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Preface

As our understanding of the brain deepens, so does the need for advanced computational tools

to model, simulate, and interpret complex neural data. This interdisciplinary volume integrates

biology, mathematics, AI, and physics to explore neural dynamics, cognition, and disease. By bridging

theoretical frameworks with empirical research, it highlights cutting-edge methodologies that drive

innovation in neuroscience. We extend our gratitude to the authors, reviewers, and editors whose

efforts have made this reprint possible, inspiring further exploration of brain function. that focuses on

one of the most studied and relevant food-associated mycotoxins.

Alexander N. Pisarchik
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Editorial

Computational and Mathematical Methods for Neuroscience

Alexander N. Pisarchik

Center for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo,
Pozuelo de Alarcón, 28223 Madrid, Spain; alexander.pisarchik@upm.es

1. Introduction

As our understanding of the brain continues to advance, so too does the demand for
sophisticated tools that can model, simulate, and interpret the intricate data generated by
contemporary neuroimaging and electrophysiological techniques. The interdisciplinary
field of theoretical and computational neuroscience, drawing on biology, mathematics,
computer science, and physics, seeks to capture the complexities of the nervous system
through rigorous quantitative models and simulations. In recent years, this field has
grown rapidly, with computational and mathematical methodologies becoming essential
for probing the nuances of neural circuitry and cognitive function.

Computational approaches in neuroscience encompass diverse techniques, from ad-
vanced statistical methods to machine learning algorithms, each designed to identify
meaningful patterns in high-dimensional data. Complementing these are mathematical
models that provide a robust framework for understanding neural dynamics, connectivity,
and information processing across various scales, from single neurons to vast networks.
Together, these computational and mathematical strategies empower researchers to gener-
ate precise hypotheses, make quantitative predictions, and gain deeper insights into the
fundamental principles that drive brain function, neural plasticity, and the mechanisms
behind neurological disorders.

This Special Issue brings together the latest advancements in computational and
mathematical methods in neuroscience, showcasing articles that address foundational
concepts, established models, and emerging technologies at the forefront of the field.
By bridging theoretical frameworks with empirical data, these approaches not only expand
our knowledge of neural systems but also open new pathways for therapeutic innovation
and applications in clinical neuroscience.

2. Fields of Neuroscience

Neuroscience is a vast and inherently interdisciplinary field dedicated to understanding
the complexities of the nervous system. It encompasses a diverse array of subfields, each focus-
ing on different levels of neural organization and function, as illustrated in Figure 1. At its core,
neuroscience integrates both theoretical and experimental approaches, each bringing distinct
methodologies and perspectives that, together, drive a more comprehensive understanding of
brain mechanisms and behavior. The synergy between these approaches allows researchers
to bridge molecular-, cellular-, and systems-level insights, advancing our knowledge of how
neural processes underpin cognition, perception, and action.

2.1. Theoretical Neuroscience

Theoretical neuroscience focuses on developing mathematical, computational, and sta-
tistical models to represent neural processes across multiple scales, from an individual
neuron to the brain.

Mathematical neuroscience applies mathematical theories, models, and equations to
describe and analyze the mechanisms of the nervous system at various levels, from single
neurons to whole-brain dynamics. This branch of neuroscience aims to build theoretical
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frameworks for neural activity, capturing phenomena such as neuronal electrical properties,
network dynamics, and brain connectivity patterns. Some of the most widely used neural
models include the Hodgkin–Huxley (HH) [1], FitzHugh–Nagumo (FHN) [2,3], Hindmarsh–
Rose (HR) [4], Wilson–Cowan (WC) [5], and Izhikevich [6] models.

Figure 1. Fields and subfields of neuroscience.

The HH model provides a detailed description of neuronal electrical behavior based
on ion channel dynamics, offering a foundation for understanding neuron excitability.
The FHN and HR models, simplified versions of the HH model, are commonly used to
simulate excitable systems due to their computational efficiency. The WC model, on the
other hand, captures the collective dynamics of populations of excitatory and inhibitory
neurons, making it useful for studying large-scale neural networks. The Izhikevich model
combines biological realism with computational efficiency, enabling the simulation of a
wide range of spiking and bursting patterns observed in neurons.

In addition to these continuous-time models, various discrete-time models are employed
in theoretical neuroscience, such as the Leaky Integrate-and-Fire (LIF) model [7] and the
Rulkov map [8]. The LIF model approximates biological neurons by simulating membrane
potential decay in the absence of input spikes, while the Rulkov map generates spike patterns
through the interplay of membrane potential dynamics and recovery variables. The Rulkov
model also incorporates a reset mechanism, allowing neurons to recover after firing.

These mathematical models play a crucial role in predicting and explaining phenom-
ena such as neural oscillations, wave propagation in the brain, and the synchronization
of neuronal activity, processes essential for neural communication and understanding
neurological conditions like epilepsy [9]. These models enable theoretical neuroscience to
uncover fundamental principles of neural behavior, enhancing our capacity to analyze and
interpret the intricate dynamics of neural systems.

Computational neuroscience aims to develop quantitative tools to analyze neural
data and predict neural system dynamics, helping to uncover the principles that govern
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brain function. Computational neuroscience involves developing and using computer
simulations, algorithms, and artificial neural network (ANN) models to investigate the
functioning of the nervous system. It bridges theoretical models with experimental data,
often serving as a testing ground for hypotheses. Computational neuroscience focuses
on simulating neural circuits, analyzing large datasets from neural recordings, and pre-
dicting brain activity and behavior. Popular examples of computational techniques are
neural network simulations, machine learning (ML), and data-driven models. Former
methods simulate networks of neurons to study how they encode, process, and retrieve
information. ML models are used to classify patterns in brain data, such as electroen-
cephalography (EEG), magnetoencephalography (MEG), Magnetic Resonance Imaging
(MRI), functional Magnetic Resonance Imaging (fMRI), and Positron Emission Tomography
(PET), to model learning and adaptation in neural systems. Finally, data-driven models use
real experimental data to create models of complex phenomena like sensory processing,
decision-making, or motor control. Computational neuroscience helps us understand brain
function (e.g., sensory processing, memory, and emotions), design brain–machine interfaces
(BMIs), and develop treatments for neurological diseases through predictive modeling.

Statistical neuroscience applies advanced statistical techniques to analyze and interpret
the complex data generated by neuroscience experiments, addressing challenges such as
high dimensionality, noise, and the temporal structure of neural activity. By providing
robust tools for managing the variability inherent in neural data, statistical neuroscience
helps researchers identify patterns, relationships, and statistical dependencies, which are
essential for testing hypotheses and making inferences about neural function.

Key methods in statistical neuroscience include Spike Train Analysis (STA), Dimen-
sionality Reduction (DR), Bayesian inference, and information theory. STA encompasses
statistical techniques for analyzing the timing and patterns of neuronal spikes, which
carry critical information about neural signaling. DR techniques, such as Principal Compo-
nent Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE), simplify
high-dimensional neural data, making them more accessible for interpretation. Bayesian
inference introduces a probabilistic approach to understanding neural data, commonly
applied to decode sensory information and predict neural responses. Information the-
ory, meanwhile, quantifies the amount of information transmitted within neural circuits,
providing insights into the efficiency and mechanisms of neural coding.

These statistical approaches are essential for analyzing data from electrophysiological
recordings, neuroimaging, and behavioral experiments. They allow researchers to draw reli-
able conclusions about brain activity, predict behaviors, and even forecast events like epileptic
seizures [10]. Through statistical neuroscience, scientists gain critical insights into the princi-
ples of neural organization and function, advancing our understanding of brain dynamics.

Neuroinformatics plays a crucial role in neuroscience by developing algorithms, data
management tools, and computational techniques to organize, integrate, and share large
datasets, thereby facilitating discovery and enhancing collaboration across studies. This
field focuses on establishing standardized formats and databases that enable diverse
types of neuroscience data to be combined, compared, and interpreted across studies
and institutions. By streamlining the organization and accessibility of complex datasets,
neuroinformatics supports efficient data sharing, reproducibility, and broader analyses.

Popular neuroinformatics tools include Brainstorm, Brainsuite, Statistical Parametric
Mapping (SPM), and FMRIB Software Library (FSL), containing image analysis and sta-
tistical tools for functional, structural, and diffusion MRI. Additionally, platforms such as
Neuron and Brain Imaging Data Structure (BIDS) provide standardized data formatting
and processing pipelines that enhance consistency in data analysis. Neuroinformatics also
involves creating computational models that simulate brain processes, providing valuable
insights into brain dynamics, neural circuits, and cognitive functions.

A key goal of neuroinformatics is to promote open science by facilitating data sharing
across labs, institutions, and even international boundaries, accelerating discovery, enhanc-
ing reproducibility, and allowing for larger-scale and more diverse analyses. Platforms like
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the NeuroInformatics Framework (NIF) exemplify this approach, providing standardized
access to a wide range of neuroscience datasets and tools.

One of the primary applications of neuroinformatics is brain mapping, which involves
creating detailed maps of the brain’s structural and functional connectivity to better under-
stand regional interactions. By comparing large datasets from both healthy and diseased
brains, neuroinformatics enables the identification of biomarkers and genetic markers asso-
ciated with neurological and psychiatric disorders. Moreover, neuroinformatics contributes
to the development of algorithms for processing data from Brain–Computer Interfaces
(BCIs), facilitating direct communication between the brain and external devices [11,12].
Additionally, virtual brain models and curated databases serve as valuable educational
tools, providing students, clinicians, and researchers with training in neuroanatomy, neuro-
physiology, and neural dynamics.

2.2. Experimental Neuroscience

Experimental neuroscience, distinct from theoretical approaches, is centered on empir-
ical studies that directly observe, manipulate, and measure neural function and behavior.
This hands-on branch of neuroscience encompasses several key subfields, each focused on
specific aspects of the brain and nervous system.

Clinical neuroscience targets neurological, psychiatric, and neurodevelopmental disor-
ders, facilitating collaborations among neurologists, psychiatrists, and neuroscientists to
advance diagnostic methods and therapeutic strategies.

Cellular and molecular neuroscience delves into the structure and function of indi-
vidual neurons, exploring processes such as synaptic transmission, plasticity, and the role
of molecular components like neurotransmitters, ion channels, and genetic factors. This
foundational research provides insights into the basic units of neural activity.

Systems neuroscience investigates how neural circuits and larger brain systems orga-
nize and function, analyzing interactions across brain regions and networks that enable
complex capabilities like sensory processing, motor coordination, and emotional regulation.

Developmental neuroscience examines the processes governing nervous system devel-
opment from embryonic stages through adulthood, including neurogenesis, cell differentia-
tion, and synaptic formation, as well as the effects of genetic and environmental factors on
brain maturation.

Cognitive neuroscience studies the neural basis of higher-order cognitive functions,
including perception, memory, language, and decision-making. This field often employs
neuroimaging techniques such as EEG, MEG, MRI, PET, and fMRI to link brain activity
with cognitive processes.

Behavioral neuroscience explores the relationship between neural mechanisms and
behavior, investigating how alterations in the brain—whether from injury, disease, or ex-
perimental manipulation—impact behavior and psychological processes.

Sensory neuroscience focuses on the neural interpretation of sensory information from
the external environment, examining how sensory systems like vision, hearing, and touch
process and respond to stimuli.

Social neuroscience examines the neural underpinnings of social behaviors, such
as empathy, cooperation, and social decision-making, integrating methodologies from
psychology, biology, and neuroscience to understand interpersonal and group dynamics.

Affective neuroscience investigates how the brain processes emotions such as admi-
ration, adoration, aesthetic appreciation, amusement, anger, anxiety, awe, awkwardness,
boredom, calm, caring, confusion, craving, disgust, empathic pain, fascination, excitement,
fear, horror, interest, joy, lust, nostalgia, play, relief, romance, sadness, satisfaction, seeking,
sexual desire, surprise, etc., which are common to all mammals and evolutionarily defined
as tools for survival and, in general, fitness.

Social neuroscience and affective neuroscience apply traditional neuroimaging tech-
niques used in experimental neuroscience (e.g., EEG, MEG, and fMRI) to better understand
the neural and psychological mechanisms underlying human behavior.
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Neuroengineering combines engineering principles with neuroscience to create inno-
vative tools and technologies for studying and manipulating the nervous system, including
brain–machine interfaces, neuroprosthetics, and neurostimulation devices.

Each of these branches can also benefit from theoretical neuroscience through the
application of mathematical models, computational algorithms, and statistical analyses.
Integrating theoretical and experimental approaches allows researchers to investigate the
nervous system at all levels, from molecules to behavior, building a comprehensive picture
of how the brain enables perception, thought, emotion, and action. Collectively, these
subfields deepen our understanding of the brain and hold transformative potential for
both medicine and technology, advancing our ability to address neurological disorders and
improve human health.

3. Highlights and Key Contributions of Published Articles

This Special Issue comprises 16 papers, which can be broadly categorized into four
main areas: medical applications (8 papers), cognitive neuroscience (3 papers), statistical
methods (2 papers), and machine learning (5 papers, including 2 focused on medical
applications). Below is a brief overview of each paper and its key contributions.

3.1. Medical Applications

Half of the papers in this Special Issue (8 out of 16) focus on medical applications, with
4 specifically addressing Alzheimer’s disease (AD) (contributions 2, 9, 11, and 14). This
focus is aligned with the critical importance of early and accurate AD diagnosis, which
enables timely therapeutic intervention and management. Brain imaging technologies like
MRI and PET scans facilitate the early detection of AD-related structural and functional
changes in the brain, often identifying the disease before severe clinical symptoms appear.
Early detection provides valuable opportunities for intervention that may slow disease
progression. Additionally, brain imaging distinguishes AD from other dementias, such as
Lewy body or vascular dementia, by detecting unique patterns like amyloid plaques or
hippocampal atrophy. Moreover, imaging allows clinicians to track disease progression
over time, informing treatment adjustments and helping to assess therapeutic efficacy.

Among available neuroimaging techniques, MRI is particularly popular in AD re-
search, as it visualizes brain structures, allowing clinicians to detect hippocampal atrophy,
a key marker of AD. In this issue, Altwijri et al. (contribution 2) introduce an innovative
deep learning approach to automatically diagnose AD using MRI datasets. Leveraging
the strengths of deep learning, which often outperforms human detection in assessing AD
stages, the authors employ pre-trained convolutional neural networks (CNNs) to classify
AD severity with high accuracy, even when dataset quality and quantity are limited. Their
method, which preprocesses AD data through an advanced image processing module
before training, achieves a 99.3% accuracy rate—an improvement over existing models.

Kozminski and Gniazdowska (contribution 9) review studies on tacrine and its deriva-
tives labeled with radionuclides, exploring their potential as diagnostic radiotracers for AD.
While AD is not curable, its progression and symptoms can be managed using treatments
like acetylcholinesterase (AChE) inhibitors (e.g., tacrine, rivastigmine, galantamine, and
donepezil). The authors analyze radiolabeled tacrine derivatives in early AD diagnosis,
with a particular emphasis on computational molecular modeling to visualize tacrine’s
interaction with cholinesterase. Their review highlights the limitations of current radiophar-
maceuticals based on tacrine derivatives and suggests a shift toward other biomolecules
relevant to early AD stages.

Sait (contribution 11) presents a novel integrated model combining LeViT, Efficient-
Net B7, and Dartbooster XGBoost (DXB) for AD detection using MRI. LeViT is a vision
transformer-based hybrid neural network, EfficientNet B7 is a high-performance CNN,
and DXB is a robust model blending DART and XGBoost algorithms for predictive accuracy.
Using MRI datasets totaling 86,390 images, Sait’s approach achieved 99.8% average gen-
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eralization accuracy, underscoring the potential of multi-model fusion for high-precision
AD detection.

Mattle et al. (contribution 14) examine brain-wide structural connectomics in early AD
stages. Analyzing a longitudinal diffusion-weighted imaging dataset of 264 subjects, they
apply a tailored machine learning approach that combines exhaustive tractography with
neuropsychological data to achieve high classification accuracy. Their model identifies early
biomarkers of AD based on hemispheric lateralization of mean tract volume for specific
tracts in the supramarginal and paracentral regions, demonstrating the predictive value of
diffusion MRI and the importance of multi-modal data integration in neurodegenerative
disease research.

Other medical applications in this issue cover cerebral palsy (CP), head tremor, sports
medicine, and epilepsy (contributions 5, 6, 13, and 16, respectively).

Roy, Ehrlich, and Lampe (contribution 5) conducted an in-depth EEG study compar-
ing the neural responses of seven patients with cerebral palsy (CP) to a control group of four
healthy participants. CP, a movement disorder stemming from early, nonprogressive brain
damage, often leads to additional cognitive, communicative, and behavioral symptoms.
The study employed two types of tactile stimulation—‘frequent’ and ‘infrequent’—applied
to the ring finger and thumb of participants’ left hands, respectively, to elicit event-related
potentials (ERPs) recorded at frontal, central, and parietal scalp locations. In the control
group, typical mismatch-related ERP responses were observed, while in CP patients, statis-
tically significant differences were detected between the responses to the two stimuli on
frontocentral and parietal channels within the 150–250 ms post-stimulus window. Addi-
tionally, a distinct late discriminative response appeared on frontal and parietal channels.
These findings reveal the presence and potential observability of mismatch-related neural
components in CP patients, providing insight into how CP impacts sensory processing.
The authors acknowledged certain limitations, including the small sample size, suggesting
future studies to build on this work with larger cohorts.

Rossi et al. (contribution 6) investigated head micromovements and body posture
to assess vigilance and monitor changes in mental states—an area increasingly relevant
due to global population aging trends. With the proportion of individuals over 60 ex-
pected to nearly double by 2050 [13], and head tremors being a prevalent symptom in
age-related conditions such as Parkinson’s disease, precise monitoring of head movements
is increasingly important. Head tremors are commonly experienced by older adults, often
as a result of Parkinson’s disease. According to the American Parkinson Disease Associ-
ation, tremors affect approximately 80% of individuals with Parkinson’s, making them
a defining feature of the condition [14]. The miniaturization and widespread use of in-
ertial measurement units (IMUs) in devices like smart glasses have simplified tracking,
but self-reports and simple performance measures alone do not provide reliable real-time
indicators of vigilance. To address this, the authors examined the relationship between head
micromovements, body posture changes, and vigilance reduction during a psychomotor
vigilance task. Their results demonstrate that head micromovements are valuable markers
for tracking prolonged vigilance decrement and can effectively distinguish between high
and low vigilance states, highlighting the potential of IMUs in monitoring cognitive states
in aging populations.

Billat et al. (contribution 13) explored the brain’s role in limiting exercise capac-
ity by analyzing EEG recordings taken during incremental exercise tests (IETs) with
42 participants. IETs assess maximal aerobic power and oxygen consumption (V̇O2max),
key indicators in sports medicine. The study aimed to test whether the inability to reach a
V̇O2 plateau (V̇O2pl) is primarily influenced by central (brain-based) rather than peripheral
(muscle-based) factors. The authors observed a general EEG power decline across all
frequency bands, irrespective of V̇O2 plateau occurrence, suggesting depletion of overall
“EEG reserve”, while alpha activity in the motor cortex remained relatively preserved.
They hypothesize that fatigue-associated EEG changes may reflect the brain’s attempts to
conserve neural resources for motor function and that these changes might vary depending
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on individuals’ sport experience levels. This study opens up the possibility of using EEG as
a predictive indicator of exercise exhaustion, which could have applications in optimizing
training and managing fatigue.

Ferri et al. (contribution 16) made a significant contribution to epilepsy research by
using EEG to study cortical connectivity responses to hyperventilation (HV) in patients
with focal epilepsy, a type of epilepsy where seizures originate in specific brain lobes. HV
is routinely performed during EEG recording as an activation technique recommended
by neurophysiology guidelines. The authors applied phase transfer entropy, an advanced
connectivity analysis, to assess how HV affects cortical connectivity. They found that HV-
induced connectivity significantly increases, similar to patterns observed during non-REM
sleep, which is known to promote epileptic activity. Their findings suggest that HV creates
a conductive environment for the spread of epileptiform activities but does not alone trigger
seizures in focal epilepsy. This study underscores the role of HV in epilepsy diagnostics
and the potential of cortical connectivity measures for understanding seizure propagation
and developing targeted interventions.

3.2. Cognitive Neuroscience

The second research focus of the papers in this Special Issue is cognitive neuroscience,
with three contributions (1, 7, and 8) exploring key themes: the sense of embodiment
(contribution 1), perception (contribution 7), and emotion recognition (contribution 8).

Tomás et al. (contribution 1) reviewed 20 selected studies on BMIs that utilize mul-
tisensory feedback to support the sense of embodiment (SoE) in EEG-based applications.
The sense of embodiment is fundamental to human perception, allowing individuals to
perceive and control their own body parts. Their review indicates that factors such as
immersive scenarios, human-like avatars, and coherent sensory feedback significantly
enhance the embodiment experience. However, their analysis does not consistently support
the idea that incorporating additional sensory modalities leads to stronger SoE or improved
BMI performance. The authors underscore a critical gap in the literature: a lack of sys-
tematic experimental studies examining how different sensory modalities individually
or cumulatively impact SoE and BMI outcomes. They emphasize the need for further
empirical research to isolate and measure the contributions of each sensory modality to
embodiment in BMIs.

Peña Serrano et al. (contribution 7) make a unique contribution to cognitive neu-
roscience by applying hypergraph theory to visual perception, marking the first use of
hypergraphs in this domain. Hypergraphs are a sophisticated extension of graph theory
with diverse applications across cognitive neuroscience and medicine [15]. Using MEG
recordings, the authors constructed both traditional graphs and hypergraphs to capture
connectivity patterns during the perception of a flickering image. Their analysis considered
graph metrics such as degree centrality, betweenness centrality, eigenvector centrality,
connected components, shortest-path distances, cycle counts, and node degrees. The hyper-
graph approach enabled them to capture individual differences across frequency bands,
revealing dynamic insights into brain connectivity. The study identified key network
features across delta, theta, alpha, beta, and gamma bands, with cortico-cortical interac-
tions across the frontal, parietal, temporal, and occipital lobes. These findings highlight
robust activation patterns in specific brain regions, supporting theories of lobe integra-
tion and multifunctionality and offering a deeper understanding of neural dynamics in
visual perception.

Finally, Yao et al. (contribution 8) introduce a novel approach for constructing complex
networks to enhance emotion recognition using EEG data. Unlike conventional methods,
which typically rely on ordinal representations of time series as network nodes, their
approach leverages dimension and delay to map time series data into phase space, enabling
more nuanced network construction. To validate their method, they applied it to two
test signals: random noise and Lorenz chaotic signals. Their approach achieved over 91%
accuracy in emotion classification, surpassing existing techniques. This contribution offers
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a promising new pathway for high-accuracy emotion recognition models, with potential
applications in affective computing and real-time emotion detection.

3.3. Machine Learning

Machine learning (ML), a transformative branch of Artificial Intelligence (AI), is
rapidly advancing data science applications, including neuroscience. Reflecting the impact
of ML, its pioneers, John J. Hopfield and Geoffrey E. Hinton, were awarded the Nobel Prize
in Physics in 2024. ML has become indispensable in neuroscience, enhancing predictive
accuracy in medical diagnostics, advancing BCIs, and serving as a powerful research
tool. Five papers in this issue (contributions 2, 3, 8, 10, and 15) apply ML techniques to
neuroscience, with two of these (contributions 2 and 8) discussed in previous sections.
Here, we explore the remaining three studies (contributions 3, 10, and 15).

Kolodziej et al. (contribution 3) investigated the potential of CNNs to enhance the
detection of steady-state visual evoked potentials (SSVEPs) in BCIs. SSVEPs are EEG
signals elicited by visual stimuli at specific frequencies, often used in BCIs due to their
simplicity and reliability. Typically, users observe flashing lights at designated frequencies,
and SSVEPs are detected by analyzing power spectral density. Kolodziej et al. proposed a
CNN model capable of classifying SSVEPs effectively, even with limited training data. Their
findings indicate that CNNs significantly improve SSVEP-based BCI accuracy, with up to a
20% increase in performance over traditional methods. This improvement is attributed to
the CNN classifier’s resilience to artifacts in EEG signals, which often challenge conven-
tional SSVEP detection techniques.

Chen et al. (contribution 10) presented an innovative approach to processing diffusion
Magnetic Resonance Imaging (dMRI) data from macaque brains using a custom-designed
primary–auxiliary dual GAN network (PadGAN). This end-to-end GAN model extracts
latent space features from peak information maps to translate high-b-value images to lower-
b-value images. In dMRI, the b-value determines the strength and timing of gradients,
with higher b-values emphasizing diffusion effects. By translating these high-b-value
images, PadGAN produces computed images that maintain a higher signal-to-noise ratio
than directly acquired images [16]. This may enhance the quality and utility of dMRI data
in brain connectivity studies.

Finally, Cedron et al. (contribution 15) developed a novel technique for optimizing
multilayer perceptrons (MLPs), a form of ANN, to reduce memory usage and improve
runtime. Their method involves pruning zero-weight elements from the ANN, creating
a sparse matrix that proves advantageous with large datasets and dense networks. Their
approach showed that the sparse matrix format is beneficial when non-zero data elements
constitute around 10% of the matrix, particularly with data sets containing thousands of
entries. This pruning technique prevents exponential memory consumption and shortens
processing time, creating ANNs with enhanced efficiency for neuroscience applications.
However, the authors noted that this method currently applies only to fully connected
feedforward networks.

These papers highlight the growing role of machine learning in advancing neuro-
science, offering methods that enhance data processing, analysis accuracy, and computa-
tional efficiency in various applications.

3.4. Statistical Methods

Statistical analysis is fundamental to neuroscience, as biological data are inherently
noisy and nondeterministic [17]. This variability reflects differences in brain structure
and function across individuals and populations, and effective statistical techniques help
identify probable patterns and generalize findings from noisy data. However, noise can
play a constructive role, as seen in phenomena like coherence resonance, where noise at an
optimal level enhances signal coherence [18].

Petzold (contribution 4) introduces a simple yet powerful graphical method, the par-
tial parallelism plot, to illustrate partial parallelism in data. Originally developed for
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laboratory tests, parallelism plots have been an essential tool for assessing similarity in
test results. However, the experimental validation of parallelism remains challenging
in bioanalytical method validation. While traditional methods, such as analysis of vari-
ance (ANOVA), are commonly applied to evaluate parallelism in linear data sets, they
often fall short in identifying nuanced deviations from parallelism. Petzold’s approach
extends beyond traditional ANOVA limitations by offering a graphical assessment tool
designed for cases where parallelism is only partially present. This method accommo-
dates biomarker tests with subtle deviations, enhancing the evaluation of parallelism and
addressing limitations within existing regulatory guidelines.

Gómez et al. (contribution 12) focus on the role of stochasticity in neuronal dynamics,
particularly in the opening and closing of ion channels. Neuronal behavior is probabilistic,
with neural noise influencing ion channel activity at the cellular level [19] and perceptual
switching at the behavioral level [20]. This intrinsic process underscores the complexity
of biological systems and highlights that purely random models, while insightful, are
approximations. The inherent randomness is likely shaped by hidden or unknown deter-
ministic factors influencing neuronal activity. By studying stochastic models of ion channel
behavior, Gómez et al. contribute to a more comprehensive understanding of how noise
impacts neural dynamics, shedding light on probabilistic mechanisms that may govern
brain function at multiple scales.

These contributions underscore the critical role of statistical methods in neuroscience,
providing tools to decipher complex, noisy biological data and elucidate patterns within
inherently variable systems.

4. Conclusions

This Special Issue highlights the transformative role of computational and mathemat-
ical approaches in advancing neuroscience, showcasing a wide range of state-of-the-art
methodologies, such as computational modeling, ML, network analysis, and BCIs, that have
deepened our understanding of brain dynamics, network interactions, cognitive processes,
and behavior. By addressing core challenges in data integration and model validation,
the papers in this issue underscore the potential of these methods to drive breakthroughs
with far-reaching implications across medicine, technology, and our understanding of the
human mind.

Each contribution demonstrates not only cutting-edge technologies but also valuable
applications that bring us closer to decoding the complexity of brain function. From ap-
plications in medical diagnostics to insights into cognitive neuroscience and innovative
statistical frameworks, these works collectively enhance our capacity to model, predict,
and interpret brain activity with increasing accuracy and reliability.

We extend our gratitude to the authors, reviewers, and editors whose dedication has
culminated in this comprehensive volume. It is our hope that these collective efforts will
enrich our understanding of neural function and inspire further exploration in neuroscience,
pushing the field to new and exciting frontiers.
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9. Koźmiński, P.; Gniazdowska, E. Design, Synthesis and Molecular Modeling Study of Radiotracers
Based on Tacrine and Its Derivatives for Study on Alzheimer’s Disease and Its Early Diagnosis.
Appl. Sci. 2024, 14, 2827. https://doi.org/10.3390/app14072827.

10. Chen, Y.; Zhang, L.; Xue, X.; Lu, X.; Li, H.; Wang, Q. PadGAN: An End-to-End dMRI Data Augmenta-
tion Method for Macaque Brain. Appl. Sci. 2024, 14, 3229. https://doi.org/10.3390/app14083229.

11. Sait, A. A LeViT–EfficientNet-Based Feature Fusion Technique for Alzheimer’s Disease Diagno-
sis. Appl. Sci. 2024, 14, 3879. https://doi.org/10.3390/app14093879.

12. Gómez, C.; Rodríguez-Martínez, E.; Altahona-Medina, M. Unavoidability and Functionality of
Nervous System and Behavioral Randomness. Appl. Sci. 2024, 14, 4056. https://doi.org/10.339
0/app14104056.

13. Billat, V.; Berthomier, C.; Clémençon, M.; Brandewinder, M.; Essid, S.; Damon, C.; Rigaud,
F.; Bénichoux, A.; Maby, E.; Fornoni, L.; et al. Electroencephalography Response during
an Incremental Test According to the V̇O2max Plateau Incidence. Appl. Sci. 2024, 14, 5411.
https://doi.org/10.3390/app14135411.

14. Mattie, D.; Peña-Castillo, L.; Takahashi, E.; Levman, J. MRI Diffusion Connectomics-Based
Characterization of Progression in Alzheimer’s Disease. Appl. Sci. 2024, 14, 7001. https:
//doi.org/10.3390/app14167001.

15. Cedron, F.; Alvarez-Gonzalez, S.; Ribas-Rodriguez, A.; Rodriguez-Yañez, S.; Porto-Pazos, A.
Efficient Implementation of Multilayer Perceptrons: Reducing Execution Time and Memory
Consumption. Appl. Sci. 2024, 14, 8020. https://doi.org/10.3390/app14178020.

16. Ferri, L.; Mason, F.; Di Vito, L.; Pasini, E.; Michelucci, R.; Cardinale, F.; Mai, R.; Alvisi, L.; Zanuttini,
L.; Martinoni, M.; et al. Cortical Connectivity Response to Hyperventilation in Focal Epilepsy: A
Stereo-EEG Study. Appl. Sci. 2024, 14, 8494. https://doi.org/10.3390/app14188494.

References

1. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in
nerve. J. Physiol. 1952, 117, 500–544. [CrossRef] [PubMed]

2. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961, 1, 445–466. [CrossRef] [PubMed]
3. Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 1962, 50, 2061–2070. [CrossRef]
4. Hindmarsh, J.L.; Rose, R.M. A model of neuronal bursting using three coupled first order differential equations. Proc. Roy. Soc.

Lond. 1984, 221, 87–102.
5. Wilson, H.R.; Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 1972, 12, 1–24.

[CrossRef] [PubMed]
6. Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netws. 2003, 14, 1569–1572. [CrossRef] [PubMed]
7. Abbott, L.F. Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 2003, 50, 303–304. [CrossRef] [PubMed]
8. Rulkov, N.F. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 2002, 65, 041922. [CrossRef] [PubMed]
9. Lytton, W.W. Computer modelling of epilepsy. Nat. Rev. Neurosci. 2008, 9, 626–637. [CrossRef] [PubMed]
10. Frolov, N.; Grubov, V.V.; Maksimenko, V.A.; Lüttjohann, A.; Makarov, V.V.; Pavlov, A.N.; Sitnikova, E.; Pisarchik, A.N.; Kurths, J.;

Hramov, A.E. Statistical properties and predictability of extreme epileptic events. Sci. Rep. 2019, 9, 7243. [CrossRef] [PubMed]
11. Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [CrossRef] [PubMed]
12. Hramov, A.E.; Maksimenko, V.A.; Pisarchik, A.N. Physical principles of brain-computer interfaces and their applications for

rehabilitation, robotics and control of human brain states. Phys. Rep. 2021, 918, 1–133. [CrossRef]
13. World Health Organization. Ageing and Health, 1 October 2024. Available online: https://www.who.int/news-room/fact-

sheets/detail/ageing-and-health (accessed on 2 December 2024 ).
14. American Parkinson Disease Association. Parkinson’s Disease, 2024. Available online: https://www.apdaparkinson.org/what-

is-parkinsons (accessed on 2 December 2024).
15. Bretto, A. Hypergraph Theory: An Introduction; Springer: Cham, Switzerland, 2013.

10



Appl. Sci. 2024, 14, 11296

16. Ogura, A.; Koyama, D.; Hayashi, N.; Hatano, I.; Osakabe, K.; Yamaguchi, N. Optimal b values for generation of computed
high-b-value DW images. AJR Am. J. Roentgenol. 2016, 206, 713–718. [CrossRef] [PubMed]

17. Destexhe, A.; Rudolph-Lilith, M. Neuronal Noise; Springer: Berlin/Heidelberg, Germany, 2012.
18. Pisarchik, A.N.; Hramov, A.E. Coherence resonance in neural networks: Theory and experiments. Phys. Rep. 2023, 1000, 1–57. [CrossRef]
19. Jaimes-Reátegui, R.; Huerta-Cuellar, G.; García-López, J.H.; Pisarchik, A.N. Multistability and noise-induced transitions in the

model of bidirectionally coupled neurons with electrical synaptic plasticity. Eur. Phys. J. Spec. Top. 2022, 231, 255–265. [CrossRef]
20. Pisarchik, A.N.; Hramov, A.E. Multistability in Physical and Living Systems: Characterization and Applications; Springer: Cham,

Switzerland, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

11



Citation: Peña Serrano, N.;

Jaimes-Reátegui, R.; Pisarchik, A.N.

Hypergraph of Functional Connectivity

Based on Event-Related Coherence:

Magnetoencephalography Data

Analysis. Appl. Sci. 2024, 14, 2343.

https://doi.org/10.3390/app14062343

Academic Editor: Vladislav Toronov

Received: 25 January 2024

Revised: 6 March 2024

Accepted: 8 March 2024

Published: 11 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Hypergraph of Functional Connectivity Based on Event-Related
Coherence: Magnetoencephalography Data Analysis

Natalia Peña Serrano 1,2, Rider Jaimes-Reátegui 2 and Alexander N. Pisarchik 3,*

1 Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México,
Boulevard Juriquilla 3001, Queretaro 76230, Queretaro, Mexico; natalia.pese@comunidad.unam.mx

2 Departamento de Ciencias Exactas y Tecnología, Centro Universitario de los Lagos, Universidad de
Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Monta na,
Lagos de Moreno 47460, Jalisco, Mexico; rider.jaimes@academicos.udg.mx

3 Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus de Montegancedo,
Pozuelo de Alarcón, 28223 Madrid, Spain

* Correspondence: alexander.pisarchik@ctb.upm.es

Abstract: We construct hypergraphs to analyze functional brain connectivity, leveraging event-
related coherence in magnetoencephalography (MEG) data during the visual perception of a flickering
image. Principal network characteristics are computed for the delta, theta, alpha, beta, and gamma
frequency ranges. Employing a coherence measure, a statistical estimate of correlation between signal
pairs across frequencies, we generate an edge time series, depicting how an edge evolves over time.
This forms the basis for constructing an edge-to-edge functional connectivity network. We emphasize
hyperedges as connected components in an absolute-valued functional connectivity network. Our
coherence-based hypergraph construction specifically addresses functional connectivity among four
brain lobes in both hemispheres: frontal, parietal, temporal, and occipital. This approach enables a
nuanced exploration of individual differences within diverse frequency bands, providing insights
into the dynamic nature of brain connectivity during visual perception tasks. The results furnish
compelling evidence supporting the hypothesis of cortico–cortical interactions occurring across
varying scales. The derived hypergraph illustrates robust activation patterns in specific brain regions,
indicative of their engagement across diverse cognitive contexts and different frequency bands. Our
findings suggest potential integration or multifunctionality within the examined lobes, contributing
valuable perspectives to our understanding of brain dynamics during visual perception.

Keywords: brain; magnetoencephalography (MEG); network; hypergraph; coherence; visual perception

1. Introduction

Understanding the intricacies of brain connectivity in response to diverse stimuli is crucial
for unraveling the mechanisms underlying information processing and decision making
within the brain. This study delves into three essential forms of brain connectivity: structural,
functional, and efficient [1–4]. Structural connectivity entails the identification of anatomical
neural networks, revealing potential pathways for neural communication [5,6]. On the other
hand, functional connectivity explores active brain regions exhibiting correlated frequency,
phase, and/or amplitude [7]. Finally, effective connectivity utilizes information from
functional connectivity to discern the dynamic flow of information within the brain [8,9].

Measurement of effective and functional connectivity can be conducted in both the
frequency domain, employing methods such as coherence [10], and in the time domain,
utilizing approaches like Granger causality [4] or artificial-neural-network-based functional
connectivity [11]. When a sufficiently large population of neurons synchronizes, their
electrical and magnetic activities become detectable outside the skull through techniques
like electroencephalography (EEG) and magnetoencephalography (MEG) [12]. While
EEG measures return or bulk currents outside the neuron (secondary currents), MEG
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captures ionic currents inside the neuron (primary currents). Notably, MEG holds a distinct
advantage over EEG due to its superior spatial resolution, rendering it an exceptional tool
for investigating and characterizing interactions between distinct brain regions [13].

To study functional connectivity, some researchers use approaches borrowed from
graph theory [14]. Using connections between the biorhythms of the brain in its various
parts, a model of a complex network is recreated, in which parts of the brain are considered
as nodes, and the connection forces between them are considered as links [15,16]. Using this
approach makes it possible to identify not only individual cognitive differences between
subjects [17], but also helps to diagnose some diseases at an early stage [18–20] and also
monitor the aging process [21–24].

One of the important measures that can be used to quantify neuronal synchrony is
event-related coherence [10,25,26]. It examines the frequency domain relationship between
two signals, indicating the degree to which their spectral components are synchronized.
Essentially, it is an assessment of the constancy of the relative amplitude and phase between
two signals within a given frequency range. There is a linear mathematical method that
creates a symmetrical matrix, devoid of any directional information. Identical signals
produce a coherence value of 1, while the coherence value approaches 0 as the difference
between the signals in question increases. Since then, coherence has been used in many
brain connectivity studies with both patients and control individuals; these include but are
not limited to studies of working memory [27], brain lesions [28], hemiparesis [29], resting
state networks [30], schizophrenia [31,32], favorable responses to panic medications [33],
and motor imagery [34]. As a result of the unique characteristics of human brains, distinct
patterns of coherent neuronal activity were observed among different subjects. For instance,
the presentation of flickering visual stimuli induces coherent responses in the visual cortex
of subjects at both the flicker frequency and its harmonics, resulting in varied sizes of
coherent neural networks [35,36].

In this work, we employ hypergraph analysis, a technique rooted in dynamic graph
theory [37], to investigate functional connectivity. We analyze variations in functional
connectivity networks using MEG data collected during the observation of flickering
images. This approach is an extension of conventional graph theory methods. Specifically,
we begin by defining a standard functional network that connects nodes across consecutive
time segments. We then generate a set of edge time series, representing the fluctuation of
edges over time. We process these edge time series similarly to node time series, creating
a network of edge-to-edge functional connectivity. Within this framework, we focus on
“hyperedges,” which are the connected components of an absolute-valued end-to-end
functional connectivity network.

Conventional graphs are limited in their ability to represent connections between pairs
of nodes, while hypergraphs can depict relationships among sets of nodes, especially when
complex interactions involve more than two elements. Using a hypergraph allows for
a more intuitive interpretation of inter-element relationships, enhancing comprehension
and result interpretation. It should be noted that Wang et al. [38] have already demon-
strated the utility of hypergraphs in showcasing multiple relationships between vertices by
employing Pearson correlation for interaction derivation. However, despite the fact that
the hypergraph theory was applied several years ago, our paper introduces a significant
advancement in hypergraph data representation by leveraging event-related coherence
between brain lobes rather than conventional correlation metrics. We prefer coherence due
to its ability to measure signal relationships based on relative phase, thereby capturing
temporal synchronization between signals. By using a hypergraph, we can clearly and
succinctly visualize the correlation between brain lobes and frequency bands, crucial for
unraveling the intricate network of cerebral interactions. Moreover, our approach, centered
on visualization with modulation, enriches our research with an additional layer of depth,
offering an innovative and pertinent perspective in this burgeoning field.
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2. Materials and Methods

2.1. Subjects

In this study, we analyze the MEG data of 15 control subjects (aged 17–64 years; 10 men and
5 women) obtained in the experiment based on a flickering image paradigm [39] at the Center
for Biomedical Technology of the Universidad Politécnica de Madrid, Spain. The MEG data have
been downloaded from https://zenodo.org/record/4408648#.X-72UdYo-Cc (accessed on 10
August 2023).

2.2. Experimental Paradigm

The experimental protocol, depicted in Figure 1, consists of two stages. During the
first stage, subjects were presented with a static (unmodulated) black square with white
lines for 120 s. They were instructed to fix their gaze on a red dot located at the center of the
square. The MEG of the baseline neuronal activity (B-trial) was recorded during this stage.
After a brief break (40–390 s), the second stage of the experiment commenced. During
this stage, the brightness of pixels on the square image was periodically modulated with
a frequency of fm = 6.67 Hz and a maximum amplitude of 50% of the RGB color model,
oscillating between black (0) and gray (127). This frequency was chosen due to its ability
to elicit a prominent spectral response in the visual cortex [35]. The flickering image was
presented 2–5 times at intervals of 120 s, with a 30-second break between each presentation,
and the MEG was recorded (F-trials). The averaged F-trials were then normalized to the
B-trial for each subject and subsequently averaged across all subjects.

Figure 1. Experiment protocol. The B-trial corresponds to the baseline neuronal activity induced by
the unmodulated visual stimulus and the F-trials correspond to the flickering image.

2.3. Signal Analysis in Brainstorm

The signal analysis was performed using the Brainstorm 3.231017 software, a collabo-
rative, open-source application based on MATLAB R2022a that is dedicated to processing
and analyzing brain recordings obtained through different brain imaging techniques [40].
The included tools, along with the interface, facilitated the creation of the scripts used in
this article.

2.4. Head Model Adjustment

The default Brainstorm head model was adjusted to the head points recorded using a
Polhemus Fastrak system, with 2% deformation and automatic refinement of head points.

14



Appl. Sci. 2024, 14, 2343

2.5. Signal Processing

Signal analysis involved reading MEG data, and applying a Notch filter to eliminate
50 Hz power line frequencies and their harmonics. Artifacts from the electrooculogram
(EOG) and electrocardiogram (ECG) signals were automatically identified and manually re-
viewed to ensure the inclusion of any potentially omitted artifacts. Signal–space projection
(SSP) methods were applied to correct the artifacts by order.

2.6. Event Segmentation

The signals were segmented into 120 s epochs for two experimental phases: B-trial
and F-trial (Figure 1). The signal recorded during the B section was used as a reference
signal. These epochs were further divided into 3 s trials.

2.7. Source Reconstruction

Reconstruction of electrical activity in the brain from MEG measurements was car-
ried out by creating a forward model and a lead field matrix. Brainstorm’s overlapped
spheres method was used, maintaining the recommended 15,000 cortical sources. The
inverse solution was calculated using standardized low-resolution electromagnetic tomog-
raphy (sLORETA).

2.8. Fourier Analysis

To analyze the recorded signal, a Fourier analysis technique using a hanning window
was employed. First, a Hanning window was generated with an appropriate length
corresponding to the duration of the recorded signal (3 s). Subsequently, this window was
applied to the signal to mitigate edge effects and enhance frequency domain resolution.
Once the frequency spectrum of the processed signals was obtained, the spectrum of
the signal of interest was normalized to the reference signal. This was accomplished by
computing the fast Fourier transform (FFT)—using MATLAB’s FFT function—of each
processed signal and subsequently dividing the frequency spectrum of the signal of interest
by that of the reference (baseline) signal.

2.9. Signal Coherence

The brain is known to generate electromagnetic activity in a wide frequency range,
from slow waves of 0.5 Hz to fast waves of 500 Hz and higher frequencies [41]. These
rhythms are classified according to their frequencies and are assigned Greek letters. In this
paper, we consider five frequency bands: delta (0.5–4 Hz), theta (4–7 Hz), alpha (8–12 Hz),
beta (13–30 Hz), and gamma (31–90 Hz). Coherence measures the correlation within discrete
frequency bands for selected epoch lengths and is independent of signal amplitude [42].
We constructed brain networks based on coherence, a mathematical measure quantifying
synchronization patterns between spatially separated sensors or between brain areas [10].

After the Hanning window was applied to the signal, we estimated the strength
of network interactions according to coherence between eight brain areas: frontal left—
FL; frontal right—FR; occipital left—OL; occipital right—OR; parietal left—PL; parietal
right—PR; temporal left—TL; temporal right—TR. The 15,000 brain sources were grouped
into these eight lobes using Brainstorm’s segmentation model, PALS-12 Lobes with ten
structures, excluding the insula, resulting in eight structures or vertices.

The stored vertices were used to average signals within each lobe, reducing complexity
to eight signals. The square magnitude coherence was then calculated between time series
of each lobe with the rest, for both F and B trials (CF and CB, respectively). Subsequently, the
absolute difference between the coherence values of F and B was obtained and normalized
to the B activity, giving event-related coherence (ERC) as

ERC =
|CF − CB|

CB
. (1)

15



Appl. Sci. 2024, 14, 2343

2.10. Visualization with BrainNet

The output consisted of a tensor with dimensions 8 × 8 × 15. The average matrix
of all subjects was calculated for each frequency band, and these matrices were saved in
“.edge” text files for visualization with BrainNet Viewer. The latter is a tool that facilitates
the visualization of structural and functional connectivity patterns in brain networks [43].
The surface template used was “BrainMesh_ICBM152_smoothed.nv”, included in the
“BrainNetViewer_20191031” folder when downloaded.

A “Node.node” text file was created with the format defined by BrainNet Viewer to
set the position of nodes in the brain figure. The “.edge” files for each frequency band
obtained earlier were used to display interactions.

2.11. Graph Construction

Coherence matrices showed coefficients between 0.1 and 19.16. A threshold σth was
set for graph construction, with its value varying between 0.1 and 1.25. The analysis was
conducted to assess how graph characteristics change when including interactions above
σth. Various centrality measures were calculated such as degree centrality (number of
edges [44]), betweenness centrality (fraction of shortest paths passing through a node [45]),
and eigenvector centrality (importance of a node considering the importance of its neigh-
bors [44]). Connected components of the graphs were explored [45]. The shortest path
distances between all node pairs were calculated, and cycles in the graph were identified,
and defined as connected graphs in which each vertex has degree 2 [46]. These metrics,
with respect to σth, are presented in Appendix (Figures A1–A7).

To assess the connectivity of the graphs generated in this study, the ‘conncomp’
function in MATLAB was employed. This function facilitates the identification of connected
components in an undirected graph, thus providing a measure of the level of connection
within the network. This function assigns each node in the graph a connected component
identifier, enabling the determination of the total number of connected components present
in the graph. The graph’s connectivity coefficient can be calculated as

κ =
1
n

, (2)

where n is the number of connected components. This methodological approach allowed
for the analysis of how the variation in the threshold σth affects the global connectivity of
the graphs.

A threshold value of σth = 0.5 was decided upon, as lower values show coherence
interactions that may include noise, and values higher than this completely lose one of our
frequency bands.

With the specified threshold, we generated graphs explicitly depicting the mentioned
measures using MATLAB. The calculation of the distances between node pairs was carried
out without considering the weight of the edges, i.e., treating it as an unweighted graph.
Betweenness centrality and eigenvector centrality measures can be found in Appendix A
(Figures A6 and A7).

2.12. Hypergraph Construction

To contextualize the analysis of hypergraphs, we define the elements of graph theory
used to construct hypergraphs formed by nodes and edges, where nodes denote brain
regions, or groups of voxels, and edges denote correlations in activity between pairs of
nodes over time. Significant correlation in activity between pairs of edges over time is
denoted as links. In this context, we define a hyperedge as a group of links connecting two
or more edges with significantly correlated temporal profiles. Finally, a set of hyperedges
forms a hypergraph, H, defined as an ordered pair (V, ε). Here, V is a finite set of nodes
or vertices V = {1, . . . , N} and ε = {h1, h2, . . . , hn} is a family of nonempty subsets of
elements of X, called hyperedges or hyperlinks, showing the interaction between elements
of X [14].
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The algorithm of [47] was used for part of the hypergraph visualization. The incidence
matrix was given as input. The obtained representations included the hypergraph, the
incidence matrix in linear form, and the star expansion. Hypergraph characteristics were
obtained along with some matrix representations of the same.

2.12.1. Adjacency and Node Stars

Adjacency between vertices is established when at least one hyperedge contains two
vertices [14]. This is illustrated by the star of the nodes, which is defined as the collection
of hyperedges incident on node i: ε(i) = {h|i ∈ h} is referred to as the star of i, where h is
a hyperedge.

2.12.2. Degrees of Vertices and Hyperedges

The degree of vertices in the hypergraph is defined as degH(i) = |ε(i)|, which corre-
sponds to the size of its stars, i.e., the number of hyperedges incident to i. The degree of a
hyperedge, h ∈ ε, is the number of vertices it contains, denoted as deg(h) = |h|.
3. Results and Discussion

3.1. Coherence Brain Networks and Matrices

Figure 2 displays brain networks (left column) of the coherence and corresponding
8 × 8 coherence matrices (right column) for five frequency bands (delta, theta, alpha, beta,
and gamma), presented using the BrainNet Viewer template. The coherence values shown
in this figure were computed from the averaged F-trials normalized to the B-trials. One
can observe that, in general, the coherence at low frequencies (delta and theta waves) is
stronger than that at high frequencies (alpha, beta, and gamma waves). In particular, the
strongest coherence at low frequencies occurred between the right and left temporal lobes
(Figure 2a,b). At the same time, for alpha waves, the strongest coherence was observed
between the right occipital and left parietal lobes (Figure 2c), while for beta waves, the
strongest coherence occurred between the right frontal and left occipital lobes (Figure 2d).
Finally, for gamma waves, the strongest coherence was observed between the left frontal
and right occipital lobes (Figure 2e). The coherence values in both the brain and matrix
representations are prominently depicted in the color bar, appearing as a distinct shade of
dark red.

3.2. Frequency Spectra

Figure 3 displays the brain activity in the frequency domain. Here, we present the
normalized power spectra in eight lobes, which correspond to the average fast Fourier
transform (FFT) of the F-trials, normalized to the FFT of the B-trials.

The modulation frequency fm = 6.67 Hz (M) is notably visible in the frequency
spectrum of most lobes. However, its second harmonic, 2 fm = 13.34 Hz (H), exhibits the
highest amplitude across all lobes. Furthermore, the higher harmonics at 3 fm and 4 fm are
discernible in the occipital lobes. This observation aligns cohesively with findings reported
by Chholak et al. [39].

3.3. Network Characteristics

We computed various network characteristics. As depicted in Figure 2, the coherence
coefficient ranges from 0 to 19.16 across different frequency bands, reaching a distinct
maximum value for each band. Table 1 displays the maximum coherences observed within
each frequency band, along with the lobes between which they were identified.
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Figure 2. Coherence networks (left column) with their respective matrices (right column) for
(a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves of the normalized F-trials. The stronger
coherence is represented by wider lines.
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Figure 3. Power spectra of brain activity in different lobes: (a) left frontal, (b) right frontal, (c) left
occipital, (d) right occipital, (e) left parietal, (f) right parietal, (g) left temporal, and (h) right temporal.
The dotted lines marked by letters M and H denote the modulation frequency fm and its second
harmonic 2 fm, respectively.

Table 1. Maximum coherence of each frequency band.

Frequency Band Maximum Coherence Lobes

Delta 15.5940 Temporal Left–Temporal Right
Theta 19.160 Temporal Left–Temporal Right
Alpha 4.6720 Parietal Left–Parietal Right
Beta 0.8300 Frontal Right–Occipital Left

Gamma 0.7180 Frontal Left–Occipital Right

In Figure 4, we plot the global connectivity coefficient κ found by Equation (2) for each
frequency band with respect to the threshold value σth. A general decrease in the coherence
coefficient between nodes was observed with increasing frequency.

Figure 4. Global connectivity coefficient κ for different frequency bands as a function of the thresh-
old value.
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Additionally, it is noteworthy that our representation emphasizes the heightened
connectivity of low-frequency components compared to high frequencies, aligning with
previous observations by Salvador et al. [48]. This depiction offers a clearer insight into the
variations in connectivity between lobes within each frequency band.

One can see that, for each frequency range, there is a coherence threshold value σth at
which centrality measures, shortest-path distances, and degree of nodes undergo significant
changes (Figures A1–A5). This threshold value depends on the wave frequency. Specifically,
as seen in Figure 4, for delta waves σth ≈ 0.75 and for theta waves, the global connectivity
appears to remain constant at 1 at all these σth values: for alpha waves, this is σth ≈ 0.42, for
beta waves, this is σth ≈ 0.37, and for gamma waves, this is σth ≈ 0.3. This means that σth
decreases as the wave frequency increases, i.e., the brain network of functional connectivity
is more stable at low frequencies.

A connectivity threshold serves as a crucial parameter in delineating genuine connec-
tions within a functional network while filtering out spurious ones. This approach enables
a focused examination of network properties. Analyzing a graph necessitates setting a
connectivity threshold to discern valid connections among nodes and discard erroneous
ones. The choice of threshold value is somewhat arbitrary, with increasing thresholds
excluding weaker, potentially noisy connections. However, setting the threshold too high
risks eliminating important frequency bands like beta and gamma, resulting in a connectiv-
ity coefficient of 0 for the resulting graph. Our chosen threshold value of σth = 0.5 ensures
a minimum coherence of this magnitude between lobes’ signals. Despite its strictness, this
threshold preserves all connections across various frequency bands.

Figure 5 illustrates the results of the analysis of degree centrality in the brain network of
the eight lobes for different frequency ranges. The node sizes indicate their importance as a
function of edge weights. Centrality, as extensively documented in the electrophysiological
literature, has consistently underscored the non-uniform distribution of coherence across
frequencies [49]. It is well established that different systems of brain regions may exhibit
varying levels of coherence at distinct frequencies [48].

Figure 5. Degree centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves at σ = 0.5.

The centrality patterns also demonstrate frequency-specific nuances. Specifically, at
low frequencies, centrality predominantly manifests in temporal lobes, with noteworthy
lateralization observed in delta and theta waves (Figure 5a,b). For alpha frequencies
(Figure 5c), the coherence reveals a shift in centrality, now prominently observed in the
right occipital and left parietal lobes, whereas in the case of beta and gamma waves
(Figure 5d,e), the centrality is very weak and homogeneous between lobes. Contralateral
coherences are observed between frontal and occipital lobes in the high-frequency bands.
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Figure 6 presents another representation of the node degrees for the lobes. It is evident
that the nodes exhibit larger coherence-related connections in the low-frequency bands
(Figure 6a,b). However, in the higher-frequency bands (Figure 6c–e), the connections are less
pronounced. Notably, the connections in the delta band (Figure 6a) are smaller compared
to those in the theta network (Figure 6b), which shows nodes with degrees of 7. A more
evident alteration is observed for alpha waves (Figure 6c), where the left temporal lobe is
completely disconnected, while the other lobes experience a reduction in connections. In
the beta graph (Figure 6d), the right parietal lobe ceases to participate entirely. Meanwhile,
for gamma waves (Figure 6e), engagement diminishes for the temporal lobes, while the
rest show a degree of 1.

(a) (b) (c)

(d) (e)

Figure 6. Node degrees for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves. FL—left
frontal; FR—right frontal; OL—left occipital; OR—right occipital; PL—left parietal; PR—right parietal;
TL—left temporal; TR—right temporal.

Figure 7 illustrates the connected graph components, which are the subset of network
nodes where there is a path from each node in the subset to any other node in the same
subset [45]. This representation allows us to observe the formation of groups as connections
begin to dissolve. Identifying connected components within an undirected graph provides
insight into the network’s level of connectivity and aids in the extraction of coefficient κ
(Equation (2)). Table 2 presents the global connectivity coefficients for σth = 0.5.

Figure 8 shows cycles formed in the networks for three frequency bands: delta, theta,
and alpha. A cycle is a connected graph, in which each vertex has degree 2 [46]. The total
number of cycles found for each graph is indicated in the figure. The theta graph (Figure 8b)
displays the greatest connectivity and the most edges, resulting in a higher number of cycles
within the network. In contrast, both the alpha and delta graphs (Figure 8a–c, respectively)
exhibit fewer connections, with the alpha graph revealing only three cycles. Furthermore,
no cycles were observed in the beta or gamma graphs. This observation is consistent with
the broader literature, which suggests that slower rhythmic patterns typically exhibit a
more widespread network configuration compared to faster ones [50,51].

Table 2. Connectivity coefficients for different frequency bands.

Frequency Band κ

Delta 1
Theta 1
Alpha 0.5
Beta 0.5

Gamma 0.2
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(a) (b) (c)

(d) (e)

Figure 7. Connected graph components for (a) delta, (b) theta, (c) alpha, (d) beta, and
(e) gamma bands.

(a) (b) (c)

Figure 8. Cycles of the graphs for (a) delta, (b) theta, and (c) alpha bands.

Distances between nodes are represented as 8 × 8 matrices (DeltaD, ThetaD, AlphaD,
BetaD, GammaD), showing the shortest path distances. When the nodes are not connected,
the distance is infinite. The disconnection of the networks is also noticeable in these
matrices. The largest value is a five-node distance, only seen in the beta wave.

DeltaD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 1 1 1 2 1
1 0 1 2 1 2 1 2
2 1 0 2 1 1 2 2
1 2 2 0 2 1 2 2
1 1 1 2 0 2 1 1
1 2 1 1 2 0 1 1
2 1 2 2 1 1 0 1
1 2 2 2 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ThetaD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 1 1 1 1 1
2 0 1 2 2 1 1 2
1 1 0 1 1 1 1 1
1 2 1 0 2 1 2 1
1 2 1 2 0 1 2 1
1 1 1 1 1 0 1 1
1 1 1 2 2 1 0 1
1 2 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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AlphaD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 2 1 2 2 ∞ 1
2 0 2 2 1 2 ∞ 1
2 2 0 3 3 2 ∞ 1
1 2 3 0 1 2 ∞ 2
2 1 3 1 0 1 ∞ 2
2 2 2 2 1 0 ∞ 1
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
1 1 1 2 2 1 ∞ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BetaD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 4 3 1 2 ∞ 2 1
4 0 1 5 2 ∞ 4 3
3 1 0 4 1 ∞ 3 2
1 5 4 0 3 ∞ 3 2
2 2 1 3 0 ∞ 2 1
∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
2 4 3 3 2 ∞ 0 1
1 3 2 2 1 ∞ 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

GammaD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∞ ∞ 1 ∞ ∞ ∞ ∞
∞ 0 1 ∞ ∞ ∞ ∞ ∞
∞ 1 0 ∞ ∞ ∞ 1 ∞
1 ∞ ∞ 0 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 0 1 ∞ ∞
∞ ∞ ∞ ∞ 1 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.4. Hypergraphs

Figure 9 represents the hypergraph constructed based on a chosen threshold (σth = 0.5)
in different forms with colors corresponding to different frequency bands. In particular,
the hypergraph is shown as a network in Figure 9a, a star expansion in Figure 9b with
connections for each node, and as its incidence matrix in Figure 9c. It is observed that all
eight lobes are coupled in the low-frequency ranges of the delta and theta bands, seven
lobes (FL, FR, OL, OR, TR, PL, and PR) are coupled for the alpha band, eight lobes (FL, FR,
TL, TR, OL, OR, and PL) for the beta band, and six lobes (FL, FR, OL, OR, PL, and PR) for
the gamma band.

The analysis was carried out following the basic properties of hypergraphs. The
degrees of the vertices and hyperedges are given in Table 3, where degH(i) = |ε(i)| is the
number of vertices incident on i, and the degree of a hyperedge deg(h) = |h| is the number
of vertices it contains.

Table 3. Vertices and hyperedges degrees.

Vertice |ε(i)| Hyperedge |e|
Frontal Left 5 Delta 8

Frontal Right 5 Theta 8
Occipital Left 5 Alpha 7

Occipital Right 5 Beta 7
Parietal Left 5 Gamma 6

Parietal Right 4
Temporal Left 3

Temporal Right 4
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(a)

(b) (c)

Figure 9. Hypergraph representation as (a) network, (b) star expansion, and (c) adjacency matrix.
Colors are maintained between hypergraph representations. Delta (red), Theta (blue), Alpha (green),
Beta (magenta), Gamma (yellow).

A star, as mentioned earlier, denotes a pattern where a central vertex—in this case,
representing a cerebral lobe—is intricately connected to multiple peripheral vertices, sym-
bolizing different brain frequency ranges. This graphical representation is valuable as it
effectively portrays the intricate relationship between a specific cerebral lobe and its in-
volvement across diverse frequency bands. The presence of stars within the graph signifies
that the central cerebral lobe exhibits activation across various cognitive conditions or
mental states, indicative of its multifunctional nature.

The stars of each lobe are the following:

- Left frontal lobe (node 1): Delta, theta, alpha, beta, and gamma.
- Right frontal lobe (node 2): Delta, theta, alpha, beta, and gamma.
- Left occipital lobe (node 3): Delta, theta, alpha, beta, and gamma.
- Right occipital lobe (node 4): Delta, theta, alpha, beta, and gamma.
- Left parietal lobe (node 5): Delta, theta, alpha, beta, and gamma.
- Right parietal lobe (node 6): Delta, theta, alpha, and gamma.
- Left temporal lobe (node 7): Delta, theta, and beta.
- Right temporal lobe (node 8): Delta, theta, alpha, and beta.

Although correlations between frequencies have been observed in previous stud-
ies [52], and biophysical models have been proposed to explain interactions among differ-
ent frequency bands, such as theta and gamma [53], further research, similar to the current
study, is necessary to elucidate the potential coupling between the mechanisms generating
these distinct frequencies.
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4. Conclusions

In this study, we conducted a comprehensive hypergraph analysis of functional con-
nectivity using MEG data acquired from a modulated visual stimulus. By focusing on
differences within distinct frequency bands, we constructed a coherence-based hypergraph
to explore functional connectivity among the frontal, parietal, temporal, and occipital brain
lobes. Our findings suggest that each frequency band has a specific coherence threshold;
beyond this, significant changes occur in network characteristics, such as centrality, shortest-
path distances, and node degree. Interestingly, this threshold is lower for higher-frequency
bands, indicating stronger connectivity between lobes at lower frequencies and greater
stability in the brain network of functional connectivity. Specifically, we observed strong
coherence among all eight lobes in the delta and theta bands; this was only observed among
six lobes in the gamma band.

Furthermore, we noted variations in global connectivity with coherence thresholds
across different frequency bands. Strong coherence was observed between temporal right
and left lobes for delta and theta waves, occipital right and parietal left lobes for alpha
waves, frontal right and occipital left lobes for beta waves, and frontal and occipital lobes
for gamma waves. These findings collectively contribute to our understanding of brain
network dynamics across different frequency bands. Our results lend credence to the idea
that cortico–cortical interactions can manifest at multiple levels. The resultant hypergraph
exposes robust activation patterns in select brain regions across varied cognitive contexts as-
sociated with various frequency bands, hinting at possible integration or multifunctionality
within these lobes.

While previous studies have noted correlations between frequencies and proposed
biophysical models to explain interactions, our results highlight the importance of further
research to unravel potential connections between the mechanisms generating different
frequencies and with a modulated visual stimulus, using coherence instead of traditional
correlation. Additionally, we argue that exploring hypergraph visualizations with a focused
examination of finer-grained neural ensembles or smaller regions of interest (ROIs) can
reveal compelling dynamics that merit further scholarly investigation.
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Appendix A. Network Characteristics as a Function of Coherence Threshold

The dependencies of the main network characteristics on the coherence threshold σ
for different brain waves are illustrated in Figures A1–A5 (delta in Figure A1; theta in
Figure A2; alpha in Figure A3; beta in Figure A4; gamma in Figure A5). The lobes are
represented with different colors. The shortest path distances and numbers of cycles depict
averages in the case of distances and totals in the case of cycles.
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Figure A1. Network characteristics versus coherence threshold value σth for delta band: degree
centrality (degc), betweenness centrality (bc), eigenvector centrality (ec), connected components
(bins), shortest-path distances (d), number of cycles (Cycles), and degree of nodes (deg).

Figure A2. Network characteristics for theta band.

Figure A6 illustrates the results of the analysis of the betweenness centrality coefficient,
which measures the importance of a node in terms of the number of shortest paths that
pass through it. Once again, the connections are less pronounced at higher frequencies
(Figure A6c,d) compared to lower frequencies (Figure A6a,b). Furthermore, the nodes with
the highest betweenness centrality vary across different frequency bands. In the gamma
band (Figure A6d), the nodes show a uniform and reduced size, whereas in the delta
band (Figure A6a), the nodes with the highest betweenness centrality coefficient are the
left parietal and left frontal lobes. In contrast, in the theta band (Figure A6b), a notable
enlargement was observed in the right parietal lobe compared to other lobes, presenting a
striking contrast to the sizes depicted in the degree centrality graph (Figure 5b), where it
initially appeared to be one of the smallest.
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Figure A3. Network characteristics for alpha band.

Figure A4. Network characteristics for beta band.

The eigenvector centrality, depicting the significance of a node based on the importance
of its neighboring nodes, is illustrated in Figure A7. Node sizes reflect their respective
importance, mirroring the patterns observed in Figure 5 across most graphs. However, in
the case of gamma waves, node sizes remain consistent. Conversely, nodes associated with
alpha waves, particularly in the right temporal region, exhibit notably diminished sizes
compared to their prominence in degree centrality (Figure 5c).
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Figure A5. Network characteristics for gamma band.

(a) (b) (c)

(d) (e)

Figure A6. Betweenness centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma bands.

(a) (b) (c)

(d)

Figure A7. Eigenvector centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma bands.
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Abstract: Hyperventilation (HV) is an activation technique performed during clinical practices
to trigger epileptiform activities, supporting the neurophysiological evaluation of patients with
epilepsy. Although the role of HV has often been questioned, especially in the case of focal epilepsy,
no studies have ever assessed how cortical structures respond to such a maneuver via intracranial
EEG recordings. This work aims to fill this gap by evaluating the HV effects on the Stereo-EEG
(SEEG) signals from a cohort of 10 patients with drug-resistant focal epilepsy. We extracted multiple
quantitative metrics from the SEEG signals and compared the results obtained during HV, awake
status, non-REM sleep, and seizure onset. Our findings show that the cortical connectivity, estimated
via the phase transfer entropy (PTE) algorithm, strongly increases during the HV maneuver, similar
to non-REM sleep. The opposite effect is observed during seizure onset, as ictal transitions involve
the desynchronization of the brain structures within the epileptogenic zone. We conclude that HV
promotes a conductive environment that may facilitate the propagation of epileptiform activities but
is not sufficient to trigger seizures in focal epilepsy.

Keywords: stereoelectroencephalography; focal epilepsy; hyperventilation; brain dynamics; network
analysis; phase transfer entropy

1. Introduction

Hyperventilation (HV) is a well-known activation technique performed during routine
Electroencephalography (EEG) recording, recommended by the international guideline of
the main clinical neuro-physiology and epilepsy societies [1]. In practice, HV involves deep
and regular breathing at a rate of approximately 20 breaths per minute for a duration of 2
to 4 min. This technique was introduced in clinical practice by Otfrid Foerster who, in 1925,
observed that HV could trigger latent epilepsy [2]. After the broad diffusion of EEG, HV
became one of the most common procedures to elicit epileptic activities, offering valuable
information for the medical management of epilepsy [3].

In the past years, several studies have demonstrated that the main HV effect is a
physiological slowing of background EEG activity. Particularly, in people with epilepsy,
it has been observed that HV could increase focal and generalized Interictal Epileptiform
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Discharges (IEDs) [4]. A possible explanation for such a phenomenon relies on the vaso-
constriction associated with cerebral hypoxia and the intracellular pH increment associated
with respiratory hypocapnia. More specifically, it has been shown that cerebral hypoxia
induces a negative DC shift variation over the EEG signal [5], while respiratory hypocapnia
leads to higher excitatory postsynaptic potentials [6]. On the other hand, other studies have
hypothesized that the cortical response to HV is due to sympathetic over-activation, which
is notoriously considered a seizure trigger in temporal lobe epilepsy [7].

The effectiveness of HV is well established in generalized epilepsy: in the case of
absence seizures, it has been demonstrated that HV generates a spike-and-wave complex
in over 90% of the cases and triggers clinical seizures in around 50% of the cases [8]. On the
other hand, there is limited agreement regarding the role of HV as an activation maneuver
in focal epilepsy, especially in adults, who, notably, also present less significant autonomic
abnormalities compared to the pediatric population [9]. A study carried out on a large
patient cohort demonstrated that HV rarely triggers clinical seizures or increases the IED
frequency [10]. However, other authors found that temporal lobe epilepsy might be more
sensitive to HV than other types of epilepsy, suggesting its potential role in shortening
presurgical evaluations [11].

A deeper comprehension of HV effects could be offered by using quantitative ap-
proaches for analyzing cortical or scalp EEG signals. In this context, the naive approach
consists of analyzing the recorded signals in the time–frequency domain, evaluating the
energy spectral density and the distribution of the signal phase. Other approaches aim
to estimate the interdependency within different signals, considering connectivity-based
metrics, which have proven to be extremely valuable for detecting epileptiform activities
or discerning different populations [12]. Interestingly, most recent connectivity techniques
focus on the analysis of the phase distribution of the EEG signals, using algorithms such as
the Phase Locking Value (PLV), the Phase Lag Index (PLI), or the Phase Transfer Entropy
(PTE) [13]. The latter algorithm combines the analysis of the signal instantaneous phase
with the Granger causality and enables the estimation of the effective relations between
signals generated by different brain structures [14].

A recent study concluded that HV increases the magnitude of the EEG power spectra,
especially in the cingulate cortex, and demonstrated that different brain regions respond
differently to respiratory hypocapnia [15]. The same study denoted how HV leads to a
higher increase in cortical connectivity in people with epilepsy than in healthy individu-
als. Nevertheless, quantitative analysis of EEG traces during HV is scarce in the current
literature, and it is still unclear how HV impacts the epileptogenic network. A better
understanding of the relation between HV and seizure development could be offered by
the analysis of intracranial EEG recording as allowed by Stereo-EEG (SEEG). This latter is
an invasive surgical procedure that enables the recording of deep cortical signals, provid-
ing fundamental information for the accurate localization of the Epileptogenic Zone (EZ),
i.e., the cortex area responsible for seizure generation [16].

To our knowledge, at the present time, there have been no research works investigating
the HV mechanisms by exploiting the intracranial EEG signals. This study aimed to fill this
gap and assess how the HV affects cortical brain structures in patients with focal epilepsy.
Our fundamental hypothesis is that HV promotes an increase in cortical connectivity
as occurs during the Non-REM sleep (N-REM) status, but such an effect is not directly
associated with the outbreak of the seizure onset. To achieve this goal, we selected a cohort
of focal epilepsy patients that underwent SEEG monitoring for pre-surgical evaluation.
Then, we computed multiple quantitative metrics from the recorded signals, using the PTE
algorithm to estimate cortical connectivity. To spotlight the HV effects, we compared the
SEEG signals associated with HV against those associated with the awake status, N-REM,
and ictal transition, i.e., the period during which the seizure starts to form.
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2. Materials

This study considered a cohort of 10 consecutive patients that underwent SEEG monitor-
ing at IRCCS Institute of Neurological Sciences of Bologna from January 2022 to June 2024.
The study protocol was approved by the local ethics committee (protocol number 89-2021,
committee code 20230), and written informed consent was obtained from each patient. The
SEEG implants included multiple electrodes, each presenting 5–18 recording sites, named
contacts; the number and location of the electrodes were patient tailored, depending on the
EZ localization hypothesis [17]. Each contact was 2.2 mm in length and was separated by
1.5 mm from neighboring contacts (Microdeep Intracerebral Electrodes-D08, Dixi Medical,
Besançon, France).

