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1. Introduction

The development of advanced sensing and control technologies provides increased
intelligence and autonomy for robots and enhances the robots’ agility, maneuverability, and
efficiency, which has attracted growing attention in various industries and domains [1–3],
including manufacturing [4], logistics [5], and warehousing [6].

Information about the environmental and working conditions is crucial for the safe
navigation of autonomous robots [7]. Sensors play a vital role in providing data for
navigation, such as map construction [8], self-localization [9], and obstacle detection [10].
The advanced sensing technologies, benefiting from the development of sophisticated
sensors and innovative perception algorithms, has enabled autonomous robots to perceive
accurate information with faster speed and higher precision [11,12]. This has facilitated
the utilization of robots in complex scenarios [13]. A well-designed control algorithm is
essential for the precision and stable navigation of an autonomous robot system. Control
technology encompasses system modeling [14], parameter identification [15], tracking
control [16], and cooperative control [17]. As advanced sensors and control technologies
develop, autonomous robots complete tasks individually or in coordinated swarms, offering
unprecedented flexibility across diverse fields of application [18–20]. These applications
have expanded beyond traditional manufacturing and automation settings.

In the Special Issue titled “Advanced Sensing and Control Technologies for Au-
tonomous Robots”, the latest research in cutting-edge fields and emerging topics is pre-
sented. This Special Issue invited diverse research contributions from scholars engaged in
related fields, including design, modeling, and parameter identification of novel robotic
systems; advanced perception, self-localization, and map-building technologies based on
neural networks; intelligent path planning and formation control methods for multi-agent
systems. After a rigorous review, fourteen papers, including thirteen articles and one
review, were selected. They offer original ideas and feasible solutions to address critical
issues in the field of autonomous robots and explore the application of the systems in
smart manufacturing, autonomous driving, housekeeping, etc. Each article contributes to
the advancement of specific areas, and we recommend that readers explore these articles
in detail to gain a comprehensive understanding. It is our hope that this Special Issue
contributes to the continued development of the robotics field.

2. Overview of the Published Articles

The first contribution presents a new approach to controller design for nonlinear
cascade systems. These systems pose a challenge in engineering applications due to
their complex dynamics and inherent uncertainty. To address this, the authors estimate
the nonlinear characteristics of each subsystem by separating the steady and alternating
components, using local tracking errors for model-free adaptive control. Additionally,

Sensors 2024, 24, 5478. https://doi.org/10.3390/s24175478 https://www.mdpi.com/journal/sensors1



Sensors 2024, 24, 5478

they employ a square error correction procedure to approximate the weight coefficients
and mitigate the uncertainty. This straightforward method can be readily implemented in
engineering practice, providing a practical alternative to existing schemes.

In Contribution 2, Hongchao Zhang and co-authors present an advanced method for
estimating the peak adhesion coefficient on unstructured pavements, which is typically
challenging due to uneven surfaces and steep slopes. The authors propose an approach
based on the extended Kalman filter, improving the accuracy of identifying road adhesion
coefficients by incorporating an equivalent suspension model. This model optimizes
the vertical wheel load calculations and adjusts the vehicle acceleration using posture
data. Through multi-condition simulations with CarSim, the method demonstrates an
accuracy improvement of at least 3.6%, verifying the precision and effectiveness of the
designed algorithm. This robust and efficient method proves particularly beneficial for
autonomous driving scenarios, enabling accurate ground adhesion data collection and
sharing. It showcases the method’s practical applicability and significant potential for
real-world implementation, making it a valuable contribution to the field of mobile robotics
and autonomous driving.

This Special Issue presents a multifaceted exploration of SLAM technology, the foun-
dational technology in robotics. Among the articles, Contribution 3 proposes a solution to
SLAM’s difficulty in maintaining high localization accuracy over time in complex scenarios.
Inspired by human neuroscience, the authors introduce NeoSLAM, a new scheme that
incorporates a computational model of the brain into the traditional SLAM framework. To
enhance the system’s robustness to environmental disturbances, the authors employ a hier-
archical temporal memory model, optimizing the real-time performance. This innovative
approach improves the adaptability of SLAM systems to dynamic environments.

A novel model for swarm behavior control is introduced through artificial empathy
in Contribution 4. The authors emphasize the importance of incorporating empathy into
swarm control for optimized performance and the learning mechanisms within the swarm.
The research aims to validate the artificial empathy model through simulations and further
development, with the goal of accurately recreating human empathy. By utilizing fuzzy set
theory and similarity measures, the model emulates human empathetic decision processes
in swarm control. It focuses on knowledge representation, decision-making processes, and
empathetic communication, providing a comprehensive and effective framework compared
to existing models. The research also highlights the significance of an open-source physical-
based experimentation platform for evaluating various models and scenarios in robotics.
The work lays the foundation for further exploration and development of empathetic
swarm control models in diverse environments.

Contribution 5, by Da Jiang and co-authors, addresses the problem of integrated
open space risk in architectural scenarios of unmanned vehicles. The authors propose an
adaptive dynamic windowing approach that includes a specially designed multi-objective
speed sampling window and a layered decision-making mechanism. This method enables
obstacle avoidance in multiple driving modes, with speed planning commands constrained
within a reasonable range. The core concept of the method is the introduction of an adaptive
prediction horizon and a critical rollover speed window, which dynamically adjusts the
window in high-risk environments to ensure planning safety. This approach enhances
safety and effectively avoids the risks of instability associated with fast steering maneuvers.

Yongchao Zhang and his colleagues propose novel insights to improve the perfor-
mance of SLAM in complex dynamic environments in Contribution 6. Their primary
approach is to impose hierarchical constraints on dynamic features through instance seg-
mentation and multi-view constraints, preserving robust static features. The SOLOv2
instance segmentation algorithm is utilized to eliminate dynamic and potentially dynamic
features, retaining reliable static features and generating a robust base matrix. The article
also examines how the target semantic information obtained from the instance segmenta-
tion algorithm can be fused with a 3D semantic point cloud to create a 3D octane semantic
map containing instance-level semantic information. This approach enhances the robot’s
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perception ability and understanding of the surrounding environments, improving the
adaptability to dynamic environments.

As presented in Contribution 7, Zhang and Chen offer valuable insights into the real-
time navigation and decision making in unpredictable environments of mobile robots. The
authors present an enhanced version of the SAC-LSTM algorithm, incorporating a burn-in
mechanism and a prioritized experience replay (PER) mechanism. The effectiveness of
this algorithm is illustrated in a simulation environment. The integration of the burn-in
training approach to counteract the memory degradation and the utilization of prioritized
experience replay to enhance the sampling efficiency results in substantial improvements in
the convergence speed and planning accuracy. This research provides a robust framework
for mobile robot navigation and sets a new benchmark for future research in autonomous
systems, inspiring advances and practical implementations.

The article by Jae-Bong and co-authors (Contribution 8) focuses on quadruped robots
with robotic arms. The authors aim to design a quadruped mobile robot system that
integrates perception, navigation, movement, and manipulation for item cleanup in house-
holds. The designed system, as presented in the article, is divided into three modules:
perception, behavior control, and joint control. In the perception module, machine learning
methods, specifically YOLOv7, KNN, and RANSAC, are employed to detect objects in
real time and generate point clouds, enabling the estimation of optimal grasping postures.
The behavior control module utilizes SLAM to construct an environment map, while the
AMCL navigation package in ROS facilitates precise navigation. In the joint control module,
MPC is employed to regulate the four legs, and the inverse kinematics solution controls
the position of the low-degree-of-freedom manipulator. The simulation results in a virtual
environment demonstrate that the authors’ system achieves an average success rate of
96% for different object classifications, indicating good stability and accuracy. However,
it is important to note that the inherent advantages of the quadruped robot are not fully
demonstrated due to the flat terrain of the housing environment. It is suggested that the
authors consider these relevant aspects in future work.

Ahmed Neaz focuses on the development of an advanced omnidirectional mobile
robot designed to enhance industrial logistics tasks in dynamic and heavy-traffic environ-
ments. Contribution 9 presents an integrated control system that combines high-level and
low-level algorithms with a graphical interface for each system. The low-level motor con-
trol is achieved using an efficient microcontroller to ensure high accuracy and robustness.
High-level decision making is managed by a Raspberry Pi 4 and a remote PC, utilizing
multiple LiDAR sensors, IMU, and odometry data from wheel encoders. The low-level
programming is implemented in LabVIEW, while the high-level software architecture uses
ROS. The practical operation of the ’MotionBot’ robot demonstrates the reliability and
effectiveness of the proposed techniques. Enhancements in lower-level control optimize
the vibrations and increase the stability with a low computational cost. The robot show-
cases robustness across various environments and loads, and the fusion of data from three
LiDAR sensors significantly improves the localization and positioning accuracy. The robot
successfully navigates to the target points while avoiding obstacles in dynamic settings,
supported by a user-friendly GUI developed in LabVIEW. Overall, this study presents
a comprehensive and robust solution for autonomous navigation and mapping in industrial
logistics, with significant potential for real-world applications.

Contribution 10 explores the distributed containment control of continuous-time linear
multi-agent systems. The authors introduce a novel parametric dynamically compensated
distributed control protocol that incorporates information from both the virtual layer and
the actual neighboring agents. By adjusting the dominant poles using MLQR optimal
control and Geršgorin’s circle criterion, the containment control achieves a specified con-
vergence speed. Furthermore, the authors address the adaptability of the dynamic control
protocol in the event of the failure of the virtual layer, ensuring that the convergence speed
can still be guaranteed through dominant pole assignment methods. The study emphasizes
the importance of dynamic performance tuning, the design of distributed control protocols
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for MASs with multiple leaders over fixed topology, and the significance of the convergence
speed for the system’s stability and performance.

In Contribution 11, Jie Meng and co-authors consider the relationship between percep-
tion and control. They propose a novel MPC framework to enhance the tracking accuracy in
the presence of localization fluctuations. The prediction horizon is time-varying, following
the localization accuracy, mitigating the effects of localization fluctuations, and improving
the tracking accuracy and system stability in dynamic environments. The authors also
introduce a methodology for assessing the fluctuations in localization, employing fuzzy
rules to estimate the variance and entropy, providing a means of quantifying the magnitude
of localization fluctuations. To reduce the computational burden and ensure the feasibility
of the optimization problem, a Taylor expansion is employed to linearize the kinematic
model of the robot. This approach represents a novel conceptual framework compared
to the traditional method of decoupling perceptual and control methods, as it effectively
enhances the tracking performance of the robot in the presence of perceptual uncertainty.

A simple and easy-to-implement localization system is essential for robots. Therefore,
in Contribution 12, a visual tag-based indoor localization system is proposed. It is important
to construct the tags straightforwardly to minimize the algorithm’s complexity. However,
this often leads to non-uniqueness issues with the tags. To address this, the authors propose
a methodology for efficient tag matching based on the azimuth angle between the camera
and the tag. Additionally, a method for estimating the tag’s position is devised to achieve
an optimal balance between computational complexity and positioning accuracy.

Huma Mahboob introduces a novel approach to autonomous navigation in unknown
environments in Contribution 13. Instead of focusing on the local optimization of individ-
ual robots, the proposal aims to optimize the overall energy consumption of a population of
robots. An innovative energy- and information-aware management algorithm is proposed,
enabling each robot to draw and update a map of the entire environment by receiving
information broadcasted by other robots. By comparing this with their own environment
perception, the robots can determine their position on the map, enabling real-time localiza-
tion. By guiding the robots’ perception of their optimal paths, sharing sensory information
among followers, and comparing energy consumption under information transfer and
collaborative perception, the robot swarm can reach its destination with minimal energy
consumption. This approach offers valuable insights for the advanced fields, with a notably
low overhead in collaborative perception, real-time mapping, localization, and navigation.

The final contribution is a review by Yu Liu and co-authors, which presents the
technologies used for perception by indoor autonomous mobile robots. The authors
emphasize the significance of perception in mobile robotics and the need for accurate and
efficient sensing capabilities to make informed decisions. The review provides a systematic
literature review, covering various techniques for robot localization, including inertial
navigation, GPS, navigation based on beacons or landmarks, and model matching. The
article also discusses map-building techniques, with a focus on SLAM methods, including
filter-based and graph-optimization-based algorithms. Additionally, the importance of
LiDAR and vision cameras in SLAM, as well as the processing of SLAM optimization
algorithms, is highlighted. In conclusion, the review emphasizes the importance and
application of perception techniques, localization methods, and map-building algorithms
for mobile robots operating in indoor environments.

3. Conclusions

This collection of papers on advanced sensing and control technologies for autonomous
robots provides valuable insights into the current state of research and the state of the art
in the field. The authors’ contributions provide distinctive perspectives and innovative
solutions to address pressing challenges in robotics. Building on the preceding discourse,
several potential avenues warrant further exploration to establish robust and reliable
navigation capabilities in sensing and control technologies. To this end, the following
recommendations are presented for consideration:
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• Multi-sensor data fusion: The inherent limitations of a single sensor pose significant
challenges in the deployment of autonomous robots in complex scenarios, such as
intelligent transport systems. Consequently, the integration and analysis of data
from multiple sensor sources are imperative to generate comprehensive, accurate, and
reliable information. This will involve addressing data heterogeneity and uncertainties
from a broad range of sensors, ensuring the integrity and trustworthiness of the fused
information, and advancing the development of productive fusion algorithms to
enable a rapid response when needed.

• Perception-control coupling method: Autonomous robots complete some specific
tasks in which accurate control is required, such as safe navigation under interference,
the sensor faults of aircrafts, and the palletizing tasks of industrial robots. In current
robotics systems, the perception and control layers often operate as distinct compo-
nents. Notably, the localization results of the robot are typically considered accurate
within the control framework. However, in practical applications, external errors
persist, whether associated with LiDAR-based or vision-based localization strategies.
In the absence of an appropriate strategy on the part of the controller, these errors can
lead to severe system instability or substantial tracking deviations. Therefore, formu-
lating a well-structured perception-control method becomes paramount to effectively
mitigate such problems.

Conflicts of Interest: The authors declare no conflict of interest.
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K. Implementation of an Artificially Empathetic Robot Swarm. Sensors 2024, 24, 242.
https://doi.org/10.3390/s24010242.

5. Jiang, D.; Wang, M.; Chen, X.; Zhang, H.; Wang, K.; Li, C.; Li, S.; Du, L. An Integrated
Autonomous Dynamic Navigation Approach toward a Composite Air–Ground Risk
Construction Scenario. Sensors 2024, 24, 221. https://doi.org/10.3390/s24010221.

6. Zhang, Y.; Li, Y.; Chen, P. TSG-SLAM: SLAM Employing Tight Coupling of Instance
Segmentation and Geometric Constraints in Complex Dynamic Environments. Sensors
2023, 23, 9807. https://doi.org/10.3390/s23249807.

7. Zhang, Y.; Chen, P. Path Planning of a Mobile Robot for a Dynamic Indoor Environ-
ment Based on an SAC-LSTM Algorithm. Sensors 2023, 23, 9802. https://doi.org/10.3
390/s23249802.

8. Yi, J.-B.; Nasrat, S.; Jo, M.-s.; Yi, S.-J. A Software Platform for Quadruped Robots with
Advanced Manipulation Capabilities. Sensors 2023, 23, 8247. https://doi.org/10.339
0/s23198247.

9. Neaz, A.; Lee, S.; Nam, K. Design and Implementation of an Integrated Control
System for Omnidirectional Mobile Robots in Industrial Logistics. Sensors 2023, 23,
3184. https://doi.org/10.3390/s23063184.

10. Yan, F.; Feng, S.; Liu, X.; Feng, T. Parametric Dynamic Distributed Containment
Control of Continuous-Time Linear Multi-Agent Systems with Specified Convergence
Speed. Sensors 2023, 23, 2696. https://doi.org/10.3390/s23052696.

5



Sensors 2024, 24, 5478

11. Meng, J.; Xiao, H.; Jiang, L.; Hu, Z.; Jiang, L.; Jiang, N. Adaptive Model Predictive
Control for Mobile Robots with Localization Fluctuation Estimation. Sensors 2023, 23,
2501. https://doi.org/10.3390/s23052501.

12. Gao, F.; Ma, J. Indoor Location Technology with High Accuracy Using Simple Visual
Tags. Sensors 2023, 23, 1597. https://doi.org/10.3390/s23031597.

13. Mahboob, H.; Yasin, J.N.; Jokinen, S.; Haghbayan, M.-H.; Plosila, J.; Yasin, M.M.
DCP-SLAM: Distributed Collaborative Partial Swarm SLAM for Efficient Navigation
of Autonomous Robots. Sensors 2023, 23, 1025. https://doi.org/10.3390/s23021025.

14. Liu, Y.; Wang, S.; Xie, Y.; Xiong, T.; Wu, M. A Review of Sensing Technologies for
Indoor Autonomous Mobile Robots. Sensors 2024, 24, 1222. https://doi.org/10.3390/
s24041222.

References

1. Zhao, J.; Liu, S.; Li, J. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm
under ROS. Sensors 2022, 22, 4172. [CrossRef]

2. Yue, X.; Li, H.; Shimizu, M.; Kawamura, S.; Meng, L. YOLO-GD: A Deep Learning-Based Object Detection Algorithm for
Empty-Dish Recycling Robots. Machines 2022, 10, 294. [CrossRef]

3. Zou, Q.; Sun, Q.; Chen, L.; Nie, B.; Li, Q. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous
Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6907–6921. [CrossRef]

4. Arents, J.; Greitans, M. Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing. Appl. Sci.
2022, 12, 937. [CrossRef]

5. Jefroy, N.; Azarian, M.; Yu, H. Moving from Industry 4.0 to Industry 5.0: What Are the Implications for Smart Logistics? Logistics
2022, 6, 26. [CrossRef]

6. Vorasawad, K.; Park, M.; Kim, C. Efficient Navigation and Motion Control for Autonomous Forklifts in Smart Warehouses: LSPB
Trajectory Planning and MPC Implementation. Machines 2023, 11, 1050. [CrossRef]

7. Huang, J.; Junginger, S.; Liu, H.; Thurow, K. Indoor Positioning Systems of Mobile Robots: A Review. Robotics 2023, 12, 47.
[CrossRef]

8. Steenbeek, A.; Nex, F. CNN-Based Dense Monocular Visual SLAM for Real-Time UAV Exploration in Emergency Conditions.
Drones 2022, 6, 79. [CrossRef]

9. Meng, J.; Wang, S.; Jiang, L.; Hu, Z.; Xie, Y. Accurate and Efficient Self-Localization of AGV Relying on Trusted Area Information
in Dynamic Industrial Scene. IEEE Trans. Veh. Technol. 2023, 72, 7148–7159. [CrossRef]
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Abstract: Control design for the nonlinear cascaded system is challenging due to its complicated
system dynamics and system uncertainty, both of which can be considered some kind of system
nonlinearity. In this paper, we propose a novel nonlinearity approximation scheme with a simplified
structure, where the system nonlinearity is approximated by a steady component and an alternating
component using only local tracking errors. The nonlinearity of each subsystem is estimated inde-
pendently. On this basis, a model-free adaptive control for a class of nonlinear cascaded systems is
proposed. A squared-error correction procedure is introduced to regulate the weight coefficients of
the approximation components, which makes the whole adaptive system stable even with the unmod-
eled uncertainties. The effectiveness of the proposed controller is validated on a flexible joint system
through numerical simulations and experiments. Simulation and experimental results show that the
proposed controller can achieve better control performance than the radial basis function network
control. Due to its simplicity and robustness, this method is suitable for engineering applications.

Keywords: model-free adaptive control; nonlinearity approximation; cascaded system; flexible joint

1. Introduction

The control problem of nonlinear cascaded systems commonly exists in engineering.
Mechanical joints in robot manipulators are driven by motor currents [1–3]. The path
tracking control of mobile robots is realized by adjusting wheel velocities [4–7]. Gyro-
scopic precession can be integrated into one-wheeled robots for steering control [8]. Flight
dynamics in unmanned aerial vehicles (UAVs) can be stabilized through attitude adjust-
ment [9–12]. Although these systems vary in physical assumptions, all of them can be
modeled as nonlinear systems with a cascaded structure. The control design for such
systems is challenging due to complicated system nonlinearity and uncertainty.

Disturbance rejection is a common approach to addressing the effects of unknown
system nonlinearity and uncertainty. References [13,14] apply H-infinity optimal control for
the linear system to suppress the effects of unknown disturbances. However, for systems
with strong uncertainties, linear H-infinity control may lead to conservative performance.
Hence, some researchers develop H-infinity controllers based on nonlinear system mod-
els [15–17]. Compared to the linear version, nonlinear H-infinity control allows for greater
system nonlinearity under fine-tuning conditions and can delay control degradation and
instability risks [17]. However, solving for nonlinear H-infinity controllers is usually com-
plex and time-consuming [15,17,18]. In addition, invariant ellipsoid techniques are also
introduced to optimize the robustness of control systems to unknown disturbances [19].
The invariant ellipsoid method simplifies the optimal controller to finding the smallest
invariant ellipsoid of the closed-loop dynamic system [20]. A typical way is to apply the in-
variant ellipsoid method to suppress persistent disturbances through state-feedback control
via LMI techniques [21–23]. It needs to quantitatively evaluate the effects of disturbances
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on the system output; thus, accurate system information is required. Other methods, such
as the generalized fractional equation [24], are also introduced to model complex, uncertain
systems.

Obtaining optimal control solutions for nonlinear systems with complex uncertainties
is often challenging. Hence, researchers have proposed to combine the aforementioned
disturbance rejection methods with nonlinearity estimation approaches that are free from
system models, such as artificial neural networks (ANN) [25,26], fuzzy networks [27], and
disturbance observers [18,28,29].

Artificial intelligence networks, such as fuzzy systems and neural networks, are
commonly used for nonlinearity approximation [30–37]. In [31], a fuzzy approximation-
based adaptive backstepping controller was developed to assist in the movement of an
upper-limb exoskeleton robot. References [33–35] present observer-based fuzzy neural-
network output feedback control algorithms for underactuated nonlinear systems. These
studies combine the adaptive backstepping technique with artificially intelligent networks
to achieve a high-performance approximation-based controller. Reference [38] proposes a
reinforcement learning-based method to ensure asymptotic tracking control of continuous-
time systems. However, the application of these approaches is hindered by complex
control objects with a high degree of freedom (DOF), structural uncertainty, and system
nonlinearity [36]. For artificial intelligence networks with complex topological structures,
the learning process degrades the transient performance of the system and requires high
calculation efficiency. For real-time control systems, their high computational cost is an
inevitable challenge. References [32,36,37] stated that these factors impede the development
of intelligence networks-based adaptive control, especially in real-time control applications.

High-gain disturbance observer (HGDOB) and sliding mode control (SMC) are also
effective methods to deal with systems with parametric uncertainties and unmodeled
nonlinearities. In [39], a HGDOB is designed to estimate the system disturbance caused by
friction, load force, and the parameter disturbance for electro-hydraulic systems. However,
the high gain observer is sensitive to measurement noise and delayed outputs [40]. To solve
this problem, Reference [41] designed time-varying gains relying on the generalization of
the Halanay-type inequalities. Reference [42] tried to lower the observer gain by introducing
artificial delays and Taylor’s series. Similarly, the SMC is limited by chattering and peak
phenomena in control signals [43]. In [44], a radial basis function neural network (RBFNN)-
based soft computing strategy is applied to avoid the high switching gain that leads
to chattering amplification. In [45], an adaptive sliding mode control method (ASMC)
for robot manipulators is introduced. It utilizes the Taylor expansion to achieve a less
conservative sign-function gain that enables chattering attenuation. The above approaches
reduce chattering by applying extra-complicated policies. An interesting work is presented
in [46] that presents a finite-time SMC (FT-SMC) and suppresses the peak phenomenon
and chattering with an asymptotically convergent differentiator.

As can be seen from the previous discussion, in order to deal with unknown distur-
bances while avoiding problems caused by high control gains, controllers tend to become
more and more complex and bloated. It is particularly unfriendly for engineering applica-
tions. Therefore, a simplified controller that is robust to unknown system nonlinearities
and possesses mild control input is valuable for engineering applications.

Hence, this study aims to provide a simplified adaptive controller for a class of
nonlinear cascaded systems. We first propose a so-called non-interference nonlinearity
approximation (NINA) technique. It is based on the following system theory: For stable
closed-loop systems, a bounded and continuous system nonlinearity can always be de-
composed into steady and alternating components [47]. Furthermore, the output errors
incorporated information relating to the system nonlinearity. Therefore, the unknown
system nonlinearity can be modeled as a hierarchical form of a steady component and an
alternating component. In addition, each nonlinearity can be approximated independently,
using only local tracking errors. Thus, the proposed scheme is called non-interference non-
linearity approximation. Due to the simplified and decoupled approximation structure, the
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computational complexity of NINA is significantly reduced. Based on NINA, a model-free
adaptive control is proposed. It is convenient for engineering applications because it avoids
the fussy process of system modeling and parameter identification. In addition, it is also
robust to external disturbance and parameter perturbation due to accurate nonlinearity
approximation and compensation, which are verified by numerical simulations and ex-
periments. Finally, its control inputs are milder than those of SMC and HGDOB-based
control.

In summary, the contributions of this work are as follows:

(1) A novel NINA scheme that has a simplified hierarchical structure is proposed. Based
on only local tracking errors, the NINA technique can approximate the unknown
system nonlinearity regardless of its internal complexity. Saturation functions with
adjustable shaping factors help balance fast convergence against measurement noise,
thereby providing a mild control input.

(2) A model-free adaptive control based on the NINA technique is proposed. Its uni-
formly ultimate boundedness (UUB) is proven by the Lyapnuov theory. The effec-
tiveness and robustness have been validated by simulations and experiments on a
flexible-joint manipulator system.

(3) Compared with the intelligence network-based control, the proposed method pos-
sesses a simplified structure and requires less computational costs. Compared with
the SMC, the proposed method can perform fast trajectory tracking with mild control
inputs. Hence, it is convenient for engineering applications.

Reference [48] introduces an adaptive weighted saturation function to suppress system
uncertainty in a stabilization problem. The approach was applied to flexible manipulator
control by [49,50]. Different from previous work, this paper approximates the nonlinearity
of the closed-loop system using trajectory tracking errors instead of relying on system
states. Furthermore, a hierarchical approximation structure is introduced in this paper.
The steady component aims to achieve fast tracking for the major part of the nonlinearity,
while the alternating component is designed to supplementarily track its high-frequency
fluctuations. In addition, this paper conducted an elaborate theoretical analysis that not
only proves the effectiveness of the proposed approximation method but also provided the
upper bound of the approximation error. The convergence of the weighted parameters was
also analyzed. Hence, this work can be viewed as an extension of the approach in [48] to
some degree.

The remainder of this paper is organized as follows: Section 2 formulates the dynamic
model for a class of nonlinear cascaded systems. Section 3 presents a decoupled control
framework. Section 4 describes the NINA technique. On this basis, Section 5 proposes
NINA-based adaptive control. Numerical simulations and experiments on the flexible
joint system are presented in Sections 6 and 7, respectively. Conclusions are provided in
Section 8.

2. Preliminaries

Mathematical Description of the Generalized Dynamics

First, we consider a class of nonlinear cascaded systems with n-DOF whose dynamics
are given by:

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][ ..
α
..
β

]
+

⎡⎣nα

(
α,

.
α, β,

.
β
)

nβ

(
α,

.
α, β,

.
β
)⎤⎦ =

[
0
τβ

]
(1)

where α, β ∈ Rn represent the coordinates. mα, mαβ, mβα, mβ ∈ Rn×n form the system
inertia matrix. nα, nβ ∈ Rn, represent the system nonlinearity that captures centrifugal
and Coriolis forces, viscous and frictions, gravitation, unmodeled system dynamics, and
external disturbances. τβ ∈ Rn represents the control inputs. The first and second rows in
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(1) represent the unactuated and actuated subsystems, respectively. For the convenience of
distinguishing, they are denoted as the α-system and β-system.

For cascaded systems [1–12], the nonlinearity of the α-system nα usually contains
a dynamic coupling term that coordinates the behavior of the actuated and unactuated
subsystems. Hence, nα can be modeled as the combination of a known dynamic coupling
term and a residual term, i.e.,

nα

(
α,

.
α, β,

.
β
)
= δα

(
α,

.
α, β,

.
β
)
− uα

(
α,

.
α, β,

.
β
)

(2)

where uα is the known dynamic coupling term and δα is the unmolded system nonlinearity.
Substituting (2) into (1), the dynamic model can be represented as

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][ ..
α
..
β

]
+

⎡⎣δα

(
α,

.
α, β,

.
β
)

nβ

(
α,

.
α, β,

.
β
)⎤⎦ =

[
uα

(
α,

.
α, β,

.
β
)

τβ

]
(3)

where the behavior of the α-system is indirectly regulated by the dynamic coupling term
uα. Given the states of the α-system, the value of uα depends on the states of the β-system.
Therefore, the control objective is to perform trajectory tracking control of the α-system by
regulating the behavior of the β system.

Assumption 1. Let x =
(
α,

.
α
)
, y =

(
β,

.
β
)

. For any given y1, y2 ∈ Rn, uα satisfies the
following Lipschitz condition:

‖uα(x, y2)− uα(x, y1)‖ ≤ γ‖y2 − y1‖, (4)

where γ > 0 is a finite constant.

Assumption 2. Let S1, S2, and S3 be the ranges of x, y, and uα, respectively. We have
uα : (S1 × S2) → S3 . Given x ∈ S1, for any desired uα ∈ S3, there exists yr ∈ S2 satisfying the
following inverse mapping:

u−1
α : (uαr × x) → yr, (5)

where uαr is the desired value of uα, and yr is the desired value of y. This assumption is summarized
from real systems [1–12].

Remark 1. Assumptions 1 and 2 guarantee the maneuverability of the α-system. If we take uα ∈ S3
as the virtual control and using (4) and (5), the error between uαr and uα is bounded by

‖uα(x, yr)− uα(x, y)‖ ≤ γ‖y − yr‖. (6)

We have uα(x, y) → uα(x, yr) as y → yr . It indicates that the α-system can be indirectly regu-
lated by the β-system via the dynamic coupling term uα.

Remark 2. Equations (1) and (2) with assumptions 1 and 2 represent a class of nonlinear cascaded
systems where the unactuated subsystems are indirectly regulated by the behaviors of the actuated
subsystems through dynamic coupling. Some examples are provided as follows: For the flexible
joint manipulator, the flexibility torque connects the dynamic behavior of the load and motor
sides [3]. The gyro moment is used to maintain the lateral balance of the gyroscopic pendulum
robot [7]. Dynamic coupling between attitude regulation torque and thrust force is widely utilized
for the path tracking control of UAVs [9–12]. In the above examples, flexibility torque, the gyro
moment, and aerodynamics can be viewed as the known dynamic coupling terms that can be used
for controller design.

3. Decoupled Control Framework

Considering system (1), there are two types of dynamic coupling: first, the dynamic
coupling between the actuated and unactuated subsystems; and second, the dynamic
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coupling between different degrees of freedom (DOFs). To address the problem mentioned
above, a decoupled control framework is proposed in this paper, as shown in Figure 1.
To deal with the dynamic coupling between the actuated and unactuated subsystems, we
introduce a cascaded control framework where an α-controller is placed in the outer layer
to stabilize the unactuated subsystem and a β-controller is positioned in the inner layer to
regulate the actuated subsystem. The two sub-controllers are linked through the inverse
mapping of the dynamic coupling term �α. In addition, the dynamic coupling between
different DOFs is considered to be an unknown disturbance and is compensated by the
proposed NINA technique presented in the next section.

 

Figure 1. Decoupled cascaded control framework.

The control framework is derived below. Let αr(t) and βr(t) be the reference trajectory
of the α- and β-systems, which are assumed to be bounded and to have finite first- and
second-order time derivatives. Let eα = αr − α and eβ = βr − β be the position tracking
errors. Then, the following synthetic tracking errors are introduced:

ξα = Λαeα +
.
eα

ξβ = Λβeβ +
.
eβ

. (7)

where Λα, Λβ > 0 are diagonal positive gain matrices. Substituting (7) into model (3) and
applying τα = uαr as the virtual control, the error dynamics can be expressed as[

mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][ .
ξα.
ξβ

]
=

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][
Λα

.
eα +

..
αr

Λβ
.
eβ +

..
βr

]
+

[
vα − τα

nβ − τβ

]
, (8)

where vα = δα +
∼
uα represents a lumped nonlinearity.

∼
uα = uαr − uα is the distortion

between the desired control input and its actual value. Such a distortion is mainly caused
by state tracking errors, parameter perturbations, and the model uncertainty of uα.

Let us analyze (8) by choosing the following Lyapunov function:

V1 =
1
2

ξT Mξ, (9)

with

ξ =

[
ξα

ξβ

]
, M =

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

]
.
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Considering the time derivative of (9) and substituting (8), we obtain

.
V1 = ξT(F − τ), (10)

with

τ =

[
τα

τβ

]
,

F =

[
Fα

Fβ

]
=

1
2

[ .
mα(α, β)

.
mαβ(α, β)

.
mβα(α, β)

.
mβ(α, β)

][
ξα

ξβ

]
+

[
mα(α, β) mαβ(α, β)
mβα(α, β) mβ(α, β)

][
Λα

.
eα +

..
αr

Λβ
.
eβ +

..
βr

]
+

[
vα

nβ

]
(11)

where F is an integrated system nonlinearity. Considering F as an unknown disturbance and
compensating via nonlinearity estimation, a simplified control law can then be designed as

τ = Kξ + F̂, (12)

where K is a positive, definite diagonal gain matrix. F̂ is the estimation of F applied for
nonlinearity compensation.

Substituting (12) into (10),
.

V1 becomes

.
V1 = −ξTKξ + ξT(F − F̂

)
. (13)

Ideally, if F̂ = F, ξ is asymptotically convergent to zero. If
∼
F = F − F̂ is bounded, ξ

will be ultimately bounded. It can be seen that the stability of the closed-loop system is
determined by the nonlinearity approximation process. In the next section, a simplified
NINA technique is proposed for the nonlinearity approximation.

Remark 3. As shown in Figure 1, the reference of the α-system
(
αr,

.
αr
)

is given by users, while

the reference of the β-system
(

βr,
.
βr

)
is generated to guide the tracking of the virtual control

uα → uαr = τα .
Given the states of the α-system ( α,

.
α
)

and the desired value of virtual control, uαr, we have

uα

(
α,

.
α, β,

.
β
)
→ uαr

(
α,

.
α, βr,

.
βr

)
as
(

β,
.
β
)
→
(

βr,
.
βr

)
. (14)

Hence,
(

βr,
.
βr

)
can be obtained by solving the inverse mapping of uα

(
α,

.
α, βr,

.
βr

)
with respect to(

βr,
.
βr

)
, i.e., (

βr,
.
βr

)
= u−1

α

(
α,

.
α, uαr

)
. (15)

An example of such inverse mapping about the elastic torque of the flexible joint manipulator is
given in Equation (51).

4. Principles of NINA

In this section, a simplified nonlinearity approximation scheme is presented. The
nonlinearity of each subsystem can be estimated independently by simply utilizing the
local tracking error.

Declaration 1. Considering the nonlinearity approximation by each subsystem, we adopt the
following symbolic notation: for a vector V or a diagonal matrix V, the j-th element is marked by Vj,
where j = 1, 2, . . ., 2n.

Let Fj represents the system nonlinearity and is assumed to be a bounded continuous
time function. In real-world applications, most of the plants are controlled by digital
controllers. Therefore, Fj can be viewed as a piecewise time-varying function within
successive control cycles. Mathematically, such a piecewise time-varying function can
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always be expressed as the synthetic form of steady and alternating components [47].
Hence, the system nonlinearity can be modeled in the time-domain as

Fj(t) ≡ Fsj + Δj(t), (tI ≤ t ≤ tI + μTc) (16)

where μ > 1 is a positive integer. tI is the initial moment, and Tc is the control cycle.
Fsj and Δj denote a bounded steady component and a bounded alternating component,
respectively.

In addition, for closed-loop control systems, the tracking error reflects the combined
effect of system nonlinearities. Therefore, we introduce the following structure to approxi-
mate system nonlinearities with the synthetic tracking error ξ j:

FAj
(
ξ j
)
= Fsj + Wsjσ

(
ξ j
)
,
(∣∣Δj
∣∣ < Wsj < ∞

)
, (17)

where FAj is the approximation of Fj. Fsj is the steady component in (16), and Wsjσ
(
ξ j
)

is introduced to approximate the alternating component Δj, where Wsj is a dynamically
adjusted weight coefficient and σ

(
ξ j
)

is a saturation function expressed as

σ
(
ξ j
)
= ξ j/

(
ϑsj +

∣∣ξ j
∣∣), (0 < ϑsj < ∞

)
, (18)

where ϑsj is a shaping factor. When ϑsj → 0 , σ
(
ξ j
)

acts as a signed switching function that
is highly sensitive to the variation of ξ j around zero. By contrast, when ϑsj → ∞ , σ

(
ξ j
)

tends to zero and becomes insensitive to the changes of ξ j. Compared with the linear or
polynomial approximation, the introduced saturation function enables a wide range of
sensitivity adjustment w.r.t. ξ j via only one parameter. It is more convenient and adaptable.

From (16) and (17), the approximation error between Fj(t) and FAj can be calculated
as

E
(
Δj, ξ j

)
= Fj(t)− FAj

(
ξ j
)
= Δj(t)− Wsjσ

(
ξ j
)
. (19)

Theorem 1. For a bounded continuous nonlinearity Fj(t), there exist optimized parameters Fsj,
Wsj, and ϑsj for the approximation structure (17), (18) that satisfy the identity E

(
Δj, ξ j

)
= 0 and

the synthetic tracking error is ultimately bounded by∣∣ξ j
∣∣ ≤ ϑsj

(∣∣Δj/Wsj
∣∣)/[1 + ∣∣Δj/Wsj

∣∣], (20)

where
∣∣ξ j
∣∣→ 0 , as ϑsj → 0 and Wsj >

∣∣Δj
∣∣. It illustrates that the proposed structure can

effectively approximate the system nonlinearity while maintaining a small synthetic tracking error.

Proof . Let F̂j(t) = FA
(
ξ j
)

and substitute (19) into (13). The first derivative of the Lyapunov
function in (13) becomes

.
V1 = −∑

j
Kjξ

2
j + ∑

j
E
(
Δj, ξ j

)
ξ j, (21)

where −Kjξ
2
j ≤ 0. The property of E

(
Δj, ξ j

)
ξ j is discussed below.

Step 1: The second derivatives of E
(
Δj, ξ j

)
ξ j with respect to ξ j is presented as

∂2E
(
Δj, ξ j

)
ξ j

∂2ξ j
= 2Wsj

(
σ
(
ξ j
)− 1

)
σ′(ξ j

)
, (22)

where σ′(ξ j
)

is the first derivatives of σ
(
ξ j
)

with respect to ξ j. It can be verified segmentally

that
∂2E(Δj ,ξ j)ξ j

∂2ξ j
< 0 for any ξ j ∈ R and Wsj > 0. Hence, E

(
Δj, ξ j

)
ξ j is an open downward

convex function with respect to ξ j. This can be further verified by the profile diagram
shown in Figure 2.

14
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Figure 2. Changes in the profile of Ej

(
Δj, ξ j

)
ξ j caused by parameter drifts.

Step 2: Given that E
(
Δj, ξ j

)
ξ j is an open downward convex function with respect to

ξ j, its sign will vary around the nonzero solution ξ j = ξz

(
Δj
)

of equation E
(
Δj, ξ j

)
ξ j = 0.

With (19), the value of ξz
(
Δj
)

can be calculated as

ξz
(
Δj
)
=

{
ξ+z = ϑsj

(
Δj/Wsj

)
/
[
1 − (Δj/Wsj

)]
,
(
Δj ≥ 0

)
ξ−z = ϑsj

(
Δj/Wsj

)
/
[
1 +
(
Δj/Wsj

)]
,
(
Δj ≤ 0

) , (23)

Step 3: The following two compact sets are defined accordingly:

S+
zj

def

=
{(

ξ j, Δj
) ∈ R2∣∣0 < ξ j < ξ+z , Δj > 0

}
,

S−
zj

def

=
{(

ξ j, Δj
) ∈ R2∣∣ξ−z < ξ j < 0, Δj < 0

}
.

Step 4: Substituting E
(
Δj, ξ j

)
ξ j around the domain S+

zj ∪ S−
zj , we can verify that, for(

ξ j, Δj
)

/∈ S+
zj ∪ S−

zj , there is
E
(
Δj, ξ j

)
ξ j < 0, (24)

and for
(
ξ j, Δj

) ∈ S+
zj ∪ S−

zj , there is

E
(
Δj, ξ j

)
ξ j > 0. (25)

Using (21) and considering the extreme case when Kj → 0 , if
(
ξ j, Δj

) ∈ S+
zj ∪ S−

zj ,
.

V1

tends to be positive and ξ j diverges from S+
zj ∪ S−

zj . By contrast, if
(
ξ j, Δj

)
/∈ S+

zj ∪ S−
zj ,

.
V1 < 0 and ξ j converges back to S+

zj ∪ S−
zj . This variation proves that ξ j is ultimately

restricted within S+
zj ∪ S−

zj , which provides∣∣ξ j
∣∣ ≤ ϑsj

∣∣Δj/Wsj
∣∣/[1 + ∣∣Δj/Wsj

∣∣]. (26)

According to (23) and (26), if the candidates are chosen as ϑsj � 1 and Wsj 
∣∣Δj
∣∣,

there exists ξz
(
Δj
)

that tends to zero and satisfies the identity: E
(
Δj, ξz

(
Δj
)) ≡ 0. It

illustrates that FAj
(
ξ j
)

in (17) can effectively approximate the system nonlinearity Fj(t)
around the domain S+

zj ∪ S−
zj , while maintaining a small synthetic tracking error. �

5. Adaptive Control Based on NINA

In this section, an adaptive control utilizing NINA is fulfilled, and the stability analysis
is carried out.

15
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5.1. Adaptive Law

Given that Fj and Wsj are optimal candidates for the approximation structure in (17),
the integrated error

�
E2(Δj, ξ j

)
dΔjdξ j is minimized. The estimation of Fj(t) is defined as

F̂j(t) = F̂Aj
(
ξ j
)
= F̂sj + Ŵsjσ

(
ξ j
)
. (27)

where F̂sj and Ŵsj are the estimations of Fj and Wsj, respectively. Subtracting (27) from (16),
the error between Fj(t) and F̂j(t) is represented as

∼
Fj(t) =

∼
Fsj +

∼
Wsjσ

(
ξ j
)
+ E
(
Δj, ξ j

)
, (28)

with
∼
Fsj = Fsj − F̂sj and

∼
Wsj = Wsj − Ŵsj. The adaptive law of F̂sj and Ŵsj is given by the

following squared-error correction procedures:

.
Ŵsj = −Ajξ

2
j Ŵsj + Bjσ

(
ξ j
)
ξ j (29)

.
F̂sj = −Ajξ

2
j F̂sj + Bjξ j (30)

where Aj, Bj > 0 are the adaptive gains. The term Ajξ
2
j plays a role in preventing the

divergences of Ŵsj and F̂sj.

Using (29) and (30), the transient performance of
∼
Fsj and

∼
Wsj is analyzed next. Apply-

ing
.∼

Wsj = −
.

Ŵsj and
.∼
Fsj = −

.
F̂sj, (29) and (30) can then be represented as

.∼
Wsj = −Ajξ

2
j

∼
Wsj + ρ

(
ξ j
)
, (31)

.∼
Fsj = −Ajξ

2
j

∼
Fsj + �

(
ξ j
)
, (32)

where
ρ =
(

Ajξ jWsj − Bjσ
(
ξ j
))

ξ j, � =
(

Ajξ jFsj − Bj
)
ξ j.

The solutions of (31) and (32) are represented as

∼
Wsj(t) = φ(t, tI)

∼
Wsj(tI) +

∫ t

tI

φ(t, τ)ρ(τ)dτ, (33)

∼
Fsj(t) = φ(t, tI)

∼
Fsj(tI) +

∫ t

tI

φ(t, τ)�(τ)dτ, (34)

where

φ(t, tI) = exp
(
−Aj

∫ t

tI

ξ2
j (τ)dτ

)
. (35)

Supposing that the persistent excitation condition holds for ξ j, φ(t, tI) asymptotically
converges to zero with the increase in t, proving that (31) and (32) are bounded-input-
bounded-output stable. The expressions of ρ and � show that ξ j is a unique source that

changes
∼
Wsj and

∼
Fsj in the steady state. Therefore,

∼
Wsj and

∼
Fsj can be restricted within

a small area along with the convergence of ξ j. We can also conclude from (35) that
∼
Wsj

and
∼
Fsj obtain fast convergence as long as Aj is set to make the steady-state time of φ(t, tI)

much smaller than μTc.
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5.2. Adaptive Controller and Stability Analysis

Combining the control structure in (12), and approximating the system nonlinearity
using (27), (29), and (30), the NINA-based adaptive control law is presented as⎧⎪⎪⎨⎪⎪⎩

τj = Kjξ j + F̂sj + Ŵsjσ
(
ξ j
)

.
Ŵsj = −Ajξ

2
j Ŵsj + Bjσ

(
ξ j
)
ξ j

.
F̂sj = −Ajξ

2
j F̂sj + Bjξ j

. (36)

Theorem 2. Consider the nonlinear system represented by (3) and use the control law in (36). If
control gainKj is selected in accordance with the following inequality

Kj >
1
4

[
Aj

(
W2

sj + F2
sj

)
/Bj

]
, (37)

the synthetic tracking ξ jis uniformly and ultimately bounded by∣∣ξ j
∣∣2 ≤ Wsjϑsj/Gj

with
Gj = Kj − 1

4

[
Aj

(
W2

sj + F2
sj

)
/Bj

]
Moreover, the synthetic tracking error ξ jcan be restricted to a small area around zero as

0 < (ϑ sj, Aj

)
� 1 and

(
Kj , Bj

) 1.

Proof. A Lyapunov function candidate is selected as

V2 = V1 +
1

2Bj
∑

j

( ∼
W

2

sj +
∼
F

2

sj

)
, (38)

Using (13) and differentiating (38) with respect to time, we have

.
V2 = ∑

j

[
ξ j

∼
Fj(t) +

(
∼
Wsj

.∼
Wsj +

∼
Fsj

.∼
Fsj

)
/Bj − Kjξ

2
j

]
, (39)

Applying
.∼

Wsj = −
.

Ŵsj and
.∼
Fsj = −

.
F̂sj with (29) and (30),

.
V2 becomes

.
V2 = ∑

j

⎡⎣Ajξ
2
j

( ∼
WsjŴsj +

∼
Fsj F̂sj

)
/Bj

+Ej
(
Δj, ξ j

)
ξ j − Kjξ

2
j

⎤⎦. (40)

where
∼
WsjŴsj and

∼
Fsj F̂sj are bounded by

∼
WsjŴsj ≡

∼
Wsj

(
Wsj −

∼
Wsj

)
≤ W2

sj/4, (41)

∼
Fsj F̂sj ≡

∼
Fsj

(
Fsj −

∼
Fsj

)
≤ F2

sj/4. (42)

Substituting (41) and (42) into (40), we can obtain the following inequality:

.
V2 ≤ −∑

j
Gjξ

2
j + ∑

j
E
(
Δj, ξ j

)
ξ j, (43)
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where Gj = Kj − 1
4

[
Aj

(
W2

sj + F2
sj

)
/Bj

]
.

According to the conclusion in (22) that E
(
Δj, ξ j

)
ξ j is an open-downward convex

function with respect to ξ j, E
(
Δj, ξ j

)
ξ j will reach its maximum value as

∂E
(
Δj, ξ j

)
ξ j

∂ξ j
= 0. (44)

Substituting the solution of (44), the maximum value of E
(
Δj, ξ j

)
ξ j can be calculated

as
E
(
Δj, ξ j

)
ξ j ≤ Wsjσ

2(ξ j
)
ϑsj = Wsjϑsjξ

2
j /
(
ϑsj +

∣∣ξ j
∣∣)2. (45)

Applying (45), (43) becomes

.
V2 ≤ −∑

j
Gjξ

2
j + ∑

j

[
Wsjϑsj/

(
ϑsj +

∣∣ξ j
∣∣)2]ξ2

j . (46)

If
∣∣ξ j
∣∣2 >

Wsjϑsj
Gj

, we have
.

V2 < 0. Hence, the synthetic tracking error ξ j is uniformly
and ultimately bounded by ∣∣ξ j

∣∣2 ≤ Wsjϑsj/Gj. (47)

The synthetic tracking error ξ j will be restricted into a small area around zero as

0 < (ϑ sj, Aj

)
� 1 and

(
Kj , Bj

) 1. This completes the proof. �

6. Numerical Simulation

In this section, the proposed method is verified by the trajectory tacking control of a
two-link flexible-joint manipulator. The simulations of the manipulator under step change,
different link lengths, and joint stiffness are performed to evaluate the robustness of the
proposed method. The simulations are conducted utilizing the fourth-order Runge–Kutta
method.

The finite-time sliding mode control (FT-SMC) in [46] and the RBFN-based control
in [51] are also simulated for comparison. These two controllers are selected as represen-
tatives of sliding mode control and RBFN-based control methods. They exhibit relatively
simple yet representative architectures and are also model-free methods, which makes
them suitable as benchmarks for comparison.

6.1. Simulation Setup

The configuration of the manipulator is depicted in Figure 3, and its parameters are
listed in Table 1. Referring to [52], the system dynamics can be modeled as[

m11(α1, α2) m12(α1, α2)
m21(α1, α2) m22(α1, α2)

][ ..
α1..
α2

]
+

[
h1
h2

]
+

[
G1
G2

]
=

[
u1
u2

]
(48)

[
J1(β1) 0

0 J2(β2)

][ ..
β1..
β2

]
+

[
fd1
fd2

]
−
[

u1
u2

]
=

[
τ3
τ4

]
(49)

with ⎧⎨⎩u1 = ks1(α1 − β1) + kd1

( .
α1 −

.
β1

)
u2 = ks2(α2 − β2) + kd2

( .
α2 −

.
β2

) (50)

where α = (α1, α2)
T and β = (β1, β2)

T are the position vectors of the load and motor
sides, respectively; m11, m12, m21, m22 are the elements of the load side inertial matrix, J1
and J2 are the elements of the motor side inertial matrix; h1 and h2 consist of Coriolis
and centrifugal terms; G1 and G2 contain gravitational terms; u1 and u2 are the elastic
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torque terms; fd1 and fd2 are the damping terms of the motor side; and τ3 and τ4 are the
motor torques.

 
Figure 3. Architecture of the two-link robot manipulator with joint flexibility.

Table 1. Parameters of the two-link robot manipulator system.

Parameters Value Parameters Value Unit Means

m1 6.0 m2 4.0 kg mass of the link
l1 0.6 l2 0.4 m length of the link
d1 0.3 d2 0.2 m length of the mass center
J1 2.2 × 10−3 J2 6.4 × 10−4 kg.m2 motor inertia
fd1 0.088 fd2 0.057 N.m/rad/s motor damping
ks1 120.0 ks2 100.0 N.m/rad joint stiffness
kd1 6.79 × 10−2 kd2 3.69 × 10−2 N.m/rad/s elasticity damping

The control law presented in Theorem 2 is applied. The reference trajectory of the
load-side is given by the user command. The reference trajectory of the motor side is
generated by solving the following differential equation:{ .

βr1 = −ks1βr1/kd1 +
[
(τα1 + ks1α1)/kd1 +

.
α1
]

.
βr2 = −ks2βr2/kd2 +

[
(τα2 + ks2α2)/kd2 +

.
α2
] , (51)

where
(

βr1, βr2,
.
βr1,

.
βr2

)
represent the command trajectory of the motor side, and τα1 and

τα2 are the desired values of u1 and u2, respectively. This formula is an inverse mapping of
u1

(
α1,

.
α1, β1r,

.
β1r

)
and u2

(
α2,

.
α2, β2r,

.
β2r

)
in (50). The parameters of the proposed adaptive

controller used in the simulation are listed in Table 2.

Table 2. Parameters of the proposed NINA-based adaptive control.

Parameters Value Parameters Value

ϑs1, ϑs2 0.3 ϑs3, ϑs4 6
K1 ∼ K2 10 K3 ∼ K4 5
A1 ∼ A2 0.3 A3 ∼ A4 1
B1 ∼ B2 1000 B3 ∼ B4 1000
Λ1 ∼ Λ2 5 Λ3 ∼ Λ4 5

Note that subscripts 1 and 2 represent the motor-side control parameters of joints 1 and 2, respectively. Subscripts
3 and 4 represent the load-side control parameters of joints 1 and 2, respectively.

Remark 4. For the flexible joint system mentioned above, the motor side is the actuated subsystem,
and the link side is the unactuated subsystem. The elastic torque (u1, u2) helps coordinate the
behavior of the motor and load sides. It can be verified that Assumptions 1 and 2 hold for (u1, u2)
by examining the expression in (50).
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6.2. Trajectory Tracking Performance Validation

We compared the trajectory tracking performance of the three control methods: the
proposed method, the RBFN-based method, and FT-SMC. The robot arm starts from the
horizontal position and tracks sinusoidal trajectories as shown below:{

αr =
π
6 (1 + sin(2t)), load side

βr =
π
6 (1 + cos(2t)), motor side

.

To evaluate the tracking performance of the controllers, we introduce the following
evaluation index, and the results are listed in Tables 3 and 4:

Table 3. Tracking performance of the three methods.

SSP CTP

Joint 1 Joint 2 Joint 1 Joint 2 Average

Link
Side

NINA −0.07◦~0.08◦ −0.03◦~0.03◦ 1.75 s 1.78 s 1.77 s
FT-SMC −0.05◦~0.09◦ −0.07◦~0.10◦ 1.88 s 1.24 s 1.56 s
RBFN −0.17◦~0.16◦ 0.20◦~0.20◦ 2.73 s 1.74 s 2.24 s

Motor
Side

NINA −0.11◦~0.12◦ −0.13◦~0.13◦ 0.50 s 0.20 s 0.35 s
FT-SMC −0.21◦~0.09◦ −0.07◦~0.10◦ 0.82 s 0.90 s 0.86 s
RBFN −0.29◦~0.17◦ −0.18◦~0.19◦ 1.24 s 1.09 s 1.17 s

Table 4. Nonlinearity estimation performance of the three methods.

SSE CTE

Joint 1 Joint 2 Joint 1 Joint 2 Average

Link
Side

NINA −0.078~0.16 Nm −0.12~0.11 Nm 0.7 s 0.4 s 0.55 s
FT-SMC −0.28~0.50 Nm −0.19~019 Nm 1.9 s 1.7 s 1.8 s
RBFN −1.60~1.60 Nm −0.8~0.8 Nm 2.76 s 1.9 s 2.33 s

Motor
Side

NINA −0.27~0.52 Nm −0.064~0.006 Nm 0.24 s 0.19 s 0.22 s
FT-SMC −1.05~0.75 Nm −0.14~0.14 Nm 0.9 s 1.3 s 1.10 s
RBFN −2.14~0.55 Nm −0.66~064 Nm 1.2 s 1.4 s 1.30 s

(a) SSP (steady-state tracking error in position):

SSP =
[
minej(t) maxej(t)

]
, f or t > tM1, j = α or β

where minej(t) and max ej(t) represent the lower and upper bounds of the position
tracking error, respectively. tM1 represents the time since the tracking error varied
periodically and steadily. In this simulation, it is set tM1 = 4 s.

(b) CTP (convergence time of trajectory tracking): It is defined as the time when the
tracking error is free from initial oscillation, shown in Figure 4c, and first comes into
the range of steady-state, i.e., SSP.

(c) SSE (steady-state estimation error in system nonlinearity):

SSE =

[
min

∼
Fj(t) max

∼
Fj(t)

]
, f or t > tM2, j = α or β

where min
∼
Fj(t) and max

∼
Fj(t) represent the low and up bounds of the nonlinearity

estimation error, respectively. tM2 is defined similarly to tM1 and is set as tM2 = 4 s.
(d) CTE (convergence time of nonlinearity estimation): It is similar to the definition

of CTP.
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(a) NINA (b) FT-SMC (c) RBFN 

Figure 4. Link-side tracking performance of (a) the proposed method, (b) FT-SMC, and (c) RBFN.

The tracking performance of the three controllers is illustrated in Figures 4 and 5.
The steady-state tracking accuracy and convergence time are listed in Table 3. All three
controllers can effectively track sinusoidal trajectories. Among them, the proposed algo-
rithm exhibits smooth and fast convergence during the transient phase, while the other
two methods show more pronounced oscillations. This is due to excessive control gain. As
shown in Table 3, the tracking errors of the proposed control algorithm on the load side
for joints 1 and 2 are, respectively −0.07◦~0.08◦ and −0.03◦~0.03◦; on the motor side, the
tracking errors are −0.11◦~0.12◦ and −0.13◦~0.13◦, respectively. The overall steady-state
tracking accuracy of the proposed algorithm is superior to the other two control algorithms.

 

 

 

 

 

 
(a) NINA (b) FT-SMC (c) RBFN 

Figure 5. Motor-side tracking performance of (a) the proposed method, (b) FT-SMC, and (c) RBFN.

It can be seen from Figure 6 and Table 4 that the proposed algorithm achieves faster
convergence of the nonlinear approximation error than the other two methods. This verifies
its ability to track unknown disturbances with high dynamics. In addition, the proposed
method also illustrates the high estimation accuracy of system nonlinearity.

 

 

 

 

 

 
(a) NINA (b) FT-SMC (c) RBFN 

Figure 6. Approximation errors of the unknown system nonlinearity using (a) the proposed method,
(b) the FT-SMC, and (c) the RBFN method.
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Finally, the control signals of the three controllers are depicted in Figure 7. The control
inputs of the proposed method and the RBFN-based method are milder, while the one
of the FT-SMC shows significant chattering, especially on the motor side. It is a typical
problem for sliding mode control. Compared with the traditional SMC method, the FT-SMC
presented in [46] solved the peak phenomenon and suppressed the control chattering by
asymptotical convergence, which is a considerable contribution. However, for nonlinear
cascaded systems such as the flexible-joint manipulator, the control input of the outer loop
(the load side) is usually mapped as the command of the inner loop (the motor side). This
mapping process transmits the small chattering on the load side into the command layer
of the motor side. The suppressed chattering is then amplified again by the motor-side
control loop. As verified in Figure 7, the control input of the motor side contains obvious
chattering, while the control input of the load side is milder.

(a) NINA (b) FT-SMC (c) RBFN 

Figure 7. Control efforts of the proposed method (top row), the FT-SMC (middle column), and the
RBFN method (bottom row).

In summary, the FT-SMC control shows good trajectory tracking accuracy and nonlin-
ear estimation accuracy, but significant chattering occurs, which can lead to the failure of
precision sensors and actuators in practical applications. Neural network-based control
such as the RBFN-based method shows relatively lower convergence speed for nonlinearity
approximation due to its comparably complex topology. In contrast, the proposed algo-
rithm adopts a simple and effective estimation structure, which not only shows the ability
for fast and accurate nonlinearity approximation but also maintains mild control input.
This is also the major motivation for our research on this algorithm.

6.3. Robustness Validation

As shown in Figure 8, to further verify the stability and robustness of the proposed
control, we examined the step response of the proposed method and its ability to recover
from sudden disturbances. It can be observed that when encountering step changes, each
joint can quickly track the new reference signal. The settling times for joints 1 and 2 are
0.618 s and 0.60 s, respectively. A 10 Nm impulse disturbance is introduced at 4 s and
revoked at 6 s. It can be seen that the system can recover tracking of the original position
within 2 s and has the ability to maintain a fixed point position with high precision (position
tracking error < 1 × 10−5 degree).

Figure 9 compares the tracking performance of the proposed control method under
different link lengths. Although the load environment has changed, the proposed adaptive
control maintains high tracking performance. Figure 10 illustrates the dynamic behavior
of the whole system under different joint stiffnesses. It is illustrated that all the synthetic
tracking errors and nonlinearity estimation errors uniformly and asymptotically converge
toward zero, regardless of the variation of the joint stiffness. These results verify the
effectiveness and robustness of the proposed method.
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Figure 8. Tracking performance of the proposed method under step change and impulse disturbance.
The first row shows the position of the load and motor sides, and the second row shows their tracking
errors.

(a) ,  

(b) ,  

Figure 9. Results of tracking control under different link lengths using the proposed control method.
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Figure 10. Dynamic behavior of the manipulator under different joint stiffness using the proposed
control method.

7. Experiments

In this section, the proposed control method is further validated on a flexible-joint
platform. The RBFN-based adaptive control method in [51] is introduced for comparison.
Trajectory tracking experiments under different end loads are conducted.

7.1. Experiment Setup

Figure 11 shows a typical flexible-joint platform. From the left to right sides, there are
a servo motor, a harmonic drive (with a 50:1 gear ratio), a flexible body, a torque sensor,
and an output link with an end load. The flexible body here is a series of elastic actuators.
The angular positions of load side α and motor side β are measured by optical encoders.
The generated torque command τβ is implemented through a servo driver. The torque
sensor and signal detection-conversion card are employed to measure the output torque of
load side τl and motor side τm, respectively. The nominal parameters of the platform are
obtained via parameter identification and measurement, which are listed in Table 5.

 

Figure 11. Architecture of the experimental system.
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Table 5. Parameters of the flexible joint system.

Measured Values of Mechanical Parameters Control Parameters

Jα
1.090, under 2 kg end load kg.m2 ϑs1 1.125000 ϑs2 0.030000
1.840, under 4 kg end load kg.m2 K1 0.135000 K2 0.010000

gα
15.12, under 2 kg end load N.m Λ1 26.50000 Λ2 200.0000
24.08, under 4 kg end load N.m A1 0.000180 A2 0.000001

Jβ 4.65×10−4 kg.m2 λ1 125000.0 λ2 100000.0
ks 927.0 N.m/rad
kd 1.54 N.m/rad/sec
η 50.0 —

Note that subscripts α and β represent the load and motor sides of the flexible-joint platform, respectively.

7.2. Experimental Results

Figures 12 and 13 show the tracking performance, nonlinearity approximations, and
control inputs of the flexible joint using the proposed control method under 2 kg and 4 kg
load conditions, respectively. The link action is set as follows: The initial posture of the link
is vertically downward. It first rotates at a constant speed of 18◦/s toward the horizontal
level, then swings around the horizontal position. The swing amplitude and frequency
are 21.6◦ and 0.8 Hz, respectively. The black dotted lines in the left column of Figure 12
indicate the horizontal position. The experimental results verify the tracking performance
of the control system under both ramp and harmonic trajectories. The entire process is
divided into three phases, i.e., the ramping phase, the switching phase, and the waving
phase. The system exhibits transient responses in the switching phase (8 s to 10 s), due to
the discontinuity of the velocity command

.
αr.

Figure 12. Performance of NINA-based adaptive control under a 2 kg end load.
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Figure 13. Performance of NINA-based adaptive control under a 4 kg end load.

As shown in the first rows of Figures 12 and 13, the control system stabilizes within 1 s
during the switching phase. Tracking errors are limited within 0.5◦ and 10◦ on the load and
motor sides (with a 50:1 gear ratio) during the ramping and waving phases, respectively.
Although the flexible joint waves vertically under an end load, the tracking errors do not
contain obvious biases.

The second rows of Figures 12 and 13 show accurate nonlinearity approximations,
which validate the effectiveness of the NINA technique. The third rows of Figures 12 and 13
indicate that the above control performances are achieved under relatively clean control
inputs. It is noteworthy that the tracking errors under different end loads are nearly
identical. This verifies the robustness of the proposed control method.

A classical RBFN-based adaptive control presented in [51] is compared with the
proposed control method. On the load side, Λ1eα +

.
αr, Λ1

.
eα +

..
αr, α, and

.
α are supplied to

the input layer of RBFN. On the motor side, Λ2eβ +
.
βr, Λ2

.
eβ +

..
βr, β, and

.
β are supplied

to the input layer of RBFN. Five neurons are set in hidden layers on the load side and the
motor side. The control torques are obtained from the output layer of the RBFN. For more
details, please refer to [51].

