of applying GCNs within a correlation-based
population graph for enhanced AD prognosis. The superior performance of this model
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underscores the efficacy of harnessing the inherent structure and correlations in the data to
augment predictive accuracy.

Our findings comprehensively demonstrate that a population graph built on correla-
tions rather than random assignment can significantly elevate the model’s ability to discern
patterns and predict accurately. This suggests that the interplay between demographic and
neuroimaging features is not random; instead, it exhibits a specific correlation structure
that is instrumental for the prediction task.

Moreover, the improved performance lends credence to the hypothesis of the existence
of common biomarkers among groups of individuals who exhibit high correlations in their
demographic and neuroimaging features. This implies that different groups may possess
distinctive sets of biomarkers that are particularly indicative of Aβ positivity, thereby
illuminating the heterogeneity of AD progression.

Thus, our research underscores the potential of utilizing correlation-based population
graphs in tandem with GCN models for a more nuanced and effective AD prognosis.
This approach could potentially inform the development of more personalized, precise
therapeutic strategies.

Future research could build upon our findings and explore several promising direc-
tions. This could include enriching the GCN model by incorporating diverse data sources,
such as genetic, proteomic, and lifestyle factors, alongside demographic and neuroimaging
features, to enhance the predictive performance. Transitioning from a cross-sectional model
to one that exploits longitudinal data could offer a more dynamic understanding of AD
progression. A deeper exploration of model interpretability and biomarker validation
could provide greater transparency for the decision-making process, ensuring the identi-
fied biomarkers’ relevance. Understanding the unique contributions of biomarkers to AD
progression in different groups could inform the development of personalized treatment
strategies. Lastly, the proposed framework in this study could be expanded to other neuro-
logical disorders or complex diseases, potentially offering valuable insights into disease
mechanisms and therapeutic targets.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bioengineering10060701/s1, Figure S1: Performances of
the GCN-corr and GCN-random models as network density varies from a sparse 1% connectivity to a
fully connected 100% connectivity in increments of 10%. Performance metrics were calculated as the
mean area under the ROC curve (AUC), with a 95% confidence interval, derived from 10 repetitions of
five-fold cross-validation. The confidence interval’s upper and lower bounds are visually represented
as a shaded area surrounding the line; Figure S2: Visual representation of the final node embedding
of the GCN-random and GCN-corr models at selected network densities of 1%, 10%, and 50%. These
densities were chosen to provide a clear comparison across varying levels of network densities.
Nodes representing Aβ-positive samples are colored blue, while those representing Aβ-negative
samples are in red; Table S1: The top 10 prioritized biomarkers from demographic and neuroimaging
features, along with their corresponding averaged feature importance scores, listed in descending
order. The biomarkers are divided into four groups (A–D) based on the results of heatmap clustering.
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Abstract: Survival prediction models play a key role in patient prognosis and personalized treat-
ment. However, their accuracy can be improved by incorporating patient similarity networks, which
uncover complex data patterns. Our study uses Graph Neural Networks (GNNs) to enhance discrete-
time survival predictions (GNN-surv) by leveraging relationships in these networks. We build these
networks using cancer patients’ genomic and clinical data and train various GNN models on them, in-
tegrating Logistic Hazard and PMF survival models. GNN-surv models exhibit superior performance
in survival prediction across two urologic cancer datasets, outperforming traditional MLP models.
They maintain robustness and effectiveness under varying graph construction hyperparameter µ

values, with performance boosts of up to 14.6% and 7.9% in the time-dependent concordance index
and reductions in the integrated brier score of 26.7% and 24.1% in the BLCA and KIRC datasets,
respectively. Notably, these models also maintain their effectiveness across three different types of
GNN models, suggesting potential adaptability to other cancer datasets. The superior performance of
our GNN-surv models underscores their wide applicability in the fields of oncology and personalized
medicine, providing clinicians with a more accurate tool for patient prognosis and personalized
treatment planning. Future studies can further optimize these models by incorporating other survival
models or additional data modalities.

Keywords: discrete survival model; Graph Neural Networks; patient similarity network; survival
prediction; time-to-event prediction

1. Introduction

The criticality of acknowledging censored observations in cancer research for accurate
survival prediction is unquestionable [1]. Censored observations, such as patients lost to
follow-up or outliving the study duration, often emerge in oncology studies. Overlooking
these observations may cause significant bias in survival time and probability estimates,
compromising the reliability of the study’s findings [2]. Proper handling of censoring in
survival analysis, therefore, is a cornerstone of oncology research, allowing a comprehen-
sive and accurate portrayal of patient survival patterns, with significant implications for
prognosis and clinical decision making.

Survival analysis involves a broad spectrum of continuous- and discrete-time survival
models. The Cox proportional hazards regression model [3], a well-regarded continuous-
time survival model, offers flexibility and interpretability. It estimates the hazard function
based on a baseline hazard and an exponential function of linear predictors. The random
survival forest model [4], an extension of the random forest model for right-censored
survival time data, employs a decision tree ensemble trained on bootstrap data samples for
robust survival time predictions. In contrast, discrete-time survival models like logistic re-
gression models analyze hazard rates in discrete-time intervals [5,6], particularly beneficial
when exact event times are unknown.

Recently, there has been an upsurge in using deep learning and machine learning
for cancer survival prediction [7–17]. These advanced techniques excel at handling high-
dimensional and heterogeneous data, unveiling complex patterns that traditional statistical
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models may miss. However, most of these studies focus predominantly on classifying
patients into long-term or short-term survival groups, simplifying the multifaceted reality
of patient survival times and often neglecting censored data.

To address the challenges, many researchers have developed survival models that
incorporate neural networks with survival analysis. Kvamme et al. [12] combined the
neural networks and Cox regression, offering a robust method to analyze survival data.
Similarly, DeepSurv [13] proposed a Cox proportional hazards deep neural network, a
state-of-the-art survival method to model the interplay between patients’ covariates and
treatment effectiveness to facilitate personalized treatment recommendations. Further-
more, DeepHit [14] introduced a deep neural network for survival analysis, specifically
accounting for competing risks. This approach is particularly crucial for scenarios where
multiple potential events of interest exist. In the domain of discrete-time survival models,
a pioneering work by Brown [15] utilized indicator variables, which provided insights
into how discrete markers can enhance survival model performance. Building on this,
Nnet-survival [16] proposed a scalable approach to discrete-time survival modeling, which
is designed to be used with neural networks. Collectively, these studies have advanced the
integration of neural networks into survival analysis.

In the field of cancer research, Graph Neural Networks (GNNs) have achieved signifi-
cant progress, uncovering intricate relationships often overlooked by traditional models.
MGNN [18,19] provides a unified framework by building bipartite graphs between patients
and multimodal data like gene expression and clinical information, demonstrating its effi-
cacy in classifying short- and long-term survival across four cancer datasets. Qiu et al. [20]
introduced an intratumor GNN model that leverages the spatial heterogeneity of multiple
in situ biomarkers to reveal hidden prognostic value in breast cancer cases. The model’s
prognostic capability rivals that of conventional methods using routine biomarkers, advanc-
ing cancer prognosis. PathGNN [21] proposed a GNN model that can capture topological
features in cancer pathways to predict long-term survival, identifying critical pathways
linked to cancer outcomes. These studies underscore the versatility and effectiveness of
GNNs in a variety of oncological research contexts. However, they still face challenges in
appropriately considering censoring status in survival models, affecting the reliability of
survival predictions. Although numerous studies have applied GNNs in survival predic-
tion, their use in censoring-aware survival models remains largely unexplored. To refine
and enhance the reliability of survival predictions, it is essential to integrate GNNs with
survival models capable of effectively managing censoring. Our experiments with GNNs
for discrete-time survival prediction models demonstrate this assumption, outperforming
models that do not account for these relational structures.

In this study, we propose the hypothesis that distinct patient groups, characterized
by similar genomic and clinical features, significantly influence their survivability and
mortality rates. Recognizing these intergroup correlations in survival prediction can
substantially improve the performance. We assume that relational structures exist within
cancer patient data, contributing considerably to accurate survival predictions. We adopt
patient similarity networks and GNNs to comprehend complex correlational structures
and propose a GNN model specifically designed for discrete-time survival prediction
(GNN-surv). As a proof-of-concept study, we conducted experiments on bladder and
kidney cancer datasets. Our experiments demonstrated the effectiveness of the GNN-surv
models in predicting discretized survival times, thus validating our hypothesis and research
motivation. Our findings further highlight the importance of addressing the question of
censoring in real-world scenarios and the potential for the broad applicability of GNN-surv
models across diverse cancer datasets. The main contributions are summarized as follows.

• We design and construct a sophisticated cancer patient similarity network that inte-
grates both genomic and clinical features, enabling a better understanding of patient
characteristics and relationships.
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• We propose GNN-surv, a novel GNN that incorporates discrete-time survival models.
We demonstrate its broad applicability via experiments across two different survival
models and three types of GNN layers.

• We empirically show the superior performance of GNN-surv in survival prediction
for two urologic cancers, thereby showing its potential for broader application in
oncological research.

2. Materials and Methods
2.1. Dataset

We obtained the RNA-Seq gene expression profiles of the TCGA bladder cancer (BLCA)
and kidney clear cell carcinoma (KIRC) datasets. The gene expression data, comprising
estimates for 20,530 genes, were measured using Illumina HiSeq 2000 RNA Sequencing, a
level 3 data source from the TCGA data coordination center. We note that the same number
of genes, 20,530, was present in both the BLCA and KIRC datasets. We retrieved these
log-transformed RSEM normalized count data from the UCSC Xena platform [22].

The datasets included 400 patients for BLCA and 313 patients for KIRC. We excluded
any patients with unrecorded or inaccurate clinical outcome variables, such as negative
survival day values. For both cancer datasets, we used clinical variables such as overall
survival (OS), event status, age, gender, and TNM stage. The event status was binary, with
1 indicating that an event occurred and 0 representing right-censored cases. The BLCA
dataset contained 223 censored and 173 uncensored samples, yielding a censoring rate of
56.3%, whereas the KIRC dataset comprised 209 censored and 102 uncensored samples,
yielding a censoring rate of 67.2%. In this study, we selected two types of urologic cancer
as our subjects to illustrate the proof-of-concept. Although the TCGA dataset provides
data for six types of urologic cancers, we decided to exclude certain types due to specific
reasons. Testicular cancer (TGCT) and kidney chromophobe (KICH) were excluded due to
their small sample sizes of 134 and 65 cases, respectively. Similarly, the kidney papillary
cell carcinoma (KIRP) and prostate cancer (PRAD) datasets were not utilized. Despite their
adequate sample sizes, these datasets were ruled out due to the excessive censoring rates
of 85.1% and 98.2%, respectively. Such high censoring rates could introduce bias into our
prediction model, thereby compromising the model’s performance and the interpretation
of the results [23].

We dichotomized the clinical variables, grouping ages into less than 65 years (0) and
65 years or older (1), T stages into T0-2 (0) and T3-4 (1), N stages into N0 and N1-3 (N+),
and M stages into M0 and M1. Where pathologic stages were unknown, we filled in the
gaps based on the American Joint Committee on Cancer (AJCC) staging system. Missing
N or M stages were inferred from the number of positive lymph nodes or metastatic sites.
For instance, cases with any positive lymph nodes were classified as N+, and if the only
recorded metastatic site was ’lymph node only,’ it was classified as M0. Notably, metastatic
site data were only available in the BLCA dataset. We adopted this preprocessing strategy
for clinical variables from the study [24]. The summary statistics of clinical features for
both datasets are displayed in Table 1.

2.2. Patient Similarity Graph

We construct a patient similarity graph, denoted as G = (V , E), where the vertex set
V = (v1, . . . , vn) symbolizes the cohort of cancer patients. Each patient, or vertex vi, is
characterized by a feature vector xi, which combines their RNA-seq gene expression and
clinical features. The set E defines undirected edges.

While clinical features are discretized into categories of 0 or 1, gene expression features
are continuous variables. In joining genomic and clinical variables, we standardize gene
expression features by subtracting the mean and scaling to unit variance.
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We calculate patient similarity between patients vi and vj asW(i, j), derived from a
scaled exponential similarity kernel, predicated on the probability density function of the
normal distribution as follows:

W(i, j) =
1√

2πσ2
exp−ρ2(xi, xj)

2σ2 (1)

where ρ(xi, xj) denotes the pairwise correlation distances between patients xi and xj. We
compute the value σ as follows:

σ = µ
ρ(xi, Ni) + ρ(xj, Nj) + ρ(xi, xj)

3
(2)

Here, ρ(xi, Ni) signifies the average value of the distances between xi and its neighbors
N1...k, where k is the number of neighbors considered. µ is a hyperparameter modulating
the extent to which we scale the similarity kernel W, and µ ∈ (0, 1) ⊂ R

We define the adjacency matrix A(i, j) as 1 if W(i, j) > c, where c is a correlation
threshold, and otherwise A(i, j) = 0.

This study relies heavily on graph structures; thus, we utilize a sophisticated patient
similarity network construction method proposed by [25]. A study’s performance can be
sensitive to the hyperparameter µ, also discussed in [25], leading us to empirically set µ in
the range of [0.1, 1.0].

Table 1. Summary statistics of clinical features in the TCGA bladder cancer (BLCA) and kidney clear
cell carcinoma (KIRC) data.

Feature BLCA KIRC

Number of Patients 400 313

Age <65 years 147 (36.8%) 193 (61.7%)
≥65 years 253 (63.2%) 120 (38.3%)

Gender Male 295 (73.8%) 201 (64.2%)
Female 105 (26.2%) 112 (35.8%)

Stage T (Primary tumor) Negative (Stages T0–2) 148 (37.6%) 196 (62.6%)
Positive (Stages T3–4) 246 (62.4%) 117 (37.4%)

Stage N (Regional lymph nodes) Negative (Stage N0) 261 (67.4%) 244 (87.8%)
Positive (Stage N1–3) 126 (32.6%) 34 (12.2%)

Stage M (Distant metastasis) Negative (Stage M0) 340 (86.1%) 258 (82.7%)
Positive (Stage M1) 55 (13.9%) 54 (17.3%)

Overall survival (OS)
Survival days (Mean ± SD 1) 810.5 ± 833.8 1310.3 ± 1062.7

Uncensored patients 173 (43.7%) 102 (32.8%)
Censored patients 223 (56.3%) 209 (67.2%)

1 SD: Standard Deviation.

2.3. Graph Neural Networks for Survival Prediction

In this section, we detail our proposed architecture of Graph Neural Networks (GNNs),
termed GNN-surv, tailored specifically for survival models. Our approach exploits GNNs
on a patient similarity graph G to discern and learn from their correlational structures,
which depict genomic and clinical similarities among patients. We employ an adjacency
matrix A of the similarity graph G and a feature matrix X to train the GNN model. This
model is designed to predict the discrete survival time while acknowledging the right-
censored observations.

The GNN-surv architecture comprises multiple GNN layers, each succeeded by batch
normalization, ReLU activation, and dropout for efficient learning and training. We also
use dropout to regularize the model and prevent overfitting. The model is versatile, capable
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of using different types of GNN layers, such as GCNConv, SAGEConv, and GATConv. In
the following section, we outline the functionality of each GNN layer.

2.3.1. Graph Convolutional Networks (GCN)

Introduced by Kipf and Welling [26], Graph Convolutional Networks (GCN) employ
a convolution-based strategy that generates node embeddings by learning from the graph
structure and node features, efficiently incorporating local neighborhood information into
each node’s embedding. Within each layer, nodes gather information from their immediate
neighbors, apply a convolution operation on these features using a shared weight matrix,
and pass through an activation function. The operation of GCN for a single layer is
as follows:

h(l+1)
v = σ


 1√

DvDu
∑

u∈N(v)
W(l)h(l)u


 (3)

In this equation, h(l)v and h(l+1)
v denote the feature vectors of node v at layers l and

l + 1, respectively; N(v) is the set of neighboring nodes to node v; Dv and Du are the
degrees of node v and its neighboring node u, respectively, used for feature aggregation
normalization; W(l) is the shared learnable weight matrix at layer l; and σ is an activation
function, specifically a Rectified Linear Unit (ReLU) in this study.

2.3.2. GraphSAGE

Designed to generate node embeddings by sampling and aggregating features from
a node’s local neighborhood [27], GraphSAGE can operate on large graphs and generate
embeddings for unseen nodes by leveraging node attribute information. Within each
GraphSAGE layer, nodes aggregate information from their neighbors using various func-
tions, such as mean, pooling, or LSTM, and subsequently use a learnable weight matrix to
transform the aggregated information. The operation of a GraphSAGE layer is as follows:

h(l+1)
v = σ

(
W(l) ·CONCAT

(
h(l)v , AGGREGATEN(v)(l)

(
hu(l)

)))
(4)

Here, h(l)v and h(l+1)
v represent the feature vectors of node v at layers l and l + 1,

respectively; AGGREGATE(l)
N(v) is an aggregation function that collects and processes

features from the node’s neighborhood N(v) at layer l; W(l) is the learnable weight matrix
at layer l; and σ is an activation function, specifically a Rectified Linear Unit (ReLU).

2.3.3. Graph Attention Networks (GAT)

Graph Attention Networks (GATs) are variants of GCNs, designed to compute node
features by weighting the features of neighboring nodes with attention coefficients [28].
The attention mechanism allows the model to focus more on relevant neighbors and less
on less significant ones, offering a level of flexibility that is absent in models like GCN or
GraphSAGE. Within each GAT layer, each node calculates the attention coefficients with
its neighbors, multiplies these coefficients with the neighbors’ features, and subsequently
aggregates this information. The operation of GAT for a single layer is as follows:

h(l+1)
v = σ


 ∑

u∈N(v)
αvuW(l)h(l)u


 (5)

In this equation, h(l)v and h(l+1)
v represent the feature vectors of node v at layers l and

l + 1, respectively; αvu are the attention coefficients that weigh the importance of node u’s
features to node v; W(l) is the learnable weight matrix at layer l; and σ is an activation
function, specifically a LeakyReLU in this case. The attention coefficients αvu are computed
using a shared attention mechanism across all edges in the graph.
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2.3.4. Discrete-Time Survival Models

We train the GNN-surv to minimize the loss using the ADAM optimizer, which in
turn enables the learning of optimal parameters for the prediction task. The loss function
and hazards are computed as defined in the discrete-time survival prediction models that
we utilize. Specifically, we employ two discrete-time survival models, Logistic Hazard and
the Probability Mass Function (PMF) model, both of which are implemented as per the
methodology described in [29].

The Logistic Hazard method, first proposed in [15], is a discrete-time survival pre-
diction model that has been enhanced by the capabilities of neural networks [29]. Also
known as Partial Logistic Regression [30] or Nnet-survival[16], this method estimates
discrete hazards—the probabilities of event occurrence within discrete-time intervals. By
optimizing the survival likelihood, this method serves as a potent tool for survival analysis.

Complementarily, the PMF model, as detailed in [29], adopts a discrete-time survival
prediction approach as well. It underlies methods such as DeepHit [14] and Multi-Task
Logistic Regression (MTLR) [31]. These methods leverage neural networks to maximize
the likelihood of right-censored time-to-event data within discrete time. The approach fo-
cuses on parameterizing PMF—the probabilities of discrete outcomes—and optimizing the
survival likelihood. By probabilistically representing the distribution of event occurrence
times, the PMF model provides a detailed understanding of survival analysis. Moreover, its
integration with neural networks enables it to handle complex patterns in the data, thereby
contributing to robust and reliable survival predictions.

2.4. Performance Evaluation

We evaluate the performance of our model using two metrics, namely the time-
dependent concordance index (Ctd) [32] and the integrated Brier score (IBS) [33,34]. Both
metrics are utilized in accordance with the implementation described in [29].

In this study, we focus on a supervised node-level prediction problem, where the
nodes represent cancer patients at risk. The primary objective of this model is to predict
discrete-time survival while accounting for the patients’ censoring status. As the discrete-
time models necessitate the discretization of continuous survival time, we adopt the
discretization scheme suggested in [29]. This scheme corresponds to either equidistant
times or equidistant marginal survival probabilities. Moreover, it interpolates the discrete-
time predictions, corresponding to either piecewise constant density functions or piecewise
constant hazard rates.

The IBS metric accounts for both the discrimination and calibration of the survival
estimates and also accommodates censored individuals by weighting the score inversely
against the estimated censoring distribution. As the IBS is significantly influenced by the
discretization scheme (which in turn depends on the number of output nodes), we compute
the IBS over 100 equidistant points between the minimum and maximum observed times
in the validation set during model training, as discussed in [29]. Conversely, the Ctd only
evaluates the discriminative capabilities of a method’s predictions. It is informative to
examine both metrics as they might indicate a trade-off between well-calibrated estimates
and effective discriminative performance [29]. The best survival prediction performance is
considered to be when the IBS is the lowest and the Ctd is the highest.

For the purpose of our study, we randomly divide the entire sample into an 80%
training set and a 20% test set. To further optimize and validate model training, we
subdivide the training set into an 80% training subset and a 20% validation subset, resulting
in a 64% training, 16% validation, and 20% test set. We repeat this process for 50 iterations
of random splits and calculate the mean Ctd and IBS of the total repetitions in the test set.
When partitioning the data, we split the entire graph into three separate graphs: the training
graph, the validation graph, and the test graph. This division signifies that GNN-surv
possesses an inductive learning capacity, an important attribute as it allows the model to
generalize and make predictions on unseen data, enhancing the robustness and utility of
our model in real-world applications.
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3. Results
3.1. Experimental Setting

In the process of constructing the patient similarity graph W, we carefully adjust
the hyperparameter µ, as defined in Equation (2), within an empirical range of 0.1 to 1.
This adjustment is made in increments of 0.1 due to the observed sensitivity of the model
performance to variations in the hyperparameter µ [25]. The number of neighbors k within
Equation (2) is set to 20 based on [25], indicating that model performance demonstrates
relative insensitivity to changes in the number of neighbors. While creating the adjacency
matrix A, we define a correlation threshold c of 0.5, adhering to the widely accepted
consensus that correlations beneath this value are generally considered as low [35].

Our proposed model, GNN-surv, employs multiple GNN layers trained to predict
discrete-time survival using discrete survival models. We utilize the PyTorch Geometric
library (PyG) implementations [36] for each of the GNN layers: GCN, GraphSAGE, and
GAT. To demonstrate the effectiveness of the proposed GNN-surv model, we incorporate a
vanilla Multi-Layer Perceptron (MLP) layer with discrete survival models, designating this
as MLP-surv in our experiments. It should be noted that the MLP layer does not utilize
graph-structured data but is trained with a feature matrix X ∈ RN×p, which represents p
gene expression and clinical features across N samples.

We empirically set certain hyperparameters for both the GNN models and the MLP
model. The GNN model consists of a three-layer network with a hidden layer size of 32.
We train the model for a maximum of 500 epochs with a learning rate of 0.001, employing
an early stopping scheme. In this training process, we incorporate a batch normalization
layer and dropout. The batch size is determined to be 256, with the dropout rate set to 0.7
in the experiments. Additionally, we train with a batch of graphs to manage the complexity
of graph data and set the batch size of these data to 32. For a fair comparison, we use the
same hyperparameters for the MLP model as well.

3.2. Hyperparameter Optimization in Graph Construction

We evaluated and compared the performance of the MLP model and GNN models
when paired with two discrete-time survival models: Logistic Hazard and PMF. To optimize
the performance, we set the hyperparameter µ empirically during the construction of the
patient similarity graph. We conducted an ablation study, detailed in Figures 1 and 2, to
find the best µ value. In these studies, the time-dependent concordance index (Ctd) was
used as the performance metric.

We trained our GNN-surv models using a similarity network configured with the
optimal µ value, which exhibited the best performance for each survival model. Interest-
ingly, the scaling parameter µ demonstrated a negligible impact on the performance of the
GNN-surv model in the BLCA dataset, as depicted in Figure 1.

For the KIRC dataset, the Logistic Hazard model maintained robust and enhanced
performance. However, when µ was larger, GAT-surv’s performance diminished compared
to that of the MLP model in the PMF model, as shown in Figure 2. For this dataset, both
GAT-surv and GCN-surv demonstrated relative instability in the PMF model, especially
when contrasted with their performance in the BLCA dataset. Nevertheless, SAGE-surv
consistently outperformed the MLP model in both survival models, underlining the efficacy
of GraphSAGE when implemented in the GNN-surv model in the KIRC dataset.

For the bladder cancer (BLCA) data, we configured the µ parameter to 0.2 for the
Logistic Hazard model and to 0.8 for the PMF model. In contrast, for the kidney cancer
(KIRC) data, we set µ to 0.3 for the Logistic Hazard model and 0.2 for the PMF model.
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Figure 1. Performance variation of GNN-surv models in the BLCA dataset for different hyperpa-
rameter µ values. The discrete-time survival models are (A) Logistic Hazard and (B) PMF. The
performance metrics are mean Ctd values obtained from 50 random data splits. The gray dotted line
represents the mean Ctd of the MLP model, used as a baseline.
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Figure 2. Performance variation of GNN-surv models in the KIRC dataset for different hyperpa-
rameter µ values. The discrete-time survival models are (A) Logistic Hazard and (B) PMF. The
performance metrics are mean Ctd values obtained from 50 random data splits. The gray dotted line
represents the mean Ctd of the MLP model, used as a baseline.

3.3. Survival Prediction Performance

The assessment of survival prediction performance was executed by evaluating the
mean time-dependent concordance index (Ctd) and the integrated Brier score (IBS), along
with standard deviations across 50 data splits. The Ctd is a metric used to evaluate the
predictive accuracy of survival models over time. It measures the agreement between
predicted and observed survival times, with a higher value indicating better model per-
formance. The IBS quantifies the overall prediction error for a survival model across all
time points, with lower values indicating better accuracy and calibration. Detailed re-
sults for the bladder cancer (BLCA) and kidney cancer (KIRC) datasets are provided in
Tables 2 and 3, respectively.

The performance comparison of the GNN-surv models and the MLP model within the
BLCA and KIRC datasets demonstrates a significant improvement when using GNN-surv
models. In the BLCA dataset, the GAT-surv model outperforms the MLP-surv model, with
an increase of approximately 14.6% and 7% in the Ctd metric for the Logistic Hazard and
PMF survival models, respectively. Concurrently, the GCN-surv and SAGE-surv models
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demonstrate superior performance, reducing the IBS by approximately 26.7% and 28.3%,
respectively, for the same models. Upon examining the KIRC dataset, the SAGE-surv model
emerges as the top performer, achieving a 7.9% and 6.4% increase in Ctd for the Logistic
Hazard and PMF models, respectively, while also reducing the IBS by 24.1% and 8.1%,
respectively. Similar performance improvements are also exhibited by the GCN-surv and
GAT-surv models.

These results underscore the superior performance of GNN-surv models in survival
analysis within these datasets, revealing the benefits of integrating GNN models for discrete
survival time-to-event predictions on a patient similarity graph. Given that the MLP model
does not account for graph structures, this significant enhancement suggests the existence
of a meaningful correlational structure within patient similarity graphs. By effectively
utilizing these relationships, the proposed GNN-surv models substantially improve the
survival prediction performance.

Upon examining the GNN-surv models, the differential performance between GCN-
surv, SAGE-surv, and GAT-surv was relatively small, illustrating the adaptability and
resilience of GNN-surv models across different GNN layers. However, a standout observa-
tion was the extraordinary performance of the SAGE-surv model within the KIRC dataset.
This model demonstrated the highest performance metrics across both survival models,
reinforcing the efficacy of the GraphSAGE model in survival prediction applications in the
KIRC dataset. Interestingly, the majority of the GNN-surv models portrayed consistent and
enhanced performance across both datasets, exhibiting insensitivity to variations in the
µ parameter, generally for both survival models. This demonstrates their robustness and
effectiveness and suggests that GNN-surv models could be seamlessly adapted to different
GNN layers, providing a versatile framework for survival prediction.

Table 2. Performance comparison of GNN-surv models and MLP model within the BLCA dataset
using two discrete-time survival models, Logistic Hazard and PMF. The metrics utilized for perfor-
mance assessment include the mean Ctd and IBS, along with their respective standard deviations,
acquired from 50 random data splits. The highest performance for each metric and survival model is
highlighted in bold text.

Logistic Hazard (µ = 0.2) PMF (µ = 0.8)

Model Ctd IBS Ctd IBS

MLP-surv 0.5543 ± 0.0689 0.3183 ± 0.0497 0.5941 ± 0.0629 0.2324 ± 0.0222
GCN-surv 0.6309 ± 0.0481 0.2331 ± 0.0358 0.6265 ± 0.0493 0.2130 ± 0.0231
SAGE-surv 0.6247 ± 0.0505 0.2331 ± 0.0389 0.6378 ± 0.0415 0.2140 ± 0.0238
GAT-surv 0.6352 ± 0.0520 0.2341 ± 0.0365 0.6339 ± 0.0451 0.2154 ± 0.0229

Table 3. Performance comparison of GNN-surv models and MLP model within the KIRC dataset
using two discrete-time survival models, Logistic Hazard and PMF. The metrics utilized for perfor-
mance assessment include the mean Ctd and IBS, along with their respective standard deviations,
acquired from 50 random data splits. The highest performance for each metric and survival model is
highlighted in bold text.

Logistic Hazard (µ = 0.3) PMF (µ = 0.2)

Model Ctd IBS Ctd IBS

MLP-surv 0.6581 ± 0.0559 0.2577 ± 0.0902 0.6455 ± 0.0516 0.2022 ± 0.0174
GCN-surv 0.7077 ± 0.0373 0.1965 ± 0.0240 0.6785 ± 0.0464 0.1964 ± 0.0195
SAGE-surv 0.7099 ± 0.0409 0.1955 ± 0.0269 0.6868 ± 0.047 0.1859 ± 0.0222
GAT-surv 0.6962 ± 0.0362 0.2018 ± 0.0260 0.672 ± 0.05 0.1958 ± 0.0233

Furthermore, we delved into the exploration of the Brier scores relative to survival
time (in days), as depicted in Figures 3 and 4. For the calculation of the IBS, the Brier score
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was obtained across 100 equidistant points, falling between the minimum and maximum
observed times.

Reiterating the consistent superior performance of the GNN-surv models, these models
continued to outperform the MLP model across all durations in the Logistic Hazard model
within both datasets. Specifically, the MLP model showed noticeably poor performance dur-
ing shorter durations across both survival models, in the BLCA data. When the PMF model
was utilized, there were instances where SAGE-surv underperformed slightly compared to
the MLP model within specific time durations—approximately around median time—in
the BLCA data. Furthermore, the performance enhancements of the GNN-surv models,
which were previously noted in the Logistic Hazard model, were relatively marginal and
displayed instability for larger durations when applied to the PMF model in the KIRC
data. However, the majority of the GNN-surv models substantially outperformed the MLP
model and demonstrated stable performance across most durations.

The consideration of the integrated Brier score (IBS) revealed that, for both the MLP-
surv and GNN-surv models, the PMF model could perform better than the Logistic Hazard.
This was an interesting finding, given that no significant differences were observed between
the survival models when the time-dependent concordance index (Ctd) was considered.
This points to the value of the IBS, as it takes into account both the discrimination and
calibration of survival estimates, whereas the Logistic Hazard is primarily concerned
with discriminative performance. In other words, the IBS not only considers the model’s
discriminative ability but also its calibration. Calibration refers to the accuracy of the
model’s predicted probabilities. A well-calibrated model’s predicted probabilities of an
event (such as survival in a certain time period) should match the actual proportion of
that event in the observed data. In this context, the fact that the PMF model performs
significantly better than the Logistic Hazard model when evaluated with the IBS (but not
when evaluated with Ctd) suggests that the PMF model’s predicted probabilities may be
more accurate (i.e., better calibrated) than those of the Logistic Hazard model.
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Figure 3. Brier scores over survival time (in days) for different GNN-surv models and MLP model in
the BLCA dataset. Discrete-time survival models considered are (A) Logistic Hazard and (B) PMF.
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Figure 4. Brier scores over survival time (in days) for different GNN-surv models and MLP model in
the KIRC dataset. Discrete-time survival models considered are (A) Logistic Hazard and (B) PMF.

4. Discussion

This study examined the potential of Graph Neural Networks (GNNs), specifically
designed to enhance patient survival predictions for urologic cancers (GNN-surv). How-
ever, the research was limited by several key limitations. The scope of our investigation
was limited to two types of urologic cancers, dictated by the need for a sufficient number
of samples and balanced censoring rates. However, the potential to extend our method
to a pan-cancer integrative analysis warrants further discussion. Our model’s promising
performance in predicting discrete survival outcomes for two urologic cancers hints at the
possibility that it could be applicable across a wider range of cancer types. The foundation
for such broad application lies in the inherent flexibility of the GNN model, which can
adapt to different data types and structures.

Furthermore, the absence of feature selection in our analysis introduced potential
challenges. Typically, survival prediction models involve feature selection to focus on
statistically significant genes that correlate with survival outcomes. However, in this
proof-of-concept study, we excluded feature selection to concentrate on the comparative
effectiveness of the GNN model against a simple neural network model. This resulted in
the inclusion of an excessive number of redundant genomic features, derived from over
20,000 genes, which may have impacted the overall performance of our models. Despite
these limitations, our research provided several noteworthy findings. The superiority
of the GNN-surv models over the MLP-surv model indicates that the former’s ability to
leverage the correlational structures within patient similarity graphs for survival prediction
is beneficial. Furthermore, the enhanced performance of GNN-surv models, even with
a excessive number of features and a relatively small sample size, suggests the potential
to mitigate the effect of redundant features and extract meaningful patterns in a patient
similarity graph for discrete survival prediction.

Despite the demonstrated efficacy of the discrete-time survival models employed
in this study, there is potential for further enhancement through the incorporation of
continuous-time survival models, such as the Cox Partial Hazard (Cox-PH) model, into
GNN-surv models. This could allow for the consideration of time-varying covariates,
providing a better understanding of patient survival probabilities over time. Furthermore,
this integration could potentially enable the GNN-surv model to capture more intricate
temporal dynamics within the data. This is particularly beneficial when dealing with
longitudinal data or when a fine-grained temporal resolution is critical for clinical decision
making. Moreover, by fusing both discrete- and continuous-time models, the GNN-surv
framework could potentially serve as a unified platform for survival prediction, capable of
handling a wide spectrum of clinical scenarios and data types.
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Lastly, GNNs promise to revolutionize survival prediction models but face limitations,
including reliance on robust graph structures and vulnerability to high-dimensionality in
data. These challenges arise from the need for well-defined graph structures in the face
of complex oncological data and high feature-to-sample ratios, common in biomedical
datasets. Bypassing feature selection, GNNs can, however, prioritize informative structures
over less significant ones. Thus, the elaborated graph construction methodology also
presents an avenue for further exploration. Networks established using diverse types of
omics profiles might capture the inherent patient heterogeneity more accurately, enhancing
the precision of survival predictions. Future directions to address these constraints include
structure learning to optimize graph structures, the development of explainable GNN
models for comprehensive patient interaction analysis, and investigating feature-wise inter-
actions such as gene–gene and gene–disease interactions to identify critical biomarkers for
survival prediction. Moreover, the integration of other data modalities, such as pathological
images, could provide a richer context to these networks, offering a more comprehensive
picture of patients’ health conditions.

5. Conclusions

To summarize, our research underscores the promising potential of GNN-surv models
within the context of discrete-time survival prediction and patient similarity networks. Our
findings reveal that GNN-surv models consistently outperformed traditional MLP models
across various performance metrics in two urologic cancer datasets. The superior perfor-
mance of these models could greatly assist clinicians by providing more accurate survival
predictions, consequently guiding the formulation of personalized treatment strategies.
The successful use of patient similarity graphs in our GNN-surv models also suggests
the existence of valuable correlational structures within these networks, offering potential
leverage for survival prediction. Despite the aforementioned limitations, our findings
signal the potential for the wide applicability of GNN-surv models in survival prediction
tasks. The continued exploration and refinement of these models, their application to
diverse datasets, and the integration of various survival models could significantly enhance
personalized treatment strategies in the realm of oncology research.
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Abstract: In recent years, the development of adaptive models to tailor instructional content to
learners by measuring their cognitive load has become a topic of active research. Brain fog, also
known as confusion, is a common cause of poor performance, and real-time detection of confusion is
a challenging and important task for applications in online education and driver fatigue detection.
In this study, we propose a deep learning method for cognitive load recognition based on electroen-
cephalography (EEG) signals using a long short-term memory network (LSTM) with an attention
mechanism. We obtained EEG signal data from a database of brainwave information and associated
data on mental load. We evaluated the performance of the proposed LSTM technique in comparison
with random forest, Adaptive Boosting (AdaBoost), support vector machine, eXtreme Gradient
Boosting (XGBoost), and artificial neural network models. The experimental results demonstrated
that the proposed approach had the highest accuracy of 87.1% compared to those of other algorithms,
including random forest (64%), AdaBoost (64.31%), support vector machine (60.9%), XGBoost (67.3%),
and artificial neural network models (71.4%). The results of this study support the development
of a personalized adaptive learning system designed to measure and actively respond to learners’
cognitive load in real time using wireless portable EEG systems.

Keywords: electroencephalography; long short-term memory network; attention mechanism;
cognitive load; deep learning

1. Introduction

The COVID-19 pandemic has caused significant disruptions to traditional classroom
education worldwide, resulting in a surge in distance learning methods [1,2]. The rapid
development of information technology (IT) has facilitated this transition by allowing
students to continue their education from a distance. Consequently, traditional classroom
education has gradually integrated online and distance learning methods, with distance
learning emerging as a new trend in education [3,4]. Distance learning offers learners the
flexibility to create a learning environment that transcends spatial and temporal constraints.

During the pandemic, many people were forced to work and study remotely, which
has increased interest in developing methods for monitoring cognitive load levels in these
settings. A recent issue related to cognitive load recognition has been its application to
remote work and online learning. In this context, the challenge is the lack of face-to-face
interactions, which makes it difficult to detect non-verbal cues that indicate cognitive load
levels. Consequently, researchers have been exploring the use of physiological signals, such
as EEG and eye tracking, to monitor cognitive load levels in real time.

Cognitive load is a measure of the mental effort required to complete a task and can
be used to predict performance, fatigue, and stress levels. Cognitive load recognition is
designed to improve human performance by identifying and monitoring cognitive load
levels in real time. Therefore, cognitive load detection has numerous applications in various
domains, such as healthcare, education, and aviation.
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Driven by advances in computational neuroscience, research has been conducted to
measure learners’ cognitive load based on the cognitive load theory. Cognitive load is one of
the main causes of poor performance in a wide variety of tasks, including learning processes
and associated thinking or reflection. If the degree of cognitive load of learners in learning
or work processes is reflected, it can be used to develop adaptive instructional designs.
However, most existing studies have focused on methods to estimate learners’ degree of
cognitive load during the learning outcome stage [5,6]. A study investigating prefrontal
cortex (PFC) hemodynamics using functional near-infrared spectroscopy (fNIRS) while
performing n-back and random number generation (RNG) tasks with multiple cognitive
loads suggested a relationship between subjective workload and brain activity [7]. In
attempting to quantify the cognitive load, cognitive load modeling techniques using deep
learning are also being studied, considering workload mechanisms and their impact on
human performance [8].

Measuring the degree of cognitive load of learners after completing a learning experi-
ence has certain limitations. However, the measurement of these qualities during learning
presents several challenges. To overcome these limitations, the development of adaptive
models that provide instructional control to learners by measuring their cognitive load in
real time has emerged as a promising approach. Real-time teaching feedback could facilitate
active support that reflects changes in learning status and real-time applications to help
develop adaptive instructional materials. These materials based on real-time measurement
can manage learners’ cognitive load and participation in learning at an appropriate level
during learning and help educators identify learners’ difficulties. To realize such real-time
adaptive teaching, a method to measure learners’ cognitive load in real time during their
learning experiences must be developed as a technical prerequisite.

In this study, we consider that learners’ cognitive load can be measured in real time
using data on their physiological and psychological responses. Electroencephalography
(EEG) is commonly used to collect these data. Hence, measuring cognitive load by collecting
learners’ physiological data does not interfere with their learning experience. Cognitive
load was measured using EEG analysis. EEG is the flow of electricity generated by signal
transmission between brain nerves, and EEG analysis analyzes the frequency change in
the EEG. Because EEGs exhibit different frequency wavelengths depending on mental
activity, the degree of cognitive load can be measured by EEG analysis [9,10]. However,
the generation of brainwaves is greatly affected by physical exercise and by differences
in individual cognitive abilities. Noise in the signals may also pose some difficulties in
interpreting information. Moreover, some authors have noted that EEG readings can be
affected by other mental activities and that the continuous nature of the collected data
poses notable difficulties in determining a person’s degree of cognitive load.

However, this approach can be used to develop a model to predict specific results
using learner information by applying artificial intelligence-based methods such as machine
learning. Friedman et al. explored various cognitive load prediction models based on
machine learning using learners’ EEG measurement data. They compared and analyzed
four machine learning algorithms (XGBoost, random forest, artificial neural network,
and simple linear regression models) and reported that the XGBoost algorithm exhibited
the highest predictive accuracy [11]. Machine learning algorithms may vary in prediction
accuracy owing to variables such as the size of the training dataset. Similarly, the accuracy of
artificial neural network algorithms varies with the number of hidden layers implemented
in different models. Hence, a comparative analysis of the various algorithms is required.
Therefore, we trained several machine learning models to predict cognitive load based on
EEG data to compare their predictive performance.

In this study, we aimed to develop a model to measure learners’ cognitive load based
on their neurophysiological reactions. Additionally, we are interested in creating personal-
ized models that can account for individual differences in cognitive load responses. To this
end, we developed a long short-term memory (LSTM)-based machine learning model to
predict the degree of cognitive load using EEG data. To induce a measurable difference in
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cognitive load, we presented participants with video learning tasks of different difficulty
levels and collected EEG data to compare the degree of understanding of the content that
the participants showed during the tasks. Based on these data, we applied support vector
machines, K-nearest neighbors, artificial neural networks, convolutional neural networks,
deep belief networks, (recurrent neural network) RNN-LSTM, bidirectional LSTM, and
bidirectional LSTM attention models to compare their performance in handling data most
predictably and efficiently. A recent issue related to cognitive load recognition has been its
application to remote work and online learning and the development of more accurate and
personalized models to monitor cognitive load levels in these settings.

The remainder of this paper is organized as follows. Section 2 introduces previous
studies related to cognitive load, and Section 3 explains the implementation of the proposed
bidirectional LSTM combination model. Section 4 explains the analysis and results of the
study, and Section 5 presents conclusions and future research directions.

2. Related Work
2.1. Cognitive Load

Methods of measuring mental workload include subjective methods using response
forms filled out by participants, and objective methods, including the use of psychophys-
iological measurements [12,13]. One of the best ways to measure mental workload with
a high temporal resolution is to utilize EEG data [11–13]. In this study, we propose an
algorithm to explore the mental workload associated with multitasking activities using
EEG measurements and to recognize different levels of mental workload.

According to the theory of cognitive load, learners’ management of cognitive resources
is considered important for effective learning. Cognitive load theory argues that informa-
tion processing that occurs in the learning process must be implemented within a limited
capacity of working memory and that cognitive overload occurs if mental activity exceeds
this limit [14]. The total cognitive load is composed of the sum of the extrinsic and intrinsic
loads, of which the extrinsic load is considered to be lowered through efficient instructional
design because it is a negative load owing to an incorrect design [15]. In contrast, because
the intrinsic load is considered a positive load that helps form cognitive schemas, the total
amount of cognitive load must be low for it to not be positive. For successful learning,
appropriate teaching controls should be provided depending on learners’ individual char-
acteristics to avoid imposing either an excessively high or low cognitive load for a given
learning situation [16]. This argument of the cognitive load theory is related to the need for
adaptive teaching. Teaching should be adjusted according to the level and characteristics
of each learner. In particular, the expertise reversal effect of teaching guidance that does
not meet the needs of learners can act as an unnecessary cognitive load, highlighting the
need for adaptive teaching considering learners’ individual levels of knowledge [5]. Begin-
ners can learn more effectively if they are provided with sufficient instructional guidance
because they do not form mental schemas for certain learning topics. In contrast, for learn-
ers who have sufficiently developed a related schema, providing excessive instructional
guidance hinders learning [17]. In other words, the application of adaptive teaching can
optimize learners’ cognitive load to achieve more positive learning outcomes. Studies
applying adaptive teaching have reported that groups presented with adaptive teaching
methods showed significantly higher knowledge acquisition, shorter learning time, and
higher teaching efficiency compared to groups that did not.

Various methods have been proposed to measure cognitive load; however, there is
no absolute method. Brünken, Plass, and Leutner divided cognitive load measurement
methods into two categories: distinctions between subjective and objective methods and
those between direct and indirect methods [18]. In the subjective-direct method, the level
of stress perceived by learners and the degree of task difficulty were measured using
a questionnaire. In contrast, the subjective-indirect method adopts a self-reporting ap-
proach to evaluate the degree of mental effort that learners experience through a written
questionnaire. Objective-direct methods include electroencephalogram measurements or
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double-task response time measurements, whereas objective-indirect methods include
physiological characteristics or behavioral measurements. According to Brünken et al.’s
classification, EEG measurements consider cognitive load directly, whereas physiological
signals (sweat, pupil, etc.) indirectly measure cognitive load. In general, subjective ques-
tionnaires, double-task reaction time measurements, and physiological signal measurement
methods have been used [19]. A representative subjective method involves asking the
participants to respond to subjective questionnaires. This method involves self-reporting
the difficulty of the task by learners based on their subjective experience with the mental
effort they put in through a questionnaire. This approach is the most commonly used
and provides a relatively simple measurement of the degree of cognitive load without
requiring special equipment. However, it has a disadvantage in that changes in the degree
of cognitive load that occur during learning cannot be observed, and it relies on subjective
reports provided after the end of learning. In addition, previous studies have not reached a
clear consensus on which aspects should be measured by subjective perception, such as task
difficulty. Similarly, care should be taken when interpreting results according to various
learning contexts. For example, in the case of task difficulty, Kalyuga and Sweller measured
the total cognitive load, while DeLeeuw and Mayer (2008) argued that it was related to
the essential load [5,14,17,20]. Objective methods include the double-task response time
and physiological signal measurement methods. First, the dual-task response time method
measures the cognitive load based on the speed at which learners respond to additional
tasks presented while performing a given task [21]. In general, if the response rate to an
additional task is high, the level of cognitive load involved in processing the initial task is
low. The physiological signal measurement method checks the cognitive load by measuring
learners’ physiological responses [22,23]. Because the physiological signal measurement
method is based on objective data, it can be used to collect information in a relatively
accurate and real-time manner without affecting task performance [24].

State-of-the-art works in cognitive load recognition involve using various physiologi-
cal signals such as EEG, fNIRS, and ECG in developing models for predicting cognitive
load. Researchers have used machine learning and deep learning algorithms to process
these signals and classify cognitive load levels. However, despite the significant progress
made in this field, challenges remain, such as high individual variability, noise, and poor
generalization of models. Therefore, it is necessary to develop more accurate and robust
models for cognitive load recognition.

The proposed method for cognitive load detection uses deep learning techniques and
is motivated by the need for a more accurate and robust model that can address some of
the challenges encountered by existing methods. Random forest, AdaBoost, SVM, XGBoost,
and ANN are all traditional machine learning models that operate on fixed-length feature
vectors. These models are often trained using labeled data and can predict unseen examples
based on the patterns learned during training. Bi-LSTM, on the other hand, is a type of
deep learning model that operates on sequential data, such as text or speech. Bi-LSTM is a
variant of the long short-term memory (LSTM) network and is a type of recurrent neural
network (RNN). Bi-LSTM has been successful in many natural language processing tasks,
such as sentiment analysis, machine translation, and speech recognition. Unlike traditional
machine learning models, Bi-LSTM can learn from the temporal relationships between
inputs, which makes it well suited for tasks that involve sequential data. Bi-LSTM attention
models can handle variable-length inputs and automatically extract relevant features from
the input sequence, enabling them to capture complex patterns in the data.

Accordingly, the proposed method has the potential to improve the accuracy of
cognitive load detection and can be applied to various real-world scenarios.

2.2. Preprocessing and Feature Extraction

Neural oscillations or brainwaves are electrical reactions that occur in the interaction
between brain nerves and human mental activity, and these oscillations serve as indicators
that reflect brain activity. EEG analysis considers changes in the intensity of electrical
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signals generated in the brain by frequency and is often used as a physiological signal
measurement method to measure cognitive load. EEG measurements were made using
the potential differences between the electrodes attached to the head. Electrodes can be
attached to specific locations on the head to measure the EEG data in specific brain regions.
EEG analysis generally analyzes the frequency of collected EEG signals by applying a
Fast Fourier Transform (FFT). Brainwaves are divided into delta (0–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), low beta (12–16 Hz), high beta (16–25 Hz), and gamma (25–50 Hz) waves,
depending on their frequency. The intensity of brainwaves varies according to the state of
human mental activity, and the degree of human cognitive load can be estimated based
on this measurement. For example, alpha waves appear mainly in relaxation, beta waves
appear in problem solving, and gamma waves appear mainly in more complex mental
functions [25]. Considering these characteristics, we measured the constituent factors
of cognitive load separately in terms of the degree of activation of the brainwaves by
frequency.

The institutional review board (IRB) protects the rights and well-being of the subjects
in life-oriented research. The proposed study, first, does not involve invasive behavior,
such as drug administration and blood collection. Second, data were collected using only
simple contact-measuring equipment that did not follow physical changes. Therefore, it
corresponds to the IRB review that is not required in accordance with the regulations of
the National Bioethics Policy Institute of Korea. The non-copyright dataset used in the
experiment was obtained from Kaggle [26]. EEG signals were collected from 10 college
students while they watched video footage. A total of 20 videos were provided, including
10 with and 10 without a mental load. Students wore single-channel wireless headsets
(MindSet) to obtain EEG signals, which were measured on a 7-point scale from 1 to 7. The
MindSet device measured the voltage between a forehead electrode and two electrodes
(one for the ground and the other for reference) in contact with the ear. It provides an
output of 0 for mental states and 1 for nonmental states. While the students watched a
two-minute video, the EEG device emitted various previously listed signals. If the student
was not ready at the beginning of the video, we removed the first and last 30 s of the
video and analyzed only the middle 60 s of the EEG signal. The average of each firing
interval was calculated to characterize the overall values. Several features were calculated
to characterize the time profile of the EEG signal. Some of these distributions are typically
used to measure the shape (minimum, maximum, variance, skewness, and kurtosis) of
statistical distributions rather than time series. However, the small number of data samples
(100 data points for 10 subjects who watched 10 videos each), including the aforementioned
features, can overfit the training data and degrade the performance of the classification
models. Accordingly, we used only the mean as a feature of the classifier.

Table 1 shows the structure of the EEG dataset used for deep learning, including the
number of samples, the number of channels, and the range of values for the maximum
and minimum amplitudes. We preprocessed 11,388 data points and partitioned them into
separate training and validation sets. Specifically, we allocated 75% (8541 data points) for
training and 25% (2847 data points) for validation.
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Table 1. EEG data set.

Feature Count Max Min

0 Attention 11,388 100.0 1.0
1 Mediation 11,388 100.0 1.0
2 Raw 11,388 1440.0 −2048.0
3 Delta 11,388 3,964,663.0 448.0
4 Theth 11,388 2,567,643.0 17.1
5 Alpha1 11,388 1,369,955.0 2.0
6 Alpha2 11,388 1,016,913.0 2.0
7 Beta1 11,388 840,994.0 3.0
8 Beta2 11,388 1,083,461.0 2.0
9 Gamma1 11,388 658,008.0 1.0
10 Gamma2 11,388 283,517.0 2.0
11 User-defined label 11,388 1.0 0.0
12 Age 11,388 31 24
13 Ethnicity 11,388 Han Chinese Bengali
14 Sex 11,388 M F

2.3. LSTM-Based Recurrent Neural Network

In contrast to CNN models, LSTM architectures are incapable of large-scale parallel
processing. Unlike RNNs, they include input, output, and forget gates that can control
the flow of data in the network at any time. The gates of the LSTM architecture can place
memory blocks on hidden nodes to solve the long-term dependency problem of CNN
models, although the memory block cannot remember all data. Moreover, when LSTMs
are used in the pooling layer of a CNN, spatial and temporal features can be considered
simultaneously, owing to the end-to-end structure. The LSTM layer compensates for the
long-term dependence problem of the CNN. LSTMs are used to recognize the characteristics
of sequential data and store them in memory using a variable called the cell state. As shown
in Figure 1, the LSTM architecture includes input, output, and forget gates, which enable it
to be variably controlled according to the characteristics of the input data.
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The LSTM architecture consists of four components: input gate, forget gate, cell state,
and output gate. The purpose of the input gate is to obtain new information using two
features referred to as Rt and dt. Rt combines the previous hidden vector ht−1 with the new
information xt. In other words, we multiply [ht−1, xt] by the new matrix Wr and add the
noise vector br. Then, we perform the same procedure for dt. Rt and dt multiply elements
by element and import them into cell state ct. The slope of the forget gate is similar to that
of the input gate; this component controls the limits of the values retained in memory. The
cell state calculates the element multiplication between the previous cell states Ct−1 and
the forget ft. Then, we add the input gate rt multiplied by dt. The output gate is a symbol
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representing the output gate at t, and W0 and b0 are the weight and bias of the output gate,
respectively. The hidden layer ht is moved to the next point or output yt.

2.4. Bi-LSTM

Bi-LSTM represents bidirectional long short-term memory. Bi-LSTM is a type of
recurrent neural network (RNN) that is widely used for modeling sequential data. Unlike
traditional RNNs that process input data in only one direction, Bi-LSTM models can process
input data in both forward and backward directions simultaneously [27]. This makes them
particularly useful for tasks such as natural language processing, speech recognition, and
handwriting recognition, in which the context of each input data point depends on both
past and future data points. The architecture of a Bi-LSTM model consists of two long
short-term memory (LSTM) layers: one that processes input data in the forward direction
and one that processes input data in the backward direction. Each LSTM layer has a series
of memory cells that can store information over time and a series of gates that control the
flow of information into and out of the memory cells. The gates are composed of sigmoid
and tanh activation functions that determine the amount of information to be retained or
discarded based on the relevance of the input data. By processing data in both directions,
Bi-LSTM networks can capture both past and future contexts of a sequence, allowing them
to better model complex dependencies and relationships within the data.

During training, the Bi-LSTM model was fed with the input sequences, and the weights
of the network were updated using a backpropagation algorithm. The final output of the
model was generated by concatenating the outputs of both LSTM layers, allowing the
model to capture both the past and future contexts of the input sequence.

Overall, the Bi-LSTM model showed promising results in various applications, demon-
strating its effectiveness in capturing long-term dependencies and improving the perfor-
mance of sequential data-processing tasks.

3. Materials and Methods
Deep Learning-Based Cognitive Load Analysis Model

The model proposed in this study comprises a bidirectional LSTM and an attention
mechanism to extract the positive and negative characteristics of the mental load. Contrary
to conventional machine learning techniques, LSTM models are not capable of large-scale
parallel processing, unlike CNNs. Instead, they utilize input, output, and forget gates to
process the data. The gates have the advantage of being able to place a memory block
on a hidden node. This can solve the long-term dependency problem of CNN models,
although the memory block cannot remember all data. Moreover, when LSTM is used in
the pooling layer of a CNN, spatial and temporal features can be considered simultaneously
owing to its end-to-end structure. In addition, LSTM models can exhibit improved accuracy
because they can equally model sequence vectors when predicting words. LSTMs provide
sequential data characteristics and store them in memory using a variable called the cell
state. This specialized architecture enables the data to be processed differently according to
different situations by controlling the calculation process. Next, a single value is outputted
using the sigmoid function in a fully connected layer called the dense layer.

A typical BCI system utilizes data preprocessing processes to remove noise, extract
features, and classify the data to reflect characteristics and extract meaningful data from
unprocessed brainwaves [28]. The classified information may be used as an instruction for
device control or provided to the user. Because brainwaves are characterized by nonlinearity
and high variability between individuals and situations, the implementation of stable and
reliable BCI systems is challenging. In this study, we used an LSTM model to extract and
classify cognitive load and related brainwave characteristics. The collected data were used
as input to the LSTM model. The data to which the output value was assigned underwent
a conversion process to make it suitable as input to the LSTM model.

In this study, we adopted a one-way LSTM layer followed by an attention mechanism
to model the effect of the mental load generated at a given time on overall emotion. The
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attention mechanism is a learning method that weighs a part of the input that affects the
output the most. Bidirectional LSTM layers are generally known to perform better when
considering both the front and rear concealed states than unidirectional LSTM layers when
using an attention mechanism. The overall structure of the proposed model is shown in
Figure 2.
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The first hidden layer included 128 neurons and used a bidirectional long short-term
memory (LSTM) layer with a rectified linear unit activation function. Then, to avoid
overfitting, we included a dropout with a probability of 0.2 and passed the data through a
second bidirectional LSTM layer with 64 neurons and the ReLU activation function. After
calculating the attention weight with the hidden state, which is the output of the second
layer, the dimensionality of the data was reduced by passing through a layer with an output
size of 16 and the first dense layer using the ReLU activation function. The final output is
obtained by passing the data through the second dense layer, which has an output size of
1 and using the sigmoid activation function in the second classification and the softmax
function in the third. In the second-stage classification, the output values are low or high
for valence or arousal, and in the third-stage classification, the results are classified as low,
middle, or high. The attention weights were processed in the following order: This method
calculates the attention weight of the part of the input that affects the output; the higher
the weight of the input part, the greater the value when the network is trained. The order
of calculation is as follows: The hidden state vector calculated via the second bidirectional
LSTM layer is multiplied by a randomly initialized attention weight, whose length is equal
to the length of the hidden state vector. The output size of the second bidirectional LSTM
layer was 64, with a total of 128, owing to the bidirectional architecture. Thus, the length of
the attention weight is 128. The resulting value from this calculation was converted into
a probability value through the softmax activation layer, and the transformed attention
vector was combined with the first calculated hidden state vector to be calculated as the
final attention output. Dense layer 1, which is connected to the attention layer, receives
the corresponding attention output as input and reflects the part of the weight that is
most important for future learning to produce more accurate results. The Adam optimizer
was used, with a learning rate of 0.001. A cross-entropy loss function suitable for binary
classification was also used. To measure accuracy, we adopted the Stratified K-fold cross-
validation method with four iterations. Using this method, labels were distributed in a
balanced manner for each fold; 75% of the data were used as the training set and 25% as
the testing set for each iteration. Each iteration was trained for 30 epochs with an input
batch size of 32. Each hyperparameter was optimized experimentally.
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Figure 3 shows the results of the analysis of the correlation between variables. In
the heatmap, the X- and Y-axes were set to the same variable and plotted as points.
Consequently, we observed a suitable correlation between Gamma1 and Beta2.
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Table 2 summarizes the proposed LSTM model. The structure of the model was the
same as that of the model implemented in Python. The ReLu activation function was used
with a dropout of 0.2, fork of 100, and batch size of 10, and a sigmoid activation function
was used in the last dense layer.

Table 2. The proposed LSTM model.

Layer Num Type Output Shape Parameters

Layer 1 Input Layer (None, 16, 1) 0
Layer 2 Dense (None, 16, 64) 128
Layer 3 Dense (None, 16, 128) 8320
Layer 4 Bidirectional LSTM (None, 16, 512) 788,480
Layer 5 Dropout (None, 16, 512) 0
Layer 6 Bidirectional LSTM (None, 16, 512) 1,574,912
Layer 7 Dropout (None, 16, 512) 0
Layer 8 Attention (None, 16, 512) 528
Layer 9 Dense (None, 16, 128) 65,664

Layer 10 Dense (None, 16, 1) 129
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4. Results

The performance of the proposed Bi-LSTM model has a decisive influence on the
overall system because control is performed based on accurate EEG feature extraction and
classification according to the learning process. Loss and accuracy were used to verify
the performance of the proposed LSTM model. The smaller the loss, the better because
it indicates a difference from the result value. A categorical cross-entropy loss function
was also used. Accuracy is the ratio of the total number of positive recognitions to that of
negative recognitions. Thus, accuracy values closer to 1 indicate better performance. For the
best training data, the proposed LSTM model exhibited a loss value of 0.08 and an accuracy
of 96.9% over 76 epochs. For the verification data, the loss value was 0.3636, the accuracy
was 84.8%, the loss value was 0.8289, and the accuracy was 87.11%. Figure 4 shows the loss
and accuracy of the LSTM model according to data type. The x-axis represents the number
of epochs, and the y-axis represents the accuracy according to the loss.
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Table 3 presents the results of the comparison between the proposed method and
the other algorithms. We evaluated the accuracy and F1-score of each model using both
EEG training and test datasets. Our experimental results allowed us to identify the best
model based on its accuracy and bias-variance balance. We can clearly identify the models
with the highest scores. Specifically, the SVM model performed the worst, whereas the
AdaBoost and random forest models performed similarly, with a performance 15.68%
better than that of the most accurate ANN algorithm with an average accuracy of 0.871.
The accuracy results of the models are as follows: two-way LSTM attention (0.871), ANN
(0.714), RNN-LSTM (0.69), Bi-LSTM (0.6743), XGBoost (0.6733), AdaBoost (0.6431), and
vector machine (0.6094).

As shown in Table 4, we employed a technique to determine the optimal hyperparam-
eters for all the models. By defining a grid of possible hyperparameter values and training
the models with each combination of hyperparameters, the values that yielded the best
performance in the validation set were identified.

80



Bioengineering 2023, 10, 361

Table 3. Classification result of comparison of the proposed method with other algorithms.

Classification Methods Average Accuracy F1-Score

Random Forest 0.6416 0.657
AdaBoost 0.6431 0.660

Support Vector Machine 0.6094 0.629
XGBoost 0.6733 0.686

ANN 0.7142 0.710
RNN-LSTM 0.6900 0.690

Bidirectional LSTM 0.6743 0.670
Bidirectional LSTM Attention 0.8710 0.870

Table 4. Grid search results for the best combination of parameters.

Models Parameters (Grid Search) Best Params

Random Forest
‘max_depth’: list (range (10, 20, 5)), 15

‘n_estimators’: [50,100] 100

AdaBoost
‘algorithm’: [‘SAMME’,‘SAMME.R’] ‘SAMME.R’

‘n_estimators’: [10,40,60,100,120,130,140] 120

SVC

‘kernel’: [‘rbf’] ‘rdf’

‘C’: list (np.arange (0.5, 1.5, 0.1)) 0.7

‘gamma’: [‘scale’, ‘auto’] ‘scale’, ‘auto’

XGBoost

‘base_score’: list (np.arange (0.2, 0.5, 0.1)) 0.4

‘n_estimators’: [10,40,60,100,120,130,140] 60

‘objective’: [‘binary:logistic’] ‘logistic’

ANN

Model hidden layer {32, 16, 16}

Dense (activation = ‘sigmoid’) ‘sigmoid’

compile (loss = ‘binary_crossentropy’) ‘binary_crossentropy’

optimizer = ‘adam’, metrics = [‘accuracy’]) ‘adam’

Dense (activation =
‘relu’,kernel_regularizer = ‘l2’) ‘relu’, 12

A confusion matrix is a table for comparing predicted and actual values to measure
prediction performance achieved through training [29,30]. As shown in Figure 5, the rows
represent the correct answer class, and the column represents the predicted class. The
confusion matrix, with 2847 data points, had a true negative, false positive, false negative,
and true positive of 1058, 277, 124, and 1388, respectively.
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Table 5 shows the precision, reproduction rate, and detailed classification report of
the F1-score of the proposed model. Precision refers to the ratio of the number of samples
belonging to the positive class among the samples shown to belong to the positive class,
indicating a high precision of 0.918. Recall refers to the ratio of the number of samples
detected to belong to the positive class among the samples in the actual positive class. The
weight harmonic average of precision and recall is called the f-score, and the best result
is false positive and false negative values close to 1. The classification report in Table 5
shows that 92% of the data predicted at 0 (mental load) were actually 0, and 83% of the data
predicted at 1 (nonmental load) were actually 1. In addition, 80% of the actual cognitive
load data was predicted to be cognitive load, and 93% of the non-cognitive load data was
predicted to be non-cognitive load.

Table 5. Model performance of Bi-LSTM attention.

Bi-LSTM Attention Precision Recall F1-Score Support

0—Mental load 0.92 0.80 0.85 1360
1—Not mental load 0.83 0.93 0.88 1487

Accuracy - - 0.87 2847
Macro average 0.88 0.87 0.87 2847

Weighted average 0.87 0.87 0.87 2847

From the experimental results on algorithm comparisons, it was determined that
traditional machine learning models, such as random forest, AdaBoost, SVM, XGBoost,
and ANN, are best suited for tasks in which the input is a fixed-length feature vector. By
contrast, Bi-LSTM is ideal for tasks that involve sequential data because it can learn from
the temporal relationships between inputs, making it well suited for tasks such as EEG
processing and cognitive load prediction.

The limitations of this study are as follows: First, the data used were insufficient to
clearly reveal the difference in the degree of cognitive load in the composition of a given
video based on participants’ understanding of the online learning video. We can consider a
difference in the degree of cognitive load calculated by dividing the difficulty according to
the understanding of the video; however, factors other than learning difficulty may have
affected this value. Considering these limitations, the results of this study only suggest the
possibility of determining the degree of cognitive load through machine learning using
brainwave data. Accordingly, subsequent studies should clearly determine the differences
in the difficulty of the learning tasks given to the experimental participants. Second, it is
difficult to conclude that the accuracy of the model was represented well for all situations
because the amount of student data collected was relatively small. Although the machine
learning model was trained by integrating the data extracted from each experimental
participant, the trained machine learning model would likely be unable to determine
the degree of cognitive load universally because the number of participants was only 10.
The accuracy of machine learning models depends on the amount of data available for
training and verification. In particular, in the case of the ANN model used in this study,
the accuracy was relatively high, and the possibility of overfitting was suspected. To
confirm overfitting, data collected from additional participants were required. Third, the
participants of the experiment were not evenly distributed. Accordingly, the ratio of the
number of data samples used to train the artificial intelligence model is not equal. Because
the training data are the basis for the model to determine the level of cognitive load, the
uneven proportion of training data may have caused the accuracy of the model’s judgments
to be inconsistent. Fourth, a real-time adaptive teaching model must be developed. In
this study, we have presented EEG wavelength and electrode locations with a relatively
large impact on EEG-based cognitive load determination and proposed an appropriate
machine learning algorithm for the development of a cognitive load discrimination model.
These research results only confirm the level of learners’ cognitive load, and it is difficult to
confirm what support should be provided to learners from these data. To apply this to the
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educational field, an adaptive teaching model that provides appropriate teaching support
according to learners’ cognitive load levels must be developed.

5. Discussion

The main reason for measuring the mental workload is to quantify the cognitive load
that performs tasks to predict human performance. However, the existing method of
evaluating mental workload presents a relationship between subjective workload and brain
activity, making objective verification difficult. For instance, Agbangla et al. suggested a
relationship between subjective workload and brain activity through PFC hemodynamics
using fNIRS while performing n-back and RNG tasks with multiple cognitive loads, while
Longo et al. suggested the possibility of mental workload modeling in EEG data using
deep learning [7,8]. In this study, we trained an artificial intelligence model to determine
learners’ levels of cognitive load using EEG data and confirmed the influence of different
variables on cognitive load determination and the accuracy of the model with different
machine learning algorithms. Applying bidirectional LSTM cyclic neural networks to
classify student confusion regarding online course videos with EEG data showed that the
bidirectional LSTM model achieved state-of-the-art performance compared to other ma-
chine learning approaches and showed suitable robustness as evaluated by cross-validation.
As a result, gamma and alpha waves significantly influenced the determination of the
discriminant model, and the bidirectional LSTM attention and ANN models exhibited the
highest accuracy.

In this study, we propose a two-way LSTM recurrent neural network framework to
detect a student’s mental load when watching online course videos. We implemented an
attention-based LSTM deep learning model that effectively classifies cognitive load models
by applying an attention mechanism, which is a state-of-the-art technology suitable for
the mental load. The proposed model achieved an accuracy of 87.1% using EEG signals
without a separate feature-extraction process. The results of a comparative analysis with
other algorithms also showed that the accuracy of the proposed model outperformed
that of other machine learning approaches, including a tomography LSTM model. The
architecture of the bidirectional LSTM model helps leverage time-series capabilities for
improved performance. An analysis of the contributions of each function to the model also
confirmed that gamma and beta values are the most important for the cognitive load. In
the future, the model should be trained with more EEG datasets, and the experimental
results can be applied not only to learning but also to other EEG-related tasks, such as task
evaluation and detection of drowsy driving.

In future studies, we intend to improve the accuracy of measuring cognitive load even
in the lower class by applying a method to solve the data imbalance problem. In addition,
for continuous cognitive load models, the degree of the mental load is important. Hence,
we plan to apply a regression model to the last stage of the deep learning-based cognitive
load model to analyze it in various ways.
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Abstract: Accelerated brain aging (ABA) intricately links with age-associated neurodegenerative
and neuropsychiatric diseases, emphasizing the critical need for a nuanced exploration of het-
erogeneous ABA patterns. This investigation leveraged data from the UK Biobank (UKB) for a
comprehensive analysis, utilizing structural magnetic resonance imaging (sMRI), diffusion magnetic
resonance imaging (dMRI), and resting-state functional magnetic resonance imaging (rsfMRI) from
31,621 participants. Pre-processing employed tools from the FMRIB Software Library (FSL, version
5.0.10), FreeSurfer, DTIFIT, and MELODIC, seamlessly integrated into the UKB imaging processing
pipeline. The Lasso algorithm was employed for brain-age prediction, utilizing derived phenotypes
obtained from brain imaging data. Subpopulations of accelerated brain aging (ABA) and resilient
brain aging (RBA) were delineated based on the error between actual age and predicted brain age.
The ABA subgroup comprised 1949 subjects (experimental group), while the RBA subgroup com-
prised 3203 subjects (control group). Semi-supervised heterogeneity through discriminant analysis
(HYDRA) refined and characterized the ABA subgroups based on distinctive neuroimaging features.
HYDRA systematically stratified ABA subjects into three subtypes: SubGroup 2 exhibited extensive
gray-matter atrophy, distinctive white-matter patterns, and unique connectivity features, display-
ing lower cognitive performance; SubGroup 3 demonstrated minimal atrophy, superior cognitive
performance, and higher physical activity; and SubGroup 1 occupied an intermediate position. This
investigation underscores pronounced structural and functional heterogeneity in ABA, revealing
three subtypes and paving the way for personalized neuroprotective treatments for age-related
neurological, neuropsychiatric, and neurodegenerative diseases.