The SEEG implantation followed the workflow developed at Niguarda Hospital and
involved the construction of a multimodal scene of the patient’s brain. The multimodal
scenes made it possible for clinicians to comprehensively evaluate all the anatomical
information regarding the cortical area explored by each contact [18]. The SEEG signals
were recorded using the Nihon Kohden EEG 2100 (Tokyo, Japan), using a maximum of
256 channels, and a sampling frequency of fsampling = 1000 Hz. To correlate electrical and
clinical features, a high-definition synchronized video of each patient was recorded for the
whole duration of the SEEG monitoring (up to 20 days per patient).

All patients underwent a standardized 1-hour-recording protocol during the second
day of SEEG monitoring, which included two activation maneuvers, namely, HV and
intermittent photic stimulation. Particularly, HV sessions consisted of a sequence of deep
breaths, at a rate of approximately 20 breaths/minute, for a total period of 4 min. To ensure
the correct progress of the maneuver, expert clinical personnel, normally a neurologist and
a neurophysiological technician, were in charge of explaining the procedure to the patient
and assisting him/her for the exam duration.

In this work, we excluded all the SEEG contacts exploring the White Matter (WM)
since they have only a propagator function [19], focusing only on contacts exploring the
Grey Matter (GM). The discrimination between WM and GM, as well as the selection of the
SEEG epochs, was performed by a board-certified neurophysiologist (L.F.). No other SEEG
channel was excluded from the analysis, making our methodology agnostic to the specific
SEEG implant and the clinical and demographic features associated with each patient.
Hence, a subset of 26 SEEG epochs per patient was selected for the analysis, according to
the following specifics:

• One epoch associated with the ictal transition, namely the period that included the 20 s
preceding and following the first ictal change;

• Five epochs associated with the HV maneuver;
• Ten epochs associated with recording periods during which the patient was awake;
• Ten epochs associated with recording periods during which the patient was asleep

(N-REM phase).

Each epoch lasted Tepoch = 40 seconds, resulting in a multidimensional signal, whose
components, named channels, described the electrical activity generated by the cortical sites
explored by the SEEG implant. An example of the epochs is reported in Figure 1.
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(a) Ictal transition. (b) Awake.

(c) Non-REM sleep. (d) Hyperventilation.

Figure 1. Example of SEEG epochs associated with one of the patients; the channels displayed
are located within the EZ and are associated with marked epileptiform discharges; during the
ictal transition, the epileptiform discharges evolve into low-voltage fast activities that trigger the
epileptic seizure.

3. Methods

As a preliminary step, the SEEG epochs were processed by a comb filter to erase the
powerline frequency fpower and its multiples k · fpower, with k ∈ Z

+, where Z
+ repre-

sents the set of positive integers. Then, each channel was segmented into overlapping
windows: the window duration was set to Twindow = 1.0 s, and we inter-spaced con-
secutive windows by an interval Tshift = 0.25 s. Hence, each epoch was segmented in
W = �(Tsignal − Twindow)/Tshift� = 156 windows, where each window includes n = Twindow ·
fsampling = 1000 samples. In the rest of the manuscript, we denote by N the set of channels
within the same SEEG epoch and by N (t) the set of windows x(t) lasting from time t · Tshift to
time t · Tshift + Twindow, with t ∈ Z

+. Therefore, a SEEG epoch including N = |N | channels
was associated with a total of N · W windows.

3.1. Spectral Analysis

At first, we consider the Fourier Transform (FT) of the windows associated with each
channel x ∈ N [20]. We write X (t) to indicate the FT of x(t) ∈ N (t): notably, X (t)
includes m = Twindow · fsampling/2 = 500 complex values, named tones, each associated
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with a positive frequency f ∈ Btotal = [0, fsampling/2]. In particular, we can obtain the total
energy Ex(t) of x(t) as

Ex(t) =
∫

Btotal

‖X (t, f )‖2d f , (1)

where ‖·‖ is the norm function and X (t, f ) is the tone associated with frequency f ∈ Btotal.
Given the Fourier representation of the signal, we study the relation between different

frequency bands. Specifically, considering Blow = [4, 30] Hz and Bhigh = [30, 250] Hz as
target bands, we compute the energy ratio ERx(t) of x(t) as

ERx(t) =

∫
Bhigh

‖X (t, f )‖2d f∫
Blow

‖X (t, f )‖2d f
. (2)

The value of ERx(t) increases whenever the channel x starts exhibiting fast oscillations,
a phenomenon commonly associated with the onset of epileptic discharges [21].

Besides considering the magnitude of the FT, we also analyze the phase θx(t, f ) of the
different signal tones. Specifically, θx(t, f ) represents the relative distances, measured in
radians, between the starting time of window x(t) and the peak amplitude of the Fourier
sinusoid associated with frequency f ∈ [0, fsampling/2]. In this work, we model the phase
distribution θx(t) of x(t) as a histogram, whose range is within −π and +π, and whose
bin number is chosen according to the Sturges rule [22]. Each bin ϑ ∈ Θ includes a phase
range lasting 2π/(log2(m) + 1) radians, where m = 500 is the number of Fourier tones
associated with each window. Hence, we compute the entropy of θx(t) as

H(θx(t)) = − ∑
ϑ∈Θ

pϑ(θx(t))log(pϑ(θx(t))), (3)

where pϑ(θx(t)) represents the probability that θx(t) takes values in the phase range associ-
ated with ϑ. Appreciably, H(θx(t)) denotes the tendency of the FT of x(t) to assume a large
variety of phase values and is maximized when θx(t) is uniform. As x(t) becomes more
complex, it includes more sinusoidal components, leading to a higher entropy value [23].

3.2. Connectivity Analysis

Afterwards, we compute the Hilbert Transform (HT), obtaining the analytic repre-
sentation Xa(t) = x(t) + HT(x(t)) of each window x(t) ∈ N (t). The values Xa(t) are
associated with an instantaneous phase φx(t, τ), where τ is the time index of the window
samples [24]. Also in this case, we model the instantaneous phase distribution φx(t) as a
histogram, choosing the bin number according to the Sturges rule. Practically, each bin
ϕ ∈ Φ includes a phase range lasting 2π/(log2(n) + 1) radians, where n = 1000 is the
number of signal samples associated with each window. Hence, we compute the entropy
of φx(t) as

H(φx(t)) = − ∑
ϕ∈Φ

pϕ(φx(t))log(pϕ(φx(t))), (4)

where pϕ(φx(t)) represents the probability that φx(t) takes values in the phase range
associated with ϕ. Despite being computed in different domains, H(φx(t)) has a similar
meaning to H(θx(t)) and tends to increase as x(t) obtains more complex patterns.

The instantaneous phase distribution is also used for describing the relations within the
different channels x ∈ N in time [25]. To this goal, we consider the PTE algorithm, which,
given a couple of channels x, y ∈ N , estimates the influence that each of the channels exerts
on the network [14]. The algorithm takes as input the instantaneous phase distribution
φx(t) and φy(t) of x(t) and y(t) and estimates the amount of information in φx(t) that can
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be used to predict the future evolution of φy(t). Specifically, the value of the PTE between
x(t) and y(t), considering a lag δ, is obtained by

PTEx→y(t, δ) = H
(
φy(t), φy(t + τ)

)
+

H
(
φx(t), φy(t)

)− H
(
φx(t), φy(t), φy(t + τ)

)− H
(
φy(t)

)
,

(5)

where H(·) denotes both the entropy and the mutual entropy function.
We recall that PTEx→y(t, δ) is an effective connectivity measure, which means that,

in general, PTEx→y(t, δ) �= PTEy→x(t, τ) [26]. The value PTEx→y(t, δ) depends on the lag
δ, i.e., the time distance at which the information transfer is estimated. To remove the
dependency from δ, we redefine the PTE between x(t) and y(t) as the maximum value of
PTEx→y(t, τ) among multiple lags:

PTEx→y(t) = max
δ∈{0,...,δmax}

PTEx→y(t, τ), (6)

where we set δmax = 100 ms. By doing so, the magnitude of the effective connection exerted
on the channel y by the channel x at time t is given by PTEx→y(t), while the propagation
delay associated with such a connection is

δx→y(t) = arg max
δ∈{0,...,δmax}

PTEx→y(t, δ). (7)

3.3. Statistical Analysis

We observe that all the measures are window-dependent and, thus, a series of W = 156
multiple measures is obtained for each epoch and measure. Hence, before performing the
statistical analysis, we perform two additional steps. First, we normalize each measure by
the average value observed during the epochs associated with the awake conditions. In this
way, we implicitly assume that the awake epochs constitute a baseline condition, enabling
a fair comparison between patients with different characteristics. Then, we compute the
median (Med[·]) and the interquartile range (IQR[·]) of the measures obtained from each
epoch, and consider such values to be the input information.

To assess if the SEEG epochs present significant differences according to the median
or the interquartile range of any of the measures, we consider the Welch’s t-test. The latter
enables the comparison of the means of two data groups in case the variances are unknown
and not equal [27]. Specifically, we perform a one-tailed test, checking whether the mean
of a certain group of SEEG epochs is higher than another group, setting α = 0.05 as
the significance level. We recall that, by comparing the medians, we verify if a certain
measure takes higher or lower values in a specific SEEG group with respect to another.
Instead, by comparing the interquartile ranges, we assess if a measure takes more or less
variable outcomes.

4. Results

The study included a total of 10 patients (6 Males), with a mean age of 37 years at the
time of SEEG implantation. As shown in Table 1, it was possible to delineate an EZ that was
located in the temporal lobe in seven patients, temporal–occipital cortex in two patients,
and frontal in one patient. All the SEEG implants were unilateral (7 right, 3 left) and
included 15 electrodes on average. In particular, four patients underwent temporo-parieto-
occipital exploration, three fronto-temporal, two fronto-temporo-parietal, and one temporal.
At the time of the study, six patients underwent epilepsy surgery, and the histopathological
analysis revealed hippocampal sclerosis in four cases, focal cortical dysplasia in one case,
and aspecific findings in the remaining one.
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Table 1. Clinical and demographic characteristics of the studied population; F is for Frontal, T for
Temporal, O for Occipital, THC for Thermocoagulation, ATL for Anterior Temporal Lobectomy, HS
for Hippocampus Sclerosis, and FCD for Focal Cortical Dysplasia.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

Age (SEEG) 24 39 50 39 36 52 36 24 25 48

Sex Male Male Female Female Male Female Male Male Female Male

EZ localization Left F Left T Left T Right T-O Right T-O Right T Left T Right T Right T Right T

SEEG implant Left F-T Left F-T-P Left F-T-P Right
T-P-O

Right
T-P-O Right F-T Left T Right

T-P-O
Right
T-P-O Right F-T

Surgery THC THC +
Left ATL

THC +
Left ATL THC THC THC +

Right ATL
THC +

Left ATL THC THC +
Right ATL

THC +
Right ATL

Histopathology N/A HS 1 HS 1 N/A N/A HS 1 FCD N/A Aspecific HS 1

Our analysis focused on the following metrics: the energy ratio (ER), the entropy
(H(θ)) of the spectral phase distribution, and the Phase Transfer Entropy (PTE) computed
from the instantaneous phase distribution. As shown in Table 2, both the ictal and awake
periods presented higher energy ratio values than N-REM and awake periods. The energy
ratio proved to be an effective biomarker for discerning HV activities from the N-REM
conditions since it was sensibly lower when patients performed the HV maneuver. Taking
the interquartile range into account, the differences are the same as those expressed in terms
of median: in other words, the epochs presenting higher energy values are also associated
with higher energy variability. Notably, there was slight evidence (p-value 0.09) that ictal
transitions present more variable energy ratios than awake periods, although the latter
showed higher median values for this metric (0.0672 vs. 0.0600).

Table 2. Comparison of the median and inter-quartile range of the energy ratio (ER) computed in
different groups of SEEG epochs.

Metric
Group 1 Group 2 p-Value

Label Mean ± CI Label Mean ± CI Greater Less

Med[ER]

Ictal 0.0600 ± 0.0126 Awake 0.0672 ± 0.0207 0.2534 0.7466
Ictal 0.0600 ± 0.0126 N-REM 0.0463 ± 0.0185 0.0587 0.9413
Ictal 0.0600 ± 0.0126 HV 0.0277 ± 0.0077 0.0092 0.9908

Awake 0.0672 ± 0.0207 N-REM 0.0463 ± 0.0185 0.0034 0.9966
Awake 0.0672 ± 0.0207 HV 0.0277 ± 0.0077 <0.0001 >0.9999
N-REM 0.0463 ± 0.0185 HV 0.0277 ± 0.0077 0.0066 0.9934

IQR[ER]

Ictal 0.0988 ± 0.0177 Awake 0.0849 ± 0.0192 0.0874 0.9126
Ictal 0.0988 ± 0.0177 N-REM 0.0556 ± 0.0194 0.0185 0.9995
Ictal 0.0988 ± 0.0177 HV 0.0382 ± 0.0115 0.0059 0.9941

Awake 0.0849 ± 0.0192 N-REM 0.0556 ± 0.0194 0.0005 0.9995
Awake 0.0849 ± 0.0192 HV 0.0382 ± 0.0115 <0.0001 >0.9999
N-REM 0.0556 ± 0.0194 HV 0.0382 ± 0.0115 0.0181 0.9819

The entropy measures allowed us to differentiate between the ictal and the awake
epochs from the N-REM and HV epochs (Table 3). At the same time, no significant
difference was observed when comparing the ictal transition with the awake status, as well
as the HV maneuver with the N-REM phase. Taking the interquartile range into account,
the results followed an opposite trend compared to that before since higher entropy values
were associated with lower entropy variability. The entropy during the ictal transition was
slightly more variable (p-value of 0.063) than the one measured during the awake periods.
In general, the variability was maximized during the ictal transition (with a value of 0.0988)
and minimized during the HV (with a value of 0.0383).
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Table 3. Comparison of the median and inter-quartile range of the spectral entropy (H(θ)) computed
in different groups of SEEG epochs.

Metric
Group 1 Group 2 p-Value

Label Mean ± CI Label Mean ± CI Greater Less

Med[H(θ)]

Ictal 1.8208 ± 0.0482 Awake 1.8350 ± 0.0445 0.6280 0.3720
Ictal 1.8208 ± 0.0482 N-REM 1.7071 ± 0.0460 0.0038 0.9962
Ictal 1.8208 ± 0.0482 HV 1.6903 ± 0.0307 0.0028 0.9972

Awake 1.8350 ± 0.0445 N-REM 1.7071 ± 0.0460 <0.0001 >0.9999
Awake 1.8350 ± 0.0445 HV 1.6903 ± 0.0307 0.0002 0.9998
N-REM 1.7071 ± 0.0460 HV 1.6903 ± 0.0307 0.3287 0.6713

IQR[H(θ)]

Ictal 0.5149 ± 0.0414 Awake 0.4726 ± 0.0464 0.0630 0.9370
Ictal 0.5149 ± 0.0414 N-REM 0.5623 ± 0.0386 0.8126 0.1874
Ictal 0.5149 ± 0.0414 HV 0.5975 ± 0.0125 0.9131 0.0869

Awake 0.4726 ± 0.0464 N-REM 0.5623 ± 0.0386 0.9995 0.0005
Awake 0.4726 ± 0.0464 HV 0.5975 ± 0.0125 0.9905 0.0095
N-REM 0.5623 ± 0.0386 HV 0.5975 ± 0.0125 0.7999 0.2001

The cortical connectivity, estimated via the PTE algorithm, enabled the most significant
discrimination between all the epochs. As shown in Table 4, the PTE was minimized during
the ictal transition (0.8692), took higher values during the awake status (0.9063), was even
higher during the N-REM period (0.9239), and was maximized during the HV maneuver
(0.9399). In this case, the statistical test led to significant results even with a significance
level of α < 0.01. Besides showing the lowest median connectivity, the ictal transition
reported the highest values in terms of the interquartile range. On the other hand, the HV
and the N-REM epochs presented very similar interquartile ranges (≈0.152), lower than the
ictal transition (0.1773) but higher than the awake periods (0.1305). Hence, the connectivity
increment during the N-REM and HV phases was also associated with a higher variability,
which goes against what was observed during the seizure onset. A visual representation of
the overall results is given in Figure 2

Table 4. Comparison of the median and inter-quartile range of the Phase Transfer Entropy (PTE)
computed in different groups of SEEG epochs.

Metric
Group 1 Group 2 p-Value

Label Mean ± CI Label Mean ± CI Greater Less

Med[PTE]

Ictal 0.8692± 0.01976 Awake 0.9063 ± 0.0056 0.9922 0.0078
Ictal 0.8692± 0.01976 N-REM 0.9239 ± 0.0057 0.9992 0.0008
Ictal 0.8692± 0.01976 HV 0.9399 ± 0.0045 0.9999 0.0001

Awake 0.9063 ± 0.0056 N-REM 0.9239 ± 0.0057 >0.9999 <0.0001
Awake 0.9063 ± 0.0056 HV 0.9399 ± 0.0045 >0.9999 <0.0001
N-REM 0.9239 ± 0.0057 HV 0.9399 ± 0.0045 >0.9999 <0.0001

IQR[PTE]

Ictal 0.1773 ± 0.0245 Awake 0.1305 ± 0.0046 0.0018 0.9982
Ictal 0.1773 ± 0.0245 N-REM 0.1527 ± 0.0047 0.0461 0.9539
Ictal 0.1773 ± 0.0245 HV 0.1522 ± 0.0053 0.0426 0.9574

Awake 0.1305 ± 0.0046 N-REM 0.1527 ± 0.0047 >0.9999 <0.0001
Awake 0.1305 ± 0.0046 HV 0.1522 ± 0.0053 0.9999 0.0001
N-REM 0.1527 ± 0.0047 HV 0.1522 ± 0.0053 0.4360 0.5640
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Figure 2. Comparison between the median and interquartile range of the analyzed metrics for the
different groups of SEEG epochs; the top of each bar denotes the expected values, while the black
vertical lines denote the confidence intervals.

5. Discussion

This is the first study to investigate HV using SEEG intracranial electrodes, offering
novel insights into the impact of such a maneuver on the cortical brain signals. The results
denote how HV shares similar characteristics in terms of energy ratio and phase entropy to
N-REM sleep, and the same occurs for the awake status and ictal transition, where the latter
includes the 20 s preceding and following the seizure onset. Specifically, ER and H(θ) are
higher when the patient is conscious and during the ictal transition; in contrast, N-REM and
HV present slower electrical activities, characterized by lower energy in high-frequency
bands and more regular signal patterns. Interestingly, HV presents a reduced ER than
awake status and, thus, seems to mitigate the rise in fast oscillations: this is in apparent
contradiction to the scope of such an activation maneuver.

The low effectiveness of the energy ratio and the phase entropy in discerning HV
from the N-REM status may be explained by the fact that such metrics do capture the
interdependency between different cortical sites but analyze each signal as an independent
element. More insights into HV are obtained by looking at the PTE, which, instead,
enables full discrimination between all the SEEG groups. Particularly, the PTE algorithm
captures the characteristics of intrasignal relationships across multiple frequency bands.
This is very beneficial for analyzing epileptiform activities, which, notably, are not confined
to specific frequency ranges but affect both fast and slow oscillations [28]. Our results
show that HV increases the PTE, even more strongly than N-REM, while ictal transition
behaves in the opposite fashion. This is in agreement with past studies that proved that
the epileptogenic network presents reduced connectivity during the early ictal phase
while being characterized by higher synchronization during seizure propagation. The ictal
connectivity pattern may be explained by observing that the epileptogenic area adopts
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a pathological behavior and, thus, results in being desynchronized by the rest of the
network [29].

At first glance, our study denotes that HV is on the opposite side with respect to ictal
transition, both in terms of the cortical connectivity and energy ratio, making its role in
triggering seizures questionable. These findings are in line with other clinical studies on
adults with focal epilepsy, suggesting that HV rarely triggers either clinical seizures or
increases epileptiform discharges [10]. The connectivity increase during HV may be related
to the specific characteristics of slow oscillations, which has been identified as a primary
driver of interictal activity during N-REM sleep [30–32]. The cortical hypersynchronization
has also been called into question to explain the IED diffusion that usually is observed
in both N-REM sleep and HV, in opposite fashion with respect to the REM phase in
which the IEDs becomes more focused [32,33]. The fact that HV replicates the N-REM
patterns explains the effectiveness of this activation maneuver in generalized epilepsy,
such as absence epilepsy, where IED exploits the burst-firing mode of the wide-projecting
corticothalamic system as is well documented during N-REM sleep [30].

The fact that cortical brain regions during HV replicate the conditions observed during
the N-REM status has been hypothesized by some previous studies but, to our knowledge,
was never shown via intracranial EEG recordings. This may steer against the current clinical
practices, which recommend the use ofHV as an activation maneuver for both generalized
and focal epilepsy. One could speculate that HV promotes a conductive environment that
facilitates seizure propagation in focal epilepsy, but such an effect is not sufficient to trigger
the seizure onset. In our experience during long-term EEG and SEEG monitoring, we have
rarely observed seizures during such a procedure in the case of focal epilepsy: in some cases,
seizures developed only after several HV sessions or minutes after the activation maneuver
was carried out. This may suggest that the transition from a state of increased connectivity
to a state with relatively decreased connectivity facilitates the focal desynchronization of
epileptogenic sites and the consecutive rise in ictal discharges.

It is noteworthy that the EZ, namely, the cortex area responsible for seizure generation,
responds differently to the HV maneuver compared to healthy cortical and subcortical
regions. A past study demonstrated that, during HV, the mean decreases in cerebral blood
flow were 20.9% and 10.8%, in epileptic and non-epileptic temporal cortical regions, respec-
tively [5]. The authors found a linear dependency between the blood flow reduction and the
interval between seizures, concluding that the EZ is more susceptible to hypoperfusion and
particularly vulnerable to ischemia. Even if HV exerts a global connectivity effect, different
pathological and physiological areas may respond in a personalized fashion. Therefore,
studying how HV affects the cortical sites within the EZ may enable the definition of new
biomarkers for better EZ localization.

Our study has several limitations. First, the sample size was limited and heterogeneous
in terms of etiology and explored cortical areas, though most patients had a temporal EZ
and exploration focused mainly on temporal structures. Further validation of our findings
over a broader population with uniform characteristics represents an essential step for
continuing this research and its effectiveness from a clinical point of view. Secondly, we
did not systematically assess the relative increase or decrease in IED frequency during
N-REM sleep, wakefulness, and HV periods, which could be either a cause or effect of
the observed connectivity changes. Additionally, due to the small sample size, we did
not separately analyze patients in whom HV induced IED versus those in whom the
maneuver had no effect. From a methodological point of view, we considered only the PTE
algorithm for estimating cortical connectivity, while extending the analysis by considering
frequency-dependent metrics may enable discerning connectivity patterns according to
specific frequency bands. We did not assess connectivity changes within the EZ compared to
propagation zones, unaffected zones, and contralateral healthy control areas. Lastly, SEEG
explorations are only conducted in people with drug-resistant epilepsy, as the invasive
nature of the procedure precludes the inclusion of healthy control subjects.
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6. Conclusions

In this work, we studied the effects of HV on cortical brain structures of 10 patients
with drug-resistant focal epilepsy who underwent SEEG monitoring. We exploited different
quantitative metrics to analyze the intracranial signals, considering the PTE algorithm to
estimate the effective connectivity between the cortical sites explored by the SEEG implants.
We observed that HV strongly increases cortical connectivity in focal fronto-temporal
epilepsy, similar to what occurs during N-REM sleep. While HV may induce a conductive
environment that facilitates the propagation of epileptiform activity, it seems insufficient
to trigger seizure development, contrary to what occurs in generalized epilepsy. Hence,
our findings suggest that HV should be considered a facilitating maneuver rather than
an activation procedure. At the same time, analyzing the specific connectivity behavior
of epileptogenic versus healthy areas during the HV maneuver could provide useful
information for identifying new biomarkers that characterize the EZ.
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Abstract: A technique is presented that reduces the required memory of neural networks through
improving weight storage. In contrast to traditional methods, which have an exponential mem-
ory overhead with the increase in network size, the proposed method stores only the number of
connections between neurons. The proposed method is evaluated on feedforward networks and
demonstrates memory saving capabilities of up to almost 80% while also being more efficient,
especially with larger architectures.

Keywords: neural networks; multilayer perceptron; compressed weight matrix; weight density;
sparsity

1. Introduction

Artificial neural network (ANN) is an established machine learning technique that
is widely used due to the flexibility it provides. Several problems have been solved using
ANNs and they are currently used in different commercial products [1]. Researchers have
been interested in creating different types of ANNs to solve specific problems [2]. In the
present work, no new type of network is proposed. Instead, a very versatile type of network
has been selected and a new way of implementation is proposed for its use. This type
of network is known as a multilayer perceptron (MLP), where the processing elements
(PEs) are fully connected to all the PEs of the following layer [3]. MLP is one of the most
employed models in neural network applications, where its main characteristic is the use of
the backpropagation training algorithm, and achieving an implementation that may reduce
execution times and memory consumption when using such an algorithm [4,5]. Figure 1
shows an example of MLP.

This work focuses mainly on the connectivity of the network, known as weights, since
it is the most performance-consuming part of the network. The conventional way of storing
the weights of a network is by using a two-dimensional array, such as the one displayed in
Figure 2a. The reason why this method has been used is because the array indexes map
the network connections. That is, the position i,j of the array indicates the connection wij
that goes from neuron i to neuron j, bearing resemblance to what is known as a sparse
matrix [6].

However, as can be seen in Figure 2a, the network connections do not occupy the
entire matrix and are not dispersed. It can be seen that they follow a pattern and that
small submatrices are formed. The proposed method (Figure 2c) will save solely these
submatrices despite saving the general matrix. One of the challenges we face regarding the
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indexing of submatrices is finding the proper method, but this is solved by generating new
indexes from a function.
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Figure 1. Graphic representation of an MLP. It can be observed that in its architecture, it has an input
layer formed by neurons 0 to 3, another hidden layer with neurons 4, 5 and 6, and finally, the last
layer, the output layer is formed by neurons 7 and 8. It can be observed that each neuron of a layer is
connected with all the neurons of the next layer.
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Figure 2. Different ways of storing the weights of a network. Specifically, the example network in
Figure 1 is being represented. The gray boxes indicate positions that occupy memory but have no
relevant value; the blue boxes represent connections from the first layer to the second layer, while the
orange boxes are the connections of neurons from the second layer to the last layer. (a) The traditional
way in which the weights of a network are stored by using a two-dimensional array. (b) Storing
the weights of the network in an upper triangular array. (c) Proposed way of storing the network
weights, where they are all stored consecutively.

The reason for focusing on network connectivity lies in Amdahl’s Law, which states
that the best option for improving a system is the one that has the greatest impact [7]. Thus,
this paper proposes a method to reduce the memory needed to store a network by focusing
on the connectivity of an MLP.
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To conclude, after demonstrating the saving of the used memory by the proposed
method to store the network information, it is shown that this method does not nega-
tively affect the speed at which the network runs, in fact, the proposed method improves
performance by making the ANN run even faster.

2. Materials and Methods

2.1. Proposed Approach

In the event of saving the neural network configuration, it is necessary to emphasize
how to store the weights of the connections, because this is what occupies most space and
the other data hardly take up any [8]. The first option we find is to save the weights in a
square matrix where one of the dimensions would be the input neurons and the other the
output dimensions. With this technique, we can keep all the weights without any problem,
the only thing we have are several positions that are at zero, pointing out that there are no
connections between them.

A way of not consuming so much memory would be to eliminate those values that
are useless. By not storing values that are never actually used, we will manage to avoid
having so many cache failures and we will be able to take better advantage of the location
of the data [9,10]. To achieve this, we can look at the literature where we would find out
that this is an issue that occurs sometimes, and the matrices with values which do not
serve us are called the sparse matrix [11]. What is performed with this is to eliminate all
the positions that do not work for us by storing the matrix otherwise. Although there
are different implementations of using the sparse matrix, all of them have something in
common, that is, they are only profitable to use if you have a lot of unusable values and
massive data. Generally, useful data should be around 10% at most, and you should have
several thousands of records. If we analyze the weight matrices of our neural networks,
the weights occupy approximately 30% of the total matrix, and we also do not meet the
condition of several thousands of records since we are not close to that number. This fact
will be discussed in detail in later sections.

We should therefore analyze the feedforward networks, as, like it says in the literature,
these networks can be stored in an upper triangular matrix, as shown in Figure 2b [12,13].

Through this, an important memory saving method is achieved, since half of the
storage is used, with the triangular matrix, although there are still many values that are not
employed. This is due to the fact that the connectivity of an MLP is feedforward from layer
to layer, implying that those neurons that are in the same layer, or more than one layer
away, will not be linked by a weight.

Furthermore, if we look at how these networks are stored, it is possible to observe that
they follow a common pattern (see Figure 2). These are collected in small subarrays, which
are defined by the PEs in one layer and in the next. Since it is feasible to know how many
weights each of these networks has, we can store these submatrices, a method which is
based on the present paper.

As described above, the proposed solution will involve storing only the values that
are useful in an array. If, for instance, we use a network with 4 neurons in the input layer,
2 in the output layer and 3 in the only hidden layer, as per the example in Figure 2, it is
shown how much memory is used to store the network. In Table 1, it is also possible to see
how much space is used.

Table 1. Amount of memory used to store the weights of the different approximations used in
Figure 2.

Approach Cells Saving

Matrix 81 -
Superior triangular matrix 45 44.4%
Proposed approach 18 77.7%

45



Appl. Sci. 2024, 14, 8020

2.2. Implementation

In the previous section, the proposed solution stores all the weights consecutively,
but one very important thing is lost, i.e., the matrix indices, which serve to reference the
positions of the weights in the neural network. In order to know which position of the
array of weights is related to the weight in the network, some additional information needs
to be stored. This section explains how the entire neural network is held in memory.

2.2.1. Required Variables

• num_layer: Number of layers in the network (including input, output and hidden layers).
• num_neurons: Number of neurons in the network.
• Layer (array): The i position indicates the number of processing elements in the i layer.
• Position (array): This indicates which layer the processing element i belongs to.
• Index (array): This indicates the position that the processing element occupies within

the layer.
• num_weights: Number of weights that the network has.
• Weight (array): Value of the network connections.
• Stride (array): The i position indicates where the outgoing weights of the i neuron start.

2.2.2. Length of Arrays

• Layer: The size of this array is given by the value of num_layer, that is, the number
of layers.

• Index and position: The size of this array is given by the value of num_neurons, that
is, the number of neurons in the network.

• Stride: The size of this array is given by the number of neurons that have outgoing
connections, i.e., all the neurons except the output layer.

size(stride) = num_neurons − layer[num_layer − 1] (1)

• Weight: The size of this array is determined by the number of outgoing connections
that can exist, which is determined by the num_weight variable:

num_weights =
num_layers−1

∑
i=0

layer[i] ∗ layer[i + 1] (2)

Once we have gathered all the necessary information, we still need to know how to
access a weight by referencing it with the input and output neurons. We can perform this
using the formula below:

wij = weight[stride[i] + index[j]] (3)

Figure 3 shows the values of the different arrays used in the proposed method for a
neural network.

0 1 2 3 1 0 120index

0 0 0 0 1 2 211position

0 3 6 9 14 1612stride

0 1 2 3 5 7 864

1 2 3 5 7 864 10 11 12 13 15 17161490

W35W25W15W05 W57W47 W67W58W48 W68W36W26W16W06 W34W24W14W04weight

Figure 3. Array values using the proposed method for the example in Figure 1. The index of the
arrays “index” and “position” and “stride” refer to the number of neurons to which it refers. The values
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of the “index” array indicate the position that a neuron occupies within a layer. The array “position”
values indicate the layer number to which a neuron belongs. The array “weights” values are the
values of the network connections. The “stride” values indicate at which position in the array weight
the outgoing weights of a neuron start.

Finally, it remains to be checked if all this auxiliary information that we added im-
proves the memory consumption used in the code. To know the amount that is consumed,
they are used in the equations shown below (the sizeof(int) and sizeof(float) simply imply
the value of the size of an integer and a float, respectively):

Traditional = (2 + num_neurons) ∗ sizeo f (int)

+ num_neurons2 ∗ sizeo f ( f loat)
(4)

Proposed = (3 + 3 ∗ num_neurons + num_layers+

layer[num_layers − 1]) ∗ sizeo f (int)

+ num_weights ∗ sizeo f ( f loat)

(5)

In light of these equations, the comparative calculation to estimate the difference in
consumption between the traditional and the proposed method is not a trivial issue. While
in the former it is only necessary to know the number of neurons (num_neurons), our
method incorporates another series of variables that depend directly on the architecture of
the MLP network under analysis.

2.2.3. Pseudocode

The pseudocode of the proposed solution is shown in Listing 1. It is important to
highlight that the variables NUM_NEURONS and NUM_LAYERS are predefined by the
network to be simulated, while getArrayInt is a function that returns an array of integers of
the size indicated by the parameter.

Listing 1. Pseudocode of the proposed solution.

POSITION = getArrayInt (NUM_NEURONS) ;
INDEX = getArrayInt (NUM_NEURONS) ;
for ( l = i = 0 ; i < NUM_LAYERS; i ++) {
for ( j = 0 ; j < LAYER[ i ] ; j ++ , l ++) {
POSITION [ l ] = i ;
INDEX[ l ] = j ;
}
}

TMP = NUM_NEURONS − LAYER[NUM_LAYERS − 1 ] ;
STRIDE = getArrayInt (TMP) ;
STRIDE [ 0 ] = 0 ;
for ( i = 1 ; i < TMP; i ++) {
STRIDE [ i ] = STRIDE [ i − 1] +
LAYER[ POSITION [ i − 1] + 1 ] ;
}

NUM_WEIGHTS = 0 ;
for ( i = 0 ; i < NUM_LAYERS − 1 ; i ++) {
NUM_WEIGHT += LAYER[ i ] * LAYER[ i + 1 ] ;
}

Listing 2 shows how the output of the network would be obtained. The NET is an
array that stores the output of each neuron, while ACTIVATION is an array containing the
activation functions of each neuron.
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Listing 2. Pseudocode to obtain the output network.

f i r s t _ p e = in_pe = 0 ;
for ( l = 1 ; l < NUM_LAYERS; l ++) {
f i r s t _ p e += LAYER[ l − 1 ] ;
for ( in = 0 ; in < LAYER[ l − 1 ] ;
in ++ , in_pe ++) {
pe = f i r s t _ p e ;
for ( out = 0 ; out < LAYER[ l ] ;
out ++ , pe++) {
NET[ pe ] += NET[ pe ] *
WEIGHT[ out+STRIDE [ in_pe ] ] ;
}
}
for ( tmp = f i r s t _ p e ; tmp < pe ; tmp++) {
NET[ tmp ] = ACTIVATION[ tmp ] (NET[TMP] ) ;
}
}

3. Results

It is important to emphasize that the proposed method does not look to improve the
network results, i.e., it does not obtain better metrics in accuracy, F1 score or others [14].
The proposed method aims to reduce the memory consumption needed to store a network.

We have tested the method described for networks whose structures are designed to solve
the problems found in the UCI repository, specifically for iris [15], cancer [16] and ionosphere [17].
The networks that have been tested have 1, 2 and 3 hidden layers for all three problems.
The network structures used can be seen in Table 2. These datasets have been chosen since
they are classical problems used in classification problems, based on MLP structures used in
previous works, and which have been found to achieve good performance [18].

Table 2. Topology of the networks used for the experimental results. The numbers indicate the
amount of neurons on each layer. The first and last values represent the input and output layers,
respectively, and the middle numbers are the hidden layers.

Dataset One Hidden Layer Two Hidden Layers
Three Hidden

Layers

Iris 4, 5, 3 4, 5, 7, 3 4, 4, 5, 5, 3
Cancer 9, 7, 1 9, 7, 3, 1 9, 12, 8, 4, 1

Ionosphere 34, 9, 1 34, 9, 4, 1 34, 12, 8, 4, 1

3.1. Memory Consumption

The algorithm presented in this work has a different memory consumption than the
traditional method. Next, you can see in Figure 4 the memory saving process when using
the proposed method against the traditional one. In addition, Table 3 shows the memory
used for all the cases employed.

The minimum improvement in memory consumption is over 50%, although most
comparisons range from over 60% to almost 80%. This significant improvement in the bytes
required for storing the network structure and weights shows a clear significance that is
especially beneficial as the MLP grows in complexity.
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Figure 4. Percentage of saved memory using the proposed method instead of the traditional one for
the networks specified in Table 2.

Table 3. Memory in bytes used to store ANNs. The second column indicates the topology of the
network. The third and fourth columns represent the memory used in bytes to store the network
using the traditional and proposed methods, respectively. The last column indicates the amount of
memory saved by using the proposed method instead of the traditional method.

Dataset
Network
Topology

Traditional
Approach

Proposed
Approach

Memory
Saving

Iris
4, 5, 3 644 B 308 B 52.17%
4, 5, 7, 3 1544 B 560 B 63.73%
4, 4, 5, 5, 3 1876 B 588 B 68.66%

Cancer
9, 7, 1 1244 B 508 B 59.16%
9, 7, 3, 1 1704 B 616 B 63.85%
9, 12, 8, 4, 1 4788 B 1400 B 70.76%

Ionosphere
34, 9, 1 7940 B 1812 B 77.18%
34, 9, 4, 1 9432 B 1988 B 78.92%
34, 12, 8, 4, 1 14188 B 2900 B 79.56%

3.2. Operation Time

Achieving such a noticeable improvement when storing a network is a great accom-
plishment, but it is necessary to check how it affects the speed of execution. This is necessary
since the scenario where the proposed method can be used may vary depending on the
performance of the system.

With the aim of achieving representative and reliable results, all the networks run a
million patterns to measure the time. The way we have measured the times has been to run
each test 10 times and then use the average of those runs as a result. Furthermore, in order
to avoid equipment bias, times are taken both on a laptop and on a server, in addition to
measuring the times with and without using the optimization options [19,20].

3.2.1. Personal Computer

All tests were conducted on a 2017 macbook pro with i5-7360U CPU @ 2.30 GHz (Ap-
ple, Cupertino, CA, USA) and with the clang compiler in the clang-900.0.39.2 version [21].

These first times have been taken without using any of the optimization options
provided by the compiler. The results can be checked in Table 4, and Figure 5 shows the
increased speed. The reduction in time can be observed in all tested runs, showing a pattern
of our proposed model of performance improvement at a higher network complexity.
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The times obtained by using compiler optimization options have also been analyzed.
Specifically, the following parameters were used: “-O3-ffast-math-funroll-loops-ftree-
vectorize-march=native”. The results can be checked in Table 4, and Figure 5 shows
the increased speed. Once again, the results obtained in the execution of the problems on a
server will follow the pattern observed in our proposed model. It is worth noting that the
improvement achieved in execution on a personal laptop using a compiler optimization
versus not using the optimization is still significantly better on average.

(a)

(b)

Figure 5. Sped-up improvement of the proposed method vs. the traditional method in network
execution on a personal computer. (a) Without using the compiler optimization flags. (b) Using the
compiler optimization flags “-O3-ffast-math-funroll-loops-ftree-vectorize-march=native”.
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Table 4. Performance in network execution on a personal computer without using compiler optimiza-
tion flags and using “-O3-ffast-math-funroll-loops-ftree-vectorize-march=native”.

No Optimization Flags Using Optimization Flags

Network

Topology

Traditional

Approach

Proposed

Approach

Speed Up Traditional

Approach

Proposed

Approach

Speed Up

Ir
is

4, 5, 3 0.4108 s 0.2084 s 1.9712x 0.1295 s 0.0604 s 2.1440x ↑
4, 5, 7, 3 1.1077 s 0.4185 s 2.6468x 0.3152 s 0.1075 s 2.9320x ↑
4, 4, 5, 5, 3 1.3989 s 0.4470 s 3.1295x 0.3942 s 0.1147 s 3.4367x ↑

C
an

ce
r 9, 7, 1 0.5568 s 0.3690 s 1.5089x 0.1459 s 0.0942 s 1.5488x ↑

9, 7, 3, 1 0.8677 s 0.4695 s 1.8481x 0.2295 s 0.1117 s 2.0546x ↑
9, 12, 8, 4, 1 2.9614 s 1.1292 s 2.6225x 0.8527 s 0.2204 s 3.8688x ↑

Io
no

... 34, 9, 1 1.6810 s 1.3907 s 1.2087x 0.5276 s 0.2569 s 2.0537x ↑
34, 9, 4, 1 2.3799 s 1.5479 s 1.5375x 0.6511 s 0.2823 s 2.3064x ↑
34, 12, 8, 4, 1 4.9259 s 2.3174 s 2.1256x 1.4572 s 0.4120 s 3.5368x ↑

3.2.2. Computer Server

All these tests were carried out at CESGA in the HPC finisterrae 2 using the thin-node
partition, which has an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz (Intel, Santa Clara,
CA, USA), and using the GCC compiler in version 7.2.0 [22,23].

These times have been taken without using any of the optimization options provided by
the compiler. The results can be checked in Table 5, and Figure 6 shows the increased speed.

The times obtained by using compiler optimization options have also been analyzed.
Specifically, the following parameters were used: “-O3-ffast-math-funroll-loops-ftree-vectorize-
march=native”. The results can be checked in Table 5, and Figure 6 shows the increased speed.

Table 5. Performance in network execution on a server using compiler optimization flags and using
“-O3 -ffast-math -funroll-loops-ftree-vectorize-march=native”.

No Optimization Flags Using Optimization Flags

Network

Topology

Traditional

Approach

Proposed

Approach

Speed Up Traditional

Approach

Proposed

Approach

Speed Up

Ir
is

4, 5, 3 0.3791 s 0.2221 s 1.7068x 0.1301 s 0.0641 s 2.0296x ↑
4, 5, 7, 3 1.0686 s 0.4412 s 2.4220x 0.3036 s 0.1171 s 2.5926x ↑
4, 4, 5, 5, 3 1.2403 s 0.4587 s 2.7039x 0.3659 s 0.1280 s 2.8585x ↑

C
an

ce
r 9, 7, 1 0.5180 s 0.3852 s 1.3447x 0.1389 s 0.0941 s 1.4760x ↑

9, 7, 3, 1 0.8367 s 0.4926 s 1.6985x 0.2103 s 0.1203 s 1.7481x ↑
9, 12, 8, 4, 1 2.9419 s 1.1932 s 2.4655x 0.7555 s 0.2593 s 2.9136x ↑

Io
no

... 34, 9, 1 1.6926 s 1.5160 s 1.1164x 0.3911 s 0.2678 s 1.4604x ↑
34, 9, 4, 1 2.3677 s 1.6797 s 1.4095x 0.5905 s 0.3029 s 1.9494x ↑
34, 12, 8, 4, 1 4.9747 s 2.5451 s 1.9546x 1.6443 s 0.4714 s 3.4881x ↑

As was the case for the laptop runs, the server will follow a very similar behavior.
With a minimal improvement of 130% that can be seen in the simplest case for the cancer
problem in Table 5, the improvements in computational speed are impressively increased
with higher network complexity and with the use of optimization in the compiler.

It is interesting to remark that, contrary to what one might think, a greater improve-
ment in times resulted when the executions were carried out on the laptop.
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(a)

(b)

Figure 6. Sped-up up improvement of the proposed method vs. the traditional method in network
execution on a server. (a) Without using the compiler optimization flags; (b) using the compiler
optimization flags “-O3 -ffast-math -funroll-loops -ftree-vectorize -march=native”.

4. Conclusions

It should be stressed that the proposed method really does save memory and also
improves runtime. Equation (4) shows that the traditional method stores more memory as
the number of neurons increases. This is because the traditional method has an exponential
growth of consumption that grows very fast. However, with the proposed method, this
does not happen, since the important thing is not the number of neurons, but the number of
connections between them, so that the memory consumption is not so abusive (see Table 3).

The proposed method avoids the exponential memory consumption, and although
it also improves the execution time, the improvement is not so drastic. In Tables 4 and 5,
it can be observed that the algorithm works better when it has more layers and these,
in turn, have many neurons. Moreover, as can be seen in the tables previously mentioned,
the proposed method takes much better advantage of the compiler optimizations.
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Also, it should be pointed out that the proposed method assumes that everything put
into it is correct. In the example of Figure 3, where neurons 0 and 3 do not have a weight,
using the wij formula (Equation (3)) will give you a value for the weight w03, when in fact,
this does not exist. Thus, in this method, we only need to enter the correct values for a
feedforward network.

It is important to note that the method proposed in this paper only works for fully
forward connected networks. Other types such as recurrent networks would not be able
to store all the weights. For instance, for a network with four neurons in the input layer,
three in the hidden layer and two in the output layer, the wij formula (Equation (3)) would
return the same value when retrieving the values of w65 and w68.

Although the proposed method is created for feedforward networks, its internal
structure allows for the use of techniques that are commonly used in networks such as
MLP; an example is the dropout technique where connections can be removed from a
network. To carry out this technique of dropping connections, it would simply be necessary
to set the connection value to zero [24].

Finally, it is important to mention that the proposed method can involve the use of
networks in IoT or ubiquitous computing devices using modest hardware [25,26]. Devices
such as the Arduino Mega have only 256Kb of memory, making it impossible to use
networks using the traditional method [27].
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Abstract: Characterizing Alzheimer’s disease (AD) progression remains a significant clinical chal-
lenge. The initial stages of AD are marked by the accumulation of amyloid-beta plaques and Tau
tangles, with cognitive functions often appearing normal, and clinical symptoms may not manifest
until up to 20 years after the prodromal period begins. Comprehensive longitudinal studies analyzing
brain-wide structural connectomics in the early stages of AD, especially those with large sample
sizes, are scarce. In this study, we investigated a longitudinal diffusion-weighted imaging dataset
of 264 subjects to assess the predictive potential of diffusion data for AD. Our findings indicate the
potential of a simple prognostic biomarker for disease progression based on the hemispheric lateral-
ization of mean tract volume for tracts originating from the supramarginal and paracentral regions,
achieving an accuracy of 86%, a sensitivity of 86%, and a specificity of 93% when combined with
other clinical indicators. However, diffusion-weighted imaging measurements alone did not provide
strong predictive accuracy for clinical variables, disease classification, or disease conversion. By
conducting a comprehensive tract-by-tract analysis of diffusion-weighted characteristics contributing
to the characterization of AD and its progression, our research elucidates the potential of diffusion
MRI as a tool for the early detection and monitoring of neurodegenerative diseases and emphasizes
the importance of integrating multi-modal data for enhanced predictive analytics.

Keywords: Alzheimer’s disease; diffusion tensor imaging; whole-brain tractography; biomarkers

1. Introduction

An estimated 35 million people worldwide suffered from Alzheimer’s Disease in 2022,
with 7 million new cases every year [1]. The percentage of people with Alzheimer’s disease,
the most common form of dementia, increases with age, where 5.0% of people aged 65 to 74,
13.1% of people aged 75 to 84, and 33.2% of people aged 85 and older have Alzheimer’s [2].

1.1. Research in Context
1.1.1. Research before This Study

Comprehensive whole-brain analyses on longitudinal data remain relatively rare.
There is mixed support for the utility of diffusion-weighted imaging data in developing
biomarkers. Few studies establish prognostic biomarkers to indicate disease conversion.
Numerous studies conduct correlational analysis to understand the effect size of the dif-
fusion characteristics between disease stages, and many studies develop classification
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models with high accuracy, often relying on clinical indicators as predictors. However, little
research has been conducted to assess the ability of diffusion characteristics in isolation to
characterize disease stages or conversion.

1.1.2. Added Value of This Study

To our knowledge, this study is the first to systematically evaluate the potential of
diffusion-weighted imaging (DWI) metrics, in isolation, to predict a range of neuropsy-
chological and neurobiological indicators commonly used in staging Alzheimer’s disease
with an aim to develop objective, non-invasive cognitive assessment methods that could
complement or potentially reduce reliance on traditional clinical testing procedures.

This study integrates tractography metrics with rich phenotypic and neuropsychologi-
cal data across a substantial longitudinal dataset focused on Alzheimer’s research. This
integration allows for a thorough analysis of neurodevelopmental changes over time as
subjects progress in Alzheimer’s disease with the aim of identifying early-stage prognostic
biomarkers. The interaction between the hemispheric lateralization of tract volumes con-
nected to the supramarginal gyrus and paracentral regions offers a potential prognostic
biomarker of Alzheimer’s disease progression, with AUROC of 74% and AUPRC of 75%
being important findings of this study. While this region has been implicated in previous
studies, our analysis is novel in that it uses tractography metrics to establish this connection.
To the best of our knowledge, this is the first study to implicate the supramarginal gyrus in
AD progression by using detailed tractography measurements.

1.1.3. Implications

Diffusion-weighted imaging measurements alone did not provide strong predictive
accuracy for clinical variables, disease classification, or disease conversion. Our analysis of
white matter tract features revealed moderate but notable associations with neurobiological
and neuropsychological markers, opening the door to future potential models, likely based
on multi-modal data capable of predicting these clinical indicators. Our findings also
demonstrate the potential for a simple prognostic biomarker of disease conversion when
combined with other clinical indicators.

A brief overview of this study is provided in Table 1.

Table 1. Study overview.

Variable Measurement

Participants 264 (434 sessions)
Whole-brain tractography measurements 12 diffusion measurements per tract
Disease stages CN, MCI, and AD
Neuropsychological measurements 9
Neurobiological measurements 7
Features used Whole-brain tractography measurements
Feature reduction ElasticNet
Evaluation metrics RMSE, AUROC, and AUPRC

Performance AUROC of 74% and AUPRC of 75% based
exclusively on diffusion measurements

A definitive diagnosis of Alzheimer’s disease (AD) can only be confirmed by a histolog-
ical examination of brain tissue post-mortem [3]. The initial stages of AD are characterized
by the accumulation of plaques of the protein amyloid-beta (Aβ) in the medial parietal
cortex. In this prodromal stage, cognitive function appears normal, and patients may not
exhibit clinical symptoms up to 20 years after the start of the prodromal stage [4]. As the
condition advances, other signs of neurodegeneration, such as neuronal death [5], atrophy
(depending on the subtype) [6], and gliosis [7], become discernible after a variable period
of latency. These changes correlate with clinical cognitive evaluations taken over multiple
years and align with a suite of biomarkers, including hippocampal volume and heightened
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concentrations of Aβ and Tau proteins, which were pinpointed as indicators in the timeline
of AD progression as described in the established literature [8].

The prevailing consensus is that early-stage therapeutic interventions could offer the
greatest potential to improve health outcomes before irreversible neuronal loss and damage
to brain tissue occur. Estimates suggest that providing treatment during the disease’s
preclinical phase could significantly curtail its progression. In fact, some projections
indicate that “a delay of 10 years would result in virtual disappearance of the disease” [9].
The first neurons damaged are those responsible for memory, language, and cognition.
However, the pathophysiological processes that cause this damage are thought to begin
20 years before symptoms are reported [1,10]. Since Alzheimer’s disease is a gradual and
progressive neurodegenerative disorder, understanding the potential of biomarkers to
characterize the disease’s pathology and its long-term development is a key motivation
behind this study. These biomarkers may support the identification of individuals who
could benefit from treatment, potentially improving health outcomes for patients with
the disease.

The current gold standard for the diagnosis of Alzheimer’s disease is biopsy or au-
topsy [11]. Recent studies have invested considerable effort and resources in the early
detection of AD in the prodromal stages of mild cognitive impairment (MCI). Altered brain
asymmetry of subcortical structures, reduction in cortical thickness, and hippocampal,
entorhinal, fusiform and medial temporal lobe volumes are all proposed biomarkers of
AD [11]. However, the net improvement in AD diagnostic accuracy from structural MRI
tests following clinical neurocognitive memory assessments has been shown to be low,
+1.1% (95% CI 0.1 to 3.9) [12]. In contrast, diffusion-weighted imaging (DWI) techniques
have shown promise [13]. DWI was designed to study white matter (WM) structure [14], a
tissue to which AD has been associated [15–17]. This modality is particularly useful, given
that AD exhibits degeneration of cellular barriers of neurons and fiber tracts as a result of
the buildup of Tau proteins [18]. In recent years, a large body of research has focused on
leveraging DWI to classify AD stages and predict disease progression [10,13,19–24].

Despite growing evidence that diffusion-weighted imaging correlates with disease
severity [25], we have been unable to find a comprehensive analysis of whether diffusion-
weighted imaging can be used to predict established biomarkers used for staging AD. In this
study, we investigate the potential of tractography metrics to predict neuropsychological
and neurobiological test results in the context of Alzheimer’s disease progression while
also aiming to identify early prognostic biomarkers of AD. Our analysis addresses four key
questions: (Q1) Do phenotypic characteristics predict cognitive decline within our current
dataset? (Q2) Are WM tract features predictive of neuropsychological and neurobiological
indicators? (Q3) Does baseline tract volume change with cognitive decline? (Q4) To what
extent can tractography metrics predict cognitive decline? We present our methodology for
data acquisition and analysis, followed by results corresponding to each research question.
Finally, we discuss the implications of our findings for both clinical practice and future
research directions in neuroimaging and Alzheimer’s disease.

2. Materials and Methods

2.1. Participants

In this study, two hundred and sixty-four participants across multiple exams totaling
434 sessions were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary goal of the ADNI
is to test whether serial magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment could
be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). The images obtained are associated with a clinical diagnosis
and a specific time point. As such, individuals may span one or more clinical diagnoses,
such as progression from cognitive normal (CN) → MCI → AD, and therefore can have
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images at each diagnosis. Table 2 shows the number of participants by clinical diagnosis at
imaging and clinical progression.

Table 2. Stratification of ADNI images and associated demographic and clinical details.

Diagnosis at Imaging Progression Profile
Subjects

(F:M)
Mean Age (F:M) SD (F:M)

CN CN 126:92 71:78 7.4:7.7
CN CN → MCI 5:4 74:79 10.8:8.6
CN CN → AD 1:0 88: - -:-
MCI MCI 60:75 76:76 7.7:6.9
MCI CN → MCI 4:5 73:82 13.4:5.8
MCI MCI → AD 2:1 82:83 8.1:-
AD AD 28:27 78:76 7.9:8.4
AD CN → AD 1:0 87: - -:-
AD MCI → AD 2:1 83:85 7.6:7.7

Note: CN = cognitively normal, MCI = mild cognitive impairment, and AD = Alzheimer’s disease.

2.2. MRI Acquisition

T1-weighted (T1w) images were acquired at 3T, 208 × 240 × 256 voxels of size
1 mm3. Diffusion MRI data were acquired by using diffusion-weighted single-shot spin-
echo echo-planar imaging. Fifty-six slices of 2 mm in thickness, yielding 2 mm isotropic
voxels, were obtained. Forty-nine diffusion-weighted measurements (b = 1000 s/mm2)
and seven non-diffusion-weighted measurements (b = 0 s/mm2) were acquired with
TR = 7200 ms, TE = 56 ms, and field of view = 232 mm × 232 mm.

The imaging sequences and parameters of the anatomical scans followed the
Alzheimer’s Disease Neuroimaging Initiative 3 protocols (https://adni.loni.usc.edu/wp-
content/themes/freshnews-dev-v2/documents/mri/ADNI3-MRI-protocols.pdf, accessed
on 16 June 2022) and were collected across 57 imaging centers. The data used in our
research included all subjects in the ADNI3 cohort with at least one T1-weighted MP-RAGE
and a corresponding diffusion-weighted image (DWI).

2.3. Preprocessing of MRI Data and Estimation of Structural Networks

We developed a pipeline management software package [26] offering a robust, fault-
tolerant, and extensible platform to execute the processing workflows of the ADNI data.
The pipeline code was containerized by using Apptainer [27] to facilitate reproducibility
as well as environment management during pipeline execution on each of the super-
computing clusters in which software was executed. We sought to process all ADNI3
participant sessions that contained both a T1-weighted image and a diffusion-weighted
image. A total of 961 participants, totaling 1873 exam sessions, were considered for our
study. After excluding scans without DWI images or bval/bvec files, 264 participants
represented in 434 sessions were processed by our pipeline.

The preprocessing pipeline to extract tractography metrics from the ADNI dataset
has been described elsewhere [28,29]. For the ADNI dataset, T1w MRI images were
segmented into sub-regions by using the FreeSurfer software package, version 7.2 [30], with
cortical [31] and subcortical [30] labeling pipelines. The white matter volume generated by
Freesurfer’s recon-all was further separated into 181 regions of interest (ROIs) by using the
Freesurfer program mri_extract_label. Labels were extracted by using the Desikan--Killiany
atlas [31]. The diffusion-weighted image was registered to the T1w image before orientation
distribution function (ODF) estimation was performed. ODF maps were created from
the preprocessed DWI images by using the Diffusion Toolkit (DTK v0.6.4) [32] software
package. The HARDI/Q-ball imaging model [33] with a fiber orientation distribution
function was estimated at each voxel. The Fiber Assignment by Continuous (FACT)-alike
tracking algorithm [32,34] was employed for deterministic fiber tracking. Seed points for
tractography were generated throughout the entire brain volume where valid diffusion
data existed, using a 35◦ angle threshold for stopping criteria. This whole-brain tract file
was constructed by using the odf_recon and odf_tracker utilities from DTK.
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The generated tract file and individual white matter ROI masks were postprocessed
for the extraction of 32,580 tracts (cartesian product of ROIs), with multiple measures
extracted for each, including mean tract length, tract volume, mean fractional anisotropy
(FA), FA standard deviation, mean diffusivity (MD) calculated by using the mean of the
three eigenvalues, MD standard deviation, and the corresponding left–right asymmetries
of each of these measurements (12 measurements in total). We derived these measurements
for tracts that started or terminated in our ROIs as well as tracts that passed through our
ROIs, for a total of 781,920 measurements per scan session. White matter tract identification
was assessed by using q-ball imaging [33,35]. Although a variety of structural connectomics
analytics technologies have been developed for the analysis of diffusion-enabled brain
MRI examinations [34,36–39], our approach includes a thorough assessment of features
with characterization potential, such as the variability (as measured with the standard
deviation) in FA and MD along each given fiber pathway, as well as hemispheric asymmetry
measurements for all aforementioned features.

2.4. Statistics

We applied whole-brain deterministic tractography techniques to generate a high-
dimensional dataset across 434 exams. Each subject had approximately 1.3 million feature
measurements on average being evaluated for potential as a biomarker for characterizing
AD, depending on the number of visits a subject participated in. The ADNI3 dataset in-
cludes detailed clinical biomarkers for most participants at each imaging session, providing
tremendous benefit, as they offer potential indicators of early decline in the preclinical
stages or for those with mild cognitive impairment (MCI). We targeted 16 neuropsychologi-
cal and neurobiological phenotypic characteristics (see Table 3) as response variables in our
analysis of white matter tract features.

Table 3. Table of ADNI biomarkers available per scan/session.

Phenotypic Characteristic Range Description

ADAS-11
(neuropsychological) 0–70

A rating scale to assess the severity of cognitive and non-cognitive dysfunction from mild to severe AD.
ADAS-11 assesses the cognitive domains of memory, language, and praxis. Specific tasks include Word Recall,
Naming Objects and Fingers, Commands, Constructional Praxis, Ideational Praxis, Orientation, Word
Recognition,
and Language

ADAS-13
(neuropsychological) 0–85

A rating scale to assess cognitive domains hypothesized to be important treatment targets of antidementia
drugs that are not assessed by the ADAS-11: attention and concentration, planning and executive function,
verbal memory, nonverbal memory, and praxis.

AV45
(PET image analysis)

An imaging biomarker for amyloid plaque accumulation in subjects with cognitive impairment that may be
attributed to the presence of Alzheimer’s disease. Average AV45 regional standardized uptake values of
frontal, anterior cingulate, precuneus, and parietal cortex relative to the cerebellum.

BRAIN VOLUME
(MR image analysis) Volume (mm3) of brain

Diagnosis [CN,MCI,AD] Diagnosis classification at scan

ENTORHINAL VOLUME
(MR image analysis) Volume (mm3) of entorhinal cortex

FDG
(PET scan information)

Average fluorodeoxyglucose PET of angular, temporal, and posterior cingulate. It reflects loss of neuropil, loss
of synapse, and functional impairment of neurons. Lower FDG-PET was regarded as a signal of neuronal
hypometabolism due to neurodegeneration.

FUSIFORM VOLUME
(MR image analysis) Volume (mm3) of fusiform

HIPPOCAMPUS VOLUME
(MR image analysis) Volume (mm3) of hippocampus

ICV
(MR image analysis)

Intracranial volume. In patients with dementia, but not in MCI, severity of cognitive impairment and ICV were
moderately correlated. The effect of ICV on cognition was not mediated by hippocampal atrophy.

MIDTEMPORAL VOLUME
(MR image analysis) Volume (mm3) of mid temporal

VENTRICLE VOLUME
(MR image analysis) Volume (mm3) of ventricles

CDR SB
(neuropsychological) 0–36 Clinical Dementia Rating scale Sum of Boxes (CDR-SB) score. This score has been used to accurately stage

severity of Alzheimer dementia and mild cognitive impairment (MCI).
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Table 3. Cont.

Phenotypic Characteristic Range Description

FAQ
(neuropsychological) 0–30

The Functional Activities Questionnaire (FAQ) measures instrumental activities of daily living such as
preparing balanced meals and preparing finances. A cut-point of 9 (dependent in 3 or more activities) is
recommended to indicate impaired function and possible cognitive impairment.

MMSE
(neuropsychological) 0–30

Mini Mental State Examination. It is an 11-question measure that tests five areas of cognitive function:
orientation, registration, attention and calculation, recall, and language. The maximum score is 30. A score of
23 or lower is indicative of cognitive impairment.

MoCA
(neuropsychological) 0–30 Montreal Cognitive Assessment Test for Dementia. This test is a 30-item test of language, memory, visual and

spatial thinking, reasoning, and orientation skills. A score of 26 or above is considered normal.

RAVLT Immediate
(neuropsychological)

Rey Auditory Verbal Learning Test evaluating short-term memory, working memory, and long-term memory.
RAVLT Immediate is the sum of scores from the 5 first trials.

We performed a univariate statistical analysis on each feature derived within our
dataset to understand range, central tendency, standard deviation, and correlation to each
of the 16 selected phenotypic characteristics provided by the ADNI as they related to
cognitive decline. Cognitive decline is presented in ADNI data as a categorical variable
representing diagnosis. Using our dataframe containing diffusion measurements derived
from dMRI and T1-weighted images, we sought to answer the following research questions.

Q1. Do phenotypic characteristics predict cognitive decline within our current dataset?

To investigate potential associations between phenotypic biomarkers (Table 3) and
diagnostic categories in our study, we employed the Kruskal–Wallis test, a non-parametric
test suitable for comparing distributions across multiple groups. The Kruskal–Wallis test
enabled an overall assessment of whether statistically significant differences exist in the
distribution of biomarker values across diagnostic categories (CN, MCI, and AD). This
approach was chosen due to its robustness in handling non-normally distributed data and
its ability to discern variations in central tendencies across multiple groups. All statistical
analyses were performed by using R (version 4.1.3) with a significance threshold set at
p < 0.05 after Benjamini–Hochberg (BH) correction.

Following the establishment of the relationship between these phenotypic character-
istics and diagnosis, our next step involved exploring diffusion-weighted imaging (DWI)
measurements known to be strong predictors of these biomarkers. This exploration aims to
identify additional features that could enhance subsequent predictive models.

Q2. Are WM tract features predictive of neuropsychological and neurobiological indicators?

We divided our data into training and test subsets with an 80–20 split that sought
to ensure a balance of our response variables across the training/test datasets. Given the
longitudinal nature of our dataset, comprising multiple MRI sessions per patient over time,
we employed a stratification approach that involved ensuring that all sessions pertaining
to a single patient were exclusively included in either the training or the test set, but not
both. This was achieved through a randomized allocation process until no participants
were found in either the training and test sets to avoid data leakage. Due to the high
dimensionality of our data, it was necessary to perform aggressive feature reduction to
include only the features exhibiting the top 10% highest variance. We used mean imputation
across the remaining features to make it possible to employ regularization techniques for
further reduction. We normalized our data; then, for each independent neuropsychological
and neurobiological response variable, we employed ElasticNet [40,41] regularization with
alpha ranging from 0.5 to 0.8 to reduce the number of features. The final features expected to
offer the most discriminatory power for our response variables were scaled and re-imputed
by using k-NN nearest neighbour imputation [42]. Imputation using k-NN was initially
unable to perform complete imputation with such a wide dataset, forcing us to initially use
mean imputation until we could perform ElasticNet regularization. Subsequently, for each
neuropsychological and neurobiological response variable, we employed a repeated 10-fold
cross-validation method to ensure robustness with various models, including support
vector machines [42,43], decision trees [44], random forest [45], multi-layer perceptron [46],
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and gradient boosting [47]. The repeated cross-validation approach minimized variability
in performance metrics due to random partitioning. We evaluated our results by using
RMSE, MAE, and R2 metrics. This multi-step process is depicted in Figure 1.

Figure 1. Processing steps of the feature selection framework and the subsequent regression of
the neuropsychological and neurobiological response variables. After removing features with low
variance, ElasticNet was used for feature selection.

Q3. Does baseline tract volume change with cognitive decline?

Brain atrophy is a major symptom of AD observed in vivo [48–50]. There is compelling
evidence to suggest that Aβ facilitates the spread of Tau neurofibrillary tangles, which may
then drive neurodegeneration, atrophy, and subsequent dementia [20]. While almost all
aged brains show characteristic changes linked to neurodegeneration [51], Alzheimer’s
disease has different neurodegenerative processes compared with normal ageing, with
distinctive neuron loss profiles [6]. This atrophy is understood to begin in the entorhinal
cortex, progressing then to the hippocampus, temporal, frontal, and parietal areas, before
spreading to the entire cerebral cortex [19,22].

DWI tractography enables the reconstruction of white matter tract bundles by estimat-
ing the principal directions of diffusion within a voxel, thereby enabling the segmenting of
tracts and providing tract-specific measures such as volume, MD, and FA. Since DWI does
not directly measure neurons themselves, but rather assesses the diffusion characteristics
of water in tissue, these metrics represent water, not the neurons. We investigated the
changes in tract volume, MD, and FA across different stages of cognitive impairment. Our
analyses aimed to elucidate the relationship between these neuroimaging biomarkers and
the progression from cognitively normal (CN) status to mild cognitive impairment (MCI)
and Alzheimer’s disease.

Linear mixed effects models were employed to assess the effects of diagnosis and age
on tract volume, MD, and FA, accounting for random effects due to individual differences.
Disease-related changes were examined by using linear mixed effects models to understand
the interaction of disease stages, age, tract volume, MD, FA, and tract length. We employed
the lmer function from the R package lme4 [52]. Specifically, the model was formulated
as yij = β0 + β1 × x1ij + β2 × x2ij + uj + εij, where yij represents the tractography mea-
surement (tract volume, MD, FA, and length were each considered separately) for the
ith observation within the jth subject. The predictors x1ij, x2ij represent the fixed effects
disease stage and age. The term uj is the random intercept for subject j, assumed to follow
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a normal distribution uj ∼ N
(
O, σ2

u
)
. The residual error term εij is also assumed to be

normally distributed with εij ∼ N
(
O, σ2). This modeling approach allowed us to examine

the effects of the predictors while accounting for the hierarchical structure of the data and
the within-subject variability.

Q4. To what extent can tractography metrics predict cognitive decline?

Pairwise Wilcoxon Rank Sum Tests were conducted to identify significant differences
in diffusion metrics across these groups, with the Benjamini–Hochberg correction [53]
applied to control the false discovery rate, acknowledging the heightened risk of type
I errors due to multiple comparisons. Features exhibiting a false discovery rate (FDR)
corrected p-value lower than 0.05 were considered for further investigation as potential
predictors in our classification models. To explore the predictive capacity of tractography
metrics for cognitive decline, we segmented our dataset by current disease sub-stage as
determined by physicians based on established clinical criteria. We created a cumulative
distribution plot to understand the disease stages in which features exhibit significant
differences. We further elucidated our understanding of which features were exhibiting
significant differences by ranking the frequency of occurrence in a simple bar chart. Our
expectation is that features exhibiting significant differences between disease classifications
may offer predictive potential as classifiers, as we seek to develop models that indicate the
potential for disease conversion towards AD.

In our total sample population of 264 participants across 434 sessions, only 14 partici-
pants converted to the next disease stage within 3 years (these participants are henceforth
referred to as Converters), and only 15 converted within 10 years. Given our significant class
imbalance, we divided our data into training and test subsets with a 60–40 split that sought
to ensure the balance of our response variables across the training/test datasets, leaving
5 postitive classes (Converters) in our test data. We employed Adaptive Synthetic Sampling
Approach for Imbalanced Learning (ADASYN), version 1.3.1, from the smotefamily pack-
age (version 1.3.1) [54] to compensate for our significant class imbalance. Subsequently, we
applied a rigorous machine learning model development process involving the use of the
ElasticNet grid search strategy to perform feature reduction, using conversion to the next
disease stage within three years as a response variable; we varied α between 0 and 1.0 to
identify the most parsimonious feature set for subsequent model development.

We employed a repeated 10-fold cross-validation strategy to ensure robustness with
various models, including support vector machines, decision trees, random forest, and eX-
treme gradient boosting. We used a grid search technique to identify the best classification
model (Normal vs. Converter) and hyper-parameters predictive of cognitive decline and
used Kappa as an evaluation metric for model comparison.

3. Results

Q1. Do phenotypic characteristics predict cognitive decline within our dataset?

In our analysis of various neuropsychological and neurobiological indicators, the
Kruskal–Wallis test revealed statistically significant differences across the three Alzheimer’s
disease stages: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer’s
disease (AD). Significant differences were observed for all of our neuropsychological
indicators and many of our neurobiological indicators, as shown in Table 4.

As expected [55], the Clinical Dementia Rating-Sum of Boxes (CDR-SB) scores, a
comprehensive measure of dementia severity, exhibited very high chi-squared values
(χ2 = 205.51, p < 0.001), indicating pronounced differences across disease stages, thus
supporting CDR-SB’s ability to stage severity of Alzheimer dementia and mild cognitive
impairment. The observation of a high chi-squared value for the CDR-SB test along with
an observed long tail depicted in the density plot found in Figure 2 suggests that the MCI
and AD disease stages have more variability and more extreme values than CN, signalling
a potential sensitivity for early detection of conversion from CN.
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Table 4. Differences in the distribution of neuropsychological and neurobiological indicator values
across diagnostic categories (CN, MCI, and AD).

Indicator CN MCI AD Mean IQR
χ2

(Kruskal–
Wallis)

p-adj

Neurophysiological Indicators

ADAS-11 139 80 40 8.9 7.2 115.39 1.05 × 10−24

ADAS-13 139 80 38 13.9 10.3 131.18 4.58 × 10−28

AV45 92 42 25 1.2 0.4 24.96 2.29 × 10−5

CDR SB 140 78 41 1.4 1.5 205.51 3.78 × 10−44

FAQ 138 75 40 3.3 3.0 149.02 6.56 × 10−32

FDG 5 57 30 1.2 0.1 33.05 5.34 × 10−7

MMSE 138 82 40 27.5 3.0 108.51 2.74 × 10−23

MOCA 259 82 38 24.1 6.0 128.39 1.72 × 10−27

RAVLT 139 80 38 40.2 20.0 115.06 1.14 × 10−24

Neurobiological Indicators

Brain vol 132 76 35 1,031,622.0 140,524.0 8.49 2.86 × 10−2

Entorhinal vol 130 77 34 3940.6 1031.0 29.08 3.39 × 10−6

Fusiform vol 131 77 33 17,953.6 3295.0 22.52 5.16 × 10−5

Hippocampus
vol 133 76 32 7060.3 1531.6 60.00 8.41 × 10−13

ICV 136 73 37 1,468,892.6 233,267.5 1.43 4.90 × 10−1

Middle temporal
vol 131 77 33 20,163.5 3979.0 23.70 3.56 × 10−5

Ventricle vol 135 75 35 40,103.4 27,051.5 21.45 6.60 × 10−5

p-adj refers to Benjamini–Hochberg-corrected p-values.

Figure 2. CDR-SB density plot exhibiting differences across diagnosis classification (n = 140 for CN,
n = 78 for MCI, and n = 41 for AD). Outliers appear as points beyond the whiskers.

Other neuropsychological assessments, such as the Alzheimer’s Disease Assessment
Scale (ADAS-11 and ADAS-13), Mini-Mental State Examination (MMSE), and the Mon-
treal Cognitive Assessment (MOCA), showed substantial discriminative power (ADAS-11:
(χ2 = 115.39); ADAS-13: (χ2 = 131.18); MMSE: (χ2 = 108.51); MOCA: (χ2 = 128.39); all
have p < 0.001). These results highlight the efficacy of these tests in differentiating among
the stages of Alzheimer’s disease.