The performance of RBFN control is shown in Figure 14. In the switching phase, the
tracking error of the proposed method converges faster than the RBFN-based method. In
the swing phase, the load- and motor-side tracking errors of the RBFN control are bounded
by |eα| < 1.75◦ and

∣∣eβ

∣∣ < 3◦, respectively. The tracking errors of the proposed NINA-based
control method are bounded by |eα| < 0.25◦ and

∣∣eβ

∣∣ < 3◦. In addition, the nonlinearity
approximation of the RBFN control (F̂α, F̂β) shows obvious lags behind their nominal
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values (Fα, Fβ), thereby resulting in relatively large estimation errors (
∼
Fα,

∼
Fβ). The above

comparison indicates that the proposed NINA-based adaptive control can realize better
control performance than the RBFN-based adaptive control on the flexible joint system.

Figure 14. Performance of the RBFN adaptive controller under a 2 kg end load.

8. Conclusions

This study proposed a simplified adaptive control based on NINA for a class of
nonlinear cascaded systems. The uniformity and ultimate stability of the proposed control
were proven. The nonlinearities of each subsystem were approximated using the synthetic
form of a steady component and an alternating component based only on local tracking
errors. The proposed control method was validated through applications on the flexible
joint system involving numerical simulations and experiments. The simulation results
illustrated that the proposed method can achieve similar control accuracy as FT-SMC but
uses milder control inputs. It was also indicated that the proposed method is insensitive to
external loads and parametric perturbations. The proposed method was compared with an
RBFN-based method. The experimental results demonstrated that the proposed method
could achieve better control performance than an RBFN-based method.

Future work could be extended to flexible manipulators with variable stiffness. Future
interests lie in two main areas: The first is optimizing the mapping process from the control
input of the unactuated subsystem to the command layer of the actuated subsystem, which
could improve the stability and noise level of the control system. The second is augmenting
the adaptive law with a priori information on the system, to accelerate the convergence of
the nonlinearity approximation.
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Abstract: Because of its uneven and large slope, unstructured pavement presents a great challenge
to obtaining the adhesion coefficient of pavement. An estimation method of the peak adhesion
coefficient of unstructured pavement on the basis of the extended Kalman filter is proposed in this
paper. The identification accuracy of road adhesion coefficients under unstructured pavement is
improved by introducing the equivalent suspension model to optimize the calculation of vertical
wheel load and modifying vehicle acceleration combined with vehicle posture data. Finally, the
multi-condition simulation experiments with Carsim are conducted, the estimation accuracy of the
adhesion coefficient is at least improved by 3.6%, and then the precision and effectiveness of the
designed algorithm in the article are verified.

Keywords: unstructured pavement; state estimation; extended Kalman filter; equivalent suspension
model; pavement adhesion coefficient

1. Introduction

In the field of intelligent vehicles, the unstructured pavement is characterized by
complexity and randomness, which more easily causes safety problems and has higher
performance requirements for vehicle safety control [1–3]. Safety control of vehicles often
needs to adjust the force between road surfaces and tires, and the interaction force is also
a key and vital factor that affects the stability of the vehicle chassis [4,5]. Therefore, the
adhesion coefficient of road surfaces is a vital parameter to obtain accurate motion control
of vehicles [6,7], and it also provides a significant input for the decision and planning of
intelligent vehicles. It is vital and essential to precisely identify the adhesion coefficients of
the unstructured pavements for the safe driving of vehicles.

Recently, a variety of methods have been proposed by domestic and foreign scholars to
estimate the road adhesion coefficient. At present, road adhesion coefficient identification
mainly consists of cause-based methods as well as effect-based methods [8–11]. With the
development of vehicle intelligence, some special devices (optical sensor or ultrasonic sen-
sor, etc.) are required to measure the factors associated with tires or roads (for example, the
deformation and noise of tires, the road texture, etc.), and then identify the road adhesion
coefficient in the cause-based methods [12,13]. For example, given the critical and difficult
problems about the estimation of adhesion coefficients, Bo Leng et al. proposed fusing
vehicle dynamics with machine vision during the estimation [14]. A local binarization
algorithm was designed by Du et al. to extract the spatial and texture features of roads
gathered by the high-definition cameras [15]. Then, the feature information was introduced
into the modified VGGNet to classify the road adhesion level. Herrmann T. et al. adopted
an on-board camera and lidar to first estimate the road adhesion coefficient and then collect
it based on dynamic information [16]. In a word, the estimation accuracy of cause-based
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methods is high, but the special measuring equipment in the experiment is expensive and
susceptible to fog, rain, and snow.

Effect-based estimation methods use sensors to study tire and road-related factors (for
example, the deformation and noise of tires, the road texture, etc.). Then the road adhesion
coefficient is calculated by these factors. The estimation methods based on the curve of the
adhesion coefficient and the slip rate [17], together with the relationship between the right
torque and the side deflection angle of tires [18], are common in the vehicle field, which only
needs the common on-board sensors, such as wheel speed sensors and attitude sensors. For
example, aligning the torque and the side-slip angle or the relationship description between
the tire lateral force is performed through linearization [19], Brush [20,21], TMsimple [22],
Pacejka [23], and Burckhardt [24] to identify adhesion coefficients under the condition
of lateral movements of the vehicle. However, such a method based on the response
recognition of tires is affected by many external uncertainties due to the complexity of the
generation mechanism of the tire noise, and sometimes it is insurmountable to accurately
identify the adhesion coefficients. Recently, some identification methods on the basis of
visual information have been proposed in the current study [25–28]. For example, given the
nondeterminacy of kinematic models and deep-learning models, an image-based fusion
estimation method by virtue of the virtual sensing theory was put forward to exactly realize
the identification of the road surface condition in reference [25]. However, these visual
information-based methods are susceptible to light. In addition, scholars make the best use
of different vehicle dynamics models [29–34] and various kinds of filters [35–38] to estimate
the adhesion coefficient. For example, the vehicle dynamic model, the tire model, and the
wheel model were introduced into the unscented Kalman filter to accurately identify the
adhesion coefficient of roads in reference [36]. According to the similarity principle and the
adaptive square root cubature Kalman filter, a longitudinal-lateral cooperative estimation
algorithm was designed to identify the state of vehicles and the adhesion coefficients of
four-wheel independent drive electric vehicles in reference [38]. In short, most of the above
algorithms build the vehicle dynamics model with the seven-degree-of-freedom (VDMSDF)
and simulate it with the Carsim 2019.0. The complexity and freedom of vehicle models
provided by Carsim are much higher than those of the commonly used VDMSDF. Real
data should be directly used to replace some parameters that are difficult to fit with the
models, which are closer to the actual vehicle model. In addition, the filters, by virtue of
two types of models, are adopted to accurately estimate the adhesion coefficients of the
pavement under the coupled conditions of lateral and longitudinal forces, which is simple
to solve and has fast convergence speed. However, this type of filter-based method does not
fully consider the surface roughness and the large slope characteristics of the unstructured
pavement, and still faces some challenges:

1. The existing algorithm regards the body and the wheel as a rigid connection, which
leads to a large error in the calculated vertical load of the tire under the conditions of
the uneven road.

2. The existing algorithms often ignore the influence of gravity on the body acceleration,
and straightforwardly input the body acceleration into the observer as an observation
quantity, which makes the algorithm unable to accurately estimate the road surface
with a certain slope.

Therefore, considering the effects of vertical static and dynamic loads on vehicle
acceleration, an estimation method of adhesion coefficients of the pavement on the basis of
the extended Kalman filter is proposed for the above issue. The paper primarily investigates
the identification of adhesion coefficients under uneven and slope pavement, and it is
assumed that all tires together with all wheels are the same. So, the main contributions and
highlights of the proposed method are highlighted in the following sentences:

3. The impact of vehicle acceleration on the vertical load is fully considered in the vertical
load model of vehicles based on the equivalent suspension model, which can depict
road conditions by rule and line.
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4. The dynamics model of vehicles established in this paper no longer regards the
body and the wheel as rigid body connections, which can more accurately depict the
dynamic characteristics of vehicles.

5. By virtue of the extended Kalman filter and the improved dynamic model, the estima-
tion algorithm of adhesion coefficient identification on the unstructured pavement
designed in this paper can not only adapt to the non-structural and high-slope pave-
ment but also improve the identification accuracy of adhesion coefficients.

The rest of the paper is approximately structured as follows: In Section 2, the improved
dynamics model is discussed first, which is foundation of the system dynamics model in
the later content. In Section 3, the identification of adhesion coefficients on the basis of the
extended Kalman filter is designed to estimate the tire-road peak adhesion coefficient. In
Section 4, the designed identification algorithm in this paper is proven through simulation
tests. Finally, the conclusion as well as the application scenario of the proposed method
is given.

2. Improved Dynamics Model

The adhesion coefficient is related to the force of the tire. Therefore, this paper
gradually analyzes the forces from the whole vehicle to the tires and then decomposes the
forces from tires to the vertical load. The relationship between the adhesion coefficient and
the force of the tire is established through the force analysis in the above steps. Therefore,
this chapter will expand the description from the dynamics model of vehicles, tire models
and vertical load in turn.

2.1. Improved Vehicle Dynamics Model

The vehicle dynamics model can simulate and analyze the motion states of vehicles
under different driving scenarios and represent the mathematical relationship among
different control inputs, environmental inputs, and vehicle responses during driving, which
is the basis of the research for adhesion coefficient identification. At present, the VDMSDF
is commonly applied to research on adhesion coefficient identification. It combines the
vehicle dynamics model with three degrees of freedom and the wheel model. In addition,
the rotational degree of freedom for four wheels is considered, except for the freedom of
longitudinal, transverse, and yaw.

Given Figure 1, the following equation can be calculated according to the vehicle
dynamics model:

.
vx − vyωz = ax (1)

.
vy + vxωz = ay (2)

The longitudinal dynamic formula is approximately described as the following equa-
tion:

m
( .
vx − vyωz

)
= Fx, f l cos δ + Fx, f r cos δ + Fx,rl + Fx,rr − Fy, f l sin δ − Fy, f r sin δ (3)

Similarly, the lateral dynamics equation can be obtained as follows:

m
( .
vy + vxωz

)
= Fx, f l sin δ + Fx, f r sin δ + Fy,rl + Fy,rr + Fy, f l cos δ + Fy, f r cos δ (4)

The yaw motion dynamics equation can be calculated in the same way:

Iz
.

ωz =
Bf
2

(
Fx, f r cos δ − Fx, f l cos δ − Fy, f r sin δ + Fy, f l sin δ

)
+ Br

2 (Fx,rr − Fx,rl)

+L f

(
Fx, f l sin δ + Fy, f l cos δ + Fy, f r sin δ + Fy, f l sin δ

)
− Lr

(
Fy,rl + Fy,rr

) (5)

where vx and vy are the longitudinal speed and the lateral speed, respectively. ωz is
the angular velocity of the yaw. δ is the angle of the front wheel. m is the total vehicle
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mass, Fx,ij(ij = f l, f r, rl, rr) is the longitudinal force of the tire on the wheels. Fy,ij(ij =
f l, f r, rl, rr) is the transverse force for four-wheel tires. The moment of inertia is set to
Iz when vehicles rotate about the z axis. The front and rear tracks are assumed as Bf
and Br, respectively. The distances from the center of mass to the front and rear axles are
respectively set to L f and Lr.

,x rrF
rr

,x rlF
rl

,y rrF

,x flF,y flF

fl

l

,x frF,y frF

fr

r

yv

xv
rB fB

rL fL

,y rlF

Figure 1. Vehicle dynamics model.

The above model is only suitable for the horizontal road. When the vehicle is driving
on a slope road, gravity affects the acceleration of the vehicle. In this case, there is also
acceleration caused by gravity, except for the acceleration caused by tire stress. Therefore,
it is indispensable to take the influence of gravity into consideration and modify the above
dynamics expressions.

It is vital and necessary to take the effects of gravity into account on a slop road. The
acceleration component caused by the tire force is calculated by combining the attitude and
acceleration of the vehicles. {

aFx = ax − g sin θ

aFy = ay − g sin φ
(6)

The longitudinal dynamics equation and the transverse dynamics equation are calcu-
lated as follows:

maFx = Fx, f l cos δ + Fx, f r cos δ + Fx,rl + Fx,rr − Fy, f l sin δ − Fy, f r sin δ (7)

maFy = Fx, f l sin δ + Fx, f r sin δ + Fy,rl + Fy,rr + Fy, f l cos δ + Fy, f r cos δ (8)

where aFx is the longitudinal acceleration component caused by the tire stress, aFy is the
transverse acceleration component caused by the tire stress, φ is the roll angle of vehicles, θ
is the pitch angle of vehicles.

Given the established dynamics model for vehicles, it is necessary to further calculate
the longitudinal and lateral forces of tires by the relationship of the wheel force.

2.2. Dugoff Tire Model

The tire model describes the relationship between the tire force and the motion pa-
rameters of wheels through mathematical relations. In other words, it is the relationship
between the inputs of tires and the outputs of tires under different road conditions. The
longitudinal force, the transverse force, and the righting moment in the tire model are
usually calculated by the input parameters such as the slip rate, the side deflection angle,
and the vertical load.
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The Dugoff tire model can describe the relationship between the road adhesion coeffi-
cient and the lateral and longitudinal forces. Meanwhile, this model can directly calculate
the longitudinal force and the lateral force according to the slip rate and the side deflection
angle of the vehicle. The Dugoff tire model is expressed as follows [39–42]:

Fx = Cx
λ

1 + λ
× f (L) (9)

Fy = Cy
tan α

1 + λ
× f (L) (10)

where L and f (L) can be respectively expressed as follows:

L =
μFz(1 + λ)

2
√

Cx
2λ2 + Cy

2 tan2 α
(11)

f (L) =
{

L(2 − L)
1

,
,
L < 1
L ≥ 1

(12)

Cx and Cy are the longitudinal and lateral stiffness of tires, respectively. λ is the slip rate. α
is the lateral drift angle of tires. L is the nonlinear characteristic parameter used to express
the slip of tires.

In order to effectively identify the adhesion coefficients, it is necessary and vital
to reorganize the Dugoff tire model so that the dominant relational expression between
the road adhesion coefficient and the Dugoff tire model can be directly obtained. Let
C0

x = Cx/μFz and C0
y = Cy/μFz. Considering the calculation formulas for the lateral and

longitudinal forces in the Dugoff tire model, a nonlinear characteristic parameter of tires
under slipping L can be expressed:

L =
1 + λ

2
√(

C0
x
)2

λ2 +
(
C0

y
)2 tan2 α

(13)

Next, the lateral force and longitudinal force of tires can be calculated by the following
equations:

Fx = μFzC0
x

λ

1 + λ
× f (L) (14)

Fy = μFz · C0
y

tan α

1 + λ
× f (L) (15)

It can be seen from the calculation formula of L that this deformation does not change
the value of L, nor does it change the calculation of lateral and longitudinal forces. Moreover,
the product of parameters in the formula except for adhesion coefficients after deforma-
tion is set to the normalized force, namely F0

x and F0
y . Then the following formula can

be obtained:
Fx = μFx

0 (16)

Fy = μFy
0 (17)

Therefore, the actual tire force can be expressed as the dynamic equation through the
normalized force and the adhesion coefficient of roads, given the corresponding relationship
between the force of tires and the adhesion coefficient in the Dugoff tire model.

It is obvious that the model in Equations (17) and (18) can be applied to the algorithm
after the mathematical deformation, which is conducive to the subsequent research on
adhesion coefficient identification. Therefore, the deformable Dugoff tire model is adopted
in identification algorithms.
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Therefore, considering the side deflection angles, the slip rate, and the vertical load,
the Dugoff normalized force can be calculated as follows:{

Fx
0 = Fz · Cx

λ
1+λ × f (L)

Fy
0 = Fz · Cy

tan α
1+λ × f (L)

(18)

Since the force of tires changes with the speed of vehicles during the driving pro-

cess, add a speed correction 1 − εvx

√
Cx

2λ2 + Cy
2 tan2 α to the nonlinear characteristic

parameters of tires under slipping L, namely:

L =
μFz(1 + λ)

2
√

Cx
2λ2 + Cy

2 tan2 α

(
1 − εvx

√
Cx

2λ2 + Cy
2 tan2 α

)
(19)

where ε is the influence factor of the velocity. It is only related to the material and structure
of tires and can be utilized to describe the effect of the slip speed on the force of tires. In
addition, the Dugoff tire model requires that the vertical load, the lateral drift angle of tires,
and the slip rate be known, so that the slip rate and the lateral drift angle of tires can be
calculated from the state parameters of vehicles.

Firstly, the vehicle speed signal, the front wheel angle signal, and the yaw angle speed
signal are obtained by the sensor installed on the vehicles. On this basis, the lateral drift
angle of wheels αij can be calculated using the following equations:

α f l = −
⎛⎝δ − arctan

vy + L f ωz

vx − Bf ωz
2

⎞⎠ (20)

α f r = −
⎛⎝δ − arctan

vy + L f ωz

vx +
Bf ωz

2

⎞⎠ (21)

αrl = arctan
vy − Lrωz

vx − Brωz
2

(22)

αrr = arctan
vy − Lrωz

vx +
Brωz

2

(23)

In Equations (20)–(23), vx and vy are the longitudinal speed and the transverse speed
of vehicles, respectively. ωz is the yaw angle speed of vehicles. δ is the angle of the front
wheel. Bf and Br are the front wheel base and the rear wheel base of vehicles, respectively.
L f and Lr are the distances from the center of mass to the front axles and the rear axles,
respectively. The speed in the longitudinal axis direction of the core wheel under the wheel
coordinate system vwx,ij is calculated as follows:

vwx, f l =

(
vx −

Bf ωz

2

)
cos δ +

(
vy + L f ωz

)
sin δ (24)

vwx, f r =

(
vx +

Bf ωz

2

)
cos δ +

(
vy + L f ωz

)
sin δ (25)

vwx,rl = vx − Brωz

2
(26)

vwx,rr = vx +
Brωz

2
(27)
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The wheel speed is obtained through the wheel speed sensor. The slip rate of wheels
λij is obtained as the following equation:

λij =
ωw,ijRW − vwx,ij

max
(
ωw,ijRW , vwx,ij

) (28)

where ωw,ij represents the speed of wheels, RW is the radius of wheels, ij ∈ { f l, f r, rl, rr}.
In addition to the acquisition of the lateral drift angle and the slip rate, it is also necessary
to analyze the vertical load during the movement. The calculation of the vertical load can
be discussed in the following chapter.

2.3. Improved Vertical Load Model

It is necessary for the identification of the adhesion coefficients to obtain the side
deflection angle of tires, the vertical load, together with the slip rate. Under a non-structural
road, the vertical load is often affected by the vehicle’s vertical acceleration, so it is necessary
to build an estimation model of the vertical load of tires with higher accuracy. A vertical
load model based on the equivalent suspension is established in this paper.

Firstly, the vertical static load of wheels Fw_ij can be calculated by the self-propelled
parameters:

Fw_ f l =
1
2
× mbgLr

L f + Lr
+ mwg (29)

Fw_rl =
1
2
× mbgLr

L f + Lr
+ mwg (30)

Fw_rl =
1
2
× mbgL f

L f + Lr
+ mwg (31)

Fw_rr =
1
2
× mbgL f

L f + Lr
+ mwg (32)

In Equations (29)–(32), mb is the spring mass of the vehicle. mW is the wheel mass; The
acceleration of the gravity is set to g.

In Figure 2, based on the models of the roll motion and the pitch motion of vehicles,
the displacement, together with the speed of suspensions, is analyzed as follows:

bC

bm g

z

xa

, ,x rl x rrF F

, ,x fl x frF F

bC

bm g

, ,y fl x rlF F

, ,y fr y rrF F

ya

Figure 2. Roll and pitch motion models of vehicles.
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The displacements of the suspension for each wheel are calculated by the roll and
pitch angle of the body together with the centroid displacement:

zs_ f l = zb +
Bf

2
sin φ − L f sin θ (33)

zs_ f r = zb −
Bf

2
sin φ − L f sin θ (34)

zs_rl = zb +
Br

2
sin φ + Lr sin θ (35)

zs_rr = zb − Br

2
sin φ + Lr sin θ (36)

In Equations (33)–(36), zb is the vertical displacement of the vehicle centroid. The roll
angle of the body is set as φ. Set θ as the pitch angle of the body. The suspension velocity is
obtained by differentiating the suspension displacement:

.
zs_ f l =

.
zb +

Bf

2
cos φ × .

φ − L f cos θ ×
.
θ (37)

.
zs_ f r =

.
zb −

Bf

2
cos φ × .

φ − L f cos θ ×
.
θ (38)

.
zs_rl =

.
zb +

Br

2
cos φ × .

φ + Lr cos θ ×
.
θ (39)

.
zs_rr =

.
zb − Br

2
cos φ × .

φ + Lr cos θ ×
.
θ (40)

The vertical acceleration and the vertical displacement of the wheel are obtained by
the accelerometer and the angle sensor, respectively, and then the vertical speed signals are
processed. The dynamic suspension force is calculated as follows:

Fdzs_ f l = k f

(
zw_ f l − zs_ f l

)
+ c f

( .
zw_ f l − .

zs_ f l

)
(41)

Fdzs_ f r = k f

(
zw_ f r − zs_ f r

)
+ c f

( .
zw_ f r − .

zs_ f r

)
(42)

Fdzs_rl = kr(zw_rl − zs_rl) + cr
( .
zw_rl − .

zs_rl
)

(43)

Fdzs_rr = kr(zw_rr − zs_rr) + cr
( .
zw_rr − .

zs_rr
)

(44)

In Equations (41)–(44), zw_ij denotes the vertical displacement of each wheel; k f and
kr are the equivalent stiffness coefficients of the suspension, respectively. c f and cr are
the equivalent damping coefficients of the suspension, respectively. The force analysis of
wheels is shown in Figure 3:

The dynamic vertical load of tires can be calculated by the force of dynamic suspension
and wheel acceleration:

Fdw_ f l = mw
..
zw_ f l − Fds_ f l (45)

Fdw_ f r = mw
..
zw_ f r − Fds_ f r (46)

Fdw_rl = mw
..
zw_rl − Fds_rl (47)
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Fdw_rr = mw
..
zw_rr − Fds_rr (48)

The current vertical load of wheels is obtained by adding the calculated vertical static
load and the dynamic load.

wm

_ds rlF

_road rlz

_dw rlF

_w rlz

wm

_ds flF

_road flz

_dw flF

_w flz

_s rlz

_s flz

rL

bC
bm g

z

fL

Figure 3. Force analysis of wheels.

3. Adhesion Coefficient Identification by Virtue of Extended Kalman Filter

3.1. Description of System Equations Based on the Improved Dynamics Model

Considering that the influencing factors of the adhesion are complex and the repro-
ducibility of the adhesion is poor in different scenarios, based on the principle of grasping
the main contradiction, the modeling errors caused by the sensor noise, limited/limited
sampling time, unmodeled dynamics, and other factors in the paper are equivalent to
Gaussian noise in the dynamic model about the road adhesion coefficient. In addition,
due to the nonlinearity of the established dynamic equation about the adhesion coefficient,
it is necessary to select a suitable filter for estimation. The effectiveness of the extended
Kalman filter has been recognized by many scholars and engineers because it can take into
account the nonlinear modeling error of dynamic models about the adhesion coefficient.
Meanwhile, considering the real-time performance of the extended Kalman filter, this paper
selects the extended Kalman filter to identify the adhesion coefficient. Thus, the state
equation for the designed vehicle dynamics is given as follows:

x(t) = f (x(t), u(t), w(t)) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦×
⎡⎢⎢⎣

μ f l
μ f r
μrl
μrr

⎤⎥⎥⎦+ w(t) (49)

where w(t) is the process noise, the mean square error is Q, μij is the adhesion coefficient
of the four-lane highway.
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The actual tire force in the three dynamics equations of vehicles can be written in the
form of the normalized force. Then the nonlinear equation is linearized. The measurement
equation is expressed as follows:

y(t) = h(x(t), v(t))

=

⎡⎢⎣ h(1, 1) h(1, 2) F0
xrl

m
F0

xrr
m

h(2, 1) h(2, 2)
F0

yrl
m

F0
yrr

m
h(3, 1) h(3, 2) h(3, 3) h(3, 4)

⎤⎥⎦×
⎡⎢⎢⎣

μ f l
μ f r
μrl
μrr

⎤⎥⎥⎦+ v(t)
(50)

where

h(1, 1) =
F0

x f l × cos δl − F0
y f l × sin δl

m

h(1, 2) =
F0

x f r × cos δr − F0
y f r × sin δr

m

h(2, 1) =
F0

x f l × sin δl + F0
y f l × cos δl

m

h(2, 2) =
F0

x f r × sin δr + F0
y f r × cos δr

m

h(3, 1) =
(

la

(
F0

x f l × sin δl + F0
y f l × cos δl

)
+

Tf

2

(
F0

x f l × cos δl − F0
y f l × sin δl

))
/Iz

h(3, 2) =
(

la

(
F0

x f r × sin δr + F0
y f r × cos δr

)
+

Tf

2

(
F0

x f r × cos δr − F0
y f r × sin δr

))
/Iz

h(3, 3) =
− Tr

2 × F0
xrl − lb × F0

yrl

Iz

h(3, 4) =
Tr
2 × F0

xrr − lb × F0
yrr

Iz

where R is the mean square error, v(t) is assumed as the process noise, F0
xij and F0

yij are the
longitudinal and lateral normalized forces of tires, respectively, δl and δr are the angles of
left front and right front wheels, respectively.

Assume that all tires are identical and their adhesion coefficients are uniform in
this paper. In order to improve the calculation speed, the above state and measurement
equations are modified as follows:

x(t) = f (x(t), u(t), w(t)) = 1 × μ + w(t) (51)

y(t) = h(x(t), v(t)) =

⎡⎣ h1
h2

h(3, 1) + h(3, 2) + h(3, 3) + h(3, 4)

⎤⎦μ + v(t) (52)

h1 =
F0

x f l × cos δl − F0
y f l × sin δl

m
+

F0
x f r × cos δr − F0

y f r × sin δr

m
+

F0
xrl

m
+

F0
xrr

m
(53)
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h2 =
F0

x f l × sin δl + F0
y f l × cos δl

m
+

F0
x f r × sin δr + F0

y f r × cos δr

m
+

F0
yrl

m
+

F0
yrr

m
(54)

where μ is the road adhesion coefficient, and other symbols are defined in the same way as
the above formulas.

3.2. Extended Kalman Filter

The detailed iterative process of the extended Kalman filter is as follows: Let x̂k−1 be
the state estimation at time k − 1. Set Pk−1 as the covariance at time k − 1. Linearize the
equation of state by Taylor expansion at x̂k−1 and obtain [43–46]:

xk = f (x̂k−1, uk−1, wk−1) + Fk−1(xk−1 − x̂k−1) + wk−1 (55)

where Fk−1 = ∂ f
∂x

∣∣∣
x̂k−1,uk−1

. Let x̃k = f (x̂k−1, uk−1, 0). Similarly, linearize the measurement

equation and obtain:
zk = h(x̃k, vk) + Hk(xk − x̃k) + vk (56)

where Hk =
∂h
∂x

∣∣∣
x̃k

. The predicted prior state is

x̂−k = E[ f (x̂k−1, uk−1, wk−1) + Fk−1(xk−1 − x̂k−1) + wk−1] (57)

Since wk−1 is the process noise satisfying Gaussian distribution with zero mean value
and the estimated state is assumed to be the true value, the following equation can be
obtained

x̂−k = f (x̂k−1, uk−1, 0) (58)

The prior covariance of the state estimation is

P−
k = E

[(
xk − x̂−k

)(
xk − x̂−k

)T
]

= E
{
[Fk−1(xk−1 − x̂k−1) + wk−1][(Fk−1(xk−1 − x̂k−1) + wk−1)]

T
}

= Fk−1Pk−1Fk−1
T + Q

(59)

Similarly, the predicted values and the covariance matrix for measurements are respec-
tively as following: {

ẑk = h(x̃k, 0)

Pzz,k = HkP−
k HT

k + R
(60)

The cross-covariance matrix between the state and the measurement is

Pxz,k = E
[(

xk − x̂−k
)
(zk − ẑk)

T
]

= E
{(

xk − x̂−k
)[(

Hk
(
xk − x̂−k

)
+ vk
)]T}

= P−
k HT

k

(61)

The gain matrix of the state is

Kk =
Pxz,k

Pzz,k
=

P−
k HT

k
HkP−

k HT
k + R

(62)

Then the estimation of the state at time k is

x̂k = x̂−k + Kk(zk − ẑk) (63)
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The covariance matrix of the state estimation is

P−
k = E

[
(xk − x̂k)(xk − x̂k)

T
]

= E
{[

xk − x̂−k − Kk(zk − ẑk)
][

xk − x̂−k − Kk(zk − ẑk)
]T}

= (I − Kk Hk)P−
k (I − Kk Hk)

T + KkRKT
k

= (I − Kk Hk)P−
k

(64)

The flow chart of the extended Kalman algorithm is shown in Figure 4. It mainly
includes two modules, of which one is the update module and the other is the prediction
module. The filter integrates the received sensor signals and first updates the time to
achieve the prior estimation of state. After that, update the measurements to gain the
posterior estimate according to the measurements. The equation modification is done by
updating the equations of the state and measurement, which completes one iteration. With
continuous iteration over time, the parameters are constantly modified to complete the
precise estimation of adhesion coefficients.

Initial input

0x̂ and 0P

Compute the Kalman gain
T T 1[ ]k k k k k kK P H H P H R

Update estimate with measurement

ˆ ˆ ˆ[ ]k k k k kx x K z z

Update the estimate uncertainty

[ ]k k k kP I K H P

Extrapolate the state

1 1ˆ ˆ( , ,0)k k kx f x u

Extrapolate uncertainty
T

1 1 1k k k kP F P F Q

Figure 4. Algorithm flow chart of extended Kalman filter.

3.3. Identification Principle of Road Adhesion Coefficients

According to the study about the dynamics model of vehicles, the mathematical ex-
pression between the response signal of vehicles and the adhesion coefficients is established.
According to Figure 5, the necessary data for the identification of adhesion coefficients are
collected by vehicle sensors. For example, the wheel angle sensor is used to capture the
angles of four wheels. The tachometer sensor is used to gather the rotational speed of four
wheels. Then the collected data is sent through the vehicle communication network. The
controller makes full use of the collected data to identify the adhesion coefficient and then
conducts the corresponding algorithm to drive the vehicles.
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Figure 5. Flow chart of data acquisition.

The overall process of the adhesion coefficient estimation methods is given, just like in
Figure 6. The identification algorithm for the road adhesion coefficient is designed by the
mathematical relationship in Figure 6. Firstly, the signal gathered by the vehicle sensors is
processed. Secondly, the slip rate and the side deflection angle are calculated by the wheel
speed, the longitudinal and transverse speed, the front wheel angle, and other parameters.
The signals of the wheel vertical displacement, the vertical acceleration, the pitch of vehicles,
and the roll angle are transmitted to the vertical load calculation module for processing.
Thirdly, the vertical loads, the output slip rate, and the side deflection angles in each
parameter calculation module are used as input parameters to calculate the normalized
force through the Dugoff tire model. Finally, the normalized force, the vehicle acceleration
signal, and the wheel angle are transferred to the extended Kalman filter. The prior state
estimation is obtained through the prediction part of the filter. And the measurement is
updated by the respective measured values for correction, and the identification result of
the adhesion coefficient of roads is updated and corrected through iterations.
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Figure 6. Flow chart of adhesion coefficient identification algorithms.

4. Simulation Results and Analysis

CarSim is a special simulation software in the vehicle field that can simulate the ve-
hicle’s response to driver, road surface, and aerodynamic input. And Carsim is widely
utilized in modern automobile control systems. Based on the recognition and wide applica-
tion of Carsim in the industry, this paper uses Carsim to build a simulation environment to
simulate the vehicle response under different road surfaces and scenarios with different
control inputs and enters vehicle response signals into the algorithm module built in Mat-
lab/Simulink as input signals. Through the joint simulation, the identification effects of the
traditional seven-DOF vehicle dynamics model and the improved algorithm proposed in
this paper are compared under different road surfaces and driving scenarios.

4.1. Simulation Scenario and Parameter Setting

When designing the algorithm, the applicability of the algorithm under slopes and
uneven road surfaces is optimized. In order to ensure its effectiveness, the vehicle model
and wheel vertical load model are first verified. Finally, the experiments of pavement
adhesion coefficient estimation under different working conditions are carried out. The
sensor acquisition principle of this project is shown in Figure 5. Due to the limitations of
laboratory equipment, this project is only verified by simulation experiments in CarSim.
For the above three scenarios, the simulation parameters are described in the following
two sections.

4.1.1. Simulation Parameters in the Vertical Load Model and the Dynamics Model

CarSim can directly output the actual tire force. In the co-simulation environment, the
angle of front wheels, the longitudinal force of tires, and the transverse force of tires are
input into the dynamic equation of vehicles in the directions of the longitudinal, transverse,
and yaw, respectively, to solve their accelerations. In order to verify the applicability of the
established vehicle dynamics model and the vertical load model under the slope road, a
simulation environment is built in CarSim, and the slope is set at 0.2 m/1 m. Experimental
parameters are assumed, just like in Table 1. In addition, the road surface is supposed
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to have certain unevenness (see Figure 7) and slope to simulate the characteristics of a
non-structural road surface.

Table 1. Experimental parameter setting.

Target
Speed/(km/h)

Brake Control/
MPa

Open Loop
Control/Deg

Pavement Adhesion
Coefficient μ

Slope

100 10 0 0.3 0.1

Figure 7. Road roughness.

4.1.2. Simulation Parameters in the Experimental Verification of the Adhesion
Coefficient Identification

For the sake of verifying the effectiveness of the developed algorithm, the correspond-
ing models are constructed in the MATLAB/Simulink environment. The vehicle motion
parameters are set by CarSim, the actual vehicle driving scenario is simulated, and the
required parameters are estimated by the extended Kalman filter. The process of exper-
imentation for the identification of specific pavement adhesion coefficients is presented
in Figure 8. The vehicle model, the driving environment, and the control input are set
by CarSim to satisfy the simulation requirements of different environments and different
working conditions, and then the vehicle response signal is input into MATLAB to identify
and compare with our method and traditional methods (VDMSDF). It should be noted that
the simulation environment of CarSim can be tested with real cars if conditions permit. In
order to verify the effectiveness of the adhesion coefficient identification algorithm, the
scenarios with and without steering and braking are analyzed and verified, respectively.
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Figure 8. Experimental flow chart of adhesion coefficient identification for pavements.

Case 1: No steering and braking scenario

According to various working conditions, CarSim is used to set different adhesion
coefficients, select the same vehicle model for simulation, and output the corresponding
vehicle response signals. The algorithm model is built in the MATLAB/Simulink envi-
ronment to receive vehicle responses and compare the true road adhesion coefficient with
the identification value. The project designs the following three sets of simulation exper-
iments to test the identification results of high, medium, and low adhesion coefficients,
respectively.

The method proposed in this paper is primarily applied to the autonomous driving
of vehicles in complex off-road, high-speed scenarios. Therefore, the initial speeds of
three simulation experiments are respectively set at 100 km/h to meet the requirements of
high-speed driving, and the road surface is set to have certain unevenness (see Figure 7)
and slope to simulate the characteristics of non-structural road surfaces, and the specific
parameter is displayed in Table 2.

Table 2. Experimental parameter setting.

Target
Speed/(km/h)

Brake
Control/MPa

Open Loop
Control/Deg

Pavement Adhesion
Coefficient μ

Slope

100 10 0 0.7 0.1
100 10 0 0.5 0.1
100 10 0 0.3 0.1

Case 2: Steering and braking scenario

For the sake of testing the estimation effect of the method in different scenarios, a
vehicle steering braking scenario is built in CarSim for experiments. Also, three sets of
simulation experiments in Table 3 are designed to test the estimation results of different
adhesion coefficients in the turning scene, respectively. The road surface is set to have
certain unevenness (see Figure 7). So the slope is set at 0.2 m/1 m to aim at proving the
validity of the algorithm under different slope conditions.
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Table 3. Parameter setting table of steering and braking.

Target Speed Brake Control Open Loop Control Adhesion Coefficient μ

100 km/h 10 MPa 45 deg 0.7
100 km/h 10 MPa 45 deg 0.5
100 km/h 10 MPa 45 deg 0.3

Case 3: Variable adhesion coefficient scenario

The road surface drive on by vehicles usually covers a variety of types. Due to different
ground materials and other factors, the adhesion force received by the vehicle during the
driving process can also change accordingly. Therefore, in addition to the two above
scenes, this paper also considers a scene with a varying adhesion coefficient to verify the
effectiveness of the algorithm. The true adhesion coefficient is assumed to be 0.3 for 0–1.7 s
and 0.6 for 1.7 s to 4 s. Other parameter settings are the same as those in Case 1 and Case 2.

4.2. Experimental Results and Analysis about the Dynamics Model of Vehicles

The longitudinal, transverse, and yaw accelerations of CarSim are outputs for compar-
ison. The correctness of the proposed vehicle dynamics model can be tested by comparison.
The experimental curves are shown in Figures 9–11.

Figure 9. Longitudinal acceleration under the slope road.

Figure 10. Lateral acceleration under the slope road.
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Figure 11. Acceleration of yaw angles under the slope roads.

It can be seen from the above experimental curves that the calculated values of the
lateral and longitudinal acceleration, together with the acceleration of the yaw angle, can
maintain a good consistency with the real values in the changing trend, which indicates
that the established vehicle model can better reflect the motion status of vehicles under
the simulation condition of the slope road. Since the equivalent suspension model is
introduced in this paper to optimize the calculation of vertical wheel load and to correct
vehicle acceleration combined with vehicle pose data, the proposed algorithm in this
paper improves the accuracy of the vehicle dynamics model under uneven and sloping
road surfaces.

4.3. Experimental Results and Analysis about the Vertical Load Model

A simulation environment is built in CarSim, and the vehicle response is input into
the vertical load calculation module. The correctness of the model is verified by comparing
the output results of the vertical load model with the output values of the vertical load
in CarSim. Under the conditions of slope and uneven road, the simulation experiment is
carried out, and the experimental curves are shown in Figures 12–15.

Figure 12. Vertical loads for left front wheels under the slope road.
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Figure 13. Vertical load of the right front wheel under the slope road.

Figure 14. Vertical load of the left back wheel under the slope road.

Figure 15. Vertical load of the right back wheel under the slope road.
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It can be seen from the observation of the experimental curves that although some
errors exist between the calculation results for the vertical load of four wheels and the
corresponding CarSim outputs at the peak of the fluctuation, the changing trends are
basically the same. It indicates that the model can calculate the vertical loads of the wheels
more accurately on a slope and uneven road. In a word, the reason why the algorithm
proposed in this paper has high precision is that the equivalent suspension model is
introduced in this paper, and the load is calculated by the vertical response signals such as
velocity and acceleration.

4.4. Experimental Results and Analysis about the Adhesion Coefficient Identification

For the two simulation scenarios described in Section 4.1.2, this section will analyze
the corresponding simulation results.

4.4.1. No Steering and Braking Scenario

When the adhesion coefficient of roads is set to 0.7, the simulation and road adhesion
coefficient estimation are conducted in this part. The estimation results of the adhesion
coefficients on the basis of the equivalent suspension model are compared with the con-
ventional adhesion coefficient estimation results based on the VDMSDF. The experimental
result is shown in Figure 16.

Figure 16. Estimated results of pavement adhesion coefficient 0.7.

The estimated curve of the pavement adhesion coefficient based on the equivalent
suspension is shown in Figure 16. It can be seen from Figure 16 that the curve converges to
about 0.74 at 1 s. And then a small fluctuation is maintained until the vehicle’s braking is
completed after 3 s. Based on the VDMSDF, the convergence speed of the curve in Figure 16
is slow and finally stabilizes at about 0.83. Considering that there is a large deviation
between both methods, the proposed method in this paper has better estimation accuracy
than the latter.

Set the adhesion coefficient of roads at 0.5. The estimated curve is shown in Figure 17.
As can be seen from the experimental curve under the slope road surface in Figure 17,

the adhesion coefficient estimation based on the traditional seven-degree-of-freedom ve-
hicle dynamics model fluctuates around 0.6 and cannot converge to 0.5. The adhesion
coefficient identification on the basis of the equivalent suspension converges to about 0.5 in
1 s and then has less fluctuation.
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Figure 17. Estimated results of pavement adhesion coefficient 0.5.

Set the adhesion coefficient of roads to 0.3, and the corresponding estimated result is
shown in Figure 18.

Figure 18. Estimated results of pavement adhesion coefficient 0.3.

The experimental curve in Figure 18 suggests that the corresponding estimated result
based on the equivalent suspension rapidly converges at 0~1 s and then remains stable at
around 0.29. Based on the VDMSDF, the estimated result curve is stable around 0.39.

Generally speaking, although a certain error exists between the estimation results
based on the equivalent suspension and the adhesion coefficients set by CarSim, the error
is small, and the accuracy is higher than that based on the VDMSDF. The root-mean-square
errors (RMSEs) of the estimation results of two algorithms are displayed in Table 4.

Table 4. RMSEs of experimental estimation results.

Pavement Adhesion
Coefficient μ

RMSEs of Equivalent
Suspension Model

RMSEs of VDMSDF

0.7 0.05608594 0.11667209
0.5 0.03688530 0.10776193
0.3 0.069288424 0.115742819
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According to the RMSEs of the estimation results in Table 4, the equivalent suspension
model-based estimation result has a smaller error under various road adhesion coefficients,
and the estimation accuracy is improved by at least 3.6%. Compared with the estimation
based on the VDMSDF, the estimation accuracy is higher on the non-structural road surface
with its slope and uneven road surface characteristics.

4.4.2. Steering and Braking Scenario

The results of the road adhesion coefficient estimation based on the equivalent suspen-
sion model are also compared with those based on the seven-DOF vehicle dynamics model
in Figure 19.

Figure 19. Estimated results of pavement adhesion coefficient 0.7.

The experimental curve in Figure 19 indicates that the estimated result curve based on
the equivalent suspension model converges to about 0.76 at 1 s and then maintains a small
fluctuation until the vehicle braking is completed after 3 s. Based on the VDMSDF, the
curve convergence speed is slow, and finally stabilizes at about 0.9, with a large deviation.

The adhesion coefficient of roads is set to 0.5, and estimating results under steering
braking conditions are shown in Figure 20.

Figure 20. Estimated results of pavement adhesion coefficient 0.5.
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The experimental curve in Figure 20 shows that the estimated result curve based on
the equivalent suspension model remains stable at around 0.51. Based on VDMSDF, the
estimated result curve is stable around 0.68.

The adhesion coefficient of roads is set to 0.3, and the estimated result curve under the
steering braking condition is shown in Figure 21.

Figure 21. Estimated results of pavement adhesion coefficient 0.3.

As shown in Figure 21, the experimental results of the equivalent suspension model and
the seven-DOF vehicle dynamics model remain stable at around 0.3 and 0.45, respectively.

The root-mean-square errors (RMSEs) of the two estimation methods are calculated,
and the results are shown in Table 5.

Table 5. RMSEs of experimental estimation results.

Pavement Adhesion
Coefficient μ

RMSEs of Equivalent
Suspension Model

RMSEs of VDMSDF

0.7 0.06281493 0.17942874
0.5 0.03788459 0.16536712
0.3 0.07688491 0.18405923

According to the RMSEs of the estimation results in Table 5, the estimation results
on the basis of the equivalent suspension model have a smaller error under various road
adhesion coefficients, and the estimation accuracy is improved by at least 3.7%. In a word,
compared with the estimation based on the VDMSDF, the estimation accuracy is higher on
the non-structural road surface under the steering braking conditions.

4.4.3. Variable Adhesion Coefficient Scenario

In this scenario, the designed identification algorithm on the basis of the traditional
seven-DOF vehicle dynamics model together with the proposed method in the paper is
applied to identify and compare the adhesion coefficients. The experimental curves are
displayed in the figure.

The experimental curve in Figure 22 suggests that the proposed algorithm can identify
the sudden change of adhesion coefficients with high accuracy, and the sudden change in
pavement adhesion coefficients can be identified within 1.5 s.
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Figure 22. Estimated results of variable adhesion coefficient scenario.

In a word, the identification method by virtue of the equivalent suspension model has
higher accuracy on the road surface with slope and road roughness characteristics, and
the method has strong applicability and can be used under the straight line, the steering
conditions, and the different slope conditions. The reason why the identification error of
the contrast method is large is that the traditional dynamics models with seven-degrees
of freedom ignore the vertical response of the vehicle; the vertical load of the wheels in
the model is very different from the actual value while driving on uneven road surfaces.
By introducing the equivalent suspension model, the algorithm proposed in this paper
reduces the deviation of the wheel vertical load and improves identification accuracy.

5. Conclusions

In the study, an estimation method of adhesion coefficients on unstructured pavement
by virtue of the extended Kalman filter is put forward in this paper, which can better
identify the adhesion coefficient under the road with the uneven and large slope. The
identification accuracy of road adhesion coefficients under unstructured pavement is
improved by introducing the equivalent suspension model to optimize the calculation of
vertical wheel load and modifying vehicle acceleration combined with vehicle posture data.
And the multi-condition simulation experiments with CarSim prove that the proposed
identification algorithm for adhesion coefficients has a higher estimation accuracy that
has improved by at least 3.6%. In a word, the designed method in the paper is efficient.
The identification of adhesion coefficients in the designed method is mainly applied to
automatic driving scenarios. For example, the ground adhesion coefficient can be obtained
and shared through the excitation response data from the driving vehicles in front, which
is convenient for the path planning and stability control of subsequent vehicles.
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Abstract: Simultaneous Localization and Mapping (SLAM) is a fundamental problem in the field
of robotics, enabling autonomous robots to navigate and create maps of unknown environments.
Nevertheless, the SLAM methods that use cameras face problems in maintaining accurate localization
over extended periods across various challenging conditions and scenarios. Following advances in
neuroscience, we propose NeoSLAM, a novel long-term visual SLAM, which uses computational
models of the brain to deal with this problem. Inspired by the human neocortex, NeoSLAM is based on
a hierarchical temporal memory model that has the potential to identify temporal sequences of spatial
patterns using sparse distributed representations. Being known to have a high representational
capacity and high tolerance to noise, sparse distributed representations have several properties,
enabling the development of a novel neuroscience-based loop-closure detector that allows for real-
time performance, especially in resource-constrained robotic systems. The proposed method has
been thoroughly evaluated in terms of environmental complexity by using a wheeled robot deployed
in the field and demonstrated that the accuracy of loop-closure detection was improved compared
with the traditional RatSLAM system.

Keywords: long-term visual SLAM; biologically inspired robots; neurorobotics; sparse distributed
representation; hierarchical temporal memory

1. Introduction

A Simultaneous Localization and Mapping (SLAM) method allows a robot to continu-
ously create a map of the environment and at the same time estimate its location based on
this map [1]. Since robots can be applied sector-wide, it is important that robots can safely
and accurately localize themselves with the environment to ensure efficient operation in
challenging sectors, such as the Offshore Renewable Energy (ORE) sector [2–4], Nuclear
sector [5,6], and Medical sector [7].

One of the most important aspects of a SLAM system is place recognition or loop-
closure detection (LCD). This aims to reduce the robot pose uncertainty due to the effect
of the errors introduced by the odometry. Moreover, the incorrect data associations in the
LCD can result in a critical failure for SLAM algorithms [8].

As the usage of vision sensors has increased rapidly, the visual place recognition (VPR)
task has been widely studied in recent years. Cameras are cheaper than laser scanners
and provide increasing amounts of information. By definition, a VPR system must be
able to recognize a previously visited place via visual information [9]. In other words, an
autonomous robot that operates in an environment should be able to recognize different
places when it revisits them after some time as in long-term robot operation (Figure 1).
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Figure 1. In a SLAM system, the goal of VPR might be to find the matching image between the
current image and database images for loop-closure detection. The figure serves as a compelling
illustration of the need to address the problem.

The implementation of feature-extraction techniques is a vital phase in VPR systems
as it involves recognizing and describing distinct patterns or indicators in an image and
then using them for matching and recognition. Most of the state-of-the-art methods can be
broadly categorized into two types based on the nature of image-wise descriptors: local and
global descriptors. Local image descriptors focus on extracting distinctive features from key
points in the image (e.g., Scale-Invariant Feature Transform (SIFT) [10], Speeded-Up Robust
Features (SURF) [11], Oriented FAST and Rotated BRIEF (ORB) [12], and Binary Robust
Invariant Scalable Keypoints (BRISK) [13]. On the other hand, global image descriptors
aim to capture a holistic representation of the entire scene (e.g., Bag-of-Visual-Words
(BoVW) [14], Convolutional Neural Network (CNN) [15], Fisher Vectors [16], and Vector of
Locally Aggregated Descriptors (VLAD) [17].

Although many studies have been conducted recently, there are still open questions
regarding the long-term operation of robots [18], as can be seen in Figure 2.

Figure 2. Speeded-Up Robust Features (SURF) [11] applied to Nordland dataset [19] (licensed under
Creative Commons) for daytime versus evening. While effective in certain scenarios, SURF may
struggle when confronted with significant changes in illumination, as it relies on local features that
are not inherently invariant to lighting variations.

Long-term SLAM models need to be robust to changes in the robot’s environment
caused by different conditions (day–night cycles, changing weather, and so on), occlusion,
and viewpoints [20] and deal with the stability–plasticity dilemma, which is a concept in
neuroscience and machine learning. This dilemma refers to the challenge of finding the
right balance between stability and plasticity in learning systems. Whereas stability refers
to the ability of a system to maintain existing knowledge, plasticity refers to adapting and
learning from new experiences [18].
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Inspired by neuroscience discoveries, various brain-inspired methodologies have been
proposed and demonstrated that the analysis of animal behaviors and the biological process
of navigation and mapping can produce interesting insights for robotic applications in
the world under extremely different environmental conditions. In [21–23], Milforld et al.
proposed the RatSLAM system, which includes a bioinspired SLAM system based on
computational models of the rodent hippocampus. The system is based on a Contin-
uous Attractor Neural Network (CANN) and can construct a cognitive map through
low-resolution monocular image data and odometry information. In [24], Silveira et al.
proposed the DolphinSLAM inspired by the RatSLAM. This SLAM system is a bioin-
spired algorithm for underwater robots using probabilistic local features based on the
data-association method of the Fast-Appearance-Based Mapping technique (FAB-MAP).
In [25], Yuan et al. proposed an entorhinal–hippocampal model with high biological fidelity,
which is able to build cognitive maps simultaneously by integrating activities of place cells
and grid cells with visual inputs. In [26], Lu et al. proposed a full visual SLAM system
combining biologically inspired visual odometry and RatSLAM. In [27], Kazmi et al. intro-
duced Gist+RatSLAM, a framework that integrates the Gist descriptor into the RatSLAM
pipeline. In [28], Zhou et al. adopted the RatSLAM algorithm’s vision processing based
on the Oriented FAST and Rotated BRIEF (ORB) feature-extraction approach. In [29],
Zeng et al. proposed a model based on conjunctive head-direction-by-velocity and conjunc-
tive grid-by-velocity cells to integrate movement and sensory information. In [30], Yu et al.
proposed a neuroinspired SLAM system, namely NeuroSLAM, which integrates 3D grid
cell models and multilayered head-direction cell models based on RatSLAM. In [31], the
authors presented an unsupervised learning framework for multisensor representation
that yields low-dimensional latent state descriptors that can be used for RatSLAM. In [32],
Kasebi et al. used the Scale-Invariant Feature Transform (SIFT) algorithm to improve the
visual matching of the RatSLAM system.

Although these works use biologically inspired SLAM methods in order to perform
inference based on the data produced by the front end, they do not bring benefits from
neuroscience-based methods to visual place recognition and loop-closure tasks. For in-
stance, the visual template feature is organized as a one-dimensional vector whose values
only depend on pixel intensity in the RatSLAM algorithm, and this feature is susceptible to
changes in illumination intensity.

In recent years, there has been an increasing amount of literature on the integration of
biological and neuroscientific principles into the development of visual place recognition
algorithms. In [33], Fen et al. investigated multiscale grid cells observed in the mammalian
brain for performing visual place recognition. In [34], Neubert et al. explored the relation-
ships between place recognition and HTM theory and presented the Simplified Higher
Order Sequence Memory (SHOSM) algorithm. This neurally inspired model is a simplified
version of the HTM framework for place recognition. A significant analysis and discussion
on the subject were presented by the authors. This theoretical research was then applied to
real-world data in combination with CNN-based image descriptors in [35]. Pizzino et al.
demonstrated that the usage of the framework originally proposed by [36] can extend the
run time during long-term operations when compared to [35]. The outcomes indicate that
the suggested architecture is capable of encoding an internal representation of the world by
employing a fixed number of cells, thereby enhancing system scalability. In [37], J. Li et al.
proposed a loop-closure detection by using a neural hashing algorithm inspired by the fly
olfactory circuit, which is applied to a hippocampal–entorhinal-based SLAM system to
build cognitive maps with improved robustness and effectiveness.

In this paper, we present a novel visual SLAM method that integrates computational
models inspired by the neocortex and hippocampal–entorhinal regions. This study set out
to assess the feasibility of implementation in robots that operate in dynamic environments
characterized by continuously changing appearances. The usage of Spatial Distributed
Representations (SDRs), which are known to be representations in the brain, enables real-
time performance and allows for efficient memory storage. A CNN-based encoder is used
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to promote the robustness of matching for correspondences in the images. Based on the
neocortex model, the network gradually and continually adapts with each new input.
The system was validated and verified via the deployment of the SLAM system onboard
real-world ground-based robots. The environments where the evaluation of the system
took place consisted of a university campus with outdoor and indoor areas and a farm yard
that included several animals within a barn.

A summary of the contributions of this work includes the following:

• We present NeoSLAM, a novel long-term visual SLAM that integrates computa-
tional models of the neocortex and hippocampal–entorhinal system in order to en-
hance the efficiency and robustness to changes in the robot’s environment caused by
different conditions.

• A new loop-closure detector based on spatial-view cells is presented. The method
uses binary sparse distributed representations, offering a compact and powerful way
to encode complex patterns in data. Unlike traditional dense representations, which
require substantial computational resources, our method significantly reduces the
computational load, making it particularly suitable for real-time applications.

• We provide a thorough experimental evaluation that involves deploying the sys-
tem in practical scenarios, enabling a thorough examination of its performance and
capabilities within the Robot Operating System (ROS) framework.

This paper proceeds as follows: Section 2 presents the architecture and the detailed
model of our NeoSLAM method. Section 3 describes the design of the experiments for
investigating and evaluating the performance of NeoSLAM. Sections 4 and 5 provide
analyses of the results and suggestions for future work, respectively.

2. NeoSLAM

Over recent years, the interaction between the neocortex and the hippocampus has
been investigated and serves as inspiration for our method. Both brain parts are critical
regions in the primate brain and work together to cope with various cognitive functions,
particularly those related to learning and spatial memory [38].

The neocortex is the outer layer of the brain and is responsible for higher-order cog-
nitive processes, such as perception, language, and conscious thought. It is involved in
processing sensory information and integrating it with other information to form complex
representations of the world. On the other hand, the hippocampus is a seahorse-shaped
structure located deep within the brain underneath the neocortex and is primarily associ-
ated with memory formation and spatial navigation. In primates, the hippocampus receives
major input via the entorhinal cortex. These inputs come from the ends of many processing
streams of the cerebral association cortex, including the visual cortical areas [39].

Similar to rodents, primate place cells, also referred to as spatial-view cells, exhibit
selective firing patterns associated with specific locations in the environment. However,
primate spatial-view cells often have larger receptive fields, meaning they are active in
broader areas of space compared to the more precise place fields of rodents. The firing
patterns of primate spatial-view cells are not limited to specific locations alone. They
can also show specificity to other spatial features, such as landmarks or boundaries. For
example, some spatial-view cells may fire preferentially when the animal is near a particular
visual landmark while others may be sensitive to the boundaries of the environment [40].

Based on theories and models of neuroscience, NeoSLAM allows the robot to perform
SLAM in real time by recognizing places it has previously visited under variations in
appearance and illumination. The system consists of five major modules, namely the
encoder, neocortex, spatial-view cells and LCD, pose cells, and experience map, as can be
seen in Figure 3. First, we present the neocortex model, and after that, the other parts.
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Figure 3. An overview of the major modules of the NeoSLAM system. Most SLAM approaches are
commonly divided into two main components: the front-end and the back-end blocks. The former is
responsible for real-time sensor data processing, encompassing tasks such as feature extraction and
establishing correspondences between consecutive frames. This component plays a crucial role in
tracking the system’s pose and understanding the environment. On the other hand, the latter focuses
on optimization and map refinement. It integrates the accumulated sensor measurements over time,
corrects for errors, and optimizes the estimated trajectory and map. In our system, both components
draw inspiration from neuroscience models.

2.1. Neocortex Model

In this work, we use one framework that models a number of structural and algorith-
mic properties of the neocortex, namely hierarchical temporal memory (HTM) proposed
by Hawkins in [41]. In this framework, the brain processes information by using sparse
distributed representations (SDRs).

2.1.1. Sparse Distributed Representations

The neocortex does not directly receive photons or vibrations from the external envi-
ronment. Before entering the brain for processing, sensory signals need to be converted
into a shared representation space. This widely employed representation space in the
mammalian brain is referred to as sparse distributed representations (SDRs).

Sparse neuronal activity refers to the phenomenon observed in mammalian brains
where only a small fraction of neurons are active at any given time, while the majority
remain silent or exhibit low firing rates. This pattern of sparsity is a fundamental character-
istic of neural processing and has been extensively studied to understand how information
is represented and processed in the brain.

One key advantage of sparse neuronal activity is its efficiency in representing in-
formation. By activating only a subset of neurons, the brain can achieve high-capacity
representations while minimizing energy consumption and neural resources. This sparsity
also enables the selective and precise encoding of relevant features or stimuli, allowing the
brain to efficiently extract and process salient information from the environment.

Given a population of n neurons or binary units, their instantaneous activity is repre-
sented as an SDR, i.e., an n-dimensional vector of binary components:

x = [b0, · · ·, bn−1], (1)

where x ∈ S : {1, 0}n and a small percentage of the components are one. The number of
components in x that are one is defined as ωx = ‖x‖1.

The similarity between two SDR vectors is determined by an overlap score, i.e., the
number of bits that are one in both vectors. Let Φ : S× S → N be a function defined by

Φ = x · y, (2)
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where x, y ∈ Sn. The overlap score is simply the number of bits that are one in the
same locations.

A match between two SDR vectors occurs if their overlap exceeds the threshold β, i.e.,

Ψ = Φ(x, y) ≥ β. (3)

Typically β is set such that β ≤ ωx and β ≤ ωy.

2.1.2. Notation

Let n represent the number of minicolumns in the layer, m the number of cells per
column, and nm the total number of cells in the layer. A single-level network structure
consists of one region that is arranged in minicolumns Cj, (j = 1, 2, 3, . . . , n), that have
multiple cells ci,j, (i = 1, 2, 3, . . . , m). In this work, the following terminology for describing
the algorithms is used:

• Cell state: each cell ci,j can be in an active state, in a predictive (depolarized) state, or
in a nonactive state.

• Active state: Matrix of active cells, At = {at
i,j}, where at

i,j is the active state of the i’th
cell in the j’th column at any time step t. A value of 1 indicates an active state and a
value of 0 indicates an inactive state.

• Predictive state: Matrix of predictive cells, Πt = {πt
i,j}, where πi,j is the predictive

state of the i’th cell in the j’th column at any time step t. A value of 1 indicates a
predicted state and a value of 0 indicates an unpredicted state.

• Winner cells: Matrix of winner cells, Wt = {wt
i,j}, where wt

i,j is the winner i’th cell in
the j’th column at any time step t. A winner cell is an active cell that was predicted or
selected from the bursting minicolumn.

• Minicolumn state: Each minicolumn Cj has a binary state variable At
j, where a value

of 1 indicates an active state and a value of 0 indicates an inactive state.
• Dendrite segments: Each cell ci,j has one proximal dendrite segment and one or more

distal dendrite segments. The proximal dendrite segment is a single shared dendrite
segment per each minicolumn Cj of cells and receives feed-forward connections Fj
from dimensions of the input I. The distal dendrite segments receive lateral input
from nearby cells through the synapses on each segment.

• Synapse: Connection between an axon of one neuron and a dendrite of the other. The
dendrite segments contain a number of potential synapses that have an associated
permanence value. The permanence value of a synapse is a scalar value ranging from
0.0 to 1.0. If the permanence value of the potential synapse is greater than a threshold
ε, it becomes a functional synapse, as can be seen in Figure 4. In HTM theory, synapses
have binary weights.

  

Figure 4. A permanence value is assigned to each potential synapse and represents the growth of the
synapse. It is a key parameter that regulates the strength of connections between neurons and allows
the model to adapt and encode relevant patterns in the input space over time. Synapses are subject to
both potentiation and depression. If a synapse is active and contributes to the cell’s activation, its
permanence value may be increased. Conversely, its permanence value may be decreased.
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Let Dk
i,j = {dk

i,j} be a set of distal segments that represents the k’th segment of the cell
ci,j used to store the synaptic permanence value. The matrix of dendrite branch connectivity,
D̃k

i,j = {d̃k
i,j}, is defined as

d̃k
i,j =

{
1, if dk

i,j ≥ ε

0, otherwise
(4)

The matrix of positive terms of dendrite branch synapses, Ḋk
i,j = {ḋk

i,j}, is defined by

ḋk
i,j =

{
1, if dk

i,j ≥ 0

0, otherwise
(5)

• Learning: the process of learning involves incrementing or decrementing the perma-
nence values ε of potential synapses on a dendrite segment.

2.1.3. Hierarchical Temporal Memory

Hierarchical temporal memory (HTM) [42] is a neural network model designed to
simulate the structure and function of the human neocortex. It is particularly designed
to perform pattern recognition and anomaly detection and exhibits three key properties:
sequence learning, continual learning, and sparse distributed representations.

The HTM algorithm is based on the idea that the neocortex learns and recognizes
patterns through a hierarchical structure of neurons that process information in a sequence
of temporal patterns. This structure allows the neocortex to detect and learn complex
patterns over time and make predictions based on past experiences.

The HTM algorithm mimics this structure by creating a hierarchical structure of nodes,
where each node represents a pattern or sequence of patterns. The nodes are connected
to each other in a way that allows them to learn and recognize patterns over time. The
algorithm also includes mechanisms for learning and adapting to new patterns in the
input data.

One of the key advantages of the HTM algorithm is its ability to handle noisy and
incomplete data. The hierarchical structure allows the algorithm to detect and learn
from patterns even when the input data are incomplete or contain errors. The algorithm
can also adapt to changes in the input data and learn new patterns without requiring
a lot of retraining.

The HTM cells are stacked into columns, where groupings form an HTM region. The
region replicates the structure and operations of the cortical column in the neocortex. Cells
within a region gather information from three distinct sources: feedforward, contextual,
and feedback information is conveyed through three separate connections.

The cortical columns within the neocortex are commonly denoted as minicolumns or
columns. The fundamental unit in HTM is the cell. Minicolumns comprise multiple cells,
and the network space of HTM is constituted by a substantial number of minicolumns.

The cells can be in inactive, active, or predicted states where segments (links to cells)
comprise a collection of synapses. The synapses allow for information to be shared with the
cells where, in HTM, this information is displayed as binary values. The information sent
to the cell will determine the state. Processing is conducted by a Spatial Pooler algorithm
for feedforward input, and temporal memory is used to provide contextual input. It is
suggested that feedback is an optional component and is not currently addressed as per
HTM theory [43].