Keywords: accelerated brain aging; advanced brain aging; subtypes; heterogeneity; structural MRI

1. Introduction

The brain aging process elicits intricate alterations in both the structure and func-
tion aspects of the brain. This phenomenon manifests in various forms of degeneration,
encompassing cortical thinning [1], increased white-matter atrophy and lesions [2], and
diminished functional connectivity [3]. Despite the profound impact of aging on the
brain, current investigations into brain aging, specifically the categorization of brain aging
subtypes based on neuroimaging features, are at an early stage of development [4,5]. Re-
searchers are navigating the complexities of understanding the diverse patterns associated
with brain aging. The complexity is further heightened by the interplay among genetic,
lifestyle, and environmental factors, all of which contribute significantly to the observed
diversity in the brain aging process [6–8]. This apparent heterogeneity intrinsic to brain ag-
ing emphasizes the imperative of studying brain-aging subtypes to unravel the underlying
mechanisms and variations of brain aging within the aging population [9].
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Traditional brain-aging research has categorized brain aging into distinct categories:
resilient brain aging (RBA) [10–12], normal brain aging, and accelerated brain aging (ABA),
occasionally referred to as advanced brain aging [13,14]. Such studies have revealed that
RBA is associated with a greater resistance to the risk of neurodegenerative diseases like
Alzheimer’s disease (AD). Conversely, ABA represents a paradigm wherein aging processes
within the cerebral domain proceed at an accelerated pace, surpassing the expected rate
corresponding to an individual’s chronological age. This acceleration is evidenced by the
manifestation of cerebral characteristics that appear older than anticipated. Discernible
disparities in the brain-aging biomarkers of ABA have been well-documented within the
context of neuropsychiatric disorders. Conditions such as schizophrenia, post-traumatic
stress disorder, anxiety disorders, and depression exhibit conspicuous deviations in some
brain-aging biomarkers [15]. This observation underscores the intricate interplay between
ABA and the underlying pathophysiological substrates of neuropsychiatric disorders. The
implication arises that ABA processes may serve as potential contributors to the etiology
and progression of such conditions. Expanding upon extensive databases of normative
aging, the analysis of MRI data emerges as a pivotal avenue for scrutinizing ABA within
the cerebral milieu. One such methodology, the Brain Age Gap Estimation (BrainAGE)
method [16], leverages machine-learning techniques to discern individual-level variability
in brain-aging dynamics. This involves the utilization of standard MRI sequences, wherein
a prediction model, derived from a learning sample comprising neurologically healthy
adults, is deployed to estimate the apparent biological age of a new individual’s brain. In
this process, the disparity between the estimated biological age and the subject’s chrono-
logical age constitutes the brain-age “gap” (BAG), a metric quantifying the extent to which
a given brain appears comparatively “older” or “younger” relative to the individual’s
chronological age. The BrainAGE method thus provides a sophisticated means of assessing
and quantifying the accelerated aging phenomenon within the brain, offering insights into
the individualized dynamics of cerebral aging beyond chronological timelines. Studies
have established positive correlations between increased BrainAGE and numerous dis-
eases, including obstructive sleep apnea [17], schizophrenia [18], AD [19], major depressive
disorder [20], chronic poststroke language impairment [21], and Parkinson’s disease [22].
Therefore, elucidating the heterogeneity of ABA is crucial for understanding the underlying
pathophysiological processes in brain aging [23].

Within the realm of neurological disorders, the application of unsupervised clustering
algorithms stands as a pervasive methodology for conducting ABA subtype analyses. In a
seminal study by Wrigglesworth et al. [24], 167 individuals exhibiting ABA were identified
from a cohort of 326 community-dwelling older adults based on their BrainAGE metrics.
The investigators proceeded to employ latent class analysis (LCA) on the ABA subjects,
incorporating a comprehensive array of cognitive, lifestyle, and health measures. The
results of the LCA revealed the presence of two distinct ABA subtypes. The first subtype
exhibited a low prevalence of obesity, a diminished likelihood of low general cognitive
status, a smaller probability of low mental quality of life (QoL), and a reduced likelihood of
low physical QoL. In contrast, the second subtype was characterized by a higher prevalence
of hypertension, a lower probability of high general cognitive status, moderate scores in
mental QoL, and a diminished likelihood of high physical QoL. These findings underscore
the utility of unsupervised clustering in unraveling nuanced health-related subtypes within
the context of ABA. Unlike unsupervised learning, semi-supervised learning methods
utilize labeled and unlabeled data to train a base classifier to distinguish between tar-
get and control groups, which is then updated in an unsupervised manner to discover
the heterogeneity of the target group. This approach leads to more accurate predictions
and a deeper understanding of the disease. Eavani et al.’s study [25] in ABA, utilizing
the Mixture of Experts (MOEs) method on MRI data from 400 participants aged 50 to
96, identifies 5 distinct ABA phenotypes. This research underscores the importance of
capturing the heterogeneity and subtypes of ABA rather than seeking a single signature,
providing insights for future studies in understanding the neurobiological underpinnings
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of ABA. However, this study confronts two notable challenges. First, the limited dataset,
encompassing approximately 261 subjects displaying ABA that were derived from around
400 participants, may raise concerns about the generalizability of the results. Addition-
ally, while the MOE framework amalgamates the unsupervised modeling of mixtures of
distributions with the supervised learning of classifiers, bestowing it with commendable
merits in subgroup identification and multivariate pattern discrimination, it is not without
its shortcomings. The MOE method’s integration of classification with clustering strategies
leads it to inherit the limitations inherent in traditional clustering methods, particularly in
the context of high-dimensional data where sparsity and dimensionality challenges prevail.
With escalating dimensionality, the notion of distance between data points loses its meaning
and becomes increasingly inadequate for discerning inherent patterns. This predicament
is further exacerbated by the high sparsity endemic to high-dimensional spaces, yielding
clustering outcomes that are marked by instability and unreliability. In this context, even
minor perturbations in data points can yield entirely disparate cluster assignments, thereby
compromising the robustness and consistency of the clustering results. In stark contrast, the
recently developed heterogeneity through discriminant analysis (HYDRA) [26] was used
for this study. A multiple max-margin discriminative analysis framework algorithm offers
a promising and innovative solution. HYDRA’s prowess lies in its remarkable capacity
to effectively capture neuroanatomical subtypes by utilizing multiple linear hyperplanes
to create a convex polytope that distinctly separates various subgroups. Notably, HY-
DRA leverages the modeling capabilities of linear support vector machines (SVMs) to
discriminate between homogeneous classes, even within high-dimensional data spaces.
Moreover, HYDRA adopts a sophisticated two-pronged approach to improve upon its
predecessor. Firstly, it meticulously initializes the iterative algorithm with great care, with a
specific emphasis on promoting clustering solutions that exhibit diversity related to disease
characteristics. This is achieved through the application of determinantal point processes
(DPPs) to sample a wide array of aging directions, thus refining the initial clustering assign-
ments. Secondly, HYDRA acknowledges the variability inherent in estimated solutions,
particularly in non-convex settings, and skillfully employs a multi-initialization strategy
in tandem with a fusion step. This comprehensive approach results in the production of
robust and consistent results that accentuate the underlying group structure while simul-
taneously minimizing the impact of noisy perturbations. Overall, the innate advantages
and advanced methodologies of HYDRA position it as a compelling and superior choice
for heterogeneous analysis. Consequently, HYDRA has garnered widespread adoption
in disease subtype analysis and recognition as the preeminent heterogeneous analysis
algorithm in current practice [26–30].

In the course of this scientific investigation, BrainAGE functions as the pivotal tool for
the stratification of the aging population into ABA and RBA subpopulations. Subsequent
to this stratification, our study delves into the nuanced task of estimating diverse aging tra-
jectories within the ABA population relative to the RBA. This intricate analysis is facilitated
through the utilization of multimodal MRI image features. This research methodology
signifies a departure from previous studies as it entails the examination of a notably expan-
sive dataset comprising 5152 subjects. Within this dataset, 1949 subjects are representative
of the ABA subpopulation, while 3203 represent the RBA subpopulation. The data were
meticulously sourced from the UK Biobank (UKB) database, a reservoir of information
that spans multiple distinct imaging modalities. Specifically, the brain imaging-derived
phenotypes (IDPs) encompass 207 features derived from structural magnetic resonance
imaging (sMRI), 144 features from diffusion magnetic resonance imaging (dMRI), and
210 features from resting-state functional magnetic resonance imaging (rsfMRI). This com-
prehensive approach substantially fortifies the robustness of our analysis, enabling a more
nuanced understanding of the intricate interplay between ABA subpopulations and their
corresponding neuroimaging profiles. By meticulously dissecting these multimodal MRI
features, our investigation aims to contribute novel insights into the complex landscape of
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ABA, thus advancing our comprehension of the underlying mechanisms at play within the
aging process.

In this study, we make three crucial contributions. Firstly, our investigation conducts
a thorough examination of ABA subtypes through the application of multimodal neu-
roimaging techniques. To our knowledge, this study stands as the first-ever exploration
into ABA heterogeneity utilizing multimodal neuroimaging on a significant scale, drawing
from a substantial cohort of healthy volunteers (n = 31,621). This addresses challenges
associated with limited sample sizes in previous research, ensuring a more comprehensive
understanding of the diverse ABA population. Secondly, the high dimensionality (n = 561)
poses challenges in heterogeneity analysis algorithms, prompting the introduction of the
innovative HYDRA method for scrutinizing brain-aging heterogeneity. This approach
effectively addresses inherent limitations in traditional methods applied to the analysis
of ABA heterogeneity, showcasing its potential to unravel intricate patterns within high-
dimensional neuroimaging datasets. This promises a fruitful avenue for future research into
brain-aging heterogeneity. Beyond these advancements, the study’s contributions extend to
the broader significance of understanding brain aging. Stratifying ABA subjects into three
subtypes establishes a foundation for personalized prevention approaches against condi-
tions like dementia. In essence, this study not only propels the methodological landscape
of neuroimaging research forward but also holds profound implications for translational
applications in the realms of personalized medicine and preventative neurology.

The organization of the remainder of this paper is as follows. In Section 2, a com-
prehensive introduction unfolds, elucidating essential facets such as the UKB data, the
neuroimaging processing pipeline, the machine-learning model employed for brain-age
prediction and the identification of ABA subgroups, and a meticulous overview of the
statistical procedures that underpin this study. Section 3 meticulously unveils the study
results, with a particular focus on the nuanced analysis of ABA subtypes. Following the
presentation of results, Section 4 engages in a comprehensive discussion that contextualizes
the findings within the broader landscape of neuroimaging research and the understanding
of ABA, while a concise summary is encapsulated in Section 5.

2. Materials and Methods
2.1. Participants

The data utilized in this investigation emanated from a population-based prospective
cohort study, namely the UKB [31], which is accessible at www.ukbiobank.ac.uk (accessed
on 11 January 2021). The UKB had previously secured ethical approval from the North
West Multi-centre Research Ethics Committee (REC reference 11/NW/0382). Furthermore,
the research initiative documented herein had received approval from the UKB, designated
by application number 68,382. During in-person interviews, a standardized questionnaire
was employed to systematically acquire an extensive array of lifestyle information from the
study participants. Additionally, the cognitive status of the subjects was evaluated using a
touch-screen questionnaire. The UKB encompassed a comprehensive cohort, comprising a
total of over 500,000 individuals.

As part of the overarching UKB study, a subset of participants underwent neuroimag-
ing procedures, resulting in the acquisition of brain imaging data. To ensure data ho-
mogeneity, each of the three imaging centers was equipped with identical scanners and
fixed platforms, maintaining consistency by refraining from major software or hardware
updates throughout the study. Specifically, each center utilized a 3T Siemens Skyra (Skyra
3T, Siemens Healthcare GmbH, Erlangen, Germany) with software platform VD13 and a
32-channel receive head coil dedicated to brain imaging. The T1-weighted MRI employed
a Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) sequence characterized by a
high spatial resolution of 1 × 1 × 1 mm, an image matrix of 208 × 256 × 256 mm3, and
inversion time (TI)/repetition time (TR) of 880/2000 ms. DMRI data acquisition encom-
passed two b values (b = 1000, 2000 s/mm2) with a spatial resolution of 2 × 2 × 2 mm,
covering a comprehensive set of 100 distinct directions. This protocol incorporated a multi-
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band acceleration factor of 3. RsfMRI was executed with specific acquisition parameters,
featuring a spatial resolution of 2.4 × 2.4 × 2.4 mm, a TR of 0.735 s, an echo time (TE) of
39 ms, and a multiband acceleration factor of 8. These standardized imaging protocols
contribute to the reliability and consistency of the acquired data across the study cohort.

The selection process, detailed in the accompanying Figure 1, adhered to rigorous
criteria aimed at ensuring data quality. Exclusion was based on the International Classifi-
cation of Diseases, Tenth Revision (ICD-10), diagnostic classification system. Individuals
diagnosed with malignant tumors of the eye, brain, and other parts of the central nervous
system; cerebrovascular disease; psychiatric and behavioral disorders; neurological dis-
orders; and other disorders affecting brain health were excluded from the analysis. This
screening procedure led to the inclusion of 388,721 subjects between the ages of 45 and
83. Subsequently, 31,621 subjects possessing comprehensive sMRI, dMRI, and rsfMRI data
were selected. This subset was then randomly divided into a training set (40%) and a test
set (60%) to implement the brain-age prediction model. Within the test set, individuals
exhibiting characteristics of ABA or RBA were identified using the brain-age prediction
model. Specifically, individuals demonstrating a positive BrainAGE across all three imag-
ing modalities were assigned to the ABA group. Conversely, those displaying consistently
negative values in all three imaging modalities were assigned to the RBA group. Further-
more, participants who had not completed all nine cognitive tests, as well as those with
incomplete data on covariates, were eliminated from the final analysis. As a result, the
study ultimately comprised 1949 subjects classified within the RAB group, characterized by
a mean age of 63.6 years with a standard deviation of 7.97. Concurrently, the ABA group
encompassed 3203 subjects with a mean age of 64.6 years and a standard deviation of 6.96.
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2.2. Imaging-Derived Phenotypes (IDPs)

The UKB presents a diverse array of neuroimaging modalities [32]. Following the
meticulous acquisition of data, a standardized methodology is applied for image prepro-
cessing and preliminary analysis, leading to a comprehensive set of IDPs. The carefully
curated IDPs serve as the foundation for capturing valuable insights into different aspects
of the brain structure and function, facilitating a comprehensive investigation aligned with
the study’s objectives.

The T1 MRI, distinguished for its meticulous precision, stands as a structural modality
acclaimed for its remarkable ability to intricately capture detailed brain anatomy at an
impressive resolution. This imaging modality provides a potent contrast between gray
and white matter, facilitating the accurate visualization of intricate brain structures. The
quantification of volumes was meticulously conducted using the FMRIB software library
(FSL, version 5.0.10), accessible at http://fsl.fmrib.ox.ac.uk/fsl (accessed on 16 February
2022). Employing the FMRIB’s automated segmentation tool (FAST, version FAST3), a total
of 139 IDPs were derived. This was achieved by aggregating partial volume estimations
within 139 regions of interest (ROIs) (UKB ID: 25782-25920) established in the MNI152
space, amalgamating parcellations from various atlases, including the Harvard–Oxford
cortical and subcortical atlases (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases, accessed on
16 February 2022) and the Diedrichsen cerebellar atlas (http://www.diedrichsenlab.org/
imaging/propatlas.htm, accessed on 16 February 2022). The warp field, previously esti-
mated to effectuate the transformation of subject data into a standardized space, underwent
inversion and subsequent application to the ROIs. This process generated a version of the
ROIs in the native space, facilitating precise masking within the segmentation framework.
Extraction of cortical thickness from cortical regions involved the meticulous implemen-
tation of the established FreeSurfer parcellation scheme [33]. This scheme, grounded in
the Desikan–Killiany atlas, comprehensively delineates cortical domains across both hemi-
spheres, encompassing a total of 68 discrete regions (UKB ID: 25755-26788, 26856-26889).

DMRI serves as a crucial tool for evaluating water molecule movement within the
local tissue environment. At the voxel level, local estimates of diffusion properties provide
valuable insights into microstructural tissue integrity, encompassing diffusion tensor es-
timates. Furthermore, long-range estimates derived from tractography, which involves
the meticulous tracing of brain pathways, offer comprehensive information about the
structural connectivity between pairs of brain regions. In this study, we employed the
DTIFIT tool (available at https://fsl.fmrib.ox.ac.uk/fsl/fdt, accessed on 16 February 2022),
to fit a diffusion tensor at each voxel. This procedure yielded multiple diffusion measures,
encompassing fractional anisotropy (FA) and mean diffusivity (MD) maps. These collective
measures provide a comprehensive elucidation of the characteristics of water diffusion
within the brain tissue. Moreover, the dMRI data underwent sophisticated processing
leveraging using NODDI (Neurite Orientation Dispersion and Density Imaging). NODDI
enables the estimation of crucial white-matter microstructural parameter isotropic water
volume fraction (ISOVF).

To delve into the intricacies of the white-matter microstructure, we employed tract-
based spatial statistics (TBSS). TBSS facilitates the alignment of the FA image onto a
standard-space white-matter skeleton through high-dimensional FNIRT-based warping.
This standardized-space warp is subsequently applied to all other dMRI measures. Each
resulting skeletonized image for dMRI measures underwent averaging across 48 standard
spatial tract masks, meticulously defined by Susumi Mori’s group at Johns Hopkins Uni-
versity. This detailed averaging procedure produced a total of 144 distinctive IDPs (FA
(UKB ID: 25056-25103), MDs (UKB ID: 25104-25151), and ISOVFs (UKB ID: 25440-25487)).

The analysis of rs-fMRI images was conducted using the MELODIC (Multivariate
Exploratory Linear Decomposition into Independent Components) framework [34]. This
processing pipeline integrated group principal component analysis and independent com-
ponent analysis, culminating in the extraction of spatially orthogonal independent compo-
nents (ICs) representing distinct resting-state neural networks. A low-dimensional group-
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independent component analysis approach was employed to obtain a population-level
spatial map of the resting-state network. The functional images underwent pre-processing
with 25 fractions (UKB ID: 25752), and a meticulous exclusion process eliminated 4 noise
components, resulting in a set of 21 components of particular interest. Each of these
components corresponded to unique resting-state networks, offering invaluable insights
into the underlying neural activity patterns during rest. The online visualization of these
ICs is facilitated through the Papaya viewer (https://www.fmrib.ox.ac.uk/ukbiobank/
group_means/rfMRI_ICA_d25_good_nodes.html, accessed on 16 February 2022). This
viewer, along with accompanying maps, provides an interactive and insightful platform
for exploring and comprehending the spatial distribution of the ICs derived from rs-fMRI
data. Moreover, a partial correlation matrix derived from rsfMRI data was utilized to
represent the number of network connections, totaling 210 values. This was calculated by
multiplying the 21 networks by 20 (excluding identity correlations) and dividing by 2, con-
sidering the matrix’s diagonal symmetry. The implementation of partial correlation aimed
to enhance the precision of estimating direct “connections” between networks compared to
full correlation.

2.3. Brain-Age Prediction Model

Lasso, short for “Least Absolute Shrinkage and Selection Operator,” is a statistical
regularization technique in machine learning. It adds a penalty term to the regression equa-
tion, constraining the absolute size of the coefficients and effectively promoting sparsity
by forcing some coefficients to be exactly zero. Lasso is widely employed in predictive
modeling, particularly when dealing with high-dimensional datasets. Prior investigations
into brain-age prediction [35,36] have consistently demonstrated the superior performance
of the Lasso model when compared to other machine-learning models. Given these com-
pelling findings, we have chosen the Lasso model as the method of choice for brain-age
prediction in our study.

Within the Lasso model, the penalty regularization parameter, denoted as alpha,
assumes a pivotal role in determining the intensity of the penalty applied to model param-
eters. The magnitude of alpha directly influences the strength of the penalties assigned
to each parameter, resulting in varying degrees of model shrinkage. In the context of this
study, we meticulously defined the grid search space for the alpha parameter as (0.001, 0.01,
0.1, 1, 10, 100). This specific range was chosen to efficiently explore the parameter space
and identify the optimal alpha value that would maximize model performance.

BrainAGE [37] is a neuroimaging-based metric designed to quantify the difference
between an individual’s actual chronological age and the predicted age of their brain.
This innovative approach leverages structural brain imaging data to provide insights into
the aging process at the neural level. The fundamental premise behind BrainAGE is to
assess the extent to which the brain either accelerates or decelerates in comparison to
the individual’s chronological age. BrainAGE also has a strong correlation with brain
maintenance (BM) [38]. The brain-age prediction model entails the application of machine-
learning techniques to brain imaging data, enabling the development of a predictive model
for estimating the “age” of the brain through its imaging features. The BrainAGE score
is derived by calculating the difference between the age predicted by the model and an
individual’s chronological age (Equation (1)). A positive BrainAGE score suggests that
the brain is aging at a faster rate than expected, potentially indicating accelerated aging or
suboptimal BM. Conversely, a negative BrainAGE score implies a more youthful-appearing
brain, indicative of better-preserved structural characteristics than what would be expected
based on chronological age.

BrainAGE = Predicted age − Chronological age (1)

Recent studies have underscored the presence of a proportional bias in the computation
of brain age, where the disparity between chronological age and predicted brain age exhibits
a negative correlation with chronological age. This phenomenon is attributed to the well-
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documented effect of regression toward the mean [35,39]. This phenomenon has the
potential to introduce bias in the prediction of age, which may be overestimated in younger
subjects and underestimated in older subjects compared to their respective chronological
ages. Given the inherent age-related bias, the imperative arises for the implementation of
an age-bias correction procedure, as outlined in Equation (2).

Predicted agecorrected = Predicted ageraw − α − β × Chronological age (2)

where Predicted ageraw indicates brain age predicted by the Lasso model, and α and β

represent the intercept and slope of the regression line between chronological age and
predicted age in the training set.

Subsequently, subjects in the test sets were systematically categorized based on their
BrainAGE. Individuals displaying positive BrainAGE values across all three modalities
were categorized into the ABA group, indicating that their predicted brain age exceeded
their chronological age. Conversely, subjects with negative BrainAGE values across the
three imaging modalities were assigned to the RBA group, indicating a favorable condition
where the predicted brain age suggested a structure and function younger than their actual
age. This stratification provides a nuanced understanding of age-related deviations in brain
structure and function, fostering a comprehensive characterization of individual differences
in brain aging within the study cohort.

2.4. Non-Imaging Derived Phenotypes (Non-IDPs)

Throughout their active engagement in the UKB study, subjects were diligently queried
to furnish comprehensive insights into their lifestyle and physical health using diverse
methodologies. The amalgamation of this wealth of information culminated in the creation
of non-imaging derived phenotypes (Non-IDPs), which serve as integral components of
the broader analytical framework. The study comprehensively examined six Non-IDPs
intricately associated with lifestyle and physical health. These variables included systolic
blood pressure (UKB ID: 4080), time spent driving (UKB ID: 1090), hand grip strength (UKB
ID: 46, 47), usual walking pace (UKB ID: 924), and diabetes diagnosed by a doctor (UKB
ID: 2443).

2.5. Neuropsychological Tests

The neuropsychological battery, consisting of nine cognitive domains [40], served as
the foundation for cognitive evaluation in this study. Specifically, two cognitive scales
within the scope of our investigation—reaction time (UKB ID: 20023) and trail-making
(UKB ID: 6350)—both incorporating time as a test outcome, underwent a log transformation
to enhance their analytical robustness. A detailed overview of the neuropsychological tests
is provided in Table 1.

Table 1. Cognitive domain, neuropsychological tests, and test descriptions.

Testing Description Cognitive Domain UKB ID

Pairs matching Number of incorrect
matches made in round

Visual declarative
memory 399

Numeric memory Maximum number of
digits remembered correctly Working memory 4282

Fluid intelligence Fluid intelligence score
assessment

Verbal and numerical
reasoning 20016

Paired associate
learning

Number of correctly
associated word pairs

Verbal declarative
memory 20197

Matrix pattern
completion

Number of correctly
solved puzzles

Non-verbal
reasoning 6373

Reaction time Mean time taken to correctly identify matches Processing speed 20023
Symbol digit
substitution Number of correct symbol digit matches made Processing speed 23324
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Table 1. Cont.

Testing Description Cognitive Domain UKB ID

Tower rearranging Number of correctly
solved puzzles Executive function 21004

Trail-making Duration to complete
alphanumeric path Executive function 6350

2.6. Identification of ABA Subgroups Using HYDRA

Leveraging the information derived from IDPs, we employed the HYDRA algorithm
to discern distinct ABA subtypes [26]. HYDRA is a semi-supervised machine-learning
algorithm tailored for unraveling the intricacies of disease heterogeneity. In this study,
this algorithm achieves ABA heterogeneity by partitioning ABA subjects, discerning pat-
terns or transformations between subpopulations within the ABA group and a reference
group (i.e., RBA subjects). The partitioning process employs a convex polytope, a construct
amalgamating multiple linear max-margin classifiers. Notably, HYDRA demonstrates the
capability to effectively regress out nuisance covariates, such as age and sex, enhancing
its precision in discerning genuine patterns associated with brain aging. In its approach,
HYDRA conceptualizes subjects as points within a high-dimensional space, aligning with
the support vector machine (SVM) classification framework. Leveraging the discriminative
power of linear SVMs in high-dimensional spaces, HYDRA extends this capability to the
non-linear domain in a piecewise fashion. This extension involves the formation of a
convex polytope through the combination of multiple hyperplanes, effectively segregat-
ing the two groups. Enclosed within this convex polytope are the RBA samples, while
distinct faces of the polytope facilitate ABA subtyping. Each face encapsulates a distinct
multivariate pattern of difference between the two groups, and hence a distinct accelerated
aging process.

In the initial phase, HYDRA allocates different labels to the ABA and control groups
(RBA subjects). Subsequently, the algorithm integrates multiple linear max-margin classi-
fiers into a convex polyhedron by clustering the k-values, where k represents the number of
clusters, effectively distinguishing control subjects from those exhibiting ABA. The assign-
ment of ABA subjects to the nearest hyperplane within a single linear subclassifier results
in the division of all ABA subjects into K clusters, with each polyhedron encapsulating
the distinct characteristics of an ABA subtype. The optimization problem is systematically
addressed through an iterative procedure, alternately assigning ABA samples to the faces
of the polytope and estimating hyperplanes to maximize the overall margin. This iterative
coupling between clustering and classification serves the dual purpose of segregating
ABA subjects based on accelerated brain-aging effects, rather than a global anatomical
perspective. For optimizing the identification of ABA subtypes, a systematic approach was
employed, ranging from two to five clusters, with five-fold cross-validation. Covariates,
including age, gender, and education level, were considered during the process. Of note,
the educational level underwent a transformation into years of education, aligning with
established practices in prior research [41]. The stability of clustering outcomes was quanti-
fied using the adjusted rand index (ARI) [26] in conjunction with five-fold cross-validation.
The determination of the optimal number of clusters relied on the maximum ARI, ensuring
the selection of the most reliable clusters. The comprehensive workflow is depicted in
Figure 2.
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2.7. Statistical Analysis

The study encompassed three primary sections delineating distinct characteristics:
(1) Lifestyle and determinants, encompassing variables such as age, gender, years of
education, and six lifestyle factors pertaining to physical health; (2) Neuropsychological
exam, comprising a comprehensive battery of nine cognitive assessments; and (3) IDPs
derived from T1, dMRI, and rsfMRI, totaling 561 IDPs. For sections (1) and (2), differences
between matched subtypes were rigorously compared. Disparities in qualitative variables
were assessed using the chi-square test, while quantitative variables underwent analysis
of variance (ANOVA). Two-by-two comparisons were executed utilizing Dunnett’s test,
with a predefined statistical significance level set at p < 0.05. In section (3), the analytical
framework encompassed a comparison of differences between subgroups and controls,
employing ANOVA. To address the issue of multiple comparisons, the Bonferroni method
was meticulously applied, imposing a stringent threshold of q < 0.01. All statistical analyses
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were conducted using SPSS 26 software, a widely acknowledged statistical package (SPSS,
1989; Apache Software Foundation, Chicago, IL, USA).

3. Results
3.1. Brain-Age Prediction

Within the scope of this investigation, Lasso regression analysis was selected as the
preferred methodology for predicting brain age, with mean absolute error (MAE) serving
as the metric for evaluating model performance. Interestingly, dMRI emerged as the
modality with the highest predictive accuracy. The application of Lasso regression to dMRI
data resulted in a remarkably low MAE of 4.03 years, indicating the effectiveness of this
approach in estimating brain age. Moreover, the predictive accuracy based on T1 data,
encompassing cortical thickness and gray-matter volume, resulted in an MAE of 4.17 years,
while rsfMRI demonstrated an MAE of 5.28 years.

The categorization of ABA and RBA groups was contingent upon the consistency
of positive or negative BrainAGE across the three modalities within the test set of brain-
age prediction (n = 18,974). Specifically, if BrainAGE across all three modalities was
positive, the subject was categorized as ABA; conversely, if BrainAGE was consistently
negative, the subject was designated as RBA. This delineation led to the selection of
3203 subjects in the RBA group (mean age = 63.6 ± 7.97) and 1949 subjects in the ABA
group (mean age = 64.6 ± 6.96).

3.2. Definition of ABA Subgroups

Within the confines of this investigation, the HYDRA framework was implemented
to partition ABA heterogeneity, where the ABA population assumed the role of the ex-
perimental group, and the RBA population served as the control group. Subsequent to
this partitioning, meticulous scrutiny of the fidelity of cluster assignment transpired. The
examination involved systematically varying the cluster number from 1 to 5, employing
the ARI as the metric for assessment. The ARI quantifies the similarity between true and
predicted cluster assignments, offering a measure of clustering accuracy that accounts for
chance. Notably, a monotonically increasing trend was observed within the range of 1 to
3 subtypes. However, as the subtype count extended to 4 and 5, a relative decline in the ARI
values was discerned in comparison to the trinary configuration. This observation suggests
that clustering efficacy may be optimized into three distinct subtypes (refer to Figure 3). It
is imperative to note that HYDRA employed a robust five-fold cross-validation strategy.
The delineation of optimal subtypes reflects the outcomes observed in the validation sets
across these folds. Subsequent analysis delineated that, based on the cross-validation result,
783 individuals from the ABA cohort were allocated to SubGroup 1, while SubGroup 2
comprised 561 ABA subjects, and SubGroup 3 encompassed 605 ABA subjects.

Bioengineering 2024, 11, x FOR PEER REVIEW 12 of 27 
 

 
Figure 3. The ARI values correspond to varying numbers of subtypes. 

The comprehensive delineation of demographic information, as meticulously pre-
sented in Table 2, highlights the nuanced distinctions within these demographic variables. 
Substantial statistical distinctions in age and sex distribution were evident within the tri-
partite classification of ABA subjects. Notably, there were no discernible differences in 
years of education. To mitigate the potential confounding effects stemming from these 
demographic variations, the Generalized Linear Model (GLM) for IDps incorporated 
three crucial demographic variables—namely, age, sex, and years of education—as co-
variates. Through this inclusion, their respective influences were systematically controlled 
and eliminated. The application of rigorously controlled covariate regressions serves to 
enhance the precision of subsequent analyses and facilitates a nuanced interpretation of 
the influence of specific subtypes on the observed outcomes. 

Table 2. Demographics characteristics of RBA and ABA subgroups. 

Characteristics RBA Group SubGroup 1 SubGroup 2 SubGroup 3 p-Values 
n 3203 783 561 605  

Age (years) 64.62 61.57 66.78 63.40 <0.0001 a,b,c 
Education (years)  16.17 15.46 15.54 15.75 0.527 

Women, n (%)  1884 (58.8%) 326 (41.6%) 259 (46.2%) 302 (49.9%) 0.008 c 
a: SubGroup 1 is significantly different from the SubGroup 2; b: SubGroup 2 is significantly different 
from the SubGroup 3; c: SubGroup 1 is significantly different from the SubGroup 3. 

Following this, an ANOVA was employed to scrutinize discrepancies among RBA 
and distinct subgroups within the ABA cohort. In response to the inherent challenge of 
multiple comparisons, the Bonferroni method was applied with a stringent threshold (q < 
0.01). Remarkably, this comprehensive examination revealed nuanced differences in the 
patterns of sMRI, dMRI, and rsfMRI features across the three subtypes. These findings 
underscore the intricate nature of neuroimaging alterations within distinct subtypes of 
ABA cohorts. 

In the context of structural alterations discerned through sMRI, Figures 4 and S1 in 
Supplementary Materials have been meticulously crafted to provide comprehensive in-
sights into the distinctions among the three identified ABA subgroups and the control 
group. SubGroup 1, consisting of 783 elderly subjects, exhibited diffuse cortical atrophy 
spanning the frontal, parietal, and temporal lobes bilaterally, with limited atrophy ob-
served in the occipital and limbic lobes. This subgroup displayed extensive gray-matter 
volume reduction throughout the entire brain, emphasizing significant atrophy in key re-
gions such as the Insula, Paracentral lobule, and Angular gyrus. SubGroup 2 

Figure 3. The ARI values correspond to varying numbers of subtypes.

96



Bioengineering 2024, 11, 124

The comprehensive delineation of demographic information, as meticulously pre-
sented in Table 2, highlights the nuanced distinctions within these demographic variables.
Substantial statistical distinctions in age and sex distribution were evident within the
tripartite classification of ABA subjects. Notably, there were no discernible differences in
years of education. To mitigate the potential confounding effects stemming from these
demographic variations, the Generalized Linear Model (GLM) for IDps incorporated three
crucial demographic variables—namely, age, sex, and years of education—as covariates.
Through this inclusion, their respective influences were systematically controlled and elim-
inated. The application of rigorously controlled covariate regressions serves to enhance the
precision of subsequent analyses and facilitates a nuanced interpretation of the influence of
specific subtypes on the observed outcomes.

Table 2. Demographics characteristics of RBA and ABA subgroups.

Characteristics RBA Group SubGroup 1 SubGroup 2 SubGroup 3 p-Values

n 3203 783 561 605
Age (years) 64.62 61.57 66.78 63.40 <0.0001 a,b,c

Education (years) 16.17 15.46 15.54 15.75 0.527
Women, n (%) 1884 (58.8%) 326 (41.6%) 259 (46.2%) 302 (49.9%) 0.008 c

a: SubGroup 1 is significantly different from the SubGroup 2; b: SubGroup 2 is significantly different from the
SubGroup 3; c: SubGroup 1 is significantly different from the SubGroup 3.

Following this, an ANOVA was employed to scrutinize discrepancies among RBA
and distinct subgroups within the ABA cohort. In response to the inherent challenge
of multiple comparisons, the Bonferroni method was applied with a stringent threshold
(q < 0.01). Remarkably, this comprehensive examination revealed nuanced differences in
the patterns of sMRI, dMRI, and rsfMRI features across the three subtypes. These findings
underscore the intricate nature of neuroimaging alterations within distinct subtypes of
ABA cohorts.

In the context of structural alterations discerned through sMRI, Figures 4 and S1
in Supplementary Materials have been meticulously crafted to provide comprehensive
insights into the distinctions among the three identified ABA subgroups and the control
group. SubGroup 1, consisting of 783 elderly subjects, exhibited diffuse cortical atrophy
spanning the frontal, parietal, and temporal lobes bilaterally, with limited atrophy observed
in the occipital and limbic lobes. This subgroup displayed extensive gray-matter volume
reduction throughout the entire brain, emphasizing significant atrophy in key regions
such as the Insula, Paracentral lobule, and Angular gyrus. SubGroup 2 demonstrated
a comparable pattern of atrophy to SubGroup 1, with slight variations noted in the left
cortex of the limbic lobe and Insula. In contrast, SubGroup 3 manifested small cortical and
gray-matter volume atrophy, indicating regionally sparse and mild whole-brain atrophy.
To further elucidate these morphological alterations, a graphical representation (Figure 5)
of Z-values and their 95% confidence intervals for cortical thickness comparisons has been
incorporated. This graphical representation unveils similar regions of atrophy across the
three subgroups, yet discernible differences exist in the overall distribution pattern of
atrophy. It is imperative to underscore that all Z-values were computed with respect to the
mean and standard deviation of the RBA group, where Z-values for the RBA group serve
as the baseline with a value of 0. SubGroup 3 exhibited the least pronounced atrophy, while
SubGroup 2 showcased the most severe atrophy. These findings offer nuanced insights into
structural distinctions among ABA subgroups, unraveling the intricacies of ABA-related
morphological alterations.

Upon meticulous examination of white-matter microstructure using dMRI, SubGroup
2 emerged as a focal point characterized by substantial deviations from the control group,
indicating pronounced alterations across nearly all scrutinized regions. In comparison to
the control group, SubGroup 1 and 3 also manifested a comprehensive array of distinctions
from controls, albeit with a noticeably lower magnitude than observed in SubGroup 2.
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Graphical representations, as depicted in Figures 6–8, unravel the nuanced variations in
Z-values and their 95% confidence intervals for FA, MD, and ISOVF. All Z-values are
computed relative to the mean and standard deviation of the RBA group, serving as the
baseline with an expected value of 0. In the context of white-matter integrity, lower FA
values and elevated MD and ISOVF values are indicative of compromised microstruc-
tural integrity. Remarkably, SubGroup 2 exhibited lower Z-values in FA compared to the
other two subgroups, accompanied by higher values in MD and ISOVF. This observation
underscores a pronounced degradation of white-matter integrity in SubGroup 2. In con-
trast, the Z-values within SubGroups 1 and 3 exhibited comparable trends, displaying
closer proximity to 0. Contrary to the control group, SubGroup 1 displayed a compro-
mised white-matter microstructure akin to that observed in SubGroup 3, albeit with a
milder impact.

Examining functional connectivity through rsfMRI, this study meticulously delineates
the intricate connection strengths between distinct ABA subgroups and the control cohort.
The categorization of connection strengths within the control group, discerned through
positive and negative connections, facilitated the comparison of Z-values for the three
subgroups, elegantly presented as a heatmap in Figure 9. The Z-values presented in the
analysis are derived in relation to the mean and standard deviation of the RBA group,
establishing 0 as the baseline for Z-values in the RBA group. Noteworthy observations
emerge as groups 1 and 3 exhibit a more analogous pattern in both positive and negative
connection strengths. However, SubGroup 3 stands out with notably more negatively
linking nodes within the negative connection category. In stark contrast, SubGroup 2
presents a divergent pattern characterized by a smaller change in negative connection
strengths in comparison to the control group.

3.3. Cognitive and Non-IDPs Characteristics between Matched Subtypes

Detailed cognitive characteristics among the three ABA subtypes and the RBA are
elucidated in Table 3. SubGroup 2 prominently exhibited the most discernible cognitive
impairment, notably differing from the other subtypes in reaction time, symbol digit
substitution, and trail-making. In contrast, SubGroup 3 displayed superior cognitive
performance across all tests, demonstrating significant differences, particularly in fluid
intelligence and matrix pattern completion, compared to the other subgroups.

Table 3. Cognitive characteristics within the identified study subtypes.

Cognitive Function
Test UKB ID RBA Group SubGroup 1 SubGroup 2 SubGroup 3 p-Values

Pairs matching 399 3.577 3.664 3.814 3.540 0.307
Numeric memory 4282 6.819 6.554 6.452 6.688 0.089
Fluid intelligence 20016 6.820 6.307 6.435 6.927 <0.001 b,c

Paired associate
learning 20197 7.234 6.670 6.445 6.854 0.097

Matrix pattern
completion 6373 8.227 7.756 7.745 8.088 0.036 b,c

Reaction time 20023 2.764 2.764 2.784 2.769 <0.001 a,c

Symbol digit
substitution 23324 19.634 18.654 17.633 18.832 0.003 a,c

Tower rearranging 21004 10.041 9.807 9.580 9.958 0.246
Trail-making 6350 2.711 2.733 2.765 2.718 <0.001 a,c

a: SubGroup 1 is significantly different from SubGroup 2 (p < 0.05); b: SubGroup 1 is significantly different from
SubGroup 3 (p < 0.05); c: SubGroup 2 is significantly different from SubGroup 3 (p < 0.05).
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Figure 5. Examination of cortical thickness through Z-values for each thickness IDPs across the three
ABA subgroups in comparison to the RBA group. Error bars represent the 95% confidence intervals.
The black dotted line represents the mean Z-value for each subgroup.

Shifting the focus to Non-IDPs, differences among the subtypes are illustrated in
Figures 10 and 11. SubGroup 2 exhibited the most pronounced distinctions compared to
the other two ABA groups, featuring elevated blood pressure, diminished grip strength, a
higher prevalence of confirmed diabetes, and a slower pace in usual walking. SubGroups 1
and 3 displayed relatively fewer differences, primarily diverging in the time spent driving
and usual walking pace. Concurrently, notable distinctions were observed in blood pressure,
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confirmed diabetes prevalence, and usual walking pace between SubGroup 2 and the RBA
group. However, no statistically significant differences were identified in grip strength
values and driving time. In the case of SubGroup 1, marked disparities were evident
in all Non-IDP variables as compared to the RBA group, except for the prevalence of
diagnosed diabetes.
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Figure 11. Comparative assessment of qualitative Non-IDP variables between the three subtypes and
RBA group were then underwent by ANOVA, two-by-two comparisons were conducted employing
Dunnett’s test. a: SubGroup 2 is significantly different from SubGroup 3 (p < 0.05); b: SubGroup 1 is
significantly different from RBA group (p < 0.05); c: SubGroup 2 is significantly different from RBA
group (p < 0.05).
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4. Discussion

Harnessing the capabilities of HYDRA in conjunction with the distinctive datasets
provided by the UKB study, our research endeavors sought to scrutinize the existence of
neuroimaging-defined subtypes within a cross-sectional sample of ABA. Our analyses
discerned the presence of three discernible subtypes, each characterized by distinct neu-
roimaging profiles. These three subtypes manifest distinctive attributes of brain gray-matter
structure, white-matter microstructure, and functional network connectivity. Notably, Sub-
Group 3 displayed the mildest atrophy, resembling SubGroup 1 in white-matter microstruc-
ture and functional connectivity strength. In contrast, SubGroup 2 exhibited no significant
atrophy disparities compared to SubGroup 1; however, SubGroup 2 is characterized by the
most impaired white-matter microstructural integrity and displays distinctive connectivity
networks. This differentiation implies potential variations in underlying aging mechanisms,
shedding light on the intricate heterogeneity inherent in the aging process.

4.1. Complex Landscape of ABA

Within the broader spectrum, age-related cognitive impairment seldom emerges as a
consequence of a singular disease entity. Instead, it presents as a multifaceted interplay
involving diverse factors, encompassing AD, various forms of dementia, and a range
of health conditions like traumatic brain injury, stroke, depression, or developmental
disabilities. The escalating apprehension regarding age-related cognitive decline arises
from its widely recognized role as a pivotal determinant shaping the overall quality of
life [42]. Given this backdrop, there is a heightened emphasis on the pursuit of biomarkers
capable of assessing individual brain age and forecasting the trajectory of cognitive decline.

Methodologies deployed to ascertain brain age, grounded in neuroimaging data, are
designed to elucidate deviations in age-related cerebral changes. This is accomplished
through the establishment of robust reference curves for RBA and ABA, providing person-
alized metrics of brain age. Importantly, these approaches are tailored to accommodate
the multidimensional patterns that characterize the aging process within the brain. Such
sophisticated strategies hold considerable promise for advancing our understanding of
cognitive aging and facilitating proactive interventions to enhance cognitive well-being in
the aging population.

In the course of this comprehensive investigation, the ABA cohorts were meticulously
characterized based on the discerning metric of BrainAGE, as detailed in Table 4. Within
both sMRI and dMRI modalities, SubGroup 2 consistently exhibits the highest BrainAGE
levels, indicative of the most pronounced accelerated aging. However, in the realm of
rsfMRI, SubGroup 2 demonstrates the lowest BrainAGE, portraying a distinctive profile
of accelerated aging within this specific modality. Shifting the focus to the domain of
dMRI-defined BrainAGE, SubGroups 1 and 3 demonstrate comparable BrainAGE levels,
both of which are lower than that of SubGroup 2. Delving deeper into the analysis of
rsfMRI-defined BrainAGE, SubGroup 1 emerges as the category with the highest values,
yet it exhibits proximity to SubGroup 3.

Table 4. BrainAGE of the ABA subtypes.

Group sMRI rsfMRI dMRI

SubGroup 1 6.55 ± 4.51 11.51 ± 8.07 6.19 ± 4.55
SubGroup 2 7.85 ± 5.94 10.73 ± 7.79 7.19 ± 5.52
SubGroup 3 5.59 ± 4.39 11.41 ± 8.51 6.40 ± 4.64
RBA group −6.19 ± 4.56 −10.85 ± 8.14 −5.91 ± 4.06

Numerous determinants intricately shape and modulate the trajectories of individual
brain aging. The application of neuroimaging-based models in exploring brain aging has
yielded compelling insights. Notably, robust correlations have been unveiled between
ABA, AD severity, and the prospective decline in cognitive functions [43]. Additionally,
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associations have been established between ABA and mild cognitive impairment (MCI) [44],
as well as the conversion to AD [45]. Furthermore, investigations have linked ABA to
diverse factors such as traumatic brain injury [46], HIV [47], chronic pain [48], and type
2 diabetes mellitus [49]. ABA has proven indicative not only of diminished physical and
mental fitness but also of heightened allostatic load and increased mortality [50]. Moreover,
individual brain aging exhibits noteworthy connections with an array of health parameters,
personal lifestyle choices, and drug utilization [19]. Education levels and engagement
in physical activity have also emerged as significant determinants influencing the ABA
process [51]. This intricate interplay underscores the multifaceted nature of brain aging,
weaving a complex tapestry of connections with various health indicators, lifestyle elements,
and physiological conditions. The dissection of underlying mechanisms expediting brain
aging not only enables researchers to identify intervention and prevention targets but also
sheds light on the heightened risk of individuals experiencing ABA for conditions such as
AD, Parkinson’s disease, and other neurodegenerative disorders.

4.2. ABA Subtype and Cognitive Reserve

In the realm of maintaining cognitive functioning amidst brain changes or insults, two
pivotal forms of reserve come to the fore: brain reserve and cognitive reserve [52]. Brain
age estimation serves as a valuable metric, providing a nuanced perspective on brain main-
tenance and reserves. Notably, ABA individuals, when compared to age-matched peers,
exhibit compromised brain reserve capacities. This suggests that these individuals may
face challenges in deploying alternative brain networks or cognitive strategies in the face
of aging or insults. Cognitive reserve reflects the brain’s adaptive capacity against insults
or aging [53,54]. Educational attainment, commonly employed as a proxy for cognitive
reserve [55–57], reveals that ABA subjects, across three subgroups, possess educational
durations exceeding 15 years, signifying a population with high cognitive reserve. The
neural implementation of cognitive reserve manifests in two distinct forms: neural reserve
and neural compensation [58,59]. Neural reserve posits variability in primary brain net-
works or cognitive paradigms underlying task performance, thereby offering resilience
against brain aging. On the other hand, neural compensation describes the utilization
of non-normally engaged brain structures or networks to compensate for aging-induced
changes. These mechanisms exemplify the brain’s flexibility and adaptive strategies in the
face of challenges. In the present study, the application of ICA facilitates the decomposition
of fMRI data into distinctive brain networks. Positive connectivity within these networks
signifies synchronized activity between networks, reflecting collaborative involvement in
specific cognitive processes or tasks. The cooperative synergy inherent in positive connec-
tivity is indispensable for the facilitation of streamlined information processing and the
seamless execution of cognitive functions. Conversely, negative connectivity assumes a
pivotal role in promoting cognitive flexibility, affording the brain the capacity to navigate
between different cognitive states and alleviating interference among concurrent cognitive
processes. Disparities in both positive and negative network connections observed between
the ABA and RBA cohorts underscore a conspicuous neural compensation mechanism [60].
Specifically, the discernible augmentation in negative connectivity within ABA individuals
suggests that, in the face of degeneration, the brain intensifies inhibitory interactions among
disparate brain regions to counterbalance the disruptive effects of structural decline. In the
specific context of ABA subtypes 1 and 2, despite structural similarities in neurodegenera-
tion, nuanced differences in negative connectivity patterns are apparent. ABA subtype 1
prominently manifests a discernible proclivity towards cognitive compensation, indicating
adaptive responses to the structural challenges inherent in neurodegeneration. Conversely,
subtype 2 showcases a confluence of neural compensation and neural reserve. This obser-
vation underscores the inference that distinct strategies are employed by different subtypes
within the ABA context, delineating nuanced approaches to addressing the intricacies of
neurodegenerative processes.
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4.3. Limitations

This study entails certain limitations that warrant careful consideration. Firstly, the
exclusive utilization of data from the UKB introduces a notable limitation, as the subjects
are predominantly of white ethnicity and hail from the United Kingdom. Consequently,
the generalizability of the study findings to other countries or regions may be constrained.
Secondly, in the implementation of HYDRA for semi-supervised learning, the RBA was
deliberately chosen as the reference group. This decision stems from the discernible differ-
ences exhibited by the RBA when compared to the ABA cohort. Nevertheless, it is crucial
to acknowledge that this choice may introduce potential bias into the subtype estimation.
Thirdly, to validate the delineation of ABA subtypes, it is essential to broaden our experi-
mental scope by integrating additional datasets and extending the spectrum of comparative
analyses. However, a noteworthy limitation arises from the inherent inadequacies of out-
comes derived from smaller datasets, which often lack the necessary representativeness.
Moreover, the current state of the research landscape confronts a significant impediment
characterized by a shortage of openly accessible datasets commensurate in magnitude to
the UKB. This scarcity not only diminishes the depth of available data but also presents a
formidable barrier to the facilitation of seamless cross-study comparisons. However, with
increasing recognition from governments worldwide regarding the significance of large-
scale neurobiological repositories in medical and clinical research [61,62], we anticipate a
continual emergence of additional open-access large-scale biological databases.

5. Conclusions

Distinguishing itself from precedent investigations, this study capitalizes on consider-
able sample size and an extensive age spectrum, imparting significant robustness to the
examination of brain variability within the ABA cohort. The utilization of the HYDRA
methodology represents a notable methodological advancement, surpassing conventional
heterogeneity analysis techniques used in ABA analysis. HYDRA not only discerns ABA
subgroups but also enables the characterization of distinctions from the RBA group across
multiple dimensions.

Looking ahead, the inclusion of subsequent follow-up waves from the UKB study
promises a longitudinal exploration of the identified clusters. This longitudinal perspective
is essential for unraveling the evolving nature of these clusters over time and elucidating
their prognostic implications for brain and cognitive aging outcomes. The comprehensive
insights derived from this study not only unveil inherent brain heterogeneity within ABA
but also lay the groundwork for future analyses to deepen our understanding of the
cognition and brain arising from the progressive ABA observed in UKB participants.
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Abstract: Semantic segmentation of Signet Ring Cells (SRC) plays a pivotal role in the diagnosis of
SRC carcinoma based on pathological images. Deep learning-based methods have demonstrated
significant promise in computer-aided diagnosis over the past decade. However, many existing
approaches rely heavily on stacking layers, leading to repetitive computational tasks and unneces-
sarily large neural networks. Moreover, the lack of available ground truth data for SRCs hampers
the advancement of segmentation techniques for these cells. In response, this paper introduces an
efficient and accurate deep learning framework (RGGC-UNet), which is a UNet framework including
our proposed residual ghost block with ghost coordinate attention, featuring an encoder-decoder
structure tailored for the semantic segmentation of SRCs. We designed a novel encoder using the
residual ghost block with proposed ghost coordinate attention. Benefiting from the utilization of
ghost block and ghost coordinate attention in the encoder, the computational overhead of our model
is effectively minimized. For practical application in pathological diagnosis, we have enriched the
DigestPath 2019 dataset with fully annotated mask labels of SRCs. Experimental outcomes underscore
that our proposed model significantly surpasses other leading-edge models in segmentation accuracy
while ensuring computational efficiency.

Keywords: semantic segmentation; signet ring cell; residual ghost block; ghost coordinate attention

1. Introduction

Signet ring cell carcinoma (SRCC) represents a relatively uncommon subtype of pro-
foundly aggressive adenocarcinoma [1]. Predominantly encountered within the gastric
glandular cells, primary SRCCs exhibit a notable association with gastric malignancies [2].
In the SRCC, a signet ring cell (SRC) contains a lot of mucins that push the nucleus to
the periphery [3]. Moreover, SRCC has the highest malignancy and poorest prognosis in
advanced gastric cancer. The prompt and precise diagnosis followed by timely intervention
of SRCs in the gastric region can substantially enhance patients’ survival rates. In the
realm of the digestive system, the gold standard for diagnosing SRCC is the examination of
pathological images [4]. Therefore, detecting the SRCs in pathological images is essential
for diagnosing SRCC. Nevertheless, the conventional manual segmentation of signet ring
cells is susceptible to time-consuming processes and human error. Automatic segmentation
methods have, therefore, been devised to enhance both accuracy and efficiency. These
methods typically involve using image processing and machine learning algorithms to
identify and segment signet ring cells from surrounding tissue or other types of cells. By
automating the segmentation process, medical professionals can quickly and accurately an-
alyze large amounts of data, leading to earlier detection and improved treatment of cancer.
Hence, the computer-aided diagnosis-based analysis of SRC, serving as a supplementary
investigation, holds significant promise and is in high demand.
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The Digestive-System Pathological Detection and Segmentation Challenge of 2019, ab-
breviated as DigestPath 2019, marks the inaugural competition and open dataset dedicated
to the detection of signet ring cells (SRCs) within pathological images [5]. Automatic SRC
detection algorithms had not been thoroughly investigated prior to this challenge. As a
result, the DigestPath 2019 challenge has driven research into the SRC detection algorithms.
Unfortunately, only a portion of the data has been annotated, and the algorithms for this
research are all based on semi-supervised object detection methods [4,6–10]. Therefore,
existing semi-supervised detection labels in the DigestPath 2019 dataset have not led to an
increase in the network performance, limiting the application in practical medicine.

In recent years, deep learning methods [11–18] have achieved success in medical image
analysis, such as biomedical segmentation and nuclei instance segmentation [19–24]. Most
of this research is based on convolutional neural networks (CNNs) and has performed well
in diverse biomedical segmentation applications. As an illustration, Lu et al. [20] presented
an enhanced algorithm that employs a collaborative optimization approach involving
multiple-level set functions. This method is designed for the segmentation of cytoplasm
and nuclei in cases where cervical cells overlap and form clumps. Chen et al. [21] introduced
the concept of deep contour-aware networks for precise gland segmentation, abbreviated as
DCAN. This framework generates precise probability maps for glands while simultaneously
delineating accurate contours, enabling effective separation of clustered objects and thereby
enhancing gland segmentation performance. Naylor et al. [22] introduced an innovative
approach involving fully convolutional networks designed for the automated segmentation
of nuclei within histopathology data stained with hematoxylin and eosin (H&E). Their
methods address the challenge of segmenting touching nuclei by treating the problem
as a regression task for distance maps, thereby providing a solution to this segmentation
issue. Simon et al. [23] introduced the HoVer-Net, a novel approach designed for both
simultaneous nuclei segmentation and classification. This method harnesses the wealth
of information embedded in the vertical and horizontal distances from nuclear pixels to
their respective centers of mass. Zhou et al. [25] proposed the CIA-Net, which incorporates
a multi-level information aggregation module between two task-specific decoders. This
approach exploits the advantages of spatial and texture dependencies between nuclei
and contours by bidirectionally aggregating task-specific features. Unfortunately, these
methods suffer from model redundancy, resulting in low efficiency.

Hence, lightweight deep learning frameworks have become another topic of study.
In particular, lightweight deep learning frameworks have been applied to medical image
analysis. For instance, Zhang et al. [26] proposed a lightweight hybrid convolutional
network for liver tumor segmentation. Zhao et al. [27] introduced a streamlined feature
attention network to segment both nucleus and cytoplasm regions within cervical images.
Unfortunately, the above methods suffer from insufficient model expression ability, result-
ing in low accuracy. In addition, these methods cannot be used directly in actual medical
scenarios because they are low in efficiency and accuracy.

The segmentation of SRCs poses a challenge that remains unaddressed in current
research, primarily because of the absence of reliable ground truth for SRCs. This deficiency
has notably hampered advancements in the field of SRC segmentation. In the clinical
diagnosis, pathologists rely on the presence of a substantial number of SRCs within patho-
logical Whole Slide Images (WSI) as a key indicator suggesting a higher likelihood of the
WSI being of the SRCC type. In this paper, we introduce an efficient and accurate deep
learning framework tailored for the semantic segmentation of SRCs in pathology images.
In particular, we have fully annotated the mask labels for SRC in the DigestPath 2019 SRC
detection dataset [6]. In our approach, we employ an encoder-decoder architecture that
incorporates a residual ghost block featuring ghost coordinate attention (GCA). In addition,
our proposed encoder enhances the extraction of the features of the SRC boundary region.
Our main contributions are summarized as follows.

• We propose an efficient and accurate deep learning framework for signet ring cell
semantic segmentation in pathological images.
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• We design a novel encoder that not only refines the network’s capability but also
notably enhances its performance in segregating overlapping and clustered cells.

• We propose ghost coordinate attention, which can efficiently capture the long-range
dependencies.

• We provide full mask labels of SRC on the DigestPath 2019 dataset, referred to as the
SRC dataset.

• Our experimental findings validate that the network proposed in this study attains
superior evaluation scores and generates more refined segmentation outcomes when
compared to other state-of-the-art methods for SRC segmentation.

The structure of this paper is as follows: Section 2 provides an introduction to the pro-
posed method. In Section 3, we present the dataset, evaluation metrics and implementation
details related to the experiment. In Section 4, the experimental results are the discussion
and analysis. Lastly, Section 5 offers a summary of our work and a brief discussion on
potential future research directions.

2. Methods

Figure 1 provides an overview of our proposed efficient and accurate deep learning
framework for SRC semantic segmentation in pathology images. In this study, we begin
with 128 × 128 × 3 image patches, which are generated using dense cropped methods to
extract relevant features from the original images. Detailed descriptions will be presented
in the following subsections.

Figure 1. Overview of RGGC-UNet.

2.1. Network Architecture

Figure 2 provides a comprehensive depiction of the intricate architecture of the pro-
posed RGGC-UNet. Our proposed network is an adaptation of the UNet framework,
comprising an encoder and a decoder designed for the segmentation of SRCs. The en-
coder is proficient at extracting a highly effective set of features. Meanwhile, the decoder
incorporates transposed convolution and 1 × 1 convolution operations.

In the encoder, we incorporate the ghost block with ghost coordinate attention, which
is extensively discussed in Section 2.2. Detailed explanations of ghost coordinate attention
mechanisms are presented in Section 2.3. Additionally, we delve into the RGGC block in
Section 2.4 and the decoder in Section 2.5. The utilization of deep supervision is addressed
in Section 2.6. We introduce loss function in Section 2.7.
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Figure 2. Detailed architecture of RGGC-UNet.

2.2. Encoder

In order to derive a valid set of features from the SRC, we introduce an innovative
downsampling mechanism as an integral component of the encoder. The encoder primarily
employs a sequence of residual ghost blocks with ghost coordinate attention (RGGC) for
the downsampling process.

Our network comprises four downsampling modules, each incorporating a variable
number of ghost blocks with ghost coordinate attention (GGC). As illustrated in Figure 2,
the initial downsampling module utilizes a 3× 3 max pooling (MP) operation followed by
an RGGC block. Subsequently, the second and third downsampling modules incorporate
two and three stacked RGGC blocks with stride = 2 where an RGGC block performs the
downsampling operation, respectively. Meanwhile, the fourth downsampling module
solely relies on a RGGC block for the downsampling operation.

Through the utilization of ghost blocks, our network is capable of generating feature-
rich maps with significantly fewer input features compared to conventional convolution
methods, thus enhancing the computational efficiency of our encoder. Particularly note-
worthy is the advantage conferred by ghost coordinate attention (GCA), which empowers
our proposed encoder to effectively capture dependence between long-range pixels.

2.3. Ghost Coordinate Attention

Figure 3 depicts the ghost block [28], a novel component in our study. It is well-
established that the inclusion of ghost blocks can significantly enhance the feature genera-
tion capabilities of a convolutional neural network while maintaining a remarkably lower
computational overhead.

This enhancement is achieved through a two-step process within the ghost block.
Initially, it generates a set of intrinsic features utilizing a 1× 1 point-wise convolution
operation. Subsequently, it employs computationally economical operations to further
expand the feature set based on these intrinsic features. The resultant feature sets are then
concatenated along the channel dimension.

It is worth noting that the computational cost associated with linear operations on
feature maps within the ghost block is substantially lower when compared to traditional
convolutional techniques, thereby surpassing the efficiency of other existing approaches.
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Mathematically, ghost block is defined by

Y = Concat([X ∗ F1×1, (X ∗ F1×1) ∗ Fdp]), (1)

where ∗ denote convolution operation, and X ∈ RH×W×C with height H, width W and
channel’s number C is the input feature. F1×1 and Fdp are the 1× 1 point-wise and 3× 3
depth-wise convolutional filter, respectively. Y ∈ RH×W×Cout is the output feature.

Figure 3. Diagram of ghost block. The green dash box represents identity operation. The blue dash
box represents the efficiency operation [28].

Unfortunately, as evident from Equation (1), it becomes apparent that the spatial infor-
mation is exclusively captured by the cost-effective operations for merely half of the features.
The residual features, generated solely through 1× 1 point-wise convolutions, lack any form
of interaction with neighboring pixels. Consequently, this limited capacity to capture spatial
information could potentially hinder the further enhancement of performance.

As aforementioned, the ghost block has previously been identified as having limita-
tions due to its weak ability to capture spatial information, which may negatively impact its
performance. However, the proposed ghost coordinate attention (GCA) solves this problem.
Our GCA adopts the advantage of coordinate attention [29] and ghost block. While channel
attention converts a feature tensor into a single feature vector through 2D global pooling,
ghost coordinate attention takes a different approach by breaking down channel attention
into two distinct 1D feature encoding processes. These processes aggregate features along
two spatial directions separately. As a result of this approach, long-range dependencies are
captured effectively along one spatial direction, and, at the same time, precise positional
information is carefully preserved along the other spatial directions. The outcome of this
process is two separate sets of encoded feature maps, each characterized by its direction
awareness and sensitivity to positional information. These feature maps can be applied in
a complementary manner to the input feature map, thereby enhancing the representations
of the objects of interest.

In Figure 4, the blue dashed square denotes a comprehensive elucidation of the ghost
coordinate attention mechanism. This mechanism adeptly encapsulates both channel
interrelations and long-range dependencies, enables a global receptive field, and encodes
precise positional information.

Global pooling is a frequently utilized technique in channeling attention to encode
spatial information on a broad scale. However, its method of compressing global spatial
information into a channel descriptor makes the preservation of positional information
challenging. Such positional information is crucial for recognizing spatial structures in
vision-related tasks. Attention blocks efficiently capture long-range interactions with
accurate positional information. Unlike conventional methods, the X adaptive average pool
and Y adaptive average pool aggregate features in two spatial directions. This approach
diverges significantly from the squeeze operation seen in channel attention methods, which
usually yield a singular feature vector. These transformations facilitate the attention block
in encoding long-range dependencies in one spatial direction while maintaining precise
positional information in the other. This dual-action allows networks to pinpoint the objects
of interest with heightened accuracy.
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Figure 4. The diagram of GGC block. The blue dash square denotes the ghost coordinate atten-
tion (GCA).

As explained earlier, the X adaptive average pool and Y adaptive average pool allow
for a global receptive field and encapsulate precise positional information. To leverage the
high-level representations derived, a method coined as coordinate attention generation is
introduced as a subsequent transformation. Specifically, the feature maps amalgamated
by the X adaptive average pool and Y adaptive average pool are first concatenated and
then subjected to a shared ghost block. The resulting feature map is then divided along the
spatial dimension into distinct tensors and dispatched to two separate ghost blocks and
sigmoid functions.

In contrast to channel attention, which prioritizes re-calibrating the significance of
varied channels, the ghost coordinate attention block also aspires to integrate spatial in-
formation. The concurrent application of attention along both horizontal and vertical
directions to the input tensor enables each element in the attention maps to signify the
presence of an object of interest in the corresponding row and column. Especially, our
proposed GCA can enhance the feature generation capability through using ghost blocks.
This intricate encoding mechanism empowers the ghost coordinate attention to precisely
discern the exact locations of objects of interest, enhancing the model’s overall representa-
tion capabilities.

2.4. Residual Ghost Block with Ghost Coordinate Attention

The residual ghost block with ghost coordinate attention (RGGC), which incorporates
the ghost block and GCA is illustrated in Figure 5. A RGGC comprises the residual
block consisting of a GGC block and a ghost block. As shown in Figure 4, the GGC
block generates expanded features with more channels, while the ghost block reduces the
channel count to produce output features. Importantly, the GCA can help a ghost block to
preserve information along one spatial direction while precise positional information can
be preserved along the other spatial direction.

Figure 4 also shows that the GGC block consists of two parallel branches, a ghost block,
and a GCA branch, which extract information from different perspectives. As mentioned
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earlier, the GCA branch can help the ghost block branch to enhance its representation
ability. In the GGC block, the GCA branch operates in parallel with the ghost block branch
to enhance the expanded features. Then the output features from GGC block are sent
to another ghost block for producing output features. This allows the RGGC block to
capture long-range dependence between pixels in different spatial locations and enhance
the model’s expressiveness.

Figure 5. Diagram of an RGGC block.

2.5. Decoder

As depicted in Figure 2, the decoder is constructed with four upsampling modules,
employing a combination of transposed convolution and 1 × 1 convolution with Rectified
Linear Unit (ReLU) activation. This configuration effectively doubles the spatial resolution
of the input data.

The concatenation operation plays a pivotal role in this process by merging the skip
and output features of the TransposedConv-ReLU modules. This operation seamlessly
integrates the low-level features from the encoder, located at the same level, directly into
the decoder at that level. Consequently, it augments the granularity of information within
the target region under evaluation. This enhancement in information granularity leads to
an improvement in the segmentation performance of the model.

2.6. Deep Supervision

To enhance back-propagation and ensure greater stability in the decoder, we imple-
ment deep supervision (DS) across all four stages of the decoding process, as shown in
Figure 2. Figure 6 shows the detailed construction. Our deep supervision block comprises
a residual block, two 1× 1 convolution layers, and an upsampling layer with bilinear
operation for enlarging the feature map. Deep supervision effectively directs the learning
of features in the intermediate layers, guided directly by loss functions and corresponding
labels. We perform upsampling on features from the initial four hidden stages, aligning
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them with the dimensions of the final prediction stage. Subsequently, we use the Dice loss
functions to supervise these stages. After decoding, the final output is rescaled to match
the original input dimensions. This rescaled output is then processed through a softmax
layer to generate the distribution of class probabilities. It is important to note that deep
supervision is not employed during the inference stage. In this phase, only the last layer of
the decoder is utilized to generate the segmentation prediction.

Figure 6. Diagram of deep supervision.

2.7. Loss Function

The Dice loss serves as a conventional loss function in image segmentation tasks,
quantifying the disparity between the predicted mask and the ground-truth mask, as
established in [30]. However, certain limitations persist when employing this function.
Notably, in the absence of a segmentation target, the Dice loss yields a score of 0. This
signifies that the Dice loss function does not penalize false positives.

To address this issue, we employ the enhanced class-wise Dice loss function to compute
Dice Similarity Coefficients (DSCs) for background and SRC segmentation in benign and
malignant images, respectively, as detailed in [31]. This refined loss function effectively
mitigates false positives, underscoring its practical utility in clinical applications. The
enhanced class-wise dice loss (CDL) function is detailed by:

LCDL = 1−
N

∑
i
(yp

yi ŷi
yi + ŷi

+
(1− yp)(1− yi)(1− ŷi) + ε

(1− yi) + (1− ŷi) + ε
), (2)

where yi represents the binary label for pixel i, ŷi corresponds to the predicted probability,
and N denotes the total pixel count within a patch. The parameter ε is introduced as a
small value to prevent division by zero.

The assignment of a patch label (yp) hinges on the presence or absence of a lesion area.
The employment of the LCDL loss function effectively mitigates pixel-level class imbalance,
leading to the generation of an all-zero mask during training for negative samples.

3. Experiments

This section describes our experiments designed to assess and appraise the segmenta-
tion performance of the proposed approach. In particular, we provide an elaborate account
of our SRC dataset, evaluation metrics, and implementation specifics.
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3.1. Dataset

In our experiments, we employed the SRC dataset to train and validate our model
sourced from two organs: the gastric mucosa and intestine. Our dataset was comprised
of 308 high-resolution images, with 77 positive and 231 negative samples. These positive
samples were cropped from 20 whole slide images (WSIs), all of which are comprehensively
annotated. Each WSI was stained with H&E, scanned at a ×40 magnification and sourced
from two organs: the gastric mucosa and intestine. Experienced pathologists identified
and labeled each signet ring cell using the labelme, ensuring accuracy with a precise
ground truth surrounding each cell. For our proposed model, we selected 62 positive and
186 negative samples from our dataset for training. During the training process, we also
used 7 positive and 21 negative samples for validation. To assess the effectiveness of our
model, we employed 8 negative and 24 positive samples as test data.