The Rey Auditory Verbal Learning Test (RAVLT) immediate recall scores exhibited
significant differences among the diagnostic groups (CN, MCI, and AD), as evidenced by
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the Kruskal–Wallis test (χ2 = 115.06, p < 0.001). Figure 3 demonstrates how the RAVLT
scores progressively decrease from cognitively normal individuals to those with MCI and
further to individuals with AD.

Figure 3. RAVLT density plot exhibiting differences across diagnosis classification (n = 139 for CN,
n = 80 for MCI, and n = 38 for AD). Outliers appear as points beyond the whiskers.

In terms of neurobiological markers, volumes of key brain regions, such as the hip-
pocampus, entorhinal cortex, fusiform gyrus, and the middle temporal gyrus, showed
significant differences across the disease stages (hippocampus: χ2 = 60.00, p < 0.001;
entorhinal: χ2 = 29.08, p < 0.001; fusiform: χ2 = 22.52, p < 0.001; middle temporal:
χ2 = 23.70, p < 0.001).

Q2. Are WM tract features predictive of neuropsychological and neurobiological indicators?

The feature reduction strategy employed by this study substantially streamlined the
initial high-dimensional feature space of DWI tractography measurements to a manageable
subset. From an initial 1.3 million features, we identified high variance features to reduce
our dataset to 134,340 explanatory variables that were imputed and further refined by using
ElasticNet regularization. The ElasticNet model’s α parameter, which balances L2 and L2
penalties, was optimized independently for each response variable, with values ranging
from 0.5 to 0.8. This approach aimed to balance feature retention and model complexity.
The final feature count for each response variable is depicted in Table 5.

Table 5. Feature reduction profile of DWI tractography data.

Features after Elasticnet Regularization
Response α=0.5 α=0.75 α=0.8

ADAS-11 507 295 352
ADAS-13 175 203 164
CDR-SB 353 155 40
FAQ 77 85 101
FDG 129 45 27
MMSE 12 6 9
MOCA 36 89 96
RAVLT 181 217 197
Entorhinal Vol 69 19 94
Fusiform Vol 360 267 392
Hippocampus Vol 521 319 128
Mid Temp Vol 154 202 168
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We used repeated 10-fold cross-validation (10 iterations) to train our models for each
of the neuropsychological and neurobiological indicators identified (Table 4) as being
discriminative of diagnosis classification. Despite the rigorous model development process,
our predictive models showed varying levels of predictive performance across different
indicators (Table 6). For AV45, an imaging biomarker for amyloid plaque accumulation
(mean: 1.2; IQR: 0.4), the model yielded error metrics (RMSE: 0.2; MAE: 0.15) that were
lower than the sample mean and IQR. Hippocampal volume (mean: 7060.3; IQR: 1531.6)
predictions resulted in error metrics of RMSE of 885.20 and MAE of 702.23, and the model
for MoCA scores (mean: 24.1; IQR: 6.0) produced error metrics of RMSE of 4.09 and MAE
of 3.12, suggesting a 13% error on average in assessing a patient’s MoCA scores based on
DWI MRI analysis alone. Most of our models had R2 values below 0.4, indicating limited
explanatory power. The model for FDG, a marker for glucose metabolism, captured the
most variability in the data, with an R2 of 0.66.

Table 6. Best prediction models of neuropsychological and neurobiological indicators.

Indicator Mean IQR Model α RMSE MAE R2

Neuropsychological Indicators
ADAS-11 8.9 7.2 Random forest 0.75 5.91 4.22 0.18
ADAS-13 13.9 10.3 Random forest 0.5 8.25 6.20 0.30
AV45 1.2 0.4 Decision trees 0.5 0.20 0.15 0.15
CDR-SB 1.4 1.5 SVM Radial 0.8 2.32 1.61 0.19
FAQ 3.3 3.0 Random forest 0.8 3.53 2.76 0.66

FDG 1.2 0.1 Multilayer
Perceptron 0.5 0.09 0.07 0.08

MMSE 27.5 3.0 Linear 0.8 3.72 2.83 0.12
MOCA 24.1 6.0 Gradient boosting 0.75 4.09 3.12 0.25
RAVLT 40.2 20.0 Decision trees 0.5 11.9 9.70 0.29

Neurobiological Indicators
Entorhinal Vol 3940.6 1031.0 Decision trees 0.8 864.96 659.14 0.11
Fusiform Vol 17,953.6 3295.0 SVM Radial 0.8 2352.72 1841.73 0.17
Hippocampus Vol 7060.3 1531.6 Random forest 0.8 885.20 702.23 0.46
Mid Temporal Vol 26,163.5 3979.0 Gradient boosting 0.75 2622.42 2151.96 0.23

While we found that there is lack of comprehensive analysis using DWI-only metrics
to predict these indictors, there is alignment with several studies.

A study by Patil et. al. [56] found that no strong correlation was observed for
any DWI measurements in any region with respect to MMSE. This was supported by
Jokinen et al. [57], who determined that white matter ADC was not predictive of poor
cognitive outcomes.

Correlational analysis is the most common approach to presenting the association
between DWI and clinical scores. A recent study by Saito et al. [58] consistently reported
low correlations between DWI and many of the indicators we evaluated in this study.

Q3. Does baseline WM tract volume change with cognitive decline?

Our findings (Table 7) show significant decreases in both MD and FA across both the
MCI and AD stages compared with CN, even after adjusting for age, with tract volume
analyses revealing significant increases with the progression of cognitive decline towards
the later stages of the disease (AD), after adjusting for age. There was not a significant
difference in tract volume between the CN and MCI stages.
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Table 7. Estimated effects of diagnosis and age on MD, FA, and tract volume using linear mixed
effects models.

Variable Estimate Std. Error df t-Value p-adj

Mean diffusivity
Intercept 1.41 × 10−3 3.39 × 10−5 2.83 × 102 41.55 2.08 × 10−122

Diagnosis (MCI) −3.36 × 10−5 8.16 × 10−7 1.12 × 107 −41.19 2.00 × 10−16

Diagnosis (AD) −3.90 × 10−5 1.29 × 10−6 1.12 × 107 −30.17 8.52 × 10−200

Age −6.13 × 10−6 9.42 × 10−8 1.10 × 107 −65.05 2.00 × 10−16

Fractional anisotropy
Intercept 3.94 × 10−1 2.79 × 10−3 1.30 × 103 141.16 2.00 × 10−16

Diagnosis (MCI) −2.64 × 10−3 2.44 × 10−4 7.20 × 106 −10.80 6.75 × 10−27

Diagnosis (AD) −1.97 × 10−3 3.86 × 10−4 5.35 × 106 −5.08 3.69 × 10−7

Age −2.93 × 10−4 2.80 × 10−5 1.05 × 106 −10.47 1.60 × 10−25

Tract volume
Intercept 2.73 × 103 2.19 × 102 5.69 × 103 12.48 1.07 × 10−34

Diagnosis (MCI) 2.78 × 101 2.38 × 101 1.00 × 106 1.17 2.43 × 10−1

Diagnosis (AD) −1.22 × 102 3.76 × 101 5.35 × 105 −3.24 1.60 × 10−3

Age 2.51 × 101 0.26 × 101 6.76 × 104 9.37 1.57 × 10−20

Tract length
Intercept 1.62 × 101 0.19 × 101 1.78 × 103 8.41 8.36 × 10−17

Diagnosis (MCI) 0.20 × 101 1.79 × 10−1 5.54 × 106 10.87 2.27 × 10−27

Diagnosis (AD) −0.36 × 101 2.83 × 10−1 3.72 × 106 −12.98 3.23 × 10−38

Age 6.35 × 10−1 2.05 × 10−2 6.01 × 105 30.97 27.21 × 10−210

p-adj: linear mixed effects model p-values were estimated based on Satterthwaite’s approximation, and subse-
quently FDR-corrected.

The MCI group is associated with an increase in mean tract length compared with the
CN group, holding age constant.

Q4. To what extent can tractography metrics predict cognitive decline?

Among the 1.3 million tract measurements assessed, 5394 tract measurements (0.3%)
exhibited statistically significant differences among groups after performing pairwise
Wilcoxon Rank Sum Tests with Benjamini–Hochberg correction [53] (p < 0.05). In the
cumulative distribution shown in Figure 4, we note the curve deviation of the statistics
from the null distribution increases modestly as participants transition into later stages of
cognitive impairment, suggesting tract anomalies may be more pronounced in later stages
of the disease. The curve deviations of the comparison of mild cognitive impairment (MCI)
to late mild cognitive impairment (LMCI) (blue) are larger than other groups, suggesting
potentially higher effect sizes [59].

Figure 5 presents a frequency plot of measurement types identified as significant
during the transition across the MCI → LMCI → AD cognitive impairment stages. The plot
ranks measurement types by their frequency of occurrence, emphasizing which measure-
ments are most prevalent in highlighting tract anomalies associated with cognitive decline.
The higher-frequency measurements relate to the morphometrics of detected tracts (length
and volume) as well as differences in MD as expected [60].

We employed four machine learning algorithms, including support vector machine,
random forest, XGBoost, and MARS, to predict progression from a normal disease stage to
a “Converter” status, indicative of advancement to a more severe disease stage within three
years of imaging. These models were evaluated by using a repeated 10-fold cross-validation
technique to ensure the reliability and stability of our predictions.

66



Appl. Sci. 2024, 14, 7001

Figure 4. Distribution of tract measurement anomalies across cognitive impairment stages. This figure
illustrates the deviation of tract measurement statistics from the null distribution across different
stages of cognitive impairment. The curve deviations increase during transitions to later stages of
cognitive impairment. The comparisons between mild cognitive impairment (MCI) and late mild
cognitive impairment (LMCI) (shown in blue) exhibit larger deviations compared with other groups,
suggesting more pronounced tract anomalies in these later stages of the disease.

Figure 5. The frequency of measurement type for those tracts that exhibited significant differences
among groups suggests that tracts may deteriorate quickly. Tract volume dominates the anomalies
detected and is more likely to characterize differences between late mild cognitive impairment and
Alzheimer’s disease.

All four models exhibited nearly identical performance metrics across the evaluation
scheme. The accuracy for each model was observed to be between 0.4836 and 0.4985, with
a 95% confidence interval ranging from 42.89% to 55.33%.

3.1. Comparison with Similar Studies

Despite many studies claiming that diffusion metrics offer potential for prognostic
biomarkers of AD (Table 8), many of these studies highlight significant effect sizes but do
not actually attempt prediction. Most studies that classify current disease stages involve
the consolidation of clinical indicators, health record data, and data from multiple imaging
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modalities to achieve maximum accuracy. Our analysis has determined that clinical vari-
ables alone are sufficient to achieve an averaged balanced accuracy of 88%, a specificity of
92%, and a sensitivity of 84% with our current dataset. The addition of individual tract-
specific diffusion data contributed very little to our models (accuracy of 88%, specificity of
93%, and sensitivity of 85%). When tract-specific measurements are used in isolation, DWI
data appear to offer relatively weak performance when classifying disease stages of AD.

Table 8. Comparative analysis of our proposed model with other models applied to the ADNI dataset.

Authors Highlights Participants Performance

Classification of current disease stage

Chen (2023) [61]

The study investigated white matter alterations in the Alzheimer’s
continuum by using diffusion tensor imaging, finding widespread
changes correlated with Tau pathology, particularly in the
cingulum, which may serve as a promising biomarker for
preclinical Alzheimer’s disease.

236 ADNI3 subjects (176 CN,
36 MCI, and 24 AD)

74% Acc, 69% AUC, 58%
Sens, and 78% Spec

Chen (2023) [62]

A model that enhances multi-modal AD diagnosis by using
orthogonal latent space learning, feature weighting, and graph
learning to improve discriminative information retention and
relationship encoding among samples.

757 ADNI2 subjects (283 CN,
330 MCI, and 144)

67% Acc, 69% Sens, 64% Spe,
and 71% AUC

Deng (2023) [63]

The Fully Connected Multi-Kernel Convolutional Neural Network
model accurately diagnoses Alzheimer’s disease and mild
cognitive impairment from diffusion tensor imaging (DTI) data
while also generating fiber probability maps to assist in clinical
diagnosis.

413 subjects (162 CN, 130
MCI, and 121 AD)

96% Acc, 97% Sens, 100%
Spec, and 98% Auc

Khan (2022) [64] Developed a 3-tiered cognitive hybrid machine learning algorithm
for disease prediction.

818 ADNI1 subjects (229 CN,
396 MCI, and 193 AD)

95% Acc, 95% Sens 97% Spe,
and 99% Auc

Razzak (2022) [65]

Proposes an integrative deep ensemble learning framework called
PartialNet, tailored for Alzheimer’s detection using brain MRIs,
demonstrating improved predictive performance and efficiency
compared with DenseNet, with notable gains in both multiclass
and binary class AD detection on benchmark datasets.

350 subjects (95 AD, 146
MCI, and 95 CN)

98% Acc (mean of CN, MCI,
and AD)

Hazarika (2022) [66]

The study discusses various deep learning models for Alzheimer’s
disease classification, highlighting DenseNet-121’s strong
performance and computational inefficiency, and proposes a
modified DenseNet-121 with depth-wise convolutions.

210 (70 CN, 70 MCI, and
70 AD)

98% Acc (mean of CN, MCI,
and AD)

Prediction of future conversion

Stone (2021) [67] This study identified diffusivity measures from specific white
matter tracts, particularly axial diffusivity, by using only DTI data.

87 subjects: 34 Converted
and 53 Not converted 72% Acc and 67% AUC

Velazquez (2022) [68] Prediction of conversion from mild cognitive impairment (MCI) to
AD using DTI data with clinical variables from health records.

384 subjects: 49 Converted
and 335 Not converted 98% Acc and AUC 99%

3.2. Adaptions to Methodology

After reflecting on the results obtained while answering Questions 1–4 in our research
methodology, it was important to consider alternative mechanisms for understanding
the probability with which a participant will exhibit further disease progression. We
found limited evidence that tractography metrics could be useful to predict established
neuropsychological and neurobiological biomarkers (Table 6), and we found considerable
evidence by using linear mixed effects modeling that tractography metrics exhibit an effect
on disease stages while accounting for age (Table 7).

Given the high dimensionality of our data and probable loss of meaning resulting
from aggressive feature selection, we considered an approach whereby we condensed our
features into aggregate measures at the seed level to provide a representative feature as an
alternative to feature reduction strategies. Formula (1) represents the Z-score for a given
region measurement of a participant’s session.

Zijkl =
Xijkl − μk

σk
(1)

where xijkl is the kth measurement (e.g., those identified in Figure 5) for the ith participant
in the jth session from the lth seed region targeting a specific region. μkl is the mean of the
kth measurement, and σk represents the standard deviation for the kth measurement.

After scaling the measurements, we determined the mean Z-score for each participant,
session, and ROI (Formula (2)). A value at this aggregated level gives insights into how
a participant’s ROI may be different from the same region in other participants. For
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example, mean tract length of all tracts connected to the paracentral cortex for a given
participant’s session.

Zijk =
1
M

M

∑
l=1

Zijkl (2)

With a more condensed set of features to move forward with, we continued to rely on
an ElasticNet grid search to perform feature selection, resulting in a reduction from 2994
features to 2, relying on an α value of 0.6. These two features identified were the features
representing the hemispheric lateralization of mean tract volume for tracts originating from
the supramarginal and paracentral regions.

Relying on a dataset with only two features representing these diffusion-derived
anatomical measurements, we applied several machine learning models to predict the
classification of individuals into two groups: Normal (no conversion) and those who would
convert to Alzheimer’s within three years. The models tested included eXtreme gradient
boosting (XGB), multivariate adaptive regression splines (MARS), support vector machine
(SVM), and random forest (RF), with results presented in Table 9.

Table 9. Best prediction models of Normal vs. Converter within 3 years.

Model AUROC AUPRC F1 Accuracy Sensitivity Specificity Kappa p-adj

RF 1 0.74 0.75 0.64 0.71 0.52 0.90 0.42 1.11 × 10−14

XGBTree 2 0.77 0.72 0.57 0.67 0.44 0.90 0.34 3.78 × 10−10

MARS 3 0.64 0.56 0.50 0.61 0.48 0.74 0.26 7.20 × 10−5

SVM 4 0.54 0.50 0.24 0.50 0.16 0.84 −0.00 0.05 × 101

1 Random forest mtry = c(2, floor(sqrt(num_features)), floor(num_features/3)) 2 eXtreme gradient boosting
nrounds = seq(from = 25, to = 100, by = 25); max_depth = seq(from = 5, to = 35, by = 10); eta = seq
(from = 0.2, to = 1, by = 0.2); gamma = seq(from = 1, to = 10, by = 1); colsample_bytree = seq(from = 0.6,
to = 1, by = 0.2); min_child_weight = seq(from = 2, to = 5, by = 1); subsample = 1 3 Multivariate adaptive regression
splines; degree = seq(from = 1, to = 3, by = 1); nprune = seq(from = 1, to = 10, by = 1) 4 Support vector machine;
sigma = (0.001,0.01,0.1,1,10,100); C = (0.001,0.01,0.1,1,10,100).

Overall, the random forest model performed the best, achieving an Area Under the
Receiver Operating Characteristic (AUROC) of 0.74, indicating a good ability to differentiate
between “Converter” and “Normal” classes. The Area Under the Precision–Recall Curve
(AUPRC) was 0.75, reflecting a strong performance in capturing the “Converter” class,
which is particularly important given the class imbalance of our original data (see Figure 6).
The F1-score was 0.64, providing a harmonic mean of precision and recall, and the overall
accuracy of predicting the correct class was 71%. The model’s ability to detect “Converters”
(true positive) has room for improvement, with a sensitivity of 0.52. The specificity was
much better, 0.90, suggesting a strong ability to identify Normal subjects. This was expected
given the large class imbalance. The model exhibited a Cohen’s Kappa of 0.42, indicating
that there is moderate agreement between the predicted classifications and the actual
classifications. These results are consistent with other studies who attempted to predict
future disease conversion by using DWI-only data (Table 8).

To enhance the predictive power of this model, we integrated these two diffusion
metrics with traditional clinical variables, including MMSE, MoCA, RAVLT, CDR-SB, FAQ,
hippocampal volume, entorhinal volume, and Aβ and Tau indicators. This hybrid model
achieved a significant improvement, yielding an accuracy of 86%, a sensitivity of 86%, and
a specificity of 93%. These results surpass the diagnostic performance of current clinical
assessments, where the sensitivity ranges from 70.9% to 87.3% and the specificity from 44.3%
to 70.8% [69]. Our findings emphasize the value of a hybrid machine learning approach
that combines advanced neuroimaging techniques with conventional clinical assessments.
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Figure 6. Receiver operating characteristic plot and corresponding precision recall plot for eXtreme
gradient boosting model predicting subjects who exhibit worsening disease stages within three years
(Converters).

4. Discussion

Alzheimer’s disease is a complex and widespread [20] neurodegenerative disease
that manifests itself in multiple ways [6,70], including atrophy of the hippocampus, en-
torhinal region, and middle temporal regions, as well as accumulation of Aβ and Tau
proteins. Tractography measurements derived from diffusion-weighted images appear
to show limited potential as a single scan test capable of offering predictions for many
of the traditional neuropsychlogical and neurobiological assessment metrics used today;
however, they may still contribute as an important tool to a comprehensive approach to
understanding the complexity of AD and characterization of disease staging for some of
these clinical variables.

Assessing and diagnosing Alzheimer’s disease remain complex and challenging due
to the lack of a complete model that can identify the disease in any stage. Currently,
diagnosis often relies heavily on subjective assessments derived from neuropsychological
and neurobiological tests carried out in primary care settings. These tests, while valuable,
can be influenced by various factors, such as the examiner’s expertise, the time of day when
the test is administered, the testing environment, and the patient’s physical and emotional
state at the time of testing [71].

The inherent variability and subjectivity in these evaluations can lead to inconsistent
diagnoses, particularly in the early or preclinical stages of Alzheimer’s disease, where
symptoms may be subtle or overlap with other conditions, such as ageing. Clinic patho-
logical studies have shown that the diagnostic sensitivity of clinicians is between 70.9%
and 87.3% and the specificity is between 44.3% and 70.8% [69]. Additionally, traditional
diagnostic methods may fail to capture the full spectrum of neuropathological changes
associated with Alzheimer’s, limiting their effectiveness in early detection and intervention.
In light of this, the aim of our study was to elucidate the contribution that diffusion-
weighted imaging can make to improving model development towards the early detection
of Alzheimer’s. Machine learning models hold significant promise for improving the eval-
uation of Alzheimer’s disease by offering more objective, accurate, and scalable diagnostic
tools. Machine learning can uncover subtle and complex relationships within the data
that may not be apparent through traditional methods, potentially leading to earlier and
more accurate diagnoses, a better monitoring of disease progression, and personalized
treatment plans.
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4.1. Novel Contributions

Our study identified the hemispheric lateralization of tract volumes connected to the
supramarginal gyrus and paracentral regions as a potential prognostic biomarker of AD
disease. The supramarginal gyrus is part of the parietal lobe and plays a role in language
perception and processing [72], spatial orientation and tool use [73], emotion recogni-
tion [74], writing and word recognition [75], and the integration of sensory information [76].
This region’s association with AD and dementia has been reported in the literature [77–80],
typically in later stages of the disease. In the most recent study referenced, the authors
used magnetoencephalography to reveal that decreased beta-band intensity in the left
supramarginal gyrus is associated with decreased neuropsychological assessment scores
and increased clinical severity of cognitive impairment, suggesting its importance in assess-
ing cognitive status. Our findings support this observation by providing complimentary
evidence that changes in volume asymmetries of tracts connecting the supramarginal gyrus
may be associated with cognitive impairment and dementia. The deterioration of white
matter tracts connecting the supramarginal gyrus may lead to reduced efficiency of the
default mode network, to which the supramarginal gyrus belongs.

While our final model for identifying “Converters” leaves some room for improvement,
overall, the model demonstrates commendable ability in distinguishing Converter from
Normal subjects, particularly by achieving good AUROC and AUPRC scores based on only
two features. However, the moderate sensitivity and low specificity suggest that there is
more work to do in terms of enhanced feature selection, alternative model development,
or the fine tuning of the current models. This analysis could be expanded by integrating
DWI and resting state functional MRI data around the regions implicated in our model.
Existing resting state studies indicate that significant differences in signal intensity exist for
the same regions our models use [81,82]. Graph theoretical metrics could also be included
in this analysis to understand if changes in nodal efficiency across different disease stages
could also strengthen our model. There do appear to be imaging data available for the
ADNI3 cohort that calculate the network failure quotient from resting state functional MRI
images, which may encompass these two potential enhancements to our analysis.

In addition, the application of proven machine learning algorithms with a consoli-
dated dataset of whole-brain tractography, phenotypic, and neuropsychological data for
early biomarker identification in Alzheimer’s disease (AD) represents a thorough and
integrative approach. While tractography-focused predictive analytics has been widely
used in neuroscience research, comprehensive whole-brain analyses on longitudinal data
remain relatively rare. Our study reinforces the utility of this approach by demonstrating
its application in a comprehensive longitudinal dataset. Utilizing well-established machine
learning techniques in combination with exhaustive tractography and neuropsychological
data provides a robust methodology for investigating early biomarkers of AD. Our findings
add to the existing body of evidence elucidating the potential of diffusion MRI as a tool
for the early detection and monitoring of neurodegenerative diseases, highlighting the
importance of integrating multi-modal data for enhanced predictive analytics.

Our findings confirm the significant predictive value of existing neurobiological and
neuropsychlogical biomarkers in detecting Alzheimer’s disease. The biomarkers identified
in Table 8 demonstrate that while some biomarkers may be more effective in different stages
of the disease, they collectively provide a robust toolbox for disease detection. The RAVLT is
of particular interest, given that it is one of the earliest indicators of conversion from CN to
MCI [8]. Our findings highlight the pronounced impact of Alzheimer’s disease on memory
function. Notably, the RAVLT is recognized as a critical diagnostic tool, particularly due
to its sensitivity in detecting early memory deficits that often signify the transition from
mild cognitive impairment (MCI) to Alzheimer’s disease (AD) [8]. Furthermore, Figure 3
provides a visual depiction of these differences, illustrating a clear distinction among the
CN, MCI, and AD groups. This separation is indicative of the progressive nature of memory
impairment in AD pathology.
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Our analysis of white matter tract features revealed moderate but notable associations
with neurobiological and neuropsychological markers. Our results based on predicting cog-
nitive test scores indicate some potential for relying on DWI-based MRI to non-subjectively
assess cognitive progression in AD. The results demonstrate an MAE of 3.12 for the MoCA,
a test which is on a scale of 0 to 30, implying a 13% error on average in assessing a patient’s
cognitive outcomes based on DWI MRI analysis alone. This is an interesting finding, which
implies that one day, we may be able to create predictive technologies informed by MRI
that may be able to accurately predict a patient’s cognitive test scores. Many patients with
AD despise taking cognitive tests, implying that technologies developed to monitor their
disease progression may be a welcome development in AD patient management.

A significant finding of our study is the relationship between tract characteristics
and cognitive decline (Table 7). Our results suggest that the brain might be undergoing
specific microstructural changes that both restrict diffusion (lower MD) and disrupt the
coherence of white matter tracts (lower FA), while at the same time, the increases in tract
volume during later disease stages might reflect underlying processes, such as the cellular
proliferation of astrocytes [70,83], or changes in the extracellular matrix [84], potentially
confounding volume measurement, although further studies are needed to explore this.
Conceivably, an increase in volume may be symptomatic of inflammation leading to edema,
which could increase the extracellular space. A corresponding increase in MD would have
supported this hypothesis [85]; however, that was not observed in our data.

Our results highlight that changes in tract length may offer a useful biomarker for
disease staging. A significant increase (p = 2.266 × 10−27) suggests that on average,
MCI diagnosis is associated with a longer tract length than observed in CN participants,
whereas the AD group is associated with a decrease in a mean tract length while holding
age constant, which is consistent with expectations of neurodegeneration leading to tract
deterioration. There is support in the existing literature of increased tract length with
age [86], and future research may explore the potential that early or mild stages of cognitive
decline could trigger compensatory mechanisms [87] in the brain, potentially leading to an
increase in tract length as the brain attempts to maintain connectivity.

Our attempts to leverage tract-specific measurements from diffusion-weighted images
that were correlated with existing neurobiological and neuropsychlogical biomarkers as a
means to identify cognitive impairment were initially unsuccessful. Our model accuracy
aligned with the No Information Rating, indicating that our models’ predictions were no
better than random chance. Further, the Cohen’s Kappa statistic for each model was 0,
reflecting the absence of agreement beyond chance between the predicted outcomes and
the actual disease progression status.

There are several practical implications from these findings. The identification of tract
volume asymmetries in the supramarginal gyrus and paracentral regions offers a nascent
but promising potential prognostic biomarker as a non-invasive method for the detection
and monitoring of disease progression. If sufficiently advanced, this approach could be
integrated into routine clinical practice, providing clinicians with a valuable tool to assess
disease progression and inform treatment plans.

4.2. Limitations

Limited sample sizes in neuroimaging studies can compromise the reliability and
validity of the findings reported [88]. Small sample sizes reduce the statistical power, in-
creasing the likelihood of Type 1 (false positive) and Type 2 (false negative) errors. While the
original ADNI-3 cohort is larger than many studies (960 subjects across 6050 scans), many
subjects lacked diffusion-weighted imaging data. Our study included 264 participants with
a limited number of scan sessions per participant (between one and five).

We acknowledge the potential source of error resulting from the smoothing effects of
interpolation as a result of registering DWI images to T1. Our pipeline strategy was initially
developed for a large dataset of noisy clinical data [26,29], where it was determined after
many approaches that registration of DWI to T1-weighted images before ODF reconstruc-
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tion offered the most reliable alignment approach with the highest number of successful
registrations. It was felt that lower rates of successful registration were highly undesirable
and could potentially skew the results of analyses more so than the error associated with
the simple smoothing that results from the interpolation process.

We relied on single-shell DWI, where diffusion measurements are acquired with a
single b-value. Single-shell DWI has been shown to underperform in resolving complex
fiber configurations within a voxel compared with multi-shell DWI [89]. The limitations of
single-shell DWI mean that our study might not fully capture the complexity of white matter
architecture, particularly in regions where multiple fiber pathways intersect [90]. This can
potentially lead to the mischaracterization of fiber tract integrity and connectivity, especially
with respect to the tract length measurement we considered in our study. Consequently, our
findings regarding tract length might be less reliable than if we had access to more sensitive
multi-shell images that offer opportunities for improved delineation of crossing fibers.

Given the breadth of our data, we relied on aggressive feature reduction strategies
to make machine learning feasible. This included only considering the features with the
highest variability (top 10%) after removing features with low variance or highly correlated
redundant features. This may have resulted in the exclusion of potentially important
data that were never introduced during model training. As a consequence, there may be
significant characteristics within our data that could have enhanced model performance
but were excluded early in the process.

The results of our adapted machine learning strategy are promising, though they offer
room for improvement. While it is encouraging to achieve this classification accuracy with
only two measures based on the hemispheric lateralization of mean tract volume for tracts
originating from the supramarginal and paracentral regions, there are specific limitations
that should be addressed. Our highly imbalanced proportion of Converter to Normal
participants (14/434) necessitated a reliance on synthetic data to better balance for reliable
predictions. This deficiency is likely a contributing factor to our low sensitivity scores, as
synthetic data do not perfectly capture the complexity and variability of real-world data.
The limited sample size restricts the statistical power and generalizability of our findings.
More data would enhance the model training process of our ML models, allowing for
better feature learning and reducing the risk of overfitting. In particular, increasing the
number of individuals who exhibit progressive disease pathology would help provide a
more balanced dataset.

4.3. Conclusions

Overall, our results align with the existing literature on the neurodegenerative pat-
terns characteristic of Alzheimer’s disease [5,91]. The observed microstructural changes
and their impact on cognitive function highlight the importance of integrating advanced
neuroimaging techniques with traditional neuropsychological assessments. Future research
should focus on refining these predictive models, exploring additional biomarkers, and
validating our findings in larger, more balanced cohorts to enhance the robustness and
generalizability of our conclusions.
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Abstract: V̇O2max is recognized as a key measure in exercise physiology and sports medicine.
However, only 20–50% of maximal incremental exercise tests (IET) result in a plateau of V̇O2 (V̇O2pl).
To our knowledge, no study has yet examined the possible difference in brain activity during an
IET, in V̇O2pl and non-plateau athletes with the same V̇O2max and age. This study aimed to shed
light on the central governor hypothesis, namely that the inability to reach a V̇O2pl may be dictated
by the brain rather than by a peripheral physical limit. This hypothesis can now be explored using
electroencephalography (EEG) during IET, measuring concomitant power in specific frequency bands.
Forty-two athletes were divided into two groups: those who practiced endurance sports and those
who did not, and were asked to perform an IET. EEG signals and gas exchange were recorded. A
V̇O2pl was observed in twenty-two subjects (52%). EEG power increased in all subjects during IET,
except in the alpha band, which showed variability, but not significantly (64% increase, 34% decrease,
p = 0.07). No differences were found between endurance athletes and non-endurance athletes, except
for V̇O2max (60.10 ± 6.16 vs. 51.77 ± 6.41, p < 0.001). However, the baseline-corrected ratio of EEG
power to V̇O2 was found to decrease in all subjects during IET, in the alpha, beta and theta bands. In
conclusion, the presence or absence of a V̇O2pl is not related to the type of EEG response during an
IET. Nevertheless, the decline in brain and V̇O2 powers/ratios in all frequency bands suggests that
aerobic power may be constrained by brain mobilization.

Keywords: EEG; exhausting exercise; maximal oxygen consumption; fatigue; central governor;
endurance; cycling
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1. Introduction

The fundamental tenet of maximal oxygen consumption (V̇O2max), positing a thresh-
old in speed or work rate beyond which no further increases in V̇O2 is observed, traces its
origins back in the seminal work of Hill and Lupton in 1923 [1]. They observed a limit to the
body’s ability to use oxygen during exercise, beyond which oxygen consumption reaches
a plateau despite increasing exercise intensity. Currently, V̇O2max is recognized as a key
measure in exercise physiology and sports medicine [2,3]. However, it should be noted
that the certainty of reaching V̇O2max requires the observation of a V̇O2 plateau (V̇O2pl),
defined as the point at which V̇O2 remains relatively constant despite increasing work rate.
Therefore, by definition, diagnosis of V̇O2max requires a V̇O2pl, whether it occurs at the
end of a continuous incremental test, between the final stages of a discontinuous test, or
between an incremental test and a subsequent verification test, as Poole and Jones pointed
out [4].

The observation that only a subset of participants in an incremental test have a V̇O2pl
highlights the variability inherent in such assessments. Reported incidences vary con-
siderably, ranging from 17 to 94%, even in studies involving more than 50 participants,
particularly depending on the definition of V̇O2pl used [5]. This variability has led to an
extensive debate on the conceptualization and diagnosis of V̇O2max over the last three
decades [2,4]. Only 20–50% of V̇O2max tests result in a plateau according to this defini-
tion [6–14]. The low frequency of the V̇O2pl has been reported by [15].

However, behind the discussion about the absolute necessity of observing a V̇O2pl to
assess true “V̇O2max”, and not just a “V̇O2peak” [16–19], lies the fundamental question
of the limiting factors of V̇O2. Reasons for the presence of V̇O2pl in some, but not all,
athletes are not yet clear [18]. Lower anaerobic power or capacity has been suggested as a
cause of the absence of plateau [19–21]. Furthermore, it has been shown that faster oxygen
kinetics, which minimizes the anaerobic contribution to metabolism in the severe intensity
range between the respiratory compensation threshold (RCP) and V̇O2max (or V̇O2peak)
during an incremental exercise test (IET), increases the chances of a plateau occurring at
V̇O2max [5].

However, the role of the brain in regulating exercise intensity to exhaustion has been
hotly debated [22–25]. More specifically, the brain has been given greater consideration
in models describing the factors responsible for continuing or stopping ongoing exercise.
Noakes has suggested that unpleasant sensations of fatigue provide useful feedback to the
central nervous system and are used as key regulators to stop exhausting exercise before
there is a risk of physiological damage [26]. This hypothesis underlines the importance of
recording brain activity alongside exercise characteristics and environmental conditions,
particularly under conditions of exhaustion. A better understanding of brain responses
to exhaustive exercise up to V̇O2max would rely on a multimodal approach that could
combine neurological, physiological, and biomechanical data.

Regarding neurophysiological aspects, two methods are less restrictive and allow
body and head movements: near-infrared spectroscopy (NIRS) and electroencephalogram
(EEG). Indeed, brain activity has already been studied during high-intensity exercise, no-
tably when performing an IET on an ergobicycle until exhaustion using NIRS [27–30] or
EEG [31–33]. EEG provides robust information on changes in cortical potentials, partic-
ularly rhythmic activity and frequency of synaptic processes [33–35]. EEG is one of the
most pragmatic means of monitoring changes in brain activity in humans during exer-
cise, certainly because it is less intrusive [31,34,36]. EEG is used to measure cortical brain
activity, which is categorized into distinct frequency ranges such as alpha (α: 8–12 Hz)
and beta (β: 12–30 Hz), each related to different cognitive functions regulated by the
brain. Alpha activity, characterized by quite low-frequency oscillations, is associated with
perceptual awareness and inhibition of non-essential processing, which facilitates task per-
formance [37,38]. Conversely, beta activity, characterized by high-frequency oscillations, is
associated with voluntary contractions, alertness, and arousal, enhancing the perception of
stimuli [39–41]. Spectral analysis is a common means of quantifying the frequency content
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of these bands, the main result being the power spectral density (PSD), which indicates the
strength or energy of variations between frequencies. An increase in oscillations in cortical
regions yields to an increase in the EEG’s spectral power.

Several studies have coupled EEG recording with a breath-by-breath expired gas
system [31,33,34]. EEG activity has generally been recorded during pedaling tests at a
constant load without exhaustion [42–45]. It has also been recorded during exercise to
exhaustion in an incremental test [31–33,46]. While the role of the prefrontal cortex in
exercise tolerance and termination has been investigated [47–50] showing, for example, that
the alpha/beta ratio decreased after the subject experienced exercise as “hard” in reference
to the Rate of Perception of Exhaustion [51] and then above the RCP [33,47,48], no study
has yet examined the relationship between the occurrence of V̇O2pl with EEG response in
well-trained athletes.

To our knowledge, no study has yet examined the possible difference in brain activity
during maximal incremental testing in V̇O2pl and non-plateau athletes with the same
V̇O2max and age. This study aimed to shed light on the central governor hypothesis,
namely that the inability to reach a V̇O2pl may be dictated by the brain rather than by a
peripheral physical limit. This hypothesis can now be explored using EEG during IET,
measuring concomitant power in specific frequency bands. Forty-two athletes were divided
into two groups: those who practiced endurance sports and those who did not, and were
asked to perform an IET.

We hypothesize that the difference between athletes who reached the plateau of their
V̇O2max and those who did not could be present in different EEG characteristics and
in EEG/V̇O2 ratios. Specifically, we believe that athletes who do not achieve a V̇O2pl
will show a more pronounced decrease in the ratio between EEG power and V̇O2 as
metabolic demand increases. To test this hypothesis, we compared, in the V̇O2pl and
non-plateau groups of athletes, the relationship between increasing metabolic demand and
EEG response by examining the ratios between the α, β, θ (theta) bands of the EEG and
V̇O2. The aim was to tackle the possible issue of a decrease in the ratio between metabolic
demand and brain activity during physical exercise.

2. Materials and Methods

2.1. Participants Recruitment and Ethical Approval

Forty-two volunteers participated in the experimentation (Table 1).

Table 1. Subjects’ characteristics for the incremental exercise test (n = 42).

Subjects Mean Standard Deviation (SD)

Age (years) 25.81 4.92
Height (cm) 180.55 6.78
Weight (kg) 73.90 10.71

Body mass index (kg/m2) 22.59 2.27
V̇O2max (mL·min−1·kg−1) 55.74 7.51

The population consisted of active men aged between 18 and 35 years old with
no declared neurological or motor deficits. Participants were recruited through posters
and communication among well-trained physical students and multisport practitioners.
Volunteers were included in the experimental group and remunerated for their participation.
This study was approved by the Léon Bérard Centre’s Research and Ethics Committee
under the number A 13–160.

In addition, to take into account the types of sports practiced by the subjects, we
divided them into two categories: sports with endurance (END) characteristics (triathlon,
running, cycling and trail running) and those without (climbing, volleyball, basketball,
judo, water polo, etc.). We had 22 athletes in the NONEND group and 20 in the END group.
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2.2. Participants Recruitment and Ethical Approval

Each participant completed an IET. The purpose of the IET was to assess maximal
aerobic power (MAP) and maximal oxygen consumption (V̇O2max).

Prior to the test, a standardized warm-up allowed participants to familiarize them-
selves with the protocol and equipment. Each participant was asked to pedal constantly
for 8 min: 2 min and 45 s at 50 W, and 5 min and 15 s, including six stages of 15 s each from
90 to 240 W (increasing by 30 W per stage), interspersed with 45 s intervals at 50 W basal
power output. During the 5 min recovery period that followed, the participants were fully
equipped before beginning the IET. This test was preceded by a 30 s period at 50 W before
performing an incremental test until exhaustion. The test itself began at the power of 90 W
and consisted of a series of two-minute increments of 30 W, with participants pedaling at
their own frequency. No information on power or time was given during the test.

No verbal encouragement was given during the test. The experimental session is
presented in Figure 1.

Figure 1. Summary of experimental session. The session began with a brief EEG calibration, followed
by an 8 min warm-up. After a 5 min recovery period, the IET was performed until exhaustion. RPE
test was then performed during the next 5 min of recovery, before the final EEG calibration procedure.
EEG: electroencephalogram, IET: incremental exercise test, and RPE: rate of perceived exertion.

2.3. Experimental Design

Participants were seated in a chair. Using an abrasive cream (Nuprep®, Weaver and
Company, Aurora, CO, USA) and a cotton swab, the skin was rubbed at the location of the
reference and ground electrodes. This operation removed dead cells, impurities, and excess
sebum to improve conductivity. Additionally, the forehead, scalp, and hair were degreased
with a compress soaked in 70% alcohol [52]. They were then fitted with a Polar® heart rate
belt, a gas mask, and an EEG headset. The EEG electrodes were positioned with conductive
gel between the scalp and the electrodes to improve contact between the skin and the sensor.
Subjects were then seated in a semi-recumbent position on a cyclo-ergometer, as shown in
Figure 2.
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Figure 2. Positioning of sensors and participants on the ergocycle.

In accordance with traditional recommendations [53,54], the electrodermal sensors
were placed on the second phalanx of the second and third fingers of the non-dominant
hand (or on the third phalanx, in case of frequent potential contact between the sensors
and the environment). A conductive gel (Teca, ref. 822-201210) was applied between the
sensors and the skin to improve contact after cleansing the skin with a mixture of alcohol
and ether. The electrodes were then firmly strapped to the fingers using hypoallergenic
adhesive tape. Finally, six 3D kinematic markers were placed on the head and shoulder
(see Figure 2).

The impedance of the EEG electrodes was then checked, allowing the conductive EEG
gel time to warm up to body temperature. The target impedance values were between
1 and 5 kΩ. If the impedance values were higher than 5 kΩ, conductive gel was added until
the impedance reached the required values. At this point, the EEG calibration procedure
began, as shown in Figure 3, and proceeded in the following sequence: 30 s with eyes open,
30 s with eyes closed, 15 s of eye blink, 15 s of eye movement, and 12.5 s of head movement
alone in the four directions (left, right, up, and down). A 7.5 s pause was observed between
each test sequence. The experimental EEG calibration procedure was carried out using
Presentation® software (version 18.1, www.neurobs.com (accessed on 19 June 2024)) and
presented on a computer in front of the subject. Participants were asked to look straight
ahead and to remain motionless during the procedure, except for what they were asked
to do.
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Figure 3. EEG calibration procedure. The whole procedure takes approximately 2′30′′. After 30 s of
open eyes followed by 30 s of closed eyes, the procedure requires 15 s of blink eyes and 15 s of eyes
movement before 2 sets of 12.5 s of demanding head movements.

After remaining static during the EEG calibration sequence, each participant warmed
up for 8 min (see Figure 1). They were then fitted with a nafion/permapure sampling tube
connected to a turbine for measurements of pulmonary gas exchange. Each subject then
performed the physical test described above. The participants were asked to remain seated
on the saddle in order to limit head and upper body movements as much as possible. After
each test and one minute’s rest, each participant was asked to complete a perceived exertion
rating scale (see below). After a 5 min rest, the EEG calibration procedure (Figure 3) was
again performed, along with the impedance check.

Rating of Perceived Exertion (RPE) Scale

We asked each participant to rate the perceived exertion on a scale of 6 to 20 at the end
of the IET. A score of 6 corresponds to rest and is closely correlated to a resting heart rate
value, while 20/20 corresponds to maximal effort with the highest heart rate values [55].

2.4. Measurements

During the test, six apparatus recorded measurements throughout the exercise. De-
scriptions of each device are presented here, along with the relevant data recorded.

2.4.1. Ergocycle Data

We used the CycleOps 400 Pro Indoor Cycle (Saris Cycling Group, Inc., 5253 Verona
Road, Madison, WI 53711, USA) with the CycleOps Joule 3.0 (Saris Cycling Group, Inc.)
computer. The Joule 3.0 CPU uses ANT+ technology to communicate wirelessly with the
bike’s sensors (i.e., the PowerTap power meter in the rear flywheel, speed sensor, cadence
sensor, and heart rate strap sensor). The warm-up and the IET have been programmed
in advance. This ergocycle makes it possible to adjust the power output regardless of
the pedaling cadence. All data were stored on the Joule 3.0 CPU and downloaded to a
computer running Power agent software (version 7.8.28) (Saris Cycling Group, Inc.). Power
(W), torque (Nm), speed (km/h), cadence (rpm), and heart rate (bpm) were recorded and
stored at a sampling rate of 1 Hz.

2.4.2. Electroencephalography Measurements

EEG was recorded using a 32-channel ActiCap system (Brain Products, Gilching,
Germany), which combines active electrodes based on high-quality Ag/AgCl sensors with
the application of a conductive gel to lower impedances. Ten sensors were used for the
measurements. We used the following sites from the extended 10–10 system: Fp1, Fp2,
Fz, C3, Cz, C4, Pz, O1, Oz, O2. The ground electrode was placed on the lateral third
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of the right scapula spine. All electrodes were referenced to an electrode placed on the
right mastoid, and impedances were kept below 5 kΩ for all sensors. Analog signals were
amplified (analog band-pass filter 0.016 Hz–1000 Hz) with a BrainAmp amplifier (Brain
Products, Germany) and digitized at a frequency of 5000 Hz. EEG data were downsampled
to 1000 Hz (with a 400 Hz anti-aliasing filter) and recorded using the Brain Vision Recorder
software (version 1.20.0601, Brain Products, Gilching, Germany).

2.4.3. Heart Rate (HR) Measurements

Heart rate was measured in two different ways. Firstly, it was measured using a
heart rate belt (Polar®) and synchronized with the gas measurements. Secondly, it was
measured using a three-channel electrocardiogram (ECG) and synchronized with the
electrodermal apparatus. The time of occurrence of the R-waves could thus be accurately
determined. The D2 derivation signal (the interval between two consecutive ECG R-waves)
was electronically processed and delivered in the form of instantaneous heart rate. In the
case of missed ECG R-waves or false detection due to artifacts, HR could be estimated
offline using an algorithm that iteratively replaced changes in IHR above a threshold
of 10 beat per minute (bpm) with interpolated values. The interpolation was calculated
between pairs of values below the threshold. The new signal, free of artifact, was then
resampled. The smallest appreciable variation was 0.5 bpm, and the calibrated scale ranged
from zero to 200 bpm. The IHR signal was then extracted directly from the ECG at the
sensors. The IHR was therefore treated as an analog signal. Data acquisition was performed
at 10 Hz on this analog signal.

2.4.4. Gas Measurements

O2 and CO2 concentrations during the test were measured using a Metamax® 3B
mobile gas analyzer (Cortex Biophysik GmbH, Leipzig, Germany). Breath-by-breath data
on respiratory volume and gas concentrations were sent in real-time by telemetry to a PC.
Metasoft® software (version 3.9.9 SR5) calculated ventilation rate (V̇E), oxygen consumption
(V̇O2), carbon dioxide output (V̇CO2), and synchronized all gas data with heart rate. The
system ran for at least 30 min and was calibrated before each test in accordance with the
manufacturer’s recommendations.

As the ergocycle used in this study could not receive any analog or digital signal,
we used its pedaling signal, as well as the pedaling signal provided by the trigger, to
synchronize the ergocycle’s data with the others (Figure 4).

 

Figure 4. Magnet attached to the pedal and Hall-effect sensor attached to the ergocycle frame.
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Similarly, as the gas analyzer used in this study had no possible signal input, we used
its ability to record heart rate to synchronize it with the electrodermal activity (EDA) device,
which also provided a heart rate measurement.

In summary, Figure 5 shows the different devices and how they are synchronized with
each other.

 

Figure 5. Device and data synchronization strategies (hardware and software). EEG: electroen-
cephalogram, EDA: electrodermal activity, and V̇O2: oxygen consumption.

2.4.5. Determination of the V̇O2max Plateau

Following the recommendations of Niemeyer and colleagues in the major review of
the oxygen uptake plateau as a “frequently misunderstood phenomenon” [5], we used
fairly wide sampling intervals (i.e., the V̇O2pl was determined from more than the final
30 W or 60 s) and a cut-off that was set at approximately half the expected increase in
V̇O2 in the submaximal intensity range. Additionally, as recommended by Poole and
colleagues [14], we did not use the “so-called” secondary criteria as a maximal value of
respiratory exchange ratio (RER) ≥ 1.1, maximum HR value (HRmax) greater than 95% of
the maximum value predicted for age (220-age), and the end-exercise blood lactate criterion
greater than 8.0 mmol/L, although we only checked that all subjects had achieved these at
the end of the IET at the same time as we asked them for their RPE value. If subjects did
not satisfy the V̇O2 criteria but satisfied the secondary ones, we considered the higher V̇O2
value was a V̇O2peak. The workload eliciting the RCP was determined using the criteria of
an increase in both the VE/V̇O2 and VE/V̇O2 and a decrease in end-tidal carbon dioxide
pressure (PetCO2) [56]. To determine RCP, the values of the gas-exchange variables were
averaged for every 1 min period and plotted against workload. For statistical comparisons
between groups (see below), RCP was expressed as the mean value of %V̇O2max for the
corresponding 1 min interval. Two experienced independent observers detected RCP. In
case of disagreement, we sought the opinion of a third investigator.

2.5. Signal Processing
EEG: Data Reduction Procedures for Artifact Correction and Removal

We paid particular attention to preventing and/or limiting artifacts due to muscle
contraction, eye, or body movement [57]. The use of active gel EEG electrodes was likely to
overcome this problem thanks to an integrated noise subtraction circuit, thus improving the
reliability of data collection [32]. We rejected abrupt variations in the signal by analyzing it
using a 2 s time window. The resulting EEG signal shows a noise level (Figure 6) that:

• Increases systematically towards the end of the recording and the highest effort.
• Is higher on the occipital derivation, probably due to muscle contraction.
• Is kept to an acceptable level (approximately 20 dB at 50 Hz).
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Figure 6. Typical raw traces obtained during the incremental exercise test for Oz, Fz, Cz and Pz
channel signals with the raw signal, Welch spectral analysis and spectrogram for each channel. In the
spectrogram, cooler colors (blue and green) represent low power and warmer colors (white, red and
yellow) represent high power. EEG: electroencephalogram; freq: frequency.

It also shows the presence of residual artifacts. Eye blinks are visible in the temporal
signal at the frontal site. Some artifacts are found in the lower frequency bands where EEG
activity is expected to occur, but at an amplitude that does not generate signal saturation.
These artifacts will present a challenge to subsequent EEG analysis, but can be subject to
artifact rejection procedures. A specific artifact rejection method has been developed [58].

2.6. Statistics

A two-way ANOVA was used to analyze changes in the mean of a quantitative variable
as a function of the levels of two categorical variables (END and NONEND, PLAT and
NONPLAT). More specifically, we investigated the main effect A: the average difference in
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physiological and neurophysiological responses due to variations in the first independent
variable, i.e., PLAT vs. NONPLAT factor, and for the main effect B: the average difference in
the dependent variable due to variations in the second independent variable, i.e., the END
vs. NONEND sports practice. We also examined the interaction effect in order to determine
whether the effect of PLAT compared with NONPLAT depended on the level of the END
vs. NONEND variable. In other words, we wanted to check whether the combined effect of
both variables was different from what we expected on the basis of their individual effects.
We therefore measured the impact of achieving V̇O2max NONPLAT and PLAT on the ratio
of EEG power to V̇O2 profile during the IET for θ, α, β, α/β ratio, RPE, V̇O2max, HRmax,
and RCP (%V̇O2max). We also proceeded in the same manner for the NONEND and END
factors. To achieve this, we used a two-way ANOVA (XLSTAT 2023.2.0, Paris, France).

In addition, we used the Pearson product-moment correlation coefficient to measure
the strength of the linear relationship between the EEG response (α, β, α/β ratio) and
V̇O2. If the relationship between the variables is not linear, the correlation coefficient does
not correctly represent the strength of the relationship between the variables. We have
considered the value alpha < 0.05 for the significance level, i.e., the probability that you
will make the mistake of rejecting the null hypothesis when it is true. If the p value is
greater than alpha, you accept the null hypothesis. If it is less than alpha, you reject the
null hypothesis.

3. Results

3.1. Occurrence of V̇O2pl in the Whole Group (n = 42)

All subjects completed the test. The results are presented in Table 2.
A V̇O2pl was observed in twenty-two subjects (52%) (Figure 7, example of a V̇O2pl),

while the remaining twenty subjects achieved a V̇O2peak and met the secondary V̇O2max
criterion. It should be noted that the RPE did not reach maximal values corresponding to
very hard (17/20), since the average value for the whole group was only 16.8 ± 1.5 (Table 2).
On the other hand, there was no difference between the NONPLAT and PLAT groups or
NONEND and END groups (Table 3).

Table 2. Physiological, mechanical and RPE results for the IET.

Variable Mean SD Range

V̇O2max (mL·min−1·kg−1) 55.74 7.51 40.0
Maximal Aerobic Power (W) 273.78 42.49 180.0

Relative Maximal Aerobic Power (W/kg) 3.74 0.67 3.4
HRmax (bpm) 188.52 9.83 45.0

Time (s) 967.44 162.52 713.0
RPE 16.79 1.50 5.0

SD: standard deviation, RPE: rating of perceived exertion, and V̇O2max: maximal oxygen consumption.

Table 3. Effects of NONPLAT or PLAT and NONEND or END groups on characteristics and
physiological variables.

n
.

VO2max
(mL·min−1·kg−1)

Age
(Years)

Height
(cm)

Training/Week
(Hour)

Final RPE
RCP

(%
.

VO2max)

NONEND n = 22 51.77 ± 6.41 24.23 ± 4.34 181.95 ± 8.00 6.95 ± 4.74 16.55 ± 1.72 73.97 ± 11.89
END n = 20 60.10 ± 6.16 27.55 ± 5.04 179.00 ± 4.87 8.05 ± 4.75 17.08 ± 3.99 77.02 ± 7.52

F value −4.10 −2.25 1.08 −0.91 −1.04 −0.557
p value <0.001 0.03 0.285 0.368 0.305 0.581

NONPLAT n = 20 55.00 ± 5.64 25.85 ± 5.17 181.75 ± 6.84 8.15 ± 5.82 16.66 ± 4.02 73.88 ± 11.08
PLAT n = 22 56.41 ± 8.96 25.77 ± 4.81 179.45 ± 6.70 6.86 ± 3.45 16.91 ± 1.47 76.82 ± 9.05

F value 0.353 0.684 0.665 1.149 −0.271 −1.11
p value 0.72 0.498 0.510 0.258 0.788 0.273

Values in bold indicate a statistically significant p-value (α = 0.05). RCP: respiratory compensation threshold, RPE:
rating of perceived exertion, V̇O2max: maximal oxygen consumption, NONEND: non-endurance group, and
END: endurance group.
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Figure 7. Linear regression of various physiological parameters by time for the subject 940 reaching
a V̇O2pl. Subfigures include V̇O2, theta power, alpha power, beta power, alpha/beta power ratio,
alpha/V̇O2 as a percentage of starting alpha/V̇O2 power, beta/V̇O2 as a percentage of starting
beta/V̇O2 power, and theta/V̇O2 power as a percentage of starting theta/V̇O2 power. PSD: power
spectral density.
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3.2. Difference in Physiological and Training Parameters between the NONPLAT and PLAT
Groups or NONEND and END Ones

Table 3 reports the non-significant values of V̇O2max, training volume, height, final
RPE, and fractional use of V̇O2max at the RCP. The only significant difference between
plateau or endurance practice criteria was that the endurance group had a higher V̇O2max
(p = 0.0002) and was older (p = 0.03). Training volume did not differ significantly between
the groups.

3.3. EEG Responses vs. V̇O2 Increase, between the NONPLAT and PLAT Groups or NONEND
and END Ones during the IET

In all subjects, we observed a decrease in the α/β ratio and an increase in theta and
beta (presented as percentage of the start value in Table 4).

Table 4. Effects of NONPLAT or PLAT and NONEND or END groups on EEG variables. Theta and
beta values are expressed as a percentage of the starting value of the IET.

Alpha/Beta
Ratio

Theta Increase
(%start)

Beta Increase
(%start)

NONEND n = 22 −20.30 ± 12.93 20.39 ± 16.43 40.06 ± 19.97
END n = 20 −15.74 ± 11.93 20.24 ± 16.43 47.00 ± 16.14

F value 1.36 0.01 1.33
p value 0.250 0.907 0.256

NONPLAT n = 20 −18.58 ± 12.71 18.29 ± 13.31 44.26 ± 18.59
PLAT n = 22 −17.93 ± 12.67 22.25 ± 18.65 42.34 ± 18.93

F value <0.001 0.74 0.08
p value 0.988 0.395 0.778

NONEND: non-endurance group; END: endurance group.

Figure 7 (and Table 5) shows an example of the EEG response during the IET in one
subject (id 940) who was in the PLAT and NONEND groups. These EEG responses were
the same for all subjects, with the exception of the alpha response, which exhibited some
variability. Specifically, it increased in 27 of 42 subjects and decreased in the remaining 15.
However, the frequency distribution of the alpha value tendency did not differ significantly
from the expected frequencies (Table 6).

Table 5. Summary table of analysis of variance for V̇O2, theta power, alpha power, beta power, alpha
power/beta power ratio, alpha/V̇O2 as a percentage of initial alpha/V̇O2 power, beta/V̇O2 as a per-
centage of initial beta/V̇O2 power, and theta/V̇O2 power as a percentage of initial theta/V̇O2 power.

.
VO2 Alpha PSD Beta PSD Theta PSD

Alpha/Beta
Ratio

Alpha/
.

VO2 Beta/
.

VO2 Theta/
.

VO2

R2 0.967 0.037 0.363 0.061 0.031 0.096 0.173 0.170
F 25,011.7 16.0 238.1 27.0 13.1 42.7 85.6 84.0

Pr > F <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PSD: power spectral density; V̇O2: maximal oxygen consumption.

Nevertheless, although not significant, given the alpha threshold of 5% against which
we compare p values (p = 0.07), fewer END subjects show a decrease in alpha power
compared to the NONEND group. However, when we focused on the ratio of alpha power
expressed as a percentage of the starting value to V̇O2 as a percentage of the starting
value, it decreases in all subjects, indicating a “depletion” of alpha power compared to the
metabolic demand, as was observed in all subjects for the other EEG power bands.

In addition, there was also no impact of the distribution of these different tendencies
between groups for NONPLAT and PLAT subjects (Table 7) and the increase or decrease
tendency of cadence, EEG θ/V̇O2, EEG α/V̇O2, EEG β/V̇O2, and α/β ratio (Table 8).
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Table 6. Frequency distribution of alpha value trend in subjects.

Positive Alpha
Tendency

Negative Alpha Tendency p Value

NONEND 12 10
0.07END 15 5

NOPLAT 14 6
0.75PLAT 12 10

NONEND: non-endurance group, END: endurance group, NOPLAT: non-plateau group, and PLAT:
plateau group.

Table 7. Effects of NONPLAT or PLAT and NONEND or END groups on alpha power expressed as a
percentage of alpha power at the start of the IET.

Chi-Square
(Observed Value)

Chi-Square
(Critical Value)

DF p Value Alpha

3.663 7.815 3 0.300 0.05

Table 8. Chi-square test for cadence, EEG β/V̇O2, EEG θ/V̇O2, EEG α/V̇O2 and α/β ratio between
the NONPLAT (n = 22) and PLAT (n = 20) groups.

Cadence EEG θ/
.

VO2 EEG α/
.

VO2 EEG β/
.

VO2 α/β Ratio All

Chi-square
(Observed value) 0.005 0.225 0.431 0.558 0.288 7.61

Chi-square
(Critical value) 3.84 3.85 3.86 3.84 3.87 16.9

p value 0.945 0.636 0.512 0.455 0.591 0.57

EEG: electroencephalogram, α: alpha frequency band, β: beta frequency band, and θ: theta frequency band.

4. Discussion

The main aim of this study was to compare the EEG responses during an incremental
exercise test in two groups of subjects who had achieved a V̇O2pl or not.

The debate around the V̇O2pl and its cause remains a long story of exercise physiology
for nearly half a century, and as Noakes [59] states, “it is time to move beyond a brainless
exercise physiology”. We hypothesize that the difference between athletes who reached
the plateau of their V̇O2max and those who did not could be present in different EEG
characteristics and in EEG/V̇O2 ratios. Our main results showed no incidence of the
V̇O2pl or not, nor of endurance or non-endurance practice, on EEG activity during IET.
Regardless of group, all subjects showed an increase in beta and theta band power, while
alpha band power was less uniform (half increasing and half decreasing, independent of
group membership).

However, when we plotted the EEG band power against oxygen power demand, both
relative to the start value, all subjects showed a decrease in alpha, beta, and theta/V̇O2
ratios during IET. Therefore, even if the brain is not the limiting factor of V̇O2max or
responsible for the attainment of V̇O2pl or not, these results, given the relationship between
EEG responses and oxygen demand, could constitute a new marker of a progressive
“depletion” of EEG power capacity. Considering each of these elements, it may be recalled
that at rest, alpha waves are generally more observed when a person is in a relaxed
mental state [60]. During exercise, an increase in alpha activity may indicate increased
attention or alertness, as the brain focuses on the task at hand [61]. However, an excessive
reduction in alpha activity during exercise may reflect a large effort, yielding mental
fatigue or decrease cognitive performance [62]. Beta waves are associated with active
concentration, problem solving, and alertness [63]. During exercise, increased beta wave
activity may reflect heightened cognitive engagement and concentration, particularly
during tasks requiring attention and coordination [64,65]. Theta waves are linked to
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deep relaxation, meditation, and drowsiness [66]. During exercise, a decrease in theta
wave activity can occur when a person is overexerted, which can lead to difficulties in
maintaining precise sensorimotor control and monitoring sensory inputs due to reduced
executive functions or decreased attention [67]. Overall, beyond EEG changes in the
alpha, beta, and theta bands during exercise, the increases observed relative to that of V̇O2
highlight the importance of including central measures in our physical activity studies.
This was the goal of this interdisciplinary approach using physiology, neurophysiology and
biomechanics synchronizing all measurements during exercise performed at free cadence.

• Difference in maximal value of V̇O2, heart rate, RPE, and training parameters between
the NONPLAT and PLAT groups or NONEND and END ones.

The occurrence of V̇O2pl was not dependent on specialty and therefore on maximum
V̇O2, given that, unsurprisingly, the END group had a higher V̇O2max than the NONEND
group. Thus, given that the END and NONEND athletes were equally distributed in
the NONPLAT and PLAT groups, we can consider that specialty does not influence the
occurrence of V̇O2pl. Since this factor (specialty) also has no impact on RCP, we can assume
that they did not have contract a significant oxygen deficit before reaching V̇O2max (with
or without plateau).

• The occurrence of V̇O2pl

The “plateau phenomenon”, described by Mitchell and Blomqvist in 1971 [68], was
observed during 3 consecutive workloads. Before them, in 1955, Taylor and colleagues
introduced a criterion for identifying a V̇O2pl during exercise [69]. This threshold was
set at ≤150 mL/min (or ≤2.1 mL·min−1·kg−1) based on the average increase in subjects’
V̇O2 over incremental exercise increments. However, this method has been criticized [5,11].
Moreover, according to the positioning of eminent colleagues [4] on this issue, we did not
consider the so-called “secondary” criteria (heart rate (HR) ≤10 beats/min or ≤5% of the
maximum predicted by age (220-age), blood lactate concentration ≥8 mM, or respiratory
exchange ratio (RER) >1.00, 1.10, or 1.15). Thus, when we obtain these criteria without an
individual reaching a plateau, the “V̇O2peak” referred to the highest V̇O2 reached during
a graded exercise test, as has been done in most research on maximal exercise tests in
children for whom there was some difficulty in demonstrating a V̇O2pl [70]. Thus, in
this study, to compare the EEG response during IET as a function of the occurrence of a
V̇O2pl, this was defined as less than half the expected increase. According to this definition,
we observed a V̇O2pl occurrence in 52.6% of our subjects, in accordance with previous
studies [4,5,9,11,18,19,71,72].

• RPE response between the groups

Hill’s model emphasizes the concept of a “critical metabolic state” in which metabolite
accumulation reaches a threshold level, triggering fatigue and necessitating a reduction
in exercise intensity to avoid metabolic imbalance and potential damage to muscle tissue.
In essence, Hill proposed that fatigue is a protective mechanism that prevents excessive
muscular strain and maintains physiological homeostasis [1,73,74]. The central governor
theory challenged (or we might say, achieved) Hill’s peripheral model of fatigue by em-
phasizing the role of the brain as a central regulator of exercise performance. The founders
and protagonists of this “central governor theory” argue that while peripheral factors,
such as muscle fatigue and metabolic stress, undoubtedly contribute to fatigue, the brain’s
role in pacing and regulating exercise intensity is paramount [75,76]. They suggest that
the brain integrates sensory feedback from the muscles, cardiovascular system, and other
physiological systems to modulate exercise effort and prevent catastrophic failure [59,71].
Here, we used perceived exertion to measure the subjective experience of intensity, stress,
discomfort, and/or fatigue during physical activity. The RPE scale, first introduced in 1970
and subsequently refined by Borg [77], remains the predominant tool for assessing per-
ceived exertion in adults [78]. Some studies suggest an even stronger correlation between
RPE and V̇O2 [79,80]. The widespread adoption of RPE to assess exercise intensity may be
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explained by the ability of human beings to perceive effort, which derives from continuous
use of a well-developed sensory system. During exercise, individuals are aware of their
overall effort and can discern the location of the effort, allowing them to gauge the intensity
of the exercise and estimate their endurance at a given level [81,82]. The experience accu-
mulated with different intensities of exercise enables individuals to numerically evaluate
or at least classify the intensity of exercise via the RPE scale. Whatever the group (END or
NONEND; PLAT or NONPLAT), the subjects rated their RPE just below 17/20, i.e., the
beginning of what they perceived as “very hard”. We can therefore consider that the RPE
does not play a role in the difference in potential EEG response during the IET. However,
Samuele Marcora’s theory [75] postulates that the perception of effort during exercise
may be independent of afferent feedback from the muscles, heart, and lungs. He argues
that the prevailing notion attributing a substantial influence to afferent feedback on the
perception of effort may result of an overly broad framework. Marcora emphasizes the role
of hedonicity in overall perception and argues for a narrower definition of exertion, aligned
with the descriptors of Borg’s RPE scale. He suggests that while sensory mechanisms may
influence the perception of effort, experimental studies have dissociated the perception of
effort from metabolic stress, indicating that the brain primarily generates the sensation of
effort, with limited influence from afferent feedback.

• EEG responses between the NONPLAT and PLAT groups or NONEND and END ones
during the IET

Therefore, there is a consensus that an individual’s exercise performance is modulated
by feedback from various physiological systems under the control of the brain. This is
a different debate to that of the factors limiting V̇O2max and its definition and here, by
examining the EEG response as a function of the occurrence of V̇O2pl, we showed that the
EEG response was affected neither by plateau nor by sports specialty and hence, the value
of V̇O2max. Independently of the occurrence of a V̇O2pl, we found an increase in theta and
beta power, while alpha power decreased or increased. These results regarding the increase
in beta and theta frequency band and alpha/beta ratio, are in accordance with those of
previous studies [83]. In their examination on EEG during exercise, Hosang and colleagues
observed a predominant increase in alpha and beta activity following high-intensity exercise
compared to low or moderate intensity exercise sessions [83]. Previous studies have
noted that heat stress induced by exhaustive exercise can increase cortical activity, which
could explain the link between exercise intensity and changes in alpha, beta, and delta
activity [84–87]. Another plausible explanation for the increase in beta activity, particularly
in fronto–central regions, is its association with high levels of psychomotor arousal [84]
and increased cortical activation during voluntary movements [88–90]. Increased theta
activity has also been associated with the processing of novel information, suggesting
that the theta results observed may be related to the control and regulation of attentional
resources [91,92].

Emerging evidence suggests that the onset of fatigue leading to exercise cessation is
associated with afferent feedback, a neural factor regulated and interpreted by the brain [93].
This feedback is linked to sensory information detecting unpleasant stimuli such as lactate
accumulation in active muscles, fatigue of peripheral locomotor muscle or an increase in
central temperature, leading to a cerebral response. Afferent information from the periphery
is transmitted to the prefrontal cortex, where it is interpreted and influences the decision to
stop exercise. EEG has been proposed as a practical, non-invasive approach to gathering
valuable information about changes in brain activity during rest and exercise [34]. This
study attempted to provide information on brain regulations to exhaustion as a function of
their respective limiting factors [31,33,34]. In both cases, our multimodal device may allow
fatigue to be monitored by several methods, to study the interactions between the central
nervous system, the autonomic nervous system, and respiratory exchanges during acute
exercise, which may provide information on exercise tolerance and regulation [25,26,49,50].
Here, we attempted a multimodal approach providing different indicators of cortical
activity changes that were synchronized with autonomic nervous system, gas exchanges,
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heart rate and behavioral performance while controlling body movements during an IET
and comparing the EEG/V̇O2 profile according to the occurrence or non-occurrence of
V̇O2pl.

• Impact of the cadence on the EEG responses between the NONPLAT and PLAT groups
or NONEND and END ones during the IET

As cadence has an impact on EEG and response during exercise [43,94,95], we allowed
the participant to freely choose the pedaling frequency associated with a fixed power
output. This should facilitate exercise, particularly when participants were not accustomed
to pedaling on a cyclo-ergometer. In addition, changes in pedaling frequency can indicate
the onset of fatigue or disengagement and can be objectively confirmed by physiological
measures. Recording body movements should help to control the quality of EEG data by
providing information that helps to distinguish the signal from movement noise. Thanks to
the quality of the recordings, and even with a reduced number of electrodes (10 compared
with the usual 20 to 64), a wide range of brain areas was covered. We were thus able to
analyze the four frequency bands usually studied in sports science in the frontal, parietal
and central regions of the brain: theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and
low gamma (30–50 Hz) [31,33]. As Bailey and colleagues suggest, EEG activity from
previous research is difficult to compare due to specific differences in exercise protocol
and apparatus [31]. For example, the site-specific density of electrical activity in the motor
cortex was found to increase with exercise intensity until exhaustion [32]. Previously
reported changes in EEG response to exercise showed that EEG activity varied during
incremental or constant load exercise tests across all bandwidths [31,33,34]. Furthermore,
it has been found that alpha activity in the motor cortex is not fully activated and is
maintained during exercise exhaustion [50]. In contrast, alpha activity in the frontal cortex
decreases from the second ventilatory threshold until exhaustion [33]. The frontal cortex
could therefore play a central role in the cessation of exercise because of the changes it
undergoes during high levels of physical exertion [50]. The precise cause of the effects of
high-intensity exercise on cortical activity is difficult to determine because of concomitant
physiological responses such as elevated body temperature and increased blood flow, which
may influence oscillatory activity [84,85]. Conversely, the effects of moderate-intensity
exercise are less likely influenced by such factors because the increase in body temperature
is not as pronounced [96]. The results of studies on moderate-intensity exercise have mainly
revealed an increase in alpha and beta activity in different regions of the brain, which can
be explained by the fact that alpha activity is linked to arousal [97] and beta activity plays a
role in maintaining exercise at a steady state [98]. Analysis of the effects of low-intensity
exercise on cortical activity has not revealed any significant trends, the most frequent
observation being the absence of significant changes in the oscillatory bands, exception of
the alpha band. The effects on alpha band activity vary, with some studies reporting an
increase [32,99,100], others a decrease [101–103], and still others showing no change [104].
Like studies on moderate-intensity exercise, research on low-intensity exercise has focused
mainly on the activity of the alpha band, limiting discussion of the other oscillatory bands.

• Application of the EEG/V̇O2 ratio approach in exercise physiology and medicine.

The application of the EEG/V̇O2 ratio approach in exercise physiology and medicine
offers a novel method for understanding the complex relationship between neural activity
and metabolic demand during physical exertion. This innovative approach integrates
EEG to monitor brain activity and oxygen consumption measurements to assess metabolic
function, providing a comprehensive picture of how the brain and body respond to exercise.
By analyzing the EEG/V̇O2 ratio, researchers and clinicians can better understand the
cognitive and neural mechanisms underlying physical performance, fatigue, and recovery.
This method has significant implications for optimizing athletic training, as it makes it
possible to identify the mental states that correlate with peak performance and periods of
reduced efficiency. For example, understanding how brain activity changes at different
V̇O2max levels can help to design more effective training regimes that improve both
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physical and cognitive endurance. Furthermore, in the medical field, the EEG/V̇O2 ratio
can be used to adapt rehabilitation programs for patients suffering from cardiovascular or
neurological disorders, ensuring that both the cognitive and physical aspects of recovery
are taken into account. This dual approach can improve patient outcomes by enhancing not
only physical capacity, but also mental resilience and cognitive function. This approach also
makes it possible to study the effects of environmental stress factors, such as high altitude,
extreme temperatures, or hypoxic conditions, on brain function and overall performance.
By monitoring how the brain adapts to these challenging conditions, it is possible to develop
strategies to mitigate their adverse effects, thereby improving safety and performance in
extreme environments. In this way, the EEG/V̇O2 ratio represents a powerful tool for
advancing our understanding of the dynamic interaction between the brain and body in
both health and disease, paving the way for more integrated and effective approaches in
exercise science and clinical practice.