Figure 5 shows the HTM model and includes two modules: Spatial Pooler (SP) and
temporal memory (TM).

The main role of the Spatial Pooler (SP) in HTM theory is finding spatial patterns in
the input data and transforming them into SDRs in a continuous online fashion. It may be
decomposed into three stages: overlap calculation, inhibition, and learning [44]. In the case
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of visual localization, SP acts as a feature detector and extracts distinctive properties of a
place that can be used to recognize this place [34].

Spatial Pooler

Cell
Proximal 
dendrite Distal Dendrite 

Segments

To 
neighboring 

cells

To 
level 

above

 

Temporal Memory

Input

Figure 5. The cells within a column possess a collective proximal dendrite corresponding to the input
space through a series of synapses illustrated as arrows. A cell is portrayed along with its distal
dendrites on the right side where each dendrite segment establishes multiple synaptic connections
with other cells.

Each minicolumn Cj has a binary state variable Aj and can have potential synapses
(connections) to the part of the input space [44] or a sparse set of feed-forward connections
from the dimensions of the input [35].

In [44], the Hebbian rule ensures that synaptic permanences are adjusted accordingly.
The synapse is only connected if the permanence is greater than the threshold required to
connect. To ensure that most of the inputs are active within the local inhibition rule, a local
mechanism enables a small faction of minicolumns.

In [35], the authors proposed a simplified method to calculate the activation of the
minicolumns as follows:

At
j = 1 ⇔ ∑

m∈Fj

It
m ≥ θ (6)

The SP output represents the activation of minicolumns in response to feedforward inputs.
Meanwhile, the temporal memory learns a sequence and forms a representation in

the context of previous inputs. Basically, the algorithm determines the active cells of the
columns and learns distal synaptic permanence.

A set of possible synapses is generated at random from a division of cells in the layer
within the distal portion. In addition, the permanence of these are also chosen at random.

Equation (7) presents the active state, where we assume that a group Ct of columns
for the inhibitory process has already been chosen that is most appropriate to compliment
the current feed-forward inputs.

It is assumed that an inhibitory process has already selected a set Ct of columns that
best match the current feed-forward input pattern. The calculation of the active state is
given by the following equation:

at
i,j = 1 ⇔ At

j ∧
(

πt−1
i,j ∨

(
∀m : ¬πt−1

m,j

))
(7)

A cell is activated in a winning column if this cell was predicted (πt−1
i,j = 1) or if no

cells in this minicolumn are predicted. In the latter case, the minicolumn will experience
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“bursting”, and thus all cells will be activated. The algorithm will select one of the cells in
the learning process.

The predictive state for the current time step is calculated as the following equation:

πt
i,j = 1 ⇔ ∃k‖D̃k

i,j ◦ At‖1 > θ (8)

where θ represents the spiking threshold and ◦ is an element-wise multiplication (Schur
product). A cell will be depolarized if at least one segment k is active, which occurs if there
are more than θ connected synapses with active presynaptic cells.

The learning process uses a Hebbian-like rule. It reinforces the dendritic segment
that was responsible for activating and causing the depolarization. The choice of those
segments Dk

i,j is such that

∀At
j(π

t−1
i,j > 0) ∧ ‖D̃k

i,j ◦ At−1‖1 > θ (9)

It means that the first term selects winning columns that contain correct predictions
and the second one selects those segments specifically responsible for the prediction [36].

At this moment, the algorithm will select one of the cells as a learning cell, i.e., the
winner cells wt

i,j, as follows:

wt
i,j = 1 ⇔ At

j ∧ (πt−1
i,j > 0) ∧ ‖D̃k

i,j ◦ At−1‖1 > θ (10)

If “bursting” takes place, one of the activated cells is selected on this minicolumn. This
cell will represent the context in the future if the current sequence transition repeats:

wt
i,j = 1 ⇔At

j ∧
(
∀m : ¬πt−1

m,j

)
∧ ‖Ḋk

i,j ◦ At−1‖1 =

maxi

(
‖Ḋk

i,j ◦ At−1‖1

) (11)

where the function maxi will select the cell with the segment that was closest to being active,
even though it was below the threshold.

The synaptic permanence value is adjusted to reward synapses with active presynaptic
cells and punish synapses with inactive cells as follows:

ΔDk
i,j = r

(
Ḋk

i,j ◦ At−1
)
− γḊk

i,j (12)

where r and γ values will increase and decrease all the permanence values corresponding
to presynaptic cells.

In [34], the authors eliminated the dendrite segments and replaced the Hebbian-like
learning with one-shot learning. This means that k = 0, permanence values are always
equal to a maximum value, and θ = 0. They set the variable πt

i,j if there is an active cell
am,n with a lateral predictive connection to this cell ci,j:

πt
i,j = 1 ⇔ ‖D̃i,j ◦ At‖1 > 0 (13)

In this case, the set of predictive connections is updated based on the previous and
current winner cells:

P = P∪
{(

cm,n, ci,j
)

: wt−1
m,n ∧ wt

i,j ∧
(
�l :
(
cl,n, ci,j

) ∈ P
)}

(14)

P ⊂ {(cm,n, ci,j
)

: i, j, m, n ∈ N
}

wt
i,j = 1 ⇔

(
at

i,j ∧ pt
i,j

)
∨ bi,j (15)

The output of HTM temporal memory represents the activation of individual cells
across all minicolumns.
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2.2. Encoder

Initiating the application of an HTM system involves the initial phase of transforming
a data source into a Sparse Distributed Representation (SDR) through a process known as
encoding [45]. The encoding process mirrors the functions performed by sensory organs in
humans and other animals.

According to Sünderhauf et al. [15], the features generated by Convolutional Neural
Networks (CNNs) outperform other methods for the task of visual place recognition in
robotics. Despite being trained for a highly specific target task, these models can be
effectively applied to deal with different problems. The authors demonstrated that deep
features from different layers of CNNs consistently perform better than the traditional
system as SIFT or SURF. Additionally, they established important results from which the
features are extracted; higher layers of the CNN hierarchy encode semantic information,
middle layers exhibit robustness against appearance changes, and top layers are more
robust with respect to viewpoint changes.

Indeed, CNNs have become fundamental tools in computer vision, and their archi-
tecture is inspired by the visual-processing systems in biological organisms [46]. The
success of CNNs has contributed to our understanding of how the brain processes visual
information and has enabled the exploration of the connections between artificial and
biological intelligence.

Based on [35], the method uses the conv3 layer of the pretrained CNN AlexNet [47].
This network consists of eight layers: five convolutional layers, two fully connected hidden
layers, and one fully connected output layer. The length of the AlexNet-based descriptor is
lcnn = 64,896 and can be excessive for HTM Spatial Pooler performing the SDR transforma-
tion. Because of that, we use dimensionality reduction techniques based on the random
projection [15] and binarization by using the method proposed in [35], namely binary
locality-sensitive hashing (LSH).

2.3. Spatial-View-Cells Module

This module models spatial-view cells that fire whenever the robot views a certain
part of the environment, as primates do. It is responsible for resetting the accumulative
errors of the odometry. Each cell represents what the robot is perceiving, similar to the
RatSLAM system. However, when a novel visual scene is seen, a new view cell is not
necessarily created and associated with the HTM descriptor, as can be seen in Figure 6.

Figure 6. Spatial-view-cell model based on SDR properties and the neurons in primates’ hippocampus
that respond when a certain part of the environment is in the animal’s field of view.
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We took advantage of the sparsely distributed representation properties. In [48],
Ahmad and Hawkins state that empirical evidence demonstrates that every region of the
neocortex represents information using sparse activity patterns at any point in time, and
the sparsity might vary from less than one percent to several percent of the total neurons.
In other words, SDRs are vectors with thousands of bits and at any point in time a small
percentage of the bits are 1’s and the rest are 0’s. The meaning of the features is represented
in the set of active bits. As a consequence, if two different descriptors have an active bit in
the same location, they share the same attribute.

Therefore, we can take advantage of an important property of SDRs that is related
to the union. It is possible to take a set of SDRs and form a new SDR and maintain their
attributes of them. For this, we simply make an OR operation, and the result is compared
to determine if it is a member of the set of SDRs used to form the union.

Given a set D that represents a sequence of SDR descriptors, defined as

D = [d[k], d[k + N0]], (16)

where d ∈ Sn is defined in Section 2.1.1 and represents the images taken at a specific place
and at particular instants in discrete-time k ∈ N, and N0 is an interval defined by

N0 = [0, x] = {x ∈ N : Φ(k + x, k + x + 1) ≥ α} (17)

The output of this model is the descriptor

dout = d[k] ∨ d[k + N0], (18)

The parameter α can be understood as the maximum overlap in order to control the
sparsity of the results.

Additionally, we define the parameter ρ as the maximum size of the interval of the
spatial-view cells that enclose representations with the similarity between SDRs, i.e.,

N0 = [0, min(x, ρ)] (19)

This method helps to avoid the corridor problem, i.e., the absence of a significant
structure along both outdoor and indoor environments.

2.4. Pose Cell Network

The Pose Cell Network is designed to simulate the functioning of neurons in the rodent
brain, specifically those found in the hippocampus and entorhinal cortex. These neurons,
known as pose cells, are thought to play a fundamental role in spatial representation and
navigation. In the RatSLAM system, the Pose Cell Network emulates the rat’s ability to
create a cognitive map of its environment by encoding information about the animal’s
position and orientation [49].

A three-dimensional continuous attractor network models the pose cells, where the
dimensions represent the pose (i.e., (x, y, θ)) of a ground-based robot with activity matrix P.

As the animal explores its environment, these pose cells fire in a manner that creates a
unique neural signature for different locations and orientations. The integration of these
pose cell activations over time forms a neural representation of the spatial layout, allowing
the RatSLAM system to build and update a map of the environment in a self-supervised
manner [23].

2.5. Experience Map

Pose cells represent a finite area; therefore, a single cell is represented by multiple
physical places via the wrapping behavior of the cube’s edges.

An estimate of the robot’s global pose is provided by the experience map and is created
by the combination of spatial-view and pose cells.
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The map results in a graph where each node represents a different state in the spatial-
view and pose cells. When the state of these components changes and is therefore not
matching with any pre-existing node in the graph, a new experience node is created within
the graph. With these transitions between experiences, links are formed between the current
and previous nodes [23].

3. Experimental Validation

In this section, we present the experimental procedure for evaluating the NeoSLAM.
To evaluate the system performance, we implemented it in two different robots by using
the Robot Operating System (ROS Melodic) in three different environments.

The NeoSLAM project deals with complex software tools and dependencies, making it
challenging to ensure consistent results across different computing environments (available
in https://github.com/cappizzino/neoslam_ws). To address this issue, a Singularity
version 3.9.5 container was integrated.

Singularity allows one to create containerized environments that encapsulate all the
dependencies and configurations needed for ROS applications. This makes it easy to share
ROS-based projects across different systems and ensures consistent behavior regardless of
the host environment.

Besides, it is possible to define the exact software versions, libraries, and configura-
tions required for ROS project within the container. This ensures that the code behaves
consistently across different development and deployment stages.

Singularity containers can be shared with other researchers and developers, facilitating
collaboration in the robotics community. This is particularly useful when working on open-
source ROS projects or when collaborating on research initiatives.

Next, we describe the experimental setup and the evaluation metrics used.

3.1. Experimental Setup

The first robot used in order to evaluate our model was the Clearpath Husky A200.
Husky is an Unmanned Ground Vehicle (UGV), developed by Clearpath Robotics. It is a
differential-drive-wheeled robot that has a top speed of 1.0 m/s. The robot is equipped
with a bumblebee stereo camera mounted on the pan tilt unit where only the left camera
was utilized for collecting images.

The second UGV is a hay-cleaning robot equipped with a simple Microsoft LifeCam
VX-700, Rion AH200C IMU, and C16 LS LiDAR, which realizes 360° three-dimensional
scanning with 16 laser beams. The robot has differential wheel drive and an onboard
computer running Ubuntu. With this robot, we decided to build a map by using the LiDAR-
Inertial Odometry Smoothing and Mapping (LIO-SAM) ROS package, a state-of-the-art
LiDAR SLAM method, in order to create quite accurate ground truth data.

3.2. Environments

In the evaluation of the neocortex model, three different environments were selected
to verify and validate the effectiveness of the model created, namely a Robotarium, Heriot-
Watt University campus, and a cow barn.

3.2.1. Robotarium

Figure 7 shows the Robotarium environment, which is a multipurpose robotics labora-
tory at the Edinburgh Centre for Robotics (HWU). The area is very cluttered, consisting of
several workstations with desks and chairs, robots positioned around the room, etc.
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Figure 7. Images collected by the Dual UR5 Clearpath Husky robot at the Heriot-Watt University
indoor Robotarium.

3.2.2. Heriot-Watt University

We evaluated our method at Heriot-Watt University, which includes both outdoor and
indoor areas. The indoor corridors consisted of a clear area with posters positioned along
the walls of the corridor (Figure 8). There were a number of fire doors that were opened
ahead of the robot. This area represents a challenge for the neocortex model as many of
the images captured are very similar. Meanwhile, the outdoor environment is made up of
roads, sidewalk, and car-parking areas.

Figure 8. A selection of images of the environment within the Heriot-Watt University campus where
the furthest right image displays the route that the robot was teleoperated throughout.

3.2.3. Cow Barn on the Farmland

The cow barn is an open-sided structure where cattle eat, as can be seen in Figure 9.
The main area of the barn is filled with bales of hay stacked and includes individual stalls
for cows and a dedicated feeding area.

Figure 9. Images and environment from the cow barn on the farmland.

3.3. Evaluation Metrics

Establishing metrics for visual place recognition typically involves defining evaluation
criteria that assess the performance and precision of the recognition system. Some common
metrics for VPR include

• Precision (P);
• Recall (R); and
• Area under the precision–recall curve (AUC).

Precision (P) measures the proportion of correctly identified positive instances (true
positives—TP) out of the total instances identified as positive, including the false positives
(FP). It quantifies the precision of positive predictions made by a VPR system. In other
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words, precision answers the question: “Of all the items the system identified as positive,
how many were actually positive?”:

P =
#TP

#TP + #FP
(20)

Recall (R), also known as the sensitivity or the true positive rate, measures the pro-
portion of correctly identified positive instances out of all the actual positive instances,
including false negatives (FN). It quantifies the system’s ability to find all the relevant
positive instances. In other words, recall answers the question: “Of all the actual positive
items, how many did the system identify correctly?”:

R =
#TP

#TP + #FN
(21)

In order to illustrate the trade-off between precision and recall for a classification
model, a precision–recall curve can be generated by plotting these pairs of precision
and recall values for various thresholds. In a precision–recall curve, different decision
thresholds are used to classify data points, and for each threshold, precision and recall
values are calculated.

The area under the precision–recall curve (AUC) is a numerical value that quantifies
the overall performance of a classification model as represented by its precision–recall
curve. It summarizes the classifier’s performance in a single scalar value, with a higher
AUC indicating better performance.

3.4. General Procedures

The table below shows the general configuration of the experiments (Table 1).

Table 1. Configuration of the experiments.

Experiment Robot Environment Ground Truth

1 Clearpath Husky Robotarium Annotated manually
2 Clearpath Husky Robotarium Annotated manually
3 Hay-cleaning robot Cow barn LiDAR-based SLAM

In Experiment 1 and 2, the images were collected by the Husky robot during the
teleoperation. We ensure real-time running, i.e., images were collected while the full data-
processing pipeline for loop-closure detection was running. In these cases, odometry data
were recorded with 10 Hz and images with approximately 1.0 Hz. In the last experiment,
ground truth data were created by using a LiDAR-based SLAM system. Places with a
ground truth distance < 3 m are considered as the same place.

3.5. Parameter Configurations

CNN features were computed by a pretrained AlexNet by using Pytorch. The neocor-
tex model was implemented in Python 2.7.17 by using the Numenta Platform for Intelligent
Computing (NuPIC) developed by Numenta, which implements the HTM learning algo-
rithms. We implemented both Spatial Pooler and Temporal Memory algorithms to create
temporal and spatial representations of the images. A description of the HTM’s parameters
is given in [50] and their values can be found in the project repository.The main parameters’
values can be seen in the table below (Table 2).
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Table 2. Main parameters for Spatial Pooler, Temporal Memory and Spatial-View Cells module

Parameter Module Robotarium HWU
Cow
Barn

input-, columnDimensions Spatial Pooler 2048 2048 2048
numActiveColumnsPerInhArea Spatial Pooler 40 40 40
columnDimensions Temporal memory 2048 2048 2048
cellsPerColumn Temporal memory 32 32 32
activationThreshold Temporal memory 4 4 4
maximum size of the interval ρ Spatial-view cells 1 3 2
maximum overlap α Spatial-view cells - 384 384

4. Results

In this section, we discuss the results obtained by using the proposed NeoSLAM
method in the delineated experimental scenarios. We validate the following real-world
experiments by using evaluation metrics compared to the original RatSLAM.

4.1. Robotarium

In this scenario, NeoSLAM and RatSLAM generated a consistent topological map of
the environment. The algorithms demonstrated real-time performance, processing sensor
data and updating the map and trajectory estimates on the fly (Figures 10–13).

The SLAM algorithms proved to be robust against sensor noise, occlusions, and
dynamic objects. It successfully handled scenarios with moving objects, such as people
walking in the environment, without significant degradation in performance.
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Figure 10. NeoSLAM results. (a) Odometry information from Husky robot. (b) Experience map,
showing the topological map. (c) Visual templates over the duration of the experiment.
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Figure 11. RatSlam results. (a) Experience map, showing the topological map. (b) Visual templates
over the duration of the experiment.
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Figure 12. Spatial-view cell NeoSLAM (HTM), CNN, and view-cell RatSLAM descriptors.
(a) Precision–recall curves. (b) Maximum F1 Scores.

(a) (b)
Figure 13. NeoSlam results: examples of true and false positive places. (a) True positive images.
(b) False positive images.

4.2. Heriot-Watt University

Husky completed three laps, approximately 1.1 km. The route was completed at dif-
ferent times during the day to ensure that the model was tested in different daylight hours.
This would assess the resilience of the neocortex model in different lighting: afternoon and
evening (Figures 14–16).

The transitions between outdoor and indoor environments multiple times, simulating
a scenario where a robotic system needs to adapt to changing conditions, aims to assess
the adaptability and robustness of our approach across diverse and dynamic scenarios.
In total, 2504 images were analyzed. Even so, the system was capable of running in real
time without the loss of information due to the possibility of comparing by using the
hamming distance.
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Figure 14. NeoSLAM results. (a) Odometry information from Husky robot. (b) Experience map,
showing the topological map. (c) Visual templates over the duration of the experiment.
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Figure 15. RatSlam results. (a) Experience map, showing the topological map. (b) Visual templates
over the duration of the experiment.
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Figure 16. NeoSlam results: examples of true and false positive places. (a) True positive images.
(b) False positive images.

4.3. Cow Barn

In this scenario, cows are moving and eating in different places. The illuminations
exhibit significant variation at the middle and extremity of the barn.

Figure 17 (left) shows the trajectory built by LIO-SAM [51]. The ground truth is
calculated and is shown in Figure 17 (right). The robot completed three laps, approximately
400 m. The comparison between the methods is shown below (Figure 18).
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Figure 17. LIO-SAM odometry and confusion matrix.
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Figure 18. Spatial-view-cell NeoSLAM (HTM), CNN, and view-cell RatSLAM descriptors.
(a) Precision–recall curves. (b) Maximum F1 Scores.

5. Discussion and Conclusions

The aim of this work was to propose a new visual-based SLAM method using a
computational model that integrates neocortex and hippocampus models to deal with
environments where appearance continually changes. Our approach focuses on real-world
robot implementations, ensuring the relevance and applicability of the findings to practical
robotics applications.

Through three distinct experiments, the performance of traditional RatSLAM and
NeoSLAM are compared. RatSLAM relies on feature extraction and matching in visual
data, which can be affected by lighting conditions, occlusions, and environmental changes,
and NeoSLAM is proposed to deal with this problem. The proposed method, with the
inclusion of the neocortex model and spatial-view cells for visual place recognition and
loop-closure detection, outperforms RatSLAM.

Visual place recognition can benefit immensely from incorporating features learned
by using CNNs. Nevertheless, these approaches are computationally intensive, so it is
necessary to examine the capability of real-time operation. Using a pretrained CNN is an
important alternative from the aspects of reducing the computational cost.

Representations in HTM are binary sparse distributed, operations on these structures
are very efficient related to time, and the features obtained from CNNs can be incorporated.
Besides, the sequential information that this model incorporates might be a key element of
successful approaches for place recognition in changing environments.

In the Robotarium scenario, we did not observe a significant improvement in spite of
the fact that the area under the precision–recall curve of the HTM model was slightly higher
than RatSLAM. It is important to note the number of view cells created in RatSLAM is
approximately ten times higher than the spatial-view cells of NeoSLAM, which completes
the analysis of the images every one second.

In the second experiment undertaken at Heriot-Watt University, the results of NeoSLAM
overcome the performance of RatSLAM. The complexity of the scenario, the strong simi-
larity of places, and the appearance changes caused a lot of false positives, which hamper
the construction of a topological map. These results align with the hypothesis that the
incorporation of CNNs into HTM generates distinctive features, contributing to enhanced
long-term visual place recognition.

In the final scenario, a ground truth was created by using LIO-SAM, which works
by receiving data from a 3D LiDAR and an IMU in order to estimate the robot’s state and
trajectory. It formulates the problem as a Maximum a Posteriori Probability (MAP) estimate
by using a factor graph to solve it. By doing this, a comparison between NeoSLAM and
RatSLAM improves as they can be compared directly for the same types of data in this case.
Once again, NeoSLAM obtained a better result.
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The evidence presented in this study supports the effectiveness of the proposed
NeoSLAM method in achieving consistent topological mapping and a real-time perfor-
mance in real-world indoor and outdoor environments. NeoSLAM showcases robustness
against various challenges, making it suitable for practical robotic applications.

The scope of this study was limited in terms of the changes in the robot’s environment
caused by continuously changing appearances. A future study could assess the long-term
effects of dark environments and the degree of change in viewpoint, which can significantly
impact the challenge associated with VPR. Besides, some limitations were observed during
the experiments regarding the complexity and number of parameters of this model. The
algorithm has theoretical limitations that require further investigation.

In conclusion, this study not only builds upon the foundational knowledge established
by previous works but also offers practical applications. We consider the performance
to be an attractive choice for adaptation within field robot applications. These findings
contribute to the advancement of SLAM techniques, mainly for long-term robot operation.
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Abbreviations

The following abbreviations are used in this manuscript:

BC Border Cells
BoVW Bag-of-Visual-Words
BRIEF Binary Robust Independent Elementary Features
BRISK Binary Robust Invariant Scalable Keypoints
CANN Continuous Attractor Neural Network
CNN/ConvNet Convolutional Neural Network
FAB-MAP Fast-Appearance-Based Mapping technique
FAST Features from accelerated segment test
GC Grid cells
HD Head-direction cells
HP Hippocampus
HTM Hierarchical temporal memory
LCD Loop-closure detection
LIO-SAM LiDAR-Inertial Odometry Smoothing and Mapping
MAP Maximum a Posteriori Probability
MEC Medial Entorhinal Cortex
ORB Oriented FAST and Rotated BRIEF
ORE Offshore Renewable Energy sector
PC Place cell
ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
SDR Sparse distributed representations
SIFT Scale-Invariant Feature Transform
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SP Spatial Pooler
SURF Speeded-Up Robust Features
TM Temporal memory
VLAD Vector of Locally Aggregated Descriptors
VPR Visual place recognition
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Abstract: This paper presents a novel framework for integrating artificial empathy into robot swarms
to improve communication and cooperation. The proposed model uses fuzzy state vectors to
represent the knowledge and environment of individual agents, accommodating uncertainties in
the real world. By utilizing similarity measures, the model compares states, enabling empathetic
reasoning for synchronized swarm behavior. The paper presents a practical application example
that demonstrates the efficacy of the model in a robot swarm working toward a common goal. The
evaluation methodology involves the open-source physical-based experimentation platform (OPEP),
which emphasizes empirical validation in real-world scenarios. The paper proposes a transitional
environment that enables automated and repeatable execution of experiments on a swarm of robots
using physical devices.

Keywords: artificial empathy; swarm; fuzzy sets; similarity measure; open simulation;
physical experimentation

1. Introduction

The paper describes research motivated by the application of artificial empathy algo-
rithms in a swarm of mobile robots. The goal is to transfer the biological mechanisms of the
human brain, such as empathy, to computer systems. This improves the quality of the robots
by extending them with cognitive aspects, such as learning and adaptation mechanisms.

We present preliminary results of computer simulations that identified problems caus-
ing divergence between simulations and reality, such as significant resource consumption,
which limits the number and range of parameters. This limitation prevented the effective
evaluation of the algorithms. Therefore, we propose a solution to address the issue of
discrepancies between the simulation environment and real experiments. Our solution
allows for the verification of complex algorithms and offers universality, accessibility,
standardization, and repeatability of results.

The construction of a platform that achieves those objectives requires intensive re-
search. This paper presents the assumptions made and solutions used for the construction
of two versions of mobile robot prototypes and an experimentation arena. Particular atten-
tion is paid to the possibility of modeling empathetic behavior in the swarm, which had a
significant impact on many technical requirements for the devices built.

1.1. Motivation

In the field of robotics, the standardization and reproducibility of research results
are primary challenges, particularly in the field of AI. Research outcomes often depend
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on various factors, such as hardware configuration, software version, or environmental
factors. Simulators, such as CoppeliaSim [1], available in the field, may not accurately
reflect reality. One issue in AI research is the significant centralization of the research and
development process. Major academic institutions possess substantial resources, which
limits opportunities for smaller universities and individual researchers to engage in state-
of-the-art research.

One challenge in AI and swarm robotics research is the high entry barrier. Smaller
research units may find it difficult to acquire the specialized tools and infrastructure re-
quired for this type of research. To address this issue, a proposed solution is to provide
an affordable and standardized experimental environment for swarm robotics. Remote
access to an environment enables experiments to be conducted without physical access to
the test platform, enhancing the potential for international and interdisciplinary collabo-
ration. Cloud access in a pay-as-you-go model could reduce initial expenses on research
infrastructure [2].

The transition from the research stage to industrial implementation highlights the
challenge of manufacturing and testing swarms in operational conditions. Furthermore,
there is a shortage of variable and modifiable test environments for swarms, particularly
those with remote access capabilities. The restricted applicability of existing cloud-based
testing platforms is also a concern, as demonstrated by the case of DeepRacer [2], which is
exclusively designed for robot racing. Imperfections in existing robotics simulators, such as
CoppeliaSim, may result in inaccurate representations of reality. Enabling the modification
of the real test environment would greatly facilitate the testing of swarm solutions at an
early stage of development, leading to the development of more effective products. For
example, the DeepRacer platform has a race track that cannot be modified, which limits
the number of testing scenarios. Remote access to an experimental platform with mobile
robots would enable the testing of swarm algorithms without requiring physical access
to the equipment. This approach could reduce capital costs for companies utilizing AI in
swarm robotics solutions and redirect capital toward operational activities.

To address this problem, it is necessary to test algorithms in a standardized and
predictable environment. This can be achieved by providing greater versatility and compu-
tational power than other commonly used tools, such as Kilobots [3]. To explore various
swarm robot operation scenarios in different environments and ultimately improve effi-
ciency, it is recommended to introduce a modifiable experimental platform. The creation of
a highly automated experimental environment using physical devices could resolve issues
that are inherent to simulation software. This would open up new research opportunities
for scientists working on challenges related to robotics and artificial intelligence.

In summary, the use of advanced technologies and sensors in artificial intelligence
research is essential. These innovations not only simplify and enhance the research process
but also broaden the accessibility of AI technologies. Standardized experimental environ-
ments, particularly in the realm of swarm robot experiments, address issues related to
result reproducibility, fostering international and interdisciplinary collaboration in AI.

The flexibility and universality of the experimental platform are crucial for algorithm
testing in diverse environments, leading to the identification of more efficient solutions. The
implementation of a highly automated experimental environment, grounded in physical
devices, mitigates challenges associated with simulator imperfections and limitations of
simulation software.

In addition, remote access to the experimental platform is a game-changer for re-
searchers, as it allows them to conduct experiments without the need for physical pres-
ence. This not only streamlines research efforts but also facilitates educational activities
in schools, overcoming barriers such as high costs and challenges associated with engag-
ing in AI research. The integration of advanced technologies and the establishment of
robust experimental frameworks are essential for advancing AI research and promoting its
broader application.
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This article presents the process of developing the concept of such an environment,
introduces the proposed model of artificial empathy, and discusses the methodology and
results obtained in simulation-based experiments and work on building two prototype
versions of the solution.

1.2. Empathy Modeling

The human decision process relies highly on a person’s knowledge, intelligence, and
experience. Emotional intelligence that constitutes a large part of general intelligence [4]
plays a significant role in action-taking, especially involving cooperation [5]. In such a
case communication is crucial, and a significant part of every message consists of signaling
emotions and the inner state of the sender [5]. Empathy is the ability to put oneself in the
“mental shoes” of another person, to understand their emotions and feelings [6]. It allows
one to predict what kind of behavior can be expected from the target of empathy and to
plan own actions accordingly. Since human reasoning is highly imprecise, one does not
have complete information about the inner state of the empathy target and can only reason
based on imperfect, highly subjective knowledge. When creating artificial intelligence
systems, especially cooperative ones like swarms, omitting empathy seems to be wasteful.
The attempt to transfer the concept of human empathy to artificial systems is called artificial
empathy [7,8].

Human reasoning, particularly the aspect connected with emotions, is imprecise.
Therefore, recreating decision mechanisms that include empathy requires tools that allow
the model to understand imprecision. Empathy necessitates comparing the emotions and
states of others to one’s own knowledge, thus requiring imprecise representations of those
states. As complete information about the inner state of the empathy target is unavailable,
deductions can only be made based on a signal that is not ideal and subjectively produced
and understood. Fuzzy sets and linguistic variables offer useful solutions.

Artificial empathy is an increasingly popular research topic [9]. Its inclusion in various
fields, including marketing ([10]) or robotics ([11,12]), brings many benefits to end users.
The most common application of artificial empathy can be found in medicine [13–15].
Another application of artificial empathy is in computer games. The ability of AI systems
to emulate empathy can help create more realistic characters and environments that allow
players to feel part of the game world. Artificial empathy systems are also used in games
to increase players’ empathy toward certain social groups or characters in the game. This
allows players to better understand and identify with the characters, which in turn can
influence their in-game decisions [16].

In the paper, we will deal with fuzzy agents, i.e., agents that decide with fuzzy
knowledge [17]. The decision is whether an egoistic or empathetic action should be taken to
achieve a shared goal. Egoistic action is focused on a local goal, compatible with the general
goal of the swarm. Empathetic action is cooperative. The problem at hand is whether the
swarm performance can be further optimized by integrating socio-psychological aspects of
empathy in swarm control.

Agent actions are based on generalized knowledge, represented as a table of a fixed
number of fuzzy sets, modeling action–consequence pairs. Fuzzy feature representation
converts the collected information into membership degrees [18]. Resulting degrees are
taken as a description of the agent’s state. Before an agent performs an action, its current
state is assigned a reward, based on the similarity to known states and their outcomes.
After the performed action, the state is assigned a realized reward, and is then remembered
as “knowledge”. By replacing each value in the input data with their corresponding degree
of membership to parameter realization we obtain a fuzzified set of labeled states [19].

Since empathy requires comparing the states of the agents, it is important to introduce
similarity measures for fuzzy sets. From [20,21], we can ascertain that fuzzy sets are the
proper tool to describe the similarity in such a situation. An agent will compare known,
“experienced” states to a new one, for which the reward is not yet known or stored in any
knowledge base available for the agent. The empathetic approach has great potential for
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use in swarms, as there are numerous opportunities for one agent to “help” another in
achieving a shared goal.

1.3. Structure of the Paper

Simulation of swarm behavior is a crucial step before implementation on a target
platform. However, simulations are often inaccurate and unrealistic, particularly for the
empathetic swarm, due to the critical role of communication. In software simulations, it
is not possible to reliably reflect problems or errors in signal transmission or hardware
failures. This paper proposes a new approach to simulating empathetic behaviors in swarms
using an open-source physical-based experimentation platform (OPEP). OPEP serves as an
intermediate solution between software-based simulation and the target environment. The
paper presents the architecture and current implementation of the platform.

The main purpose of this paper is twofold. The first one is to introduce a novel model of
swarm control with the use of artificial empathy. The second is to establish an open-source
physical-based experimentation platform, a cost-effective and reliable way to evaluate
various models and scenarios in robotics, focused on modeling emphatic behaviors.

The paper is organized as follows: Section 2 presents materials and methods that
include definitions of artificial empathy and its theoretical models. It also briefly reviews the
available methods for conducting experiments in a swarm of robots. Section 3 contains the
main results and introduces the idea of an empathetic swarm, presents simulation results of
the proposed swarm model, and proposes the open-source physical-based experimentation
platform. Section 4 concludes the obtained results and gives some ideas for further research.

2. Materials and Methods

2.1. Empathy Theory

Artificial empathy is the ability of computational systems to understand and respond
to the thoughts, feelings, and emotions of humans [8]. Most definitions of artificial empathy
describe it as the artificial version of human empathy [22]. Human empathy is said to
consist of three components: emotional, cognitive, and motivational. Emotional and
motivational empathy is more biological and allows for “automatic” responses to emotions
elicited by internal or external factors. Cognitive empathy is more inductive—it allows an
agent to understand the inner state of another agent, based on the signals they broadcast
(e.g., expressions), and the situation they are in.

It is easy to notice that in swarms emotional empathy has no significant applications
(for now, since robots do not yet commonly present or feel emotions [23]). Yet, there is a vast
scope of possible applications of cognitive empathy, since cognitive empathy is connected
with learning and deducing about behaviors in a certain environment. Knowledge sharing
by cognitive empathy can help a swarm of robots learn effective behaviors faster.

In the literature, we can find three main models of artificial empathy, each of them
created for different use cases.

1. Emotional and cognitive empathy model: The model was developed from medical
and neuroscientific research of the human brain and has its justification in the brain
structure. It assumes that empathy can be divided into parts: (1). responsible for
recognizing and reacting to emotions; (2). a part responsible for cognitive, more
logical, and deductive mechanisms of understanding the inner states of others [24].

2. Russian doll model: The model assumes that empathy is learned during human
life—it resembles a Russian doll, with layers of different levels of understanding
others. The first, most inner layers are mimicry and automatic emotional reactions,
the next layers are understanding others’ feelings and the outer layers are taking the
perspective of others, sympathizing, and experiencing schadenfreude [25].

3. Multi-dimensional model: This model assumes that we have four dimensions of
empathy—antecedents, processes, interpersonal outcomes, and intrapersonal out-
comes. Antecedents encompass the agent’s characteristics: biological capacities, learn-
ing history, and situation. Processes produce empathetic behaviors: non-cooperative
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mechanisms, simple cognitive mechanisms, and advanced cognitive mechanisms. In-
trapersonal outcomes are to resonate or not with the empathy target, and interpersonal
outcomes are relationship related [26].

Artificial empathy has found its applications in a growing number of fields and
practical problems:

• Medical, e.g., in the detection of autism or Parkinson’s disease, depression treat-
ment [13,15,27]

• Psychology, e.g., ethics, artificial companions [14,28];
• Marketing, e.g., personalized adverts [29];
• Entertainment e.g., games with high immersion or biofeedback [16,30,31];
• Education, e.g., empathetic tutors [32,33];
• Car industry [34].

Swarm applications also seem to open up an opportunity to effectively utilize empathy.
The idea of ‘swarm’ comes from nature—insects, animals, and people work together

in cooperative groups to achieve goals that would be impossible to reach for a single agent.
Examples are ants, bees, fish, etc.

The main characteristics of a swarm are a large number of agents, the absence of
external control, and simple behaviors exhibited by individual agents. More advanced and
complex swarm behaviors emerge automatically, based on environmental conditions and
the capabilities of the agents.

One of the most important research areas of swarms is collective decision-making [35].
The problem has also an application in empathetic swarms, where the decision of which
agent to help can be crucial in achieving the goal. An example can be found in [36].

Current research of empathetic swarm behaviors emerging automatically from broad-
cast and received signals include [37,38]. Also, the theory of mind is used to model collective
behaviors of artificially modeled rescue teams [39,40]. The study by Huang et al. [41] con-
siders a simulated swarm of a few caribou agents to escape from a superior wolf agent.
The introduction of empathy in the form of an additional parameter (the distance from the
chased caribou to the wolf), allowed for a significant increase in the number of learned
successful escape strategies. This kind of approach is very limited—the decision process is
automatic and based only on one parameter. It resembles more of an emotional contagion
(one of the primitive levels of empathy), rather than a cognitive empathetic process. In
our model, we would like to emphasize the role of learning, deduction, and experience in
empathizing with other agents.

2.2. Available Experimental Environments

An analysis of various approaches and tools for conducting robot swarm experiments
was conducted. The three main categories of available experimental environments are
described below.

1. Stand-alone robots, allowing the construction and modeling of swarm behavior.

• Kilobot [3]: This is a swarm-adapted robot with a diameter of 3.3 cm, developed
in 2010 at Harvard University. It operates in a swarm of up to a thousand copies,
carrying out user-programmed commands. The total cost of Kilobot parts was
less than USD 15. Kilobots move in a vibration-based manner. In addition, they
are capable of recognizing light intensity, communicating, and measuring the
distance to nearby units. Currently, the project is not under active development,
but it is still popular among researchers.

• e-puck2 [42]: This is a 7 cm diameter mini mobile robot developed in 2018 at
the Swiss Federal Institute of Technology in Lausanne. It supports Wi-Fi and
USB connectivity. It has numerous sensors, including IR proximity, sound, IMU,
distance sensor, and a camera. The project is being developed using open-source
and open-hardware principles.
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• MONA [43]: This is an open-hardware/open-source swarm research robotic
platform developed in 2017 at the University of Manchester. MONA is a small,
round robot with a diameter of 8 cm, equipped with 5 IR transmitters, based on
Arduino architecture.

• Colias [44]: This is an inexpensive 4 cm diameter micro-robot for swarm simula-
tion, developed in 2012 at the University of Lincoln. Long-range infrared mod-
ules with adjustable output power allow the robot to communicate with its imme-
diate neighbors at a range of 0.5 cm to 2 m. The robot has two boards—an upper
board responsible for high-level functions (such as communication), and a lower
board for low-level functions such as power management and motion control.

• SwarmUS [45]: This is a project that helps create swarms of mobile robots using
existing devices. It is a generic software platform that allows researchers and
robotics enthusiasts to easily deploy code in their robots. SwarmUS provides
the basic infrastructure needed for robots to form a swarm: a decentralized
communication stack and a localization module that helps robots locate each
other without the need for a common reference. The project is not in development
as of 2021.

2. Robot simulation software

• AWS Robomaker: This is a cloud-based simulation service released in 2018 by
Amazon, allowing robotics developers to run, scale, and automate simulations
without the need to manage any infrastructure. It enables the creation of user-
defined, random 3D environments. Using the simulation service, one can speed
up application testing and create hundreds of new worlds based on templates
that one defines.

• CoppeliaSim [1]: This is a robotics simulator with an integrated development
environment; it is based on the concept of distributed control. Each object/model
can be individually controlled using a built-in script, plug-in, ROS node, remote
API client, or another custom solution. This makes it versatile and ideal for
multi-robot modeling applications. It is used for rapid algorithm development,
simulation automation of complex processes, rapid prototyping and verification,
and robotics-related education.

• EyeSim [46]: This is a virtual reality mobile robot simulator based on the Unity
engine, which is able to simulate all the main functions of RoBIOS-7. Users can
build custom 3D simulation environments, place any number of robots, and add
custom objects to the simulation. Thanks to Unity’s physics engine, robot motion
simulations are highly realistic. Users can also add bugs to the simulation, using
built-in simulated bug functions.

3. Comprehensive services including simulator and hardware platform.

• AWS DeepRacer: This is a 1/18 scale fully autonomous racing car designed
in 2017 by Amazon and controlled by Reinforcement Learning algorithms. It
offers a graphical user interface that can be used to train the model and evaluate
its performance in a simulator. AWS DeepRacer, on the other hand, is a Wi-Fi-
enabled physical vehicle that can drive autonomously on a physical track using
a model created in simulations.

• Kilogrid [47]: This is an open-source Kilobot robot virtualization and tracking
environment. It was designed in 2016 at the Free University of Brussels to
extend Kilobot’s sensorimotor capabilities, simplify the task of collecting data
during experiments, and provide researchers with a tool to precisely control
the experiment’s configuration and parameters. Kilogrid leverages the robot’s
infrared communication capabilities to provide a reconfigurable environment.
In addition, Kilogrid enables researchers to automatically collect data during an
experiment, simplifying the design of collective behavior and its analysis.
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2.3. Fuzzy Sets and Their Similarity

In the presented paper, the agent’s states will be represented in the form of fuzzy sets.
Fuzzy sets allow us to represent precise data, and since agents will communicate using
non-ideal communication and will interpret the signals subjectively, fuzzy sets seem to be a
proper tool to use.

Let U = {u1, u2, . . . , un} be a crisp universal set. A mapping A : U → [0, 1] is called a
fuzzy set (FS) in U (denoted also by capital letters A, B, . . . ). For each 1 ≤ i ≤ n, the value
A(ui) (Ai for short) represents the membership grade of ui in A. We say that fuzzy set A is
a subset of fuzzy set B (A ⊂ B) if A(ui) ≤ B(ui) for all ui ∈ U. Let F (U) be the family of
all fuzzy sets in U.

A similarity measure of fuzzy sets is defined as a function s : F (U)×F (U) → [0, 1]
such that

(T1) for each (A, B) ∈ F (U)×F (U), we have s(A, B) = s(B, A),
(T2) for each (A, D) ∈ F (U)×F (U) and (B, C) ∈ F (U)×F (U) such that A ⊂ B ⊂ C ⊂

D we have
s(A, D) ≤ s(B, C), (1)

(T3) for each X ⊂ U such that (1X,1Xc) ∈ F (U) × F (U) we have s(1X,1Xc) = 0 and
s(1X ,1X) = 1.

This definition coincides with the classical one proposed by Xuecheng [48] (see
also [49–51]). The higher measure values indicate a higher similarity of its arguments.
It is usually assumed that all fuzzy sets are comparable by a given similarity measure.
However, some similarity measures cannot be formally defined over the whole Cartesian
product F (U)×F (U). The most commonly used similarity measure is the Jaccard index,
defined as

s(A, B) =
A ∩ B
A ∪ B

. (2)

3. Results

3.1. Artificial Empathy of a Swarm

The general idea of artificial empathy in swarm applications comes from observing
cooperative behavior in a group of agents (humans, animals) and realizing what types of
knowledge and experience are needed to create successful behaviors and strategies.

In human cooperation, it is easy to see that taking the perspective of another person
and trying to understand their point of view greatly improves cooperation and leads to
better results. The two actions mentioned actually define cognitive empathy, i.e., drawing
one’s own conclusions from the state broadcasted by another agent and the environment,
thus anticipating the target’s behaviors based on inferred knowledge. The proposed model
of an artificially empathetic swarm is based on how humans cooperate. People collect
experience and knowledge and decide what action to take based on it. While cooperating,
they take into account the experience and knowledge of others. Yet, it is impossible to
access other people’s minds directly—one has to interpret signals sent from cooperating
partners. These signals constitute largely of emotions [5]. After receiving a signal, the
empathizer imagines what knowledge the signal represents, and what could be the possible
consequences [6]. Based on the person’s own knowledge, they envision the state of the
sender. Finally, an action choice is made—whether to use one’s own knowledge and
capabilities or to combine efforts with others to improve performance.

The proposed model consists of six parts: the module for evaluating egoistic behaviors,
the module for evaluating artificially empathetic behaviors, the memory module for storing
knowledge, the decision module for choosing the action type, and egoistic and artificially
empathetic behavior controllers for choosing and executing particular actions. Modules
are described in the following subsections and interactions between them are depicted
in Figure 1.
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Figure 1. Swarm behavior control system with artificial empathy. Schema presents component
modules for egoistic and empathetic control and behavior evaluations, decisions, and memories.

3.1.1. Egoistic Behavior Evaluation Module

The egoistic behavior evaluation module assigns a reward to an egoistic action, based
on the state vector representing the state of the agent and perceived environment, and the
knowledge of the agent. This state is defined as a fuzzy set:

A = (a1, a2, . . . , an) , (3)

where ai ∈ [0, 1], i = 1, . . . , n are membership values, representing the satisfaction level of
a ith state variable. All ai should not be correlated. The state should be updated in time.
The state of the agent, which includes the perceived environment and the knowledge of the
agent, is composed of two parts: emotional state (subjective knowledge) and cognitive state
(objective facts). The first group may include information about the agent’s internal state
(battery level, current action, call for help) and the second one may include information
about the perceived environment (proximity to the goal, neighbors, obstacles).

Each of the states is evaluated to decide whether it can bring the agent closer to
the goal. The state Ai is assigned a reward r(Ai) based on the similarity to the known
states and their outcomes, stored in memory and representing the agent’s knowledge. The
agent has an initial set of states and their rewards, to be able to generalize in an unknown
environment. Those first states can be understood as instincts or basic knowledge. The
reward from the evaluated state Ai is then calculated as

r(Ai) =
∑m

j=1 s(Aj, Ai) · r(Aj)

m
, (4)

where m is the number of states and the rewards
(

Aj, rj
)

stored in memory and s is a fuzzy
similarity measure.

3.1.2. Artificially Empathetic Behavior Evaluation Module

The target of empathy broadcasts its state, which the empathizing agent interprets
based on their own knowledge. In our model, the empathizing agent (A) evaluates the
target’s (B) state by comparing its broadcast state to the agent’s own knowledge. Reward
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r(B) is calculated using the same knowledge as the agent’s rewards according to (4). The
rewards calculated for both the empathizing agent and the empathy target are used as
decision parameters in choosing the agent’s next action.

3.1.3. Memory Module

The memory module is responsible for storing the agent’s knowledge, obtained by
performing actions. It is composed of state–reward pairs (Ai, ri). In the beginning, the
agent only has initial states. With time and performed actions, new knowledge is added
to this base. Namely, each action taken by the agent is evaluated and assigned a realized
reward. The state representing the action and the corresponding reward are then added
to the database and can be compared with other, new states to calculate similarity and
assign rewards. Since the platforms used to implement the model have finite resources,
it is assumed that the memory module stores only a limited number of states. To reduce
redundancy, only clusters of state–reward pairs are stored. Any clustering strategy may
be used, including k-means [52]. Since the decision process is based on similarity, this
method maintains its generality and allows for the omission of the problem of “perfect
knowledge”, i.e., remembering every detail of an action (since instead of all details, only
action representatives are being stored).

This method of storing information also allows for updating the state/reward pairs. If
a state is remembered and it appears again with a different reward, the clustering algorithm
can recalculate the representative of the action, with a different reward.

3.1.4. Decision Making

The decision module is responsible for choosing between the controllers that will
provide the next action: the egoistic or empathetic behavior controller. The first one
provides egoistic actions that bring the agent closer to the local goal. The second provides
cooperative actions with the same goal but possibly synergistic results. The choice is
made based on the reward assigned to the current state of the agent in the egoistic behavior
evaluation and, if a signal is received, it considers the reward of empathy target B, calculated
by the artificially empathetic behavior evaluation module. The module performs the
following comparison:

r(A) ≥ r(B) (5)

where A is the agent’s current state and B is the empathy target’s broadcast state. If the
r(A) value is higher than r(B), the egoistic behavior of the agent has a greater chance of
success in achieving the goal than stopping the current action and helping the neighboring
agent. If the contrary is true, acting with empathy may result in a greater chance of success,
so the current course of action should be dropped. In the case of multiple incoming signals,
only the first one is considered.

3.1.5. Learning

After a full action sequence is performed (i.e., a set of actions resulting in a particular
change in environment), the realized action is evaluated. Each agent’s actions are evaluated,
based on signals from its neighbors. The sequence is defined as a series of atomic actions
that begin with a starting action (the first one without a realized reward) and ends with a
last action before an evaluation signal is received:

seqi = (Ai
1, Ai

2, . . . , Ai
k) (6)

where Ai
j, j = 1, . . . , k is the state vector and k is the number of actions performed before the

evaluation signal is received. The realized reward r̂i is the first evaluation signal received
by the agent, weighted according to the set goal:

r̂i = Â · W (7)
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where Â is the received evaluation signal and the weights W are assigned according to the
defined agent’s goal. The reward is then assigned to the action process vector, forming new
knowledge:

evseqi
= (Ai

1, Ai
2, . . . , Ai

k, r̂i) (8)

The aggregated action and the realized reward are then stored in the memory module
as newly learned behavior. Given the current action, we find the closest matching action
sequence in the knowledge base. Then, if it is similar enough to the current one, we replace
the original sequence with its strengthened version. The behavior formulated in this way
allows to strengthen the currently existing rules in the knowledge base. If the closest
matching action sequence is too far from the current one, a new action sequence is formed.

3.2. Simulations
3.2.1. Problem Description

Let us consider the warehouse that stores grain. The stacks of grain often change places
due to normal warehouse operations. The warehouse is infested with rats. We introduce
a swarm of empathetic guarding robots that collaborate in order to detect rats and find
their nests. The robots operate without a central control system but can communicate
between themselves. They patrol the dynamic environment. When a rat is spotted, the
robot broadcasts a signal containing information about the spotted target, its own chances
of success in chasing it, and other information, like the battery level. Robots that receive that
signal calculate whether it is better to continue the current action (e.g., patrolling another
part of the warehouse, going to the charging station) or to approach the broadcasting
robot and assist in chasing the rat. The described environment is an enclosed space with
a static obstacle in the form of grain, defined walls, and mobile hostile objects (rats). The
robot’s task is to detect and follow the rat, engaging in group encirclement. The rat’s goal
is to reach the grain. Different views on virtual experimentation environments are given
in Figure 2.

The analysis of robot behavior regarding the influence of artificial empathy was
conducted only on chasing robots, as they had the most possible actions to perform and
could process the most information among all the robots. In physical experiments, rats
were also represented by robots, but they were not equipped with empathetic modules.

Patrolling robots could perform their tasks individually or through communication
with other robots. Each robot could signal its own state through an LED strip, displaying
information such as the robot class or the currently performed action. This included:

• Call for help;
• Encircling the rat;
• Helping;
• Another robot nearby;
• Rat nearby.

In contrast to the control group, where robots were not equipped with empathetic
modules, experiments on empathetic robots indicate that robots have much more infor-
mation to process before taking specific actions. Similar to the control group, the rat is
searched for in the camera image. The empathetic model difference lies in the fact that each
patrolling robot additionally signals information about its state and surroundings on the
LED strip. It also has the ability to analyze this information from other robots.

This enables robots to make decisions based not only on their own observations but
also on those collected from the surrounding environment. Before taking any action, the
robot calculates the reward for performing a specific action, i.e., how much it contributes
to achieving the global goal. Rewards are calculated for both the currently performed
action and the planned action. If the reward for the new action is greater than the currently
performed action, the robot interrupts it and starts a new one. Using the artificial empathy
module, robots could make decisions that were optimal for the entire group.
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(a) (b)

(c) (d)
Figure 2. Empathetic swarm simulation in CoppeliaSim. (a) Visualization of the agent; (b) visual
communication; (c) warehouse example; (d) camera view.

The performed experiments considered the following list of scenarios:

• Detection of a rat in the warehouse—solitary pursuit.

– Robot 1 patrols the warehouse;
– Robot 1 notices a rat;
– Robot 1 starts chasing the rat;
– Robot 1 catches the rat, meaning it approaches the rat to a certain distance.

• Detection of a rat in the warehouse—pursuit handover.

– Robot 1 patrols the warehouse;
– Robot 1 notices a rat in the adjacent area;
– Robot 1 lights up the appropriate color on the LED tower to inform Robot 2 that

there is a rat in Robot 2’s area;
– Robot 2, noticing the appropriate LED color, starts chasing the rat;
– Robot 2 catches the rat, meaning it approaches the rat to a certain distance.

• Detection of a rat in the warehouse—collaboration.

– Robot 1 patrols the warehouse;
– Robot 1 notices a rat;
– Robot 1 starts chasing the rat;
– The rat goes beyond Robot 1’s patrol area;
– Robot 1 lights up the appropriate color on the LED tower to inform Robot 2 that

the rat entered its area;
– Robot 2, noticing the appropriate LED color, continues chasing the rat;
– Robot 2 catches the rat, meaning it approaches the rat to a certain distance.

• Change of grain color.

– Robot 1 patrols the warehouse;
– Robot 1 notices that the grain color is different than it should be;
– Robot 1 records the event in a report;
– Robot 1 continues patrolling.

• Change of grain color—uncertainty.

– Robot 1 patrols the warehouse;
– Robot 1 notices that the grain color is possibly different than it should be—un-

certain information;
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– Robot 1 lights up the appropriate color on the LED tower;
– Robot 2, noticing the appropriate LED color, expresses a willingness to help and

approaches Robot 1;
– Robot 2 from the adjacent area checks the grain color and confirms or denies

Robot 1’s decision;
– Robot 1 records the event in a report if confirmed by Robot 2;
– Robot 2 from the adjacent area returns and continues patrolling;
– Robot 1 also continues patrolling.

• Weak battery.

– Robot 1 has a weak battery;
– Robot 1 lights up the appropriate color on the LED tower, expressing a desire to

recharge its battery;
– Robot 2, noticing the appropriate LED color, agrees to let Robot 1 recharge

the battery;
– Robot 1 goes to recharge;
– Robot 2 additionally takes over Robot 1’s area for patrolling.

• Exchange of patrol zones.

– Robot 1 passes through its patrol area several times without any events;
– Robot 1 lights up the appropriate color on the LED tower, expressing a desire to

exchange the patrol area;
– Robot 2, noticing the appropriate LED color, expresses a desire to exchange the

patrol area;
– Robot 1 and Robot 2 exchange patrol areas.

3.2.2. Implementation

The simulations were performed in CoppeliaSim (V4.4.0). Up to ten robots, equipped
with virtual cameras, LED communication, and touch sensors were to detect and chase four
rats in a synthetic warehouse environment. Robots broadcast state signals to other agents,
which receive them via camera and decide whether to take egoistic or empathetic action.

The YOLOv2 real-time object detection system [53] was used to detect objects in the
camera images, and the VGG16 [54] convolutional neural network was used to determine
the status of other robots (sent via LED strip). All simulation scripts were implemented in
Lua (internal CoppeliaSim scripting) and Python (external backend service).

All the fuzzy descriptions like “far” or “long” are modeled with linguistic variables
and terms—the value of a parameter is actually the value of a membership function for
each of the considered terms.

Vectors of parameters in Tables 1 and 2 are used as initial knowledge. Each new state
that arises is compared to those, and the similarity is calculated to decide if the new state
has a chance of success or not. Here, we use the similarity measure:

s
(

Aj, Ai
)
= 1 −

√
∑n

k=1 |xj
k − xi

k|2
n

. (9)

Table 1. Parameters describing the state of the agent.

Name Sym Description of Boundary Values

others close a 1 many other agents in the vicinity, 0 for none
in touch n 1 for long contact time, 0 for none
long search t 1 for the long duration of the current search, 0 for not searching
calling for help c 1 for calling for a long time, 0 for not calling

neutralized e 1 if “I am inactive” signal was received from the newly inactive
agent; 0 if not
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Table 1. Cont.

Name Sym Description of Boundary Values

close to neighbor d 1 if the distance to the neighbor is 0; 0 if the distance to the
neighbor is far

target at right p 1 for the agent at the immediate right, 0 for the agent not in sight
target at left l 1 for the agent at the immediate left, 0 for the agent not in sight
fully charged f 1 for the fully charged robot, 0 for not charged
helping h 1 for the long duration of helping, 0 for not helping
reward si describes the chance of success of the current action sequence

Table 2. Agent’s initial knowledge—states and rewards.

Parameter x1 x2 x3 x4 x5 x6

a 0.5 1.0 0.5 0.5 0.0 0.1
n 0.5 0.5 0.5 0.0 1.0 1.0
t 0.5 0.5 0.5 0.5 0.5 0.5
c 1.0 1.0 1.0 0.5 1.0 0.5
d 0.5 1.0 0.5 0.5 0.0 0.1
p 0.5 0.5 0.5 0.5 0.5 0.5
l 0.5 0.5 0.5 0.5 0.5 0.5
f 0.5 0.5 0.5 0.5 0.5 0.5
h 0.5 0.5 0.5 1.0 0.5 1.0
ri 1.0 1.0 1.0 1.0 0.0 0.0

3.2.3. Simulation Results

Robots cooperate in order to detect and chase the rats, and empathetic behaviors
are visible. Due to the limitations of CoppeliaSim, mainly the lack of repeatability and
poor performance when using virtual cameras, simulations did not allow for a reliable
comparison between egoistic and empathetic behaviors. These problems lead directly to
the OPEP project. OPEP allows for the inclusion of such factors as acceleration, friction,
light intensity, and reflections, while maintaining high control over the environment and
experiment course.

During the simulation, the time in which the robots achieve the global goal, i.e., de-
tecting and catching all rats, was measured. For each case, empathic and non-empathic
models, 10 experiments were conducted, measuring the time to achieve the global goal.
An important aspect was that objects in the arena were randomly distributed each time to
ensure diversity in the observed behaviors.

After conducting experiments on a swarm of five robots, it was decided to double the
number of objects in the scene. This change introduced more opportunities for interactions
between individual units, and the simulation could proceed differently. Additionally, the
larger the group of patrolling robots, the more the positive impact of empathic behaviors can
be observed, allowing for a focus on the analysis of behaviors between neighboring objects.

As in previous experiments, objects before each simulation were randomly distributed,
and the simulation ended when the global goal was achieved, i.e., when all rats were
detected and surrounded.

In this way, a total of 40 experiments were conducted in 4 variants. This material was
further analyzed, with a primary focus on the analysis of model behaviors using artificial
empathy and those without it. In many cases, the empathic model recorded lower times
to achieve the global goal. However, the differences are small, with the effectiveness of
empathy being the most visible in larger groups. In such situations, the true power of unit
cooperation, forming the entire swarm, can be observed.

An interesting phenomenon was the significant differences in times between individ-
ual simulations. The shortest simulation time for five patrolling robots was only 58 s, while
the longest was as much as 116 s, nearly a twofold difference. The average simulation
time in the egocentric model was 84.1 s, and in the empathy-utilizing model, it was 81.6 s.
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Summing up all experiments in this section, the empathetic swarm of robots performed
its tasks, on average, 2.5 s faster. For 10 patrolling robots, the fastest achievement of the
goal occurred after 88 s, while the longest took 205 s. In this case, there were many more
possible interaction scenarios for 10 robots, influencing the disparities in simulation times.
The average neutralization time for all viruses in the egocentric model was 148.5 s, while for
the empathetic model, it was 137.3 s. The significant positive impact of using the artificial
empathy module is evident, with a difference of 11.2 s, confirming the effectiveness of the
empathetic model. Unfortunately, a more accurate and reliable statistical analysis is not pos-
sible. This is due to the huge discrepancies between repetitions and the influence of many
uncontrolled random factors resulting from the CoppeliaSim simulator on the experiment.

We prepared a few visualizations of the proposed empathetic model, along with a
comparison with the egoistic one (videos available on https://github.com/open-pep/
coppelia-simulations accessed on 13 December 2023).

1. Egoistic, two rats. Shortly after starting a patrol, both robots spot the same rat and start
chasing it. Meanwhile, the second rat destroys the grain located in the middle of the
arena. After neutralizing the first rat, one of the robots begins chasing the second pest.

2. Empathetic, two rats. The robot on the right spots a rat and signals it with an LED
strip. The second robot, noticing this, continues to patrol the surroundings in search
of other pests. After a while, it detects the second rat and starts following it. As a
result, both rats are neutralized and grain loss is reduced.

3. Egoistic, robots run out of battery. Robots detect the same rat. During the chase,
the robots interfere with each other, making it difficult to follow and neutralize the
rat. Eventually, the rat is neutralized, but before the robots can spot and begin their
pursuit of the other pest, both of them run out of battery and the second rat escapes.

4. Empathetic, low battery help. The robot on the right starts chasing the detected rat.
During this action, the agent signals with an LED strip that it needs assistance, due
to a low battery level. The other robot notices this and decides to help to catch the
weaker rat. After neutralizing it, the second robot starts searching for other pests.

Two initial visualizations are summarized in Figure 3. The movement trajectories of
all agents are shown by a dashed and dotted lines. It can be seen that in the egoistic variant,
both robots undertake the pursuit of the same rat. While in the empathetic variant, thanks
to communication, the robots started a chase after both rats, so that the grain resources
were not damaged.

3.3. Open-Source Physical-Based Experimentation Platform

In the field of robotics, experiments are crucial for the development and verification
of new algorithms and technologies. However, conducting experiments in this area is
challenging, costly, and comes with a range of problems.

Simulations—one of the ways to conduct experiments—are often simplified and
inaccurate due to the multitude of parameters that need to be considered. On the other
hand, accurate simulations are very time-consuming. It is difficult to include all parameters
in the simulation, as some may be unidentified or challenging to model. CoppeliaSim is one
tool used for simulating the motion of robot swarms, but it has significant limitations and
does not consider all parameters of the real environment, leading to unrealistic simulation
results. Time-consuming robot swarm simulations also pose a problem, making it difficult
to test various scenarios and restricting frequent algorithm changes.

Real-world experiments, on the other hand, are costly, requiring the purchase of com-
ponents and the creation of physical experimental platforms, which is time-consuming.
However, experiments using dedicated hardware lack high repeatability and reproducibil-
ity of results, making it challenging to compare models experimentally. Additionally, there
is a lack of standards and a unified approach to the design and implementation of mobile
robots, requiring individualized approaches for each experiment and resulting in significant
time delays and increased costs. These issues exacerbate discrepancies between simulations
and experiments.
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Therefore, in this work, we propose the concept of the open-source physical-based ex-
perimentation platform (OPEP), which is an intermediate environment between simulators
and full experiments on dedicated equipment. In the following, we will present general
assumptions toward the offered functionalities, the architecture, and the implementation of
two versions of prototypes of the postulated solution.

Figure 3. The movement trajectories of all agents for egoistic (left) and empathetic (right) visuali-
sations. The numbered points in the figure depict points in time. (Left) (1) Both robots spot Rat B
while Rat A starts to damage grain. (2) Rat A starts searching for a new target. (3) Both robots finally
neutralize Rat B. (Right) (1) Both robots spot rats, due to cooperation, they start to chase different
targets. (2) Both robots start neutralizing rats. (3) After neutralizing the rats, both robots start to
patrol the area.

3.3.1. Proposed Platform Features and Architecture

The open-source physical-based experimentation platform (OPEP) consists of sev-
eral parts—a swarm of autonomous, mobile robots, an arena for controlled experiments,
charging stations, an overhead controller (camera and mini PC), and a web application for
remote experiment control, as depicted in Figure 4. The platform allows for performing
experiments on physical robots remotely, in a controlled environment. It stands as a middle
step between fallible and imperfect simulations and costly physical implementation.

The proposed experimentation platform contributes to the creation of a completely
new product: a universal, remote service for experimenting with and testing artificial
intelligence algorithms on a hardware swarm of robots, provided in a cloud computing
model. Its main features are outlined in the following paragraphs.

1. Comprehensive support for swarm design process using hardware platform. This
feature corresponds to the need to verify AI algorithms in a hardware environment, in-
cluding early-stage development, consideration of environmental parameters that are
unavailable in simulations, and the ability to study algorithms, considering variable
environments and interactions. In this area, there are two alternatives: comprehensive
algorithm evaluation (Kilogrid + Kilobots, DeepRacer) and simulation software (Cop-
peliaSim v4+, DynaVizXMR, EyeSim v1.5+, Microsoft Robotics). Alternative solutions
only support the design process in simulated environments or require significant finan-
cial investments for prototyping, limiting accessibility in early development stages.