To demonstrate our proposed method’s generalizability and its performance in dif-
ferent contexts, we used the GlaS dataset to verify the network. Glands represent pivotal
histological structures found across various organ systems, primarily responsible for the
secretion of proteins and carbohydrates. Adenocarcinomas, malignant tumors originating
from glandular epithelium, stand out as the most prevalent form of cancer. Pathologists
routinely rely on gland morphology to assess the malignancy levels of various adenocarci-
nomas in organs such as the prostate, breast, lung, and colon. Accurate gland segmentation
is imperative for acquiring dependable morphological data. However, this task can be
challenging due to the diverse glandular morphologies present across different histological
grades. The GlaS dataset comprises a total of 165 tissue sections, encompassing both posi-
tive and negative samples. Within this dataset, our training subset contained 85 samples,
with an additional 17 samples reserved for the validation set. Furthermore, the GlaS dataset
offers two distinct test sets, denoted as testA and testB, consisting of 60 and 20 samples,
respectively. We employed the validation set to identify the optimal model, conducting all
performance evaluations on the combined results from testA and testB.

Two examples from the SRC and GlaS datasets are illustrated in Figure 7. Notably,
most previous studies have concentrated on gland segmentation within either healthy or
benign samples, often overlooking intermediate or high-grade cancers. Consequently, these
studies frequently tailor their methods to specific datasets.

Figure 7. Two samples from the SRC and GlaS datasets.
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3.2. Evaluation Metrics

In the context of evaluating segmented models, pixel-based metrics are often employed
for assessing accuracy. We use a variety of metrics to evaluate the performance of our
network, including the Dice similarity coefficient (DSC), Jaccard index,precision, and recall.

While both DSC and Jaccard are used to measure the similarity between predicted and
labeled images, they have distinct focuses. Jaccard measures the consistency of extracted
features and is suitable for comparing similarities and differences between limited sample
sets. In contrast, DSC is more sensitive to the inner padding of the mask and is primarily
used to calculate the similarity of two sets, making it our primary performance indicator.

In addition to DSC and Jaccard, we also employ precision and recall to evaluate
our network’s performance. Precision measures the proportion of predicted targets that
are accurately identified, while recall represents the number of actual targets correctly
identified based on predicted results.

Overall, these metrics allow us to comprehensively assess the accuracy of our segmen-
tation network in identifying and classifying targets in the SRC dataset. These metrics are
formulated as follows:

DSC =
2TP

FP + 2TP + FN
, (3)

Jaccard =
TP

FP + TP + FN
, (4)

Precision =
TP

FP + TP
, (5)

Recall =
TP

TP + FN
, (6)

where TP, FP, and FN correspond to the true positive predictions, false positive predictions,
and false negative predictions, respectively.

3.3. Implementation Details

Our proposed method was implemented using PyTorch 1.8.0 and trained on a single
NVIDIA GeForce RTX 3090 GPU. The initial learning rate was set to 1.0× 10−4. We em-
ployed the Adam optimizer for training the algorithm on the SRC dataset, with momentum
and weight decay values of 0.99 and 1× 10−8, respectively.

For our SRC dataset, input images were densely cropped into patches with
128× 128 pixels. The training process consisted of 2000 epochs with a batch size of 4.
Data augmentation techniques included Gaussian blur, hue and saturation adjustments,
affine transformations, as well as horizontal and vertical flips.

4. Discussion and Analysis
4.1. Discussion on Different Blocks

Table 1 presents the outcomes of an ablation study, illustrating the improvements in
performance resulting from the integration of various blocks into the UNet architecture.
These integrated blocks include ResGhost, GCA, and DS. It is evident that ResGhost, GCA,
and DS all contribute to the enhancement of model performance. Our proposed RGGC-
UNet, in particular, achieves the highest DSC. Furthermore, we conduct a detailed analysis
of the performance of different discriminators in the context of the RGGC-UNet architecture.
The corresponding results are provided in Table 2.
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Table 1. Performance gain by integrating different blocks into UNet on the SRC dataset. The best
results are indicated in bold.

UNet ResGhost GCA DS DSC

X 0.5298
X X 0.5621
X X 0.5635
X X X 0.5827
X X X 0.7231
X X X X 0.7852

Table 2. Comparative results for signet ring cell segmentation on the proposed dataset. The best
results are indicated in bold.

Method DSC Jaccard Precision Recall

UNet(Baseline) [19] 0.5621 0.4007 0.5160 0.6434
UNet(Backbone: Vgg11) [32] 0.5771 0.4160 0.5530 0.6271
UNet(Backbone: Vgg16) [33] 0.5817 0.4191 0.5599 0.6304
UNet(Backbone: Vgg19) [31] 0.5850 0.4232 0.5930 0.6036
UNet(Backbone: ResNet50) [34] 0.5531 0.3943 0.6512 0.5316
DeepLabV3(Backbone:Mobilenet) [35] 0.4620 0.3098 0.3320 0.7804
DeepLabV3(Backbone: Drn) [35] 0.4564 0.3035 0.3361 0.7340
DeepLabV3(Backbone: ResNet50) [35] 0.5200 0.3576 0.4210 0.6916
DeepLabV3(Backbone: Xception) [35] 0.5227 0.3599 0.4020 0.7572
GCN [36] 0.4574 0.3026 0.3691 0.6270
SegNet [12] 0.4728 0.3198 0.4084 0.5867
Proposed 0.7852 0.6482 0.7800 0.7964

4.2. Comparison on SRC Dataset

Table 2 provides a comparative analysis of the performance between our proposed
model and other popular models, using four metrics on our SRC dataset. The results clearly
indicate that our proposed model achieves the highest scores in terms of DSC, Jaccard, recall,
and precision. In all four metrics, our model outperforms the alternatives significantly.

Table 3 presents an overview of the computational complexity in terms of FLOPS
and parameters. Although our proposed model may not boast the minimum number of
FLOPS or parameters compared to other popular models, it effectively strikes a balance
between computational load and model size. Consequently, our network represents an
advantageous trade-off between accuracy and efficiency.

Table 3. Number of the FLOPS and parameters.

Model GFLOPS Params (M)

UNet (Baseline) [19] 16.70 14.50
UNet (Backbone: Vgg11) [32] 17.66 17.47
UNet (Backbone: Vgg16) [33] 22.79 22.96
UNet (Backbone: Vgg19) [31] 25.51 28.27
UNet (Backbone: ResNet50) [34] 55.87 59.04
DeepLabV3 (Backbone: Mobilenet) [35] 4.45 7.55
DeepLabV3 (Backbone: Drn) [35] 23.31 40.73
DeepLabV3 (Backbone: ResNet50) [35] 11.06 59.22
DeepLabV3 (Backbone: Xception) [35] 10.33 54.5
GCN [36] 7.64 58.25
SegNet [12] 20.06 29.44
Proposed 51.86 48.03
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Figure 8 visually displays the segmentation results of various models, including ours
and the findings of [12,19,31–36] on the SRC dataset. The visual evidence demonstrates
that our model provides the most optimal alignment between its predictions and the
ground truth. In comparison to other leading networks, our model excels in successfully
segmenting SRCs. Overall, our proposed model excels at distinguishing between clustered
and overlapping cells, achieving state-of-the-art accuracy in SRC segmentation tasks.

Figure 8. Segmentation results of various models on the SRC dataset.

4.3. Comparison on GlaS Dataset

To illustrate the generalizability of our proposed method and its performance under
different scenarios, we also validate the network using the GlaS dataset. As demonstrated in
Table 4, our proposed network consistently outperforms other methods in gland segmentation
tasks, achieving the highest scores. Figure 9 visually presents the results of gland segmentation
using various models on the test set. The visual evidence underscores that our proposed
network effectively segments gland boundaries and attains superior DSC, Jaccard, precision,
and recall. Our innovative approach has direct applicability in computer-aided pathological
diagnosis systems, potentially alleviating the workload of pathologists.
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Figure 9. Segmentation results of different models on the GlaS dataset.

Table 4. Comparative results for gland segmentation on the Glas dataset. The best results are
indicated in bold.

Method DSC Jaccard Precision Recall

UNet(Baseline) [19] 0.5132 0.3745 0.9285 0.3549
UNet(Backbone: Vgg11) [32] 0.7486 0.6195 0.9313 0.6268
UNet(Backbone: Vgg16) [33] 0.7324 0.6038 0.8375 0.6507
UNet(Backbone: Vgg19) [31] 0.7289 0.600 0.7928 0.6747
UNet(Backbone: ResNet50) [34] 0.6511 0.5065 0.9375 0.4985
DeepLabV3(Backbone:Mobilenet) [35] 0.6839 0.5410 0.9367 0.5388
DeepLabV3(Backbone: Drn) [35] 0.7367 0.6039 0.9375 0.6065
DeepLabV3(Backbone: ResNet50) [35] 0.6887 0.5503 0.9358 0.5203
DeepLabV3(Backbone: Xception) [35] 0.6867 0.5564 0.9342 0.5430
GCN [36] 0.5696 0.4220 0.7863 0.4464
SegNet [12] 0.5206 0.3799 0.9445 0.3592
Proposed 0.9571 0.9190 0.9548 0.9611

5. Conclusions

In this research, we have developed RGGC-UNet, an efficient and accurate deep learn-
ing framework specifically designed for the semantic segmentation of SRCs in pathological
images. The central component of our model lies in its encoder-decoder architecture, where
we have introduced an innovative encoder. This encoder is purposefully crafted to adeptly
capture features, preserving the relationships between distant pixels. Particularly notewor-
thy is our introduction of the ghost coordinate attention mechanism, which inherits the
advantages of coordinated attention. It adeptly models inter-channel relationships while
simultaneously capturing long-range dependencies with precise positional information
and ghost blocks.
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To assess the effectiveness of RGGC-UNet, we conducted extensive experiments on a
dataset that we curated. The results indicate that our proposed model can surpass leading
models in terms of segmentation accuracy and efficiency, benefiting from ghost block
and ghost coordinate attention. An important attribute of our proposed framework is
its adaptability; it can seamlessly transition to other tasks related to pathological image
analysis. Furthermore, the decoder structure we have presented exhibits flexibility and
can be integrated into other deep convolutional neural networks dedicated to pathological
image analysis.

Nonetheless, it is important to acknowledge certain limitations. We have yet to
evaluate the performance of our model on natural images, leaving its effect in such contexts
uncertain. Recognizing this as an existing challenge, our future research endeavors will
involve an in-depth theoretical analysis to provide more robust insights.
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Abstract: Colorectal cancer (CRC) is a prevalent gastrointestinal tumour with high incidence and
mortality rates. Early screening for CRC can improve cure rates and reduce mortality. Recently, deep
convolution neural network (CNN)-based pathological image diagnosis has been intensively studied
to meet the challenge of time-consuming and labour-intense manual analysis of high-resolution
whole slide images (WSIs). Despite the achievements made, deep CNN-based methods still suffer
from some limitations, and the fundamental problem is that they cannot capture global features. To
address this issue, we propose a hybrid deep learning framework (RGSB-UNet) for automatic tumour
segmentation in WSIs. The framework adopts a UNet architecture that consists of the newly-designed
residual ghost block with switchable normalization (RGS) and the bottleneck transformer (BoT) for
downsampling to extract refined features, and the transposed convolution and 1× 1 convolution with
ReLU for upsampling to restore the feature map resolution to that of the original image. The proposed
framework combines the advantages of the spatial-local correlation of CNNs and the long-distance
feature dependencies of BoT, ensuring its capacity of extracting more refined features and robustness
to varying batch sizes. Additionally, we consider a class-wise dice loss (CDL) function to train the
segmentation network. The proposed network achieves state-of-the-art segmentation performance
under small batch sizes. Experimental results on DigestPath2019 and GlaS datasets demonstrate that
our proposed model produces superior evaluation scores and state-of-the-art segmentation results.

Keywords: hybrid deep learning framework; tumour segmentation; whole slide image; Residual-
Ghost-SN; bottleneck transformer

1. Introduction

Colorectal cancer (CRC) is a gastrointestinal tumour that has a higher incidence and
mortality rate than common tumours [1,2]. However, early screening with colonoscopy
followed by pathological biopsy can significantly reduce the mortality rate [3]. Pathology
is considered the gold standard for distinguishing between benign and malignant CRCs.
During a diagnosis, physicians analyse the tumour’s condition by observing the H&E-
stained pathological section, drawing on their clinical expertise [4].

The use of high-resolution, large-scale whole slide images (WSIs) has become a routine
diagnostic method with the rapid development of image scanning techniques [5]. WSI
technology has great potential for developing and using algorithms for pathological di-
agnosis [6]. WSIs are widely used for digital pathology analysis, particularly in clinical
practice [7]. However, the large size of WSIs can make manual analysis by pathologists
time-consuming, and the unavoidable cognitive biases can lead to varying diagnoses.
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CRC segmentation in whole slide images presents a unique set of implementation
challenges due to the high-resolution and large size of these images, including gigapixel-
scale data, computational resources, data handling and preprocessing, and integration with
clinical workflow. Addressing these challenges often involves a combination of advanced
image processing techniques, deep learning architectures tailored for large images, efficient
data handling methods, and collaboration between medical experts and computer scientists.
Overcoming these challenges is critical to harness the full potential of whole slide image
segmentation in improving the accuracy and efficiency of colon cancer diagnosis and
treatment planning.

In recent years, deep learning-based approaches [8] have been widely applied to
histopathology image analysis, achieving remarkable results. In [9], Xu et al., proposed a
deep learning method based on convolutional neural networks (CNNs) to automatically
segment and classify epithelial and stromal regions in histopathology images. In [10],
Liu et al., proposed a framework for the automatic detection and localization of breast
tumours. In [11], Wang et al. proposed a deep CNN method to automatically identify
the tumour in lung cancer images, using the shape feature to predict survival outcomes.
In [12], Johnson et al. used Mask-RCNN to segment the nuclei in pathology images. In [13],
Fan et al. proposed an improved deep learning method based on a classification pipeline to
detect cancer metastases in WSI. In [14], Cho et al. proposed a deep neural network with
scribbles for interactive pathology image segmentation. In [15], Zhai et al. proposed deep
neural network guided by an attention mechanism for segmentation of liver pathology
images. In [16], Deng et al. proposed a interpretable multi-modal image registration
network based on disentangled convolutional sparse coding to solve the problem of lack
of interpretability. In [17], Jin et al. proposed a two-stage deep learning system named
iERM to provide accurate automatic grading of epiretinal membranes for clinical practice.
In [18], Xiong et al. proposed DCGNN, a novel single-stage 3D object detection network
based on density clustering and graph neural networks. DCGNN utlized density clustering
ball query to partition the point cloud space and exploits local and global relationships by
graph neural networks.

While histopathological image analysis has shown remarkable results, few studies
have investigated deep learning-based methods for CRC tissue segmentation, particularly
in WSIs. In [19], Qaiser et al. introduced two versions of our tumour segmentation
method: one aimed at achieving faster processing while maintaining accuracy, and the other
focused on achieving higher accuracy. The faster version relied on selecting representative
image patches from a convolutional neural network (CNN) and classifying the patches by
quantifying the difference between the exemplars’ persistent homology profiles (PHPs) and
the input image patch. In contrast, the more accurate version combined the PHPs with high-
level CNN features and utilized a multi-stage ensemble strategy to label image patches.
In [20], Zhu et al. proposed an adversarial context-aware and appearance consistency
UNet (CAC-UNet) for segmentation and classification tasks, and achieved first place
in the DigestPath2019 challenge. In [21], Feng et al. employed a UNet with a VGG
backbone for WSI-based colorectal tumour segmentation, and achieved second place in the
DigestPath2019 challenge.

Despite the remarkable results achieved by the methods mentioned above, several
challenges still persist, including fewer public CRC datasets with expert annotations and
difficulty accurately segmenting the refined boundary of the tumour, impeding further
research on CRC tissue segmentation. Additionally, most existing deep learning frame-
works rely on convolutional stacking, which reduces local redundancy but fails to capture
global dependencies owing to the limited receptive field [22]. By contrast, transformers
can capture long-distance dependencies through self-attention. However, excessive visual-
semantic alignment may lead to redundancy in token representation, making it necessary
to balance global dependency and local specificity when designing deep learning models.

This study proposes a hybrid deep learning framework for segmenting the CRC tu-
mour in WSIs with a focus on refining the boundary segmentation and addressing network
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stability under small batch sizes. The proposed encoder–decoder architecture utilizes a
newly designed encoder that includes residual ghost blocks with switchable normalization
(RGS) and a bottleneck transformer block (BoT) for downsampling, while the decoder em-
ploys transpose convolution for upsampling [23–27]. By leveraging the benefits of CNNs
and the transformer, the proposed encoder uses RGS and BoT as downsampling operations
to extract more refined features from input images. The operation extracts local informa-
tion, and the multi-head self-attention (MHSA) in the BoT models global dependency [27].
Experimental results demonstrate that the proposed model can accurately segment the
tumour and produce a more refined boundary, leading to improved segmentation accuracy
under small batch sizes. The primary contributions of our study are outlined below:

• We propose a deep hybrid network that combines a transformer and CNN for auto-
matic tumour region segmentation in pathology images of the colon.

• A newly-designed feature extraction block RGS is presented. The block can adaptively
determine the optimal combination of normalizers for each layer, making our model
robust to varying batch sizes.

• Our novel hybrid backbone encoder, which includes RGS and BoT blocks, can extract
more refined features.

• Experimental results demonstrate that the proposed RGSB-UNet achieves higher
evaluation scores and produces finer segmentation results than state-of-the-art seg-
mentation methods under small batch sizes.

The remainder of this paper is structured as follows. In Section 2, we present the
proposed network architecture. Section 3 describes the datasets and evaluation criteria used
in our experiments, while Section 4 presents our experimental results. Finally, in Section 5,
we summarize the study results and suggest potential avenues for future research.

2. Proposed Method
2.1. Network Architecture

Our proposed deep learning framework for colon pathology WSI analysis is illustrated
in Figure 1. As shown in Figure 2, to extract relevant features from original images, we start
with 512× 512× 3 image patches using dense cropping methods. The encoder includes a
novel downsampling operation that combines RGS and BoT blocks as the feature extraction
backbone. The details of the design of the encoder and decoder, GBS, RGS, and BoT will be
discussed below.

Figure 1. An overview of RGSB-UNet. The TRCCR denotes transposed convolution, ReLU, concate-
nate, convolution, and ReLU.
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Figure 2. Schematic diagram of RGSB-UNet. RGS denotes the proposed residual ghost block with
switchable normalization, and BoT denotes the bottleneck transformer. MP and AP denote the max
and average pooling, respectively. Tconv denotes the transposed convolution used for upsampling.

2.1.1. Encoder and Decoder

In order to extract an efficient set of features, we use two 3 × 3 convolutions with
batch normalization and ReLU, following a max pooling for downsampling, and devise
a new residual ghost network, embedding a BoT at the end of the encoder as part of the
encoder in our network architecture. The network employs four downsampling modules,
each utilizing a different number of residual ghost blocks. As shown in Figure 2, the first
downsampling module uses a 3 × 3 max pooling (MP) and a residual ghost block; the
second and third downsampling modules use two and three stacked residual ghost blocks,
respectively. By leveraging the ghost convolution technique, our network can generate rich
feature maps using significantly fewer input features than traditional convolution methods,
which improves the computational efficiency of our encoder. Additionally, the stability
of our network is enhanced by the ability to select optimal combinations of different
normalizers for each normalization layer, resulting in an accuracy that is not impacted
by batch size. The fourth downsampling module incorporates a BoT block and a 2× 2
average pooling (AP), which significantly boosts the extraction of refined features. Each
downsampling module reduces the input spatial resolution by a factor of two.
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The decoder is composed of four upsampling modules that utilize a transposed
convolution and a 1 × 1 convolution with ReLU [28], increasing the input spatial resolution
by a factor of two. The concatenate block concatenates the skip and output features of
Tconv-ReLU; this operation attaches more local information extracted from different layers
of the encoder directly into their corresponding decoder layers at the same level, which
adds detailed information to the general area of the target of judgment. Further elaboration
on the RGS and BoT components will be provided in subsequent subsections.

2.1.2. Ghost Block with Switchable Normalization

Our proposed Ghost-Block-SN architecture is presented in Figure 3, which utilizes
the Ghost-Block to generate more representative features at a lower computational cost.
The Ghost-Block firstly employs traditional convolution to generate intrinsic feature maps
and then utilizes cost-effective linear operations to expand the features and channels. The
computational cost of linear operations on feature maps is much lower than traditional
convolution, making the block more efficient than other existing efficient methods. The
size of the primary convolution kernel in Ghost-Block is customizable, and we used a 1× 1
point-wise convolution in our study. A BN layer is introduced after each Ghost-Block in
Residual-Ghost-Block, which provides stability and speeds up the training process.

ReLU

3×3 conv s=1 p=1 

g=Cout/2

SN

1×1 conv s=1 p=1

SN

ReLU

Concatenate

Figure 3. Schematic diagram of Ghost block with switchable normalization. The dash box denotes
the cheap operation that uses a 3 × 3 group convolution in the ghost block.

However, the performance of Ghost-Block-BN is restricted by the batch size as BN
uses a single normalizer throughout the network, which can be unstable and degrade
accuracy under small batch sizes. To overcome this issue, we incorporated switchable
normalization (SN) [29], a technique that is robust to a wide range of batch sizes. SN
measures channel-wise, layer-wise, and minibatch-wise statistics using BN [30], instance
normalization (IN) [31], and layer normalization (LN) [32], respectively, and learns their
important weights to find their optimal combination, ensuring network stability and
accuracy in the case of small batch sizes.
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2.1.3. Residual Ghost Block with Switchable Normalization

As shown in Figure 4a, our RGS is constructed by incorporating the above presented
GBS with a residual bottleneck, which is the fundamental building block of a ResNet [23],
due to its exceptional performance. The core concept behind a residual block is to refor-
mulate the layers as learning residual functions with respect to the layer inputs, rather
than learning unreferenced functions. Compared to ResNet-50, our encoder employs fewer
building units, boosting the computational efficiency. Moreover, the proposed RGS is
highly robust and can handle a wide range of batch sizes.

GSB

SN

GBS

SN

SN

Add

MHSA

GBS

SN

GBS

SN

SN

Add

(a) (b)

3×3 conv s=1 p=1

Figure 4. Schematic diagram of the proposed bottleneck. (a) RGS Bottleneck. (b) Bottleneck trans-
former. GBS and SN denote the ghost block with switchable normalization and switchable normaliza-
tion, respectively. MHSA denotes multi-head self-attention.

2.1.4. Bottleneck Transformer

Figure 4b shows the bottleneck transformer (BoT), an important block in the proposed
hybrid network, which uses multi-head self-attention (MHSA) to replace the 3 × 3 convolu-
tion compared with RGS. The BoT is embedded in the last layer of the encoder. As is known,
the self-attention (Figure 5a) can process and aggregate the information in the feature maps
to complement the CNN handle long-distance dependencies. Particularly, the self-attention
in MHSA can help the network better understand the relationships between different
regions and improve the accuracy of segmentation when working with highly detailed
images. In addition, as shown in Figure 5b, the MHSA with sufficient heads is at least as
expressive as any convolutional layer [27]. The MHSA produces multiple attention maps
and embedding features from an image to encode rich information, enhancing the deep
model’s robustness towards representation learning. Benefiting from the MHSA, the BoT
block can help the network to boost the segmentation performance.
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Figure 5. Schematic diagram of (a) self-attention [26] and (b) multi-head self-attention.

2.2. Loss Function

Dice loss is leveraged as a standard loss function in image segmentation tasks and
indicates the difference between the predicted and ground-truth mask [33]. However, there
are still some limitations when employing this function. For instance, there is no segmenting
target, and the dice loss is 0. Clearly, the dice loss function receives no punishment when
predicting a false positive.

To address this issue, the improved class-wise dice loss function is leveraged to
compute the background and lesion segmentation dice similarity coefficients (DSCs) for
benign and malignant images, respectively [21]. The improved loss function can effectively
reduce false positives, including its practicality for clinical applications. The improved
class-wise dice loss (CDL) function is described by

LCDL = 1−
N

∑
i
(yp

yi ŷi
yi + ŷi

+
(1− yp)(1− yi)(1− ŷi) + ε

(1− yi) + (1− ŷi) + ε
) , (1)

where yi is the binary label of pixel i, ŷi is the predicted probability, and N is the total
number of pixels in a patch. ε is a small number to avoid the denominator becoming 0.

The presence of a lesion area determines the patch label (yp). The CDL function can
alleviate pixel-level class imbalance, resulting in an all-zero mask when training nega-
tive samples.

3. Evaluation and Datasets
3.1. Evaluation

We use the DSC, Jaccard Index (JI), and relative volume difference (RVD) to measure
the segmentation performance of our proposed model [34]. The DSC measures the similarity
between the network segmentation results when using the proposed method and the gold
standard mask in image segmentation. DSC, JI, and RVD are defined as

DSC =
2|YA ∩YP|
|YA|+ |YP|

, (2)

JI =
|YA ∩YP|

|YA|+ |YP| − |YA ∩YP|
, (3)

and

RVD =
|YP| − |YA|
|YA|

, (4)

where YA is the set of lesion pixels in the annotation, and YP is the corresponding set of
lesion pixels in the segmentation result.
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We use pixel accuracy (PA) and area under the curve (AUC) to measure the classi-
fication performance of our proposed model. AUC is defined as the area of the receiver
operating characteristic (ROC) curve, determined by the true positive rate (TPR) and false
positive rate (FPR). TPR, FPR, and Precision are defined as follows:

TPR =
TP

TP + FN
, (5)

FPR =
FP

FP + TN
, (6)

and
Precision =

TP
TP + FP

, (7)

where TP, FP, TN, and FN are true positives, false positives, true negatives, and false
negatives, respectively.

AUC and PA are defined as

AUC =
∫ 1

x=0
TPR(FPR−1(x))dx = P(X1 > X0) (8)

and
PA =

TP + TN
TP + TN + FP + FN

, (9)

where X0 and X1 are the scores for the negative and positive instances, respectively.

3.2. Datasets and Implementation

We trained the proposed network on the DigestPath2019 [35] gland segmentation
(GlaS) [36] datasets. In these datasets, numerous expert-level annotations on digestive
system pathological images are available, which will substantially advance research on
automatic segmentation and classification of pathological tissues.

The DigestPath2019 dataset contains positive and negative samples of 872 tissue
slices from 476 patients. The average size of a tissue slice is 3000 × 3000. The training
set comprises 660 images from 324 patients, from which 250 images from 93 patients are
annotated by pathologists. The positive training samples contain 250 tissue images from
93 WSIs, with pixel-level annotation, where 0 indicates the background and 255 indicates the
foreground (malignant lesion). Some samples cropped from WSI are shown in Figure 6. The
negative training samples contain 410 tissue images from 231 WSIs. These negative images
have no annotation because they have no malignant lesions. The entry to DigestPath2019
competition has closed and the official test set is not publicly accessible. To address this
issue, we remake a balanced test set by randomly selecting 108 samples with a 54:54 positive
to negative ratio from the original training set. We retrained all the compared models on
the DigestPath2019 dataset using their original code, and the test set images are not used in
training. Defining an objective criteria for distinguishing between benign (negative) and
malignant (positive) lesions is difficult. To make it easier for academic research, according
to the WHO classification of digestive system tumours, we regarded the following lesions as
malignant: high-grade intraepithelial neoplasia and adenocarcinoma, including papillary
adenocarcinoma, mucinous adenocarcinoma, poorly cohesive carcinoma, and signet ring
cell carcinoma. Low-grade intraepithelial neoplasia and severe inflammation are not
included in the dataset because they are generally difficult for pathologists to detect.

The GlaS dataset consists of 165 tissue slices containing both positive and negative
samples. The GlaS dataset contains a training set of 85 samples from which we selected
17 samples as the validation data. The dataset offers two different test sets, testA and
testB, consisting of 60 and 20 samples, respectively. We used the validation set to select the
optimal model and all the performance evaluations are carried out on the joining of testA
and testB. Glands are vital histological structures found in various organ systems, serving
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as the primary mechanism for protein and carbohydrate secretion. Adenocarcinomas,
which are malignant tumors originating from glandular epithelium, have been identified
as the most prevalent form of cancer. Pathologists routinely rely on gland morphology
to assess the malignancy level of several adenocarcinomas, such as those affecting the
prostate, breast, lung, and colon. Accurately segmenting glands is often a crucial step in
obtaining reliable morphological statistics. However, this task is inherently challenging
due to the significant variation in glandular morphology across different histologic grades.
Most studies to date have primarily focused on gland segmentation in healthy or benign
samples, with limited attention given to intermediate or high-grade cancer. Additionally,
these studies often optimize their methods for specific datasets.

Figure 6. Samples cropped from WSI.

The simulations were run on a station equipped with an NVIDIA GeForce RTX 3090
GPU and Intel(R) Xeon(R) CPU E5-2680v4×2. We augmented the training data during
training. Table 1 lists the detailed hyperparameters of the proposed framework. We
embarked on an iterative journey of manual tuning, wherein we systematically explored
and fine-tuned various hyperparameters within our framework. By meticulously adjusting
parameters such as learning rates, batch sizes, and model architecture, we meticulously
tracked the impact of each modification on the overall performance metrics. This exhaustive
process allowed us to discover the optimal combination of hyperparameters, leading to a
highly refined and efficient version of our framework that exhibits superior accuracy and
generalization on diverse datasets.

Table 1. Hyperparameters of our framework.

Hyperparameters Value

Crop Method Dense Crop
Crop Stride 512
Crop Patch Size 512× 512× 3
Batch Size 2
MHSA Head 4
Optimizer SGD
Learning Rate 1.0× e−2

Weight Deacy 1.0× e−4

Momentum 0.9
Epoch Number 500
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4. Experimental Results

Table 2 shows the results of the ablation study, which demonstrate the performance
gains when integrating different blocks into UNet, including residual block (RSB), residual
ghost block (RGB), RGS, and BoT. Especially, our proposed RGSB-UNet achieves the
highest DSC score of 0.8336. We further analyze the performance of different batch sizes
and MHSA head numbers based on RGSB-UNet. As is shown in Table 3, the proposed
network maintains high performance even with small batch sizes. We tried different small
batch sizes in our experiments. We prove that batch size is no longer a strict limitation for
the proposed network. In addition, the head numbers of MHSA impact the performance
of the proposed network. We have tried different numbers of heads for the MHSA in
the proposed network to search for the best results, and our network achieved optimal
performance when the heads are four. When integrating RGS and BoT together to the UNet,
the segmentation model produces the best performance, which indicates that these blocks
can improve the performance of pathology image segmentation.

Table 2. Performance gains by integrating different blocks into UNet on the DigestPath2019 dataset.
RSB and RGB denote the residual block and residual ghost block with batch normalization, respectively.

UNet RSB RGB RGS BoT DSC

0.8150
0.8197
0.8201
0.8203
0.8261
0.8263
0.8336

Table 3. Effect of batch size and MHSA head on model performance. The best results are marked
in bold.

Batch Size 1 2

MHSA Head 1 2 4 1 2 4
DSC 0.8126 0.8241 0.8220 0.8331 0.8263 0.8294 0.8250 0.8336

Table 4 compares the performance of the proposed and other popular models in terms
of six metrics on the DigestPath2019 dataset; the numbers in bold indicate the best results for
each metric. As can be seen from this table, under a small batch of two, our proposed model
achieves the highest DSC, PA, JI, and Precision; it also achieves the second best RVD and
AUC. Furthermore, although DeepLab with Xception backbone outperforms other models
in terms of RVD, and the CAC-UNet (first place) achieves the highest AUC, our model
performs significantly better in the other three metrics. In Figure 7, we illustrate the results
of tumour segmentation on the sample images and compare them with that of [20,21,37–46].
As shown in this figure, the mask predicted by the proposed network is extremely close
to the ground truth. Compared with other leading networks, our proposed network can
successfully segment tumour regions with nearly overlapping margins, indicated in the
red boxes. Overall, our proposed model can capture more refined features and achieve
state-of-the-art accuracy in tumour segmentation tasks.
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Figure 7. Segmentation results of different networks on the DigestPath2019 dataset. In the superim-
posed images, the areas marked in green represent the ground truth.
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Table 4. Comparative results for tumour segmentation on the DigestPath2019 dataset. The best
results are marked in bold.

Methods DSC AUC PA JI RVD Precision

CAC-UNet [20] 0.8292 1.0000 0.8935 0.7082 0.3219 0.9072
UNet (Baseline) [37] 0.8150 0.9060 0.8611 0.6914 0.2852 0.6511
UNet (Backbone: Vgg11) [38] 0.8258 0.9187 0.8796 0.7081 0.2964 0.6829
UNet (Backbone: Vgg16) [39] 0.8323 0.9562 0.9351 0.7177 0.2445 0.8000
UNet (Backbone: Vgg19) [21] 0.7417 0.5875 0.3889 0.5990 0.4803 0.2987
UNet (Backbone: ResNet50) [40] 0.8197 0.9312 0.8981 0.7019 0.3652 0.7179
UNet (Backbone: DenseNet121) [41] 0.2183 0.5758 0.5092 0.1441 0.4825 0.3076
NestedUNet [42] 0.7609 0.7625 0.6481 0.6254 0.5561 0.4242
Unet3+ [43] 0.7467 0.6250 0.4450 0.6127 0.3977 0.3181
DeepLab (Backbone: Xception) [44] 0.6999 0.9500 0.9259 0.5517 0.1925 0.7778
DeepLab (Backbone: ResNet50) [44] 0.7964 0.6375 0.4629 0.6684 0.3829 0.3255
DeepLab (Backbone: Drn) [44] 0.7917 0.7125 0.5740 0.6605 0.3214 0.3783
DeepLab (Backbone: MobileNet) [44] 0.7943 0.8250 0.7407 0.6658 0.4206 0.5000
DCAN [45] 0.8322 0.9562 0.9351 0.7169 0.2291 0.8000
GCN [46] 0.6372 0.6625 0.5000 0.4903 0.5051 0.3414
SegNet [47] 0.7564 0.7937 0.6944 0.6174 0.5845 0.4590
Proposed 0.8336 0.9813 0.9722 0.7190 0.2122 0.9032

To demonstrate our proposed method’s generalizability and its performance in dif-
ferent contexts, we use the GlaS dataset to verify the network. As shown in Table 5, our
proposed model achieves the highest scores in state-of-the-art accuracy in gland segmenta-
tion tasks. Figure 8 shows the results of gland segmentation on the test set and compares
them with [21,37–46]. As shown from this figure, compared with other leading works, our
proposed network can significantly segment gland boundaries, as indicated in the red box.
Our idea can be directly applied to a computer-aided pathological diagnosis system to
reduce the workload of pathologists.

Table 5. Comparative results for gland segmentation on the GlaS dataset. The best results are marked
in bold.

Methods DSC AUC PA JI RVD Precision

UNet (Baseline) [37] 0.5132 0.4339 0.8125 0.3745 0.4959 0.9285
UNet (Backbone: Vgg11) [38] 0.7486 0.5068 0.9480 0.6195 0.6165 0.9313
UNet (Backbone: Vgg16) [39] 0.7324 0.6328 0.8265 0.6038 0.7378 0.8375
UNet (Backbone: Vgg19) [21] 0.7289 0.5979 0.8975 0.5999 0.7595 0.7928
UNet (Backbone: ResNet50) [40] 0.6511 0.5000 0.9375 0.5065 0.9228 0.9375
UNet (Backbone: DenseNet121) [41] 0.6491 0.5998 0.9263 0.5037 0.9046 0.9261
NestedUNet [42] 0.6003 0.4533 0.8500 0.4651 0.8031 0.9315
Unet3+ [43] 0.6650 0.6725 0.9450 0.5170 0.8459 0.9428
DeepLab (Backbone: Xception) [44] 0.6867 0.4735 0.8875 0.5564 0.4423 0.9342
DeepLab (Backbone: ResNet50) [44] 0.6887 0.4866 0.9125 0.5503 0.5648 0.9358
DeepLab (Backbone: Drn) [44] 0.7367 0.5306 0.9375 0.6039 0.6299 0.9375
DeepLab (Backbone: MobileNet) [44] 0.6839 0.4933 0.9250 0.5410 0.6062 0.9367
DCAN [45] 0.6415 0.6107 0.9177 0.4896 0.9459 0.9370
GCN [46] 0.5696 0.5079 0.6983 0.4220 0.9918 0.7863
SegNet [47] 0.5206 0.5533 0.8625 0.3799 0.3995 0.9445
Proposed 0.8865 0.8920 0.9823 0.7953 0.2128 0.9475
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Figure 8. Segmentation results of different networks on the GlaS dataset. In the superimposed images,
the areas marked in green represent the ground truth.
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5. Conclusions

In this paper, we propose a hybrid deep learning framework for segmenting tumours
in WSIs. Our model employs an encoder–decoder architecture, with a newly designed RGS
block and a BoT block in the decoder part. These blocks are implemented to capture more
refined features and improve network stability, particularly when working with small batch
sizes. To evaluate the performance of our approach, we conducted extensive experiments
on the DigestPath2019 and GlaS datasets, and the results indicate that our model achieved
state-of-the-art segmentation accuracy.

Our proposed framework is generic and can be easily applied to other histopathology
image analysis tasks. In addition, the decoder architecture proposed in this study is flexible
and can be incorporated into other deep CNNs for histopathology image analysis. However,
we are yet to conduct experiments using natural images; therefore the superiority of our
approach in this context cannot be guaranteed. We consider this an open problem and plan
to conduct further research to provide a theoretical analysis with complete proof.
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Abstract: Bone structure metrics are vital for the evaluation of vertebral bone strength. However,
the gold standard for measuring bone structure metrics, micro-Computed Tomography (micro-CT),
cannot be used in vivo, which hinders the early diagnosis of fragility fractures. This paper used an
unpaired image-to-image translation method to capture the mapping between clinical multidetector
computed tomography (MDCT) and micro-CT images and then generated micro-CT-like images to
measure bone structure metrics. MDCT and micro-CT images were scanned from 75 human lumbar
spine specimens and formed training and testing sets. The generator in the model focused on learning
both the structure and detailed pattern of bone trabeculae and generating micro-CT-like images, and
the discriminator determined whether the generated images were micro-CT images or not. Based
on similarity metrics (i.e., SSIM and FID) and bone structure metrics (i.e., bone volume fraction,
trabecular separation and trabecular thickness), a set of comparisons were performed. The results
show that the proposed method can perform better in terms of both similarity metrics and bone
structure metrics and the improvement is statistically significant. In particular, we compared the
proposed method with the paired image-to-image method and analyzed the pros and cons of the
method used.

Keywords: micro-CT-like images; unpaired image-to-image translation; vertebrae; bone structure

1. Introduction

Bone mineral density (BMD) tests are now internationally recognized as the primary
method of diagnosis for vertebral fragility fractures [1,2]. However, even with standardized
image quality requirements, diagnostic criteria and operating manuals, the rate of under-
diagnosis of fragility fractures remains high [3–9]. A high rate of underdiagnosis means
that patients miss out on the timely treatment of vertebral fractures, which can lead to
height loss, kyphosis, chronic back pain and back-related dysfunction and can significantly
reduce the chance of survival of patients.

Numerous studies [10–13] have found that changes in bone structure decrease bone
quality and increase the risk of fragility fractures, suggesting that bone structure also plays
a key role in bone strength. For example, Taes Y et al. [14] concluded that fractures in adult
men are associated with a smaller cortical bone area and reduced cortical thickness, but
not with bone density. Wehrli FW et al. [15] studied the bone structure of the distal radius
and tibia in postmenopausal women and found that changes in bone structure explained
96% of the change in bone strength, with trabecular volume alone explaining 37–67% of the
change in bone strength. Koester et al. found that increased cortical porosity may lead to a
75% reduction in proximal femur bone strength and that cortical porosity increases with
age [11]. When the trabecular structure deteriorates, the trabeculae decrease in number,
thin or even disappear; gaps widen; and trabeculae transform from plate-like to rod-like;
these changes increase separation and decrease connectivity, which ultimately lead to
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significant changes in structure metrics [10–12]. Bone structure includes the macrostructure
and microstructure of bone [16]. The macrostructure refers to the geometry and topology
of bone, and the microstructure refers to the thickness and spatial distribution of cortical
and trabecular bone. For convenience of expression, “bone structure” in this paper refers to
the microstructure of bone.

Microcomputed tomography (micro-CT) is the gold standard for measuring bone
structure metrics and has a resolution of 10 µm or less. However, it cannot be used to mea-
sure bone structure at anatomical sites such as the spine and hip due to the small aperture
(<10 cm) and high radiation dose. Multidetector computed tomography (MDCT) can be
used routinely for measuring the bone density of human medial bones with calibrated
body models, which has a wide range of clinical applications. However, due to the low
resolution (approximately 200–500 µm), which is much larger than the average thickness
of bone trabeculae, MDCT cannot capture the detailed information of bone trabeculae
and therefore cannot support the accurate measurement of bone structure metrics. If the
relationship between MDCT and micro-CT images can be obtained using deep learning
techniques, it will be possible to generate micro-CT-like images on the basis of MDCT,
which in turn enables the measurement of bone structure metrics.

The generation of micro-CT-like images from MDCT images themselves has logical
self-consistency. Clustering techniques allow us to observe the structural matchings in
MDCT and micro-CT images (as shown in Figure 1). The distribution of bone and bone
marrow tissues has an obvious spatial mapping. Therefore, it is reasonable to assume
that there is also a hidden relationship between low-resolution MDCT and high-resolution
micro-CT images in terms of image structure and detail.
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Figure 1. Example of an inherent mapping relationship between micro-CT (a) and MDCT (b) after
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Conditional generative adversarial networks (CGANs) [17–21] are currently popular
image translation and generation methods. Among these methods, the paired-image-based
method has been proven to generate realistic images with sharp details and to have good
quantitative performance [22]. Such methods are trained on a paired-image dataset, where
an image from the source domain already has a corresponding translated image in the
target domain. In the domain of our study, the paired-image-based method requires a large
number of paired MDCT and micro-CT images, and finer results can be obtained when a
sufficient number of paired samples is obtained. However, this paired dataset requirement
imposes a huge practical constraint in the medical field, because micro-CT images can
only be obtained from human cadaver specimens. In contrast, the unpaired-image-based
method can be trained based on unpaired MDCT and micro-CT images, and the method is
less difficult to preprocess than the paired-image-based method.

145



Bioengineering 2023, 10, 716

This paper utilized a method to generate micro-CT-like images from MDCT images
using FUNIT [23], a few-shot unpaired-image-based method that enables high-resolution
image translation between image domains. This method does not change the clinical
scanning technique and measures bone structure metrics that are highly correlated with
those of micro-CT images without increasing the cost or radiation dose.

The remainder of the article is organized as follows: in Section 2, we review the history
of medical image translations and analyze the need for few-shot unpaired-image-based
learning. In Section 3, we systematically present a series of techniques used to measure
bone structure metrics. In Section 4, we compare the generation results of the selected
method with those of other methods and analyze the properties of unpaired-image-based
learning for micro-CT-like image generation.

2. Literature Reviews

For measuring bone structure metrics, image translation methods are used to find
associations between MDCT and micro-CT images and generate micro-CT-like images.
Such methods have been used and explored in the medical field for numerous applications,
such as replenishing missing images [24], cross-scan mode conversion [25], image resolution
enhancement [26] and creating labeled datasets [27]. Mathematically, the goal of image
translation is to transform the input image xA from the original domain A to the target
domain B, thus acquiring the detailed features of domain B, while preserving features of
the source domain. To achieve this goal, a model GA→B needs to be trained to generate
image xAB ∈ B given the original domain image xA ∈ A. The generated image cannot be
distinguished from the image xB ∈ B of the target domain. This process can be expressed
as follows:

xAB ∈ B : xAB = GA→B(xA) (1)

In early studies, translation models GA→B(A) were implemented via classical image
scaling, including four major categories of interpolation methods, frequency domain anal-
ysis, instance-based methods and nonlinear learning methods [28–30]. The interpolation
methods can be further divided into various specific methods, such as nearest neighbor in-
terpolation [31], bilinear interpolation [31] and bicubic interpolation [32,33]. These methods
translate images by filling pixels based on the inter-relationship of pixels after expanding
the source image to make the image edges and content clear. Frequency domain analysis
methods, such as Fourier sharpening and wavelet denoising, Ref. [34] have also gained
wider application in the clinical field [35] and have been applied in low-dose X-ray image
resolution enhancement. Example-based methods [36] obtain the relationships between
regions to achieve image translation. These methods are good at image translation tasks
with regular content, such as the resolution improvement of architectural pictures. In addi-
tion, nonlinear learning methods, such as dictionary learning [37] and random forest [38],
are used in translating medical images, which are based on features selected by experts.
However, manually selected features are limited in their ability to represent complex im-
age information in medical image translations. The aforementioned methods are mainly
focused on filling in the pixels of the target image (CT or MRI image), which only ensures a
clearer image and makes the boundaries between tissues (i.e., edges or contours) clearer
and does not extend and fill in the content or structure details [31,39]. Deep learning [40,41]
methods can address this problem by automatically learning features.

Deep learning super-resolution methods [42–45] became popular in medical image
translations during 2015 [46]. Convolutional Neural Networks (CNNs) are a dominant
class of method [47–50]. CNNs mimic the way the biological visual cortex works [51]
and can be simply understood as the extraction of the boundaries between neighboring
pixels by using convolutional kernels. Based on these, CNNs were first used for image
translation studies within the same scan pattern. Chen et al. [47] proposed a three-layer
CNN model to generate relatively high-quality images from low-dose, low-quality CT
images of the human body. Chen et al. [48] used a residual CNN model to achieve low-dose
CT image resolution enhancement. These studies provided solutions to effectively reduce
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the radiation dose of CT scans. In the field of MRI, CNN-based image translations have
also been used for image resolution enhancement: Zend et al. [49] used ResNet [52] for
the resolution enhancement of brain MRI. Chaudhari et al. [50] used a similar approach to
study the resolution enhancement of knee MRI images. These studies provided solutions
to effectively reduce the scanning time of MRI and lay the technical foundation for the
implementation of image post-processing techniques such as 3T to 7T. In addition, more
complex CNN models, such as cascaded CNNs [53], have been explored [54] and applied to
more complex medical image mapping tasks. For example, Xiang L et al. [55] investigated
the conversion method of T1-weighted images to CT images in cranial MRI via a CNN.

However, CNNs tend to use deeper and higher-dimensional models to obtain a larger
perceptual field, which makes the model difficult to train and easy to overfit [56]. At the
same time, CNN training aims to minimize the loss function, which tends to focus on
minimizing the reconstruction error, and the results may have a high peak signal-to-noise
ratio and tend to lose high-frequency details [57,58]. This makes CNN-based methods prone
to problems such as blurring and noise on edges and detailed textures, and, in general,
only able to handle lower-resolution images. The emergence of Generative Adversarial
Networks (GANs) [59] and Conditional Generative Adversarial Networks (CGANs) [60]
has provided a new solution for this problem, and these networks have achieved promising
results [61–63]. These models introduce the concept of adversarial learning based on the
powerful feature extraction capability of CNNs and separate the image generation task
from the discriminator task to reduce the overall training difficulty.

CGAN-based image translation [18–20,59,64] focuses more on the acquisition of in-
ternal mapping relationships between different images [19] and the generation of gold-
standard-like images, rather than focusing on simple pixel-based filling or sampling, and
tends to be better at content connecting and filling [20]. After years of development, the
CGAN and its various derivative models have proven suitable for implementation in
image translation and have gained widespread attention [30–34]. These methods have been
used [22,50,65,66] in medical imaging. For example, Nie et al. [67] used a cascade GAN
technique to implement brain and pelvic MRI to generate corresponding CT images and
to accomplish the task of 3T MRI to 7T MRI; Hiasa et al. [68] implemented the process
of mapping T1-weighted imaging from the pelvis to the distal femur to CT images via
CycleGAN. Dar et al. [69] used the pix2pix (a CGAN-derived model) technique [19] to
achieve mapping between T1-weighted images and T2-weighted images.

It is worth noting that CGAN-based image mapping methods can be divided into
paired-image-based methods and unpaired-image-based methods. Paired-image-based
methods [19,22,53,56] aim to train generators and discriminators based on paired-image
training sets to achieve “image-to-image” mapping from the source domain to the target
domain, while unpaired-image-based methods [20,23,70] aim to train generators and
discriminators to achieve “class-to-class” mapping from the source domain to the target
domain based on an unpaired (but containing both the domain and target domain images)
training set. Because of this, paired-image-based methods require complex collection and
preprocessing for images (images from different image domains need to be collected with
the same scan pattern as much as possible, and images need to be paired one by one),
while unpaired-image-based methods have relatively simple preprocessing steps and do
not require pairing.

Generally, paired-image-based methods can obtain results with high similarity to the
gold standard if the training dataset is sufficient [56]. However, the image translation
studied in this paper requires in vitro data samples, which are generally collected through
cadaver specimens for training and testing. It is difficult to collect large-scale data from
various aspects, such as policies, regulations and costs. In addition, a large amount of the
CT image pairing work itself is costly, which further hinders the scaling up of paired-image-
based methods.

Thus, we need a few-shot unpaired-image-based method that can discover the relation-
ships between MDCT and micro-CT images to capture the overall and local multi-resolution
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features and achieve the accurate generation of vertebral structure and bone trabecular
details in a way that supports the measurement of bone metrics. This is still a challenge for
imaging methods with large differences and large image sizes such as MDCT and micro-CT.

3. Methodology

Based on the above discussion, a series of techniques related to image translation
were designed in this paper based on a few-shot unpaired-image-based method, and
FUNIT [23] was applied as the core. To demonstrate the effectiveness of the chosen
method, the unpaired-image-based StarGAN [70] and CycleGAN [20] and paired-image-
based pix2pixHD [22,56] methods were selected as the control methods. SSIM and FID
metrics and vertebral bone structure metrics, including bone volume fraction (BV/TV),
trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp), were measured to demonstrate
the feasibility of measuring vertebrae bone structure metrics using MDCT images. The
framework of the methodology is shown in Figure 2.
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This study was an applied basic research study based on scanned images of human
cadaveric lumbar spine specimens. The specimens used were from the Department of
Anatomy and Research, Faculty of Medicine, Peking University. All donors signed an
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agreement related to the donation of human remains and agreed that the remains would be
used for clinical medical education and research. The study protocol was approved by the
Medical Science Research Ethics Committee of Peking University Third Hospital; the ethics
number is IRB00006761-M2021179.

3.1. Specimens

In this study, a total of 75 lumbar vertebrae, comprising 15 sets of lumbar spines (L1
to L5), were obtained from 15 formalin-fixed human cadavers (9 males and 6 females;
mean age 73 years; age range 62–88 years). These donors had bequeathed their bodies
to the local Institute of Anatomy for educational and research purposes, adhering to the
relevant institutional and legislative guidelines. Lumbar vertebrae that showed significant
compression fractures, bone neoplasms or other substantial bone destruction were excluded
from the study. Consequently, all 75 specimens were incorporated into the experiment. The
lumbar spine, along with the surrounding muscle, was sectioned into individual segments
using a band saw, ensuring the preservation of the pedicle and appendix structures to
the greatest extent possible. To minimize trapped gas, the samples were submerged in a
phosphate-buffered saline (PBS) solution at 4 ◦C for a duration of 24 h prior to scanning.
The study protocol underwent review and received approval from the local institutional
review boards.

3.2. Imaging Techniques

The specimens underwent scanning using both micro-CT (Inveon, Siemens, Erlangen,
Germany) and MDCT (SOMATOM Definition Flash, Siemens, Erlangen, Germany) imaging
techniques. For micro-CT imaging, the parameters were set at 80 kVp/500 mAs, with a
field of view on the x − y plane measuring 80 × 80 mm2. A standard matrix size of
1536× 1536 pixels was employed, along with 1024 slices at an effective pixel size of 52 µm.
The exposure time for each of the 360 rotational steps was 1500 ms. In contrast, the MDCT
imaging parameters included 120 kVp/250 mAs, a field of view of 100× 100 mm2, a slice
thickness of 0.6 mm, a slice spacing of 0.1 mm, a pitch of 0.8 and a standard matrix size of
512× 512 pixels. After excluding images with incomplete, upper and lower endplate views,
for all lumbar spine specimens, axial images were captured 1.25 cm above and below the
center of the vertebral body. Given that the slice spacing for micro-CT was approximately
0.05 mm and the MDCT slice spacing was approximately 0.1 mm, 500 micro-CT images
and 250 MDCT images were captured for each vertebra.

3.3. Few-Shot Unpaired-Image-Based Translation Model for Generating Micro-CT-like Images

The few-shot unpaired-image-based model, FUNIT [23], learns image mapping rela-
tionships from unpaired MDCT and micro-CT images. The model simultaneously learns
geometric characteristics, internal structures and the distribution of light and dark regions
from MDCT images, as well as the detailed texture of bone structures from micro-CT
images. After training, the model can generate high-resolution micro-CT-like images with
MDCT images as input.

The model mainly consists of two core modules, namely, (1) a structured detail-filled
generator G and (2) a multitask adversarial discriminator D. The generator G can extract
micro-structure information and generate gold-standard-like images by filling textures,
while the discriminator D can discriminate whether the generated image belongs to the
target domain. As an unpaired-image-based learning model, the model is designed to
translate among multiple types of images. Mathematically, the generator G takes x and K
mapping targets {y1, · · · , yK} as inputs and outputs generated images x with features of
K targets.

x = G(x, {y1, · · · , yK}) (2)

The low-resolution MDCT is considered to be the input image x. Some high-resolution
images such as HR-pQCT [71], micro-CT [72–74], etc., can be treated as the mapping targets
{y1, · · · , yK}. In this paper, we only consider generating micro-CT-like images, so we
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set K = 1, and the micro-CT image is the only y. Thus, Equation (2) can be written as
Equation (3).

x = G(x, y) (3)

In Equation (3), the generator G is designed to have the ability to generate micro-CT-
like images from MDCT. It consists of three sub-networks, namely, the content encoder Ex,
class encoder Ey and decoder Fx, as shown in Figure 3a.
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The content encoder Ex is designed to extract texture-independent positional and
structural region information, such as the extraction of the vertebral geometry and trabecu-
lar layout of the bone. Ex consists of two-dimensional convolutional layers and residual
blocks [52,75], and each convolutional layer has normalized functions and ReLU nonlinear
functions. The feature maps are scaled by a factor of 2 in each spatial dimension using the
nearest-neighbor up-sampling method. The input MDCT image is mapped into a spatial
feature map zx by a 3-stride-2 down-sampling operation.

The class encoder Ey mainly extracts detailed characteristics such as bone trabeculae
texture and alignment. It consists of several two-dimensional convolutional layers, which
are then averaged along the sampling axis. Ey maps the micro-CT images to a class latent
code for describing the texture characteristics of bone trabeculae. This process uses a
VGG [57] network to map each input class image to a class latent code zy. Afterwards,
the class latent code is fed to the decoder Fx through the AdaIN layer, where Ey can
control detailed characteristics (e.g., texture) and Ex can determine regional characteristics
(e.g., the location of regions with different trabecular characteristics). This enables the
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generation of bone structure details on the basis of reasonable correspondence between
MDCT and micro-CT.

The decoder Fx takes latent code zy as input and obtains a set of mean and variance(
µi, σ2

i
)
i = 1, 2 through two fully connected networks. These values are then used as affine

transformation parameters in the AdaIN residual block, where the σ2
i s are the scaling factors

and the µis are the biases [76]. For each residual block, the same affine transformation is
applied to each spatial location in the feature map. The affine transformation is spatially
invariant and therefore can only be used to obtain global appearance information, which
controls how the content is potentially encoded for decoding to generate the output image.

According to the above design, the generator G can map the input MDCT image x to
the output micro-CT-like image x such that x looks like an image belonging to the class cy
of gold-standard micro-CT images, and x and x have structural similarity.

The chosen discriminator D is a patch discriminator [19]. This discriminator applies
a Leaky ReLU nonlinear activation function and consists of a convolutional layer and 10
activated residual blocks without normalization [77]. The architecture of the discriminator
is shown in Figure 3b. It consists of Conv-64→ ResBlk-128→ ResBlk-128→ AvgPool2x2
→ ResBlk-256→ ResBlk-256→ AvgPool2x2→ ResBlk-512→ ResBlk-512→ AvgPool2x2
→ ResBlk-1024→ ResBlk-1024→ AvgPool2x2→ ResBlk-1024→ ResBlk-1024→ Conv-
‖S‖, where ResBlk-X denotes the residual block of output size X× X [52] and ‖S‖ is the
number of mapped target image classes, which is two in this study, namely, MDCT and
micro-CT images.

3.4. Training and Testing
3.4.1. Training Process

The training process of the FUNIT model is a process of solving the minmax optimiza-
tion problem with the objective function of:

min
G

max
D

ℒGAN(D, G) + λRℒR(G)+λFℒF(G) (4)

where ℒGAN , ℒR and ℒF are the GAN loss function, the loss function of the reconstructed
input image with the original input domain and the feature matching loss function, respec-
tively. These functions are defined as follows:

ℒGAN(D, G) = Ex[logDcx (x)] +Ex,{y1}[log(1− Dcy(G(x, {y1}) = x))] (5)

where D(x) is a discriminant probability distribution of a discriminator expressing the
probability of classifying x as a target gold-standard image, rather than a generated gold-
standard-like image, and the superscript indicates the type of target discriminated. That
is, Dcx (x) expresses the ability to discriminate the input image as an MDCT image, while
Dcy(x) is the ability to discriminate the generated gold-standard-like image as a micro-CT
image, and 1−Dcy(x) expresses the ability to discriminate the generated gold-standard-like
image and not discriminate it as a micro-CT image.

Thus, ℒGAN(D, G) expresses the ability of the model to discriminate the input image
as an MDCT image and the generated class image as not a micro-CT image. For the
discriminator D, the input should be discriminated as an MDCT image and the generated
gold-standard-like image should be discriminated as not a micro-CT image as much as
possible, so this ability is as large as possible and is taken as max; meanwhile, for the
generator G, this ability is as small as possible and is therefore taken as min.

In addition, ℒR can help train the generator G model for image mapping. Specifically,
when using the same MDCT image as the input image and the mapped target image (in this
case, K = 1), this loss function encourages G to produce an output image that is identical
to the input MDCT.

ℒR(G) = Ex

[
‖x− G(x, {x})‖1

1

]
(6)
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The ℒF provides a normalization ability to the training. By removing the last layer of
the discriminator D, a feature extractor D f is obtained. Using D f to extract features from
the class micro-CT image x and micro-CT image {y1}, respectively, and minimize their
differences, we have:

ℒF(G) = Ex,{y1,··· ,yK}

[∥∥∥D f (x)−∑k
D f (yk)

K

∥∥∥
1

1

]
(7)

The proposed model was trained on a Windows 10 workstation equipped with two
Nvidia A6000 GPUs. In the training process, the discriminator G randomly draws two
images cx, cy ∈ S and cx 6= cy from different classes of source images (MDCT and micro-CT)
and performs mapping training to finally obtain the ability to generate micro-CT-like and
MDCT-like images. We used the default hyper-parameters of FUNIT for training but
changed the image sizes to fit MDCT and micro-CT images.

3.4.2. Image Pairing Method for Testing

In order to test the performance of the model, a ground-truth image pair set was
needed. The scheme for preparing the ground-truth image pair set is as follows:

1. Image matching: The scale invariant feature transform (SIFT) algorithm [78] was
used to find coupling key points in MDCT and micro-CT images. We calculated the
Euclidean distance between key points and set the mean value to be the distance
between MDCT and micro-CT images (Figure 4). Based on this, we compared MDCT
and micro-CT images one by one and constructed the matrix of distances between all
MDCT and micro-CT images. The best matched image pair could be obtained via the
dynamic time warping (DTW) algorithm [79].

2. MDCT image amplification and image pair generation: Due to the different layer
spacing between the two scanning methods, MDCT images and micro-CT images of
the same specimen are not equal in overall number, and approximately two layers
of micro-CT images correspond to one layer of MDCT images. Therefore, the MDCT
images of each vertebra needed to be replicated (250× 2) according to the matching
relationship to obtain one-to-one paired-image pairs of MDCT and micro-CT images,
i.e., 500 image pairs were generated for each vertebral specimen. Applying the above
method to all 25 vertebrae in the test set, a total of 25× 500 = 12,500 image pairs
could be obtained.
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and the similarity between all micro-CT and MDCT images can be calculated using the average
distance of coupling key points. Different colored lines indicate the coupling relationship between
key points.

3.5. Assessment Methods
3.5.1. Similarity Metrics

To evaluate the similarity between two images, this study employed the structural
similarity (SSIM) [80] and Fréchet inception distance (FID) [81] metrics. The SSIM is
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designed to evaluate similarity with respect to structure, where a higher SSIM value
signifies greater similarity between images [82]. Conversely, the FID metric focuses on
evaluating similarity in terms of details, with a lower FID value indicating a higher degree
of similarity between images [83]. The definitions of SSIM and FID can be found in the
research [22].

3.5.2. Born Structure Metrics

The trabecular microstructure analysis in micro-CT and micro-CT-like images was
conducted by employing the BoneJ plug-in [83] within the Fiji (Version 1.53t) software [83].
Utilizing Fiji, which represents a distribution of ImageJ2 developed by the National In-
stitutes of Health [84,85], both micro-CT and micro-CT-like images of vertebrae were
processed as 8 bit stack maps. Then, the gray-level images from micro-CT and micro-CT-
like sources were binarized into bone and marrow phases by implementing the IsoData
algorithm [86], a global thresholding technique. Following this binarization, metrics were
computed, including bone volume fraction (BV/TV), trabecular thickness (Tb.Th) and
trabecular spacing (Tb.Sp). BV/TV was derived via simple voxel counting, whereby all
the foreground voxels were counted and assumed to represent bone and then compared
to the total number of voxels in the image. Tb.Th and Tb.Sp were calculated without
model assumptions and measured directly by taking foreground voxels as trabeculae and
background voxels as spacing [87].

Continuous axial images were required to form a cylindrical volume of interest (VOI)
to measure the bone structure metrics. After training the model, all original MDCT images
of the 25 vertebrae from the test set were inputted into the model to obtain continuous micro-
CT-like images. Subsequently, two cylindrical VOIs (approximately 15 mm in diameter and
5 mm in height) for each vertebra were selected in both the micro-CT and micro-CT-like
images. The positioning of the VOI can be found in Figure 5. Identical VOI settings were
applied to the MDCT images in order to measure bone structure metrics to serve as a
control group.
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metrics slowed and stabilized. The figure shows several representative points in the 
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Figure 5. Cylindrical volume of interest (VOI) selection method. (a) The sagittal position of the VOI
is shown on the vertebral body micro-CT sagittal image via the two areas located 5 mm above and
5 mm below each of the vertebral body sagittal midline. (b) The axial position of the VOI is shown
on the vertebral body micro-CT axial image. Line A denotes the centerline of the short axis of the
vertebral body axial map, line B is perpendicular to line A and the intersection of line A and line
B is located 5 mm within the intersection of line A and the anterior edge of the vertebral body. A
cylindrical VOI with a diameter of 15 mm was taken with the intersection of line A and line B as the
tangent point.

4. Results
4.1. Training Results

Figure 6 shows the process of training by showing metrics of one slice of vertebra in
different epochs. After approximately 8000 epochs of learning, the change in the image
metrics slowed and stabilized. The figure shows several representative points in the training
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process, which can be used to observe the learning process of the model for generating
micro-CT-like images. The model first learns the contour information of MDCT, starts from
the range area, gradually adds the bone cancellous and bone cortical information, and
gradually fills in the details of the internal trabecular structure. In the initial stage of the
generation process, there are vacant areas, and as the training epoch increases, the vacant
areas are gradually reduced and the details of the images are gradually clarified.
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After training, MDCT images from the test set were input into the unpaired-image-
based model to obtain micro-CT-like images. Figures 7 and 8 show examples of micro-CT-
like images.
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Figure 8. Example of a FUNIT-generated micro-CT-like image.

Although the micro-CT-like images have sufficient similarity with gold-standard
images, the micro-CT like images have some shortcomings: (1) there is an obvious “double-
border phenomenon” in the bone cortex, i.e., the phenomenon of bone cortex delamination;
(2) there is a lack of bone cortex on the surface of the vertebral canal; (3) there is a localized
trabecular texture in the peripheral soft tissue of the vertebral body; (4) there is a dense area
of bone trabeculae in the cancellous bone, and there is an overfilling of bone trabeculae.

4.2. Comparison of SSIMs and FIDs for Generated Images

Statistical methods were used to more rigorously determine whether the metrics were
significantly different. The normality of all continuous variables was verified using the
Kolmogorov–Smirnov test, and chi-squaredness was verified using the Levene test. The
Friedman test was used to compare the differences in SSIM and FID values between the
images generated using FUNIT, StarGAN and CycleGAN, the original MDCT images and
the gold-standard micro-CT images. The Mann–Whitney U test was used to compare the
SSIM and FID differences between the FUNIT model and the pix2pixHD model for the
micro-CT-like images. The differences in bone structure metrics between the FUNIT micro-
CT-like and gold-standard micro-CT images were analyzed using paired t-test datasets.
Linear regression was used to analyze the correlation between bone structure metrics
between the FUNIT micro-CT-like and gold-standard micro-CT images. The Z-test was used
to compare differences in correlation coefficients between bone structure metrics between
FUNIT micro-CT-like, pix2pixHD micro-CT-like images [22] and micro-CT and MDCT
images. Intraclass correlation coefficients (ICCs) were used to analyze the consistency
between bone structure metrics between FUNIT micro-CT-like and gold-standard micro-CT
images. The above statistical analyses were performed using SPSS 26.0 (SPSS Inc., Chicago,
IL, USA) and MedCalcv10.002 (Ostend, Belgium) software, and differences were considered
statistically significant if the two-sided p value < 0.05. Since the vertebral body consists of
cancellous and cortical bone, both of which are of interest for bone strength, we compared
the quality of generated images by considering the overall image and local cancellous bone
image separately.

4.2.1. Comparing Generated Micro-CT-like Images with MDCT Images

In terms of overall images, using the micro-CT image as the gold standard, the mean
values of SSIM between gold-standard images and the micro-CT-like images generated by
using three unpaired-image-based models (i.e., FUNIT, StarGAN and CylceGAN) were
greater than the SSIM values between the gold-standard and MDCT images, and the
differences were statistically significant (p < 0.001). Similarly, using micro-CT as the gold
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standard, the FID values of the generated images were all smaller than the FID values
of MDCT. The differences were statistically significant (p < 0.001), and these results are
shown in Table 1 and Figure 9. Based on these, we found that the micro-CT-like images
generated using the three unpaired-image-based models were more similar to the gold-
standard images than the original MDCT images in terms of macro-structure and detailed
micro-structure. Among the three unpaired-image-based models, the metrics (both SSIM
and FID) of the micro-CT-like images generated using FUNIT were better than those of the
other two comparison models, and the differences were statistically significant (p < 0.001).

Table 1. SSIM and FID values of the four sets of images and the gold-standard micro-CT images.

Scale Metrics MDCT FUNIT StarGAN CycleGAN p-Value †

Overall image SSIM 0.238 ± 0.031 0.519 ± 0.030 0.437 ± 0.025 0.377 ± 0.035 <0.001 ***
FID 453.425 ± 39.081 201.737 ± 15.031 289.503 ± 18.037 347.311 ± 25.051 <0.001 ***

Localized cancellous
bone images

SSIM 0.213 ± 0.052 0.714 ± 0.023 0.589 ± 0.031 0.508 ± 0.037 <0.001 ***
FID 495.024 ± 54.435 83.696 ± 11.022 175.531 ± 17.035 219.559 ± 16.033 <0.001 ***

Note: † The Friedman test was used to test the differences in metrics among the four sets of images; *** indicates
the corresponding image quality evaluation indicators compared between groups have p < 0.001.
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Figure 9. SSIM and FID values of the MDCT and three generated images. The Friedman test was
used to test the differences in the metrics between the four groups of images, *** represents p < 0.001.

In terms of localized cancellous bone images, the mean values of SSIM and FID of
generated micro-CT like images generated by the three unpaired-image-based models
improved compared with the values of the overall image. Additionally, FUNIT performed
better than the other two methods in SSIM and FID, with statistically significant differences
(p < 0.001).
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4.2.2. Comparison of Micro-CT-like Images Generated Using Unpaired-Image-Based
FUNIT Model and Paired-Image-Based pix2pixHD Model

In terms of both the overall image and the local cancellous bone image, the SSIM
and FID values of the FUNIT-generated micro-CT-like images were better than the correla-
tion values of the pix2pixHD-generated micro-CT-like images, and the differences were
statistically significant (p < 0.001). These results are shown in Table 2 and Figure 10.

Table 2. Comparison of the micro-CT-like images generated using the FUNIT model and
pix2pixHD model.

Scale Metrics FUNIT pix2pixHD [22] p-Value †

Overall image SSIM 0.519 ± 0.030 0.804 ± 0.037 <0.001 ***
FID 201.737 ± 15.031 43.598 ± 9.108 <0.001 ***

Localized cancellous
bone images

SSIM 0.714 ± 0.023 0.849 ± 0.021 <0.001 ***
FID 83.696 ± 11.022 31.724 ± 10.021 <0.001 ***

Note: † The Mann–Whitney U test was used to verify the differences in metrics between micro-CT-like images
generated using FUINT and pix2pixHD. *** indicates p < 0.001.
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4.3. Correlation and Consistency of Bone Structure Metrics between Generated Micro-CT-like and
Gold-Standard Micro-CT Images
4.3.1. Correlation of Bone Structure between FUNIT-Generated Micro-CT-like and
Gold-Standard Micro-CT Images

The bone structure metrics of FUNIT-generated micro-CT-like and gold-standard
micro-CT images with their correlations are shown in Table 3. The correlation values of
BV/TV and Tb.Th of FUNIT-generated micro-CT-like images were smaller than those of
the gold standard, while the Tb.Sp was larger than that of the gold standard, and the
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difference was statistically significant (p < 0.001). Linear regression equations for bone
structure metrics of FUNIT-generated micro-CT-like and micro-CT images were: BV/TV:
y = 0.935x − 0.025; Th.Th: y = 1.078x − 0.076 and Tb.Sp: y = 1.029x + 0.182, with
R2
(FUNIT), and the F values are shown in Table 3. The BV/TV, Tb.Th and Tb.Sp values

of FUNIT-generated micro-CT-like images were highly correlated with those of the gold
standard, and the correlation was significant (p < 0.001).