5. Conclusions

In this study, we mainly demonstrated that, regardless of the occurrence of V̇O2pl, a
decline was observed for all bandwidths according to the EEG/V̇O2 decline throughout
the test. Therefore, we suggest the existence of a “EEG reserve depletion” while alpha
activity in motor cortex is preferentially maintained. The EEG responses to fatigue in
this study can be associated with other variables to determine brain behavior during
exercise, both before and at the end of exercise. Information on heart rate, ventilatory
thresholds and maximum oxygen consumption associated with EEG data could emerge
from this integrated data analysis. We hypothesized that overall EEG activity would
change as fatigue developed throughout both exercise durations and might depend on the
sport experience profile. In addition, we hypothesized that EEG analysis could provide a
predictive index of exercise exhaustion.

Research into changes in cortical brain activity during an incremental exercise test has
produced mixed results. For example, Bailey and colleagues reported increases in alpha
and beta frequencies throughout an incremental exercise test [31], whereas Robertson and
Marino [33] observed increases in these frequency bands only until RCP, after which EEG
activity decrease until the end of exercise.

Therefore, in order to go further on the debate on the impact of exercise intensification
on the EEG response, we proposed here to have a systemic approach to exercise limitation,
especially applied to the concept of V̇O2max, by merging the fields of neuroscience, biome-
chanics, and physiology. This could open up the black box of the “central governor” that
has been at the heart of the debates on factors limiting V̇O2max.

In conclusion, the combination of all the scientific fields in this study could help
delineate the signature of exhaustive exercise. We might then be able to identify the
evolution of multiple signals during exercise and potentially anticipate the decision to stop
this exercise by looking for a minimum EEG/V̇O2 threshold or a threshold for continuing
exercise beyond a specific EEG/V̇O2 threshold.

6. Limitations

This study was conducted using an “open-loop” control mode, since the power was
imposed by the experimenters. Consequently, the movements were pre-programmed or
predetermined without continuous feedback from the sensory inputs. In real performance
conditions, such as running, the subject is in a closed-loop condition and the EEG response
could also be used as a pace controller [48]. This closed-loop configuration is probably the
most appropriate exercise model for understanding individual critical threshold [105] and
subjective experiences of fatigue, such as in a marathon race [106], and for understanding
the limits of exercise tolerance with an integrative model [107,108]. However, our experi-
mental study is limited by the small sample size, which restricts the statistical power and
may affect the reliability and generalizability of the results. A smaller sample size increases
the risk of type II errors, where true effects may not be detected, and reduces confidence
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in effect sizes estimates. This limitation may also lead to greater variability and margin of
error in the results, which could impact the robustness and reproducibility of our findings.
Therefore, although our results provide valuable preliminary information, further research
with larger and more diverse samples is essential to validate and extend these findings.
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Abstract: The basic functioning of the central nervous system is based on the opening and closing
of ionic channels in the membranes of neurons. The behavior of ionic channels is considered to be
a random process with an exponential probability distribution function. The central limit theorem
implies that the mean of the sum of random variables generates a distribution in which the new
variable tends to be normally distributed. The theorem implicitly implies that randomness can be
embedded in a certain probability distribution but does not disappear. The present report will explore
the possible implications for the functioning of nervous system and behavior of the constituent neural
randomness. The possible functionality of “noise” to increase the exploratory space of nervous and
behavioral systems will be considered.
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1. Introduction

Behavioral and cognitive activities depend on electrophysiological neural activity
based on ionic currents of chemical, mechanical and voltage membrane channels. Opening
and closing of these channels are considered as probabilistic random processes and are
modeled via an exponential probability distribution [1]. Open dwelling times follow a sim-
ple exponential model, but to model the closed channel interval, a sum of many exponential
functions is needed. The quantal nature of synaptic vesicle liberation is another source of
neural activity variability [2,3]. The stochastic activity of ionic channels would be an intrin-
sic source of randomness in the nervous system, while the random structure of stimulation
would be another source of variability, i.e., in the case of light perception, the quantal nature
of photon emission. The large number of ionic channels cannot override this intrinsic and
extrinsic variability, and experimental evidence demonstrates that membrane potential
presents fluctuations that affect the generation of spontaneous action potentials [4,5]. In
situations in which neurons receive steady inputs, the inter-spike interval distribution
shows broad variability [6,7]. During constant inputs, the exact time at which a given spike
is generated reflects the internal noise more than the inputs that the neuron receives [8].

Given that behavioral and cognitive activities depend on the activity of neural net-
works activity, and given that those are dependent on the activity of individual neurons
that, at a very basic level, depend on the probabilistic behavior of ionic channels, it can
be inferred that high-order levels of brain function as cognitive and behavioral activities
should show a stochastic component, given that operating with a combination of random
variables preserves the random nature of the outcome. One important consequence of that
is that the sum of the random variables is another random variable, which converges to the
Gaussian distribution when N tends toward infinity: the so-called central limit theorem [9].

The present report tries to demonstrate that there are traces of random processes at the
organismic level, as well as that a possible interpretation of that would be the successive
alternation of geometric and Gaussian distribution across levels of integration in the central
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nervous system. This would be achieved by reviewing the four different approaches
followed by our group:

The lever press response of rats during variable interval schedules of reinforcement
(VI) [10,11]; the fluctuations of the macroscopic activity of the abducens nerve [6], giving
place to the ocular tremor; the perceptual changes during the observation of images in
eye rivalry and ambiguous images [12]; and the psychometric (also called psychophysics)
function [13]. The integration of unavoidable levels of neural randomness at the organismic
level would facilitate flexibility in behavior [14].

2. The Inter-Response Time (IRT) Intervals in Variable Interval Schedules
of Reinforcement

Animal behavior, although predictable in many instances, could also be considered
to be unpredictable and modeled through stochastic processes. In fact, the reinforcement
of certain responses (the increases in certain motor responses when generating positive
outcomes in the subjects) in animal behavior would be a selective process on a pool of
behavioral variability, in a similar manner to that in which it occurs in other biological
systems such as evolutionary dynamics or the immune system [15,16].

Given the random structure of reinforcement in variable interval schedules of rein-
forcement (VI), the animal lever press in VI schedule of reinforcement would be particularly
suited for modeling and analyzing random processes. In VI, there is a variable time for a
response to be reinforced, and the response reinforced can occur at any time in the interval,
following a scheduled random pattern inside the interval. In a VI with a 60 s period, the
reinforced response occurs at any time in this period, as selected by random number genera-
tors in the Skinner box controller program. In this study [10], it was checked if stochasticity
appears in the response behavior of rats in VI schedules by computing the autocorrelation
function and the probability density function of the IRTs. In fact, the IRT series showed no
autocorrelation, as tested through autocorrelation values inside the so-called Bartlett bands
(Figure 1).

Figure 1. Autocorrelation function (AF) of the individual IRT values (A,B) and cumulated IRT values
in time bins (C,D). The same for randomly generated IRT values (E). Notice that autocorrelation
values are always inside the Bartlett bands, indicating no time dependency in the IRT series. Adapted
with permission from [10]. 1992, Springer.

These statistical results can be interpreted as if the IRT series could be modeled via
a random process with no time serial structure [17]. The latter analysis suggests that an
internal non-periodic process underlies the decision process of lever response during VI.
In this case, it is possible that, as suggested by Staddon and Simmelhag [15], the inner
behavioral dynamics would profit from using a random internal generator to adaptively
adjust its behavior to the unpredictable VI schedule of reinforcement. Interestingly, the
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IRT frequency distribution was modeled as a gamma and/or a Poisson distribution, both
distributions considered as distributions modeling random events:

The gamma distribution following Johnson and Kotz [18] is modeled as follows:

Px(X) =
(X − y)α−1 · e−(X−y)/β

βα · Γ(α)
(1)

Alpha = arithmetic mean/2 * (arithmetic mean − geometric mean)
Beta = arithmetic mean/Alpha.
y = when n is large, it is reasonable to estimate y as a value smaller than the smallest
observed value [18].

And
Γ(α) =

∫ ∞

o
tα−1 · e−tdt (2)

The mean/variance ratio close to 1 (Fano factor) suggested that the IRT time series
could be distributed as a Poisson process. The Poisson probability density function is
defined [19] as follows:

P(X = x) = e−h·hx/x! (3)

The quantity h is the only parameter of the distribution and can be estimated as the
variance or the mean of the data. And x is the number of events in a certain time or space.
Both distributions fit the IRT values, although the Poisson distribution did so in a significant
manner in a higher percentage of cases than the gamma distribution (90% and 60% of cases,
respectively).

Given that a Poisson probability density function represents the probability that a
random variable appears n times in a fixed period of time or space [19], as well as that the
gamma probability density function of IRT in this context would be generated as produced
by the counting of n events from a random variable, both models of IRTs are based on
random variables. The latter observation, joined to the previous comment about the lack of
a time serial structure, points to the idea that IRTs in VI behavioral reinforcement schedules
could be modeled as random variables. From this perspective, learning would permit us to
reduce non-adaptive random responses and amplify adaptive random responses [15,20].

3. Ocular Tremor

The ocular tremor is a micromovement of the eye (several min of arc). This tiny move-
ment has been proved to be functional to prevent vision fading, which can be produced
by the adaptation of photoreceptors if the light entering the eye is static during eye fixa-
tions [21]. The tiny tremor ensures that a given photoreceptor would receive constant light
in terms of intensity and quality [22], avoiding adaption and vision fading. The purpose
of this study [7] was to demonstrate that the statistical properties of the neural activity of
the extraocular muscles were the cause of this movement, after filtering neural activity
through the ocular mechanics. Taking into account the possible stochastic nature of the
behavior of abducens motoneurons [6], as well as the fact that the statistical properties
of the spike count of the abducens nerve [7] would also be a random process due to the
central limit theorem, then a random behavior for the ocular tremor movement is implied.
Notice that ocular tremor movement is caused by the activity of the extraocular muscles as
a by-product of the oculomotor nerves.

This endeavor was possible given the large amount of data about the activity of
individual motoneurons in the abducens nucleus and nerve [6,23]. The abducens nucleus
and nerve control the lateral rectus muscle, which controls the eye’s outward direction
(abduction), while the motoneurons of the oculomotor nucleus control the inward direction
(adduction). The here-reviewed simulation only took into consideration neural spiking
at the abducens nerve, assuming that the activity of the oculomotor nerve would be
symmetric to the pattern of activity of the abducens nucleus, and then both would achieve
a similar result. Therefore, the objective of the simulation of the abducens nerve was
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recreate possible global activity during eye fixations to define if there was any serial time
dependency (rhythmic activity), as well as to compute the possible effects of the abducens
neural activity in the eye position, and then determine if a pattern similar to this pattern of
ocular tremor was replicated.

Figure 2 shows the procedure followed to compute the spiking rate of the abducens
nerve from the sum of the spikes generated by individual neurons (Figure 2A). The param-
eters used for computing the spike train for each neuron are described in Table 1 of Gómez
et al. [7] and depicted in Figure 2A. The abducens nerve global activity was computed as the
sum of the spike trains of individual motoneurons (Figure 2B). The frequency distribution
of the global activity was fitted by a Poisson distribution, despite resembling a Gaussian
distribution when a high number of neurons were active, as occurs for the more eccentric
positions. Then, the Power Spectral Density (PSD) of the spiking global activity carried by
the abducens nerve was computed for different eye positions (Figure 3A,C), producing a
rather flat spectrum (Figure 3A), being flat for high frequencies and peaking at the mean
frequency of motoneuron activity for a given eye position (Figure 3B). A final analysis was
performed to observe the spectrum of the eye position. The PSD function of eye position
falls monotonically with frequency due to the filtering of the ocular mechanics model, but
for the eccentric position of the eye, a peak remained at the same mean frequency as the
motoneurons (Figure 3D).

Figure 2. Computation of the total activity of the abducens nerve. (A) The activity of three motoneu-
rons of the left abducens nucleus during eye fixation. The clock-like firing activity is modulated by
random noise following a normal distribution. (B) The simulation of the neural discharge carried by
the abducens nerve for a central position of the eye in the orbit computed as the sum of the spike
trains of single neurons. Adapted with permission from [7]. 1989, Elsevier.

To compute the PSD of eye tremor (Figure 3B,D), the PSD of the simulated abducens
nerve spike count was filtered using a model of the ocular mechanics (following Robin-
son [24]) by multiplying the latter neural signal by the squared transfer function (TFz) of
the second-order differential equation modeling ocular mechanics.

TF2 = 1/((1 + 2πf·T1)2)·(1 + 2πf·T2)2) (4)

T1 and T2 were calculated from empirical data providing the position, velocity, and ac-
celeration coefficients (k, r, and m, respectively) of the second-order differential equation
modeling the ocular mechanics:

R(t) = R0 + k·Pos + r·dPos/dt + m·dPos2/dt2 (5)

R(t): Force exerted by the muscle (function of abducens nerve discharge);
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R0: Constant;
Pos: Eye angular position;
dPos/dt: Eye angular velocity;
dPos2/dt2: Eye angular acceleration.

Then, T1 was calculated as r/k and T2 as m/k.

Figure 3. Power Spectral density. (A,C) Averaged Power Spectral Density (PSD) of 50 sequences of
the simulated neural discharge of the abducens nerve (ABD OUT) for 0◦ (A) and 10◦ eye positions (C).
(B,D) PSD functions of the 0◦ (B) and 10◦ eye positions (EYE POS) (D). Adapted with permission
from [7]. 1989, Elsevier.

Apart from the demonstration in the present report that the ocular tremor would
be produced by the statistical properties of the oculomotor nerves, given the objective of
the present report, it is important to consider that at the organismic level, there are traces
of random neural noise activity, so it can be proposed that the deviations from the strict
pacemaker activity of abducens neurons (following a normal distribution), producing a
relatively flat frequency spectrum of the neural nerve discharge, except for the mean of the
neural discharge of neurons in a certain eye position, would be an indication of a random
process in the global activity of the macroscopic abducens cranial nerve. This suggestion
can also be sustained by the Poisson distribution of the nerve spike discharge, approaching
a Gaussian distribution as the number of active motoneurons increases.

4. The Perceptual Transitions during the Perception of Ambiguous Figures and
Eye Rivalry

During perception of ambiguous figures such as the Necker cube, as well as the
perception of incompatible images presented in each eye (eye rivalry phenomenon), the
conscious perceptions of the two incompatible images alternate. It is possible, given
the broad variability in the perceptual duration of the presented images, that transitions
between percepts would be animated via random processes. In fact, at least two models
have proposed such random influence at the organismic behavioral level. Logothetis [25]
proposed that perceptual duration histograms are fitted by gamma distributions and
Lehky [26] by a log-normal probability. Lehky [26] also showed that the time series
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presented no autocorrelations and that this time series was not explained by a chaotic
system. The demonstration of not being a chaotic system was based on the correlation
dimensions and nonlinear forecasting of the time series, giving ground for a random
process to govern the transitions of perceptual states. Gómez et al. [12] proposed that
alternation between percepts occurs as a form of competition between the neural networks
representing the two percepts. Such networks should have a mutual inhibition, as depicted
in Figure 4A, and each network representing an image should have a stochastic dynamic,
as represented in Figure 4B.

Figure 4. Competition model for the perception of ambiguous figures and eye rivalry. (A) Two
independent networks that are competing (mutually inhibiting each other) to emerge in the perceptual
field (P1 and P2). 1 represents the conscious perceptual level and 2 the sensory processing level.
(B). Only the network presenting the higher activity would reach the perceptual threshold, with T
representing the conscious perception of the network represented by the dotted line.

The competitive model assumes that the expression of a given percept occurs when
the activity of its underlying neural network obtains a value higher than that of the alter-
native network [27]. The probability p is estimated such that the network that allows the
representation of a certain percept wins the competition, and (1 − p) is the probability of
the opposite percept winning the competition.

Then, the frequency of cases in which a certain percept lasts a certain duration (f(t)):
Duration Time) obtains a particular value between time 0 and time t, which is as follows:

f(t) = (1 − p)(t − 1)·p·N (6)

This equation implies that the frequency of cases in which a perception time obtains a
particular value (f(t)) depends on how many times it wins the competition on a time scale
between t = 1 and t. Equation (6) corresponds to the geometric probability density function
(Figure 5A) multiplied by the number of individual perceptions (N).

f(t) = frequency: The number of times a perception lasts a period of t (N = total number of
individual perceptions).
(1 − p)(t − 1) = The probability that the current percept network wins the competition. It
must be multiplied by N to obtain the frequency histogram of the duration of a percept.
p: the alternative percept);
t − 1 = The number of times that the network of one of the percepts wins in a row and
current perception is maintained
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Figure 5. Durations of perceptions with p = 0.5. (A) Frequency histogram of perception durations
following a geometric distribution (Equation (6)). (B) Change in p values with time elapsed from
the previous perceptual change (Equation (7)). (C) Frequency histogram of perception durations
following a geometric distribution, modulating p as a function of the time elapsed from the previous
perceptual change (p(t)) (Equation (8)). (D) Same as (C) but changing p values from 0.1 to 0.9.

The values of (1 − p) and p can be made to be dependent on the time in which the
transition occurs. This modification of the geometric distribution permitted us to increase
the fitting of experimental data [12] and supposes, that after a transition, there is a higher
probability for the network representing the current perceived object to be defeated in the
competition. Equation (7) and Figure 5B imply that the average probability that the win
probability of the neural network representing the alternative percept (p) relative to the one
that won the competition (1 − p) increases over time, while the probability that the current
perception would be defeated in the competition increases with time. The most probable
physiological mechanism would be the habituation of the neural network representing
the current perception. Therefore, the probability that a percept is consciously perceptible
during a certain time will be a function of the time since its perception was established
(Equation (8)). Therefore, the probability of perception is now a function of time since the
last change in perception in this bistable perceptual system (p(t)) (Figure 5B).

p(t) = (1/(1 + (e^((−t · A)+ e2 ))) · p (7)

A = A parameter used to modulate the curvature of the sigmoid;
e2 is introduced into the sigmoid equation to have the origin at zero.

Finally, the frequency distribution of perception times (Figure 5C) should be

f(t) = (1 − p(t))(t−1) · p(t)·N; (8)

The parameter A must be estimated from the empirical distribution of f from time 0
to the mode of the empirical distribution of f. To estimate the parameter p, only the right
tail of the f distribution will be considered, because in this part of Equation (7), p(t) and
(1 − p(t)) have reached the asymptotic level, and p(t) has a value close to the asymptotic
value p.

The fitting of this model was successful for fitting the frequency histograms of the
perceptual times of both the Necker cube and eye rivalry [12]. Interestingly, the mean time
of perception was modulated by attention. This experimental result can be accommodated
in the model by modulating the value of parameter p (Figure 5D), which changes the
shape of the frequency histogram of perception durations. The latter finding suggests that
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attention, a higher cognitive function, is able to modulate the neural activity of a given
representational network.

The model has also been successfully applied to another situation: the behavior of
the lever pressing in the VI schedule of reinforcement [11]. In this approach, the same
model is applied to motor networks representing the lever pressing (p), as well as any
other possible alternative behavior (1 − p). The use of this modified geometric distribution
(with the parameter p being dependent of time) would be an alternative to the gamma and
Poisson distributions for fitting the IRTs, as previously described [10]. This fitting approach
would not only highlight the random process for the IRTs, but it would also be based on
the competition between the lever pressing behavior and any other possible behavior, in a
similar manner to the competition between alternative percepts in ambiguous figures and
eye rivalry.

5. The Psychometric Function (Also Called Psychophysics Function)

According to the America Psychological Association, this function refers to “the
relationship between a stimulus and judgments about the stimulus, as expressed in a
mathematical formula”. The relationship between the intensity of the stimulation and the
probability of reaching the perceptually conscious threshold is described by an asymp-
totic sigmoid [28]. This relationship indicated a continuous increase in the probability of
perception with stimulus intensity increase.

One possibility of generating such probabilistic perceptual threshold would be related
to the neural noise of sensory channels, in which, on certain occasions, the external energy is
sufficient for reaching the threshold, or not in other cases. The probabilistic threshold would
be more critical for low-intensity sensory stimulation, in which the intensity of neural noise
can be critical for reaching the perceptual threshold. This possibility is exemplified by the
phenomenon of stochastic resonance, which refers to the fact that the addition of a certain
amount of noise leads to better information transmission [29]. In the case of low-intensity
stimuli, stochastic resonance would facilitate reaching the perceptual threshold.

This study tried to explain the probabilistic nature of the psychometric function as
a consequence of the random behavior of voltage-gated ionic channels. The approach
followed tried to capture the stochastic nature of the perceptual threshold based on neural
noise, without entering into an almost impossibly detailed description of the process in
neurons and neural assemblies but keeping the essentials of the already-demonstrated
threshold process approach, which holds for ionic channels, action potential generation, and
the perceptual threshold. This approach permits the exclusion of many of the mechanistic
details, without losing the dynamic essentials. In fact, the influence of neural noise on the
discharge of neurons [8], as well as the influence of noisy spike trains on perception [30] has
already been addressed. The simulation, best defined as numerical exploration, brought
from the random opening of ionic channels to the psychometric function is described in
Figures 6–8 (details in Gómez, [13]).

Figure 6A shows a series of simulated closings and openings of ionic channels selected
from a Bernoulli random process. The frequency histogram of the opening durations of
an ionic channel is displayed in Figure 6B, showing an exponential decay, as has been
observed empirically [1]. The time series of the number of open channels are represented
in Figure 6C for three different stimuli intensities. This time series presents a Gaussian
distribution (Figure 6D). The increase in the number of open channels for higher stimuli
intensity induced an increase in variability (Figure 6E,F).
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Figure 6. Simulation of ionic channel behavior. Series of openings and closings of an individual
ionic channel modeled by a Bernoulli random process (A). (B) Exponential-like decay of the ionic
channel opening durations. (C) Time series of the number of ionic channels open at different stimulus
intensities. (D) Bell-shaped distribution of the number of open channels per time bin. (E) Increase
in absolute variability (Standard Deviation: SD) and decrease in relative variability (coefficient
of variation: CV) (F) with the number of open channels. Adapted with permission from [13].
2008, Springer.

Figure 7. Simulation of the number of spikes in a sensory network representing a perceptual object.
(A) Same as in Figure 6C. (B) The number of open channels in each time bin with a line indicating
the hypothetical action potential threshold. (C) The geometric model of the frequency distribution
of the inter-spike intervals. (D) On the upper side, the open channel time series, and on the middle
and lower sides, the number of spikes in the sensory network that would represent the perceived
object. (E) Gaussian-like distribution of the number of spike series of the lower (D). Adapted with
permission from [13]. 2008, Springer.
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Figure 8. Psychometric or psychophysics function. (A) Number of spikes for the increasing intensity
of the stimulation. The line shows the arbitrary threshold for stimulus detection. With stimula-
tion intensity, the number of spikes per time bin increases and then the event detection probability
also increases. (B) Psychometric or psychophysics function. The predicted displacement of the
psychometric function caused by reducing or increasing the threshold for event detection or in-
jecting a certain level of DC current is indicated by arrows. Adapted with permission from [13].
2008, Springer.

Although the relative variability in the number of open channels per time unit
decreases with the number of open channels (measured as a coefficient of variation)
(Figure 6F), the absolute variability measured as the standard deviation increases mono-
tonically with the number of ionic channels and, consequently, with the stimulus intensity
(Figure 6E). The important point in the simulation of the opening and closing of the chan-
nels, modeled via a random Bernoulli process, is that the addition of the channel does not
ride out the neural noise intrinsic to the neuron, and then the neuron discharge to a constant
current input is also influenced by neural noise. This is shown in Figure 7. Figure 7A
shows the time series of the number of ionic channels openings induced by a stimulus near
the threshold. The number of open channels per time bin appears in Figure 7B. The line
indicates the neuron fixed threshold for inducing an action potential. As a consequence of
the imposed threshold and the number of open channels, spikes are generated. Figure 7C
shows the frequency distribution of the inter-spike interval obtained. The results for the
frequency distribution of the inter-spike intervals conform to the expected geometrical
distribution, similar to Equation (6), which, in this case, is as follows:

Pr (X = t) = (1 − p)t−1 · p (9)

Therefore, the probability of the duration of a given inter-spike interval (X) having
a value (t) is equal to the probability of the number of open channels being equal to or
above the threshold in a certain time bin (p). Then, p must be multiplied by the probability
that in the (t − 1) previous time bins, the number of open channels had a value lower
than the threshold value (1 − p). Figure 7D shows the number of spikes in a neural
network representing the stimulus (below), and Figure 7E shows the bell-shaped frequency
distribution of the number of spikes by time unit. The last part of the simulation tries
to obtain the psychometric function using a fixed perceptual threshold of the number of
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spikes in the neural net representing the presented stimulus. Figure 8A shows the time
series of the total number of spikes relative to the increasing intensity of the stimulus, and
in Figure 8B, the psychometric function is obtained by plotting the frequency of cases in
which the number of spikes is higher than the perceptual threshold.

The whole model can be validated at the different levels of description from ionic
channels to the psychometric function; I would concentrate here on the psychometric func-
tion. The validation of more basic levels can be found in the original publication [13]. The
obtained shape in the simulation is similar to the sigmoid psychometric function obtained
experimentally [31,32]. The simulation is able to predict the direct current injection of
cortical columns representing the direction of moving targets’ bias psychometric function
to lower stimulus intensities (Figure 8B) [33]. The latter experiment would be, in some
sense, an electrophysiological substitute for attention to certain stimuli, which also reduce
the perceptual threshold [34]. By increasing the amount of noise, it was possible to bias
the sigmoidal psychometric function with a perceptual improvement similar to “stochastic
resonance” [29]. Interestingly the stochastic resonance results open the possibility that
reducing the threshold for a certain stimulus through attention could possibly be imple-
mented not only via stochastic resonance but also by the increase in the neural activity
arriving at the neural net representing the observed percept [34].

From the perspective of the present review, the main point of this numerical explo-
ration is that, at least at a theoretical level, the neural noise activity cannot be ridden out,
and it can be observed at a macroscopic perceptual level.

6. Discussion

The aim of this report was to demonstrate that the probabilistic natures of the basic
electrophysiological processes of neurons can still be observed at the level of the organism.
It must be always considered that given the huge complexity of biological processes, we can
only suggest that random modeling is a good approximation of the studied phenomenon,
but it is very difficult, if not impossible, to overlook the fact that some hidden or unknown
variables are deterministically defining the process at hand. Also, the distinction between
chaotic and random behavior is very difficult [26]. The approach followed in the different
studies presented here is (i) to model the data via probability density functions, which,
theoretically, are the by-products of random processes, and (ii) show no time dependence
in the data time series.

The latter two characteristics are the main properties of random processes [9] The
neural global discharge of the abducens nerve [7] and the IRTs of lever pressing in a VI
schedule of reinforcement fulfilled both conditions. The perception times of ambiguous
figures and eye rivalry [12] were fitted by the modification of the geometric distribution,
and. qualitatively, there were no time dependencies in the successive events. The obtained
psychometric function was based on a simulation in which the organismic response (the
psychometric or psychophysics function) was constructed from its more basic underpin-
nings [13], in the interaction between the stimulus intensity and the random closing and
opening of ionic channels. We will comment first on the psychometric function study given
its more detailed description extending from the molecular to the organismic level.

The results of the simulation of the psychometric function could lie in the stochastic
nature of voltage-gated ionic channels. The computation of a probabilistic psychometric
function suggests that variability at the microscopic level is conserved at the perceptual
organismic level. An interesting point derived from the simulations is the alternation
between geometric, exponential, and Gaussian distribution across levels: exponential
for the opening time of channel distributions (please notice the great similarity between
geometric and exponential distributions), Gaussian for the number of channels open at a
given time, geometric for the inter-spike time intervals of single neurons, and Gaussian
for the number of spikes in the neural net representing the perceptual level. Finally, and
as a result of the whole process, the sigmoidal shape of the psychometric function, as a
consequence of the collective behavior of sensory modules was obtained from the last level
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of representation: the number of spikes in the neural net representing the percept that
reached the perceptual threshold (i.e., [30]).

The exponential and geometric distributions would be obtained from a threshold
process on a random variable. Here, the random variable, which can be proposed to
underlie the consecution of a voltage sufficient for overriding the energy barrier for the
transitions between closed and open ionic channels, would be the thermally induced local
movement of ions in the vicinity of the channels. In fact, the voltage and ion concentrations
in ionic solutions possibly follow an Ornstein–Uhlenbeck process, with a mean voltage
value due to the ion concentration of intra- and extracellular medium and random processes
due to the thermal noise and electromagnetic interactions between ions and other ions
or water. It is expected that the voltage at a given position should be random due to the
Brownian motion of ions in the extra- and intracellular fluid.

Therefore, it can be speculated that a certain concentration of ions due to largely
random electrochemical processes could create an electric field across the ionic channel to
determine its opening. In fact, it is not strictly necessary for the fluctuation of voltage across
ionic channels to have any particular distribution, just that it reaches a certain threshold
to induce the channel opening. The geometric distributions of the inter-spike intervals
would be obtained from the Gaussian distribution of intracellular voltages created from the
normal distribution of open channels per time unit, from which, once a certain threshold
is obtained, spikes are generated. The latter argument is supported by more detailed
simulations in which subthreshold voltage fluctuations increased with the mean voltage
and the neuronal noise was normally distributed [35]. The Gaussian distributions obtained
for the number of open ionic channels and the number of spikes in the neural network
representing the percept would be a direct consequence of the central limit theorem.

Therefore, a succession of distributions across levels of integrations would represent a
Gaussian distribution of voltage around channels, an exponential (may be geometric given
the shape similarity with the exponential distribution) distribution for the opening times
of channels, a Gaussian distribution for the intracellular voltages of neurons, a geometric
distribution for inter-spike intervals, and a normal distribution for the global number of
spikes in the network representing the percept. An interesting prediction for the model
would be that for a stimulus of low intensity, the time intervals between two perceived
stimuli should follow a geometrical distribution. With respect to the probability density
functions of the different variables presented in this review, the perceptions of ambiguous
figures [12], IRTs [10,11], and abducens nerve spike count [7] were all tested via chi-
squared and Kolmogorov–Smirnov tests. However, for the simulation of the psychometric
function [13], only an approximate graphical method was applied.

The Gaussian distribution for the global activity of a neural structure in response
to a continuous input was validated by the computation of the number of spikes in the
abducens nerve at the neuronal level, and the abducens motoneurons show a Gaussian
distribution [6]. However, for constant inputs, Poisson distributions [36,37] and unimodal
left-skewed distributions [38] have been obtained. This variety of probability distribu-
tions for inter-spike intervals can be explained by changes in ionic conductances after
spikes, not only producing phenomena such as after-hyperpolarization potential [39,40]
but also producing short- and long-range adaptation and the activation of recurrent neu-
ral activity through reverberant circuits. Therefore, it is not surprising that during neu-
ronal steady inputs, different empirical inter-spike frequency distributions are obtained in
neuron discharge.

With regard to the duration of perception in eye rivalry and ambiguous figures [12]
and the IRTs of lever pressing in VI [11], both were explained by the geometric distribution
and refractoriness for very short durations due to the change in the probabilities as a
function of time from the preceding event (perception or response). Perception durations
did not show qualitatively long-range time series dependency, and the IRTS proved by
means of autocorrelation the absence of time dependency.
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The possible random behavior for ambiguous figures’ perceptual changes over chaotic
deterministic dynamics has previously been explored [26], and for ocular tremor and the
psychometric function, the compelling argument that the constituents of the model are
random processes (inter-spike modeling and the opening and closing of ionic channels,
respectively) suggest a random basis for these organismic phenomena. But, of course, it
does not discard other alternative models based on deterministic chaotic dynamics. In
the case of IRT, probability density functions have been fitted to the data and no time
dependence in the data time series has been found. Although these results suggest random
behavior, more compelling evidence, as this suggested by Lehky [26], is needed.

By integrating all the previous data, it can be proposed that at the organismic level,
there are clear traces of random processes, probably due to the random basic electrophysio-
logical processes of neurons. It has been proposed that the presence of this unavoidable
random activity would be used by organisms to generate behavioral variability that could
be used to reinforce the most adaptive behaviors, as in other selective systems such as
species evolution [41], clonal selection in the immune system [42], or neural network se-
lection in the so-called “selection of neuronal groups theory” [43]. In the present report,
the notion of alternation across levels of Gaussian distributions (ion-mediated microscopic
voltage distributions, intracellular voltages mediated by ionic channels, global activity in
macroscopic structures such as the abducens nerve), as well as geometric distributions
(and exponential distributions) mediated by a threshold to be overcome (ionic channels
opening, spike firing, perception and responses), would be a functional characteristic in
the transition from the microscopic to the macroscopic in the nervous system. It must
be highlighted that the stance taken in the present report is to consider that the presence
of thermal noise in the ionic channels and ionic solution across the membrane does not
constitute just hidden variables but also intrinsic noise in which the neurons, networks, and
behavior have to co-live and somehow thrive for generating behavioral flexibility [44,45].
In this sense, neural and behavioral variability would be caused not only by complex
neural dynamics [45] but also by intrinsic neural random processes. The phenotypical
variability in life is huge for the organization levels presented in this review, as well as in
any other order of complexity level of life. We have tried only to highlight the influence of
neural noise based on biophysical concepts of behavioral variability. Future studies should
delimitate the relative importance of each of the factors influencing behavioral freedom of
degrees in similar sensory contexts.
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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative condition. It causes cognitive
impairment and memory loss in individuals. Healthcare professionals face challenges in detecting AD
in its initial stages. In this study, the author proposed a novel integrated approach, combining LeViT,
EfficientNet B7, and Dartbooster XGBoost (DXB) models to detect AD using magnetic resonance
imaging (MRI). The proposed model leverages the strength of improved LeViT and EfficientNet B7
models in extracting high-level features capturing complex patterns associated with AD. A feature
fusion technique was employed to select crucial features. The author fine-tuned the DXB using the
Bayesian optimization hyperband (BOHB) algorithm to predict AD using the extracted features.
Two public datasets were used in this study. The proposed model was trained using the Open
Access Series of Imaging Studies (OASIS) Alzheimer’s dataset containing 86,390 MRI images. The
Alzheimer’s dataset was used to evaluate the generalization capability of the proposed model. The
proposed model obtained an average generalization accuracy of 99.8% with limited computational
power. The findings highlighted the exceptional performance of the proposed model in predicting
the multiple types of AD. The recommended integrated feature extraction approach has supported
the proposed model to outperform the state-of-the-art AD detection models. The proposed model
can assist healthcare professionals in offering customized treatment for individuals with AD. The
effectiveness of the proposed model can be improved by generalizing it to diverse datasets.

Keywords: feature extraction; deep learning; transformer; LeViT; hyperparameter tuning; model
optimization; neuroimaging; neurodegenerative diseases

1. Introduction

According to the World Health Organization, the total number of individuals aged 60
and older is expected to double by 2050, reaching approximately 2.1 billion people, 22%
of the global population [1]. Alzheimer’s disease (AD) is a neurodegenerative condition
that primarily affects the elderly population [2]. However, it may manifest in younger
individuals. It is the primary cause of dementia. Mild cognitive impairment may occur
in the initial stages of AD [2]; this is a transitional stage from normal functioning to AD
in which an individual has moderate cognitive abnormalities [3]. The individuals may
experience difficulties in performing their routine tasks [4]. They may face challenges
in remembering recent events, names, and conversations. In addition, they may exhibit
agitation and aggression. With an anticipated increase in AD cases, the disease has become
one of the significant global concerns of the modern era. Despite massive efforts to find
a cure, AD is still a non-preventable and irreversible form of dementia that impairs an
individual’s daily life [5]. It is complicated and progressive, necessitating early discovery,
diagnosis, therapy, and family support [6]. As the condition progresses, AD patients
increasingly rely on their caretakers and require assistance with routine activities.

The primary etiology of AD remains unclear. However, genetics, environment, and
lifestyle may contribute to AD [6]. Medical treatment and assistance can place a financial
burden on individuals with AD and their families. Globally, governments, healthcare
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organizations, and research institutes are focusing on the development of practical ap-
proaches to address the challenges associated with AD [6]. Researchers investigate AD’s
backgrounds, risk factors, prevention, and therapy to identify successful strategies to re-
duce its progression. Most cases of dementia are based on neurodegeneration caused by
AD. Increasing evidence from neuropathological and neuroimaging studies shows that
mixed etiologies cause many dementia cases, especially in people over 80 years [7]. There
has been more variation in the findings regarding the prevalence of dementia and AD
in populations older than 90 years compared to younger populations [7]. Healthy aging,
dementia care, and caregiver assistance are being applied to improve AD patients’ quality
of life [8].

Cognitive tests and assessments investigate memory, attention, language, reason-
ing, and problem-solving [8]. The Mini–Mental State Examination, Montreal Cognitive
Assessment, and AD Assessment Scale–Cognitive Subscale are frequently used for AD
detection [8]. Cognitive function may be assessed in greater detail with neuropsychological
tests [9]. These tests demonstrate cognitive strengths and limitations and may distinguish
AD from distinct dementias [10]. Lumbar puncture may collect cerebrospinal fluid from
the lower back [11–14]. Elevated beta-amyloid and tau proteins in cerebrospinal fluid may
indicate AD pathology. In a few instances, genetic testing may be utilized to diagnose AD,
particularly among individuals with a family history of AD [15]. An in-depth neuropsycho-
logical evaluation is a crucial diagnostic component in the diagnosis of dementia [16]. It
analyzes magnetic resonance imaging (MRI) scans for signs of regional brain atrophy and
determines the AD biomarkers using the cerebrospinal fluid biomarker profile. It evaluates
individuals’ memory, attention, language, and emotional performance. Healthcare practi-
tioners’ subjective interpretation of cognitive and neuropsychological testing can result in
diagnostic discrepancies [16–18].

Several imaging modalities may reveal the brain’s structure and function, highlighting
abnormalities associated with AD [18]. The diagnosis of AD relies on a wide variety of
biomarkers, including genetic and biological data and neuroimaging techniques, MRI,
amyloid positron emission tomography (PET), and diffusion tensor imaging [19–21]. The
brain structural changes, including hippocampal shrinkage and other AD-related changes
in addition to malignancies and strokes, can be identified using MRI [22]. These changes can
be used to determine brain abnormalities associated with mild cognitive impairment, which
may indicate AD. PET imaging can identify AD’s beta-amyloid plaques and tau protein
tangles in the brain. PET scans utilizing florbetapir, flutemetamol, or florbetaben may
confirm AD [23]. Chin-Yun Kuo et al. (2023) [24] discussed the significance of integrating
neuropsychological assessment with neuroimaging in order to identify AD in its initial
stages. Researchers can obtain valuable information on brain anatomical components from
high-resolution MRI images. In addition, MRI images have been made available through
public open access databases. These datasets are frequently updated, and researchers can
utilize them to develop automated AD detection.

DL models can improve early detection, understand disease pathology, integrate
image features, leverage large-scale datasets, and advance personalized medicine for indi-
viduals with AD [25]. These models can capture complex and high-dimensional patterns in
medical imaging data, including MRI and PET, assisting in diagnosing and understanding
AD [26]. By identifying biomarkers and subtypes of AD, DL-based models may enable indi-
vidualized treatments [26]. DL algorithms can learn complex representations from massive
data, providing improved precision and generalizable AD detection models [27–31]. Islam
and Zhang (2017) [32] employed a multi-class classification model to detect AD. Hussain
et al. (2020) [33] introduced a binary classification to distinguish individuals with and
without AD using MRI data. Murugan et al. (2021) [34] proposed a DL model to predict
AD and dementia. Raees and Thomas (2021) [35] used a Support Vector Machine and Deep
Neural Network to detect AD using MRI. Mamun et al. (2022) [36] used a DL model for
AD detection. Helaly et al. (2022) [37] proposed a DL model to predict AD in the early
stages. Liu et al. (2022) [38] employed a three-dimensional deep convolutional neural
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network (CNN) to differentiate individuals with mild AD from those without AD. El-Latif
et al. (2023) [39] pre-processed the MRI scans and improved the CNN model’s capability in
identifying AD. However, the existing AD detection models demand high-performance
graphical or tensor processing units and large-scale computing infrastructure for training
and inference. An effective fine-tuning algorithm is required to find the optimal hyperpa-
rameters for optimal outcomes. Hyperparameter selection requires substantial testing and
manual adjustment, which is time-consuming and computationally expensive. Overfitting
or poor generalization may result from inadequate data for deep learning models.

Furthermore, researchers and practitioners with restricted computing resources may
encounter challenges in model implementation. Existing AD detection approaches using
MRI require human interpretation or essential feature extraction, limiting diagnosis accu-
racy and reliability. There is a demand for advanced and automated techniques to detect
subtle disease-specific AD patterns. Transformer-based architectures and CNNs have pro-
duced promising results in medical image processing. The integration of transformers and
CNNs can extract local and global spatial information from complex images. Combining
these architectures may strengthen AD detection feature extraction frameworks. These
features have motivated the author to build a hybrid transformer and CNN-based AD
detection model. The contributions of the study are as follows:

A feature fusion-driven LeViT–EfficientNet B7-based feature extraction model to
extract the crucial features of AD.

An enhanced Dartbooster XGBoost (DXB)-based AD detection model using a Bayesian
optimization hyperband (BOHB) optimization algorithm.

The structure of the proposed study is organized as follows: The proposed methodol-
ogy for detecting AD using MRI images is described in Section 2. Section 3 outlines the
findings of the performance validation. The study’s contribution is discussed in Section 4.
Lastly, Section 5 concludes the study by outlining the limitations and future direction.

2. Materials and Methods

The author introduced an integrated approach that combines a vision transformer
(ViT), CNN, and gradient-boosting model. A ViT can capture global spatial relationships
and long-range interdependence in images [40]. To identify AD anomalies in MRI scans,
determining the spatial context of brain regions is crucial. Based on task relevance, a ViT
utilizes self-attention mechanisms to rank image patches. The model’s interpretability
enables researchers and clinicians to observe its regions of interest, allowing them to
comprehend AD detection characteristics. A pre-trained ViT model can be fine-tuned on
smaller MRI datasets for AD detection [40]. LeVit [40] is a ViT based on a hybrid neural
network [37]. Using a transfer learning approach, a feature extraction can be developed to
extract crucial AD patterns in order to improve AD detection generalization. LeViT can
be seamlessly integrated with CNN to a diverse set of features. CNN can recognize edges,
textures, shapes, and structures in MRI images using multiple layers of convolutional and
pooling processes. It can identify AD-related regional anomalies in MRI images using
attention mechanisms and spatial pooling. EfficientNet B7 is a state-of-the-art CNN model
with a compound scaling technique [41]. It is widely used for extracting features from
medical images. The capability of LeViT and EfficientNet B7 in extracting the intricate
patterns has motivated the author to employ a hybrid feature extraction approach. In
addition, the author employed a DXB, which is a gradient-boosting model, to identify the
type of AD using the extracted features. Figure 1 reveals the proposed methodology for
identifying AD using MRI images.
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Figure 1. The Proposed AD Detection Methodology.

2.1. Dataset Acquisition

Open Access Series of Imaging Studies (OASIS) Alzheimer’s dataset contains a cross-
sectional collection of T1-weighted MRI scans of 416 subjects aged 18 to 96. The subjects
include males and females. The dataset provides cognitive scores and the diagnosis status
of individuals. OASIS Alzheimer’s dataset is freely accessible through the repository [42].
Alzheimer’s dataset consists of 5000 T1-weighted MRI images [43]. The images were
categorized based on the disease severity. The characteristics of the datasets are presented
in Table 1.

Table 1. Dataset Characteristics.

Classes OASIS Alzheimer’s Dataset Alzheimer’s Dataset

Mild 5002 896

Moderate 488 64

Normal 67,200 3200

Very mild 13,700 2240

The datasets were highly imbalanced. EfficientNet B7 and LeViT models may require
considerable data augmentation to boost robustness and minimize overfitting. Qi et al. [44]
proposed a data augmentation technique for brain MRI images. They applied generative
adversarial networks to generate the synthetic images. Thus, the author employed the
data augmentation technique [44] to overcome the limitation. In addition, traditional
data augmentation techniques, including rotation, translation, scaling, flipping, gamma
correction, shearing, and histogram equalization, were used in this study.

2.2. EfficientNet B7-Based Feature Extraction

EfficientNet B7 excels in image categorization [41]. It captures complex MRI character-
istics and patterns for AD diagnosis using the depth, width, and resolution scaling features.
It can handle massive amounts of MRI data with less computation cost. By revealing
MRI image representations, EfficientNet B7’s hierarchical structure can facilitate model
interpretation. Clinicians and researchers may use these representations to understand
AD’s unique characteristics and provide personalized treatment. EfficientNet B7 may
struggle to gain long-range relationships and contextual information in MRI images. This
shortcoming may impair the model’s detection of AD symptoms. In order to improve the
efficiency of the EfficientNet B7 model, the author employed an attention mechanism and
mixed-precision training. Figure 2 highlights the recommended feature extraction model.

Using the EfficientNet B7 backbone, a feature extraction model was constructed.
An attention mechanism was introduced to capture the long-range dependencies and
contextual information. Residual connections were incorporated to overcome the vanishing
gradients during the training phase.
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Figure 2. The recommended EfficientNet B7-Based Feature Extraction.

Furthermore, the author employed mixed-precision training to accelerate the training
and reduce memory consumption. Activation functions, gradients, and accumulation
were performed in a single precision format to prevent numerical underflow or overflow
challenges. In addition, a loss scaling factor was dynamically integrated into the loss
function to address vanishing gradients.

2.3. LeViT-Based Feature Extraction

LeViT offers a powerful platform to handle a wide range of medical image processing
tasks, including classification, object detection, and segmentation [40]. It demands fewer
parameters compared to traditional CNN models. The self-attention mechanism can learn
interpretable representations of the MRI images. The global context modeling technique
captures holistic information associated with the MRI images. The patch extractor trans-
forms the image shape from 224 × 224 × 3 into 250 × 14 × 14. A shrinking attention
block is used to reduce the size of the activation maps. These features have motivated the
author to employ LeViT to extract AD patterns from the MRI images. However, LeViT
faces challenges in capturing fine-grained local details, affecting the ability to locate the
smaller objects. To overcome this limitation and improve the performance of LeViT-based
feature extraction, the author integrated spatial transformer networks (STNs) [45] with
LeViT architecture. Initially, an STN is built to perform spatial transformation on the MRI
images and extract features based on the region of interest. A feature extraction model
is constructed using the LeViT backbone. The extracted features are passed through the
LeViT in order to capture high-level representations of the spatially transformed features.
Figure 3 highlights the enhanced LeViT model for the feature extraction.
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Figure 3. The Enhanced LeViT Model.

A fully connected layer with the Softmax function is used to classify the features
based on the severity. Equations (1) and (2) show the computational forms of STN and
LeViT models.

F = STN(C, I) (1)

where F is the image feature, STN() is the spatial transformer network function, C is the
input channel, and I is the image.

F = LeViT(C, Cl, F) (2)

where F is the image feature, C is the input channel, Cl is the AD classes, and LeViT() is the
function for implementing the LeViT model.

After fusing the features, the author normalized the features using feature-wise nor-
malization to prevent numerical instability. Finally, a fully connected layer with the Softmax
function was used to generate the outcome. The outcomes were stored as a vector.

2.4. Feature Fusion Layer

The author combined a fusion layer with LeViT to fuse the features using an element-
wise addition approach. A dimension-matching process was used to identify the features
with different dimensions. A reshape function was applied to reshape the feature maps
into unique dimensions. Subsequently, element-wise addition combines the elements of
EfficientNet B7 and LeViT. Equation (3) shows the mathematical form of feature fusion.

∑n
i=1 f f used = ∑n

i=1 fE f f icientNet B7+∑n
i=1 fLeViT (3)

where n is the number of features, f f used is the fused features, fE f f icientNet B7 is the Efficient-
Net B7 features, and fLeViT is the LeViT features.
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2.5. Dartbooster XGBoost-Based AD Detection

DXB is an enhanced version of the traditional XGBoost algorithm [46]. It focuses on
dropout regularization to prevent overfitting by randomly dropping units during training.
Compared to the existing gradient-boosting algorithms, DXB achieves a considerable
outcome with limited computational power. In this study, the author employed a DXB
model to predict the AD type using the extracted features. However, DXB may face
challenges maintaining exploration–exploitation trade-offs in high-dimensional search
space. In addition, it may struggle to scale to complex models due to the increased
computational requirements. To overcome these limitations, the author employed the
BOHB algorithm to fine-tune the model. The hyperband algorithm follows a strategy
to allocate computational resources to unique hyperparameter optimization. Bayesian
optimization uses a probabilistic surrogate function to control the performance of the DXB
hyperparameters. During the training phase, a resource budget (hyperparameters) was
initialized. A Gaussian process was updated with the observed performance data. Multiple
rounds of optimization were performed until computational resources were exhausted.
Equations (4) and (5) show the mathematical forms of the BOHB and DXB hyperparameter
tuning processes.

BOHB = argmax
a∈A∝ (a) (4)

O = BOHB(DXB( f ), A) (5)

where A is the number of hyperparameters, ∝ (a) is the acquisition function that controls
the selection of hyperparameters, f is the feature, BOHB() is the Bayesian optimization and
hyperband function, DXB() is the Dartbooster XGBoost function, and O is the outcomes.

Furthermore, the author included SHapley Additive exPlanations (SHAP) values in
the DXB model to improve the model’s interpretability. The integration of SHAP values
can assist healthcare professionals in gaining deeper insights into the model’s prediction.

2.6. Performance Validation

The author validates the proposed model’s performance using widely applied eval-
uation metrics. Accuracy represents the overall correctness of the proposed model’s
predictions. Specificity indicates the model’s ability to detect negative instances. Sensitivity
measures the model’s capability of detecting positive classes. Precision indicates the pro-
posed model’s capability to prevent false positives, whereas recall represents the model’s
ability to identify positive instances. Cohen’s Kappa is used to assess the reliability and
consistency of the model’s findings. In addition, the area under the receiver–operating
characteristics curve (AUROC) and the area under the precision–recall curve (AUPRC) are
used to evaluate the effectiveness of the proposed AD detection model.

3. Results

The performance evaluation of the proposed model was conducted using Windows
11 Pro, Intel i9-12900k, 16 GB RAM, NVIDIA RTX 4090, and Python 3.8.0. The libraries,
including Pytorch 1.9, TensorFlow 2.11.0, Theano 1.0.5, and Keras 2.12.0, were used for
model development. The OASIS Alzheimer’s dataset was divided into a train set (70%),
a validation set (15%), and a test set (15%). Alzheimer’s dataset (20%) was used to gen-
eralize the proposed AD detection model. Table 2 reveals the experimental settings for
implementing the proposed AD detection model.

The performance of the proposed AD detection during the training and validation
phase is highlighted in Figure 4a,b. Compared to the training phase, there was a signifi-
cant improvement in the validation phase. The recommended early-stopping strategies
and regularization techniques have improved the model performance by monitoring the
validation loss. The model has attained an optimal performance at the 77th epoch.
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Table 2. Experimental Settings.

Model Parameters Values

LeViT

Image Size 224 × 224 × 3

Decay Factor 0.1 every 10 epochs

Initial Learning Rate 0.001

Batches 43

Epochs 75

Loss Function Cross-Entropy

Optimizer Adam

Fusion Layer Element-wise addition

EfficientNet B7

Image 224 × 224 × 3

Optimizer Adam

Loss Function Cross-Entropy

Validation Loss Monitor Early Stopping

Regularization Dropout, L1, and L2

Convolutional Layers 5

Activation Function Softmax

DXB

Learning Rate (η, [0, 1])

Minimum Split Loss (γ, [0, ∞])

Maximum Tree Depth ([0, ∞])

Optimizer BOHB

(a) (b)

Figure 4. (a) Prediction Accuracy and (b) Loss.

The findings of the performance validation using dataset 1 are outlined in Table 3.
The recommended LeViT–EfficientNet B7 feature extraction has improved the prediction
accuracy of the proposed model. In addition, the data augmentation has supported the
model in identifying the critical patterns associated with AD.

Figure 5 presents the findings of a comparative analysis of the existing transformer
and CNN backbones. The proposed model has outperformed the existing models by
obtaining an optimal generalization accuracy of 99.8%. The recommended fine-tuning
processes assisted the proposed model in addressing the overfitting, vanishing gradient,
and amplification effects. Figure 6 highlights the computational loss of the AD detection
models. The proposed model produced a minimal loss compared to the existing models.
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Table 3. Outcomes of Performance Validation.

Classes Accuracy Specificity Kappa Precision Recall F1-Score

Mild 99.8 99.9 97.5 99.3 99.5 99.4

Moderate 99.9 99.8 96.8 98.6 99.4 99.0

Normal 99.6 100 97.3 99.3 99.5 99.4

Very mild 99.8 99.8 97.9 99.5 99.6 99.5

Figure 5. The Comparative Analysis Outcomes.

Figure 6. Computational Loss.

Table 4 presented that the proposed model required a few parameters and FLOPs to
deliver a remarkable outcome compared to the existing backbones. The findings indicated
that the model can be implemented in a resource-constrained healthcare environment. The
BOHB algorithm has supported the proposed model in maintaining a trade-off between
high generalization accuracy and limited computational resources.
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Table 4. Computational Configurations.

Model
Parameters

(in Millions (m))
FLOPs

(in Millions (m))
Testing Time

(Seconds)

Proposed Model 27 42 1.02

EfficientNet B7 39 53 2.15

SqueezeNet V1.1 46 59 1.23

MobileNet V3 47 61 2.08

SWIN Transformer 52 59 1.36

LeViT 37 45 1.56

Table 5 highlights the findings of the reliability and consistency analysis. The proposed
model has achieved excellent AUROC and AUPRC, indicating high discrimination in dis-
tinguishing the multiple classes of AD. High AUROC and AUPRC highlight the reliability
of the proposed AD detection model. The proposed model achieved an exceptional SD
and CI, indicating a reliable and consistent outcome. In addition, a smaller SD shows that
the model’s performance is consistent across diverse data points. Clinicians can benefit
from the model and reduce unnecessary medical interventions. The recommended feature
extraction approach has produced highly discriminative features by capturing subtle pat-
terns associated with AD. The suggested BOHB-based hyperparameter tuning has selected
appropriate DXB parameters to prevent overfitting and enhance the model’s robustness.

Table 5. Reliability and Consistency Analysis.

Model AUROC AUPRC SD CI

Proposed Model 0.99 0.97 0.0004 [95.8–96.8]

EfficientNet B7 0.91 0.93 0.0005 [95.1–97.5]

SqueezeNet V1.1 0.89 0.91 0.0007 [94.8–95.9]

MobileNet V3 0.85 0.86 0.0011 [96.1–97.7]

SWIN Transformer 0.91 0.90 0.0006 [95.7–96.9]

LeViT 0.92 0.91 0.0007 [96.1–96.9]

Table 6 presents the performance of the AD detection models. The utilization of
improved LeViT enhances the proposed model’s ability to detect long-range dependencies
and spatial relationships associated with AD. The scaling coefficient of the EfficientNet
B7 model enables the model to handle inherent complexities and variations in the MRI
image resolutions.

Table 6. Findings of Comparative Analysis.

Model Accuracy Specificity Sensitivity AUROC AUPRC

Proposed Model 99.8 99.8 99.4 0.99 0.97

Raees & Thomas (2021) [35] 90.1 88.7 87.6 0.84 0.81

Mamun et al. (2022) [36] 97.8 95.8 96.1 0.91 0.90

Helaly et al. (2022) [37] 97.1 92.4 91.5 0.90 0.91

El-Latif et al. (2023) [39] 95.9 91.5 92.3 0.91 0.88

Liu et al. (2022) [38] 86.1 78.1 80.2 0.85 0.83
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4. Discussions

In this study, the author introduced an EfficientNet B7 and LeViT-based feature fusion
technique for extracting key features from MRI images. The EfficientNet B7 model was
improved by integrating the attention mechanism. In addition, the author trained the
EfficientNet B7 model using mixed-precision training to reduce the computational cost. A
fine-tuned DXB model was used to detect AD using the extracted features. The model was
trained and tested using the OASIS Alzheimer’s dataset. A data augmentation technique
was employed in order to provide adequate training to the model to learn intricate patterns
of AD. The author generalized the model using the Alzheimer’s dataset.

Table 3 highlights the performance of the proposed AD detection model. The model
produced an outstanding performance by achieving an accuracy of 98.9% and specificity
of 98.7%. Tables 4 and 5 reveal the findings of the comparative analysis using the existing
backbones. Table 6 outlines the findings of the existing AD detection models. The proposed
model has outperformed the existing AD detection models. It required less computational
power to identify AD. The recommended feature fusion technique has supported the
proposed model in delivering an optimal outcome. In addition, the suggested BOHB
optimization has fine-tuned the parameters of the DXB model to make an effective decision
with limited resources. The proposed model demonstrated remarkable performance with
limited computational costs. Models with exceptional AUROC and AUPRC can assist
healthcare professionals in diagnostic interpretation and treatment options.

The proposed AD detection model can empower clinicians to make effective decisions
and offer personalized care to individuals. It holds promise for improving patient outcomes
and advancing the understanding of AD symptoms in the earlier stages. By integrating
computational approaches with clinical practice, this study enhanced AD detection using
MRI images. The proposed model’s accuracy and efficiency have significant clinical impli-
cations. Effective AD detection enables physicians to diagnose, schedule, and track disease
development. Reliable diagnostic techniques and timely intervention can enhance patient
outcomes and quality of life. Moreover, scientific communities may benefit from the study
findings to extend the research in medical imaging analysis and DL methods.

The author trained the proposed model using the OASIS dataset that covers the MRI
images with biomarkers, including an individual’s age, sex, cognitive score, and diagnosis
status. Researchers can gain insights into the underlying AD pathology and build effective
diagnostic and therapeutic strategies. The proposed model allows researchers to identify
critical biomarkers, including brain atrophy, cortical thickness changes, hippocampus
alterations, white matter integrity alterations, and abnormalities in specific brain regions.
Integrating SHAP values facilitates healthcare professionals to identify the significance of
MRI biomarkers (features) associated with AD. The proposed model assigns a positive and
negative SHAP value to each feature. Healthcare professionals can use SHAP values to
understand the importance of features in AD prediction. For instance, a SHAP value of 0.7
related to brain atrophy feature indicates that higher activation in the brain atrophy region
is associated with AD prediction. In contrast, a negative SHAP value is associated with a
decreased likelihood of AD.

Raees and Thomas (2021) [35] employed AlexNet, Visual Geometry Group (VGG)-16,
and ResNet-50 to extract features from MRI images. They used a Support Vector Machine to
predict AD. The pre-trained CNN models may produce biased predictions, leading to false
positives. The limited generalization ability has reduced the model’s performance in the
context of AD prediction. The class imbalances have reduced the Support Vector Machine
model’s capability of detecting AD. In addition, the lack of interpretability may cause chal-
lenges to healthcare professionals in understanding the results. The proposed AD detection
model integrated the SHAP values in order to provide the results with interpretability.
With the recommended feature extraction, it generated an exceptional outcome.

Mamun et al. (2022) [36] employed ResNet-101, DenseNet-121, and VGG-16 models
to detect AD. These models achieved an average accuracy of 97.8%. VGG-16 required
parameters of 138 M to generate the outcome, leading to high computational cost. It is less
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expensive compared to the proposed AD model. ResNet-101 architecture was complex,
resulting in high training time. It required additional computational power due to the
residual connections. DenseNet-121 model required a substantial memory during the
training phase. The dense connectivity pattern has reduced the ability to find AD patterns
compared to the proposed model.

Helaly et al. (2022) [37] used VGG-10 to classify the AD classes using MRI images. They
fine-tuned VGG-19’s performance to improve the prediction accuracy. The fixed architec-
ture of the VGG-19 has reduced the model’s performance. The vanishing gradient problem
has affected the model’s learning ability. The depth and complexity enabled the model to
produce results with high computational cost. In addition, VGG-19 demanded substantial
memory to store the intermediate results. In contrast, the proposed AD detection model
has employed mixed-precision training to reduce the computational power. Moreover, the
self-attention mechanism has supported the proposed model’s remarkable outcome.

Liu et al. (2022) [38] used free surfer segmentation to locate AD patterns. They
constructed a gradient-boosting classifier for detecting AD statuses. The processing time
of free surfer segmentation may vary depending on the hardware specification. The
limited spatial resolutions of MRI have reduced the performance of the model. In addition,
augmented samples of 3D MRI were complex, limiting the effectiveness of the AD detection
model. In contrast, the proposed AD model combined LeViT and EfficientNet B7 to improve
prediction accuracy by producing complex AD patterns.

EL-Latif et al. (2023) [39] constructed a shallow CNN model to classify the AD
types. They employed 2D CNN for multi-class classification. The model comprised
seven convolutional layers trained using the weights of the pre-trained model. It required
extensive image pre-processing in order to maintain a considerable performance. The lack
of generalization has reduced the model’s prediction accuracy. The model’s performance
was low compared to the proposed model.

The author encountered challenges in managing and optimizing the feature extraction
processes. The high-dimensional and heterogeneous MRI images caused challenges in
extracting intricate AD patterns. However, the EfficientNet B7 and LeViT backbones
were fine-tuned to overcome the image complexities. The high risk of overfitting due
to integrating LeViT and EfficientNet B7 models was reduced using regularization and
effective data augmentation techniques. The authors applied the mixed-precision training
strategy to minimize the computational costs for the feature extraction.

The proposed AD detection model was generalized on two datasets. A rigorous valida-
tion and generalization test is essential in order to ensure the proposed model’s robustness
and reliability across diverse populations. It can improve the model’s trustworthiness in a
real-time environment. The integration of the proposed model into the clinical workflow
may demand substantial validation, standardization, and flexible user interfaces. The
variations in MRI images may influence the model’s robustness and generalization. Contin-
uous monitoring and updating are essential in order to adapt to technical advancements
and clinical guidelines. AD detection is challenging and requires coordination between
computer scientists, neuroscientists, radiologists, and medical professionals. To enhance
the model’s diagnostic accuracy, multiple data modalities, including PET, genetic infor-
mation, and cerebrospinal fluid biomarkers can be explored. Investigating advanced data
augmentation techniques can enhance the model’s robustness to variations in the image
quality. The proposed AD prediction models can be improved through unique differences
in risk factors, disease progression, and symptom presentation by incorporating language
abilities, societal impact, and cognitive abilities as predictor variables. Researchers and
clinicians can improve AD prediction, diagnosis, and treatment by combining these factors.

5. Conclusions

The study presented a novel approach, integrating the strengths of LeViT, EfficientNet
B7, and the DXB model with the BOHB algorithm to identify different types of AD using
MRI images. The proposed model achieved a remarkable accuracy of 99.8% and specificity
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of 99.8% with limited computational resources. The improved LeViT and EfficientNet B7
with attention mechanisms have produced critical features of AD. The BOHB algorithm
has strengthened the DXB model to deliver a superior generalization capability compared
to the existing models. The findings indicate that the proposed model can be deployed
in healthcare and rehabilitation centers to diagnose AD. The lightweight nature of the
proposed model can reduce the complexities in the model implementation. However, the
author encountered challenges integrating STN with LeViT and fine-tuning the DXB model
using the BOHB algorithm. Integrating multimodal data sources, including PET and genetic
data, can unveil novel biomarkers of AD. In addition, enhancing the model’s interpretability
can foster trust and understanding among clinicians and individuals with AD. Advanced
data augmentation techniques can improve the proposed model’s generalization capability.
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Abstract: Currently, an increasing number of macaque brain MRI datasets are being made publicly
accessible. Unlike human, publicly accessible macaque brain datasets suffer from data quality in
diffusion magnetic resonance imaging (dMRI) data. Typically, dMRI data require a minimum ratio
of 1:10 between low b-value (b < 10) volumes and high b-value (b > 300) volumes. However, the
currently accessible macaque datasets do not meet this ratio. Due to site differences in macaque brain
images, traditional human brain image-to-image translation models struggle to perform well on
macaque brain images. Our work introduces a novel end-to-end primary-auxiliary dual generative
adversarial network (PadGAN) for generating low b-value images. The auxiliary generator in the
PadGAN is responsible for extracting the latent space features from peak information maps and
transmitting them to the primary generator, enabling the primary generator to generate images with
rich details. Experimental results demonstrate that PadGAN outperforms existing methods both
qualitatively and quantitatively (mean SSIM increased by 0.1139). Diffusion probabilistic tractography
using dMRI data augmented by our method yields superior results.

Keywords: medical image-to-image translation; generative adversarial networks; dMRI data
augmentation; macaque brain image

1. Introduction

Studying the macaque brain provides a crucial avenue for understanding human
brain mechanisms in neuroscience research [1]. Currently, the macaque monkey serves as a
prominent primate model and has become a vital subject for investigating the human brain
using various medical imaging techniques [2,3].

Diffusion magnetic resonance imaging (dMRI) technology detects the movement di-
rection of water molecules in the brain, utilizing the anisotropic diffusion characteristics
of water molecules in the white matter to reconstruct the white matter in the brain. The
b-value represents the intensity of the diffusion-sensitive gradient field, which, along with
its corresponding three b-vectors, reflects the influence of microstructural tissue on water
diffusion within living tissue in dMRI. Researchers commonly refer to the images corre-
sponding to different b-value intensities in the dMRI volume as b-value images. Diffusion
tensor imaging (DTI) estimation and probabilistic tractography techniques are established
methods for reconstructing major white matter fiber bundles in brain imaging [4]. Typically,
dMRI images consist of multiple b-value images, with low b-value (b < 10, recommend
b = 0) volumes serving as the basis for DTI, which is crucial for data analysis in neuroscience
research. Nowadays, to mitigate interference such as head motion during acquisition, one
low b-value image often corresponds to 5–10 high b-value (b > 300,commonly b = 1000)
volumes [5]. However, in some publicly accessible macaque brain dMRI datasets, the ratio
of low b-value to high b-value volumes may be below 1:5 or even 1:10, which could be
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due to the use of early acquisition protocol configurations [6]. The reliability of computed
results, such as DTI estimation, from analyses using data that do not meet the required
ratio needs further confirmation. Therefore, it is necessary to generate and optimize low
b-value volumes in macaque brain dMRI data.

Medical image-to-image translation refers to the method of translation images from
an input image modality to an output modality through a mapping relationship. This
approach can be used to acquire additional data or complete missing data [7], and it can be
applied to downstream tasks in medical image processing, such as image registration and
segmentation [8,9], as well as image classification [10].

Generative adversarial networks (GANs) are network models based on game theory,
consisting of a generator and a discriminator [11]. The generator attempts to generate
high-quality images to deceive the discriminator, while the discriminator distinguishes
between real and generated images. Both sides become stronger in the adversarial process,
resulting in the generator producing increasingly realistic images. With the emergence of
GANs, the performance of medical image-to-image translation has been greatly improved.
Initially, GANs were only used to generate images from random noise. With researchers
attempting to use Transformer as the generator of GANs [12], Transformer is being applied
in the field of medical image-to-image translation. The advent of pix2pix and CycleGAN
propelled the performance of GANs in image-to-image translation tasks [13,14]. New
methods harness the powerful generative capabilities of GANs to produce visually and
objectively superior images.

Some researchers have explored the application scenarios of CycleGAN in medical
image-to-image translation [15–17], but more efforts have been devoted to improving
CycleGAN for better application in unsupervised learning settings [18–23]. Methods based
on CycleGAN are unsupervised approaches, with the advantage of being able to perform
mutual translation between two domains without requiring paired images. However,
because CycleGAN serves two image translation tasks, its performance on the generation
task in a single target domain is generally inferior compared with supervised methods.

Compared with CycleGAN, methods based on Transformer are a supervised learning
approach. Some researchers have employed Transformer for medical segmentation [24],
MRI reconstruction [25], and medical image-to-image translation [8,26,27]. However, Trans-
former requires a large amount of data, but publicly accessible samples of macaque dMRI
data are limited, making it challenging to fully leverage the advantages of Transformer [28].

The pix2pix-based method is also a widely used supervised learning approach for
medical image-to-image translation. The Synb0-DisCo method applies the pix2pix tech-
nique to correct distorted b0 images [29]. pGAN and Ea-GAN, respectively, enhance the
image detail capability by improving the loss function and considering edge informa-
tion [30,31]. MedGAN [32] employs a cascaded U-Net as its generator for various medical
image translation tasks. As pix2pix-based methods are designed for the generation task of a
single target domain with paired image data, they often exhibit higher generation accuracy
in medical image-to-image translation tasks. However, since such methods typically rely
on a single generative adversarial network, they lack in detail learning.

Furthermore, all these methods share a common issue. Currently, most studies on
modality translation of brain MRI images are based on human brain GRAY color space, with
the aim of providing visually interpretable images [21,26,31,33]. Medical imaging signal
intensity values have absolute significance [8], and are required for probabilistic tractogra-
phy calculations, rather than the typical GRAY color range of bitmap images. Therefore,
the images generated by the aforementioned methods cannot meet the requirements of
computational neuroscience research.

In this work, we introduce the concept of peak information maps and propose a novel
end-to-end primary-auxiliary dual GAN network (PadGAN), which can extract latent space
features from peak information maps to translate high-quality low b-value images. The
generated low b-value images can be used for augmenting dMRI image data, improving
the quality of dMRI images. The results show that PadGAN outperforms existing methods
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in qualitative observations and quantitative metrics, and the effectiveness of each module
is validated through ablation experiments. Finally, we use the Xtract toolbox [34] in FSL6.0
(FMRIB Software Library) tools [35] to perform probabilistic tractography and use FSL
tools to conduct DTI estimation on dMRI data augmented. The Xtract calculation results of
dMRI data augmented using our method are more satisfactory. In summary, the specific
contributions of this paper are as follows:

1. We introduce the concept of peak information maps and design a corresponding
method for calculating peak information maps.

2. We propose a novel end-to-end primary-auxiliary dual GAN network to translate
high b-value images to low b-value images. In this network, the auxiliary generator
extracts latent space features from peak information maps and transfers these features
to the primary generator. The primary network integrates the latent space features
and multi-scale features to generate low b-value images.

3. Through DTI estimation and Xtract probabilistic tractography experiments, we vali-
date the effectiveness of generating low b-value images for augmenting original dMRI
data, providing new validation approaches for quality assessment in brain science
research and offering optimized dMRI data for brain science studies.

2. Materials and Methods

2.1. Datasets

We obtained human brain dMRI images from the WU-Minn public dataset released
by the Human Connectome Project (HCP) in 2016 [36]. We selected 96 dMRI data with the
following specific parameters: echo-planar imaging (EPI) sequence, TR/TE = 5520/89.5 ms,
flip angle (FA) = 78°, and voxel resolution of 1.25 × 1.25 × 1.25 mm.

We used the publicly accessible macaque brain imaging dataset from The PRIMatE
Data Exchange (PRIME-DE) [6]. This dataset contains data from different sites, and we
collected 8 data samples from Aix-Marseille Université (AMU), 12 data samples from
Mount Sinai School of Medicine-Philips (MountSinai-P), 5 data samples from Mount Sinai
School of Medicine-Siemens (MountSinai-S), 38 data samples from University of California,
Davis (UCDavis), and 582 data samples from University of Wisconsin–Madison (UWM).
The parameters of macaque datasets from different sites are shown in Table 1. These
datasets all suffer from varying degrees of imbalance between the number of low b-value
and high b-value images. The quantities and ratios of low b-value images to high b-value
images in the dMRI images from different data sites are shown in Table 2.

Table 1. Specific parameters of macaque datasets.

Datasets Scanner (3T) Voxel Resolution (mm) TE (ms) TR (ms) b-Values (s/mm2)

AMU Siemens Prisma 1 × 1 × 1 87.6 7520 5, 500
MountSinai-P Philips Achieva 1.5 × 1.5 × 1.5 19 2600 0, 1000
MountSinai-S Siemens Skyra 1.0 × 1.0 × 1.0 95 5000 10, 1005

UCDavis Siemens Skyra 1.4 × 1.4 × 1.4 115 6400 5, 1600
UWM GE DISCOVERY_MR750 2.1875 × 3.1 × 2.1875 94.3 6100 0, 1000

Table 2. The number of low b-value and high b-value images in the macaque dataset.

Datasets Number of Low b-Value Images Number of High b-Value Images Ratio

AMU 4 67 1:17
MountSinai-P 2 120 1:60
MountSinai-S 10 80 1:8

UCDavis 6 60 1:10
UWM 1 12 1:12
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2.2. Preprocessing

The series of preprocessing steps applied to all the datasets are as follows:

1. Head motion correction and eddy current correction were performed using the FSL tool.
2. Non-brain tissues were removed from human brain images using the FSL tool, while

non-brain tissues were removed from macaque brain images using a deep learning
method developed by our research group [37].