2. Low cost of building and size of swarm robots. This feature corresponds to the
need to evaluate complex behaviors and the latest AI algorithms in a large swarm of
robots, considering the requirements for low cost and easy availability of solutions.
Alternatives include miniature robots like Kilobots and mini sumo robots. Those
solutions are expensive, with costs often including additional resources and services.
Additionally, computational power drastically decreases with the robot’s size, limiting
capabilities such as running a vision system.
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3. Remote programming of robots. This feature addresses the need to share research/
educational infrastructure without physical access, fostering interdisciplinary and in-
ternational research collaborations. Alternatives include cloud-based robot simulators
like AWS Robomaker and DeepRacer. In competitive solutions, this functionality is
only available in simulations or limited environments and specific research areas.

4. Standardization and Scalability of experimental environment. This feature corre-
sponds to the need to adapt and expand the experimental platform to different projects
while maintaining standardization for experiment repeatability and reproducibility,
facilitating comparisons across research centers. Alternatives include open-source soft-
ware and hardware projects like SwarmUS, Kilobots, colias.robot, as well as simulation
software. They lack the ability to expand robot software in any way using high-level
languages. Moreover, existing solutions are not designed for result repeatability (e.g.,
randomness in Kilobots’ movements).

5. Open specification and hardware. This feature corresponds to the need for inde-
pendently building a complete experimental platform. Current solutions include
open-source software and hardware projects, such as SwarmUS, Kilobots, and co-
lias.robot. Most competitive solutions are closed, and open solutions often have
limited computational resources.

(a)

(g)

(f) (e)

(b)

(c)

(h)

(i)

(d)

Figure 4. Context architectural diagram for OPEP. (a) Independent robots that form a swarm; (b) au-
tomatic charging stations; (c) overhead controller (camera + miniPC); (d) data store; (e) experiment
control API module; (f) simulation web API; (g) researcher interacts with the system via a web
browser; (h) wireless communication with overhead (maintenance only); (i) visual communication
between robots.

3.3.2. Platform Implementation
First Prototype

The authors conducted a series of analyses and experiments, creating a swarm of
8 early prototypes of robots equipped with mobility, vision, and communication systems,
enabling the realization of simple empathetic behaviors. The prototype robots had a
diameter of 14.9 cm and a height of 15 cm, and were equipped with a 4000 mAh Li-Poly
battery, allowing about 40 min of continuous operation (Figures 5 and 6). Based on team
member experiences during the creation of the prototype robot swarm, several phenomena
and issues crucial for proper robot operation in a real environment were observed. These
would likely be overlooked in computer simulations, including mirror reflections of robots
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in the arena walls, slipping robot wheels, uneven traction, imperfections in mechanical
components (e.g., motors, gears), and the impact of the environment on the performance of
the vision system (too strong or weak room lighting).

The first versions of robots were built with the use of Raspberry Pi Zero 2 W micro-
computers that took care of robot control, vision, and all decision-making. Agents used two
motors to power the wheels. The communication was performed via a custom 360◦ RGB
LED strip, placed on a rotating turret, which also held the OV5647 5MPx camera, which
gave an effective 240◦ angle of view. The use of 8 RGB LED lights allowed expressing about
2 M distinguishable inner states. The communication was imperfect since robots had to
detect the signal that could be disturbed by light level, reflection, other robots in view, etc.
The outer case was 3D-printed and was designed for minimal collision damage.

Each robot in the swarm runs on 64-bit Raspberry Pi OS Lite (5.15 kernel). The vision
system is implemented using picamera2 (0.1.1) and opencv-python (4.6.0.66) libraries. Intra-
process communication is handled using Redis (7.0.5) pub/sub feature. Web-based user
interface is still being actively developed. It uses Python 3 and Go 1.19 for API implemen-
tation. The overhead controller uses both visual monitoring (experiment recording) as well
as a wireless network (software upload, swarm maintenance). The ongoing research and
development of the project can be tracked on GitHub [55] (the project is in the process of
migrating from an internal repository to GitHub and not all components are available yet).

Figure 5. Hardware implementation and view on internal components of the first prototype.

Figure 6. First version prototypes moving on the arena with the live monitoring of cameras.
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Second Prototype

The first prototype has some problems that need to be solved so that more effective
research can be conducted:

• The robots need to be stopped and physically plugged in for charging when the
batteries run out. This causes delays in conducting experiments.

• Current robots are characterized by large dimensions compared to the work area. This
minimizes the simultaneous number of robots that can move around the arena.

• The presence of an experimenter is required to activate the robots. This makes it
impossible to conduct remote experiments.

For the development of the next, more efficient, and miniaturized iteration of the
platform, it is necessary to solve the above problems by creating a custom, compact version
of the PCB. This requires conducting a thorough analysis of available circuit boards and
selecting the best solutions to use in designing the electrical as well as mechanical structure
of the robots that make up the swarm. This will allow the robots to respond to their
environment in the best possible way, and allow researchers to conduct experiments on
artificial empathy remotely.

Due to the minimization of the robot’s dimensions, its design envisions two circuit
boards connected above each other. The lower board will be responsible for interacting
with the environment, and the upper board will be responsible for information processing
and decision-making. The second version of the prototype is less than 8 cm in diameter
and has a much smaller height (Figure 7).

Figure 7. Visualization of the second prototype, with (left) and without (right) the upper board.

The robot’s movement will be accomplished using two miniature-geared motors
manufactured by Pololu (Figure 8). Each is equipped with a magnetic encoder based on
TLE4946-2K Hall effect sensors, specifically designed for this scenario. The rotation of the
motors will additionally be monitored by current sensors, one for each motor, to achieve
accurate speed control. To eliminate losses on typical shunt resistor current sensors, a
circuit that measures the current based on the Hall effect can be used. Examples of such
sensors are the ACS712 or ACS724. To power the motors, DRV8833 will be used as an
executive circuit. This controller enables the operation of two motors and is characterized
by its requirement of only two control lines per motor to regulate the speed and direction
of rotation. Additionally, it is easy to operate using hardware Timers in the microcontroller.

To provide the robot with precise orientation in the field, it will be equipped with an
integrated BNO055 chip, consisting of a Bosch accelerometer, gyroscope, and magnetome-
ter. This chip will support the robot’s motion algorithms for maximum precision in its
maneuvers. In addition, the VL53L0X sensors will provide information about the distance
of obstacles in front of the robot. The use of these sensors introduces increased complexity
in both the board design and control algorithms compared to traditional push buttons
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and limiters. Nevertheless, this change contributes to reducing mechanical contact with
the environment, which translates into minimizing the risk of damage to the robot and
increasing its reliability.

Figure 8. Engine and battery used in the second prototype.

Two Samsung INR18650-35E lithium-ion cells with a total capacity of 7 Ah will be
used to power the robot (Figure 8). Due to the robot’s small size, the design will utilize
cylindrical cells instead of flat lithium-polymer batteries, necessitating the addition of
protection circuits (Figure 7). In order to ensure safe power management, a DW01 battery
protection circuit will be employed in conjunction with the executive transistors. This
circuit is designed to monitor the battery voltage to prevent exceeding the permissible
range and to disconnect the voltage in case of a short circuit. The charging process will
be supervised by the TP5100 chip, which not only provides up to two amps of current
but also ensures that the cell charging process adheres to the constant current constant
voltage (CC CV) charging specification. One of the project’s goals is to enable the robot to
charge without human intervention. To achieve this, two contact pads will be placed on
the bottom of the lower circuit board. Through these, the robot will be able to charge its
batteries by hovering over a special charging station. This solution is extremely simple,
occupies minimal space, and does not introduce energy transfer losses.

The robot, despite its small size, will be equipped with systems that require high
power consumption. To meet their expectations, the project will use two inverters, one
with an output voltage of 5 V—U3V70A, which is capable of supplying up to 10 A at peak
demand even for a few seconds, and the second inverter, this time for circuits powered by
3.3 V—U7V8F3, will provide the currents for all sensors and the microcontroller. It is worth
noting that the 3.3 V inverter will operate in two modes: step-down when the battery is
charged and step-up when the battery is closer to being discharged.

The bottom board will also house a 32-bit microcontroller from the STM32 family. Its
high computing power, flexibility, and popularity will allow the implementation of almost
arbitrarily complex algorithms. It will control all the above circuits and communicate with
the robot’s main processor.

The role of the device’s brain will be played by the Raspberry Pi Zero 2W; it is a quad-
core, single-board computer on a top circuit board, which will react to its environment
and other robots with the help of the Raspberry Pi Cam V3. All artificial intelligence and
empathy algorithms will be implemented right on this microcomputer. Signaling of its own
internal state will be achieved by individually addressable RGB LEDs—WS2812B, arranged
in 8 rows, each with 3 LEDs. This will make it possible to display at least one and a half
million different states. A detailed diagram showing the internal layout of the proposed
device is shown in Figure 9.
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Figure 9. Block diagram showing the internal layout of the second prototype.

Experimentation Arena

One of the challenges was to create a suitable arena that serves as an environment for
controlled experiments (Figure 10). Another still not fully solved challenge is the inability
to modify and introduce variability to experimental platforms, limiting the number of
test scenarios and hindering research in different applications. This arena was designed
to simulate various environmental conditions and allow the study of swarm behavior in
different situations, added to the arena as modular modifications (e.g., obstacles).

This will allow testing whether and how (with what energy expenditure and difficul-
ties) the robot can perform simple tasks in the presence of designed variable elements in the
environment. Conducting these experiments will provide insights into the requirements
for the experimental arena and robot prototypes, allowing for further considerations in
subsequent prototyping iterations.

Figure 10. Visualization and realization of the controlled environment for the empathetic robot
swarm arena.

4. Conclusions

This paper proposes a model for swarm behavior control through artificial empathy,
using the fuzzy set theory and similarity measures. The model emulates human empathetic
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decision processes to optimize behavior toward achieving a common goal. The authors’
main contribution is redefining the theoretical cognitive empathy model into a particular
swarm control model, with a significant focus on knowledge representation and decision-
making processes.

Our model differs from existing swarm models of artificial empathy, such as [36,41], in
that it incorporates empathetic communication, knowledge representation, and the use of
similarity measures to convey empathy mechanisms. Unlike those models, which utilize a
simple parameter to describe the empathy target’s state, our approach is more comprehen-
sive and effective. This approach is inspired by the emotional/cognitive empathy model in
neural science and filters agent-broadcasted states based on similarity to known situations.

The example presented here demonstrates the model’s versatility across platforms,
emphasizing only a fraction of its applicability. The model’s independence from a specific
application allows for the separate development of empathetic decision-making modules
and platform controllers. It is worth noting that the model could be applied in dynamically
changing environments, where agents can ’borrow’ knowledge from others. Incorporating
the perceived rewards of other agents into the decision-making process could enable
neighboring agents to learn from experience by comparing differences in perceived and
realized rewards. This paper lays the groundwork for further exploration and development
of empathetic swarm control models in diverse environments.

The integrated experimental environment proposed in the article is an important step
in the development of research on swarm robot control algorithms. This, in turn, will
increase the possibility of implementing the results of scientific research in practice. The
proposed experimental platform, its scope, and architecture are based on the experience
that has been developed while working on two of its earlier prototypes. As a result, it was
possible to optimize many technical and operational parameters of the developed solution.
It is also not insignificant that the work on the hardware environment is strongly connected
with research on empathetic robotic swarms, imposing real requirements on the direction
of the project’s development. The most significant example of this is the use of innovative
vision communication using LED towers.

In further research, we want to upgrade the model to more accurately recreate human
empathy. The egoistic behavior evaluation module will be implemented using a neural
network, and the similarity of other agents’ states will be determined based on internal
knowledge represented by the net. Also, reinforcement learning is to be used to teach the
net new data and adapt to the environments and behaviors of other agents.

Our future work will aim to validate the artificial empathy model as an effective
learning method by simulating empathetic behavior in isolation from the physical layer of
the robots in the swarm. Further research should express the proposed learning model in
the language of reinforcement learning and use the tools available in this area to obtain
reproducible quantitative results that demonstrate the effectiveness of empathetic methods.

The variability of the experimental environment is a distinctive feature of the pro-
posed experimental platform. Research efforts will be necessary to identify available and
feasible strategies to achieve this goal. Further research will consider elements of a variable
environment, such as changing parameters (e.g., lighting) and altering the structure of the
arena (obstacles, cooperative logical puzzles). A key assumption is the automation of the
process for introducing modifications to the arena. This is crucial for achieving repeatability
in experiment results and enabling remote access to the platform.
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tion, J.S. and P.Ż.; supervision, J.S.; project administration, J.S.; funding acquisition, J.S. and K.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

99



Sensors 2024, 24, 242

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rohmer, E.; Singh, S.P.N.; Freese, M. CoppeliaSim (formerly V-REP): A Versatile and Scalable Robot Simulation Framework. In
Proceedings of the International Conference on Intelligent Robots and Systems (IROS),Tokyo, Japan, 3–7 November 2013.

2. Balaji, B.; Mallya, S.; Genc, S.; Gupta, S.; Dirac, L.; Khare, V.; Roy, G.; Sun, T.; Tao, Y.; Townsend, B.; et al. DeepRacer: Educational
Autonomous Racing Platform for Experimentation with Sim2Real Reinforcement Learning. arXiv 2019, arXiv:cs.LG/1911.01562.

3. Rubenstein, M.; Ahler, C.; Nagpal, R. Kilobot: A low cost scalable robot system for collective behaviors. In Proceedings of
the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 3293–3298.
[CrossRef]

4. Drigas, A.S.; Papoutsi, C. A new layered model on emotional intelligence. Behav. Sci. 2018, 8, 45. [CrossRef] [PubMed]
5. Barbey, A.K.; Colom, R.; Grafman, J. Distributed neural system for emotional intelligence revealed by lesion mapping. Soc. Cogn.

Affect. Neurosci. 2014, 9, 265–272. [CrossRef]
6. Decety, J.; Lamm, C. Human empathy through the lens of social neuroscience. Sci. World J. 2006, 6, 1146–1163. [CrossRef] [PubMed]
7. Xiao, L.; Kim, H.j.; Ding, M. An introduction to audio and visual research and applications in marketing. Rev. Mark. Res. 2013, 10,

213–253.
8. Yalçın, Ö.N.; DiPaola, S. Modeling empathy: building a link between affective and cognitive processes. Artif. Intell. Rev. 2020,

53, 2983–3006. [CrossRef]
9. Mariani, M.M.; Machado, I.; Magrelli, V.; Dwivedi, Y.K. Artificial intelligence in innovation research: A systematic review,

conceptual framework, and future research directions. Technovation 2023, 122, 102623. [CrossRef]
10. Liu-Thompkins, Y.; Okazaki, S.; Li, H. Artificial empathy in marketing interactions: Bridging the human-AI gap in affective and

social customer experience. J. Acad. Mark. Sci. 2022, 50, 1198–1218. [CrossRef]
11. Christov-Moore, L.; Reggente, N.; Vaccaro, A.; Schoeller, F.; Pluimer, B.; Douglas, P.K.; Iacoboni, M.; Man, K.; Damasio, A.; Kaplan,

J.T. Preventing antisocial robots: A pathway to artificial empathy. Sci. Robot. 2023, 8, eabq3658. [CrossRef]
12. Chen, J.; Liu, B.; Qu, Z.; Wang, C. Empathy structure in multi-agent system with the mechanism of self-other separation: Design

and analysis from a random walk view. Cogn. Syst. Res. 2023, 79, 175–189. [CrossRef]
13. Morris, R.R.; Kouddous, K.; Kshirsagar, R.; Schueller, S.M. Towards an artificially empathic conversational agent for mental

health applications: system design and user perceptions. J. Med. Internet Res. 2018, 20, e10148. [CrossRef] [PubMed]
14. Leite, I.; Pereira, A.; Castellano, G.; Mascarenhas, S.; Martinho, C.; Paiva, A. Modelling empathy in social robotic companions.

In Proceedings of the Advances in User Modeling: UMAP 2011 Workshops, Girona, Spain, 11–15 July 2011; Revised Selected
Papers 19; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–147.

15. Vargas Martin, M.; Pérez Valle, E.; Horsburgh, S. Artificial empathy for clinical companion robots with privacy-by-design. In
Proceedings of the Wireless Mobile Communication and Healthcare: 9th EAI International Conference, MobiHealth 2020, Virtual
Event, 19 November 2020; Proceedings; Springer: Berlin/Heidelberg, Germany, 2021; pp. 351–361.

16. Blanchard, L. Creating Empathy in Video Games. Master’s Thesis, The University of Dublin, Dublin, Ireland, 2016.
17. Fougères, A.J. A modelling approach based on fuzzy agents. arXiv 2013, arXiv:1302.6442.
18. Yulita, I.N.; Fanany, M.I.; Arymuthy, A.M. Bi-directional long short-term memory using quantized data of deep belief networks

for sleep stage classification. Procedia Comput. Sci. 2017, 116, 530–538. [CrossRef]
19. Mohmed, G.; Lotfi, A.; Pourabdollah, A. Enhanced fuzzy finite state machine for human activity modelling and recognition.

J. Ambient. Intell. Humaniz. Comput. 2020, 11, 6077–6091. [CrossRef]
20. Dubois, D.; Prade, H. The three semantics of fuzzy sets. Fuzzy Sets Syst. 1997, 90, 141–150. [CrossRef]
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Abstract: Unmanned transportation in construction scenarios presents a significant challenge due to
the presence of complex dynamic on-ground obstacles and potential airborne falling objects. Conse-
quently, the typical methodology for composite air–ground risk avoidance in construction scenarios
holds enormous importance. In this paper, an integrated potential-field-based risk assessment ap-
proach is proposed to evaluate the threat severity of the environmental obstacles. Meanwhile, the
self-adaptive dynamic window approach is suggested to manage the real-time motion planning
solution for air–ground risks. By designing the multi-objective velocity sample window, we constrain
the vehicle’s speed planning instructions within reasonable limits. Combined with a hierarchical
decision-making mechanism, this approach achieves effective obstacle avoidance with multiple drive
modes. Simulation results demonstrate that, in comparison with the traditional dynamic window
approach, the proposed method offers enhanced stability and efficiency in risk avoidance, underlining
its notable safety and effectiveness.

Keywords: motion planning; hierarchical decision; self-adaptive dynamic window approach; risk
assessment

1. Introduction

Real-time motion planning holds significant importance within the realm of au-
tonomous driving applications. Extensive research has been conducted on motion planning
in structured environments for unmanned ground vehicles (UGVs) [1–6]. However, quan-
tity research focuses on general ground risk-avoidance motion planning, overemphasizing
the target identification or kinematic-level reactive maneuvers, while downplaying the
vehicle’s dynamics-level planning constraints. Moreover, it overlooks the need for reac-
tive evasive maneuvers in response to abrupt intrusions by airborne threats. The issue
is particularly pronounced in the navigation problem of unmanned transport vehicles
(UTVs) in construction scenarios. On the one hand, the control system needs to balance
vehicle dynamics constraints and the rapid dynamic obstacle avoidance requirements
online. On the other hand, the UTV needs to swiftly perform evasive maneuvers in ex-
treme response times to mitigate high-speed falling objects while ensuring compliance with
vehicle dynamic capabilities.

This article aims to design an auxiliary motion function module for motion planning
in construction scenarios with coupled mobility risks. Once an aerial threat is detected, the
module is promptly activated to real-time plan the reactive maneuver trajectory for the
vehicle within an extremely short response time, aiming to maximize vehicle safety toward
the rapid descent hazards.
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Despite efforts in some research to quantify airborne threats as either general ground
risks or ground risks with altitude information [7,8], practical applications of UTVs reveal
that spatial threats cannot be adequately characterized as typical ground threats. This
distinction is especially pronounced in construction scenarios. Firstly, within the maneuver-
ing operation time scale, not all detected obstacles need to be classified as potential risks.
For instance, in construction scenarios, a multitude of ground obstacles such as people,
vehicles, buildings, and construction materials are present, whereas only targets closely
positioned in the expected trajectory’s spatial proximity will significantly impact or pose a
threat to the planning trajectory. Furthermore, airborne objects like falling leaves and small
balloons, although detected as airborne targets in opposing motion, do not pose risks to
the travel of UTVs. Therefore, through isolating or discounting redundant low-risk factors,
risk quantification assessment for the various detected targets needs to be employed to
reduce planning costs within the short-term planning window.

The anticipated on-ground distance metric generally has a positive effect during the
ground risk assessment. However, this metric should not be directly migrated to the risk
assessment process for airborne objects, as the vehicle’s altitude would affect the risk
assessment [9–12]. For instance, once an airborne object approaches UTVs on a horizon or
slightly inclined trajectory, its anticipated landing spot would be at a significant distance
from the vehicle. Thus, the original metric would deem this trajectory as safe, while the
collision would indeed occur. In addition, the presence of airborne objects results in an
extremely short maneuvering time scale for UTVs (on the order of seconds). This greatly
emphasizes the importance of risk quantification assessment in filtering objects considered
redundant. Moreover, the short time scale for risk avoidance operations could frequently
lead to vehicles employing aggressive control maneuvers, imposing significant dynamic
burden or danger, such as the heightened risk of rollovers during a high-speed turning
maneuver. So, it is essential to integrate the dynamics constraints into the planning. Above
all these considerations, it is necessary to conduct reasonable risk quantification assessments
for both ground and airborne obstacles, to streamline redundant obstacles by maintaining
the planning effectiveness of the UTV, and eventually to reduce the computation costs of
large-scale multi-object motion planning in stereospace.

Our contribution to this study is offering a hierarchical self-adaptive motion planning
method for UTVs in construction scenarios, which successfully addresses the integrated
air–ground risk avoidance problem. This work provides an efficient planning solution
for the coupled risk field in the construction scene. The organization of this paper is as
follows: Section 2 describes our proposed planning scheme and UTVs’ dynamics constraint
model for the construction scenario. Section 3 explains the theoretical methodology of the
hierarchical decision and self-adaptive planning method in detail. In Section 4, simulations
are conducted and the result is presented and discussed. Finally, the conclusion and future
work are addressed in Section 5.

2. Related Works

Local planning for unmanned vehicles is a crucial component of autonomous driving
systems, aiming to enable vehicles to navigate safely and efficiently in complex and dynamic
environments. In recent years, researchers have focused on addressing the challenge
of coupled air–ground obstacle avoidance to enhance the reliability and adaptability of
unmanned vehicles in complex scenarios.

There is existing prior research that independently analyzes the dynamic obstacle
avoidance for airborne risk. Chen et al. [13] proposed an A*-cubic-spline-based dynamic
planning method for an unmanned vehicle under sudden threats. Once a sudden threat is
encountered, the corresponding parameters are set according to the cubic spline second-
order continuity, and multiple candidate trajectories are generated. Then, the optimal
trajectory is obtained according to the set objective function. This method does not meet
the time margin for abrupt intrusions by airborne threats. Feng et al. [14] proposed a
new dynamic path planning algorithm based on the modified artificial potential field
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algorithm. Once an obstacle enters the observation range of the vehicle, the movement
information of the obstacle will be observed and recorded in the obstacle grid map. The
prediction of obstacle position is obtained with the trajectory evaluation algorithm based
on the Markov chain. Zhou et al. [15] proposed a bio-inspired path planning algorithm,
which utilized the A* search algorithm to explore the generated probability map, and
designed an artificial-field-based objective function, to obtain an original optimal collision-
free path. The computational cost of this coupling algorithm is also relatively high. Recent
decades have witnessed that deep reinforcement learning provides new perspectives for
optimizing control problems in unmanned vehicles [16,17]. Singla et al. [18] proposed a
deep reinforcement learning planning method based on a recurrent neural network and
temporal attention. This method enables the UAV controller to collect, and store relevant
observations gathered over time and use them to make better obstacle avoidance decisions.
Kulathunga et al. [19] proposed a hybrid approach that combines a Montecarlo tree search
and an RL-based approach to solve the 3D path planning problem. The end-to-end data-
driven method is primarily tailored to specific vehicle models, exhibiting a high dependence
on environmental modeling and limited generalization capability.

However, these approaches have not considered the real-time dynamic limits of the
vehicle, and require calculations for all aerial obstacles, incurring high computational
costs. Hence, these approaches are not suitable for a construction scenario with high
maneuverability demands. In summary, researchers have conducted in-depth studies on
path planning and control methods to address the challenge of the coupled air–ground
obstacle avoidance problem. These efforts provide important theoretical foundations and
practical experiences for achieving safe and efficient local path planning for unmanned
vehicles in complex environments.

3. Problem Statements

The conceptual sketch illustrating the motion planning mechanism process for the
construction navigation scenario is presented in Figure 1. During the UTV executing the
transportation mission at the construction site, the environment perception system contin-
uously detects and identifies surrounding obstacles, including on-ground and airborne
objects. Under normal circumstances, the vehicle primarily engages in real-time navigation
and obstacle avoidance within ground-level environments. Once the perception system
perceives descending airborne obstacles, the planning system would be swiftly handed
over to the auxiliary motion planning module specialized in addressing aerial-to-ground
obstacle scenarios. This module performs the entire planning and decision-making process,
encompassing risk quantitative assessment, hierarchical motion decision, and real-time
evasion planning function.

Consequently, we can quantify specialized spatial obstacles into general 3D obstacles
with the constraints of planning time scale, vehicle’s rapid maneuvering capabilities and
security logic, etc. Thus, the UTV emergency planning problem with aerial–ground risks in
construction scenarios can be transformed into a dynamic closed-loop optimization problem:

min : J

s.t. Φt ≤ 0 Φm ≤ 0 Φs ≤ 0
(1)

where Φt, Φm, and Φs denote the constrain items of planning time scale, maneuvering
capabilities, and security logic, respectively. J denotes the objective function value of the
planning optimization problem. In this paper, the detail objective function is defined as:

J(v, ω) = −σ(μ · heading(v, ω) + β · distg(v, ω) + η · disto(v, ω) + γ · vel(v, ω)) (2)

where heading, distg, disto, and vel denote the objective terms related to the target heading,
target distance, obstacle distance, and velocity performance, respectively. σ, μ, β, η, and γ
denote the corresponding coefficients, respectively.
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Figure 1. Conceptual overall sketch for the proposed motion planning method.

3.1. Vehicle Prediction Model

During the actual traveling process, it is challenging to obtain real-time acceleration
information from the vehicle due to the variation fluctuations and interference noise. Since
speed metrics are relatively easier to obtain and have lower interference noise, to facilitate
UTV’s trajectory prediction analysis, this paper employs the constant turn rate and velocity
(CTRV) model to describe the UTV’s motion mechanism in the planning problem. In the
CTRV prediction model, the vehicle’s linear velocity and steering rate in each time step are
considered constant, as shown in Figure 2.

Figure 2. CTRV prediction model sketch.

3.2. Risk Quantitative Assessment

Building upon the adopted CTRV vehicle prediction model, the primary illustration of
the risk quantitative assessment sketch for an air–ground obstacle is presented in Figure 3.
The assessment system conducts real-time calculations based on incoming air–ground
obstacle data. It employs a systematic coarse filtering method to reduce redundant risk
points. Following this initial screening, the system applies an additional approach to
analyze potential risks associated with airborne obstacles by pinpointing their expected
impact points on the vehicle. This risk assessment process is continuously executed at
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each sampling time step in parallel. Therefore, the high-risk obstacles are seamlessly
incorporated into the real-time motion planning problem.

Figure 3. Risk quantitative assessment sketch.

The spatial potential field model is employed to assess both ground and airborne
obstacles simultaneously. It is achieved by analyzing whether the anticipated relative
distance ds is projected to reach the danger distance threshold dTh

s . If the threshold is
exceeded, the assessment system would hold that the target in question poses a threat to
the vehicle at that future moment. For instance, when dealing with airborne obstacles, the
system would detect the corresponding trajectory sequence points. Building upon this,
the anticipated landing time and landing coordinates of the airborne obstacle could be
calculated. Thus, by comparing the calculated distance ds from the anticipated vehicle
to the landing coordinates with the predetermined threshold dTh

s , the system achieves
a spatial-potential-field-based risk assessment. The corresponding assessment Boolean
indicator Rs can be denoted as:

Rs =

{
True ds < dTh

s

False ds > dTh
s

(3)

Once an airborne obstacle approaches the vehicle in a horizontal or low-angle direction,
the obstacle’s anticipated landing point would be distant from the vehicle’s anticipated
position. In such a case, the spatial potential field model is not applicable to the obstacle
impacting a vehicle body scene. To address this situation, the velocity potential field model
is introduced to supplement the evaluation of the risk posed by horizontal/low-angle-
approaching airborne obstacles. This model assesses the anticipated risk by considering the
angle between the current obstacle–vehicle composite velocity vector vc and the obstacle

direction vector
−−−→
OvOa . For instance, assuming the current translational velocity of the

vehicle and airborne obstacle as v and vp, respectively, we can obtain the composite velocity
vector vc = v − vp. When the angle θv between v and vp falls within the corresponding
expansion angle θTh

v in the velocity potential field, the system identifies this airborne
obstacle as a danger. The corresponding assessment Boolean indicator Rv can be denoted as:

Rv =

{
True θv < θTh

v

False θv > θTh
v

(4)

For the airborne obstacles identified as Rv = True during the assessment, an additional
refined risk assessment is performed through the anticipated impact point analysis for
the vehicle. The coordinates of the incoming obstacle’s trajectory consequence points are
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transformed into the coordinates under the vehicle’s reference frame, denoted as PIm. If
PIm falls outside the threshold range of the vehicle’s bounding box, it indicates that the
incoming obstacle would not collide with the vehicle body. While if PIm falls within the
threshold range of the vehicle’s bounding box, it signifies that the incoming obstacle is on a
collision course with the vehicle at that moment. Then, the risk assessment system would
output the coordinates of the impact point and the corresponding timestamp.

At this stage, based on the spatial/velocity potential field and anticipated impact
point analysis, the risk assessment module could real-time filter out obstacle data that pose
a genuine threat indeed. These filtered data serve as the basis for subsequent real-time
motion planning assessments.

4. Methodology

In intricate construction environments with complex air–ground risks, the restricted
maneuvering time scale for UTVs necessitates swift obstacle avoidance, corresponding to
a local motion planning issue. Thus, this paper introduces a real-time self-adaptive local
motion planning approach based on the dynamic window approach (DWA). This method
is employed to resolve dynamic optimization problems posed by the construction scenario
motion planning. The local motion planning framework presented in this paper is depicted
in Figure 4.

Figure 4. The proposed local motion planning framework.

4.1. Hierarchical Motion Decision

The primary distinction between airborne and ground obstacles centers on the tem-
poral dimension. Airborne threats are inherently time-dependent, existing as potential
risks only within a short time scale from the moment of detection until they land on the
ground. As a result, the hierarchical motion decision approach, combining the non-steering
avoidance decision and steering avoidance decision, is deemed effective for managing
airborne obstacles.

Differing from typical hierarchical decision approaches, which are based on temporal
or informational flow [20,21], the proposed non-steering/steering-based hierarchical ap-
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proach in this paper aims to decrease the destabilizing risks associated with rapid steering
actions. Non-steering avoidance involves trajectory adjustments through pure acceleration
or deceleration without altering the vehicle’s original path, primarily focusing on longitu-
dinal obstacle avoidance. Conversely, steering avoidance employs the vehicle’s steering
mechanism to execute avoidance maneuvers that account for both lateral and longitudinal
aspects of its movement.

Thus, the hierarchical motion decision, encompassing both non-steering and steering
avoidance is deployed. Notably, rapid and sharp steering maneuvers, especially at high
speed, pose a certain risk to vehicle stability, potentially resulting in skidding or rollovers
and, consequently, intensifying the risk. The steering avoidance method, which considers
rollover prevention mechanisms, necessitates additional iterations within the dynamic
window search, leading to lengthier computational processes and placing greater demands
on the control system. Conversely, non-steering avoidance through acceleration and
deceleration provides smoother vehicle control, mitigates the risk of instability, and allows
the control system a higher response time. Consequently, in emergency scenarios, non-
steering approaches are typically given precedence. Within each time window, the vehicle
first assesses the feasibility of applying non-steering avoidance strategies. If a viable non-
steering solution cannot be generated, steering avoidance strategies are then considered.

4.2. Dynamic-Window-Approach-Based Real-Time Planning Method in Construction Scenario

With the insights of the anticipated impact point, the 3D air–ground obstacle avoidance
problem can be converted into a 2D problem. The proposed self-adaptive dynamic window
approach (ADWA) for steering-based local motion planning in construction scenarios is
illustrated in Algorithm 1. In contrast to the traditional DWA [22], the ADWA introduces
an adaptive prediction horizon mechanism that tunes the length of the prediction horizon
based on obstacle information. This mechanism effectively mitigates the issues encountered
in DWA, where a fixed prediction horizon can result in insolvable scenarios in dense
obstacle-laden environments. In contrast, the adaptive dynamic window approach adjusts
the prediction horizon length by considering the number of nearby obstacles, providing a
more flexible response to complex environments.

Theoretically, the ADWA excels in its adaptability to the dynamic nature of the en-
vironment. As obstacle density increases, the adaptive dynamic window automatically
reduces the prediction horizon length to respond more sensitively to potential collision
risks. Conversely, in relatively open environments, the prediction horizon length can be
moderately increased to enhance planning efficiency. This flexibility makes the adaptive
dynamic window approach more suitable for a variety of real-world scenarios, balancing
path planning safety and efficiency in narrow passages as well as open areas. In summary,
the adaptive dynamic window approach overcomes the limitations of traditional dynamic
window methods in dealing with complex environments by dynamically adjusting the
prediction horizon length during the planning process, thereby improving the adaptability
and robustness of the planned trajectory.

Furthermore, during the calculation of admissible velocities within the dynamic
window, ADWA takes into account critical physical constraints, including the maximum
mechanical steering angle and critical rollover velocity. This ensures a more practical and
realistic planning approach in rapid maneuvering scenarios.

During the optimization process outlined in Algorithm 1, the vehicle’s dynamic
window is influenced by various factors, including speed limits, acceleration constraints,
and obstacle avoidance requirements. The corresponding sampled spaces are as follows:

Vs = {(v, ω)||v|≤ vmax∩|ω|≤ ωmax }
Vd = {(v, ω)|v ∈ [v0 − amaxΔt, v0 + amaxΔt] ∩ ω ∈ [ω0 − αmaxΔt, ω0 + αmaxΔt]}
Va =

{
(v, ω)

∣∣∣∣∣v∣∣ ≤ √2dist(v, ω)amax

} (5)
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where vmax, ωmax, amax, and αmax denotes the maximum for the vehicle’s translational
velocity, rotational velocity (angle velocity), translational acceleration, and rotational accel-
eration, respectively.

Algorithm 1. Self-adaptive dynamic window approach

1. Exploration domain: The exploration domain of the dynamic window can be restricted by:
(a) Circular trajectories: The possible trajectories of the ADWA can be described by the velocity
pairs (v, ω).
(b) Restricted velocities: Vehicles need to leave sufficient braking distance for each obstacle; hence,
the velocity pairs (v, ω) need to be restricted.
(c) Dynamic window: The dynamic performance of the vehicle constrains the variation range of
the dynamic window at each sampling moment.
(d) Adaptive prediction domain: Self-adaptive prediction domain enables the vehicle to adjust the
trajectories’ length according to the obstacles’ information to avoid the insolvable solution state.
2. Objective function: The multi-objective function is defined as
J(v, ω) = −σ(μ · heading(v, ω) + β · distg(v, ω) + η · disto(v, ω) + γ · vel(v, ω))
With respect to the current position, target position, and orientation of the vehicle this function
trades off the following aspects:
(a) Target heading: heading is a measure of progress toward the target position. It is maximal if
the vehicle moves directly toward the target.
(b) Target distance: distg is the distance to the goal location on the end of the prediction trajectory.
The smaller the distance to the goal location, the higher the vehicle’s desire to move around it.
(c) Clearance: disto is the minimum distance from the obstacles along the current planned
trajectory. The smaller the distance between the vehicle and obstacles, the higher the safety risk of
the vehicle.
(d) Velocity: vel is the translational velocity of the vehicle.
The parameter σ smooths the global weighted sum of the four components.

Furthermore, the vehicle’s motion is also subject to mechanical operational limits,
where the steering angle of the wheels imposes restrictions on the vehicle’s lateral move-
ment. The corresponding sampled space is as follows:

Vb = {(v, ω)||θwheel|≤ θmax
wheel } (6)

where θmax
wheel denotes the maximum steering angle of the vehicle’s front wheels.

Additionally, it is imperative to consider the vehicle’s dynamic safety performance to
mitigate the risk of vehicle rollovers stemming from excessive steering speeds during high-
speed maneuvers. In accordance with the literature [23–25], the critical rollover prevention
velocity model for the Ackermann steering model with rear-wheel drive and front axle
steering is employed as:

Vc = {(v, ω)|v ≤ vc }

vc =

⎧⎪⎨⎪⎩
vmax θsteer < 0.005√

ghg
|tan θsteer| θsteer ≥ 0.005

(7)

where vc and hg denotes the corresponding critical rollover prevention velocity and height
of gravity center, respectively.

Hence, the dynamic window Vr can be calculated by the intersection of the above
velocity sample spaces:

Vr = Vs ∩ Vd ∩ Va ∩ Vb ∩ Vc (8)

5. Simulations and Discussions

It is essential to emphasize that the rapid descent speed of airborne risks places
constraints on the available planning time. Therefore, this paper confines its investigation
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to scenarios in which the vehicle’s air–ground risk avoidance problem theoretically has
feasible solutions indeed.

In the simulation, the vehicle commences its mission from a stationary position toward
the designated target location. The specific vehicle parameters and simulation settings
are outlined in Tables 1 and 2, respectively. The simulation pertaining to airborne factors
holds significance only when an aerial object is deemed a risk through the risk assess-
ment method, indicating a real possibility of a collision with the vehicle. To facilitate a
meaningful comparison, a comparative simulation approach is employed. Hence, in each
simulation, three airborne obstacles are introduced from different directions and velocities.
If the vehicle maintains its current trajectory without alterations, it will face consecutive
impacts with these obstacles. At three specific time points, synchronized launches of three
aerial trajectories occur, all with identical velocity and initial altitude, thus allowing for a
comprehensive performance evaluation. In the comparative simulations, to demonstrate
the validity of the airborne obstacles, we maintain their direction and velocity properties
while adjusting corresponding initial positions, to ensure that these airborne obstacles gen-
uinely pose a threat to the UTV in the comparative simulations. In the different simulations,
the shared attributes of the three airborne obstacles are configured in Table 3. The real-time
planning objective is considered achieved when the vehicle approaches within a 0.5-m
radius of the target location.

Table 1. Physical parameters of the UTV.

Parameter
vmax

(m)
ωmax

(deg/s)
amax

(m/s2)
αmax

(deg/s2)
θmax

wheel
(deg)

Body Size (m)
Mass Center Height

(m)
Wheelbase

(m)

Value 15.0 60.0 3.2 60.0 30.0 3.5 × 2.0 × 1.6 1.0 2.0

Table 2. Simulation settings.

Parameter
Initial

Location (m)
Target

Location (m)

Sample
Frequency

(Hz)

Perception
Distance (m)

Safe Radius
(m)

Air
Resistance
Coefficient

Air Density
(kg/m3)

Value (0.0, 0.0) (90, 90) 10 30.0 3.0 0.2 1.2

Table 3. Shared attributes of the airborne risks.

Parameter
Initial Height

(m)
Initial Velocity

Vector (m/s)
Mass (kg)

Launching
Time (s)

risk 1 15.0 (−10.0, 3.0, −5.0) 2.0 2.0
risk 2 25.0 (−3.0, −5.0, −5.0) 7.0 7.0
risk 3 25.0 (4.0, −4.0, 0.0) 10.0 10.0

The movement settings of the given 10 obstacles are shown in Appendix A. Figure 5
presents the traditional DWA-based hierarchical local planning simulation with air–ground
risks in the construction scenario. The labels “Air risk 1–3” in the figure correspond to
the time window, which spans from the risk assessment to the risk disappearance (impact
to the ground). The labels “Acceleration/Deceleration” in the figure correspond to the
non-steering-based command of the hierarchical decision, and the rest red lines correspond
to the steering-based command. It is illustrated that the traditional DWA-based planning
process takes 25.6 s, but results in a continuous exceeding toward the rollover critical
velocity vc. Moreover, influenced by the nearby obstacles and mechanical constraints, the
UTV ultimately follows a much redundant trajectory to the goal destination. As a result,
this approach is deemed unsuccessful and ineffective.
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Figure 5. The motion planning results for the traditional DWA.

Figure 6 presents the proposed ADWA-based hierarchical local planning simulation
with air–ground risks in the construction scenario. The designed adaptive prediction
horizon is set as:

tp = τtpm τ = clip
{

1.0
no + ζ

, [0.4, 1.0]
}

(9)

where tpm denotes the max prediction time, set to 1.5 s in this paper. no denotes the number
of obstacles around within 20 m. ζ is a positive value to prevent the calculation error when
no = 0, set to one. clip denotes the boundary-constraining function. Thus, when there are
excessive obstacles near the vehicle, the system will automatically reduce the prediction
horizon to prevent unsolvable scenarios resulting from the over-large prediction scale. And
the calculation cost can be correspondingly reduced.

Throughout the planning process, hierarchical planning decision operations are exe-
cuted, involving obstacle avoidance maneuvers achieved through pure acceleration and
deceleration. This planning effect illustrates the necessity and effectiveness of layered
control. It is depicted that the proposed ADWA-based planning process takes 20.9 s, in
which the vehicle’s velocity remains consistently below the rollover critical velocity vc.
The distance from the UTV to the real-time nearest obstacle consistently adheres to the
designed safety distance threshold. Additionally, in the final phase of planning around the
goal destination, the corresponding planning trajectory still performs a smooth tendency.
This overall planning process reflects that the proposed ADWA exhibits clear advantages
in terms of safety and feasibility compared to the traditional DWA.

The corresponding aerial view is illustrated in Figure 7. It shows that the landing
point of the airborne risk intersects with the trajectory, which seems to be a collision. In fact,
combining Figures 6 and 7b, the UTV adopts a series-coupled acceleration/deceleration
and steering maneuver to circumvent the risk presented by airborne risk 1. This adjustment
effectively redirected the initial collision trajectory of risk 1 to the vehicle’s lateral side.
Similar avoidance strategies were employed to evade risks 2 and 3. The simulation results
demonstrate the effectiveness of the hierarchical decision mechanism and the proposed
ADWA method for the air–ground risk in construction scenarios.
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Figure 6. The motion planning results for the proposed ADWA.

 
(a) (b) 

Figure 7. The motion planning results for the proposed ADWA: (a) Aerial view; (b) Local view.

6. Conclusions

In this paper, we have demonstrated a novel integrated autonomous dynamic navi-
gation approach for construction scenarios with composite air–ground risks. In response
to the potential falling obstacle risk of the construction scene, a hierarchical self-adaptive
DWA algorithm has been accordingly proposed. Through the hierarchical decision mecha-
nism, the vehicle is directed to minimize air–ground risks through non-steering maneuvers.
In the proposed ADWA algorithm, the self-adaptive prediction horizon and the rollover
critical velocity window were proposed, enabling the vehicle to fine-tune planning win-
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dows in high-risk scenarios while ensuring planning safety. Simulation results show that
the proposed hierarchical self-adaptive dynamic window approach demonstrates higher
planning efficiency and safety toward the traditional dynamic window approach, with the
UTV consistently staying within the safety constraints of the construction scenario. This
work provides an efficient solution for vehicle motion planning under air–ground-coupled
risks. However, there is still enhancement potential in the algorithm’s adaptive capability.
Future work will focus on improving algorithm performance and conducting relevant
experimental validation.
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Appendix A

Table A1. Initial obstacle information.

Obstacle ID Initial Location (m) vo
x(0) (m/s) vo

y(0) (m/s)

1 (0, 30) 0.0 0.0
2 (60, 20) 7.0 0.0
3 (50, 50) 0.0 5.5
4 (20, 40) 0.0 1.0
5 (20, 50) 0.0 1.0
6 (60, 20) 0.0 −8.0
7 (70, 40) 10 0
8 (40, 30) 0 0
9 (70, 60) 0 0
10 (80, 80) 0 0

In Table A1, vo
x(0) and vo

y(0) denote the initial horizontal and longitudinal velocity of
the obstacles, respectively. Once the motion of obstacles extends beyond the rectangular
boundary that originated from the coordinates (20, 20) to (80, 80), the subsequent speed
will be set to: {

vo
x(t) = −0.7vo

x(0)

vo
y(t) = −0.7vo

y(0)
(A1)
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Abstract: Although numerous effective Simultaneous Localization and Mapping (SLAM) systems
have been developed, complex dynamic environments continue to present challenges, such as man-
aging moving objects and enabling robots to comprehend environments. This paper focuses on
a visual SLAM method specifically designed for complex dynamic environments. Our approach
proposes a dynamic feature removal module based on the tight coupling of instance segmentation
and multi-view geometric constraints (TSG). This method seamlessly integrates semantic informa-
tion with geometric constraint data, using the fundamental matrix as a connecting element. In
particular, instance segmentation is performed on frames to eliminate all dynamic and potentially
dynamic features, retaining only reliable static features for sequential feature matching and acquiring
a dependable fundamental matrix. Subsequently, based on this matrix, true dynamic features are
identified and removed by capitalizing on multi-view geometry constraints while preserving reliable
static features for further tracking and mapping. An instance-level semantic map of the global sce-
nario is constructed to enhance the perception and understanding of complex dynamic environments.
The proposed method is assessed on TUM datasets and in real-world scenarios, demonstrating that
TSG-SLAM exhibits superior performance in detecting and eliminating dynamic feature points and
obtains good localization accuracy in dynamic environments.

Keywords: SLAM; complex dynamic environment; fundamental matrix; semantic segmentation;
multi-view geometric constraint

1. Introduction

SLAM technology is a crucial element for mobile robots to achieve highly intelligent
tasks in unknown work environments. Visual SLAM, which relies on visual sensors to
perceive surroundings, can acquire images with rich semantic information about envi-
ronmental targets. Environmental semantic information is of significant importance to
intelligent robots as it can assist them in positioning, build environmental semantic maps,
and is the basis of human–computer interaction.

In 2007, Davison et al. [1] proposed Mono-SLAM, which achieved the realization
of monocular real-time SLAM and initiated research in the field of visual SLAM. Klein
et al. [2] proposed PTAM, which creatively divides the entire SLAM system into tracking
and mapping threads, successfully applying feature points. Leutenegger et al. [3] proposed
the OKVIS visual–inertial odometry framework, while Mur-Artal et al. proposed ORB-
SLAM [4], ORB-SLAM2 [5], and ORB-SLAM3 [6] based on feature points.

Most visual SLAM systems are built based on static scenarios, and when there are
moving objects in the scenario, the system’s localization and mapping accuracy is greatly
affected. In addition, the scene maps constructed by visual SLAM systems are usually
based on the geometric information of the scene, such as sparse landmark maps and sparse
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point cloud maps, which are insufficient to enable mobile robots to understand complex
working environments. Thus, it is necessary to process moving objects in complex environ-
ments, eliminate their interference in the visual SLAM system, and integrate environmental
semantic information to construct semantic maps.

Semantic maps include scene-oriented semantic maps and object-oriented semantic
maps. The former integrate semantic information into 3D point clouds to build a scene
semantic map, while the latter only retain the semantic information of some objects in the
scene semantic map, with most of the semantic information independent of the map in the
form of clustering. An object-oriented semantic map is more helpful for a robot to perceive
a scene and improve map practicality. McCormac et al. [7] proposed a voxel-based online
semantic SLAM system, Hoang et al. [8] proposed the Object-RPE system, and Hossein-
zadeh et al. [9] proposed a method to represent objects in the form of quadratic surfaces,
while Oberlander et al. [10] proposed a mapping method that combines topological, metric,
and semantic information. Hybrid map representation, which combines topological, metric,
and semantic information, has been an important direction in the field of mobile robotics
research for a long time [11]. Luo et al. [12] used object recognition algorithms to classify
scenes, fused the classification results with topological nodes, and assigned semantic in-
formation to each topological node. Lin et al. [13] proposed a novel closed-loop approach
based on object modeling and semantic graph matching. Object-level features in a scene are
modeled using voxels and cuboids, and the scene is further represented as a semantic graph
with topological information. Yang et al. [14] proposed a semantic and topological method
of automatically representing indoor spaces using floor-plan raster maps to reconstruct
indoor spaces with semantic and topological structures. The dynamic visual SLAM method
based on the semantic segmentation module proposed by Jin et al. [15] uses semantic labels
and depth images to create a 3D point cloud map with semantic information. In short, the
fusion of topological and semantic information generally only fuses semantic information
with topological nodes, ignoring many environmental details. Although it can help a
mobile robot to move to a certain scene quickly, it cannot allow the robot to intelligently
interact with the physical objects in the scene.

The rest of this paper is organized as follows: Section 2 provides an overview of
related works regarding SLAM methods in dynamic environments. Section 3 describes
the proposed system framework. Section 4 presents a dynamic feature removal method in
detail. Section 5 presents the semantic map construction module. Section 6 presents the
experimental results and performance analysis. Finally, Section 7 concludes the paper and
discusses future research directions.

2. Related Work

Semantic SLAM systems face challenges in accurately localizing and mapping com-
plex environments with a large number of dynamic objects. To address this issue, four
methods [16] have been proposed to eliminate dynamic features: multi-sensor informa-
tion compensation, an enhanced RANSAC algorithm, foreground/background model
construction, and semantic information integration.

Using information obtained from an IMU, a wheel odometer, and other sensors as
prior motion knowledge for a camera can assist a system in segmenting dynamic targets.
The SLAM system designed by Yao et al. [17] includes tracking threads, feature extraction
threads, and local mapping threads. One of the tasks of the tracking thread is to utilize
the transformation matrix obtained from an IMU and combine it with the reprojection
error to determine the dynamic nature of feature points. To avoid long-term drift in wheel
odometry calculations, Yang et al. [18] only used data between two adjacent frames to
estimate the initial pose over a short period of time. In order to speed up the detection
of dynamic regions, two optimization measures were adopted. First, the dynamic nature
of the image regions obtained via clustering was determined instead of individual pixels.
Second, when judging the clustered regions, only a subset of feature points was selected
instead of all feature points in the region. In addition, the object detection framework
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YOLOv3 [19] was integrated into the system. The data fusion and joint calibration resulting
from the use of multiple sensors pose challenges to the system’s stability and accuracy,
while errors and noise are also issues that cannot be neglected.

For SLAM in dynamic environments, it is common to use the RANSAC algorithm to
obtain a rough transformation matrix result to determine the dynamic status of landmarks
in the environment. Sun et al. [20] used tthe RANSAC algorithm to compute a perspective
transformation. The calculated transformation matrix was applied to each pixel in the
previous frame image, resulting in a difference image. The moving object can be roughly
identified using the non-zero pixels in the differencing results. This process was used to
obtain segmentation results. Sun et al. [21] replaced the standard RANSAC algorithm
with a least-median-of-squares algorithm (LMedS) for their calculations. The Prior-based
Adaptive Random Sample Consensus (PARSAC) algorithm proposed by Tan et al. [22]
leveraged prior knowledge about the background, leading to a reduced proportion of
inliers in the estimation of the camera’s motion model. The major drawback of using the
RANSAC algorithm to eliminate dynamic objects is that as the number of dynamic objects
increases or they become closer to the camera, the static background area becomes too
small, leading to ineffective dynamic object removal.

Building a foreground model in advance is equivalent to directly segmenting out
moving objects. Then, the areas outside the foreground are used for the localization and
mapping of mobile robots. Wang et al. [23] first calculated optical flow trajectories between
consecutive image frames. They performed a clustering analysis on these trajectories,
merging regions with similar motion tendencies. Assuming that static regions dominate
the majority of the image, the largest area with merged regions could be used to compute
the corresponding fundamental matrix. This process further refined the dynamic regions,
forming the image foreground. In subsequent camera localization and dense mapping
using the Dense Visual Odometry (DVO) SLAM system [24], the foreground parts of
the images were discarded. The challenge in constructing foreground models lies in the
identification and removal of non-rigid bodies, such as pedestrians and animals.

Adding semantic information to the SLAM system in dynamic environments allows
for the preliminary assessment and segmentation of objects with high motion probability
based on prior knowledge. By removing these high-motion-probability target regions
from the images, estimating the camera’s motion and pose becomes much more reliable
compared to directly using the RANSAC algorithm to remove outliers. Yu et al. [25] intro-
duced the DS-SLAM system, which excluded the person area in the image and eliminated
dynamic matching points using motion consistency. Bescos et al. proposed DynaSLAM [26]
and DynaSLAM II [27]. DynaSLAM combined multi-view geometry and target masks to
remove predefined moving objects and proposed a background restoration method to fix oc-
cluded backgrounds. Dyna-SLAM II simultaneously estimated camera poses, sparse static
3D maps, and the trajectories of multiple moving objects using a new bundle adjustment
method. You et al. [28] proposed a multimodal semantic SLAM system (MISDSLAM) which
can reconstruct the static background with semantic information. Liu et al. [29] applied an
algorithm to obtain as the latest semantic information possible, thereby making it possible
to use segmentation methods with different speeds in a uniform way. Zhao et al. [30] pro-
posed KSF-SLAM, which added an efficient semantic tracking module to remove dynamic
objects in dynamic environments. Gonzalez et al. [31] introduced TwistSLAM, which cre-
ated point clusters based on semantic categories and modeled constraints between clusters
to remove dynamic features and improve motion estimation quality. Kuang et al. [32]
obtained potential motion areas through semantic segmentation, combined dynamic point
features to determine dynamic areas, and removed point and line features in dynamic
areas to enhance localization accuracy and stability. Runz et al. [33] presented the mask
fusion system, which used geometric segmentation to produce precise object boundaries
to overcome the limitations of imperfect boundaries provided by semantic segmentation.
Xu et al. [34] proposed the MID-Fusion system, which provided the geometric, semantic,
and motion attributes of objects in an environment. Li et al. [35] presented the DP-SLAM
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system, which tracked dynamic matching points in a Bayesian probability estimation frame-
work to overcome geometric constraints and semantic segmentation bias. Wu et al. [36]
proposed YOLO-SLAM, which combined object detection and geometric constraint meth-
ods to reduce the influence of dynamic objects. Li et al. [37] utilized semantic information
and global dense optical flow as constraints to generate dynamic-static masks and eliminate
dynamic objects. Xing et al. [38] presented DE-SLAM, which utilized a dynamic detection
and tracking module of semantic and metric information to improve localization accuracy
by eliminating features on dynamic objects.

In the aforementioned literature, most dynamic visual SLAM schemes adopted existing
mature object detection and semantic segmentation network frameworks to perform the
initial division of dynamic regions. The network architectures included SegNet [39], Mask
R-CNN [40], and the YOLO series. Similar to Mask R-CNN, SOLOv2 [41] is a simple,
fast, and accurate instance segmentation framework. It surpasses most current advanced
open-source instance segmentation methods in terms of segmentation speed and accuracy,
and it also performs well in segmenting moving targets. Hence, we chose SOLOv2 to
complete the instance segmentation task. Based on instance-level semantic information, we
can acquire the prior motion information of objects. If the label corresponding to the object
feature is person, it is considered dynamic, and if the label is desk, it is considered static,
both with high confidence. However, when the label is chair, it is usually static, but there is
a significant likelihood it might move due to the influence of other moving objects (such as
human activity). Therefore, it is challenging to definitively categorize chairs as either static
or dynamic; these are potentially dynamic objects.

In conventional semantic segmentation-based dynamic SLAM systems, dynamic fea-
tures are removed, static features are preserved, and potentially dynamic features are
generally treated either as all static or as all dynamic. Treating all potentially dynamic
features as dynamic and removing them can reduce the accuracy of feature matching.
Conversely, treating all potentially dynamic features as static can lead to many incorrect
correspondences in feature matching. Both situations negatively affect the system’s localiza-
tion accuracy and mapping precision. In essence, while the SOLOv2 algorithm can segment
potential dynamic targets and provide semantic labels, it cannot accurately determine their
actual motion state. In addition, the unavoidable fuzziness in SOLOv2’s segmentation
results near object edges can lead to a small number of feature points being misjudged
at the edges where dynamic and static objects meet. Therefore, we cannot rely solely on
SOLOv2’s semantic information and need to combine it with other methods to jointly
determine the motion state of target features.

Instance segmentation methods are used in conjunction with other methods, such as
using a bundle adjustment with multi-view geometric constraints or optical flow fields.
When combined, a voting mechanism is typically employed to process dynamic objects.
Generally, there are two types of voting mechanism: the first is that if both judgment results
are dynamic, the final result is dynamic, and the second is that if any one result is dynamic,
the final result is dynamic. We consider both combination methods loosely coupled ap-
proaches, merely combining the results of the two methods through a simple mechanism.
In fact, this loosely coupled approach is unreliable and can lead to misjudgment.

This paper proposes a dynamic feature removal method that tightly couples instance
segmentation and multi-view geometric constraints to detect and remove dynamic feature
points and integrates instance semantic information into environment map construction to
generate global environment instance-level semantic point cloud maps. The main contribu-
tions of this paper are as follows. First, a system framework for the SLAM of mobile robots
in complex environments is constructed based on ORB-SLAM3. Second, a dynamic feature
removal method is designed which uses a tightly coupled method to closely combine
the instance segmentation SOLOv2 algorithm with multi-view geometric constraints to
accurately detect and remove dynamic feature points. Third, a semantic map construc-
tion module is designed, which extracts a 3D semantic point cloud using the semantic
information of the target obtained via the instance segmentation algorithm, generates the
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corresponding target semantic tag, and builds an instance-level target semantic tag library
to construct an environmental 3D semantic map.

3. System Overview

To eliminate the impact of dynamic targets on the SLAM system and create a map
containing environmental semantic information, this paper presents a mobile robot simul-
taneous localization and semantic mapping system based on the ORB-SLAM3 system. The
system’s overall framework is illustrated in Figure 1, and it can handle dynamic targets with
excellent anti-interference ability, extract the instance-level semantic information of various
objects, and support intelligent robots to perform tasks in complex indoor environments.

Figure 1. Overall SLAM system framework.

The TSG-SLAM system introduces two additional parallel threads to the classic
three threads of ORB-SLAM3: the dynamic feature removal thread and the semantic map
construction thread. The dynamic feature removal thread is responsible for eliminating the
dynamic features of objects, ensuring the system’s localization and mapping accuracy. The
semantic map construction thread constructs a 3D dense semantic map with instance-level
semantic information, which enables intelligent robots to navigate and interact intelligently
in complex environments.

4. Dynamic Feature Removal Method

A dynamic feature detection and removal method is proposed in this paper. The
method tightly integrates semantic information and multi-view geometric constraint infor-
mation, as shown in the algorithm framework in Figure 2.

Firstly, ORB features are extracted from the current frame image, and instance segmen-
tation results are obtained using SOLOv2 on both the current and previous frames. This
allows for the removal of features belonging to dynamic targets and potential dynamic
targets. Subsequently, feature matching is performed based on the remaining static targets,
and the fundamental matrix is calculated. Finally, dynamic feature points in the current
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frame are precisely detected and removed with multi-view geometric constraints, leaving
only the static feature points.

Figure 2. Framework of dynamic feature removal algorithm.

This method ensures accurate localization and mapping in complex environments by
removing the impact of dynamic targets and contributes to constructing a 3D dense seman-
tic map with instance-level semantic information for intelligent tasks such as navigation
and interaction in complex indoor environments.

4.1. SOLOv2 Instance Segmentation

The SOLOv2 network architecture is shown in Figure 3, and it mainly comprises Fully
Convolutional Network (FCN) feature extraction, a kernel branch, and a feature branch.
The convolution kernel matrix is denoted as G, while the mask feature matrix is represented
by F. SOLOv2 divides the image into S × S grids, treating each grid as a potential target
instance. After the original image is passed through the FCN, the feature map is obtained,
which then enters both the kernel branch and the feature branch. The kernel branch predicts
the dynamic kernel to obtain different kernels for different inputs, while the feature branch
predicts the features for each point on the feature map. Finally, the outputs of the kernel
branch and feature branch are convolved to obtain the mask of the target in the image.

The COCO dataset [42] is used for pre-training to obtain network parameters, which
include most moving objects that may appear in real-life scenarios, making it very suitable
for the application scenario of this article.

Figure 3. Framework of SOLOv2 network.
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4.2. Dynamic Feature Detection

The multi-view geometry constraints utilizing epipolar geometry characteristics can
be used to detect the motion state of target feature points in the environment. The features
that satisfy the epipolar constraints are static features, while the features that do not satisfy
the epipolar constraints are dynamic features. These constraints can be used to identify the
position and motion of feature points in a given environment.

Figure 4a shows the relationship between static object points and their corresponding
feature points in two frames. P is a static target point which is imaged in two consecutive
image frames corresponding to feature points p1 and p2 in frame I1 and frame I2, respec-
tively. P? represents the possible position of point P in the presence of uncertain factors.
O1 and O2 are the camera centers corresponding to frame I1 and frame I2, respectively.
Polar plane π intersects image planes I1 and I2 at polar lines l1 and l2, respectively, and
baseline O1O2 intersects image planes I1 and I2 at poles e1 and e2, respectively. P lies on

rays
−→

O1 p1 and
−→

O2 p2, and p2 lies on epipolar line l2. The multi-view geometric constraint
describes the corresponding epipolar mapping from the points on frame I1 and frame I2,
and the mapping relationship can be described by the fundamental matrix Fm.

pT
2 Fm p1 = 0 (1)

d

Figure 4. Multi-view epipolar geometry constraints.

Given p1 in frame I1 and the fundamental matrix Fm, Equation (1) provides the con-
straints that p2 must satisfy when P is a static target point. Therefore, we can use this
constraint to judge whether the target point corresponding to the ORB feature point is
dynamic. Due to the uncertainty in the process of extracting features and estimating Fm,
there is a high probability that the two image points in the static map do not strictly satisfy
Equation (1), that is, p2 in Figure 4b should be located on l2. If the distance d between
p2 and l2 is smaller than a predetermined threshold, the motion state of the target point
corresponding to the image point is regarded as static; otherwise, it is regarded as dynamic.

Use the classic eight-point algorithm to estimate the fundamental matrix Fm. Let

Fm =

⎛⎝ f1 f2 f3
f4 f5 f6
f7 f8 f9

⎞⎠, p1 = [u1, v1, 1]T,p2 = [u2, v2, 1]T, where (u1, v1) and (u2, v2) are the

pixel coordinates of p1 and p2, respectively. According to Equation (1), we can obtain

(u2, v2, 1)

⎛⎝ f1 f2 f3
f4 f5 f6
f7 f8 f9

⎞⎠⎛⎝u1
v1
1

⎞⎠ = 0 (2)

Let fm denote the vector containing all elements of Fm.

fm = [ f1, f2, f3, f4, f5, f6, f7, f8, f9]
T (3)
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Equation (2) can be written as a linear equation about fm.

[u2u1, u2v1, u2, v2u1, v2v1, v2, u1, v1, 1] · fm = 0 (4)

When there are eight pairs of corresponding image points between two consecutive
frames, we can solve Equation (4) to calculate Fm. Once Fm is obtained, we can use
Equation (2) to determine the state of the target feature.

While using multi-view epipolar geometry constraints to detect dynamic features
is a useful approach, it presents a fundamental contradiction. In order to calculate the
fundamental matrix Fm required to detect dynamic feature points, correspondences of static
feature points are needed as the target features in the keyframes used for feature matching
must be static. This means that dynamic feature points must be removed before Fm can
be calculated. In the general feature-matching process, the Random Sample Consensus
(RANSAC) algorithm is often used to filter out dynamic feature points and reduce the
impact of incorrect correspondences. However, RANSAC is limited in its ability to remove a
large number of dynamic feature points, which can negatively affect its overall performance.