Table 3. Bone structure metric values and correlation between FUNIT-generated micro-CT-like and
micro-CT images.

N=50 FUNIT
Micro-CT-like Micro-CT p-Value † R2 F-Value p-Value ‡

BV/TV (%) 0.143 ± 0.018 0.180 ± 0.016 <0.001 *** 0.667 96.102 <0.001 ***
Tb.Th (mm) 0.158 ± 0.021 0.218 ± 0.015 <0.001 *** 0.613 78.69 <0.001 ***
Tb.Sp (mm) 1.144 ± 0.166 0.934 ± 0.126 <0.001 *** 0.603 75.573 <0.001 ***

Note: † Paired t-test was used to compare the difference between the two groups of bone structure metrics,
*** represents p < 0.001. ‡ Linear regression was used to analyze the correlation between the two groups of bone
structure metrics, *** represents p < 0.001.

4.3.2. Consistency between Bone Structure Metrics of FUNIT Micro-CT-like and
Gold-Standard Micro-CT Images

The ICC values of the bone structure metrics of FUNIT-generated micro-CT-like and
gold-standard micro-CT images are shown in Table 4. The FUNIT-generated micro-CT-like
bone structure metrics are highly consistent with those of the gold standard.

Table 4. ICC values of bone structure metrics of FUNIT-generated micro-CT-like and gold-standard
micro-CT images.

Bone Structure Metrics ICC 95% CI p-Value

micro-CT-like
(FUNIT). vs.

micro-CT

BV/TV 0.809 0.887~0.686 <0.001
Tb.Th 0.752 0.852~0.601 <0.001
Tb.Sp 0.753 0.852~0.603 <0.001

4.4. Discussion
4.4.1. Characterization of the Proposed Method

From both the overall image and the local cancellous bone image, the SSIM values
of the micro-CT-like images generated using the three unpaired-image-based methods
were greater than those of MDCT, and the FID values were smaller than those of MDCT
(p < 0.001). The micro-CT-like images generated using the unpaired-image-based methods
had more obvious improvements in structure and details than the original MDCT images,
and the generated micro-CT-like images were more similar to the gold-standard images.
Comparing the results of three unpaired-image-based models, we found that the FUNIT
method had larger SSIM values and smaller FID values than the other two unpaired-
image-based models (p < 0.001), indicating that the FUNIT method had the best model
performance in the image mapping process among the three groups of models.

FUNIT focuses on generating structured images and uses a more systematic generator
design, which consists of three main parts: a content encoder and a class encoder and
decoder. The content encoder extracts information from MDCT that is not related to detailed
texture but highly relevant to the location and regional structure, such as the structure of
each region in cancellous bone and the macro layout of bone trabeculae. Then, a content
feature code is generated after extraction. The class encoder learns location-independent
bone trabeculae detail information from micro-CT, including texture, alignment, etc. The
class specific features are generated after extraction [23]. The model simultaneously learns
the mapping relationship between MDCT and micro-CT and finally fuses the class features
with the content features on the decoder to form micro-CT-like images. Thus, hidden
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information such as bone material and bone marrow distribution in MDCT is extracted,
and bone trabeculae texture is attached to form micro-CT-like images. By the judgment
of the discriminator, the formed micro-CT-like image will have the characteristics of the
bone trabecular structure in micro-CT. For this reason, FUNIT can perform better in the
environment studied in this paper and generate micro-CT-like images that exceed those of
other unpaired-image-based methods in quality.

Although the FUNIT model used can generate micro-CT-like images that are more
similar to the gold standard than the other two methods, the generated images still have
deficiencies. From the results, the SSIM value of the image of the cancellous bone portion of
FUNIT-generated micro-CT-like was improved compared to the overall image, indicating
that the cancellous bone region was more similar to the gold standard, while there were
some problems in the outer contour of the vertebral body, i.e., the bone cortex. Figure 11
shows an example of FUNIT-generated micro-CT-like images, and the problems with the
images are shown specifically in the red box in Figure 12. First, there is a clear “double-
border phenomenon” in the bone cortex, where the originally compact bone cortex is filled
with two or more layers of thin linear bone cortex. The possible reason for this phenomenon
is that the model focuses on cancellous bone features when generating the images, and the
whole image is filled with the structural pattern of bone trabeculae, so the bone cortex on
the MDCT image is replaced by multiple near-parallel bone trabeculae textures.

Additionally, there is a problem of loss of bone cortex in specific areas, especially in
the vertebral canal surface where the bone cortex is prone to defects and disruption of
continuity, which in turn leads to a situation where the boundary between the bone tissue
and the surrounding soft tissue is unclear.

Furthermore, short trabecular texture-like shadows of bone trabeculae appear within
the peripheral soft tissues of the vertebral body. This is due to texture within the soft tissues
being mistaken for bone trabeculae in MDCT: soft tissues with discrepancies in CT values
may be misidentified as bone tissue and then filled. However, this phenomenon is not
widespread and does not have an impact on bone structure studies.
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Finally, in the case of vertebral cancellous bone, if there are relatively dense areas in
the cancellous bone, FUNIT will overfill the relatively dense areas to a certain extent during
the mapping process, as shown by the local thickening of the trabeculae. In contrast, the
relatively sparse areas are underfilled, which is reflected by the local absence and thinning
of trabeculae.

Although there are some issues in the micro-CT-like images generated via FUNIT,
none of them are distributed in core regions of cancellous bone. This is the reason why the
localized SSIM and FID values were better than the overall SSIM and FID values. Since
cancellous bone is important for the diagnosis of osteoporosis, it can be assumed that the
studied FUNIT method meets the requirements of bone structure analysis.

The BV/TV and Tb.Th of FUNIT-generated micro-CT-like images were smaller than
those of the gold standard, and the differences were statistically significant (p < 0.001). The
Tb.Sp of FUNIT-generated micro-CT-like images was greater than that of the gold standard,
and the difference was statistically significant (p < 0.001). All measured bone structural
metrics were moderately correlated with the gold standard (BV/TV: R2

(FUNIT) = 0.667,

Th.Th: R2
(FUNIT) = 0.613, Tb.Sp: R2

(FUNIT) = 0.603), the correlation was higher than that

of MDCT (BV/TV: R2
(MDCT) = 0.367, Th.Th: R2

(MDCT) = 0.275, Tb.Sp: R2
(MDCT) = 0.283)

and the differences were statistically significant. The ICC results showed that acceptable
consistency existed between the generated images and the gold standard. However, the
smaller BV/TV and Tb.Th and larger Tb.Sp imply that the trabeculae are broken, missing,
or unfilled during the mapping process, resulting in wider spacing and a relative decrease
in bone volume fraction. This situation may occur because FUNIT is obtained by finding
structures in MDCT and later adding details similar to those in micro-CT images to obtain
micro-CT-like images. If the structure in MDCT is not very obvious, details are easily
missed and the results of its generated images will be biased toward conservatism. On the
other hand, the unpaired-image-based method learns the structure in MDCT corresponding
to the texture feature in the micro-CT image, and this feature is not learned one-to-one,
meaning that unreasonable bone trabeculae orientation, etc., may occur when filling the
details. This result may lead to a reduction in predicted bone strength compared to actual
bone strength when FUNIT-generated micro-CT-like images are eventually used to predict
bone strength, which in turn may lead to an increased false-positive rate in fracture risk
prediction. The further optimization of model parameters and increased sample diversity
are needed in subsequent studies to remedy this deficiency.

4.4.2. Paired-Image-Based pix2pixHD Model versus Unpaired-Image-Based FUNIT Model

By comparing the SSIM with the FID index, as well as the direct sample shown in
Figure 13, we found that the pix2pixHD-micro-CT-like images were more similar to the gold
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standard than the FUNIT-micro-CT-like images. FUNIT generates less of the bone cortex
and is prone to problems such as the “double-border phenomenon” on the bone cortex,
missing bone cortex and trabecular texture in the soft tissue. In contrast, the bone cortex
of pix2pixHD-generated images is more similar to that of the micro-CT gold standard,
with a tighter and more continuous bone cortex and a clear boundary with the soft tissues.
As analyzed, this is related to the training mechanism of FUNIT and pix2pixHD, which
adopts a “class-to-class” learning model and has a certain tendency to “imagine” in the
filling process, i.e., it uses the local information of MDCT for generation. In contrast, the
pix2pixHD method adopts an “image-to-image” learning mode, and its “imagination”
capability is more convergent; consequently, the mapping results are more realistic, which
is one of the advantages of paired-image training. However, pix2pixHD-generated micro-
CT-like images also have the problem of overfilling and noise formation in dense and
complex bone areas such as attachments. Although there are still some shortcomings in
the texture details of both methods, such as reduced local trabecular definition and less
natural alignment, which make the measured bone structure metrics not fully consistent
with those of the gold standard, there is sufficient correlation between the bone structure
metrics and those of the gold standard.
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Unpaired-image-based learning does not require paired images due to its learning
mechanism, and it has a greater ability to generalize. The model can find the structural
features embedded in MDCT images and find their mapping relationships with micro-CT
images to make certain associations and add detailed textures. This property allows the
model to transform images to a limited degree even when it encounters MDCT input data of
a vertebra type that has not appeared before, making the trained model somewhat robust.
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5. Conclusions

As the population ages and life expectancy continues to increase, the incidence of
fragility fractures has increased significantly. Therefore, the early identification of fragility
fracture risk is critical. In addition, as the age of the population treated with spinal
instrumentation increases, clinicians need to pay more attention to bone strength profiles
to develop individualized surgical plans and reduce the probability of postoperative
complications. BMD cannot fully explain changes in bone strength alone, so it is extremely
important to analyze a diversity of bone structure metrics. The primary focus of this
study is to investigate the possibility of measuring vertebrae bone structure metrics using
MDCT images, of which the core task is establishing a mapping relationship between
vertebral MDCT images and micro-CT images using deep learning methods to generate
micro-CT-like images based on MDCT images.

From the perspective of computer image science, mapping two images with vastly
different resolutions, such as MDCT and micro-CT images, remains an open research
challenge. The emergence of CGANs and their derived models has made this feasible [17].
In this study, the above image mapping task was achieved by finding nonlinear feature
associations between vertebral MDCT and micro-CT images through the unpaired-image-
based FUNIT method.

The bone structure metrics measured using micro-CT-like images are highly correlated
with those obtained from the gold standard of micro-CT images. The used method can fully
utilize the potential of MDCT images and provides a technical methodological possibility
to realize in vivo vertebral bone structure measurement. In terms of image translation, this
paper discusses the presence of some phenomena (e.g., the double-border phenomenon),
but it mainly focuses on the qualitative discussion. Quantitative description methods of
these phenomena should be explored in depth in the future. In terms of model training,
although it is currently in the preliminary exploratory stage using a small sample of in vitro
vertebral specimens, the deep learning model can be further optimized, and its gener-
alization capability can be improved in the future through measures such as expanding
the sample size, increasing sample diversity, and simulating in vivo environments. More
detailed and systemic clinical evaluations should be conducted in the future.

Author Contributions: Conceptualization, D.J.; Data Curation, D.J.; Funding Acquisition, H.Y.;
Methodology, D.J. and H.Z.; Resources, H.Z. and H.Y.; Supervision, H.Y.; Validation, H.Z.; Writing—
Original Draft, D.J.; Writing—Review and Editing, D.J. and H.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China [Grant
No. 82171927], the Beijing Natural Science Foundation [Grant No. 7212126] and the Beijing New
Health Industry Development Foundation [Grant No. XM2020-02-006].

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Review Board (or Ethics Committee)
of Peking University Third Hospital Medical Science Research Ethics Committee (protocol code
IRB00006761-M2021179, 9 April 2021).

Informed Consent Statement: Informed consent was waived due to the donors having dedicated
their bodies for educational and research purposes to the local Institute of Anatomy prior to death, in
compliance with local institutional and legislative requirements.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We appreciate the support from Beijing Key Laboratory of Spinal Disease Re-
search, Peking University Third Hospital for providing micro-CT scanning and the Department of
Anatomy, Peking University Health Science Center for providing spine specimens.

Conflicts of Interest: The authors declare no conflict of interest.

162



Bioengineering 2023, 10, 716

References
1. Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s guide to prevention and

treatment of osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [CrossRef]
2. Ammann, P.; Rizzoli, R. Bone strength and its determinants. Osteoporos. Int. 2003, 14 (Suppl. 3), S13–S18. [CrossRef]
3. Delmas, P.D.; van de Langerijt, L.; Watts, N.B.; Eastell, R.; Genant, H.; Grauer, A.; Cahall, D.L. Underdiagnosis of vertebral

fractures is a worldwide problem: The impact study. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2005, 20, 557–563.
[CrossRef] [PubMed]

4. Schuit, S.C.E.; van der Klift, M.; Weel, A.E.A.M.; de Laet, C.E.D.H.; Burger, H.; Seeman, E.; Hofman, A.; Uitterlinden, A.G.; van
Leeuwen, J.P.T.M.; Pols, H.A.P. Fracture incidence and association with bone mineral density in elderly men and women: The
rotterdam study. Bone 2004, 34, 195–202. [CrossRef] [PubMed]

5. Cranney, A.; Jamal, S.A.; Tsang, J.F.; Josse, R.G.; Leslie, W.D. Low bone mineral density and fracture burden in postmenopausal
women. CMAJ 2007, 177, 575–580. [CrossRef] [PubMed]

6. Pasco, J.A.; Seeman, E.; Henry, M.J.; Merriman, E.N.; Nicholson, G.C.; Kotowicz, M.A. The population burden of fractures
originates in women with osteopenia, not osteoporosis. Osteoporos. Int. 2006, 17, 1404–1409. [CrossRef]

7. Stone, K.L.; Seeley, D.G.; Lui, L.-Y.; Cauley, J.A.; Ensrud, K.; Browner, W.S.; Nevitt, M.C.; Cummings, S.R. Bmd at multiple sites
and risk of fracture of multiple types: Long-term results from the study of osteoporotic fractures. J. Bone Miner. Res. Off. J. Am.
Soc. Bone Miner. Res. 2003, 18, 1947–1954. [CrossRef]

8. Wainwright, S.A.; Marshall, L.M.; Ensrud, K.E.; Cauley, J.A.; Black, D.M.; Hillier, T.A.; Hochberg, M.C.; Vogt, M.T.; Orwoll, E.S.
Hip fracture in women without osteoporosis. J. Clin. Endocrinol. Metab. 2005, 90, 2787–2793. [CrossRef]

9. Wehrli, F.W.; Saha, P.K.; Gomberg, B.R.; Song, H.K.; Snyder, P.J.; Benito, M.; Wright, A.; Weening, R. Role of magnetic resonance
for assessing structure and function of trabecular bone. Top Magn. Reason. Imaging 2002, 13, 335–355. [CrossRef]

10. McCoy, S.; Tundo, F.; Chidambaram, S.; Baaj, A.A. Clinical considerations for spinal surgery in the osteoporotic patient: A
comprehensive review. Clin. Neurol. Neurosurg. 2019, 180, 40–47. [CrossRef]

11. Koester, K.J.; Barth, H.D.; Ritchie, R.O. Effect of aging on the transverse toughness of human cortical bone: Evaluation by r-curves.
J. Mech. Behav. Biomed. Mater. 2011, 4, 1504–1513. [CrossRef] [PubMed]

12. Morgan, E.F.; Bayraktar, H.H.; Keaveny, T.M. Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech.
2003, 36, 897–904. [CrossRef] [PubMed]

13. Cummings, S.R.; Black, D.M.; Rubin, S.M. Lifetime risks of hip, colles’, or vertebral fracture and coronary heart disease among
white postmenopausal women. Arch. Intern. Med. 1989, 149, 2445–2448. [CrossRef] [PubMed]

14. Taes, Y.; Lapauw, B.; Griet, V.; De Bacquer, D.; Goemaere, S.; Zmierczak, H.; Kaufman, J.-M. Prevalent fractures are related to
cortical bone geometry in young healthy men at age of peak bone mass. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2010,
25, 1433–1440. [CrossRef]

15. Wehrli, F.W.; Rajapakse, C.S.; Magland, J.F.; Snyder, P.J. Mechanical implications of estrogen supplementation in early post-
menopausal women. J. Bone Miner. Res. 2010, 25. [CrossRef]

16. Currey, J.D. Mechanical properties of bone tissues with greatly differing functions. J. Biomech. 1979, 12, 313–319. [CrossRef]
17. Pang, Y.; Lin, J.; Qin, T.; Chen, Z. Image-to-image translation: Methods and applications. arXiv 2021, arXiv:2101.08629. [CrossRef]
18. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein gan. arXiv 2017, arXiv:1701.07875.
19. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings

of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2016;
pp. 1125–1134.

20. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.

21. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2015, arXiv:1511.06434.

22. Jin, D.; Zheng, H.; Zhao, Q.; Wang, C.; Zhang, M.; Yuan, H. Generation of vertebra micro-ct-like image from mdct: A deep-
learning-based image enhancement approach. Tomography 2021, 7, 767–782. [CrossRef]

23. Liu, M.-Y.; Huang, X.; Mallya, A.; Karras, T.; Aila, T.; Lehtinen, J.; Kautz, J. Few-shot unsupervised image-to-image translation.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October—2
November 2019.

24. Van Tulder, G.; De Bruijne, M. Why does synthesized data improve multi-sequence classification? In Proceedings of the Medical
Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger,
J., Wells, W.M., Frangi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 531–538.

25. Ye, D.H.; Zikic, D.; Glocker, B.; Criminisi, A.; Konukoglu, E. Modality propagation: Coherent synthesis of subject-specific scans
with data-driven regularization. Med. Image Comput. Comput. Assist. Interv. 2013, 16, 606–613.

26. Huang, Y.; Shao, L.; Frangi, A.F. Simultaneous super-resolution and cross-modality synthesis of 3d medical images using
weakly-supervised joint convolutional sparse coding. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5787–5796.

27. Costa, P.; Galdran, A.; Meyer, M.I.; Niemeijer, M.; Abramoff, M.; Mendonca, A.M.; Campilho, A. End-to-end adversarial retinal
image synthesis. IEEE Trans. Med. Imaging 2018, 37, 781–791. [CrossRef] [PubMed]

163



Bioengineering 2023, 10, 716

28. Reeth, E.V.; Tham, I.; Tan, C.H.; Poh, C.L. Super-resolution in magnetic resonance imaging: A review. Concepts Magn. Reson. Part
A 2012, 40A, 306–325. [CrossRef]

29. Peleg, I.S. Motion analysis for image enhancement: Resolution, occlusion, and transparency. J. Vis. Commun. Image Represent.
1993, 4, 324–335.

30. Hayit, G. Super-resolution in medical imaging. Comput. J. 2009, 1, 43–63.
31. Wang, Z.; Chen, J.; Hoi, S.C.H. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021,

43, 3365–3387. [CrossRef]
32. Ashikaga, H.; Estner, H.L.; Herzka, D.A.; McVeigh, E.R.; Halperin, H.R. Quantitative assessment of single-image super-resolution

in myocardial scar imaging. IEEE J. Transl. Eng. Health Med. 2014, 2, 1–12. [CrossRef]
33. Bernstein, M.A.; Fain, S.B.; Riederer, S.J. Effect of windowing and zero-filled reconstruction of mri data on spatial resolution and

acquisition strategy. J. Magn. Reason. Imaging 2001, 14, 270–280. [CrossRef]
34. Robinson, M.; Toth, C.; Lo, J.; Farsiu, S. Efficient fourier-wavelet super-resolution. IEEE Trans. Image Process. A Publ. IEEE Signal

Process. Soc. 2010, 19, 2669–2681. [CrossRef]
35. Robinson, M.D.; Farsiu, S.; Lo, J.Y.; Toth, C.A. Efficient restoration and enhancement of super-resolved X-ray images. In

Proceedings of the 2008 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp.
629–632.

36. Salvador, J. Example-Based Super Resolution; Academic Press: Cambridge, MA, USA, 2016; pp. 1–141.
37. Wang, Y.; Ma, G.; An, L.; Shi, F.; Zhang, P.; Lalush, D.S.; Wu, X.; Pu, Y.; Zhou, J.; Shen, D. Semisupervised tripled dictionary

learning for standard-dose pet image prediction using low-dose pet and multimodal mri. IEEE Trans. Biomed. Eng. 2017, 64,
569–579. [CrossRef]

38. Jog, A.; Carass, A.; Roy, S.; Pham, D.L.; Prince, J.L. Random forest regression for magnetic resonance image synthesis. Med. Image
Anal. 2017, 35, 475–488. [CrossRef] [PubMed]

39. Semmlow, J.L.; Griffel, B. Biosignal and Medical Image Processing; CRC Press: Boca Raton, FL, USA, 2009.
40. Sahiner, B.; Pezeshk, A.; Hadjiiski, L.M.; Wang, X.; Drukker, K.; Cha, K.H.; Summers, R.M.; Giger, M.L. Deep learning in medical

imaging and radiation therapy. Med. Phys. 2019, 46, e1–e36. [CrossRef]
41. Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552.

[CrossRef] [PubMed]
42. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Learning a deep convolutional network for image super-resolution. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). In
Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Volume
8692, pp. 184–199.

43. Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883.

44. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645.

45. Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654.

46. Van Nguyen, H.; Zhou, K.; Vemulapalli, R. Cross-domain synthesis of medical images using efficient location-sensitive deep
network. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany,
5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A., Eds.; Springer International Publishing: Cham, Switzerland,
2015; pp. 677–684.

47. Chen, H.; Zhang, Y.; Zhang, W.; Liao, P.; Li, K.; Zhou, J.; Wang, G. Low-dose ct via convolutional neural network. Biomed. Opt.
Express 2017, 8, 679–694. [CrossRef]

48. Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Zhou, J.; Wang, G. Low-dose ct with a residual encoder-decoder
convolutional neural network. IEEE Trans. Med. Imaging 2017, 36, 2524–2535. [CrossRef] [PubMed]

49. Zeng, K.; Zheng, H.; Cai, C.; Yang, Y.; Zhang, K.; Chen, Z. Simultaneous single-and multi-contrast super-resolution for brain mri
images based on a convolutional neural network. Comput. Biol. Med. 2018, 99, 133–141. [CrossRef]

50. Chaudhari, A.S.; Fang, Z.; Kogan, F.; Wood, J.; Stevens, K.J.; Gibbons, E.K.; Lee, J.H.; Gold, G.E.; Hargreaves, B.A. Super-resolution
musculoskeletal mri using deep learning. Magn. Reson. Med. 2018, 80, 2139–2154. [CrossRef]

51. Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol.
1962, 160, 106–154. [CrossRef]

52. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

53. Chen, Q.; Koltun, V. Photographic image synthesis with cascaded refinement networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

54. Chartsias, A.; Joyce, T.; Giuffrida, M.V.; Tsaftaris, S.A. Multimodal mr synthesis via modality-invariant latent representation.
IEEE Trans. Med. Imaging 2018, 37, 803–814. [CrossRef]

164



Bioengineering 2023, 10, 716

55. Xiang, L.; Wang, Q.; Nie, D.; Zhang, L.; Jin, X.; Qiao, Y.; Shen, D. Deep embedding convolutional neural network for synthesizing
ct image from t1-weighted mr image. Med. Image Anal. 2018, 47, 31–44. [CrossRef]

56. Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and semantic manipulation with
conditional gans. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–23 June 2018; pp. 8798–8807.

57. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. Comput. Sci. 2014. [CrossRef]
58. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.

Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114.

59. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27. [CrossRef]

60. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
61. Ben-Cohen, A.; Klang, E.; Raskin, S.P.; Amitai, M.M.; Greenspan, H. Virtual pet images from ct data using deep convolutional

networks: Initial results. In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging,
Québec City, QC, Canada, 10 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 49–57.

62. Bi, L.; Kim, J.; Kumar, A.; Feng, D.; Fulham, M. Synthesis of positron emission tomography (pet) images via multi-channel
generative adversarial networks (gans). In Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging
and Treatment; Springer: Berlin/Heidelberg, Germany, 2017; pp. 43–51.

63. Chartsias, A.; Joyce, T.; Dharmakumar, R.; Tsaftaris, S.A. Adversarial image synthesis for unpaired multi-modal cardiac data.
In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging, Québec City, QC, Canada, 10
September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–13.

64. Mao, X.; Li, Q.; Xie, H.; Lau, R.; Smolley, S.P. Least squares generative adversarial networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

65. Yu, S.; Dong, H.; Yang, G.; Slabaugh, G.; Dragotti, P.; Ye, X.; Liu, F.; Arridge, S.; Keegan, J.; Firmin, D.; et al. Deep de-aliasing for
fast compressive sensing mri. arXiv 2017, arXiv:1705.07137.

66. Gupta, R.; Sharma, A.; Kumar, A. Super-resolution using gans for medical imaging. Procedia Comput. Sci. 2020, 173, 28–35.
[CrossRef]

67. Nie, D.; Trullo, R.; Lian, J.; Wang, L.; Petitjean, C.; Ruan, S.; Wang, Q.; Shen, D. Medical image synthesis with deep convolutional
adversarial networks. IEEE Trans. Biomed. Eng. 2018, 65, 2720–2730. [CrossRef]

68. Hiasa, Y.; Otake, Y.; Takao, M.; Matsuoka, T.; Takashima, K.; Carass, A.; Prince, J.L.; Sugano, N.; Sato, Y. Cross-modality image
synthesis from unpaired data using cyclegan. In Proceedings of the International Workshop on Simulation and Synthesis in
Medical Imaging, Granada, Spain, 16 September 2018; Springer: Berlin/Heidelberg, Germany; pp. 31–41.

69. Dar, S.U.; Yurt, M.; Karacan, L.; Erdem, A.; Erdem, E.; Çukur, T. Image synthesis in multi-contrast mri with conditional generative
adversarial networks. IEEE Trans. Med. Imaging 2019, 38, 2375–2388. [CrossRef] [PubMed]

70. Choi, Y.; Uh, Y.; Yoo, J.; Ha, J.W. Stargan v2: Diverse image synthesis for multiple domains. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

71. Liu, X.S.; Stein, E.M.; Zhou, B.; Zhang, C.A.; Nickolas, T.L.; Cohen, A.; Thomas, V.; McMahon, D.J.; Cosman, F.; Nieves, J.;
et al. Individual trabecula segmentation (its)-based morphological analyses and microfinite element analysis of hr-pqct images
discriminate postmenopausal fragility fractures independent of dxa measurements. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner.
Res. 2012, 27, 263–272. [CrossRef] [PubMed]

72. Shuai, B.; Shen, L.; Yang, Y.; Ma, C.; Zhu, R.; Xu, X. Assessment of the impact of zoledronic acid on ovariectomized osteoporosis
model using micro-ct scanning. PLoS ONE 2015, 10, e0132104. [CrossRef]

73. Gomes, C.C.; Freitas, D.Q.; Medeiros Araújo, A.M.; Ramírez-Sotelo, L.R.; Yamamoto-Silva, F.P.; de Freitas Silva, B.S.; de Melo
Távora, D.; Almeida, S.M. Effect of alendronate on bone microarchitecture in irradiated rats with osteoporosis: Micro-ct and
histomorphometric analysis. J. Oral Maxillofac. Surg. 2018, 76, 972–981. [CrossRef]

74. Xie, F.; Zhou, B.; Wang, J.; Liu, T.; Wu, X.; Fang, R.; Kang, Y.; Dai, R. Microstructural properties of trabecular bone autografts:
Comparison of men and women with and without osteoporosis. Arch. Osteoporos. 2018, 13, 18. [CrossRef]

75. Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual Losses for Real-Time Style Transfer and Super-Resolution; Springer: Cham, Switzer-
land, 2016.

76. Huang, X.; Liu, M.Y.; Belongie, S.; Kautz, J. Multimodal Unsupervised Image-to-Image Translation; Springer: Cham, Switzerland, 2018.
77. Mescheder, L.; Geiger, A.; Nowozin, S. Which training methods for gans do actually converge? In Proceedings of the International

Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
78. Bradski, G. The opencv library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–123.
79. Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [CrossRef]
80. Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans Image Process 2004, 13, 600–612.
81. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a

local nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30, 6629–6640.
82. Domander, R.; Felder, A.; Doube, M. Bonej2—Refactoring established research software. Wellcome Open Res. 2021, 6, 37. [CrossRef]

165



Bioengineering 2023, 10, 716

83. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid,
B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [CrossRef]

84. Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. Imagej2: Imagej for the next
generation of scientific image data. BMC Bioinform. 2017, 18, 1–26. [CrossRef]

85. Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. Nih image to imagej: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.
[CrossRef]

86. Ridler, T.W.; Calvard, S. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man Cybern. 1978, 8, 630–632.
87. Dougherty, R.; Kunzelmann, K.H. Computing local thickness of 3d structures with imagej. Microsc. Microanal. 2007, 13, 1678–1679.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

166



Citation: Zhao, T.; Fu, C.; Tian, Y.;

Song, W.; Sham, C.-W. GSN-HVNET:

A Lightweight, Multi-Task Deep

Learning Framework for Nuclei

Segmentation and Classification.

Bioengineering 2023, 10, 393.

https://doi.org/10.3390/

bioengineering10030393

Academic Editors: Yan Pei, Jijiang

Yang and Liang Luo

Received: 12 February 2023

Revised: 13 March 2023

Accepted: 20 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

GSN-HVNET: A Lightweight, Multi-Task Deep Learning
Framework for Nuclei Segmentation and Classification
Tengfei Zhao 1, Chong Fu 1,2,3,*, Yunjia Tian 4, Wei Song 1 and Chiu-Wing Sham 5

1 School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2 Engineering Research Center of Security Technology of Complex Network System, Ministry of Education,

Shenyang 110819, China
3 Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University,

Shenyang 110819, China
4 State Grid Liaoning Information and Communication Company, Shenyang 110006, China
5 School of Computer Science, The University of Auckland, Auckland 1142, New Zealand
* Correspondence: fuchong@mail.neu.edu.cn

Abstract: Nuclei segmentation and classification are two basic and essential tasks in computer-
aided diagnosis of digital pathology images, and those deep-learning-based methods have achieved
significant success. Unfortunately, most of the existing studies accomplish the two tasks by splicing
two related neural networks directly, resulting in repetitive computation efforts and a redundant-
and-large neural network. Thus, this paper proposes a lightweight deep learning framework (GSN-
HVNET) with an encoder–decoder structure for simultaneous segmentation and classification of
nuclei. The decoder consists of three branches outputting the semantic segmentation of nuclei, the
horizontal and vertical (HV) distances of nuclei pixels to their mass centers, and the class of each
nucleus, respectively. The instance segmentation results are obtained by combing the outputs of
the first and second branches. To reduce the computational cost and improve the network stability
under small batch sizes, we propose two newly designed blocks, Residual-Ghost-SN (RGS) and
Dense-Ghost-SN (DGS). Furthermore, considering the practical usage in pathological diagnosis, we
redefine the classification principle of the CoNSeP dataset. Experimental results demonstrate that the
proposed model outperforms other state-of-the-art models in terms of segmentation and classification
accuracy by a significant margin while maintaining high computational efficiency.

Keywords: joint nuclei segmentation and classification; lightweight, multi-task deep learning
framework; Residual-Ghost-SN; Dense-Ghost-SN

1. Introduction

Over the past several years, deep-learning-based computer vision techniques have
been extensively applied to computer-aided diagnosis (CAD). In computational pathology,
pathological image analysis based on the deep learning method has proven powerful
in improving efficiency and accuracy in cancer detection [1]. The morphology of the
nuclei is the essential feature used by pathologists in cancer diagnosis and further cancer
prognoses, such as predicting survival [2] and pathological grading of tumors [3]. Accurate
nuclei segmentation and classification can advance the quality of tissue segmentation [4,5].
Nuclei segmentation is the crucial first step to obtaining the morphological features used
in the downstream analysis. However, the morphological heterogeneity of nuclei makes
studies challenging. The karyomorphism shows variability, while different diseases may
cause chromatin abnormalities to exhibit variable size and shape patterns. Another severe
problem is that the cells in a cancerous tumor are usually densely packed and even have
more than one nucleus, causing overlapping nuclei. This overlapping brings difficulty for
further research on separating neighboring instances via automatic segmentation.
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Extracting each nucleus and distinguishing its type can promote the diagnostic po-
tential in present-day digital pathology pipelines. For instance, precisely distinguishing
each nucleus from tumors or lymphocytes can significantly facilitate downstream analysis
of tumor-infiltrating lymphocytes (TIL), which has been proven effective in predicting
cancer recurrence [6]. The nucleus-by-nucleus classification has become another problem
researchers have been interested in recently due to the high variability and diversity of
nuclei appearance in a whole slide image.

The current deep models for histopathology image diagnosis are mainly based on
single-task learning. Single-task learning is designing a model for a specific task and then
optimizing iteratively. In this case, the nuclei segmentation and classification tasks require
two independent models, one for detecting the location of each nucleus and the other for
classifying the type of nuclei [7,8]. For more complicated tasks, we are accustomed to
modeling each part of the task by disassembling. However, there exists an obvious problem
in this way. When modeling each sub-task, it is easy to ignore the relationships, conflicts,
and constraints between different sub-tasks, resulting in the downgrading of the overall
performance of the entire task.

To address the above issue, multi-task models have drawn much attention [9–12]. The
multi-task models have the following advantages: (1) multiple tasks share the same model,
reducing the amount of memory; (2) multiple tasks obtain results through a forward calcu-
lation at one time, and the inference speed increases; (3) associated tasks share information
and complement each other, improving each tasks’ performance.

Recently, several multi-task deep models for histopathology image diagnosis have
been suggested and achieved promising results [13–15]. Unfortunately, these approaches
still suffer from efficiency issues, such as dealing with a cumbersome model with a huge
amount of parameters. In addition, the classification on the CoNSeP dataset [13] seems
hard to meet the needs of practical pathological diagnosis.

The present paper proposes a lightweight, multi-task deep learning framework for
segmenting and classifying nuclei simultaneously. To address the problem of network
stability encountered by batch normalization (BN) when dealing with small batch sizes, we
introduce two newly designed blocks. We devise an efficient encoder–decoder architecture,
where the encoder adopts our proposed RGS for down-sampling, while the decoder uses
Dense-Ghost-Module (DGM) and convolution for up-sampling. By encoding the HV
distance of nuclei pixels, we can obtain more representative features on the instance with
fewer layers. Here, HV distance can be used to segment overlapping nuclei instances
accurately. Later, the decoder using the output features of the encoder predicts nuclei
types. According to the above characteristics, we call the proposed network GSN-HVNET.
Our experimental results show that the proposed model can retain shallow features on
nuclei to improve segmentation and classification accuracy. Our main contributions are
outlined below:

• We propose a novel, lightweight, multi-task deep learning framework containing a
unified model for segmentation and classification of nuclei instances simultaneously
with superior efficiency and accuracy.

• We propose the newly designed RGS and DGS to improve accuracy and compress the
training model.

• We redefine the classification principle of the CoNSeP dataset so that the auxiliary
diagnostic results have practical significance in pathological diagnosis.

• Our experiments on the CoNSeP, Kumar, and CPM-17 datasets confirm the improve-
ments to existing works [13,14]. Compared with the state-of-the-art HoVer-Net [13],
the number of parameters is reduced by 64%. In addition, we try different batch sizes
in our experiments and prove that batch size is no longer a strict limitation on the
proposed network; even when a small batch is presented, the proposed network can
maintain a high performance.

The remainder of this paper is organized as follows: Section 2 introduces the current
research on applying learning algorithms in histopathology image analysis. Our new
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network architecture is presented in Section 3. We conduct experiments and show desirable
results in Section 4. Finally, Section 5 concludes our work and gives a brief discussion of
future work.

2. Related Work
2.1. Nuclei Segmentation

Nuclei segmentation is the crucial first step in computer-aided systems for cancer
detection. Low level information analysis of histopathology images, such as histograms
analysis[16–20], were often used for early nuclei segmentation algorithms. There was an
obvious shortcoming that occurred to those algorithms. A certain threshold was hard to
be determined to adapt to all scenarios. In [21], the authors proposed a fast and flexible
segmentation algorithm based on computing the watersheds in digital grayscale images.
Unfortunately, related experiments reported several false-positive segmentation cases.
In [22], the authors proposed a novel, marker-controlled watershed based on mathematical
morphology to segment clustered cells with less oversegmentation, designing a tracking
method based on modified mean shift algorithm to segment undersegmented cells or
merge oversegmented cells. In [23], the authors proposed a method combining region
growing and machine learning to segment touching nuclei and classify them. In [24], the
authors proposed an improved method, which used a joint optimization of a multiple-level
set function to segment the cytoplasm and nuclei from clumps of overlapping cervical
cells. In [25], the authors proposed using the graph theory technique to segment glands
and computed a gland-score for estimating how similar a segmented region is to a gland.
In [26], the authors proposed a superpixel-based segmentation technique with different
morphological and clustering algorithms. Unfortunately, these existing segmentation
algorithms cannot provide utterly reliable results because they need to manually extract
nucleus features, which, thus, are inflexible and laborious to extend to a complex scenario.

Rather than manual feature extraction in traditional algorithms, deep learning methods
can automatically extract a distinct set of features, and have been widely applied to nuclei
segmentation [27]. For instance, U-Net has presented an outstanding performance in
biomedical image segmentation [28]. In [29], the authors proposed a deep multi-scale
neural network for accurately segmenting nuclei by improving sensitivity to hematoxylin
intensity. In [30], to meet the challenge of segmenting overlapping or touching nuclei, the
authors formulated the segmentation problem as a regression task of the distance map,
and the nuclei boundary information was used as prior knowledge for a segmentation
network. In [31], the authors proposed a contour-aware informative aggregation network
with a multi-level information aggregation module between two task decoders: one of
these segments the nuclei, and the other segments the contours.

2.2. Nuclei Classification

Nuclei classification is a vital step in histopathology image analysis, promoting down-
stream analysis such as evaluating cancer progression. Early studies utilize manually
extracted features to classify the nuclei automatically. Typically, an SVM-based method [32]
applied iterative feedback to obtain subtle and complex features of cellular morphology.
Albeit showing good performance in high-penetrant phenotypes, it can hardly achieve a
satisfying performance in lower-penetrant phenotypes. In [33], Ada-boost was used as the
classifier to classify the nuclei after segmentation. The classifier was constructed based on
intensity, texture, and morphology features. However, these machine learning methods
manually extract features, and their representation ability and stability can still be affected
by subjective factors to some extent.

Generally, a deep-learning-based nuclei classification model consists of two main
phases. Firstly, each nucleus is segmented or detected using a deep model; then, those
features are fed into a classifier to confirm nuclei types. For instance, in [34], the nuclei
in colon cancer histology images were firstly detected using a spatially constrained CNN.
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Then, each nucleus with associated patches was fed into the convolution network to predict
its type, i.e., inflammatory, healthy, or malignant epithelium.

3. Proposed Method

Figure 1 shows an overview of the GSN-HVNET for simultaneous nuclei instance
segmentation and classification. The network input starts with 80× 80× 3 images, which
are center patches cropped out from the sample images of size 270× 270× 3. The model
can simultaneously segment the nuclei and predict nuclei types and HV-Maps (horizontal
and vertical maps). After a post-processing procedure, the nuclei instance can be obtained
using HV-Map and nuclei pixel predictions. The final output results can be obtained
by combining the segmentation results with the nuclei-type predictions. In other words,
the network can complete the segmentation and classification of nuclei instances at the
last step.

NSS branch output

HV branch output

NC branch output

Input

GSN-HVNET

Instance 

Segmentation
Instance 

Segmentation and 

Classification

Post Processing

Figure 1. An overview of the GSN-HVNET for simultaneous nuclei instance segmentation and
classification. The NSS branch achieves nuclei semantic segmentation, and the HV branch predicts
the HV distances of nuclei pixels to their mass centers. Nuclei types are predicted in the NC branch.
The nuclei instance segmentation can be accomplished by combining the output of the NSS and
HV branches.

3.1. Network Architecture

Figure 2 illustrates the detailed structure of the proposed GSN-HVNET. The proposed
network consists of an encoder and a decoder for automatic segmentation and classification
of nuclei instances. The encoder can extract an effective set of features; then, the output
result of the encoder is used as the decoder input. The decoder contains three branches.
Branch I (NSS) is used in nuclei semantic segmentation, and branch II (HV) predicts the
HV distances of nuclei pixels to their mass centers. Nuclei types are predicted in branch
III (NC). We combine the output of branch I and branch II to accomplish the instance
segmentation. Then, the instance segmentation result combines the branch III output to
accomplish automatic segmentation and classification of the nuclei instance. The encoder
employs the proposed RGS, as discussed in Section 3.1.1. The details of GBS and RGS will
be introduced in Sections 3.1.2 and 3.1.3, respectively. In Section 3.1.4, the decoder designed
with DGS will be described. The details of DGS will be presented in Section 3.1.5.
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Figure 2. The structure of GSN-HVNET. Our proposed network contains an encoder and a decoder.
The encoder, which extracts an effective set of features, is composed of a CSR block, four RGMs, and a
Conv2D. The decoder is composed of three branches to achieve accurate nuclei instance segmentation
and classification simultaneously.

3.1.1. Encoder

To extract a practical set of features, we design a novel residual ghost network as part
of the encoder in the overall network. The network employs a Conv2D-SN-ReLU (CSR)
and a series of 4 Residual-Ghost-Modules (RGMs) for down-sampling. Here, the CSR block
is composed of a Conv2D, SN, and ReLU. An RGM consists of multiple instances of our
improved Ghost-Block—Residual-Ghost-Block with switchable normalization (RGS) [35].
Benefiting from ghost convolution, our network requires much fewer parameters to gen-
erate abundant feature maps compared with using ordinary convolution, resulting in an
improved computational efficiency of our encoder. Moreover, the SN can select an optimal
combination of different normalizers for different normalization layers, improving the
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network stability, i.e., the accuracy is not affected by the batch size. Each RGM is used as a
down-sampling level of 2, which means that the spatial resolution of the input is reduced by
a factor of 2. We will give a detailed discussion on RGS in the two subsequent subsections.

3.1.2. Ghost Block with Switchable Normalization

Figure 3 compares the structure of Ghost-Block-BN (GBB) [36] and our suggested
Ghost-Block-SN (GBS). As is known, Ghost-Block can help a convolutional neural network
to generate more features at a much lower cost. To do that, a Ghost-Block first generates
several intrinsic feature maps using ordinary convolution operation and then uses cheap
linear operations to expand the features and increase the channels. The computational cost
of the linear operations on feature maps is much lower than traditional convolution and
transcends other existing efficient works. We can customize the kernel size of the primary
convolution in a Ghost-Block, and 1× 1 point-wise convolution is employed in this paper.
In the Residual-Ghost-Block (RGB), each Ghost-Block is followed by a BN layer, which
offers several advantages, including stabilizing and speeding up the training procedure.
However, the performance of GBB is severely restricted by the batch size. This is because
BN only utilizes a single normalizer in the entire network, which can be unstable and hurt
the accuracy in the case of a small batch size.

(a)

(b)

Figure 3. An illustration of the ghost block and the improved ghost block with switchable normaliza-
tion. (a) Ghost block with batch normalization. (b) Ghost block with switchable normalization.

To solve the above problem, we apply switchable normalization (SN), which is ro-
bust to a wide range of batch sizes, whether a small batch size or not. As shown in
Figure 4, SN measures channel-wise, layer-wise, and minibatch-wise statistics by using
instance normalization (IN) [37], layer normalization (LN) [38], and batch normalization
(BN) [39], respectively, and tries to find an optimal combination by learning their important
weights, ensuring the stability and accuracy of the network in the case of small batch size.

172



Bioengineering 2023, 10, 393

Figure 4. Switchable normalization. It learns to select different normalizers for different normalization
layers of a deep neural network.

3.1.3. Residual Ghost Block with Switchable Normalization

Our RGS adopts the structure of residual block—the essential building unit of residual
neural network (ResNet) [40]—owing to its outstanding performance. The key idea behind
residual block is to reformulate the layers as learning residual functions with reference
to the layer inputs, instead of learning unreferenced functions. As shown in Figure 5,
we embed the proposed GBS in a residual block as RGS. Later, several RGSs are stacked
to form the RGM. Our network contains of four stacked RGMs with 1, 2, 3, and 1 RGS,
respectively. Compared with original ResNet-50, our network employs fewer building
units to extract feature maps and reduce redundant features, leading to a reduction in
model size. In addition, our proposed RGS is generic and can be used in the construction
of other lightweight deep learning architectures.

Figure 5. Residual ghost block with switchable normalization. The GBS denotes the ghost block with
switchable normalization.

3.1.4. Decoder

As aforementioned, the decoder contains three branches to obtain accurate nuclei
instance segmentation and classification simultaneously. These three branches adopt the
same architecture consisting of a series of up-sampling operations and two Dense-Ghost-
Modules. A DGM contains a series of cascading DGSs. Through stacking multiple DGSs,
we can enrich the receptive field with relatively fewer parameters compared with the most
popular Dense-Block, resulting in increased computational efficiency. As is known, low-
level information is critical in segmentation tasks because it precisely helps to determine
object boundaries. To make use of it, we adopt the skip connections to merge feature from
each RGS in the encoder via the concatenation operation. The DGM follows the first and
second up-sampling operations. There are eight and four DGSs in the first and second
DGM, respectively. Each of the three branches contains three up-sampling steps, making the
output feature the same dimension as the input image, i.e., 80× 80× 3. By combining the
results of the two up-sampling branches, NSS and HV, we can obtain accurate boundaries
of each individual cell nucleus, and thereby accomplish the nuclei instance segmentation.
Compared with independent networks for different tasks, the proposed network is a unified
model to simultaneously accomplish nuclei segmentation and classification, thus reducing
the total training time.
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3.1.5. Dense Ghost Module with Switchable Normalization

In this part, we propose a novel module applied to the decoder of GSN-HVNET. An
example of the proposed module is shown in Figure 6, in which n = 4. Each DGS connects
to other DGSs with forwarding feedback and employs GBS to extract feature maps. The
feature maps from all preceding layers are utilized as current inputs, and the feature maps
output by a DGS are used as inputs for all subsequent layers.

Figure 6. Dense ghost module with switchable normalization. The GBS and SNR denote the ghost
block with switchable normalization and switchable normalization with ReLU, respectively.

Thus, the proposed module can retain more abundant features as inputs of subse-
quent layers.

Similarly, benefiting from the lightweight nature of GBS, our proposed DGS utilizes
fewer parameters to generate abundant feature maps and valid features compared with
Dense-Block [41]. Moreover, it helps to avoid unnecessary calculations by reducing re-
dundant feature maps. Particularly, the DGM can maintain its performance under a small
mini-batch size.

3.1.6. Joint Loss Function of GSN-HVNET

We design different loss functions for each different task. In Table 1, we define the
notations for our works. The joint loss function LJoin is defined by

LJoin = LNSS + LHV + LNC. (1)

The NSS branch corresponds to a semantic segmentation task, and its loss function is
designed using BCE loss and dice loss. It is defined by

LNSS = λaLBCE + λbLDICE, (2)

where LBCE and LDICE represent the binary cross-entropy loss function and dice loss
function for the output of the NSS branch, respectively. The λa and λb are scalars that give
weights to their associated loss function. The above two functions are defined by

LBCE = −[ 1
n

N

∑
i=1

K

∑
k=1

Xi,k(I) log Yi,k(I) +
N

∑
i=1

K

∑
k=1

(1− Xi,k(I)) log(1−Yi,k(I))] (3)

and

LDICE = 1− 2×∑N
i=1(Yi(I)× Xi(I)) + ε

∑N
i=1 Yi(I) + ∑N

i=1 Xi(I) + ε
, (4)

where X represents the ground truth, Y denotes the prediction, and K represents the number
of categories. In order to avoid zero denominators, we set ε to 1.0× e−4 in the numerator
and denominator.

The loss function for the HV branch is defined by

LHV = λcLMSE + λdLMSGE, (5)
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where LMSE represents the mean squared error measuring the difference between the HV
distances prediction and the ground truth, λc and λd are the weights of their associated loss
function. The loss function LMSGE is used to calculate the gradients of the mean squared
error between HV maps and ground truth. LMSE and LMSGE are defined by

LMSE =
1
n

n

∑
n=1

(pi(I)− Γi(I))2 (6)

and

LMSGE =
1
m ∑

i∈M
(∇x(pi,x(I)− Γi,x(I)))2 +

1
m ∑

i∈M
(∇y(pi,y(I)− Γi,y(I)))2, (7)

where I represents the input image and pi(I) is defined as the regression output of HV
branch. The pixel-wise softmax predictions of NSS and NC branches are represented by
qi(I) and ri(I), respectively. Γi(I) denotes the ground truth of the HV distance of nuclei
pixels to their mass centers.

The loss function of LNC is defined by

LNC = λeLBCE + λ f LDICE. (8)

Similarly, λe and λ f are used to balance the two loss functions LBCE and LDICE.

Table 1. The definition of notations.

Notation Definition

hncij The value of a pixel before normalization.
ˆhncij, The value of a pixel after normalization.

γ, β Scale and shift parameter
Ik, |Ik| A set of pixels, and the number of pixels in Ik.

L, λ
L denotes the loss function and λ represents

its parameters.
I The input image.

Γi(I) The HV distance of nuclei pixels to their
mass centers.

pi(I) The regression output of HV branch.

qi(I) The pixel-wise and softmax predictions of
NSS branch.

ri(I) The pixel-wise and softmax predictions of
NC branch.

E The energy landspace.

Ft
c

The whole measurement for nuclei type
classification and nuclei instance segmentation.

FP, FN False-positive, false-negative.
TP, TN True-positive, true-negative.

3.2. Post-Processing

The proposed network produces three outputs. To obtain the nuclei location and
separate overlapping or clustered nuclei, we need to post-process the output of NSS and
HV. Within each HV map, there are significant differences between pixels in adjacent
instances. Using this property, we can calculate the gradient so as to separate the clustered
nuclei. To do that, we have

Sm = max(Hor(phor), Ver(pver)), (9)

where phor and pver represent the horizontal and vertical predictions produced by the HV
branch, and Hor and Ver refer to the horizontal and vertical components, respectively, of
the Sobel operator, which calculates the horizontal and vertical derivative approximations.
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In Figure 1, Sm highlights the regions where pixels in adjacent regions of two instances
differ significantly in the horizontal and vertical maps.

We compute the marker M according to

M = σ(τ(q, h)− τ(Sm, k)), (10)

where q is the output probability map of the NSS branch and τ(q, h) is a threshold function
acting on q and sets values above h to 1 or 0; otherwise, σ is a rectifier setting all negative
value to 0 and M is the output marker. We can obtain desired segmentation results by
choosing appropriate h and k.

Next, we compute the energy landscape E according to

E = [1− τ(Sm, k)] ∗ τ(q, h). (11)

Finally, given the energy landscape E, a marker-controlled watershed is carried out
using M as the marker to determine how to split τ(q, h), given the energy landscape E. The
task of joint segmentation and classification of nuclei requires converting per-pixel nuclei
type prediction in the NSS branch to the prediction of the type of nuclei instances. To do
that, we combine the post-processing result with NC branch output.

4. Experiment
4.1. Datasets and Implementation

In our experiment, we adopt three authoritative nuclei datasets: CoNSeP [13],
Kumar [42], and CPM-17 [43]. Table 2 describes these datasets used in our experiment.
The CoNSeP dataset, extracted from 16 colorectal adenocarcinoma (CRA) WSIs, consists
of 41 hematoxylineosin (H&E) staining images, each of size 1000× 1000 at 40× objective
magnification. In CoNSeP dataset, tumor regions, stroma, muscular, fat, glandular, and
collagen can be observed. In addition to containing different tissue components, seven
nuclei types are provided, including malignant/dysplastic epithelial nuclei, normal epithe-
lium, inflammatory, fibroblast, muscle, endothelial, and miscellaneous. In [13], the authors
combined the original seven categories into four categories, of which malignant/dysplastic
epithelial and normal epithelial were combined into a single type corresponding to the
epithelial class, and fibroblast, muscle, and endothelial were combined into a single type
corresponding to the spindle-shaped class. However, in practical clinical diagnosis, a CAD
system should mainly focus on the identification of lesion area. To address this issue, we
reclassified this dataset in our experiment. Specially, the normal epithelium, fibroblast,
muscle, endothelial, and miscellaneous were combined into a single type corresponding to
normal region, and the malignant/dysplastic epithelial and inflammatory are considered
as two separate types—that is, the reclassified contain three nuclei categories as well as the
background category. With this classification rule, our model can directly report the types
of nuclei in lesion areas.

Kumar is an annotated dataset containing over 13,000 segmented nuclei from four
different organs—breast, kidney, liver, and prostate—of 16 patients. The CPM-17 dataset
provides the tissue image with labels for nuclei segmentation and classification. It is ob-
tained from patients with head and neck squamous cell (HNSCC), glioblastoma multiforme
(GBM), non-small cell lung cancer (NSCLC), and lower-grade glioma tumors (LGG). Some
examples taken from these datasets are shown in Figure 7.
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Malignant/dysplastic 

epithelium
Normal epithelium Inflammatory Fibroblast

Muscle Endothelial Miscellaneous

Figure 7. The sample clipping region is extracted from the CoNSeP dataset, where the color of each
nuclear boundary indicates its category.

Table 2. Description of the dataset used in our experiment. The Seg denotes the dataset with
segmentation labels and the Class denotes the dataset with classification labels.

CoNSeP CPM-17 Kumar

Total numbers
of nuclei 24,319 7570 21,623

Labeled nuclei 24,319 0 0
Number of images 41 32 30

Origin UHCW TCGA TCGA
Magnification 40× 40× & 20 × 40×
Size of images 1000×1000 500×500 to 600×600 1000×1000

Seg/Class Seg&Class Seg Seg
Number of

cancer types 1 4 8

We run our code on a server equipped with an NVIDIA Geforce RTX 3090 GPU
and Intel(R) Xeon(R) Gold 5118 CPU. During the training phase, we performed data
augmentation to augment the training data. We randomly combined zooming, channel
shifting, shearing, rotating, and horizontal/vertical flipping, which cropped the original
image into 270 × 270 sub-images. We used Kaiming normalization [44] to initialize weights
and set initial bias as false. We used Adam [45] as the optimizer, with a trainable batch
size of 4. We set an initial learning rate as 1.0× e−4 and weight decay as 0.1. The six
hyper-parameters λa, λb, λc, λd, λe, and λ f used for balancing the joint loss function are
tuned to be {1, 1, 1, 1, 2, 1} on the validation set.

4.2. Evaluation Metrics
4.2.1. Nuclei Instance Segmentation Evaluation

The segmentation of the nuclei instances can be divided into three sub-tasks; these
three sub-tasks are the separation of the nuclei from the background, the detection of
individual nuclei instances, and the segmentation of each detected instance. The Ensemble
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Dice [43] and Aggregated Jaccard Index [42] are two popular metrics used to measure the
performance of nuclei instance segmentation. To better investigate the proposed method,
we need to measure the performance of each sub-task. The dice coefficient (F1 score) is
defined by

Dice_coe f =
|TP|

|TP|+ 1
2 |FP|+ 1

2 |FN|
=

2× (X ∩Y)
(|X|+ |Y|) , (12)

where TP represents the true-positive rate, FP represents the false-positive rate, and FN repre-
sents the false-negative rate. X and Y represent the ground truth and prediction, respectively.

The AJI calculates the ratio of an aggregated intersection cardinality to an aggregated
union cardinality between the ground truth and prediction. It is defined by

AJI =
∑N

i=1|Gi ∩ Pi
M|

∑N
i=1|Gi ∪ Pi

M|+ ∑F∈U |PF|
, (13)

where Gi is the ith nucleus from the ground truth with N nuclei. Pi
M represents the Mth

connected component in prediction, which has the largest Jaccard Index with Gi, and where
each M cannot be utilized more than once. U is a set representing the connected component
in the prediction without the corresponding ground truth.

Unfortunately, F1 score and AJI only calculate an overall score for the instance segmen-
tation quality. In addition, the two metrics suffer from a limitation that they will produce
excessive penalization and result in an abnormal score for overlapping regions.

To take a measurement of each sub-task, we take advantage of panoptic quality [46]
with accurate quantification and interpretability to measure the performance of nuclei
instance segmentation. The panoptic quality for nuclei instance segmentation is defined by

PQ = DQ× SQ = Dice_coe f × ∑(x,y)∈TP IoU(x, y)
|TP| , (14)

where x and y denote a ground truth component and a prediction component, respectively.
The IoU represents the intersection over union. Each (x, y) must be unique over the whole
set of prediction and ground truth segments, if their IoU(x, y) > 0.5. DQ and SQ help
to give a direct insight into detecting individual nuclear instances and segmenting each
detected instance. Therefore, PQ can serve as the objective evaluation criteria for measuring
the performance of the nuclei instance segmentation task.

To demonstrate the effectiveness of the proposed method, we use the following three
metrics. Dice coefficient and PQ are used to measure the separation of all nuclei from
the background and serve as a unified score for comparison, respectively. The AJI is
used for the comparison with other methods. In this study, these three metrics serve as
objective evaluation criteria. As the most reliable assessment of the segmentation quality,
the subjective evaluation can also be carried out in practical applications.

4.2.2. Nuclei Classification Evaluation

Nuclei classification is influenced by nuclei instance segmentation. The whole measure-
ment for nuclei type classification should include nuclei instance segmentation.
HoVer-Net [13] defines an efficient evaluation, which is defined by

Ft
c =

2(TPc + TNc)
2(TPc + TNc) + 2(FPc + FNc) + (FPd + FNd)

, (15)

where FPd and FNd are false-positive and false-negative in detecting ground truth instances,
respectively. TPc, TNc, FPc, and FNc denote true-positive, true-negative, false-positive, and
false-negative, respectively.
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4.3. Experimental Results

Table 3 compares the number of trainable parameters of the proposed and other
popular models. As can be seen from this table, our model gives the smallest size among
all others in terms of the nuclei segmentation task and the second smallest size in term
of the joint segmentation and classification task. Consequently, our model offers a high
degree of computational efficiency. Table 4 compares the Dice scores of the proposed and
two state-of-the-art models working with small mini-batch sizes. The results indicate that
the proposed model appears more stable, i.e., our model can work well on small-memory-
capacity GPUs, such as the NVIDIA 1080ti or 2080ti, thus reducing the hardware cost. The
model size is significantly smaller than other compared networks.

Table 3. Comparative results for the number of trainable parameters of different networks for nuclei
segmentation and classification. The Seg denotes the single-task network for segmentation. The
Seg&Class denotes the multi-tasking network for simultaneous segmentation and classification.

Method Seg/Class Parameters

HoVer-Net [13] Seg 42.94M
HoVer-Net [13] Seg&Class 52.20M
Micro-Net [14] Seg&Class 183.67M

DIST [30] Seg&Class 8.81M
DCAN [47] Seg 39.54M
SegNet [48] Seg 28.07M
FCN8 [49] Seg 128.05M
U-Net [28] Seg&Class 35.23M

Mask-RCNN [15] Seg&Class 44.17M
Our proposed Seg 15.03M
Our proposed Seg&Class 32.52M

Table 4. Comparative results for different mini-batch sizes presenting in three multi-tasking networks.
The Dice coefficient is used to evaluate the segmentation performance on the CoNSeP, Kumar, and
CPM-17 datasets.

Batch Size
Our Proposed HoVer-Net Micro-Net

Dice Dice Dice
CoNSeP Kumar CPM-17 CoNSeP Kumar CPM-17 CoNSeP Kumar CPM-17

1 0.821 0.851 0.865 0.816 0.794 0.843 0.752 0.759 0.828
2 0.830 0.844 0.870 0.806 0.804 0.875 0.764 0.785 0.857
3 0.839 0.842 0.870 0.835 0.819 0.879 0.758 0.794 0.859

The proposed network is measured by the three kinds of metrics discussed above,
compared with baselines and other state-of-the-art networks, and the results are reported
in Table 5. The results indicate that our proposed network achieves the highest accuracy
among all the others. Moreover, even though the DIST model has fewer parameters than
ours on joint nuclei segmentation classification task, its segmentation performance is worse
than ours by a large margin on all three datasets. Therefore, our network offers an optimal
trade-off between accuracy and efficiency.

As aforementioned, the 4-class nuclei classification carried out in HoVer-Net is imprac-
tical for use in practical pathological diagnosis. Accordingly, we have reclassified the data.
Table 6 lists the comparative results for 3-class nuclei classification on the CoNSeP dataset.
Here, Fd denotes the F1 score for nuclei detection. F1

c , F2
c , and F3

c denote the classification
score for healthy, inflammatory, and malignant/dysplastic epithelium classes, respectively.
The results show that the proposed network outperforms all the others in terms of F1

c , F2
c ,

and F3
c scores. In Figure 8, we illustrate the results of nuclei segmentation and classification

on the sample images and compare them with those of [13–15,30].
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CoNSeP

CPM-17

Kumar

Ground truth GSN-HVNET HoVer-Net

Malignant/dysplas

tic epithelium
Normal region Inflammatory

Mask-RCNNMicro-Net

Figure 8. Comparative results for nuclei classification and segmentation. The normal epithelium,
fibroblast, muscle, endothelial, and miscellaneous are combined into a single type corresponding to
the normal region, and the malignant/dysplastic epithelial and inflammatory are considered as two
separate types.

As can be seen from this figure, our lightweight method is successful in segmenting
overlapping and clustered nuclei. It is also excellent to complete the task of nuclei classifi-
cation at the same time. Overall, our proposed model achieves state-of-the-art accuracy
on nuclei segmentation and classification tasks while maintaining low computation cost.
Our idea can be directly deployed in the cell pathology diagnosis system to reduce the
workload of pathologists.

Table 5. Comparative results for nuclei segmentation. The Dice coefficient, AJI, and PQ are used
to evaluate the instance segmentation performance of ten networks on the CoNSeP, Kumar, and
CPM-17 datasets.

Method CoNSeP Kumar CPM-17
Dice AJI PQ Dice AJI PQ Dice AJI PQ

HoVer-Net [13] 0.838 0.525 0.494 0.826 0.618 0.597 0.869 0.705 0.697
SegNet [48] 0.796 0.194 0.270 0.811 0.377 0.407 0.857 0.491 0.531
FCN8 [49] 0.756 0.123 0.163 0.797 0.281 0.312 0.840 0.397 0.435
U-Net [28] 0.724 0.482 0.328 0.758 0.556 0.478 0.813 0.643 0.578
DIST [30] 0.798 0.495 0.386 0.789 0.559 0.443 0.826 0.616 0.504

DCAN [47] 0.733 0.289 0.256 0.792 0.525 0.492 0.828 0.561 0.545
Micro-Net [14] 0.784 0.518 0.421 0.797 0.560 0.519 0.857 0.668 0.661

Mask-RCNN [15] 0.740 0.474 0.460 0.760 0.546 0.509 0.850 0.684 0.674
CIA-Net [31] - - - 0.818 0.620 0.577 - - -

Our proposed 0.861 0.602 0.566 0.879 0.635 0.644 0.899 0.701 0.683
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Table 6. Comparative results for 3-class nuclei classification on the CoNSeP dataset. Fd denotes the
F1 score for nuclei detection. F1

c , F2
c , and F3

c denote the classification score for healthy, inflammatory,
and malignant/dysplastic epithelium classes, respectively.

Method Fd F1
c F2

c F3
c

HoVer-Net [13] 0.784 0.488 0.525 0.517
Micro-Net [14] 0.812 0.487 0.549 0.546

DIST [30] 0.782 0.489 0.569 0.526
Mask-RCNN

[15] 0.701 0.413 0.568 0.514

Our proposed 0.820 0.514 0.572 0.519

5. Conclusions

In this paper, we designed a lightweight, multi-task deep learning framework for
nuclei segmentation and classification. Our model follows an encoder–decoder architecture,
and the decoder consists of three branches, each outputting a prediction for a sub-task. To
sufficiently use the correlation among the three branches, we employ NSS and HV branches
to complete the nuclei instance segmentation and use NC branch to predict the classes
of each nucleus in a learning process. Two newly designed blocks, Residual-Ghost-SN
and Dense-Ghost-SN, are employed in the encoder and decoder parts, respectively, to
reduce the computational cost and improve the network stability under small batch sizes.
Extensive experiments have been carried out on the CoNSeP, Kumar, and CPM-17 datasets,
and the results demonstrate that our model offers a state-of-the-art trade-off between
computational efficiency and both segmentation and classification accuracy.

Ultimately, our idea is generic, and can be easily deployed to other histopathology
images analysis works. Moreover, the blocks proposed in this paper, including Residual-
Ghost-SN and Dense-Ghost-SN, are also generic and can be flexibly embedded into other
deep CNNs for histopathology image diagnostic tasks. However, regarding their appli-
cation in the field of natural images, we have not conducted experiments, and the effects
cannot be guaranteed. Thus, we pose this as an open problem and expect to provide a
theoretical analysis with complete proof in further research.
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Abstract: Activated channels of functional near-infrared spectroscopy are typically identified using
the desired hemodynamic response function (dHRF) generated by a trial period. However, this
approach is not possible for an unknown trial period. In this paper, an innovative method not using
the dHRF is proposed, which extracts fluctuating signals during the resting state using maximal
overlap discrete wavelet transform, identifies low-frequency wavelets corresponding to physiological
noise, trains them using long-short term memory networks, and predicts/subtracts them during the
task session. The motivation for prediction is to maintain the phase information of physiological
noise at the start time of a task, which is possible because the signal is extended from the resting state
to the task session. This technique decomposes the resting state data into nine wavelets and uses
the fifth to ninth wavelets for learning and prediction. In the eighth wavelet, the prediction error
difference between the with and without dHRF from the 15-s prediction window appeared to be the
largest. Considering the difficulty in removing physiological noise when the activation period is near
the physiological noise, the proposed method can be an alternative solution when the conventional
method is not applicable. In passive brain-computer interfaces, estimating the brain signal starting
time is necessary.

Keywords: functional near-infrared spectroscopy; filtering; physiological noise; maximal overlap
discrete wavelet transform; long-short term memory

1. Introduction

In processing functional near-infrared spectroscopy (fNIRS) signals, a task-related
hemodynamic signal cannot be identified if a physiological noise period is overlapped with
the designed task period. This study proposes a novel method to identify physiological
noises from the resting state and remove those noises during the task period using wavelet
techniques and neural networks-based prediction. FNIRS is a brain-imaging technique
that uses two or more wavelengths of light in near-infrared bands to measure changes
in oxidized and deoxidized hemoglobin concentration in the cerebral cortex [1]. When
a person moves, thinks, or receives an external stimulus, the nerve cells in cerebral cor-
tical layers become excited. As the cells require more energy, the oxidized hemoglobin
concentration around the nerve cells increases, and the deoxygenated hemoglobin concen-
tration decreases [1]. Based on this principle, fNIRS can measure brain activity in real time.
Because fNIRS is inexpensive, easy to use, and harmless to the human body, it has been
used in brain disease diagnosis [2,3], brain-computer interface (BCI) [4], decoding sensory
signals [5,6], child development [7], and psychology research [8].

An fNIRS channel consists of one source and one detector. When the light is emitted
from a light source, photons pass through several layers, including the scalp, skull, cere-
brospinal fluid, capillaries, and cerebral cortex, before returning to a detector. Through this
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process, the detected light contains various noises that make it challenging to know the
hemodynamic responses. These noises include heartbeat, breathing, and motion artifacts [9];
more problematically, very low-frequency noise around 0.01 Hz has been reported [10–12].

In improving the accuracy of the measured signal, noise removal/reduction techniques
are indispensable. Various techniques can remove physiological noises such as heartbeat,
breathing, and Mayer waves. For instance, the superficial noise in the scalp can be removed
using short separated channels [13], additional external devices, or applying denoising
techniques such as adaptive filtering [14] and correlation analysis methods [15]. In addition,
since the frequency bands of physiological noise are roughly known, a band-pass filter has
become one of the most easily applied noise reduction techniques [16].

A general linear model (GLM) method has been widely used to find the task-related
hemodynamic response in the fNIRS signal after preprocessing [17]. The desired hemody-
namic response function (dHRF), which should be used for the GLM method, is designed
considering the experimental paradigm. However, in the case that the essential frequency of
the dHRF overlaps with a specific frequency of physiological noise, the conventional GLM
method will not work and may result in mistaking noise for the hemodynamic response.
Therefore, a new different denoising technique must be pursued.

A discrete wavelet transform (DWT) is a mathematical tool used to analyze signals
in the time-frequency domain [18]. In fNIRS research, DWT has been used for denois-
ing [19,20] and connectivity analysis [21,22]. The maximal overlap discrete wavelet trans-
form (MODWT) is a type of DWT often used in signal processing and time series analy-
sis [23]. It decomposes a signal into a series of wavelet coefficients at different widths and
time locations. Unlike the usual DWTs, which use non-overlapping sub-signal windows to
perform the wavelet decomposition, the MODWT uses overlapping sub-signal windows.
This nested-window approach allows the MODWT to improve time-frequency localization
and reduce the boundary effects that can occur in DWTs [24]. Due to this advantage,
MODWT has been applied to a wide range of signals, including audio signals [25], weather
information [26,27], and biomedical signals [28]. MODWT is powerful when the signals
are abnormal or have complex frequency components.