3. Paired high b-value and low b-value images were extracted from the dMRI images,
where the high b-value images served as inputs to the model, and the low b-value
images served as reference images. The task of extracting b-value images was accom-
plished using the FSL tool.

4. All high b-value images were scaled to the range of 0 to 1 using the min–max normal-
ization method, and their dimensions were resampled to 256 × 256 × 256.

5. The data were divided into pre-training, training, and testing sets: the pre-training
set included 96 pairs of human brain images and 467 pairs of UWM images. The
remaining data from UWM, AMU, MountSinai-P, MountSinai-S, and UCDavis sites
were divided into training and testing sets, with a ratio of 8:2.

2.3. PadGAN

We propose a primary-auxiliary dual generative adversarial network called PadGAN,
consisting of two generative adversarial networks: the primary network and the auxiliary
network, both targeting the domain of low b-value images. Figure 1 illustrates the training
data flow of PadGAN. During training, the peak information map is input into the auxiliary
generator, which learns towards the domain of low b-value images through adversarial
learning while simultaneously passing latent space features to the primary generator. The
high b-value images are input into the primary generator, which maps them to the domain
of low b-value images through feature fusion modules by merging latent space features.
The low b-value images generated by the auxiliary generator and the primary generator
are passed to the auxiliary discriminator and the primary discriminator, respectively,
to discriminate between real and generated images, thereby enhancing the generation
capabilities of both generators through adversarial learning.

Figure 1. The training data flow diagram of PadGAN. The auxiliary discriminator (AD) discriminates
between the images generated by the auxiliary generator (AG) and the real images, while the
primary discriminator (PD) discriminates between the images generated by the primary generator
(PG) and the real images. The auxiliary network uses three losses, LAG_adv, LAD_adv, and LA_L1,
for backpropagation, while the primary network uses three losses, LPG_adv, LPD_adv, and LA_L1,
for backpropagation.
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2.3.1. Peak Information Maps

Recently, latent space has flourished in the field of image generation [38]. Latent space
can generate diverse high-resolution images [39] and can also be used for re-editing images
by extracting latent space features [40,41]. In order to introduce diversity into generated
images, random Gaussian noise is commonly used as the input for extracting latent space
features. However, unlike works focused on enhancing image diversity, this paper places
high demands on the accuracy of generated image details. Therefore, random Gaussian
noise as the input for latent space feature extraction may not be suitable.

Max-pooling layers are widely used in image classification, segmentation, and other
fields [42]. They can preserve texture features and edge information of images while reduc-
ing information redundancy. However, there is also a risk of losing important information.
Due to the high demand for image details in end-to-end image-to-image translation tasks,
max-pooling layers are rarely used to prevent information loss during training [43]. To
reduce the risk of losing other information while preserving texture and other detailed
information, we introduced the concept of peak information maps.

Given the assumption that brain images from the same data site and the same species
exhibit a certain degree of similarity, we perform a per-pixel maximum extraction operation
on the low b-value brain images of macaques within the same site. All extracted maximum
values are concatenated into a 3D image, which represents the peak information map of
that site, as illustrated in Figure 2. Additionally, Equations (1) and (2) demonstrate this
process. The peak information maps from different sites serve as inputs to the auxiliary
network for the respective site’s data, facilitating the extraction of latent space features.

voxij = MAX(imgi1(voxj), imgi2(voxj), ...imgin(voxj)) (1)

re fi = PConcat(voxij), i = 1, 2, ..., k, j = 1, 2, ..., m. (2)

where voxij represents the j-th voxel selected at the i-th site, MAX(·) represents the peak
extraction operation, imgin(voxj) represents the j-th pixel of the n-th image at the i-th site,
and re fi represents the peak information map of the i-th site, of which there are k such
peak information maps. PConcat(·) represents the pixel concatenation operation, which
concatenates individual pixels into the entire image. Iterate over all i and j values to obtain
the peak information map for each site.

Figure 2. Schematic diagram of peak information map. Image1, Image2, and Image3 represent three
images within the same site. The green and blue rectangles represent the pixels of the image, where
the blue rectangles represent the maximum pixel values at the same position in the three images.
Concatenating the maximum value pixels at each position yields the peak information map.
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2.3.2. Auxiliary GAN

In the field of image generation, there is typically no end-to-end training data accessi-
ble. The extraction of latent space features is often achieved through several fully connected
layers to decouple Gaussian noise and generate more diverse images [39]. The peak in-
formation map proposed in this paper provides end-to-end training data for extracting
latent space features. We adopted an adversarial learning approach to extract latent space
features to enhance the details of the generated images.

The role of the auxiliary generative adversarial network is to provide high-quality
latent space information to the primary generative adversarial network. To achieve this,
the auxiliary GAN continuously maps from the peak information map to the low b-value
images through adversarial learning. The main architecture of the auxiliary generator
network adopts a U-Net convolutional neural network, which is divided into an encoder
and a decoder. The encoder consists of 8 down-sampling convolutional blocks, while
the decoder consists of 8 up-sampling convolutional blocks. After encoding through the
8 down-sampling convolutional blocks, the input data obtain a 512 × 1 × 1 latent space
feature, as shown in Equation (3).

Latent = 8 ∗ DC(x) (3)

where Latent represents latent space features, 8 ∗ DC(·) represents the 8 down-sampling
convolution operations, and x represents the input image, where the output of each down-
sampling convolution operation serves as the input to the next down-sampling convolution
operation. The specific down-sampling convolution operation is shown in Equation (4).

f ea = LReLU(BN(Conv(input))) (4)

where f ea represents the feature map obtained from a down-sampling convolution oper-
ation DC(·), LReLU(·) represents the LeakyReLU activation function, BN(·) represents
the batch normalization operation, and Conv(·) represents the convolution operation with
a kernel size of 4 × 4, stride of 2, and padding of 1. input denotes the input image or
feature map. It should be noted that there is no activation function operation in the first
down-sampling convolutional layer, and the ReLU activation function is used instead of
LeakyReLU in the last down-sampling convolutional layer.

The latent space features have two destinations: The first one is sent to the primary
network to enhance its generation capability, and the second one is sent to the auxiliary
network to strengthen the inherent properties of the latent space features. Within the
auxiliary network, 8 up-sampling convolution modules decode the latent space features
and map them to the low b-value space, as shown in Equation (5).

ŷ = 8 ∗ UC(Latent) (5)

where ŷ represents the output image of the auxiliary generator, and 8 ∗ UC(·) denotes 8
up-sampling transpose convolution operations, where the output of each up-sampling
transpose convolution operation serves as the input to the next up-sampling transpose
convolution operation. The specific details of the up-sampling transpose convolution
operation are outlined in Equations (6) and (7).

f eaCi =

{
f eaDC(9−i), i = 1
Concat( f eaDC(9−i), f eaUC(i−1)), i = 2, 3, ..., 8

(6)

f eaUCi =

{
ReLU(BN(ConvT( f eaCi))), i = 1, 2, ..., 7
Tanh(ConvT( f eaCi)), i = 8

(7)

where f eaDC(9−i) represents the features of the (9-i)-th down-sampling convolutional module,
and f eaUCi represents the features of the i-th up-sampling transpose convolutional module.
Concat(·) represents the operation of concatenating feature dimensions. If this is the first

136



Appl. Sci. 2024, 14, 3229

up-sampling transpose convolutional module, the Concat(·) operation is ignored. ReLU(·)
represents the ReLU activation function, and ConvT(·) denotes the transpose convolution
operation, with a kernel size of 4 × 4, a stride of 2, and padding of 1. Tanh(·) represents the
Tanh activation function. It is worth noting that different equations are executed for different
values of i, and finally, when i = 8, the final generated image is output.

The discriminator of the auxiliary generator adopts the PatchGAN architecture [13],
which consists of 5 convolutional layers. Each convolutional layer performs down-sampling
on the feature map. Eventually, it obtains a feature map size that is 1

25 × 1
25 times larger

than the original image, where each intensity value in this feature map corresponds to
the discriminative result of a certain region in the input image. PatchGAN divides the
image into small patches for discrimination, which allows for accurate reflection of local
information and enhances accuracy.

2.3.3. Primary GAN

The generator of the primary network consists of down-sampling convolutional blocks,
feature fusion modules, and up-sampling convolutional blocks. The down-sampling
convolutional blocks and up-sampling convolutional blocks have the same architecture as
those in the auxiliary generator, with the only difference being that the input to the primary
generator is the high b-value image. The details and connections between the auxiliary
generator and the primary generator are illustrated in Figure 3. The feature fusion module
combines the encoded features from the auxiliary network’s latent space and the primary
generator, as specified in Equation (8).

f eaout = Fusion(Latent, f eaMDC) (8)

where Fusion(·) represents the feature fusion operation, Latent denotes the latent space
feature map from the auxiliary generator, f eaMDC represents the encoded features from the
primary generator, and f eaout represents the output feature map after the fusion operation.
The specific feature fusion operation is illustrated in Equations (9) and (10).

f eaCout = Concat(Latent, f eaMDC) (9)

f eaout = ReLU(Linear( f eaCout)) (10)

where Linear(·) denotes the linear fusion operation. The linear layer not only reduces the
dimensionality of the features but also effectively integrates the useful features according
to weights. f eaCout represents the output features after the concatenation operation.

The latent space features and the features from the primary generator are combined
through the feature fusion module to obtain richer texture details. After passing through
the feature fusion module, the features are processed by 8 up-sampling convolutional mod-
ules to output the generated images. During the training process, the generated images and
the real images are evaluated by the primary discriminator, promoting the model’s gener-
ation capability through adversarial learning. Similar to the architecture of the auxiliary
generator’s discriminator, the primary discriminator also adopts the PatchGAN network.
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Figure 3. The structure of the two generators. The upper part represents the primary generator (PG),
while the lower part represents the auxiliary generator (AG). In the primary generator, the letter
“F” represents the feature fusion layer, UC(N) represents the up-sampling transpose convolution
operation, and DC(N) represents the down-sampling convolution operation. N represents the number
of convolutional channels.

2.3.4. Loss

The loss function consists of both the primary network loss and the auxiliary network
loss. Both are trained together but independently backpropagated. The loss function
equations of the primary network and the auxiliary network are the same and include both
generator adversarial loss, discriminator adversarial loss, and pixel reconstruction loss.
Equation (11) represents the generator adversarial loss:

LG_adv = E[D(x, G(x))− 1]2 (11)

where LG_adv represents the generator adversarial loss, E(·) denotes the expectation, D(·)
represents the discriminator’s output result, x denotes the input image, and G(x) represents
the generator’s output result. Theoretically, the generator’s adversarial loss is minimized
when the discriminator identifies the generated result as 1. Equation (12) shows the
discriminator adversarial loss:

LD_adv = E[D(x, y)− 1]2 + E[D(x, G(x))]2 (12)

where LD_adv represents the discriminator adversarial loss and y represents the real image.
The discriminator adversarial loss consists of two parts: the first part minimizes when the
concatenated real image with the source image dimension, after being passed through the
discriminator, approaches 1; the second part minimizes when the concatenated generated
image with the source image dimension, after being passed through the discriminator,
approaches 0.

The generator loss and discriminator loss have opposite objective functions, and,
during training, one should be fixed while the other is trained in an alternating manner to
achieve the adversarial goal. Furthermore, to enhance the authenticity of the generated
images, pixel-wise reconstruction loss should be introduced, as shown in Equation (13):

L1 = E[‖y − G(x)‖1] (13)

where L1 represents the pixel-wise reconstruction loss and ‖ · ‖1 represents the L1 norm.
Therefore, the overall loss for both the main network and the auxiliary network is repre-
sented as Equation (14):
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L = λL1L1 + λadv(LG_adv + LD_adv) (14)

where L represents the overall loss, λL1 represents the pixel-wise reconstruction loss
coefficient, and λadv represents the adversarial loss coefficient.

2.4. Process of dMRI Images Augmentation

After training, the entire dMRI image augmentation process using the final PadGAN
model is as follows:

1. Preprocess the dMRI images.
2. Segment the data into 2-dimensional images along the second dimension and input

them into PadGAN for processing to generate low b-value images.
3. Multiply the generated images’ signal intensity values by the maximum value of the

images before normalization to restore the original signal intensity range.
4. Merge the generated two-dimensional images into three-dimensional images and

resample all data to the original size.
5. The synthesized three-dimensional images are incorporated into the 4-D dMRI images

using FSL tools, effectively improving the quality of the dMRI data. The entire process
is illustrated in Figure 4.

Figure 4. The overall processing flow of dMRI images augmentation. The figure provides a detailed
description of the steps outlined in Section 2.4. During testing, the auxiliary generator no longer
outputs results, as there is no need to further optimize the latent space through backpropagation.

3. Results

3.1. Comparison Experiments and Results

The method proposed in this paper is compared with five existing methods that
have shown good performance in the field of medical image-to-image translation research.
Specifically:

1. Pix2pix [13] network adopts the U-Net architecture as the main framework of
the generator.

2. CycleGAN [14] network shares the same generator architecture as pix2pix, but it
involves two generators and two discriminators for cyclic generation tasks.

3. SwinUnet [24] utilizes the Swin Transformer as the main framework for medical
image segmentation tasks, adapted for application in this paper.

4. ResViT [26] builds upon the Vision Transformer architecture as the main generator
framework.

5. pGAN [30] adopts ResNet as the main framework.

For the comparative experiments, the original models’ architectures and training
parameters are used during the training process. All models are pre-trained for 20 epochs
and trained for an additional 80 epochs on an NVIDIA GeForce RTX 3090. Structural
similarity (SSIM), peak signal-to-noise ratio (PSNR), and mutual information (MI) are
selected as quantitative evaluation metrics in this paper.

Table 3 lists the comprehensive results of the AMU, Mount Sinai-P, Mount Sinai-S,
UCDavis, and UWM sites, each containing non-brain tissue. To compare the results with
only brain tissue, the non-brain tissue is removed from all results, as shown in Table 4,
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which displays the results after excluding non-brain tissue for the five sites. The overall
results are consistent with Table 1, but there is a slight decrease. Subsequent experiments
show results after excluding non-brain tissue. The specific results for the five datasets are
shown in Table 5, and Figures 5 and 6. The CycleGAN method produces results closer to
the source images on most datasets. Although this method employs a dual-generator and
dual-discriminator structure, with each generative adversarial network serving separate
tasks for generating target and source images, it is suitable for scenarios where paired
images are not required in both domains. In contrast, both generative adversarial networks
in our method are dedicated to generating low b-value images, resulting in better visual
observations and evaluation metrics. The pGAN method fails to generate detail-rich images,
as it uses ResNet as the basic generator architecture with a deeper network structure, but
lacks the capability to retain encoder feature map information like U-Net. Our method
utilizes the advantages of the U-Net architecture to capture features from different layers,
thereby preserving detailed image information. Transformer-based ResViT and SwinUnet
methods exhibit relatively generic performance due to the differences in global information
from different sites in the macaque brain image dataset and the limited data samples. In
contrast, our method, a fully convolutional neural network, maximizes the local generation
capabilities of convolutional neural networks. The Pix2pix method, a single generator
adversarial network based on the U-Net generator architecture, performs well in generating
global structural features but lacks detailed features. Our method addresses this limitation
by using the auxiliary generative adversarial network to provide hidden space containing
more detailed features, thus compensating for the shortcomings of the single generator
adversarial network in capturing detailed features.

Table 3. Quantitative comparison results including non-brain tissue.

Methods PSNR SSIM MI

pix2pix 33.7100 0.9285 1.4313
CycleGAN 28.7177 0.8681 1.3716

pGAN 25.9224 0.8534 1.3467
SwinUnet 28.7114 0.8799 1.3786

ResViT 24.6464 0.8428 1.3614
Ours 38.8700 0.9556 1.5005

The bold font indicates the best result.

Table 4. Quantitative comparison of non-brain tissue removal.

Methods PSNR SSIM MI

pix2pix 27.6511 0.7683 1.3144
CycleGAN 22.7904 0.5211 1.2528

pGAN 20.0104 0.4600 1.2275
SwinUnet 23.0855 0.5583 1.2623

ResViT 18.7379 0.4161 1.2376
Ours 32.2587 0.8822 1.3828

The bold font indicates the best result.

Table 5. Quantitative comparison between PadGAN and other translation frameworks across five
independent sites.

Model
UCDavis MountSinai-P MountSinai-S AMU UWM

PSNR SSIM MI PSNR SSIM MI PSNR SSIM MI PSNR SSIM MI PSNR SSIM MI

pix2pix 29.0037 0.7994 1.3353 22.4200 0.6227 1.2560 25.9427 0.8027 1.3347 29.6144 0.7919 1.2938 29.0558 0.8367 1.3045
CycleGAN 23.1076 0.5038 1.2514 19.4039 0.3975 1.2299 25.2008 0.6765 1.2872 26.2187 0.7005 1.2778 19.1597 0.4966 1.2367

pGAN 19.2235 0.4242 1.2284 19.9858 0.4199 1.2128 23.8789 0.6279 1.2511 22.0872 0.5719 1.2402 18.0913 0.4958 1.2018
SwinUnet 23.3034 0.5619 1.2584 17.4287 0.3400 1.2495 25.9383 0.7381 1.2993 26.8461 0.6911 1.2759 28.1703 0.7316 1.2662

ResViT 17.4558 0.3666 1.2398 20.1088 0.4487 1.2268 23.9303 0.5899 1.2568 20.2219 0.4879 1.2489 16.8820 0.4320 1.2023
Ours 35.7479 0.9188 1.4185 24.7701 0.8027 1.3379 30.6730 0.9068 1.3826 28.9085 0.8150 1.3033 29.5930 0.8753 1.3229

The bold font indicates the best result.
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Figure 5. Visualization of 3 site datasets. These are 3 randomly selected data samples from the
3 datasets. The first column represents the source image, the last column represents the target image,
and the middle column represents the comparative result. The red box highlights some details.

3.2. Ablation Experiments and Results

We conducted three ablation experiments to further investigate the role and effective-
ness of the auxiliary generator in our proposed method. The details of the experiments are
as follows: (1) removing the auxiliary network and retaining only the encoder part of the
auxiliary network to encode the peak information map, to verify the role of the auxiliary
network; (2) replacing the latent space features extracted by the auxiliary generator with
random Gaussian noise to explore the role of latent space features; and (3) directly reusing
the weights of the main generator in the auxiliary network to verify whether the auxiliary
network needs to be trained separately.

The results are shown in Table 6. (1) After removing the auxiliary network, PSNR
decreased by 5.1256, SSIM decreased by 0.1225, and MI decreased by 0.0736. This indicates
that the auxiliary generator plays an important role in improving the network performance.
(2) When replacing the auxiliary generator with noise, PSNR decreased by 4.2291, SSIM
decreased by 0.0649, and MI decreased by 0.0445. This suggests that the auxiliary generator
can effectively extract latent space features from the peak information map. (3) When
reusing the main network’s network weights in the auxiliary network, PSNR decreased by
1.8627, SSIM decreased by 0.0385, and MI decreased by 0.0371, fully demonstrating that the
latent space learned by the auxiliary generator is different from that of the main generator,
and the auxiliary generator has a necessary existence.
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Figure 6. Visualization of 2 site datasets. These are 2 randomly selected data samples from the
2 datasets. The first column represents the source image, the last column represents the target image,
and the middle column represents the comparative result. The red box highlights some details.

Table 6. Quantitative comparison of ablation experiments.

Methods PSNR SSIM MI

PadGAN 32.3856 0.8825 1.3857
Setting (1) 27.2600 0.7600 1.3121
Setting (2) 28.1565 0.8176 1.3412
Setting (3) 30.5229 0.8440 1.3486

The bold font indicates the best result.

3.3. Xtract and DTI Estimation Results

Xtract is a robust probabilistic tractography method integrated into the FSL6.0 software
package. It utilizes dMRI data to estimate the trajectories and connectivity patterns of white
matter tracts. To assess the effectiveness of the augmented macaque dMRI brain images
through our proposed method, we employed Xtract to compute the structural connectivity
of dMRI brain images. Eight subjects were selected from the UCDavis dataset, and the
images generated by pix2pix and PadGAN were respectively added to the corresponding
dMRI data. Subsequently, we conducted Xtract tractography experiments on the dMRI
images augmented by the pix2pix and PadGAN methods, as well as the original reference
dMRI images, resulting in a total of 42 fiber tracts.

As shown in Figure 7, the fiber bundle visualization results demonstrate that, com-
pared with pix2pix, our method captures more fiber bundles visually, and the shapes are
similar to the reference results. It is worth noting that our results display more and clearer
fiber bundles within the white rectangular area.

DTI is a magnetic resonance imaging technique used to study the diffusion properties
of water molecules within tissues. DTI offers various diffusion parameters, with the
most commonly used being fractional anisotropy (FA) and mean diffusivity (MD). FA
represents the degree of directional diffusion of water molecules within the tissue, while
MD represents the average strength of water molecule diffusion. To better evaluate the
quality of the generated images, this study conducted DTI estimation on dMRI images
augmented by the PadGAN and pix2pix methods. Figure 8 displays the DTI estimation
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results using FA and MD as examples. In the low b-value replacement experiment, our
method demonstrates higher similarity to the original reference dMRI images compared
with the pix2pix method. In the experiment of augmenting the original reference dMRI,
our method shows smoother results. The last column in the figure demonstrates that the
absence of low b-value volumes in dMRI images significantly affects the DTI estimation
results. Therefore, low b-value images are crucial for DTI computation.

Figure 7. Fiber bundle visualization results. The left and middle columns respectively show the
results after data enhancement with the pix2pix and PadGAN methods, while the right column
shows the results of the reference original dMRI image. The part inside the white rectangle is zoomed
in for comparison.

Figure 8. DTI estimation results. The first row displays FA, and the second row shows MD. The first
and second columns respectively show the DTI estimation results after replacing the original low
b-value volume with volumes generated using pix2pix and our method. The third column shows the
DTI estimation results after augmenting the original reference dMRI images using our method for
data augmentation. The fourth and fifth columns respectively display the DTI estimation results for
the reference images and dMRI without the low b-value volume.
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The experiments above indicate that Xtract and DTI estimation results can reflect
the quality of different macaque image generation methods. Therefore, Xtract and DTI
estimation are expected to become further validation methods for assessing the quality of
generated macaque or medical images.

4. Discussion

In this work, we propose a method for dMRI brain image data augmentation using
PadGAN to generate low b-value images. The introduction of peak information maps
creates end-to-end conditions for extracting latent space features, allowing the auxiliary
network to obtain latent space features through adversarial learning. On the basis of the
U-Net network, a feature fusion module is added to the primary generator to merge latent
space features and multi-scale information, thus generating images with rich details. Addi-
tionally, various generative adversarial network models are explored, and the strengths and
weaknesses of each model are analyzed. PadGAN is creatively proposed and compared
with comparative models in qualitative, quantitative, Xtract probabilistic tractography and
DTI estimation to demonstrate its overall performance. Finally, ablation experiments are
conducted on each module of PadGAN to demonstrate the importance of each part.

Both generators in PadGAN adopt the encoder–decoder architecture based on U-Net,
preserving multi-scale information through skip connections, and the introduction of la-
tent space features enables PadGAN to learn fine-grained image features. As shown in
Figures 5 and 6, unlike previous studies on human brain datasets where Transformer-based
network models yield poor results, typically due to the large volume of data in human
brain datasets resulting in different model parameters for each dataset, our approach uses
a unified training strategy for the limited datasets of macaque brain images from each site.
For datasets collected from each site, there are significant differences in acquisition param-
eters. Therefore, attention mechanisms are difficult to perform effectively for multi-site
datasets. While ResNet can maintain model learning capability, even with deep network
layers, it does not preserve multi-scale features like U-Net, resulting in deficiencies in detail
generation. The pix2pix method based on U-Net demonstrates good performance, but,
as a single generator and discriminator method, it still lacks in generating image details.
Although CycleGAN has two generative adversarial networks, these networks are tasked
with mutual conversion between two modal data samples and do not leverage both net-
works to generate images in one target domain. The auxiliary network in PadGAN provides
latent space information to the primary network to enhance the detail generation of the
generated images, utilizing U-Net’s skip connections to preserve multi-scale information,
resulting in superior performance in image details.

Unlike the typical computer vision image-to-image translation domain, the signal
intensity values of MRI images have absolute significance and can be used for DTI estima-
tions or neuroimaging studies. Common images in daily life are usually RGB images with
a maximum pixel intensity value of 255, while the signal intensity value range of macaque
brain images is typically in the range of thousands to tens of thousands. Therefore, when
evaluating the quality of MRI image generation, we can go beyond quantitative metrics
and qualitative observations. For medical MRI, some researchers conduct Turing tests with
expert radiologists to assess the authenticity of generated images [32]. For macaque and
human brain images used in research, we can further evaluate the quality of generated
images by calculating neural tracing or DTI estimation results, which presents a novel
validation approach.

In future work, we can explore the generation of realistic images using multi-modal
data. Although the macaque brain imaging dataset is limited, with few data within each
site, many sites have at least two modalities of data. Utilizing network models that can
effectively leverage multi-modal information may lead to the generation of higher quality
images. Additionally, our method also has the potential for application in human brain
imaging. Firstly, our method can be used for data augmentation of human brain dMRI
images. Although human brain images typically have a higher spatial resolution and
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signal-to-noise ratio, and there are more publicly available datasets with better data quality,
there may still be issues with insufficient collection of low b-value images due to operator
and configuration issues. In such challenges, applying our method directly to human
brain images is a good choice. Secondly, our method has the potential for application in
classification studies of normal and diseased brain images. By using the PadGAN method
to generate more images of a certain modality, the image sample size can be expanded,
thereby improving classification accuracy. However, diseased images typically require
higher precision in a certain region, and it may be a good choice to introduce attention
mechanisms to enhance contextual information.

5. Conclusions

PadGAN is employed to translate high b-value images of macaque brains to low
b-value images and augment dMRI image data. Visually, the low b-value images gener-
ated by PadGAN exhibit richer detail information. In terms of evaluation metrics, both
image quality and structural similarity show significant improvement. Results from Xtract
probabilistic tractography and DTI estimation indicate that the dMRI images obtained
through our data augmentation method yield better outcomes. This work can provide
data augmentation and optimization services for neuroscience, and also offers insights into
quality assessment methods for macaque dMRI brain imaging data.
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Abstract: The construction of complex networks from electroencephalography (EEG) proves to
be an effective method for representing emotion patterns in affection computing as it offers rich
spatiotemporal EEG features associated with brain emotions. In this paper, we propose a novel
method for constructing complex networks from EEG signals for emotion recognition, which be-
gins with phase space reconstruction to obtain ordinal patterns and subsequently forms a graph
network representation from the sequence of ordinal patterns based on the visibility graph method,
named ComNet-PSR-VG. For the proposed ComNet-PSR-VG, the initial step involves mapping
EEG signals into a series of ordinal partitions using phase space reconstruction, generating a se-
quence of ordinal patterns. These ordinal patterns are then quantified to form a symbolized new
sequence. Subsequently, the resulting symbolized sequence of ordinal patterns is transformed into a
graph network using the visibility graph method. Two types of network node measures, average
node degree (AND) and node degree entropy (NDE), are extracted from the graph networks as
the inputs of machine learning for EEG emotion recognition. To evaluate the effectiveness of the
proposed construction method of complex networks based on the visibility graph of ordinal patterns,
comparative experiments are conducted using two types of simulated signals (random and Lorenz
signals). Subsequently, EEG emotion recognition is performed on the SEED EEG emotion dataset.
The experimental results show that, with AND as the feature, our proposed method is 4.88% higher
than the existing visibility graph method and 12.23% higher than the phase space reconstruction
method. These findings indicate that our proposed novel method for constructing complex networks
from EEG signals not only achieves effective emotional EEG pattern recognition but also exhibits
the potential for extension to other EEG pattern learning tasks, suggesting broad adaptability and
application potential for our method.

Keywords: emotion recognition; complex network; ordinal patterns

1. Introduction

The emotional dimensions of electroencephalography (EEG) have garnered increas-
ing recognition, owing to its extensive applications in diagnosing mental illnesses and
facilitating human–computer interaction [1,2]. By delving into the study of emotional
patterns within EEG, we can enrich our comprehension of human behavior, refine psy-
chological health treatment methodologies, and cultivate more intelligent and responsive
systems within the realm of human–computer interaction. In recent years, the efficacy of
complex networks in unraveling the spatiotemporal characteristics and dynamic shifts in
emotional EEG has become evident. EEG signals, serving as physiological indicators of
brain activity, contribute significantly to this exploration. Given the intricate structure and
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interconnections within the brain network, the adoption of complex networks for analyz-
ing both brain networks and emotional EEG has garnered increasing attention. Research
grounded in complex networks offers a more holistic insight into the intricate topology and
information transmission among distinct brain regions [3]. In [4], Lu et al. constructed a
new complex network pattern based on the arrangement characteristics of time series and
achieved excellent results in brain state recognition based on EEG signals in physiology
and pathology. In [2], Yao et al. constructed a complex network of EEG signals using a
viewable approach and extracted spatial network features, achieving high resolution in
EEG emotion recognition. The transformation of EEG data into complex networks proves
to be a valuable approach, providing a more effective representation of the complexity and
dynamics inherent in brain activity. This transformation enhances our capacity to accurately
capture the neural mechanisms associated with emotions. Consequently, this avenue of
research holds the promise of advancing our understanding of emotional EEG, paving the
way for innovative developments in neuroscience and human–computer interaction.

Complex network methods have the capability to unveil intricate interactions and
connectivity patterns among various brain regions, a collaboration crucial in emotional
processing. By scrutinizing connection patterns within complex networks, a deeper compre-
hension of the functions and interactions among different brain regions during emotional
processing is attained. Unlike time-domain or frequency-domain methods applied in EEG
signal analysis, complex networks can encapsulate both global and local features within
the brain network, thus surpassing the constraints of localized time- or frequency-domain
features [3]. The dynamic fluctuations within the brain network across different time points
are observable through the construction of complex networks, providing a more profound
insight into the spatiotemporal characteristics of brain activity during emotional processes.

To comprehensively analyze the connection density of nodes in complex networks
from both local and global perspectives, effective measures, such as average node degree
(AND) and node degree entropy (NDE), come into play. The AND serves as a valuable
metric to offer overall insights into the connection density of nodes in a network, providing
a descriptive overview of the network’s general properties. Meanwhile, NDE plays a
pivotal role in the analysis of complex networks, aiming to articulate the uncertainty and
diversity inherent in the degree distribution among nodes. The degree of a node denotes
the number of edges connected to it, and NDE takes into consideration the distribution
of these degrees, shedding light on the quantity and relative frequency of nodes with
varying degrees in the network. This metric offers crucial information about the degree
distribution across nodes, allowing for a deeper understanding of how nodes interconnect
and the prevalence of nodes with similar or distinct degrees. By capturing the uncertainty
inherent in degree distribution, NDE becomes a powerful tool for unraveling the intricacies
of network structure. It operates as a metric for gauging the complexity of the network
with highly structured networks exhibiting higher node degree entropy. Additionally,
NDE can be harnessed to scrutinize the correlation between node degrees, uncovering
connections between nodes with specific degrees. This aspect proves instrumental in
capturing features of degree correlation, providing valuable insights into the network’s
organization. In essence, NDE, by encapsulating the diversity and uncertainty present
in degree distribution, contributes supplementary information for a more profound and
nuanced analysis of complex networks.

The phase space reconstruction method involves deriving a set of multidimensional
vectors from the original time series using embedding dimensions and delay time esti-
mation techniques [5]. These vectors serve as nodes in the complex network, and the
edges connecting these nodes are determined based on the similarity between vectors.
However, this method faces instability issues during the embedding dimensions and de-
lay time estimation process. Additionally, establishing the optimal threshold for edge
relationship judgment proves challenging, resulting in diminished robustness in practical
applications [4,6]. On the other hand, the visibility graph construction method regards
data points in the original time series as nodes in the network with the visual relationships
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between these data points serving as edges [7,8]. In contrast to the phase space recon-
struction method, the visibility graph construction method boasts fewer parameters and
enhanced algorithmic robustness [9–11]. However, it is important to note that the size
of the network in this approach is directly proportional to the length of the time series.
Consequently, when analyzing longer time series, the complexity of the network increases
correspondingly, leading to heightened computational complexity in extracting subsequent
features from the complex network [12–15].

In our research, we propose a pioneering method for constructing complex networks,
which diverges from traditional approaches. The novelty of our method lies in the fusion of
phase space reconstruction techniques and visibility graph methods, enabling the simulta-
neous depiction and analysis of complex network structures and dynamic behaviors from
both temporal and spatial viewpoints. Phase space reconstruction delves into the internal
relationships and dynamic behaviors of network nodes, while visibility graph construction
highlights the overarching structure and connectivity patterns of nodes [16,17].

By amalgamating the phase space reconstruction and visibility graph methods, we
harness the advantages of both approaches, thereby enhancing the accuracy and robustness
of complex network construction. The specific implementation can be tailored and fine-
tuned according to practical needs [18]. Through the integration of these two methods,
we attain a more comprehensive comprehension of network properties and patterns. By
concurrently leveraging the benefits of phase space reconstruction and visibility graph
construction, we augment the efficiency and precision of our analyses. In summary, the
main contributions of our work include the following:

(1) A novel method for constructing complex networks from EEG signals, named ComNet-
PSR-VG, is introduced by exploiting both the phase space reconstruction method and
the visibility graph method;

(2) Employing the proposed ComNet-PSR-VG method to effectively identify EEG emo-
tion states, obtaining outstanding classification outcomes of emotion recognition.

The remainder of the paper is as follows: The second part presents the proposed new
method for constructing complex networks and the extracted network structure features;
the third part presents the results of the data analysis and EEG emotion classification
experiments; the fourth part compares our method with existing related research through
experiments and results; and the last part is the conclusion of the article.

2. Materials and Methods

Our proposed method includes several key steps, as shown in Figure 1:

• Recording the corresponding emotional EEG signals generated by different emotional
stimuli;

• Constructing complex networks for each channel of EEG signals using the proposed
method and proposing network structure entropy features;

• Extracting entropy features of network structure;
• Inputting these features as feature sequences into the machine-learning model to

obtain the corresponding classification results.
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Figure 1. Framework of the proposed EEG emotion recognition.

2.1. Experimental Dataset

In our study, we utilized the SEED (SJTU Emotion EEG Dataset), an openly available
dataset for thorough analysis. This dataset encompasses data from 15 Chinese subjects with
a gender distribution of 7 males and 8 females and an average age of 23.27 years (standard
deviation: 2.37). The emotional stimuli for the participants were derived from 15 Chinese
film clips, each designed to elicit positive, neutral, or negative emotions, and each film
lasted approximately 4 min. To execute our experiments, each participant engaged in
15 trials, resulting in a total of 45 trials (15 trials for each of the three emotional categories:
positive, neutral, and negative). The experimental design comprised three distinct groups
of experiments [19]. In each trial, the subjects were exposed to emotional stimuli through
designated film clips, inducing the specified emotion (positive, neutral, or negative). This
rigorous experimental setup aimed to comprehensively capture the varied responses to
emotional stimuli across the different emotional categories.

2.2. Construction of Complex Networks from EEG Signals Based on Visibility Graph of
Ordinal Patterns

The signal from each channel in EEG can be treated as a time series {xi},
where i = 1, 2, . . . N. Initially, the phase space reconstruction method is used to re-
construct this time series into a sequence [4] using embedding dimensions d and time delay
τ. The resulting sequence can be written as follows:

vj =
(
xj, xj+τ , xj+2τ

)
j = 1, 2, 3, . . . , L (1)

where L = N − (d − 1) ∗ τ and denotes the number of partitions vj in the resulting sequence.
Subsequently, each partition vj is mapped into an ordinal pattern O(i) = (π0, π1,

π2, . . ., πd−1) where πi ∈ {0, 1, 2, . . ., d−1} (πi �= πj if i �= j). Specifically, the indices
of each element in the partition vi = (xi, xi+τ , xi+2τ , . . ., xi+(d−1)τ) are rewritten to
vi = (xi+π0 , xi+π1 , xi+π2 , . . . , xi+πd−1

), according to the ascending order of the values of
elements in the partition vi:

xi+π0 ≤ xi+π1 ≤ xi+π2 · · · ≤ xi+πd−1
, ∀xi+πk ∈ vi and πk = {0, 1, 2, · · · , d − 1} (2)

For example, taking the {18, 9, 5, 11} as a partition, it can be mapped to an ordinal
pattern {2, 1, 3, 0}.

Finally, we introduce a metric for quantifying the ordinal patterns, denoted as the
ordinal pattern number (OPN) [4]. Its formulation is articulated as follows:

OPN
(

O(i)
)
= Inv (π0)× (d − 1) ! + Inv (π1)× (d − 2) ! + · · ·+ Inv (πd−2)× (1) ! + 1 (3)

where (·)! denotes the factorial function, and Inv (πi) represents the inverse number of
each element πi in the ordinal pattern O(i) = (π0, π1, π2, . . ., πd−1). In accordance with
Equation (3), the minimum value of the OPN is 1, which corresponds to the permutation
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π = (0, 1, 2, . . ., d − 1) in ascending order, the maximum value of the OPN is d!, and
descending order is π = (d − 1, . . ., 2, 1, 0).

Following the aforementioned time series transformation and employing the phase
space reconstruction method and ordinal pattern quantization, the time series with a
data length of N is transformed into a symbol sequence with a length of L. Subsequently,
utilizing the visibility graph method [4], the resulting symbol sequence is mapped into
a graph network. To clearly illustrate the proposed method, which constructs a net-
work, the basic process of constructing a complex network from a time series is shown in
Figure 2a. Figure 2b presents the proposed method for time-series mapping to the OPN of
network nodes.

 
(a) (b) 

Figure 2. (a) Construction of complex networks from time series based on the visibility graph
of ordinal patterns; (b) The proposed mapping algorithm for time-series mapping to the OPN of
network nodes.

2.3. Extracting Network Entropy Measures from Complex Networks

Network measures are commonly expressed through diverse network structural
parameters, such as nodes and links, which typically represent network-related features
and characterize the patterns of the network. As one of the classical network measures, the
average node degree (AND) serves as a valuable tool for offering comprehensive insights
into the connection density of nodes within the network. This network node measure
serves as an effective descriptor of the overall properties of the network. It captures the
average connection strength among neighboring nodes, facilitating an understanding of
the distribution of node degrees and the characteristics of connections in the network. The
calculation expression for AND is as follows:

knn =
1
N

N

∑
i=1

ki
nn (4)

where ki
nn indicates the degree of neighboring nodes for a node.

Network entropy, derived from information theory, is a measure of disorder used to
quantify the information content encoded within a graph network. It provides a quantita-
tive metric to assess network complexity. As one of the crucial network structure entropies,
the strength of node degree entropy (NDE) lies in its comprehensive and unified depiction
of the degree distribution within the network structure, determined through the consid-
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eration of neighbor degrees of nodes. The NDE proves highly effective in assessing node
heterogeneity concerning neighbor degrees with its calculation expressed as follows:

H = −∑
i

pi log pi (5)

pi is the probability description of the node degree, which can be expressed in the
following form:

pi =
di

N
∑

j=1
dj

(6)

di is the number of neighbors in a node network.

2.4. Machine-Learning Model

The support vector machine (SVM) stands as a pivotal classification model in the
realm of machine learning with the primary goal of delineating samples by identifying
an optimal hyperplane. Its fundamental objective centers around maximizing intervals
for effective segmentation. In our research, we leveraged individual channels of EEG
signals as distinctive structural attributes within a network. The SVM served as our
classifier, adept at distinguishing between positive and negative emotions. Harnessing
kernel-based capabilities, the SVM exhibited prowess in achieving both linear and nonlinear
classifications, thanks to diverse kernel functions with varying performance characteristics.
Our study meticulously scrutinized multiple prevalent SVM kernels, ultimately identifying
the radial basis function (RBF) as the most efficient performer. For our SVM classifier, we
utilized the LIBSVM software package (https://www.csie.ntu.edu.tw/~cjlin/libsvm/),
specifically implementing the RBF kernel. The configuration of SVM parameters involved
values such as S, T, and C alongside default settings. S is the model setting type for
SVM, T is the kernel function type, and C is the cost. Notably, T was set at 2, while S
stood at 0. Determining the optimal C value entailed a meticulous one-step search within
the parameter space (10−3:2). Our methodological framework, which integrates complex
network feature measures for emotive recognition via the SVM classifier, is comprehensively
illustrated in Figure 3.

Figure 3. Flowchart of machine-learning classification using complex network features.

2.5. Performance Evaluation

In our study, accuracy, sensitivity, and specificity serve as the performance metrics for
evaluating the EEG emotion recognition task. Positive emotion is designated as positive
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instances, while negative emotion is designated as negative instances. The mathematical
definitions of these evaluation metrics are expressed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Sensitivity =
TP

TP + FN
(8)

Speci f icity =
TN

TN + FP
(9)

where TP represents the number of the true positive test samples correctly classified as
positive, FN represents the number of the true positive test samples incorrectly classified
as negative, TN represents the number of the true negative test samples correctly classified
as negative, and FP represents the number of the true negative test samples incorrectly
classified as positive.

3. Results

In our experiment, we first evaluate the performance of the proposed complex network
construction method using simulated signals. We employ numerically generated time series
with well-defined properties to initiate our empirical exploration. Within our investigation,
we delve into the analysis of numerically simulated chaotic signals, widely acknowledged
as robust approximations of numerous real-world datasets. Furthermore, we evaluate the
performance of the proposed method, which constructs a complex network using EEG
emotion signals. We broaden the scope of our proposed approach for network construction
to analyze EEG signals, thus shedding light on its prospective applications.

3.1. Performance Evaluation of the Proposed Complex Network Method Using the
Simulated Signals

The purpose of the experiment is to use Lorenz signals and random signals as examples
to verify the ability of our method to convert time series into network representations.
Random time series are comprised of sequences of sequentially uncorrelated random
variables. In our study, the random signals utilized consist of uniformly distributed
pseudo-random numbers within the interval (0, 1). Figure 4a illustrates an example of the
random time series used in our study, comprising 2000 samples (data points). To further
underscore the robust applicability of the proposed method, which constructs a complex
network for time series analysis, we extend our investigation to constructing networks for
chaotic signals. In our experimentation, simulated chaotic signals are generated using a
Lorenz system with the system function defined by Equation (10). This equation yields
components x, y, and z, corresponding to the convection velocity, temperature difference,
and temperature gradient components, respectively. Figure 4b portrays an example of the
x component of the Lorenz system employed in our experiment, comprising 2000 samples.⎧⎪⎨

⎪⎩
dx
dt = −10 × (x − y)
dy
dt = 30 × x − y − x × z
dz
dt = x × y − 8

3 × z
(10)
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(a) (b) 

Figure 4. Experimental results from random signals and Lorenz signals by the proposed network
construction method. (a) An example of random time series; (b) An example of x component of
Lorenz system by the proposed network construction method.

In the context of our proposed complex network methodology for constructing net-
works from random signals, the scalar time series undergo an initial reconstruction process
into a sequence of ordinal partitions. This reconstruction is based on the phase space
reconstruction method, utilizing different embedded dimensions (d = 6) with a fixed time
lag (τ = 2). In accordance with the definition of the proposed method, which constructs a
complex network, each ordinal partition is considered a network node, characterized by a
specific set of ordinal patterns.

As shown in Figure 5a,b, the experimental results of the adjacency matrix of the
unweighted network structure for the random signal and Lorenz signal x components of
two thousand samples are presented, based on the proposed new method with embedded
dimension d = 6 with time lag τ = 2.

  
(a) (b) 

Figure 5. Experimental results for the adjacency matrix of the network construction from random
signals and Lorenz signals by the proposed network construction method using embedded dimension
d = 6 with time lag τ = 2. (a) The result of the adjacency matrix for the random signal; (b) The result
of the adjacency matrix for the Lorenz signal x components.

We established 10 sets of Lorenz signals and 10 sets of random signals, employing the
proposed method to extract the NDE and AND network features from these respective
signal sets. A comparative analysis of the feature results was conducted. Figure 6a shows
the AND results for the 10 sets of Lorenz signals; the range of the AND values is from 330
to 390. Figure 6b shows the AND results for the 10 sets of random signals; the range of the
AND values is from 5.35 to 5.55. From Figure 6a,b, it can be concluded that the AND value
of the Lorenz signal is significantly higher than that of the random signal. In Figure 6c, a
box plot is presented for the NDE results, illustrating a comparison between the Lorenz
signals and random signals. The median NDE value of the Lorenz signal is 4.34, while the
median NDE value of the random signal is 3.42. The NDE value of the Lorenz signal is
larger than that of the random signal. The time series with different characteristics exhibit
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significant differences in their network parameters, which is the significance demonstrated
by Figure 6.

 
(a) (b) 

 
(c) 

Figure 6. Experimental results of extracting NDE and AND from Lorenz signals and random signals
using the proposed method. (a) AND results based on Lorenz signals, (b) AND results based on
random signals, (c) NDE results based on Lorenz signals and random signals.

3.2. Performance Evaluation of EEG Emotion Recognition Based on the Proposed Complex
Network Construction Method

In Figure 7, the EEG data utilized in this study span a duration of 2 min, carefully
selected from the midpoint of the 62-channel EEG signals (specifically, from 60 s to 180 s).
The SEED dataset encompasses EEG signals from 15 subjects, each with 62 channels.
For each channel, we embarked on constructing a complex network using three distinct
methods. Subsequently, we extracted the network node degree entropy, employed it
as the input for the machine-learning models, and garnered the ensuing classification
results. Figure 7 and Table 1 elucidate the comparative outcomes of the three methods for
classifying positive and negative emotions within the SEED dataset. Figure 7a contrasts the
outcomes for positive and negative emotions based on the AND features, while Figure 7b
compares the results based on the NDE features. Upon scrutinizing the classification results
in Figure 7, it becomes evident that the proposed method’s performance in classifying
positive and negative emotions outshines significantly when compared to the outcomes of
the other two conventional complex network construction methods.
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(a) (b) 

Figure 7. The intra-individual comparison of classification results (both binary and triple) among
the different methods is based on the SEED dataset. (a) Comparison of outcomes for positive and
negative emotions based on the AND features; (b) Comparison of outcomes for positive and negative
emotions based on the NDE features.

Table 1. The performance of the ComNet-PSR-VG method in constructing both AND and NDE
features to identify positive and negative emotions from EEG signals in the SEED dataset is detailed.
The values are presented as means ± standard deviations with positive emotions specified as positive
instances and negative emotions as negative instances.

Feature Method Sensitivity (%) Specificity (%) Accuracy (%)

AND
OPVG 90.96 ± 4.06 91.24 ± 6.46 91.39 ± 4.69

VG 84.69 ± 8.63 86.54 ± 9.04 86.51 ± 3.19
PSR 79.3 ± 8.49 80.08 ± 8.40 79.16 ± 3.69

NDE
OPVG 84.84 ± 6.97 85.99 ± 7.29 85.39 ± 7.09

VG 82.40 ± 7.98 83.36 ± 8.79 82.84 ± 8.35
PSR 81.01 ± 7.23 82.40 ± 8.01 81.66 ± 7.57

In this study, we conducted a comparative analysis of the impact of various data
lengths on classification outcomes. Figure 8 presents our exploration using data spans
of 30 s (from 60 to 90 s), 45 s (from 60 to 105 s), 60 s (from 60 to 120 s), 75 s (from 60 to
135 s), 90 s (from 60 to 150 s), 105 s (from 60 to 175 s), and 120 s (from 60 to 180 s) extracted
from the SEED dataset. We employed our proposed methodology to construct complex
networks for each of these seven data lengths. Subsequently, we derived the NDE feature
from the constructed complex networks and inputted them into machine-learning models
for classification. The outcomes depicted in Figure 8 reveal that, concerning the NDE
feature, the classification performance for the 2 min data surpasses that of other durations.
Our experimental findings indicate that selecting longer-duration data yields improved
classification outcomes compared to shorter durations. Notably, with a data duration of
45 s, the proportion of redundant information increases, resulting in a slight decline in
classification accuracy. Nevertheless, the overarching trend illustrates that, as the duration
of the data increases, classification accuracy tends to enhance, reaching its pinnacle and
experiencing minimal variance with a 120 s data duration.
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Figure 8. Comparison of classification results using the proposed method on different data durations.

4. Discussion

In our research, we propose an innovative approach to constructing complex networks
for EEG analysis, specifically targeting emotion recognition. This method synergizes the
features of phase space and visibility, demonstrating remarkable performance in emotion
recognition based on EEG signals across two categories. Our proposed method differs from
the existing approaches in several key aspects.

First, the selection of nodes for constructing complex networks diverges from the
conventional methods. While existing approaches typically select ordinal numbers of time
series as nodes, our method employs two parameters—dimension and delay—to map time
series to phase space. Nodes in this phase space then serve as the foundation for construct-
ing complex networks. Subsequently, these nodes are mapped into complex networks using
visibility methods. The rationale behind the success of our method lies in the belief that the
amalgamation of temporal and spatial features captures more physiological information
than relying solely on temporal features. To elucidate the distinctions in representations
of EEG signals in separate time-domain features and in combination with spatiotemporal
features, we conducted a comprehensive analysis. Specifically, we performed time-domain
feature analysis and spatiotemporal feature analysis on EEG emotional signals and EEG
epilepsy signals separately. Subsequently, we compared the results obtained from these
analyses. This meticulous approach provides insights into the efficacy of our proposed
method, shedding light on its potential advantages in understanding and categorizing EEG
signals related to emotions.

To demonstrate the superior performance of our proposed method in EEG emotion
classification, we conducted a comprehensive comparison with recent studies that utilized
the same SEED dataset. Our evaluation involved benchmarking against studies conducted
by Zheng, Li, and Song.

In Zheng’s research, the group sparse canonical correlation analysis (GSCCA) method
was introduced to perform simultaneous electroencephalogram (EEG) channel selection and
emotion recognition. Li’s study utilized the graph regularized sparse linear regression (GRSLR)
approach to address EEG emotion recognition problems, while Song’s study employed
dynamical graph convolutional neural networks (DGCNN) for EEG emotion recognition.

Upon analyzing the results, as depicted in Table 2, the individual EEG emotion classi-
fication accuracies for Zheng’s study, Li’s study, and Song’s study were 82.96%, 87.39%,
and 90.40%, respectively. Notably, our proposed ComNet-PSR-VG method achieved an
outstanding individual EEG emotion classification accuracy of 91.39%, signifying a signifi-
cant enhancement in classification performance. These outcomes suggest that our method
outperforms the benchmark studies in EEG emotion classification. The proposed ComNet-
PSR-VG method effectively preserves crucial spatial structural information within the EEG,
enabling more accurate and efficient classification of emotions. The experimental results
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underscore the method’s robustness and its ability to achieve superior performance in the
realm of EEG emotion recognition.

Table 2. The results of classification accuracy from Zheng’s study, Li’s study, and Song’s study.

Title 1 Dataset Methodology Mean Accuracy StdACC

Zheng’s study [20] SEED GSCCA 82.96% 9.95%
Li’s study [21] SEED GRSLR 87.39% 8.64%

Song’s study [22] SEED DBN-CRF 90.40% 8.49
Our work SEED NEM 91.39% 4.69%

In the realm of EEG emotion recognition, the temporal and spatial characteristics of
features harbor abundant information, enabling a more comprehensive depiction of brain
activity patterns and subsequently enhancing the precision of emotion recognition [23,24].
Tao’s investigation [25] employs attention-based convolutional recurrent neural networks
(ACRNN) to dynamically assign weights to different channels, integrating extended self-
attention into the RNN. This methodology yields features that retain rich information
across channels and time, demonstrating significant superiority over traditional emotion
recognition methods. In Wang’s study [26], a hybrid spatial–temporal feature fusion neural
network (STFFNN) is introduced, amalgamating extracted features through convolutional
neural networks (CNN) for spatial learning and utilizing Bi LSTM for network storage by
merging temporal and spatial features. In our study, we also extract features preserving
rich spatial and temporal information. However, our approach involves constructing a new
spatial network for EEG signals within the framework of complex networks to enhance the
extraction of EEG information.

Emotion recognition based on EEG signals holds promising applications, including
auditory attention research and clinical psychiatric investigations. Despite these prospects,
there are inherent limitations in the current research. This article presents a novel complex
network achieved through the fusion of phase space reconstruction and visibility graph,
thereby retaining the intricate temporal and spatial features of EEG signals. The absence
of a standardized criterion for selecting spatial dimensions and time-delay parameters in
phase space construction necessitates a discussion tailored to different signals and research
contexts. Moreover, emotional stimulation introduces a certain impact on the selection
of EEG patterns and features. In Chen’s study [27], a discernible relationship between
emotion and cognition was identified in specific regions during emotional interference,
encompassing the bilateral dorsal anterior cingulate cortex, anterior insula, left inferior
frontal gyrus, and superior parietal lobule, which exhibit sustained effects in these areas.
Research affirms the nervous system’s involvement in various interference processing types
with the regulation of emotional and cognitive interference relying on interactions within
extensive distributed brain networks. In Di Plinio’s investigation [28], the pivotal role of
the default mode network (DMN) region and executive region in emotional interference
processes was demonstrated. Negative emotional interference prompts activity regulation
in diverse regions, such as the frontal and parietal lobes, correlating with the regulation
of functional connections between these task-activation regions and DMN regions. Both
studies highlight that emotional interference triggers engagement in emotional processing
activities in specific brain regions, influencing characteristic responses within the brain
network. Consequently, subsequent EEG emotion classification research should factor in
the impact of emotional interference and opt for suitable classification modes and features.

5. Conclusions

In this paper, we present a novel approach to construct complex networks for EEG
emotion recognition by synergizing the phase space reconstruction and visibility graph
methods. The main innovation in our proposed method lies in the seamless integration
of the phase space reconstruction and visibility graph methods. From the perspective
of the visibility graph of ordinal patterns, we proposed a new construction method of
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complex networks from EEG signals, ComNet-PSR-VG. With the help of the phase space
reconstruction method, EEG signals are mapped to a series of ordered partitions and
symbolized to obtain a sequence of ordinal patterns. Subsequently, the generated symbolic
sequence of ordinal patterns is transformed into a graph network using the visibility graph
method. To validate the effectiveness and versatility, we constructed the experiment on
random signals, Lorenz signals, and the SEED emotion dataset by the proposed method.
Two types of network node measures, AND and NDE, are extracted from the resulting
graph networks. These extracted network features are then utilized as the input features
for emotion classification, employing SVM as the pattern classifier to discern positive
and negative emotions. The experimental results demonstrated outstanding classification
performance, reinforcing the effectiveness and universality of our method. Furthermore,
we compared our experimental results with existing research methods, showcasing the
superior performance of our proposed entropy measure in EEG emotion recognition.
The outstanding generalization observed in our proposed method suggests its significant
practical potential in the field of EEG emotion recognition. Overall, our method stands out
as a promising and effective approach for EEG emotion recognition, paving the way for
advancements in the broader domain of EEG pattern-learning research.
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Abstract: Vigilance refers to the capability of humans to respond accordingly to relevant and unpre-
dictable tasks and surrounding environment changes over prolonged periods of time. Identifying
vigilance decrements can, therefore, have huge and vital impacts on several operational environments
in which a simple slip of mind or a deficit in attention can bear life-threatening and disastrous conse-
quences. Several methodologies have been proposed to assess and characterize vigilance, and the
results have indicated that the sole measure of performance and self-reports are not enough to obtain
reliable and real-time vigilance measure. Nowadays, monitoring head and body movements to obtain
information about performance in daily activities, health conditions, and mental states has become
very simple and cheap due to the miniaturization of inertial measurement units and their widespread
integration into common electronic devices (e.g., smart glasses, smartwatches). The present study
aimed to understand the relationship between head micromovements and body posture changes to
vigilance decrease while performing the psychomotor vigilance task. The results highlighted that
head micromovements can be employed to track vigilance decrement during prolonged periods of
time and discriminate between conditions of high or low vigilance.

Keywords: vigilance; inertial measurement units; psychomotor vigilance task; head micromove-
ments; body posture

1. Introduction

A vast corpus of studies has highlighted that cognitive processing (e.g., visuospatial
ability, memory, attention and executive functions) appears to be influenced by the contri-
bution of the vestibular system (for a review see [1]). Typically, the role of this system is
to maintain gaze stability and body position and stabilize head movements, but attention-
demanding tasks have consistently shown a decrease in performance (e.g., response latency,
accuracy) when the vestibular system is challenged [2–4]. In particular, the results showed
that body posture did not worsen when cognitive tasks were added, indicating that the
brain prioritizes balance and posture stability. This indicates that cognitive tasks are not
simply reflexive but compete with attention for cognitive resources [1]. This evidence
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suggests that vigilance and the vestibular response (in term of head movements and body
posture) could require processing functions by similar cognitive networks.

The definition of vigilance in the scientific literature is ambiguous. In fact, it varies
according to the field that is being studied. For example, in psychology and cognitive
neuroscience, vigilance is described as the ability of the observer to sustain attention
over a prolonged period of time under monotonous stimulus [5]. The vigilance level is a
concept to which clinical neurophysiologists usually refer when describing the activity of
the corticothalamic networks implied in the sleep–wake dimension [6]. Vigilance has also
been defined through the degradation of performance results over time while involved in
cognitively simple tasks [7], indicating the involvement of time as a factor to define and/or
measure it.

Common definitions of vigilance usually contain terms closely related to arousal,
alertness, and sustained attention. Arousal refers to a nonspecific activation of the cerebral
cortex and the neurobiological mechanism behind vigilance itself, with low levels related
to sleep and high levels related to the vigilant state [8]. In a hyper-aroused condition, it is
also associated with models describing insomnia [9]. Alertness has been described as the
state of maintained high sensitivity to incoming stimuli [10] or the quantitative measure of
the state of the mind to being sensitive to internal or external stimuli [8]. Attention is one
of the basic human cognitive abilities, allowing for the discrimination of relevant parts of
information and the ability to discard the others. Attention is related to a focused activation
of cerebral cortex that enhances information processing [11]. By extension, the concept
of sustained attention is the ability to maintain a mental state of focused attention and
alertness over time [12], a definition that is very close to that of vigilance, which is typically
used as a synonym [13].

Most vigilance definitions refer to the capability of humans to respond accordingly
to relevant and unpredictable changes over prolonged periods of time while dealing with
tasks. We have, therefore, considered this definition for the proposed study [14,15].

Vigilance can also be influenced by cognitive processing, motivation, and stress [16].
An important factor to motivation is the dopamine system related to the reward [17],
indicating that performance and vigilance can decrease in non-stimulating environments.
Stress also has impacts on vigilance and relative associated performance [18], and several
neurophysiological markers associated to stress (e.g., EEG, skin temperature, electrodermal
activity, heart rate variability, blood pressure and breathing) revealed that stress and
cognitive functions have a U-shaped curve relationship. This suggests that opportune
levels of stress can, in fact, improve vigilance-related performance [16].

Although, over the last 50 years, automation technology has profoundly changed
human–machine interactions (HMI), high levels of automation can have negative conse-
quences due to, for example, excessive trust in autonomous systems’ abilities [19] or the loss
of situational awareness [20], which causes the well-known out-of-the-loop phenomenon
(OOTL) [21,22]. This leads to a decrease in operator vigilance and contributes to the failure
to detect and understand the problem and make the right decision. A conspicuous number
of accidents caused by vigilance decrement, in particular in the aviation field [23,24] or
during vehicle driving [25,26], has been widely recognized. For example, a recent study by
Greenlee et al. [27] highlighted the importance of monitoring vigilance in drivers engaged
with automated vehicles. The results showed that the drivers experienced a decrease in
sensitivity to hazards and an increase in false alarms in the automated control condition in
respect to the manual control condition. Because the presence on the streets of automated or
partially automated vehicles for consumers’ use is projected to increase, the importance of
identifying and tracking states of low vigilance appears to be crucial. Thus, the capability of
identifying vigilance degradations can have many benefits in all contexts in which a simple
slip of mind or a deficit in attention can bear life-threatening and disastrous consequences.

Several methodologies and markers have been proposed to characterize and assess
vigilance changes. The psychomotor vigilance task (PVT) [28] is a reliable and widely used
method to monitor users’ vigilance over a prolonged period of time (at least 10 min). PVT

163



Appl. Sci. 2024, 14, 1810

measures vigilance degradation by recording reaction times to visual or auditory stimuli
that occur at random intervals (typically ranging from 1 to 10 s). In the PVT, cognitive
impairments due to vigilance degradation is reflected not only by the identification and
response to the target stimuli (i.e., reaction time) but also by the number of missed targets
and the false response in the case that no stimulus is presented. Moreover, subjective mea-
sures, such as the visual analogue scale (VAS) [29], have also been used to rate perceived
vigilance level. Significant differences in vigilance ratings were observed between partici-
pants, and the results were not consistent for different tasks [30,31]. These results indicate
that the sole measure of performance and self-reported questionnaires are not enough to
have generalizable results on vigilance [32]. Most importantly, questionnaires cannot be
acquired during the execution of a task, with the drawback of compromising the accuracy
and reliability of the measure they intend to evaluate [33,34]. However, performance data,
although available during the execution of the task, are strongly related to the task at hand,
so it is difficult to compare results obtained from different settings [35].

Data collected using inertial measurement units (IMUs), such as head micromove-
ments and body posture changes, and neurophysiological measures, such as electroen-
cephalography signal (EEG), can allow us to overcome the drawbacks of subjective mea-
sures by objectively assessing the user’s cognitive states in real time during the execution
of a task. The application of EEG and its reliability has been already well explored by
the authors in a variety of laboratory and realistic settings by evaluating human–robot
interaction in training assessments, driving, and air traffic control [36–40]. Although com-
mercial and cheap EEG devices are available on the market, their correct usage requires
specialized personnel to be able to check the correct position of the sensors (electrodes
located exactly over the corresponding brain area) and quality of the EEG signals to achieve
the results [41,42]. Therefore, the possibility of monitoring vigilance degradations through
the analysis of head and body movements could be a valid alternative, especially due to the
simple and cheap integration of IMUs (accelerometers, gyroscopes) into electronic devices
such as smartwatches, virtual reality, and biosignal recording systems (e.g., EEG). This
aspect also allows for tracking movements in environments in which global positioning
system (GPS) tracking is not possible or difficult [43,44]. IMUs have been extensively
used in clinical applications to monitor patients’ rehabilitation both in conditions in which
robotic exoskeletons are involved and during free movement rehabilitation [45], stroke
rehabilitation [46], and posture evaluation and rehabilitation progression in children with
cerebral palsy [47,48]. Also, in operational environments, the recognition of human activity
(HA) by the means of wearable sensors has gained high importance to safely assess the po-
sition in time and space of the operators and improve their performance, especially where
human–robot interaction is involved [49]. For example, Ramirez et al. [50] used inertial
sensors to spot the visual focus of attention of a driver, while Lee et al. [51] embedded an
inertial sensor in a custom-made glove to assess driver stress based on driving behavior.

Previous studies have highlighted how it is possible to identify different human activi-
ties [52], discriminate stress conditions [51] or variations in vigilance and drowsiness [53]
based on drivers’ steering behavior, or identify different positions of the head with the
possibility of linking them to different attentional states [54] with the use of inertial sensors.
However, to the best of our knowledge, the micromovements of the head and variations
in body posture with a decrease in vigilance have not yet been addressed. The present
study, therefore, aims to understand the relationship between the micromovements of
the head and changes in body posture with vigilance decrease by analyzing data from
inertial sensors. In particular, given the potential of IMU devices, the present study aims to
develop and validate a vigilance index based on the user’s head micromovements and body
posture. In fact, data collected through IMUs are easily available and do not require profes-
sional personnel for setting up the sensors on the user’s body, as the neurophysiological
measures do.
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2. Materials and Methods

2.1. Sample Population

Thirteen healthy participants (27 ± 3 years old, 7 males and 6 females) were enrolled
on a voluntary basis in this study. The selection of the participants has been performed
accurately to ensure the same mental and physical status (homogeneity of the experimen-
tal sample). They have been asked about past neurological and physical disorders and
instructed to maintain a specific kind of lifestyle. For example, they have been asked to
avoid alcohol, heavy meals, and caffeine right before the experiments (homogeneity of the
“internal conditions” of the subjects during the experiments). The lab environment has been
kept under control (lights intensity, room temperature, seat position) across the different
days of the experiments (homogeneity of the “external conditions” during the experiment).
Written informed consent was obtained from each participant after the explanation of
this study and before the start of the data acquisition. The experiment was conducted
following the principles outlined in the Declaration of Helsinki of 1975, as revised in 2008.
It received a favorable opinion from the Ethical Committee of Fondazione Santa Lucia (Prot.
CE/PROG.604 dated 5 April 2017). Moreover, the participants were informed on how to
complete the tasks proposed later during the experimentation, and all of them took part in
a practice session before starting with the experiment to avoid compromised results due to
learning and familiarization effects. Then, a resting phase was considered before the start of
the actual experiment session. Due to missing data, one participant has been excluded from
the analysis. Thus, the final sample population is composed of 12 participants completely
balanced between males and females.

2.2. Psychomotor Vigilance Task (PVT)

All the participants performed two separated PVT with a conjunction visual search task
in between (not considered in this study, as it is specific for selective attention functions).
After each task, a resting period was considered according to the participants’ disposition
to avoid causing visual strain that could confound and impair the correct evaluation of
vigilance decrease. Therefore, the entire protocol consisted of three phases, with a total
duration of about 45 min and each phase lasting a maximum of 15 min. Moreover, screen
distance, luminance, and contrast were adjusted according to participant’s demands [55,56].
The PVT, which is a specific test to induce vigilance degradation, in this study consisted of
10 min of continuous stimuli presentation on a monitor with random interstimulus intervals
(ISI) ranging from 1 to 10 s. The duration of the PVT was set based on the results obtained
from Loh et al. [57], in which a significant vigilance degradation was observed after
10 min. The participants had to press the space bar on a keyboard in front of them as
fast as possible in response to the stimuli presentation (a red circle in the center of the
screen) after the appearance of a fixation cross (Figure 1). Thus, the PVT was composed of
multiple subsequent repetitions of trials, which included (1) ISI; (2) a fixation cross; and
(3) target stimulus. During the entire protocol, the participants were seated on a comfortable
chair in front of a computer screen. Moreover, high-resolution electroencephalography
(HR-EEG) signal was acquired using a 61-channel system (see Sebastiani et al. [58] for
more details on data acquisition and analysis), and micro and macro movements were
recorded using 2 IMU devices composed of a 3-axis accelerometer and a 3-axis gyroscope
placed on the chest and forehead of the participants. Moreover, the participants’ reaction
time (RT) in response to the correct target stimuli was collected to measure participants’
performance. The RT was obtained by timing the time between the target onset (red dot)
and the participant hit on the keyboard. Participants’ EEG signals, IMU data and on-screen
stimuli were synchronized for the entire duration of the protocol. Before the beginning of
the experiment, one minute of resting state with open eyes in front of the blank monitor
(OA) was recorded to obtain head micromovements and body posture measures from a
movement-free baseline condition.
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Figure 1. Graphical representation of stimuli presented to participants and the flow of the protocol
proposed, consisting of two separate psychomotor vigilance tasks (PVT) and a visual search task in
between. Resting periods have been considered at the end of each task to avoid visual strain. The
PVT required the participants to press the space bar as fast as possible after the onset of a red dot
which appears on the screen after a blue fixation cross.

2.3. Acceleration Data Recording and Processing

Head and chest acceleration were recorded by using two Shimmer GSR3+ systems
(Shimmer Sensing, Dublin, Ireland) with integrated inertial sensing via accelerometer
and gyroscope at a sampling rate of 100 Hz. Before the beginning of each experimental
session, the accelerometer and gyroscope of the IMU devices were calibrated on a flat and
stable surface according to manufacturer guidelines to obtain their relative correct offsets,
sensitivity, and alignment matrices. Once the calibration was completed, we positioned
one device on the forehead and one on the chest of each participant. Then, from each
device, the linear acceleration was obtained through data fusion of the acceleration and
angular velocity with the use of the Madgwick filter [59] implemented in the imufusion
Python package. Finally, we used the linear acceleration from the three axes to calculate the
modulus of the acceleration of the head and the chest. To describe the data distribution
related to possible micromovements associated to vigilance, for each minute of the PVT, the
median value and the median absolute deviation (MAD) of the modulus of the accelerations
were estimated as a measure of the intensity and variability of participants movements,
respectively. In other words, the median value of the acceleration describes the magnitude
(i.e., how much) over time of the participants’ head micromovements and body postures
changes, while the MAD describes the variation over time in the magnitude exhibited
by the participants’ head micromovements and body posture variations due to vigilance
variations. Additionally, the use of statistical parameters like the median and MAD allowed
us to obtain distributions that were not heavily influenced by possible outliers due to
sporadic large movement of the head and the body. In particular, values derived from the
sensor on the head were used as estimations of head micromovements because they are
related to attentional states [54], while the sensors on the chest were used as estimations of
body posture changes (for a review see [60]). Acceleration median and MAD values were
then normalized with respect to the corresponding values obtained during the movement-
free condition (open eyed phase) by using median and median absolute deviation (MMAD)
normalization due to its robustness to outliers [61].

2.4. Behavioral Data: Reaction Time

During the entire PVT, participants’ reaction times (RT) in response to each trial were
recorded. RTs were defined as the time elapsed from the onset of target stimulus to the
spacebar press. For each minute of the PVT, only the RTs related to correct answers and
trials within the corresponding minute were averaged.

2.5. Statistical Analyses

Participants’ RTs, acceleration median, and MAD of head micromovements and body
posture of both PVTs were averaged. Then, trends over time of these parameters were
analyzed using Page’s trend test [62] to assess the significance of the trends over time to
understand if there was a decrease or increase in those parameters from the beginning to
the end of PVT.
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The Wilcoxon signed rank test was used [63] to confirm any vigilance decrement between
the first and last minute of the PVT of the parameters with statistically significant trends.
Statistical analyses were performed using Python scipy [64] and pingouin [65] packages.

3. Results

3.1. High- and Low-Vigilance Conditions

First, we performed the Page’s trend test to verify a possible decline of vigilance
over time in terms of behavioral data (RT). The results confirmed a statistically significant
increase in RT from the first to the last minute of the PVT (L = 4059, p < 0.001). In other
words, this result indicates that the participants experienced a vigilance decrement while
performing the PVT (Figure 2A). Moreover, we wanted to find out whether such a vigilance
decrement between the beginning and end of the PVT was significant. In this regard, the
Wilcoxon signed rank test reported a statistically significant increase (W = 63, p = 0.03) of
the participants’ RT between the first and last minute of the PVT (Figure 2B). Vigilance
decreases over time (Page’s trend test results: L = 4271, p < 0.01) and, between the first and
last minute of the task, was also confirmed using the EEG–based vigilance index (Wilcoxon
signed rank test results: W = 77, p < 0.01), which was calculated as proposed by the authors
in a previous study [58]. The results obtained from behavioral data and the vigilance index
confirmed the presence of vigilance degradation between the first (high-vigilance condition)
and the last minute of PVT (low-vigilance condition).

Figure 2. (A) Vigilance decrement over time during PVT indicated by RT increase; (B) RT increase in
low-vigilance condition. * denotes p < 0.05. Red line indicates significant data trend.

3.2. Acceleration Results: Head Micromovements

The results for the head micromovements showed a statistically significant positive
trend over time both for the median (intensity) and the MAD (variability) of the acceleration
(L = 4041, p < 0.01 and L = 3866, p = 0.01, respectively) during the execution of the PVT
(Figures 3A and 4A). Figures 3B and 4B show that there was a significant increase in median
and MAD acceleration of head micromovements (W = 6, p < 0.01 and W = 13, p = 0.02,
respectively) when the vigilance decreased significantly.
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Figure 3. (A) Head micromovement intensity increase over time during PVT; (B) Head micromove-
ment intensity increase in low-vigilance condition. * denotes p < 0.05. Red lines indicate significant
data trends.

 

Figure 4. (A) Head micromovement variability increase over time during PVT; (B) Head micromove-
ment variability increase in low-vigilance condition. * denotes p < 0.05. Red lines indicate significant
data trends.

3.3. Acceleration Results: Body Posture

The results for the body posture showed a statistically significant positive trend over
time (L = 3881, p < 0.01) for the median (intensity), but no significant trend (p = 0.32)
was found for the MAD (variability). In addition, the statistical analysis between the
beginning and the end of the PVT did not return any significant changes for the median
or MAD acceleration of the body posture (p = 0.08 and p = 0.28, respectively). For this
reason, body posture was not considered as a possible marker of vigilance decrease in the
subsequent analysis.