4.3. Dynamic Feature Removal

We propose a tight-coupling approach that utilizes the fundamental matrix Fm as a
bridge between semantic information and geometric constraint information. Firstly, we
employ SOLOv2 to perform instance segmentation on frames of the scenario to obtain
motion priors, which identify all moving and potential moving targets. We then use the
instance segmentation results as a mask to remove the correspondences of dynamic and
potential dynamic features, retaining only reliable static feature correspondences. Based
on these static feature correspondences, we perform feature matching and compute the
reliable fundamental matrix. Finally, we use multi-view geometry constraints to detect and
remove true dynamic features, retaining only static feature points for subsequent tracking
and mapping. When judging the motion state of a feature point, we use a threshold value
of d. If d exceeds one pixel size, the feature point is judged as dynamic and removed, and if
d is smaller than a pixel size, it is judged as static and retained.

5. Instance-Level Semantic Map Construction

Figure 5 illustrates the framework of our scenario semantic map construction algo-
rithm. The algorithm constructs the semantic map using keyframe images with dynamic
feature points removed. Firstly, we generate a single-frame point cloud containing only
static feature points from the keyframe images. Then, we stitch and filter the generated
single-frame point clouds to obtain the scene point cloud map. Next, we use the semantic
information and masks provided by SOLOv2 to extract the 3D semantic tags of the targets
from the point clouds, establishing and updating an instance-level semantic tag library.
Finally, we integrate the semantic information of the targets into the point cloud map to
generate a 3D semantic point cloud map. To accommodate larger scenes and conserve
storage space, we construct an octree semantic map.

An RGB-D camera captures both color and depth information for each pixel in the
scene. By modeling the camera and using its intrinsic and extrinsic parameters, we can map
the 2D pixels in the image to their corresponding 3D points in space, creating a point cloud.
For a given frame, let (x, y) be the 2D coordinates of a pixel p, (X, Y, Z) be the 3D coordinates
of the corresponding spatial point P, and s be the depth value of p. The transformation
relationship between p and P can be expressed as follows:⎡⎣X

Y
Z

⎤⎦ =

⎡⎣ fx 0 cx
0 fy cy
0 0 1

⎤⎦−1⎡⎣x
y
s

⎤⎦ (5)
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The coordinates of P are ⎧⎨⎩
X = s(x − cx)/ fx
Y = s

(
y − cy

)
/ fy

Z = s
, (6)

where fx and fy are the focal length of the RGB-D camera, and cx and cy are the offsets of
the image origin relative to the imaging point of the camera’s optical center. By applying
this transformation to the pixels in the key image frames, we can obtain the corresponding
point cloud.

Figure 5. Framework of scenario semantic map construction algorithm.

To match and stitch point clouds, we utilize the PCL (Point Cloud Library) [43] and
follow a three-step process. First, we find the point cloud that corresponds to a certain
frame and match them. Second, we calculate the transformation matrix between the two
point clouds. Finally, we transform the matched point clouds into the same coordinate
system and stitch them together, resulting in a complete point cloud map of the scene.

The mathematical expression for point cloud stitching can be described as follows:

m = ∑n
i=0 TiCi, (7)

where m is the local point cloud map obtained by generating and stitching the first n image
frames. Ci represents the point cloud obtained from the i-th keyframe, and Ti represents
the position and orientation of the camera corresponding to the i-th keyframe.

To remove outlier noise points from the point cloud map, a statistical filter is em-
ployed to filter the point cloud map to remove these outlier noise points. To address
the issue of overlapping points obtained from different viewing angles while preserving
the shape characteristics of the point cloud map, a voxel filter is used to remove these
overlapping points.

Although we have generated a global 3D point cloud map of the scene through single-
frame point cloud generation, point cloud stitching, and filtering, this point cloud map is
simply geometry-based and does not incorporate the semantic information of targets. As
a result, it cannot provide a deeper understanding of the scene for mobile robots. Therefore,
we designed an algorithm for constructing and updating an instance-level Semantic Tag
Library (STL), presented in Algorithm 1. Firstly, we extract and optimize the 3D point

123



Sensors 2023, 23, 9807

cloud corresponding to each target to generate the corresponding 3D semantic tag. Then,
we match and fuse the semantic tags corresponding to the 3D point clouds extracted from
the same target in different perspectives. Finally, we construct and update the global static
target semantic tag library of the scene.

Algorithm 1 Algorithm of instance-level STL.

Input: semantic information and 3D point cloud of targets
Output: instance-level STL

1 for each 3D point cloud do

2 if an unprocessed point cloud exists then

3 extract & optimize point cloud for semantic tag
4 if semantic tag exists in tag library then

5 calculate spatial consistency of point cloud
6 if dmin < dw then

7 fuse & update STL
8 go to step 18
9 else

10 insert the tag into STL
11 go to step 18
12 end

13 else

14 insert the tag into STL
15 go to step 18
16 end

17 else

18 save STL
19 end

20 end for

Since the SOLOv2 instance segmentation algorithm can accurately segment the target
area, the resulting target mask area is highly precise and contains only pixels corresponding
to the target. This makes it possible to map the target semantic information obtained from
the segmentation directly to the 3D point cloud, resulting in a 3D point cloud corresponding
to each target. The detailed process involves locating the region of each segmented target
instance using the 2D mask, recording the index of the corresponding point cloud for
each pixel in the mask area that matches the semantic mask category, calculating the
average depth of the point cloud in the target mask area, removing outlier points, and
performing statistical and voxel filtering on the point cloud index corresponding to each
target. Instance-level semantic tags are then generated based on the semantic information
and corresponding 3D point clouds.

To update the target semantic tag library, the target semantic tags generated from
the segmentation are compared with existing tags in the library. If a tag with the same
category does not exist, it is added to the library. If it does exist, a spatial consistency
calculation is performed on the 3D point cloud, and if the minimum Euclidean distance
dmin between the centers of the point clouds is less than the average width dw of the
two candidate boxes, they are considered the same target, and the target semantic tag
library is fused and updated. Otherwise, the target semantic tag is inserted into the
library. The library updating process involves merging similar targets’ point clouds and
recalculating their center, maximum, and minimum point coordinates.

After constructing and updating the semantic tag library, the 3D point cloud map
contains the instance-level semantic information of each target in the scenario. However, it
also contains invalid information, such as textures on the ground and shadows in shadowed
areas, which could overload the computing resources. Therefore, to achieve the localization
and mapping of larger-scale scenes, a visual 3D octree semantic map is established by
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performing point cloud semantic extraction on each keyframe and matching and fusing
target point clouds generated from different observations at different positions.

Suppose a certain node in the map is denoted as n, its observed value is z, and the
probability log value of the node from the beginning to the time t is L(n|z1:t ); then, the
probability log value at the time t + 1 is

L(n|z1:t+1 ) = L(n|z1:t−1 ) + L(n|zt ), (8)

written in probabilistic form as

P(n|z1:t ) =

[
1 +

1 − P(n|zt )

P(n|zt )
· 1 − P(n|z1:t−1 )

P(n|z1:t−1 )
· P(n)

1 − P(n)

]−1

(9)

With the help of log probabilities, we can effectively combine and enhance the entire
octree map using RGB-D data. When the depth information of each pixel is converted into
point cloud data, the 3D point cloud representing the target will be contained within the
limits of the corresponding octree sub-node. By increasing the occupancy probability of
that node, we can obtain the occupancy information of the node. Furthermore, by assigning
target semantic RGB color values to each node of the octree, we can create a highly visual
octree semantic map.

6. Experiment and Discussion

6.1. Test of Dynamic Feature Removal Method

To analyze the effectiveness of the dynamic feature removal method, we selected the
fr3/walking_xyz dataset from the TUM dataset [44] for testing. This dataset scenario is
similar to our daily work environment, as shown in Figure 6a, with static objects such
as tables and monitors, dynamic targets such as people, and potential dynamic targets
such as chairs. Two monitors are static, two people are dynamic, and the chair on the left
moves due to the movement of the person and is dynamic, while the chair on the right
has not been moved and is static. Figure 6b presents the ORB feature extraction results,
with feature points marked with green dots distributed throughout the scenario. Many
features are extracted from objects with distinctive features such as people, chairs, and
monitors, which contain numerous dynamic features, such as people. In Figure 6c, we show
the results of removing dynamic features only with the SOLOv2 instance segmentation
method. Although most of the ORB dynamic features on the two people are removed, a few
feature points remain at the contact edge between the people and the chair, limited by the
accuracy of the instance segmentation algorithm. It is difficult to perfectly segment features
at a contact edge, and the SOLOv2 algorithm used in this paper, despite having high
segmentation accuracy for object edges, still has some unavoidable errors. Additionally,
the feature points on the two chairs are not removed since the real state of the potential
dynamic target cannot be accurately distinguished only based on instance segmentation.
Therefore, the two chairs are simply judged as static targets. Figure 6d illustrates the results
of our tightly coupled method for removing dynamic features. Compared to Figure 6c,
almost all the features of the two moving people are removed, indicating that our method
is more effective at reducing the segmentation error of the instance segmentation algorithm.
The features of the chair on the right are judged as static features and preserved, while
the features of the chair on the left are judged to be dynamic and removed, indicating that
our method accurately removes the features of all dynamic objects in the scenario. This is
consistent with the motion state of each target in the test dataset. Table 1 lists the number
of different types of feature points obtained by different methods.

Our findings confirm the effectiveness of our method in accurately eliminating dy-
namic features and minimizing segmentation errors in instance segmentation algorithms.
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(a) (b)

(c) (d)

Figure 6. Comparison of dynamic feature removal method. (a) Original grayscale image. (b) ORB
feature extraction. (c) Dynamic feature removal based on instance segmentation. (d) Dynamic feature
removal based on tightly coupled method.

Table 1. Comparison of the number of different types of feature points.

Dynamic Feature Removal Method
Type of Feature Points

Static Dynamic Potentially Dynamic

ORB feature extraction 144 54 15
Instance segmentation 144 0 15

Tightly coupled method 144 0 0

6.2. Test of Semantic Map Construction Algorithm

We utilized the partial sequence located in the fr1/room of the TUM dataset to conduct
our local semantic mapping evaluation. This dataset provides us with RGB images, depth
images, and the precise position and orientation of the camera. For our mapping test, we
selected five consecutive frames of images. Figure 7a shows the RGB images of the selected
frames, while Figure 7b displays the corresponding depth images.

Figure 7. Selected image frame sequence diagram.
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To create our point cloud map, we stitched and filtered all of the single-frame point
clouds generated from extraction. The point cloud map before and after filtering is depicted
in Figure 8, where Figure 8a,b illustrate the point cloud map before and after filtering,
respectively. Prior to filtering, the point cloud map exhibited a significant amount of
overlap between point clouds and contained numerous outlier noise points. However, after
filtering, the quality of the point cloud map was significantly enhanced. Our experimental
statistical analysis revealed that the numbers of point clouds generated before and after
filtering were 1,118,657 and 634,787, respectively, representing a reduction of almost half
of the total number of point clouds. This highlights how filtering can effectively improve
mapping outcomes and greatly conserve computing resources.

Figure 8. Comparison of point cloud map before and after filtering.

Figures 9 and 10 display the reconstruction results of the octree maps before and after
integrating target semantic color information. In Figure 9, the octree map is annotated with
a gradient color scheme without a specific pattern. In Figure 10, the octree map with the
added target semantic color information contains visualized semantic information of the
scenario’s targets in Figure 8b, which significantly enhances the scenario reconstruction
and produces a visually compelling result. Additionally, Figures 9 and 10 demonstrate the
impact of the octree map at varying resolutions. In our testing, we used a default depth
of 16 layers, with an edge length of each small square measuring 0.05 m. As the depth
decreases by one layer, the leaf nodes of the octree move up one layer, and the edge length
of each small square doubles.

Figure 9. Octree map before integrating target semantic color information.

Figure 10. Octree map after integrating target semantic color information.
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Moreover, the file sizes of the point cloud map and the octree map are 10.2 megabytes and
217.8 kilobytes, respectively. This represents a significant reduction in storage space of nearly
fifty times, highlighting the benefits of using an octree map for reconstructing larger scenarios.

6.3. Experimental Platform and Evaluation Index

To test the feasibility and effectiveness of our SLAM system in complex environments
with dynamic objects, we conducted experiments in static, low-dynamic, and high-dynamic
public datasets, as well as in real laboratory scenarios. In order to simplify subsequent
discussions, we gave our improved SLAM system a name: TSG-SLAM.

An experimental platform for mobile robots was developed to meet the demands of
complex environments. It includes a Mecanum wheel mobile robot, a Kinect V2 depth
camera (Microsoft Inc., Redmond, WA, USA), a computer, and a vehicle-mounted power
supply, among other components. This platform is depicted in Figure 11.

Figure 11. Experimental platform.

The software system is built on Ubuntu 16.04 and utilizes the ROS system for managing
the entire system. The program is primarily written in the C++ language and utilizes
various open-source libraries, including OpenCV for processing keyframe images, Eigen
for matrix operations, Keras for instance segmentation, Ceres for solving least squares
problems during optimization, g2o for graph optimization, PCL for generating point clouds,
and octomap [45] for constructing octree maps.

To assess the localization accuracy of a SLAM system, the absolute trajectory error
(ATE) and the relative pose error (RPE) are used as evaluation metrics to evaluate the
motion trajectory estimation. ATE is employed to assess the overall accuracy of the SLAM
system. The formula for calculating ATE is as follows:

ATE =

√√√√ 1
N

N

∑
i=1

‖ trans(T−1
g,i Te,i) ‖2

2, (10)

where N is the number of frames, and Tg,i and Te,i are the true position value and evaluated
position value of the i-th frame.

The RPE metric is utilized to assess the local accuracy of the trajectory estimation and
the position estimation drift of the SLAM system within a certain fixed time. Within a fixed
time interval t, RPE can be obtained as follows:

RPE =

√√√√ 1
N − Δt

N−Δt

∑
i=1

‖ trans((T−1
g,i Tg,i+Δt)

−1
(T−1

e,i Te,i+Δt)) ‖2
2 (11)

where Δt represents the number of frames within t.
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6.4. Public Dataset Experiments

To test the system, static, low-dynamic, and high-dynamic scenarios were chosen
from the TUM dataset. The selected static scenarios were fr1/desk and fr1/room. The
fr1/desk sequence had a smaller camera movement range, capturing mainly indoor local
scenarios focused on the table and items on it. The fr1/room sequence, on the other hand,
had a larger camera movement range and included most indoor spatial scenarios. To better
analyze the impact of dynamic objects on localization and mapping, dynamic datasets
were selected with dynamic targets as the primary subject. The low-dynamic scenarios
were fr3_sitting_static and fr3_sitting_xyz, which depicted two people sitting in chairs and
talking, accompanied by small movements such as waving and turning their heads. The
fr3_sitting_static camera had a small range of motion, while the fr3_sitting_xyz camera
had a large range of motion around the dynamic subject in the x-y-z direction. The high-
dynamic scenarios were fr3_walking_static and fr3_walking_xyz, depicting two people
with fast and large-scale movements. The camera movements in fr3_walking_static and
fr3_walking_xyz were similar to those in fr3_sitting_static and fr3_sitting_xyz, respectively.

To compare TSG-SLAM’s performance with ORB-SLAM3, we conducted an analysis
of ATE and RPE data, including the mean, median, root mean square error (RMSE), and
standard deviation (STD). The RMSE measures the precision of the observed values, which
reflects the accuracy of the system, while the STD measures the dispersion of the observed
values, which reflects the robustness of the system. Moreover, we also calculated the
improvement rate of TSG-SLAM’s localization performance relative to ORB-SLAM3 by
using the formula below:

η =
δ1 − δT

δ1
× 100%, (12)

where η is the improvement rate (IR) and δT and δ1 are the error of TSG-SLAM and
ORB-SLAM3, respectively.

Table 2 illustrates a comparison of ATE and RPE in static scenarios. As can be observed
from the table, both systems have small errors in all aspects for the local scenario fr1/desk.
In the global scenario fr1/room, ATE increases significantly but still within an acceptable
range, and the errors of the two systems are very close, with some errors being lower than
ORB-SLAM3. ORB-SLAM3 is presently one of the most mature visual SLAM algorithms
known for its high localization accuracy in static scenarios. TSG-SLAM introduces a
dynamic feature removal module based on ORB-SLAM3, and its effect is not significant
in static scenarios. Thus, the localization accuracy of both systems in static scenarios
is quite similar.

Table 2. Comparison of ATE and RPE in static scenarios.

Evaluation
Index

fr1/Desk fr1/Room

ORB-SLAM3 TSG-SLAM IR ORB-SLAM3 TSG-SLAM IR

ATE
(m)

Mean 0.0178 0.0160 10.11% 0.0579 0.0512 11.57%
Median 0.0144 0.0132 8.33% 0.0468 0.0415 11.32%
RMSE 0.0212 0.0191 9.91% 0.0660 0.0589 10.76%
STD 0.0114 0.0105 7.90% 0.0318 0.0297 6.60%

RPE
(m)

Mean 0.0144 0.0140 2.78% 0.0146 0.0149 −2.05%
Median 0.0097 0.0102 −5.15% 0.0113 0.0117 −3.54%
RMSE 0.0196 0.0192 2.04% 0.0189 0.0192 −1.59%
STD 0.0134 0.0131 2.24% 0.0119 0.0123 −3.36%

Figures 12 and 13 show a comparison of estimated trajectories and true trajectories for
the fr1/desk and fr1/room sequences, respectively. The estimated trajectory closely follows
the true trajectory. Therefore, in static scenarios, TSG-SLAM does not have a significant
advantage in localization performance, and both systems exhibit high localization accuracy.
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Figure 12. Estimated trajectory vs. true trajectory for fr1/desk.

Figure 13. Estimated trajectory vs. true trajectory for fr1/room.

Table 3 compares ATE and RPE in low-dynamic scenarios. In the fr3/sitting_static
sequence that focuses on dynamic targets, TSG-SLAM has smaller errors compared to
ORB-SLAM3, with RMSE improvement rates of 45.45% and 34.05% for ATE and RPE,
respectively. Similarly, in the fr3/sitting_xyz sequence with a larger field of view, the RMSE
improvement rates also reach 39.2% and 20.71% for ATE and RPE, respectively. Figures 14
and 15 show a comparison of estimated and true trajectories for the fr3/sitting_static and
fr3/sitting_xyz sequences, respectively. ORB-SLAM3 exhibits a certain deviation between
the estimated and true trajectories, especially for the fr3/sitting_static sequence, while
TSG-SLAM’s estimated trajectory is much closer to the true trajectory. Therefore, in low-
dynamic scenarios, TSG-SLAM has a definite advantage in localization, and its localization
accuracy is significantly improved.
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Table 3. Comparison of ATE and RPE in low dynamic scenarios.

Evaluation
Index

fr3/sitting_static fr3/sitting_xyz

ORB-SLAM3 TSG-SLAM IR ORB-SLAM3 TSG-SLAM IR

ATE
(m)

Mean 0.0143 0.0074 48.25% 0.0105 0.0064 39.05%
Median 0.0133 0.0060 54.89% 0.0088 0.0046 47.73%
RMSE 0.0154 0.0084 45.45% 0.0125 0.0076 39.2%
STD 0.0058 0.0039 32.76% 0.0067 0.0049 26.86%

RPE
(m)

Mean 0.0174 0.0105 39.66% 0.0161 0.0129 19.88%
Median 0.0168 0.0087 48.21% 0.0125 0.0096 23.2%
RMSE 0.0185 0.0122 34.05% 0.0198 0.0157 20.71%
STD 0.0161 0.0112 30.43% 0.0116 0.009 22.41%

Figure 14. Estimated trajectory vs. true trajectory for fr3/sitting_static.

Figure 15. Estimated trajectory vs. true trajectory for fr3/sitting_xyz.
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Table 4 compares ATE and RPE in high-dynamic scenarios. The errors of ORB-SLAM3
are significant, especially the RMSE of ATE, reaching 0.3832 m and 0.7123 m for the
fr3/sitting_static and fr3/sitting_xyz sequences, respectively. In contrast, TSG-SLAM
controls the errors well, with both the RMSE and STD improvement rates of ATE exceeding
96%. This indicates that TSG-SLAM has greatly improved global localization accuracy and
stability in high dynamic scenarios, and the RMSE and STD improvement rates of RPE also
exceed 55%. Figures 16 and 17 show a comparison of estimated and true trajectories for
the fr3/sitting_static and fr3/sitting_xyz sequences, respectively. The estimated trajectory
of ORB-SLAM3 exhibits significant deviation from the true trajectory, while the estimated
trajectory of TSG-SLAM has some deviation from the true trajectory, but they are still
relatively close overall. Therefore, in high-dynamic scenarios, ORB-SLAM3 is unable
to function effectively, while TSG-SLAM can still function stably and has significantly
improved localization accuracy.

Figure 16. Estimated trajectory vs. true trajectory for fr3/walking_static.

Figure 17. Estimated trajectory vs. true trajectory for fr3/walking_xyz.
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Table 4. Comparison of ATE and RPE in high-dynamic scenarios.

Evaluation
Index

fr3/walking_static fr3/walking_xyz

ORB-SLAM3 TSG-SLAM IR ORB-SLAM3 TSG-SLAM IR

ATE
(m)

Mean 0.3697 0.0054 98.54% 0.5975 0.0228 96.18%
Median 0.3534 0.0046 98.70% 0.5835 0.0171 97.07%
RMSE 0.3832 0.0010 99.74% 0.7123 0.0121 98.30%
STD 0.1009 0.0024 97.62% 0.3877 0.0121 96.87%

RPE
(m)

Mean 0.0212 0.0074 65.09% 0.0311 0.0251 19.29%
Median 0.0093 0.0049 47.31% 0.0207 0.0163 21.26%
RMSE 0.0367 0.0094 74.39% 0.0850 0.0376 55.76%
STD 0.0300 0.0059 80.33% 0.0790 0.0280 64.56%

To evaluate the superior localization performance of TSG-SLAM in complex environ-
ments with dynamic objects, we compared it with several dynamic SLAM systems that have
shown good performance in recent years, such as DS-SLAM, DynaSLAM, MISD-SLAM,
and RDS-SLAM. Since we used different computers for testing, we could not directly
compare the error data obtained. Therefore, we used the relative accuracy improvement
rates of these dynamic SLAM systems compared to ORB-SLAM3 as the evaluation standard
for a performance comparison, specifically the RMSE and STD improvement rates of ATE.

The comparison results are presented in Table 5. In the low-dynamic scenarios of
fr3/sitting_static, TSG-SLAM demonstrated a significant advantage compared to other
dynamic SLAM systems. The ATE improvement rate was much higher than that of the
other dynamic SLAM systems thanks to the high dynamic segmentation accuracy of the
dynamic feature removal method proposed in this paper. The data for DynaSLAM are not
provided in the relevant paper; therefore, no comparison could be made. In high-dynamic
scenarios, all dynamic SLAM systems showed significant improvements compared to the
ORB-SLAM3 system. Although TSG-SLAM had slightly lower improvement rates than
some dynamic SLAM systems, it still had certain advantages overall.

Table 5. Comparison of ATE improvement rates of all SLAM system relative to ORB-SLAM3.

Dataset Index
ATE Improvement Rate

DS-SLAM Dyna SLAM MISD-SLAM RDS-SLAM TSG-SLAM

fr3/walking_static
RMSE 97.76% 98.11% 63.31% 97.78% 99.74%

STD 97.83% 97.89% 68.92% 97.37% 97.62%

fr3/walking_xyz
RMSE 97.30% 98.21% 95.54% 98.39% 98.30%

STD 96.69% 98.23% 94.89% 98.52% 96.87%

fr3/sitting_static
RMSE 27.78% - 11.94% 30% 45.45%

STD 23.26% - 24.23% 25.58% 32.76%

In summary, the TSG-SLAM system overcomes the challenges posed by moving targets
in complex environments and demonstrates reliable performance in various dynamic
environments with high localization accuracy and stability. It also performs comparably to
other top-performing dynamic SLAM systems in certain low-dynamic scenarios and even
outperforms them in terms of localization accuracy.

An experimental evaluation was conducted to assess the instance-level semantic
mapping performance of TSG-SLAM in static, low-dynamic, and high-dynamic scenarios.
Figure 18 depicts the results of scene semantic mapping on six datasets, including fr1/desk,
fr1/room, fr3/sitting_static, fr3/sitting_xyz, fr3/walking_static, and fr3/walking_xyz.
TSG-SLAM successfully constructs 3D geometric models of the objects in the scenarios and
adds semantic tag color information for the objects, which enhances the map’s visualization,
such as the blue screen, red chair, and gray table.
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Figure 18. Octree semantic map construction results.

Figure 18a,b show the results of semantic map construction for the indoor static sce-
nario with the desktop as the main object and the larger global static scenario, respectively.
The scenarios and targets appearing in the sequence were accurately reconstructed, and
semantic color information was added to the targets.

Figure 18c,d demonstrate the results of semantic map construction for low-dynamic
scenarios. It can be observed that even two people only slightly moving their hands and
heads were successfully segmented and most of the features on their bodies were removed,
leaving only the static targets for reconstructing the scenario. Additionally, Figure 18c has a
smaller reconstruction range than Figure 18d but with better results due to capturing more
data from the local screen area caused by a smaller camera movement range. Meanwhile,
the camera’s view in Figure 18c is limited, and some scenarios blocked by people were not
reconstructed and remain blank, while most of the scenarios blocked by moving people in
Figure 18d were reconstructed.

Figure 18e,f depict the results of constructing semantic maps for high-dynamic sce-
narios. It can be seen that the features of the two moving persons were removed, and the
parts of the scenario occluded by people were also reconstructed. The overall scenario
reconstruction is relatively complete. The camera motion in Figure 18e is slower and has a
smaller range, so the reconstruction scope is smaller, but the reconstruction effect is better.

Therefore, TSG-SLAM, with the help of its dynamic feature segmentation module, is ca-
pable of effectively handling the presence of dynamic objects in both static and dynamic sce-
narios, reconstructing scenarios accurately, acquiring the instance-level semantic informa-
tion of objects, and building a static 3D semantic map with dynamic interference removed.
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6.5. Real-World-Scenario Experiments

In order to verify the effectiveness of the TSG-SLAM system in real-world scenarios,
experiments on the simultaneous localization and semantic mapping of mobile robots
were conducted in an indoor laboratory. Due to the challenge of replicating identical
trajectories for a mobile robot, an experiment was conducted using a mobile robot that
was remotely controlled to move around in an indoor laboratory. A dataset was generated
with the camera’s viewpoint identical to that of the robot’s movements which was used
to evaluate the ORB-SLAM3 and TSG-SLAM systems. The evaluation was carried out
on two different experimental scenarios, one static and the other dynamic, to assess the
system’s performance in simultaneous localization and semantic mapping. To simulate
a dynamic environment, the experimenter moved freely around the scenario, capturing
image sequences from various angles, as shown in Figure 19.

Figure 19. Partial image sequence of real scenario.

In real-world scenarios, it is challenging to obtain an accurate camera motion trajectory.
Therefore, the estimated trajectories of TSG-SLAM and ORB-SLAM3 were compared based
on the dataset captured by the mobile robot in the experimental scenario. As the ground
upon which the mobile robot moves is nearly horizontal, a 2D estimated trajectory plot in
the x-y direction was created to facilitate the comparison of the estimated trajectories.

Figure 20 presents a comparison of the trajectory estimation between TSG-SLAM and
ORB-SLAM3 in static scenarios. The use of Mecanum wheels with differential steering for
the mobile robot can cause jitter in the camera when the steering angle is large, leading
to more fluctuations in the estimated trajectory during sharp turns. Nevertheless, the
estimated trajectories of TSG-SLAM and ORB-SLAM3 in real static scenarios are nearly
identical, which is consistent with the comparison results of the estimated trajectories in
public static datasets. As ORB-SLAM3 has good localization accuracy in static scenarios,
this result indicates that TSG-SLAM also performs well in real static scenarios.

Figure 20. Comparison of estimated trajectory for real static scenarios.
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Figure 21 illustrates a comparison of the trajectory estimation between TSG-SLAM
and ORB-SLAM3 in dynamic scenarios. In the first half of the trajectory, where no dy-
namic targets are observed or are still far away from the camera, both methods produce
almost identical trajectory estimations. However, in the middle section, where the camera
approaches the dynamic target (marked with a red box in Figure 21), ORB-SLAM3 is signif-
icantly affected, resulting in substantial fluctuations in the estimated motion trajectory. On
the other hand, TSG-SLAM, which processes the dynamic target, is less affected, leading to
smaller fluctuations in the estimated trajectory.

Figure 21. Comparison of estimated trajectory for real dynamic scenarios.

Figure 22 depicts a semantic octree map in a real scenario. Figure 22a,b display the
map reconstruction results in static and dynamic scenarios, respectively. Due to the large
scenario size and limited data collection, some details are still missing in the semantic map.
Nevertheless, the overall effect is impressive, and the 3D geometric models of objects in
the actual scenario were established well, with semantic tags and color information added,
such as black displays and red tables, which produce a good visualization effect. Figure 22b
indicates that TSG-SLAM only reconstructed static targets, while the moving experimenters
were not reconstructed. This demonstrates that the dynamic feature module of TSG-SLAM
successfully removed the features of dynamic targets, validating the effectiveness of the
semantic mapping of TSG-SLAM in real-world dynamic environments.

Figure 22. Semantic map of real scenario.
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7. Conclusions

This paper introduces TSG-SLAM, a simultaneous localization and semantic mapping
method tailored for complex environments. The approach aims to address the impact of
dynamic objects on mapping accuracy and the demand for semantic mapping in mobile
robots. TSG-SLAM adds two threads to ORB-SLAM3’s three-thread structure: dynamic
feature removal and semantic map construction. The dynamic feature removal module
tightly integrates the SOLOv2 instance segmentation algorithm with multi-view geometry
techniques to detect and eliminate dynamic features, mitigating the influence of dynamic
objects on visual SLAM systems. The semantic map construction module fuses target
semantic information obtained by the instance segmentation algorithm with the 3D se-
mantic point cloud, creating a 3D octree semantic map containing instance-level semantic
information. Experimental results from the use of both public datasets and real-world
scenarios demonstrate that TSG-SLAM can counteract the effects of moving objects on
localization, exhibit excellent adaptability to dynamic environments, and ensure high
localization accuracy and stability. The efficacy of the TSG-SLAM system’s 3D semantic
mapping is also validated, providing a theoretical foundation for mobile robots to execute
high-level tasks, such as navigation and interaction in complex environments.

Future work is anticipated to focus on three key areas. Firstly, to mitigate the impact
on system efficiency, the exploration of lightweight processing methods is proposed to
improve segmentation speed and ensure high real-time performance. Secondly, to enhance
localization and semantic mapping accuracy, the integration of depth information is sug-
gested, addressing the limitations of the current 2D-based instance segmentation algorithm.
Lastly, a more detailed analysis and testing will be conducted on the impact of the quantity
and movement patterns of dynamic objects on the system.
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Abstract: This paper proposes an improved Soft Actor–Critic Long Short-Term Memory (SAC-LSTM)
algorithm for fast path planning of mobile robots in dynamic environments. To achieve continuous
motion and better decision making by incorporating historical and current states, a long short-term
memory network (LSTM) with memory was integrated into the SAC algorithm. To mitigate the
memory depreciation issue caused by resetting the LSTM’s hidden states to zero during training, a
burn-in training method was adopted to boost the performance. Moreover, a prioritized experience
replay mechanism was implemented to enhance sampling efficiency and speed up convergence.
Based on the SAC-LSTM framework, a motion model for the Turtlebot3 mobile robot was established
by designing the state space, action space, reward function, and overall planning process. Three
simulation experiments were conducted in obstacle-free, static obstacle, and dynamic obstacle envi-
ronments using the ROS platform and Gazebo9 software. The results were compared with the SAC
algorithm. In all scenarios, the SAC-LSTM algorithm demonstrated a faster convergence rate and a
higher path planning success rate, registering a significant 10.5 percentage point improvement in the
success rate of reaching the target point in the dynamic obstacle environment. Additionally, the time
taken for path planning was shorter, and the planned paths were more concise.

Keywords: mobile robot; path planning; SAC-LSTM algorithm; burn-in mechanism; prioritized
experience replay mechanism

1. Introduction

Mobile robot path planning is a crucial technique that enables robots to navigate
through an environment while avoiding obstacles. This is achieved by planning a collision-
free path [1] from the robot’s current position to a desired destination based on environmen-
tal information obtained through sensors. Traditional path planning methods encompass a
variety of algorithms with different principles and application scenarios. These methods
can be classified into global and local path planning algorithms, including graph search
methods, random sampling methods, bionic algorithms, artificial potential field methods,
simulated annealing algorithms, neural network methods, and dynamic window methods.

Classical graph search algorithms include Dijkstra [2], A* [3], and D* [4]. The Dijkstra
algorithm solves the shortest path problem from a single point to all other vertices in a
directed graph using a greedy algorithm. Although it can obtain the optimal path, it has
a high computational cost and low efficiency. The A* algorithm, based on the Dijkstra
algorithm, improves efficiency by adding the heuristic information, but its effectiveness
in complex environments is not guaranteed. Moreover, this algorithm is only suitable
for static environments and it performs poorly in dynamic environments. The D* algo-
rithm is an improved version of the A* algorithm that can be applied in dynamically
changing scenarios.

Classical random sampling methods such as Probabilistic Roadmap (PRM) [5] and
Rapidly Exploring Random Tree (RRT) [6] have been widely used in robot path planning
and motion control fields. The Lazy PRM [7] algorithm is an improved version of the PRM
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algorithm that enhances efficiency by reducing the number of calls to the local planner.
Liu et al. [8] improved the RRT algorithm by using a goal-biased sampling strategy to
determine the nodes and introduced an event-triggered step length extension based on the
hyperbolic tangent function to improve node generation efficiency. Euclidean distance and
angle constraints were used in the cost function of node connection optimization. Finally,
the path was optimized further using path pruning and Bezier curve smoothing methods,
leading to an improved convergence and accuracy.

Bionic algorithms are heuristic optimization algorithms based on the evolution and
behavior of biological organisms in nature, mainly including genetic algorithms [9] and ant
colony algorithms [10]. Liang et al. [11] integrated the ant colony algorithm and genetic
algorithm to propose a hybrid path planning algorithm, which used a genetic algorithm to
generate initial paths and then used an ant colony algorithm to optimize them, significantly
improving the accuracy and efficiency of path planning.

The artificial potential field method [12] was first applied in the mobile robot path
planning field in 1986. Zha et al. [13] improved the artificial potential field method by
adding a distance factor between the target point and the vehicle in the repulsive force
function, and a safety distance within the influence range of obstacles. The experimental
results showed that when the vehicle was driving within the safety distance of obstacles,
it would be subject to increased repulsive force, ensuring the safety of the vehicle during
driving. Zhao et al. [14] proposed a multi-robot path planning method based on an
improved artificial potential field and a fuzzy inference system, which overcame the
problem of smooth path planning existing in traditional artificial potential field methods
by using the incremental potential field calculation method.

Afifi et al. [15] proposed a vehicle path planning method based on a simulated an-
nealing algorithm, which solved the vehicle path planning problem under time window
constraints, using the simulated annealing algorithm for path optimization and search.
Jun et al. [16] proposed a particle swarm optimization combined with simulated annealing
(PSO-ICSA) to self-adaptively adjust the coefficients, enabling high-dimension objects to
enhance the global convergence ability.

Zhang et al. [17] proposed an indoor mobile robot path planning method based on
deep learning. They used deep learning models to extract features from sensor data to
predict the robot’s motion direction and speed, achieving good results in experiments.
During robot path planning, when the environment changes, the robot re-executes the
algorithm, significantly increasing the time to find the optimal path. Dimensionality
reduction seems to be a solution to this problem. Ferreira et al. [18] proposed a path
planning algorithm based on a deep learning encoder model. They built a CNN encoder that
uses nonlinear correlations to reduce data dimensions, eliminating unnecessary information
and accelerating the efficiency of finding the shortest path.

Bai et al. [19] combined a dynamic window algorithm with the A* algorithm to propose
an unmanned aerial vehicle path planning method. Experiments proved that the improved
algorithm significantly reduced both path planning length and time. Lee et al. [20] proposed
a dynamic window approach based on finite distribution estimation. Experimental results
showed that this method could achieve a reliable obstacle avoidance effect for mobile robots
and exhibited good performance in multiple scenarios.

Most of the above methods heavily rely on environmental map information. When
faced with unknown environments, these methods may not achieve ideal results. When
mobile robots are in unknown environments, due to the lack of environmental cognition,
they must have certain exploration and autonomous learning abilities to efficiently complete
path planning tasks. Therefore, studying mobile robot path planning algorithms that rely
on little or no map information of the environment and have autonomous learning abilities
has become one of the current key research topics.

Recently, artificial intelligence technologies represented by deep learning and rein-
forcement learning have developed rapidly. Reinforcement learning algorithms do not rely
on map information and can learn path planning strategies in unknown environments by
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interacting with the environment through trial and error. However, reinforcement learning
is prone to the problem of dimensionality disaster in the path planning process. Deep learn-
ing is an end-to-end model that can fit the mapping relationship between high-dimensional
input and output data, and is suitable for dealing with high-dimensional data problems.
Deep reinforcement learning combines the advantages of deep learning and reinforcement
learning and has a huge advantage over other path planning methods when dealing with
complex unknown environments. Nevertheless, path planning methods based on deep
reinforcement learning still face problems such as sparse rewards, a slow learning rate, and
difficult convergence in application process.

This paper focuses on the indoor mobile robot path planning problem in complex and
unknown dynamic environments with several static and dynamic obstacles, using the Soft
Actor–Critic (SAC) algorithm as the main method. The SAC algorithm, while powerful,
exhibits certain limitations, namely (1) difficulty in processing complex or dynamic environ-
mental information; (2) inadequacy in handling long-term dependencies in path planning;
and (3) lack of predictive capability for future environmental states. To address these short-
comings, an improved SAC-LSTM algorithm is proposed. The main contributions of this
paper are as follows. First, the LSTM network with memory capability is introduced into
the SAC algorithm, allowing the agent to make more reasonable decisions by combining
historical and current states and predict the dynamic changes in the environment, such
as the future positions of moving obstacles. Second, the burn-in training mechanism is
introduced to solve the problem of memory impairment caused by the hidden state being
zeroed during the training process of the LSTM network, stabilizing the learning process,
especially in the early stages of training. Third, by combining the prioritized experience
replay mechanism, the problem of low sampling efficiency of the algorithm is solved, and
the convergence speed of the algorithm is accelerated. Fourth, a complex dynamic test
scenario is constructed for indoor mobile robots, featuring multiple stationary and moving
obstacles of various sizes and shapes, as well as different motion trajectories, making the
test scenario more realistic.

The rest of this paper is organized as follows: Section 2 provides an overview of related
works regarding path planning methods in dynamic environments. Section 3 describes the
proposed SAC-LSTM system framework and algorithms in detail. Section 4 presents the
experimental results and performance analysis. Finally, Section 5 concludes the paper and
discusses future research directions.

2. Related Work

In recent years, researchers have started to apply deep reinforcement learning (DRL)
algorithms to the field of path planning to solve complex problems. In 2016, Tai et al. [21]
first applied the DQN algorithm to indoor mobile robots, which could complete path plan-
ning tasks in indoor scenarios, but the algorithm had low generalization. Wang et al. [22]
introduced an improved DQN algorithm combined with artificial potential field methods to
design reward functions, improving the efficiency of mobile robot path planning. However,
it could not achieve continuous action output for robots.

Lei et al. [23] proposed a path planning algorithm using a DDQN framework with
environment information obtained through LiDAR. It designed a new reward function to
address the instability issue during training, improving algorithm stability, but its applica-
tion was limited to simple scenarios with no guarantee of efficiency in complex situations.
Tai et al. [24] used an asynchronous deterministic policy gradient algorithm to build a
mapless path planner with input from the mobile robot’s LiDAR-scanned environment
information. After a period of training, the mobile robot could successfully reach the
designated target, but the planned path was relatively tortuous.

In [25], a deep reinforcement learning-based online path planning algorithm was
proposed, successfully achieving path planning for drones in dynamic environments.
Zhang et al. [26] combined the advantages of DRL and interactive RL algorithms and pro-
posed a deep interactive reinforcement method for autonomous underwater vehicle (AUV)
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path tracking, achieving path tracking in a Gazebo-simulated environment. In [27], the
DDPG algorithm was extended to a parallel deep deterministic policy gradient algorithm
(PDDPG) and applied to multi-robot mapless collaborative navigation tasks.

Wang et al. [28] proposed an end-to-end modular DRL architecture that decomposed
navigation tasks in complex dynamic environments into local obstacle avoidance and
global navigation subtasks, using DQN and dual-stream DQN algorithms to solve them,
respectively. Experiments demonstrated that this modular architecture could efficiently
complete navigation tasks. Gao et al. [29] introduced an incremental training mode to
address the low training efficiency in DRL path planning. In [30], incorporating a curiosity
mechanism into the A3C algorithm provided an additional reward for the exploration
behavior of mobile robots, addressing the reward sparsity issue to some extent.

De Jesus et al. [31] proposed a mobile robot path planning algorithm based on SAC,
achieving path planning in different scenarios built on ROS. However, the algorithm still
faced the problem of sparse environmental rewards. Park, K.-W. et al. [32] employed the
SAC algorithm to solve the path planning problem for multi-arm manipulators to avoid
fixed and moving obstacles, and used the LSTM network to predict the position of the
moving obstacles. The simulation and experimental results showed the optimal path and
good prediction of obstacle position. Although the simulation and experimental scenario
considered moving obstacles, there was only one moving obstacle, lacking verification for
multiple obstacles. Additionally, the multi-arm manipulators used a camera in conjunction
with the OpenCV vision algorithm to detect obstacles, which has limited effectiveness in
detecting and predicting multiple moving obstacles.

In addition to LSTM, the metaheuristic-based recurrent neural network (RNN) [33]
has also been applied to control mobile robotic systems. The metaheuristic-based RNNs
often integrate optimization algorithms (such as genetic algorithms and particle swarm
optimization) with neural network characteristics. The Beetle Antennae Olfactory Recurrent
Neural Network (BAORNN) [34] is a metaheuristic-based control framework used for
simultaneous tracking control and obstacle avoidance in redundant manipulators. A key
feature of this framework is that it unifies tracking control and obstacle avoidance into
a single constrained optimization problem, actively rewarding the optimizer to avoid
obstacles by introducing a penalty term in the objective function. The distance calculation
is based on the Gilbert–Johnson–Keerthi algorithm, which calculates the distance between
the manipulator and obstacles by directly using their three-dimensional geometric shapes.
In contrast, the RNN may offer more flexibility in solving specific control and optimization
problems, but might not match the LSTM’s proficiency in handling complex sequential
data and long-term dependencies.

As seen from the above literature, DRL-based path planning methods have the advan-
tages of not relying on map information and autonomous learning capabilities, making
them highly suitable for path planning tasks in unknown environments. However, during
application, there are still issues such as sparse rewards, slow learning rates, and difficulty
in converging the algorithm. In particular, in dynamic or complex environments, the SAC
algorithm may require more accurate environmental models for effective learning. This
could be difficult to achieve in practice, particularly in environments with high uncertainty
or rapid changes. The SAC algorithm might be insufficient in effectively dealing with highly
dynamic or non-stationary environments, where environmental states and dynamics can
change rapidly.

3. Path Planning System

3.1. Framework of Path Planning

The task of the mobile robot path planning algorithm is to plan an optimal path
from the starting point to the destination, while minimizing the robot’s movement cost,
avoiding obstacles, and enabling the robot to reach the destination as quickly as possible.
The deep reinforcement learning algorithm is designed to learn a strategy that enables the
agent to maximize its reward through interactions with the environment. Applying this
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algorithm to the mobile robot path planning task essentially transforms the path planning
problem into a reinforcement learning problem. The strategy that allows the robot to
quickly reach the target point is learned by having the mobile robot try different actions
and interact with the environment. The process of interacting with the environment is a
Markov Decision Process (MDP), which requires defining the state space, action space, and
reward function. This article proposes the application of the SAC-LSTM algorithm to the
mobile robot path planning task, as depicted in Figure 1. In this framework, the SAC-LSTM
algorithm combines historical and current states to select an action and controls the mobile
robot to execute the action in the environment. After interacting with the environment,
the mobile robot receives a reward value and a state value. During the training process,
important experience samples are prioritized using the prioritized experience replay, and
the algorithm is trained using the burn-in mechanism to obtain an optimal strategy for
quickly reaching the target point.

Figure 1. Path planning framework based on SAC-LSTM.

3.2. SAC-LSTM Algorithm

The Soft Actor–Critic (SAC) algorithm is an off-policy Actor–Critic algorithm based on
the maximum entropy model framework. Off-policy learning improves sample efficiency
and reduces training time by utilizing data generated from a behavioral policy to train
the target policy. The Actor–Critic framework allows the algorithm to be applied to
continuous state and action spaces, thus expanding the range of actions and states that can
be selected. To prevent premature convergence and avoid local optima, the SAC algorithm
uses a stochastic policy. Additionally, introducing entropy during the learning process
improves the algorithm’s ability to explore the environment and enhances its performance
and robustness.

3.2.1. Maximum Entropy Principle

Entropy is a measure of uncertainty or randomness in a system, used in information
theory. It is inversely proportional to system certainty and directly proportional to system
randomness. Let x be a random variable with probability density function P(X). The
entropy H(P) of X can be calculated according to

H(P) = E
X∼P

[− log P(X)]. (1)
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Classical reinforcement learning algorithms adopt a learning strategy that seeks to
maximize the expected value of cumulative rewards. This objective is expressed in the
following expression

π∗ = argmax
π

Q(s, a) = argmax
π

E
[
∑∞

t=0 R(st, at)
]
, (2)

where the action-value function Q(s, a) represents the expected return obtained by taking
a certain action a in a state s based on the policy function π. The reward value R(s, a) is
the expected value of the sum of immediate rewards for all possible actions at any given
time t, denoted as R(s, a) = E[Rt+1 | St = s, At = a], in which s and a represent the state
and action at time t, respectively.

The objective of the SAC algorithm in reinforcement learning is to maximize the
entropy-regularized reward, which is the sum of cumulative reward and policy entropy. In
other words, the SAC algorithm incorporates policy entropy in addition to maximizing the
cumulative reward in classical reinforcement learning algorithms. The process of finding
the optimal policy in the SAC algorithm is represented by Equation (3).

π∗ = argmax
π

E
τ∼π

⎡⎢⎣ ∞

∑
t=0

γt

⎛⎜⎝R(st, at, st+1)︸ ︷︷ ︸
reward

+ αH(π(·|st))︸ ︷︷ ︸
entropy

⎞⎟⎠
⎤⎥⎦ (3)

In Equation (3), α is the entropy regularization coefficient, which adjusts the relative
importance of reward and entropy. A higher value of α indicates a larger proportion of
entropy, prompting the intelligent agent to explore the environment and employ diverse
actions to achieve its objectives. Conversely, a lower value of α implies a reduced emphasis
on entropy, causing the intelligent agent to rely more on existing actions to accomplish its
objectives. A trajectory τ is a sequence of states and actions, where τ = (s0, a0, s1, a1, . . .).
γ ∈ (0, 1) is the discount factor. Similarly, compared to classical reinforcement learning
algorithms, the SAC algorithm adds entropy rewards to both the value function Vπ and
the action-value function Qπ . The specific definitions are shown in Equations (4) and (5),

Vπ(s) = E
τ∼π

[
∞

∑
t=0

γt(R(st, at, st+1) + αH(π(·|st)))

∣∣∣∣∣s0 = s

]
(4)

Qπ(s, a) = E
τ∼π

[
∞

∑
t=0

γtR(st, at, st+1) + α
∞

∑
t=1

γtH(π(·|st))

∣∣∣∣∣s0 = s, a0 = a

]
(5)

The relationship between Vπ(s) and Qπ(s) is as follows:

Vπ(s) = E
a∼π

[Qπ(s, a)] + αH(π(·|s)) (6)

and the Bellman equation for Qπ(s) is

Qπ(s, a) = E
s′ ∼ P
a′ ∼ π

[R(s, a, s′) + γ(Qπ(s′, a′) + αH(π(·|s′)))]

= E
s′∼P

[R(s, a, s′) + γVπ(s′)]
. (7)

Based on the above steps, the policy network can iteratively update its network
parameters using the iterative Bellman equation in order to obtain the optimal policy.

3.2.2. Updating Process of SAC Algorithm

This paper utilizes an entropy-weighted SAC algorithm with automatic adjustment
of α. The algorithm consists of two Q networks (Critic networks) and one Actor network
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(Policy network). The subsequent sections will present the updating processes of the Q
networks and the Actor network.

1. Updating Process of the Q Networks

The Q networks are updated by sampling experiences (st, at, rt, st+1, d) from the experi-
ence replay buffer. The estimation of the state-action value for the Q networks is calculated
by

Qπ(st, at) ≈ rt + γ(Qπ(st+1, ãt+1)− α log π(ãt+1|st+1)), ãt+1 ∼ π(·|st+1) (8)

where ãt+1 is the prediction of the action at+1 by the Actor network. The SAC algorithm
employs the mean squared loss function as its loss. Define D = {τi}i=1,...,N as a set of
trajectories, where each trajectory is obtained by letting the agent act in the environment
using the policy πθ . The loss function for the Q networks is defined as follows:

L
(
φj, D

)
=

1
|D| ∑

(st ,at ,rt+1,st+1,d)∈D

[(
Qφj(st, at)− Qtarget (rt, st+1, d)

)2
]

, j = 1, 2 (9)

where |D| = N is the number of trajectories in D.
The SAC algorithm incorporates the clipped double-Q technique during the training

of the Q networks. Consequently, Qtarget(rt, st+1, d) takes the minimum Q-value between
the two Q approximators. The specific definition is as follows:

Qtarget(rt, st+1, d) = rt + γ(1 − d)
(

min
j=1,2

Qφtarg,j(st+1, ãt+1)− α log πθ(ãt+1|st+1)

)
, ãt+1 ∼ πθ(·|st+1). (10)

2. Updating Process of the Actor Network

The SAC algorithm utilizes a squashed Gaussian policy to select actions, which means
that action samples are obtained according to

ãθ(s, ξ) = tanh(μθ(s) + σθ(s)� ξ), ξ ∼ N (0, I), (11)

where θ represents the parameters of the Actor network πθ , μθ(s) and σθ(s) respectively
correspond to the mean and standard deviation of the action distribution outputted by
the Actor network πθ , and ξ denotes a random noise that follows a normal distribution.
The reparameterization technique is used to optimize the policy in order to rewrite the
expectation over actions into an expectation over noise, as follows:

E
a∼πθ

[Qπθ (s, a)− α log πθ(a|s)] = E
ξ∼N

[Qπθ (s, ãθ(s, ξ))− α log πθ(ãθ(s, ξ)|s)]. (12)

To obtain the policy loss, the final step is to substitute Qπθ (s, ãθ(s, ξ)) with one of two
function approximators. The policy of the Actor network πθ is thus optimized according to

L(πθ ,D) = max
θ

E
s ∼ D
ξ ∼ N

[
min
j=1,2

Qφj(s, ãθ(s, ξ))− α log πθ(ãθ(s, ξ)|s)
]

, (13)

where min
j=1,2

Qφj(s, ãθ(s, ξ)) is the minimum of the two Q approximators.

3.2.3. LSTM Network

During the process of mobile robot path planning, individual states often fail to
provide sufficient information to guide the robot in making optimal decisions. As a
result, this paper proposes enhancements to the neural network of the SAC algorithm by
incorporating LSTM (Long Short-Term Memory) neural networks [35]. By introducing
LSTM networks, the algorithm gains the ability to retain and utilize past states alongside
the current state, enabling it to make more informed and rational decisions.
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Conventional fully connected neural networks are limited in their ability to effectively
address time-dependent problems, as their outputs are solely determined by the input at
the current time step. However, the Recurrent Neural Network (RNN) provides a solution
to this challenge. By incorporating recurrent networks within their architecture, RNNs have
demonstrated remarkable efficacy in handling time-dependent problems. Nevertheless,
during the training process, RNNs are susceptible to issues such as gradient vanishing or
exploding. LSTM networks introduce the gated mechanisms on the foundation of RNNs,
allowing for selective information retention and addressing the limitations of traditional
RNNs. The LSTM structure comprises three essential gates: the forget gate f, the input
gate i, and the output gate o. The forget gate f determines how much information from
the previous time step’s memory cell Ct−1 should be retained for the current time step’s
memory cell Ct. The input gate i regulates the amount of current time step’s information
to be stored in the candidate state C̃t. The output gate o controls the extent to which
information from the current time step’s memory cell Ct should be conveyed to the current
hidden state Yt. The diagram depicting the structure of the LSTM neural networks is
illustrated in Figure 2.
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Figure 2. Structure diagram of LSTM neural networks.

In Figure 2, t refers to the current time. Xt−1, Xt, and Xt+1 correspond to the inputs
of the previous, current, and next time steps, respectively. Similarly, Yt−1, Yt, and Yt+1
denote the outputs of the previous, current, and next time steps, respectively. In addition,
Ct−1, Ct, and Ct+1 represent the memory cells at the previous, current, and next time steps,
respectively. σ is the sigmoid function, defining output values between 0 and 1. The output
values of the function tanh range from −1 to 1.

The workflow of LSTM is as follows. To begin with, the forget gate selectively discards
information from the memory cell Ct−1 of the previous time step. In order to obtain the
forget coefficient, the previous hidden state information Yt−1 and the present input infor-
mation Xt are both passed through the sigmoid function. The forget gate ft is obtained by

ft = σ
(

Wf · [Yt−1, Xt] + b f

)
(14)

where Wf and b f represents the weight and bias of the layer network, respectively.
The second step involves generating the information required to update the current

memory unit Ct. This process is divided into two parts. Firstly, the update value it is
generated through the sigmoid layer of the input gate. Secondly, a new candidate value C̃t is
generated using the tanh layer. The specific calculations are defined by Equations (15) and (16).

it = σ(Wi · [Yt−1, Xt] + bi) (15)

C̃t = tanh(WC · [Yt−1, Xt] + bC) (16)

The current memory unit Ct at the current time step is defined by Equation (17). It
is computed as the sum of two products: the product of the memory unit at the previous
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time step Ct−1 and the forget gate control signal ft, and the product of the input gate value
it and the candidate value C̃t.

Ct = ft · Ct−1 + it · C̃t (17)

The final step involves determining the output of the LSTM model. Firstly, the control
signal ot of the output gate is obtained using the sigmoid function. Secondly, the current
memory unit Ct at the current time step is scaled by applying the tanh function. Multiplying
these two values yields the current output value Yt. The specific calculations are defined by
Equations (18) and (19).

ot = σ(Wo · [Yt−1, Xt] + bo) (18)

Yt = ot · tanh(Ct) (19)

Figure 3 illustrates the network structure of the SAC algorithm after incorporating
LSTM. This diagram represents the final network architecture of the SAC-LSTM algorithm,
as subsequent enhancements do not pertain to the network structure.

as μ

σ

a

s

Q s,a

Figure 3. Network structure of SAC-LSTM.

The network architecture of the SAC-LSTM algorithm consists of two components: the
Actor network and the Critic network. The Actor network begins with a fully connected
layer, FC1, comprising 256 neurons. It takes the state feature vector s as input and utilizes
the ReLU activation function to enhance feature extraction. The subsequent layer is a
memory-capable LSTM layer with 256 neurons, enabling the algorithm to incorporate
historical and current states for improved decision making. Following the LSTM layer,
there is a fully connected layer, FC2, with 256 neurons that applies the ReLU activation
function to process the LSTM layer’s outputs. The final layer is another fully connected
layer with four neurons, producing the mean μ and standard deviation σ, which are used
to resample from a Gaussian distribution N = (μ, σ). The resulting action a is obtained by
applying the tanh activation function.

The Critic network receives both the state vector s and the action vector a as inputs.
The FC1 and LSTM layers mirror those of the Actor network. The FC2 layer, a fully
connected layer with 16 neurons, extracts the features from a, using the ReLU activation
function. The FC3 layer takes the concatenated features from the LSTM and FC2 layers
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as input, comprising 272 neurons and utilizing the ReLU activation function. Finally,
the output layer consists of a single neuron, which outputs the Q-value for updating the
Actor network.

3.2.4. Burn-In Mechanism

Updating LSTM networks requires a series of consecutive sequential samples. How-
ever, the high correlation among consecutive sequence samples can lead to increased vari-
ance in parameter updates. Therefore, the currently predominant approach is to employ
the random order update method, as utilized in DRQN. This approach involves selecting a
complete episode of experiences from the experience replay buffer and randomly choosing
a fixed-length continuous sequence from that episode to train the algorithm. Prior to each
training iteration, the LSTM’s hidden state hint is initialized to zero. Figure 4 provides a
schematic representation of the random order update method, wherein the orange circles
represent individual experience tuples (st, at, rt+1, st+1, d), the black boxes represent se-
quence experiences of length L, and DRL refers to a deep reinforcement learning algorithm
incorporating an LSTM network. This updating method offers the advantage of simplicity
and low complexity. However, resetting the LSTM network’s hidden state to zero before
training can lead to impaired memory within the LSTM network, subsequently impacting
the algorithm’s performance.

XX X

h

X

Figure 4. Random order update method.

Therefore, the burn-in mechanism utilized in the R2D2 algorithm [36] is introduced in
this paper. The burn-in mechanism serves as a warm-up mechanism, initializing the LSTM
network’s hidden state hint with a portion of historical data prior to training. Figure 5
depicts the conceptual diagram illustrating the application of the burn-in period in deep
reinforcement learning algorithms. The black box represents a sequence of data, while
the green circles represent the burn-in data comprising lb items. The red circles represent
the training data consisting of lt items. When the sequence data are sampled by the DRL
algorithm, the first lb items are used to update the LSTM’s hidden state ht within the DRL
framework. Subsequently, the remaining lt items are utilized to train the DRL algorithm.
By incorporating the burn-in mechanism, the hidden state of the LSTM network is updated
before training, thereby circumventing the issue of impaired memory capacity caused by
zeroing the LSTM network’s hidden state prior to training. Consequently, this integration
enhances the performance of the algorithm.

This study treats a fixed-length sequence (st, at, rt+1, st+1, d),. . .,
(st+L, at+L, rt+1+L, st+1+L, d) of L as a single experience. As the experience tuples dur-
ing the burn-in period are not utilized for network training, an approach is adopted to
prevent experience wastage. Specifically, the storage format of experiences is designed in
such a way that there is a duplication of half the experience tuple between two adjacent
experiences. Figure 6 provides a visual representation of the specific storage format, with
each circle representing an individual experience tuple (st, at, rt+1, st+1, d).
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Figure 5. Burn-in period.
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Figure 6. Experience storage format.

3.2.5. Prioritized Experience Replay

During the exploration of the environment, the agent accumulates training data, which
is then stored in an experience replay buffer in the form of experience tuples. However,
these samples tend to be sparse, and there exists a strong correlation among consecutively
collected samples. Hence, in the context of deep reinforcement learning training, it is
essential to employ random sampling of the samples within the experience replay buffer.
This approach serves to enhance the efficiency of data utilization, disrupt the inter-sample
correlation, and effectively mitigate the occurrence of overfitting in neural networks.

The SAC algorithm employs random sampling during training, which enhances the
efficiency of data utilization and mitigates neural network overfitting to a certain extent.
However, the assumption of equal importance for all experience samples in random sam-
pling is not aligned with reality. In practice, different experience samples possess varying
levels of significance. For instance, experiences with high success rates or frequent failures
hold greater value for the algorithm’s learning process, as they can expedite convergence.
Consequently, this paper integrates the concept of prioritized experience replay with the
SAC algorithm. This integration allows the agent to discern the importance of experience
samples and prioritize frequent sampling of high-value samples, thus accelerating the
convergence speed of the algorithm.

In the context of reinforcement learning, TD-error is commonly utilized to quantify
the importance of samples, with a higher TD-error value indicating a greater degree of
significance for the respective sample. By prioritizing the learning from samples with larger
TD-errors, the algorithm can expedite the rate of learning. Specifically, in the prioritized
experience replay DQN algorithm, the TD-error of each experience tuple (st, at, rt, st+1, d)
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is defined as the error δt between the current Q-value and the target Q-value, as illustrated
in Equation (20), in which Qtarget and Q respectively represent the target Q-network and
the current Q-network.

δt = r(st, at) + γQtarget(st+1, ãt+1)− Q(st, at) (20)

Unlike the DQN algorithm, the SAC algorithm incorporates two Q-networks. This
paper defines the absolute value |δt| of the TD-error for an experience tuple as the average
of the absolute TD-errors from the two Q-networks, as precisely specified in Equation (21).∣∣∣∣∣δt

∣∣∣∣∣= 1
2

2

∑
j=1

∣∣∣Qφj(st, at)− Qtarget (rt, st+1, d)
∣∣∣ (21)

As the LSTM network is introduced, the storage format of experiences has transformed
into the form depicted in Figure 6. Moreover, in conjunction with the burn-in mechanism, the
TD-error of an experience sample {(st, at, rt+1, st+1, d), . . . , (st+L, at+L, rt+1+L, st+1+L, d)} is
defined as the absolute TD-error of the subsequent lt-term experience tuples. This specific
definition is presented in Equation (22).

δ =
1
lt

lb+lt

∑
t=lb+1

|δ(st, at, rt, st+1, d)|, (22)

The sampling probability [37] for an experience sample is expressed by

P(i) =
p

αp
i

∑
k

p
αp
k

, αp ∈ [0, 1]. (23)

In Equation (23), the exponent αp serves as the coefficient for regulating prioritization.
When αp= 0, the sampling method reverts to uniform sampling. pi > 0 is the priority of
transition i based on TD-error, employing a proportional prioritization approach defined in
Equation (24).

pi = |δi|+ ε (24)

In Equation (24), ε is typically a small positive value that ensures the inclusion of
experience samples with a TD-error of 0. However, prioritizing samples with larger TD-
error values can disrupt the probability distribution of training samples. This approach may
introduce bias and potentially hinder the convergence of the neural network. Therefore, it
is necessary to incorporate importance sampling to adjust the learning rate of the samples.
The specific definition is provided in Equation (25).

wi =

(
1
N

· 1
P(i)

)β

(25)

In Equation (25), N represents the capacity of the experience replay buffer, while β is a
hyperparameter for error correction that ranges between 0 and 1. By distinguishing the
importance of experiences using the aforementioned approach, it enhances the learning
efficiency of the algorithm.

3.2.6. SAC-LSTM Algorithm Workflow

Based on the SAC algorithm, this paper introduces the SAC-LSTM algorithm by
incorporating LSTM neural networks, burn-in, and prioritized experience replay. The
workflow of the algorithm and its corresponding pseudocode are presented in Figure 7 and
Algorithm 1, respectively. The agent interacts with the environment, generating experience
tuples (st, at, rt, st+1, d) that are subsequently stored in the experience replay buffer. By
employing prioritized experience replay, the algorithm effectively samples experiences.
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The integration of the burn-in mechanism, as indicated by the green circle in Figure 7,
enhances the efficiency of the training process.