Deep learning, a subfield of artificial intelligence, is based on artificial neural networks.
In recent years, brain research has increasingly used it to analyze large, complex data
sets, such as those generated by biomedical devices [29]. Research has been conducted to
analyze health data such as magnetic resonance imaging (MRI) [30], electrocardiograms
(ECG) [31] and electroencephalograms (EEG) [32,33], or to decode brain waves to control
BCI [34,35]. Furthermore, analyzing brain neuroimaging data and identifying patterns
associated with specific diseases can help with early diagnosis and personalized treatment.

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) archi-
tecture designed to overcome the limitations of traditional RNNs in handling long-term
dependencies in sequential data [36]. It has been used in a wide range of applications for
time-series data classification and forecasting [37–40]. LSTMs are particularly useful in
tasks that require modeling long-term dependencies in sequential data. LSTMs’ ability to
selectively remember and forget information over time is vital for accurate forecasting.

MODWT-LSTM-based prediction research has shown excellent results in predicting
periodic data such as water level [41], ammonia nitrogen [42], weather [43], etc. In brain
research, MODWT has been applied as a preprocessing method for EEG-based seizure de-
tection [28,44], Alzheimer’s diagnosis [45], and resting state network analysis of fMRI [46].
Since brain signals are measured in time series, active research on brain signal classifica-
tion [47,48] uses LSTM. However, to our knowledge, this is the first study to predict the
noise in fNIRS signals despite many of the noise components being periodic.

In this study, one thousand synthetic data are generated, assuming 600-s rest and 40-s
task. Each data is decomposed into eight levels by the MODWT. Five wavelets containing
low-frequency components from the 600-s data are used to train an LSTM network. The
trained LSTM networks are used to predict the next 40 s, presumably the predicted signals
of the low-frequency oscillations. The predicted signals are then subtracted from the task
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period data. For validation purposes, the predicted signal and original data are compared
by calculating mean absolute errors (MAEs), and root mean square errors (RMSEs). Finally,
the proposed method is demonstrated by analyzing the actual fNIRS data from humans.

This paper is organized as follows: Section 2 describes the proposed method on the syn-
thetic data, Section 3 demonstrates the proposed method with actual fNIRS data, Section 4
discusses the results of this study and its applications, and Section 5 presents conclusions.

2. Method Development

This section describes the development of the proposed method with the following
four subsections. In the first subsection, the method of synthetic fNIRS data generation is
described. The second and third subsections explain the operation of MODWT and LSTM,
respectively. The fourth subsection describes the validation of the proposed method. The
last subsection presents the results of the data analysis.

2.1. Synthetic fNIRS Data Generation

One thousand synthetic data are generated according to the method of Germignani et al. [49]
with a sampling frequency of 8.138 Hz. For each data, thirty orders of autoregressive noise
are added to the baseline noise [50]. The synthetic physiological noises include frequency
ranges of 1 ± 0.1 Hz, 0.25 ± 0.01 Hz, and 0.1 ± 0.01 Hz for cardiac, respiratory, and Mayer
waves, respectively. In addition, a sine wave with a frequency of 0.01 ± 0.001 Hz was
generated for the very low-frequency component [11]. The amplitudes of five signals in
a synthetic fNIRS signal were set randomly in the range of 0.01 to 0.03. In this paper, the
resting period is set to 10 min, considering that the concerned low-frequency noise is near
0.01 Hz.

For five hundred data samples only, the desired hemodynamic function (dHRF) based
on a 2-gamma function with 20 s of task and 20 s of resting state after the 10 min resting
state were added. The amplitude of this signal was randomized between 0.1 and 0.35 and
added to the previously generated noise. All data were set to zero at the starting point
before processing the signals. Figure 1 depicts synthetic signals for various noises and the
resultant HbO signal assumed.

2.2. Maximal Overlap Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a signal processing technique that decom-
poses a signal into different frequency components at multiple levels of resolution. The
DWT works by convolving the signal with a set of filters, called wavelet filters, which
capture different frequency bands. The signal is decomposed into approximation and
detail coefficients [19], which represent low-frequency components and high-frequency
components, respectively. This decomposition is applied recursively to the approximation
coefficients to obtain a multi-resolution representation. However, the DWT has several
drawbacks, including the introduction of boundary artifacts due to the filtering process, the
lack of shift invariance in the decomposition, and the potential loss of fine detail at higher
decomposition levels.

Zhang et al. (2018) [51] utilized the DWT in forecasting vehicle emissions and specifi-
cally compared four cases: The autoregressive integrated moving average (ARIMA) model,
LSTM, DWT-ARIMA, and DWT-LSTM. They reported that adopting DWT improved the
performance overall. Individually, between ARIMA and LSTM, LSTM performed better;
between ARIMA and DWT-ARIMA, DWT-ARIMA generated improved results; between
LSTM and DWT-LSTM, DWT-LSTM was superior; and between DWT-LSTM and DWT-
ARIMA, DWT-LSTM demonstrated the best forecasting.

MODWT is a mathematical technique that transforms a signal into a multilevel wavelet
and scaling factor. MODWT has several advantages over DWT. For example, the MODWT
can be adequately defined for signals of arbitrary length, whereas the DWT is only for
signals of integer length to the power of two.
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For discrete signal X = {Xt, t = 0, 1, · · · , n− 1}, the jth element Wj and scaling factor
Vj of the MODWT are defined as follows.

Wj,t =
n−1

∑
l=0

∼◦
hj,lXt−lmodn, j = 1, 2, · · · , L, (1)

Vj,t =
n−1

∑
l=0

∼◦
gj,lXt−lmodn, (2)

where Wj,t is the wavelet coefficient of the tth element of the jth level of the MODWT; Vj,t is

the scaling factor of the tth element of the jth level;
∼◦
hj,l and

∼◦
gj,l are the jth level’s high- and

low-pass filters (wavelet and scaling filters) of MODWT generated by periodizing
∼

hj,l and
∼

gj,l , respectively, with n lengths;
∼

hj,l and
∼

gj,l are the jth level MODWT high (
∼

hj,l ≡ hj,l/2
j
2 )

and low (
∼

gj,l ≡ gj,l/2
j
2 ) pass filters; hj,l and gj,l are the jth level DWT high-pass and low-

pass filters, where L is the maximum decomposition level. The filters are determined by
the mother wavelet as in the DWT [52]. The MODWT based multiresolution analysis is
expressed as follows.

X =
L

∑
j=1

Dj + AJ0, (3)

Dj,t =
n−1

∑
l=0

∼◦
hj,lWj,t+lmodn, (4)

Aj,t =
n−1

∑
l=0

∼◦
gj,lVj,t+lmodn, (5)

187



Bioengineering 2023, 10, 685

where AL is the approximation component and Dj is the detail components (j = 1, 2, · · · , L).
Figure 2 shows a scheme of MODWT-based multiresolution analysis.
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Figure 2. Schematic of the MODWT decomposition.

In this study, Sym4 was selected as the mother wavelet because it resembles the canon-
ical hemodynamic response function. Let the number of data be N. Then, the maximum
decomposition level becomes less than log2(N). Considering our case’s shortest resting
state of 60 s, the data size is 60 s × 8.13 Hz = 487.8. Therefore, the decomposition level
in our work was selected by 8, which is the largest integer less than log2(487.8). The
eight decompositions result in nine signals, of which only five signals belonging to low
frequencies will be predicted.

2.3. Long Short-Term Memory

LSTM is a type of RNN architecture that addresses the vanishing gradient problem
and allows for capturing long-term dependencies in sequential data. LSTM consists of
memory cells that store and update information over time. The primary function of an
LSTM is to use memory cells that can hold information for long periods. Memory cells
can selectively forget or remember information based on input data and past states. This
allows the network to learn and remember important information while ignoring irrelevant
or redundant information. An LSTM network has three gates (input gate, forget gate, and
output gate) that control the flow of information into and out of the memory cells. The
input gate i(t) determines which information is stored in the memory cell c(t), the forget
gate f (t) determines which information is discarded, and the output gate o(t) controls the
output of the memory cell (Figure 3) [53].
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The LSTM model is represented by the following equations:

a(t) = σ(Wix(t) + Uih(t− 1) + bi), (6)

f (t) = σ(W f x(t) + U f h(t− 1) + b f ), (7)

c̃(t) = tanh(Wcx(t) + Uch(t− 1) + bc), (8)

c(t) = ft × c(t− 1) + it × c̃(t), (9)

o(t) = σ(Wox(t) + Uoh(t− 1) + bo), (10)

h(t) = o(t)× tanh(c(t)), (11)

where c(t − 1) and c(t) are the cell states at t − 1 and t, and at each gate, bi, b f , bc, b0
are the bias vectors, Wi, W f , Wc, W0 are the weight matrices, and Ui, U f , Uc, U0 are the
recurrent weights. σ is a sigmoid function, tanh is a hyperbolic tangent activation function,
and × denotes the cross product of two vectors.

In this study, three LSTM layers were utilized, with the number of hidden units set to
[128, 64, 32], and a dropout layer was employed between the LSTM layers with a probability
of 0.2 to prevent overfitting (Figure 4). To train the LSTM network, the Adam optimizer was
used with a maximum epoch of 100 and a minibatch size of 128. All data were normalized
before training.
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the number of data. The calculated MAEs and RMSEs of the signal with and without the 
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Figure 4. Diagram of the proposed time-series prediction based on MODWT-LSTM.

For the synthetic data, nine hundred data were randomly selected from the thousand
data to train the network, and then one hundred data were tested. The number of data
points trained was divided into five conditions ([600 s, 300 s, 150 s, 90 s, 60 s] × sampling
rate (8.13 Hz) = [4883, 2441, 1221, 732, 488]), and then 244 data points (30 s × 8.13 Hz)
were predicted.

For actual fNIRS data, a leave-one-out method was used to avoid splitting data from
the same person for training and testing. For example, to train an LSTM network to predict
the 48 channels of a subject, a total of 432 channels (nine subjects × 48 channels) were used.
Since the data was only 600 s long, 570 s of data were used for training, and the trained
LSTM network predicted the next 30 s.
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2.4. Validation

To determine the accuracy of the signal predicted by the LSTM, the mean absolute error
(MAE) and root mean squared error (RMSE) were calculated compared to the original signal,
divided by the signal with and without dHRF. The data was segmented, analyzed, and
predicted to find the required resting-state length to achieve optimal prediction accuracy,
as shown in Figure 5. MAE and RMSE can be calculated using the following equations.

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (12)

RMSE =

√
∑n

i=1 (yi − ŷi)
2

n
, (13)

where yi is the original signal, ŷi is the predicted signal, i is the timestep, and n is the
number of data. The calculated MAEs and RMSEs of the signal with and without the dHRF
were compared using a two-sample t-test.
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Figure 5. Data segmentation for validation (red: MODWT data length, blue: LSTM data length
for training).

2.5. Synthetic Data Analysis

The synthetic data were decomposed into nine components using MODWT, and the
components used for prediction were the fifth through ninth. The frequency of the fifth
wavelet was between 0.13 and 0.26 Hz, the sixth between 0.067 and 0.13 Hz, the seventh
between 0.035 and 0.067 Hz, the eighth between 0.017 and 0.035 Hz, and the ninth consisted
of signals below 0.017 Hz. Figure 6 shows the prediction results of the signal with and
without dHRF. The signal with dHRF showed a significant fluctuation during the task
period in the low-frequency signals of Wavelets 6–9, and the predicted signal did not follow
this fluctuation.

Figure 7 and Table 1 show the calculated MAEs and RMSEs. In all conditions, the
MAEs and RMSEs of the signal with dHRF corresponding to Wavelets 6–9 and the signal
without dHRF were statistically significantly different. The only statistically significant
difference between with and without dHRF was found in the RMSE of Wavelet 5 when
the MODWT-LSTM analysis was performed with 300 s of data (Figure 7c). To compare
the prediction results for each condition, MAEs and RMSEs for all conditions are shown
in Figure 8. The error of the dHRF signal was the largest in Condition 2 (MODWT-LSTM
at 600 s) and the smallest in Condition 6 (MODWT-LSTM with 60 s of data). In particular,
the difference in prediction accuracy between with and without dHRF signals of Wavelet 8
was the largest in all conditions.
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Figure 6. Prediction results from synthetic data: (a) Without dHRF (MODWT 300 s, LSTM 300 s),
(b) with dHRF (MODWF 300 s, LSTM 300 s), (c) without dHRF (MODWT 600 s, LSTM 600 s), and
(d) with dHRF (MODWT 600 s, LSTM 600 s) (blue line: training data, red line: MODWT results
including test time, orange dotted line: predicted result).

Bioengineering 2023, 10, x FOR PEER REVIEW 9 of 18 
 

Figure 7 and Table 1 show the calculated MAEs and RMSEs. In all conditions, the 
MAEs and RMSEs of the signal with dHRF corresponding to Wavelets 6–9 and the signal 
without dHRF were statistically significantly different. The only statistically significant 
difference between with and without dHRF was found in the RMSE of Wavelet 5 when 
the MODWT−LSTM analysis was performed with 300 s of data (Figure 7c). To compare 
the prediction results for each condition, MAEs and RMSEs for all conditions are shown 
in Figure 8. The error of the dHRF signal was the largest in Condition 2 (MODWT−LSTM 
at 600 s) and the smallest in Condition 6 (MODWT−LSTM with 60 s of data). In particular, 
the difference in prediction accuracy between with and without dHRF signals of Wavelet 
8 was the largest in all conditions. 

 
Figure 7. MAEs and RMSEs for wavelets 5–9: (a) MODWT 600 s and LSTM training 300 s, (b) 
MODWT 600 s and LSTM training 600 s, (c) MODWT 300 s and LSTM training 300 s, (d) MODWT 
150 s and LSTM training 150 s, (e) MODWT 90 s and LSTM training 90 s, and (f) MODWT 60 s and 
LSTM training 60 s (* p < 0.05, ** p < 0.01). 

Figure 7. MAEs and RMSEs for wavelets 5–9: (a) MODWT 600 s and LSTM training 300 s, (b) MODWT
600 s and LSTM training 600 s, (c) MODWT 300 s and LSTM training 300 s, (d) MODWT 150 s and
LSTM training 150 s, (e) MODWT 90 s and LSTM training 90 s, and (f) MODWT 60 s and LSTM
training 60 s (* p < 0.05, ** p < 0.01).
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Figure 8. Comparison of MAE and RMSE for all data segmentations: (1) MODWT 600 s and LSTM
training 300 s, (2) MODWT 600 s and LSTM training 600 s, (3) MODWT 300 s and LSTM training
300 s, (4) MODWT 150 s and LSTM training 150 s, (5) MODWT 90 s and LSTM training 90 s, and
(6) MODWT 60 s and LSTM training 60 s.

For the 600 s data prediction results, MAEs and RMSEs were calculated for 1 s, 3 s,
5 s, 10 s, 15 s, and 30 s (Figure 9). In all cases, there were statistically significant differences
in Wavelets 6–9 between with and without dHRF. Especially for Wavelet 7, with the most
significant difference at 1 s and a decrease after that, but for Wavelet 8, the difference started
at 10 s and was most extensive at 15 s.
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3. Human Data Application

In this section, actual fNIRS data from human subjects were used to validate the
proposed method. The actual fNIRS data were obtained in the authors’ previous study,
but only resting state data were used [2]. In the first subsection, the fNIRS data acquisition
is briefly described. The second subsection describes the results of the application of the
proposed method.

3.1. fNIRS Data Acquisition

Resting state data with a data length of 10 min were selected from ten healthy subjects.
The selected subjects are five males and five females (age: 68 ± 5.95 years). Prior to the
experiment, each subject was fully informed about the purpose of the study. Written
informed consent was obtained from each subject. The entire experiment was approved by
the ethics committee of Pusan National University Yangsan Hospital (Institutional Review
Board approval number: PNUYH-03-2018-003).

Hemodynamic responses in PFC were measured with a portable fNIRS device (NIRSIT;
OBELAB, Seoul, Republic of Korea) equipped with 24 sources (laser diode) and 32 detectors
(a total of 204 channels, including short channel separation) at a sampling rate of 8.138 Hz.
NIRSIT uses two wavelengths of near-infrared light (780 nm and 850 nm) to measure
concentration changes of HbO and HbR. Only 48 channels with 3 cm of channel distance
out of 204 channels were used for this study.

3.2. Human Data Analysis

The prediction results for the actual HbO data are shown in Figure 10. Unlike the
synthetic data, the amplitude of the ninth wavelet was significantly lower than the other
wavelets. A spike appeared in all the wavelets at a particular time, presumably a motion
artifact. The MODWT results differed at both ends of the wavelets for the 570 s data and
the 600 s data.
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Figure 10. Prediction results of MODWT-LSTM for actual HbO data (blue line: training data, red line:
MODWT results including test time points, orange dotted line: predicted result).

Table 2 shows the results of calculating the mean and standard deviation of the MAEs
and RMSEs of the predictions on the real HbO data. Among them, the average value is
plotted for easy comparison (Figure 11). The ninth wavelet had the slightest error but the
most significant standard deviation across all cases. The fifth and sixth wavelets showed
increasingly significant errors until 3 s and 5 s, respectively, then decreased. The seventh
and eighth wavelets had more significant errors as the time window increased.
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Table 2. Mean and standard deviation of MAEs and RMSEs for real data.

MAE RMSE

1 s 3 s 5 s 10 s 15 s 30 s 1 s 3 s 5 s 10 s 15 s 30 s

Wavelet 5
Mean 0.538 0.775 0.677 0.556 0.494 0.469 0.594 0.865 0.786 0.677 0.617 0.619

Std 0.835 1.056 1.009 0.856 0.796 0.744 0.873 1.138 1.141 0.995 0.932 1.063

Wavelet 6
Mean 0.359 0.612 0.698 0.635 0.580 0.598 0.385 0.682 0.779 0.731 0.682 0.737

Std 0.643 0.714 0.988 0.905 0.814 0.953 0.669 0.804 1.120 1.056 0.950 1.356

Wavelet 7
Mean 0.309 0.429 0.527 0.529 0.552 0.645 0.316 0.456 0.566 0.585 0.622 0.759

Std 0.828 1.063 1.297 1.090 1.247 1.520 0.835 1.105 1.356 1.204 1.385 1.802

Wavelet 8
Mean 0.335 0.322 0.334 0.428 0.525 0.683 0.338 0.336 0.358 0.481 0.595 0.805

Std 1.295 1.172 1.144 1.377 1.680 1.880 1.298 1.208 1.226 1.541 1.852 2.156

Wavelet 9
Mean 0.363 0.372 0.375 0.379 0.378 0.362 0.364 0.374 0.378 0.385 0.388 0.387

Std 2.157 2.188 2.214 2.225 2.176 1.838 2.157 2.189 2.215 2.227 2.180 1.886
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Std 0.835 1.056 1.009 0.856 0.796 0.744 0.873 1.138 1.141 0.995 0.932 1.063 

Wavelet 
6 

Mean 0.359 0.612 0.698 0.635 0.580 0.598 0.385 0.682 0.779 0.731 0.682 0.737 
Std 0.643 0.714 0.988 0.905 0.814 0.953 0.669 0.804 1.120 1.056 0.950 1.356 

Wavelet 
7 

Mean 0.309 0.429 0.527 0.529 0.552 0.645 0.316 0.456 0.566 0.585 0.622 0.759 
Std 0.828 1.063 1.297 1.090 1.247 1.520 0.835 1.105 1.356 1.204 1.385 1.802 

Wavelet 
8 

Mean 0.335 0.322 0.334 0.428 0.525 0.683 0.338 0.336 0.358 0.481 0.595 0.805 
Std 1.295 1.172 1.144 1.377 1.680 1.880 1.298 1.208 1.226 1.541 1.852 2.156 

Wavelet 
9 

Mean 0.363 0.372 0.375 0.379 0.378 0.362 0.364 0.374 0.378 0.385 0.388 0.387 
Std 2.157 2.188 2.214 2.225 2.176 1.838 2.157 2.189 2.215 2.227 2.180 1.886 
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nectivity map is an image map of correlation coefficients between two channels, which 
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Figure 11. Averaged MAEs and RMSEs of real HbO data MODWT-LSTM for each wavelet by
predicted time windows.

4. Discussion

In fNIRS studies, cognitive tasks are used to evaluate cognitive abilities such as work-
ing memory, conflict processing, language processing, emotional processing, and memory
encoding and retrieval [54]. For example, N-back, Stroop, and verbal fluency tasks evalu-
ate working memory, conflict processing, language processing, etc. Such cognitive tasks
are also often used to detect brain diseases such as schizophrenia, depression, cognitive
impairment, attention-deficit hyperactivity disorder, etc. [55].

Cortical activations caused by cognitive tasks are investigated by a t-map, a con-
nectivity map, or extracted features from HbO signals [2,3]. The t-map is reconstructed
with t-values from the GLM method, indicating the dHRF’s weight at each channel. The
connectivity map is an image map of correlation coefficients between two channels, which
reflects how those two channels are interrelated. Hemodynamic features such as the mean,
slope, and peak value have also been used to diagnose brain diseases. Cognitive task
analysis can identify activated/deactivated regions and differences between healthy and
non-healthy people.
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The proposed method was validated in two ways: (i) By comparing synthetic data
with and without dHRF, and (ii) by predicting the resting state data. In the synthetic
data, the proposed method showed statistically significant differences in the prediction
errors between with and w/o dHRF. The prediction errors in human resting state data
also showed concordance with the results of synthetic data without dHRF. The agreement
between the synthetic data without dHRF and the human resting state data demonstrates
that the task-related response can also be differentiated from the proposed method.

Since the hemodynamic signal in this study consisted of 20 s of task and 20 s of
rest and had a frequency of 0.025 Hz, it was expected that the eighth wavelet would
show a significant difference with and without dHRF. As shown in Figure 6, the wavelet
decomposition of the signal with dHRF was different from the signal without in the sixth
through ninth wavelets. As expected, a statistically significant difference was found in
the eighth wavelet, but the sixth, seventh, and ninth wavelets also showed significant
differences. This is likely due to the decomposition of the dHRF into multiple levels when
performing the MODWT.

The LSTM results show that the difference between with and without dHRF is more
pronounced when the number of training data points increases. (Figure 7a,b). In addition,
the smaller the number of training data points, the smaller the prediction error of the signal
with dHRF and the larger the prediction error of the signal without dHRF. This is not
surprising, since sufficient data is required for practical training of the LSTM.

To investigate whether the occurrence of hemodynamic signals can be predicted early,
MAEs and RMSEs were estimated by dividing the predicted data into 1 s, 3 s, 5 s, 10 s, 15 s,
and 30 s, and the difference in error between the seventh wavelet with and without dHRF
was significant early. The difference between the eighth wavelet with and without dHRF
was significant at 15 s because it took more than 10 s for the dHRF to rise to the maximum,
since it takes time for the dHRF to rise.

When the proposed method was applied to real data, the error was similar to that of
the synthetic data without dHRF. The lowest error occurred in the ninth wavelet, which
seems to be due to the lowest signal strength of the ninth wavelet. Initially, wavelets with
higher frequencies produced relatively higher errors, but the opposite was true as the
prediction time increased. This suggests that as the data length varies, the results of the
MODWT change as well, as this is more pronounced at both ends of the data.

Methods to estimate the hemodynamic response and remove noise from fNIRS signals
include Kalman filtering [56], Bayesian filtering [57], block averaging [58], general linear
models [59], and adaptive filtering [14,60,61]. In addition, initial-dip detection has also been
studied for early detection of hemodynamic responses [62,63]. However, these methods
rely heavily on the desired hemodynamic function as a reference signal (Table 3). The
hemodynamic signal is designed by gamma functions [64], the balloon model [65], the
finite element method [66], the state-space method [67,68], etc. These hemodynamic signals
are not suitable for use in unknown areas because they depend on the brain region or task
being measured. However, the proposed method is differentiated from existing methods in
that it does not require a reference signal and can be applied without external devices.

Table 3. Comparison with the existing methods (adaptive filtering and general linear model) and the
proposed method.

Category

Method Adaptive Filtering [14] Bandpass Filter [5] The Proposed Method

Low-freq. noise removal capacity Middle Low High

Experiment paradigm (dHRF) Required Required Not required

Processing type Online On/offline Offline

Unknown task period Cannot handle Cannot handle Can handle

Dataset size Small Small Large
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5. Conclusions

The following three implications are made:
(i) Alleviating the dHRF’s trap: In the conventional methods (i.e., general linear

model [59], recursive estimation method [60], etc.), the brain signal is identified by com-
paring HbO signals with a dHRF. If the correlation coefficient between two signals is high,
the measured HbO is attributed to the task. The dHRF computed by convolving a gamma
function with the task period contains multiple frequencies, not a single frequency. For
example, for a 20 s task followed by a 20 s rest, the dHRF has 0.025 Hz (=1/40 s), and all
other components are considered noises. Such multiple frequencies are also seen from
the synthetic data analysis, showing that the added 0.025 Hz dHRF affected neighboring
frequency bands, see Figure 6. Therefore, if the brain signal is identified with only the
dHRF, the neighboring signals are unwillingly included (which could be noises). Hence,
the proposed method can alleviate the dHRF’s trap.

(ii) Can handle an unknown task period: In neuroscience, fNIRS has been used
to identify brain regions associated with specific tasks and to understand how neural
networks function. In particular, regular examinations in daily life are essential for the early
detection of cognitive decline due to brain disease or aging. Research on the classification
of cognitive decline and brain disease diagnosis using fNIRS is being actively conducted.
However, it is challenging to establish classification criteria because hemodynamic signals
vary depending on various factors such as age and gender. In particular, it is necessary to
compare behavioral data and fNIRS signals for classification, and the duration of cognitive
function tests belonging to neuropsychological tests should be pre-designed. Thus, the
proposed method can be used when the task period to be observed is unknown or very long.

(iii) Starting time estimation for passive BCI: Recently, passive BCI has become essential
for fault-free automotive cars, pilots, etc. In this case, the brain signal’s starting time has to
be identified. To estimate the starting time, a moving-window approach can be adopted. If
the prediction error becomes large while moving the window, the instance of a significant
error can be considered as the starting time of a passive brain signal, and we can generate a
BCI command.

The proposed method can overcome the variability in the resting state, which varies
from person to person, by predicting the subsequent signal. The predicted signal ought to
be removed from the measured signal, and the remaining signal should be analyzed for
brain activity. Although the proposed method has some limitations, e.g., large volumes of
training data and computation time to train the model for the first time, it is expected to
play a significant role in improving the temporal resolution of fNIRS in the future.
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Abstract: The rising prevalence of diabetes and the increasing awareness of self-health management
have resulted in a surge in diabetes patients seeking health information and emotional support in
online health communities. Consequently, there is a vast database of patient consultation information
in these online health communities. However, due to the heterogeneity and incompleteness of
the content, mining medical information and patient health data from these communities can be a
challenge. To address this issue, we built the RoBERTa-BiLSTM-CRF (RBC) model for identifying
entities in the online health community of diabetes. We selected 1889 question–answer texts from the
most active online health community in China, Good Doctor Online, and used these public data to
identify five types of entities. In addition, we conducted a comparative evaluation with three other
commonly used models to validate the performance of our proposed model, including RoBERTa-
CRF (RC), BilSTM-CRF (BC), and RoBERTa-Softmax (RS). The results showed that the RBC model
achieved excellent performance on the test set, with an accuracy of 81.2% and an F1 score of 80.7%,
outperforming the performance of traditional entity recognition models in named entity recognition
in online medical communities for doctors and diabetes patients. The high performance of entity
recognition in online health communities will provide a crucial knowledge source for constructing
medical knowledge graphs. This integration would help alleviate the growing demand for medical
consultations and the strain on healthcare resources, while assisting healthcare professionals in
making informed decisions and providing personalized services to patients.

Keywords: diabetes; online healthcare data; named entity recognition; RoBERTa-BiLSTM-CRF; online
health community

1. Introduction

In 2030, it is expected that 11.3% of adults will have diabetes, which would affect
roughly 643 million people. Diabetes is one of the most rapidly expanding global crises of
the 21st century [1]. Relevant studies have indicated that roughly half of web-based health
information users with chronic health issues may benefit from accessing online health
information [2]. The Q&A structure of online health communities (OHCs) is becoming
more and more popular, with diabetic patients seeking medical knowledge and diabetic
self-management assistance [3–5].Online health communities store a significant amount of

Bioengineering 2023, 10, 659. https://doi.org/10.3390/bioengineering10060659 https://www.mdpi.com/journal/bioengineering
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case information, medical knowledge, and prescription data, which serves as the hotspots
for medical big data applications.

In the doctor–patient Q&A texts from the online health community, entities can be
identified as linked to diseases, medications, tests, treatments, and symptoms for diabetes
patients, and used to provide various intelligent services to diabetic patients. We can also
gain a deeper understanding of patients’ needs and interests in health-related information
through entity recognition [6].With this knowledge mined from online health communities,
we can then offer patients individualized medical care, health information, decision-making
participation, emotional support services, and improvements in online medical services.

Historically, vast sets of rules or lexicons had to be manually created by professionals
for both rule-based and lexicon approaches to medical entity recognition [7–9]. Using bench-
mark data from the i2b2 2009 drug challenge and a hybrid lexicon-based and rule-based
model, [10] achieved an F1 score of 66.97% for the named entity recognition of pharmaceu-
ticals. Statistics-based machine learning algorithms leveraging manually annotated corpora
for supervised training have exhibited a significant increase in accuracy over rule-based
and lexicon-based entity recognition approaches [11,12]. With the advent of deep learning,
numerous neural-network-based models have effectively been used for the textual entity
recognition of biological documents [13,14], electronic medical records [15–17], and online
health communities [18–20] Dreyfus Dreyfus. Based on the entity recognition infrastructure
deep learning model LSTM-CRF, Guillaume Lample et al. [21] proposed a neural network
model that combines bidirectional long short-term memory (BiLSTM) and conditional
random fields (CRFs). This bidirectional structure enables the capture of sequential in-
formation in context, leading to widespread applications in entity recognition. Wang, Z.
et al. [22] retrieved input patient fundamental information and illness information, anno-
tated entities on medical community Q&A texts, and trained a BiLSTM-CRF to recognize
and extract entities linked to diabetes in the medical domain. However, the BiLSTM-CRF
model focuses on extracting features between words and characters from the text while dis-
regarding the contextual meaning of context. To address this issue, Jacob Devlin et al. from
Google introduced a BERT pre-training model [23]. This model improved the quality of
embedding words and reduced the workload of downstream classification tasks, resulting
in better recognition performance. In recent years, named entity identification in electronic
medical records [24–26] and biomedical literature [27] has been successfully implemented
with BERT, a pre-trained model with enhanced contextual long-range semantic learning
capability based on word vectors.

Due to their lack of medical knowledge, users of the online healthcare communities
for diabetes produce texts that contain inaccurate or slang expressions. Entity recogni-
tion of Q&A text in online health communities is challenged with semantic ambiguity,
content heterogeneity, high complexity, and imperfect recognition; hence, it is difficult
to achieve the desired outcome. Some studies have shown that applying the RoBERTa
model to named entity recognition tasks improves the entity recognition performance
(F1 score) [28]. To mitigate the impact of Chinese online health data on the performance
of entity recognition, this paper utilizes a combined model of RoBERTa-BiLSTM-CRF to
accomplish medical entity recognition tasks related to diabetes. This method primarily
addressed the following tasks: (1) We standardized the diabetes annotation corpus of
the online health community using the diabetes entity classification standards of Ruijin
Hospital; (2) The pre-trained model RoBERTa-BiLSTM-CRF was used to identify named
entities in Q&A text from the Good Doctor Online health community, and evaluated by
comparing it with the other three models; (3) The entity recognition performance of the
Q&A texts from the perspective of the patient was compared with that of electronic medical
records from the clinician’s perspective.
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2. Method
2.1. Data Collection and Preprocessing

We chose the top Chinese online doctor–patient Q&A platform, “Good Doctor Online”
(https://www.haodf.com/, accessed on 5 December 2021), searched the Q&A section of
the diabetes-specific disease section, and collected 9446 questions from November 2020 to
November 2021. When consulting doctors, patients submitted content using a specified
information description framework, as shown in Figure 1.
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Figure 1. Online doctor-patient Q&A text structure (from the website’s original screenshot).

For this study, the following preprocessing processes were carried out: (1) Removed all
non-textual content (replacing emoji icons with emoji-related codes); (2) Filtered 2000 values
at random from the acquired dataset of 9445 values, deleted duplicate and nonsensical data
to obtain 1889 values, and converted the data to JSON format; (3) Annotated the questions
of health community Q&A text into eight categories (check, disease, drug, mood, life, social,
symptom, and treat) using the Doccano annotation tool. Figure 2 depicts the annotation
interface; (4) To process the exported text, it was divided into 6669 values. The dataset was
then further split into a training set consisting of 6019 data slices and a test set consisting of
650 data slices. The ratio of this split was approximately 9:1. Within the training set, the
data were divided into a training subset and a validation subset, at a ratio of 5:1. Next, we
converted the JSON format files into a data format for generic named entity recognition
tasks using BIO tagging; (5) Utilized the RoBERTa word vector model made available by
the Harbin Institute of Technology as an open source. Figure 3 depicts the specific data
preprocessing procedure.

Figure 2. Annotation tool interface (from the website’s original screenshot).
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Figure 3. Data preprocessing flow chart.

2.2. RoBERTa-BiLSTM-CRF Model Construction

This article employed the RoBERTa-BiLSTM-CRF model, which is composed of three
layers: the RoBERTa word vector layer, the BiLSTM layer, and the CRF layer. In the word
vector layer, word embedding and model construction were carried out by applying the
Chinese pre-training model from the HUST Xunfei Lab in order to obtain word-level vector
information and a semantic representation suitable for the Chinese language. The BiLSTM
layer is utilized for semantic encoding, and forward and backward LSTM networks are
used for each training sequence; the forward and backward networks were connected to
the same output layer. The CRF layer, which effectively evaluated the labeling information
before and after the sequence, filtered out entities that did not conform to the labeling rules
and outputs a sequence with the best likelihood of being correctly categorized. Figure 4
depicts the general structure of the RoBERTa-BiLSTM-CRF model.

2.2.1. RoBERTa Pre-Training Layer to Construct Word Vectors

Each input word of the encoder generated three vectors, denoted by vectors, accord-
ingly. After calculating the inner product between and producing the similarity weights,
the similarity was calculated. Then, the weights were normalized to a value between 0 and
1, and the similarity vector was processed using the function shown in Equation (1).

αi = so f tmax( f (Q, Ki)) =
exp( f (Q, Ki))

∑i exp( f (Q, Ki))
(1)
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Scaling was accomplished by multiplying 1√
dk

with the result of the inner product of

Q and K. The attentional mechanism is presented in Equation (2).

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

Combining the outcomes of attention processes yielded the multi-headed attention
module, as determined using Equation (3).

MultiHead(Q, K, V) = Concat(head1, head2, head3, . . . , headh)Wo (3)

The output of the multi-headed attention layer was then passed to the feed-forward
neural network, the module described in Equation (4).

FFN(Z) = max(0, ZW1 + b1)W2 + b2 (4)

The output layer employed a self-supervised approach to estimate the probability
that the masked target word and the two phrases shared a contextual link. After multiple
training iterations, the likelihood and the weight parameter with the largest value for the
two tasks are determined.

Figure 4. Structural diagram of the Bert-BilSTM-CRF model.
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2.2.2. Layer of BiLSTM for Semantic Encoding

Long short-term memory networks incorporate memory units in the hidden layer,
which can better solve the problem of gradient disappearance caused by excessively long
sequences in the training of conventional recurrent neural networks, enabling them to be
more effectively used in the named entity recognition task. Its structure consists of the
following equations:

it = σ
(

xt · wi
xh + ht−1 · wi

hh′ + bi
h

)
(5)

ft = σ
(

xt · w f
xh + ht−1 · w f

hh′ + b f
h

)
(6)

ot = σ(xt · wo
xh + ht−1 · wo

hh′ + bo
h) (7)

c′t = tanh(xt · wc
xh + ht−1 · wc

hh′ + bc
h) (8)

ct = it ⊗ c′t + ft ⊗ c′t−1 (9)

ht = ot ⊗ tanh(ct) (10)

The σ denotes the Sigmoid activation function, ⊗ is the dot product operation, and xt
is used as the unit input; it, ft,ot denotes the input gate, forgetting gate, and output gate at a
specific moment, respectively; tanh denotes the hyperbolic tangent activation function; w,b
represent the weight matrix and bias vector of the input gate, forgetting gate, and output
gate, respectively; c′t represents the state at time, which is the intermediate state obtained
only from the current input and is used to update the state at time t; ht represents the
output at time t.

The BiLSTM bi-directional long and short-term memory network with forward and
reverse LSTM for each word sequence was used to decode the text sentences in the input
layer, and data conversion and transfer through forward LSTM and backward LSTM were
used to acquire contextual feature vectors in both directions. First, the output calculated the
error existing in the output layer at each moment, followed by the derivatives of parameters
of the forward LSTM from moment t to moment 1. For the network portion of the backward
LSTM, loss needs to be calculated from moment 1 to moment t, and reverse differentiation
be conducted. The formula for the output is provided in the following equations:

⇀
h t = LSTML

(
⇀
x t,

⇀
h t−1

)
(11)

↼
h t = LSTMR

(
↼
x t,

↼
h t−1

)
(12)

ht =

[
⇀
h t,

↼
h t

]
(13)

2.2.3. CRF Optimized Tag Sequence

CRFs can compensate for the shortcomings of BiLSTM by providing an ideal sequence
of predictions based on the relationship between surrounding labels. The output score
matrix of BiLSTM is supposed to be P for any arbitrary sequence X = (x1, x2, . . . , xn). The
size of P is n× k, where n represents the number of words, k represents the number of tags,
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and Pij represents the score of the jth tag of the word. Equation (14) describes the score
function for the sequence of predictions Y = (y1, y2, . . . , yn).

s(X, Y) =
n

∑
i=0

Ayi, yi+1 +
n

∑
i=0

Pi, yi (14)

A denotes the matrix of transferred scores, Aij represents the scores transferred from label i
to label j, and the size of A is k + 2. Equation (15) describes the probability of generating
the predicted sequence Y.

p(Y|X) =
es(X,Y)

∑Ỹ∈YX
s
(

X, Ỹ
) (15)

The probability function of the expected sequence could be obtained by taking the
logarithm at both ends.

ln(p(Y|X)) = s(X, Y)− ln


 ∑

Ỹ∈YX

s
(

X, Ỹ
)

 (16)

In Equation (17), Ỹ denotes the true labeled sequence, whereas YX denotes all con-
ceivable labeled sequences. Decoding yielded the output sequence corresponding to the
maximum score.

Y∗ = arg maxs
(

X, Ỹ
)

ỸεYX

(17)

3. Result
3.1. Text Annotation

Health Community Q&A texts are self-reported by patients to their physicians; there-
fore, the language of the text differed from that of the medical literature and electronic
medical records. When annotating, it is important to note the frequent abbreviations and
misspellings. The original words were precisely aligned with the common words. Under
the supervision of two medical informatics professionals and one medical expert, we coded
each record in terms of the classification criteria for diabetes mellitus at Ruijin Hospital.
This labeling was divided into eight categories (check, disease, drug, lifestyle, mood, social
context, symptom, and treatment). Table 1 summarizes the classification criteria.

Table 1. Labeling classification standards.

Classification Description Labeling Case

Check Test and examination items, physical examination, review, etc. A review at the hospital the previous day; a check-up
at the hospital.

Disease Disease names, such as hypertension, diabetes, etc. No diabetes in the family either.

Drug The name of the drug, such as nifedipine, metformin,
nifedipine, etc.

The medications being taken are Metformin
Hydrochloride and Vildagliptin.

Lifestyle Patient’s lifestyle, e.g., smoking, alcohol
consumption, sleep, etc. Smoking; drinking; staying up late.

Mood Irritable, anxious, worried So now it is confusing.

Social context
Dad (my dad), wife (my wife), medical history, occupation,

height, weight, age, gender (pregnancy and
gestation), wanting children.

Height and weight: 171 cm, 70 kg.
Pregnancy: not pregnant.

Symptom
Patient’s subjective description of feelings and signs (skin
jaundice), such as dizziness, non-dizziness, nocturia, puffy

eyelids, and frequent need to urinate.

Feeling of vertigo when standing suddenly; I urinate
frequently and often, but each time the amount of

urine is not much, nausea, vomiting, weakness,
stomach pain, and breast swelling.

Treatment Chinese medicine treatment, immunotherapy, ventilator,
and stent release. Immunotherapy.
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3.2. Experimental Setup

This study was based on the Python + PyTorch + GPU deep neural network learning
framework. The cross-entropy loss function was used as the loss function, and the AdamW
method was employed for model training optimization. A five-fold cross-validation proce-
dure was utilized to run our proposed model. During the training process, we performed
fine-tuning on Roberta. The input dimension, sequence_length, was set to 128. The initial
learning rate of the model was set to 3 × 10−5, while the learning rates of BiLSTM and CRF
were set to five times greater than that of Roberta, namely, 1.5 × 10−4. A cosine schedule
with a warmup was used to adjust the learning rate. We set the warmup steps to one-tenth
of the total training epochs, and the learning rate decay rate was set to 0.01 (weight_decay).
The word embedding dimension (pooler_fc_size) was set to 768, and the batch size was set
to 16. Dropout was applied with rates of 0.1 at the input layer and hidden layers. The total
number of training epochs was set to 50, and the F1 score was calculated on the validation
set after each epoch. The best model was saved accordingly. The patient number was set to
10, which means that if the model did not show improvement on the validation set over
10 consecutive epochs, the training would be terminated early. The weights, biases, and
other parameters were continuously optimized during the training process. To prevent is-
sues such as gradient explosion or vanishing gradients during code execution, the gradient
clipping technique was employed. The performance of the best model was tested on the
final test set, which was not used during model training. The F1 score was calculated for
each category, and the average score was taken as the F1 score on the test set. The average
F1 score from the five rounds of cross-validation was calculated as the final F1 score. The
experimental parameters for model training are summarized in Table 2.

Table 2. Experimental parameters.

Experimental Parameters Value

Sequence_length 128
Batch_size Train set 16, test set 16

Pooler_fc_size 768
Epoch 50

Learning rate 3 × 10−5

Optimizer Adam
Input layer dropout 0.1

Hidden layers dropout 0.1

3.3. Evaluation

This study examined the performance of the model by calculating its precision, recall,
accuracy, and F1 scores. TP, TN, FP, and FN are the number of positive samples correctly
predicted for the positive class, the number of samples correctly predicted for the negative
class, the number of samples incorrectly predicted to be in the positive class, and the
number of samples incorrectly predicted to be in the negative category, respectively. In this
study, the entity array obtained through manual annotation was referred to as the truth
entity set, while the array of entities predicted by the machine learning model after training
was called the predicted entity set. Taking the intersection of these two arrays, the number
of entities that appear in both arrays was defined as true positives (TPs), indicating that
the machine successfully predicted the true entities. The number of entities in the truth
entity set that were not correctly predicted was defined as false negatives (FNs), while the
portion of entities in the predicted entity set that were not correctly predicted was defined
as false positives (FPs). Figure 5 presents the confusion matrices for the four models.

Pre =
TP

TP + FP
(18)

Re =
TP

TP + FN
(19)
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F1 =
2× Pre× Re

Pre + Re
(20)

Accuracy =
TP + TN

TP + TN + FP + FN
(21)
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Precision refers to the ratio of actual positive samples to expected positive samples.
Recall, also known as sensitivity, is the percentage of predicted true-positive samples to
the total number of true-positive samples. The F1 value is a combined precision and recall
rating. Accuracy reflects a model’s ability to correctly classify the overall samples, i.e., the
proportion of samples that are correctly predicted among all samples.

3.4. Model Performance

To verify the validity and feasibility of the model, the total experimental results of our
RBC model and other excellent models are shown in Table 3; the baseline model was BC.
Other models are RC and RS. The experimental results demonstrate that our suggested
RBC model enhanced precision by 4.3%, recall by 7%, F1 values by 5.6%, and Acc values by
5.8%, and had a better overall performance when compared with the BiLST-CRF baseline
model. We used five-fold cross-validation, training, and testing on the corpus; the final
results are shown in Table 3.

Table 3. Comparative experimental results of four models on the test set.

Models F1 P R Acc

RBC 0.807 0.786 0.829 0.812
RC 0.795 0.755 0.827 0.803
RS 0.790 0.755 0.828 0.799
BC 0.751 0.743 0.759 0.754

Table 4 presents a statistical evaluation of the effectiveness of eight distinct entity
recognition categories. We observed that two entity types, emotional and social attributes,
achieved superior results with significantly higher precision, recall, and F1 values than
other entity types, whereas two entity types, symptoms and therapies, were significantly
less effective. For the identical CRF model based on words, the RBC and RC impacts were
extremely similar.
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Table 4. Evaluation of the effect of different entity recognition of four models.

Model Index Check Disease Drug Lifestyle Mood Social Symptoms Treat

RBC
P 0.739 0.787 0.730 0.754 0.865 0.941 0.609 0.571
R 0.774 0.863 0.823 0.723 0.922 0.926 0.709 0.585
F1 0.756 0.823 0.774 0.738 0.892 0.933 0.655 0.578

RC
P 0.719 0.761 0.730 0.696 0.903 0.918 0.596 0.542
R 0.771 0.850 0.821 0.732 0.933 0.924 0.710 0.639
F1 0.744 0.803 0.773 0.713 0.917 0.921 0.647 0.586

RS
P 0.717 0.742 0.704 0.697 0.878 0.915 0.582 0.516
R 0.772 0.866 0.824 0.726 0.956 0.923 0.690 0.624
F1 0.743 0.799 0.759 0.710 0.915 0.919 0.631 0.564

BC
P 0.682 0.722 0.697 0.702 0.857 0.918 0.533 0.559
R 0.731 0.766 0.684 0.668 0.756 0.909 0.521 0.610
F1 0.704 0.748 0.687 0.681 0.795 0.913 0.526 0.582

We identified eight entity types from Q&A texts: check, disease, drug, lifestyle, emo-
tion, social attribute, symptom, and treatment. Table 5 displays the distribution of the
eight types of entities in the 1890 records. The entities with the highest frequency were
social properties, diseases, and tests, which accounted for 89.68, 80.05, and 80.00%, re-
spectively; followed by drugs, symptoms, lifestyle, and treatment, which accounted for
56.4, 36.40, and 25.93%, respectively. The less frequent entities were symptoms and emo-
tions, which accounted for 7.61 and 7.59%, respectively. In addition, we counted the top
10 highest-frequency words of each entity type. For example, among 4259 check entity
types, fasting blood glucose, postprandial blood glucose, glycated hemoglobin, and glu-
cose tolerance tests were the most common tests for diabetes; these high-frequency words
accounted for 70.86% of the examination entity categories. Among the disease entity types,
hypertension, fatty liver, coronary heart disease, cerebral infarction, and stroke were the
most frequently occurring diseases; these high-frequency words accounted for 73.15% of
the disease entity categories, indicating that diabetic patients are often afflicted by other
types of cardiovascular diseases and complications. Table 5 describes the details of the
top 10 entities.

Table 5. Related statistics of entity frequency.

Entity Type Entity
Frequency Rate Top 10 Entities Top 10

Number of Entities
Top 10
Rate

Check 1512/1890 80%

Blood glucose, fasting blood glucose, fasting,
postprandial, glycated hemoglobin, physical

examination, high blood glucose, glucose tolerance,
review, and postprandial blood glucose.

3019/4259 70.86%

Disease 1513/1890 80.05%

Diabetes, hypertension, hyperglycemia, type
2 diabetes, fatty liver, coronary heart disease, cerebral

infarction, obesity, hyperlipidemia, and
complications of diabetes.

1790/2447 73.15%

Drug 1066/1890 56.4%
Insulin, Metformin, Acarbose, Glucose, Dapagliflozin,

Glucagon, Glimepiride, Bystolic, Gleevec,
and Chinese medicine.

1306/2504 52.16%

Life 490/1890 25.92%

Blood sugar control, exercise, diet control, poor sleep,
stopping the medication, exercise, not taking

medication, losing weight, watching what you eat, and
staying up late.

509/787 64.68%

Mood 144/1890 7.61% Worry, doubt, fear, anxiety, hurry, tension, tiredness,
anger, uneasiness, and fear. 132/185 71.35%
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Table 5. Cont.

Entity Type Entity
Frequency Rate Top 10 Entities Top 10

Number of Entities
Top 10
Rate

Social 1695/1890 89.68%
Height and weight, greater than six months, pregnant,

not pregnant, within six months, within one month,
within one week, self, allergy, and father.

3864/4690 82.39%

Symptom 688/1890 16.4%

Thirst, bitterness and dryness, dizziness and
lightheadedness, excessive urination, weakness,
weight loss, nausea, sweating, panic attacks, and

frequent urination.

465/1564 29.73%

Treat 421/1890 22.08%
Surgery, chemotherapy, radiotherapy, drug therapy,
inpatient treatment, weight loss, Chinese medicine,

stents, minimally invasive, and immunization.
429/655 65.50%

4. Discussion

Combining the diabetes entity classification criteria of Shanghai Ruijin Hospital, our
model demonstrated that the RoBERTa-BiLSTM-CRF-based deep learning model could
perform the online Q&A text-based diabetes entity recognition task with an F1 value of
81.51%, outperforming previously published online healthcare entity recognition results
using the BiLSTM-CRF model (68.43%) [29]. This is comparable to the recently reported
BERT-BiLSTM-CRF-model-based named entity recognition system for the diabetes litera-
ture (79.89%) [30]. The benefit of the RoBERTa-BiLSTM-CRF model (F1 value of 81.51%)
over the benchmark model, BiLSTM-CRF (F1 value of 75.28%), is that BERT produces better
word-level vectors than the phrase vectors acquired using Word2vec. Pre-training in the
biomedical corpus improves BERT’s ability to comprehend difficult biomedical literature.

The semi-structured doctor–patient health community requires patients to fill in
socio-demographic data and provides optional fixed-word input, which may indicate that
socio-demographic information descriptions are relatively standardized and fixed, and the
accuracy and sensitivity of entity recognition were improved, with F1 values exceeding
90% for all four models. In addition, the patients’ inputs in the text boxes of “chief
complaint” and “help wanted” were relatively free text, and the majority of patients used
colloquial language to describe their symptoms and treatments due to a lack of professional
knowledge. The “Help” text box contained a highly free-form description written primarily
in colloquial language, with a certain number of misspellings and ambiguities regarding
the concept of professional terms, which are significantly different from the electronic
medical records portrayed from the physician’s perspective. The language style of the
doctor–patient Q&A community is information-oriented language expression, which is
characterized by specific, certain, and objective vocabularies, while the language style of the
patient–patient community is social-support-oriented language expression, characterized
by ambiguous and empathic features. In the Chinese electronic medical record dataset,
CCKS, based on the BERT model, published studies demonstrating that the F1 values for
the symptom-sign category all exceeded 95% and the F1 values for the treatment entity
category all exceeded 82% [31,32]. Additionally, the entity recognition was superior to
the entity recognition in online health communities [33,34]. It has been demonstrated that
biomedical experts and the general public differently perceive medical entities in diabetes.

In addition, we analyzed named entities extracted from online health communities
to investigate the key topics discussed and emphasized in patients’ online health Q&As
for the purpose of studying the health information needs of patients. Table 5 shows the
frequency of entity occurrences in each category and the proportion of TOP10 entities
in the respective entity type. The frequency indicates the number of times a category of
entities is mentioned in relevant posts. In 1890 relevant posts, for example, the test and
examination category entities were mentioned 1512 times. The experimental data suggest
that they focus on diseases (possibly assessment screening for diabetes and complications
of diabetes), tests and examinations (on diabetes screening and concerns about glycemic
control management), and medications (possibly counseling on medication involving
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diabetes), as confirmed by previously published studies on entity identification in online
health communities for diabetes [35,36].

The limitations of this study include the following: (1) The data sources only com-
prised single online health community doctor–patient Q&A texts, without considering
differences in recognition performance of the BERT model on datasets from other online
health communities with different language styles. Furthermore, the study lacked a compre-
hensive investigation into the connection between language expression features of different
chronic diseases and the applicability of the chosen model. Therefore, further research
must be conducted on the applicability of our model to online health community texts.
(2) The diabetes data used in the study were cross-sectional static data of patients, and
longitudinal cohorts of different stages of chronic disease progression were not collected
without patient tracking [37]. Future research must continue to standardize the annotated
corpus, expand its coverage, and optimize the outcomes of the model.

5. Conclusions

For the named entity recognition of the online medical community of diabetes, the
RoBERTa-LiSTM-CRF model outperforms the other three models: RoBERTa-CRF (RC),
BilSTM-CRF (BC), and RoBERTa-Softmax (RS). The proposed model, consisting of a pre-
trained model with enhanced contextual long-range semantic learning ability based on
word vectors, can effectively address entity recognition challenges within the health com-
munity. In addition, we found that patients with different disease stages have distinct
focused topics and that the extracted entity type and attribute values will also vary. The
high-performance entity recognition in online health communities represents a crucial
knowledge source for constructing medical knowledge graphs. It can be applied to in-
telligent question-answering systems, clinical decision support systems, and other appli-
cations. This integration helps alleviate the growing demand for medical consultations
and the strain on healthcare resources while assisting healthcare professionals in mak-
ing informed decisions and providing personalized services to patients. In our future
research, we will implement the BERT model for pre-training on additional websites of
online healthcare communities.
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Abstract: Disease diagnosis represents a critical and arduous endeavor within the medical field.
Artificial intelligence (AI) techniques, spanning from machine learning and deep learning to large
model paradigms, stand poised to significantly augment physicians in rendering more evidence-based
decisions, thus presenting a pioneering solution for clinical practice. Traditionally, the amalgamation
of diverse medical data modalities (e.g., image, text, speech, genetic data, physiological signals)
is imperative to facilitate a comprehensive disease analysis, a topic of burgeoning interest among
both researchers and clinicians in recent times. Hence, there exists a pressing need to synthesize
the latest strides in multi-modal data and AI technologies in the realm of medical diagnosis. In this
paper, we narrow our focus to five specific disorders (Alzheimer’s disease, breast cancer, depression,
heart disease, epilepsy), elucidating advanced endeavors in their diagnosis and treatment through
the lens of artificial intelligence. Our survey not only delineates detailed diagnostic methodologies
across varying modalities but also underscores commonly utilized public datasets, the intricacies of
feature engineering, prevalent classification models, and envisaged challenges for future endeavors.
In essence, our research endeavors to contribute to the advancement of diagnostic methodologies,
furnishing invaluable insights for clinical decision making.

Keywords: multi-modal data; artificial intelligence; disease diagnosis; machine learning; deep
learning; large model

1. Introduction

The task of disease diagnosis holds significant importance within the medical domain.
Timely diagnosis not only facilitates the prompt implementation of therapeutic interven-
tions but also mitigates the risks associated with disease progression and complications,
particularly concerning global health challenges such as Alzheimer’s disease, breast cancer,
depression, heart disease, and epilepsy. Nonetheless, achieving this objective remains
challenging, particularly in developing areas and regions with limited medical resources.
The high incidence and growth rates of the aforementioned diseases further compound
the challenges confronting the healthcare system in terms of diagnosis. This challenge pri-
marily stems from two key factors: firstly, the low specialist-to-patient ratio, and secondly,
the time-consuming and labor-intensive nature of the manual diagnosis, which heavily
relies on specialized expertise. These issues often result in delayed treatment, exacerbating
illness severity, and escalating medical costs. Consequently, there exists an urgent need for
automated diagnostic approaches to address these pressing concerns.
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AI-driven healthcare, emerging as a transformative force in the medical landscape,
seeks to revolutionize clinical practices leveraging the capabilities of information technology.
It represents a promising avenue for addressing critical disease diagnosis challenges in
regions characterized by disparities in medical resources, garnering significant attention
from both scholars and practitioners [1]. AI-driven healthcare entails the integration of
medical data with intelligent technologies to enhance healthcare quality and productivity.

The clinical diagnostic process is inherently intricate, involving the generation and
analysis of diverse data types encompassing images, speech, text, and genetic information
(as depicted in Figure 1). This complexity stems from the synergistic interaction of multiple
data sources, including images capturing anatomical structures, speech elucidating patient
symptoms, textual descriptions of medical history, genetic information delineating inherent
susceptibility, and physiological signals acquired through electrocardiograms (ECGs) and
electroencephalograms (EEGs). Each modality furnishes unique and valuable insights that
collectively contribute to a holistic understanding of patients’ physiological states.

• Image. Medical imaging tools such as computed tomography (CT), X-rays, magnetic
resonance imaging (MRI), and digital pathology offer visual representations of internal
structures and anomalies. These images serve as foundational components of a
diagnosis, unveiling intricate details crucial for identifying and characterizing various
medical conditions.

• Text. Textual data encompassing electronic health records, clinical notes, and medical
literature constitute a narrative thread weaving through the patient’s medical journey,
history, and contextual information vital for precise diagnosis.

• Speech. Speech recordings provide a unique avenue for understanding patients’
experiences and symptoms. This modality captures nuances such as tone, pace,
and articulation, thereby adding a qualitative dimension to the diagnostic process.

• Genetic data. Genetic data introduce a molecular layer to elucidate inherent pre-
dispositions, susceptibilities, and genetic markers potentially influencing disease
manifestation.

• Physiological signals. Signal data offer real-time snapshots of cardiac and neural
activities. This dynamic modality effectively captures temporal variations, offering
critical insights into abnormalities and patterns associated with cardiac or neurologi-
cal diseases.
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Figure 1. The diverse data types including images, speech, text, and genetic information can be
produced in the clinical diagnostic process.
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Numerous experts and scholars have actively participated in the collection and inte-
gration of medical data for diagnostic tasks, as evidenced by their contributions to various
datasets [2–6]. Remarkably, these individuals not only curated and refined these datasets
but also advocated for their accessibility and openness. For instance, the ADNI dataset,
cited in references [7,8], has emerged as a cornerstone in neuroimaging and dementia re-
search. This dataset incorporates diverse modalities such as structural and functional MRI,
positron emission tomography (PET), and cerebrospinal fluid biomarkers, thereby offering
a comprehensive perspective on disease progression. The availability of such datasets
establishes a standardized framework for the development and evaluation of advanced
diagnostic algorithms, particularly those leveraging machine learning and deep learning
techniques. These methodologies play a pivotal role in extracting discernible features from
multi-modal medical data and have witnessed significant advancements in recent years.

• Machine learning approaches. Machine learning methodologies have emerged as
pivotal tools for medical diagnosis tasks, exemplified by techniques like Support Vector
Machines (SVMs) [9] and Random Forests (RFs). SVMs excel in establishing optimal
decision boundaries for classification, and are particularly adept at discerning intricate
patterns within multidimensional data. On the other hand, RFs harness the strength
of ensemble learning by amalgamating predictions from numerous decision trees,
thereby enhancing model performance. The deployment of such machine learning
techniques constitutes a substantial advancement in automated disease diagnosis,
particularly in handling structured and well-defined datasets.

• Deep learning models. Deep learning models, as referenced in the literature [10–12],
employ hierarchical neural networks to extract inherent patterns from medical data.
For instance, Convolutional Neural Networks (CNNs) specialize in spatial feature ex-
traction and prove beneficial in medical imaging applications, such as tumor detection
in radiological scans. Conversely, Recurrent Neural Networks (RNNs) are well suited
for sequence data analysis, enabling proficient performance in tasks like time series
analysis or monitoring disease progression over time.

• Large models. Large models are designed to learn intricate feature representations
from vast datasets [13–18]. In the field of medical data, large model approaches are ex-
pected to further improve the ability to capture and generalize complex features [19–25].

Existing reviews have offered insightful perspectives on research about automated
disease diagnosis utilizing either machine learning or deep learning methodologies. How-
ever, these reviews predominantly concentrate on a singular modality or a single disease,
whether focusing on a specific disease within multi-modal contexts, various disorders
within a specific modality, or a single disease with exclusive reliance on a particular data
type. In contrast, our review endeavors to explore the diverse modalities employed in the
automatic diagnosis of distinct diseases. Although medical datasets generated by different
disease diagnosis processes exhibit commonalities, distinct preferences for specific modal-
ities prevail across different diseases. Consequently, this paper emphasizes general AI
techniques applicable to different modalities and diseases, rather than solely focusing on a
single disease or modality. Additionally, the latest advancements in large model-based spe-
cific disease diagnosis are introduced herein. To elucidate, we initially delineate available
public datasets and the AI framework in automatic disease diagnosis, encompassing data
pre-processing, feature engineering, model selection, and performance evaluation metrics.
Subsequently, we expound upon reported works associated with various diseases. Lastly,
a comprehensive discussion and outline of future avenues of exploration are presented to
guide innovative solutions in this domain.

The remainder of this paper is structured as follows. In Section 2, we delve into the
utilization of multi-modal data and AI in disease diagnosis, encompassing an exploration
of public datasets and an overview of the overall processing framework. Section 3 provides
a detailed exposition of the reported work, elucidating the methodologies, findings, and in-
sights gleaned from recent research endeavors. In Section 4, we delineate the intricate
challenges encountered in this field and outline potential avenues for future research and
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development. Finally, we encapsulate our findings and insights in the conclusion of this
review in Section 5.

2. Multi-Modal and AI Used in Disease Diagnosis

Most diseases are typically only recognized by patients themselves after they manifest,
and continuous data collection and monitoring can assist patients in achieving effective
disease prevention. The advent of artificial intelligence has rendered the process of data
accumulation more intelligent and efficient, thereby holding significant implications for
disease prevention and control. This section elaborates on the comprehensive framework
of artificial intelligence technology in medical diagnosis applications, encompassing data
collection, model architecture construction, and model evaluation.

2.1. Datasets in AI-Based Disease Diagnosis Studies

Data collection plays a pivotal role in the development of machine learning models
for disease diagnosis, serving as the bedrock upon which these models are constructed and
trained. Many studies on AI-based disease diagnosis choose to utilize established open
datasets to augment the research’s credibility and scope. In this section, we concentrate on
the datasets employed in the research process across various diseases. For more detailed
information on the data, please consult Table A1 in the Appendix A.

Alzheimer’s disease. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [7,8], established in 2003, is widely recognized as one of the most prominent
datasets for predicting AD. It encompasses various types of data, including brain imag-
ing data such as MRI and PET scans, clinical data, biospecimen information, and genetic
data. The patients in the ADNI database are categorized into different stages such as
AD, MCI (Mild Cognitive Impairment), and NC (Normal Cognition). Another typical
database is the longitudinal dataset called OASIS-3, which integrates multiple modal-
ities [2], including neuroimaging, clinical biomarkers, and cognitive assessment. This
dataset primarily investigates the progression of AD in 1378 individuals. Available at:
http://www.oasis-database.org (accessed on 29 November 2023). Additionally, since 2006,
the UK Biobank (UKB) [3–5] has amassed a substantial amount of data from participants,
encompassing various fields such as environmental factors, lifestyle choices, sociodemo-
graphic information, overall health and well-being, as well as cognitive and physical
assessments [6].

Breast cancer. The Cancer Genome Atlas (TCGA) [26] is a widely utilized dataset
for predicting breast cancer. It involves MRI and CT scans, clinical records and genetic
information. In the TCGA dataset, breast cancer is categorized into different subtypes,
including Luminal A, Luminal B, HER2+, Basel, etc. The SAFHS [27] is a large-scale
population-based natural language processing dataset developed by Harvard Medical
School. Available at: http://www.ncbi.nlm.nih.gov/ (accessed on 29 November 2023). The
Breast Ultrasound Images (BUSI) [28] was created in 2018 and contains normal, benign and
malignant breast ultrasound images. Available at: https://scholar.cu.edu.eg/ (accessed on
29 November 2023). In the gene domain, Gene Expression Omnibus (GEO) [29] collects
high-throughput functional genomics data for researchers, including microarrays, next-
generation sequencing, and other forms. Available at: https://www.ncbi.nlm.nih.gov/
geo/(accessed on 29 November 2023).

Heart disease. TLGS [30] is a long-term epidemiological research project for assess-
ing the risk factors for cardiovascular diseases among residents of Tehran, Iran. Avail-
able at: https://endocrine.ac.ir/page/Tehran-Lipid-and-Glucose-Study-TLGS (accessed
on 29 November 2023). In the text domain, the Acute Myocardial Infarction Dataset
of the World Health Organization (WHO) collects from medical institutions and public
health departments across various countries. Available at: http://www.who.int/ (ac-
cessed on 29 November 2023). It mainly studies the epidemiology, clinical characteristics,
treatment methods, and prognosis of acute myocardial infarction and includes patient
clinical information, diagnostic results, treatment measures, and other data. In the im-
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age domain, the Sunnybrook Cardiac Data (SCD) [31] dataset consists of 45 cine MRI
images from different patients with various pathological conditions, including healthy
individuals, hypertrophy, ischemic heart failure, and non-ischemic heart failure. Available
at: https://www.cardiacatlas.org/sunnybrook-cardiac-data/ (accessed on 29 November
2023). In addition, the Automated Cardiac Diagnosis Challenge (ACDC) [32] database
includes medical image data of normal subjects, ischaemic heart failure, dilated cardiomy-
opathy, hypertrophic cardiomyopathy, and right ventricular abnormalities. Available at:
https://www.creatis.insa-lyon.fr/Challenge/acdc/ (accessed on 29 November 2023).

Depression. The Distress Analysis Interview Corpus-Wizard of OZ (DAIC-WOZ) [33]
stands as one of the most popular speech datasets utilized for depression prediction.
Available at: https://dcapswoz.ict.usc.edu/ (accessed on 29 November 2023). Its objective
is to capture individuals’ verbal expressions of psychological distress and emotional stress
through simulated interactions with AI. The corpus encompasses a broad spectrum of
psychological disorders, including depression, anxiety, and post-traumatic stress disorder.
Each entry within the dataset includes emotional annotations to furnish quantitative
insights into the patient’s emotional state. The Multi-modal Open Dataset for Mental
Disorder Analysis (MODMA) [34] is a multi-modal dataset tailored for mental disorders,
featuring both clinically depressed patients and individuals from the normal population.
Available at: http://modma.lzu.edu.cn/data/index/ (accessed on 29 November 2023). It
comprises speech data and ECG data. Moreover, the Bipolar Disorder Corpus compiles
textual data pertinent to bipolar disorder, aimed at facilitating researchers’ comprehension
of the disorder’s characteristics, diagnosis, and treatment. The textual content within this
repository encompasses diaries, medical records, clinical assessment reports, and other
pertinent literature from individuals with bipolar disorder.

Epilepsy. The CHB-MIT [35] Database comprises EEG recordings collected from 22
pediatric subjects with intractable seizures and was established in 2010. Available at: http:
//physionet.org/ (accessed on 29 November 2023). The Bonn EEG time series database [36]
involves EEG data obtained from a 128-channel acquisition system, featuring recordings
from 5 patients identified as A, B, C, D, and E. Sets C and D encompass intracranial
EEG recordings taken during seizure-free intervals, with set C recorded from within the
seizure-generating area and set D from outside the seizure-generating area of epileptic
patients. Available at: http://www.ukbonn.de/epileptologie/ag-lehnertz-downloads/
(accessed on 29 November 2023). Set E contains intracranial EEG data captured during
epileptic seizures. Each set consists of 100 text files, each containing a single EEG time
series represented in ASCII code and comprising 4097 samples. This database is devoid of
artifacts, obviating the necessity for preprocessing prior to classifying the signals as healthy
(non-epileptic) or unhealthy (epileptic). The Temple University EEG corpus database [37]
represents an extensive collection of EEG data acquired between 2000 and 2013. Available
at: http://isip.piconepress.com/projects/tuh$_$eeg/ (accessed on 29 November 2023).
This repository encompasses diverse EEG clinical settings from approximately 10,874
patients. By incorporating a large cohort of patients and spanning a significant timeframe,
the Temple University EEG corpus database affords opportunities for multifaceted analyses
in EEG research. Researchers can exploit this invaluable repository to explore various facets
of EEG data and advance the understanding of neurological conditions.

2.2. Framework for AI in Disease Diagnosis Modeling

Up to now, AI models have been developed for a wide range of disease diagnoses.
These models have undergone architecture designing and fine-tuning by leveraging diverse
modalities of data such as medical images, medical texts, genetics, medical speeches, EEG,
and ECG. Their applications span diagnostic classification, phenotype discovery, and other
disease diagnosis tasks. In this section, we will focus on introducing well-known AI models
and their intricate framework designs, including data preprocessing, feature engineering,
and model selection (as shown in Figure 2).
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Figure 2. The framework for AI in disease diagnosis modeling (ML and DL denote machine learning
and deep learning, respectively).

2.2.1. Pre-Processing

Pre-processing using machine learning and deep learning technologies is a crucial
step for disease diagnosis. By preprocessing raw data, inaccurate or irrelevant information
can be removed and key features relevant to disease diagnosis are extracted. Common
preprocessing operations include data research and analysis, data cleaning, data filtering,
data transformation, data normalization, data standardization, data scaling, data sampling,
etc. Specifically:

Data exploration. It involves analyzing the number of samples, features, and their
distributions of the dataset, which not only reveals the intrinsic properties of the dataset but
also provides a solid foundation for the subsequent selection of preprocessing techniques.

Data cleaning. It aims to handle noisy or erroneous data, including removing duplicate
entries, handling missing values, and correcting data errors or inconsistencies.

Data filtering. It is used to remove noise from a dataset, including low-pass filtering
and high-pass filtering.

Data transformation. It involves converting raw data into different representations
or forms.

Data normalization. It scales the data to a standard range or distribution, including
min–max normalization, clipping normalization, standard deviation normalization, and z-
score normalization.

Data standardization. Its primary function is to convert data from varying ranges
and scales into a uniform standard format, such as FHIR HL7 [38], SNOMED CT [39] and
DICOM [40], thus making data more suitable for machine learning and statistical analysis.

Data scaling. Data scaling enables data to map to specific ranges or intervals, en-
suring comparability at different scales and effectively mitigating biases caused by scale
differences.