3.4. Repeated Measures Correlations

Based on the results derived by head micromovements data, we performed a repeated
measures correlation analysis to better understand the relationships between RT and
head micromovements. We calculated a moving root mean square (rms) over time for
each of the two variables analyzed. The results indicated a weak positive statistically
significant correlation between RT and acceleration measures with an r = 0.27 (p < 0.01) for
head micromovements intensity (Figure 5A), while showed a strong positive statistically
significant correlation with an r = 0.72 (p < 0.01) for variability (Figure 5B).
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Figure 5. Repeated measures scatterplots (subject data in different colors). (A) Correlation between
Reaction Times and head micromovements intensity; (B) Correlation between Reaction Times and
head micromovements variability. All correlations are significant with p < 0.05, highlighted in red in
the figure.

4. Discussion

The results obtained in this study confirmed the possibility of assessing vigilance
degradations through the analysis of participants’ head micromovements. A significant vig-
ilance reduction at the end of the PVTs [57] was highlighted by participants’ reaction times
(RTs) and also confirmed by a previous study [58] (Figure 2). In this regard, participants’
head micromovements were able to discriminate low- and high-vigilance conditions. In fact,
when the vigilance decreased significantly, we found increased intensity and variability of
micromovement acceleration over time (Figures 3 and 4). Meanwhile, the results derived
from body postures showed that, although there was a positive trend for acceleration
intensity, we did not find any significant differences between the high- and low-vigilance
conditions, both for acceleration intensity and variability.

Moreover, the analysis of head micromovement variability showed a positive and
significant correlation with participants’ RT (Figure 5), indicating that this parameter could
be used to assess the current state of operators’ vigilance while dealing with tasks.

Taken together, the results hint at the possible implication of the vestibular system with
the vigilance assessment. In particular, it seems that in a state of high vigilance, the cognitive
resources are sufficiently balanced between PVT execution and the request of the head
and the body to maintain their position, which is most likely in an apparent nonconscious
way. Meanwhile, the low-vigilance condition leads to higher cognitive demand to hold the
head steady, leading to an increase in conscious control of head micromovements, while
body position is not affected. Lower resources are instead dedicated to PVT execution,
leading to a decrease in performance, as highlighted by the increase in RT. As a matter
of fact, previous studies have pointed out that, when the vestibular system is challenged,
maintaining the same balance and posture starts to be cognitively demanding [1,2,66].
However, on the other hand, the incorporation of vestibular stimulation, like swinging on a
swing during leisure time, as suggested in [67], over time could instead improve cognitive
function. Although plausible, the link between vigilance and the vestibular system is far
from being resolved by the present study. More focused studies should address the actual
causal relationship between the two.

The results of the present study also demonstrate that IMUs endow a cheap, direct,
and reliable measure of participants’ vigilance levels. Due to the integration of IMUs
with neurophysiological devices, these kinds of data could also be combined for assessing
vigilance changes in terms of participants’ behavior and cognitive response. This inte-
gration could help to identify and, if necessary, alert operators of conditions of vigilance
deterioration. There are plenty of operation environments in which it could be possible
to integrate inertial measurements on already existing equipment, such as in aviation
on traffic controller operator or pilots’ headphones or in environments in which security
helmets are used, for example, on construction sites for heavy machinery operators or
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quality control. In this way, no additional device that could modify or impede a normal
day-to-day work routine would be required, and the ergonomics of the existing ones would
not be compromised, allowing researchers to overcome a possible barrier to the adoption
of such devices. The outcome can be used to create a closed loop between the user and the
machine and make them continuously interact to mitigate OOTL phenomena and improve
both users’ performance and task safety.

Moreover, the measure that we proposed here in this study does not require extensive
computational time (14.45 ± 1.79 ms is the average time for the elaboration of 60 s of data
with an Apple M1 CPU), allowing for online vigilance monitoring. This means that, with
proper calibration on a movement-free phase, the index could be also implemented as a
direct measure that can be used to adapt user interfaces when vigilance is lowered below a
predefined threshold [68].

Despite the innovative and interesting results, some limitations must be discussed.
First, the sample size consisted of 12 participants within a narrow age range, and those
factors could be a limit to a broader generalization of the findings reported in this study.
Therefore, in future studies, we will enlarge the population and include different age
ranges to provide more reliable evidence and substantiate the findings reported in this
study. Secondly, we want to estimate the time resolution by which the IMUs can assess
vigilance decrement. In this regard, we need a task that is able to provide performance
data with high temporal resolution (e.g., every second) so that we will be able to identify
vigilance degradation with a resolution of seconds and perform correlations between
participants’ performance and other kinds of data (i.e., IMUs). Finally, future studies on
head micromovements related to vigilance decrease will have to take into account the role
of motivation and stress and their effect on the possible degradation of performance and
how they affect vigilance [17,18].

5. Conclusions

Given the miniaturization of inertial sensors, the use of IMUs can be easily imple-
mented in all operating environments in which is crucial to adequately evaluate vigilance
degradation and prevent accidents related to it [24,69], such as in aviation [36], while driv-
ing a vehicle [70], or in a surgery room [71]. The capability of using head micromovements,
as described in this study, paves the way to extending this strategy to track other kinds of
mental states (e.g., mental workload, stress) by exploiting technological progress and the
integration of IMUs in commercial and personal devices.
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Abstract: Background: Mismatch negativity (MMN), an event-related potential (ERP) component
occurring at specific recording sites and latency, is associated with an automatic change detection
response, generally elicited using oddball paradigms wherein infrequent stimuli are embedded in re-
peated, frequent stimuli. To verify the presence of mismatch-related ERP responses to somatosensory
stimulation in individuals with cerebral palsy (CP), we conducted a preliminary study involving
healthy participants and patients with CP. Methods: Both groups underwent ‘frequent’ and ’infre-
quent’ stimulation applied to the ring finger and thumb of their left hand, respectively. ERPs were
recorded at frontal, central, and parietal scalp locations using electroencephalography. A healthy
cohort tested the experimental protocol and showed evidence that mismatch-related ERP responses
were observable. Subsequent analysis focused on the patient group. Results: Statistically signifi-
cant differences between the two types of stimuli were observed on the frontocentral and parietal
channels between 150 and 250 ms after the stimulus onset in the patient group. Furthermore, a late
discriminative response was observed in the frontal and parietal channels. Conclusion: The results
demonstrate the presence of mismatch-related ERP responses in individuals with CP.

Keywords: mismatch negativity; EEG; somatosensory stimuli; cerebral palsy; cognitive enhancement

1. Introduction

Event-related potential (ERP) is a measured brain response to a specific sensory,
cognitive, or motor event. ERPs are measured by means of electroencephalography (EEG),
which is a noninvasive electrophysiological method of monitoring the brain’s electrical
activities. Mismatch negativity (MMN) is a component of an ERP observable at specific
recording sites (e.g., frontal) and latency (∼120–200 ms) relative to the moment of stimulus
presentation, as detected in the EEG signal. MMN occurs when a sequence of repetitive
standard stimuli is interrupted by an odd or deviant stimulus, i.e., when the brain detects a
change in a background of homogeneous events [1]. For example, if one hears a series of
identical tones (i.e., standard stimuli), and then a slightly different tone (i.e., odd stimulus)
is introduced, MMN reflects the brain’s automatic response to this deviation. The odd
stimulus must differ from the standard stimulus in at least one stimulus attribute, in
frequency, duration, or intensity. MMN is associated with automatic, subconscious memory
processes [1], through its role in detecting and registering deviations from expected stimuli.
A sequence of frequent stimuli causes a track or a regular pattern of stimuli in the sensory
memory, and any new incoming stimulus is then compared with that created memory
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track. When a stimulus breaks that regular pattern, MMN is elicited, indicating that
the brain has detected a mismatch. This process is thought to be related to preattentive,
automatic memory mechanisms. MMN reflects the brain’s ability to compare incoming
sensory information with stored memory representations, contributing to the early stages
of memory formation and updating [2].

MMN has been originally discovered and studied intensively by auditory stimuli [3],
but there is evidence of MMN in the visual [4,5] and somatosensory [6–8] modalities also.
In the visual domain, it involves changes in visual stimuli, such as color, shape, orientation,
and emotional expression [9,10]. In the somatosensory domain, it has been assessed most
commonly using vibrotactile stimuli and is known as somatosensory MMN (sMMN). For
example, different durations, different frequencies of stimulation, or stimulation of different
body parts is used for standard and odd stimuli [11,12].

The better a subject can distinguish the deviant from the standard stimuli, the larger
the MMN [13]. Especially in the auditory domain, MMN has been widely employed to
study speech and language development. This research includes both typical cases, such
as infants exposed to one or two languages with normal development [14], and atypical
cases, like children having problems with a specific language impairment [15]. Visual
MMN in the context of cognitive impairment and aging can provide information about
age-related changes in sensory processing and cognitive function [16,17]. Furthermore,
visual MMN seems to be sensitive enough to disclose gender differences [18,19]. In the
tactile domain, few studies reported the existence of somatosensory MMN in healthy indi-
viduals [6,11,20,21]. However, to our knowledge, contrary to MMN studies in the auditory
and visual modalities, much less is known about the effects of mismatch in the sMMN
modalities, and related developmental studies are very sparse. The reported somatosensory
ERPs showed different results depending on the stimulus properties, such as duration,
spatial location, and vibrotactile frequencies. For example, Kekoni et al. [11] used a vi-
bratory mismatch paradigm and observed sMMN as a negative deflection at 100–200 ms,
while Shinozaki et al. [22] found sMMN as a positive deflection at 100–200 ms, using a
topographical mismatch paradigm. Tamura et al. adopted a two-point discrimination
paradigm and obtained a negative potential at ∼140 ms (N140) and two positive compo-
nents at around 300 and 500 ms [23]. On the other hand, using a temporal discrimination
task, Akatsuka et al. found a negative component peaking at approximately 60 ms (N60)
and a large positive peak at around 100–200 ms (P150) [7]. In most cases, sMMN appeared
over the frontocentral regions [6,11].

In addition to MMN, a later negative mismatch-related ERP component is often
observed in both auditory [24–26] and somatosensory [21] oddball paradigms and is
referred to as late discriminative negativity (LDN). Generally, LDN is observed at around
400 ms, following MMN [27]. Although less is known about LDN, its amplitude is typically
higher in infants and children, but it has also been observed in adults [24,28].

Irrespective of the modalities of mismatch-related ERP components, they are widely
used for monitoring treatment adequacy in cognitive-impairment-related diseases like
schizophrenia, Alzheimer’s, and vascular dementia [23,29,30]. While the potential uses of
mismatch responses are noteworthy, studies involving patients with cerebral palsy (CP)
are generally lacking to date, and to our knowledge. CP leads to a movement disorder
caused by nonprogressive damage in the developing brain during early childhood. The
movement disorder associated with CP is classified into three types: spasticity, dyskinesia,
and ataxic CP. Depending on the extent of the brain damage, patients with CP may also
exhibit additional symptoms such as cognitive, communicative, and/or behavioral deficits.
CP is mainly characterized by motor abnormalities. Any correctly initiated movement
requires an intact sensory motor system. Therefore, it is evident and supported by research
also that somatosensory dysfunction plays a crucial role in movement control in the case
of CP. Furthermore, children with CP often have difficulties processing somatosensory
information, which can also lead to difficulties in learning and movement execution. For
example, in the case of hemiplegia, the hand on the less affected side may process touch
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differently than the one on the more affected side. This difference in sensory information
processing is frequently manifested in more pronounced disparities in movement execution
and strength between the two sides of the body [31–33].

Mismatch-related ERP responses have the potential to serve as a valuable tool for
probing the neural mechanisms underlying somatosensory processing in patients with CP.
By studying those, researchers and clinicians can gain insights into the nature of sensory
abnormalities. Knowledge of the sensory process can help to develop different therapies
tailored to the problem. For instance, Restuccia et al. [34] demonstrated that the cerebellum
plays a role in the automatic detection of changes in somatosensory input. Their study not
only validated the reliability of somatosensory mismatch negativity (sMMN) recordings
but also suggested that individuals with cerebellar damage might experience difficulties in
processing incoming somatosensory information in the cortex.

Conducting ERP experiments would be particularly suitable for patients with CP,
including young adults, considering potential challenges in concentration and attention
span during tasks [35,36]. Mismatch-related ERP responses, in particular, provide an
opportunity to look at cognitive processing even when a patient faces concentration deficit,
as the patient does not need to focus on the task. The appearance of mismatch-related
responses in the EEG allows one to detect changes related to sensory or cognitive processes
in the brain. In this study, we chose an adult population of patients with CP who were able
to read and had sufficient concentration. Our goal was to assess the tolerability of the EEG
cap preparation. Additionally, we aimed to know whether it was feasible to derive any
mismatch-related ERP responses at all in the case of CP with our experimental protocol (i.e.,
can the participants perform the tasks?). Furthermore, the study is based on the assumption
that sMMN is elicited between 150 and 250 ms, and LDN is elicited at around 400 ms after
the stimulus onset, as either a negative or positive component [6,11,12,24,27,28]. These
assumptions are based on the literature, where most of the studies involve healthy children
and adults. The further goal of the present study was to verify the assumption in the
case of CP. The study first recorded the EEG responses in four healthy adults and then
in seven patients diagnosed with CP. All participants experienced mechanical vibrations
on their middle finger (‘standard’ stimulus) interrupted by frequent vibrations on the
thumb (‘deviant’ stimulus) while reading a text. With the healthy cohort, the experimental
protocol and the EEG cap were initially tested; further, mismatch-related ERP responses
were confirmed. Subsequent analysis focused on the patient group.

2. Methods

2.1. Participants

EEG was collected from 4 healthy volunteers and 7 patients with CP. Healthy volun-
teers were aged between 29 and 55 years and recruited among personnel working at the
hospital. Patients were aged between 23 and 53 years and recruited from a special center
for people diagnosed with CP. The diagnosis of CP was confirmed by a senior orthopedic
specialist before the start of the study. Additionally, the inclusion criteria of the selected
patients included the ability to read and maintain adequate concentration during reading.
Table 1 shows the patients’ information in addition to their diagnosis. The degree of the
patient’s mobility was expressed according to the Gross Motor Function Classification
System (GMFCS) [37]. This system defines five different levels of mobility from a GMFCS
of I, when the person can walk freely without the need of a walking aid, to a GMFCS level of
V, when a person has substantial motor limitations and requires a wheelchair permanently,
not being able to move by himself or herself. The GMFCS levels of the participants of this
study varied from a GMFCS of I to IV (Table 1). The Manual Ability Classification System
(MACS) describes how patients use their hands to handle objects in daily activities. MACS
ranges from 0 to 5, with a higher MACS level indicating a higher level of spasticity [38].

The ability to read is independent of the severity of the disability. This is also the
reason why the selected group was very inhomogeneous concerning GMFCS. In principle,
the participants did not need to focus on the vibratory stimulus while reading because
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mismatch-related ERP signals occur when participants are not focused on the task. One
should not be able to detect mismatch-related responses if the participants are focused on
the task, or the observed EEG signals occurring in an atypical time course, unrelated to the
mismatch-related signal.

Table 1. Demographic characteristics of enrolled participants and diagnosis classifications of their
mobility according to GMFCS and according to their hand’s performance in daily life, i.e., MACS level.

Participant Gender Age GMFCS MACS MACS Diagnosis
Year L R

P01 Female 23 I 4 1 Unilateral CP

P02 Male 45 III 1 1 Bilateral CP

P03 Male 39 III 3 3 Bilateral CP

P04 Male 36 IV 4 4 Bilateral CP

P05 Female 53 IV 2 2 Ataxic CP

P06 Female 47 II 2 4 Unilateral spastic CP

P07 Male 25 III 2 2 Bilateral spastic CP

2.2. Experimental Procedure and Data Analysis
2.2.1. Stimuli and Procedure

Mechanical vibrations were delivered via vibration motors placed on the fingers.
‘Frequent’ (or ‘standard’) and ‘infrequent’ (or ‘deviant’) stimulations were delivered to the
ring finger and thumb of the left hand, respectively. Frequent and infrequent stimulation
occurred at a ratio of 90% and 10%, respectively, with pseudo-randomized occurrence.
Figure 1a shows a schematic diagram of the protocol for stimulus delivery. Three successive
runs of 500 stimuli were delivered with 1 s of interstimulus interval. During the experiment,
the participants sat comfortably in a chair in a quiet room and were asked to read a
text displayed on a screen while stimuli were delivered to their fingers. The vibration
motors were attached to the nail side of the finger (Figure 1a) because of the more direct
transmission of vibration. A microcontroller provided an interface between the vibration
motors and a computer. A Viewablewritten software controlled the delivery of vibrations,
i.e., the sequence of stimulation. All subjects received the same vibration amplitude and
frequency (1 G at 200 Hz).

All participants could easily perceive the intensity of the vibration and did not report
any pain or discomfort resulting from the stimulation. The participants were advised not
to pay attention to their hands during the session but to relax with the text reading on
the screen.

2.2.2. EEG Acquisition

Electroencephalogram was recorded with an Enobio wireless EEG system [39] at
8 scalp locations (Figure 1b). Electrodes drained with saline solution were placed on the
electrode cap (Enobio 8 EEG cap) at the F3, Fz, F4, C3, Cz, C4, P3, and P4 positions according
to the international 10–20 system, referenced to an electrode placed on the left mastoid. The
ground electrode was placed in the middle of the forehead. The signal was stored on a
hard disk at a sampling rate of 500 Hz. At first, the experimental protocol was tested on
healthy participants, and then the same procedure was followed for the patients.

2.2.3. Data Processing

Data preprocessing was performed using the EEGlab v2023.0 toolbox running on Mat-
lab R2020a. Data were first band-pass-filtered between 1 and 30 Hz and then re-referenced
to the common average. After re-referencing, the three sets of 500 trials were concatenated
together. The data were examined for possible bad channels using Kurtosis statistics with a
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threshold value of 2. Since no channels were found bad, data from all the channels were
used for the analysis. The continuous merged data were then decomposed by independent
component analysis (ICA) using the ‘runica’ function of the EEGlab toolbox. The decom-
posed data were manually inspected individually, and the non-neuronal originated artifacts
such as components related to muscle activity and eye blinks were identified on the basis
of their scalp topography and component activity power spectrum, and removed from
the data set. Artifact-corrected data were then used to study event-related EEG responses.
The data epochs time-locked to standard and deviant events were extracted from −200 to
800 ms relative to stimulus onset from the resulting continuous data signals. A baseline
correction of 200 ms was applied. Event segments with amplitudes larger than ±120 μVolt
were removed for further analysis. On average, 1315 epochs per subject were accepted for
further analyses.

(a) (b)
Figure 1. (a) Schematic illustration of the stimulus sequence of the standard and deviant stimulus
used for the ERP experiment. A sequence of vibrations was delivered with 1 s intervals mostly to
the ring finger denoted as standard stimulus (gray filled block); 10% of them were delivered to the
thumb finger, denoted as deviant stimulus (black filled block). The difference in waveforms between
the ERP responses to deviant stimuli and standard stimuli is mismatch-related ERP response. The
processed signals were separated from −200 to +800 ms by the deviant and standard stimulus. (b) An
EEG montage with 8 electrodes (frontal, central, and parietal) was used in the experiment.

In line with our primary objectives, the key analysis strategy involved determining our
ability to extract somatosensory mismatch-related ERP responses. Additionally, we aimed
to verify the following assumption in the case of adult patients with CP: the presence of
sMMN, elicited at about 150–250 ms after the stimulus onset over the frontocentral regions,
as either a negative or positive component [6,11,12], followed by LDN, a second component
in the difference signal, at an approximate latency of 350 ms [25,40]. This assumption
finds support in studies mostly involving healthy young and elderly adults. Therefore,
a further statistical test was performed exclusively on the data obtained from patients.
Wilcoxon signed-rank tests were performed on standard and deviant responses for each
channel within two predefined time ranges, averaged across patients. The selected time
ranges were between 150–250 ms for sMMN [12,41] and 350–450 ms for LDN [24] based on
literature where mismatch-related activities are expected. The nonparametric test statistics
determined the sum of the ranks of positive differences between the observations in the
samples, in this case, the differences between the two traces obtained for frequent and
infrequent stimuli.

3. Results

Figure 2 presents the stimulus onset-locked segments, separated from −200 to +800 ms
taking the median, across the healthy participants. Each block in the top and middle
panels represents the results from individual channels, showcasing ERPs for the standard
(‘STD’) and deviant (‘DEV’) events along with their differences (‘DIFF’). The lower panel
displays the scalp topographies of differences (deviant minus standard ERPs) in different
time windows. The figure illustrates noticeable differences between the two ERP traces,
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confirming our experimental protocol qualitatively in the healthy cohort. This supports
our further tests for the patients.

Equivalent to Figure 2, Figure 3 shows the median across patient stimulus onset-locked
segments. The figure illustrates that there exist obvious differences between the two ERP
traces. Although not shown in the figure, analysis of subject-specific ERPs reveals that irre-
spective of the age and gender of the participants in this study, the amplitude due to deviant
stimulus response was higher than the amplitude due to standard stimulus response.
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Figure 2. Top and middle panels: median traces of event-related potentials and their differences
across the healthy participants for different channels. Traces for standard stimuli are represented with
a gray line, for deviant stimuli with a blue line, and for differences with a black line. STD—standard;
DEV—deviant; DIFF—difference. Lower panel: spatial topography of activation patterns (difference:
deviant minus standard) for different time frames.

The distributions of the detected significant channels over the resulting time windows
are visualized with the box plots presented in Figure 4 along with the scalp topographic
maps. The left panel of Figure 4a shows the median trace for ’STD’ and ’DEV’ events
and their differences for the channel Fz (p = 0.046) and the box plot for them over a time
window of 150–250 ms. The right panel shows the same but for the channel P4 (p = 0.031).
The distributions of the boxes and the separation of the medians of the boxes specified
for ‘STD’ and ‘DEV ’events indicate the differences between the events. The middle panel
illustrates the scalp topographic maps for the standard and deviant stimuli along with
their differences over a time range of 150–250 ms. The upper rows of the middle panel
show the median of the topography map for standard and deviant stimuli, while the lower
row shows the difference between them. A difference in distributions for the standard
and the deviant stimulus, especially larger variation due to deviant stimulus, supports
the existence of sMMN within this time window. Additionally, the topographic map for
the difference trace also supports that finding. Figure 4b shows the same but for the
time window 350–450 ms for the statistically significant channels, i.e., F4 (p = 0.031) and
P4 (p = 0.046).
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Figure 3. Top and middle panels: median traces of event-related potentials and their differences
across the patients for different channels. Traces for standard stimuli are represented with a gray
line, for deviant stimuli with a blue line, and for differences with a black line. STD—standard;
DEV—deviant; DIFF—difference. Lower panel: spatial topography of activation patterns (difference:
deviant minus standard) on different time windows.

(a)

Figure 4. Cont.
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(b)

Figure 4. (a) The left and right panels show the distributions for the statistically significant channels,
e.g., Fz and P4, along with their box plots for the time window 150–250 ms. The middle panel shows
the scalp topographic maps for this time window. STD—standard; DEV—deviant; DIFF—deviant
minus standard. (b) The same but for the statistically significant channels, e.g., Fz and P4, for the
time window 350–450 ms.

4. Discussion

Somatosensory evoked event-related potentials were recorded in healthy individuals
and patients with cerebral palsy to verify the presence of mismatch-related ERP components
especially in patients with CP. The central findings of the study are as follows:

• The mismatch-related somatosensory responses can be observed in patients with
cerebral palsy.

• In line with our assumption, the observed mismatch-related ERP components from
frontal and parietal channels were statistically significant at two predefined latency
ranges: Fz and P4 channels at 150–250 ms and F4 and P4 channels at 350–450 ms
after the stimulus onset. The observed response in the time range of 150–250 ms is
considered as sMMN, and the response in the time range of 350–450 ms is considered
as LDN. In terms of time window and channel location, these findings are qualitatively
in good agreement with the studies involving healthy adults [21,25].

In an early study on auditory MMN, Giar et al. [42] proposed that MMN rises at
around 100–150 ms after stimulus onset and peaks at around 200–250 ms over the fron-
tocentral areas of the scalp. Later on, further studies confirmed that auditory MMN is
generated in the temporal and frontal areas [34]. In most somatosensory studies, MMN
has been confirmed over the frontocentral regions as either a negative or positive compo-
nent at about 100–250 ms of latency [7,11,12]. Some other studies found mismatch-related
ERP responses at two separate latencies. For example, Strömmer et al. [6] found sMMN
centroparietally at 180–220 ms and frontocentrally at 250–290 ms after the stimulus onset
in adults (22–36 years). Spackman et al. [12] reported a frontocentral negative peak at
100–200 ms, followed by a centroparietal positive shift at 150–250 ms to vibrotactile pre-
sented changes in duration and frequency. On the other hand, Akatsuka et al. [7,43] found
a significantly enhanced sMMN in early negativity (30–70 ms) and later a positive peak at
100–200 ms after stimulus. Similarly, Butler et al. [41] reported an sMMN response over
the frontal midline scalp with two phases of MMN waveform: an earlier negative peak
at ∼145 ms, followed by a positive peak at ∼235 ms. Our present sMMN peak between
150 and 250 ms agrees with the findings of Strömmer et al. [6], and the appeared peak
between 350 and 450 ms is likely representing LDN [25,44].
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The results indicate the presence and observability of mismatch-related components
in the case of patients with CP. Nevertheless, this study has certain limitations that should
be explored and addressed in subsequent research.

A central limitation is the relatively small and inhomogeneous patient cohort. While
this limitation does not affect the main finding of this study, the data provide insufficient
power for more in-depth investigations. A larger patient cohort would, for instance, enable
the examination of relationships between clinical parameters, such as somatosensory im-
pairments, and the expression of mismatch-related ERP responses, providing an important
basis for the establishment of mismatch-related ERP responses as diagnostic or monitoring
biomarkers in CP. Another limitation relates to the fixed interstimulus interval (ISI) rather
than a randomized ISI, which is typically favored in the design of ERP studies. While a
definite confirmation of whether this has an effect on the observed mismatch-related ERP
responses requires further research, we expect, if at all, a randomized ISI to lead to a rather
larger effect size relative to a fixed ISI due to the habituation effect. Therefore, we expect
the findings to be equivalent, if not more pronounced in case of a randomized ISI.

Despite the limitations, our study provides evidence for the reliable measurement of
sMMN in patients with CP. With this simplistic experimental setup, our results indicate
the feasibility of successfully measuring sMMN in patients with CP, who typically have
limited attention span. The paradigm may also be suitable for children with CP, which,
however, requires further thorough investigation. Due to the ongoing development of a
child’s brain, it is reasonable to assume that brain waves are distributed differently than
in adults, and therefore, the response to stimulation is likely to be different. Therefore,
experiments should be conducted separately across different age groups, and in general, a
larger number of patients are needed. While the current study does not establish a basis for
predicting the extent of somatosensory impairments through sMMN, our results still offer
a valuable starting point for the advancement of diagnostic or therapeutic tools. Mismatch
responses may be used to probe for somatosensory impairments in CP patients, or monitor
changes in somatosensory perception as a result of sensorimotor rehabilitation, which has
been performed in healthy subjects [45,46].
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Featured Application: This article proposes a novel graphical approach for the the assessment

of parallelism of biomarker tests that takes into consideration situations where parallelism is

partially lacking. The new approach expands on earlier observations and criticism of the limi-

tations of statistical methods included in the guidelines of regulatory authorities. Researchers

in the field concur on emphasising the importance of ensuring the accuracy and reliability; a

pertinent point which still remains to be addressed. To this purpose, two primary computa-

tional approaches are discussed: (a) statistical assessment and (b) visual assessment. Statistical

methods, such as regression analysis and parallelism/non-parallelism indexes, offer precision

and objectivity, making them suitable for large datasets and high accuracy requirements. They

can detect subtle differences in parallelism that may be missed by visual assessment. However,

they assume a linear relationship between analyte concentration and assay response, which may

not always hold true. Visual assessment relies on interpreting graphs or charts depicting the

biomarker–concentration–response relationship. It is intuitive and can quickly identify gross

deviations from partial parallelism, making it useful for screening biomarker assays. Visual as-

sessment may detect non-parallelism due to confounding factors that statistical methods might

miss. The graphical method proposed here suggests using partial parallelism plots, which visu-

ally depict the relationship between biomarker concentration and assay response for each sample.

These plots enable the identification of non-parallelism caused by analytical issues or confound-

ing factors. They assist in determining the optimal range of dilutions for each sample and provide

a language that is easily understood by researchers, regulatory authorities, and technicians. For

regulatory authorities, this document provides valuable insights into the assessment of partial

parallelism for biomarker tests. It highlights the need for both statistical and visual assessment

methods to evaluate parallelism accurately. The proposed use of partial parallelism plots can

aid in visualising and understanding the relationship between biomarker concentration and as-

say response. By considering these plots during the evaluation of biomarker assays, regulatory

authorities can ensure the accuracy, reliability, and suitability of these tests as trial outcome mea-

sures and for clinical use.

Abstract: Demonstrating parallelism in quantitative laboratory tests is crucial to ensure accurate
reporting of data and minimise risks to patients. Regulatory authorities make the demonstration of
parallelism before clinical use approval mandate. However, achieving statistical parallelism can be
arduous, especially when parallelism is limited to a subrange of the data. To address potential biases
and confounds, I propose a simple graphical method, the Partial Parallelism Plot, to demonstrate
partial parallelism. The proposed method offers ease of understanding, intuitiveness, and graphical
simplicity. It enables the graphical assessment of quantitative data risk when parallelism is lacking
within a defined range. As parallelism may not be consistent across the entire analytical range,
the plots focus on partial parallelism. The method can readily be programmed into graphical
applications for enhanced interactivity. By providing a clear graphical representation, the method
allows researchers to ascertain the presence of parallelism in laboratory tests, thus aiding in the
validation process for trials and clinical applications.

Keywords: parallelism; biomarker; laboratory; test; graphical statistics
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1. Introduction

In clinical medicine, precise determination of the concentration of a given compound
is essential. For instance, in the case of suspected heart attack, the concentration of specific
biomarkers must be determined accurately in a blood sample of the patient to support the
diagnosis. Inaccurate mathematical calculations based on laboratory measurements may
lead to erroneous biomarker concentrations and misdiagnosis. Therefore, mathematical
calculations are heavily relied upon in daily clinical and laboratory practices, but it is crucial
to ensure that the underlying assumptions of these calculations are satisfied. This report
addresses one such assumption, namely parallelism.

Demonstration of parallelism is crucial for the accuracy of any test based on calculating
sample concentration from a standard curve [1]. However, it has been noted that there
is no widely adopted universal strategy for assessing parallelism in bioassays. Without
assurance of parallelism, investigators are unable to calculate reliable estimates for serum
antibody concentrations [1]. To address this issue, it has been suggested to visually compare
the slope of logistic-log curves, for which a series of excellent examples have been provided.
The authors cautioned against purely statistical assessments of parallelism, as the methods
of computation are complex, not readily available in software packages, prone to error
unless interpreted correctly, and overly sensitive to negligible departures from parallelism
when model precision is high. Furthermore, no guidance was provided on how to interpret
the data in cases where there is partial non-parallelism, which may make it challenging for
users to determine the appropriate course of action. Notwithstanding this constraint, the
parallelism plots initially proposed [1] continue to serve as a valuable graphical tool for
evaluating parallelism in laboratory tests, and their significance has been acknowledged
in subsequent research. According to this authoritative perspective [2], the experimental
validation of parallelism remains a challenging and pivotal aspect in the validation of
bioanalytical methods to this day, an assertion that was reiterated in a highly influential
white paper [3].

Regulatory authorities impose strict requirements for the approval of an assay, in-
cluding the demonstration of parallelism. As per the latest guidelines by the Food and
Drug Administration (FDA) and European Medical Agency (EMA), parallelism is defined
as “Parallelism demonstrates that the serially diluted incurred sample response curve is
parallel to the calibration curve” [4]. The guideline provides explicit laboratory instructions
for conducting the study, involving the dilution of a high-concentration study sample to
at least three concentrations with a blank matrix. However, the interpretation of results
becomes more ambiguous. The guideline states that the consistency of back-calculated
concentrations between samples in a dilution series should not exceed a 30% coefficient of
variation (CV). Nevertheless, it is essential to carefully monitor the data, as results meeting
this criterion may still indicate trends of non-parallelism. In cases where the sample does
not dilute linearly, a predefined procedure for reporting results should be established. In
this report, I propose a simple graphical approach for such a procedure, as it may offer
greater intuitiveness and be less susceptible to the limitations previously recognised in
purely numerical methods [1,2].

The concept of parallelism may appear simple at first glance, but it can be difficult
to understand upon further examination. Additionally, numerically driven, statistical
representations of parallelism may not be intuitive for individuals without a statistical
background. This lack of understanding can be problematic for regulatory authorities and
mixed expertise panels tasked with making decisions in laboratory-based research.

2. The Range of Accuracy and Effect Size in the Assessment of Laboratory Tests

Experimental evidence indicates a significant impact of the lack of parallelism on
the quantification of neurofilaments, a well-established biomarker for neurodegenera-
tion [5,6]. The FDA and the EMA approved the use of two novel drugs based on laboratory
results quantifying neurofilaments. A state-of-the-art randomised controlled trial (RCT)
demonstrated a reduction in neurofilament blood levels as proof of efficacy for a novel
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disease-modifying treatment in multiple sclerosis [7], and another RCT [8] lead to rapid
FDA approval for the antisense oligonucleotide tofersen to treat amyotrophic lateral scle-
rosis. However, neither study considered the possibility of partial non-parallelism of
neurofilaments. Although not currently relevant in studies with large effect sizes, such
as [7,8], non-parallelism becomes more pertinent in studies with smaller effect sizes, such
as those encountered in the large number of trials on Alzheimer’s disease which employ
biomarkers as an outcome measure.

Accepting that parallelism is a vital factor in the evaluation of laboratory tests for
biomarkers, it needs to be acknowledged that parallelism is just one among several other
factors influencing test reliability [9]. Pum emphasised that analytical and clinical specificity
and sensitivity are additional critical factors [2]. Various biological and technical factors,
such as matrix effects, variations in biomarker metabolism, or variations in laboratory test
procedures, can also influence the accuracy of laboratory tests for biomarkers. A large
international consortium underscored the importance of using high-quality samples [10].
Furthermore, prospective experimental evidence highlighted that the inter-laboratory
reproducibility and technician skills are other key factors affecting test outcomes [11].

Assessing the range of accuracy of laboratory tests for biomarkers is a complex task
that depends on multiple factors in addition to parallelism. It is crucial to be aware of these
factors and to critically evaluate laboratory tests to determine their suitability as diagnostic
tools and trial outcome measures in medicine.

3. The Definition of Parallelism and Partial Parallelism

The term parallelism, in its simplest definition, describes the relationship between
the concentration of an analyte (such as a biomarker) in a sample and the signal produced
by the reference standard of the laboratory test used to measure that analyte as earlier
introduced [1,2]. When the relationship between concentration and signal is linear, paral-
lelism is said to be present. Hence, the other term used in the literature for parallelism is
linearity. This is important because it means that the laboratory test accurately reflects the
concentration of the analyte in the sample and, therefore, provides a reliable measurement
of the biomarker.

However, if there is non-parallelism (i.e., a non-linear relationship between concentra-
tion and signal), the accuracy of the laboratory test may be compromised. This can occur if
there is interference from other substances in the sample, or if the laboratory test is not able
to accurately detect the analyte, for example, at higher concentrations. This is a frequent
problem with biomarker assays requiring use of a non-linear standard curve, as reviewed
theoretically in [2] and demonstrated experimentally in [5].

In order to test for linearity, a regression analysis is performed to determine the slope
of the line of best fit. The formula for the slope of the line is:

slope =

n
∑

i=1
(xi − x̄)× (yi − ȳ)

n
∑

i=1
(xi − x̄)2

(1)

where

xi is the concentration of the biomarker in the sample;
yi is the signal produced by the test used to measure the biomarker;
n is the number of data points;
x̄ is the mean concentration of the biomarker;
ȳ is the mean signal produced by the laboratory test.

If the slope is not significantly different from 1 (i.e., if |slope − 1| ≤ SE where SE is the
standard error), then parallelism is present. The values of xi are the given concentrations
(i.e., ng/mL, pg/mL, g/L), and formula (1) uses those values to calculate the slope of the
line of best fit, which represents the relationship between the concentration of the analyte
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and the signal produced by the laboratory test, as detailed in an entire book chapter [9]. It
follows that for biomarker assays with proof of linearity, a parallelism coefficient close to
1 indicates that the patient sample and standard curve have similar slopes:

Parallelism coefficient =
Slope of Patient Dilution
Slope of Standard Curve

(2)

In absence of linearity, determination of parallelism was defined for bioassay dilution
curves in absence of a standard curve by a logistic-log model in which the signal for the
test are optic densities (OD) as:

OD = d +
a − d

1 + ( dilution
c )b

(3)

where

a is the upper asymptote of the curve of the OD at a theoretical infinite concentrations;
d is the lower asymptote of the curve of the OD at a theoretical zero concentrations;
b is a curvature parameter;
c is the symmetry point of the sigmoid.

Linear transformation of the curve is achieved through a logistic function where
ODmin and ODmax correspond to bespoke upper and lower asymptotes as

Logit(OD) f s = log
(

OD − ODmin
ODmax − OD

)
(4)

The formula can be reduced to express a partially specified logit model introduced
in [1]:

Logit(OD)ps = log
(

OD
ODmax − OD

)
(5)

The visualisation of this approach is illustrated in Figure 1. Clearly, none of these
curves in Figure 1A meet the criteria for linearity as defined at the onset of this section.
Only bespoke logistic-log transformation permits to demonstrate parallelism (Curves 1–4
in Figure 1B) and lack of parallelism (Curve 5 in Figure 1B). The logistic-log transformation
is the basis for the statistical analysis of a dilution series intended to facilitate visualisation
as intended [1].

Relative dilutioni = 100 ×
(

actual sample dilutioni
maximum dilution in series

)
(6)

where i indicates the dilution step. Finally, Plikaytis et al. used Generalised Linear Models
(one-way analysis of covariance) for determination of parallelism.

In summary, parallelism is described as a critical aspect of the analytical test validation
in the context of analytical linearity (i.e., regression analysis (Formula (1)), parallelism
coefficient (Formula (2))) and non-linearity (i.e., a logistic-log model (Formulas (3)–(5))). The
logistic-log transformation ensures that the test can accurately measure the concentration
of the biomarker over a range of concentrations [1]. Overall, the choice of method for
assessing parallelism depends on the data distribution (i.e., linear or nonlinear).
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Figure 1. Comparison of logistic-log curves and their fully specified logit-log transformed coun-
terparts. (A) Lines 1 and 2, logistic-log curves with identical slopes and asymptotes; Lines 3 and
4, logistic-log curves with identical slopes and different asymptotes; Line 5, logistic-log curve with
different slope and asymptotes. (B) Corresponding straight lines formed by using the fully specified
logit-log transformation. [Reproduced with permission from [1]].

4. Graphical Presentations of Parallelism

Graphical presentations of parallelism can provide a visual representation of the
accuracy and reliability of laboratory tests for biomarkers. Graphical presentations can
help healthcare providers and researchers to rapidly (i.e., at a glance) identify potential
issues with biomarker tests, such as interference from other substances in the sample or
limitations with the analytical sensitivity of the test. They can also be useful for comparing
the accuracy of different laboratory tests for the same biomarker.

One common graphical presentation of parallelism is the parallelism plot, which
involves plotting the signal produced by the laboratory test on the y-axis and the concentra-
tion of the biomarker on the x-axis. A seminal example from the literature was presented in
Figure 1. If the lines are parallel, it suggests that the laboratory test accurately reflects the
concentration of the biomarker in the sample and that parallelism is present.

One development in the biomarker field, since the introduction of the logistic-log
transformation [1], has been the use of calibrated and quality controlled protein standard
curves. Consequently, reported biomarker concentrations are derived from the curve
between the symmetry point (c as defined for Formula (3)), but never from the asymptotes.
The lower asymptotes (d) indicate non-measurable data. This is either because the detection
limit of the assay is insufficient or because there is nothing there to be measured. For the
upper asymptote (a), the concentration of the biomarker is too high to be estimated reliably.
Extrapolation is not permitted. Sample dilution is required. Taken together parallelism of a
biomarker is therefore only determined for

(xstd
i , ystd

i ),∈ {1, . . . , nstd}, where y �= a ∨ d (7)

Table 1 shows the data used for calculation of the graphical presentation of the curves
in Figures 2 and 3. The first step of the data transformation used for the graphical presenta-
tion of the partial parallelism plots is to adjust the calculated concentration at each dilution
step (i) as follows:

zi = xstd
i × i (8)

This is followed by normalisation of each value of the transformed series to the value
for the lowest dilution step (i.e., dilution 1:1, Table 2) as

z̄i =
zi
z1

(9)
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Table 1. Raw data for the doubling dilution curves used for Figures 2 and 3.

Dilution Standard Sample-A Sample-B

1:1 10 8 4
1:2 5 4 6
1:4 2.5 2 5
1:8 1.25 1 4

1:16 0.625 0.5 3
1:32 0.3125 0.25 1.5
1:64 0.15625 0.125 0.75
1:128 0.078125 0.0625 0.375
1:256 0.0390625 0.03125 0.1875
1:512 0.01953125 0.015625 0.09375

Figure 2. Conventional presentations of a doubling dilution curve for demonstration of parallelism
between a standard and a sample. This graph illustrates how the concentration of a compound
(y-axis) decreases with subsequent dilution steps (x-axis) either presented as a continuous variable on
(A), a linear scale as used in [12], and (B) on the logarithmic scale derived from Formula (5) [1]. The
standard curve (cross, dotted grey line) and dilution curves (Sample-A, open square, dashed grey
line; Sample-B, open circle, black line).
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Figure 3. Graphical comparison of the partial logistic presentation on the x-axis only [1] in
(A) switched for a categorical variable in (B). For any test, the standard (cross, dotted grey line)
is used as the main comparator. In this example, the dilution curve for Sample-A (open square,
dashed grey line) is parallel to the standard curve. There is a small offset on the y-axis between
the standard and Sample-A because the starting concentration for Sample-B was less than for the
standard. In contrast, the dilution curve for Sample-B (open circle, black line) is not parallel to
the standard. For Sample-B, there is an increase in the concentration with the first dilution step.
For dilution steps 1:4 to 1:16, the concentration in Sample-B reduces to a lesser degree than for the
standard. After Dilution Step 1:32, there is parallelism between Sample-B and the Standard, but this
is not clearly visible with this format of graphical presentation.

Overall, graphical presentations of parallelism are an important tool for evaluating the
accuracy and reliability of laboratory tests for biomarkers, but there are important practical
limitations to their interpretability. The next section will illustrate how this can be overcome
in a standardised way which will simplify the interpretation of the graphical presentation.
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Table 2. Transformed data from Table 1 as needed to develop the partial parallelism plots shown in
Figure 4. Abbreviations: Standard = Std, Sample-A = a, Sample-b = b. The horizontal bar above the
abbreviation (e.g., Std) indicates the normalised values.

Dil. Std1 A1 B1 Std2 A2 B2

1:1 10 8 4 1 1 1
1:2 10 8 12 1 1 3
1:4 10 8 20 1 1 5
1:8 10 8 32 1 1 8
1:16 10 8 48 1 1 12
1:32 10 8 48 1 1 12
1:64 10 8 48 1 1 12

1:128 10 8 48 1 1 12
1:256 10 8 48 1 1 12
1:512 10 8 48 1 1 12

1 Data of concentrations from Table 1 multiplied by dilution step from series (i.e., 5 × 2 = 10, 2.5 × 4 = 10, etc.) as
summarised in Formula (8). 2 Data normalised to concentration at lowest dilution step of the series (i.e., 10

10 = 1,
etc.) as summarised in Formula (9).

Figure 4. (A) illustrates that the parallelism between the Standard and Sample-A is visually more
intuitive compared to Figure 2. For this presentation, the value of the concentration was corrected by
multiplication with the dilution. The offset on the y-axis between the Standard and Sample-A is
explained by the difference in concentration. This can be a problem for the graphical representation
if this difference is very large. Therefore, in example (B), all values were normalised to the baseline
concentration. Now parallelism between the Standard and Sample-A is illustrated by the overlay
of the horizontal lines at the y-axis value of one. The consequence of the absence of parallelism for
Sample-B in the initial dilution steps leads to an overestimation of a factor of ≈12.5 once parallelism
is achieved after a dilution of 1:32.
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5. Partial Parallelism Plots

In a partial parallelism plot, the laboratory test results are plotted against each other
on the x- and y-axes. A line of unity is then added to the plot to represent perfect parallel
agreement between the measurements. The slope of the line, normalised to the first dilution
step of the standard curve, is zero with an intercept of one. Therefore, a horizontal reference
line at once permits the comparison of the slope of the samples to visually analyse the
degree of parallelism for the biomarker in question. If the line of unity (horizontal reference
line) is significantly different from the slope of the line of best fit for the sample, it suggests
that partial parallelism is absent.

One advantage of partial parallelism plots is that they can be used to assess paral-
lelism between samples over a limited, thought to represent the clinically useful, range of
concentrations. This can provide a more practical evaluation of parallelism as relevant for
routine healthcare practice.

As a first step towards this goal, Figures 3 and 4 introduce the graphical representation
of the line of unity. The result of normalisation for subsequent dilution steps (Formula (7)) is
shown graphically for the data from Table 1. In this presentation, there is a similar graphical
pattern for the plots in Figure 3A,B. The difference between the two plots can be seen on
the x-axis. Note that the x-axis in Figure 3A is log based. Whilst mathematically correct,
this presentation does not make for an easy laboratory, clinical, or health authority-tuned
assessment of the biomarker concentration. A much more common notation is the dilution
step as used on the categorical scaled x-axis in Figure 3B. A limitation of both graphical
presentations is that it cannot readily be seen that parallelism between Sample-B and the
line of unity is only achieved after a dilution step of 1:32.

The graphical presentation can be improved to better visualise when parallelism is
achieved. Figure 4A gives a graphical representation of the same two plots as in Figure 3,
adjusted for the dilution steps. For generalisation, the intercept is normalised to one at the
baseline in Figure 4B. This graphical presentation is the basis for the development of partial
parallelism plots.

The term partial parallelism plot shall be defined as a defined range of biomarker
concentrations for which parallelism between sample and standard can be demonstrated.
In laboratory practice, parallelism may only be achieved after a certain dilution step because
of, for example, a matrix effect (Table 3). Figure 5A illustrates a theoretical situation with a
small matrix effect which persists up to a dilution of 1:4 (see vertical reference line). The
graphical presentation for a mildly stronger matrix effect persisting up to a dilution of 1:8
is shown in Figure 5B.

Importantly, lack of parallelism can also be present at later stages of the dilution curve
(Table 4), for example, because the concentration of the biomarker is below the detection
limit of the assay (i.e., d in Formula (3)). Figure 6A shows the graphical presentation for
lack of parallelism after a dilution step of 1:128. It would be physically impossible to see
the developing lack of parallelism with the curves presented in Figure 3. Finally, Figure 6B
illustrates the presence of partial parallelism between a dilution of 1:8 to 1:128. At lower
or higher dilution steps there is non-parallelism. Again, this pattern cannot be visually
extracted from the graphical presentation in Figure 3.
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Figure 5. These two examples show that parallelism is achieved after (A) a dilution of 1:4 and (B) a
dilution of 1:8. The data are from Table 3.

194



Appl. Sci. 2024, 14, 602

Figure 6. These two examples shows that parallelism is lost after (A) a dilution of 1:128. Finally,
(B) illustrates that parallelism was only achieved between a dilution of 1:8 to 1:128. Data are from
Table 4.

Table 3. Raw and transformed data for the partial parallelism plots shown in Figure 5A,B. Subsequent
steps of data transformation are indicated by the superscript in the Table (e.g., Std1, Std2, etc.). The

numbers for Std2 and B2 were used to draw Figure 5.

Dil. Std B Std1 B1 Std2 B2

(A)
1:1 10 9 10 9 1 1
1:2 5 8.1 10 16.2 1 1.8
1:4 2.5 4.05 10 16.2 1 1.8
1:8 1.25 2.025 10 16.2 1 1.8
1:16 0.625 1.0125 10 16.2 1 1.8
1:32 0.3125 0.50625 10 16.2 1 1.8
1:64 0.15625 0.253125 10 16.2 1 1.8

1:128 0.078125 0.1265625 10 16.2 1 1.8
1:256 0.0390625 0.06328125 10 16.2 1 1.8
1:512 0.01953125 0.031640625 10 16.2 1 1.8
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Table 3. Cont.

Dil. Std B Std1 B1 Std2 B2

(B)
1:1 10 1 10 1 1 1
1:2 5 1.1 10 2.2 1 2.2
1:4 2.5 0.7 10 2.8 1 2.8
1:8 1.25 0.4 10 3.2 1 3.2
1:16 0.625 0.2 10 3.2 1 3.2
1:32 0.3125 0.1 10 3.2 1 3.2
1:64 0.15625 0.05 10 3.2 1 3.2

1:128 0.078125 0.025 10 3.2 1 3.2
1:256 0.0390625 0.0125 10 3.2 1 3.2
1:512 0.01953125 0.00625 10 3.2 1 3.2

Table 4. Raw and transformed data for the partial parallelism plots shown in Figure 6A,B. The

numbers for Std2 and B2 were used to draw Figure 6.

Dil. Std B Std1 B1 Std2 B2

(A)
1:1 10 2 10 2 1 1
1:2 5 1 10 2 1 1
1:4 2.5 0.5 10 2 1 1
1:8 1.25 0.25 10 2 1 1
1:16 0.625 0.125 10 2 1 1
1:32 0.3125 0.0625 10 2 1 1
1:64 0.15625 0.03125 10 2 1 1

1:128 0.078125 0.015625 10 2 1 1
1:256 0.0390625 0.006 10 1.536 1 0.768
1:512 0.01953125 0.0001 10 0.0512 1 0.0256

(B)
1:1 10 2 10 2 1 1
1:2 5 1.5 10 3 1 1.5
1:4 2.5 0.9 10 3.6 1 1.8
1:8 1.25 0.5 10 4 1 2
1:16 0.625 0.25 10 4 1 2
1:32 0.3125 0.125 10 4 1 2
1:64 0.15625 0.0625 10 4 1 2

1:128 0.078125 0.03125 10 4 1 2
1:256 0.0390625 0.01 10 2.56 1 1.28
1:512 0.01953125 0.002 10 1.024 1 0.512

6. Examples from the Literature

In a test comparison study [12], parallelism was investigated for allopregnanolone
in saliva samples from pregnant women. The sample dilution curves were plotted as in
Figure 2A (Figures 1 and 2 in [12]). The conclusion was that the first kit (pg/mL) requires
a minimal dilution of 1:5 for an acceptable mean percentage parallelism of 104.3%. The
authors accepted that the second kit’s test performance met the criteria for parallelism.
Using the partial parallelism plot approach, Figure 7A illustrates a lack of parallelism for the
first kit. The interpretation of Figure 7A is different to the proposed 1:5 dilution to achieve
parallelism [12]. For the second kit, (ng/mL) partial parallelism can be achieved for a
dilution range from 1:1 to 1:16, as illustrated by the two vertical reference lines in Figure 7B.
At higher dilutions, there is a floor effect of the data suggesting that the test has reached
its lower detection limit; hence, the incorrect overestimation of higher concentrations with
ever more dilution steps.
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Figure 7. Literature example for allopregnanolone quantified by ELISA from saliva samples anal-
ysed [12]. (A) Lack of parallelism for Kit 1. The maximum error occurs at a dilution step of 1:8 with
an ≈8-fold overestimation of the concentration of allopregnanolone (B) Partial parallelism between a
dilution of 1:1 to 1:16 (red vertical reference lines). In this example, a horizontal black reference line
is given at y = 1 which illustrates that there is also a problem with the standard in (B), most likely
diluted beyond the analytical detection limit of the assay.

There are situations where it is desirable to quantify the same substance from different
types of samples. Consequently, an Enzyme-Linked Immunosorbent Assay (ELISA) was
developed for measurement of luteinizing hormone (LH) from whole blood, serum, cell
extracts, cell culture medium, and pituitary gland extracts [13]. Averaged LH data on the
parallelism experiments for these five different sample sources were provided in Tables 6 to
10. Based on these data, Figure 8 shows good partial parallelism for a dilution range from
1:1 to 1:4. After that, near perfect parallelism appears to be lost. The conclusion could be
that the concentrations of LH cannot anymore be calculated reliably for comparison from
different sources. But the deviation from one on the y-axis are only minimal (≤0.2 units).
Therefore, in this example, partial parallelism persists up to a dilution of 1:32. After a
dilution step of 1:64 the detection limit of the assay is reached for all sample sources.
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Figure 8. Literature example for luteinizing hormone quantified by ELISA from different sources [13].
At first glance, near perfect parallelism weakens after a dilution step of 1:4 (dotted vertical reference
line). The error for partial parallelism is, however, minimal (≈0.2 units). Therefore, partial parallelism
can be accepted for a dilution range of 1:1 to 1:32 (closed red vertical reference lines).

Lack of parallelism has also been reported explicitly [14]. These authors clarify in the
abstract poor “dilution linearity” attributed to “presence of a matrix effect and/or different
immunoreactivity of the antibodies to the recombinant standard and the endogenous
analyte”. The partial parallelism plot in Figure 9 is based on the raw data provided in
Table 2 in [14]. Consistent with the author’s conclusion, this graph convincingly shows
absence of parallelism.

Figure 9. Literature example for reported lack of parallelism for erythroferrone quantified by ELISA from
human serum samples [14]. Note that in this example an inverse logarithmic scale was used compared to
what was presented in Figure 2B. This choice was based on the uneven dilution steps reported for this
experiment. For clarity, each data point was labelled with the corresponding dilution step.
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Finally, an example for perfect partial parallelism is shown in Figure 10. This example
is based on an ELISA for quantification of human insulin (uU/mL) for a dilution range
of 1:1 to 1:8 [15]. The data for the partial parallelism plot were taken from Table 4 in [15],
which also details that Samples A to D were based on plasma samples with exogenous
insulin added (dashed lines in Figure 10) and high endogenous insulin (dotted lines in
Figure 10). Note that the range of the y-axis presented in Figure 10 is very narrow at only
1 uU/mL insulin (range 0.95 to 1.05 uU/mL). Both spiked (samples with exogenous insulin
added) and native samples are perfectly parallel to the standard (solid horizontal reference
line at y = 1).

Figure 10. Literature example for perfect parallelism for insulin quantified by ELISA from human
plasma samples [15]. The error for partial parallelism is negligible (<0.01 units).

Taken together, partial parallelism plots are a useful graphical method for evaluating
the accuracy of calculating the biomarker concentration from a sample based on a biomarker
standard curve for a defined range of concentrations. Therefore they can provide a more
practical evaluation, which is also easy to understand, and can help identify potential
sources of non-parallelism.

7. Relationships between Confounds and Parallelism

The relationship between confounds and parallelism in laboratory tests is an impor-
tant topic, as confounds can have a significant impact on the accuracy and reliability of
laboratory tests. By definition, confounds are variables that can affect the results of lab-
oratory tests but are not directly related to the biomarker being measured. It has been
noted that frequent examples of confounds include chemical stability of the biomarker,
repeated freeze–thaw cycles, gender, height, weight, renal function, medication use, and
co-morbidities such as diabetes mellitus [9].

Protein biomarker studies have shown that the presence of confounds, including
sample preparation and storage, can impact the degree of parallelism between laboratory
tests as earlier stated [5,10]. The relationship between confounds and parallelism can be
expressed mathematically using regression equations as

y = β0 + β1x + ε (10)
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where y is the signal produced by the laboratory test, x is the concentration of the biomarker
being measured, β0 is the intercept, β1 is the slope, and ε is the error term. Consequently,
confounds can be added to equation (10) as additional independent variables:

y = β0 + β1x + β2c + ε (11)

where c represents a confounding variable. The impact of the confound on the parallelism
between laboratory tests can be assessed by comparing the slopes of the regression lines
with and without the confound. The need for testing this has been highlighted in a recent
white paper [3].

It is important for researchers and healthcare providers to be aware of the potential
impact of confounds (c) on the accuracy and reliability of the biomarker tests. Laboratories
should take steps to minimise the impact of confounds, including controlling for them in
statistical analyses or by stratification of the analyses by confounding variables.

Overall, the need for research studies to include testing for confounds for their rela-
tionship with the degree of parallelism in biomarker tests has been recognised, but not yet
been implemented systematically in the literature.

8. Discussion

The practical advantages of partial parallelism plots for biomarker tests has been
illustrated statistically and graphically. Application of partial parallelism plots to real
biomarker data has revealed the strength of the approach compared to alternatives which
were reviewed and discussed with regard to their historical development. The assessment
of partial parallelism is an essential step in the validation of laboratory tests, as it determines
whether the assay produces accurate and reliable results. There are two primary methods
for statistical and graphical assessment. Each method has its own benefits and limitations.

Statistical assessment, such as regression analysis and the calculation of parallelism
and non-parallelism indexes, provides a quantitative measure of the degree of parallelism
between two or more samples as discussed [1,2]. These methods are precise and objective,
making them ideal for the assessment of large datasets or when a high level of accuracy is
required. Additionally, statistical methods can detect subtle differences in parallelism that
may be missed by graphical assessment.

However, statistical methods also have limitations. They assume that the assay follows
a linear relationship between the concentration of the analyte and the response of the assay.
This may not always be the case, as assays may exhibit non-linear responses at high or
low concentrations. For example, the FDA and EMA guidelines state that “Parallelism is a
performance characteristic that can detect potential matrix effects.” [4]. A limitation of this
definition is that it does not consider (i) the possibility of compound aggregate release or
modifiable epitope masking in immunoassays [5]. Additionally, it was highlighted that sta-
tistical methods may not detect non-parallelism due to confounding factors, such as matrix
effects or interference by endogenous substances, the CV, and the critical difference [16].
Statistical methods are also not necessarily easily comprehensible to many of the parties
involved in appraisal of a biomarker test.

Visual assessment, on the other hand, relies on the interpretation of graphs or charts
that depict the relationship between the concentration of the biomarker and the response of
the assay. This method is very intuitive and can quickly identify gross deviations from par-
tial parallelism, making it useful for screening biomarker assays for technicians, lay people,
and regulatory authorities. Additionally, graphical assessment may detect non-parallelism
due to confounding factors that are not detected by statistical methods. This includes, for
example, a drop in the analytical sensitivity which affects a biomarker and test standard
curve similarly (see Figure 7B). There are many chemical and biological reason to the lack
of parallelism [17]. The major contributors to non-parallelism are related to interference or
a mismatch with the capture antibody (or surface), the detection antibody, the surrogate
reference material, the endogenous analyte, and specific and non-specific interactions. For
optimal graphical presentation of the concentration range where parallelism applies in a
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test, a “raw signal” approach was proposed which includes a four parameter logistic regres-
sion curve fitting. The “raw signal” approach is similar to the Figure 3B. Present proposal
of partial parallelism plots, as presented in Figures 5–9, should be interpreted as a further
simplification of the “raw signal” approach. Individual researchers from all backgrounds
and regulatory authorities may also find an advantage in the simplified pattern recognition
of the partial parallelism plots. Importantly, both approaches emphasise that parallelism
does not need to extend over the entire analytical range of a given test.

However, graphical assessment also has limitations. It is subjective and may vary
depending on the experience and expertise of the assessor. Additionally, graphical assess-
ment may not detect subtle deviations from partial parallelism that may affect the accuracy
and reliability of the assay. One such factor relates to confounds and was expressed as the
CV. In such a situation where the graph may not be clear cut, the visual approach can be
improved by showing the parameters obtained from the fits, including the R-square values.
Another improvement is the option to zoom into specific regions of the partial parallelism
plots. One example was presented in Figure 8. After zooming in, it becomes visibly clearer
that the data distribution is more random for the dilution steps 1:2 to 1:16 than for the
following dilution steps which clearly demonstrate deviation from parallelism, even if the
CV initially improves. Providing this level of interactivity will be a valuable improvement
of the method for digital applications making use of proposed partial parallelism plots.

Taken together, both statistical and graphical assessment methods have their own
benefits and limitations in the assessment of partial parallelism for biomarker tests. A
combination of both methods may provide a comprehensive assessment of the degree
of partial parallelism and the presence of non-parallelism due to analytical issues or
confounding factors.

9. Conclusions

In conclusion, the introduction of partial parallelism plots as a tool for assessing
parallelism in biomarker tests holds great promise. These plots offer a clear visualisa-
tion of the relationship between biomarker concentration and assay response for each
sample, enabling the identification of non-parallelism arising from analytical challenges
or confounding factors. Emphasising the importance of determining the optimal range
of dilutions for each sample, these plots provide a language that is easily interpretable,
ultimately leading to the attainment of accurate and reliable results. As such, incorporating
partial parallelism plots into the validation process of quantitative laboratory tests is an
essential step to ensure their appropriateness for clinical medicine, bolstering confidence in
their utility.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/app14020602/s1, Supplementary data are provided in form of an
Excel sheet with two tabs for raw data and partial parallelism plot calculations. Table S1: Raw Data for
Real-Life Examples: The first tab of this Excel sheet provides comprehensive details of the raw data
used to generate the Figures based on real-life examples. Each row corresponds to an individual data
point, and the first author’s name is referenced for the source of the data. The columns are structured
as follows: (a) Dilution Steps (String Variable): This column represents the dilution steps used in the
experiments. (b) Dilution Steps (Numeric Variable): This column provides the numeric representation
of the dilution steps. (c) Sample Description: This column provides information about the samples
used in the experiments. (d) Numeric Values for Y-axis (Column 1): The first column containing
numeric values used for the Y-axis in the Figures. (e) Numeric Values for Y-axis (Column 2—Optional):
An optional second column containing additional numeric values for the Y-axis. Following the raw
data presentation, each example is followed by a section detailing the conversion of the Y-axis values
into values suitable for the partial parallelism plots (PPP plot calculations) presented in this paper.
Table S2: Compact Format for PPP Plot Calculations: The second tab of the Excel sheet contains the data
organised in a concise 5-column format, specifically designed for easy export into a comma-separated
file (.csv). This format is suitable for generating graphical representations used in the present article.
The columns are arranged as follows: (a) Author’s first name and year of publication. (b) Dilution
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Steps (String Variable): This column represents the dilution steps used in the experiments. (c) Dilution
Steps (Numeric Variable): This column provides the numeric representation of the dilution steps.
(d) Sample Description: This column offers a brief description of the samples. (e) Numeric Values
for Y-axis (Column 1): The first column containing numeric values used for the Y-axis in the Figures.
(f) Numeric Values for Y-axis (Column 2—Optional): An optional second column containing additional
numeric values for the Y-axis. The section containing PPP plot calculations serves as a template for
readers to conduct their own calculations. It is crucial to verify the accuracy of the dilution steps
and ensure that the reference for the “normalised” fields remains unchanged during the process. By
presenting the raw data and providing a user-friendly template for PPP plot calculations, this Excel
sheet aims to enhance reproducibility and facilitate further research in the field.
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Abstract: One approach employed in brain–computer interfaces (BCIs) involves the use of steady-
state visual evoked potentials (SSVEPs). This article examines the capability of artificial intelligence,
specifically convolutional neural networks (CNNs), to improve SSVEP detection in BCIs. Imple-
menting CNNs for this task does not require specialized knowledge. The subsequent layers of the
CNN extract valuable features and perform classification. Nevertheless, a significant number of
training examples are typically required, which can pose challenges in the practical application of
BCI. This article examines the possibility of using a CNN in combination with data augmentation to
address the issue of a limited training dataset. The data augmentation method that we applied is
based on the spectral analysis of the electroencephalographic signals (EEG). Initially, we constructed
the spectral representation of the EEG signals. Subsequently, we generated new signals by applying
random amplitude and phase variations, along with the addition of noise characterized by specific
parameters. The method was tested on a set of real EEG signals containing SSVEPs, which were
recorded during stimulation by light-emitting diodes (LEDs) at frequencies of 5, 6, 7, and 8 Hz. We
compared the classification accuracy and information transfer rate (ITR) across various machine
learning approaches using both real training data and data generated with our augmentation method.
Our proposed augmentation method combined with a convolutional neural network achieved a high
classification accuracy of 0.72. In contrast, the linear discriminant analysis (LDA) method resulted in
an accuracy of 0.59, while the canonical correlation analysis (CCA) method yielded 0.57. Additionally,
the proposed approach facilitates the training of CNNs to perform more effectively in the presence of
various EEG artifacts.

Keywords: BCI; SSVEP; CNN; EEG; data augmentation; transfer-learning

1. Introduction

Brain–computer interfaces (BCI) have been continuously developing over twelve
years. They enable communication for completely paralyzed people, but at the same time
they are increasingly being used by healthy individuals, for example in the entertainment
industry [1–5]. BCI employs several EEG potentials. The most common are brain potentials
associated with movement (ERD/ERS), P300 potentials, and steady-state visually evoked
potentials (SSVEP) [6,7]. SSVEP-based BCIs are relatively common because they are easy to
use. They require the user to observe flashing lights at a given frequency. The stimulators
can be specially constructed panels with LEDs or LCD screens [8–10]. SSVEPs appear in
the back of the head, where the visual cortex is located [11]. Many SSVEP-based interfaces
utilize a limited number of electrodes, typically positioned over the visual cortex at the
back of the head, with O1, O2, and Oz being the most commonly used [12]. We can observe
the dominance of brain waves with the same frequencies as stimuli and their harmonics in
the visual cortex. Power spectral density analysis (PSDA) methods [13] are the most widely
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used for feature extraction to distinguish stimulation frequencies. Dedicated methods
have also been developed, such as canonical correlation analysis (CCA) [14] or simplified
matching pursuit (sMP) [15].

Typically, a calibration session is performed in BCI systems to train the classifier to
detect specific patterns. These patterns may differ for each person and each EEG signal
registration. For example, each user may have slightly different SSVEPs (amplitudes). This
may be due to anatomical and physiological differences (thickness of the skull, properties
of head skin, structure of the cerebral cortex). Differences in the registration of SSVEPs
may appear even for the same person (different electrode placements, skin contact surface
with the electrode, stimulus power). In a calibration session, a user observes the known
stimulation frequencies. The recorded EEG signal for a given stimulation frequency allows
for the extraction of features to train the system. BCI can also run without a calibration
session. In this case, we analyze the stimulation frequencies and their harmonics in the
EEG signal. This simplification, however, results in lower efficiency of the system [16,17].

Features for SSVEP-based BCIs may encompass specific frequencies and their harmon-
ics [18]. These features are utilized to train the classification and decision-making systems.
For the SSVEP interface, numerous standard machine learning techniques are employed,
including k-nearest neighbors (K-NN), linear discriminant analysis (LDA), quadratic dis-
criminant analysis (QDA), support vector machines (SVM), and multilayer perceptron
(MLP), among others [19]. Additionally, deep learning techniques are used for this purpose,
with convolutional neural networks (CNN), long short-term memory networks (LSTM),
and autoencoders (AE) being the most common structures [20]. Deep learning techniques
offer several benefits, such as improved classification results and the capability for auto-
matic feature extraction from signals and images, as seen with CNNs [21]. However, the
disadvantages of deep learning are notable, including the necessity for a large dataset for
training and the extensive time required for network training [22]. Given that deep learning
techniques demand substantial training data, the development of effective methods for
augmenting EEG data recorded during calibration sessions presents a significant challenge.

In recent years, numerous solutions employing convolutional neural networks (CNNs)
for SSVEP detection have been developed. The study referenced in [23], discusses a
machine learning approach for detecting SSVEP using a minimal number of channels.
In [24], a proposed CNN model is compared with a standard neural network and other
leading methods for SSVEP decoding—such as canonical correlation analysis (CCA), a
CCA-based classifier, a multivariate synchronization index, and CCA combined with a k-
nearest neighbors (K-NN) classifier—in an offline analysis. The research in [25] introduces
a fusion algorithm (CCA-CWT-SVM) that integrates CCA, continuous wavelet transform
(CWT), and support vector machine (SVM) to enhance classification accuracy for targetless
stimuli when a single feature extraction method is used. In [26], a novel deep neural
network (DNN) architecture is presented that processes multi-channel SSVEP signals
by convolving across sub-bands of harmonics, channels, time, and classifies the signals
at the fully connected layer. In [27], a classification method based on a convolutional
neural network (CNN) was presented to enhance the detection accuracy of SSVEP amid
competing stimuli. The method was evaluated using a seven-class SSVEP dataset from ten
healthy participants. The study in [28] demonstrates the use of a compact convolutional
neural network (Compact-CNN), which requires only raw EEG signals for automatic
feature extraction, in decoding signals from a 12-class SSVEP dataset without user-specific
calibration. In [29], a nonlinear model based on a convolutional neural network, named
convolutional correlation analysis (Conv-CA), was introduced. Unlike pure deep learning
models, Conv-CA combines a CNN with a unique correlation layer, where the CNN
transforms multiple EEG channels into a single signal, and the correlation layer computes
the correlation coefficients between this transformed signal and the reference signals.
In [30], a complex-valued convolutional neural network (CVCNN) is proposed to overcome
the limitation of SSVEP-based BCIs, which is the available stimulation frequency. The
presented results demonstrate that the proposed method not only overcomes the limitation
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of the stimulation frequency but also outperforms conventional SSVEP feature extraction
methods. Articles [31,32] introduce a convolutional neural network (CNN) specifically
designed to learn the relationship between EEG signals and the templates corresponding to
each stimulus frequency of SSVEPs. The effectiveness of the proposed method is validated
by comparison with the standard canonical correlation analysis (CCA) and other state-
of-the-art methods for decoding SSVEPs (i.e., CNN and task-related component analysis,
TRCA, Vaughan, ON, Canada) using actual SSVEP datasets. The study confirmed the
efficiency of the proposed CNN-based network in decoding SSVEPs. A comprehensive list
of various algorithms used for SSVEP classification, along with signal recording methods,
number of channels, number of users, and classification accuracy, is available in the work
cited as [23].

The analysis of the literature indicates that the use of convolutional neural networks
allows for satisfactory SSVEP recognition accuracy. However, the practical application of
CNNs has been investigated only on a limited basis. This limitation pertains to issues such
as the small number of electrodes, extended training times for CNNs, the application of
transfer learning techniques, and the effectiveness of CNNs for user-independent classifi-
cation. A particularly significant challenge in practical CNN application for BCI systems
is the limited size of training sets. Typically, the training (calibration) session is brief and
includes only a few examples. While such a limited dataset suffices for classical machine
learning algorithms, CNNs require many more training examples. Data augmentation (DA)
strategies are beneficial in this context. There are numerous data augmentation techniques,
primarily developed for image processing, which include geometric transformations, flip-
ping, cropping, rotation, photometric and color transformations, and noise injection [33].
However, techniques used for augmenting image data are not directly transferable to EEG
data augmentation. Additionally, it is expected that not every data augmentation method
will be applicable to all potentials (P300, ERD/ERS, SSVEP).

In recent years, deep-learning techniques have been employed for data augmentation,
with autoencoders (AE) and generative adversarial networks (GAN) being two common
strategies. The impact of noise addition on time series is discussed in [34], where it was
concluded that although noise can disrupt the amplitude and phase information, it does
not change the spectral feature distribution. In [35], a data augmentation method based on
graph empirical mode decomposition was introduced to generate EEG data, merging the
benefits of the multiplex network model and the graph version of classical empirical mode
decomposition. In [36], the authors explored the constraints of DA for EEG in emotion
recognition. Direct geometric transforms and noise addition can impair the time domain
features, potentially resulting in a negative DA impact. The issue of limited training
data and a proposed solution are discussed in [37], where the authors employed the LST
algorithm to transform SSVEP data across different users and devices to compile a larger
dataset. In [38], a novel DNN model named FB-EEGNet for SSVEP target detection is
introduced. This model integrates features from multiple neural networks to leverage
information from various sub-bands and non-target stimulus data. Furthermore, it uses
multiple labels for each sample and optimizes the parameters of FB-EEGNet across different
stimuli to encompass information from non-target stimuli.

Aim of the Article

The aim of the article is to propose a CNN structure to classify SSVEPs for a signifi-
cantly limited training dataset. An important element of our research was the development
of an augmentation method dedicated to SSVEP detection. The data augmentation method
that we applied is based on the spectral analysis of the EEG signal. Then we compared the
efficiency of the proposed CNN with the methods commonly used for SSVEP detection,
such as: CCA, MLP, sMP, LDA, and QDA. All comparisons were made under the same
conditions: window width, number of testing examples, etc. The idea of our research is
presented in Figure 1.
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Figure 1. Diagram of the conducted research.

2. Materials

Five users aged 23, 25, 31, 42, and 46 participated in the experiment. The users sat
comfortably in a chair. A green LED of 1 cm diameter was placed at a distance of 1 m from
a person’s eyes. The brightness of the LED light was set based on user evaluation, to be
bright enough but not to cause discomfort.