Algorithm 1: SAC-LSTM algorithm pseudocode

1: randomly initialize the parameter θ of the actor network and the parameters φ1, φ2 of the
Critic network, clear the experience replay buffer D
2: initialize the target networks φtarg,1 ← φ1 , φtarg,2 ← φ2 , set the length of the burn-in data and
the lengths lb, lt of the training data, set the capacity N of the experience replay buffer
3: for episode = 1 to M do

4: initialize the observation s1 and the hidden state h1
5: for t = 1 to T do

6: obtain the observation st and select an action at using the current policy network
7: perform action at, obtain next observation st+1, receive reward rt

determine whether the current state is a terminal state through the signal d
8: store (st, at, rt, st+1, d) into D
9: end for

10: assign priority Pt = maxi<tPi to experience
[(st, at, rt, st+1, d), . . . , (st+L, at+L, rt+L, st+1+L, d)]
11: sample N experiences from D based on their priority P(j) and reset the hidden state to
zero
12: Calculate the importance weight wi for each experience sample
13: Scan the previous lb experiences for each sample and obtain the initial hidden state ht
14: Calculate the target Q-function values yi

1, . . . , yi
lt

using the last lt experiences:

yi
t = ri

t + γ(1 − d)
(

min
j=1,2

Qφtarg,j

(
si

t+1, ãt+1

)
− α log πθ

(
ãt+1

∣∣∣si
t+1

))
, i = 1, 2, ãt+1 ∼ πθ

(
·
∣∣∣si

t+1

)
15: Update the priority pi ← |δi| based on the TD-error
16: Update Q network using gradient descent method with the following formula:

∇φj
1

|N·lt |∑i
wi∑

t

[(
Qφj (s

i
t, ai

t)− yi
t

)2
]

, i = 1, 2

17: Update policy network using gradient descent method with the following formula:

∇θ
1

|N·lt |∑i
∑
t

(
min
j=1,2

Qφj

(
si

t, ãt

)
− α log πθ

(
ãt

∣∣∣si
t

))
, i = 1, 2, ãt+1 ∼ πθ

(
· | si

t

)
18: Update target network φtarg,j ← ρφj + (1 − ρ)φtarg, j j = 1, 2
19: End for

Figure 7. SAC-LSTM algorithm workflow.

3.3. Motion Model of Mobile Robot

Turtlebot3 is a cost-effective and open-source mobile robot that offers a simple yet
powerful design. It boasts high expandability and the ability to easily integrate additional
sensors as needed. Consequently, this paper selects Turtlebot3 as the platform for algorithm
deployment. Operating on a differential drive system, this robot can execute turns, maintain
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a constant velocity, and rotate in place by controlling the differential motion of its two rear
wheels. The model structure is depicted in Figure 8.

W

ψ

v

x,y

X

YO

vL

vR

Figure 8. Motion model of the differential drive robot.

The pose of a mobile robot in the world coordinate system is represented by the
coordinates [x, y, ψ]T . Here, x and y correspond to the central point of the robot in the
X- and Y-axes of the world coordinate system. The parameter ψ denotes the orientation
of the robot, indicating the angle between its forward direction (aligned with the linear
velocity v) and the X-axis of the world coordinate system. The distance between the two
drive wheels of the robot is denoted as W. Assuming the left and right wheel velocities are
vL and vR, respectively, the linear velocity v of the mobile robot can be determined using
the following equation:

v =
vR + vL

2
. (26)

The lateral angular velocity ω of the mobile robot is given by

ω =
vR − vL

W
. (27)

The instantaneous radius R of the mobile robot during motion is given by

R =
v
ω

=
W(vR + vl)

2(vR − vl)
. (28)

The motion equation in global coordinates is⎡⎣ .
x
.
y
.
ψ

⎤⎦ =

⎡⎣cos ψ 0
sin ψ 0

0 1

⎤⎦[ v
ω

]
(29)

3.4. Path Planning Algorithm
3.4.1. State Space and Action Space

The state represents the agent’s perception of the environment and serves as the
foundation for action selection. Designing a well-defined state space is crucial for the
agent to learn an optimal strategy. In the context of path planning tasks performed by a
mobile robot, the robot relies on sensor input to perceive the surrounding environment. By
leveraging this information, the algorithm generates a collision-free path from the initial
position to the goal. Consequently, the chosen state space in this paper revolves around
two key aspects: sensor perception information and the position of the goal.

For our experimental setup, we employed the Turtlebot3 mobile robot equipped with
a laser scanner for environment perception. The laser scanner provides a detection range
of [0◦, 360◦], resulting in a 360-dimensional data representation. To mitigate the issue of
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high dimensionality without compromising the effectiveness of capturing environmental
information, we adjusted the detection range of the laser scanner to [−90◦, 90◦] and limited
the detection distance to the range of [0.1 m, 3.5 m]. Specifically, the laser scanner’s scan
data is represented by 20 dimensions, as illustrated in Figure 9.

 

Figure 9. Detection range of the laser sensor on the mobile robot.

In order to expedite the attainment of the designated target point, it is imperative
to provide guidance to the robot regarding its trajectory. Thus, this paper adopts the
utilization of the heading angular deviation Radt

di f f between the frontal orientation of the
mobile robot and the target point and the distance between the robot and the target point
as the fundamental states for this purpose. By employing the mobile robot’s odometry,
the coordinates (xt

robot, yt
robot) of the robot can be determined, along with the coordinates

(xgoal , ygoal) of the target point as shown in Figure 10. Consequently, the distance dist
between the robot and the target point can be computed.

dist =

√(
xgoal − xt

robot

)2
+
(

ygoal − yt
robot

)2
(30)

 

Figure 10. State of the mobile robot.
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The heading angle yawt can be obtained from the odometer, but the quadratic data
obtained cannot be used directly, and have to be converted into a Eulerian angle first.

yawt = euler_ f rom_quaternion(orientation) (31)

The angle Radt
goal between the mobile robot and the target point can be obtained by

the inverse tangent function.

Radt
goal = arctan

(
xgoal − xt

robot, ygoal − yt
robot

)
(32)

The heading angular deviation is the difference between the angle Radt
goal and the

orientation angle ϕ.
Radt

di f f = Radt
goal − ϕ (33)

In this paper, we enhance the state representation of a mobile robot by incorporating
the linear velocity and angular velocity from the previous time step. This addition allows
for a correspondence between the rewards provided by the environment and the actions
performed by the mobile robot. Ultimately, the state space of the mobile robot is defined as
a 20-dimensional vector comprising radar detection data, heading angular deviation, linear
velocity, and angular velocity from the previous time step, as well as the distance between
the target point and the mobile robot.

St = [scant, νt−1, ωt−1, Radt
di f f , dist] (34)

Many previous deep reinforcement learning algorithms have used a discretized action
space in which the linear and angular velocities of mobile robots were divided into several
orders of magnitude. Although this approach is relatively simple, it ignores the fact that
mobile robots output continuous actions. To make the simulation more realistic, this
paper presents a network model that produces continuous angular and linear velocities.
The linear velocity has a range of 0 to 0.22 m/s, while the angular velocity ranges from
−2 to 2 rad/s, where positive angular velocity indicates clockwise rotation and negative
angular velocity indicates counterclockwise rotation. The proposed approach is intended
to bring the simulation closer to real-world scenarios.

3.4.2. Reword Function

The reward function plays a critical role in the success of deep reinforcement learning
algorithms as it serves as the benchmark for evaluating agent performance. Similar to
constraints used in traditional path planning tasks, the reward function guides agents by
indicating which actions to avoid and which ones to pursue given the current state. In this
paper, the proposed reward function is composed of two distinct components whose sum
constitutes the overall reward:

Rtotal = Ra + Rb (35)

The specific expressions of Ra and Rb are shown in Equations (36) and (37). do
represents the distance threshold for reaching the target point, while dmin represents the
threshold for avoiding collisions with obstacle. dmax is the safe distance threshold from the
obstacle. Furthermore, dt denotes the current distance between the moving robot and the
target point, and dt−1 represents the previous time’s distance. Additionally, dt

smin is the
minimum distance recorded from the radar scan at the current time. The reward coefficients
are indicated as η1, η2, and η3.

Ra =

⎧⎨⎩
ra i f (dt < do)
rc i f

(
dt

smin < dmin
)

η1(dt−1 − dt) + η2(π − |ϕ|) otherwise
(36)
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Rb =

{
η3
(
dt

smin − dmax
)
i f
(
dmax > dt

smin > dmin
)

0 otherwise
(37)

This paper proposes a design approach where mobile robots reaching a designated
target point or encountering obstacles are associated with sparse rewards, while dense
rewards are assigned for other scenarios. This particular design methodology ensures
algorithmic stability throughout the training process.

The sparse reward setting is relatively straightforward, involving the assignment of
an immediate reward to the mobile robot upon reaching the target point or colliding with
an obstacle. When the distance between the mobile robot and the target point is below a
threshold value do, it is considered to have successfully reached the target point, resulting in
a positive reward ra. Conversely, if the distance between the mobile robot and the obstacle
is below a threshold value dmin, a collision is assumed, leading to a negative reward rc.

The dense rewards comprise the distance reward, orientation angle reward, and safety
reward. The distance reward, denoted as η1(dt−1 − dt), is contingent upon the mobile
robot’s velocity while moving towards the target point, with higher rewards for faster
velocities and lower rewards for slower velocities. The orientation angle reward, denoted
as η2(π − |ϕ|), is determined by the orientation angle ϕ, where the reward is maximized
at 0 when the mobile robot is directly facing the target point, and minimized at π when
the mobile robot is facing away from the target point. The sum η1(dt−1 − dt) + η2(π − |ϕ|)
of the distance reward and orientation angle reward aims to expedite the mobile robot’s
arrival at the target point. Additionally, the safety reward, represented by η3

(
dt

smin − dmax
)
,

imposes a negative reward when the distance between the mobile robot and the obstacle
is below the designated threshold dmax. Moreover, the negative reward increases as the
distance decreases. The purpose of the safety reward is to maintain a safe distance from
obstacles during the path planning process.

The pseudocode for the reward function is presented in Algorithm 2.

Algorithm 2: Reward function pseudocode

Input: initialized reward coefficients η1, η2, η3, thresholds do,dmax, action at
Output: reward r dmin
1: for each step of reward do

2: performs action at
3: calculate dense reward r = η1(dt−1 − dt) + η2(π − |ϕ|)
4: if dmax > dt

smin > dmin then

5: r+ = η3
(
dt

smin − dmax
)

6: else if dt < do then

7: r+ = ra
8: else if dt

smin < dmin then

9: r+ = rc
10: end

11: end

12: return reward r
13: end for

3.4.3. Path Planning Algorithm Workflow

The path planning algorithm, based on deep reinforcement learning, essentially in-
volves learning the optimal strategy for the mobile robot to reach the target point quickly
through interactive exploration with the environment. The algorithm pseudocode for path
planning, utilizing SAC-LSTM, is depicted in Algorithm 3.
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Algorithm 3: Path planning algorithm pseudocode

1: initialize system parameters
2: introduce LSTM network to optimize the network architecture
3: for Nt < Ntmax do

4: initialize the robot’s position
5: get environmental information
6: perform actions through the policy network
7: obtain new state and reward
8: store experiences in the experience buffer
9: sample experiences based on their priority
10: train the network using the burn-in mechanism
11: if the robot reaches the target point then

12: generate a new target point
13: go to step 5
14: else if the terminal state is not met or Ns < Nsmax then

15: go to step 5
16: else

17: go to step 3
18: end

19: end

20: end for

At the beginning of each episode, the mobile robot is positioned at a predefined start-
ing point and subsequently navigates towards a randomly generated target destination.
Throughout this process, the mobile robot relies on a laser radar to perceive its surrounding
environment and utilizes the state information as input to the policy network of the SAC-
LSTM algorithm, producing a corresponding robot action. Following interaction with the
environment, the mobile robot transitions to the next state and receives a reward based on
a predefined reward function. The acquired experiences are stored in the experience replay
buffer, and significant experiences are extracted using a prioritized experience replay mech-
anism. The SAC-LSTM algorithm is trained using the burn-in strategy. Upon reaching the
target point, a new target point is randomly generated in the environment, and the robot
moves from its current location towards the newly selected target. The training episode
terminates only when the robot collides with an obstacle or when the current step count Ns
reaches the designated maximum value Nsmax. The training process concludes when the
number of training episodes Nt surpasses the predetermined maximum value Ntmax.

4. Experiments and Discussion

4.1. Simulation Platform

The experimental software environment for this paper included Ubuntu 18.04, CUDA
10.1, Pytorch 3.7, and ROS Kinetic. The hardware utilization comprised an AMD R7-5800H
CPU and a GeForce GTX 3060 GPU with 6G of memory. The experiment employed the
Turtlebot3 robot based on ROS, which obtains the environmental information around it with
the help of laser radar. The 3D model of the mobile robot was loaded into the ‘empty.world’
in ROS, as depicted in Figure 11.

This paper utilizes Gazebo9 software to set up experimental environments. Three
experimental environments, depicted in Figure 12, were built for testing the algorithm’s
effectiveness in mobile robot path planning in indoor environments. These environments
are an obstacle-free environment, a static obstacle environment, and a dynamic obstacle
environment; all three are square areas measuring 8 m in length. The obstacle-free envi-
ronment has only four surrounding walls. The static obstacle environment features twelve
stationary obstacles, consisting of four cylinders with a diameter of 0.3 m and a height
of 0.5 m, four small cubes measuring 0.5 m in edge-length, and four large cubes measur-
ing 0.8 m in edge-length, which are added to the obstacle-free environment. In contrast,
the dynamic obstacle environment features moving obstacles. The four cylinders rotate
counterclockwise at a speed of 0.5 rad/s around the origin of the coordinate system (the
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center of the environment), as illustrated by the smaller white dashed circles in Figure 12.
Concurrently, four large cubes move clockwise at the same speed, following the trajectory
shown by the larger white dashed circles with arrows in Figure 12. Meanwhile, the four
small cubes within this environment remain stationary.

 

Figure 11. Turtlebot3 3D model.

   

(a) (b) (c) 

Figure 12. Experimental environments: (a) obstacle-free environment; (b) static obstacle environment;
(c) dynamic obstacle environment.

Deep reinforcement learning involves agents gathering training data by interacting
with their real-world environments. In a 3D experimental environment created by Gazebo,
data acquisition can become a time-consuming and computationally expensive process.
Consequently, this paper employs a time acceleration technique to reduce the duration of
training. By default, Gazebo’s real-time update rate is 1000, and the max step size value is
0.001. When these settings are multiplied, the resulting ratio between the simulation time
and the actual time is 1. However, in order to expedite simulations, the value for max step
size is adjusted to 0.005, leading to a fivefold increase in simulation speed.

The specific experimental parameters are shown in Table 1.

Table 1. Experimental parameters of mobile robot.

Parameter Value

Discount factor γ 0.99
Learning rate lr 0.001

Priority regulating coefficient αp 0.6
β 0.4

Experience buffer capacity (SAC) 20,000
Experience buffer capacity (SAC-LSTM) 5000

Batch size (SAC) 512
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Table 1. Cont.

Parameter Value

Batch size (SAC-LSTM) 32
Burn-in data length lb 16

Training length 16
Maximum steps Nsmax 500 lt

Optimizer Adam
Reward coefficient η1 4
Reward coefficient η2 0.1
Reward coefficient η3 −3

Reward for reaching the target point ra 100
Reward for collision with obstacle rc −50

Distance threshold for reaching the target point do 0.15
Minimum distance threshold from obstacle dmin 0.15

Safe distance threshold from obstacle dmax. 0.3

4.2. Computational Complexity

To quantify the computational complexity of SAC and SAC-LSTM algorithms, the
contribution of each component to the overall computational load can be analyzed based
on five key factors, as follows:

1. Computational Load of Neural Networks

Due to the larger batch size (512) and experience buffer capacity (20,000), the SAC
algorithm requires processing more data in the network training steps, leading to an
increased computational load. When it comes to the SAC-LSTM algorithm, the inclusion of
LSTM layers introduces additional time-dependency computations. A smaller batch size
(32) might reduce the computational load per training iteration, but the burn-in process
and LSTM’s time dependencies increase the computational load per batch.

2. Prioritized Experience Replay

Prioritized experience replay requires additional computations to maintain a priority
queue and update it after each learning step, increasing the computational load, especially
with a larger experience buffer.

3. Learning Parameters

The parameters, a learning rate of 0.001 and a discount factor of 0.99, mainly affect the
convergence speed and stability of the algorithm, but have a relatively minor direct impact
on computational load.

4. Reward Mechanism

The reward coefficients and thresholds influence the efficiency of learning, but have a
limited direct impact on computational load.

5. Optimizer

The Adam optimizer is a computationally efficient optimizer but has a higher compu-
tational complexity compared to simpler ones such as SGD (Stochastic Gradient Descent).

Overall, the SAC-LSTM algorithm involves higher per-batch computational loads due
to time-dependency processing with LSTM, smaller batch sizes, and burn-in processing.
The SAC algorithm, although having larger data volumes per batch, might have a slightly
lower per-batch computational load than SAC-LSTM, owing to the absence of complex
time-series processing. When running both algorithms on the same computer platform,
SAC-LSTM consumes approximately 10% more computation time per batch compared to
SAC. This finding aligns closely with the qualitative analysis results mentioned above.
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4.3. Experimental Results and Analysis
4.3.1. Obstacle-Free Experiment

In this paper, we chose the average reward as the evaluation metric for our algorithm.
A higher value confirms better performance of the algorithm. The average reward is
calculated from Equation (38). Within each episode, T = min(Nsmax, T) represents the
number of steps taken by the agent, and r is the reward received for each step.

reward =
T

∑
i=1

r/T (38)

The robot’s starting point is the origin, and the target point is generated at random.
During a single episode, once the robot reaches the target point, the environment generates
a new target point randomly. As a result, the robot may reach multiple target points within
a single episode.

Two reinforcement learning algorithms, SAC and SAC-LSTM, were trained for
1000 episodes in the obstacle-free environment. Their average reward curves are illus-
trated in Figure 13. During the initial training phase, both algorithms demonstrated a
decreasing trend in their average reward. This was attributed to the robot frequently
circling in place or moving away from the target point, which was observed within the first
10 episodes. However, after that point, both algorithms exhibited a remarkable increase in
their average reward. The SAC-LSTM algorithm reached its reward peak and convergence
after 130 episodes, whereas the SAC algorithm achieved the same after 180 episodes. No-
tably, the average reward of the SAC-LSTM algorithm surpassed that of the SAC algorithm
after convergence. This observation suggests that the SAC-LSTM algorithm enabled the
robot to reach the target point more frequently during each episode’s path planning process,
resulting in better path planning performance. Although both algorithms accomplished
the task in the obstacle-free environment, the SAC-LSTM algorithm converged faster and
yielded a higher average reward after convergence.

 
Figure 13. Average reward in the obstacle-free experiment.

To further evaluate the model’s performance, the SAC and SAC-LSTM algorithms
underwent 200 tests in the obstacle-free environment. For each test, the target points were
randomly generated, and the results are presented in Table 2. Our evaluation reveals that
the path planning success rate for the SAC algorithm was 97%. In contrast, the proposed
SAC-LSTM algorithm yielded better performance, achieving a success rate of 100%.
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Table 2. Obstacle-free experiment results.

Algorithm Success Number Success Rate

SAC 194 97%
SAC-LSTM 200 100%

Illustrated in Figure 14 is the motion process of the mobile robot towards the target
point in the obstacle-free environment based on the SAC-LSTM algorithm. In the figure, the
black dot represents the mobile robot, while the blue sector illustrates the range of the radar
scan. The red square indicates the location of the target point. Notably, the mobile robot
achieves optimal pathway and accurately reaches the target point from the starting point.

 

Figure 14. Movement process of the mobile robot in the obstacle-free environment.

4.3.2. Static Obstacle Experiment

The two algorithms were trained for 1000 episodes in the obstacle environment illus-
trated in Figure 12b. The plotted average reward curves of the two algorithms are depicted
in Figure 15. Notably, the static obstacle environment is significantly more complex than the
obstacle-free environment since collision with the surrounding obstacles is more frequent
during robot exploration. As expected, greater exploration time was required. The SAC-
LSTM algorithm began to converge from the 20th episode. Interestingly, its converging
process had a higher average reward than the SAC algorithm, finishing the process at the
380th episode. On the other hand, the SAC algorithm had reduced fluctuations and began
to converge from the 30th episode, while the converging process completed at the 500th
episode. Impressively, the SAC-LSTM algorithm yielded a faster convergence rate and a
higher average reward after convergence than the SAC algorithm.

Figure 15. Average reward in static obstacle environment.
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Two algorithms were tested 200 times in the static obstacle environment, where the
target points were randomly generated. The test results are presented in Table 3, indicating
that the SAC algorithm’s success rate was only 88.5%, while the proposed SAC-LSTM
algorithm achieved a success rate of 95.5%.

Table 3. Static obstacle experiment results.

Algorithm Success Number Success Rate

SAC 183 88.5%
SAC-LSTM 193 95.5%

Figure 16 illustrates the movement process of a mobile robot based on the SAC-LSTM
algorithm, from its starting point to the target point in the static obstacle environment. As
shown, the mobile robot avoided the obstacles in the environment and reached the target
point via the optimal path.

 

Figure 16. Movement process of the mobile robot in the static obstacle environment.

4.3.3. Dynamic Obstacle Experiment

The dynamic obstacle environment was constructed as shown in Figure 12c to sim-
ulate a realistic path planning scenario. The SAC and SAC-LSTM algorithms underwent
1000 episodes of training, with the training results presented in Figure 17. As shown in
the figure, the difficulty of path planning increased due to the moving obstacles, resulting
in significant fluctuations in the learning curves of both algorithms. The SAC-LSTM al-
gorithm began to converge after the 75th episode when the fluctuations decreased, and it
achieved convergence by the 510th episode. The SAC algorithm began to converge after the
95th episode and achieved convergence by the 710th episode. The proposed SAC-LSTM
algorithm demonstrated a faster convergence rate than the SAC algorithm, with a slightly
higher average reward after convergence.

A total of 200 tests were also conducted using both algorithms in the dynamic obstacle
environment, with the target points generated randomly. Table 4 shows the success rates of
both algorithms, with the SAC algorithm achieving a success rate of only 78.5%, while the
SAC-LSTM algorithm achieved a success rate of 89%.
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Figure 17. Average reward in the dynamic obstacle environment.

Table 4. Dynamic obstacle experiment results.

Algorithm Success Number Success Rate

SAC 157 78.5%
SAC-LSTM 178 89%

Figure 18 illustrates the movement process of a mobile robot driven by the SAC-LSTM
algorithm, from its starting point to the target point in a dynamic obstacle environment. As
shown, the mobile robot was able to avoid the moving obstacles and reach the target point
via the optimal path.

As completing path planning tasks in dynamic environments is more challenging and
requires higher performance from path planning algorithms, and as dynamic environments
better reflect the actual work environment of mobile robots, in order to better test the
performance of the two algorithms, an additional set of experiments was conducted on top
of the initial experiment measuring success rate, which tested the path length, planning
time, and number of times the robot reached the target point. Ten target points were
randomly generated in the dynamic obstacle environment, all located near the moving
obstacles at the periphery, so that each time the robot moved to a target point, interference
from the moving obstacles was encountered, increasing the reliability of the experiment.
The specific locations of the target points are illustrated in Figure 19.

 

Figure 18. Movement process of the mobile robot in the dynamic obstacle environment.

163



Sensors 2023, 23, 9802

 

Figure 19. Locations of 10 target points.

The target point numbers in Figure 19 were sorted according to the Euclidean distance
between each target point and the starting point of the mobile robot, which is set as the
origin. Thirty experimental trials were conducted for each of the target points, with the path
length, planning time, and success rates recorded. The path length and planning time were
averaged from the successfully completed path planning tasks, and specific test results can
be found in Tables 5 and 6. Among the 10 target points tested, the SAC-LSTM algorithm
achieved both shorter average path lengths and planning times, as well as higher success
rates, compared to the SAC algorithm. This indicates that the path planning performance
of the SAC-LSTM algorithm is superior to that of the SAC algorithm, enabling the mobile
robot to reach its designated target point in less time and with a shorter route. Notably, for
the 10th target point, the SAC algorithm was unable to guide the mobile robot to its target
point based solely on the current state information, whereas the SAC-LSTM algorithm,
which incorporates the LSTM network, has memory capability to consider both historical
and current states to make better decisions, and thus guided the robot to complete its path
planning task.

Based on the results of the three simulation experiments, the trained mobile robot
was able to successfully complete the path planning task in all three environments, and
the improved SAC-LSTM algorithm demonstrated significant enhancements in both path
planning success rate and convergence speed. In particular, in dynamic and complex
scenarios, the SAC-LSTM algorithm exhibited shorter planning time, shorter planning
paths, and a higher number of instances where the target point was reached.

Table 5. Test results of the SAC-LSTM algorithm.

Target Point
Number

Target Point
Location

Path Length (m) Planning Time (s)
Success
Number

1 (0.60, 0.00) 0.64 4.36 30
2 (0.72, −1.35) 1.61 8.89 30
3 (−1.59, 0.02) 1.76 10.47 29
4 (−0.89, 1.65) 1.90 10.98 30
5 (1.82, −2.24) 2.94 16.61 27
6 (−2.86, 1.83) 3.65 20.95 24
7 (−2.69, −2.83) 4.33 24.72 24
8 (−3.74, 2.24) 4.82 27.54 23
9 (3.21, −3.09) 4.85 27.42 25

10 (3.72, 3.68) 5.44 31.22 29
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Table 6. Test results of the SAC algorithm.

Target Point
Number

Target Point
Location

Path Length (m) Planning Time (s)
Success
Number

1 (0.60, 0.00) 0.67 5.02 30
2 (0.72, −1.35) 1.75 9.65 30
3 (−1.59, 0.02) 1.89 11.28 24
4 (−0.89, 1.65) 2.03 11.87 27
5 (1.82, −2.24) 3.05 17.68 23
6 (−2.86, 1.83) 3.69 21.83 24
7 (−2.69, −2.83) 4.40 25.08 28
8 (−3.74, 2.24) 4.95 29.63 18
9 (3.21, −3.09) 4.95 27.8 25

10 (3.72, 3.68) / / 0

5. Conclusions

This paper presents the SAC-LSTM algorithm and develops a path planning algorithm
framework for mobile robots, addressing the limitations of the SAC algorithm in path
planning tasks. The proposed algorithm incorporates an LSTM network with memory
capability, a burn-in mechanism, and a prioritized experience replay mechanism. By in-
tegrating historical and current states, the LSTM network enables more effective path
planning decisions. The burn-in mechanism preheats the LSTM network’s hidden state
before training, addressing memory depreciation and enhancing the algorithm’s perfor-
mance. The prioritized experience replay mechanism accelerates algorithm convergence
by emphasizing crucial experiences. A motion model for the Turtlebot3 mobile robot was
established, and the state space, action space, reward function, and overall process of the
SAC-LSTM algorithm were designed. To enhance the realism of the experimental scenarios,
three environments were created, including obstacle-free, static obstacle, and dynamic
obstacle scenarios. There are multiple stationary and moving obstacles of various sizes
and shapes in the dynamic scenarios. The algorithm was subsequently trained and tested
in these settings. The experimental results demonstrated that the SAC-LSTM algorithm
outperformed the SAC algorithm in convergence speed and path planning success rate
across all three scenarios with roughly the same computational cost. Furthermore, in
an additional dynamic obstacle experiment, the SAC-LSTM algorithm exhibited shorter
planning times, more efficient paths, and an increased number of instances where the target
point was reached, indicating superior path planning performance.

Despite these advancements, certain limitations persist within this paper. The exper-
iments relied solely on 2D lidar for environmental data, which may lead to inaccuracies
when dealing with irregularly shaped obstacles. Future research could employ multi-sensor
fusion to obtain more comprehensive environmental information. Additionally, the paper
does not address the several sources of noise and uncertainty present in real-world envi-
ronments, including sensor noise, environmental fluctuations, and uncertainty in obstacle
movement. The algorithm needs sufficient robustness to handle these factors to perform
well in practical settings. Moreover, the experiments were conducted exclusively in a
simulated environment. To fully assess the effectiveness of the mobile robot in completing
path planning tasks, it is essential to transfer the trained model to a real-world scenario.
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Abstract: Recently, a diverse range of robots with various functionalities have become a part of our
daily lives. However, these robots either lack an arm or have less capable arms, mainly used for
gestures. Another characteristic of the robots is that they are wheeled-type robots, restricting their
operation to even surfaces. Several software platforms proposed in prior research have often focused
on quadrupedal robots equipped with manipulators. However, many of these platforms lacked
a comprehensive system combining perception, navigation, locomotion, and manipulation. This
research introduces a software framework for clearing household objects with a quadrupedal robot.
The proposed software framework utilizes the perception of the robot’s environment through sensor
inputs and organizes household objects to their designated locations. The proposed framework
was verified by experiments within a simulation environment resembling the conditions of the
RoboCup@Home 2021-virtual competition involving variations in objects and poses, where outcomes
demonstrate promising performance.

Keywords: quadruped robot; organize objects; mobile manipulation

1. Introduction

Robots have been developed from performing repetitive tasks solely in industrial
settings to becoming a part of our daily lives, thanks to advancements in software, sensors,
and processors. Notably, recent breakthroughs in machine learning have enabled robots to
adeptly perceive their surroundings and engage in natural language communication with
humans [1]. Consequently, we now encounter robots operating in diverse environments
such as city halls [2], museums [3–5], airports [6], and restaurants [7–9]. These robots offer
interactive and intelligent assistance without relying on specific infrastructures as well as
mere repetitive tasks.

However, most robots adopted in ordinary spaces have wheeled locomotion, which
presents challenges when encountering obstacles like stairs or thresholds. Moreover, the de-
sign of manipulators is often characterized by limited capabilities, primarily encompassing
basic gestures and actions.

Lately, studies have been conducted on home service robots designed as mobile
manipulators to create practical automated mobile manipulation systems for home
environments [1,10–12]. However, these investigations only focus on wheeled-type robots
equipped with manipulators. Several studies proposed frameworks to conduct grasp-
ing tasks with a manipulator mounted on quadruped robot [13,14]. However, many of
these frameworks did not include comprehensive tasks combining perception, navigation,
locomotion, and manipulation.

In this context, we introduce the software framework to enable a quadruped robot
to organize household objects to appropriate space in a domestic environment. Unlike
previous works [13,14] that perform just simple mobile manipulation with quadruped
robots, our research presents the method for delivering practical services through the
utilization of quadruped robots.

Sensors 2023, 23, 8247. https://doi.org/10.3390/s23198247 https://www.mdpi.com/journal/sensors168
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Compared to other platforms that performed similar tasks, a quadruped robot used
for this framework should also equipped with cameras, LiDAR, IMU, and a manipulator.
Figure 1 shows the feature comparison of the robot model to apply to the framework and
to Human Support Robots (HSRs) [15], which performed similar tasks in [1,10,11].

Figure 1. Feature comparison with a robot model for the framework and HSR.

The subsequent sections of this paper are structured as follows: Section 3 describes
the overall system of this framework. In Section 4, the method for object detection and
point cloud generation is detailed, involving a combination of machine learning techniques
including YOLOv7 [16], K-Nearest Neighbor (KNN) [17], and Random Sample Consensus
(RANSAC) [18], and the estimation of a grasp pose from a point cloud, accomplished
through its conversion into a height map, is presented. Moving to Section 5, navigation
strategies outlining how the robot plans its route to the designated area considering the posi-
tions of detected objects and LiDAR data are presented, and grasping methods, depending
on the situation, are addressed. The mathematical analysis of manipulation and locomotion
using Model Predictive Control (MPC) [19–22] are presented in Section 6. Section 7 show-
cases the experimental outcomes conducted within a simulation environment resembling
RoboCup@Home 2021—virtual. Lastly, the paper concludes by discussing future works in
Sections 8 and 9.

2. Related Work

Various service robots deployed in public places were presented in [4,6]. In [4], the
“Lindsey” robot, stationed at the Lincoln Museum, successfully operated autonomously as
a guide, providing informative tours to visitors. Despite its practical utility, the platform’s
lack of physical interaction capabilities limited its scope. A similar case is presented in [6],
where the “Spencer” robot facilitated passenger assistance and guidance at Dutch KLM
airports. However, this robot also lacks a manipulator for physical engagement. Address-
ing this limitation, refs. [1,10] introduced a modular software framework for home service
robots equipped with manipulators. This comprehensive framework encompassed navi-
gation, visual perception, manipulation, human–robot interaction, and natural language
processing. The framework incorporated deep-learning-based perception packages, such
as YOLOv3 and OpenPose, to perceive surroundings and combine them with manipulation
or navigation tasks using ROS middleware. Depending on its detected data, the framework
showed various manipulation skills implemented in robot competitions. This framework
showcased promising results in RoboCup@Home 2020 and World Robot Summit 2020
Partner Robot Challenge (WRS 2020 PRC) league using the Toyota HSR [15]. It is worth
noting that this system is primarily applicable to wheeled-type mobile manipulators.

Several studies have been conducted regarding quadruped robots equipped with
manipulators. In [13], researchers detailed strategies that control a quadruped robot with
a Whole Body Control (WBC) framework for arm-mounted quadruped robots. In this
work, the author proposed two control modes: manipulation mode and loco-manipulation
mode. In the manipulation mode, the author used Hierarchical Quadratic Programming
(HQP) [23] to control the arm, legs, and base subject to the whole rigid-body dynamics of
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the robot. In the loco-manipulation mode, the author controlled the arm with PD control,
while the HQP controller controlled the base and the legs. It showed stable gaiting in
complex terrains with an arm-mounted quadruped robot. However, this approach did not
incorporate image or LiDAR data.

In [14], a comparable system was introduced. The framework was experimented
with the quadruped robots equipped with a five Degree of Freedom (DOF) manipulator,
front camera, and 3D LiDAR. Using Yolov5, it successfully detected an object to grasp in a
3D position. Additionally, it presented human following with LiDAR data. However, it
had limitations in addressing the manipulation of complex-shaped objects like bowls and
exclusively concentrated on object manipulation on the ground. Moreover, comprehensive
experimental testing of the system’s capabilities was lacking.

In [24], researchers outlined a methodology for grasping complex-shaped objects
utilizing an anthropomorphic robotic hand affixed to a seven-DOF arm through imitation
learning. By combining 3D reconstruction, KNN, and image recognition using a Residual
Neural Network (ResNet), the author realized an imitation learning framework that learns
how to grasp complex objects from humans. However, this system required a diverse
dataset for learning to grasp, encompassing RGB images, point clouds, and trajectories.

Certain studies have explored methods to grasp detected objects without requiring ad-
ditional learning [25,26]. In [25], researchers introduced a grasp pose estimation technique
based on 3D point cloud analysis, employing Principal Component Analysis (PCA) [27] and
RANSAC [18]. While this approach showed promising performance by focusing solely on
point cloud contour lines, it was limited in its applicability to objects with complex shapes.
Another study, outlined in [26], utilized a virtual gripper with a C-shape configuration to
determine the grasp pose. This approach accommodates complex-shaped objects; however,
due to the inherently random nature of the deduced grasping orientation, it demands a
high-DOF manipulator to secure the object effectively

3. System Overview

Figure 2 shows the simulation model used in this work and the schematics of the
framework designed to perform tidy-up tasks that require perception and mobile manipu-
lation with a quadruped robot. To execute the main functions, the model has the form of a
quadruped robot equipped with a front camera, gripper camera, LiDAR, and a low-DOF
manipulator. The framework is combined with multiple modules interconnected through
ROS [28] messages, which are divided into three blocks: perception, behavior control, and
joint control. The approximate role of each block is as follows, and Table 1 shows the
dimensions of the robot model used in the experiment.

Figure 2. Overview of the system.

Table 1. Dimensions of the robot.

Body Length Body Width Thigh Length Calf Length

0.419 m 0.2505 m 0.22 m 0.22 m
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3.1. Perception

The perception block is the initial step in our research workflow, encompassing the
object detection and grasp pose estimation modules. In the object detection module, we
employ a machine learning-based algorithm to process image data, generating point clouds
for each detected object. Subsequently, from these point clouds, we select the target point
cloud for grasping and derive the grasp pose for the respective object in the grasp pose
estimation module.

3.2. Behavior Control

The prior information required for joint control is derived in behavior control. By
combining LiDAR data and odometry with per-object point cloud and target object, which
is derived in the object detection module, the navigation module can generate the target
velocity of Center of Mass (COM) and current pose on the map. The current pose and
grasp pose are used to derive the control phase, which decides the robot’s control state
(e.g., walking or standing) and manipulation trajectory. The task planning module generates
the manipulator trajectory when the current grasp pose is appropriate.

3.3. Joint Control

The joint control block performs actual roles in moving the robot. The leg control mod-
ule employs the MPC-based method for precise and stable control. This method requires
IMU data, joint states (e.g., position and velocity), and odometry. This module is rooted
in [20], and we customize it to suit this research. On the other hand, the manipulator control
module utilizes position control using the numerical solution of the inverse kinematics.

4. Perception

In order to detect each object in 3D space, we employ a combination of machine
learning approaches, including Yolov7, KNN, and RANSAC. Initially, we select the target
object from among the detected objects using these methods. Subsequently, we estimate
the grasp pose of the chosen object by converting the point cloud into a height map.

4.1. Per-Object Point Cloud Generation

To obtain 3D information about the objects in determining which object to grasp and
estimating its grasp pose, generating point clouds for each object emerges as a preliminary
step. This endeavor follows the real-time detection of objects from 2D images. As illustrated
in Figure 3a, we employ YOLOv7 [16], using Deep Learning methodologies to detect objects
and outline their bounding boxes within RGB images in real-time. After object detection,
we segment the corresponding positions in the depth image. By projecting this segmented
data into 3D space via the intrinsic K matrix [29], point clouds for each object are derived,
as shown in Figure 3b.

(a) (b)

Figure 3. Object detection: (a) Detecting objects with YOLOv7 and (b) Point clouds per object.
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4.2. Filtering Outliers

Figure 4a reveals the presence of outliers causing distortions. To address this issue,
we deploy two machine learning techniques: KNN [17] and RANSAC [18]. Initially,
showcased in Figure 4b, we partition the point cloud into object and background segments
using KNN [17]. However, distinguishing between the object and background through
KNN [17] alone is challenging. To address this, considering the closer proximity of the
object’s centroid to the robot’s camera, we exclude the background by eliminating the
portion with a more distant centroid. This strategy yields a model devoid of background,
showcased in Figure 4c. Subsequently, by leveraging plane-fitting RANSAC [18], the
remaining outliers are filtered, aiding in the acquisition of plane normal vectors utilized for
predicting grasp directions. The culmination of these steps yields refined 3D models free
from outliers, as depicted in Figure 4d.

(a) (b) (c) (d)

Figure 4. Process of filtering outliers: (a) Original, (b) Part division, (c) Background removal, and
(d) Filtering outliers.

4.3. Probing Direction Decision

Depending on the object’s state, such as on the floor or the table, and properties, the
robot should determine its probing direction to estimate a grasp pose of the object in the
easy-to-grasp posture. The robot employs a gripper-mounted camera to probe the object
vertically when the object is positioned on the floor, as exemplified in Figure 5a. However,
for objects on the table, the probing direction requires prediction. This prediction entails
adopting the posture depicted in Figure 5b for object assessment. Within this configuration,
the robot employs the plane-fitting RANSAC [18] to compute the normal vector of the
object’s point cloud. If the z-coordinate of this normal vector surpasses a predetermined
threshold, the robot concludes that vertical probing is ideal and proceeds to generate a
corresponding height map. Conversely, horizontal probing is deemed more suitable if the
z-coordinate falls below the threshold. In this case, the robot repositions its manipulator to
the configuration shown in Figure 5c and adjusts its position to a grasp-appropriate point.
Subsequently, with the manipulator reoriented, the robot employs its body-mounted front
camera to create a height map for the object’s horizontal probing assessment.

(a) (b) (c)

Figure 5. Setting probing posture in probing area: (a) Vertical-floor, (b) Vertical-table, and (c) Horizontal.
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4.4. Height Map Creation

The construction of a height map, derived from the point cloud data, is executed
through distinct coordinate configurations according to the robot’s chosen probing direction.
In instances where the robot decides on horizontal probing, the x and y coordinates of
the height map are extracted from the point cloud’s y and z coordinates, respectively.
Conversely, for vertical probing, the x and y coordinates of the height map are derived
from the point cloud’s x and y coordinates, correspondingly. The height values assigned
to the height map are drawn from the z-coordinates of the point cloud when probing
vertically, while horizontal probing utilizes the x-coordinates for height value determination.
A detailed explanation is given in Algorithm 1, and Figure 6 shows the result.

Algorithm 1 Height map creation

1: x_coords ← removeDuplicate(target_point_cloud.x)
2: y_coords ← removeDuplicate(target_point_cloud.y)
3: z_coords ← removeDuplicate(target_point_cloud.z)
4: y_unit ← y_coords.size / HEIGHT_MAP_SIZE
5: if probing_pose is horizontal then
6: x_unit ← z_coords.size / HEIGHT_MAP_SIZE
7: creteria_height ← max(target_point_cloud.x)
8: else
9: x_unit ← x_coords.size / HEIGHT_MAP_SIZE

10: creteria_height ← min(target_point_cloud.z)
11: end if
12: for i ← 1 to target_point_cloud.size do
13: height_map_x ← rank(target_point_cloud.y[i], y_coords)
14: if probing_pose is horizontal then
15: point_height ← creteria_height – target_point_cloud.x[i]
16: height_map_y ← rank(target_point_cloud.z[i], z_coords)
17: else
18: point_height ← target_point_cloud.z[i] – creteria_height
19: height_map_y ← rank(target_point_cloud.x[i], x_coords)
20: end if
21: for j ← 1 to HEIGHT_MAP_SIZE do
22: if height_map_x ≥ x_unit ∗ (j – 1) and height_map_x ≤ x_unit ∗ j then
23: for k ← 1 to HEIGHT_MAP_SIZE do
24: if height_map_y ≥ y_unit ∗ (k – 1) and height_map_y ≤ y_unit ∗ k then
25: height_map_num(j, k) ← height_map_num(j, k) + 1
26: height_map_sum(j, k) ← height_map_sum(j, k) + point_height
27: end if
28: end for
29: end if
30: end for
31: end for
32: height_map ← height_map_sum / height_map_num

4.5. Grasp Pose Prediction

The height map derived in Section 4.4 is used to predict grasp pose. From this map,
we select grasp candidates and select grasp pose among them, considering contact pose
inclination and distance to the center of the height map. Subsequently, we convert the
grasp pose, initially represented in the height map, into the 3D space.
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Figure 6. Height map.

4.5.1. Selecting Grasp Candidates

The primary step in the prediction process involves the selection of grasp candidates
extracted from the height map. As illustrated in Figure 7, this procedure requires trans-
forming the gripper to fit the height map and subsequently evaluating each element in
conjunction with the gripper configuration to ascertain its graspability. A point is con-
sidered a graspable candidate when the height of the coordinate situated at the center
of the gripper exceeds the height of the locations where the gripper’s tips are positioned
by a predefined margin. However, within this evaluation, if the slopes present within
the gripper’s region exhibit a gradient lower than a specified threshold, the coordinate is
classified as ungraspable. Comprehensive details of this operational phase are presented in
Algorithm 2.

Algorithm 2 Selecting grasp candidates

1: for i ← 1 to HEIGHT_MAP_SIZE do
2: for j ← 1 to HEIGHT_MAP_SIZE do
3: left_tip_pos ← i + gripper_width_half _height_map
4: right_tip_pos ← i – gripper_width_half _height_map
5: left_tip_diff ← height_map(i, j) – height_map(left_tip_pos, j)
6: right_tip_diff ← height_map(i, j) – height_map(right_tip_pos, j)
7: if left_tip_diff or right_tip_diff > GRASPABLE_HEIGHT then
8: grasp_pos_found ← false
9: for k ← right_tip_pos to i – 1 do

10: right_height_slope ← height_map(k + 1, j) – height_map(k, j)
11: if right_height_slope ≥ GRASPABLE_HEIGHT_VAR then
12: for l ← i + 1 to left_tip_pos do
13: left_height_slope ← height_map(l – 1, j) – height_map(l, j)
14: if right_height_slope ≥ GRASPABLE_HEIGHT_VAR then
15: grasp_pos_candidates.add({i, j})
16: right_tip_contact_poses.add({k, j})
17: left_tip_contact_poses.add({l, j})
18: grasp_pos_found ← true
19: break
20: end if
21: end for
22: end if
23: if grasp_pos_found then
24: break
25: end if
26: end for
27: end if
28: end for
29: end for
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(a) (b) (c)

Figure 7. Selecting grasp candidates: (a) Ungraspable position, (b) Graspable position, and (c) Grasp can-
didates.

4.5.2. Getting Contact Pose Inclination

While candidates might meet the criteria outlined in Section 4.5.1, addressing potential
slipping issues arising from unaccounted contact pose inclinations is essential. To ad-
dress this concern, we engage neighboring contact coordinates around the present contact
coordinate to ascertain inclinations. This involves determining slopes based on contact
coordinates adjacent to the existing contact coordinate, thus enabling the derivation of
contact pose inclinations. Algorithm 3 details the precise steps.

Algorithm 3 Getting contact pose inclination

1: for i ← 1 to HEIGHT_MAP_SIZE do
2: for j ← 1 to HEIGHT_MAP_SIZE do
3: vicinity_pose_x.empty()
4: vicinity_pose_y.empty()
5: if tip_contacted_pos.is_exist({i, j}) is true then
6: for k ← –VICINE_RANGE to VICINITY_RANGE do
7: for l ← –VICINE_RANGE to VICINITY_RANGE do
8: if tip_contacted_pos.is_exist({i + k, j + l}) is true then
9: vicinity_pose_x.add(i + k)

10: vicinity_pose_y.add(j + l)
11: end if
12: end for
13: end for
14: vicinity_pose_x_diff ← vicinity_pose_x.max – vicinity_pose_x.min
15: vicinity_pose_y_diff ← vicinity_pose_y.max – vicinity_pose_y.min
16: tip_pose_inclination.add(atan2(vicinity_pose_y_diff , vicinity_pose_x_diff ))
17: end if
18: end for
19: end for

4.5.3. Selecting Grasp Pose in Height Map

Following determining the contact pose inclinations, depicted in Figure 8, a subsequent
filtering process is implemented to address candidates within low inclination regions. From
the remaining candidates, the one closest to the center of the height map is selected as the
prime candidate. In cases where multiple candidates share the same distance to the center,
the selection prioritizes the candidate within the narrowest area.

175



Sensors 2023, 23, 8247

(a) (b) (c)

Figure 8. Selecting grasp pose: (a) Getting contact inclination, (b) Filtering candidates, and (c) Select-
ing grasp pose.

4.5.4. Grasp Pose Transition

Concluding the prediction process, the final step is translating the grasp pose de-
termined within the height map to a comprehensive 3D pose, accomplished through
Algorithm 4. This process effectively reverses the steps undertaken in Algorithm 1, utiliz-
ing derived variables such as x_coords, y_coords, and z_coords from the earlier algorithm.

The outcome of Algorithm 4 is showcased in Figure 9, where the position of the arrow
symbolizes the grasp pose. At the same time, its orientation represents the derived grasp
direction, facilitated by utilizing the normal vector from the plane-fitting RANSAC [18].
This step finalizes the prediction procedure, ensuring accurate grasp pose representation in
three-dimensional space.

Algorithm 4 Grasp pose transition

1: if probing_pose is horizontal then
2: grasp_pos_3d.x ← creteria_height – height_map(grasp_pos_2d.x, grasp_pos_2d.y)
3: else
4: grasp_pos_3d.z ← height_map(grasp_pos_2d.x, grasp_pos_2d.y) + creteria_height
5: end if
6: grasp_pos_idx_horizontal ← grasp_pos_2d.y ∗ y_unit
7: grasp_pos_idx_vertical ← grasp_pos_2d.x ∗ x_unit
8: grasp_pos_3d.y ← y_coords[grasp_pos_idx_horizontal]
9: if probing_pose is horizontal then

10: grasp_pos_3d.z ← z_coords[grasp_pos_idx_vertical]
11: else
12: grasp_pos_3d.x ← x_coords[grasp_pos_idx_vertical]
13: end if

(a) (b)

Figure 9. Grasp pose in 3D point cloud: (a) Drill and (b) Bowl.
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4.6. Rotation of an Object on The Floor

When dealing with objects situated on the floor, achieving an optimal grasp is facili-
tated when the object’s orientation aligns with the gripper’s wrist angle. To achieve this
alignment, we leverage the line-fitting RANSAC [18] when probing objects on the floor.
As illustrated in Figure 10, the direction of the object’s normal vector corresponds to the
desired gripper angle. To accommodate this alignment, we perform a z-axis rotation of the
object’s point cloud according to the normal vector, preceding the grasp pose prediction
step. The final execution involves the robot grasping the object using the gripper positioned
in alignment with the object’s orientation, thus optimizing the grasping process for objects
located on the floor.

Figure 10. Rotation of an object on the floor.

5. Behavior Control

Before engaging in robot control at the joint level, managing and directing the robot’s
behavior is essential. Based on the detection information discussed in Section 4, the robot
performs Navigation and decides grasping form.

5.1. SLAM

In preparation for organizing objects, the robot initiates its process by determining
its position and comprehending its immediate environment. This initial phase involves
the creation of a spatial map using ROS’s SLAM package known as gmapping.Through
manual guidance within the designated area, the robot creates a map using LiDAR data and
odometry, as illustrated in Figure 11a. As the locomotion algorithm used in this framework
generates less staggering in gaiting, additional compensations are not required.

(a) (b)

Figure 11. SLAM and navigation: (a) SLAM and (b) Navigation.

5.2. Navigation

For precise navigation to predetermined positions within the map established in
Section 5.1, the robot’s movement is facilitated by utilizing the ROS package associated
with navigation, known as amcl. While this package has proven effective, it is employed
primarily for transporting the robot to designated search or deposit zones due to limita-
tions in accurately approaching goal poses. Figure 11b exemplifies the process involving
this package.
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5.3. Approaching

The robot’s initial task involves identifying graspable objects. By employing a camera
attached to the gripper, the robot scans the floor while maintaining the posture displayed in
Figure 12a. Upon detecting object centroids within its body frame of reference, the robot adjusts
its movement toward the nearest object. Yet, when the proximity to this object falls below
a defined threshold, TARGETING_DIST, it is categorized as a target_object. Subsequently,
the robot repositions itself to a probing_area, which ensures accessibility by the gripper, as
illustrated in Figure 5. Conversely, the robot reconfigures its manipulator to resemble the
stance depicted in Figure 12b in scenarios where no floor objects are detected. This alternative
posture is employed for surveying objects on a table using the front camera, following a
procedure analogous to that used for the floor. Algorithm 5 offers a comprehensive breakdown
of this operational phase.

(a) (b)

Figure 12. Searching postures: (a) Searching floor object posture and (b) Searching table object posture.

Algorithm 5 Approaching

1: searching_mode.manipulator ← floor_searching
2: searching_mode.camera ← gripper_camera
3: if isObjectExist(searching_state) is false then
4: searching_mode.manipulator ← table_searching
5: searching_mode.camera ← front_camera
6: probing_area_type ← FLOOR_PROBING_AREA
7: else
8: probing_area_type ← TABLE_PROBING_AREA
9: end if

10: while target_object.centroid not in probing_area do
11: object_clouds ← searchObjects(searching_state)
12: if target_object_id is null then
13: closest_object ← getClosestObject(object_clouds)
14: traceObject(closest_object.centroid)
15: if closest_object.dist ≤ TARGETING_DIST then
16: target_object_id ← closest_object.object_id
17: end if
18: else
19: target_object ← getTragetObject(object_clouds, target_object_id)
20: moveToProbingArea(target_object.centroid, probing_area_type)
21: end if
22: end while

5.4. Grasping an Object

The act of grasping is executed with variations contingent upon the object’s specific
situation, as demonstrated in Figure 13. Despite these variations, the fundamental grasping
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process can be categorized into three distinct stages: probing, transitioning to a grasp-ready
pose, and actual grasping.

(a)

(b)

(c)

Figure 13. Grasping an object differently depending on the situation: (a) Grasping an object on
the floor, (b) Grasping an object on the table horizontally, and (c) Grasping an object on the table
vertically.

Upon reaching an area conducive to grasping, the robot initiates the probing stage,
which adapts according to the specific scenario. After probing, the robot adjusts the
positioning of its COM and manipulator to align the grasp pose within the object with
the gripper’s front. In the ensuing stage, when the grasp direction is vertical, the robot
adjusts its COM along the z-axis by flexing its knee, effectively facilitating object grasping.
Conversely, for horizontal grasp directions, the robot shifts its manipulator along the x-axis
to the object’s location, preventing any potential collision between the gripper and the
object. However, when the object’s distance exceeds the manipulator’s operational range,
the robot compensates by moving its COM along the x-axis. Algorithm 6 comprehensively
describes this process.

Algorithm 6 Grasping an object

1: if grasp_ready_phase then
2: moveCOM(–grasp_pos_3d.y)
3: if grasp_orientation is vertical then
4: gripper_pose.x ← grasp_pose_3d.x
5: gripper_pose.z ← grasp_pose_3d.z + GRASP_READY_Z
6: if centoid_grasp_pose_diff _dist ≥ ROLL_THRESHOLD then
7: gripper_roll ← atan2(centoid_grasp_pose_diff .y, centoid_grasp_pose_diff .x)
8: else
9: gripper_roll ← line_fitting_RANSAC(filtered_point_cloud).normal

10: end if
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Algorithm 6 Cont.

11: else
12: gripper_pose.x ← GRASP_READY_X
13: gripper_pose.z ← grasp_pose_3d.z
14: end if
15: else if grasp_phase then
16: if grasp_orientation is vertical then
17: grapper_pos.z ← grasp_pos_3d.z + COM_MOVE_Z
18: com_pose.z –= COM_MOVE_Z
19: else
20: if grasp_pos_3d.x ≤ MANIPULATOR_X_LIM then
21: grapper_pos.x ← grasp_pos_3d.x
22: else
23: grapper_pos.x ← MANIPULATOR_X_LIM
24: com_pose.x += (grasp_pos_3d.x – MANIPULATOR_X_LIM)
25: end if
26: end if
27: end if

6. Joint Control

To facilitate the execution of desired robot behaviors, control at the joint level should be
performed. The robot’s motion control comprises two essential components: Manipulator
Control and Leg Control. The robot controls its manipulator with position control with a
numerical solution of inverse kinematics and controls its leg with the MPC-based method.
Table 2 shows the dimensions of the manipulator.

Table 2. Dimensions of the manipulator.

d1 d2 d3 d4 d5

0.06 m 0.25 m 0.06 m 0.21 m 0.1 m

6.1. Manipulator Control

To ensure minimal impact on the robot’s gaiting, the manipulator integrated onto the
quadruped robot is designed to be lightweight. Achieving this objective involves employing
a low-DOF manipulator, effectively reducing the weight of its actuators. As depicted in
Figure 14, a four-DOF manipulator configuration has been adopted for object grasping.
Utilizing these parameters, we can define Ttr(x, y, z) as a translational transform and Rx, Ry,
and Rz as rotational transforms around the x, y, and z axes, respectively. Consequently, the
solution for the arm’s forward kinematics can be deduced as follows:

Tmanipulator = Ttr(0, 0, d1)Ry(θ1)Ttr(0, 0, d2)Ry(θ2)Ttr(d4, 0, d3)Ry(θ3)Rx(θ4)Ttr(d5, 0, 0) (1)

(a) (b)

Figure 14. Manipulator configuration and model: (a) Arm configuration and (b) Robot model.
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Inverse Kinematics

To obtain the inverse kinematics solution for a target transform Tmanipulator, we first
calculate the relative wrist position (x′, 0, z′).

T′
manipulator = Ttr(0, 0, –d1)TmanipulatorTtr(–d5, 0, 0) (2)

[
x′ 0 z′ 1

]T = T′
manipulator

[
0 0 0 1

]T (3)

Using the components in Figure 15, we can obtain θ1 and θ2 with following equation.

d6 =
√

x′2 + z′2 (4)

d7 =
√

d2
3 + d2

4 (5)

θ1 =
π
2

– a cos(
d2

1 + d2
6 – d2

7
2d1d6

) – a tan 2(z′, x′) (6)

θ2 = π – a cos(
d2

1 + d2
7 – d2

6
2d1d7

) – a tan 2(d4, d3) (7)

Figure 15. Arm configuration without the gripper and base.

As all joints without θ4 are moved in the y-axis, the gripper’s roll is the same with θ4.
Now that we know θ1, θ2, and θ4, we can obtain θ3 with following equation:

Ry(θ3) = Ttr(–d4, 0, –d3)Ry(–θ2)Ttr(0, 0, –d2)Ry(–θ1)T′
manipulatorRx(–θ4) (8)

θ3 = a cos(Ry(θ3)11) (9)

6.2. Leg Control

In Leg Control, we adopted a framework rooted in MPC, introduced in [20]. Consid-
ering its current state and desired pose, this framework derives the appropriate Ground
Reaction Force (GRF) with MPC. To adopt this framework as the Leg Control module, we
adjusted several components to fit this work.

6.2.1. COM Controller

As the Navigation module returns the target velocity, we adjust the desired pose with
this value. When the target velocity is returned, the desired pose is adjusted as follows.

ptarget(t + Δt) = ptarget(t) + vtargetΔt (10)
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Ωtarget =

⎡⎢⎢⎣
0 –ωtarget_x –ωtarget_y –ωtarget_z

ωtarget_x 0 ωtarget_z –ωtarget_z
ωtarget_y –ωtarget_z 0 ωtarget_x
ωtarget_z ωtarget_y –ωtarget_x 0

⎤⎥⎥⎦ (11)

qtarget(t + Δt) = (I +
1
2

ΩtargetΔt)qtarget(t) (12)

Subsequently, we set VEL_LIMIT in FSM the same as an absolute value of the tar-
get velocity.

6.2.2. Gait

In navigation, we adopt trotting as a gaiting form. As shown in Figure 16, the trot-
ting phase is divided into four phases: swing_FLRR, stance_FLRR, swing_FRRL, and
stance_FRRL. The desired GRF in swing phases (swing_FLRR and swing_FRRL) is half of
the body mass, and the desired GRF in stance phases (stance_FLRR and stance_FRRL) is a
quarter of the body mass. Since the leg mass is less than 10% of the robot’s total mass, the
legs’ inertia effect could be neglected.

(a) (b) (c) (d)

Figure 16. Gaiting with four phases: (a) swing_FLRR, (b) stance_FLRR, (c) swing_FRRL, and
(d) stance_FRRL.

6.2.3. Parameters

The parameters used in Leg Control should be adjusted to fit the environment of this
work. Table 3 shows the parameters used in this work. In this table, Ru, Q, Nhor, Tsw, Tst,
and Tpred represent input weight matrix, pose weight matrix, expectation horizon, swing
foot time, stance foot time, and prediction time, respectively.

Table 3. Parameters.

Parameter Value

Ru [0.1 0 0; 0 0.1 0; 0 0 0.1]
Qp [100,000 0 0; 0 150,000 0; 0 0 100,000]
Qṗ [100 0 0; 0 100 0; 0 0 100]
QR [5000 0 0; 0 5000 0; 0 0 5000]
Qω [2 0 0; 0 4 0; 0 0 3]
Nhor 6
Tsw 0.3
Tst 0.1

Tpred 0.03
Note: Tsw, Tst, and Tpred have the unit [s].
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6.2.4. Finite State Machine

This segment defines the robot’s reference state utilized in the MPC framework. Under
normal circumstances, we presume that the robot’s initial posture and velocity mirror the
current state, aiming to refine its velocity by controlling acceleration to achieve the intended
pose. Nevertheless, when the current velocity’s trajectory diverges from the desired pose,
we adapt the planned velocity to align with the desired pose’s direction, bypassing the
current state’s influence. Algorithm 7 provides an intricate breakdown of this process,
incorporating parameters such as ADJUST_VEL_THRESHOLD, FEED_BACK_VEL, and
PLANNED_ACC, all of which are denoted as positive numerical values.

Algorithm 7 Finite state machine

1: now_planned_pose ← current_pose
2: now_planned_vel ← current_vel
3: for i ← 1 to EXPECTATION_HORIZON do
4: pose_diff ← desired_pose – now_planned_pose
5: if pose_diff .abs < ADJUST_VEL_THRESHOLD then
6: now_planned_vel ← 0
7: now_planned_pose ← desired_pose
8: else
9: if pose_diff ∗ now_planned_vel < 0 then

10: if now_planned_vel < 0 then
11: now_planned_vel ← FEED_BACK_VEL
12: else
13: now_planned_vel ← –FEED_BACK_VEL
14: end if
15: else

16: if
now_planned_vel2

2ACCEL < pose_diff .abs then
17: now_planned_vel –= PLANNED_ACC ∗ Tpred ∗ pose_diff .sign
18: else if now_planned_vel.abs ≤ VEL_LIMIT then
19: now_planned_vel += PLANNED_ACC ∗ Tpred ∗ pose_diff .sign
20: end if
21: end if
22: now_planned_pose += now_planned_vel ∗ Tpred
23: end if
24: planned_vel[i] ← now_planned_vel
25: planned_pose[i] ← now_planned_pose
26: end for

6.2.5. Swing Foot Trajectory

Given the dynamic nature of the desired foot placement position, varying based on
the specific leg position (front, rear, left, or right), we employ Algorithm 8 to establish the
swing foot trajectory.

Algorithm 8 Swing foot trajectory

1: TIME_CONST ← Tsw
2 + EXTRA_DIST

2: if is_front then
3: desired_swing_foot_pos.x ← BODY_LENGTH_HALF
4: foot_pos_des.x ← (now_lin_vel.x – HIP_JOINT_Y ∗ ωz) ∗ TIME_CONST
5: foot_pos_des.y ← (now_lin_vel.y + SHOULDER_LENGTH ∗ ωz) ∗ TIME_CONST
6: else
7: desired_swing_foot_pos.x ← –BODY_LENGTH_HALF
8: foot_pos_des.x ← (now_lin_vel.x + HIP_JOINT_Y ∗ ωz) ∗ TIME_CONST
9: foot_pos_des.y ← (now_lin_vel.y – SHOULDER_LENGTH ∗ ωz) ∗ TIME_CONST
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Algorithm 8 Cont.

10: end if
11: if is_left then
12: desired_swing_foot_pos.y ← HIP_JOINT_Y
13: else
14: desired_swing_foot_pos.y ← –HIP_JOINT_Y
15: end if
16: xy_pos_traj_elem ← 0.5(1 – cos( π

Tsw
t))

17: desired_swing_foot_pos.x += foot_pos_des.x ∗ xy_pos_traj_elem
18: desired_swing_foot_pos.y += foot_pos_des.y ∗ xy_pos_traj_elem
19: desired_swing_foot_pos.z = TROT_FOOT_HEIGHT ∗ sin( π

Tsw
t)

7. Experiment

The experimental evaluation was conducted using Gazebo [30], an open-source 3D
robotic simulator integrated within the ROS framework [28]. However, we found a slipping
problem when grasping an object with the gripper, so we adopted gazebo_grasp_plugin
to solve it. The experimental setup, as illustrated in Figure 17, closely emulated the
configuration resembling the Robocup@Home 2021-virtual league environment. As is
customary in the competition, shown in Figure 18, this experiment encompassed object
classification tasks. The system’s speed and accuracy were assessed by placing objects in
predefined positions. To run the simulation and YOLOv7 simultaneously, we used the
desktop equipped with an AMD Ryzen 7 5800X, 32 GB of RAM, and an NVIDIA GeForce
RTX 3090.

Figure 17. Simulation model and environment.

(a)

Figure 18. Cont.
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(b)

Figure 18. Object classification tasks: (a) Classifying an object on the floor and (b) Classifying an
object on the table.

7.1. Objects

A set of eighteen distinct objects was utilized during the experimental phase, as
illustrated in Figure 19. These objects include a baseball, bowl, brick, clamp, coffee can,
Rubik’s cube, cup, driver, Lego, marker, padlock, cracker, spoon, sugar, tennis ball, tomato
soup, and toy gun. These objects are drawn from the YCB object dataset, an official selection
used in the Robocup@Home. Throughout the experiment, the objects’ configurations were
modified within the environment.

Figure 19. Objects used in the experiment.

7.2. Tasks

The experiment was structured around two main tasks: opening drawers and clas-
sifying objects. As depicted in Figure 20, the drawers were positioned in three distinct
configurations: left, right, and top. At the outset of the experiment, the initial step involved
manipulating the manipulator to open these drawers. Once the drawer-opening task was
completed, the robot proceeded to the object classification phase.