Data sampling. The purpose of data sampling is to choose a subset of data from the
primary dataset, thus forming a representative sample for analysis. In the case of imbal-
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anced datasets, various sampling strategies can be utilized, including random sampling,
stratified sampling, or oversampling/undersampling. These strategies can effectively ad-
dress the issue of disparate class distributions in the dataset, ensuring accurate predictions
for each class.

The above preprocessing operations aim to address issues such as noise, missing
values, inconsistency, or specific data challenges. Facing different types of data (such
as medical imaging, medical texts, genetic data, audio, and electrocardiogram signals),
different preprocessing methods are usually required. Specifically:

Medical imaging data. Medical imaging data have a rich and complex spatial struc-
ture, consisting of a multidimensional matrix of pixels, each containing information about
color and brightness. The preprocessing of medical imaging data mainly focuses on image
resolution (number of pixels), color depth (color details in each pixel), and format (encoding
methods such as portable network graphics (PNG)). For example, in the imaging process
of medical images (such as X-rays, CT scans, and MRI), metal objects in the patient’s
body (such as implants, dental restorations, surgical screws, etc.) and natural movements
(appearing blurry or deformed in the image) can cause artifacts that affect the visualization
of surrounding tissues. Metal artifact correction and motion correction are designed to
handle such artifact situations. The imaging process is often susceptible to factors such
as long or insufficient exposure time, scanning speed, radiation dose, and environmental
interference, which can introduce random noise into the image. This requires the use of
denoising methods such as wavelet denoising and median filtering. The lesions in medical
images are often local abnormal changes, with some lesions having unclear boundaries and
no clear boundaries with surrounding tissues. Data filtering operations such as smoothing
filters and high-pass filters are needed to enhance the density, texture, and edge features
of the image. In addition, images typically have various spatial resolutions, coordinate
systems, and storage formats, so resampling techniques are needed to convert them to
standard formats, such as from Medical Digital Imaging and Communications (DICOM)
to PNG.

Medical text data. The first step in preprocessing medical text data is usually to
decompose them into smaller units based on tokenization. During this process, special
characters, punctuation, stopwords, and even spelling and morphological corrections will
be removed to reduce data noise and redundancy. Additionally, because text data typically
contain a large amount of vocabulary and semantic information, preprocessing typically
considers factors such as word frequency, text length, and semantic association to reduce
data dimensionality.

Genetic data. Genetic expression data usually include the expression levels of thou-
sands of genes under different conditions or at different time points, complex and mul-
tidimensional. Also, gene expression data typically have a right-skewed distribution:
most genes are concentrated at lower expression levels and a few genes have very high
expression. Therefore, in preprocessing, apart from basic steps like data cleaning and
normalization, logarithmic transformations (log), log base 10 (log10), square root transfor-
mations, etc., is required to convert the raw gene expression data into a form closer to a
normal distribution.

Medical speech data. Original Speech data involve the target speaker’s voice and
the other interference (e.g., background noise, voices of non-target speakers, reverberation,
silence). Endpoint detection, pre-emphasis, framing, windowing, and other techniques are
typically used to effectively suppress these interferences. Endpoint detection can detect
silent segments in audio signals and segment audio sentences by threshold and short-term
energy methods. Pre-emphasis technology is used to increase the importance of the high-
frequency part for uniform information since important information in audio signals is
often concentrated in the low-frequency part. Framing aims to slice the data to obtain
short-term stable audio signals. Moreover, windowing effectively improves the issue of
information leakage, with common window functions including the Hamming window,
Hanning window, and rectangular window.
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EEG and ECG data. Electroencephalogram (EEG) and electrocardiogram (ECG) sig-
nals are often interfered with by factors like blinking, movement of the body or electrodes,
environmental noise, heartbeat fluctuations, power interference, or baseline drift. The pre-
processing process is mainly to ensure signal purity. The Independent Component Analysis
(ICA) technique is used to eliminate the interference from blinking and eye movement.
Artifacts from cardiovascular and musculoskeletal system electrical activity can be re-
moved using band-pass filters or the Discrete Wavelet Transform (DWT). Noise from power
sources, harmonics, and movement of electrodes and wiring can be eliminated using filters
of different frequencies.

2.2.2. Feature Engineering

Feature engineering plays a crucial role in disease diagnosis using artificial intelligence
technologies. It involves extracting, selecting, and transforming important information
from original medical data to construct meaningful features for models. Specifically,
feature engineering typically encompasses feature representation, feature selection, feature
reduction, feature fusion, and feature enhancement.

Feature representation. Feature representation can transform raw input data into
numerical representations that can be utilized by the model.

Feature selection. The redundant features can confuse machine learning models, while
few features might not effectively and correctly classify data. Therefore, many researchers
adopt feature selection techniques to choose appropriate features from extracted features.
Common feature selection techniques include Information Gain, Chi-square Test, Mutual
Information, Recursive Feature Elimination (RFE), Regularization, etc.

Feature reduction. When the number of extracted features is huge or they have not
been properly normalized or scaled, feature reduction techniques are used to alleviate this
problem. The most commonly used feature reduction technique is Principal Component
Analysis (PCA), followed by other techniques such as Linear Discriminant Analysis (LDA),
Sparse Encoding, and Factor Analysis.

Feature fusion. Feature fusion can enhance the efficiency of classifiers in detection
tasks. It involves combining features extracted, selected, or reduced through different
methods into a single set of parameters. This integration of features from various per-
spectives and methodologies offers a more comprehensive and in-depth understanding
of the data. Typical feature fusion techniques include Topic Models, Multi-view Learning,
and Knowledge Graph Fusion, among others.

Feature enhancement. Feature enhancement can enhance the representation of im-
portant features in data while weakening or eliminating the influence of irrelevant or
noisy features. In disease diagnosis tasks, feature enhancement helps to more accurately
distinguish different disease categories, thereby improving the accuracy and robustness of
the model.

2.2.3. Model Selection

According to the diagnostic methods of various diseases, artificial intelligence models
are divided into two categories: traditional machine learning methods and deep learn-
ing methods.

In the era of rapid advancements in deep learning algorithms, traditional machine
learning algorithms continue to be favored in the development of AI diagnostic models due
to their unique advantages. They require fewer data points and offer better interpretability.
However, traditional machine learning algorithms have clear drawbacks. They often
require domain experts to pre-define the features to be learned before model training,
resulting in additional manual costs and increased resource expenses. In the following
sections, we will introduce commonly used machine learning methods in building AI
diagnostic models.

Conditional random fields (CRF). CRF [41] has found numerous applications in
disease diagnosis. It is a probabilistic graphical model that predicts labels by capturing
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contextual information of input sequences and considering the dependencies between
adjacent labels in the sequence. In the context of disease diagnosis, the CRF model utilizes
patient-specific input sequences (such as images, text, or genetic features) to model the
conditional probability of the output sequence, representing different disease classifications
or subtypes. This is achieved by defining feature functions and weights that represent
the relationship between input and output sequences. Feature functions can include
observation features (relating the current input to the output label) and transition features
(relating the current output label to the previous output label).

Support vector machine (SVM). The SVM [9] is another commonly employed algo-
rithm in disease diagnosis [42–44]. The SVM, introduced by Vapnik in 1990, operates on
labeled data. It begins with extracting meaningful features from the input data (e.g., shape
features, texture features, or local features for medical images; or disease-related features
like biomarkers or keywords for biological signals or clinical text data). Then, leveraging
the extracted features to train the SVM. The SVM seeks an optimal hyperplane that distin-
guishes different classes based on the position of input samples relative to the hyperplane
in the feature space. Finally, disease diagnosis is derived from the predicted labels.

Logistic regression (LR). LR [45] maps the results of linear regression to the range
(0, 1) using a logistic function, enabling the estimation of the probability of a sample
belonging to a particular class. LR has been widely applied in disease diagnosis. It adjusts
model parameters to maximize the likelihood function of the training data by learning the
relationship between patient features (such as images, text, signals, or genes) and disease
labels. Optimization algorithms like gradient descent are used to minimize the loss function
and find the optimal model parameters.

Naive Bayes (NB). NB [46] is a probabilistic algorithm that does not rely on networks
and performs well with high-dimensional features. In disease diagnosis tasks, the NB
classifier learns the relationship between patient data features (such as medical images,
clinical text, or biological signals) and disease labels, classifying patients into specific
disease categories [47]. Furthermore, NB simplifies learning by independently classifying
features within each class.

Decision tree (DT). The DT [48] is a commonly used data analysis algorithm [49]. It
consists of terminal and non-terminal nodes, with each non-terminal node describing a
condition or test for a data item. This technique is often employed in disease classification
and is beneficial for association and regression tasks. Decision trees facilitate easy visualiza-
tion and identification of various data aspects [1]. Numerous studies have utilized decision
trees for disease diagnosis [50].

In addition to the aforementioned methods, many other typical traditional machine
learning methods (e.g., K-means, RF, etc.) have been successfully applied to disease
diagnosis tasks.

Unlike traditional machine learning approaches, deep learning methods can leverage
all the information present in the data as features for training models, eliminating the need
for predefined features. This significantly reduces the resource requirements associated
with traditional machine-learning methods. Particularly in tasks such as AI diagnosis and
prediction, deep learning methods demonstrate a compelling advantage over traditional
machine learning methods, especially when abundant data are available. In the medical
domain, where high precision is paramount, traditional machine learning methods are
progressively being substituted by deep learning methods. The subsequent sections will
highlight several widely used deep learning methods.

Long short-term memory (LSTM). LSTM [12], an improved version of the recurrent
neural network (RNN), is composed of a series of fundamental units designed to address
the issues of gradient vanishing and exploding in RNN through the use of gates and con-
trolled features. Each unit includes an input gate, a cell state, a forget gate and an output
gate. The input gate decides which feature information to update, while the forget gate is
used to decide the amount of original feature information to discard. The cell state serves
as a storage unit for feature information, and the output gate determines which feature
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information to output. Notably, LSTM excels in capturing contextual relationships and pre-
dicting subsequent data based on the preceding sequence. In the realm of disease diagnosis,
LSTM finds utility in processing and modeling sequential data, including clinical texts and
speech. Furthermore, LSTM has several variants, such as Bidirectional Long Short-Term
Memory (Bi-LSTM) and Bidirectional Gated Recurrent Unit (BiGRU), which simultaneously
predict the current state based on both the previous states and the future states.

Convolutional neural networks (CNNs). A CNN [10] possesses parallelism charac-
teristics that LSTM does not have. Recently, the CNN has been widely applied in various
medical imaging, laboratory reports, pathology reports, etc., and has achieved remarkable
success in the field of AI-based diagnosis [51–58]. The concept of the “receptive field” in a
CNN is essential as it decides the time frame for the CNN to make predictions based on
contextual relationships. The window size and stride used in convolutions are parameters
used to control the receptive field. In a CNN, a larger window size generates a larger
receptive field, thus capturing more contextual relationships. However, this diminishes
the influence of words closest to the prediction target in terms of their positional impor-
tance. Setting a larger stride in the CNN ignores certain contextual relationships while
significantly increasing the overall computational speed.

Transformer. A transformer [11] is a deep learning model widely used for sequence-
to-sequence tasks, having garnered significant acclaim in the field of natural language
processing, particularly for machine translation, and subsequently finding broad research
applications in other domains, including image processing. In the realm of medical diag-
nosis, A transformer proves valuable for processing and modeling diverse modalities of
medical data, encompassing clinical texts, medical images, and time series data [59–61].
Primarily, leveraging the self-attention mechanism, the transformer computes relevance
scores between each position in the input sequence and other positions. These scores
facilitate weighted aggregation of input features, empowering each position to capture
both global and local contextual information.

Moreover, to bolster modeling capabilities, the transformer introduces a multi-head
attention mechanism, employing multiple self-attention sub-layers that focus on distinct
facets of relevant information, effectively extracting features at varying levels and perspec-
tives. Simultaneously, to retain positional information within the sequence, Transformer
incorporates positional encoding, embedding positional details into the input represen-
tation, enabling the model to discern between different positions. Lastly, employing an
encoder-decoder architecture, Transformer initially encodes the input sequence into high-
dimensional representations, adeptly capturing the input data’s features, and subsequently,
the decoder generates disease prediction outcomes based on the encoder’s output and
target labels.

Large model (LM). With the emergence of foundational models [62,63], researchers
have introduced a new paradigm that leverages deep learning methods, primarily relying
on the emerging capabilities of large models (LMs) to handle more complex tasks through
scale expansion. Unlike traditional specialized models trained for specific problems, a large
universal foundational model only requires one training session to acquire a wide range
of general knowledge and can subsequently adapt to various downstream tasks through
prompts. This approach was initially introduced by language models as few-shot learn-
ers [64] and has gained widespread recognition with the introduction of groundbreaking
models such as GPT-3.5 [13], GPT-4 [14], the LLaMA series (including LLaMA [15] and
Llama2 [16]), PaLM [17], FLAN-T5 [65], and Alpaca [18].

Alongside technological advancements, large models targeting different data types,
such as images (SAM [66]) and time series (TimeGPT-1 [67]), have also been developed,
demonstrating their powerful performance. While these LMs have proven effective in
various general domain tasks, they have yet to reach their full potential in specific med-
ical domain tasks. In comparison to specialized models, LMs still exhibit certain gaps
because specialized models are not only meticulously designed for specific tasks in terms
of architecture but also guided by medical knowledge to better understand and capture
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subtle differences and semantic features in the data. In contrast, LMs currently fall short in
this aspect. Consequently, there has been extensive research on LMs tailored for specific
medical domains to better fulfill the requirements. XrayGPT [68] and XrayGLM serve
as notable examples of large models applied in medical imaging. XrayGPT is an innova-
tive conversational medical visual language model capable of analyzing and answering
open-ended questions regarding chest X-rays. XrayGLM aims to become the first Chinese
multi-modal medical LM proficient in interpreting chest X-ray images, showcasing remark-
able potential in medical image diagnosis and multi-turn interactive dialogues. Available at:
http://github.com/WangRongsheng/XrayGLM (accessed on 29 November 2023). Several
LMs focused on medical text and speech have also emerged, including the Med-PaLM
series (Med-PaLM [19] and PaLM 2 [20]), HuaTuo Algorithm [21], ChatDoctor [22], Doctor-
GLM [23], BianQue [24], and BioGPT [25], which have demonstrated significant potential
in providing valuable assistance across various healthcare-related domains. In the realm of
genetic data, Yang et al. [49] introduced GeneCompass, the first knowledge-based cross-
species milestone foundational model, surpassing competitive state-of-the-art models in
multiple tasks within a single species.

2.3. Performance Evaluation Metrics

In disease diagnosis tasks using artificial intelligence technology, performance evalua-
tion metrics are commonly calculated based on the confusion matrix for binary classification
tasks [69], which include four types of classifications: True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN). As shown in Table 1, TP represents the
correctly identified positive instances, i.e., the positive class correctly classified as positive.
TN represents the correctly identified negative instances, i.e., the negative class correctly
classified as negative. FP represents the falsely identified positive instances, i.e., instances
of the negative class mistakenly classified as positive. FN represents the falsely identified
negative instances, i.e., instances of the positive class mistakenly classified as negative.
Total Positive refers to the sum of TP and FN, while Total Negative refers to the sum of TN
and FP. True Classification is the sum of TP and FP, and False Classification is the sum of
FN and TN. The definition of performance evaluation metrics is shown in Table 2.

Table 1. Definition of the confusion matrix in binary classification.

Actual Outcome

Positive Negative

Predicted Outcome Positive TP FP
Negative FN TN

Table 2. The definition of performance evaluation metrics (note that the N, pi and yi in equation Brier
score represent the number of samples, the predicted result for sample i, and the observed result
(true label) of sample i, respectively).

Metric Definition

Accuracy (ACC) ACC = (TP + TN)/(TP + TN + FP + FN)
Precision (P) P = TP/(TP + FP)

Recall (R) R = TP/(TP + FN)
F1-score (F1) F1 = 2 × P × R/(P + R)

Specificity (Sp) Sp = TN/(TN + FP)
Brier score Brier score = (1/N) × ∑[(pi − yi)]

2

In addition, other classification metrics such as the Area Under the ROC Curve (AUC-
ROC) are also commonly adopted. The ROC curve plots the True Positive Rate (TPR) on the y-
axis against the False Positive Rate (FPR) on the x-axis, where TPR = Recall(R) = TP/(TP + FN),
FPR = FP/(FP + TN). The ROC curve illustrates the relationship among TPR and FPR at
different classification thresholds. The AUC measures the area under the ROC curve,
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ranging from 0 to 1. An AUC of 1 indicates a model with perfect classification ability,
while an AUC equals to 0.5 denotes that a model’s predictive performance is no better than
random guessing.

3. Reported Works
3.1. Diagnosis of Alzheimer’s Disease

Alzheimer’s disease constitutes a progressive neurodegenerative disorder, character-
ized by cognitive decline, memory impairment, and compromised communicative abilities.
In the realm of AI-driven diagnostic investigations for Alzheimer’s disease, medical imag-
ing modalities such as MRI and PET are universally recognized as indispensable tools.
They offer profound insights into the alterations of brain structure and functionality, thus
furnishing critical information for diagnosis. Concurrently, the analysis of speech patterns
has also surfaced as a promising domain. Changes in language and communication fre-
quently serve as precursors to cognitive deterioration, making them significant markers
for early detection. This section delves into and evaluates the pertinent literature on auto-
mated Alzheimer’s disease diagnosis, leveraging MRI, PET, speech, and other multi-modal
strategies. A consolidated synopsis of the model and its attributes is presented herein,
with detailed elaborations provided in Table 3.

Magnetic resonance imaging (MRI). MRI is pivotal in Alzheimer’s disease (AD)
diagnostics, offering a non-invasive modality that provides intricate images capturing
the brain’s structural and tissue details. There has been a substantial focus on harnessing
morphological attributes from MRI scans as the central criterion for facilitating automated
AD diagnosis. To illustrate, Li et al. [52] initiate the process by pinpointing the hippocampal
regions in structural MRI (sMRI) images that are productive for diagnosis, drawing on prior
knowledge. Subsequently, they deploy a deep learning architecture to distill distinctive
patterns pertinent to AD diagnosis. Building upon this, Lian et al. [70] amalgamate a
discriminative localization phase for brain atrophy with the subsequent stages of feature
extraction and classification framework development. They introduce a Hierarchical
Fully Convolutional Network (H-FCN) designed to autonomously and systematically
discern patch-level and region-level indicative sites within the entire brain MRI scan.
This model embraces a data-driven strategy that concurrently learns and amalgamates
feature representations spanning multiple scales—from patch to region to subject level—
to formulate a comprehensive AD diagnostic model. Addressing the nuances of brain
atrophy, which pose significant diagnostic challenges in MRI imaging, Zhu et al. [59] unveil
DA-MIDL, a novel deep learning framework endowed with a dual attention mechanism.
This mechanism is adept at singling out the most salient pathological locales for AD
diagnosis. DA-MIDL is composed of a patch network replete with spatial attention blocks,
an attention Multiple Instance Learning (MIL) pooling module, and an attention-aware
global classifier. The patch network is engineered to extract salient structural features from
myriad local sMRI patches disseminated throughout the brain. The attention MIL pooling
phase is adept at assigning variable weights to patch-level features, orchestrating them into
a holistic representation of the entire brain’s architecture. This global representation forms
the foundation for the subsequent AD diagnostic classifier.

Furthermore, the quantification of hippocampal volume attrition has been recognized
as a seminal marker for AD diagnosis. Uysal et al. leverage semi-automatic segmentation
software ITK-SNAP to calculate hippocampal volume metrics. They construct a dataset
incorporating parameters such as age, gender, diagnostic status, and volumetric data for
left and right hippocampal regions. Utilizing this dataset, they apply machine learning
algorithms to effectively differentiate between Alzheimer’s disease (AD), Mild Cognitive
Impairment (MCI), and cognitively normal (CN) cohorts.

Positron emission tomography (PET). While MRI images primarily yield extensive
data on brain structure, they fall short of providing insights at the molecular level. This is
where Positron Emission Tomography (PET) imaging gains its prominence. As a molecular
imaging technique, PET scrutinizes specific biological processes such as protein aggregation,
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metabolic rates, or receptor concentrations using radiolabeled tracers. PET imaging thus
offers an intricate depiction of biological and metabolic dynamics within the brain and is
routinely employed in diagnosing and monitoring Alzheimer’s disease (AD). In the study
by Chen et al. [60], a novel contrastive learning paradigm is introduced, utilizing brain
18F-FDG PET images to surmount the challenges associated with the paucity of data and
the low signal-to-noise ratio, which are typical in PET images pertinent to AD prediction.
They implement a data augmentation strategy to amplify the volume of training data,
and they apply the adversarial loss to expand the distances between features of different
classes while consolidating the similarities within the same class.

Furthermore, they develop a dual convolutional mixed attention module, fine-tuning
the network’s proficiency in discerning diverse perceptual fields. By aligning the predictive
outcomes of individual PET slices with clinical neuropsychological evaluations, they ad-
vance a diagnostic methodology conducive to refining AD diagnoses. Baydargil et al. [71]
deliver an unsupervised adversarial parallel model tailored for the anomaly analysis in
AD, sharply delineating AD, mild cognitive impairment (MCI), and normal control groups.
The model exhibits robust classification with rates and area under the curve (AUC) scores
reaching 96.03% and 75.21%, respectively, underscoring its effective discriminative per-
formance. Lu et al. lay the groundwork for a cutting-edge deep learning infrastructure,
utilizing FDG-PET metabolic imaging to pinpoint subjects with symptomatic pre-AD in the
MCI phase, setting them apart from other MCI cohorts (non-AD/non-progressive). They
pioneer a multi-scale deep neural network that reports a classification precision of 82.51%,
relying solely on a single-modal metric (FDG-PET metabolic data). Cheng et al. [53] present
an innovative classification scheme that amalgamates a two-dimensional Convolutional
Neural Network (CNN) with a Recurrent Neural Network (RNN). Their strategy is oriented
towards deconstructing 3D images into a succession of 2D slices to capture the features
inherent to 3D PET imagery. Within this framework, they architect a hierarchical 2D cellular
neural network tasked with the extraction of intra-slice features, while the Gated Recurrent
Unit (GRU) within the RNN is deployed to elucidate inter-slice features that contribute to
the final classification outcome.

Speech. The manifestation of Alzheimer’s disease (AD) in speech signals offers a
distinctive avenue for diagnosis, as individuals with AD exhibit notable speech pattern
alterations compared to those without the condition. Employing speech recognition tech-
nology for AD diagnostics is not only non-invasive and safe but also cost efficient, making
it an appealing methodology for widespread application. Before the infusion of deep
learning into the field, traditional approaches to speech analysis for AD diagnosis relied
heavily on manual feature extraction. Techniques such as analysis of static features, utiliza-
tion of feature sets like ComParE 2016 and eGeMAPS, as well as Mel-Frequency Cepstral
Coefficients (MFCC), were common practices. These extracted features were then ana-
lyzed using machine learning classifiers, including logistic regression, random forests,
and support vector machines, to distinguish between affected and healthy individuals.
Studies by Hason et al. [72], Hernández et al. [73], and Yu et al. [74] are examples of such
research efforts.

With the advent of deep learning, there has been a paradigm shift in research method-
ologies for AD diagnosis. Deep learning techniques have taken precedence, given their
ability to automatically extract complex patterns from raw data without the need for manual
feature selection. In this context, Lopez et al. [55] have made strides in early AD detection
by implementing classical Multilayer Perceptrons (MLPs) and Convolutional Neural Net-
works (CNNs), illustrating the potential of deep learning in enhancing diagnostic accuracy.
Further advancing the field, Liu et al. [75] leveraged an Automatic Speech Recognition
(ASR) model to derive speaker-independent bottleneck features, which are highly discrimi-
native and robust. They coupled this with a CNN for modeling local context and an RNN
for capturing the global context within speech. An attention mechanism was integrated
to selectively focus on the most salient features for AD detection, improving the model’s
interpretability and effectiveness. Additionally, Bertini et al. [76] introduced an end-to-end
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model for AD detection, innovatively applying SpecAugment [77] for data augmentation
to enhance the robustness and generalizability of the model against variability in speech
data. They then utilized the auDeep [78] autoencoder, followed by fully connected layers
for feature learning and classification, streamlining the process from raw speech input to
the diagnostic output. This end-to-end approach simplifies the pipeline and potentially
improves the model’s accuracy and applicability in clinical settings.

MRI-PET image fusion. The integration of MRI and PET imaging modalities has
yielded a synergistic approach in medical diagnostics, particularly for disorders such as
Alzheimer’s disease (AD). This technique of image fusion leverages the unique strengths
of each imaging method to offer a more holistic representation of the brain’s structure
and function. The pioneering work of Shi et al. [79] introduced the multi-modal Stacked
Denoising Predictive Network (MM-SDPN). This algorithm is structured in two phases
specifically tailored to merge and learn from the feature representations of multi-modal
neuroimaging data. This integration enhances the diagnostic process for Alzheimer’s
disease, offering a deepened insight into the complex interactions between different types
of brain changes associated with the disease. Sharma et al. [80] took a different approach,
utilizing wavelet packet transform as their method of fusing MRI and PET images. Their
methodology involves an eight-layer Convolutional Neural Network (CNN) that meticu-
lously extracts features across multiple layers. The extracted features are then processed
through an ensemble of non-iterative Random Vector Functional Link (RVFL) networks.
This ensemble strategy aims to robustly capture the intricate patterns from the fused data
for accurate AD diagnosis.

Further advancing the field, Zhou et al. [81] proposed a unique method for latent
representation learning that encompasses data from various modalities, including MRI,
PET, and genetic information. Their approach focuses on deducing latent representations
and then projects these representations into the label space for diagnostic purposes. This
technique underscores the potential of combining structural, functional, and biological
data to enhance the accuracy of Alzheimer’s disease diagnostics. Addressing the potential
issue of overfitting when dealing with the fusion of high-dimensional data, Ning et al. [72]
developed a relation-induced multi-modal shared representation learning approach. Their
model is an integrative framework that combines the processes of representation learn-
ing, dimensionality reduction, and classifier design. It operates by learning bidirectional
mappings between the original feature space and a shared representation space, thereby
distilling the essence of multi-modal inputs into a cohesive, shared format that is conducive
to diagnostic analysis. These studies illustrate a growing trend in leveraging sophisti-
cated computational models and algorithms to enhance the accuracy and reliability of
Alzheimer’s disease diagnostics by capitalizing on complementary information from multi-
ple imaging modalities.

Speech–Text fusion. The nuanced extraction of acoustic features from speech datasets,
coupled with the semantic analysis of textual data, fosters an enriched comprehension
of Alzheimer’s disease (AD). By amalgamating speech and text data, a more extensive
spectrum of AD-related features is captured, bolstering the diagnostic accuracy for this
condition. Historically, the nascent stages of AD research leveraged machine learning
techniques for analytical purposes. Shah et al. [42] focused on the extraction of word-level
duration features, datasets on pause rates, and measures of speech clarity. They explored a
variety of models, such as logistic regression, random forest, support vector machine (SVM),
extreme gradient boosting, and neural networks in isolation and in combination, targeting
both classification and regression tasks. Martinc et al. [43] commenced with spectrum
subtraction for noise abatement, progressing to the use of a bag-of-n-grams approach for
textual feature extraction. Concurrently, they extracted eGeMAPS features from speech
data. A suite of classifiers, including XGBoost, SVM, random forest, logistic regression,
and linear discriminant classifiers, was then deployed for classification tasks.

In the landscape of recent advancements, deep learning techniques have increasingly
been harnessed for the automated diagnosis of Alzheimer’s disease. Cai et al. [82] applied
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Graph Neural Networks (GNNs) for the extraction of textual features and introduced audio
data by utilizing the WavLM model to extract salient audio features. They then integrated
these features with text features via various methodologies. Mei et al. [83] extracted a
plethora of features comprising static acoustic features, the ComParE 2016 feature set,
the eGeMAPS feature set, along with feature vectors from the wav2vec2 pre-trained model,
and the Hubert pre-trained model for AD detection. They meticulously fine-tuned the
wav2vec2.0 model on speech from assorted frequency bands, culminating in a remarkable
accuracy of 87% and an RSME of 3.727. Agbavor et al. [84] procured deep representation
features through data2vec and wav2vec2, subsequently refining an end-to-end model with
fully connected layers for enhanced AD detection efficacy.

Other models. A diverse array of molecular and multi-omics approaches, including
RNA-seq, single nucleotide polymorphisms (SNPs), protein sequences, and integrated
omics data, have been employed to unravel the complexities of Alzheimer’s disease diag-
nosis. For instance, groundbreaking work by Li et al. [84], Taeho et al. [85], Xu et al. [86],
Javier et al. [87], and Park et al. [88] has significantly contributed to the field by leveraging
these techniques. Further, Park et al. [88] have pioneered a deep learning approach tailored
for AD prediction that synergistically utilizes multiple heterogeneous omics data. In a
similar vein, Golovanevsky et al. [89] have devised a multi-modal Alzheimer’s Disease
Diagnostic framework (MADDi), ingeniously combining neural networks with attention
mechanisms to harness the power of imaging, genetic, and clinical data for enhanced AD
diagnostic precision. In addition to these genomic and proteomic strategies, electrophysio-
logical methods such as EEG have been instrumental in AD diagnosis. Notable research
by Djemili et al. [90], Pandya et al. [91], Kim et al. [92], along with studies cited as [93],
have demonstrated the utility of EEG in capturing the neurophysiological hallmarks of
Alzheimer’s disease, adding a valuable dimension to the diagnostic toolkit.

Table 3. Summary of different medical features for Alzheimer’s disease diagnosis.

Literature Feature Name Modality Dateset Results

Li et al. [52] Hippocampal morphology feature MRI ADNI 0.939 (AUC)

Lian et al. [70] Original MRI scan feature MRI ADNI 0.9 (ACC); 0.95 (AUC:AD vs. NC)

Zhu et al. [59] Patch proposals selected from the
MRI scans

MRI ADNI,
AIBL

0.9193 (ACC: AD vs. NC vs. MCI)
0.9287 (AUC)

Chen et al. [60] optimized anchor data from brain
18F-FDG PET slices

PET ADNI 0.9193 (ACC: AD vs. NC vs. MCI)
0.9287 (AUC)

Baydargil et al. [71] Original PET slices PET ADNI 0.9603 (ACC: AD vs. NC vs. MCI)
0.7521 (AUC)

Cheng et al. [53] a sequence of 2D slice groups from
3D PET

PET ADNI 0.9528 (AUC: AD vs. NC)

Shi et al. [79] high-level features of MRI and PET MRI, PET ADNI 0.9713 ± 0.0444 (ACC: AD vs. NC)

Sharma et al. [80] Fused image by wavelet packet
transform (WPT)

MRI, PET ADNI 0.9603 (ACC: AD vs. NC vs. MCI)
0.7521 (AUC)

Zhou et al. [81] magnetic resonance imaging (MRI),
positron emission tomography
(PET), and genetic data

MRI, PET,
Gene

ADNI -

Ning et al. [72] magnetic resonance imaging
(MRI) and positron emission
tomography (PET)

MRI, PET ADNI 0.976 (AUC: AD vs. NC) 0.969 (ACC:
AD vs. NC)

Li et al. [84] RNA-seq Gene-based GEO 0.859 (AUC), 0.781 (ACC)

Taeho et al. [85] SNP Gene-based ADNI 0.82 (AAUC)
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Table 3. Cont.

Literature Feature Name Modality Dateset Results

Xu et al. [86] protein sequence
Gene-based

UniProt 0.857 (ACC)

Javier et al. [87] genetic variation data Gene-based ADNI 0.719 (ACC)

Park et al. [88] Multi-omics data Gene-based GEO 0.823 (ACC)

Golovanevsky
et al. [89]

imaging, genetic, and clinical data Gene-based GEO 0.9688 (ACC)

Djemili et al. [90] statistical characteristics
(1. Maximum value in each IMF.
2. Minimum value in each IMF.
Mean of the absolute values in each
IMF. 4. Standard deviation in each
IMF.)

EEG Bonn
dataset

The classification accuracy for nor-
mal and abrupt cessation electroen-
cephalogram (EEG) signals is 1,
while the classification accuracy for
intermittent and abrupt cessation
EEG signals reaches 0.977

Pandya et al. [91] Amplitude, period and waveform
offset of K-Complex

EEG Private
dataset

-

Kim et al. [92] EEG segment with respect to
RP(Absolute power of EEG signals
in three different frequency bands)

EEG Private
dataset

0.75 (ACC)

Deepthi et al. [93] Frequency domain features
extracted by Fast Fourier
Transform (FFT)

EEG ADNI -

Hason et al. [72] MFCC speech ADReSS Accuracy: 0.822

Hernández et al. [73] Speech duration, descriptive statisti-
cal variables

specch private
dataset

Accuracy: 0.8

Yu et al. [74] Based on phoneme characteristics,
pronunciation coordination charac-
teristics, and pitch variance

speech private
dataset

Accuracy: 0.93

Lopez et al. [55] Linear features include spectral do-
main features and time domain fea-
tures, such as harmonicity, spectrum
centroid, formants, etc. Nonlinear
characteristics include fractal dimen-
sion, permutation entropy, multi-
scale permutation entropy, etc.

speech private
dataset

Accuracy: 0.89

Liu et al. [75] Bottleneck feature vector (depth rep-
resentation feature)

speech Dementia-
Bank Pitt

F1: 0.7802

Bertini et al. [76] spectrogram specch Dementia-
Bank Pitt

Accuracy is 0.933, F1 score is 0.885

Shah et al. [42] Word-level duration feature set,
pause rate data set, speech intelligi-
bility feature set

speech, text ADReSS-
M

Accuracy: 0.696, RMSE: 4.8

Martinc et al. [43] bag-of-n-grams features (text)
eGeMAPS feature set (voice)

speech, text Dementia-
Bank Pit

Accuracy: 0.9167

Cai et al. [82] GNN (text features) WavLM (voice
features)

Speech, text Dementia-
Bank Pit

Accuracy: 0.8484 ± 0.0544

Mei et al. [83] Silent characteristics ComParE 2016
feature set, eGeMAPS feature set
wav2vec2 pre-trained model feature
vector Hubert pre-trained model fea-
ture vector

Speech, text AADReSS-
M

Accuracy: 0.87, RMSE: 3.727

Agbavor et al. [84] data2vec, wav2vec2 Speech, text ADReSSo F1: 0.728, RMSE: 3.493
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3.2. Diagnosis of Breast Cancer

Breast cancer, originating in the breast cell tissue, stands as a pivotal health challenge
for individuals across the globe. The key to enhancing survival and ensuring a better
quality of life for those impacted by this disease lies in early detection and an integrated
approach to treatment, involving a diverse team of medical professionals. The conventional
diagnostic toolkit for breast cancer includes mammography, which is instrumental in
visualizing breast tissue and identifying any irregularities that may indicate the presence
of cancerous cells. Clinical breast exams conducted by healthcare professionals also play a
significant role in early detection, as they involve a thorough palpation of the breast tissue
to detect lumps or other changes. Additionally, gene screening is becoming increasingly
important in breast cancer diagnosis, particularly for women with a family history of the
disease, as it can identify inherited genetic mutations that may elevate the risk of breast
cancer, such as mutations in the BRCA1 and BRCA2 genes. In this section, the diagnostic
methodologies driven by the aforementioned modalities are rigorously explored and
demonstrated. To provide a clear and concise representation of the various models and
their attributes, reference is made to the details encapsulated in the accompanying tables,
labeled as Table 4. These tables present a summarized outlook of the models, delineating
their features, performance metrics, and other pertinent details that contribute to the
overarching domain of breast cancer diagnosis.

X-ray mammography. Breast Lesion Classification is a critical facet of breast cancer
diagnosis, as it aims to accurately differentiate between benign and malignant lesions
discovered during screenings. X-ray mammography remains the cornerstone of early
breast cancer detection, enabling physicians to spot minuscule masses or calcifications
that could indicate the presence of cancer cells within the breast tissue. To augment the
diagnostic efficiency for breast lesions, Al-antari et al. [94] have presented a comprehensive
Computer-Aided Diagnosis (CAD) system that harnesses the power of deep learning,
leveraging data from the DDSM and INbreast databases, which are prominent digital
mammography datasets. The innovation began with the utilization of a You Only Look
Once (YOLO) [95] deep learning detector specifically calibrated for the identification of
breast lesions across whole mammograms. Subsequently, Al-antari et al. assessed and
fine-tuned three deep learning classifiers—the standard feedforward CNN, ResNet-50,
and InceptionResNet-V2—for the nuanced task of breast lesion classification.

Furthering the advancement in this domain, Yeman et al. [96] introduced an inventive
approach employing a parallel deep Convolutional Neural Network (CNN) designed to
analyze and learn from the symmetrical deep features extracted from the bilateral views
of breast X-ray images. They innovatively computed the probability of pixels being part
of a lesion by examining the local line and gradient direction features distribution, which
then pinpointed the centers of suspected lesions. A global threshold was applied to these
likelihood images to discern potential lesion-bearing regions. Ensuring symmetry, right
and left breast X-ray images were horizontally flipped for congruent orientation, and the
analysis proceeded with patched images fed into two mirrored deep CNN structures.
The concatenated deep features from this twin-CNN setup were introduced into a Neural
Network (NN) classifier, which achieved a remarkable prediction accuracy rate of 93.33%.
In another groundbreaking work, Riyadh et al. [97] conceived a novel mixed deep learning
Computer-Aided Diagnosis system for breast lesions, which combined a backbone residual
deep learning network to generate profound features with a transformer that incorporates
self-attention mechanisms for the classification of cancer. This innovative model achieved a
perfect 100% accuracy rate for binary classification and an impressive 95.80% for multi-class
prediction tasks, a testament to the potential of mixed AI models in discerning between
benign and malignant breast tissues with high precision.

Magnetic resonance imaging. Breast MRI is a powerful diagnostic tool that excels in
providing detailed insights into breast cancer lesions, surpassing other imaging modalities
in delivering precise evaluations of lesion size, location, and type. The robust magnetic
field and non-ionizing radiation technique of MRI make it a choice modality for compre-
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hensive breast cancer assessment. Abunasser et al. [98] have made significant strides in
the realm of breast MRI by training six advanced deep learning models, each with the
capability to classify eight specific types of breast cancer, encompassing both benign and
malignant forms. Their study incorporated a diverse set of models including their own
proposed Breast Cancer Neural Network (BCNN), as well as Xception, InceptionV3, VGG16,
MobileNet, and ResNet50, all fine-tuned to analyze MRI images for this purpose. These
models demonstrated remarkable accuracy in their classification tasks, with rates of 97.54%,
95.33%, 98.14%, 97.67%, 93.98%, and 98.28% respectively, showcasing their potential to
serve as reliable diagnostic aides. Complementing these efforts, Huang et al. [99] embarked
on a comprehensive study involving the extraction of an extensive array of 4198 radiomic
features from pre-biopsy multiparametric MRI datasets, which included dynamic contrast-
enhanced T1-weighted images, fat-suppressed T2-weighted images, and apparent diffusion
coefficient maps. In their pursuit of optimal feature selection, they employed a suite of
methodologies such as the Least Absolute Shrinkage and Selection Operator (LASSO), Re-
cursive Feature Elimination (RFE), Maximum Relevance Minimum Redundancy (mRMR),
Boruta, and Pearson correlation analysis. Leveraging these strategically chosen features,
Huang et al. proceeded to construct 120 diagnostic models that varied by classification
algorithms, MRI sequence-segmented feature sets, and the employed selection strategies.
These models were adeptly designed to not just categorize breast cancer lesions but also to
predict cancer molecular subtypes and androgen receptor expression, potentially offering a
nuanced approach to personalized cancer care.

Ultrasound images. The field of medical imaging for breast cancer diagnosis has
been greatly enhanced by the incorporation of artificial intelligence, with ultrasound
imaging being a key focus due to its safety and non-invasive nature. Jabeen et al. [100]
introduced a cutting-edge classification framework specifically designed for ultrasound
images, which effectively combines the prowess of deep learning with optimal feature
selection techniques. This framework is composed of a structured five-step process: (i) Data
augmentation is applied to expand the dataset, thereby providing a more robust foundation
for training Convolutional Neural Network (CNN) models. (ii) The pre-trained DarkNet-
53 model is adapted by modifying its output layer to align with the categories of the
augmented dataset. (iii) Transfer learning is employed to train this modified model,
with feature extraction carried out from the global average pooling layer. (iv) Two enhanced
optimization algorithms, the Improved Differential Evaluation (RDE) and Improved Grey
Wolf (RGW), are utilized for the selection of the most discriminative features. (v) A novel,
probability-based sequential method is used to combine these optimally selected features,
followed by the application of machine learning algorithms for the final classification task.
The implementation of this framework on the Augmented Breast Ultrasound Images (BUSI)
dataset resulted in an impressive highest accuracy of 99.1%, demonstrating its potential to
significantly improve diagnostic processes.

Building on the momentum of innovation in the field, Ragab et al. [101] spearheaded
the development of an Integrated Deep Learning Clinical Decision Support System for
Breast Cancer Diagnosis and Classification (EDLCDS-BCDC). This innovative technology
is engineered to detect the presence of cancer through the analysis of ultrasound images.
The process involves an initial preprocessing stage using Wiener filtering and contrast
enhancement to prepare the images. Image segmentation is then carried out using the
Chaos Krill Herd Algorithm (CKHA) and Kapur Entropy (KE). The feature extraction
is performed through an ensemble of three sophisticated deep-learning models, namely
VGG-16, VGG-19, and SqueezeNet. The final stage of the classification process employs
the Cat Swarm Optimization (CSO) algorithm to optimize a Multi-Layer Perceptron (MLP)
model, ensuring precise categorization of the cancer images. Both these studies showcase
the innovative intersection of deep learning and optimization algorithms in improving the
accuracy and efficiency of breast cancer classification using ultrasound imaging.

Medical text data. The use of advanced natural language processing (NLP) techniques
to analyze and classify medical data, including patient self-reports and medical records,
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has become increasingly prevalent in breast cancer research. Leveraging the power of these
techniques can provide valuable insights and assist in the early detection and treatment
of breast cancer. Kumar et al. [102] tailored a BERT-based model to specifically address
the classification of breast cancer-related posts on Twitter, as described in Shared Task 8
of SMM4H-2021. Their approach was to employ BlueBERT [103], which is pre-trained
on a comprehensive biomedical corpus acquired from PubMed, enhancing the model’s
understanding of medical terminology and context. To bolster the model’s resilience against
adversarial inputs, they incorporated gradient-based adversarial training, which ultimately
resulted in the model achieving F1 scores of 0.8625 on the development set and 0.8501 on
the test set, reflecting high accuracy in the automatic classification of breast cancer mentions
in social media posts.

Further innovations in NLP, as seen in the works of Chen et al. [104] and Zhou et al. [105],
push the boundaries of model interpretability and domain-specific accuracy. Chen et al. [104]
took the capabilities of BERT further by integrating semantic trees into the model, thus con-
structing an interpretable neural network. They harnessed a capsule network with multiple
attention heads to refine the semantic representations, while backpropagation and dynamic
routing algorithms were implemented to provide local interpretability. This level of in-
terpretability is particularly important in medical applications where understanding the
reasoning behind a model’s prediction is as crucial as the prediction itself. Zhou et al. [105]
explored the benefits of pre-training BERT on a cancer-specific dataset, which aimed to
enhance the model’s ability to extract breast cancer phenotypes from pathology reports and
clinical records. Their findings underscore the significance of domain-specific pre-training,
as it substantially improved the performance of the model, making it more attuned to the
nuances of cancer-related data. Addtionally, Deng et al. [106] investigated the potential
assistance provided by advanced language models like GPT-4 in the context of breast cancer
diagnosis. The authors emphasized GPT-4’s capability to rapidly mine crucial information
from extensive medical records, which could potentially influence the diagnosis of breast
cancer. By automating the extraction of key data points, GPT-4 could enhance the accuracy
and efficiency of diagnostic procedures, supporting healthcare professionals in making
informed decisions. These studies collectively highlight the transformative impact that
state-of-the-art NLP models can have on the medical field, particularly in the realm of
breast cancer diagnosis and classification.

Genetic data. Human cancer is a heterogeneous disease caused by stochastic cellular
mutations and driven by various genomic alterations [107,108]. Currently, numerous re-
search efforts are focused on utilizing genetic data and artificial intelligence algorithms to
develop diagnostic models to enhance the clinical efficiency and accuracy of breast cancer
diagnosis [109–111]. Presently, artificial intelligence techniques in breast cancer diagnosis
research based on genomics primarily focus on RNA-seq data, single nucleotide polymor-
phisms (SNPs), protein sequences, and the integration of multi-omics data. (1) RNA-seq.
Xu et al. [112] proposed a multi-granularity cascade forest (gcForest) for predicting four sub-
types of breast cancer (Basal, Her2, Luminal A, and Luminal B). They compared the gcForest
classifier with three different machine learning methods (KNN, SVM, and MLP). The results
showed that gcForest showed a higher accuracy score of 92%. (2) MicroRNA. Sherafa-
tian et al. [50] employed three tree-based algorithms (Random Forest, Rpart, and tree
bag) to classify breast cancer subtypes (Luminal, HER2-enriched, basal) using miRNA
data from TCGA. The results showed that Rpart achieved the best classification perfor-
mance. For the Luminal subtype, the accuracy, sensitivity, and specificity were 88.9%,
82.4%, and 95.4%, respectively. For the HER2-enriched subtype, the accuracy, sensitivity,
and specificity were 90.2%, 93.9%, and 86.4%, respectively. For the basal subtype, the accu-
racy, sensitivity, and specificity were 84.5%, 75%, and 94%, respectively. (3) Multi-omics
data. Mohaiminul et al. [58] proposed a comprehensive deep-learning framework for
classifying molecular subtypes of breast cancer. The framework utilized copy number
alteration and gene expression data from the METABRIC. The results achieved an accuracy
of 76.7% and an AUC of 83.8%.
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Table 4. Summary of different medical features for breast cancer diagnosis.

Literature Feature Name Modality Dateset Results

Al-Antari et al. [94] Original X-ray
mammographic data

X-ray CBIS-DDSM and DDSM 0.985 (ACC)

Yeman et al. [96] Breast lesion detection
from entire mammograms
by object detection model

X-ray DDSM and INbreast ACC of three
models: 94.50%,
95.83%, and 97.50%

Riyadh et al. [97] Extracted patches
centered on the points
from the original X-ray

X-ray General Electric, Siemens,
and Hologic

0.933 (AUC)

Abunasser et al. [98] Original MRI data MRI Kaggle depository 98.28 (F1-score)

Huang et al. [99] multi-parametric MRI MRI Private dataset Multilayer Perceptron
(MLP): 0.907 (AUC)
and 85.8% (ACC)

Jabeen et al. [100] Original ultrasound
images data

Ultrasound Images BUSI dataset 99.1% (ACC)

Ragab et al. [101] Segmented regions
from original

ultrasound images
Ultrasound Images

- 96.92% (ACC)

Kumar et al. [102],
Peng et al. [103]

Word embedding Text witter self-report F1: 0.8501

Chen et al. [104] Word embedding,
syntactic structure

Text Shanghai Ruijin Hospital
Molybdenum
Mammography
X-ray Report

Mi-P(%) = 91.58
Mi-R(%) = 91.58
Mi-F1(%) = 91.58
Ma-P(%) = 75.95
Ma-R(%) = 79.73
Ma-F1(%) = 77.14

Zhou et al. [105] mutil feature Text private dataset exact match and
lenient match,
macro-F1: 0.876, 0.904

Xu et al. [112] RNA-seq Gene-based Medical Records -

Sherafatian et al. [50] miRNA Gene-based TCGA 92% (ACC)

Mohaiminul Islam
M et al. [58]

Copy number alteration
(CNA), RNA-seq

Gene-based METABRIC 76.7% (ACC), 83.8%
(AUC)

Sun et al. [108] Clinical, CNV, RNA-seq Gene-based METABRIC 82% (AUC)

3.3. Diagnosis of Depression

Depression is a common mental health disorder characterized by persistent feelings of
sadness, hopelessness, and a lack of interest or pleasure in daily activities. It can affect a
person’s thoughts, emotions, and physical well-being, often leading to challenges in daily
functioning. Depression varies in severity, and its impact on individuals can range from
mild to severe. In the realm of diagnosis, text, speech, and EEG analysis have emerged as
crucial tools for assessing and understanding depression. These modalities offer valuable
insights into an individual’s mental state, providing a nuanced understanding of their
emotional well-being. This section aims to delve into various approaches and methodolo-
gies related to the diagnosis of depression using these modalities. This section provides
a summarized overview of the model and its features, as detailed in the accompanying
Table 5.

Medical text data. Aragon et al. [58] introduced a sophisticated deep emotional at-
tention model tailored for the detection of anorexia and depression. This model integrates
nuanced sub-emotion embeddings with the advanced architectures of Convolutional Neu-
ral Networks (CNNs), Gated Recurrent Units (GRUs), and attention mechanisms to attain
high predictive accuracy. Verma et al. [113] explored depression detection through the
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analysis of tweet data, utilizing four established machine learning models: Naive Bayes,
Support Vector Machines (SVMs), K-Nearest Neighbors (KNNs), and Random Forest.
Of these, the Random Forest model demonstrated superior performance, achieving an
impressive accuracy peak of 78%.

Furthering the field, Ghosh et al. [114] adopted a novel deep multi-task learning
strategy that simultaneously addresses emotion recognition and depression detection.
Their findings suggest that the multi-tasking framework significantly boosts the efficacy
of both tasks when learned concurrently. Xu et al. [115] ventured into the domain of psy-
chological health with the introduction of their Linguistic Landscape Model (LLM). This
model was rigorously tested across a spectrum of tasks, including psychological stress
classification, depression severity assessment, suicide ideation detection, and suicide risk
evaluation. The empirical results underscored the LLM’s robust performance, placing it on
par with the leading task-specific models in the field. Lastly, Qi et al. [116] presented an
all-encompassing benchmark that capitalizes on supervised learning techniques alongside
the LLM framework, with a specific emphasis on the capabilities of the GPT series. Their
research offers an in-depth analysis of these advanced LLMs, particularly in their applica-
tion to cognitive distortion diagnosis and suicide risk stratification. This study not only
highlights the models’ proficiency in capturing and interpreting complex emotional states
but also provides a critical examination of their inherent potential and current limitations
within the psychological domain.

Speech. From the initial forays into the realm of machine learning for depression
diagnosis, a vast array of approaches has emerged. Liu et al. [117] introduced a multi-task
ensemble learning technique that utilizes speaker embeddings to facilitate depression
classification. Long et al. [118] devised an innovative multi-classifier system dedicated
to depression recognition, distinguished by its synthesis of various speech types and
emotional nuances. Jiang et al. [119] developed the Ensemble Logistic Regression Model
for Depression Detection (ELRDD), representing a significant stride in predictive modeling.
Complementing this, Liu et al. [120] proposed an inventive decision tree-based method for
the fusion of speech segments, aimed at bolstering the accuracy of depression recognition.

As deep learning forges ahead, its methodologies are increasingly being adopted for
diagnosing depression. Yin et al. [121] presented a deep learning model that harnesses the
strengths of parallel Convolutional Neural Networks (CNNs) and Transformers, balancing
effective information extraction with computational tractability for depression detection.
Adding to this body of work, Tasnim et al. [122] examined the predictive utility of two
acoustic feature sets—conventional handcrafted features and those derived from deep
representations—in assessing depression severity through speech analysis. He et al. [123]
proposed a hybrid approach combining handcrafted elements with deep learning features
to precisely gauge depression severity from speech. Dubagunta et al. [124] conducted an
exploration into methods for modeling speech source-related information in the context of
depression, mindful of the potential neural physiological changes impacting vocal cord
function. Zhao et al. [125] sought to advance depression detection by tapping into inherent
speech information, advocating for a Long Short-Term Memory (LSTM) model augmented
with multi-head temporal attention. In a similar vein, Dong et al. [126] recommended
the application of pre-trained models for the extraction of deep Speaker Recognition (SR)
and Speech Emotion Recognition (SER) features. Their approach synergizes these two
profound speech features to capture the complementary data embedded within speaker
voice characteristics and emotional variances.

EEG. The field of depression diagnosis has witnessed the burgeoning integration of
electroencephalogram (EEG) and machine learning techniques, marking a pivotal research
trajectory. In the reported literature [127], a novel deep learning method named the
Asymmetry Matrix Image (AMI) is introduced, which constructs spatial distribution maps
from EEG signals by assessing the asymmetry between cerebral hemispheres. AMI has been
shown to outperform traditional methods, delivering superior classification accuracy and
enhancing the distinction between depression patients and healthy controls. Additional
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research [128] delves into the utilization of nonlinear EEG signal features, such as Higuchi’s
fractal dimension (HFD) and sample entropy (SampEn), which serve as indicators of signal
complexity and irregularity. These nonlinear metrics have proven efficacious in segregating
depression patients from healthy individuals, with high accuracy figures reported across a
range of machine learning classifiers. In a different approach, literature [129] focuses on
power spectral features and asymmetry measures within the alpha, beta, delta, and theta
frequency bands. Notably, findings suggest that asymmetries in the alpha2 and theta
bands, particularly when analyzed with a Support Vector Machine (SVM), lead to higher
diagnostic precision, with an accuracy rate of 88.33%. Explorations into the use of EEG
data for depression diagnosis have also extended to single-channel and multi-channel
formats [130]. By refining feature selection and classification models via genetic algorithms,
it has been discovered that single-channel analysis can effectively differentiate depression
patients, underscoring the potential for employing portable EEG devices in preliminary
depression screening despite a noted limitation in clinical generalizability due to small
sample sizes. The literature [131] investigates four feature selection techniques and five
classification algorithms for processing EEG data. Through rigorous data preprocessing
and feature extraction—identifying noise types and harnessing both linear and nonlinear
features—the critical role of the data preparation phase is emphasized for achieving optimal
classification accuracy.

A novel article [47] presents a multi-modal feature fusion method that integrates EEG
with eye movement (EM) signals, aiming to refine the identification of mild depression.
The application of deep learning to fuse these multi-modal data sets enables real-time
monitoring and detection of mild depression, with the fusion approach in the hidden layers
yielding improved recognition accuracy over single-feature methods, and showcasing the
benefits of combining diverse physiological signals. The melding of EEG and machine
learning has advanced the diagnostic and treatment prediction capabilities for depression.
Although challenges such as limited sample sizes and variability in feature extraction per-
sist, forthcoming research endeavors are expected to tackle these issues, thereby enhancing
the precision and utility of predictive models. Importantly, these advancements lay the
groundwork for tailored treatment modalities, contributing to the delivery of more accurate
and efficacious interventions for those suffering from depression.

Multi-modal. The landscape of depression diagnosis is rapidly evolving with the
advent of multi-modal approaches, harnessing the rich data from speech, text, and video to
create more nuanced and comprehensive diagnostic tools. Ehghaghi et al. [132] embarked
on an interpretable analysis to discern the distinct characteristics between dementia and
depression. They pinpointed a spectrum of differentiators such as auditory anomalies,
repetitive speech patterns, word retrieval struggles, coherence degradation, and variance
in lexical density and richness—all of which are pivotal in distinguishing these disorders.
Diep et al. [133] ventured further by proposing a model that synthesizes deep learning
features from both audio and text modalities, enriched with manually curated attributes
deriving from domain expertise. Mao et al. [134] introduced a novel approach using an
attention-based multi-modal framework to generate a joint speech and text representation,
specifically for the prediction of depression. Exploring the intersection of speech and
video modalities, Jan et al. [135] investigated the capability of cognitive machines and
robots to autonomously recognize psychological states. By analyzing gestures and facial
expressions, these intelligent systems aim to play a role in monitoring depressive states.
Uddin et al. [136] optimized the data processing workflow by segmenting audio and video
into fixed-length units for input into a spatiotemporal network. This network is tailored to
extract both spatial and temporal characteristics, with the introduction of dynamic feature
descriptors like the Volume Local Directional Structure Pattern (VLDSP) to capture the
nuances of facial dynamics.

Not content with dual-modal analyses, some studies have ambitiously integrated all
three modalities—speech, text, and video—to push the boundaries of depression detection.
Yang et al. [137] contributed to this growing body of work by discussing a multi-modal
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depression analysis framework comprising deep convolutional neural networks (DCNNs)
and deep neural networks (DNNs). This composite approach leverages the strengths of
each modality, offering a more robust and potentially accurate detection system. The con-
vergence of such diverse modalities represents a significant step forward in the field of
mental health diagnostics. By combining distinct but complementary data sources, these
integrated approaches aim to mirror the complex nature of depression more closely, offering
promising directions for future research and potential clinical applications. The ultimate
goal is to refine these tools for enhancing early detection and personalizing treatment
strategies, thus providing a beacon of hope for individuals grappling with depression.

Table 5. Summary of different medical features for depression disease diagnosis.

Literature Feature Name Modality Dataset Results

Aragon et al. [58] Word embedding, hashtag Text eRisk 2018 and 2019 0.79 (F1) for Anorexia,
0.58 (F1) for Depression

Verma et al. [113],
Ghosh et al. [114]

Word embedding Text Twitter data collected
by Twitter API

78% (ACC)

Xu et al. [115],
Qi et al. [116]

Multiple characteristics Text Dreaddit, DepSever-
ity, SDCNL, CSSRS-
Suicide

0.816 (ACC) for Dreaddit,
0.775 (ACC) and 0.756 (ACC)
for DepSeverity, 0.724 (ACC)
for SDCNL, 0.868 (ACC)
and 0.481 (ACC) for CSSRS-
Suicide

Liu et al. [117] MFCC, PLP, FBANK, TDNN × vec-
tor, Resnet × vector, I-vector

Speech CN-Celeb, Depression
speech database-20

accuracy: 74.72%

Liu et al. [118] Short-term energy (power), inten-
sity, loudness, zero crossing rate
(ZCR), F0, jitter, flicker, formants
and mel frequency cepstral coeffi-
cients (MFCC)), linear prediction co-
efficient (LPC), line spectrum pair
(LSP)), perceptual linear prediction
coefficient (PLP), etc.

Speech private dataset 78.02% Accuracy

Jiang et al. [119] Prosodic, spectral, and glottal
features

Speech private dataset The accuracy was 75.00%
in women and 81.82%
in men, and the
sensitivity/specificity
ratio was 79.25%/70.59% in
women and 78.13%/85.29%
in men

Liu et al. [120] MFCC, LPC, Jitter, Fundamental Fre-
quency, etc.

Speech private dataset The recognition accuracy for
males and females was 75.8%
and 68.5% respectively

Yin et al. [121] MFCC Speech DAIC-WOZ, MODM F1: 92.7, Recall: 92.7,
Precision: 92.8

Tasnim et al. [122] Spectral features, depth representa-
tion features

Speech DAIC-WOZ F1: 69%

He et al. [123] eGeMAPS, MRELBP, raw waveform,
spectrogram

Speech AVEC2013,
AVEC2014

AVEC2013: RMSE 9.0000,
MAE7.4210; AVEC2014:
RMSE10.0012, MAE 8.201
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Table 5. Cont.

Literature Feature Name Modality Dataset Results

Dubagunta et al. [124] original speech signal, Low profile
filtered signal (LPF), Linear Predic-
tion Residual Signal (LPR), Homo-
morphically filtered speech source
signal (HFVS), Zero frequency fil-
tered signal (ZFF)

Speech AVEC2013,
AVEC2014

RMSE: 8.549, MAE: 6.650, F1:
0.824

Zhao et al. [125] ComParE, some frame-level features Speech DAIC-WOZ, MODM This model improves 2.3%
and 10.3% compared to
the LSTM model in public
databases

Dong et al. [126] Depth representation features Speech AVEC2013,
AVEC2014

MSE: 8.549, MAE: 6.650, F1:
0.82

Kang et al. [127] Matrix image of asymmetric feature
transformation of EEG

EEG Public dataset HUSM Accuracy 98.85%

Čukić et al. [128] HFD and SampEn of EEG signals EEG Private dataset
(23 patents)

average accuracy 90.24%
97.56%

Mahato et al. [129] Combined characteristics of alpha,
alpha1, alpha2, beta, delta and theta
power and theta asymmetry (delta,
theta, alpha, beta, alpha1, alpha2)
and theta asymmetry (average theta
asymmetry and paired theta asym-
metry)

EEG Public dataset average accuracy 88.33%

Wan et al. [130] The feature extraction methods of
time domain, frequency domain,
wavelet, and nonlinear analysis are
used to extract features from the sub-
band components corresponding to
the EEG samples.

EEG Private (Beijing
Anding Hospital,
12 normal people,
23 patients)

accuracy 86.67%

Cai et al. [131] The linear characteristics are as fol-
lows: peak, variance, dip, kurto-
sis, and Hjorth parameters. Nonlin-
ear characteristics include C0 com-
plexity, correlation dimension, Shan-
non entropy, Kolmogorov entropy,
and power spectral entropy.

EEG Private dataset: 152
depressed patients
and 113 healthy
subjects

accuracy 71.32%

Zhu et al. [47] 1760 features (22 EEG features × 5
frequency bands × 16 electrodes)

EEG Public dataset Ad-hoc accuracy 83.42%

Ehghaghi et al. [132] The acoustic features comprise spec-
tral and sound-related characteris-
tics, such as statistical functions
of Mel-frequency cepstral coeffi-
cients (MFCC), fundamental fre-
quency (F0), and zero-crossing rate
(ZCR). Text features include syntac-
tic complexity, semantic complexity,
and discourse coherence, among oth-
ers.

Speech,
text

Dementia- Bank,
Healthy Aging,
ADReSS, DEPAC+,
AD Clinical Trial

F1: 0.89 ± 0.03

Diep et al. [133] Handcrafted features provided by
domain experts include acoustic fea-
tures, semantic features, and lexical-
syntactic features.

Speech,
text

DEPAC F1: 63.0%
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Table 5. Cont.

Literature Feature Name Modality Dataset Results

Mao et al. [134] For speech, the features encompass
prosodic features (NAQ, QOQ, H1–
H2, PSP, MDQ, Peaklope, Rd), voice
quality features (F0, VUV), and spec-
tral features (MCEP, HMPDM, HM-
PDD). In the realm of text, GloVe
word vectors are utilized.

Speech,
text

DAIC-WOZg accuracy 95.80%

Jan et al. [135] Visual feature extraction includes
Local Binary Pattern (LBP), Edge
Orientation Histogram (EOH),
Local Phase Quantization (LPQ),
and deep feature extraction using
pre-trained models like VGG-face
and AlexNet. For audio feature
extraction, Mel-frequency cepstral
coefficients (MFCC) are employed.
Additionally, the feature dynamic
historical histogram involves MHH.

Speech,
video

AVEC2013,
AVEC2014

MAE: 6.14 RMSE: 7.43

Uddin et al. [136] raw wav, image Speech,
video

AVEC2013,
AVEC2014

AVEC2013: MAE 6.92, RMSE
8.54; AVEC2014: MAE 6.75,
RMSE 8.45

Yang et al. [137] For speech, statistical features are ex-
tracted.
In the domain of text, paragraph vec-
tors are utilized.
For video, the feature extraction
involves Displacement Range His-
togram (DRH).

Speech,
text, video

DAIC-WOZ RMSE: 5.974, MAE: 5.163

3.4. Diagnosis of Heart Disease.

Heart diseases, particularly Cardiovascular Diseases (CVD), stand as the leading cause
of death worldwide. Hypertrophic Cardiomyopathy (HCM) poses significant challenges
due to the thickening of the left ventricular walls of the heart. The modern era has seen a
paradigm shift in heart disease diagnosis, leveraging advanced technologies across various
modalities. This chapter will diagnostic methods for heart disease using hypertrophic car-
diomyopathy (HCM) as an example. We will gain a deeper understanding of HCM-assisted
diagnostic techniques based on echocardiography, medical text data, and electrocardio-
grams (ECG) and explore other heart disease diagnostic methods based on genetic data.
The comprehensive application of these diagnostic tools provides support for the early
identification and treatment of heart disease and is of great significance for improving
patient prognosis and quality of life. This section provides a summarized overview of the
model and its features, as detailed in the accompanying Table 6.

Echocardiography. Deep learning frameworks have shown remarkable promise
in enhancing the accuracy and efficiency of heart disease detection and classification.
Among these advancements, the work of Almadani et al. [138] stands out with the introduc-
tion of the HCM Dynamic Echo, an end-to-end deep learning framework designed for the
binary classification of echocardiography videos into hypertrophic cardiomyopathy (HCM)
or normal categories. This system includes two analytical components: Branch 1, dubbed
the Slow Path, which focuses on extracting spatial features, and Branch 2, known as the Fast
Path, which is dedicated to capturing temporal structure information, thereby improving
the accuracy of video recognition. They applied transfer learning and pre-trained HCM
Dynamic Echo on the large Stanford EchoNet Dynamic Echocardiography dataset, enabling
HCM detection in smaller echocardiography video datasets. In rigorous evaluations, HCM

239



Bioengineering 2024, 11, 219

Dynamic Echo outperformed state-of-the-art baselines, with an accuracy of 93.13%, an F1
score of 92.98%, a Positive Predictive Value (PPV) of 94.64%, a specificity of 94.87%, and an
Area Under the Curve (AUC) of 93.13%.

Parallel to these developments, other researchers have also made significant contri-
butions to the field. For instance, Madani et al. [139] developed a high-efficiency deep
learning classifier for binary Left Ventricular Hypertrophy (LVH) diagnosis using echocar-
diography images. The core framework of their model included a U-Net for eliminating
auxiliary information from image and a series of convolutional neural networks, resulting
in an accuracy of 91.2%. To counter data scarcity, they proposed data augmentation using
semi-supervised Generative Adversarial Networks (GANs). GANs demonstrated superior
performance than traditional CNNs with limited data, attaining a test accuracy of 92.3%.
Nasimova et al. [140] introduced a deep convolutional neural network for classifying
echocardiography videos as Dilated Cardiomyopathy or Hypertrophic Cardiomyopathy.
Their study initially generated an Echo dataset from internet-sourced Echo videos and
EchoNet database videos. The team trimmed the collected videos to 2–5 s to remove unnec-
essary echo information and redundant frames before segmenting them into 112 × 112 × 3
images for manual feature extraction. These images and extracted features were input into
a six-layer CNN for classification, achieving a test accuracy of 98.2%.

Moreover, some studies have contributed to the field by applying deep learning
models to diagnose various cardiac conditions from echocardiography. Zhang et al. [141]
utilized the VGG-16 model to automatically detect three diseases from echocardiography:
Hypertrophic Cardiomyopathy, Pulmonary Arterial Hypertension, and Cardiac Amyloido-
sis. They trained separate networks for each disease, using three random images per video.
The images were processed through the VGG-16 model with a fully connected layer fea-
turing two output units, achieving an AUC of 93% and p-value of 0.23 for HCM detection.
Ghorbani et al. [142] analyzed 3312 consecutive comprehensive non-stress echocardiogra-
phy studies collected from June to December 2018. The process started with the first frame
of each video, sampling 20 frames at intervals of 100 milliseconds. The Inception-Resnet-v1
network processed each frame individually, and the final prediction was determined by
averaging the predictions from all individual frames. This method achieved an AUC-ROC
of 0.75 and an F1 score of 0.57.

Medical text data. Sundaram et al. [143] developed a Random Forest (RF) model to
automatically identify patients with Hypertrophic Cardiomyopathy (HCM) using features
extracted from Cardiac Magnetic Resonance (CMR) imaging reports. The Random Forest
(RF) model attained an accuracy of 86% using 608 features and achieved 85% accuracy with
30 features. Mishra et al. [144] introduced an innovative application within the medical
Internet of Things (IoMT) domain. They utilized a Recurrent convolutional neural network
(Rec-CONVnet) to accurately estimate the risk of heart disease. The system design compiles
various data points such as age, gender, symptoms of chest discomfort, blood sugar
levels, blood pressure (BP), and other relevant clinical factors. Through comprehensive
simulations and evaluations, the Rec-CONVnet demonstrated remarkable performance,
achieving an impressive F1 score of 97%. Jayasudha et al. [145] designed a Social Water
Cycle Driving Training Optimization (SWCDTO) ensemble classifier for heart disease
detection. The classifier showed outstanding performance across specificity, accuracy,
and sensitivity, reaching 95.84%, 94.80 and 95.36% in each metric. Levine et al. [146]
investigated the performance of a large model (GPT-3) in diagnosing and triaging diseases
like heart disease. The findings indicated that GPT-3’s performance nearly approached that
of professional medical practitioners.

Genetic data. Peng et al. [147] employed a Support Vector Machine (SVM), Random
Forest (RF), and Logistic Regression (LR) to develop a classification model for coronary
atherosclerosis heart disease (CAD). This model utilized datasets GSE12288, GSE7638,
and GSE66360 from the GEO database. The ROC curve analysis revealed for SVM, RF,
and LR in validation to be 75.58%, 63.57%, and 63.95%, respectively. Their respective areas
under the curve were 81.3% (95% CI 0.761–0.866, p < 0.0001), 72.7% (95% CI 0.665–0.788,
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p < 0.0001), and 78.3% (95% CI 0.725–0.841, p < 0.0001). Liu et al. [148] created a classifica-
tion model for Coronary Artery Disease (CAD) using LASSO logistic regression, random
forest, and SVM. They used data from the GEO dataset GSE113079, achieving an AUC
of 97.1% in the training set and 98.9% in the testing set. Zhang et al. [44] introduced the
Integration Machine Learning (IML) algorithm, incorporating a SVM, neural network (NN),
RF, gradient boosting machine (GBM), decision trees (DT), and LASSO. This algorithm was
applied to classify patients with Acute Myocardial Infarction (AMI) and stable coronary
artery disease (SCAD), using GEO datasets GSE60993, GSE62646, GSE48060, and GSE59867,
achieving an AUC over 90%. Hou et al. [149] utilized SVM for classifying CAD without
heart failure (CAD-non HF), CAD complicated with heart failure (CAD-HF), and healthy
controls, using GEO datasets GSE20681 and GSE59867. The study achieved an AUC of 0.944.
Finally, Samadishadlou et al. [150] applied SVM for classifying myocardial infarction (MI),
stable CAD, and healthy individuals, using datasets GSE59867, GSE56609, and GSE54475
from GEO. Their model demonstrated an AUC-ROC of 96% and an accuracy of 94%.