The EEG signals were recorded using a g.USBAmp 2.0 (g.tec Guger Technologies,
Graz, Austria) with three active electrodes. Participants were exposed to flickering LED
lights at frequencies of 5 Hz, 6 Hz, 7 Hz, and 8 Hz. Research outlined in [39] examined the
impact of stimulation frequency and color on the signal-to-noise ratio (SNR) of the recorded
SSVEP responses, revealing that frequencies below 10 Hz are adequate for eliciting robust
SSVEP responses. Additionally, such stimulation frequencies were found to influence the
power of SSVEP responses. We chose frequencies of 5, 6, 7, and 8 Hz to ensure the stability
of the generated signals and to distinguish between stimulations with similar frequencies,
spaced 1 Hz apart. To generate stable frequencies, a Siglent SDG1062X function generator
was utilized. The LED was wired in series with a 220 ohm resistor, and the LED brightness
was regulated by altering the voltage at the function generator’s output.

The stimulation lasted for 20 s in the training sessions and for 10 s in the testing sessions.
To minimize circadian influences on the measurements, all sessions were conducted at
the same time each day. For the recordings, three measurement electrodes (O2, Oz, O1), a
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reference electrode (Ref), and a ground electrode (Gnd) to balance the amplifier potential,
were employed. The EEG signals were sampled at a frequency of 256 Hz. They were
processed using a Butterworth bandpass filter with a range of 0.1–100 Hz and a notch filter
set between 48–52 Hz to eliminate power network artifacts. The recorded database has
been made available on the Internet.

3. Methods

3.1. Data Augmentation

The method of data augmentation applied by us is based on the spectral analysis
of the EEG signal. First, the spectral representation of EEG signals is built on the basis
of previously recorded signals for stimulations with frequencies 5, 6, 7, and 8 Hz. The
data augmentation procedure for each of the EEG signal channels is independent. The S
signal recorded for each electrode is split into 1 s Sm windows. For the data recorded in the
experiment, the sampling frequency is fs = 256 Hz. A window width of N = 256 samples
was used, and the window was shifted with a small overlap of o = 10 samples. This made it
possible to create a large number of M time windows. Then, for each Sm window, a spectral
analysis was performed using discrete Fourier transform (DFT) [40]:

Xk = ∑N−1
n=0 (Sm)ne−

i2π
N kn (1)

The spectral analysis enables the determination of the amplitudes of individual fre-
quencies, which range from 0 to fs/2 Hz. The number of samples, N = 256, allowed for the
acquisition of a frequency resolution of the signal equal to 1 Hz. As a result of the DFT
analysis, we obtained the sets Pk = {Xk1, Xk2, Xk3, . . . , XkM} representing the amplitude
values for the frequencies k = 0. . . fs/2 Hz. The Pk sets were used to generate new EEG
signals. The augmentation algorithm enables the creation of a new artificial EEG signal
with any number of L samples. The algorithm to create an artificial EEG signal is as follows:

1. Create a new zero-time vector Sa of length L. This vector corresponds to the newly
generated EEG signal for time samples from 0 to L × T − T (with step T).

2. In a loop, for each value of frequency k = 0 to fs/2, perform the following:

a. Choose an Ar value randomly from the range 〈−0.82; 0.82〉,
b. Choose a ϕr value randomly from the range 〈−2π; 2π〉
c. Choose a Pkr element randomly from the Pk set
d. Update vector Sa according to the formula:

Sa = Sa + (Pkr + Ar) sin(2πkt + ϕr),

where t is a vector of time samples

3. Add a vector R of length L to the vector Sa containing values chosen randomly from
the range –ε to ε, where ε = 〈−1.84 × 10−8; 1.84 × 10−8〉
The result is a vector Sa corresponding to the newly generated EEG signal. Particular

attention should be paid to the ranges from which the values Ar, ϕr, and ε are to be
chosen. The typical values of the parameters were selected based on observations and were
Ar = 〈−0.82; 0.82〉, ϕr = 〈−2π; 2π〉, and ε= 〈−1.84 × 10−8; 1.84 × 10−8〉, respectively.

To obtain the augmented signal, the first 20 s of the recorded real EEG signals were
used. As a result of data augmentation, we obtained 90,000 examples per class for each user
(S01–S05), totaling 360,000 examples. Out of these, 10% were designated as validation data.
Consequently, the CNN training set comprised 324,000 examples, while the validation set
included 36,000 examples. Only the generated data were utilized for training the CNN.
However, to evaluate the network’s performance, the last 10 s of the real recorded EEG
signals were used. The method itself does not limit the number of examples that can be
generated. From several hundred real EEG examples, it is possible to generate several
thousand artificial examples. The morphology of the generated EEG signals is distinct,
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exhibiting completely new signal characteristics in the time domain. Nevertheless, the
generated EEG signal maintains the same statistical parameters as the real one. Moreover,
the spectrum of the generated signal closely resembles that of the real one. An illustration
of one second of the real EEG signal (in blue) and the generated signal (in red) is presented
in Figure 2. Figure 3 displays a histogram comparing samples of one second from the real
EEG signal (in blue) and the generated signal (in red), highlighting their strong similarity.
The spectra of the real EEG signal (in blue) and the generated one (in red) are depicted
in Figure 4.

Figure 2. Example of one second of the real EEG signal (blue) and the generated signal (red).

Figure 3. Histogram of samples of one second of the real EEG signal (blue) and the generated
signal (red).
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Figure 4. Spectrum of the real EEG signal (blue) and the generated signal (red).

3.2. Convolutional Neural Network

The operation of CNNs is based on convolutional filters. When a signal passes through
these filters, it is transformed into a vast array of features that are then classified by a fully
connected layer. In the search for the optimal CNN architecture, the impact of varying
the number of convolutional layers (ranging from 2 to 5) was examined. Additionally, the
effect of the number of filters with values of 2, 4, 8, 16, 32, 64, 128, and 256 was evaluated.
Subsequently, the influence of different filter sizes—2, 4, 8, 16, 32, and 64—was investigated.
The selection of the network structure was derived from an automated search for the
optimal combinations of layer count, filter count, and filter size. During our research, we
did not consider the impact of the dropout layer on the CNN training process. During
the selection of the best parameters, different optimizer algorithms (ADAM, SGD) and a
range of values for InitialLearnRate (0.0001, 0.001, 0.01) and L2Regularization (0.01, 0.001,
0.0001) were evaluated. The search for the optimal combination of network structure and
learning parameters spanned several days. The best network structure and parameters
were determined based on the classification accuracy obtained for the validation data. The
accuracies for the validation set for the considered structures ranged on average for all
users from 0.65 to 0.72. The best results were achieved for the CNN network structure,
which consisted of four convolutional layers, applying a ReLU activation function after
each. The final convolutional layer, along with the subsequent ReLU layer, consists of
128 filters, resulting in a considerable number of features fed into the SoftMax classifier. The
ADAM optimizer [37] was employed to train the CNN network, with an InitialLearnRate
set at 0.001. Training was conducted over a maximum of 50 epochs, with a MiniBatchSize
of 128 and an L2Regularization factor of 0.0001. The architecture of the CNN used in this
study is detailed in Table 1. During the training of the network, the learning curve and error
for the validation data were observed. No signs of overfitting in the CNN were noticed.

To train a CNN, a large number of training examples are needed. During training,
we utilized a dataset obtained through the proposed augmentation method. However, for
testing the performance of the CNN, we employed EEG signals recorded during the test
session. The schematic for CNN application is presented in Figure 5. In the Supplementary
Materials, there is the source code of our developed method for EEG data augmentation, as
well as the code for the implementation of a CNN network that enables the classification
of SSVEP.
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Table 1. CNN structure.

No. Name of Layer Parameters

1 Input Layer 256 × 3 × 1 signals with zero-center normalization

2 Convolution_1 32 filters of size 8 × 3 with stride [1 1]
and padding ‘same’

3 Batch Normalization_1 Batch normalization with 32 channels

4 ReLU_1 ReLU

5 Convolution_2 64 filters of size 16 × 3 with stride
[1 1] and padding

6 Batch Normalization_2 Batch normalization with 64 channels

7 ReLU_2 ReLU

8 Convolution_3 128 filters of size 32 × 1 with stride
[1 1] and padding

9 Batch Normalization_3 Batch normalization with 128 channels

10 ReLU_3 ReLU

11 Convolution_4 128 filters of size 64 × 1 with stride
[1 1] and padding

12 Batch Normalization_4 Batch normalization with 128 channels

13 ReLU_4 ReLU

14 Fully Connected 4 fully connected layer

15 Softmax Softmax

16 Classification Output Crossentropyex

Figure 5. Schematic illustration of using a CNN to classify SSVEPs.

3.3. Classical SSVEP Detection Methods

The proposed CNN algorithm has been compared with a number of classical methods
traditionally used for SSVEP detection. The concepts of utilizing classical and dedicated
algorithms for SSVEP detection are illustrated in Figures 6 and 7. Figure 6 demonstrates the
application of typical machine learning methods, employing classifiers such as LDA, QDA,
SVM, or MLP. The initial step involves training the classifier with data from a calibration
session. Only after this step can the test data be classified. The classification process begins
with the extraction of features from the EEG signal, followed by the selection of the most
effective features. Figure 7 delineates the application of typical dedicated methods (such as
CCA and sMP) for analyzing SSVEP. These methods do not necessitate a training session,
but they do require knowledge of the frequencies of the stimuli. The aim is to find base
signals that most closely correspond to stimuli at frequencies of 5 Hz, 6 Hz, 7 Hz, and 8 Hz.
Canonical correlation analysis (CCA) seeks a linear combination between EEG signals and
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sinusoidal signals at the stimulation frequency and its harmonics. The frequency sought is
the one for which the maximum correlation between EEG signals and sinusoidal signals,
either at the stimulation frequency or its harmonics, is observed to be the largest [41].
Another method tailored for SSVEP detection is the sMP algorithm, which is derived from
the well-known matching pursuit (MP) algorithm. However, the set of base functions in
sMP is drastically narrowed down to sinusoidal signals at frequencies specifically chosen
for visual stimulation.

Figure 6. Schematic illustration of using classical methods for SSVEP detection.

Figure 7. Schematic illustration of using dedicated methods (CCA, sMP) for SSVEP detection.

Traditional machine learning methods require a feature extraction stage. Frequency
analysis is often used to extract features from the EEG signal to detect SSVEP [42]. This is
because, during user stimulation with frequency k, we expect an increased amplitude of
the EEG signal in the visual cortex for the stimulation frequency k and its harmonics 2k, 3k.
In our experiments, feature extraction was performed using DFT analysis. The spectrum
was calculated from each second of the EEG signal, with a frequency resolution of 1 Hz.
Such resolution should be sufficient to distinguish between the SSVEPs at stimulating
frequencies of 5, 6, 7, and 8 Hz.

Feature vectors were constructed for each channel, corresponding to one of the
two cases:

1. All frequencies between 1 and 40 Hz were extracted.
2. Only the frequencies of possible stimulations and their second and third harmonics

were extracted. For the frequencies of 5, 6, 7, 8 Hz, these were, respectively: 5, 6, 7, 8,
10, 12, 14, 16, 15, 18, 21, and 24 Hz.
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Feature extraction was performed for each channel separately. The use of three EEG
signal channels triples the number of features. For case 1, there are 120 features, and for
case 2, there are 48 features in total.

To ensure that the classifier is correctly trained using standard machine learning
techniques, only the most useful features should be utilized, necessitating a feature selection
stage. Various methods are employed to select the best features, with filter and wrapper
approaches being the most common [43]. A typical filter method that is widely used is
the t-test, which assumes a normal distribution of features. We implemented the absolute
value two-sample t-test with a pooled variance estimate [44]. However, the t-test selection
is typically designed for two groups, and in our case, there are four classes (5, 6, 7, and
8 Hz). Consequently, we adopted a strategy of selecting the best features for one class
in contrast to all other combined classes. This approach allowed us to select the most
distinctive features for the groups: 5 Hz versus (6, 7, 8 Hz), 6 Hz versus (5, 7, 8 Hz), 7 Hz
versus (5, 6, 8 Hz), and 8 Hz versus (5, 6, 7 Hz). Subsequently, a subset of 14 features was
chosen, which yielded the best classification performance for the training set. The number
14 was determined experimentally.

Unfortunately, feature selection methods do not always yield the best results because
they do not consider the interdependencies between features [45]. A method that accounts
for these types of dependencies is sequential forward selection (SFS) [46]. This method
operates by selecting an initial feature, assessing the classification accuracy, and then
incrementally adding the feature that most improves classification. For feature selection
using SFS, the LDA and QDA classifiers were employed [47]. During the experiments, it
was observed that the optimal number of features for achieving the highest classification
accuracy was 25 for both LDA and QDA methods.

All experiments were conducted using MATLAB R2021a software on a computer
equipped with an Intel Core i7-9800X processor, 128 GB of RAM, and an NVIDIA GeForce
RTX 2080 Ti graphics card. The time required to execute various algorithms on the applied
dataset, considering the established training parameters, varied significantly. Table 2
illustrates the time required to create the augmentation set, train the different classification
methods, conduct feature selection, and train the CNN. However, it is important to note
that both the CNN and MLP algorithms used a GPU for their calculations.

Table 2. Execution times of the individual algorithms.

Algorithm Execution Time

Data set augmentation 12.115 s

CCA algorithm for classification (does not require training) 0.112 s

sMP algorithm for classification (does not require training) 0.311 s

Training the CNN for 50 epochs 145 min 8 s

Training the MLP 11.1 s

Training the LDA 14.3 s

Training the QDA 17.2 s

Training LDA with SFS/t-test feature selection 31.4 s/19.2 s

Training QDA with SFS/t-test feature selection 41.8 s/22.5 s

4. Results

Classification accuracy was used to evaluate the performance of individual classifica-
tion methods. This measure is commonly used to assess classifiers and the effectiveness
of BCI systems. The classification accuracy for each classifier was determined based on
the last 10 s of real recorded EEG signals. During testing, 1 s windows overlapping by
0.5 s were employed, resulting in 72 windows for four stimulation frequency classes: 5, 6, 7,
and 8 Hz. Table 3 shows the accuracy and macro average F1-score results obtained for the
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individual classification methods on the test set. Macro average F1-score provides a bal-
anced assessment of precision and sensitivity. In addition to the methods’ symbolic names
(CNN, CCA, sMP, MLP, QDA, LDA, QDA-SFS, LDA-SFS, QDA-T, LDA-T), details about
the data used at the classifiers’ input (EEG raw, DFT 1–40 Hz, DFT specific frequencies)
and selection methods (SFS with 25 features, t-test with 14 features) are included. The table
also indicates whether data augmentation was used for training (Y) or if it was the first 20 s
of the recorded EEG signal (N).

Table 3. Comparison of the classification accuracies for the tested methods.

Method CNN CCA sMP MLP QDA LDA QDA LDA QDA-SFS LDA-SFS QDA-T LDA-T

Input EEG raw DFT
1–40 Hz

DFT
1–40 Hz

DFT
1–40
Hz

DFT
5 Hz, 6 Hz, 7 Hz, 8 Hz, 10 Hz, 12 Hz, 14 Hz, 16 Hz,

15 Hz, 18 Hz, 21 Hz, 24 Hz

Training the
classifier on

the generated
data

Y N N Y Y Y N N N N N N

Feature
selection - - - - - - - - SFS

25 features

SFS
25

features

t-test
14

features

t-test
14

features

Accuracy

User S01 0.81 0.75 0.58 0.62 0.62 0.75 0.65 0.66 0.62 0.63 0.68 0.76

User S02 0.88 0.54 0.51 0.61 0.61 0.59 0.56 0.40 0.48 0.47 0.61 0.50

User S03 0.42 0.40 0.29 0.30 0.27 0.31 0.23 0.33 0.26 0.33 0.18 0.22

User S04 0.75 0.54 0.54 0.70 0.65 0.68 0.58 0.65 0.56 0.65 0.59 0.56

User S05 0.75 0.63 0.61 0.63 0.63 0.65 0.62 0.58 0.61 0.59 0.66 0.62

Mean value 0.72 0.57 0.51 0.57 0.55 0.59 0.53 0.52 0.51 0.53 0.54 0.53

F1-score

User S01 0.79 0.59 0.46 0.51 0.48 0.59 0.56 0.53 0.51 0.51 0.55 0.60

User S02 0.87 0.41 0.33 0.49 0.50 0.48 0.45 0.28 0.31 0.33 0.48 0.33

User S03 0.29 0.30 0.19 0.18 0.18 0.23 0.15 0.24 0.12 0.25 0.11 0.14

User S04 0.60 0.40 0.42 0.56 0.54 0.55 0.46 0.55 0.43 0.54 0.47 0.45

User S05 0.60 0.51 0.50 0.50 0.52 0.51 0.50 0.46 0.50 0.48 0.53 0.49

Mean value 0.63 0.44 0.38 0.44 0.44 0.47 0.42 0.41 0.37 0.42 0.42 0.40

The highest mean classification accuracy was achieved with the CNN at 0.72. A lower
average accuracy of 0.57 was observed for both CCA and MLP. The sMP method yielded
slightly inferior results, with an average classification accuracy of 0.51. Standard machine
learning methods that employ spectral features and feature selection achieved classification
accuracies ranging from 0.51 to 0.54. It is important to note that the classification pertained
to 1 s windows across four classes. The random operation of a four-class classifier would
result in a classification accuracy of 0.25. Therefore, it can be concluded that the methods
under consideration deliver satisfactory results that are practically applicable. Attention
should also be given to the variations in classifier accuracies among individual users.
These differences can be attributed to the psychophysical characteristics of the person
being tested and are a normal phenomenon. Additionally, some individuals are more
naturally inclined to generate SSVEP responses to visual stimuli. To determine if the
comparison of classification algorithms across five subjects (S01–S05) is reliable, statistical
tests were conducted. Given the small sample size and the uncertain distribution of
results, the non-parametric Wilcoxon–Mann–Whitney test was utilized [48]. p-values were
calculated from a two-sided Wilcoxon signed-rank test. The classification accuracy results
for the CNN method compared with other methods used by us (QDA, LDA, QDA-SFS,
LDA-SFS, QDA-T, LDA-T, CCA and sMP) were found to be statistically significant at
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p = 0.0625. The improved classification accuracy of the CNN network may be due to
its ability to automatically generate features. In contrast, other algorithms—whether
specialized for SSVEP interfaces (like CCA and sMP) or standard machine learning methods
(such as QDA, LDA, QDA-SFS, LDA-SFS, QDA-T, LDA-T)—relied on features derived from
frequency analysis.

Table 3 presents the calculated F1-scores for various SSVEP potential classification
methods. Among these, the CNN method attains the highest average F1-score of 0.63.
Other methods, including CCA, MLP, QDA, and LDA, exhibit comparable results, with
their average F1-scores ranging approximately from 0.44 to 0.47. This range indicates a
moderate level of effectiveness for these techniques in SSVEPs classification. The sMP
method recorded the lowest F1-score at 0.38, suggesting its comparatively limited utility.
Meanwhile, the QDA and LDA methods, after incorporating SFS feature selection and the
t-test, achieved F1-scores between 0.37 and 0.42. Overall, these findings imply that the
CNN method is the most effective for SSVEP classification, whereas the other techniques
demonstrate similar yet generally lower levels of effectiveness.

Future research should consider expanding the training dataset with EEG recordings
from a greater number of individuals and employing different methods of stimulation, as
well as various EEG signal acquisition systems.

5. Discussion

The results obtained can be converted into the information transfer rate (ITR), which
are commonly used to compare brain–computer interface (BCI) systems. Table 4 compares
the ITR results for individual users using both the CCA and CNN methods. The calculations
reveal significant variations in the practical usability of the BCI interface among different
individuals. It is important to note that the ITR was calculated based on the classification of
one second continuous EEG signal segments. The decision-making time and classification
accuracy substantially influence the information transfer rate. In practice, the actual ITR
would be lower than the estimated values. Nonetheless, we can approximate the disparity
in ITR by comparing the CNN and CCA methods for EEG signal classification. The largest
difference, favoring the CNN method, is observed for user S02, at approximately 60.3 bits
per minute, and the smallest for user S03, at 1.3 bits per minute.

Table 4. ITR comparison for classifiers [bit/min].

Subject CNN CCA

S01 59.8 47.5

S02 76.8 16.5

S03 5.95 4.6

S04 47.5 16.5

S05 47.5 27.7

Mean 42.0 19.9

It is important to consider that the analyses were conducted on SSVEP signals recorded
under specific conditions and with individuals who had no previous experience with SSVEP
interfaces, utilizing only three EEG signal electrodes. Various types of amplifiers, stimu-
lation methods (such as stimulus brightness and LED size), and numbers of stimuli have
been employed for recording SSVEP signals in the literature, complicating the comparison
of classification results and ITR values across studies. In publication [38], EEG signals
recorded using 8 channels and 12 stimulations were utilized, and the FB-EEGNet algo-
rithm applied for classification yielded an ITR of 70.45 bits/min. In publication [49], a
method based on task-related component analysis (TRCA) and an extended method based
on canonical correlation analysis (CCA) for a 40-class SSVEP were implemented, with
the online BCI speller achieving an average ITR of 325.33 ± 38.17 bits/min. Lastly, in

215



Appl. Sci. 2023, 13, 13350

publication [50], EEG data were recorded from 32 active electrodes, and by employing a
spatially-coded BCI, the classification method reached an ITR of 31 ± 17 bits/min in novice
users completing the task for the first time.

CNN delivers significantly better results for classification accuracy compared to other
methods. During CNN training, filter weights are optimized to select useful features. The
number of features processed through the fully connected layer is considerable: 128 filters
× 3 EEG channels × 256 features per filter. This exceeds the number of features derived
from selecting the 1–40 Hz frequency band, which is common in other methods. However,
interpreting the function of these filters can be challenging. We can visualize the effects
of these filters on the signals. Figure 8 displays a one second segment of the EEG signal
from the O1 channel during a 5 Hz stimulus. Figure 9 illustrates the same signal after
processing through a chosen filter from the fourth convolutional layer. Additionally, the
spectra of these signals are shown, allowing for the analysis of the filter’s effect. In Figure 8,
the original input signal to the filter has a broad frequency spectrum, but frequencies at
5 Hz, 10 Hz, and 15 Hz are not readily distinguishable. In contrast, Figure 9 reveals that the
output signal from the filter predominantly features frequencies around 5, 10, and 15 Hz,
which correspond to the stimulation frequency and its harmonics. Therefore, the signal
post-filtering contains frequencies potentially beneficial for the classification of SSVEPs.

Figure 8. One second fragment of the EEG signal fed to the network input and the spectrum of
this signal.

Figure 9. One second fragment of the EEG signal after applying the exemplary convolutional filter
(no 110) in the 4th layer and spectrum of this signal.
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Several studies on CNNs indicate that the network is more robust to artifacts [51,52]. To
determine whether the CNN approach is more effective in classifying SSVEPs with artifacts,
we introduced Gaussian noise into the test signal. Gaussian noise closely approximates
EMG artifacts resulting from muscular activities like jaw clenching, tongue movement,
and swallowing [53]. We then attempted to classify sections of the noisy EEG signals for
stimuli at 5, 6, 7, and 8 Hz. The classification accuracies for the CNN and CCA methods are
listed in Table 5. Case I presents the classification accuracies (0.81 for CNN and 0.75 for
CCA) obtained with the originally recorded EEG signal, which had a standard deviation of
0.87 × 10−5. In Case II, Gaussian noise was added to the EEG signal with a standard
deviation of 5.99 × 10−6, leading to a decrease in classification accuracy (0.69 for CNN
and 0.54 for CCA). For Case III, the noise standard deviation was significantly increased to
1.60 × 10−5, which resulted in a further reduction in classification accuracy to 0.59 for CNN
and 0.45 for CCA.

Table 5. Comparison of classification accuracy for a noisy signal.

EEG Signal (Std) Noise (Std) CNN CCA

I EEG (0.87 × 10−5) - 0.81 0.75

II EEG (0.87 × 10−5) 5.99 × 10−6 0.69 0.54

III EEG (0.87 × 10−5) 1.60 × 10−5 0.59 0.45

The augmentation of EEG data using the proposed method proved to be effective for
SSVEP. This technique enables the creation of any number of training examples. However,
the data augmentation method does not account for inter-channel relationships. If there are
significant dependencies between channels O1, O2, and Oz—related to phase, frequencies,
or amplitudes, for instance—the method may not generate accurate data for network
training. Therefore, caution is advised when applying this technique to other potentials
used in BCI, such as P300 or ERD/ERS.

The results we obtained align with those of other researchers who have applied CNN
and deep learning to classification tasks in BCI systems. The experiment detailed in [54]
involved nine flicker stimuli of different frequencies, and a CNN-based multitarget rapid
classification method was constructed for nine classification tasks. The average accuracy
of AR-BCI using the CNN model at a 1 s stimulus duration was about 81.83%. In [55],
to enhance the classification accuracy of SSVEP signals during movement, SSVEP data
were collected from five targets moving at speeds of 0 km/h, 2.5 km/h, and 5 km/h. A
convolutional neural network (CNN) was developed to discern the relationship between
the EEG signal and the pattern corresponding to each stimulus frequency. The proposed
method outperformed traditional methods (i.e., CCA, FBCCA, and SVM) at all speeds,
with CNN accuracies of 86.08%, 71.53%, and 60.63% from the lowest to highest walking
speeds, respectively. In [26], the use of 64 channels yielded excellent results; however,
when reduced to three channels, the classification accuracy was approximately 51% and
42% for sets of EEG signals. In [56], a BCI was utilized in an online experiment to spell
the word ‘SPELLER’ using a 2 s time window. The system attained an average accuracy
of 97.4% and an information transfer rate of 49 bpm, demonstrating the practicality and
feasibility of implementing a reliable single-channel SSVEP-based speller using a 1D CNN.
The study in [57] introduced a filter bank convolutional neural network (FBCNN) ap-
proach to optimize SSVEP classification. Three filters, each covering a harmonic of the
SSVEP signals, were used to extract and differentiate the relevant components, with their
information transformed into the frequency domain. Experimental results indicated that
FBCNN enhances the performance of CNN-based SSVEP classification methods and holds
significant potential for SSVEP-based BCIs. FBCNN results were approximately 2% better
than those of traditional CNNs, though a wide dispersion of results was observed for both
methods, varying by individual.
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When attempting to implement CNNs in practical applications, certain challenges may
arise. In our study, the classification time for 1 s of EEG signal was a rapid 3.7 ms. However,
the training time required for the CNN poses a challenge. Here, transfer learning techniques
could be vitally important. Utilizing transfer learning may necessitate adjustments to the
signal sampling frequency and the number of network inputs, which must align with the
number of recorded EEG channels. Additionally, it is crucial to retrain the network using a
relatively large dataset.

We implemented the CNN proposed in article [26] to explore the potential of using
transfer learning. The proposed network yields impressive results, achieving close to 98%
accuracy for 1 s segments of the signal across all 64 channels. Its architecture reflects an
understanding of EEG signal processing and analysis methods. The network was originally
trained on data from 70 healthy individuals and 40 target characters, which flickered
at frequencies ranging from 8 to 15.8 Hz in 0.2 Hz increments. This training used EEG
data recorded at 250 Hz. We adapted this network structure for the data recorded from
users S01–S05. The adaptation involved modifying the first and last layers of the CNN
to accommodate three input channels (O1, O2, Oz) and four SSVEP frequencies (5 Hz,
6 Hz, 7 Hz, 8 Hz). We then retrained the network with the EEG training data, using the
initial 20 s of the actual recorded EEG signal for S01–S05 users, after resampling the signals
from 256 Hz to 250 Hz. Subsequently, we calculated the classification accuracy for SSVEP
recognition on the training data (last 10 s) for each user. The classification results obtained
for the adapted CNN [26] using transfer learning techniques are summarized in Table 6.
The table also includes comparative results from the CNN network that we developed as
well as the CCA method.

Table 6. Comparison of classification accuracy for CNN [26].

Subject CNN [26] Our CNN CCA

S01 0.85 0.81 0.75

S02 0.55 0.88 0.54

S03 0.30 0.42 0.40

S04 0.52 0.75 0.54

S05 0.82 0.75 0.63

Mean 0.61 0.72 0.57

The average recognition accuracy for the CNN [26] method is 61%, for the CCA
method it is 57%, and for the CNN that we proposed, which includes data augmentation,
it is 72%. These results suggest that the application of transfer learning techniques yields
better outcomes than the use of standard machine learning methods like CCA. Nonetheless,
our specialized approach achieved an 11% higher accuracy.

6. Conclusions

The results presented demonstrate that the use of CNN can significantly enhance
the efficiency of SSVEP-based BCIs. Compared to traditional machine learning methods,
CNN can provide up to 20% better results. This improvement leads to a substantially
higher ITR and more effective BCI system operations. A CNN classifier trained for this
purpose is more resistant to artifacts in the EEG signal than other SSVEP detection methods.
The data augmentation method proposed for calibration sessions enables effective CNN
training. Unfortunately, the use of CNN is not without practical limitations. One drawback
is the extensive training time required, which may span several hours. Additionally, high
classification accuracy is typically achieved only when the data from a specific individual’s
calibration session are used for training. Furthermore, the same network structure cannot
be directly applied to different databases. The CNN structure must be modified for signals
recorded with varying equipment and different sampling frequencies.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/kolodzima/CNN_limited_SSVEP_dataset (accessed on 16 Decmeber 2023). The
source code, which presents the proposed augmentation method, along with the structure of the
CNN and methods for training and testing, has been placed at the link.
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Abstract: This study introduces a novel deep-learning methodology that is customized to auto-
matically diagnose Alzheimer’s disease (AD) through the analysis of MRI datasets. The process of
diagnosing AD via the visual examination of magnetic resonance imaging (MRI) presents consider-
able challenges. The visual diagnosis of mild to very mild stages of AD is challenging due to the MRI
similarities observed between a brain that is aging normally and one that has AD. The detection of
AD with extreme precision is critical during its early stages. Deep-learning techniques have recently
been shown to be significantly more effective than human detection in identifying various stages of
AD, enabling early-stage diagnosis. The aim of this research is to develop a deep-learning approach
that utilizes pre-trained convolutional neural networks (CNNs) to accurately detect the severity levels
of AD, particularly in situations where the quantity and quality of available datasets are limited. In
this approach, the AD dataset is preprocessed via a refined image processing module prior to the
training phase. The proposed method was compared to two well-known deep-learning algorithms
(VGG16 and ResNet50) using four Kaggle AD datasets: one for the normal stage of the disease and
three for the mild, very mild, and moderate stages, respectively. This allowed us to evaluate the
effectiveness of the classification results. The three models were compared using six performance
metrics. The results achieved with our approach indicate an overall detection accuracy of 99.3%,
which is superior to the other existing models.

Keywords: Alzheimer’s disease; image processing; deep learning; transfer learning; classification

1. Introduction

Alzheimer’s disease (AD) is a degenerative neurological disorder that causes perma-
nent brain cell loss and long-term cognitive impairment [1]. Alzheimer’s disease (AD)
causes cognitive and mental deterioration, behavioral issues, language problems, and
difficulty doing fundamental tasks. AD is a sixth-order death that destroys the brain area
that controls breathing and cardiac function. There is no treatment to stop or slow the
progression of Alzheimer’s disease [2], and its cause is unknown. Defects in the hippocam-
pus, cerebral cortex, and ventricles are signs of Alzheimer’s disease. These areas control
memory, planning, reasoning, and judgment [3]. Alzheimer’s disease (AD) progresses to
varying degrees of severity. It is challenging to diagnose AD in its early and late stages
because of MRI similarities between a normal aging brain and an AD brain. As a result,
analyzing and assessing these pictures is challenging [4,5]. Until patients reach a moderate
stage of AD, detection accuracy is low. Thus, it is crucial for AD diagnosis to detect changes
in specific brain regions early on so that the disease can be halted in its tracks [6]. The
ability of machine learning algorithms to detect AD has recently been demonstrated in
studies [7,8]. MRI scans are frequently used in medical diagnoses. MRI scans may have
varying meanings, depending on the reader. Supervised systems are trained using feature
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vectors extracted from medical imaging data. To extract these characteristics, human ex-
perts must expend significant time, resources, and energy. Rapid patient screening and
diagnosis may be aided by deep-learning models. This technology can instantly analyze
photographs without the need for skilled manual extraction. Features from MRI brain im-
ages are extracted using deep-learning-based methods, allowing for the early detection of
AD. To mimic the performance of biological neural networks, scientists created ANNs [4,9].
Computers can learn from data at varying granularities due to their multi-layer processing
architecture [10]. Deep learning is a subfield of machine learning (ML), which is a core
component of artificial intelligence (AI). AI is used in many areas, including neuroscience.
Predicting and diagnosing brain diseases, such as Alzheimer’s, has become much simpler
thanks to AI. Deep learning has many types, such as the feed-forward deep neural network,
the convolutional neural network (CNN), the auto-encoder (AE), the recurrent neural
network (RNN), the deep belief network (DBN), and the generative adversarial network
(GAN) [11].

CNN is a feed-forward neural network that makes use of convolutional features [12,13].
CNN, unlike other methods, does not require manual feature extraction. CNN kernels
are analogous to various sensors that can respond to a wide variety of stimuli. Activation
functions are similar to the way in which neurons send electric impulses to the next cell
when a certain threshold is reached. CNN is better than most artificial neural networks in
three ways: First, local connections are used between neurons in the same layer instead
of between all neurons in the layer below; this lowers the parameters and speeds up con-
vergence. Second, sharing the weight of links may reduce the total number of parameters
if we combine link weights. Third, because convolution makes feature maps with a lot of
features, the chance of overfitting goes up. Maximum and average pooling are two types
of pooling that are recommended for reducing redundant work. The downsampling of
dimensions: a pooling layer uses the idea of local correlation to downscale an image while
preserving its essential details.

The following study demonstrates the efficacy of CNN in identifying AD. Ref. [14]
proposed a CNN-Sparse Regression Network combination model for AD diagnosis. The
model generated numerous representations at the target level using sparse regression
networks. CNN was used to combine these representations at the target level to enhance
output label recognition. A 16-layer VGGNet was used by the authors of reference [15]
to effectively divide structural MRI scans into three groups: Alzheimer’s disease (AD),
mild cognitive impairment (MCI), and normal cognitive (NC). The authors reported that
segmentation was not conducted on the magnetic resonance (MR) images. Using functional
MRI, ref. [16,17] applied the LeNet architecture to classify patients with Alzheimer’s disease
from healthy controls. They came up with a technique for structural MRI that uses CNNs.
The research demonstrated that CNN outperformed SVM. Future studies will likely include
axial and sagittal MRI scans in addition to the standard coronal ones. The current result
is 98.84% accurate, which is quite good. The use of structural MR images allowed for the
development of a CNN-based AD diagnosis model [18]. Researchers found that by using
both data augmentation and transfer learning together, overfitting could be lessened, and
the models could use less computing power. Previous studies relied on smaller, regional
datasets, but the authors of this one claim their work can be applied much more widely.
In [19], an 8-layer CNN model was created specifically for AD diagnosis. To find the best
model setup, the authors looked at many different activation function combinations, such
as stochastic, max, and average pooling with ReLU, sigmoid, and leaky ReLU. A leaky
ReLU activation function and a max pooling function were used in the most effective
CNN models. A 3D-CNN model trained on MR images was proposed for AD diagnosis
in [20]. They propose a 3D-CNN using the ResNet framework. Convolutional, dropout,
pooling, and fully connected layers are some of the 36 it contains. The model outperformed
expectations on a variety of performance metrics in experimental testing. Another method
in [21] using 3D-CNN to examine MR images for AD signs was proposed. The authors
deployed a Sobolev gradient optimizer, a leaky ReLU activation function, and a Max
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Pooling function. The three functions worked better together than separately. To aid in
the diagnosis of AD, ref. [22] developed a 3D-FCNN-based model using MR images. The
authors revealed that their proposed model outperformed several industry standards for
both accuracy and robustness. The 3D-FCNN model outperformed the 2D-CNN on binary
and multi-class classification tasks. An approach to diagnosing AD that uses structural MRI,
genetic testing, and clinical evaluation was suggested in [23]. It is based on convolutional
neural networks. The framework required fewer parameters than rivals like VGGNet and
AlexNet for building CNN models. The method was quicker and less prone to overfitting
in scenarios with sparse data. In [2], the authors propose using a CNN-based MR image
model for the early detection of AD. The OASIS dataset, which is notoriously skewed, was
used to train the model. To address the discrepancies present in the OASIS data set, data
augmentation was implemented. According to the results of the experiments, the proposed
model is superior to several state-of-the-art models.

A CNN-based MR image AD diagnosis model was proposed in [24]. It all started with
voxelizing MR scans. Skull stripping was used to get rid of extra voxels, and the quality of
the remaining ones was enhanced with a Gaussian filter. Independent component analysis
was used to separate out different regions of the brain. In the end, the gray matter in the
model was segmented. According to the results of the experiments, the proposed model
is superior to other state-of-the-art models. The eight-layer CNN AD diagnosis model
in [25] used drop-out regularization, data augmentation, and batch normalization to ensure
excellent precision. The Siamese Convolutional Neural Network (SCNN) was introduced
in [26] as a CNN-based model for dividing dementia into four distinct stages: moderate
Alzheimer’s disease (MAD), mild dementia (MD), very mild dementia (VMD), and no
dementia. Despite just having a small sample size to train on, the model’s results were
reliable. The proposed model was shown to be superior to five other state-of-the-art studies.
Ref. [27] proposed a cascaded 3D-CNN for AD diagnosis using structural MR images. To
classify the input, the CNN model first retrieved features from it.

In order to diagnose Alzheimer’s disease using 3D-MR brain pictures, the authors
in [28] modified V-Net to partition the bilateral hippocampus. They demonstrate the need
for accurate hippocampi segmentation for an accurate AD diagnosis model. Compared
to other segmentation and classification approaches, they state that the proposed design
performed better. Ref. [29] developed a CNN model for AD diagnosis using MR images. To
put the method to the test in real-world settings, the researchers looked at the correlation
between relevance score and hippocampus volume. The 3D-CNN-SVM model for AD
diagnosis was proposed in [30] based on MR images. It combines the 3D-CNN model to ob-
tain features from MR images and SVM to classify the features. The 3D-CNN-SVM model
provides a significant improvement over both 2D-CNN and classic 3D-CNN. Ref. [31]
created a CNN using the DenseNet Bottleneck-Compressed architecture for the diagnosis
of AD using MR images. The proposed model correctly classified the input 86% of the time.
The EfficientNet models [32] are developed through the implementation of uncomplicated
and exceptionally effective compound scaling methods. EfficientNet models demonstrate
an enhanced level of precision and effectiveness in comparison to modern CNNs, including
MobileNetV2, AlexNet, ImageNet, and GoogleNet [33]. EfficientNets show better accuracy
through their compactness, computational efficiency, and generalization capabilities. Com-
paring eight different convolutional neural networks for early detection of Alzheimer’s
disease, the EfficientNetB0 model has better evaluation metrics and needs fewer model
parameters [34]. In a recent study [35], an EfficientNetB0 model was employed to diagnose
AD. The results obtained for all performance metrics varied from 87% to 95%. The Effi-
cientNetB0 model is very good at finding COVID-19 patterns in X-ray images while using
a small amount of computing power compared to other popular architectures like ResNets
and VGGs [36]. Subsequently, EfficientNets demonstrated high efficiency in numerous
applications, including the detection of malaria parasites from blood smears and various
COVID-19 detection applications [37]. Thus, the results of the EfficientNet series on differ-
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ent medical applications inspired us to develop an approach based on the EfficientNetB0
structure for AD.

This study introduces a comprehensive methodology for evaluating the severity and
progression of Alzheimer’s disease (AD) from start to finish. Deep-learning techniques
were utilized to distinguish between four stages of Alzheimer’s disease, specifically normal
control, very mild, mild, and moderate dementia. This research endeavor aims to improve
the performance of efficientNetB0 by implementing a three-step data processing approach.
These steps involve the use of an alpha-trimmed filter for low-pass filtering, histogram
equalization, and the application of transfer-learning techniques. In order to evaluate our
approach performance, we compared it to two commonly utilized models, specifically
ResNet50 and VGG16. The evaluation metrics employed for comparison encompassed
precision, recall, accuracy, F1 score, confusion matrices, and receiver operating characteristic
(ROC). In the following sections, the materials and methods are described. The results
from experimental data, using datasets from official GitHub and Kaggle repositories, of
three DL models are compared using six performance metrics. The proposed method was
compared with two other well-performing deep-learning algorithms. Then, the results
were discussed, conclusions drawn, and future directives were suggested.

2. Materials and Methods

2.1. Dataset Description

The benchmark dataset research on the “Kaggle” website is available online: https://
www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images (accessed on 11
February 2023). It provided MRI pictures of Alzheimer’s disease for this study [38]. Kaggle
serves as a platform for providing online datasets for research and analysis in various
fields. To expedite the development of enhanced algorithms for diagnosing and treating
Alzheimer’s disease, we chose this dataset owing to its complete freedom, availability in
diverse categories, and relatively small hard disk size, setting it apart from other popular
datasets in the field. This manually collected dataset comprises MRI images verified and
classified by Sarvesh Dubey [38]. Serving as valuable resources for training and testing
deep-learning models with the objective of accurately predicting the stage of Alzheimer’s
disease. By affording researchers and practitioners an opportunity to create algorithms for
precise Alzheimer’s disease diagnosis, this dataset assumes a crucial role. Additionally, it
contributes to the development of effective treatments. As the global burden of Alzheimer’s
disease escalates, this dataset gains significance in advancing our understanding of the
disease and improving patient outcomes [36].

A total of 6400 photos make up the Kaggle Alzheimer’s classification dataset (KACD).
The dataset was divided into four groups: 896 mild AD, 64 moderate AD, 3200 normal,
and 2240 very mild AD. To test the models, 20% of the dataset was used for testing,
while 80% was used for training and analysis. The sample included 2560 normal controls,
717 participants with mild AD, 52 with moderate AD, and 1792 with very mild AD. A
typical sample from each dataset class is shown in Figure 1. Doctors use the Hippocampal
area as a biomarker to diagnose Alzheimer’s disease (AD) with great accuracy, making
it a significant factor. However, hippocampus volume alone cannot predict early stages.
According to prior study [4], cortical regions and thickness affect the illness’s progression.
Due to its high resolution and contrast for soft tissues, structural MRI is used to evaluate the
parietal, temporal, hippocampal, entorhinal cortex, and ventricular atrophy [6]. Different
brain regions are modified depending on illness progression [4].

This study’s objective, as depicted in Figure 1, is to demonstrate how cognitive decline
manifests differently in areas that have not experienced any disease and areas that have
experienced the worst cases of the same disease [10]. In contrast to the moderate stage,
individuals in the very mild and light stages of dementia exhibit a somewhat better level
of independence in their functioning. However, due to notable memory impairment, they
often require some level of support with various everyday activities. The severity stage is
characterized by a prolonged duration compared to the very mild and mild stages. During
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this stage, the patient has a progressive deterioration of their physical condition, ultimately
leading to mortality [39].

 

 

(A) (B) 

Figure 1. (A) Magnetic resonance imaging (MRI) images (2D) from the KACD dataset with four of
Alzheimer’s dementia’s stages. (B) The images highlight major regions of healthy brain (left) and an
Alzheimer’s brain (right), as indicated in yellow.

2.2. Proposed Method for AD Diagnosis

Figure 2 presents the general deep-learning workflow, where the first step is to choose
the datasets for training and validation. Then, the selection of the hyper-parameters for
the neural network model follows. In the third step, the choice of the CNN model and
framework is determined by the related parameters, including the loss rate, learning
function, and optimizer. The fourth step is the training and validation phase of the model.
The fifth step is the testing and prediction phase using new input datasets. The final step is
the assessment of the performance of the model.

Figure 2. Deep-learning workflow.
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Figure 3 presents the proposed approach for the classification of the AD images. The
AD dataset is pre-processed first using pre-processing techniques, including skull removal
and spatial registration, then another processing phase, including histogram equalization,
slicing, and image resizing, followed by low-pass alpha-trimmed filtering. Skull removal is
used to remove bones from the image. Histogram equalization is the normalization process
of the gray levels in the images from various subjects and maps the pixel intensity values
to a wide range.

Figure 3. Proposed DL (PDL)-based classification approach.

In order to reduce the impact of orientation and spatial differences among scanner
users, registration is performed. Registration improves the precision of the classification.
The MNI152 brain template [40] was used by averaging 152 structural pictures into a single
high-resolution image using non-linear registration. Slicing divides the image into multiple
logical images. Resizing is carried out in order to get the desired image size (224 × 224).

Filtering improves the quality of the images by removing noise and artifacts. An
alpha-trimmed filter was used to filter images from noise and artifacts. It first ranked
the values of pixels in the neighbor window (5 × 5 pixels) centered on the pixel under
processing. It ranks the pixels from the smallest to the biggest, eliminates the extremities
according to the dimension of the parameter ‘d’ (Equation (1)), and then calculates the
average of the remaining pixels. The resultant average will be placed at the same location
(x,y) as the central pixel under processing in a new image.

The alpha-trimmed filter equation is

F(x,y) = (1/(mn − d))∑gr(s,t), (1)

where
F(x,y): F represents the filtered image, and x,y are the coordinate of the pixel processed.
gr is the set of pixels left after excluding the d/2 extreme pixels.
mn is the dimensions of the filter.
d represents the number of pixels that will be excluded from the averaging.
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(s,t) represents the set of coordinates of the remaining pixels.
In our implementation, the filter dimensions’ mn is 5 × 5, and d was set to 8. It means

that we exclude 8 pixels out of 25, 4 from the beginning and 4 from the end of the ranked
values of the pixels.

Then, the pre-processed data are fed as input to the DLS model using CNN model
that performs feature extraction and classification of the input data. Finally, the model
is evaluated using performance metrics such as F1 score, area under curve (AUC), recall,
and precision.

Due to the small dataset, training big convolutional neural networks (CNNs) from the
beginning proved difficult. Neural networks need a lot of data to train well, which may not
be available. Instead of starting from scratch, using an existing model for a comparable job
can save training time and improve outcomes [41]. CNN structure is presented in Figure 4.

Figure 4. CNN architecture.

As stated in reference [4], transfer learning facilitates accelerated training and compen-
sates for the limited data set. It has been demonstrated that transfer learning is a dependable
and effective initial method for developing interpretable deep-learning models. Transfer
learning is an approach that applies pre-trained networks to novel tasks by modifying
them, thereby efficiently classifying diverse datasets. Classifying medical images, such
as brain MRI scans, with models initially trained on natural images from ImageNet [42]
proves to be a particularly advantageous application. During training, this study utilizes
pre-trained weights obtained from ImageNet [42]. Then, retraining networks on a new
dataset through the modification of the final fully connected layers, except for the final
fully connected layer, pre-trained layers are frozen, and each model is retrained using the
dataset in this scenario. In order to generate class prediction probabilities, the output layer
incorporates a fully connected layer with Softmax activation and a global pooling layer
(Global Average Pooling).

The selection of ResNet50 and VGG16 for our research was predicated on their distinct
attributes and benefits within the domain of medical image classification, specifically in
the context of transfer-learning-based Alzheimer’s disease (AD) diagnosis. ResNet50 and
VGG16 are pre-trained models, as described in [42]. By utilizing deep residual learning,
ResNet50 overcomes the difficulty associated with training extremely deep networks.
Additionally, ResNet50’s skip connection lets each layer make a link between its input
and output, which makes it easier for the model to understand complicated features in
medical images and speeds up the flow of data. The VGG16 architecture is selected due
to its simple design, which incorporates deeper networks utilizing smaller convolutional
filters (3 × 3). The simplicity of this approach facilitates the comprehension of acquired
features, which is particularly critical in medical situations where it is vital to grasp the
model’s reasoning process. Moreover, every layer in VGG16 represents a distinct level of
abstraction, thereby establishing a distinct hierarchy of features. The hierarchical structure
of this representation proves to be highly advantageous in the field of medical image
analysis, wherein the significance of multiple levels of detail varies.

The configuration parameters for the three tested models are summarized in Table 1.
Under identical conditions, the objective of this configuration is to compare the F1 score,
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recall, and precision of these various neural network architectures. This guarantees that the
hyperparameters for all three models are identical.

Table 1. Summarize the hyper-parameters used for training.

Parameters Proposed Method (PDL) VGG16 ResNet50

Number of epochs 30 30 30
Batch Size 34 34 34
Optimiser Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Loss Function Categorical cross-entropy Categorical cross-entropy Categorical cross-entropy

Throughout the experimental procedure, data preprocessing was conducted in a
consistent manner for all models, thereby guaranteeing consistent data partitions for the
purposes of training, validation, and testing as follows:

• For a consistent starting point, identical weights were assigned to each model during
initialization.

• During training, the designated hyper-parameters were applied to the training set,
while the progress of training was consistently monitored and assessed on the valida-
tion set.

• Using identical test set, performance metrics were computed for every model under-
going evaluation.

• To determine whether or not there were significant differences in performance metrics
between models, statistical tests were employed, including ROC curve tests.

The results were graphically represented, incorporating precise recall curves or confu-
sion matrices, which offered valuable insights into the merits and demerits of every model.

Proposed deep learning (PDL) is a CNN framework using EfficientNetB0, where ar-
chitecture is presented in Table 2, and a few other compounds explained in the next section.
EfficientNetB0 has been purposefully engineered to attain competitive performance while
minimizing computational demands. This characteristic renders it a highly suitable option
for situations in which there are limitations on resources, such as those encountered in med-
ical environments where computational resources may be limited, where EfficientNetB0
achieves a balance between model complexity and efficiency by uniformly scaling network
dimensions. This is beneficial in the context of medical applications where optimizing
resource utilization is a critical factor in achieving high predictive performance. Efficient-
NetB0 is famous for its efficiency and low cost. Due to compound scaling, the network’s
depth, breadth, and resolution are equal. The EffifientNetB0 model was pre-trained using
ImageNet, a large labeled dataset. Pre-trained weights from the ImageNet dataset were
used during training. The transfer-learning technique was used to repair the pre-existing
layers and then retrain the PDL model using Kaggle datasets.

Table 2. EfficientNetB0 architecture used in our model.

Steps Operator Resolution Channels Layers

1 Conv 3 × 3 224 × 224 32 1
2 MBconv1, 3 × 3 112 × 112 16 1
3 MBconv1, 3 × 3 112 × 112 24 2
4 MBconv1, 5 × 5 56 × 56 40 2
5 MBconv1, 3 × 3 28 × 28 80 3
6 MBconv1, 5 × 5 14 × 14 112 3
7 MBconv1, 5 × 5 14 × 14 192 4
8 MBconv1, 3 × 3 7 × 7 320 1
9 Conv 1 × 1 pooling 7 × 7 1280 1
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PDL is composed of several blocks. Convolutional and pooling layers precede fully
connected classification layers in each block. The PDL design included a batch normalizing
layer before the fully connected layer, and a global average pooling (GAP) was used to
build the model’s output layer. Layers were added after the fully connected layer flattened
the model. The rectified linear unit (ReLU) activation function, global average pooling
(GAP), 0.5 dropout layer, 4-unit dense layer, and Softmax activation function were used in
these layers. After flattening the fully connected layer, one dense layer was applied; this
layer was activated using ReLU, a dropout layer with a 0.5 dropout rate.

Mobile inverted residual bottleneck convolution (MBConv) [8] is a key characteristic
used in several building blocks. Two pointwise convolution layers have a bottleneck layer.
Pointwise convolutions increase output channels, while the bottleneck layer reduces input
channels. To balance accuracy and performance, DLS uses compound scaling to customize
its stack of MBConv layers. The compound scaling approach simultaneously modifies
network depth, breadth, and resolution; this optimizes computing resources.

The DLS underwent training using an adaptive moment estimation (ADAM) optimizer,
with a learning rate of 0.0001 and a batch size of 34. The training process consisted of a
minimum of 20 epochs, during which a dropout rate of 0.5 was applied to the dropout layer.

In PDL, Softmax activation [43] was used to calculate class prediction probabilities
using the dense function [44].

3. Results

The proposed method achieves its highest training and validation accuracy at epoch
20, reaching 99.8% and 99.0%, respectively. The corresponding losses for the training and
validation sets are 0.006 and 0.02. The VGG16 architecture demonstrated lower performance
in terms of training and validation accuracy at epoch 20, achieving rates of 99.4% and 98.2%,
respectively. The corresponding losses were recorded as 0.025 and 0.05. In contrast, the
ResNet50 network has a training accuracy of 98.0% and a validation accuracy of 96.5%,
with corresponding loss values of 0.04 and 0.15. On the other hand, the proposed method
has the advantage of requiring the least amount of time per iteration. Upon assessing
the loss curve, it becomes apparent that the loss values of PDL exhibit a more rapid fall
and tend towards zero in comparison to other networks. The VGG16 model has a higher
iteration time compared to the PDL model, with the former taking around twice as long.
On the other hand, the ResNet50 model demonstrates the longest training duration among
the three models. All three models eventually converge; however, the PDL and VGG16
models have the fastest convergence rates.

The PDL model demonstrates a classification accuracy of over 98% and an error rate
below 2% after five iterations. Both the ResNet50 and VGG16 models need more than
10 iterations. As a result, adversarial pictures only exhibit a minimal level of resilience.
Consequently, the PDL and VGG16 models exhibit notable efficacy and robust convergence
in the context of Alzheimer’s disease identification. Figure 5 presents the accuracy and
loss metrics obtained from trained and validated databases over a span of 20 iterations
using mixed data sets. Consequently, the PDL exhibits superior efficiency and accuracy in
recognizing Alzheimer’s disease. The results prove that among the selected methods, the
PDL has a notable capacity for generalization in Alzheimer’s disease recognition and is
well suited for a broader range of diagnostic situations related to Alzheimer’s disease.
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Figure 5. The accuracy and loss curves in the training and validation stages for the 3 models; blue
lines represent training, and red lines represent validation. The first raw images, from the top,
represent the accuracy and loss of Resnet50; the second raw images represent the accuracy and loss
of VGG16; and the third raw images represent the accuracy and loss of PDL.
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3.1. Prediction Performance

Figure 5 shows the accuracy and loss curves in the training and validation stages,
where a blue line indicates training loss and a red line for validation loss indicates the three
convolutional models we experimented with during this work, which were trained on four
class datasets for 25 epochs.

Performance metrics are applied to test data by considering normal, very mild, mild,
and moderate AD cases.

As shown in Figure 6, in terms of precision, recall, and F1 score, when comparing all
methods, it is observed that PDL achieved the lowest loss value of 0.02 and performed the
best accuracy of 99%. The lowest accuracy is obtained with ResNet50 (96.5%). For further
in-depth evaluation of performance, the results are reported in Table 3.

   
(A) F1 Score (B) Precision (C) Recall 

Figure 6. (A) The performance metric of F1 score, where ResNet50 results are shown in blue, VGG16
results are shown in yellow, and PDL results are shown in green. (B) The performance metric of
precision, where ResNet50 results are shown in blue, VGG16 results are shown in yellow, and PDL
results are shown in green. (C) The performance metric of recall, where ResNet50 results are shown
in blue, VGG16 results are shown in yellow, and PDL results are shown in green.

Table 3. Performance measures: comparison between pertained models architecture based on
AD patients.

Models Class Label
Precision

(%)
Recall

(%)
F1-Score

(%)
Average

Score

Normal 98 97 98 97.6%
ResNet50 Very Mild 93 97 95 95%

Mild 97 91 94 94%
Moderate 100 100 100 100%
Normal 98 99 99 98.6%

VGG16 Very Mild 98 97 97 97.3%
Mild 100 98 99 99%
Moderate 100 100 100 100%
Normal 99 99 98 98.6%

Proposed Method Very Mild 100 99 99 99.3%
Mild 100 99 99 99.3%
Moderate 100 100 100 100%

The prediction of the early stage of a very mild class is intriguing due to the inherent
challenges associated with its diagnosis. In contrast, the classification of the late stage,
which falls under the moderate category, is rather straightforward since all algorithms
consistently yield a 100% accuracy rate in their results. In the early stages of AD, the PDL
demonstrates superior performance with a precision of 100%, recall of 99%, and F1 score of
99%. In contrast, the ResNet50 and VGG16 models exhibit lower predictions, as shown in
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Table 3. Consequently, it is evident that PDL has superior performance in comparison to
the other two models.

Additionally, in order to conduct a more comprehensive assessment of the classification
models, Figure 7 presents a confusion matrix diagram that serves as a concise representation
of the prediction outcomes during the evaluation of classification models on test data. The
PDL model demonstrates remarkable performance in detecting both normal and early
disease cases. In particular, the PDL yields 2–3% superior results compared to the VGG16
and ResNet50 models. It systematically summarizes the number of correctly or incorrectly
predicted images. The vertical axis corresponds to the predicted class (output class), while
the horizontal axis represents the true class (target class). Each confusion matrix is visually
depicted as a heat map, utilizing color-coding techniques. The presence of darker pixels
representing the diagonal elements is observable in all of the confusion matrices that have
been displayed. This observation suggests that a substantial quantity of data is accurately
classified in its corresponding category. In contrast, bright hues show instances of model
misclassifications. The PDL achieved accurate classification for 1044 out of 1047 normal
images, 698 out of 703 very mild images, and 269 out of 274 mild images. In contrast, it was
shown that all algorithms exhibited accurate classification of the moderate AD group, while
the very mild class demonstrated the lowest accuracy in classification. In the mild class,
the VGG-16 model accurately predicted 267 out of the total mild images (274), whereas the
ResNet-50 model properly identified 249 out of the total 274 AD images.

 
(A) Confusion matrix of ResNet50 

Figure 7. Cont.
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(B) Confusion matrix of VGG16 

 
(C) Confusion matrix of the proposed method (PDL) 

Figure 7. The confusion matrices of ResNet50, VGG16, and PDL are presented in (A–C), respectively.
The dark blue square represents normal (non-AD), the sky blue represents very mild, the gray
represents mild, and the non-colored square represents moderate. The horizontal axis represents
the predicted label, and the vertical axis represents the true label. The number in the center of each
square represents the number of images that were classified correctly. The other numbers represent
the misclassification.
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3.2. ROC Curves

The receiver operating characteristic (ROC) curve, which stands for “true positive rate
vs. false positive rate”, is a graph that shows how well a classification model works with
different types of classification criteria. The ROC curves, specifically the AUC (area under
the ROC curve) values, for the proposed approach (PDL), VGG16, and ResNet50 models
are compared in Figure 8 in relation to the four cases of Alzheimer’s disease. The ROC
curves illustrate the individual AUC scores for each class as generated by three models, i.e.,
the classifiers that underwent training using EfficientNetB0 exhibited superior performance
in comparison to those that were trained using ResNet50 and VGG16.

Figure 8. Representing the ROC curves, the vertical axis represents the true positive rate, and the
horizontal axis represents the false positive rate. It shows the class-wise AUC scores obtained by
the three models: (A) represents the proposed method; (B) represents VGG16; and (C) represents
ResNet50. Blue represents the normal case (class 1), orange represents very mild AD (class 2), green
represents mild AD (class 3), and red represents moderate AD (class 4).

4. Discussion

This study tested transfer learning to train our proposed deep-learning algorithm
with the objective of accurately classifying different stages of Alzheimer’s disease. This
study compared our proposed method with two other well-known methods (VGG16 and
ResNet50) on Kaggle AD datasets. The findings of our study exhibited a higher level of
accuracy and yielded favorable results in comparison to other investigations [45]. The
results of our work indicate that pre-trained models achieved high levels of accuracy
without requiring data augmentation or extended training epochs. The utilization of hyper-
parameters, as informed by previous research [46], involved the adjustment of batch size
and learning rate to enhance the learning process and improve generalization accuracy.
This enabled us to train CNNs that exhibit effective picture classification capabilities
even when using less precise hyper-parameter values. Based on our results, it has been
shown that a trained model has the ability to effectively classify AD into distinct phases
with a high degree of accuracy. The classification results produced by the three distinct
models are presented in Table 3, along with the corresponding values for four performance
indicators. The proposed model demonstrated higher performance than VGG16 and
Resnet50 for normal cases in terms of overall precision, with scores of 99.00%, 98.00%, and
98%, respectively. The evaluation of F1 score, precision, and recall performance metrics
indicates that the proposed framework outperforms VGG16 in most scenarios. Equally, the
ResNet50 model exhibits comparatively inferior performance outcomes compared to the
other models. The consistency of the AUC values across all categories indicates that the
predictions made by the proposed model are stable. Furthermore, the findings indicate
that the prediction accuracy of both the VGG16 and ResNet50 models was comparatively
lower for the mild and very mild stages. The results also indicated that the utilization of
AD improved the ability to classify across all categories. A notable observation is that a
significant proportion of the receiver operating characteristic (ROC) curves are situated
above the linear reference line that connects the points (0,0) and (1,1). Nevertheless, the
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curves in question do not demonstrate a significant closeness to the upper-left corner,
mostly because a restricted dataset was used for testing. Based on the confusion matrices
depicted in Figure 7, it is apparent that the two highest-performing models exhibited nearly
identical levels of accuracy when identifying MRI pictures associated with Alzheimer’s
disease. The proposed model demonstrates accurate classification, with a success average
rate of 98.6% for normal brain pictures and 99.3% for mild and very mild AD images. The
VGG16-based model has an accuracy rate of 98.6% for correctly classifying normal cases,
99% for mild AD, and 97.3% for very mild AD images. The ResNet50 model demonstrates
an accuracy rate of 97.3% for properly classifying normal brain images, 95% for accurately
identifying very mild AD, and 94% for correctly classifying mild AD images. Based on the
results of the analysis, it can be concluded that the performance of the proposed model
surpassed that of the VGG16 and ResNet50 models for mild and very mild AD cases.

5. Conclusions

This paper describes an automated new method for diagnosing Alzheimer’s disease
(AD) that uses image processing and novel deep transfer learning to figure out how bad
the disease is and find important brain areas linked to it. The models use limited training
sets of brain MRI scans. The empirical evaluations conducted in our study demonstrate
that our proposed approach exhibited superior performance in handling the classification
method compared to other popular state-of-the-art models. It attained an impressive
overall average classification accuracy of 99.3%.

The findings of this work indicate that the proposed approach shows excellent per-
formance in properly classifying Alzheimer’s disease (AD) and its various stages within a
limited and restricted dataset. The findings underscore the capacity of computers to aid
physicians in the process of diagnosing AD conditions. The proposed method demon-
strated remarkable efficacy in extracting valuable information from pictures and accurately
predicting prognostic indicators of the disease. Notably, this was achieved without requir-
ing extensive image processing, optimization, or data augmentation techniques. Further
research will be conducted to examine the impact of data augmentation techniques on the
outcomes of various AD datasets.
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Abstract: From 1993 to 2013, tacrine was an approved drug for Alzheimer’s disease. Due to its
strong inhibitory properties towards cholinesterase, tacrine causes an increase in the level of the
neurotransmitter acetylcholine in the cholinergic system of the central nervous system. This work
presents a review of articles in which tacrine or its derivatives labeled with the radionuclides 3H,
11C, 14C, 123I, 99mTc and 68Ga were used as vectors in radiotracers dedicated to the diagnosis of
Alzheimer’s disease. The possibility of clinical applications of the obtained radiopreparations was
assessed by analyzing their physicochemical properties, ability to cross the blood–brain barrier and
the level of uptake in the brain. Based on these data, it was shown that radiopreparations based on
the tacrine molecule or its very close analogues retain the ability to cross the blood–brain barrier,
while radiopreparations containing a more modified tacrine molecule (connected via a linker to
a radionuclide chelator) lose this ability. This is probably the result of the addition of a chelator,
which significantly increases the size of the radiopreparation and reduces its lipophilicity. Computer
docking studies of tacrine derivatives and/or radiopreparations showed how these compounds bind
to the active sites of acetyl- and butyrylcholinesterase.

Keywords: Alzheimer’s disease; tacrine; radiopharmaceuticals; molecular modeling; PET; SPECT

1. Introduction

Alzheimer’s disease (AD) is a progressive central nervous system (CNS) disease
leading to the loss of cognitive abilities, the initial symptoms of which are often attributed
to the normal aging process [1–3]. The initial stage of the disease may last for many years
and is often latent. In the final stage of the disease, the patient is unable to perform basic
everyday activities. Alzheimer’s disease cannot be cured. Nevertheless, early symptomatic
treatment helps alleviate the symptoms and delay the progression of the disease. However,
this requires an early diagnosis, which is usually unattainable due to the long latent period
of the disease and the lack of morphological symptoms. Such pathophysiological symptoms
in everyday functioning, such as dementia, loss of memory and orientation and loss of daily
physical activities, which are often similar to those of other diseases, are already visible at
the stage of very advanced AD. The causes of Alzheimer’s disease are not clearly defined.
Many risk factors, both environmental and genetic, are considered here. These may be, for
example, a head injury, clinical depression, high blood pressure [3] or a genetic factor [4,5].
In the course of Alzheimer’s disease, increased amounts of beta-amyloid (Aβ) accumulate
in the brain, which can accumulate extracellularly in the form of amyloid plaques and tau
proteins or intracellularly in the form of neurofibrillary tangles—both of these phenomena
cause impairment of neuronal transmission, leading to the loss of proper brain function [6].
AD cannot be cured, and already existing pathophysiological symptoms cannot be reversed.
However, it is possible to slow down the course of this disease and reduce its cognitive
symptoms. An early pathophysiological feature of the mild to moderate stages of AD is
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loss of memory and cognitive function, caused by a deficiency of the neurotransmitter
acetylcholine (ACh). ACh deficiency results from its hydrolysis, induced by the enzyme
acetylcholinesterase (AChE), and leads to the selective loss of cholinergic neurons in the
cerebral cortex, basal ganglia and hippocampus [7]. The two main therapeutic strategies
in AD are influencing the processing of amyloid precursor protein (APP) and slowing the
decline of neuronal degeneration and improving cholinergic neurotransmission [1,7–10].
As therapeutic agents in the mild and moderate stages of Alzheimer’s disease, AChE
inhibitors, e.g., tacrine, rivastigmine, galantamine and donepezil, have been used [11–14].
One of the known and tested inhibitors is tacrine (1,2,3,4-tetrahydro-9-amino acridine,
THA)—the active substance of the drug Cognex [15,16], approved in 1993 by the US Food
and Drug Administration (FDA) for use in treating the symptoms of AD. The therapeutic
effect of THA is achieved by reversible binding to AChE and its inactivation, which results
in an increase in the concentration of ACh at cholinergic synapses, thanks to which a
greater number of cholinergic neurons remain intact, and the progression of the disease
is slowed down [10,12,17,18]. Tacrine is characterized by high biological activity towards
AChE, but unfortunately, it causes a number of common side effects (nausea, indigestion,
vomiting, anorexia, abdominal pain, diarrhea, skin rash) and a high risk of liver damage,
especially when using large doses of the drug [11–14,19]. In 2013, it was withdrawn due to
hepatotoxicity and cardiovascular problems occurring in patients.

Nevertheless, both tacrine and its derivatives have been used as biologically active
molecules in potential radiopharmaceuticals dedicated to the early diagnosis of Alzheimer’s
disease [1]. Diagnostic radiopharmaceuticals are compounds that use a biologically active
molecule as a vector and contain a diagnostic radionuclide emitting gamma or beta plus
radiation. They are administered to the patient in nanomolar amounts, so they do not
cause any morphological changes in the body. At the same time, registration of the emitted
radiation allows for the precise location of the radiopharmaceutical in the patient’s body
and thus the location of the disease lesion.

In the presented review, we collected and discussed data on radioactively labeled
tacrine and its derivatives indicated to the early diagnosis of Alzheimer’s disease. Specific
consideration has been placed on the role of computational molecular modeling in the
visualization of the interaction of tacrine with cholinesterase.

2. Radiolabeled Tacrine and Its Derivatives Used in Alzheimer’s Disease

There are many papers on tacrine and its use in treating the symptoms of Alzheimer’s
disease but only a dozen papers on the use of tacrine and its derivatives as a vector in
described radiotracers.

2.1. Radiotracers Based on Tacrine

One of the first tacrine-based radiopreparations was the [9-14C]tacrine radiotracer
(Figure 1A) [20,21]. The authors examined the distribution of this radiotracer in the rat
body after both intravenous and oral administration using a quantitative whole-body
autoradiographic method [20]. Based on the results obtained, the authors concluded that,
in both cases, [14C]tacrine ([14C]THA) crosses the blood—brain barrier; the biodistribution
of the radiotracer is similar, although after oral administration, the absorption of the
radiotracer persists in the organs noticeably longer. Due to the potential use of ([14C]THA)
in the diagnosis of neurological diseases, the authors examined the regional distribution of
the radiotracer in the brain—the highest levels of radioactivity were detected in the cortex,
hippocampus, cerebellum and striatum. Analyzing the distribution of the radiotracer
in individual parts of the brain, the authors found that it did not correlate consistently
with the distribution of acetylcholinesterase (AChE), which may suggest that the effect of
tacrine in the treatment of senile dementia may occur in a way other than by inhibiting
the enzyme. Based on the high level of activity detected in the kidneys and ureters, the
authors also concluded that the radiotracer is excreted primarily in the urine, although they
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also noted that there are indications of excretion of the radiotracer and its metabolites into
the intestines.

Figure 1. Radiotracers based on tacrine: (A) [9-14C]tacrine [20,21]; (B) [9-14C]1-OH-THA [21]; (C) [7-
3H]tacrine [22,23]; (D) [5,7-3H]tacrine [23].

Further research by McNally et al. on the application of the radiotracer [9-14C]tacrine
(Figure 1A) in the study of THA distribution in the brain is presented in [21]. Using
oral administration (by oral gavage) and single or multiple (twice daily for 3 days) doses
(SD or MD, respectively), the authors performed in vivo studies of the distribution of
[9-14C]THA and its main metabolite [9-14C]1-OH-tacrine ([9-14C]1-OH-THA, Figure 1B)
in rats. At selected time intervals, ranging from 0.5 h to 96 h, they examined the level of
radioactivity in blood, plasma, the heart, the lungs, the kidneys, the liver, the pancreas
and various brain regions (brainstem, cerebellum, cortex, hippocampus, striatum and
thalamus) using the autoradiography method. The authors also performed in vitro studies
of the process of tacrine metabolism in the brain. The rat brain homogenate was incubated
with the [9-14C]THA radiotracer and its metabolite [9-14C]1-OH-THA. Then, after the
incubation, the products of tacrine metabolism were identified using the HPLC method in
specially prepared samples. For this purpose, various products of tacrine metabolism ([9-
14C]1-OH-THA, [9-14C]2-OH-THA and [9-14C]4-OH-THA) and their reference compounds
(1-OH-THA, 2-OH-THA and 4-OH-THA) were previously characterized by HPLC. Based
on the results obtained, McNally et al. drew a number of conclusions. They found that,
for both doses used (SD and MD), the distribution of [9-14C]THA in the brain was similar,
although in the case of MD, the radioactivity levels in the tested organs were visibly higher.
After oral administration of [9-14C]THA, the radiotracer penetrates very quickly into the
brain and accumulates in the cortex and hippocampus, i.e., in the areas responsible for
the cognitive functions of the brain. In vitro studies of tacrine metabolism in the brain
performed using rat brain homogenate showed that this process practically does not occur
in the brain and that metabolite [9-14C]1-OH-THA has a very limited ability to cross the
blood–brain barrier. This difference in the ability to cross the blood–brain barrier correlates
well with the log p values calculated by the authors for THA and its metabolite 1-OH-THA
(3.30 and 1.66, respectively). The lack of transformation of tacrine into its metabolites in the
brain and low ability of metabolites to cross the blood-brain barrier correlate perfectly with
(observed in radioautographic studies in rats) a slight accumulation of [9-14C]1-OH-THA in
the brain and a high level of [9-14C]1-OH-THA in the blood, which explains the significantly
higher brain-to-plasma ratio determined for tacrine than for its 1-OH-THA metabolite. The
results of the experiments conducted by the authors also indicate that the transport of THA
and its metabolites to the brain tissue takes place through a simple passive process, and the
excretion of these compounds occurs through the biliary and urinary tracts.