Figure 20. Opening drawer.
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Object classification was executed through the deposition of objects into designated
areas corresponding to specific categories. These categories encompassed orientation-based
items (e.g., marker, spoon), food items (e.g., coffee can, sugar, tomato soup, and cracker),
tools (e.g., driver, clamp, and padlock), shape items (e.g., baseball, tennis ball, cup, and
brick), task items (e.g., Rubik’s cube, toy gun, and Lego), and kitchen items (e.g., bowl,
mug). The classification process was facilitated by arranging objects in the appropriate area
corresponding to their respective categories. This classification was performed within an
area divided into six distinct sections, as illustrated in Figure 21: pencil case (orientation-
based items), tray (foods), drawer (tools), green box (shape items), black box (task items),
and small box (kitchen items).

For a comprehensive visual representation of the experiments, all corresponding
video recordings can be accessed at the link https://www.youtube.com/playlist?list=PLB1
pUAsYGpRGpUhJ0qVN3_Y0EIwi5TMcz, (accessed on 1 October 2023).

(a) (b) (c)

(d) (e) (f)

Figure 21. Object classification sections: (a) Pencil case, (b) Tray, (c) Drawer, (d) Green box, (e) Black
box, and (f) Small box.

7.3. Results

The experiment was repeated across five distinct environments, each involving ten
objects from the selection shown in Figure 19. The outcomes of these trials are summarized
in Table 4, providing details such as the number of successful attempts, the number of
failures, the success rate, and the duration taken for each test. However, as the opening
of the drawers succeeded in all experiments, it is not described in the table. Notably, the
average success rate across all trials amounted to 96%. Moreover, the success rates for all
environments consistently exceeded 80%, underscoring the system’s robust performance
across varying contexts. Comparatively, our system exhibited longer task execution times
in certain scenarios, such as turning in place, walking sideways, and setting a grasp-ready
pose, when compared to a wheeled robot. In particular, our platform required more than
3 min to complete the tasks with six fewer objects than [10], which utilized a wheeled robot
(HSR) for a similar experiment.
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Table 4. Results.

Trial Objects Success Num Failure Num Success Rate Time

1 Rubik’s cube, clamp, marker, cracker, spoon, Lego, coffee can,
baseball, bowl, cup 10 0 100% 19:07

2 tennis ball, bowl, driver, padlock, spoon, sugar, tomato soup,
toy gun, mug, brick 8 2 80% 18:55

3 tennis ball, mug, driver, toy gun, padlock, coffee can, Rubik’s
cube, tomato soup, bowl, brick 10 0 100% 20:48

4 tennis ball, bowl, padlock, Lego, marker, cracker, brick, mug,
tomato soup, Rubik’s cube 10 0 100% 19:59

5 marker, mug, tomato soup, Rubik’s cube, clamp, driver, cup,
bowl, coffee can, baseball 10 0 100% 18:10

Average 9.6 0.4 96% 19:24

8. Discussion

In this work, we proposed a mobile manipulation framework to organize household
objects with quadruped robots. As described in Section 7, the model used in the experiment
shows high stability and accuracy in locomotion and manipulation. Additionally, when
estimating an object’s grasp pose by combining machine learning algorithms, it selected an
appropriate grasp pose in real time for the objects used in the experiment, even for chal-
lenging objects such as bowls, toy guns, and cups. However, when comparing its spending
time with previous experiments using wheeled robots [10], the system’s operational speed
is relatively time-consuming.

Although this work successively reaches the goal of developing a framework to
organize household objects with a quadruped robot, it is essential to acknowledge that
these accomplishments were obtained exclusively within a simulation environment without
tasks executed on uneven terrains, a significant advantage inherent to quadruped robots.
Furthermore, the experiment required only mobile manipulation skills without Human–
Robot Interaction (HRI) required for the robots used in ordinary places.

To address these limitations, in the following works, we plan to conduct experiments
in real-world environments using physical hardware, including scenarios with uneven
terrains. Simultaneously, we will committed to optimizing the framework to reduce task
completion times and expanding its capabilities to include HRI functionalities.

9. Conclusions

This study introduces a comprehensive robotic framework that effectively performs
household tasks through the integration of a quadruped robot equipped with perception,
navigation, manipulation, and body control. The system’s reliability is underscored by a
successful experiment that attests to its high accuracy. However, this research was confined
to simulation-based experiments, and task execution times were relatively extended.

In our future work, we plan to transition from simulation-based experiments to
real-world experimentation employing an actual quadruped robot PADWQ [31], shown in
Figure 22, developed at the Pusan National University. Additionally, we will also expand its
functionality, such as Natural Language Processing (NLP), pose estimation, human tracking,
etc., to encompass a wider array of general-purpose tasks, including HRI. Furthermore,
our ongoing efforts will focus on scenarios that involve various terrains, including stairs or
thresholds, while concurrently working to reduce task completion times.
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Figure 22. Physical hardware platform for future work.
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DOF Degree of Freedom
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HSR Human Support Robot
HQP Hierarchical Quadratic Programming
WBC Whole Body Control
PCA Principal Component Analysis
COM Center of Mass
MPC Model Predictive Control
GRF Ground Reaction Force
NLP Natural Language Processing
HRI Human–Robot Interaction
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Abstract: The integration of intelligent robots in industrial production processes has the potential to
significantly enhance efficiency and reduce human adversity. However, for such robots to effectively
operate within human environments, it is critical that they possess an adequate understanding of
their surroundings and are able to navigate through narrow aisles while avoiding both stationary
and moving obstacles. In this research study, an omnidirectional automotive mobile robot has been
designed for the purpose of performing industrial logistics tasks within heavy traffic and dynamic
environments. A control system has been developed, which incorporates both high-level and low-
level algorithms, and a graphical interface has been introduced for each control system. A highly
efficient micro-controller, namely myRIO, has been utilized as the low-level computer to control
the motors with an appropriate level of accuracy and robustness. Additionally, a Raspberry Pi 4, in
conjunction with a remote PC, has been utilized for high-level decision making, such as mapping the
experimental environment, path planning, and localization, through the utilization of multiple Lidar
sensors, IMU, and odometry data generated by wheel encoders. In terms of software programming,
LabVIEW has been employed for the low-level computer, and the Robot Operating System (ROS)
has been utilized for the design of the higher-level software architecture. The proposed techniques
discussed in this paper provide a solution for the development of medium- and large-category
omnidirectional mobile robots with autonomous navigation and mapping capabilities.

Keywords: ROS and LabVIEW interaction 1; autonomous robot 2; navigation with ROS 3; control
design with ROS 4; SLAM 5; navigation with ROS; omnidirectional mobile robot 6; integrated control
system 7; industrial logistic robots 8

1. Introduction

The COVID-19 pandemic has presented the global community with a unique challenge,
and the scientific community has been working diligently to protect human health and
maintain societal and industrial progress. The field of robotics has played a crucial role
in this context. The utilization of different types of robots has been a highly researched
topic in the wake of the pandemic. In fact, a survey [1] conducted in 2020 found that over
3500 papers were published on the topic of robots in contagion scenarios. Furthermore,
the most significant research keywords, based on 280 publications, were mapped, with
“autonomous robot” being among the top keywords. During the pandemic, the world has
witnessed the successful deployment of robotic nurses [2] in Hong Kong, delivery robots in
the United States, and working robots in Japan and Korea. Additionally, a study published
in 2020 [3] indicates that since the onset of the COVID-19 pandemic, consumers are willing
to pay an extra 61.28% for robot delivery.

The widespread adoption of robots has broadened the spectrum of human–robot col-
laboration, leading to an improvement in task accuracy and proximity to human employees.
Among the various types of robots, mobile robots have gained significant attention for
both industrial and logistic uses. The incorporation of autonomous robots in large-scale
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factories and logistics centers has become a common practice for reducing the strain on
human labor.

For many years, autonomous guided vehicles (AGVs) [4] have dominated the robot
industry due to their efficiency in handling manufacturing processes and logistics tasks,
such as picking, packing, and palletizing, along pre-defined pathways. However, their
inflexibility in adjusting to route changes and limited ability to collaborate with other
systems or human operators has led to the development of a more advanced technology:
autonomous mobile robots (AMRs) [5]. These robots have the capability of decision-making
and autonomous navigation, without being restricted to a pre-defined path.

Another crucial consideration in terms of the integration of robots into human envi-
ronments is the requirement for a proper understanding of the surrounding environment to
avoid obstacles and unexpected encounters with humans or other objects. In fast-growing
industrial environments with high traffic and narrow hallways surrounded by various
objects and people, omnidirectional mobile robots (OMRs) [6] may be a superior solution
due to their ability to move in any direction. However, their overlooked lower-level control
design may not be effective in handling continuously changing loads. Thus, advanced
control design, even for the lower-level control, is necessary to ensure the effectiveness of
OMRs in heavy logistics duties.

In this research study, a design for a mobile robot has been proposed, featuring four
Mecanum wheels driven by a bridge motor driver and controlled by a myRIO micropro-
cessor. The rotation speed of these wheels allows for control over the forward, backward,
and sideways movements, as well as the turning, of the robot. This research focused on
studying different research and ideas from different projects and putting those puzzles
together to create an improved and better-performing autonomous mobile robot.

The study aimed to develop a closed-loop feedback control system that incorporated
both feedforward and Disturbance Observer (Dob) [7] with a graphical interface. The upper
computer software was designed to enable remote control and monitoring of the robot, as
well as to provide a user-friendly human–computer interaction.

Automatic navigation and mapping were performed using the Robot Operating Sys-
tem (ROS), which provided a Navigation Stack or Automatic Navigation System. This 2D
or 3D [8] method integrates information from odometry, sensor data, and a goal pose to
produce safe velocity commands. The Navigation Stack can generate the shortest path and
avoid obstacles, even if those obstacles are not predetermined in the map data.

In order to build a map of the environment, Simultaneous Localization and Mapping
(SLAM) was utilized. The G-Mapping [9] Package was employed for the robot, utilizing
multiple LiDAR and odometry data and employing graph-based optimization to generate
a highly accurate representation of the environment.

2. Designing Hardware Architecture

The design and construction of an autonomous robot involves a holistic consideration
of both its mechanical and electrical components. This integrated approach is critical in en-
suring that the robot functions optimally and efficiently in fulfilling its intended tasks. The
developed robot was named “Motion Bot” and its mechanical and electrical components
are thoroughly described in the subsequent sections of this paper. The comprehensive
analysis of the mechanical and electrical components plays a critical role in illuminating the
intricacies and interdependencies of the various elements that comprise the autonomous
robot’s architecture.

2.1. Mechanical Components Design

The autonomous robot is designed with a lightweight aluminum body suitable for
indoor environments. The design of the robot’s body was created using computer-aided
design (CAD) software, which was utilized to perform simulations to calculate the load-
bearing capacity of the robot. Upon successful design, the chassis was manufactured
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using a computer numerical control (CNC) machine. Figure 1 depicts the actual physical
appearance of the robot.

Figure 1. Appearance of Motion Bot (Experimental Robot) (a) without robotic arm; (b) with
robotic arm.

Mobile robots equipped with non-holonomic systems possess the ability to move in a
variety of directions regarding their current positions and orientations. This feature, known
as omnidirectionality, is highly sought after in the field of mobile robotics. Several types of
omnidirectional wheels exist, each with their own distinct advantages and disadvantages.
The most common types of omnidirectional drives are the Kiwi and Holonomic systems [10],
which require a precise arrangement to achieve omnidirectional motion. However, these
wheels are not suitable for climbing ramps and have a lower capacity (approximately
50%) [11] for multi-directional movement. In contrast, Mecanum wheels, invented by
Bengt Ilon, are highly efficient for both forward and reverse movements, as well as lateral
movements. The orientation of Mecanum wheels can be arranged in a conventional manner,
with lateral motion achieved through wheel velocity control.

In the current research, “Motion Bot” was equipped with four Mecanum wheels with
a 100 cm diameter each, with twelve internal rollers at a 45-degree angle with the Y axis of
the wheel. The wheels were connected to the main body frame via a suspension mechanism
that provides surface contact conformity and reduces vibrations on the robot body.

Figure 2 presents a visual representation of the kinematic vector direction of the
chassis, which incorporates the Mecanum wheel and its internal rollers. The procedure
for determining the kinematics [12] of the system involves first calculating the inverse
kinematics, and then calculating the pseudo-inverse [13]. This was achieved by utilizing a
Cartesian coordinate system, which facilitated the analysis of vectors and other relevant
variables. The list of variables and their definitions are listed in Table 1 also list of all
symbols used in this article is expressed in Appendix A section.

Figure 2. Direction of speed vector on Robot and Mecanum wheel.
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Table 1. Robot’s kinetic model variable and definition.

Variable Definition
.

Yr Instantaneous longitudinal velocity of the robot
.

Xr Instantaneous lateral velocity of the robot
.
θr Angular velocity of the robot
.

YWi Instantaneous longitudinal velocity of the i wheel
.

XWi Instantaneous lateral velocity of the i wheel
.
θWheel Angular velocity of the wheel along XWi axis (pitch axis)

.
θRot Angular velocity of the wheel along ZWi axis (yaw axis)

.
θRoller Angular velocity of the Roller when it contacts the ground
γi Rotation angle between the i wheel frame and the roller frame
αi Angle between robot main frame and the i wheel frame
Lw Distance between robot coordinate and i wheel along x-axis
Ll Distance between robot coordinate and i wheel along y-axis
R Wheel radius
r Roller radius

CoM Center of mass of the robot

To derive the kinematic equation, first, the relation between wheel velocity and the
vehicle velocity was studied:

.
XWi =

.
Xr +

.
θr·L·cos

(π
2
+ αI

)
(1)

.
YWi =

.
Yr +

.
θr·L·sin

(π
2
+ αi

)
(2)

.
θWi =

.
θr (3)

Additionally, the relation between wheel velocity and the roller velocity was found:

.
XWi = r· .

θRoller·cos
(π

2
+ γi

)
(4)

.
YWi = r· .

θRoller·sin
(π

2
+ γi

)
+ R· .

θWheel (5)

.
θWi =

.
θRot (6)

Now arranging Equations (1)–(3) in martrix form it can be written:⎡⎢⎣
.
XWi.
YWi.
θWi

⎤⎥⎦ =

⎡⎣1 0 L·cos(π2 + αi)
0 1 L·sin(π2 + αi)
0 0 1

⎤⎦
⎡⎢⎣

.
Xr.
Yr.
θr

⎤⎥⎦ (7)

and arranging Equations (4)–(6) in matrix form:⎡⎢⎣
.
XWi.
YWi.
θWi

⎤⎥⎦ =

⎡⎣0 r·cos(π2 + γi) 0
R r·sin(π2 + γi) 0
0 0 1

⎤⎦
⎡⎢⎣

.
θWheel.
θRoller.
θRot

⎤⎥⎦ (8)

From Equations (7) and (8) it can be written:⎡⎢⎣
.
θWheeli.
θRolleri.
θRoti

⎤⎥⎦ =

⎡⎢⎣
1

R·tan(γi)
1
R

L
R (cos(αi)− sin(αi)·cot(γi))

− 1
r·sin(γi)

0 L· sin(αi)
r·sin(γi)

0 0 1

⎤⎥⎦
⎡⎢⎣

.
Xr.
Yr.
θr

⎤⎥⎦ (9)
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Within the context of Equation (9), the angular velocity of the roller is not a focal
point of consideration as the wheels are securely attached to the motor, thereby eliminating
any potential for rotational velocity in the yaw direction. Hence, through considering the
angular velocity of the wheel, the conclusion can be:

.
θWheeli =

1
R·tan(γi)

· .
Xr +

1
R
· .
Yr +

L
R
(cos(αi)− sin(αi)·cot(γi))·

.
θr (10)

Table 2 is listed with the wheel and roller angular parameters for each wheel of the
experimental robot.

Table 2. Wheel and roller angular parameter and their values.

Symbol Wheel1 Wheel2 Wheel3 Wheel4

αi
π
6

5π
6

7π
6

11π
6

γi −π
4

π
4 −π

4
π
4

(Note: L· cos(αi) = Lw // L· sin(αi) = Ll).

Substituting the I and Ii value in Equation (10), we can rewrite the equation as it is
written below:⎡⎢⎢⎢⎣

.
θWheel1.
θWheel2.
θWheel3.
θWheel4

⎤⎥⎥⎥⎦ =
1
R

⎡⎢⎢⎣
−1 1 (Ll + Lw)((cos(α1)− sin(α1))
1 1 −(Ll + Lw)((cos(α2)− sin(α2))
−1 1 −(Ll + Lw)((cos(α3)− sin(α3))
1 1 (Ll + Lw)((cos(α4)− sin(α4))

⎤⎥⎥⎦
⎡⎢⎣

.
Xr.
Yr.
θr

⎤⎥⎦ (11)

Equation (11) is the inverse kinematics of the system, and to find the forward kinemat-
ics, the pseudo-inverse process of Equation (11) must be processed, and then the equation
will be: ⎡⎢⎣

.
Xr.
Yr.
θr

⎤⎥⎦ =
R
4
∗

⎡⎢⎢⎢⎣
−1 1 −1 1
1 1 1 1
1

(Ll+Lw)((cos(α1)−sin(α1))
−1

(Ll+Lw)((cos(α2)−sin(α2))
−1

(L l+Lw)((cos(α3)−sin(α3))
1

(L l+Lw)((cos(α4)−sin(α4))

⎤⎥⎥⎥⎦∗
⎡⎢⎢⎢⎣

.
θWheel1.
θWheel2.
θWheel3.
θWheel4

⎤⎥⎥⎥⎦

(12)

2.2. Hardware Connection and Configuration

For the experimental robot divide, the electrical components were divided into three
classes. The first one is the decision-making and control components, the second one is the
sensors, and the last one is the power system. Figure 3 shows the hardware connection of
all mobile robot parts, where remote PC is the upper computer base. The ROS master is
executed from here, which sends all the control instructions using a common Wi-Fi signal
channel. Raspberry Pi works as a second upper computer base that collects data from
LiDAR and camera sensors. MyRIO works as the main controller, which receives control
instructions from the upper computer base through Wi-Fi to control the DC (Direct Current)
motors through the bridge driver, as well as send encoder data sets as a ROS node. For
the power source of the robot, a battery of 24 V was used with BMS (Battery Management
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system) and the power carrying capacity was 12 Ah. A 24 V to 12 V DC to DC converter is
used here, as the motors’ running voltage is 24 V, but myRIO and Raspberry Pi can operate
with a 12 V maximum power supply.

 

Figure 3. Connection Diagram of Different electrical components.

It is acknowledged that utilizing a single upper computer, such as Raspberry Pi,
for processing heavy data may result in a decrease in performance. To ensure efficient
monitoring and prompt response, a remote PC is utilized in conjunction with Raspberry Pi.
Figure 4 shows the data flow within this connection mentioning the ROS topic name.

Figure 4. Visualization of Data flow.
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3. Designing Software Architecture

The software architecture design will concentrate on the creation of velocity control
mechanisms for the motors, the mapping of the surrounding environment, and the im-
plementation of an autonomous navigation system. The control architecture has been
bifurcated into two sections for comprehensive elucidation. The first component deals
with the velocity control, which is referred to as the lower-level control and is exclusively
accountable for executing directives without any decision-making capacity. Conversely, the
higher-level control imbues the robot with the capacity to perceive its environment, generate
trajectories towards a designated target, and make adaptive choices for obstacle avoidance.

3.1. Lower-Level Control Software Design

The control design of a mobile robot can be approached from either a dynamic or
a kinematic perspective. While the dynamic approach involves the calculation of the
real-time system and is more complex, the kinematic approach, which consists of both the
kinematic loop and dynamics loop, is simpler and can guarantee stability through proper
tuning. This study adopts the kinematic approach for the control design and classifies
it into four sections. The first section focuses on finding the system identification and
establishing a nominal model, followed by the feedback control loop, along with the
feedforward and disturbance observer, in the second section. The third section addresses
the design of various trajectories to evaluate the control performance, and the final section
analyzes the robustness of the closed-loop system. LabVIEW programming was utilized
for the lower-level control, providing a Human Machine Interface (HMI) that allows for
real-time adjustment of control parameters and the creation of trajectories for automated
guided robots.

3.1.1. System Identification

Since electrical components, such as motor resistance and inductance, are controlled
by the motor driver, we will focus on the mechanical parts for system identification. The
nominal model for each wheel was identified through this process. Figure 5 shows a block
diagram of the process used for this process.

Figure 5. System Identification process block diagram.

For system identification [14] of four wheels, a chirp sine signal of 0~10 Hz was applied
for 10 s. PWM value was 0~1%, and the sine magnitude was 0.7, 0.75, 0.8, and 0.85. Figure 6
shows the body plot diagram of model design.

As it can be seen from the body plot, the magnitude has dropped around 20 dB
during 1 log-based frequency change, so we can be assured that the system model is the 1st
order [15] and that the mathematical form of the nominal model should be:

Output
Input

=
1

Jns + Bn
(13)
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Figure 6. Bode plot Diagram.

3.1.2. Control Design

The method for motor control [4] used in this experiment was speed-voltage looped
control. Voltage was considered equivalent to velocity, and control was designed for each
individual motor. Then, from the forward kinematics on Equation (12), we can calculate the
individual motor’s velocity to find the total vehicle velocity. The actual velocity provided
by each motor encoder can be calculated using Equation (11). Then, using the given velocity
and actual velocity, a feedback control loop can be designed. Using the nominal model
from Section 3.1.1, a feedback control loop was designed through pole-zero cancelation
method [16]. The feedback control equation design was as follows:

Cfb = ωfb·Jn +
ωfb·Bn

s
(Here, ωfb = 2π× 2 Hz) (14)

To soothe the loading torque on the DC motor speed and make the response time fast,
feedforward compensation was designed by taking the inverse of the nominal model and
multiplying it with a low-pass filter. The feedforward control equation for this robot was
as follows:

Cff =
(Jns + Bn)

s
ωff

+ 1
(Here, ωff = 2π× 10 Hz) (15)

Even though the use of both feedback and feedforward control were adequate for
operating under no-load conditions, there was a noticeable degradation in the control
system’s performance under varying loads. Furthermore, it was necessary to consider
model uncertainty. To mitigate this issue, a disturbance observer was incorporated. This
addition will address system disturbances, as well as sensor noise, thereby leading to an
enhanced control system performance. For designing a disturbance observer, we have
used the inverse of our nominal model with a Q filter. The equation for the Q filter was
as follows:

Q(s) =
ω2

Q

s2 + 2ζωQs +ω2
Q
(Here, ωQ = 2π× 2 Hz) (16)
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Figure 7 shows a block diagram of the control algorithm, where
.

xr,
.

yr, and θr are
linear x, linear y, and the angular velocity of the robot, and they are controlled with a
feedforward and a feedback loop, along with a disturbance observer. The list of symbols
used in Figure 7 and there meanings are listed in Table 3. A study using such kind of
control algorithms is conducted in a journal by Mu-Tian Yan and Yau-Jung Shiu [17], and it
was established that this kind of control strategy was adequate for controlling motors.

Figure 7. Block Diagram of control algorithm.

Table 3. Lower-level control system variable and definition.

Variable Definition

Jn Moment of inertia ( 0.0073969)
Bn Friction constant ( 0.43571)
s Output variable for Laplace transform

ωfb Feedback band width
Cfb Feedback control
Cff Feedforward control
ωff Feedback band width
ζ Damping ratio

ωQ Q-filter band width

3.1.3. Control Performance Test

The performance evaluation of the lower-level control was conducted using a trajec-
tory similar to the one shown in Figure 8. The trajectory incorporated straight motion,
arc cornering, and turning motion with varying velocity for the purpose of testing. Data
collection was performed utilizing the USATR (Universal Synchronous/Asynchronous Re-
ceiver/Transmitter) method [18], and the results were plotted using MATLAB. The velocity
data was calculated directly from the kinematics, while the position data was obtained
through the application of the discrete time integration method on the velocity data.

In Figure 9, the velocity plot and velocity error plot have been shown
to follow the guided trajectory. Here, Vx, Vy, and W are longitudinal, lateral, and angular
velocity, respectively.

From the error plot, it can be clearly seen that the velocity error is below 0.05 m/s on
average. There is some overshoot on certain positions, but the overall system is stable and
there is no steady state error.
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Figure 8. Trajectory of the experimental robot.

Figure 9. Velocity input vs. output plot.

Figure 10 displays a plot of the commanded position and the actual position, as calcu-
lated by the motor encoder. The plot demonstrates that the robot is capable of following the
command effectively while traversing straight motion and cornering. However, a negligible
error, due to overshoot, is observed during the turning motion. During the evaluation of
the lower-level control, the possibility of wheel slip was not taken into account, as it is
addressed during the design phase of the higher-level control.
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Figure 10. Position input vs. output plot.

3.1.4. Robust Performance Test

In this section, the robustness of the designed control system based on the disturbance
observer (DOB) will be analyzed [19]. To analyze robustness, the selection of system
uncertainty was studied first. The system uncertainty ±30% of the nominal model for both
inertia (Jn) and friction (Bn) was selected and analyzed.

Next, uncertainty weight selection was conducted through the following equations.
To describe the generic model uncertainty with a complex norm-bounded multiplicative
uncertainty, the equation is:

P(s) = (1 + W2(s)Δ(s))Pn(s) where, ‖Δ(s)‖∝ ≤ 1 (17)

The weight W2(s) is selected so that:

max
P∈P

∣∣∣∣P(jω)− Pn(jω)

Pn(jω)

∣∣∣∣ ≤ |W2(jω)| (18)

Here, a set of perturbed plant models P is obtained by varying the values of J and B
within their variability ranges:

P =

{
P(s) =

1
Js + B

[Here, J = Jn ± 30%, B = Bn ± 30%]

}
(19)

Now, the driven equation is as follows:

P(jω)− Pn(jω)

Pn(jω)
=

1
Js+B − 1

Jns+Bn
1

Jns+Bn

× (Js + B)(Jns + Bn)

(Js + B)(Jns + Bn)
=

(Jns + Bn)− (Js + B)
Js + B

=
(Jn − J)s + (Bn − B)

Js + B
(20)

Figure 11 shows the selection of uncertainty weight function and its bode plot.
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Figure 11. Uncertainty weight selection.

Here, uncertainty weight is selected as:

W2 = K ∗ 1 + s
ωz

1 + s
ωp

[
here, ωz = 2 ∗ π ∗ 8, ωp = 2 ∗ π ∗ 6, K = 0.125

]
(21)

The robust stability for the overall system follows T′ = PnC+Q
1+PnC , which is shown in

Figure 12 for a feedback cutoff frequency from 2 to 10 Hz.

Figure 12. Robust stability for overall system.
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3.2. Higher-Level Control Software Design

The higher-level controller plays a crucial role in ensuring the efficient and safe
operation of the robot by generating a reference path that avoids potential collisions. This
is achieved through the creation of a map of the environment that localizes the robot within
it. The software utilized by the upper computer is based on the Robot Operating System
(ROS), which serves as a framework for programming hardware components such as
motors, sensors, and drivers.

ROS supports multiple programming languages, including C++, Python, and Java,
and allows for the use of multiple programming languages across multiple connected
computers. Additionally, ROS is capable of executing multiple executables in parallel,
allowing for both synchronous and asynchronous data exchange between them. These
executables, referred to as ROS nodes, share data through ROS topics.

ROS also provides graphical interfaces, such as RVIZ [20], from which we can visualize
all the sensor data and related values in real time. ROS also comes with SLAM and
Navigation stack packages, which have the adequate processes to make a perfect map of
the environment and navigate it with safety. For designing the higher-level control software,
the ‘turtulebot3′ [21] and ‘Nox’ [22] package structures were used with modification needed
for our experimental robot. Additionally, as three LiDAR sensors were installed, we used a
lidar merger package to combine those scan data.

3.2.1. ROS Package Modification

For architecting the higher-level software, several suitable modifications were per-
formed, the most notable of which was the odometry package modification. As robots
can also move in the lateral direction, a calculation was needed to consider this motion.
Additionally, to use mechanomes we must consider the pose error due to slip ratio. To
overcome this, we used the pose created by the wheel encoder data and made an estimated
odometry using sensor fusion of the lidar sensor, IMU, and encoder data.

3.2.2. Connection of Higher and Lower Software

For this experiment, NI myRIO was used for lower-level control and collecting odom-
etry data, which can be programmed by NI LabVIEW software. LabVIEW provides an
add-on named “ROS for LabVIEW,” which can be downloaded from the VI Package store.
However, as ROS is operated mainly using the Ubuntu (Linux) system and LabVIEW
software is mainly operated using the Windows system, we need to take several steps to
connect these two systems. The preconditions to connect ROS with LabVIEW are:

1. All the Wi-Fi connections should be under the same network and the first 7 digits of
the IP address have to be the same for all devices.

2. Host IP address should be added to both Ubuntu and Windows systems using Ad-
ministrator’s access.

3. Accessibility of each device should be checked using the “ping” command.
4. The antivirus network protection should be off, or new protocols should be made for

those IP addresses.
5. ROS Master IP address and ROS Host IP address should be set before running

ROSCORE.

If Windows Firewall does not allow the ROS network to communicate LabVIEW, then
Windows Firewall Rule should be made. The steps are:

1. Open Control Panel > System and Security > Windows Firewall > Advanced Settings
2. Right-click “Inbound Rules” and select “New Rule”
3. Assign the following properties to the new rule

• Select “Custom Rule” under “Rule Type.”
• Under the protocol and port for the protocol type, select “ICMPv4.”
• Apply to all local and remote IP addresses in the range.
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• In terms of connections you are allowed to choose, check “Domain,” “Private,”
and “Public” in Profile.

• Assign a name, such as “ICMPv4 rule for ROS communication,” and choose
“Finish.”

After successful establishment of the ROS network, it is time to Run ROS on the
LabVIEW system. Figure 13 shows a simple VI, which will subscribe to the /cmd_vel topic
and read the twist message of Linear and Angular Velocity. Reading those messages from
ROS, the LabView will execute Linear and Angular motion by running the motors through
the myRIO device.

Figure 13. ROS Programming with LabVIEW (subscriber to cmd_vel topic).

Before running the VI, we should double click ROS_Topic_init.vi and re-correct the
topic name and message type if needed. It is always best practice to run the ROS Master
inside LabVIEW to ensure the node is working fine. Otherwise, some errors can occur, and
it will become harder to reconnect.

The complete software, Architecture, is also divided into several tasks, such as receiv-
ing velocity commands through a node from the Master Computer, processing the input
velocity through control algorithms to match that and generate the PWM and direction
signal for motor drivers, and lastly, calculating the velocity of the robot reading the encoder
data and sending it to the ROS Master through another node. Figure 14 shows a program
in LabVIEW where a subscriber node is created, which will receive velocity command, and
another publisher node is created, which will publish the linear and angular velocity of
the robot.
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Figure 14. ROS Programming with LabVIEW (publisher and subscriber of different topic).

4. SLAM Based on ROS

SLAM refers to the process of creating a map of an unknown environment while
simultaneously determining the robot’s location within it. This is achieved through the
use of sensors, such as lidar sensors or GPS, and wheel odometry. The task of simulta-
neously performing both localization and mapping presents a significant challenge, akin
to navigating and mapping a large, unknown house. The SLAM algorithm is dependent
on probabilistic models, which take into account uncertainty and estimation processes.
Researchers from diverse fields are actively exploring ways to improve the representation
of both the environment and the robot’s position. The advancement of various sensors has
led to the widespread use of SLAM in various applications, including rescue operations,
archaeology, and military and industrial contexts. One of the most widely used SLAM
methods in the ROS framework is the GMapping algorithm. This method is based on
the Rao–Blackwellized particle filter (RBPF) [23] and has proven to be highly effective in
acquiring maps of unknown dynamic environments. Other popular SLAM algorithms,
such as Hector SLAM and First SLAM, have unique uses and capabilities, but GMapping
stands out for its ability to fuse multiple sensor data sources together using a Kalman
filter [24] to achieve more accurate estimations.

To make a perfect SLAM, four sets of data are required. First, the robot’s position
in both the steady and the moving condition is needed. For this experiment, the initial
position was introduced to the robot. Second, sensing or measuring surrounded obstacles
from the robot; this was carried out by using the LiDAR sensor. Third, the initial map of
the robot, which can be made at the steady position of the robot, and fourth, a path by
which the robot moves in that unknown environment, which was covered using odometry
and IMU sensor data. However, as our robot is a medium-sized mobile robot, using only
one LiDAR sensor is not enough. This is because if the LiDAR is installed only on the top,
it cannot cover the area below that. To solve this problem, we have implemented three
LiDAR sensors, shown in Figure 15. One LiDAR on the top will cover 360◦, and the other
two LiDAR on the front and back will cover 180◦ from the bottom. Merging them together
will provide precise information about surrounding obstacles.

205



Sensors 2023, 23, 3184

Figure 15. Position of LiDAR sensors and covering area.

To merge these three LiDAR data together, a ROS package was created by following
different papers [25,26] related to multi-LiDAR sensor collaboration approaches. Figure 16
shows the algorithm used to merge three lidar sensor data and publish it as one laser data.
In this algorithm, ROS slave on the Raspberry Pi board is responsible for collecting all data
sets from three lidar sensors and publish it as a node with a different topic name for each
individual LiDAR. Then, ROS Master, running on a laptop, will combine those topics and
recollect those data sets. Then, through the synchronization of those data, a point cloud
will be created. Then, we can merge data using the point cloud library and publish that
merged point cloud data. After that process, we can convert the point cloud data into laser
data and publish the merged laser data.

 

Figure 16. Algorithm for merging 3 lidar scan data for mapping.

Figure 17 shows the difference between performance of SLAM using single LiDAR
and Multiple LiDAR. In Figure 17b, we can clearly see a better performance and clear map
of the environment using multiple LiDAR. We can also see some errors which were mainly
generated due to noise, and this can be reduced through further research and development.
The green line in Figure 17b indicates the trajectory of the robot while making the map with
the SLAM algorithm.
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(a) (b) 

Figure 17. (a) SLAM performance with single Lidar; (b) SLAM performance with multiple Lidar
and IMU.

5. Navigation Based on ROS

The Navigation Stack is a highly advanced package of ROS software, capable of per-
forming both localization and autonomous navigation with a planned trajectory. This
package is comprised of three sub-packages, including the Adaptive Monte Carlo Localiza-
tion (AMCL) [27] module, which is responsible for localizing the robot within a map using
particle filters and odometry and laser data. In its initial position, the upper computer has
limited data to calculate the exact position of the robot, resulting in a large circular area.
However, as the robot moves, the point cloud accumulates more data, allowing for a more
accurate calculation of the robot’s position. Figure 18 shows an implementation of AMCL,
where red arrows show the possible position of the robot within the map.

 

Figure 18. Monte Carlo Localization.

The second sub-package, the Map Server, is responsible for reading the map created by
SLAM from disk storage and serving it as a topic named /map to the ROS master. The third
sub-package, the Move Base package, is responsible for generating a secure and efficient
path for autonomous navigation. This package reads various initial conditions, such as
the robot’s footprint dimensions, obstacle range, and maximum and minimum linear and
angular velocity, from YAML files. It then generates a path using algorithms [28] such
as A-star, Rapidly-exploring Random Tree (RRT), or RRT Star, and various optimization
techniques, such as Genetic Algorithm (GA), Artificial Intelligence (AI), and Particle Swarm
Optimization (PSO).

Figure 19 shows the roll of different ROS navigation stack files [29]. An important
thing to note here is that the cost map is divided into a global cost map and a local cost map,
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where the global cost map contains overall information about the entire environment and
the local cost map contains information about the surrounding obstacles of the robot. The
global path planner is responsible for creating the main trajectory to reach the goal, while
the local path planner is responsible for avoiding small obstacles by correcting the main
trajectory generated by the global planner. The path planner algorithm used in this paper
is adopted from a research study conducted by LIU Tianyu, YAN Ruixin, WEI Guangrui,
and SUN Lei [29].

 

Figure 19. ROS Navigation Stack parts and their roles.

In order to perform autonomous navigation with the robot, modifications to the ROS
navigation stack parameters were necessary to account for the specific dimensions and
environment of the robot. A threshold of 350 mm was applied on the edge of obstacles to
avoid collisions, and proper path planning was executed. In the event of new obstacles
(e.g., a walking person) appearing in the path of the planned trajectory, which are not
present in the global map, they are added to the local map and the move base package
re-plans the path to reach the goal. Additionally, lateral path planning freedom was added
by modifying various files in the ROS navigation stack.

6. Results and Discussion

In this section, results and analyses will be discussed to check accomplishments.
Through that discussion, some issues and observations that were faced during testing the
robot will be mentioned, and further research goals will be determined to take the robot to
the next level. To best discuss the results, this section was divided into two sub-sections. In
the first section, the lower-level control performance will be discussed, and in the second
section, the higher-level control performance will be discussed.

6.1. Lower-Level Control Results

From the experiment result attached in Figure 9, it can be observed that the lower-level
controller can perform with a gratifying accuracy. In the position plot in Figure 10, the error
was less than 0.05. Through the robustness analysis, we found that both the disturbance
observer loop and overall control loop were under the curve of uncertainty, weighting
the function magnitude line shown in Figures 11 and 12. Thus, theoretically, both of the
loops were stable, which means that even if we added 30% more load than expected, the
velocity performance of the mobile robot would remain stable. Additionally, the control
system parameter was adjustable with a graphic interface, which makes the robot suitable
for operating with a variable load.
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6.2. Higher-Level Control Results

In the higher computer, the software architecture was adequate to perform a successful
SLAM, although lots of error lines can be found outside the boundary shown in Figure 20.
These mainly occurred due to sensor noise and reflections from different light sources.
Further noise reduction algorithms can be developed for future research. Additionally,
the LiDAR sensor has less effectiveness while passing through a glass or mirror. This
phenomenon can be avoided by using more precious sensors or 3D camera sensors.

 

Figure 20. SLAM performance with MotionBot.

For the navigation architecture, the software prosperously made a path to the goal,
avoiding all known and unknown obstacles. Thus, it can perform automatic navigation
inside an indoor environment successfully. Figure 21 shows a performance of autonomous
navigation of our mobile robot. To start the navigation, the initialization of the robot’s
current location should be input with the ROS RVIZ interface and, with some iteration, the
robot can localize itself perfectly. Then, with the help of the RVIZ interface, or by directly
commanding the goal pose, autonomous navigation can be initiated.

 

Figure 21. ROS autonomous navigation with MotionBot.

The ability to avoid sudden obstacles, such as a human or unknown object, is also
checked with the experimental mobile robot. In Figure 22, it is shown that the robot creates
the global path to reach the goal according to the global map. However, as soon as obstacles
are detected on the path, the local path planner adjusts the global path to avoid that obstacle
and reach the goal.
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Figure 22. (a) Global path planner without considering local obstacles; (b) Added and detected
obstacles on the Global path; (c) Correction of Global path to avoid obstacles.

Path planning that considers lateral motion is also checked. Figure 23 shows a suc-
cessful implication of the linear X and Y axis directional path planning, allowing the
experimental mobile robot to take the shortest path to reach the goal.

Figure 23. (a) Path planning in linear X direction; (b) path planning in linear Y direction; (c) path
planning in both linear X and Y direction.

7. Conclusions

The present study aimed to design and develop an omnidirectional mobile robot,
which combined the characteristics of both an Autonomous Mobile Robot and an Auto-
mated Guided Vehicle. The results obtained from the practical operation of the ‘MotionBot’
robot, as discussed in previous sections, demonstrated the reliability, improvement, and
effectiveness of the proposed techniques. The focus of the study was on enhancing the
lower-level control through feedback and feedforward controllers to optimize vibrations
and increase stability through a low computational cost. Additionally, the robustness
of the robot was considered since it was expected to operate in different environments
with different loads. A study and analysis of robustness was conducted, and the results
confirmed its adequacy.

In order to enhance the sensing capabilities of a robot, a fusion of three LiDAR data
was executed to improve the accuracy of localization and positioning. The performance
of single LiDAR and multiple LiDAR using G-mapping SLAM was evaluated to increase
mapping accuracy in unknown environments. The robot successfully reached the goal point
while avoiding obstacles in a dynamic environment. A user-friendly GUI was developed
using LabVIEW software. However, future research could be conducted to reduce LiDAR
noise, address the wheel slip ratio problem, and implement object recognition and tracking
technologies. The utilization of OpenCV and TensorFlow can enable the robot to analyze
objects, such as human bodies, and follow them using object-following algorithms. The

210



Sensors 2023, 23, 3184

potential for further improvement, leveraging the capabilities of the ROS platform, holds
promise for the logistics and courier industries.
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Abbreviations

The following abbreviations are used in this article:
AMR Autonomous Mobile Robot
AGV Automated Guided Robot
ROS Robot Operating System
DOB Disturbance Observer
CNC Computer Numerical Control
IMU Inertial Measurement Unit
CoM Center Of Gravity
USATR Universal Synchronous/Asynchronous Receiver/Transmitter
SLAM Simultaneous Localization And Mapping
Lidar Light Detection And Ranging
URDF Unified Robot Description Format
DoF Degree Of Freedom
GPS Global Positioning System
RBPF Rao-Blackwellized Particle Filter
AMCL Adaptive Monte Carlo Localization
YAML Yet Another Markup Language
PSO Particle Swarm Optimization
RRT Rapidly Exploring Random Tree

Appendix A. Symbol and Definition

This appendix consists of a list (Table A1) with all the symbols used in this paper with
their definitions.

Table A1. List of symbols and their definition.

Variable Definition
.

Yr Instantaneous longitudinal velocity of the robot
.

Xr Instantaneous lateral velocity of the robot
.
θr Angular velocity of the robot
.

YWi Instantaneous longitudinal velocity of the i wheel
.

XWi Instantaneous lateral velocity of the i wheel
.
θWheel Angular velocity of the wheel along XWi axis (pitch axis)
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Table A1. Cont.

Variable Definition
.
θRot Angular velocity of the wheel along ZWi axis (yaw axis)

.
θRoller Angular velocity of the Roller when it contacts the ground
γi Rotation angle between the i wheel frame and the roller frame
αi Angle between robot main frame and the i wheel frame
Lw Distance between robot coordinate and i wheel along x-axis
Ll Distance between robot coordinate and i wheel along y-axis
R Wheel radius
r Roller radius

CoM Center of Mass of the robot
Jn Moment of inertia ( 0.0073969)
Bn Friction constant ( 0.43571)
s Output variable for Laplace transform

Wfb Feedback band width
Cfb Feedback control
Cff Feedforward control
Wff Feedback band width
ζ Damping ratio

WQ Q-filter band width
ei(k) Uncorrelated observation errors
Lpi Jacobian matrix of observation model with respect to landmarks
Lv Jacobian matrix of observation model with respect to robot odometry
Li Observation matrix that relates to the sensor output
zi The state vector x(k) when observing ith landmark
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Abstract: This paper focuses on the distributed containment control of continuous-time linear multi-
agent systems (MASs) with multiple leaders over fixed topology. A parametric dynamic compensated
distributed control protocol is proposed in which both the information from the observer in the
virtual layer and actual adjacent agents are employed. The necessary and sufficient conditions of the
distributed containment control are derived based on the standard linear quadratic regulator (LQR).
On this basis, the dominant poles are configured by using the modified linear quadratic regulator
(MLQR) optimal control and Geršgorin’s circle criterion, hence the containment control with specified
convergence speed of the MAS is achieved. Another main advantage of the proposed design is,
in the case of virtual layer failure, by adjusting parameters the dynamic control protocol reduces
to static, and the convergence speed can still be specified through the dominant pole assignment
method combined with inverse optimal control. Finally, typical numerical examples are presented to
demonstrate the effectiveness of theoretical results.

Keywords: continuous-time MAS; containment control; dominant poles assignment; convergence
speed

1. Introduction

Since the past few decades, the distributed coordination of MASs has sparked a
surge in interest from a wide variety of scientific fields for its possibilities of the extensive
application seen in the Refs. [1–4]. As one of the most essential and fundamental problems
in cooperative control of MASs, consensus control is to bring all agents into alignment on a
feature or a state by designing appropriate distributed protocols [5], which has achieved a
series of results [6–10]. Consensus studies mostly assume that there is no or only one leader
in the MAS. However, in practical applications, MAS networks with multiple leaders are
more typical. Then, the containment control arises, where the followers enter into a given
geometric space spanned by the leaders.

There have been plenty of valuable outcomes. In the Ref. [11], a hybrid containment
control algorithm was proposed to drive the followers into the convex hull spanned by
the leaders. A second-order multi-agent containment control with random switching
interconnection topology was considered in the Ref. [12]. In the Ref. [13], the robust
containment problem with time-variant uncertainties was solved by an adaptive protocol.
In the Ref. [14], the necessary and sufficient condition of containment control with time-
delay was proved. In the Ref. [15], the fastest containment control of a discrete-time MAS
was achieved under static protocol control, but the convergence speed of the system could
not be adjusted arbitrarily. It can be seen that great efforts have been put into the system
stability and static properties of MASs in containment control, while the adaptability and
dynamic properties of the system have been little discussed.

In addition to the design of the distributed control protocol based on consensus,
convergence speed is also an important indicator, describing how fast the agents reach
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an agreement, which is one of the most important research challenges in the design of
distributed consensus algorithms for MASs. Many researchers in the Refs. [16–21] control
the convergence speed by transforming or reconstructing topological structures since the
network connectedness is critical in guaranteeing the convergence of consensus algorithms.
However, this method is inapplicable for the MASs with fixed topology. According to
the Ref. [3], the minimal non-zero eigenvalue of the Laplacian matrix can determine the
convergence speed. It was figured out that in the Ref. [22] the convergence speed can be
adjusted by configuring the closed-loop poles of the MAS. In the Ref. [23], the cooperative
output regulation problem of linear MASs was solved by designing a distributed dynamic
full information feedback control law with the distributed observer. Meanwhile, under the
presented dynamic protocol, the idea of dynamic performance tuning by configuring poles
has been proposed. However, the method in the Ref. [23] will not be able to achieve
cooperative control of the system and adjustment of the dynamic performance, if the
observer fails.

In this paper, we aim to propose a new distributed control protocol, which reduces
the constraints of communication topology and provides better cooperative control perfor-
mance. Moreover, the specified convergence speed of containment control will be achieved
even if the distributed observer becomes invalid. The main contributions of the paper are
reflected as follows:

(1) For a continuous-time linear MAS with multiple leaders over a directed topology,
a new parametric dynamic compensated distributed control protocol for containment
control is proposed. Compared with the containment control strategy in the Refs. [13,15],
the co-states of agents in the virtual layer are introduced to reduce the limitation of the
communication topology on the dynamic performance of the MAS. Compared with the
protocol designed in the Ref. [23], the information about the actual state from the sensors
of the physical layer is added, which can promote compatibility of the MAS and the
adjustment to dynamic performance. Necessary and sufficient conditions for containment
control are given based on the standard LQR design.

(2) Compared with the research of containment control in the Refs. [12,13,15], we
focus on the arbitrary adjustment of the dynamic performance of the system. The accurate
dominant pole configuration of the global closed-loop error system through the MLQR
method and the Geršgorin’s circle criterion is used to achieve containment control with
specified convergence speed. For the case where the virtual layer fails, the dynamic protocol
will reduce to a static protocol based on the cooperative information from the physical
sensors. Meanwhile, the convergence speed is specified by configuring the dominant poles
of the resulting closed-loop error system combined with the inverse optimal regulator.

In the course of our research, we employed knowledge related to graph theory. A
multi-agent system (MAS) can be abstracted in the form of a directed weighted graph G
with N nodes V = {v1, v2, . . . , vn}. The adjacency matrix is denoted by A =

[
aij
] ∈ RN×N ,

if the information flows from node j to i then aij > 0, otherwise, aij = 0, i, j ∈ N ,
N = {1, 2, . . . , N}. The set of neighbors of node i is denoted by Ni. Define the in-degree
matrix as D = diag{d1, d2, . . . , dN}, di = ∑j∈Ni

aij and the Laplacian matrix as L = D −A.
The adjacency matrix A of an undirected graph must be symmetric, where aij = aji. When
there exists a directed path from node i to every other node in the directed graph G, then G
is said to have a spanning tree.

The remainder of the paper is organized as below. In Section 2, the main results will be
proposed. Firstly, we introduce the parametric dynamic compensated distributed protocol
and propose necessary and sufficient conditions for containment control over the directed
graph. The specified convergence speed of the containment of agents is guaranteed by
using the poles assignment technique for cases of the observers which are working and
invalid. Section 3 gives three numerical examples to verify the developed theoretical results.
Conclusions are given in Section 4.

Notations: Rm×n denotes the m × n real matrix space. 0m×n describes the zero ma-
trix in Rm×n. In represents the n dimensional identity matrix in Rn×n. AT denotes the
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transposition of matrix A, AH denotes the conjugate transposition of matrix A, and A > 0

(A ≥ 0) means matrix A is positive definite (semi-definite). Ni denotes the ith node of
the node set, ND denotes the leader nodes, and NF denotes the follower nodes; moreover,
Ni = ND ∪NF . A matrix is Hurwitz if all of its eigenvalues have negative real parts.

2. Design of Dynamic Distributed Containment Control Protocol

2.1. Dynamic Containment Control

A continuous-time linear MAS with N + M nodes can be described by:

ẋi = Axi + Bui ∀i ∈ N , (1)

where xi ∈ Rn, ui ∈ Rm, N = {1, 2, . . . , N + M} is node set, and the matrices A, B are the
system matrix and control input matrix, respectively.

Assumption 1. The matrix pair (A, B) is controllable.

Under Assumption 1, consider that there are N followers, which can be described by
a directed graph while M leaders do not receive information from any other agent. Then
the follower set and leader set are captured, which are, respectively, F � {1, . . . , N} and
D � {N + 1, . . . , N + M}.

The dynamics of each leader and follower are:

ẋi = Axi ∀i ∈ D (2)

ẋj = Axj + Buj ∀j ∈ F , (3)

where xi is the state vector of leaders, xj is the state vector of followers, and uj is the control
input vector of agent j.

The compact form of (2) and (3) can be written as:

ẋl = (IM ⊗ A)xl (4)

ẋ f = (IN ⊗ A)x f + (IN ⊗ B)u, (5)

where x f = (xT
1 , xT

2 , . . . , xT
N)

T is the global state vector of followers, xl = (xT
N+1, xT

N+2, . . . ,
xT

N+M)T is the global state vector of leaders, and u = (uT
1 , uT

2 , . . . , uT
N)

T is the global control
input vector.

Assumption 2. For each follower in the MAS, there exists at least one leader that has a directed
path to it.

The communication topology graph of the MAS (1) is represented by G, and the
structural characteristics of G can be described by a Laplacian matrix L. Since leaders are
independent of each other, L can be written as a block matrix:

L =

[ L f Ll
0M×N 0M×M

]
, (6)

where L f ∈ RN×N represents the information transmission situation related to followers,
and Ll ∈ RN×M represents the relation to leaders.

From (4), the following equation can be obtained by multiplying (L−1
f Ll) ⊗ In to

both sides:
[(L−1

f Ll)⊗ In]ẋl = (IM ⊗ A)[(L−1
f Ll)⊗ In]xl . (7)
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Under Assumption 2, all eigenvalues of L f have positive real parts, each entry of
−(L−1

f Ll) is nonnegative, and each row of −(L−1
f Ll) has a sum of 1 [24], thus the linear

combination of xl as follows can be referred to as the convex hull spanned by each element
of xl .

−[(L−1
f Ll)⊗ In]xl (8)

Lemma 1 ([25]). When x f → −[(L−1
f Ll)⊗ In]xl, the states of all followers in the MAS will

move into the convex hull spanned by leaders, hence the containment control is achieved.

2.2. Parametric Dynamic Compensated Distributed Containment Control

Consider the following dynamic distributed control protocol with parameters:

ui = −cK

[
ωi(xi − vi) + ∑

j∈Ni

aij(xi − xj)

]
, i ∈ F , (9)

where vi is the corresponding co-state for each follower which is generated by the following
distributed dynamic compensator:

v̇i = Avi − rW

[
∑

j∈NF
aij(vi − vj) + ∑

h∈ND
aih(vi − xh)

]
, (10)

where the weight ωi > 0, K ∈ Rm×n, and W ∈ Rn×n are the feedback control gain matrices,
the coupling coefficients c > 0, r > 0, vi is the corresponding co-state that the agent goes to
track, xh represents the state of a particular leader node. The compact form of (9) and (10)
can be written as:

u = −c[(Ω ⊗ K)(x f − v f ) + (L f ⊗ K)x f + (Ll ⊗ K)xl ] (11)

v̇ f = (IN ⊗ A)v f − r[(L f ⊗ W)v f + (Ll ⊗ W)xl ], (12)

where
Ω = diag{ω1, ω2, . . . , ωN} (13)

and v f represents the co-state of each follower.
The proposed dynamic compensated distributed control law drives co-states into the

convex hull, meanwhile each follower is able to follow the corresponding co-state, and thus
dynamic containment control of the MAS can be achieved.

Remark 1. In the control protocol (9), the first term implements followers tracking of the co-states;
the second term achieves cooperative control by introducing actual relative information from physical
sensors between agents. In a practical application scenario, such as a number of vehicles departing
from different locations are required to drive into the safety zone formed by multiple mobile escort
vehicles. At this time, the parameters of the cooperative control section can be regulated to achieve a
special requirement of vehicles assembling into groups first and then driving into the safety zone,
which increases the overall strike resistance of the convoy.

Denote the error between the convex hull and co-states as δ, the error between each
follower and the corresponding co-state as θ:

δ = v f + (L−1
f Ll ⊗ In)xl (14)

θ = x f − v f . (15)

217



Sensors 2023, 23, 2696

According to (7), the following equation holds:

(L−1
f Ll ⊗ In)ẋl = (L−1

f Ll ⊗ A)xl ,

then v̇ f can be written as:

v̇ f = (IN ⊗ A)v f − r(L f ⊗ W)[v f + (L−1
f Ll ⊗ In)xl ]. (16)

Adding (7) and (16), we obtain:

δ̇ = v̇ f + (L−1
f Ll ⊗ In)ẋl

δ̇ = [(IN ⊗ A)− r(L f ⊗ W)]δ. (17)

Similarly, θ̇ can be calculated as:

θ̇ = ẋ f − v̇ f = (IN ⊗ A)θ − c[(Ω ⊗ BK) + (L f ⊗ BK)]θ − [c(L f ⊗ BK)− r(L f ⊗ W)]δ. (18)

Combining (17) and (18) yields the global closed-loop error system:[
δ̇
θ̇

]
=

[
Ξ11 0

Ξ21 Ξ22

][
δ
θ

]
, (19)

where

Ξ11 = (IN ⊗ A)− r(L f ⊗ W)

Ξ21 = −c(L f ⊗ BK) + r(L f ⊗ W)

Ξ22 = (IN ⊗ A)− c(L f + Ω)⊗ (BK).

Denote the eigenvalues of L f and (L f + Ω) as λi, χi, respectively. Note that there
exists nonsingular matrices Φ and Ψ such that:

(Φ ⊗ In)
−1Ξ11(Φ ⊗ In) =

⎡⎢⎢⎢⎣
A − rλ1W

∗ A − rλ2W
...

...
. . .

∗ ∗ · · · A − rλNW

⎤⎥⎥⎥⎦ (20)

(Ψ ⊗ In)
−1Ξ22(Ψ ⊗ In) =

⎡⎢⎢⎢⎣
A − cχ1BK

∗ A − cχ2BK
...

...
. . .

∗ ∗ · · · A − cχN BK

⎤⎥⎥⎥⎦. (21)

Let δ̃ = (Φ ⊗ In)−1δ, θ̃ = (Ψ ⊗ In)−1θ, then the error system (19) can be transformed
into the following form: [

˙̃δ
˙̃θ

]
=

[
Ξ̂11 0

Ξ̂21 Ξ̂22

][
δ̃
θ̃

]
, (22)

where Ξ̂11, Ξ̂22 are shown as (20) and (21), respectively.

Theorem 1. Under Assumptions 1 and 2, the containment control can be achieved by the dynamic
distributed protocol (9) if and only if the matrices

A − rλiW, i = 1, . . . , N

A − cχjBK, j = 1, . . . , N
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are Hurwitz.

Proof of Theorem 1. The error system (19) is asymptotically stable, that is, (22) is stable, if
and only if the following 2N matrices

A − rλ1W, . . . , A − rλNW, A − cχ1BK, . . . , A − cχN BK

are Hurwitz. Stability of the error system (19) and (22) indicates that ‖δ‖ → 0, ‖θ‖ → 0,
which means the error between the convex hull and co-states δ, the error between followers
and co-states θ tend to 0. It implies that containment control is achieved.

In the following, we will prove the appropriate choice of the coupling gains c and r.

Theorem 2. Under Assumptions 1 and 2, using the control protocol (9), where W = R−1P1 in
which P1 is a symmetric positive definite matrix and the solution of the following Riccati equation:

P1 A + AT P1 − P1R−1P1 + Q = 0. (23)

Similarly, K = R−1BT P2 in which P2 is the solution of P2 A + AT P2 − P2BR−1BT P2 + Q = 0.
If the coupling gains c and r satisfy:

r >
1

2λmin
, c >

1
2χmin

, (24)

where λmin = min {Re(λ1), Re(λ2), . . . , Re(λN)} and χmin = min{Re(χ1), Re(χ2), . . . ,
Re(χN)}, then the global error system (19) is asymptotically stable, that is, the containment
control is achieved.

Proof of Theorem 2. According to Theorem 1, it is sufficient to make the subsystems
(A − rλiW) and (A − cχiBK) asymptotically stable. Take the subsystem (A − rλiW) as an
example, constructing the Lyapunov function:

V(x) = δ̃H
i P1δ̃i i = 1, 2, . . . , N,

where P1 is the symmetric positive definite matrix and the solution of (23).
Taking the derivation of the function V(x) with respect to time yields:

V̇ = δ̃H
i P1

˙̃δi +
˙̃δH
i P1δ̃i = δ̃H

i P1(A − rλiW)δ̃i + δ̃H
i (A − rλiW)H P1δ̃i = δ̃H

i

[
P1(A − rλiW) + (A − rλiW)H P1

]
δ̃i. (25)

Replacing R−1P1 in (23) with the feedback gain matrix W, we have:

AT P1 + P1 A = WT RW − Q.

Similarly, the Riccati equation corresponding to subsystem (A − rλiW) has the follow-
ing form:

(A − rλiW)H P1 + P1(A − rλiW) = −Q + [1 − 2rRe(λi)]WT RW.

Bringing into the equation (25), we can obtain:

V̇ = δ̃H
i

{
−Q + [1 − 2rRe(λi)]WT RW

}
δ̃i. (26)

From the Lyapunov theorem of asymptotic stability, if the subsystem (A − rλiW) is
to be asymptotically stable, then V(x) needs to satisfy V̇ < 0. Due to Q being a positive
definite matrix and R being a symmetric positive definite matrix, we can obtain that −Q < 0

and WT RW ≥ 0.
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To ensure V̇ < 0, it is only needed to satisfy 1 − 2rRe(λi) < 0. That is when the
coupling gain r satisfies:

r >
1

2λmin
,

where λmin = min {Re(λ1), Re(λ2), . . . , Re(λN)}. Then the subsystem (A − rλiW) is
asymptotically stable with W = R−1P1.

Similarly, when the coupling gain c satisfies:

c >
1

2χmin
.

The subsystem (A − cχiBK) is asymptotically stable with K = R−1BT P2.
Therefore, when the global closed-loop error system is asymptotically stable, the MAS

can achieve containment control. The proof is completed.

2.3. Dynamic Distributed Containment Control with Specified Convergence Speed

It is known that the convergence speed is determined by the closed-loop poles that
are closest to the imaginary axis. Therefore, the convergence speed will be specified
by configuring the dominant poles of the global close-loop error system on dynamic
containment control.

In the global closed-loop error system (22), the subsystems (A − rλiW) and
(A − cχiBK) are located in Ξ̂11 and Ξ̂22, respectively, so it is sufficient to design for these
two blocks.

The eigenvalues of Ξ11 (Ξ̂11) without parameters ωi are designed as non-dominated
poles according to the MLQR [22] optimal control scheme.

Let A = A + σIn, where there is the error system:

δ̇ =
[
(IN ⊗ A)− r(L f ⊗ W)

]
δ, (27)

the subsystem is converted to

A − rλiW = A + σIn − rλiW.

It is shown that when all eigenvalues lie to the left of the complex plane −σ, the error
system (27) will be asymptotically stable and converge at a speed σ.

Therefore, if the value of σ is large enough, the poles of the virtual layer will move away
from the imaginary axis and become non-dominant poles. At this time, the dominant poles
of the closed-loop error system will be determined by Ξ22, that is, subsystem (A − cχiBK).

For Ξ22 (Ξ̂22), the parameters ωi are designed based on the Geršgorin circle theorem
to configure the specified dominant poles.

Lemma 2. Under Assumption 2, for the appropriate choice of ωi > 0, all eigenvalues of the matrix
(L f + Ω) are distinct and positive. Then, let 0 < χ1 < χ2 < · · · < χN, ∀μ > 0 , where
the eigenvalues are all real and the ratio χN/χ1 satisfies:

χN
χ1

<
1 + μ

1 − μ
. (28)

Proof of Lemma 2. As shown in Figure 1, according to the Geršgorin circle theorem,
the eigenvalue χi lies in the ith Geršgorin circle Qi = {d | |d − Oi| ≤ ri},where:

Oi = ∑
j∈Ni

aij + ωi, ri = ∑
j∈Ni

aij i = 1, 2, . . . , N. (29)
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Figure 1. Gerschgorin circles.

It is known that, all eigenvalues χi of (L f + Ω) are distinct if all Geršgorin circles are
separated, that is, Qi ∩Qj = ∅, i �= j, which is equivalent to

|Oi+1 − Oi| > |ri + rr+1| i = 1, 2, . . . , N.

For constants Υ > maxi∈N {ri} and any η > 0, there always exists ωi > 0 such that
the following equation holds:

Oi = ∑
j∈Ni

aij + ωi = η + 2iΥ. (30)

That is, ωi satisfies the following equation:

ωi = η + 2iΥ − ∑
j∈Ni

aij. (31)

Obviously, ωi > 0. Using (30), then one has:

|Oi+1 − Oi| = 2Υ > |ri + rr+1| i = 1, 2, . . . , N, O1 = η + 2Υ > Υ > 0. (32)

Thus all Geršgorin circles are separated. At this point, there must be at least one
eigenvalue that lies into each Geršgorin circle; moreover, the first Geršgorin circle is located
in the right-half of the complex plane. Therefore, all eigenvalues χi of (L f + Ω) are distinct
and positive. From (32), we can obtain:

0 < η + Υ < χ1 < η + 3Υ

...

η + (2N − 1)Υ < χN < η + (2N + 1)Υ,

thus,
χN − χ1

χN + χ1
<

NΥ
η + NΥ

. (33)

Denote that
μ =

χN − χ1

χN + χ1
, η0 =

1 − μ

μ
NΥ.

Then (33) holds when and only when η > η0, that is, satisfies

μ >
χN − χ1

χN + χ1
.
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Simplify to obtain:
χN
χ1

<
1 + μ

1 − μ
. (34)

The proof is completed.

Remark 2. For the readability of the readers, we here introduce the Geršgorin circle theorem for
details. The Geršgorin circle theorem is used to bind the spectrum of a square matrix. Given a
N × N matrix A with entries aij, for each i = 1, . . . , N, we define

ri = ∑
j �=i

∣∣aij
∣∣, Qi =

{
d ∈ aij | |d − aii| ≤ ri

}
where Qi are denoted the Gerschgorin circles of A. Then every eigenvalue of A lies within at least
one of the Gerschgorin circles Qi.

We use the Geršgorin circle theorem in order to prove the following Theorem 3 and configure
the dominant poles so that all the dominant poles can reach the specified position.

Theorem 3. When the value of σ is chosen to be large enough and the poles of (A − cχiBK) are
configured to the specified position, if the coupling gain c satisfies:

c =
1

χmin
, (35)

then the MAS can achieve dynamic containment control at a specified convergence speed.