Electrocardiogram. The integration of Convolutional Neural Networks (CNN) into the
analysis of Electrocardiogram (ECG) data has marked a significant leap forward in detecting
Hypertrophic Cardiomyopathy (HCM) and other cardiovascular diseases (CVDs) [151].
Among the notable contributions, Tison et al. [152] developed an automated and highly
interpretable method for analyzing patient ECG features. This method processed and
analyzed 36,186 ECG datum from the University of California, San Francisco (UCSF)
database. Researchers utilized Hidden Markov Models (HMM) to extract ECG vector
representations containing 725 features, which were then trained using CNNs to estimate
cardiac structural and functional indices and classify diseases. Compared to traditional
neural network models, this vectorized processing approach better retained meaningful
features in ECGs, thus enhancing the interpretability and accuracy of diagnostic results.
Similarly, Dai et al. [151] used a deep CNN to classify five cardiovascular diseases (CVDs)
using standard 12-lead ECG signals. The study utilized the public Physiobank (PTB)
ECG database. The researchers have segmented ECG signals into different intervals—1 s,
2 s, and 3 s—without detecting individual waves, thus forming three distinct datasets.
They applied ten-fold cross-validation on one-second-long ECG signals and tested on the
other two datasets (two and three seconds long). The proposed CNN model achieved an
accuracy, sensitivity, and specificity of 99.59%, 99.04%, and 99.87%, respectively, for one-
second signals, demonstrating superior performance. For two-second signals using pre-
trained models, the system achieved an overall accuracy, sensitivity, and specificity of
99.80%, 99.48%, and 99.93%. For three-second signal detection, the accuracies were 99.84%,
sensitivity 99.52%, and specificity 99.95%. These results indicate that the proposed system
achieved high performance while maintaining simplicity and flexibility, suggesting its
potential for real-time application in medical settings.

Furthermore, Tison et al. [153] highlighted the application value of AI-enhanced
ECG (AI-ECG) in assessing disease states and treatment responses for obstructive HCM.
The study noted that AI-ECG could extract more physiologically and pathophysiologically
relevant information related to obstructive HCM from ECGs, surpassing traditional manual
interpretation methods. Moreover, the study mentioned the potential of AI-ECG for remote
monitoring through smartphone electrodes to assess disease states and treatment responses.
The authors also foresaw the future application of this technology in medication adjustment
and enhancing treatment safety.

Another impressive study is conducted by the Mayo Clinic [154]: they used digital
12-lead ECGs from 2448 diagnosed HCM patients and 51,153 age and gender-matched
non-HCM controls to train and validate a CNN. The algorithm performed impressively in
adult HCM patient ECG detection, with an AUC of 0.96, sensitivity of 87%, and specificity
of 90%. The algorithm’s performance in a test of 300 children and over 18,000 age and
gender-matched controls was equally impressive: the HCM detection model achieved an
AUC of 0.98, sensitivity of 92%, specificity of 95%, Positive Predictive Value (PPV) of 22%,
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and Negative Predictive Value (NPV) of 99%. The study found that the algorithm generally
performed better in the adolescent group than in the pediatric group.

Table 6. Summary of different medical features for heart disease diagnosis.

Literature Feature Name Modality Dataset Results

Almadani
et al. [138]

Echocardiography echocar-
diogram videos

Stanford EchoNet-
Dynamic echocardio-
gram dataset

ACC: 93.13%,
F1-score: 92.98%,
Positive Predictive Value
(PPV): 94.64%,
specificity: 94.87%,
AUC: 93.13%

Madani et al. [139] echocardiography Original
echocardiograms

Private dataset 92.3% accuracy: binary left
ventricular hypertrophy clas-
sification

Nasimova
et al. [140]

Echocardiography Clipped
echocardiogram
video frames

(1) EchoNet database;
(2) Echo videos from
the Internet

ACC: 98.2% (dilated
cardiomyopathy vs.
hyper-trophic
cardiomy-opathy (HCM))

Zhang et al. [141] Echocardiography Original
echocardiograms

Private dataset AUC: 0.93

Ghorbani
et al. [142]

Echocardiography Cropped
echocardiogram
regions (inside of
the scanning sector)

Private dataset AUC: 0.75

Sundaram
et al. [143]

Word Embedding, Part
of Speech (POS)

Text CMR 86% (ACC) for 608 features
and 85% (ACC) for 30 fea-
tures

Mishra et al. [144] Word Embedding Text Real clinical records
in hospital databases

97% F1 score, FPR of 64.6%,
accuracy of 96.4%, and accu-
racy of 76.2%

Levine et al. [146] Multivariate Features Text Recruited
participants

Brier score = 0.18 for disease,
Brier score = 0.22 for triage

Peng et al. [147] Gene-based RNA-seq GEO SVM: 81.3% (ACC); RF: 72.7%
(ACC); LR: 78.3% (ACC)

Liu et al. [148] Gene-based RNA-seq GEO Training: 97.1% (AUC), test:
98.9% (AUC)

Zhang et al. [44] Gene-based RNA-seq GEO 90% (AUC)

Hou et al. [149] Gene-based RNA-seq GEO 94.4% (AUC)

Samadishadlou
et al. [150]

Gene-based MicroRNA GEO 96% (AUC), 94% (ACC)

Dai et al. [151] End-to-end
Auto-learned Features

ECG Physiobank
(PTB) Public Dataset

Accuracy: 99.84%,
Sensitivity: 99.52%,
Specificity: 99.95%

Tison et al. [152] 725 Features Extracted
using Hidden Markov
Models

ECG UCSF Database AUR: Range 0.94 to 0.77

Tison et al. [153] End-to-end
Auto-learned Features

ECG UCSF Database -

Ko et al. [154] End-to-end
Auto-learned Features

ECG Public Mayo Clinic
Developed Database

AUC: 0.96, Sensitivity: 87%,
Specificity: 90%
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3.5. Diagnosis of Epilepsy

Epilepsy, a prevalent neurological disorder affecting approximately 60 million people
worldwide [155], poses significant diagnostic challenges. A range of symptoms charac-
terizes it, and an effective diagnosis requires a multidisciplinary approach. This article
explores various diagnostic methods employed in epilepsy detection, utilizing advanced
technology and medical imaging. This chapter will explore auxiliary diagnostic techniques
for epilepsy based on images, medical text data, and electroencephalography (EEG). These
methods play a crucial role in improving the accuracy and efficiency of epilepsy diagnosis,
providing us with a new perspective to understand this complex disease and bringing
better medical services to patients. This section provides a summarized overview of the
model and its features, as detailed in the accompanying Table 7.

Medical video. Using video data for computer-assisted diagnosis has become essen-
tial for the timely detection of epilepsy. Karácsony et al. [156] employed clinical Motion
Capture (MoCap) to quantitatively analyze seizure-related symptoms such as ictal head
turning and upper limb automatisms, marking a pioneering discovery in differentiat-
ing epilepsy syndromes, providing clinical localization and lateralization information.
Maia et al. [157] applied a threshold-based approach to first detect regions of interest
(beds) in video data, aligning them vertically for consistency, then utilized Convolutional
Neural Networks and Multilayer Perceptrons to classify epileptic seizures, achieving 65%
AUC. Achilles et al. [158] recorded 52 seizures at 15 frames per second using infrared and
depth imaging sensors, training distinct Deep Convolutional Neural Network architectures
(CNNs) on video frames (one CNN for infrared frames, another for depth frames). Combin-
ing outputs from both networks, they achieved the prediction of ictal or interictal epilepsy
phases, with their method demonstrating high sensitivity (87%) and specificity (81%) for
generalized tonic-clonic seizures.

Building upon these advancements, Ahmedt-Aristizabal [159] unveiled an innovative
network approach that integrates 3D facial reconstruction with deep learning. The design
of this approach aims to detect and measure orofacial semiotics in a collection of 20 seizure
videos, featuring recordings from patients with temporal and extra-temporal lobe epilepsy.
The developed network demonstrated its capability to differentiate between two types of
epileptic seizures, achieving an average classification accuracy of 89%. It marks a significant
advancement in computer vision and deep learning within non-contact systems, particu-
larly for identifying common semiotics in real-world clinical environments. Significantly,
this method departs from earlier epilepsy monitoring techniques by moving beyond the
reliance on single-angle image information. In contrast, Kunekar et al. [160] proposed
improving accuracy by utilizing information from multiple modalities instead of relying
solely on features from a single viewpoint. Ahmedt-Aristizabal et al. [161] proposed a new
modular, hierarchical, multi-modal system aimed at detecting and quantifying semiotic
signs recorded in 2D monitoring videos. This method combines computer vision with deep
learning architectures to learn semiotic features from facial, body, and hand movements.

MRI. MRI-generated 2D or 3D images enable a better understanding of the brain’s
internal structure, pinpointing brain issues associated with epileptic seizures. fMRI has
become indispensable tools in the detection and understanding of epileptic seizures by
providing detailed images of the brain’s internal structure. Garner et al. [162] applied a
machine learning approach using a Random Forest classifier, trained with resting-state
functional MRI (fMRI) data, to predict epilepsy outcomes. The model achieved a 69%
accuracy rate in predicting epilepsy outcomes on the test set after 100 stratified cross-
validation rounds, using 70% of resting-state fMRI scans for training and 30% for testing.
Similarly, Sahebzamani et al. [163] employed the Gram-Schmidt orthogonalization method
alongside a unified tissue segmentation approach for segmenting brain tissues in MRI
images. They calculated first-order statistical and Gray Level Co-occurrence Matrix (GLCM)
texture features and trained SVM classifiers using features from either the entire brain or
the hippocampus to diagnose epilepsy. This comprehensive segmentation and whole-brain
analysis methodology yielded a 94% accuracy rate.
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In the quest for early and accurate diagnosis, researchers like Si et al. [164] have turned
to diffusion MRI techniques to detect subtle brain changes in conditions such as Juvenile My-
oclonic Epilepsy. They emphasized the importance of early diagnosis in Juvenile Myoclonic
Epilepsy (JME), a disorder that predominantly affects adolescents and poses significant
developmental challenges. They utilized two advanced diffusion MRI techniques—High
Angular Resolution Diffusion Imaging (HARDI) and Neurite Orientation Dispersion and
Density Imaging (NODDI)—to create connectivity matrices that capture subtle white matter
changes. By adopting transfer learning, they trained sophisticated Convolutional Neural
Network (CNN)-based models for JME detection. Pominova et al. [165] explored various
deep 3D neural architecture building blocks for epilepsy detection, using both structural
and functional MRI data. They experimented with 12 different architectural variants of
3D convolution and 3D recurrent neural networks. Santoso et al. [166] proposed a novel
integrated Convolutional Neural Network approach for classifying brain abnormalities
(epilepsy vs. non-epilepsy) using axial multi-sequence MR images. The model comprised
base learners with distinct architectures and lower parameter counts. By aggregating
the outputs and predictions of these base models (through methods like majority voting,
weighted majority voting, and weighted averaging) and feeding them into a meta-learning
process with a SVM, they significantly enhanced the final classification performance.

Medical text data. Hamid et al. [167] showcased the potential to differentiate epileptic
patients from those with psychogenic non-epileptic seizures (PNES). They developed an
NLP tool based on an annotator modular pipeline to analyze electronic medical records,
identifying grammatical structures and named entities. This algorithm was proficient in
detecting concepts indicative of PNES and those negating its presence. Taking a different
approach, Pevy and colleagues [168] utilized written records of conversations between
patients and doctors to distinguish between epileptic seizures and PNES. They employed
an NLP toolkit to extract specific features of speech formulation efforts, such as hesitations,
reformulations, and grammatical repairs, from these transcripts. The algorithm then trained
machine learning classifiers with these features, enabling it to distinguish patients based on
their verbal expression patterns. Connolly et al. [169] further affirmed the effectiveness of
NLP in differentiating among various epilepsy types, including partial epilepsy, generalized
epilepsy, and unclassified epilepsy. By analyzing text features extracted from electronic
medical records, their algorithm successfully classified different subtypes of epilepsy with
remarkable accuracy.

EEG. Researchers frequently use CNN (Convolutional Neural Network) architectures,
which can extract features automatically, unlike traditional machine learning classifiers
that require manual extraction of features for detecting and classifying epileptic seizures
effectively. Clarke et al. [170] developed a deep Convolutional Neural Network (CNN) for
detecting epileptic seizure discharges, trained using a dataset comprising over 6000 marked
events from a group of 103 patients diagnosed with Idiopathic Generalized Epilepsy (IGE).
This newly proposed automatic detection algorithm showcased exceptional performance
in identifying epileptic seizures from clinical EEGs. The system achieved an impressive
average sensitivity of 95% and kept the average false positive rate to just one per minute.
These results indicate that AI-powered computer-assisted EEG analysis could significantly
improve the speed and precision of EEG assessments, thereby potentially enhancing treat-
ment outcomes for epilepsy patients. Fürbass et al. [171] employed the Fast R-CNN method
for object detection, using deep regression for localization estimation of EDs (negative
peaks) and the UDA training process to handle noise and artefacts in EEG. The authors
used EEG data from 590,000 epochs of 289 patients for unsupervised training and tested it
against 100 proprietary datasets. The experimental results indicated that the DeepSpike
algorithm attained a sensitivity of 89%, a specificity of 70%, and an overall accuracy rate
of 80%, showcasing its high effectiveness in identifying EEG discharges. Thara et al. [172]
used a two-layer stacked bidirectional Long Short-Term Memory (LSTM) technique for
detecting epileptic seizures. The researchers built a model with two LSTM layers, dropout
and dense layers, and trained and optimized it using activation functions such as sigmoid
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and softmax, achieving good results with an accuracy of 99.89% on the training set and
99.08% on the test set. Yao et al. [173] experimented with ten different and independently
improved RNN (IndRNN) architectures, achieving the best accuracy with a 31-layer Dense
IndRNN with attention (DIndRNN).

Multi-modality. Torres-Velázquez et al. [174] evaluated the performance of multi-
channel deep neural networks in Temporal Lobe Epilepsy (TLE) classification tasks under
single and combined datasets. They trained, validated, and tested several multi-channel
deep neural network models using brain structural indices from structural MRI, MRI-based
region of interest correlation features, and personal demographic and cognitive data (PDC).
Results indicated that PDC alone provided the most accurate TLE classification, followed
by the combination of PDC with MRI-based brain structural indices. These findings affirm
the potential of deep learning methods, like mDNN models, in TLE classification when
combined with multiple datasets.

Table 7. Summary of different medical features for epilepsy diagnosis.

Literature Feature Name Modality Dataset Results

Karácsony et al. [156] Medical video 2D + 3D video feature Neuro- Kinect -

Maia et al. [157] Medical video Original Infrared video fea-
ture

Private data 0.65 (AUC)

Achilles et al. [158] Medical video infrared and depth video
frames

ADNI, AIBL sensitivity (87%)
specificity (81%)

Ahmedt-
Aristizabal et al. [159]

Medical video Regions of interest by 3D face
reconstruction from the origi-
nal video sequences

Private dataset 0.89 (ACC)

Ahmedt-
Aristizabal [161]

Medical video 2D monitoring videos Private dataset 83.4 % (ACC: face); 80.1%
(ACC: body) body; 69.3%
(ACC:hand)e

Garner et al. [162] MRI functional magnetic
resonance imaging
(fMRI) data

REDCap 0.69 (ACC)

Sahebzamani et al. [163] MRI first-order statistical and
volumetric gray-level
co-occurrence matrix (GLCM)
texture features from
structural MRI data

Private dataset 0.94 (ACC)

Si et al. [164] MRI the connectivity matrix
which can describe tiny
changes in white matter

Private dataset 75.2% (ACC) and the
0.839 (AUC)

Pominova et al. [165] MRI 3D + 4D MRI data Private dataset 0.73 (AUC)

Santos et al. [166] MRI axial multi-sequences of MRI Private dataset 86.3% (ACC)
90.75% (F1-score)

Hamid et al. [167] stemming features,
POS, bag of concepts

Text VA national clinical
database

The accuracy, sensitivity,
and F-score are 93%, 99%,
and 96%

Pevy et al. [168] Word embedding Text Recording,
transcribing, and
writing records of
interview corpora

71% (ACC)
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Table 7. Cont.

Literature Feature Name Modality Dataset Results

Connolly et al. [169] N-gram Text DrWare- house
(DrWH)

0.708 (F1) for partial
epilepsy (PE),
generalized epilepsy
(GE), and unclassified
epilepsy (UE), 0.899 (F1)
for PE and GE

Clarke et al. [170] End-to-end
Auto-learned

EEG Public Ad-hoc Average Sensitivity: 95%

Fürbass et al. [171] End-to-end
Auto-learned

EEG Private Dataset (Test);
590,000 Epochs from
289 Patients in Tem-
ple University’s Pub-
lic EEG Corpus (Train-
ing)

Sensitivity: 89%,
Specificity: 70%,
Overall Accuracy: 80%

Thara et al. [172] End-to-end
Auto-learned

EEG Private Dataset Accuracy: 99.89%

Yao et al. [173] End-to-end
Auto-learned

EEG CHB-MIT Dataset Average Sensitivity:
88.80%, Specificity:
88.60%, Precision:
88.69%

Torres-
Velázquez et al. [174]

Multi-modality brain structure metrics from
structural MRI, MRI-based
region of interest correlation
features, and personal demo-
graphic and cognitive data
(PDC)

Private Dataset Acc = 69.46% ± 20.82%,
AUC = 70.00% ± 26.00%

3.6. Discussion

Modality distinction. In our comprehensive review, we examine the different methods
used to automatically diagnose five specific diseases: Alzheimer’s disease (AD), breast
cancer, depression, heart disease, and epilepsy. The medical data produced from different
disease diagnosis processes has commonalities, mainly encompassing image, text, genetic,
signal, and voice modalities. Distinctive preferences for specific modalities exist across
different diseases. Even within the realm of single medical imaging, nuanced differences
become apparent. For Alzheimer’s disease diagnosis, Magnetic Resonance Imaging (MRI)
and Positron Emission Tomography (PET) images emerge as the predominant modalities,
supplemented by the inclusion of voice data. The widespread use of MRI and PET stems
from their effectiveness in capturing the structural and functional brain changes associated
with Alzheimer’s disease (AD). The unique characteristics of neurodegenerative alterations
make these imaging modalities particularly suitable for early detection and monitoring of
disease progression.

Contrastingly, in breast cancer diagnostics, a multifaceted approach involves genetic
data, X-ray imaging, ultrasound, and a notable amount of textual information. The ratio-
nale behind this approach lies in the heterogeneity of breast cancer itself, necessitating a
comprehensive analysis of genetic predispositions, coupled with various imaging tech-
niques and textual data to enhance diagnostic accuracy. Each modality contributes valuable
insights into different aspects of breast cancer pathology, collectively enhancing the overall
diagnostic efficacy. In the context of depression diagnosis, the emphasis shifts toward
textual data and Electroencephalogram (EEG). The reliance on text data could be attributed
to the subjective nature of depression symptoms, requiring a nuanced analysis of linguistic
patterns and sentiment. EEG captures brain wave activity and complements textual data
by providing physiological markers that indicate depression.
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For heart disease diagnosis, the prevalent modalities include echocardiography, elec-
trocardiography, and medical texts. The dominance of ultrasound-based echocardiography
comes from its ability to provide real-time images of the heart’s structure and function,
which is essential for assessing cardiac health. Electrocardiography contributes information
on the heart’s electrical activity, while medical texts further contextualize the diagnostic
process. For epilepsy diagnostics, a comprehensive strategy incorporates Magnetic Res-
onance Imaging (MRI), video data capturing patient movements, Electroencephalogram
(EEG), and relevant textual information. The utilization of these diverse modalities is
driven by the intricate nature of epilepsy itself, demanding a thorough examination of
various aspects. MRI provides structural insights, video data offers observations of seizures
and associated movements, EEG captures electrical activity in the brain, while textual
information contributes contextual details.

In conclusion, the selection of modalities for automated diagnosis is intricately tied to
the unique characteristics and pathological features of each disease. Understanding the
rationale behind the prevalence of specific modalities facilitates a targeted and effective
approach to automated disease diagnosis.

Modality fusion. Contemporary diagnostic methodologies increasingly favour the
integration of multi-modal approaches. The advantages of the multi-modal paradigm lie
in its ability to provide a more comprehensive and accurate understanding of complex
phenomena by integrating diverse data modalities. This approach enhances robustness,
improves interpretability, and allows for personalized and optimized solutions across
various domains.

In diagnosing Alzheimer’s Disease (AD), where subtle but significant changes in
language patterns and cognitive function are markers, combining speech and text analysis
is extremely valuable. This multi-modal approach adeptly captures the intricate linguistic
nuances and potential confusion in communication exhibited by AD patients. Integrating
genetic data and electroencephalogram (EEG) as supplementary information enriches the
diagnostic process, addressing the multifaceted nature of AD symptoms and facilitating
a more accurate and holistic understanding. In cancer research, there is a significant
emphasis on combining imaging and genetic data. Since genetic mutations play a pivotal
role in the development and progression of various types of cancer, identifying specific
genetic alterations associated with different types of cancer can provide insights into their
molecular mechanisms and potential therapeutic targets.

Besides, specific genetic mutations may present as unique visual patterns. For exam-
ple, specific genetic alterations in breast cancer, such as those in the BRCA genes, may
result in characteristic radiographic features observable in mammograms or other imag-
ing modalities. Therefore, combining genetic data with medical imaging enhances our
molecular-level understanding of cancer and supports the creation of tailored, accurate
methods for its diagnosis and treatment. Depression diagnosis predominantly relies on
speech modalities, with supplementary integration of text or video data. This emphasis
on speech is justified by the distinct changes in vocal patterns and tone often exhibited by
individuals with depression. Adding text or video data enhances the diagnostic process by
providing extra information on the patient’s emotional and behavioural conditions.

For diagnosing heart disease, it’s common to combine ultrasound imaging with medi-
cal texts. The rationale behind this lies in the need to comprehensively assess both structural
and functional aspects of the heart. Ultrasound provides real-time visualizations of cardiac
anatomy, while medical texts offer additional clinical context, creating a synergistic diagnos-
tic approach. Epilepsy diagnosis currently benefits from the mutual utilization of various
imaging modalities, such as Magnetic Resonance Imaging (MRI) and Positron Emission To-
mography (PET) images. This approach acknowledges the diverse epileptic manifestations
and leverages the strengths of multiple imaging techniques to achieve a more compre-
hensive and accurate diagnosis. In essence, the choice of modalities for fusion explicitly
correlates with the diverse manifestations of patients’ conditions. The reasonable multi-
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modal fusion approach can capture the intricacies of symptoms, ensuring a more nuanced
and effective diagnostic outcome tailored to the specificities of each medical condition.

Performance improvement. The evolution of research in automated disease diag-
nosis is accompanied by the continual improvement of performance. This progression
has transitioned from machine learning dominance to primary reliance on deep learning,
complemented by innovative techniques such as attention mechanisms and transfer learn-
ing. Initially, disease diagnosis methods focused on developing feature engineering within
machine learning studies, where manually identifying and selecting pertinent features was
vital for the model’s performance. However, this process had limitations, often requiring
domain expertise and not fully exploiting the richness of complex datasets. In response to
these challenges, the subsequent embrace of deep learning has become a transformative
force in medical diagnostics. The distinctive advantage of deep learning lies in its capabil-
ity to automatically extract hierarchical and intricate features from raw data, eliminating
the need for explicit feature engineering. This automated feature extraction significantly
enhances the diagnostic model’s performance by allowing it to discern intricate patterns
and relationships within the data.

Deep learning has improved the accuracy and efficiency of disease detection. Within the
domain of deep learning for medical diagnostics, scholars have proposed innovative tech-
niques to elevate model performance. Inspired by how we humans see, attention mecha-
nisms in deep learning models allow a focus on areas within the data for better analysis. It
mimics the human ability to prioritize relevant information, improving the model’s ability
to capture subtle or critical features. Attention mechanisms have shown effectiveness in
different medical imaging tasks, leading to diagnoses that are more precise and aware
of the context. Transfer learning has also become a technique to overcome the issue of
scarce medical data samples. In transfer learning, a model pre-trained on a large dataset,
often from a related domain, is fine-tuned on a smaller target dataset, which is typically
scarce in medical applications. This approach leverages the knowledge gained from the
source domain to enhance the model’s performance on the target task, even when training
samples are limited. Transfer learning has proven effective in scenarios where acquiring a
large, labeled medical dataset is impractical, thus facilitating the development of robust
diagnostic models. The evolution from traditional machine learning, reliant on explicit
feature engineering, to deep learning, with its automated feature extraction capabilities,
has significantly improved disease diagnosis models. Combining attention mechanisms
with transfer learning highlights scholars’ dedication to enhancing model performance,
improving interpretability, and tackling the problem of limited data in medical contexts.
These advancements collectively contribute to the ongoing refinement and enhancement of
state-of-the-art diagnostic systems.

Large model application. The emergence of large models in AI has revolutionized
many industries, particularly in healthcare. These models, often trained on vast datasets,
can analyze complex patterns that lead to more accurate and efficient disease diagnosis.
With the increasing use of electronic health records and the integration of various data
sources, medical institutions now have access to more information. This dataset comprises
patient histories, symptomatology, and genetic profiles, among other details, offering a
rich reservoir. Large models can analyze this data to discern patterns and correlations.
Currently, most large-scale models in healthcare focus on text, analyzing medical records,
discharge summaries, and other types of written data. However, there is potential for
models to analyze additional forms of medical data, including images, voice recordings,
genetic data, and physiological signals.

As technologies improve and datasets grow, we can expect to see more diverse ap-
plications of large models in healthcare. For example, image analysis models can process
medical images such as X-rays or CT scans to detect diseases or lesions more accurately.
The speech analysis model can process the patient’s speech records and extract useful
information from them, such as the severity of symptoms or the development trend of the
condition. Genetic analysis models can predict a patient’s response to specific drugs or
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disease risks based on their genomic data. The physiological signal analysis model can
track the patient’s vital signs, like heart rate and blood pressure, identify any irregularities
swiftly, and take appropriate action. Notably, some challenges need to be solved. One major
challenge is data privacy. Training and refining large models necessitates significant data
volumes, yet it is essential to safeguard the privacy and security of medical information.
Creating strong encryption and access management systems is crucial for patient data. It’s
imperative to address ethical considerations when integrating AI into healthcare practices.
It is essential to ensure that AI algorithms do not discriminate against any particular group
and that their use complies with ethical standards. Overall, the rise of large models in
healthcare can contribute to improving patient outcomes and reduce the burden on the
healthcare system in the future.

4. Challenges and Future Works

Despite the commendable achievements in artificial intelligence (AI) technology within
the realm of disease diagnosis and analysis, it is crucial to acknowledge that notable limita-
tions still prevail in many other facets. Exploring solutions to overcome these limitations
emerges as a pivotal concern for the future trajectory of this field. Consequently, herein, we
delineate the extant constraints and proffer potential resolutions to these challenges.

4.1. Medical Multimodality Data Imbalance

Typically, data imbalance encompasses two dimensions: the imbalance within classes
in a single modality, and the distributional imbalances across different modalities. This
aspect describes the unequal representation of various classes within a single data category.
For instance, in an MRI dataset, there might be a notable discrepancy in the number of scans
illustrating Alzheimer’s disease compared to scans indicative of normal conditions. For the
latter, there is a disproportionate representation of data from one modality compared
to others: There could be a surplus of imaging data yet a scarcity of genetic or textual
data about Alzheimer’s diagnosis. Some strategies are needed to solve the problem of
imbalanced samples:

Transfer learning: Leveraging pre-existing labelled datasets from related medical
domains and applying transfer learning techniques can partially address the data scarcity.
One can refine pre-trained models by fine-tuning them on smaller, specialized datasets that
cater to specific diagnostic challenges.

Synthetic data generation: Employing techniques for generating synthetic data, where
new data points are artificially created based on existing labelled samples, can augment
the available dataset. This approach helps address limitations arising from insufficient
data volume.

Ensemble methods: You can enhance the accuracy of a model by combining predic-
tions from multiple weakly supervised models or by incorporating different sources of
weak supervision. Ensemble methods help compensate for the lack of detailed annotations
by aggregating diverse model outputs.

4.2. Weak Model Generalization Ability

The core technologies and algorithms of AI models designed for different diseases are
typically general. For instance, a Convolutional Neural Network (CNN) has been widely
applied in the diagnosis of AD [80], breast cancer [96], depression [121], heart disease [140],
and epilepsy [158]. However, deploying AI models developed for specific diseases to
other disease predictions often demonstrates limited generalization ability. The primary
reason lies in the fact that AI diagnostic models tailored for a specific disease tend to focus
exclusively on the features unique to the particular disease, overlooking broader patterns.
Some state-of-the-art techniques can address this issue:

Considering multi-centre cross-institutional data collection: Encouraging healthcare
institutions to collaborate on data collection is to create more diverse and representative
datasets. Such collaborative efforts involve pooling data from various sources, encompass-
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ing different geographical locations, demographic profiles, and medical practices. Models
trained on datasets with this heightened diversity are more likely to generalize effectively
across a spectrum of patient populations and healthcare scenarios.

Adversarial training: Adversarial training involves the introduction of adversarial
examples during model training. By exposing the model to perturbed or deceptive samples,
it learns to become more robust and exhibits improved generalization performance when
faced with unseen or unexpected data. This technique can fortify the model against varia-
tions in the input space, enhancing its adaptability to a broader range of medical scenarios.

Reinforcement learning: Reinforcement learning is a paradigm where an agent
interacts with an environment to learn optimal decision-making strategies. In medical
diagnosis, one can use reinforcement learning to develop policies that help the model make
more generalized decisions across diverse contexts. Through trial and error, the model
hones its ability to navigate complex environments and adapt its behaviour to new and
varied scenarios.

4.3. Lack of Model Interpretability

AI has demonstrated tremendous potential in health and medicine, yet research on the
interpretability of AI decision outcomes is limited. This review found that only 28 of the
included studies directly or indirectly tackled the crucial aspect of interpretability. These
studies sought interpretability through methods like logistic regression, decision trees,
naive Bayes, and support vector machines, known for their inherent clarity, or by applying
techniques such as incorporating prior knowledge and using attention mechanisms to
improve model interpretability. However, regrettably, the majority of studies did not
adequately consider this crucial factor. Future research directions urgently need to delve
into the interpretability of artificial intelligence models, utilizing interpretable models to
enhance trust in AI and assist clinical practitioners in making informed decisions [175,176],
thereby promoting the better integration of these models into clinical practice. Some
solutions may be leveraged to enhance model interpretability:

Combining inherently interpretable model architectures. Several models such as de-
cision trees or linear models, can be integrated with machine and deep learning frameworks
thus enhancing transparency. These models provide explicit rules and feature importance,
making their decision-making process more understandable.

Visual heatmaps generation. Generating heatmaps is a common technique for visual-
izing the importance or activation of specific regions in data. For instance, gradient-based
methods like guided backpropagation or gradient-weighted class activation mapping
(Grad-CAM) can identify influential regions, revealing which parts of the input most
significantly contribute to the output.

4.4. Data Privacy and Security

Ensuring data privacy and security has always been a critical issue awaiting resolution
in medical artificial intelligence. The development of robust AI models relies on extensive
training and validation datasets. Because local data is often scarce, it’s usually necessary
to centralize the data. However, centralized solutions come with inherent drawbacks,
including concerns about data ownership, confidentiality, privacy, and security, as well as
the potential for data monopolies biased towards data aggregators [177]. Means to mitigate
these pitfalls include:

Anonymization and de-identification. This method is primarily achieved by remov-
ing or blurring information in the data that identifies individuals, thereby reducing the link
between the data and specific persons. This method is widely employed in current research
to safeguard patient privacy. However, studies indicate that even desensitized data may
still be re-identifiable through sophisticated analysis methods [178].

Federated learning. Federated Learning [179] is a decentralized learning approach
that pushes the model training process to local devices, forming a global model through
local updates, thereby preventing sensitive data from leaving the original devices. This
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method of decentralized learning emerges as a progressive approach to tackle the challenges
of data anonymization and de-identification, offering a proactive strategy for maintaining
data privacy and security.

Swarm learning. Swarm learning [180] extends the principles of federated learning to
scenarios involving multiple participants, facilitating the integration of data from various
sources through collaborative learning. This approach ensures a more comprehensive and
accurate learning outcome while safeguarding privacy.

4.5. Ethical and Moral Considerations

From an ethical and moral standpoint, it is vital to guarantee that developed models
mitigate “bias” and “inequality” across individuals and demographic categories. It is
particularly crucial to address disparities linked to gender, age, race, income, education,
and geographic location to promote fairness. In most studies reviewed, the persistence of
differences often stemmed from not having enough data to achieve mitigation. However,
for the deployment of AI models in clinical practice, ensuring fairness and generalizabil-
ity [181,182] is also essential to guarantee the ethical and effective implementation of these
technologies in a clinical setting [183].

There are at least two common scenarios where ethical issues arise in medical data.
The first scenario is when the data source itself cannot reflect the true epidemiological situ-
ation within a given population, such as population data bias resulting from overdiagnosis
of schizophrenia in African Americans [184]. The second scenario is when the dataset used
for algorithm training lacks members from specific demographic groups. For example,
an algorithm primarily trained on data from elderly white males might yield poor predic-
tions for young black females. If algorithms trained on datasets with these characteristics
are adopted in healthcare, they may exacerbate health disparities [185]. Effective solutions
include:

Balanced data sampling. When constructing the training dataset, employ methods
such as undersampling, oversampling, adaptive sampling, etc., to ensure a relatively
balanced number of samples from different groups. This helps prevent the model from
overly focusing on a specific population, thereby reducing data bias.

Removal of sensitive attributes. Eliminate potentially sensitive attributes (e.g., gender,
race, age, etc.) from the data to ensure that the training dataset for the model does not
contain direct or indirect ethical information.

Establishment of best practices by scientific societies and regulatory bodies. Scien-
tific societies and regulatory bodies should develop data assessment standards, allowing
datasets to comprehensively and accurately represent the societal, environmental, and eco-
nomic factors impacting health [186]. The aim is to identify and minimize bias in training
datasets, thereby fostering the development of algorithms that mitigate bias and promote
fairness. As a notable example of bias reduction, the U.S. Food and Drug Administra-
tion (FDA), within the context of its Digital Health Innovation Action Plan, initiated a
pre-certification pilot program. They evaluate developing medical software based on five
established excellence principles, including quality standards and other similar regulatory
criteria [187]. These standards can be extended to encompass the risk of bias in training
datasets, thereby addressing issues related to data “bias” and “inequality”.

4.6. Future Works

Application of AI on mobile devices. Integrating AI programs on mobile devices
injects a more efficient and intelligent element into the management of patient diseases,
early warnings, and promotion of healthy behaviours [188,189]. Equipping various sensors
and AI programs on devices such as watches and smartphones enables real-time moni-
toring, recording, and analysis of patients’ vital signs (such as heart rate, blood pressure,
oxygen levels, etc.), medication usage, dietary habits, and exercise data. This capability
facilitates patients’ current physical conditions and future trends, enabling timely responses
to potential health risks and offering personalized treatment recommendations.
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Brain-machine interfaces. Brain-machine interfaces (BMIs) [190] are poised to play a
crucial role in the diagnosis of neurological disorders in the future. BMIs, through direct
interaction with signals from the brain, hold the potential to identify diseases related to the
nervous system, such as Parkinson’s disease or stroke. BMIs are anticipated to advance
brain diagnostics, particularly in the field of neuroimaging.

Collaboration of diverse teams. The application of AI in the health and medical
field involves three types of parties, i.e., healthcare professionals, researchers, and AI
experts. Facilitating collaboration among these three parties contributes to the advancement
of AI in the health and medical domain. Healthcare professionals possess rich clinical
experience and specialized medical knowledge, providing profound insights into the
pathology, physiology, and other aspects of diseases. They can offer unique perspectives
and high-quality annotated data for researchers and AI experts, thereby contributing to
more interpretable and accurate AI models for disease diagnosis. Secondly, healthcare
professionals recognize the significance and delicate nature of medical data, as well as
the need to maintain its privacy and security. They can ensure the privacy protection and
compliance of data, ensuring that researchers and AI experts, in the process of refining
AI models, mitigate bias and promote fairness. Reciprocally, researchers and AI experts
possess proficient technical development experience, enabling them to provide healthcare
professionals with adaptive AI models for the ever-evolving medical environment. These
models assist healthcare professionals in clinical diagnosis, achieve early disease warning
and prediction, and alleviate their workload.

5. Conclusions

In this paper, we thoroughly investigate the applications of artificial intelligence in
diagnosing five distinct disorders: Alzheimer’s disease, breast cancer, depression, heart
disease, and epilepsy. We describe commonly used datasets to illustrate the data founda-
tion, considering numerous multimodality data sources. Subsequently, we demonstrate
the data pre-processing, feature engineering process, classification model establishment,
and performance evaluation metrics. These methods automatically transform original data
into valuable information highly relevant to disease lesions, representing key steps for
AI-based diagnosis tasks.

We report and analyze detailed efforts on different modality-driven diagnoses, high-
lighting diverse strategies employed to address the complexities of each disorder. For
Alzheimer’s disease, we scrutinize the integration of multi-modal data such as neuroimag-
ing, genetic markers, and cognitive assessments, emphasizing the intricate interplay be-
tween various diagnostic modalities. In the field of breast cancer, we explore imaging
data from mammograms and genetic information, offering a nuanced understanding of
the disease at both structural and molecular levels. Regarding depression, we investigate
textual and speech data, revealing the potential of linguistic and acoustic cues in enhancing
diagnostic accuracy. For heart disease, we focus on physiological signals and imaging data,
providing a holistic approach to cardiovascular health assessment. Additionally, in the case
of epilepsy, we meticulously examine the integration of electroencephalogram (EEG) data,
showcasing the significance of real-time monitoring and data-driven insights.

Finally, we acknowledge that while AI technology has made certain achievements
in the medical field, significant limitations remain in disease diagnosis applications. We
describe challenges such as medical multimodality data imbalance, weak model generaliza-
tion ability, and lack of model interpretability, providing corresponding solutions to guide
future work. Overall, this review aims to offer a valuable resource for clinicians, researchers,
and stakeholders involved in the dynamic landscape of AI in healthcare by providing a
comprehensive overview of advances in multi-modality-driven AI disease diagnosis.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
AD Alzheimer’s disease
HCM Hypertrophic cardiomyopathy
ECG Electrocardiogram
EEG Electroencephalograms
CT Computed tomography
MRI Magnetic resonance imaging
PET Positron emission tomography
SVM Support vector machine
RNN Recurrent neural network
CNN Convolutional neural network
ADNI Alzheimer’s disease neuroimaging initiative
UKB United kingdom biobank
TCGA The cancer genome atlas
BUSI Breast ultrasound images
GEO Gene expression omnibus
HCM Hypertrophic cardiomyopathy
WHO World health organization
SCD Sunnybrook cardiac data
ACDC Automated cardiac diagnosis challenge
DAIC-WOZ Distress analysis interview corpus-wizard of OZ
MODMA Multi-modal open dataset for mental-disorder analysis
WHO World health organization
DICOM Digital imaging and communications in medicine
PNG Portable network graphics
ICA Independent component analysis
DWT Discrete wavelet transform
RFE Recursive feature elimination
PCA Principal component analysis
LDA Linear discriminant analysis
CRF Conditional random fields
LR Logistic Regression
NB Naive bayes
DT Decision tree
LSTM Long short-term memory
LM Large Model
GPT Generative re-trained transformer
PaLM Pathways Language Model
SAM Segment Anything Model
GLM General Language Model
TP True Positive
FP False Positive
TN True Negative
FN False Negative
ACC Accuracy
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Sen Sensitivity
Sp Specificity
P Precision
AUC-ROC Area Under the ROC Curve
TPR True Positive Rate
FPR False Positive Rate
H-FCN Hierarchical Fully Convolutional Network
MIL Multiple Instance Learning
MCI Mild Cognitive Impairment
CN Cognitively normal
GRU Gated Recurrent Unit
MLP Multilayer Perceptrons
ASR Automatic Speech Recognition
MM-SDPN Multi-modal Stacked Denoising Predictive Network
RVFL Random Vector Functional Link
SNP Single nucleotide polymorphism
MAADf Multi-modal AD diagnostic framework
CAD Computer-Aided Diagnosis
NN Neural Network
BF Benign Fibroadenom
BPT Benign Phyllodes Tumor
BTA Benign Tubular Adenoma
MDC Malignant Ductal Carcinoma
MLC Malignant Lobular Carcinoma
MMC Malignant Mucinous Carcinoma
MPC Malignant Papillary Carcinoma
LASSO Least Absolute Shrinkage and Selection Operation
RFE Recursive Feature Elimination
mRNA Maximum Relevance Minimum Redundancy
BUSI Breast Ultrasound Images
EDLCDS-BCD Integrated Deep Learning Clinical Decision Support System
USI Ultrasound image
CKHA Chaos Krill Herd Algorithm
CSO Cat Swarm Optimization
LLM Large Language Model
ELRDD Ensemble Logistic Regression Model for Depression Detection
SR Speaker Recognition
SER Speech Emotion Recognition
AMI Asymmetry Matrix Image
HFD Higuchi’s fractal dimension
SampEn sample entropy
EM Eye movement
VLDSP Volume Local Directional Structure Pattern
DCNN Deep convolutional neural networks
DNN Deep neural network
Bi-LSTM bidirectional long short-term memory
ZCR Zero crossing rate
MFCC mel frequency cepstral coefficient
LPC linear prediction coefficient
LSP line spectrum pair
PLP perceptual linear prediction coefficient
LPF Low profile filtered signal
LPR Linear Prediction Residual Signal
HFVS Homomorphically filtered speech source signal
ZFF Zero frequency filtered signal
PTB Physiobank
CVD Cardiovascular Diseases
HCM Hypertrophic Cardiomyopathy
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IoMT Internet of Things
Rec-CONVnet Recurrent CONVolutional neural network
SWCDTO Social Water Cycle Driving Training Optimization
SCAD Stable coronary artery disease patients
CAD-non HF CAD without HF
CAD-HF CAD complicated with HF
MI Myocardial infarction
UCSF University of California, San Francisco
HMM Hidden Markov Model
PTB public Physiobank
AI-ECG AI-enhanced ECG
PPV Positive Predictive Value
NPV Negative Predictive Value
POS Part Of Speech
MoCap Motion Capture
fMRI functional MRI
GLCM Gray Level Co-occurrence Matrix
JME Juvenile Myoclonic Epilepsy
HARDI High Angular Resolution Diffusion Imaging
NODDI Neurite Orientation Dispersion and Density Imaging
PNES psychogenic non-epileptic seizures
IGE Idiopathic Generalized Epileps
DIndRNN Dense IndRNN with attentio
IndRNN Independently improved RNN
TLE Temporal Lobe Epileps
PDC Personal demographic and cognitive data
PE Partial epilepsy
GE Generalized epilepsy
UE Unclassified epilepsy
TCGA The Cancer Genome Atlas
ADNI Alzheimer’s Disease Neuroimaging initiative
OASIS-3 Open Access Series of Imaging Studies-3
AIBL Australian Imaging, Biomarker and Lifestyle
SCD Sunnybrook Cardiac Data
SAFHS San Antonio Family Heart Study
BUSI Breast Ultrasound Images
GEO Gene Expression Omnibus
TLGS Tehran Lipid and Glucose Study
SCD Sunnybrook Cardiac Data
ACDC Automated Cardiac Diagnosis Challenge
DAIC-WOZ Distress Analysis Interview Corpus-Wizard of OZ
MODMA Multi-modal Open Dataset for Mental-disorder Analysis

Appendix A

Table A1. Multi-modal datasets of diagnosis task for different disease.

Dataset Year Disease Modality Link

Alzheimer’s Disease Neuroimaging
initiative (ADNI)

2003 AD Image-based https://adni.loni.usc.edu/ (accessed on 29
November 2023)

Open Access Series of Imaging Studies-3
(OASIS-3)

2019 AD Image-based https://www.oasis-brains.org/ (accessed
on 29 November 2023)

Australian Imaging, Biomarker and
Lifestyle (AIBL)

2006 AD Image-based https://aibl.org.au/ (accessed on 29
November 2023)

Sunnybrook Cardiac Data (SCD) 2009 AD Image-based https://www.cardiacatlas.
org/sunnybrook-cardiac-data/
(accessed on 29 November 2023)
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Dataset Year Disease Modality Link

Automated Cardiac Diagnosis
Challenge (ACDC)

2018 HCM Image-based https://www.creatis.insa-
lyon.fr/Challenge/acdc/
(accessed on 29 November 2023)

Cardiac CT Segmentation Challenge 2020 HCM Image-based https://www.ub.edu/mnms/ (accessed on
29 November 2023)

Congenital Heart Disease (CHD) 2013 Heart disease Image-based https://www.data.gov.uk/dataset/f1
3fbd0e-fc8a-4d42-82ef-d40f930e4b70/
congenital-heart-disease-chd (accessed on
29 November 2023)

AMRG Cardiac Atlas - Heart disease Image-based https://www.cardiacatlas.org/amrg-
cardiac-atlas/ (accessed on 29 November
2023)

Multi-Ethnic Study of Atherosclerosis 2002 Heart disease Image-based https://www.cardiacatlas.org/mesa/
(accessed on 29 November 2023)

Breast Ultrasound Images (BUSI) 2018 Breast cancer Image-based https://scholar.cu.edu.eg/?q=afahmy/
pages/dataset (accessed on 29 November
2023)

Breast Cancer Coimbra Dataset 2013 Breast cancer Text-based https://archive.ics.uci.edu/ml/datasets/
(accessed on 29 November 2023)

Oncoshare Breast Cancer Database 2016 Breast cancer Text-based https://med.stanford.edu/oncoshare.
html (accessed on 29 November 2023)

I2B2 NLP Research Database 2014 Breast cancer,
Heart disease,
Depression

Text-based https://www.i2b2.org/NLP/DataSets/
Main.php (accessed on 29 November 2023)

MIMIC-III Critical Care Database 2012 Heart disease,
Depression

Text-based https://github.com/MIT-LCP/mimic-
code (accessed on 29 November 2023)

eDiseases Dataset 2018 Breast cancer,
Heart disease,
Depression,
AD

Text-based https://zenodo.org/record/1479354#.Y8
P4kexBy3I (accessed on 29 November 2023)

National Alzheimer’s Coordinating
Center (NACC)

1999 AD Text-based https://naccdata.org/ (accessed on 29
November 2023)

UK Biobank database 2010 Breast can-
cer, Heart
disease, AD,
Depression

Text-based https://www.ukbiobank.ac.uk/ (accessed
on 29 November 2023)

DementiaBank 2003 AD Text-based https://dementia.talkbank.org/ (accessed
on 29 November 2023)

SAHS 2020 Breast cancer,
Heart disease

Text-based https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs00121
5.v3.p2 (accessed on 29 November 2023)

TLGS 1999 Heart disease Text-based https://endocrine.ac.ir/page/Tehran-
Lipid-and-Glucose-Study-TLGS (accessed
on 29 November 2023)

Acute Myocardial Infarction Dataset of
World Health Organization (WHO)

2023 Heart disease Text-based http://www.who.int/ (accessed on 29
November 2023)

UCI machine learning repository 2023 Heart disease Text-based https://archive.ics.uci.edu/dataset/45
/heart+disease (accessed on 29 November
2023)
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Dataset Year Disease Modality Link

Depression text dataset 2023 Depression Text-based https://www.Depression-texts.com/
(accessed on 29 November 2023)

The Cancer Genome Atlas (TCGA) 2006 Breast cancer Gene-based https://www.cancer.gov/ccg/research/
genome-sequencing/tcga (accessed on 29
November 2023)

Gene Expression Omnibus (GEO) 2000 Breast cancer Gene-based http://www.ncbi.nlm.nih.gov/geo
(accessed on 29 November 2023)

Online Mendelian Inheritance in Man
(OMIM)

1966 Breast cancer Gene-based https://omim.org/ (accessed on 29 Novem-
ber 2023)

GenBank 1982 Breast cancer Gene-based https://www.ncbi.nlm.nih.gov/genbank/
(accessed on 29 November 2023)

Human Gene Mutation Database
(HGMD)

1996 Breast cancer Gene-based http://www.hgmd.org/ (accessed on 29
November 2023)

Genome Aggregation Database
(genoAD)

2016 Breast cancer Gene-based https://gnomad.broadinstitute.org/
(accessed on 29 November 2023)

Chinese Millionome Database (CMDB) 2017 Breast cancer Gene-based https://db.cngb.org/cmdb (accessed on 29
November 2023)

University of California, Santa Cruz
(UCSC)

2000 Breast cancer Gene-based http://www.genome.ucsc.edu/ (accessed
on 29 November 2023)

Distress Analysis Interview Corpus-
Wizard of OZ (DAIC-WOZ)

2014 Depression Speech-based https://dcapswoz.ict.usc.edu/ (accessed
on 29 November 2023)

Multi-modal Open Dataset for Mental-
disorder Analysis (MODMA)

2020 Depression Speech-based,
ECG-based

http://modma.lzu.edu.cn/data/index/
(accessed on 29 November 2023)

Depression and Anxiety Crowdsourced
corpus (DEPAC)

2023 Depression Speech-based https://www.mturk.com (accessed on 29
November 2023)

Bipolar Disorder Corpus 2018 Depression Speech-based,
ECG-based

https://www.aconf.org/conf_153173.html
(accessed on 29 November 2023)

AVEC2014 2014 Depression Speech-based,
Image-based

http://avec2014-db.sspnet.eu/ (accessed
on 29 November 2023)

AVEC2013 2013 Depression Speech-based,
Image-based

http://avec2013-db.sspnet.eu/ (accessed
on 29 November 2023)

ADReSS 2020 AD Speech-based https://luzs.gitlab.io/adress/ (accessed on
29 November 2023)

AVEC2019 2019 Depression Speech-based https://www.ihp-lab.org/resources/ (ac-
cessed on 29 November 2023)

ADReSS-M 2023 AD Speech-based,
Text-based

https://2023.ieeeicassp.org/ (accessed on
29 November 2023)

ADReSSo 2021 AD Speech-based https://luzs.gitlab.io/adresso-2021/ (ac-
cessed on 29 November 2023)

The Carolinas Conversation Collection
(CCC)

2011 AD Speech-based,
Image-based

https://www.degruyter.com/how-access-
works (accessed on 29 November 2023)

ERP Core 2016 AD EEG-based https://osf.io/thsqg/ (accessed on 29
November 2023)

EEG Epilepsy Datasets 2016 Epilepsy EEG-based https://www.researchgate.net/
publication/308719109_EEG_Epilepsy_
Datasets (accessed on 29 November 2023)
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CHB-MIT Scalp EEG Database 2010 Epilepsy EEG-based https://physionet.org/content/chbmit/1.
0.0/ (accessed on 29 November 2023)

Kaggle 2018 Epilepsy EEG-based https://www.kaggle.com/code/
harunshimanto/machine-learning-
algorithms-for-epileptic-seizures (accessed
on 29 November 2023)

EEG_128channels_ERP_lanzhou_2015 2015 Depression EEG-based http://modma.lzu.edu.cn/data/
application/ (accessed on 29 Novem-
ber 2023)

ECG-ID Database 2014 Heart disease EEG-based https://physionet.org/content/ecgiddb/
1.0.0/ (accessed on 29 November 2023)

Common Standards for Electrocardiog-
raphy (CSE) database

1980 Heart disease EEG-based http://www.escardio.org/Pages/index.
aspx (accessed on 29 November 2023)

European ST-T Database 2009 Heart disease EEG-based https://physionet.org/content/edb/1.0.
0/ (accessed on 29 November 2023)

Sudden Cardiac Death Holter Database 2004 Heart disease EEG-based http://physionet.org/physiobank/
database/sddb/ (accessed on 29 November
2023)

Bonn EEG time series database 2001 Epilepsy EEG-based https://www.ukbonn.de/epileptologie/
ag-lehnertz-downloads/ (accessed on 29
November 2023)

Temple University EEG corpus 2000 Epilepsy EEG-based https://isip.piconepress.com/projects/
tuh_eeg/html/downloads.shtml (accessed
on 29 November 2023)
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Abstract: Signal processing is a very useful field of study in the interpretation of signals in many
everyday applications. In the case of applications with time-varying signals, one possibility is to
consider them as graphs, so graph theory arises, which extends classical methods to the non-Euclidean
domain. In addition, machine learning techniques have been widely used in pattern recognition
activities in a wide variety of tasks, including health sciences. The objective of this work is to identify
and analyze the papers in the literature that address the use of machine learning applied to graph
signal processing in health sciences. A search was performed in four databases (Science Direct,
IEEE Xplore, ACM, and MDPI), using search strings to identify papers that are in the scope of this
review. Finally, 45 papers were included in the analysis, the first being published in 2015, which
indicates an emerging area. Among the gaps found, we can mention the need for better clinical
interpretability of the results obtained in the papers, that is not to restrict the results or conclusions
simply to performance metrics. In addition, a possible research direction is the use of new transforms.
It is also important to make new public datasets available that can be used to train the models.

Keywords: deep learning; graph signal processing; health; machine learning

1. Introduction

Graph signal processing (GSP) is an emerging research field, which focuses on gener-
alizing the classical concepts of signal processing in order to expand them to graphs [1].
The need for GSP is related to the considerable amount of information that can be rep-
resented as a signal whose samples lie over irregular structures that can be modeled as
graphs [1,2]. Among the GSP application scenarios that have attracted the attention of
researchers and have been documented in recent studies, one can mention forecasting in
the financial market [3], 3D point clouds [4], the Internet of Things (IoT) [5], traffic [6],
and sensor, social, physical, and biological networks [7–10].

In the practical use of GSP, machine learning (ML) techniques and, in particular,
deep learning (DL) techniques have been playing an important role. This is due to the
fact that deep neural networks are adaptable to solving a wide range of problems, pro-
viding better or competitive results, when compared to other techniques. The extension
of ML to non-Euclidean data gave rise to graph learning (GL) [11] and, consequently,
to graph neural networks (GNNs). Such networks have also provided good results in
several applications [12,13]. Regarding deep learning on graphs [11], specifically, we can
mention the graph convolutional neural networks (GCNNs), in which deep networks
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with convolutional layers are proposed, such as the operations performed by the tradi-
tional convolutional neural network (CNN), but in this case, applied to problems in the
non-Euclidean domain, i.e., in graphs [14–16].

Among the areas that have been highlighted in recent works involving the use of deep
learning techniques and graph signal processing, one can mention the medical sciences [17].
Applications of GSP with ML for health have shown growth and been documented in a
large number of works published in the literature [18]. In this scope, one identifies papers
devoted to applications related to various medical specialties. There is evidence that some
of these specialties, such as neurology, for example, have stood out in this context, while
other areas are still little explored. The interest of researchers in using GSP and DL in
neurology is due to the fact that the human brain can be modeled as a graph, so that
its regions can be considered as vertices or nodes and its connectomes at functional and
structural levels can be viewed as edges [19–21]. Deep networks, on the other hand, are
widely used for automatic pattern recognition. In this context, the literature includes works
dealing with different objectives, from early diagnosis of Alzheimer’s disease [22] and
autism [23] to emotion recognition [24] and imagined speech [25] and multiple sciences [26].

In general, scholars in health sciences have demonstrated interest in the development
and application of techniques simultaneously based on machine learning, signal processing,
and graph theory. The interpretation and analysis of complex irregular data have potential
to provide a number of benefits in clinical and hospital practice as an aid in identifying the
origin of diseases, the early diagnosis of medical conditions, the verification of possible
treatments, and disease prevention [27]. The elements outlined above encouraged us to
prepare the present paper, which corresponds to a systematic literature review focusing
on machine learning-based healthcare applications, with an emphasis on deep learning
applied to signal processing over graphs. The paper presents an overview of the area:
the medical specialties with the most papers in GSP in recent years, the ML and GSP
techniques that have been most used in healthcare, the most influential authors in the
area, and challenges, gaps, and open questions that may provide opportunities for future
research. To be more specific, our paper includes the following:

• A comprehensive overview of ML and GSP applied to healthcare;
• A panorama of the datasets most used in ML applied to GSP in healthcare and their

corresponding description;
• The identification of gaps, open problems, and promising future research directions in

ML applied to GSP in healthcare.

The remainder of the paper is organized as follows. In Section 2, the basic funda-
mentals of graph signal processing, machine learning, and deep learning are presented.
Section 3 corresponds to the methodology adopted for the systematic review, such as the sci-
entific databases considered, the search strings used, as well as the inclusion and exclusion
criteria of the papers. Section 4 presents the main findings of the review. Section 5 brings
a discussion, in which the identified gaps are addressed and future research directions
in the area are presented. In Section 6, the final considerations are presented. Figure 1
summarizes the organization of the paper.
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Figure 1. Organizational diagram of the paper.

2. Background

In this section, we provide a concise review of the main concepts related to graph
signal processing and machine learning. In the case of GSP, the purpose is to explain
what it means to consider a signal in the so-called vertex domain, as well as to indicate
the main operators and approaches used in this framework. Regarding machine learning,
besides listing the tasks that can be performed with its help and discussing some correlated
issues, we highlight aspects of deep learning and the intersections of these tools with
graph-based models.

2.1. Graph Signal Processing

Graph signal processing aims to extend classical digital signal-processing methods to
signals over irregular domains represented by an arbitrary graph [27–30].

A graph is essentially a set of vertices (nodes) possibly connected by edges. Thus, each
sample of a graph signal is associated with a vertex in the corresponding underlying graph;
the edge weights reflect the interdependence among the signal samples [30]. In this context,
the topology of a graph is inferred or determined according to the proposed application.

In terms of orientation, graphs can be directed, if the orientation of the input and
output of the edge is considered, or undirected, in the opposite case. Another important
characterization concerns the vertex degree. In the case of directed graphs, the vertex
degree corresponds to the difference between the weight of edges that depart from it and
the weight of edges that arrive at it. The degree of a vertex of an undirected graph, on the
other hand, is the sum of the weights of the edges [31,32].

Additionally, a graph can be associated with an adjacency matrix, which is denoted
by A and contains information about the connectivity of the corresponding graph. If there
is an edge connecting vertices vj and vi, the entry Ai,j in the i-th row and the j-column of
the referenced matrix is filled with the value of the respective weight; otherwise, Ai,j = 0.
An adjacency matrix is symmetric if and only if the associated graph is undirected. A graph
can also be associated with a degree matrix, which is a diagonal matrix denoted by D and
having in the entry Di,i the degree of the vertex vi. Finally, the Laplacian matrix, denoted
by L, is obtained by L = D − A [29,32].

In the study of graph signal processing, there are two well-established approaches [2]:

• Spectral graph theory: This is based on the graph Laplacian matrix and considers
signals over undirected graphs with real and non-negative weights [1];
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• Algebraic signal processing theory: This considers the adjacency matrix, which as-
sumes the role of the elementary operator. This approach is used in signal analysis of
directed and undirected graphs, which may have real or complex weights [30].

2.2. Machine Learning and Deep Learning

Machine learning corresponds to a subarea of artificial intelligence (AI), which is
the field of study of systems that learn problems with examples obtained by training
data [33]. Thus, ML aims to propose algorithms that can learn iteratively with the available
data, in order to apply such algorithms to automate the construction of models capable of
performing classification, regression, and clustering. These tasks can be based, for instance,
on decision trees or artificial neural networks [34,35]. The use of such techniques has shown
good results for applications in the most diverse areas, including medical diagnosis in
health sciences [36–38].

In ML, two main approaches can be considered: supervised learning, in which training
is performed considering labeled data, and the results of the model along the training are
compared with the expected (target) outputs; unsupervised learning, in which the model
identifies patterns in the data, with typical applications in clustering; in the latter, the data
are not labeled and, as a consequence, there is no comparison between the output of the
model and the target output along training [39].

Deep learning corresponds to a subarea of ML that makes use of deep neural networks.
Such networks have high computational complexity and are widely used and disseminated
for automatic pattern recognition [40–45]. DL techniques have been employed as an
effective solution to perform pattern recognition in images, for instance. The most used
approach, in this case, employs the so-called CNNs [46]. CNNs operate similarly to
the receptive fields of the visual cortex of living beings and are essentially composed of
convolutional, pooling, and dense layers [47]. A characteristic of this type of network
is its high connectivity, which allows it to process a large amount of input parameters,
as required in image processing [48,49].

However, CNNs are designed for data with a Euclidean structure. Nevertheless, as pre-
viously mentioned, there is a latent need to extend these techniques to the non-Euclidean
domain, which can be accomplished by means of their generalization to graphs [50]. This
gives rise to graph learning, a field of study that encompasses graph neural networks [51].
Moreover, considering the GL scenario, one has a specific GNN approach, the graph convo-
lutional networks. Analogous to CNNs, GCNs have high connectivity to allow the input of
a high number of parameters; in this case, the inputs are graphs [15,52].

3. Methods

The review presented in this paper encompasses papers written in English and pub-
lished up to 30 October 2023. No starting date was defined for the search of papers in
the literature. Four databases of relevance in the field of engineering were used: Science
Direct, Institute of Electrical and Electronic Engineers (IEEE Xplore), the Association for
Computing Machinery (ACM), and Multidisciplinary Digital Publishing Institute (MDPI).

The strings used for the search were as follows:

1. “Graph signal processing” AND (COVID OR disease);
2. “Graph signal processing” AND (health OR medical OR medicine) AND (“Neural

Network” OR “Machine Learning” OR “Deep Learning”).

As a result, 396 papers were obtained. Refinements were performed to filter only
the relevant papers for the purpose of this review. The first adopted strategy consisted of
evaluating the title and the abstract of the papers and discarding those that did not adhere
to GSP techniques applied to health. Additionally, repeated papers were also subtracted,
so that 50 papers remained for analysis. Finally, 5 more papers were disregarded because
they were review papers. As shown in Figure 2, a final sample of 45 papers remained
for analysis.

269



Bioengineering 2024, 11, 671

Figure 2. Flowchart of the paper selection process for the review considering exclusion criteria.

It is worth mentioning that five review papers were found, which substantially differ
from our paper, both in scope and in selected works, and consequently in their findings.

In Khambhati et al. [53], for example, the selected papers concern specifically graphs
on dynamic patterns of brain connectivity. In the paper of Dong, Wang, and Abbas [54],
the review addresses works in the literature that use deep learning. It is not a review on
graph signal processing, although there is a section dedicated to the subject. The paper by
Li et al. [55] is a review on graph signal processing and neural networks in the biological
data scenario. In this case, despite being a broader review, it is a study more aligned with
the biological sciences, since it includes the study of molecules and proteins.

The paper by Yin and Kaiser [56] addresses neural flexibility in the human brain.
To this end, they reviewed the computational approaches and suggested metrics to classify
the flexibility of brain regions. In the work by Yingjie et al. [57], a specific area of the health
sciences is analyzed: the work is concerned with the use of deep learning to diagnose
liver diseases, and among the methods considered, one observes graph neural networks to
detect liver tumors.

Unlike the aforementioned papers, our work is in the field of health in general, with-
out a restricted medical area or specialty; we address papers on methods that use machine
learning for graph signal processing in health.

After the paper selection and exclusion stages, the most relevant characteristics for carry-
ing out the analysis of the 45 selected papers were extracted and synthesized. The information
considered in the analysis are those related to the nature and metadata of the paper:

• Year of publication;
• First author’s country of affiliation;
• Studied area.

Other issues considered in the analysis were the following:

• Dataset (size, type, and characteristics of sample);
• Proposed technique versus the technique used for the comparison;
• Objective of the study;
• Performance metrics.

The works were analyzed, and gaps and open challenges were identified. The results
of such an analysis can serve as guidelines for future work in the area.

4. Results

Initially, lexical analyses were performed on the 45 papers included in this review.
The analyses were based on the frequency of occurrence of terms in the titles and the
keywords. One of these analyses is the word cloud, which consists of a simplistic visual
representation to highlight the words with high recurrence in a previously defined uni-
verse [58,59]. Then, the larger the size of the word in the cloud, the more times it occurs in
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the text. An analysis of this type is depicted in Figure 3, which was obtained to show the
co-occurrence of terms in the titles of the papers. In the presented analysis, the terms with
the largest font are the most frequent ones in the area under investigation. This study was
carried out using the Iramuteq software [60], which is free to use and was developed as
open source using the R and Python languages. It can be inferred that terms related to GSP
and DL appear very often, as expected, but there is also a considerable occurrence of terms
related to neurology, such as: “fmri”, “eeg”, “brain”, and “alzheimer”.

Figure 3. Word cloud obtained from the titles of the 45 papers using the Iramuteq software.

One of the encountered issues in the use of word clouds is the lack of grouping of sim-
ilar terms because of grammatical variations, such as singular and plural [61]. In Iramuteq,
this question is solved by the use of textual lemmatization. Thus, a certain level of variation
is allowed in the terms, so that they are not considered distinct and the occurrence count is
added to its most frequent equivalent term [62,63].

Another analysis that can be carried out with the Iramuteq software is the similitude
analysis [64], which is based on graph theory. In this case, the most important words in the
analysis are represented by vertices of a graph structure and the connections between words
correspond to the edges. Thus, it is possible to identify central terms, their connections,
and the grouping of words of the same theme just like a hypergraph.

Figure 4 shows a similitude analysis obtained by Iramuteq for the titles of the papers.
The figure shows a central cluster with words that are frequently related; such a main
cluster is connected to other clusters through its secondary terms. As a central term, one
observes the word “graph”, as expected. From this, branches are shown with clusters of
distinct themes, but originated from the central elements.

Figure 5 allows a complementary analysis. In this case, the co-occurrence of key-
words is evaluated with the VOSviewer software, which is a tool for the elaboration of
bibliometric networks [65]. The most recurrent terms are “graph signal processing”, “deep
learning”, “graph learning”, “machine learning”, “fmri”, “connectivity”, “Alzheimer’s
disease”, “autism spectrum disorder”, “brain”, “mild cognitive impairment”, and “graph
fourier transform”. The nodes were divided into four clusters, so the most frequently
related terms are grouped together in the same color. According to the terms shown in the
figure, once again as expected, the application focused on neurology is highlighted in the
terms in evidence.
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Figure 4. Similitude analysis obtained from the titles of the 45 papers using the Iramuteq software
(0.7 alpha 2).

The distribution of publications by geographic location took into account the country
associated with the affiliation of the first author of each paper. This made it possible to
analyze the paper distribution by country and by continent, as shown in Figure 6 and
Figure 7, respectively. In Figure 6, we verify that there are first authors affiliated with
institutions from seventeen different countries, with emphasis on China, the United States
of America (USA), Iran, and the United Kingdom; the first two countries have, respectively,
ten and seven, and the last two countries have four, of the forty-five first authors.

Figure 7 presents the geographical overview from a continental point of view. It can be
inferred that there is at least one first author per continent, except in Oceania. The continent
with the greatest influence is Asia, corroborating the strong impact provided by China. It is
followed by the European continent, which has the United Kingdom and France among
the most influential countries according to the number of affiliated first authors. The next
continent in this sequence is America, which, despite the strong influence of the USA, has
only one other country with two affiliated first authors, Canada. Among the continents
with publications, the last is Africa, with only one first author. Europe and Asia together
hold 77.8% of first author affiliations.
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Figure 5. Graph analysis considering the occurrence of keywords.

Figure 6. Country associated with the affiliation of the first author of the papers included in the review.
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Figure 7. Continents associated with first author affiliation of the papers included in the review. The
continents are separated by color and the numbers indicate the number of publications per continent.

The trend of publications by year was also analyzed in this paper. As illustrated in
Figure 8, among the 45 considered papers, the first one was published by Toutain et al. [66],
in 2015, being the only paper that year. In 2016, there was again only one publication.
In 2017 and 2018, the number increased to two publications per year. In 2020, with eight
papers published, the growth was 166.67% compared to the previous year. A growth in the
number of publications was observed in 2021, when ten papers were published. In 2022,
one observes eleven publications. It can also be inferred that the recent development of the
research field that makes use of GSP and ML techniques is evident, which can be observed
with the beginning of publications in 2015 and the growth in subsequent years.

Figure 8 also presents the number of papers published per year by specialty; it cor-
roborates the emergence of papers that use GSP, ML, and DL for neurology applications,
which represents 66.7% of the 45 evaluated studies. However, it is evident that the research
field that makes use of GSP and DL techniques is very recent, since the first paper found in
this study was published in 2015. On the other hand, it can be said that the area is under
consolidation, with the remarkable growth in the number of publications in recent years:
in the period from 2020 to 2022, 64.4% of papers were published.

Figure 8. Distribution of publications by year and medical specialty.
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Figure 9 shows the eleven areas with publications by means of the tree map, in which the
sizes of the squares of the specialties are proportional to the number of publications. Thus, con-
sidering the universe of 45 papers selected for this review, neurology is the most prominent (30),
followed by genetics (3), cardiology (2), infectology (2), oncology (2), gastroenterology (1),
medical clinic (1), cytology (1), psychiatry (1), pneumology (1), and hepatology (1).

Figure 9. Tree map with the distribution of papers by medical specialty.

Figure 10 shows a bar chart of the number of Web of Science citations of the five
most cited papers. The paper by Parisot et al. [67] is indicated as the most cited, with
242 citations. Pervaiz et al. [68] ranks second, with 95 citations. There are 38 works that use
the study by Sardellitti, Barbarossa, and Lorenzo [69] as a reference, a number reasonably
close to the fourth most cited, the work by Hu et al. [70], which has 29 citations. Finally,
Zhang et al. [71] ranks fifth, with 22 citations. It can be inferred that there is a considerable
difference in the number of citations of [67] compared to the others, which may indicate
this work as recommended reading in the area.

Figure 10. The five most cited papers according to the Web of Science database.