Tritium-labelled tacrine, [7-3H]tacrine ([3H]THA, a very close analogue of tacrine,
custom synthesized from 7-bromo-9-amino-1,2,3,4-tetrahydroacridine, Figure 1C), was
used in the study by Mena et al. to locate tacrine binding sites in the rat brain [22]. Using P2
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membrane fractions prepared from rat brain, Mena and Desai performed a number of tests:
AChE enzymatic test, localization of [3H]THA binding sites, kinetic parameters of [3H]THA
binding using various concentrations of inactive THA and the ability of THA to inhibit
AChE. In order to be able to compare the results obtained, experimental conditions (buffer,
pH, concentration of the tested compound) as similar as possible were used in all studies.
Based on the results obtained, the authors concluded that [3H]THA binds to the mem-
brane almost rapidly but in a reversible manner—adding an inactive ligand completely
removed [3H]THA from the membrane. They also showed that the binding of [3H]THA
in the rat brain is not blocked by a number of other neurotransmitters/neuromodulators,
so the binding site of [3H]THA is different from the sites of action (sites of receptors) of
these compounds. Moreover, their research (autoradiography) also showed that [3H]THA
binding sites are not located together with the activity of acetylcholine (and other acetyl-
cholinesterase inhibitors); therefore, it can be concluded that the clinical effect of THA may
also result from an action other than through the cholinergic neuronal system.

The procedure for the synthesis of tritium-labeled tacrine was described by Egan
et al. [23]. The authors synthesized two radiopreparations, [7-3H]tacrine (Figure 1C) and
[5,7-3H]tacrine (Figure 1D), using the catalytic tritium dehalogenation of 7-bromo-tacrine
and 5,7-dibromo-tacrine compounds, respectively. The products of the individual stages of
synthesis were analyzed using the proton and tritium NMR method and TLC and HPLC
methods equipped with UV and/or liquid scintillation detectors.

In 2007, Jogani et al. presented the results of studies on the intravenous and intranasal
administration of tacrine labeled with technetium-99m [24]. The labeling reaction was
performed directly using a solution of tacrine in propylene glycol, reducing agent SnCl2 and
pertechnetate solution [99mTc]TcO4

− (eluate from the 99Mo/99mTc generator). The authors
demonstrated the stability of the radiopreparation in normal saline solution and in mouse
serum as well as in a challenge experiment with DTPA (diethylenetriamine pentaacetic acid).
Unfortunately, the obtained radiopreparation [99mTc]Tacrine solution ([99mTc]Tc-TS) was
tested only by thin-layer chromatography (TLC) using silica gel-coated fiberglass sheets as
a stationary phase and two different mobile phases: acetone and pyridine:acetic acid:water
(3:5:1.5, v/v). The structure of [99mTc]Tc-TS is also unknown. The paper presents the results
of biodistribution studies in mice and γ-scintigraphy imaging studies (performed using
single photon emission computerized tomography, SPECT) in rabbits. In both studies,
intravenous (IV) and intranasal (IN) administrations of [99mTc]Tc-TS were used. The
results of these studies showed that the tacrine concentration in the brain after intranasal
administration was significantly higher than after intravenous administration. The authors
concluded that nasal-to-brain administration of tacrine may provide an alternative route
to the currently used oral route, which is limited by tacrine’s low bioavailability and
pronounced side effects.

Jogani et al. continued to study tacrine delivery to the brain via the nasal route using
other tacrine formulations [25]. It is known that, in nasal drug administration, the appli-
cation of microemulsion and mucoadhesive agent, due to the small size of the globules
and their lipophilicity, effectively improves the delivery process of a drug by increasing the
retention of formulations at the absorption site. The authors prepared and characterized
tacrine solution (TS), tacrine microemulsion (TME) and tacrine mucoadhesive microemul-
sion (TMME) and assessed their pharmacokinetic and pharmacodynamic properties in the
process of tacrine delivery to the brain. Then, similarly to previous studies [24], all three
tacrine formulations were labeled with 99mTc radionuclide to obtain the radiopreparations
[99mTc]Tc-TS, [99mTc]Tc-TME and [99mTc]Tc-TMME. As before, the stability of all three radio-
tracers was tested in normal saline solution and in mouse serum as well as in a challenge
experiment with DTPA. Using different routes of administration (intranasal (IN) and intra-
venous (IV)) and all three radiotracers, the authors performed biodistribution studies in
mice and γ-scintigraphy imaging studies in rabbits. Analyzing the results obtained in all
studies (for TS, TME, TMME, [99mTc]Tc-TS, [99mTc]Tc-TME and [99mTc]Tc-TMME and IN or
IV administration), the authors showed that, in the case of intranasal administration, the

243



Appl. Sci. 2024, 14, 2827

accumulation of a given tacrine formulation (TS, TME, TMME, [99mTc]Tc-TS, [99mTc]Tc-TME
and [99mTc]Tc-TMME) in the brain and the brain/blood ratio was higher than in the case of
intravenous administration. They also showed that the most efficient transport of tacrine to
the brain was observed in the case of TMME-based preparations, followed by TME-based
preparations, and the lowest was observed in the case of TS-based preparations. The results
of the study by Jogani et al. suggest that the intranasal administration of an appropriate
tacrine formulation may minimize gastrointestinal and hepatic side effects and may play
an important role in the treatment of patients with Alzheimer’s disease.

Concise information concerning radiotracers based on tacrine is presented in Table 1.

Table 1. Radiotracers based on tacrine.

Tacrine-Based Radiotracers Research Purpose and Conclusions References

[9-14C]tacrine
([14C]THA)

Distribution of the radiopreparation in the rat body after both intravenous and oral
administration, studies of the process of tacrine metabolism in the brain

• In both cases, [14C]THA crosses the blood–brain barrier;
• Biodistribution of the radiotracer is similar, although after oral administration, the

absorption of the radiotracer persists noticeably longer in the organs;
• The highest levels of radioactivity were detected in the cortex, hippocampus,

cerebellum and striatum;
• The radiotracer is excreted mainly in the urine and partly through the intestines;
• Tacrine metabolism practically does not occur in the brain;
• The main metabolite of tacrine is [9-14C]1-OH-THA, and it has a very limited

ability to cross the blood–brain barrier.

[20,21]

[7-3H]tacrine ([3H]THA)

AChE enzymatic test, localization of [3H]THA binding sites in the rat brain, kinetic
parameters of [3H]THA binding, ability of THA to inhibit AChE

• [3H]THA binds to the membrane almost rapidly but in a reversible manner;
• Binding of [3H]THA in the rat brain is not blocked by a number of other

neurotransmitters/neuromodulators, so the binding site of [3H]THA is different
from the sites of action of these compounds;

• [3H]THA binding sites are not located together with the activity of acetylcholine
(and other acetylcholinesterase inhibitors), so it can be concluded that the clinical
effect of THA may also result from an action other than through the cholinergic
neuronal system.

[22]

[7-3H]tacrine and
[5,7-3H]tacrine

Procedure for the synthesis of tritium-labeled tacrine, analysis of products using TLC,
HPLC and NMR methods [23]

[99mTc]Tacrine solution
([99mTc]Tc-TS)

Studies on the intravenous (IV) and intranasal (IN) administration of tacrine labeled
with technetium-99m, biodistribution studies in mice

• The tacrine concentration in the brain after IN administration is significantly
higher than after IV administration;

• Nasal-to-brain administration of tacrine may provide an alternative route to the
currently used oral route, which is limited by tacrine’s low bioavailability and
pronounced side effects.

[24]

[99mTc]Tc-TS, [99mTc]Tc-TME,
[99mTc]Tc-TMME

Syntheses and characterization of tacrine solution (TS), tacrine microemulsion (TME)
and tacrine mucoadhesive microemulsion (TMME) and assessment of their
pharmacokinetic and pharmacodynamic properties in the process of tacrine delivery to
the brain, radiolabeling of these tacrine formulations with 99mTc, biodistribution studies
in mice after intravenous (IV) and intranasal (IN) administration

• In the case of IN administration, the accumulation of a given tacrine formulation in
the brain and the brain/blood ratio are higher than in the case of IV administration;

• The most efficient transport of tacrine to the brain was observed in the case of
TMME-based preparations, followed by TME-based preparations, and the lowest
was observed in the case of TS-based preparations

• IN administration of an appropriate tacrine formulation may minimize
gastrointestinal and hepatic side effects and may play an important role in the
treatment of patients with AD

[25]
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2.2. Radiotracers Based on Tacrine Derivatives

Some of the first reports on radionuclide-labeled tacrine derivatives are the papers
presenting 1,2,3,4-tetrahydro-9-methyl-amino acridine (N-methyl-THA, MTHA) labeled
with 11C radionuclide, synthesized by Bonnot et al. [26] and studied in vivo in non-human
primates by Tavitian et al. [27] and in healthy human volunteers by Traykov et al. [28].
In vitro testing of tacrine (THA) and its N-methyl derivative MTHA showed that both com-
pounds have very similar inhibitory properties towards acetylcholinesterase (AChE) [27].
The authors conducted a study of the distribution of the [methyl-11C]1,2,3,4-tetrahydro-
9-methyl-amino acridine radiotracer ([11C]MTHA, Figure 2A) in rats (radioactivity was
measured in blood, plasma, the heart, the liver, the kidneys, the lungs, skeletal muscles
and the brain (separately in the pons, cerebellum, colliculi, hypothalamus, hippocam-
pus, striatum and anterior and posterior cortices)), and positron emission tomography
(PET) imaging was performed on two male adult baboons. In these experiments (distri-
bution study in rats and PET imaging in baboons), both [11C]MTHA radiotracer alone
and [11C]MTHA radiotracer together with unlabeled THA administered simultaneously or
20 min before tracer injection were used. The results, in the case of using the [11C]MTHA
radiopreparation and in the case of administering the [11C]MTHA radiopreparation and
then unlabeled THA, showed significantly different amounts of radioactivity accumulated
in the examined organs, significantly lower in the case of using unlabeled THA in the exper-
iment, e.g., radioactivity accumulated in all brain regions studied in the case of coinjection
of THA together with [11C]MTHA was 40–50% lower. This allows for us to conclude that
these two molecules ([11C]MTHA and THA) compete for the same binding sites. Based on
these results, the authors concluded that the [11C]MTHA radiotracer could be considered a
promising PET ligand for studying THA binding in the brain.

 
Figure 2. Radiotracers based on tacrine derivatives: (A) [methyl-11C]1,2,3,4-tetrahydro-9-methyl-
amino acridine [26–28]; (B) 9-amino-8-fluoro-2,4-methane-1,2,3,4-[9-14C]tetrahydroacridine [29]; (C) 7-
[123I]iodotacrine [30].
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The first studies of the [11C]MTHA radiotracer (Figure 2A) in position emission
tomography (PET) imaging in healthy volunteers are presented in the publication by
Traykov et al. [28]. The study involved four healthy men who had never been diagnosed
with Alzheimer’s disease or other chronic diseases. The [11C]MTHA radiotracer was used
in PET and magnetic resonance imaging (MRI) methods in order to obtain individual
cerebral anatomy. At specific time intervals (up to 70 min after intravenous administration
of the tracer), the authors determined the level of radioactivity in the blood and in the
selected areas of the brain (white matter, putamen, thalamus, brainstem, cerebellum,
cortex). The determined radioactivity in the brain was relatively high and amounted to
approximately 6% of the administered dose. Radioactivity in the blood, after a rapid
increase (approximately 1.5 min after administration) and then an equally rapid decline
(approximately 5 min after administration), increased very slightly; this is related to the
circulation of radiotracer metabolites ([11C]1-hydroxy-MTHA) in the blood [21], which are,
however, capable of crossing the blood–brain barrier to a significantly lesser extent than
the administered radiotracer [21]. Traykov’s study also showed that brain accumulation of
the radiotracer [11C]MTHA differs from the sites of action and/or sites of elevated AChE
concentrations detected post-mortem in human brains. This allows for us to assume that
the cerebral distribution of the [11C]MTHA radiotracer in the human nervous system is
not parallel with AChE, so the clinical effect of THA may also occur in a way other than
through the cholinergic neuronal system, which has already been discussed in previous
works [20,22].

Another radionuclide-labeled tacrine derivative is the radiopreparation based on the
cholinesterase inhibitor 9-amino-8-fluoro-2,4-methane-1,2,3,4-tetrahydroacridine in which
14C radionuclide is located in position 9 of the tetrahydroacridine ring (Figure 2B) [29].
Practically in every step of the synthesis of this radiotracer, the obtained intermediates
were tested using many analytical methods (radio-thin layer chromatography (RTLC),
radio-high performance liquid chromatography (RHPLC), infrared spectrum (IR), proton
nuclear magnetic resonance (NMR) and mass spectrum (MS)). According to the authors’
intention, this radiopreparation was to be used in metabolic studies, but due to the presence
of a tacrine derivative and therapeutic radionuclide C-14, it could also be considered as a
potential therapeutic radiopharmaceutical in Alzheimer’s disease. However, this would
also require physicochemical tests of the compound (lipophilicity, stability in body fluids
and serum), which were not tested in this work.

Akula et al. developed a four-step synthesis procedure of 7-[123I]iodotacrine ([123I]7-I-
THA, Figure 2C), a potential imaging agent for single photon emission computer tomogra-
phy (SPECT), to map acetylcholinesterase (AChE) receptor sites in living organisms [30].
In each step of the synthesis of the [123I]7-I-THA radiopreparation, the obtained interme-
diates were tested using analytical methods: melting points, elemental analysis and 1H-
and 13C-NMR analyses. The radiochemical purity of the [123I]7-I-THA radiopreparation
was tested by thin-layer chromatography (TLC) using an aluminum silica gel plate and a
chloroform/methanol mixture (4:1, v/v) as a developing solvent. However, there are no
reports in the literature of further studies using this radiotracer.

In the years 2017–2022, several works were published in which the labeling of tacrine
derivatives with the diagnostic radionuclides 99mTc and 68Ga was presented. The proce-
dures for synthesizing and testing the physicochemical properties of the tacrine derivatives
used here were designed and described by Szymański et al. [31,32]. The structural modifica-
tion of tacrine consisted of attaching to the amino group of tacrine an aliphatic hydrocarbon
chain composed of -(CH2)n- groups (where the number of carbon atoms n was from two to
nine) and a bifunctional coupling agent (BFCA) capable of forming complexes with a given
radionuclide. It was a series of compounds that differed only in the number of methylene
groups (affecting the lipophilicity parameter of the compound) between tetrahydroacridine
and the radionuclide complexing moiety.

The work by Gniazdowska et al. presents the syntheses and physicochemical and
biological studies of eight [99mTc]Tc(NS3)(CN-NH(CH2)nTac radioconjugates (Figure 3A)
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consisting of 99mTc radionuclide coordinated by the tetradentate tripodal chelator (NS3,
tris(2-mercaptoethyl)-amine) and a monodentate isocyanide ligand (CN-BFCA, succin-
imidyl isocyanobutyric ester) previously conjugated to the tacrine molecule (Tac) [33]. All
radioconjugates turned out to be completely stable in a challenge experiment with cysteine
and histidine solutions and in human serum. For the [99mTc]Tc(NS3)(CN-NH(CH2)7Tac
radioconjugate characterized by the highest lipophilicity, stability tests in cerebrospinal
fluid, biological activity towards acetylcholinesterase using Ellman’s method and a multior-
gan biodistribution study in normal mice were performed. For this radioconjugate and its
parent tacrine-based complexing agent CN-NH(CH2)7Tac, computer docking studies were
also performed. The biodistribution study showed a higher uptake of [99mTc]Tc(NS3)(CN-
NH(CH2)7Tac in the liver than in the kidney, indicating the clearance of the radiocon-
jugate mainly through the hepatic route. High uptake was also observed in the lung,
but uptake in the brain was relatively low, nevertheless demonstrating the ability of the
[99mTc]Tc(NS3)(CN-NH(CH2)7Tac radioconjugate to cross the blood–brain barrier.

 
Figure 3. Radioconjugates based on tacrine derivatives: (A) [99mTc]Tc(NS3)(CN-
NH(CH2)7tacrine [33]; (B) [99mTc]Tc-Hynic-(tricine)2NH(CH2)ntacrine [34]; (C) [68Ga]Ga-
DOTA-NH(CH2)ntacrine [34].

Radioconjugates based on the same tacrine derivatives, containing the radionu-
clide 99mTc complexed by 6-hydrazinonicotinamide (HYNIC) and 68Ga complexed by
macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), are
presented in another work by Gniazdowska et al. [34]. All synthesized [99mTc]Tc-Hynic-
(tricine)2NH(CH2)ntacrine ([99mTc]Tc-Hynic-NH(CH2)nTac) (Figure 3B), where n was in
the range from two to nine, and [68Ga]Ga-DOTA-NH(CH2)ntacrine ([68Ga]Ga-DOTA-
NH(CH2)nTac), where n was seven, eight or nine (Figure 3C), turned out to be completely
stable in cysteine and histidine solutions (challenge experiments), in human serum and in
cerebrospinal fluid. The lipophilicity parameter was determined for all radioconjugates,
and the determined log D parameters showed that all [99mTc]Tc-Hynic-NH(CH2)nTac and
[68Ga]Ga-DOTA-NH(CH2)nTac radioconjugates are definitely hydrophilic compounds. Fur-
thermore, the radioconjugates containing the [68Ga]Ga-DOTA complex were significantly
more hydrophilic than the radioconjugates containing the [99mTc]Tc-Hynic complex. For the
two radioconjugates (one from each series, [99mTc]Tc-Hynic-NH(CH2)9Tac and [68Ga]Ga-
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DOTA-NH(CH2)9Tac, containing nine methylene CH2 groups in the aliphatic chain) with
the most appropriate physicochemical properties (the highest possible lipophilicity param-
eter), cholinesterase inhibitory activity tests, biodistribution studies in mice and molecular
modelling studies were carried out. Studies of the biological activity of the radioconjugates
[99mTc]Tc-Hynic-NH(CH2)9Tac and [68Ga]Ga-DOTA-NH(CH2)9Tac showed that these com-
pounds have equally strong inhibitory properties against acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) as the reference compound tacrine. The in vivo biodistribu-
tion study showed the uptake of both radioconjugates in the brain, spleen, lungs, heart,
kidneys and liver; however, the uptake of [68Ga]Ga-DOTA-NH(CH2)9Tac in the brain was
very low. In general, the uptake of the [99mTc]Tc-Hynic-NH(CH2)9Tac radioconjugate was
significantly higher in all analyzed organs (its uptake in the brain was four times greater
than that of the gallium radioconjugate). According to the authors, the low efficiency
of crossing the blood–brain barrier of the tested radioconjugates may be due to their hy-
drophilic nature, and, for example, in the case of the gallium radioconjugates, the use of a
chelator less hydrophilic than DOTA could increase the lipophilicity of the radioconjugate.

Studies on radioconjugates, still based on the same tacrine derivatives, in which five
various chelators were used to complex the 68Ga radionuclide, were presented in the work
of Koźmiński et al. [35]. The chelators used for the synthesis of the 68Ga-radioconjugates
were 2,2′-(7-(1-carboxy-4-((2,5-dioxopyrrolidin-1-yl)oxy)-4-oxobutyl)-1,4,7-triazonane-1,4-
diyl)diacetic acid (NODAGA-NHS), 2,2′-(7-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-
4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODAGA-Bn-NCS), 2,2′,2′′-(10-(1-
carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7,10-tetraazacyclododecane-
1,4,7-triyl)triacetic acid (DOTAGA-Bn-NCS), [(R)-2-Amino-3-(4-isothiocyanatophenyl)propyl]-
trans-(S,S)-cyclohexane-1,2-diamine-pentaacetic acid (DTPA-CHX-Bn-NCS) and N1,N7-
bis((3-hydroxy-1,6-dimethyl-4-oxo-1,4-dihydropyridin-2-yl)methyl)-4-(3-(((3-hydroxy-1,6-
dimethyl-4-oxo-1,4-dihydropyridin-2-yl)methyl)amino)-3-oxopropyl)-4-(3-(3-(4-isothioc-
yanatophenyl)thioureido)propanamido)heptanediamide (THP-Bn-NCS). In order to ob-
tain the highest possible lipophilicity of the synthesized radioconjugates (recommended
for radiopreparations capable of crossing the blood–tissue and blood–brain barriers), a
tacrine derivative containing nine methylene groups in the aliphatic hydrocarbon chain
was used for the synthesis of the 68Ga-radioconjugates. All obtained radioconjugates
(Figure 4) met the physicochemical properties required for radiopharmaceuticals. The
tested inhibitory properties of the radioconjugates turned out to be no less than those
of tacrine, which confirmed that the attachment of the radionuclide complex to tacrine
through an appropriate linker does not change the biological properties of tacrine. More-
over, the [68Ga]Ga-THP-NH(CH2)9Tac radioconjugate showed a much stronger activity
towards both AChE and BuChE than the parent tacrine compound. Lipophilicity tests
showed that all newly synthesized radioconjugates were significantly less hydrophilic,
and two of them, [68Ga]Ga-NODAGA-Bn-NH(CH2)9Tac and [68Ga]Ga-THP-NH(CH2)9Tac,
were already hydrophobic. These radioconjugates were selected for the biodistribution
studies and molecular docking studies. The in vivo biodistribution studies in rats showed
clearly different profiles. The [68Ga]Ga-NODAGA-Bn-NH(CH2)9Tac compound, apart
from a relatively large accumulation in the excretory organs (kidneys and liver), accumu-
lated in other organs (lungs, blood, heart and spleen) in small amounts. The compound
[68Ga]Ga-THP-NH(CH2)9Tac circulated in the blood in large quantities and accumulated
in comparable amounts in the excretory organs (kidneys, liver and spleen) as well as in the
lungs and heart. Unfortunately, the uptake of both radioconjugates in the brain was low
and insufficient from the point of view of potential application of these radioconjugates as
a tool for the early diagnosis of Alzheimer’s disease. Particularly noteworthy is the high
uptake of the radioconjugate [68Ga]Ga-THP-NH(CH2)9Tac in the lungs, which indicates
its specificity for this organ, and due to the presence of cholinesterase in the glial tissue
of the lungs, it allows for the use of this radioconjugate as a tool for imaging pathological
conditions of the lungs.
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Figure 4. Radioconjugates based on tacrine derivatives [35]: (A) [68Ga]Ga-NODAGA-
NH(CH2)9tacrine; (B) [68Ga]Ga-NODAGA-Bn-NH(CH2)9tacrine; (C) [68Ga]Ga-DOTAGA-Bn-
NH(CH2)9tacrine; (D) [68Ga]Ga-DTPA-CHX-NH(CH2)9tacrine; (E) [68Ga]Ga-THP-NH(CH2)9tacrine.

In a review article focusing on potential radiotracers based on tacrine and its ana-
logues, it is worth presenting the radioconjugates synthesized and tested by Szymański
et al. [36]. Compared to previously used tacrine derivatives [33–35], the structural modifi-
cation of tacrine additionally consisted of replacing the six-membered tetrahydroacridine
ring with a five-membered ring. As previously reported [33–35], 6-hydrazinonicotinamide
(HYNIC, radionuclide 99mTc complexing agent) was attached to the amino group of tacrine
through a hydrocarbon chain with a different number of (CH2)n groups, where n = 2 ÷ 9.
Biochemical tests performed spectrophotometrically using the Ellman method showed that
tacrine derivatives with the long hydrocarbon chain (n = 7 ÷ 9) have higher inhibition
activity and are more selective towards acetylcholinesterase (AChE) than tacrine, while all
compounds showed less selectivity for butyrylcholinesterase (BChE) compared to tacrine.
The docking studies of the new tacrine derivatives to AChE and BChE showed that all
tacrine derivatives bound to AChE in a similar way—they extended along the active gorge
of the enzyme and interacted with the catalytic and peripheral sites. In the case of BChE,
the binding method of the tacrine derivatives to the enzyme was similar with a slight
difference regarding the location of the hydrazinnicotin fragment in the reduced peripheral
anionic site of BChE. Among these tacrine derivatives, for the synthesis of the 99mTc-
radioconjugate, the authors chose the derivative that contained two methylene groups in
the hydrocarbon chain and was characterized by the highest activity towards BChE (the
level of this enzyme varies in different stages of Alzheimer’s disease). The spectrophoto-
metric test of this compound (6-Hydrazino-N-[2-(2,3-dihydro-1H-cyclopenta[b]quinolin-9-
ylamino)Ethyl]nicotinamide) showed its stability in water. After labeling this compound
with 99mTc radionuclide, the obtained radioconjugate [99mTc]Tc-Hynic-2,3-dihydro-1H-
cyclopenta[b]quinolone (Figure 5) was used to study biodistribution in rats. The greatest
accumulation of radioactivity was observed in the liver, followed by the kidneys, lungs and
gastrointestinal tract. Unfortunately, the uptake of the radioconjugate in the brain was very
low (probably due to the hydrophilic nature of the radioconjugate), which indicates that
the tested radioconjugate does not have sufficient ability to cross the blood–brain barrier
and cannot be considered as a potential agent in the diagnosis of Alzheimer’s disease.
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Figure 5. 99mTc-radioconjugate based on 2,3-dihydro-1H-cyclopenta[b]quinolone [36].

Concise information concerning radioconjugates based on tacrine derivatives is pre-
sented in Table 2.

Table 2. Radioconjugates based on tacrine derivatives.

Tacrine Derivative-Based
Radioconjugates

Research Purpose and Conclusions References

[11C]MTHA

Synthesis procedure [26]

Studies in vivo in non-human primates: in rats (radioactivity was measured
in blood, plasma, heart, liver, kidneys, lungs, skeletal muscles and brain
(separately in the pons, cerebellum, colliculi, hypothalamus, hippocampus,
striatum and anterior and posterior cortices)), and PET imaging on two male
adult baboons using both [11C]MTHA radiotracer alone and [11C]MTHA
radiotracer together with unlabeled THA

• Radioactivity accumulated in all brain regions studied; in the case of
co-injection of THA together with [11C]MTHA, accumulation was
significantly lower;

• These two molecules, [11C]MTHA and THA, compete for the same
binding sites;

• The [11C]MTHA radiotracer could be considered a promising PET
ligand for studying THA binding in the brain.

[27]

Studies in vivo in healthy human volunteers and measurement of
radioactivity accumulated in all brain regions studied in the case of
co-injection of THA together with [11C]MTHA

• Determined radioactivity in the brain was relatively high and
amounted to approximately 6% of the administered dose;

• Brain accumulation of the radiotracer [11C]MTHA differs from the sites
of action and/or sites of elevated AChE concentrations detected
post-mortem in human brains;

• Cerebral distribution of the [11C]MTHA radiotracer in the human
nervous system is not parallel with AChE, so the clinical effect of THA
may also occur in a way other than through the cholinergic neuronal
system.

[28]
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Table 2. Cont.

Tacrine Derivative-Based
Radioconjugates

Research Purpose and Conclusions References

9-amino-8-fluoro-2,4-methane-
1,2,3,4-[9-14C]tetrahydroacridine

Synthesis procedure of radiopreparation dedicated for metabolic studies,
potential therapeutic radiopharmaceutical in AD [29]

[123I]7-I-THA
Procedure for the synthesis of a potential agent for imaging the map of
acetylcholinesterase (AChE) receptor sites in living organisms [30]

[99mTc]Tc(NS3)(CN-
NH(CH2)nTac

Synthesis and physicochemical properties of radioconjugates, multiorgan
biodistribution study of [99mTc]Tc(NS3)(CN-NH(CH2)7Tac in normal mice,
computer docking studies of [99mTc]Tc(NS3)(CN-NH(CH2)7Tac and its
parent tacrine-based complexing agent CN-NH(CH2)7Tac

• A higher uptake in liver than in kidney indicates the clearance of the
radioconjugate mainly through the hepatic route;

• A high uptake in the lung and relatively low uptake in the brain

[33]

[99mTc]Tc-Hynic-NH(CH2)nTac,
[68Ga]Ga-DOTA-NH(CH2)nTac

Synthesis and physicochemical properties of radioconjugates, biodistribution
studies in mice and molecular modelling studies of
[99mTc]Tc-Hynic-NH(CH2)9Tac and [68Ga]Ga-DOTA-NH(CH2)9Tac

• Radioconjugates containing the [68Ga]Ga-DOTA complex are
significantly more hydrophilic than radioconjugates containing the
[99mTc]Tc-Hynic complex;

• The uptake of the [99mTc]Tc-Hynic-NH(CH2)9Tac radioconjugate was
significantly higher in all analyzed organs than that of
[68Ga]Ga-DOTA-NH(CH2)9Tac.

[34]

[68Ga]Ga-NODAGA-
NH(CH2)9Tac,

[68Ga]Ga-NODAGA-Bn-
NH(CH2)9Tac,

[68Ga]Ga-DOTAGA-Bn-NH
(CH2)9Tac,

[68Ga]Ga-DTPA-CHX-NH
(CH2)9Tac,

[68Ga]Ga-THP-NH(CH2)9Tac

Synthesis and physicochemical properties of 68Ga-radioconjugates using the
five various chelators NODAGA-NHS, NODAGA-Bn-NCS,
DOTAGA-Bn-NCS, DTPA-CHX-Bn-NCS-THP-Bn-NCS, biodistribution
studies in mice and molecular modelling studies of
[68Ga]Ga-NODAGA-Bn-NH(CH2)9Tac and [68Ga]Ga-THP-NH(CH2)9Tac

• Radioconjugates [68Ga]Ga-NODAGA-NH(CH2)9Tac,
[68Ga]Ga-DOTAGA-Bn-NH(CH2)9Tac and
[68Ga]Ga-DTPA-CHX-NH(CH2)9Tac were hydrophilic;

• [68Ga]Ga-NODAGA-Bn-NH(CH2)9Tac and
[68Ga]Ga-THP-NH(CH2)9Tac were hydrophobic;

• The uptake of the [68Ga]Ga-NODAGA-Bn-NH(CH2)9Tac and
[68Ga]Ga-THP-NH(CH2)9Tac radioconjugates in the brain was low and
insufficient from the point of view of their application for the early
diagnosis of AD;

• Relatively high uptake of [68Ga]Ga-THP-NH(CH2)9Tac in the lungs.

[35]

[99mTc]Tc-Hynic-(CH2)22,3-
dihydro-1H-cyclopenta[b]

quinolone

Synthesis, physicochemical properties and docking studies of
Hynic-(CH2)n-2,3-dihydro-1H-cyclopenta[b]quinolone derivatives, synthesis,
physicochemical properties and biodistribution studies in rats of
[99mTc]Tc-Hynic-(CH2)2-2,3-dihydro-1H-cyclopenta[b]quinolone
radioconjugate

• Derivative containing two methylene groups in the hydrocarbon chain
was characterized by the highest activity towards BChE;

• The highest uptake of radioconjugate was observed in the liver,
followed by the kidneys, lungs and gastrointestinal tract;

• Low uptake of the radioconjugate in the brain.

[36]
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2.3. Molecular Modeling Studies of Tacrine Derivatives—Cholinesterase Interaction

The study of the crystal structure of Torpedo californica acetylcholinesterase (TcAChE)
made possible, for the first time at atomic resolution, the visualization of the acetylcholine
(ACh) binding pocket [37–39]. The binding pocket is a narrow and deep gorge approxi-
mately 5 Å wide and 20 Å long and lined (in approximately 40–60%) with rings of 14 con-
served aromatic residues: Y70, W84, F120, Y121, Y130, W233, W279, F288, F290, F330, F331,
Y334, W432 and Y442 [28]. It penetrates into the enzyme more than halfway and expands
near the bottom to form a cavity called the active binding site, containing the catalytic triad
S200, E327 and H440 (Figure 7 in ref. [37]). Five amino acids, Tyr70, Asp72, Tyr121, Trp279
and Tyr334, located at the entrance to the gorge, constitute the peripheral anionic site (PAS)
binding for AChE [38]. A large number of aromatic residues in the gorge walls and bases in
the gorge bottom result in many different hydrophobic and “anionic” interaction sites in the
binding pocket, located separately or overlapping with the active sites of the ACh-binding
enzyme (the ACh binding site in AChE contains from six to nine negative charges). The
aromatic nature of the gorge influences the high degree of binding of a given substrate and
thus the high catalytic activity of the enzyme. TcAChE has a very large dipole moment,
which is greatly influenced by the presence of five acidic amino acids located around the
entrance to the gorge. The axis of the AChE dipole moment is oriented along the axis of
the gorge’s active sites. Along the gorge, along the entire length of the active sites, there is
a potential gradient that can effectively pull the substrate appearing at the gorge mouth
(Y121, F330) down the gorge.

Computational studies of the interaction of some tacrine derivatives as well as poten-
tial radiotracers based on them (Table 3) with acetyl- and/or butyrylcholinesterase were
discussed in the works of Gniazdowska et al. [33,34], Koźmiński et al. [35] and Szymański
et al. [36]. The conjugates and radioconjugates selected for the molecular docking studies
are listed in Table 3.

Table 3. List and structure of conjugates and radioconjugates selected for research using
computer calculations.

Radio(conjugates)
Molecular Docking Studies to

AChE [Ref.] BChE [Ref.]

N NH
H
N (CH2)3

O
N+

C-

(CH2)7

 

Figure 5 in [33] -----

 

Figure 5 in [33] -----

Figure 7 in [34] -----
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Table 3. Cont.

Radio(conjugates)
Molecular Docking Studies to

AChE [Ref.] BChE [Ref.]

 

----- Figure 8 in [34]

Figure 8 in [35] -----

 

Figure 8 in [35] ------

Figure 1 in [36] -----

----- Figure 2 in [36]

Molecular modeling studies made it possible to determine the structure of the inhibitor–
cholinesterase system and to determine and locate individual interactions between the com-
ponents of this system responsible for the action of the inhibitor on the enzyme. Detailed
information about the nature and location of individual interactions of the inhibitor with
the amino acids forming the enzyme’s binding pocket is provided in the cited publications.

In general, all tested inhibitors had similar components, namely tacrine, a longer or
shorter linker in the form of a hydrocarbon chain and, optionally, a radionuclide complex.
Therefore, their fit into the cholinesterase binding pocket and their interactions with AChE
and BChE were similar. A fragment of tacrine (as well as a tacrine analog with a cyclopen-
tane ring) was located at the bottom of the gorge, and the main interaction here was the
interaction with the catalytic triad. The hydrocarbon chain was located along the gorge
and formed hydrophobic interactions with the aromatic rings of the amino acids present in
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the gorge wall. The radionuclide complex is usually located outside or at the entry to the
gorge of the binding pocket and interacted through peripheral anionic sites.

3. Discussion

The works discussed in this article focused on the search for a diagnostic radiophar-
maceutical for the earliest possible diagnosis of Alzheimer’s disease. The biologically
active molecule in these radiopharmaceuticals was the medicinal preparation tacrine (or its
derivatives) that was approved by the FDA in 1993 for the treatment of Alzheimer’s disease
and was, in 2013, withdrawn due to harmful side effects. However, since radiopharmaceu-
ticals are administered to the patient in microgram quantities and, in the case of diagnostic
radiopharmaceuticals, their use is not frequent, the problem of the harmfulness of tacrine is
not significant. However, due to the high ability of tacrine to cross the blood–brain barrier,
its use as a vector in radiopharmaceuticals is justified.

As can be observed from the presented works, radiotracers based on the tacrine
molecule, in which the radionuclide (3H, 11C, 14C) is an isotope of one of the elements
included in the tacrine molecule [9–12], easily cross the blood–brain barrier and accumulate
in significant amounts in the brain. However, such radiopreparations are not easily avail-
able due to the too complicated procedures for synthesizing these radiopreparations, which
are difficult or even impossible to perform in clinical conditions (in hospital laboratories).

The procedures for obtaining radioconjugates in the form of a tacrine solution, tacrine
microemulsion and tacrine mucoadhesive microemulsion labeled (directly) with 99mTc
and identifying them using the radio-TLC method [24,25] are relatively easy and can
be performed in hospital laboratories. These radiopreparations accumulated relatively
well in the brain, but regarding these compounds, there is no knowledge about their
composition and structure, which, according to the authors of this review article, is a
significant disadvantage. For these radiopreparations, intranasal administration has proven
to be more effective than intravenous administration.

Radiopreparations based on a relatively minimally changed tacrine molecule also
accumulated satisfactorily in the brain [26–30]. Modification of tacrine by adding a methyl
group, fluorine or iodine did not reduce the ability of tacrine to cross the blood–brain barrier.

The most convenient procedure for the synthesis of diagnostic radiopharmaceuticals
in clinical conditions is to perform a labeling reaction with generator radionuclides (99mTc,
68Ga) of the active substance (tacrine or its derivative, often previously coupled with an
appropriate chelator) included in the so-called kit [33–36] (kits are ready-made sets contain-
ing, in lyophilized form, the appropriate reagents in the appropriate quantities needed for
the synthesis of a given radiopharmaceutical). However, the use of chelators significantly
changes both the size of the final radiopreparation and its lipophilicity. Changes in these
parameters do not have a significant impact on the inhibitory properties towards acetyl-
and butyrylcholinesterase, but their effect in vivo is a significant reduction in the ability of
the radiopharmaceutical to cross the blood–brain barrier and accumulate in the brain in the
amounts necessary for imaging.

To sum up, it can be said that, despite many works, it has not been possible to find
a radiopreparation based on tacrine or its derivatives that meets the requirements for
radiopharmaceuticals. Perhaps it would be advisable to search for another biological
molecule involved in the course of Alzheimer’s disease from its earliest stage.
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Abbreviations

AChE acetylcholinesterase
AD Alzheimer’s disease
APP amyloid precursor protein
BChE, BuChE butyrylcholinesterase
BFCA bifunctional coupling agent
CN-BFCA succinimidyl isocyanobutyric ester
CNS central nervous system
DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
DOTAGA-Bn-NCS 2,2′,2′′-(10-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-

1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid
DTPA-CHX-Bn-NCS [(R)-2-Amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S)-

cyclohexane-1,2-diamine-pentaacetic acid
FDA US Food and Drug Administration
HYNIC 6-hydrazinonicotinamide
IN intranasal
IR infrared spectrum
IV intravenous
MRI magnetic resonance imaging
MS mass spectrum
MTHA, N-methyl-THA 1,2,3,4-tetrahydro-9-methyl-amino acridine
NMR nuclear magnetic resonance
NODAGA-Bn-NCS 2,2′-(7-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7-

triazonane-1,4-diyl)diacetic acid
NODAGA-NHS 2,2′-(7-(1-carboxy-4-((2,5-dioxopyrrolidin-1-yl)oxy)-4-oxobutyl)-1,4,7-

triazonane-1,4-diyl)diacetic acid
NS3 tris(2-mercaptoethyl)-amine
PET positron emission tomography
RHPLC radio-high performance liquid chromatography
RTLC radio-thin layer chromatography
SPECT single photon emission computer tomography
THA, Tac 1,2,3,4-tetrahydro-9-amino acridine
THP-Bn-NCS N1,N7-bis((3-hydroxy-1,6-dimethyl-4-oxo-1,4-dihydropyridin-2-yl)

methyl)-4-(3-(((3-hydroxy-1,6-dimethyl-4-oxo-1,4-dihydropyridin-2-yl)
methyl)amino)-3-oxopropyl)-4-(3-(3-(4-isothiocyanatophenyl)thioureido)
propanamido)heptanediamide

TLC thin-layer chromatography
TME tacrine microemulsion
TMME tacrine mucoadhesive microemulsion
TS tacrine solution
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19. Mimica, N.; Presečki, P. Side Effects of Approved Antidementives. Psychiatr. Danub. 2009, 21, 108–113.
20. McNally, W.; Roth, M.; Young, R.; Bockbrader, H.; Chang, T. Quantitative whole-body autoradiographic determination of tacrine

tissue distribution in rats following intravenous or oral dose. Pharm. Res. 1989, 6, 924–930. [CrossRef]
21. McNally, W.; Pool, W.F.; Sinz, M.W.; Dehart, P.; Ortwine, D.F.; Huang, C.C.; Chang, T.; Woolf, T.F. Distribution of tacrine and

metabolites in rat brain and plasma after single- and multiple-dose regimens. Evidence for accumulation of tacrine in brain tissue.
Drug Metab. Dispos. 1996, 24, 628–633. [PubMed]

22. Mena, E.E.; Desai, M.C. High-affinity [3H]THA (tetrahydroaminoacridine) binding sites in rat brain. Pharm. Res. 1991, 8, 200–203.
[CrossRef]

23. Egan, J.A.; Nugent, R.P.; Filer, C.N. Tritium labelling and characterization of the cognition enhancing drug tacrine using several
precursors. Appl. Radiat. Isot. 2002, 57, 837–840. [CrossRef] [PubMed]

24. Jogani, V.V.; Shah, P.J.; Mishra, P.; Mishra, A.K.; Misra, A.R. Nose-to-brain delivery of tacrine. J. Pharm. Pharmacol. 2007, 59,
1199–1205. [CrossRef]

25. Jogani, V.V.; Shah, P.J.; Mishra, P.; Mishra, A.K.; Misra, A.R. Intranasal mucoadhesive microemulsion of tacrine to improve brain
targeting. Alzheimer Dis. Assoc. Disord. 2008, 22, 116–124. [CrossRef] [PubMed]

26. Bonnot, S.; Prenant, C.; Crouzel, C. Synthesis of 9-[11C]methylamino-1,2,3,4-tetrahydroacridine, a potent acetylcholine esterase
inhibitor. Appl. Radiat. Isot. 1991, 42, 690–691. [CrossRef]

27. Tavitian, B.; Pappata, S.; Bonnot-Lours, S.; Prenant, C.; Jobert, A.; Crouzel, C.; Di Giamberardino, L. Positron emission tomography
study of [11C]methyl-tetrahydroaminoacridine (methyl-tacrine) in baboon brain. Eur. J. Pharmacol. 1993, 236, 229–238. [CrossRef]
[PubMed]

28. Traykov, L.; Tavitian, B.; Jobert, A.; Boller, F.; Forette, F.; Crouzel, C.; Di Giamberardino, L.; Pappata, S. In vivo PET study
of cerebral [11C] methyl- tetrahydroaminoacridine distribution and kinetics in healthy human subjects. Eur. J. Neurol. 1999,
6, 273–278. [CrossRef]

29. Nishioka, K.; Kamada, T.; Kanamaru, H. 14C-labeling of a tetrahydroacridine, a novel CNS-selective cholinesterase inhibitor.
J. Label. Compd. Radiopharm. 1992, 31, 553–560. [CrossRef]

30. Akula, M.R.; Kabalka, G.W. Synthesis of 7-[123I]iodotacrine: A potential SPECT agent to map acetylcholinesterase. J. Label. Compd.
Radiopharm. 1999, 42, 959–964. [CrossRef]
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Abstract: The sense of embodiment (SoE) is an essential element of human perception that allows
individuals to control and perceive the movements of their body parts. Brain–machine interface (BMI)
technology can induce SoE in real time, and adding sensory feedback through various modalities has
been shown to improve BMI control and elicit SoEe. In this study, we conducted a systematic review
to study BMI performance in studies that integrated SoE variables and analyzed the contribution
of single or multimodal sensory stimulation. Out of 493 results, only 20 studies analyzed the SoE
of humans using BMIs. Analysis of these articles revealed that 40% of the studies relating BMIs
with sensory stimulation and SoE primarily focused on manipulating visual stimuli, particularly
in terms of coherence (i.e., synchronous vs. asynchronous stimuli) and realism (i.e., humanoid or
robotic appearance). However, no study has analyzed the independent contributions of different sensory
modalities to SoE and BMI performance. These results suggest that providing a detailed description of
the outcomes resulting from independent and combined effects of different sensory modalities on the
experience of SoE during BMI control may be relevant for the design of neurorehabilitation programs.

Keywords: brain–machine interface; brain–computer interface; embodiment; sensorial feedback

1. Introduction

In the field of cognitive sciences, the ability that enables a person to feel their own
body parts, initiate and control their own actions, and perceive mental states as their own
is known as the sense of embodiment (SoE) [1–5]. SoE has been identified as a necessary
component for achieving health outcomes and behaviors [6,7] and may be compromised
under clinical conditions [8–11]. SoE is not limited to our own physical body but can also
be induced through the perception and illusory control of a virtual or robotic body or
body parts [12–18]. While there are various definitions of SoE concerning external bodies,
in this study, we adopt the definition provided by Kilteni and colleagues [3]. According
to these authors, SoE is a sense that arises when the properties of an external body are
processed as if they were the properties of one’s own biological body [3]. Furthermore,
it has been demonstrated that some aspects of SoE can be achieved simply by being in
control of objects that bear no human resemblance [17,19,20]. Measuring SoE has posed a
challenge for empirical research, and several attempts have been made to find standardized
psychometric measures [5,21,22]. In addition to subjective measures, there have been
endeavors to measure embodiment through electrophysiological recordings [23,24], skin
conductance responses (SCRs) [25–27], or body temperature measurements [28,29].

SoE can be broken down into three underlying components: the sense of self-location
(SoL), the sense of ownership (SoO), and the sense of agency (SoA) [3]. While some studies
do not differentiate between these components or employ different terminology, an analysis
of the subjective questions used allows associating each of them with one of these three
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categories. According to Kilteni and colleagues (et al., 2012), the subjective experience of
recognizing oneself as the agent of certain behaviors is described as SoA, the feeling that a
body (or its parts) belongs to the person is referred to as SoO, and the experience of being
situated in the space where one’s body is located is denoted as SoL.

SoO can be considered in a broader sense, where it includes the feeling of mineness not
only of the body (body ownership) and its parts (limb-ownership) but also of feelings and
thoughts (see Braun et al., 2018, for a review) [30]. Meanwhile, the same authors highlight
that SoA allows not only the distinguishing between self- and other-generated actions but
also the intention to generate motor activity (i.e., motor imagery). Although there have
been multiple studies on the neurophysiological basis of embodiment, its evaluation is
usually complemented by the use of questionnaires [31–35].

There are several studies demonstrating that the illusory experience of the body
increases with the use of a brain–machine interface (BMI) or brain–computer interface
(BCI) [14,15,36–38]. However, to be able to understand how BMIs influence embodiment, it
is necessary to define and classify BMIs. In general terms, BMI technology enables the use
of brain activity (or a proxy) decoded in real time to control an external device [39,40]. The
terms BMI and BCI are generally considered synonymous terms [41]. Here, we will adopt
the BMI to refer to both BMI and BCI.

There are different types of BMIs and some of them can be categorized as active BMIs
or as reactive BMIs [39]. The active BMI is a system that uses neural activity resulting
from voluntary activity, as occurs during motor imagery (i.e., thinking about walking).
Motor imagery-based BMIs (MI-BMIs) are the most used type of BMI. On the other hand,
a reactive BMI is a system that uses brain signals resulting from a reaction to an external
stimulus. A very common example of this is the steady-state visually evoked potentials
(SSVEPs), where changes in brain activity are evoked in the visual cortex through a visual
stimulus flickering at a specific frequency [39]. Other devices that interact with neural
activity and embodiment to some degree, or are close to BMIs but do not constitute actual
BMIs, will not be considered here. This is due to their potential to result in varying levels
of user engagement and embodiment.

Previous studies have suggested that SoE can be increased if multimodal sensory
stimulation (visual, tactile, auditory, etc.) is used [15,38,42–44]. In the same way, this
increase in sensory stimulation plays an important role in improving performance during
MI-BMI training sessions [17,35–47]. SoE increased via sensory feedback while using a BMI
has been recognized as beneficial for more efficient MI-BMI training [13,17,45]. However,
experimental studies that manipulate the increasing sensory feedback modalities’ effect
on SoE during BMI performance are scarce and necessary to assess the effectiveness and
efficiency of using these technologies. Specifically, it is unclear whether increasing the
number of sensory modalities during BMI increases SoE, as well as what is the contribution
of each sensory modality. Studies describing the independent and joint contributions
of the different sensory modalities to the SoE during BMI control may be relevant for
neurorehabilitation protocols.

In this review, we will examine studies that have employed measures to assess SoE
during use of BMIs that included single or multisensory feedback. More specifically, the
purpose of the present study is to analyze the contribution of multisensory feedback to
embodiment and encoding in studies using BMIs.

2. Methods

The systematic review was carried out according to the Reporting Items for Systematic
Review and Meta-Analysis (PRISMA) 2020 checklist [48]. The protocol was registered in
the International Prospective Register of Systematic Reviews (PROSPERO) in September
2022 (CRD42022348645).
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2.1. Search Strategy and Selection

The search was carried out on PubMed, Web of Science, SCOPUS, and Cochrane
databases. The search strategy was formulated based on combinations of three concepts:
embodiment AND brain–machine interface AND sensorial feedback. Due to the diversity
of nomenclature, the embodiment concept was also searched in the form of volition, owner-
ship, agency, body experience, and presence. The brain–machine interface concept was also
searched as brain–computer interface. And finally, the sensorial feedback concept was also
searched in the form of sensory stimulation, multisensory, visual, tactile, haptic, vibrotactile,
auditory, sound, temperature, virtual reality, and virtual immersion. Search results from
each database were merged and sorted for the removal of duplicates. Afterwards, titles
and abstracts were screened according to the inclusion/exclusion criteria. The screening
process was performed by the authors. The full text of the selected papers was obtained for
closer inspection. Any disagreement concerning whether to include a specific study was
discussed among all the authors.

The studies selected in the review were based on the following inclusion criteria:
(i) studies with the full text published in English; (ii) studies were original research;
(iii) studies were only carried out with experiments related to humans; (iv) studies in-
tegrated SoE variables; (v) studies integrated BMIs (note that studies not using an actual
BMI but only giving participants the impression of using it were also excluded from the
search); and (vi) studies integrated at least one sensory feedback modality. Additionally,
studies were excluded if they (i) were reviews, (ii) were conference papers, (iii) were not
peer-reviewed material, or (iv) did not have accessible full text (also, see Figure 1).

Figure 1. Flowchart of the selection process.

The searching strategy returned 493 articles, 223 of which were duplicates. A total of
2 were in foreign languages, 86 were conference papers, and 1 was not full-text available.
From the remaining 181 articles searched, 119 did not have any type of sense of embodiment
measures, 33 were reviews or conference papers, and 7 did not use brain–machine interface
devices. After full-text reading, 2 papers were excluded for using just a simulation of a BMI.
This resulted in a final list of 20 papers in our review. Details of the process are described
in the flowchart (Figure 1).
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2.2. Data Extraction and Analysis

For research articles that were included in the review, we extracted the following data
systematically from each study: (1) sources of studies; (2) types of BMI; (3) SoE-reported
measures; (4) modalities of sensorial feedback; and (5) BMI performance. The number of
sensorial modalities used for feedback was counted. Also, the numbers of classes used for
the task(s) employed in each study were also counted.

2.3. Assessment of Quality

Assessment of quality was performed as in previous studies [49,50]. Briefly, three dif-
ferent researchers independently read and scored each study (scores between 1 and 3) across
the five dimensions: (1) research design; (2) methods and analysis; (3) generalizability;
(4) relevance of focus; and (5) reliability of findings.

For dimension 1, research design, an evaluation of the experimental groups and
variable manipulations (related to the topic of the present review) was conducted. Studies
lacking a control group or that were unbalanced were scored as 2, while studies with
control group or that were counterbalanced were scored as 3. For dimension 2, methods
and analysis, the presence of proper statistical analysis was scored as 3. For dimension
3, generalizability, not only the size but also the existence of an equal number of male
and female subjects, as well as age distribution, were considered. Studies with small
sample sizes, heterogenous clinical presentations, and age or gender inequality received
low scores (1 for single subject, 2 for <15 or only one gender, and 3 for larger and/or more
representative samples). In dimension 4, the quality of the study, regarding the present
review, was evaluated. An assessment was made regarding the extent to which each
study, or its components, addressed the main questions, such as the effects of multisensory
feedback on SoE (or SoA, or SoL, or SoO), as well as in BMI performance. Studies that
focused solely on one patient were scored as 2. For dimension 5, reliability of findings, the
extent to which the study findings can be trusted in answering the study question was
considered. A score of 3 was assigned if the experiments conducted, the results obtained,
their analysis, and their limitations effectively contributed to the conclusions drawn.

After scoring each paper, the mean score was calculated as 13.75 ± 1.08 (mean ± SD)
with scores ranging between 11 and 14.67 points. For manuscripts with dimensions equally
scored by all three researchers, the mean of the three values is presented (without the
standard deviation, which was SD = 0.0). For dimension 3, generalizability, the researchers
disagreed on the scores, so both the mean and standard deviation were presented.

3. Results

Of the twenty studies included in this review, two were carried out with only one
participant (see Table 1).

The remaining studies had an average N = 21.8 ± 10.6 subjects (mean and standard
deviation), with a min of N = 7 and a max of N = 40 subjects (see Table 2).

The publication date ranged from 2009 to 2022 (see Tables 1–3). The score obtained for
each paper regarding the 5 dimensions can be found in Table 3.
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We will start by describing the type of BMI technology used, then the type of question-
naire used to study SoE, as well as aspects related to the different nomenclature, followed
by additional techniques used to objectively evaluate SoE (e.g., SCR). Then, a detailed
analysis of sensory feedback modalities, SoE, and BMI performance will be made.

Regarding the type of BMI technology used, 15 studies were MI-based, where brain
activity was captured using non-invasive electroencephalography (EEG). One study, a
spinal cord-injured (SCI) patient [37], also used an active MI-BMI, but the activity was
captured intracortically. Four studies used a reactive BMI, where one of them used P300
technology and the other three were based on SSVEPs (see Table 1). One of the studies
that used SSVEP-BMI also used MI-BMI in the experimental design [14]. Here, the authors
intended to explore the performance of the BMI and the effect on SoO and SoA when a
BMI used neural activity from the sensorimotor areas (MI-BMI) or activity from the visual
areas (SSVEP-BMI). Although the performance was slightly higher for the MI-BMI group,
this difference was not statistically significant. Significative higher ratings of SoO and SoA
were found in the MI-BMI group.

In all studies, subjective questionnaires (7-point or 11-point Likert rating) were used
to measure embodiment variables (also see Table 4 for details). One study adopted a
classification from 0 to 100 points [18]. In only two studies [19,37], the answers were given
by choosing “yes” or “no”. However, in one of these [37], the authors added a second
request to rank from 0 to 100 on the degree of certainty in the given answer. The number of
questions used in the questionnaires was also very variable. Of the analyzed studies, the
number of questions to assess SoE variables ranged from 1 to 26.

Differences in the nomenclature of the various SoE components were present in the
studies analyzed. As we have followed the classification proposed by Kilteni et al. (2012), it
was necessary to specifically analyze all the questions posed in each of the studies to be able
to fit them into the scope of SoO, SoL, or SoA (see Table 1). It was found that there is great
heterogeneity in the terminology used. For example, in some studies, the authors used
the term SoE when referring to “It was as if the virtual body was my body” and the term
sense of control when referring to “I felt in control of avatar’s actions” [18,46]. However,
according to Kilteni et al., 2012, this should be included in the SoO and SoA categories,
respectively. Among the 20 studies included in this review, 16 had SoO questions, 14
had SoA questions, and 8 studies had SoL questions in their questionnaires. Only five
studies had questions covering the three components of the SoE. Other combinations of
SoE components can be analyzed in Figure 2.

Figure 2. Number of studies per SoE dimension assessed.
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It is also common in studies related to SoE to include measures of disownership,
defined as the experience that a body part does not belong to the subject [61]. In most
cases, these measures were focused on assessing the participant’s awareness of their actual
body parts. An example of this is the study by Škola and Liarokapis (2018) when the
participants were asked about the sense of proprioception related to awareness of the
position of their own hands [17]. In two other studies, the authors were interested in
assessing the influence of the apparatus illusion on the real body parts. In the work of
Perez-Marcos et al. (2009), a proprioceptive drift was objectively measured by asking the
participants to indicate, without looking, the location where they perceived the real hand
to be placed after a virtual arm-moving task in the BMI [16]. Meanwhile, in the study
of Ziadeh and colleagues [20], participants were questioned about the movement of the
virtual hands over their own hands.

Apart from these subjective measures for SoE, three additional studies from the same
group also assessed the SCR following a threatening stimulus to a non-real body part
(injection in the robot hand) [12,52,54]. This procedure intended to assess more objectively
how embodied the participant with the external body parts was during the BMI task. For
this, the authors measured the physiologic changes (trough the assessment of SCR) in
the real body during the BMI-performing task. Across the three studies, the SCR was
higher in the experimental conditions with higher scores of reported SoO. In addition,
this was also verified for SoA when it was included as a variable [54]. In another study,
electromyography (EMG) was used to estimate the amount of muscle activity required to
perform a virtual task if it occurred in the real world [16]. The group with higher EMG
activity also reported higher levels of SoO.

Providing sensory feedback while performing BMI tasks is one of the presumed
strategies used to improve BMI performance itself [62,63]. It is hypothesized that this
agreement between stimuli and actions is relevant to the SoE experience. However, few
studies explore the contribution of different sensory modalities to SoE. All studies included
in this review used visual stimuli as their main sensory modality (see Figure 3). Although
the auditory modality was present in six studies, and some form of haptic stimulus was
present in four studies, none of them specifically quantified the influence of these stimuli on
the SoE variables. Immersive visual feedback was present in 14 studies whereas the others
used non-immersive visual feedback. Normally the non-immersive visual feedback was
received through a computer screen. Only in one study, the visual feedback was non-virtual
with participants observing a robotic hand moving in front of them [36]. Within the visual
feedback modality, the immersive type has shown higher levels of SoE compared to the
non-immersive type [13]. The congruence or incongruence of the visual stimulus with the
MI action performed seems to have a strong impact on SoE. Congruent visual stimuli seem
to increase SoO [12,16,52]. However, differences between studies were found for SoA. In
one study, no significant differences were present in SoA levels between incongruent and
congruent visual stimulus conditions [16]. In contrast, another study reported a negative
impact of visual incongruence on SoA [19]. These differences may find some explanation
regarding the type of visual stimulus that was provided. Although both used a non-
immersive form of visual feedback, in the study by Perez-Marcos et al. (2009), the feedback
was based on the movement of a virtual hand, while in Evans et al. (2015), the feedback
congruence was associated with the displacement of a virtual bar on a screen. In this second
study, it was also verified that larger delays negatively impact the SoA. However, for delays
under 1000 ms, no significant differences were found [19]. This information becomes
relevant to understand the acceptable limit of delay in this type of BMI technology, since
any feedback addition has some amount of expected delay due to the normal computational
processing. In the only study where the congruency of an auditory stimulus with a visual
stimulus was explored, no significative impact on the SoE was found [18].
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Figure 3. Number of studies per type of stimulation.

The realism of sensorial feedback seems to enhance more realistic responses of the
participants that are exposed to it [15,44,64]. In a case study, the exposure of an SCI patient
to a very realistic immersive virtual environment combined with auditory and thermal
stimuli consistent with the scenario and with tactile vibratory stimuli coherent with the
action (walking) has been shown to provide high levels of SoE [15]. Many attempts to
provide realism to a BMI experience have been performed by several research groups. For
example, it has been proposed that the control of robotic hands with a more human-like
shape through MI-BMI may induce higher SoO than controlling robotic hands with the
shape of mechanical tweezers [53]. Nevertheless, both conditions seem to induce high
scores of SoA that do not differ significantly from each other. Also, in another study
in which the MI-BMI task consisted in popping virtual balloons with virtual hands or
with virtual blocks, both conditions showed high scores of SoA but did not differ among
themselves [20]. In this same study, it was also found that the illusory induction of a sense
of movement in one’s own hands was greater in the virtual hands’ condition than in the
virtual blocks’ condition.

The BMI tasks present in the studies analyzed typically involve training and evaluation
phases. Interestingly, these studies tended to adopt realistic conditions in their evaluation
phases, but the training phase for the acquisition of sensorimotor activity related to MI
typically followed a standard protocol using simplistic arrows and a bar graph as visual
feedback [65]. Exceptions to this are the studies by Škola and Liarokapis (2018) and Pais-
Vieira and colleagues (et al., 2022). Škola and Liarokapis (2018) also decided to explore if the
introduction of a realistic scenario already in the training phase leads to a higher rate of SoE.
However, they concluded that the more realistic experience during the training phase does
not seem to significantly affect the SoO and SoA scores during the experience evaluation
phase [17]. Meanwhile, Pais-Vieira and colleagues (et al., 2022) used a highly realistic
scenario in the training and evaluation phases to ensure that spinal cord injury patients
maintained high levels of engagement throughout the multiple sessions that constituted
the experimental protocol [15].

Only four of the twenty studies included some type of haptic stimulus [15,37,56,57].
Three applied the stimulus in the form of vibration while one applied it in the form of
electrostimulation. The vibratory feedback was applied in two studies, not intended to
replicate the real tactile sensation expected in an action performed, but its application
intended to be consistent with the timing of some event in the virtual scene. In the study
of Pais-Vieira et al. (2022), the BMI task allowed an avatar of the subject taking steps.
The vibration stimulus matched the moment that the sole of the avatar’s foot touched the
ground when walking and was delivered to the participant’s forearm [15]. Meanwhile,
in the study of Škola and colleagues (2019), the vibratory stimulus was applied to the
participant’s hand and was consistent with triggering a weapon from a spaceship. Both
studies reported high levels of SoO and SoA despite the very different conditions tested [57].
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Differences were found for the SoL where the apparatus of Pais-Vieira et al. (2022) seems
to have also induced high levels of SoL. It should be noted, however, that multimodal
feedback was used (visual, auditory, and tactile) and the contribution of each modality was
not individually assessed.

The application of a vibratory stimulus as feedback to mimic the sensation induced
by the action if it was truly performed was explored in the study of Tidoni, Gergondet,
et al. (2017) [46]. A vibratory stimulus was applied in the right bicep’s brachial tendon
of the subjects, inducing the proprioceptive illusion of downward extension of the elbow
while performing a similar movement with a virtual arm via MI-BMI. This condition was
compared with a vibratory stimulus applied over the bone (not inducing a proprioceptive
illusion). Despite the specificity of the stimulus application, no significant differences were
found in SoE between the different conditions.

A very interesting case study using an SCI patient combined somatosensory feedback
in the form of muscular electrostimulation with visual feedback through the visualization
of a virtual hand [37]. Here, the authors explored the different combinations between
the congruence and incongruence of the different stimuli with MI action during BMI.
The authors reported that somatosensory congruency was more effective in driving SoA.
Ratings were higher when both feedback signals were congruent as compared to both being
incongruent. When visual feedback was incongruent but somatosensory feedback was
congruent, higher levels of SoA were reported as compared to the condition where visual
feedback was congruent but somatosensory was not.

The present review also aimed to explore the relationship between SoE variables
and BMI performance. Of the 20 studies, 6 of them attempted to establish a relationship
between reported SoE values and task performance in BMI. A positive relationship was
found between SoO and BMI performance [13,45,52,58]. Also, the SoA showed a sig-
nificant correlation with BMI performance [13,19]. Regarding SoL, two studies found a
positive relationship with BMI performance [13,58] while another one found no significant
correlation [55]. The studies analyzed here focused mainly on the effects of congruence,
synchrony, and likeness of stimuli and scenarios in SoE.

A comparison between the number of sensory modalities, embodiment, and BMI
performance does not support the existence of a clear relation between levels of embod-
iment, or its components, and BMI performance (refer to Table 4). Out of 17 studies
where a comparison between BMI performance and SoE (or one of its components) val-
ues was possible, 11/17 = 64.7% involved a single modality. Moreover, 11/11 = 100%
studies used had visual or visual immersive as the feedback sensorial modality. All of
these eleven studies were associated with an increase in SoE or one of its components,
but from the nine studies that reported both the values of embodiment and of BMI per-
formance [13,17,19,45,51–54,58], five (5/9 = 55.56%) were associated with an increase in
performance [17,45,53,54,58] and three (3/9 = 33.33%) [13,19,52] had no effect on perfor-
mance. Only in one study (1/9 = 11.11%) [51], a detrimental effect in BMI performance
occurred. Therefore, studies using a single feedback sensorial modality were all based
on visual feedback, all reported increases in embodiment or one of its components, and
approximately half reported improvements in BMI performance.

A total of eight studies included two sensorial modalities (8/20 = 40.00%) [14,18,20,36,
37,55–57]. From these, 5/20 = 25.00% included visual (or visual immersive) and auditory
feedback [14,18,20,36,55] and 3/20 = 15.00% included haptic feedback [37,56,57]. In two
studies where visual feedback was paired with auditory feedback, an improvement in BMI
performance and in SoE (or one of its components) occurred [14,18]. In the remaining three
studies, either no difference in BMI [20,55] or in SoE [36] was reported. Meanwhile, in the
three studies where haptic feedback was paired with visual feedback, no improvement in
SoE nor in BMI performance was reported in one case [56], and no values were reported in
another [57]. The third study with two haptic modalities [37] tested somatosensory and
visual feedback and revealed that the congruent somatosensory feedback prevailed over
incongruent visual feedback, namely increasing SoE and BMI performance. This study
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was performed in a single patient using intracortical recordings. Only one study included
four different types of sensory feedback (visual, auditory, haptic vibratory, and haptic
thermal) [15], but no difference in embodiment or in BMI performance was reported. It is
noteworthy that this study was performed on a patient and included only 10 sessions.

Lastly, of the 20 studies analyzed here, gender bias was present in 12 of them. In three
studies, the number of males more than doubled the number of females [19,20,51], and one
studied only females (N = 29) [14]. This male gender bias most likely reflects the increased
number of male patients previously reported [66] and highlights the need for more studies
in the female population [67].

4. Discussion

This review has analyzed studies using BMIs to determine if an increase in the number
of sensory modalities is associated with increased SoE and improved BMI performance.
Most studies employed motor imagery-based BMIs through EEG recordings and included
only one type of feedback, either visual or visual immersive. This type of feedback was
consistently associated with increased SoE, but only 55.56% of the cases were associated
with an improvement in BMI performance. Studies that combined two different types
of sensory feedback either used visual (or visual immersive) and auditory feedback or,
alternatively, visual (or visual immersive) and haptic feedback in the forms of vibration or
electrical stimulation. While most studies utilized one or two types of sensorial feedback in
an EEG motor imagery-based BMI, a small number explored different approaches such as
SSVEPs, intracortical recordings, or incorporated more than two types of sensory feedback.
Additionally, a relatively limited number of studies were conducted in patients. Lastly,
a noticeable bias towards male participants was observed. The studies analyzed in this
review do not support the notion that an increased number of sensory modalities enhances
SoE and BMI performance. However, they also highlight the fact that, to date, no study
has systematically explored the influence of different sensorial modalities in SoE and
BMI performance.

SoE, particularly the sense of ownership (SoO) over external objects, has been investi-
gated using the rubber hand paradigm [42]. In this paradigm, users have one of their hands
hidden but exposed to tactile stimuli while simultaneously observing a substitute rubber
hand. During the experiment, the rubber hand receives the same stimulus at the same time
as the participant’s hidden hand, leading the participants to attribute the proprioceptive
sensation to the observed stimulus rather than the one delivered to their own skin. Some
researchers have proposed that the SoO experienced towards the rubber hand contributes
to the SoA. In other words, participants who feel a strong SoO over the rubber hand also
report a high perceived SoA, believing they could control the movements of the rubber
hand if they desired [42,68]. Several studies included in this review reported a suggested
connection between SoO and SoA [17,20,53,54]. However, previous research has shown that
a strong SoO over a rubber hand can occur without feeling agency over its movements [69].
Also, visual representations resembling a human body or body part have been found to
enhance the SoE compared to more abstract representations with subjects reporting feeling
less embodied by a virtual block [20] or a robotic tweezer [53] than by a human-like hand.

Several research groups have made efforts to develop BMI tasks with more realistic
actors such as robots or avatars. Many studies have focused on exploring the effects of
congruent and incongruent sensory feedback on actions and their influence on SoE. This
has been examined in relation to visual [12,16,19,37,52], auditory [18], or haptic [37,56]
congruency/incongruency of feedback. These studies support the idea that the sense
of agency is a fundamental component of embodiment processes and is influenced by
sensorimotor congruence in the executed action, with sensory input playing a crucial
role [19]. It appears that, as long as some congruent sensorial feedback is provided, the
SoO [68] and SoA [70] can be induced in participants. In other words, these participants
believe they are controlling a task through a BMI when, in fact, they are not. Therefore, it is
possible to induce some SoO in an additional bodily part, such as a third hand, without
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losing the SoO in their real hands [68]. These studies suggest that the intention to control a
BMI may recruit both SoO and SoA.

In general, congruent visual stimuli have been found to elicit higher levels of
SoO [12,16,52] and SoA [19,37]. However, it is still inconclusive whether congruence
of vibratory feedback [18] or auditory feedback stimuli [56] leads to a higher level of SoE.
Only one study included in this review, which focused on an SCI patient, found that the
congruence of the haptic feedback might have a greater influence on the induction of SoA
than the congruence of the visual feedback [37]. However, it should be noted that the haptic
stimulus used in that study involved muscular electrostimulation, which induces move-
ment through muscular contraction and can be considered haptic–kinesthetic feedback.
This type of feedback cannot be directly compared to haptic–tactile feedback, such as that
resulting from vibration, as they have very different characteristics.

Interestingly, despite the importance of congruence in the feedback stimuli, the pres-
ence of visual feedback, even if incongruent, appears to have a more positive effect on SoE
than its absence [52].

In addition to the feedback related to the action or the virtual/robotic actor, studies
have also focused on the realism of the virtual scenario where that action took place. For
example, the study by Pais-Vieira and colleagues [15] incorporated auditory and thermal
stimuli that were coherent with a highly realistic virtual reality environment. Similarly,
in the study by Legény and colleagues (et al., 2011), the visual elements necessary for the
operation of an SSVEP-BMI were contextualized [51].

The results of the present review support the notion that visual sensorial feedback
is beneficial for the SoE and that multisensory feedback combining visual and auditory
or visual and haptic feedback tends to be beneficial for SoE, though not necessarily for
BMI performance. As elegantly demonstrated in the single-SCI-patient study by Serino
and colleagues [37], it is likely that the interplay of different sensorial modalities may be
critical at specific points in time. Lastly, while the present review does not support the
hypothesis that multisensory feedback necessarily improves SoE and BMI performance, the
study of Pais-Vieira and colleagues [15], performed in a single SCI patient, suggests that
including visual (immersive), auditory, vibratory, and thermal feedback is not detrimental
to embodiment and BMI performance. However, any extrapolation of findings from these
latter studies needs to be approached with caution due to the small number of patients and
the fact that SCI patients already have an altered SoE.

After analyzing the studies associated with SoE and multisensory feedback during
BMI control, it is proposed here that a detailed examination of the effects of each type, as
well as the combination, of sensory modalities is crucial for our understanding of the neural
basis of SoE (and SoO, SoA, and SoL) and how it relates to BMI performance. To achieve
this, it is critical to systematically evaluate the effects of removing and adding each sensory
modality, or combinations of modalities, in various types of tasks (SSVEPs, MI, P300)
and with different types of neural signals (EEG, functional magnetic resonance (fMRI),
intracortical recordings, etc.). We suggest that a series of experiments using within-subject
designs could help control for individual differences in physiological parameters.

Additionally, this review highlights that only a limited number of studies have been
conducted in SCI patients [15,18,37,56]. These studies, although conducted in a small
number of patients (N = 1–8), allowed for the examination of SoE in pathological conditions
and provided significant insights that could not otherwise be studied. Therefore, it is
relevant for future studies to specifically address the role of multisensory feedback in SoE
during BMI control in SCI and other patients. It is noteworthy that a large fraction of the BMIs
analyzed here required users to engage in active motor imagery, with instructions to avoid
making actual movements. However, in the context of rehabilitation, motor imagery BMIs
are typically employed to promote or facilitate specific motor activities [15,37]. Consequently,
users are instructed to attempt a set of pre-defined movements. This difference in goals
should be considered in future studies examining the role of multisensory feedback in
embodiment and BMI performance.
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BMIs based on neural activity recorded invasively or non-invasively will inevitably re-
sult in significantly different decoding and experimental setup details, which may influence
SoE. The present review included only one study with intracortical neural recordings [37],
revealing that the dynamics between sensory and motor cortices during BMI control are
crucial for the SoA, especially if visual feedback is incongruent. This study underscores
the importance of recognizing that BMIs based in EEG recordings, while highly practical
and reproducible, lack the ability to extract neural information (i.e., single- or multi-unit
activity) with high spatial resolution.

Lastly, the concepts of SoE, SoO, SoL, and SoA can vary between authors leading
to different questionnaires [31–35]. Therefore, the present review must be cautiously
considered since the terms used by each author may present some degree of variation.

5. Conclusions

The number of BMI studies has significantly increased in the last two decades, but
the incorporation of SoE measurements in experimental designs remains relatively scarce.
The individual studies analyzed here suggest that greater realism, such as more immersive
scenarios, greater human similarities of the virtual/robotic avatar, and greater coherence of
the feedback all contribute to higher levels of SoE and enhance the embodiment experience.
Despite these individual results, the larger group of studies analyzed here does not support
the notion that an increased number of sensorial modalities will lead to increased SoE and
improved BMI performance. It should be noted, however, that no study has systematically
explored the influence of the different sensorial modalities in SoE and BMI performance.
Therefore, we propose that it is necessary to perform experimental studies that separately
test the cumulative and isolated contributions of multimodal feedback in inducing SoE.
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