Figure 11 shows a map of citations obtained with VOSviewer [72]. The map is made
up of spheres, labeled with the names of the first authors of the most cited papers and with
sizes related to the number of citations received. It is also possible to see the five most cited
papers, as shown in the previous figure. In general, the other nodes have similar sizes,
indicating that they have received a similar number of citations, reaching a maximum of 21.
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Figure 11. Most cited papers represented by the first author.

Figure 12 shows a bibliometric coupling network obtained through analysis in VOSviewer.
The nodes of the graphs represent the first authors of the papers, and the size of the vertex
is related to the number of citations of the paper. The edges connect the nodes that are
bibliographically linked when there is another publication that is cited by the simultaneously
linked papers.

Figure 12. Graph network representation for bibliometric coupling analysis.
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In order to establish a relationship between each paper and its respective application
in the studied health area, Table 1 allocates the 45 evaluated papers to their respective
specialty among the eight identified specialties.

Table 1. Distribution of the papers according to the medical specialty related to the proposed application.

Medical Specialty Ref.

Neurology [22–25,67–69,71,73–94]
Cardiology [95,96]
Infectology [97,98]
Genetics [99–101]
Oncology [102,103]
Gastroenterology [104]
Medical Clinical [105]
Cytology [66]
Psychiatry [106]
Pneumology [107]
Hepatology [108]

Table 2 presents the main information extracted from the studied papers. The pre-
sented descriptive data refer to the year of publication, the objective of the developed
research, the technique proposed in the paper, and with whom it was compared to in order
to evaluate its performance. Table 3 presents a set of information on the dataset used in the
selected studies, such as the dataset used, the sample size used, and finally, the metric used
to evaluate performance.

According to Table 3, it is possible to identify the five most used metrics in evaluating
the performance of the proposed models, as shown in Figure 13. Accuracy occupies the
first place. It is used to assess performance in 26 out of the 45 studies analyzed. In the
second place, we observe the F1-score, which appears in 12 works. The AUC holds the
third position. It is used in nine papers. In the fourth position, the measures precision and
recall are tied. They are used in 8 out of the 45 selected papers. Finally, in the fifth position,
we have sensitivity and specificity, which were used in six works.

Figure 13. Diagram with the 5 most frequent performance measures in the works analyzed.

277



Bioengineering 2024, 11, 671
Ta

bl
e

2.
In

fo
rm

at
io

n
fr

om
th

e
pa

pe
rs

in
cl

ud
ed

in
th

e
sy

st
em

at
ic

re
vi

ew
.

R
ef

.
Ye

ar
O

bj
ec

ti
ve

of
th

e
St

ud
y

Pr
op

os
ed

Te
ch

ni
qu

e
Te

ch
ni

qu
es

U
se

d
fo

r
C

om
pa

ri
so

n

[6
6]

20
15

Im
ag

e
pr

ep
ro

ce
ss

in
g,

se
gm

en
ta

ti
on

,a
nd

cl
as

si
fic

at
io

n
of

Fe
ul

ge
n-

an
d

Pa
pa

ni
co

la
ou

-
st

ai
ne

d
sl

id
es

.
Pa

rt
ia

ld
iff

er
en

ce
eq

ua
ti

on
s

on
w

ei
gh

te
d

gr
ap

hs
.

G
ra

ph
cu

ts
,r

an
do

m
w

al
ks

,s
ho

rt
es

t-
pa

th
al

go
ri

th
m

s,
m

ax
im

um
sp

an
ni

ng
fo

re
st

s,
an

d
po

w
er

w
at

er
sh

ed
al

go
ri

th
m

.

[7
9]

20
16

A
lz

he
im

er
’s

de
te

ct
io

n.
M

at
ch

ed
si

gn
al

de
te

ct
io

n
(M

SD
)t

he
or

y
fo

r
si

gn
al

s
on

gr
ap

hs
(s

im
pl

e-
M

SD
,c

on
st

ra
in

ed
-M

SD
,

pr
ob

ab
ili

st
ic

-M
SD

).

Pr
in

ci
pa

lc
om

po
ne

nt
an

al
ys

is
(P

C
A

),
su

pp
or

tv
ec

to
r

m
ac

hi
ne

(S
V

M
),

an
d

lin
ea

r
di

sc
ri

m
in

an
ta

na
ly

si
s

(L
D

A
).

[8
2]

20
17

Br
ai

n
im

ag
e

da
ta

m
od

el
in

g
an

d
ex

tr
ac

ti
on

.
A

ut
oe

nc
od

er
s

fo
r

an
al

ys
is

of
hi

gh
-d

im
en

si
on

al
gr

ap
h

si
gn

al
s.

PC
A

,r
ob

us
tP

C
A

(R
PC

A
),

gr
ap

h-
ba

se
d

fil
te

ri
ng

(G
BF

),
an

d
st

ac
ke

d
au

to
en

co
de

r
(S

A
E)

.
[1

05
]

20
17

Pr
ed

ic
ti

on
of

ri
sk

of
co

m
or

bi
di

ti
es

.
H

et
er

og
en

eo
us

co
nv

ol
ut

io
na

ln
eu

ra
ln

et
w

or
k

(H
C

N
N

),
ba

se
d

on
pr

ed
ic

ti
ve

le
ar

ni
ng

.
Lo

gi
st

ic
re

gr
es

si
on

(L
R

)a
nd

st
an

da
rd

C
N

N
.

[6
7]

20
18

A
ut

is
m

an
d

A
lz

he
im

er
’s

cl
as

si
fic

at
io

n
G

C
N

fo
r

po
pu

la
ti

on
an

al
ys

is
.

R
an

do
m

fo
re

st
(R

F)
an

d
m

ul
ti

-l
ay

er
pe

rc
ep

tr
on

(M
LP

).
[7

8]
20

18
A

lz
he

im
er

’s
de

te
ct

io
n.

G
ra

ph
fr

eq
ue

nc
y

an
al

ys
is

fo
r

hi
gh

ly
di

sc
ri

m
in

at
iv

e
fe

at
ur

e
ex

tr
ac

ti
on

an
d

G
C

N
N

-b
as

ed
cl

as
si

fie
r.

M
SD

-G
[7

9]
,R

sB
N

-D
L

[1
09

],
Sp

ar
se

-C
ov

[1
10

],
an

d
EN

-L
og

R
eg

[1
11

].
[6

9]
20

19
O

rt
ho

no
rm

al
da

ta
tr

an
sf

or
m

at
io

n
ap

pl
ie

d
to

im
ag

es
of

pa
ti

en
ts

w
it

h
ep

ile
ps

y.
O

rt
ho

no
rm

al
sp

ar
si

fy
in

g
tr

an
sf

or
m

an
d

gr
ap

h
Fo

ur
ie

r
tr

an
sf

or
m

(G
FT

).
Sp

ec
Te

m
p

[1
12

],
K

al
ofi

lia
s

[1
13

],
an

d
D

on
g

et
al

.[
11

4]
[8

0]
20

19
A

lz
he

im
er

’s
de

te
ct

io
n.

M
ul

ti
pl

e
fe

at
ur

e-
sp

ec
ifi

c
ad

ja
ce

nc
y

m
at

ri
ce

s
fo

r
le

ar
ni

ng
us

in
g

G
C

N
N

.
Li

ne
ar

SV
M

,M
LP

,R
F,

Pa
ri

so
te

ta
l.

[1
15

],
an

d
V

iv
ar

et
al

.[
11

6]
.

[8
9]

20
19

Pr
ed

ic
ti

ng
co

gn
it

iv
e

im
pa

ir
m

en
ti

n
A

lz
he

im
er

’s
di

se
as

e
(A

D
).

M
ul

ti
fr

eq
ue

nc
y

dy
na

m
ic

ne
tw

or
k

an
al

ys
is

fo
r

bu
ild

in
g

a
co

nn
ec

to
m

e
bi

om
ar

ke
r.

PC
A

.

[8
3]

20
20

A
tt

en
ti

on
de

fic
it

hy
pe

ra
ct

iv
it

y
di

so
rd

er
(A

D
H

D
)d

et
ec

ti
on

.
G

SP
an

d
G

L
to

ob
ta

in
st

ru
ct

ur
al

an
d

fu
nc

ti
on

al
ch

ar
ac

te
ri

st
ic

s.

M
LP

w
it

h
do

ub
le

in
pu

ts
ym

m
et

ri
ca

lr
el

ev
an

ce
(D

IS
R

)a
nd

M
LP

w
it

h
m

in
im

um
re

du
nd

an
cy

m
ax

im
um

re
le

va
nc

e
(m

R
M

R
).

[7
7]

20
20

D
et

ec
ti

on
of

ce
nt

ra
lb

ra
in

re
gi

on
s.

G
FT

ba
se

d
on

La
pl

ac
ia

n
le

ar
ni

ng
fo

r
an

al
yz

in
g

gr
ap

hs
in

th
e

fr
eq

ue
nc

y
do

m
ai

n.

R
ad

ia
lb

as
is

fu
nc

ti
on

(R
BF

)k
er

ne
la

nd
Pe

ar
so

n
co

rr
el

at
io

n
m

et
ho

ds
fo

r
ca

lc
ul

at
in

g
th

e
gr

ap
h

La
pl

ac
ia

n.
[2

2]
20

20
A

lz
he

im
er

’s
de

te
ct

io
n.

G
ra

ph
co

ar
se

ni
ng

in
a

G
C

N
N

.
H

ea
vy

Ed
ge

[1
17

],
K

ro
n

R
ed

uc
ti

on
[1

18
],

an
d

sp
ec

tr
al

ap
pr

ox
im

at
io

n
[1

19
].

[7
4]

20
20

A
D

H
D

cl
as

si
fic

at
io

n.
D

ua
l-

su
bs

pa
ce

cl
as

si
fic

at
io

n
al

go
ri

th
m

us
in

g
in

di
vi

du
al

re
st

in
g

st
at

e
fu

nc
ti

on
al

co
nn

ec
ti

vi
ty

.
R

M
f,

fu
si

on
fM

R
I,

R
-R

el
ie

lf
,L

1B
io

SV
M

,F
C

N
et

,
3D

-C
N

N
,a

nd
D

ee
p

fM
R

I

[7
3]

20
20

A
ut

is
m

cl
as

si
fic

at
io

n.
G

FT
an

d
M

L
fo

r
an

al
yz

in
g

th
e

te
st

an
d

ti
m

e
se

ri
es

to
ca

lc
ul

at
e

de
sc

ri
pt

iv
e

st
at

is
ti

cs
fo

r
th

e
re

gi
on

of
in

te
re

st
.

[1
20

–1
26

].

[6
8]

20
20

C
la

ss
ifi

ca
ti

on
of

ne
ur

ol
og

ic
al

fu
nc

ti
on

.
G

ra
ph

-b
as

ed
m

od
el

in
g

of
th

e
br

ai
n’

s
fu

nc
ti

on
al

co
nn

ec
ti

vi
ty

w
it

h
el

as
ti

c
ne

ta
nd

in
de

pe
nd

en
t

co
m

po
ne

nt
an

al
ys

is
(I

C
A

).

R
F,

D
ic

ti
on

ar
y

Le
ar

ni
ng

,a
nd

H
ig

he
r

D
im

en
si

on
al

Y
EO

pa
rc

el
la

ti
on

.

[1
00

]
20

20
Pr

ed
ic

ti
on

of
R

N
A

as
so

ci
at

io
n

w
it

h
di

se
as

e.

G
ra

ph
at

te
nt

io
n

ad
ve

rs
ar

ia
ln

et
w

or
k

(G
A

A
N

),
ba

se
d

on
th

e
in

te
gr

at
io

n
of

st
at

e-
of

-t
he

-a
rt

G
C

N
an

d
th

e
at

te
nt

io
n

m
ec

ha
ni

sm
.

D
in

g’
s

m
et

ho
d

[1
27

],
R

W
R

M
D

A
[1

28
],

T
PG

LD
A

[1
29

],
R

LS
M

D
A

[1
30

],
G

C
N

,G
A

T,
an

d
G

A
N

.

278



Bioengineering 2024, 11, 671
Ta

bl
e

2.
C

on
t.

R
ef

.
Ye

ar
O

bj
ec

ti
ve

of
th

e
St

ud
y

Pr
op

os
ed

Te
ch

ni
qu

e
Te

ch
ni

qu
es

U
se

d
fo

r
C

om
pa

ri
so

n

[9
6]

20
20

A
or

ti
c

ro
ot

se
gm

en
ta

ti
on

.
M

ul
ti

-r
es

ol
ut

io
n

gr
ap

h
us

in
g

ir
re

gu
la

rl
y

sp
ac

ed
pa

tc
h

sa
m

pl
in

g
an

d
a

gr
ap

h-
ba

se
d

C
N

N
as

a
cl

as
si

fie
r.

H
an

d-
cr

af
te

d
an

d
Fu

lly
co

nn
ec

te
d

gr
ap

h.

[1
02

]
20

21
G

en
e

se
le

ct
io

n
fo

r
ca

nc
er

de
te

ct
io

n.
A

lg
or

it
hm

fo
r

se
le

ct
in

g
si

gn
ifi

ca
nt

ge
ne

s
w

it
h

G
SP

te
ch

ni
qu

es
,u

si
ng

th
e

La
pl

ac
ia

n
m

at
ri

x
of

th
e

gr
ap

h.
Lo

ca
lly

lin
ea

r
em

be
dd

in
g

(L
LE

)a
nd

PC
A

.

[8
1]

20
21

Em
ot

io
n

re
co

gn
it

io
n.

Sp
at

io
-t

em
po

ra
la

tt
en

ti
on

ne
ur

al
ne

tw
or

k
w

it
h

G
FT

si
gn

al
s

as
in

pu
t.

M
ul

ti
-c

ol
um

n
co

nv
ol

ut
io

na
ln

eu
ra

ln
et

w
or

k
(M

C
N

N
)[

13
1]

an
d

bi
di

re
ct

io
na

ll
on

g
sh

or
t-

te
rm

m
em

or
y

(B
iL

ST
M

)[
13

2]
.

[2
3]

,
[8

4]
20

21
A

ut
is

m
cl

as
si

fic
at

io
n.

C
on

ne
ct

iv
it

y
m

at
ri

x
w

it
h

G
FT

va
lu

es
,e

xt
en

si
on

of
th

e
Fu

ku
na

ga
–K

oo
nt

z
tr

an
sf

or
m

fo
r

fe
at

ur
e

ex
tr

ac
ti

on
to

tr
ai

n
th

e
de

ci
si

on
tr

ee
(D

T
).

Sp
at

ia
lfi

lt
er

in
g

m
et

ho
d

an
d

th
e

G
FT

.

[1
03

]
20

21
Lu

ng
ca

nc
er

de
te

ct
io

n.
M

ul
ti

-g
ra

ph
ne

ur
al

ne
tw

or
k

(M
G

N
N

)w
it

h
th

re
e

m
od

el
s:

G
IA

N
,G

IA
T,

an
d

SG
C

A
.

M
L

al
go

ri
th

m
s,

R
F

an
d

su
pp

or
tv

ec
to

r
re

gr
es

si
on

(S
V

R
).

[7
1]

20
21

M
ul

ti
do

m
ai

n
br

ai
n

de
co

di
ng

.
M

ul
ti

do
m

ai
n

de
co

di
ng

m
od

el
on

sh
or

tt
im

e
se

ri
es

in
co

rp
or

at
in

g
La

pl
ac

ia
n

gr
ap

h
w

it
h

G
C

N
.

C
la

ss
ic

al
br

ai
n

de
co

di
ng

m
od

el
,w

hi
ch

ap
pl

ie
s

m
ul

ti
-c

la
ss

lin
ea

r
SV

M
.

[9
7]

20
21

Id
en

ti
fic

at
io

n
of

th
e

fo
cu

s
of

di
se

as
e

sp
re

ad
.

G
SP

,G
C

N
,a

nd
ne

ig
hb

or
ho

od
lo

ss
ca

lc
ul

at
io

n
to

op
ti

m
iz

e
th

e
av

er
ag

e
er

ro
r

di
st

an
ce

.
La

be
lp

ro
pa

ga
ti

on
fr

am
ew

or
k

fo
r

so
ur

ce
id

en
ti

fic
at

io
n,

U
nb

ia
se

d
Be

tw
ee

nn
es

s.

[8
8]

20
21

M
ot

or
im

ag
er

y
cl

as
si

fic
at

io
n.

G
ra

ph
-t

he
or

et
ic

m
od

el
s

of
m

ul
tic

ha
nn

el
EE

G
si

gn
al

s
w

ith
m

ul
tiv

ar
ia

te
au

to
re

gr
es

si
ve

m
od

el
s

fo
r

di
re

ct
ed

gr
ap

hs
an

d
ex

tr
em

e
le

ar
ni

ng
m

ac
hi

ne
cl

as
si

fie
rs

.

SV
M

,K
-n

ea
re

st
ne

ig
hb

or
cl

as
si

fie
rs

(K
N

N
),

an
d

Ex
tr

em
e

Le
ar

ni
ng

M
ac

hi
ne

s
(E

LM
s)

.

[9
0]

20
21

Em
ot

io
n

cl
as

si
fic

at
io

n/
ep

ile
pt

ic
se

iz
ur

e
an

al
ys

is
.

G
FT

fo
r

th
e

ex
tr

ac
ti

on
of

di
sc

ri
m

in
at

iv
e

fe
at

ur
es

us
ed

in
le

ar
ni

ng
ta

sk
s

an
d

th
e

pr
ox

im
al

gr
ad

ie
nt

m
et

ho
d

fo
r

da
ta

ac
qu

ir
ed

in
re

al
ti

m
e.

[1
13

,1
33

]a
nd

SV
M

.

[9
1]

20
21

Em
ot

io
n

re
co

gn
it

io
n

an
d

an
al

ys
is

.
G

SP
to

in
te

gr
at

e
em

ot
io

n
re

co
gn

it
io

n
an

d
an

al
ys

is
of

si
gn

al
s.

–

[2
5]

20
22

Br
ai

nw
av

e
de

co
di

ng
.

Fu
si

on
of

G
SP

an
d

G
L

re
so

ur
ce

s
fo

r
a

m
et

ho
d

ca
lle

d
gr

ap
h-

ba
se

d
im

ag
in

ed
sp

ee
ch

BC
Id

ec
od

er
(G

ra
ph

IS
).

–

[7
5]

20
22

Ta
sk

de
co

di
ng

an
d

in
di

vi
du

al
fin

ge
rp

ri
nt

in
g

SV
M

cl
as

si
fic

at
io

n
an

d
G

SP
fu

nc
tio

na
ld

at
a

fil
te

ri
ng

fo
r

fu
nc

ti
on

al
co

nn
ec

ti
vi

ty
an

d
st

ru
ct

ur
al

co
nn

ec
to

m
e

de
co

m
po

si
ti

on
.

–

[8
5]

20
22

El
im

in
at

io
n

of
no

is
e

fr
om

ep
ile

pt
ic

EE
G

si
gn

al
s.

U
ni

fie
d

ob
je

ct
iv

e
fu

nc
ti

on
fo

r
G

ra
ph

JA
D

E
w

it
h

G
L

an
d

us
e

bl
oc

k
co

or
di

na
te

de
sc

en
tt

o
op

ti
m

iz
e

it
.

U
ni

fie
d

ob
je

ct
iv

e
fu

nc
ti

on
G

ra
D

e
w

it
h

G
L

an
d

th
e

bl
in

d
se

pa
ra

ti
on

m
et

ho
ds

.

[9
5]

20
22

Le
ft

ve
nt

ri
cu

la
r

se
gm

en
ta

ti
on

in
ec

ho
ca

rd
io

gr
ap

hy
vi

de
os

.

G
ra

ph
EC

V
w

it
h

G
SP

fo
r

se
m

i-
su

pe
rv

is
ed

le
ar

ni
ng

an
d

m
in

im
iz

at
io

n
of

th
e

So
bo

le
v

no
rm

of
gr

ap
h

si
gn

al
s.

PR
eM

V
O

S
[1

34
],

T
M

A
N

et
[1

35
],

A
cc

el
[1

36
],

an
d

O
SV

O
S

[1
37

].

[8
6]

20
22

Ev
al

ua
ti

on
of

ho
w

br
ai

n
ac

ti
vi

ty
ch

an
ge

s
ov

er
ti

m
e.

G
SP

,S
V

M
,a

nd
m

ul
ti

sc
al

e
en

tr
op

y.
–

[8
7]

20
22

Br
ai

n
A

ct
iv

it
y

C
la

ss
ifi

ca
ti

on
.

En
d-

to
-e

nd
G

C
N

st
ru

ct
ur

e
w

it
h

th
re

e
co

nv
ol

ut
io

na
ll

ay
er

s.
N

et
M

F
[1

38
],

R
an

dN
E

[1
39

],
N

od
e2

Ve
c

[1
38

],
an

d
W

al
kl

et
s

[1
40

].

279



Bioengineering 2024, 11, 671
Ta

bl
e

2.
C

on
t.

R
ef

.
Ye

ar
O

bj
ec

ti
ve

of
th

e
St

ud
y

Pr
op

os
ed

Te
ch

ni
qu

e
Te

ch
ni

qu
es

U
se

d
fo

r
C

om
pa

ri
so

n

[9
9]

20
22

D
et

ec
ti

on
of

m
et

ab
ol

ic
di

se
as

es
.

G
C

N
to

in
fe

r
po

te
nt

ia
lm

et
ab

ol
it

e–
di

se
as

e
as

so
ci

at
io

n,
na

m
ed

M
D

A
G

C
N

.
Tr

ad
it

io
na

lm
et

ho
ds

ba
se

d
on

bi
ol

og
ic

al
ex

pe
ri

m
en

ts
.

[9
8]

20
22

St
ud

y
on

th
e

co
nt

ag
io

n
dy

na
m

ic
s

of
C

O
V

ID
-1

9.
W

av
el

et
tr

an
sf

or
m

of
sp

ec
tr

al
gr

ap
h

to
pr

oc
es

s
da

ta
in

dy
na

m
ic

gr
ap

h
fo

r
sp

at
io

-t
em

po
ra

lp
at

te
rn

de
te

ct
io

n.
–

[1
01

]
20

22
Pr

ed
ic

ti
on

of
ci

rc
R

N
A

as
so

ci
at

io
n

w
it

h
di

se
as

es
.

Tw
o

G
C

N
-b

as
ed

pr
ed

ic
ti

on
m

od
el

s:
N

od
e

C
la

ss
ifi

ca
ti

on
an

d
Li

nk
Pr

ed
ic

ti
on

.
O

th
er

ba
se

lin
e

m
od

el
s.

[1
04

]
20

22
Ea

rl
y

di
ag

no
si

s
an

d
de

te
ct

io
n

of
ga

st
ro

in
te

st
in

al
po

ly
ps

.

Se
m

i-
su

pe
rv

is
ed

se
gm

en
ta

ti
on

ca
lle

d
Se

m
iS

eg
Po

ly
p,

ba
se

d
on

G
SP

.I
ti

s
di

vi
de

d
in

to
in

st
an

ce
se

gm
en

ta
tio

n,
co

ns
tr

uc
ti

on
of

gr
ap

hs
ba

se
d

on
ne

ar
es

tn
ei

gh
bo

rs
,

an
d

se
m

i-
su

pe
rv

is
ed

se
m

an
ti

c
se

gm
en

ta
ti

on
.

M
ea

n-
Te

ac
he

r,
ge

ne
ra

ti
ve

ad
ve

rs
ar

ia
ln

et
w

or
ks

(G
A

N
s)

,C
ro

ss
-C

on
si

st
en

cy
Tr

ai
ni

ng
,a

nd
W

u
[1

41
].

[9
3]

20
22

U
nd

er
st

an
di

ng
w

ha
ta

re
th

e
m

os
tu

se
fu

lg
ra

ph
fr

eq
ue

nc
ie

s
to

de
co

de
fM

R
Is

ig
na

ls
.

Sp
ec

tr
al

R
es

N
et

,i
n

w
hi

ch
th

e
fr

eq
ue

nc
ie

s
of

th
e

gr
ap

hs
de

fin
e

th
e

co
nv

ol
ut

io
ns

.
M

LP
pa

tt
er

n,
w

he
re

th
e

in
pu

td
om

ai
n

is
th

e
fr

eq
ue

nc
y

do
m

ai
n

of
th

e
gr

ap
h.

[7
6]

20
23

D
et

ec
ti

on
of

m
ild

co
gn

it
iv

e
im

pa
ir

m
en

t(
M

C
I)

.
M

ul
ti

sc
al

e
en

ha
nc

ed
G

C
N

.
SV

M
,t

w
o-

la
ye

r
G

C
N

s,
an

d
m

ul
ti

-s
ca

le
G

C
N

w
it

h
th

e
sa

m
e

no
rm

al
iz

ed
ad

ja
ce

nc
y

m
at

ri
x.

[9
2]

20
23

C
lin

ic
al

fo
llo

w
-u

p
to

as
si

st
in

th
e

di
ag

no
si

s
of

in
fla

m
m

at
or

y
bo

w
el

di
se

as
es

.
G

FT
,G

SP
,a

nd
cl

as
si

ca
lS

V
M

ar
e

us
ed

to
cl

as
si

fy
th

e
fe

at
ur

es
.

G
ra

ph
th

eo
ry

an
al

ys
is

m
et

ho
d.

[2
4]

20
23

Em
ot

io
n

an
al

ys
is

in
EE

G
.

C
od

in
g

of
re

la
ti

ve
te

m
po

ra
lt

ra
ns

fo
rm

at
io

n
an

d
at

te
nt

io
n

to
th

e
ch

an
ne

l.
G

C
N

N
,S

V
M

,C
N

N
+

re
cu

rr
en

tn
eu

ra
ln

et
w

or
ks

(R
N

N
s)

.

[9
4]

20
23

C
la

ss
ifi

ca
ti

on
of

sl
ee

p
st

ag
es

.
A

da
pt

iv
e

G
C

N
,n

am
ed

Pr
od

uc
tG

ra
ph

Sl
ee

pN
et

,w
hi

ch
ex

pl
oi

ts
G

SP
an

d
pr

od
uc

tg
ra

ph
le

ar
ni

ng
(P

G
L)

.

SV
M

,R
F,

M
LP

+L
ST

M
,D

ee
pS

le
ep

N
et

,C
N

N
,R

F+
H

id
de

n
M

ar
ko

v
M

od
el

(H
M

M
),

U
-S

le
ep

,
Se

qS
le

ep
N

et
,S

le
ep

EC
L,

fr
ac

tio
na

lF
ou

ri
er

tr
an

sf
or

m
(F

R
FT

),
ca

tB
oo

st
,L

R
,s

ec
on

d-
or

de
r

bl
in

d
so

ur
ce

se
pa

ra
ti

on
(S

O
BI

)-
w

av
el

et
Tr

an
sf

or
m

(W
T

),
Pr

od
uc

tG
ra

ph
Sl

ee
pN

et
,S

SL
-E

C
G

,S
im

C
LR

,
T

S-
T

C
C

,t
im

e–
fr

eq
ue

nc
y

fe
at

ur
es

,m
ul

ti
ta

pe
r

sp
ec

tr
al

+
C

N
N

,i
nt

ra
-/

in
te

r-
ep

oc
h

Bi
LS

T
M

,F
R

FT
,

N
A

S,
C

as
ca

de
d

C
N

N
+L

ST
M

.

[1
06

]
20

23
D

is
co

ve
r

ho
w

de
fa

ul
tm

od
e

ne
tw

or
k

(D
M

N
)

al
ig

nm
en

ti
s

re
la

te
d

to
sy

m
pt

om
s

of
de

pr
es

si
on

an
d

ru
m

in
at

io
n.

G
ra

ph
si

gn
al

pr
oc

es
si

ng
-b

as
ed

an
al

ys
es

in
a

tr
an

sd
ia

gn
os

ti
c

co
ho

rt
.

-

[1
07

]
20

23
Ev

al
ua

ti
on

of
th

e
qu

al
it

y
of

th
e

ph
ot

op
le

th
ys

m
og

ra
ph

y
(P

PG
)s

ig
na

l.

A
na

ly
si

s
of

gr
ap

h
si

gn
al

s
us

in
g

si
x

m
ac

hi
ne

le
ar

ni
ng

cl
as

si
fie

rs
:R

F,
D

T,
SV

M
,M

LP
,C

N
N

,a
nd

N
ai

ve
Ba

ye
s

(N
B)

.

C
om

pa
ri

so
n

of
th

e
si

x
cl

as
si

fic
at

io
n

te
ch

ni
qu

es
m

en
ti

on
ed

.

[1
08

]
20

23
Id

en
tifi

ca
tio

n
of

liv
er

or
ga

ns
an

d
se

gm
en

ta
tio

n
of

liv
er

tu
m

or
s.

Si
m

pl
e

Li
ne

ar
It

er
at

iv
e

C
lu

st
er

in
g

(S
LI

C
)a

lg
or

it
hm

fo
r

cl
us

te
ri

ng
liv

er
co

m
pu

te
d

to
m

og
ra

ph
y

(C
T

)
im

ag
es

an
d

co
nv

ol
ut

io
na

lg
ra

ph
ne

tw
or

ks
w

it
h

fo
ur

C
he

by
sh

ev
gr

ap
h

co
nv

ol
ut

io
n

la
ye

rs
an

d
on

e
fu

lly
co

nn
ec

te
d

la
ye

r
to

de
te

ct
liv

er
or

ga
ns

an
d

se
gm

en
t

liv
er

tu
m

or
s.

M
od

ifi
ed

U
-N

et
an

d
Sh

or
tc

ut
C

N
N

.

280



Bioengineering 2024, 11, 671
Ta

b
le

3.
Su

m
m

ar
y

of
in

fo
rm

at
io

n
re

ga
rd

in
g

th
e

d
at

as
et

u
se

d
an

d
m

et
ri

cs
co

ns
id

er
ed

in
th

e
p

er
fo

rm
an

ce
ev

al
ua

ti
on

of
th

e
pr

op
os

ed
m

od
el

s.

R
ef

.
D

at
as

et
U

se
d

D
at

as
et

D
es

cr
ip

ti
on

Ev
al

ua
te

d
M

et
ri

cs

[6
6]

G
ra

bC
ut

,M
N

IS
T,

O
PT

D
IG

IT
S,

an
d

PE
N

D
IG

IT
S.

M
N

IS
T,

O
PT

D
IG

IT
S,

an
d

PE
N

D
IG

IT
S

da
ta

se
ts

ar
e

co
m

po
se

d
of

ha
nd

w
ri

tt
en

di
gi

ts
.

Er
ro

r
m

ea
su

re
s

an
d

cl
as

si
fic

at
io

n
ra

te
s.

[7
9]

PI
B-

PE
T

da
ta

se
ta

nd
A

D
N

I.

PI
B-

PE
T

da
ta

se
ti

s
co

m
po

se
d

of
PE

T
ne

ur
oi

m
ag

es
an

d
co

ns
is

ts
of

30
pa

ti
en

ts
w

it
h

A
lz

he
im

er
’s

di
se

as
e

(A
D

)a
nd

40
he

al
th

y
co

nt
ro

l(
H

C
)s

ub
je

ct
s;

A
D

N
Id

at
as

et
is

pu
bl

ic
an

d
co

ns
is

ts
of

re
st

in
g-

st
at

e
fM

R
I,

co
nt

ai
ni

ng
im

ag
es

fr
om

30
in

di
vi

du
al

s
w

it
h

ea
rl

y
M

C
Ia

nd
20

N
C

su
bj

ec
ts

.

A
cc

ur
ac

y,
se

ns
it

iv
it

y,
sp

ec
ifi

ci
ty

,a
nd

ar
ea

un
de

r
th

e
cu

rv
e

(A
U

C
).

[8
2]

R
ea

lM
EG

da
ta

se
ts

.
M

EG
si

gn
al

s
co

lle
ct

ed
by

30
6

se
ns

or
s

w
er

e
co

ns
id

er
ed

.B
ra

in
ac

tiv
ity

w
as

ca
pt

ur
ed

by
th

e
pa

rt
ic

ip
an

ts
’r

ea
ct

io
n

to
se

ei
ng

32
2

im
ag

es
of

hu
m

an
fa

ce
s

an
d

19
7

im
ag

es
of

ob
je

ct
s

th
at

w
er

e
sh

ow
n

ra
nd

om
ly

.
A

cc
ur

ac
y.

[1
05

]
El

ec
tr

on
ic

H
ea

lt
h

R
ec

or
d

(E
H

R
)d

at
a.

Th
e

da
ta

co
ns

is
to

ft
he

m
ed

ic
al

re
co

rd
s

of
30

48
pa

ti
en

ts
w

it
h

co
ng

es
ti

ve
he

ar
t

fa
ilu

re
;1

8,
45

1
w

it
h

di
ab

et
es

;3
94

8
w

it
h

ch
ro

ni
c

ki
dn

ey
di

se
as

e;
77

00
pa

ti
en

ts
w

it
h

ch
ro

ni
c

ob
st

ru
ct

iv
e

pu
lm

on
ar

y
di

se
as

e.

Pr
ec

is
io

n,
re

ca
ll,

an
d

F1
-s

co
re

.

[6
7]

A
BI

D
E;

A
D

N
I.

A
BI

D
E

is
a

pu
bl

ic
da

ta
se

to
ff

un
ct

io
na

lN
M

R
an

d
ph

en
ot

yp
ic

da
ta

.I
tc

on
si

de
re

d
40

3
in

di
vi

du
al

s
w

it
h

sp
ec

tr
um

di
so

rd
er

an
d

46
8

H
C

;i
n

A
D

N
I,

16
75

sa
m

pl
es

w
er

e
av

ai
la

bl
e,

w
it

h
28

9
in

di
vi

du
al

s
(8

43
sa

m
pl

es
)d

ia
gn

os
ed

w
it

h
A

D
.

A
U

C
.

[7
8]

A
D

N
I.

It
co

ns
id

er
ed

10
0

su
bj

ec
ts

w
it

h
M

C
Ia

nd
10

0
H

C
su

bj
ec

ts
.

A
cc

ur
ac

y.

[6
9]

O
ne

sy
nt

he
ti

c
da

ta
se

ta
nd

on
e

re
al

da
ta

se
t[

14
2]

.
Th

e
re

al
da

ta
se

th
as

on
ly

on
e

ep
ile

ps
y

pa
ti

en
ta

nd
76

ti
m

e
se

ri
es

.
C

or
re

la
tio

n
co

ef
fic

ie
nt

,p
er

ce
nt

ag
e

of
re

co
ve

ry
er

ro
rs

,F
1-

sc
or

e,
pr

ec
is

io
n,

an
d

re
ca

ll.
[8

0]
TA

D
PO

LE
.

77
9

su
bj

ec
ts

,2
96

M
C

Ic
on

ve
rt

er
s,

an
d

48
3

M
C

In
on

-c
on

ve
rt

er
s.

A
U

C
.

[8
9]

C
ol

le
ct

ed
fo

r
th

e
pa

pe
r.

M
EG

re
co

rd
in

gs
w

er
e

ob
ta

in
ed

in
54

pa
ti

en
ts

w
it

h
M

C
Ia

ge
d

65
-8

0
ye

ar
s.

Th
ey

w
er

e
di

vi
de

d
in

to
tw

o
gr

ou
ps

ac
co

rd
in

g
to

th
ei

r
cl

in
ic

al
ou

tc
om

e:
(1

)t
he

“p
ro

gr
es

si
ve

”
M

C
Ig

ro
up

(N
=

27
)w

as
co

m
po

se
d

of
th

e
in

di
vi

du
al

s
w

ho
m

et
th

e
cr

ite
ri

a
fo

r
pr

ob
ab

le
A

D
;(

2)
th

e
“s

ta
bl

e”
M

C
Ig

ro
up

(N
=

27
)w

as
co

m
po

se
d

of
th

e
pa

rt
ic

ip
an

ts
w

ho
st

ill
m

et
th

e
cr

it
er

ia
fo

r
a

di
ag

no
si

s
of

M
C

I.

C
la

ss
ifi

ca
ti

on
pe

rf
or

m
an

ce
,s

en
si

ti
vi

ty
,

an
d

sp
ec

ifi
ci

ty
.

[8
3]

O
nl

in
e

da
ta

se
t.

Pu
bl

ic
da

ta
se

tw
ith

EE
G

si
gn

al
s

fr
om

no
rm

al
an

d
A

D
H

D
ch

ild
re

n
ag

ed
7–

12
ye

ar
s.

A
cc

ur
ac

y.

[7
7]

C
ol

le
ct

ed
fo

r
th

e
pa

pe
r.

Ta
sk

-b
as

ed
re

st
in

g-
st

at
e

fM
R

Ii
m

ag
es

.T
he

pa
rt

ic
ip

an
ts

w
er

e
di

vi
de

d
in

to
tw

o
ca

te
go

ri
es

:y
ou

ng
ad

ul
ts

,a
ge

d
18

–2
2

(1
19

w
om

en
,7

9
m

en
);

ch
ild

re
n,

ag
ed

8–
12

(1
08

w
om

en
,8

3
m

en
).

F1
-s

co
re

,r
ec

al
l,

an
d

pr
ec

is
io

n.

[2
2]

A
D

N
I.

Pu
bl

ic
,o

ve
r

80
0

pa
rt

ic
ip

an
ts

,i
nc

lu
di

ng
H

C
in

di
vi

du
al

s
w

it
h

M
C

Ia
nd

in
di

vi
du

al
s

w
it

h
A

D
.T

he
da

ta
se

ti
nc

lu
de

d
se

ve
ra

lc
la

ss
es

of
im

ag
in

g:
st

ru
ct

ur
al

M
R

I,
fu

nc
ti

on
al

M
R

I,
an

d
PE

T
sc

an
s,

as
w

el
la

s
cl

in
ic

al
an

d
co

gn
it

iv
e

as
se

ss
m

en
ts

.
O

pe
ra

to
r

di
ss

im
ila

ri
ty

in
de

x
an

d
cu

ti
nd

ex
.

[7
4]

TD
A

H
-2

00
.

Th
e

re
st

in
g

st
at

e
fM

R
I(

rs
-f

M
R

I)
da

ta
us

ed
to

in
ve

st
ig

at
e

th
e

bi
na

ry
cl

as
si

fic
at

io
n

pe
rf

or
m

an
ce

be
tw

ee
n

A
D

H
D

an
d

H
C

su
bj

ec
ts

.
A

cc
ur

ac
y.

[7
3]

A
BI

D
E.

fM
R

Ii
m

ag
es

of
87

1
su

bj
ec

ts
w

er
e

co
ns

id
er

ed
,4

03
su

bj
ec

ts
w

it
h

au
ti

sm
sp

ec
tr

um
di

so
rd

er
(A

SD
)a

nd
46

8
H

C
.

A
cc

ur
ac

y,
se

ns
it

iv
it

y,
an

d
sp

ec
ifi

ci
ty

.

[6
8]

U
K

B;
H

C
P.

fM
R

Id
at

a
fr

om
th

e
U

K
Bi

ob
an

k
(U

K
B)

,w
hi

ch
co

ns
is

ts
of

13
,3

01
in

di
vi

du
al

s;
H

C
P

of
10

03
H

C
.

A
cc

ur
ac

y/
co

rr
el

at
io

n.

281



Bioengineering 2024, 11, 671
Ta

bl
e

3.
C

on
t.

R
ef

.
D

at
as

et
U

se
d

D
at

as
et

D
es

cr
ip

ti
on

Ev
al

ua
te

d
M

et
ri

cs

[1
00

]
H

M
D

D
;L

nc
R

N
A

D
is

ea
se

.

H
M

D
D

is
a

pu
bl

ic
da

ta
se

to
n

m
iR

N
A

di
se

as
es

.A
m

iR
N

A
–d

is
ea

se
ne

tw
or

k
w

it
h

20
8

m
iR

N
A

s,
25

0
di

se
as

es
,a

nd
36

44
lin

ks
w

as
co

ns
id

er
ed

;L
nc

R
N

A
D

is
ea

se
da

ta
se

t
is

pu
bl

ic
an

d
pr

ov
id

es
in

fo
rm

at
io

n
on

ln
cR

N
A

s
an

d
di

se
as

es
w

it
h

ov
er

20
0,

00
0

ln
cR

N
A

–d
is

ea
se

as
so

ci
at

io
ns

ac
ro

ss
52

9
di

se
as

es
an

d
19

,1
66

ln
cR

N
A

s.

A
U

C
an

d
pr

ed
ic

ti
on

re
su

lt
s.

[9
6]

A
n

ex
am

pl
e

on
ao

rt
ic

va
lv

e.
H

um
an

to
rs

o
C

T
sa

m
pl

es
ar

e
co

ns
id

er
ed

fo
r

st
ud

yi
ng

th
e

ao
rt

ic
ro

ot
.

A
cc

ur
ac

y.

[1
02

]
Th

re
e

da
ta

se
ts

[1
43

].

Pu
bl

ic
ge

ne
ti

c
da

ta
se

ts
.I

n
th

e
pr

os
ta

te
ca

nc
er

da
ta

se
t,

th
er

e
ar

e
50

no
rm

al
pr

os
ta

te
sa

m
pl

es
an

d
52

pr
os

ta
te

tu
m

or
sa

m
pl

es
,e

ac
h

sa
m

pl
e

w
it

h
10

,5
09

di
ff

er
en

tg
en

es
.

Th
e

ga
st

ri
c

ca
nc

er
da

ta
se

tc
on

ta
in

s
40

sa
m

pl
es

,2
0

of
w

hi
ch

ar
e

fr
om

no
rm

al
pa

tie
nt

s
an

d
an

ot
he

r
20

fr
om

ga
st

ri
c

ca
nc

er
pa

ti
en

ts
,e

ac
h

sa
m

pl
e

w
it

h
10

,5
19

ge
ne

s.
In

th
e

br
ai

n
da

ta
se

t,
tw

o
cl

as
se

s
ar

e
co

ns
id

er
ed

,b
ot

h
br

ai
n

tu
m

or
s,

gl
io

bl
as

to
m

a
w

it
h

20
sa

m
pl

es
an

d
ol

ig
od

en
dr

og
lio

m
a

w
it

h
30

sa
m

pl
es

,e
ac

h
sa

m
pl

e
w

it
h

10
,3

67
ge

ne
s.

A
cc

ur
ac

y.

[8
1]

D
EA

P.
EE

G
of

32
su

bj
ec

ts
,e

ac
h

ha
vi

ng
ra

te
d

40
m

us
ic

vi
de

os
of

a
on

e-
m

in
ut

e
du

ra
ti

on
.

A
cc

ur
ac

y.

[2
3]

A
BI

D
E

I.
D

at
as

et
in

cl
ud

es
ey

es
op

en
rs

-f
M

R
I.

It
co

ns
id

er
ed

25
1

H
C

an
d

20
1

A
SD

,a
ll

ad
ol

es
ce

nt
s.

A
du

lt
s,

67
H

C
an

d
63

A
SD

,w
er

e
al

so
in

cl
ud

ed
.

A
cc

ur
ac

y.

[8
4]

A
BI

D
E

I.
D

at
as

et
in

w
hi

ch
pa

tie
nt

s
w

ith
ey

es
op

en
du

ri
ng

th
e

fM
R

Is
es

si
on

w
er

e
co

ns
id

er
ed

;
le

ss
th

an
18

ye
ar

s
ol

d;
re

su
lt

in
g

in
25

1
H

C
su

bj
ec

ts
an

d
20

1
su

bj
ec

ts
w

it
h

A
SD

.
A

cc
ur

ac
y.

[1
03

]
ST

R
IN

G
(v

er
si

on
11

.0
).

Te
n

pr
ot

ei
ns

w
er

e
co

ns
id

er
ed

to
bu

ild
th

e
pr

ot
ei

n–
pr

ot
ei

n
in

te
ra

ct
io

n
(P

PI
)n

et
w

or
k,

w
hi

ch
w

as
ge

ne
ra

te
d

an
d

vi
su

al
iz

ed
fr

om
th

e
ST

R
IN

G
da

ta
ba

se
.

R
oo

t-
m

ea
n-

sq
ua

re
d

er
ro

r
(R

M
SE

).

[7
1]

H
C

P.
Ta

sk
-M

R
Ia

nd
rs

-M
R

Ia
cq

ui
re

d
fr

om
12

00
H

C
,c

or
re

sp
on

di
ng

to
th

e
re

sp
on

se
to

di
ff

er
en

t
co

gn
it

iv
e

ta
sk

s.
A

cc
ur

ac
y,

pr
ec

is
io

n,
an

d
re

ca
ll.

[9
7]

U
SC

-T
IM

IT
.

rt
M

R
Iv

id
eo

s
of

th
e

up
pe

r
ai

rw
ay

in
th

e
m

id
-s

ag
it

ta
lp

la
ne

an
d

th
e

co
rr

es
po

nd
in

g
sp

ee
ch

w
av

ef
or

m
s

of
5

fe
m

al
e

an
d

5
m

al
e

su
bj

ec
ts

.
A

cc
ur

ac
y,

pr
ec

is
io

n,
fa

ls
e

po
si

ti
ve

,a
nd

fa
ls

e
ne

ga
ti

ve
.

[8
8]

BC
IC

om
pe

ti
ti

on
II

;D
at

as
et

1
fr

om
BC

IC
om

pe
ti

ti
on

IV
.

20
03

BC
Ic

om
pe

ti
ti

on
da

ta
se

tE
EG

s
w

er
e

co
lle

ct
ed

fr
om

1
H

C
.B

C
IC

om
pe

ti
ti

on
IV

da
ta

se
t.

C
on

ti
nu

ou
s

EE
G

s
w

er
e

ob
ta

in
ed

fr
om

6
H

C
.

A
cc

ur
ac

y
an

d
A

U
C

.

[9
0]

D
EA

P
an

d
sy

nt
he

ti
c

da
ta

se
t.

Pu
bl

ic
,p

er
ip

he
ra

lE
EG

an
d

ph
ys

io
lo

gi
ca

ls
ig

na
ld

at
a

fr
om

32
pa

rt
ic

ip
an

ts
.

Pa
rt

ic
ip

an
ts

w
at

ch
ed

40
vi

de
os

an
d

ra
te

d
th

em
ac

co
rd

in
g

to
th

e
le

ve
ls

of
va

le
nc

e,
ar

ou
sa

l,
lik

in
g/

di
sl

ik
in

g,
do

m
in

an
ce

,a
nd

fa
m

ili
ar

it
y.

C
la

ss
ifi

ca
ti

on
ac

cu
ra

cy
an

d
si

m
ila

ri
ty

be
tw

ee
n

th
e

le
ar

ne
d

gr
ap

h
an

d
th

e
gr

ou
nd

tr
ut

h.

[9
1]

A
M

IG
O

S;
A

SC
ER

TA
IN

;D
EA

P.

Th
e

A
M

IG
O

S
da

ta
se

tc
on

si
st

s
of

da
ta

co
lle

ct
ed

fr
om

40
pa

rt
ic

ip
an

ts
an

d
st

or
es

EE
G

,
EC

G
,a

nd
G

SR
si

gn
al

da
ta

;t
he

A
SC

ER
TA

IN
da

ta
se

tc
on

ta
in

s
ex

pe
ri

m
en

ta
lly

so
ur

ce
d

da
ta

fr
om

58
us

er
s

vi
ew

in
g

af
fe

ct
iv

e
vi

de
os

,a
lo

ng
w

it
h

EE
G

,E
C

G
,G

SR
,

an
d

fa
ci

al
ac

ti
vi

ty
da

ta
;t

he
D

EA
P

da
ta

se
th

as
da

ta
fr

om
32

pa
rt

ic
ip

an
ts

,a
nd

40
1-

m
in

cl
ip

s
of

m
us

ic
vi

de
os

w
er

e
us

ed
as

st
im

ul
if

or
th

e
pa

rt
ic

ip
an

ts
.

A
cc

ur
ac

y
an

d
F1

-s
co

re
.

[2
5]

iB
C

IC
20

20
C

om
pe

ti
ti

on
.

EE
G

si
gn

al
s

fr
om

15
in

di
vi

du
al

s
(5

fe
m

al
es

).
Th

e
m

ea
n

ag
e

w
as

31
ye

ar
s,

an
d

al
l

su
bj

ec
ts

w
er

e
he

al
th

y
an

d
ri

gh
t-

ha
nd

ed
.

A
cc

ur
ac

y.

[7
5]

H
C

P.

10
0

H
C

H
C

P
un

re
la

te
d

su
bj

ec
ts

fr
om

th
e

H
C

P
U

10
0

da
ta

se
t,

fM
R

Ia
cq

ui
re

d
w

it
h

8
di

ff
er

en
tt

as
k

co
nd

it
io

ns
(r

es
ti

ng
st

at
e

an
d

7
ta

sk
s:

em
ot

io
n,

pl
ay

,l
an

gu
ag

e,
m

ot
or

,
re

la
ti

on
sh

ip
,s

oc
ia

l,
w

or
ki

ng
m

em
or

y)
.

A
cc

ur
ac

y.

282



Bioengineering 2024, 11, 671
Ta

bl
e

3.
C

on
t.

R
ef

.
D

at
as

et
U

se
d

D
at

as
et

D
es

cr
ip

ti
on

Ev
al

ua
te

d
M

et
ri

cs

[8
5]

Ep
ile

pt
ic

EE
G

D
at

a;
TS

P
sp

ee
ch

da
ta

se
t.

Fo
r

th
e

EE
G

da
ta

ba
se

,5
0

te
st

s
of

pr
e-

ic
ta

l/
ep

ile
pt

ic
ic

ta
lE

EG
si

gn
al

s
w

er
e

ca
rr

ie
d

ou
t.

TS
P

sp
ee

ch
is

a
pu

bl
ic

da
ta

se
t,

an
d

an
ut

te
ra

nc
e

of
ab

ou
t2

s
du

ra
ti

on
ut

te
re

d
by

a
m

al
e

an
d

a
fe

m
al

e
sp

ea
ke

r
w

as
co

ns
id

er
ed

.

In
te

rf
er

en
ce

-t
o-

so
ur

ce
ra

ti
o

(I
SR

),
re

la
ti

ve
gr

ap
h

es
ti

m
at

io
n

er
ro

r
(R

G
Ee

),
A

U
C

,F
1,

an
d

M
D

[9
5]

Ec
on

et
-D

yn
am

ic
;C

A
M

U
S.

Ec
ho

N
et

-D
yn

am
ic

D
at

as
et

w
it

h
10

,0
30

ec
ho

ca
rd

io
gr

ap
hy

vi
de

os
;C

A
M

U
S

da
ta

se
t

co
nt

ai
ns

th
e

m
ed

ic
al

ex
am

s
of

50
0

pa
ti

en
ts

.
D

ic
e

co
ef

fic
ie

nt
(D

C
)o

r
F1

-s
co

re
.

[8
6]

H
C

P1
20

0
re

le
as

e.
C

on
si

st
s

of
fu

nc
ti

on
al

m
ag

ne
ti

c
re

so
na

nc
e

im
ag

in
g

(f
M

R
I)

re
co

rd
in

gs
fr

om
20

H
C

ad
ul

tp
ar

ti
ci

pa
nt

s.
Th

e
da

ta
se

ti
nc

lu
de

s
fo

ur
rs

-f
M

R
Ir

ec
or

di
ng

s,
se

ve
n

ta
sk

-b
as

ed
fM

R
Ir

ec
or

di
ng

s,
an

d
on

e
di

ff
us

io
n

fM
R

Ir
ec

or
di

ng
.

Tw
o

m
ea

su
re

s
of

te
m

po
ra

lc
om

pl
ex

it
y:

th
e

H
ur

st
ex

po
ne

nt
an

d
m

ul
ti

sc
al

e
en

tr
op

y.

[8
7]

H
C

P
12

00
Su

bj
ec

tR
el

ea
se

(S
12

00
).

fM
R

Id
at

a
fo

r
30

2
pa

rt
ic

ip
an

ts
,c

on
si

st
in

g
of

16
4

fe
m

al
es

an
d

13
8

m
al

es
(2

2–
35

ye
ar

s,
m

ea
n

=
28

.7
±

3.
6)

.T
he

fM
R

Id
at

a
w

er
e

co
lle

ct
ed

w
hi

le
th

e
pa

rt
ic

ip
an

ts
pe

rf
or

m
ed

7
di

ff
er

en
tt

as
ks

:e
m

ot
io

n,
ga

m
e,

w
or

ki
ng

m
em

or
y,

la
ng

ua
ge

,r
el

at
io

na
l,

so
ci

al
,a

nd
m

ot
or

.

A
cc

ur
ac

y,
ba

la
nc

ed
ac

cu
ra

cy
,F

1-
sc

or
es

(m
ac

ro
,m

ic
ro

,a
nd

w
ei

gh
te

d)
,M

at
th

ew
s

co
rr

el
at

io
n

co
ef

fic
ie

nt
(M

C
C

),
pr

ec
is

io
n,

an
d

re
ca

ll.

[9
9]

H
M

D
B

4.
0;

C
TD

;D
is

G
eN

ET
.

Th
e

H
M

D
B

da
ta

se
th

as
14

78
m

et
ab

ol
it

es
,2

37
di

se
as

es
,a

nd
34

60
kn

ow
n

m
et

ab
ol

it
e–

di
se

as
e

as
so

ci
at

io
ns

,r
em

ov
in

g
m

is
si

ng
an

d
du

pl
ic

at
e

da
ta

.
Fo

r
in

fo
rm

at
io

n
on

di
se

as
e-

re
la

te
d

ge
ne

s,
ob

ta
in

ed
31

02
ge

ne
s

fr
om

th
e

co
m

pa
ra

ti
ve

to
xi

co
ge

no
m

ic
s

da
ta

se
t(

C
TD

)a
nd

D
is

G
eN

ET
.

A
U

C
,a

re
a

un
de

r
pr

ec
is

io
n–

re
ca

ll
(A

U
PR

),
F1

-s
co

re
,a

cc
ur

ac
y,

re
ca

ll,
sp

ec
ifi

ci
ty

,
an

d
pr

ec
is

io
n.

[9
8]

[1
44

].

It
in

cl
ud

es
da

ta
on

C
O

V
ID

co
nt

am
in

at
io

n
in

th
e

po
pu

la
ti

on
of

th
e

ci
ty

of
M

as
sa

ch
us

et
ts

fr
om

6
D

ec
em

be
r

20
20

to
25

Se
pt

em
be

r
20

21
,f

or
41

w
ee

ks
in

to
ta

l,
w

hi
ch

is
co

lle
ct

ed
fr

om
th

e
of

fic
ia

lw
eb

si
te

.

A
no

m
al

y
sc

or
e

(a
-s

co
re

).

[1
01

]
ci

rc
R

2D
is

ea
se

.
It

co
ns

id
er

ed
43

1
ci

rc
R

N
A

-d
is

ea
se

as
so

ci
at

io
ns

,w
hi

ch
in

cl
ud

ed
36

5
ci

rc
R

N
A

s
re

la
te

d
to

10
0

di
se

as
es

fr
om

ci
rc

R
2D

is
ea

se
.

A
cc

ur
ac

y,
pr

ec
is

io
n,

re
ca

ll,
F1

-s
co

re
,

an
d

A
U

C
.

[1
04

]
K

va
si

r-
SE

G
;C

V
C

-C
lin

ic
D

B.
K

va
si

r-
SE

G
is

an
op

en
-a

cc
es

s
da

ta
se

to
fg

as
tr

oi
nt

es
ti

na
lp

ol
yp

im
ag

es
,w

hi
ch

co
nt

ai
ns

10
00

po
ly

p
im

ag
es

;t
he

pu
bl

ic
an

d
op

en
-a

cc
es

s
C

V
C

-C
lin

ic
D

B
is

co
m

po
se

d
of

61
2

im
ag

e
fr

am
es

ex
tr

ac
te

d
fr

om
31

di
ff

er
en

tc
ol

on
os

co
py

.
M

ea
n

in
te

rs
ec

ti
on

-o
ve

r-
un

io
n

(m
IO

U
).

[9
3]

N
eu

ro
va

ul
t;

H
C

P.
Fu

nc
ti

on
al

M
R

Is
ig

na
ls

co
ns

is
ti

ng
of

13
su

bj
ec

ts
w

it
h

m
an

y
ta

sk
ex

pe
ri

m
en

ts
an

d
78

8
H

C
P

su
bj

ec
ts

.
A

cc
ur

ac
y.

[7
6]

A
D

N
I.

To
ta

ln
um

be
r

of
18

4
su

bj
ec

ts
in

th
is

st
ud

y.
40

la
te

M
C

I(
LM

C
I)

pa
ti

en
ts

,7
7

ea
rl

y
M

C
I(

EM
C

I)
pa

ti
en

ts
,a

nd
67

H
C

.
A

cc
ur

ac
y,

se
ns

it
iv

it
y,

sp
ec

ifi
ci

ty
,F

1-
sc

or
e,

an
d

A
U

C
.

[9
2]

C
ol

le
ct

ed
fo

r
th

e
pa

pe
r.

It
in

cl
ud

es
30

pa
ti

en
ts

w
it

h
in

fla
m

m
at

or
y

bo
w

el
di

se
as

e,
13

m
en

an
d

17
w

om
en

,
m

ea
n

ag
e

(3
5.

3
±

5.
2)

ye
ar

s,
al

lr
ig

ht
-h

an
de

d.
A

tt
he

sa
m

e
ti

m
e,

th
er

e
w

er
e

30
H

C
pa

ti
en

ts
,i

nc
lu

di
ng

16
m

al
es

an
d

14
fe

m
al

es
,m

ea
n

ag
e

(3
1.

5
±

2.
9)

ye
ar

s,
al

l
ri

gh
t-

ha
nd

ed
.

A
cc

ur
ac

y,
se

ns
it

iv
it

y,
sp

ec
ifi

ci
ty

,a
nd

F1
-s

co
re

.

[2
4]

D
EA

P.
Pu

bl
ic

da
ta

se
tw

it
h

EE
G

si
gn

al
s

fr
om

32
pa

rt
ic

ip
an

ts
w

he
n

w
at

ch
in

g
40

60
-s

vi
de

o
cl

ip
s.

Su
bj

ec
ts

(5
0%

m
en

an
d

50
%

w
om

en
)w

er
e

be
tw

ee
n

19
an

d
37

ye
ar

s
ol

d.
A

cc
ur

ac
y.

[9
4]

M
on

tr
ea

lA
rc

hi
ve

of
Sl

ee
p

St
ud

ie
s

(M
A

SS
)S

S3
;S

le
ep

ED
F.

Fu
ll-

ni
gh

tp
ol

ys
om

no
gr

ap
hi

c
re

co
rd

in
gs

.I
n

M
A

SS
-S

S3
,6

2
an

d
in

Sl
ee

pE
D

F
20

he
al

th
y

in
di

vi
du

al
s

w
er

e
co

ns
id

er
ed

A
cc

ur
ac

y,
F1

-s
co

re
,a

nd
K

ap
pa

.

[1
06

]
C

ol
le

ct
ed

fo
r

th
e

pa
pe

r.
A

to
ta

lo
f7

9
pa

rt
ic

ip
an

ts
w

ith
co

m
pl

et
e

da
ta

,w
ith

19
H

C
s

an
d

60
pa

tie
nt

s,
of

w
hi

ch
31

in
th

e
co

gn
iti

ve
be

ha
vi

or
al

th
er

ap
y

(C
BT

)g
ro

up
an

d
29

in
th

e
se

le
ct

iv
e

se
ro

to
ni

n
re

up
ta

ke
in

hi
bi

to
r

(S
SR

I)
gr

ou
p.

T
he

st
at

is
ti

cs
ar

e
Pe

ar
so

n’
s

r
an

d
p

va
lu

es
.

283



Bioengineering 2024, 11, 671
Ta

bl
e

3.
C

on
t.

R
ef

.
D

at
as

et
U

se
d

D
at

as
et

D
es

cr
ip

ti
on

Ev
al

ua
te

d
M

et
ri

cs

[1
07

]

M
IT

-B
IH

;M
ed

ic
al

In
fo

rm
at

io
n

M
ar

tf
or

In
te

ns
iv

e
C

ar
e

(M
IM

IC
);

Be
th

Is
ra

el
D

ea
co

ne
ss

M
ed

ic
al

C
en

te
r

(B
ID

M
C

)P
PG

an
d

R
es

pi
ra

ti
on

D
at

as
et

;W
ri

st
PP

G
D

ur
in

g
Ex

er
ci

se
da

ta
se

t;
C

A
PN

O
BA

SE
—

TB
M

E
R

R
be

nc
hm

ar
k

da
ta

se
t;

C
om

pl
ex

Sy
st

em
La

bo
ra

to
ry

(C
SL

)P
ul

se
O

xi
m

et
ry

A
rt

if
ac

tL
ab

el
s.

D
at

as
et

s
w

it
h

di
ff

er
en

tt
yp

es
of

no
rm

al
an

d
ab

no
rm

al
PP

G
si

gn
al

pa
tt

er
ns

,a
s

w
el

l
as

no
is

y
PP

G
si

gn
al

s
in

re
al

ti
m

e.
A

cc
ur

ac
y,

pr
oc

es
si

ng
ti

m
e,

an
d

m
od

el
si

ze
.

[1
08

]
Li

ve
r

Tu
m

or
Se

gm
en

ta
ti

on
20

17
(L

iT
S1

7)
.

Th
e

da
ta

se
tc

on
ta

in
s

im
ag

es
of

13
0

pa
tie

nt
s

w
ith

a
m

ax
im

um
nu

m
be

r
of

C
T

sl
ic

es
of

62
3

fo
r

ea
ch

pa
ti

en
t.

Fo
r

th
is

st
ud

y,
C

T
vo

lu
m

es
of

10
pa

ti
en

ts
w

er
e

co
ns

id
er

ed
.

A
cc

ur
ac

y,
D

ic
e

co
ef

fic
ie

nt
,m

ea
n

in
te

rs
ec

ti
on

-o
ve

r-
un

io
n

(I
oU

),
se

ns
it

iv
it

y,
pr

ec
is

io
n,

an
d

re
ca

ll.

284



Bioengineering 2024, 11, 671

Another analysis obtained from Table 3 concerns the most used databases. Considering
the area of neurology, which corresponds to 30 of the 45 articles included in the review,
Figure 14 shows that the most used databases were HCP, used 6 times, followed by ADNI
with 5 uses, and then ABIDE and DEAP, which were used in 4 papers each. It is important
to note that those databases are publicly available.

Figure 14. Graph showing the most frequently used databases in neurology.

5. Discussion

One of the challenges reported by the analyzed papers is related to the difficulty of
accessing health-related datasets. The limited amount of data (whether images, signals,
or medical records, among others) may lead to a lack of generalization of the proposed
approaches in the detection or classification of pathologies. Another challenge is related to
the reproducibility of research, since different research groups are unable to evaluate new
methodological proposals for the reported problem if a common dataset is not available.
There is need for more publicly available datasets.

Among other limitations addressed by the papers, we can mention data imbalance.
In [67], for example, it is mentioned that, in future studies, one of the intentions is to verify
the use of graph convolutions to achieve good prediction rates in problems that present data
imbalance, since it is considered a factor that hinders the learning of intelligent systems.

Regarding the dataset, one possibility to achieve better performances would be to
include complementary information to signals or images. This is due to the fact that,
in health-related problems, it is relevant to use dataset with a combination of data, such as
phenotypic information, because diagnoses may be related to morphological characteristics
or conditions and clinical parameters. In [78], for example, it is stated that the work has
a limitation because it uses only brain image data; better results could be obtained if the
referred additional information would have been employed.

Another issue to be considered concerns the medical interpretation of the results
obtained by systems using GSP and computational intelligence techniques. Although many
proposals achieve good performance, considering the evaluation of objective metrics,
which are quite widespread in engineering, it is of paramount importance that there is
an understanding of the addressed problem, based on the understanding of what the
result means, and also how it impacts the analysis in the health sciences, in order to
achieve a broader and more complete analysis for diagnosis. In this context, Valenchon
and Coates [80] report their intention that, in further research, rather than the outcome
of the proposal indicating whether or not an individual with dementia will progress to
Alzheimer’s disease, it presents a mechanism that provides a value of the probability of
progression, which guarantees a more complete medical analysis. Another example is [68]
in which it is suggested that future work may address possibilities beyond the prediction
of clinical diagnosis, one of them being to investigate and suggest possible treatments for
the found medical condition.

In relation to this, an area that addresses such issues and presents possible solutions
to minimize these difficulties is explainable artificial intelligence (XAI) [145]. This is a
recent field that concerns the explanations and interpretability necessary in processes that
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use artificial intelligence techniques in predictions, so that there are justifications for and
credibility of the obtained results [146]. In any case, interpretability and explainability are
terms that encompass standards and criteria, which must be taken into account according
to the associated context [147]. In the case of this review, the context to consider is the
medical specialty of the application, and then make the proposal based on computational
intelligence understandable to health professionals, knowledgeable about the nature of the
problem, reducing the gap between the proposal and clinical practice. In [79], for example,
a system for detecting and evaluating signals of neurological examinations for the early
detection of Alzheimer’s disease was developed; according to the authors, it would be
interesting for health professionals to understand the approach devoted to signal detec-
tion, with the aim of enabling the use of programs that validate the proposal in a real
medical context.

In this context, such issues fall under health 4.0 (H4.0), a term used to relate health
advances to industrial technological revolutions. It corresponds to a field that investigates
the use of technologies in favor of patient care, based on the use of technology to promote
better and faster diagnostic capacity, equipment portability, and greater data management
capacity [148]. Thus, the use of technology is aimed at clinical care itself, and can be
supported with the use of artificial intelligence, including deep learning techniques for care
aimed at early diagnosis, the prevention of the progression of health conditions, and early
identification of effective treatments [149,150].

An important challenge verified in the analysis of the papers included in the review is
the extraction of characteristics from the data used, since this step is not restricted to the
extraction itself, but to the selection of more relevant characteristics so that the proposed
system for the intended application is able to identify health changes due to the selection
of more significant characteristics. In this case, the use of convolutional networks can be
considered, since the convolution layers play the role of the extractor of features.

Another challenge is the selection of optimal hyperparameters for the proposed tech-
niques, because although they present a good performance, as reported in [22], it is possible
to achieve superior results with an assertive selection of hyperparameters. The choice of
hyperparameters can be made using grid search, Bayesian optimization, or random search
and swarm intelligence.

Many applications addressed in the selected papers are in neurology, in which the data
evaluated are examinations converted into time series. In this sense, an important analysis
to aid diagnosis is to check the regularity of the series and identify noise. That analysis
can be carried out by using information theory metrics on graphs, such as permutation
entropy and dispersion entropy [151,152]. This could be a promising research area in graph
signal processing.

Regarding the works in which the specialty of neurology is considered, a frequently
considered analysis employs functional connectivity. Therefore, accurate pattern recogni-
tion is essential, which can be achieved through the use of robust graph learning techniques,
acting in the identification and analysis of connectivity between brain areas. Another pos-
sibility of analysis is structural connectivity. According to [75], in future work, a specific
structural connectivity for each individual should be considered. This would lead to the
definition of multiple spectral domains for brain signals, and would enable the analysis
of inter-subject structural variability. Still in this specialty, many studies report the use of
atlases to divide the brain into areas. However, there is no consensus on the use of a single
atlas to carry out the referred division. It would, therefore, be interesting to verify and test
the use of different atlas options for the same dataset, since this choice has a high potential
impact on the final classification stage.

Due to the good results presented with different techniques that combine GSP and
ML, it is possible to use graph neural networks and test the proposed methods in different
medical applications of high complexity and that have data available in the literature,
as suggested in [66,79]. Considering high-complexity problems, one of the future proposals
reported in [95] concerns real-time processing for echocardiogram videos. This could
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be a major advance in early diagnosis with artificial intelligence, and would represent a
significant impact for health sciences.

The proposal described in [74], which employs the modified Laplacian matrix to
classify attention deficit hyperactivity disorder, presents a promising result, so its use can
be considered as an alternative mathematical framework in other medical applications.
Likewise, in [103], it is recommended to explore the potential of Multi-GNNs, which consist
of combining the characteristics of individual GNNs.

An interesting consideration concerns the use of new transforms, because, although the
Fourier transform is quite widespread and leads to good results, it is important that different
transformation techniques be examined and tested. In [88], for example, the investigation
of new transforms is pointed out as a future proposal, as the authors mention the fact that
new transformation techniques can lead to improvements in the classification rates.

Finally, an important issue is the lack of standardization, so it would be interesting to
standardize metrics and evaluation techniques for comparison purposes.

6. Conclusions

In healthcare, GSP has been used to analyze problems related to signals lying in non-
Euclidean domains. In addition, ML techniques have been used for pattern recognition and
early disease classification and identification. Considering the 45 papers included in the
systematic review, 30 of these presented applications for neurology problems, with many of
them focused on the diagnosis of cognitive impairment and Alzheimer’s disease. In these
cases, most of the data correspond to fMRI and EEG images. However, limitations are
reported regarding the number of samples and the number of publicly available dataset.

From the presented data regarding the number of publications, it is clear that, despite
GSP with ML applied to health being a recent field of study, it has shown an increase in
the number of publications, which may indicate an interest of the scientific community
in the area. Advances in the scope of GSP with ML in health have attracted the attention
of health professionals, since the proposed methods have a high capacity to assist early
diagnosis and, consequently, provide speed in decision making by specialists. In any case,
there are gaps to be solved, such as a better integration between computational intelligence
techniques and clinical practice.

This systematic review synthesized the information from selected papers and pointed
out the trends of applications that are emerging in the area, as well as methodologies
that combine artificial intelligence, graph theory, and health sciences, presenting subsidies
for researchers to explore gaps in future work, as well as to reproduce existing work.
A limitation of this work is the number of scientific databases considered. Although our
study has considered four relevant scientific databases (IEEE Xplore, Science Direct, MDPI,
and ACM), it is possible that there are other papers that fit the scope of the review and that
have not been included. It is also possible that new papers have been published after the
period defined for the inclusion of papers, which was October 2023.

In the future, further updates of this literature review can be carried out, including
more databases and also revisiting those considered in this paper, since, with the identified
trend of publications, there should soon be new research published in the area.
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