Proof of Theorem 3. According to Lemma 2 and its proof, the eigenvalues χi of (L f + Ω)
are nearly the same, so 1/χi can be approximately equal to 1/χmin. If the coupling gain
c = 1/χmin, the closed-loop dominant poles of (A − cχiBK) can be approximately equal to
the eigenvalues of the matrix A − BK. Through the poles configuration, the absolute value
of the real part of the conjugate eigenvalue of the matrix A − BK closest to the imaginary
axis is ε. At this point, part of the poles of the closed-loop system (22) are located away from
the imaginary axis to the left complex plane, and others converge to −ε, that is, the MAS (1)
achieve containment control with the given convergence speed. The proof is completed.

Remark 3. The MLQR [22] optimal control scheme can be used on poles’ configuration for the
whole closed-loop error system (22), and the convergence speed of the MAS can also be adjusted.
However, for subsystem (A − cχiBK), a large overshoot occurs. Therefore the dominant pole
configuration is applied to it by using Lemma 2.

2.4. Regulation of the Convergence Speed in Case of Virtual Layer Failure

Consider a practical case where the observer fails in some agents, and where the
information of co-states cannot be transmitted. At this time, the connectivity of the virtual
layer topology is not guaranteed. However, the actual adjacent information in the physical
layer can still be collected by sensors. Therefore, the control protocol can only use the
adjacent information xi − xj feedback to the system of the physical layer.

It can be regarded as the virtual layer subsystem being totally disabled. The dynamic
distributed control protocol (9) reduces to a static form [26].

Under Assumption 1, let us investigate the containment control scheme and dynamic
performance of the MAS (1) in Section 2.1. Without loss of generality, the matrices A and B
are set as the following forms:

A =

[
A11 A12
A21 A22

]
, B =

[
0
Im

]
. (36)
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Similarly, A, B, and the control gain matrix K̃ satisfy the Riccati equation

AT P + PA − PBR−1BT P + Q = 0. (37)

Give a feedback control law

ui = −K̃ ∑
j∈F∪D

aij(xi − xj), K̃ = α
[
F I

]
(38)

u = −(L f ⊗ K̃)[x f + (L f
−1Ll ⊗ In)xl ]. (39)

Similarly, with Section 2.2, the error between followers and convex hull spanned by
leaders in MAS (1) is

ζ = x f + (L−1
f Ll ⊗ In)xl . (40)

ζ̇ = [(IN ⊗ A)− (L f ⊗ BK̃)]ζ = Ξζ. (41)

Note that there exists a nonsingular matrix Φ̃ such that:

(Φ̃ ⊗ In)
−1Ξ(Φ̃ ⊗ In) =

⎡⎢⎢⎢⎣
A − λ1BK̃

∗ A − λ2BK̃
...

...
. . .

∗ ∗ · · · A − λN BK̃

⎤⎥⎥⎥⎦ (42)

According to Theorem 1, the containment control can be achieved by the protocol (38)
if and only if the matrices

A − λiBK̃, i = 1, . . . , N. (43)

are Hurwitz.
According to the algorithm in the Ref. [27], K̃ can be determined through the specified

poles (or the desired transient characteristics). There exists a lower limit α0 for the value
of α, that is, α > α0, while α0 is determined by the procedure in the Ref. [26]. It is known
that from Section 2.2, the convergence speed relies on the locations of eigenvalues of
A − λiBK̃, i = 1, . . . , N, whose asymptotic behavior shows in the following lemma.

Lemma 3 ([28]). Take the value of F in (38) such that the n − m eigenvalues of A − BK̃ are the
specified closed-loop poles

{
d∗1, . . . , d∗n−m

}
, then as α → ∞:

(1) n − m eigenvalues of A − λiBK̃ satisfy di → d∗i , i = 1, . . . , n − m;
(2) the rest m eigenvalues of A − λiBK̃ satisfy di → −∞, i = n − m + 1, . . . , n.

Now the control protocol can be written as:

ui = −αi
[
Fi I

]
∑

j∈F∪D
aij(xi − xj), (44)

whose compact form can be written as:

u = −(L f ⊗ Lα[F I])
{

x f + (L−1
f Ll ⊗ In)xl

}
.

Theorem 4. For a continuous-time MAS (1) with a given communication topology, under
Assumptions 1 and 2, there exists a static control protocol (44), such that the MAS (1) not only
achieves containment control (2) but also achieves the specified convergence speed by configuring
the n − m dominant poles to the desired locations.
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Proof of Theorem 4. For (1), according to Equations (38)–(43), it is similar to the proof of
Theorem 1. For (2) [26], according to Lemma 3, under the condition α → ∞, the eigenvalues{

d∗1, . . . , d∗n−m
}

can be viewed as the dominant poles. By configuring the n − m closed-loop
eigenvalues for each agent, the MAS can asymptotically achieve the desired performance
(i.e., the specified convergence speed).

Compared with the results of the research in the Ref. [23], according to Lemma 3, it is
still possible to regulate the convergence speed of the MAS by configuring dominant poles
based on the static control law (38), even the observer fails. However, compared with the
dynamic protocol (9), this control method has disadvantages, such as complex structure
and more severe overshoot in the initial phase of the response, seen in the simulation
example of Section 3.3.

3. Simulation Examples

In this section, the correctness of the theoretical results and the effectiveness of the
designed distributed control protocols will be verified by typical numerical examples.

In a multi-vehicle escort application scenario, where the leaders are the escort vehicles
and the followers are the protected vehicles, the whole convoy can be considered as a
continuous-time MAS described by Figure 2 which has M leader agents (M = 4) and N
follower agents (N = 6). The system matrix A and control input matrix B are set as follows:

A =

[−0.01 0.02
0.01 −0.012

]
, B =

[
0

10

]
.

The MAS can be written as:

ẋj = Axj + Bu ∀j ∈ {1, 2, 3, 4, 5, 6}

ẋi = Axi ∀i ∈ {7, 8, 9, 10}.

The communication graph G is given by Figure 2, then the Laplacian matrix L is
given by:

L =

[ L f Ll
04×6 04×4

]
where

L f =

⎡⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0 −2
−1 3 0 0 0 0
0 0 1 0 −1 0
0 −1 0 1 0 0
0 −1 0 0 3 0
0 0 0 0 −1 3

⎤⎥⎥⎥⎥⎥⎥⎦
and

Ll =

⎡⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎦.

Let Q = I2, R = I.
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Figure 2. The communication topology of the MAS.

Set the initial position of each vehicle as follows

xj =

⎡⎢⎢⎢⎢⎢⎢⎣

12 −6
6 −20
2 20
8 4
−6 −12
−8 −8

⎤⎥⎥⎥⎥⎥⎥⎦, xvj =

⎡⎢⎢⎢⎢⎢⎢⎣

14 −8
8 −38
2 26

10 6
−8 −14
−10 −10

⎤⎥⎥⎥⎥⎥⎥⎦, xi =

⎡⎢⎢⎣
2 4
−4 2
−1 −10
4 −6

⎤⎥⎥⎦

where xj and xvj are the initial positions of the followers, that is, the protected vehicles,
in the physical and virtual layers, respectively, xi is the initial positions of the leaders, that
is, the escort vehicles which form the convex hull.

3.1. Parametric Dynamic Compensated Distributed Containment Control

According to LQR optimal control, the feedback gain matrix of the physical and virtual
layer can be calculated as:

K =
[
0.6184 1.0000

]
, W =

[
0.9901 0.0148
0.0148 0.9883

]
.

Let Ω = I6, where it can be calculated that λmin = 1, χmin = 2. According to
Theorem 2, the coupling gains can be selected as c = 15, r = 0.6.

Under the dynamic distributed control protocol (9), the convergence curve of the error
system is respectively described in Figures 3 and 4.

In Figures 3 and 4, we can see that the co-states of the protected vehicles have entered
into the convex hull formed by the escort vehicles, and the states of the protected vehicles
have been the same as the co-states. It means that the protected vehicles have entered the
convex hull, that is, the containment control has been achieved.
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Figure 3. Error between co-states and the convex hull.
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Figure 4. Error between followers and co-states.

3.2. Containment Control with Specified Convergence Speed

Now we regulate the convergence speed of the MAS (1) by using the pole configuration
method proposed in Section 2.3.

Let σ = 10, then the poles of the global error system matrix (22) lie to the left of the
complex plane −σ = −10.

Set the dominant poles as {−0.5 + 0.1j,−0.5 − 0.1j}, then the feedback gain matrix of
the physical layer is calculated as K = [1.2515 0.0978].

According to Lemma 2, we set ωi = 104 ∗ diag{2, 2.1, 2.05, 3.09, 2.08, 3} then according
to Theorem 3, the coupling gain c = 3.2361 × 10−5. At this point

cχi ≈ 1, A − cχiBK → A − BK,
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which means that the poles of the physical layer subsystem are the configured poles, that
is, the system converges at the specified speed.

The convergence curve of the error system and the state transition curves of the
protected vehicles are shown in Figures 5 and 6, respectively.

Time(Sec)

E
rr

or
 

(t
)

Agent1
Agent2
Agent3
Agent4
Agent5
Agent6

Figure 5. Convergence curves of the error between followers and co-states with specified conver-
gence speed.

Figure 6. Agents converge into the convex hull (the two state components represent the position
coordinates of each vehicle).

Comparing Figure 4 with Figure 5, we can see that the convergence time has been
significantly reduced (the former is approximately 230 s while the latter is approximately
24 s). In Figure 6, we can obtain that, all of the followers, that is, the protected vehicles are
stabilized into the convex hull spanned by the leaders, that is, the escort vehicles under the
control of the dynamic distributed control protocol (9) with a specified convergence speed.
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3.3. Containment Control in Case of Virtual Layer Failure

Let

A =

[−0.05 0.09
0.1 0.08

]
, B =

[
0
1

]
.

Set the dominant poles as −1, by taking sufficiently large value of α, the matrix K̃ is
obtained K̃ = [52.7778 5].

The convergence curve of the new error system ζ and the state transition curve of the
protected vehicles are shown in Figures 7 and 8, respectively.
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Figure 7. Error between followers and the convex hull.
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Figure 8. Followers converge into convex hull (the two state components represent the position
coordinates of each vehicle).

According to Figures 7 and 8, apparently, when the observer fails, all the protected
vehicles are still able to access the convex hull under the control of the static protocol (43)
with a specified convergence speed.
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4. Conclusions

This paper proposed a parametric dynamic compensated distributed control protocol
with a co-state for each follower. For the containment control of the MAS, the necessary
and sufficient conditions for taking values of the coupling gains have been derived. The
dominant poles of the global closed-loop error system have been configured to specify the
convergence speed of MAS. For the virtual layer subsystem, the poles have been configured
as non-dominated poles by the MLQR optimal control; for the physical layer subsystem
with parameters, the parameters have been designed based on the Geršgorin’s circle
criterion to configure the desired dominated poles. When the virtual layer fails, the protocol
reduced to a static control law to achieve containment control. Moreover, combined with
inverse optimal control, the convergence speed can also be specified through dominant
pole configuration. Simulation examples have been given to demonstrate the effectiveness
of the developed design method.
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Abstract: Mobile robots are widely employed in various fields to perform autonomous tasks. In
dynamic scenarios, localization fluctuations are unavoidable and obvious. However, common
controllers do not consider the impact of localization fluctuations, resulting in violent jittering or
poor trajectory tracking of the mobile robot. For this reason, this paper proposes an adaptive model
predictive control (MPC) with an accurate localization fluctuation assessment for mobile robots,
which balances the contradiction between precision and calculation efficiency of mobile robot control.
The distinctive features of the proposed MPC are three-fold: (1) Integrating variance and entropy—a
localization fluctuation estimation relying on fuzzy logic rules is proposed to enhance the accuracy
of the fluctuation assessment. (2) By using the Taylor expansion-based linearization method—a
modified kinematics model that considers that the external disturbance of localization fluctuation is
established to satisfy the iterative solution of the MPC method and reduce the computational burden.
(3) An improved MPC with an adaptive adjustment of predictive step size according to localization
fluctuation is proposed, which alleviates the disadvantage of a large amount of the MPC calculation
and improves the stability of the control system in dynamic scenes. Finally, verification experiments
of the real-life mobile robot are offered to verify the effectiveness of the presented MPC method.
Additionally, compared with PID, the tracking distance and angle error of the proposed method
decrease by 74.3% and 95.3%, respectively.

Keywords: model predictive control; mobile robots; localization fluctuations; fuzzy estimation

1. Introduction

Mobile robots are being progressively used in numerous scenarios such as unmanned
factories, logistics centers, and exhibition halls, thanks to their superior flexibility and
maneuverability [1–3]. For unmanned operations, autonomous navigation technology is
intuitively important for robots [4]. To follow a given trajectory, mobile robots have to
be able to control their pose precisely and robustly based on the localization results [5].
However, localization and control issues are often studied independently, leaving robot
control performers to be improved.

The control system needs accurate localization results as a reference to maintain good
trajectory-tracking accuracy [6]. In traditional control methods, kinematic or dynamic
modelling or the control theory have been given more attention, and localization results are
always seen as an absolute truth value [7,8]. However, in practice, mobile robots, whether
using vision-based or LiDAR-based localization solutions, are subject to noise interference
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from their external sensors, which may lead to fluctuations in localization [9,10]. If the
controller still treats the localization result as absolute truth, this can lead to severe jittering
or large tracking deviations. To this end, this paper solves the robust control problem of mobile
robots under the localization fluctuations, including the accurate localization fluctuation estimation
and the robust controller design.

Through the above analysis, to improve the operation accuracy of the four-wheel dif-
ferential mobile robot, this paper analyses the localization fluctuation state in the dynamic
scene and then realizes the adaptive adjustment of the predictive step size of the model
predictive control. Therefore, the operation adaptability of the four-wheel differential
mobile robot is improved.

(1) Integrating variance and information entropy—an enhanced localization fluctuation
estimation method based on fuzzy logic rules is proposed to improve the accuracy of
the fluctuation assessment.

(2) A modified kinematics model with external disturbance using the Taylor expansion-
based linearization is established, which is convenient for controller design under
localization fluctuations.

(3) An improved MPC with an adaptive adjustment of predictive step size related to
localization fluctuation is proposed, which ensures the stability of the control system
in dynamic scenes.

(4) The proposed method has been tested in real dynamic scenarios and compared with
mainstream methods, and its effectiveness has been demonstrated.

2. Related Works

2.1. Localization Fluctuation Estimation

The problem of localization can be divided into simultaneous localization and map
building (SLAM) and localization based on an a priori map, depending on the presence
or absence of an a priori map [11]. Mainstream SLAM methods such as ORB-SLAM [12]
and LEGO-LOAM [13] can generate a map of the environment while obtaining localization
results. However, this method is subject to cumulative errors and has poor real-time
performance. In contrast, a priori map-based localization provides accurate and efficient
positional information and is often used as a reference for control [11]. Bayesian filter-based
localization frameworks are currently the dominant approach using a priori map, such as
Kalman filtering or Monte Carlo localization (MCL) [14–16]. In particular, MCL is widely
used due to its ability to adapt to non-Gaussian non-linear scenarios [14,17]. Although
there is much research around the robustness of MCL, existing algorithms are not immune
to localization fluctuations in highly dynamic scenarios. The accurate description of the
localization fluctuations is of great significance for the design of subsequent navigation
systems. For this reason, Zapata et al. propose to use the maximum particle weight in
the MCL as a benchmark to determine the current localization reliability [18]. When the
maximum particle weight is less than the weight threshold, this is an indication that the
currently estimated pose is not reliable. Nevertheless, it is not robust to use the weight of
only one particle to measure localization reliability. In turn, variance and entropy values
are common in addition to valid metrics for estimating localization fluctuations, which take
into account the set of particles with weights in an integrated manner [19–21]. The variance
is well understood mathematically and physically—the larger the variance, the greater the
localization fluctuation—but is poorly described for localization data with multi-peaked
distributions. Higher information entropy indicates smaller differences in particle weights,
demonstrating greater uncertainty in localization. In particular, entropy is more accurate
for non-convex data evaluations [22,23]. However, relying solely on a numerical metric is
prone to misclassification. In this regard, the main objective of this paper is to design a robust
assessment method that integrates more localization fluctuation metrics into consideration.

232



Sensors 2023, 23, 2501

2.2. Mobile Robot Control

As one of the key modules, control technology has a great impact on the stability
and accuracy of mobile robots [24]. In the process of motion, it is usually subject to
external disturbances such as model uncertainty and parameter perturbation, resulting
in motion oscillation and deviation, and even skidding and rollover [25]. To suppress
disturbances, many scholars have made efforts to improve the performance of mobile bots.
For example, the literature [26] designs a sliding mode control (SMC) scheme based on a
reduced-order-extended-state observer, which realizes the active compensation of friction
under the condition of uncertain parameters and ensures the stability of an operation.
Through the smooth fitting of the path and design of MPC, the literature [27] realizes the
high-speed movement of the four-wheeled independently steering robot with action delay.
For the tracking problem of wheeled mobile robots with bounded disturbances and various
practical constraints, a robust MPC method is proposed to ensure the safety and comfort
during an operation [28]. At present, SMC and MPC have been the focus of research
because of their excellent characteristics in high-speed and high-precision motion control
methods [6,29,30]. Although SMC has the advantage of being insensitive to disturbances,
the oscillation produced by itself is difficult to be eliminated, which makes it difficult
to be widely used [31]. The gradual iterative optimization is brought by MPC, which
can well handle the model constraints caused by structure, dynamic system, etc., and is
conducive to achieving smooth motion [32,33]. This advantage improves the robustness of
the control. In the design process of existing MPC methods, the observed localization data
are usually treated as accurate values, which can ensure the stability of motion in static- or
high-localization accuracy scenes [34,35]. Therefore, in the dynamic scene, the design of the
controller needs to take into account the localization fluctuations, so as to avoid causing
motion oscillation. For this purpose, how to improve the robustness and accuracy of the controller
in the localization fluctuation scenario has become a key issue to be studied in our work.

3. System Modelling and Problem Formulation

3.1. System Modelling

Figure 1 shows the four-wheel differential platform model. The four-wheel differential
platform has good motion performance and can achieve zero radius turning by adjusting
the speed of the left and right wheels, which improves its adaptability to complex scenes.
As the special case of mobile robots, the general modelling method can improve the general
adaptability of the model [36,37]. Therefore, to further analyze the four-wheel differential
platform and improve its motion controllability, the following general kinematics model of
a mobile robot is given:

χ = f (χ, u) (1)

where χ = [x, y, θ]T is the state variable; u = [v, ω]T represents the control variable, x and y
are the position of the mobile robot center point in the global fixed coordinate system, and
θ denotes the robot heading angle; v and ω are the linear velocity and angular velocity of
the mobile robot, respectively. The Taylor formula is used to expand the nonlinear mobile
robot model at the reference point (χr, ur) to obtain the linear model of the mobile robot, so
that the modelling accuracy can be guaranteed.
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Figure 1. The four-wheel model and single-track model of the considered IWMD-MR.

At the same time, the linear model reduces the amount of computation, convenient for
the design of the controller and is conducive to the actual implementation. Furthermore, at
the Taylor expansion for Equation (1) at the point (χr, ur), we have:

.
χ = f (χr, ur) + fχr (χ − χr) + fur (u − ur) + Or (2)

where χr is the reference control input; ur denotes the calculated reference input, fχr (·)
and are coefficient matrices of function f (·) expanded at (χr, ur); O(r) is the higher order
remainder of the Taylor expansion. By defining e = χ − χr, we have

.
e = fχr e + fur ũ + Or (3)

where e represents the following error of the mobile robot; ũ = u − ur is the change of input
control law. In the actual motion process, it is difficult to realize the continuous control
of the mobile robot. Therefore, obtaining a discrete-time model of the four-wheel mobile
robot is necessary. Setting the sampling period as T, where

e(k + 1) = e(k) + T
.
e(k) (4)

where k is the sampling time. The above model is rewritten as

e(k + 1) = A(k)e(k) + B(k)ũ(k) + Or(k) (5)

where,

A(k) =

⎡⎣1 0 −T · vr sin θr(k)
0 1 T · vr cos θr(k)
0 0 1

⎤⎦, B(k) =

⎡⎣T cos θr(k) 0
T sin θr(k) 0

0 T

⎤⎦ (6)

Therefore, in order to improve the controllability of the four-wheel mobile robot, we
realized the linear modelling of the mobile robot kinematics model. This facilitates the
design of the controller and makes the control of the mobile robot simpler.

3.2. Localization Problem Formulation

The mobile robot localization problem is often regarded as a typical Bayesian esti-
mation problem. Bayesian filter-based localization algorithms solve robot localization
problems by estimating the probability distribution of robot poses in the pose space and
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assigning a probability to each possible hypothetical pose using a confidence level (Belief ),
which is expressed as

B(sk) = p(sk|o1:k, u1:k, M) (7)

where sk is the robot’s pose in the two-dimensional plane at time k, which can be expressed
as (xk, yk, θk); xk and yk are the robot’s position, and θk is the robot’s heading; o1:k and
u1:k represent the sensor observations and motion control from the initial time to time k,
respectively; M is the a priori map.

According to the Markov hypothesis and Bayes rule, the Bayesian filter-based localiza-
tion method can recursively estimate the robot’s poses, but it involves a large number of
integral operations and nonlinear non-Gaussian features of the observation and motion
models, which make the efficient and accurate solution a concern. To this end, this paper
uses the MCL approach to compute Equation (7), which uses a particle set with weights to
represent B(sk), i.e.,

B(sk) ≈
Np

∑
np=1

ω
[np ]

k δ(sk − s
[np ]

k ) (8)

where the set of particles with weights is denoted as
{〈

s
[np ]

k , ω
[np ]

k

〉}Np

np=1
; ω

[np ]

k is the

weight of the np-th particle s
[np ]

k and Np means the total number of particles; s
[np ]

k can be

written as
(

x
[np ]

k , y
[np ]

k , θ
[np ]

k

)
; x

[np ]

k , y
[np ]

k and θ
[np ]

k are the position and orientation of the
particle; δ(·) is the Dirichlet function. Usually, the particle with the highest weight is
selected as the current localization result.

4. Localization Fluctuations Estimation

Both variance and information entropy have their own unique advantages in express-
ing localization fluctuations and can reflect the characteristics of the particle set. However,
a single performance metric still has a large randomness that affects the accuracy of the
fluctuation assessment. To solve the above problems, a fuzzy logic rule incorporating
variance and entropy is proposed to evaluate the localization fluctuations. Localization
fluctuations are represented as follows:

L f = [L f x, L f y, L f θ ]
T = [ fVx(Vx) + fE(E), fVy(Vy) + fE(E), fVθ(Vθ) + fE(E)]T (9)

fVi(Vi) =

⎧⎨⎩
αV 0 ≤ Vi < η1VTi
βV η1VTi ≤ Vi < η2VTi
λV η2VTi ≤ Vi

, fE(E) =

⎧⎨⎩
αE 0 ≤ E < η3ET
βE η3ET ≤ E < η4ET
λE η4ET ≤ E

(10)

where Vi and E are the variance and entropy, respectively; i = x, y, θ; fVi(Vi) and fEi(Ei)
are the localization fluctuation factors based on Vi and E; αV , βV , λV , αE, βE and λE are
the fluctuation parameters; 0 < αV < βV < λV and 0 < αE < βE < λE; η1, η2, η3 and η4
are the weight coefficient; 0 < η1 < η2 and 0 < η3 < η4; VTi and ET are the variance and
entropy threshold value, severally. L f is a three-dimensional vector [L f x, L f y, L f θ ]

T that
represents the fluctuations of x, y, and θ. Meanwhile, L f is determined by the variance and
entropy values, where the entropy values are only related to the particle weights, so all
three dimensions are set uniformly.

It is worth stating that the calculation of Vi and E usually requires a series of localiza-
tion results over a period of time. However, it is not practical to perform a large number of
localization experiments in situ to determine the current localization fluctuation state, and
we would prefer to conduct the evaluation depending on the localization data at a certain
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time. Fortunately, the MCL result is expressed as a particle set
{〈

s
[np ]

k , ω
[np ]

k

〉}Np

np=1
, so that

Vi and E can be represented as

Vpx =
Np

∑
i=1

ω
[np ]

k (x
np
k − xk)

2
, Vpy =

Np

∑
i=1

ω
[np ]

k (y
np
k − yk)

2
, Vpθ =

n

∑
i=1

ωi
t(θ

i
t − θt)

2
(11)

Ep = −
Np

∑
np=1

ω
[np ]

k log ω
[np ]

k (12)

where Vpi and Ep are the variance and entropy from
{〈

s
[np ]

k , ω
[np ]

k

〉}Np

np=1
; ∗ denotes the

mean value of the related particle’s pose.
Although Vi and E can be reflected by the localization results at a certain time based

on
{〈

s
[np ]

k , ω
[np ]

k

〉}Np

np=1
, the exact relationship between Vpi, Vi, Ep and E are still difficult to

be indicated analytically. Fuzzy logic rules are an effective means to infer an output based
on input variables. Hence, we integrate Vpi and Vi into a fuzzy formula using the following
fuzzy logic rules:

rule 1 : i f 0 ≤ Vpi ≤ Vpi1 then fVi1 = fVi(Vi) s.t. 0 ≤ Vi < η1VTi
rule 2 : i f Vpi2 ≤ Vpi ≤ Vpi3 then fVi2 = fVi(Vi) s.t. η1VTi ≤ Vi < η2VTi
rule 3 : i f Vpi4 ≤ Vpi then fVi3 = fVi(Vi) s.t. η2VTi ≤ Vi

(13)

where Vpi1, Vpi2, Vpi3 and Vpi4 are fuzzy demarcation boundaries for Vpi; fVi1, fVi3 and fVi3
are the fluctuation values based on variance.

Similarly, the fuzzy formula for describing the mapping relation between Ep and E
can be written as

rule 1 : i f 0 ≤ Ep ≤ Ep1 then fE1 = fE(E) s.t. 0 ≤ E < η3ET
rule 2 : i f Ep2 ≤ Ep ≤ Ep3 then fE2 = fE(E) s.t. η3ET ≤ E < η4ET
rule 3 : i f Ep4 ≤ Ep then fE3 = fE(E) s.t. η4ET ≤ E

(14)

where Ep1, Ep2, Ep3 and Ep4 are fuzzy demarcation boundaries for Ep; fE1, fE3 and fE3 are
the fluctuation values based on entropy.

For implementation, the boundaries Vpi1 to Vpi4 and Ep1 to Ep4 can be learned from a
mass of variance and entropy of localization results in different dynamic environments. As
the next step of a standard procedure of constructing a fuzzy logic system, defuzzification
is achieved by the weighted average method. Additionally, the fluctuation factor L f is
obtained as follows:

L f = [L f x, L f y, L f θ ]
T =

⎡⎢⎢⎣
r
∑

m=1
χm fVxm

r
∑

m=1
χm

+

r
∑

m=1
χm fEm

r
∑

m=1
χm

,

r
∑

m=1
χm fVym

r
∑

m=1
χm

+

r
∑

m=1
χm fEm

r
∑

m=1
χm

,

r
∑

m=1
χm fVθm

r
∑

m=1
χm

+

r
∑

m=1
χm fEm

r
∑

m=1
χm

⎤⎥⎥⎦
T

(15)

where r is the number of fuzzy rule bases; χm denotes the trigger strength of m-th rule. If
the Vpi or Ep satisfies the fuzzy rule, then χm is 1. Otherwise, χm is set as 0.
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5. Adaptive MPC Considering Localization Fluctuation

In order to realize the robust control of the four-wheel mobile robot, based on the state
space discrete model of Equation (5), we construct the cost function required in the optimal
control process

J(e(k), ũ(k)) =
Np

∑
i=1

[e(k + i|k)]T P[e(k + i|k)] +
Nc−1

∑
i=0

[ũ(k + i|k)]T R[ũ(k + i|k)] (16)

where J(·) is the cost function; e(k + i|k) and ũ(k + i|k) represent the error value and control
fluctuation value of time k + 1 predicted at time k, respectively; Np and Nc are prediction
and control horizon, respectively, and the value of the control horizon is not greater than
the prediction horizon; P and R are the weight matrix.

To ensure the feasibility of optimal prediction, the control variables of the prediction
process are as follows:

emin ≤ e(k) ≤ emax

umin ≤ u(k) ≤ umax

ũmin ≤ ũ(k) ≤ ũmax

umin ≤ u(k) + Tũ(k) ≤ umax

Ormin ≤ Or(k) ≤ Ormax

(17)

where emin and emax are the minimum and maximum errors, respectively. umin and umax
are the minimum and maximum values of the control law increment, respectively. Ormin
and Ormax are the minimum and maximum perturbations, respectively.

Considering the existence of localization fluctuation, to ensure the stability of opera-
tion, Np and Nc need to be further adjusted as follows:

Np = [k1max(L f )] + kp
Nc = [k2max(L f )] + kc

(18)

where L f is the estimated localization fluctuation value obtained from Equation (9), max()
is the maximum value function of a vector, k1,2 is the adjustment coefficient. kc, kp ∈ N+ is
the minimum adjustment coefficient. [X] is the maximum integer value not greater than X.
Considering the constraint state of the predictive control method, there are Nc ≤ Np.

Furthermore, using the cost function of Equation (16), the following state equation of
the prediction horizon is obtained:

e(k) = F(k)ũ(k) + L(k)e(k) + G(k)ũ(k − 1) + Or(k) (19)

with
e(k) = [e(k + 1

∣∣k), . . . , e(k + Np
∣∣k)] T

ũ(k) = [ũ(k + 1|k), . . . , ũ(k + Nc − 1|k)] T

Or(k) = [Or(k + 1
∣∣k), . . . , Or(k + Np − 1

∣∣k)] T

(20)

The coefficient matrix is expressed as:

F(k) =

⎡⎢⎢⎢⎢⎣
B(k) . . . 0

A(k + 1)B(k) . . . 0
...

. . .
...

B(k + Np − 1) + ∏
i=k+Np−1
i=k+1 A(i)B(k) . . . B(k + Np − 1) + ∏

i=k+Np−1
i=k+1 A(i)B(k + Nc)

⎤⎥⎥⎥⎥⎦ (21)
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L(k) =

⎡⎣A(k), A(k + 1)A(k), . . . ,
i=k+Np−1

∏
i=k

A(i)

⎤⎦T

(22)

G(k) =

⎡⎢⎢⎢⎢⎣
B(k)

B(k + 1) + A(k + 1)B(k)
...

B(k + Np − 1) + . . . + ∏
i=k+Np−1
i=k+1 A(i)B(k)

⎤⎥⎥⎥⎥⎦ (23)

Therefore, in order to ensure the optimal operation process, the following optimization
objectives are obtained by combining Formulas (16), (17) and (19):

mineT(k)Pe(k) + ũ
T
(k)Rũ(k) (24)

Considering modelling error and disturbance, Equation (19) is introduced into the
optimization objective (24), thus:

minOr
T(k)POr(k) + ũ

T
(k)Rũ(k) (25)

subject to

min(emax − M(k), Ormax) ≤ Or(k) ≤ max(emin − M(k), Ormin)
umin ≤ u(k) ≤ umax
ũmin ≤ ũ(k) ≤ ũmax

umin ≤ u(k) + Tũ(k) ≤ umax

(26)

where M(k) = F(k)ũ(k)L(k)e(k)− G(k)ũ(k − 1) is the intermediate variable.
By adjusting the above equation, the control law optimization under the scenario of

disturbance fluctuation is realized.
Furthermore, the stability proof of the designed controller is given as follows:

Theorem 1. When the optimal control strategy of (19)–(25) is adopted and the following conditions
are satisfied:

e(k + Np
∣∣k) = 0 (27)

ũ(k + Nc) = 0 (28)

Then, the system will approach stability.

Proof. The optimization function of the system can be rewritten as:

J(e(k + 1), ũ(k + 1)) =
Np

∑
i=1

[e(k + i + 1|k + 1)]T P[e(k + i + 1|k + 1)]

+
Nc−1

∑
i=0

[ũ(k + i + 1|k + 1)]T R[ũ(k + i + 1|k + 1)]

=
Np

∑
i=1

[e ∗ (k + i + 1|k)]T P[e ∗ (k + i + 1|k)] +
Nc−1

∑
i=0

[ũ ∗ (k + i + 1|k)]T R[ũ(k + i + 1|k)]

(29)

Combined with Formulas (27) and (28), there is
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J(e(k + 1), ũ(k + 1)) =
Np

∑
i=1

[e ∗ (k + i|k)]T P[e ∗ (k + i|k)] +
Nc−1

∑
i=0

[ũ ∗ (k + i|k)]T R[ũ ∗ (k + i|k)]

−[e ∗ (k + 1|k)]T P[e ∗ (k + 1|k)]− [ũ ∗ (k|k)]T R[ũ ∗ (k|k)]
= J ∗ (e(k), ũ(k))− [e ∗ (k + 1|k)]T P[e ∗ (k + 1|k)]− [ũ ∗ (k|k)]T R[ũ ∗ (k|k)]

(30)

with J∗(e(k + 1), ũ(k + 1)), which is the optimal control value at time k. Then, e∗(k + i|k)
and ũ∗(k + i|k) are the predicted values obtained by solving the optimization function at
time k to k + i. Hence, combining Equations (27) and (28), we have:

e∗(k + 1) = e∗(k + 1|k), ũ∗(k) = ũ∗(k|k) (31)

Then,

J∗(e(k + 1), ũ(k + 1)) ≤ J(e(k + 1), ũ(k + 1))
= J ∗ (e(k), ũ(k))− [e ∗ (k + 1)]T P[e ∗ (k + 1)]− [ũ(k)]T R[ũ∗(k)]
≤ J∗(e(k), ũ(k))

(32)

Therefore, the optimal value of the cost function will gradually decrease in the process
of iterative updating. It shows that the optimization method can guarantee the asymptotic
convergence of the system. �

6. Experimental Validations

6.1. Experimental Implementation

The experimental scenes and four-wheel differentially driven mobile robot are shown
in Figure 2. The mobile robot basically consists of an industrial computer (Intel(R) Core
(TM) i7-6500U CPU @2.50 GHz, 8 GB of RAM, 64-bit operating system), two LiDARs,
four motor encoders and some related sensors, such as an ultrasonic transducer and anti-
collision strip. More specifically, two UTM-30LX 2-D LiDARs with a range of 30 m and
scanning rate of 40 Hz are used, which guarantee that the robot has enough field of view to
ensure safety and real-time pose tracking. To avoid the blind spot of LiDAR, we installed
four MaxBotix MB7360 ultrasonic sensors around the robot with a high resolution of 1 mm
and a measuring distance of 5 m, which is sufficient to detect possible dynamic obstacles
during the robot’s movement. As demonstrated in Figure 2b, the experimental environment
is a dynamic and wide square surrounded by overgrown grass and a large number of
pedestrians. Three sites are selected for the localization experiments to determine the fuzzy
rule parameters. To comprehensively demonstrate the performance of the proposed control
system, we first conduct localization experiments in different dynamic environments. Then,
through real control experiments, the effectiveness of the proposed MPC method is verified.

Figure 2. Experimental scene and platform. (a) Platform prototype. (b) Dynamic scene. (c) Grid map
of the scene.
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6.2. Experimental Results and Discussions
6.2.1. Experimental Results of Localization Fluctuation Estimation

To construct fuzzy logic rules for localization fluctuation estimation, 100 frames of
LiDAR measurement are collected at each of the three sites in different dynamic scenarios
using a mobile robot. In total, 900 frames of LiDAR data were provided for the fuzzy
estimation. The LiDAR data from low to high dynamic scenes at Site 2 in the square are
shown in Figure 3a. The LiDAR data from low to high dynamic scenes at Site 2 in the square
are shown in Figure 1. Specifically, as shown in Figure 1, the low dynamic scenes have less
than 10 percent of the observed noise, which is ideal for localization. The medium dynamic
scenario is depicted in Figure 3b, where the observed noise accounts for 20 to 30 percent of
the overall observed data, a common and realistic scenario. Extremely dynamic scenarios,
such as the one shown in Figure 3c, will have noise levels close to 50 percent, which can
easily lead to localization fluctuations or even localization failure.

 
(a) (b) 

 
(c) 

Figure 3. LiDAR measurement in different dynamic scenes at site 2. (a) Low dynamic environment.
(b) Medium dynamic environment. (c) High dynamic environment.

Next, we determine the relationship between Vp and E, and the mapping between Ep
and E. We put a different number of obstacles around the robot and record 100 localization
results. Vi and E correspond to each localization result at three sites. In this way, as
indicated in Table 1, we get the Vi and E of 100 localization results at three sites in different
dynamic environments. And, as the dynamic level of the scene increases, Vi and E become
correspondingly larger.
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Table 1. The results of the Vi and E of multiple localization results in different dynamic environments.

Low Dynamic Scene Medium Dynamic Scene High Dynamic Scene

Vx/(m2) Vy/(m2) Vθ/(rad2) E Vx/(m2) Vy(m2) Vθ/(rad2) E Vx/(m2) Vy(m2) Vθ/(rad2) E

Site 1 1.24 × 10−4 3.23 × 10−4 1.53 × 10−6 6.33 2.19 × 10−4 8.55 × 10−4 1.93 × 10−6 6.41 4.67 × 10−4 6.28 × 10−3 7.48 × 10−5 6.56

Site 2 1.62 × 10−4 5.71 × 10−4 5.57 × 10−7 6.32 2.09 × 10−4 7.45 × 10−4 1.04 × 10−6 6.43 4.33 × 10−4 1.26 × 10−3 2.70 × 10−6 6.51

Site 3 1.80 × 10−4 2.63 × 10−4 1.48 × 10−6 6.37 2.66 × 10−4 9.09 × 10−4 4.76 × 10−6 6.39 3.45 × 10−4 1.83 × 10−3 8.97 × 10−6 6.54

According to the Vi and E in different dynamic scenes, we can know the status of the
localization fluctuations to which Vp and E belong. Meanwhile, for example, when i = x,
Equation (10) can be set to

fVx(Vx) =

⎧⎨⎩
0.00 0.00 ≤ Vx < 1.93 × 10−4

0.25 1.93 × 10−4 ≤ Vx < 3.23 × 10−4

0.5 3.23 × 10−4 ≤ Vx

, fE(E) =

⎧⎨⎩
0 0.00 ≤ E < 6.37

0.25 6.37 ≤ E < 6.47
0.5 6.47 ≤ E

(33)

Specifically, the relationship between Vpi and Vi, and the mapping between Ep and
E, are shown in Table 2. We have grouped Vpi and Ep, which fit into different fluctuation
ranges, into one category. The 300 Vpi and Vi ranges are linked. Similarly, the mapping of
the ranges of E and Ep is found.

Table 2. The results of Vpi and Ep in different ranges.

Range
Range1:

0.00 ≤ Vx < 1.93 × 10−4
Range2:

1.93 × 10−4 ≤ Vx < 3.23 × 10−4
Range3:

3.23 × 10−4 ≤ Vx

Vpx/(m2)

7.03 × 10−4 3.06 × 10−4 5.05 × 10−4 1.17 × 10−2 3.54 × 10−4 3.92 × 10−4 1.18 × 10−1 9.10 × 10−4 5.84 × 10−4

98 lines of Vpx

4.76 × 10−4 3.37 × 10−4 4.57 × 10−4 3.96 × 10−4 2.88 × 10−4 1.49 × 10−4 1.39 × 10−3 7.85 × 10−4 8.83 × 10−4

Range
range1:

0.00 ≤ Vy < 6.11 × 10−4
range2:

6.11 × 10−4 ≤ Vy < 1.98 × 10−3
range3:

1.98 × 10−3 ≤ Vy

Vpy/(m2)

8.01 × 10−4 4.08 × 10−4 1.45 × 10−4 2.61 × 10−2 3.24 × 10−4 9.01 × 10−4 2.82 × 10−1 1.20 × 10−2 1.37 × 10−3

98 lines of Vpx

2.75 × 10−4 1.86 × 10−4 2.69 × 10−4 2.18 × 10−4 3.21 × 10−4 1.40 × 10−4 1.12 × 10−3 8.20 × 10−4 1.14 × 10−3

Range range1:
0.00 ≤ Vθ < 1.88 × 10−6

range2:
1.88 × 10−6 ≤ Vθ < 1.57 × 10−5

range3:
1.57 × 10−5 ≤ Vθ

Vpθ/(rad2)

4.59 × 10−6 1.03 × 10−6 3.50 × 10−7 3.14 × 10−4 8.30 × 10−7 9.34 × 10−7 5.13 × 10−3 1.20 × 10−4 1.99 × 10−5

98 lines of Vpθ

7.66 × 10−6 2.45 × 10−6 3.01 × 10−6 9.88 × 10−7 2.12 × 10−6 1.69 × 10−6 1.09 × 10−4 2.11 × 10−5 5.95 × 10−5

Range range1:
0.00 ≤ E <6.37

range2:
6.37 ≤ E <6.47

range3:
6.47 ≤ E

Ep

6.22 2.51 5.18 5.05 6.30 5.00 1.11 8.85 7.79

98 lines of Ep

4.88 5.03 4.07 5.73 5.39 5.19 7.29 7.98 7.94

The distribution of Vpi and Ep in the different ranges of Vi and E are shown in Figure 4.
We have used box plots to illustrate the distribution characteristics. It is easy to see that there
are overlapping parts of Vpi and Ep in different ranges, which provide for the construction
of fuzzy rules. According to Figure 4, the boxes in different ranges have a distinct overlap.
Hence, we can easily choose the fuzzy partition boundary Vpi1�Vpi4 and Ep1�Ep4 for Vpi
and Ep, respectively. Finally, the “premise” of the fuzzy rule base defines Vpi and Ep, and
the fluctuation values fVi1� fVi3 and fE1� fE3 are the “conclusion”. Equations (13) and (14),
when i = x, can be rewritten as
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rule 1 : i f 0.00 ≤ Vpx ≤ 5 × 10−4 then fVx1 = fVx(Vx) s.t. 0.00 ≤ Vx < 1.93 × 10−4

rule 2 : i f 1.62 × 10−4 ≤ Vpx ≤ 6.07 × 10−4 then fVi2 = fVx(Vx) s.t. 1.93 × 10−4 ≤ Vx < 3.23 × 10−4

rule 3 : i f 4.94 × 10−4 ≤ Vpx then fVi3 = fVi(Vx) s.t. 3.23 × 10−4 ≤ Vx

(34)

rule 1 : i f 0.00 ≤ Ep ≤ 5.21 then fE1 = fE(E) s.t. 0.00 ≤ E < 6.37
rule 2 : i f 4.46 ≤ Ep ≤ 6.27 then fE2 = fE(E) s.t. 6.37 ≤ E < 6.47
rule 3 : i f 6.04 ≤ Ep then fE3 = fE(E) s.t. 6.47 ≤ E

(35)

  
(a) (b) 

  
(c) (d) 

E

E
p

Figure 4. The distribution of Vp and Ep in the different ranges of V and E. (a) Vpx in the different
ranges of Vx. (b) Vpy in the different ranges of Vy. (c) Vpθ in the different ranges of Vθ . (d) Ep in the
different ranges of E.

6.2.2. Experimental Results of Adaptive MPC

Furthermore, to verify the superiority of the control method considering location
uncertainty, we choose the following comparison methods: (1) The traditional PID control
method with optimizing parameters, where Kp = 0.5, Ki = 1.5 and Kd = 0.1. (2) The
proposed control method does not consider the localization fluctuation (NMPC) with
Nc = Np = 5. In the proposed control method, the control parameters are set as follows:
kp = kc = 5, k1 = k2 = 10. The specific tracking process of the comparison method is
described as follows:

The trajectory tracking of various comparison methods is shown in Figure 5. The initial
point of the four-wheel differential mobile robot is (10, 0). It can be seen from Figure 5 that
there is an error between the attitude angle of the initial point and the slope of the curve,
resulting in a large tracking error. With time adjustment, all control methods can achieve
fast convergence. It can be seen from the enlarged drawing of Figure 5 that compared with
the proposed method and NMPC method, PID has a large oscillation. Further analysis
shows that the proposed method has a better tracking effect.
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Figure 5. Tracking response of the comparison method.

Figures 6 and 7 are the distance error and angle error, respectively. Specifically, Figure 7
shows that the overshoots of the PID and NMPC are 0.5903 m and 0.5502 m, while the
proposed method is 0.4603 m. Furthermore, by comparing the proposed method with
NMPC, it is found that the tracking process is optimized through adaptive step adjustment.
On closer inspection, the average errors in the stable stage (10 s~60 s) of PID, NMPC
and proposed methods are 0.0374 m, 0.0177 m and 0.0096 m, which show that the errors
are reduced by 74.3% and 45.8%, respectively. It is found in 0 that the angle error of
the PID method fluctuates greatly, while the NMPC and the proposed method will be
limited to a small range. The average angle errors of PID and NMPC are 0.1001 rad and
0.0062 rad during a 10~60 s stabilization period, while the proposed method with a small
error is 0.0047 rad. The stable errors are reduced up to 95.3% and 31.9%, respectively. By
comparison, the proposed method achieves better error suppression.

Figure 6. Distance error of the comparison method.
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Figure 7. Orientation error of the comparison method.

From Figure 8, the adjustment of the prediction horizon is given through the local-
ization fluctuation output by the localization module to ensure the control’s stability and
accuracy under the high localization fluctuation scenario. Therefore, compared with the tra-
ditional PID and NMPC methods, the proposed method can realize the dynamic adjustment
of the step size, improve tracking accuracy and reduce motion fluctuation.

Figure 8. Adjustment of the prediction horizon.

7. Conclusions and Outlook

In this paper, an adaptive MPC for mobile robots with the fuzzy estimation of local-
ization fluctuations was discussed, which accurately evaluates the localization state and
effectively improves control accuracy and robustness. First of all, a localization fluctua-
tion estimation based on fuzzy logic rules was proposed, which takes into account both
the effects of variance and information entropy, thereby obtaining accurate estimates of
localization fluctuations. Then, a modified kinematics model with external disturbance
using the Taylor expansion-based linearization was constructed. In addition, according
to localization fluctuation, an enhanced MPC with an adaptive adjustment of predictive
step size was proposed to maintain the stability of the control system in dynamic scenes.
The experimental results show that the step size of MPC can be effectively and adaptively
adjusted with localization fluctuation in different dynamic scenes, avoiding the generation
of oscillation. In the stable tracking phase, the proposed method reduced the tracking dis-
tance error by 74.3% and 45.8% compared with PID and NMPC. In addition, in comparison
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to PID and NMPC, the tracking angle errors of the proposed method decreased by 95.3%
and 31.9%, respectively. In future work, we will explore the potential of deep learning for
applications in localization fluctuation assessments and improve the control framework to
better integrate localization fluctuation information.
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Notations and Abbreviations

The following key notations and abbreviations are used in this paper.

Notations/Abbreviations Descriptions

SMC sliding mode control

MPC model predictive control

J(·) cost function

Np, Nc Prediction/control horizon

P, R weight matrix

v linear velocity

ω angular velocity

fχr (·), fur (·) coefficient matrices

O(r) higher order remainder of the Taylor expansion

Pl estimated localization fluctuation value

k1,2 adjustment coefficient

kc, kp ∈ N+ minimum adjustment coefficient
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Abstract: To achieve low-cost and robustness, an indoor location system using simple visual tags
is designed by comprehensively considering accuracy and computation complexity. Only the color
and shape features are used for tag detection, by which both algorithm complexity and data storage
requirement are reduced. To manage the nonunique problem caused by the simple tag features, a
fast query and matching method is further presented by using the view field of the camera and the
tag azimuth. Then, based on the relationship analysis between the spatial distribution of tags and
location error, a pose and position estimation method using the weighted least square algorithm is
designed and works together with the interactive algorithm by the designed switching strategy. By
using the techniques presented, a favorable balance is achieved between the algorithm complexity
and the location accuracy. The simulation and experiment results show that the proposed method can
manage the singular problem of the overdetermined equations effectively and attenuate the negative
effect of unfavorable label groups. Compared with the ultrawide band technology, the location error
is reduced by more than 62%.

Keywords: indoor location; visual location; error analysis; weighted least squares

1. Introduction

With the development of artificial intelligent technologies, intelligent mobile platforms
are becoming more widely used in the fields of healthcare, warehousing, logistics, industrial
production, etc. [1,2]. Indoor location with high accuracy, as one of the key technologies, is
the basis for autonomous functions such as navigation and decision. Compared with other
application scenarios, it has special requirements on computation complexity, convenience
of deployment, and robustness to environmental disturbances. Outdoors, as a mature
technology, satellites can provide accurate location and timing signals at any time. In doors,
however, the satellite signal becomes ineffective because of attenuation caused by buildings,
interference during transmission, and multipath effect [3].

The indoor location technology can be divided into two types according to the signals
used, i.e., wireless signal and visual information. The widely used wireless signals include
WIFI [4], Bluetooth [5] and UWB (ultrawide band) [6], etc. Indoor location can be realized
by measuring the distance, angle, or location fingerprint [3–6]. However, the cost to
deploy base stations is comparatively high. Recently, with the development of Internet-of-
Things technologies, some researchers devote themselves to indoor location using wireless
local networks, which have already been deployed in many indoor environments [7,8].
Alhammadi et al. developed a three-dimensional indoor location system based on the
Bayesian graphical model [9]. However, the average location error is more than 3 m
and it can hardly be used in autonomous driving systems of intelligent mobile platforms.
Moreover, there exists a multipath effect for the wireless communication signals. The visual
location mainly includes SLAM (simultaneous location and mapping) [10] and location
by visual tags [11]. SLAM can be applied to unknown environments by extracting and
matching the texture feature automatically, but the algorithm has a higher computation
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complexity and its performance is also easily degraded by environmental disturbances.
These pose great challenges on practical applications, especially for the scenario with a high
demand on real-time and robust performance. Comparatively, the location algorithm using
visual tags can achieve low computation complexity by prior storage of the feature and
position information of tags. The selection of visual tags and pose calculation are important
to location performance.

For the selection of visual tags, Ref. [12] uses special objects such as signs, desks, and
doors, whose SURF feature is extracted to form the offline tag database. This method
need not change the environment, but the information of texture features is still very large
and it is also easily affected by environmental factors such as light. To reduce the storage
requirement, only roof corners are considered in [13]. In [14], semantic segmentation
technology is combined with the location algorithm for better performance, but much
computing resource is required by the semantic segmentation process. No extra effort is
needed to reconstruct the environment if using these already existing indoor objects. For
the same type of object, however, their texture features are similar, which makes it difficult
to discriminate different tags. To manage this problem, special tags are designed by coding
the information of ID, coordinate, etc., in the tag to ensure its uniqueness [11]. On the
contrary, the complexity of a QR code requires more time for detection, which even reaches
hundreds of milliseconds [15]. Moreover, the texture information of complex QR codes is
also easily degraded by environmental light and contaminants such as dust and dirt.

For the pose calculation, image matching and geometrical constraint are two widely
used methods. In [11], the geometrical relationship of view between the tag image recorded
in the database and that acquired in real time is used to calculate the position. Additionally,
template matching is adopted in [16] to realize location by affine transformation. The
fundamental of image matching is to find key texture features and establish their rela-
tionships between different images. This leads to a high degree of algorithm complexity.
Comparatively, the computation of the algorithm using geometrical constraint is much
less. It realizes location by geometrical relationship between the tags and sensors. The
location precision reaches centimeter level by using a binocular camera for the detection
of distance [13]. However, the computation resource required for the distance measure-
ment by stereovision is very high [17]. In [18], the direct measured distance from multiple
tags is used to construct overdetermined equations according to geometrical constraints,
and the location is estimated by LSM (least square method). This approach has better
comprehensive advantage on both location accuracy and computation complexity. When
the redundancy of tags is not enough or the spatial distribution is special, however, the
equations will become singular, which leads to a sharp increase in location error [19].

Considering the aforementioned problems, an indoor location system only using
simple visual tags is designed for the autonomous driving system of intelligent mobile
platforms. To manage the nonunique problem caused by the simple texture feature of tags,
a fast query and matching algorithm is designed by using the FOV (field of view) of the
camera and the tag azimuth. Furthermore, based on the relationship analysis between the
spatial distribution of tags and location error, a pose and position estimation algorithm
using WLSM (weighted least square method) is designed. Further, it works together with
the interactive algorithm by the designed switching strategy to adapt the singular condition.
A favorable balance has been achieved between the algorithm complexity and location
accuracy by the presented techniques. The effectiveness of the location system designed
herein is validated by both simulation and experiments, and compared with UWB, the
location error is reduced greatly. The main contributions of this study are summarized as
follows:

(1) A fast query and matching algorithm is designed to manage the nonunique problem
of tags, which cannot be distinguished directly by their texture features.

(2) A cooperative strategy is proposed to combine WLSM and the interactive algorithm
together to realize the estimation of pose and position with high accuracy under both
general and singular conditions.
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(3) An indoor location system only using simple visual tags is developed, which
has the advantages of low consumption of computation resources, high accuracy, easy
deployment, and robustness to environmental disturbances.

(4) The effectiveness of the proposed indoor location system is validated by both
simulation and experiment tests.

The remainder of this paper is organized as follows: Section 2 describes the indoor
location system design. The tag-matching strategy and the position calculation algorithm
are introduced in Sections 3 and 4, respectively; the effectiveness of the designed location
system is validated by numerical simulations and comparative tests in Section 5; and
Section 6 concludes the paper.

2. Indoor Location System Design

The visual tags and calculation algorithm of position are the two main parts in the
designed system.

2.1. Simple Visual Tag Design

Based on the following reasons, the tags shown in Figure 1 are designed [20]:
(1) It is difficult to control the natural texture, which is also easily influenced by

environmental factors;
(2) Tagging with a code is unique, but the detection algorithm is more complex and its

sophisticated texture is also easily degraded;
(3) Cameras have strong capability to measure colors, and RGB are the three primary

colors;
(4) It is easy to detect a circle, which also has the advantage of fine detection robustness

and invariance from different views.

Figure 1. Simple visual tags.

In this study, the tag is detected by the color and shape features [21], and the azimuth is
measured by the tag’s center. In this way, better anti-interference capability can be achieved
with less computation complexity. Only using these simple tag features, however, we
cannot discriminate them directly. Accordingly, the pose and position cannot be calculated
directly from the tag coordinates.

2.2. Location Algorithm with High Accuracy

To manage the nonunique problem of the simple visual tags, the location algorithm
shown in Figure 2 is proposed after considering the advantages of the geometrical constraint
method, i.e., high location accuracy and low algorithm complexity.

Image Tag 
detection

Matching 
of tag

Position 
calculation

Azimuth 
of tag

Coordinate
of tag Pose & position

Figure 2. Location algorithm with high accuracy.

Considering that most intelligent platforms move indoors within the horizontal plane,
the angle measurement method by vision is used to measure the tag position, as shown in
Figure 3.

250



Sensors 2023, 23, 1597

Optic axis

Principal point (u0, c0)

(ui, ci)

Image plane
Optic center (x, y)

Center of tag Li
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X

Y

q
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Figure 3. Angle measurement by vision.

The optic center of camera (x, y), azimuth θ, and the tag position (xi, yi) satisfy [18,19]:

tan(θ + αi) =
yi − y
xi − x

, αi = arctan
ui − u0

f
, i ∈ Ω (1)

where f is the focal distance and Ω is composed of the tag identifier, which can be observed
by the camera. If the tag feature is unique and its coordinate is known, the pose and
position can be solved from (1) directly, when the number of observed tags is no smaller
than three. Information from more tags is beneficial to location accuracy and robustness [18].
Unfortunately, the designed tag only has color and shape features, which are nonunique. In
the next section, a fast query and matching algorithm is designed by using the FOV of the
camera and the tag azimuth. In this way, the matched tag can be found without searching
the entire database. Then, with the coordinate of observed tags, a hybrid algorithm is
presented in Section 3 to estimate the pose and position by combing WLSM and the
interactive algorithm to create a favorable balance between algorithm complexity and
location accuracy.

3. Matching of Tag

Considering the following reasons, the matching algorithm shown in Figure 4 is
designed:

(1) The camera only can detect the tags in its FOV, which can be used to quickly search
the database to determine the candidate tags for better efficiency;

(2) When the observed tag is consistent with a candidate tag, their azimuths should be
exactly equal. This fact can be used to realize tag matching.

Screening 
of tag

Calculation of 
ideal azimuth

Tag matching by 
azimuth

Position of 
last cycle

Candidate 
tag

Ideal 
azimuth

Tag 
coordinate

Tag 
azimuth

Figure 4. Matching process for observed and stored tags.

3.1. Determination of Candidate Tag

To determine the candidate tag quickly, the location result from the last cycle is used
to estimate the current pose and position by DR (dead rocking) [22]. Then, according to the
FOV model shown in Figure 5, the possible area where the candidate tag may exist can be
determined. On the contrary, a tag locating outside this area cannot be the candidate tag.
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Figure 5. FOV model of camera.

In Figure 5, the coordinate of A is calculated by DR [22], and the coordinates of B and
C, i.e., (xB, yB) and (xC, yC), are calculated by their geometrical relationship:[

xB
yB

]
=

[
xA
yA

]
+

h
cos γ

[
cos(θ + γ)
sin(θ + γ)

]
and
[

xC
yC

]
=

[
xA
yA

]
+

h
cos γ

[
cos(θ − γ)
sin(θ − γ)

]
(2)

where h is the detection range and γ is the half horizontal view angle.
To improve the efficiency, the whole location area is rasterized to ensure that only one

tag is allowed in one grid at most, and the stored tag information can be indexed by the
grid number directly. According to the FOV model shown in Figure 5, the candidate tags
are determined by the following steps:

Step 1: The grids covered by the camera FOV are determined by the coordinates of A,
B, and C, which are calculated by (2).

Step 2: According to the grid number covered by the camera FOV, the possible tags
are roughly selected from the database.

Step 3: For each tag Li selected in Step 2, whether it lies in FOV is judged accurately

by the sign of pairwise dot products between the vectors,
→

Li A,
→

LiB, and
→

LiC.
Step 4: The set of candidate tags Ωc is composed of all tags whose pairwise dot

products have the same sign. Additionally, the ideal azimuth of tags βi, i ∈ Ωc is calculated
by (1) according to the camera’s pose and position derived by DR.

3.2. Tag Matching by Azimuth

Considering the fact that when the candidate tag is consistent with the observed tag,
their azimuths should be equal, we design the following strategy for tag matching:

Step 1: For any observed and unmatched tag, the error ei between its azimuth α and
that of the candidate tag with the same color and shape feature is calculated by

ei = |α − βi|, i ∈ Ωc. (3)

Step 2: If the minimum ei is smaller than the threshold, the candidate tag Lk,
k = argmin

i
ei matches the observed tag. Otherwise, it is considered as a disturbance

to be deleted.
Compared with the method using all feature information to perform the match by

total optimization, this strategy can effectively avoid the matching error caused by the
incomplete information of unobserved tags, which may be shaded by other objects, etc.
With the aforementioned process, the coordinate of observed tags can be retrieved from the
tag database quickly and accurately.

4. Pose and Position Calculation with High Accuracy

Theoretically, the pose and position can be calculated by (1) when the number of
effective tags is not smaller than three [18]. In practical application, the following factors
will degrade the location accuracy:

(1) The pixel error caused by factors such as environmental disturbances, camera pose,
and tag position, is unfavorable for location accuracy.
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(2) When solving the pose and position by (1), there exists matrix inversion. Under
some special conditions, singularity causes the matrix to be invertible.

To manage these problems, a WLSM is designed to estimate the pose and position with
high accuracy by analysis of the error transfer characteristics using (1), and furthermore, a
cooperation strategy is presented to schedule WLSM and the interactive algorithm to adapt
to the singular condition.

4.1. Analysis of Error Transfer Characteristic

Considering the fact that the pose and position can be calculated with three effective
tags, the following error transfer characteristic is obtained by the sensitive analysis of (1):

⎡⎣dαi
dαj
dαk

⎤⎦ = G

⎡⎣dx
dy
dθ

⎤⎦, G =

⎡⎢⎢⎣
sin(αi+θ)

ri

− cos(αi+θ)
ri

−1
sin(αj+θ)

rj

− cos(αj+θ)
rj

−1
sin(αk+θ)

rk

− cos(αk+θ)
rk

−1

⎤⎥⎥⎦. (4)

where αi and ri are the measured azimuth of the tag Li and its distance to the camera. When
the camera and the tags are on the same circle, as shown in Figure 6, we have the following
equations according to Ptolemy theorem and law of sines:

ridjk + rkdij = rjdik,
dij

sin
(
αi − αj

) = djk

sin
(
αj − αk

) = dik
sin(αi − αk)

. (5)

ri rj
rk

Tag Li

Camera

Tag Lj

Tag Lkdij

djk

dik

Figure 6. Schematic for cocircular condition.

Under this condition, it is known from (5) that |G| = 0 and the position equations
become ill-conditioned. This implies that a small error in the measured azimuth will result
in significant deviation in the solved pose and position. Accordingly, the following cooper-
ation strategy is designed. When the condition number of G is smaller than the threshold,
the pose and position is calculated by WLSM as it is given in Section 4.2. Otherwise, the
following interactive searching algorithm is used:

Step 1: The possible azimuth range is discretized according to the requirement of
accuracy.

Step 2: For each discretized azimuth, the camera coordinate can be calculated by the
following equation according to the information of any two tags:

x =
(ti tθ−1)(tjtθ−1)(yi−yj)+(tjtθ−1)(tθ+ti)xi−(ti tθ−1)(tθ+tj)xj

(t2
θ+1)(tj−ti)

y =
(tθ+ti)(tθ+tj)(xi−xj)+(ti tθ−1)(tθ+tj)yi−(tjtθ−1)(tθ+ti)yj

(t2
θ+1)(ti−tj)

ti = tan αi, tj = tan αj, tθ = tan θ

(6)

where (xi, yi) and αi are the stored position of tag Li and its measured azimuth, respectively,
and θ is the discretized azimuth.
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Step 3: For each discretized azimuth, the variance of camera’s coordinate is calculated.
The coordinate with the smallest scattered degree and the corresponding azimuth are then
selected as the effective pose and position value.

4.2. Position Estimation by Weighted Least Square Method

Under the noncircular conditions, the pose and position can be solved by every three
tags. It has the advantage of fine real-time performance and good robustness to noise to
solve the aforementioned overdetermined equations by LSM [23]. However, the location
error from different tag groups is influenced by many factors, such as environments, image
resolution, etc. To further improve the location accuracy, a weighted least square estimation
algorithm is presented by designing the evaluation index of solution quality.

Taking the estimation of θ as an example, the following equation is derived for any
group of tags, Li, Lj, and Lk, from the geometrical constraint described by (1) [18]:

σ2
tθ
=

[
∂tθ
∂ti

∂tθ
∂tj

∂tθ
∂tk

][
∂tθ
∂ti

∂tθ
∂tj

∂tθ
∂tk

]T

f 2 σ2
u ,

tθ =
(tk−ti)(−yj+tjxk+yi−tixi)−(tj−ti)(−yk+tkxk+yi−tixi)

(tk−ti)(−xj−tjyj+xi+tiyi)−(tj−ti)(−xk+tkyk+xi−tiyi)

(7)

where σ2
tθ

and σ2
u are the variances of the tangent value of θ and the pixel coordinate u.

Equation (7) establishes the relationship between the pixel error of the tag center and the
azimuth error.

When using WLSM, the maximum likelihood solution can be obtained by setting the
weight as the reciprocal of error variance [23]. From the error relationship described by (7),
the WLSM used to optimally estimate the azimuth is designed as:

θ = atantθ , tθ =
(

ATWA
)−1 ATWB,

A =
[
a1 a2 · · ·]T, B =

[
b1 b2 · · ·]T, W = diag(1/ω1, 1/ω2, · · ·),

an = (tk − ti)

(
xi − xj +

[
ti −tj

][yi
yj

])
− (tj − ti

)(
xi − xk +

[
ti −tk

][yi
yk

])
,

bn = (tk − ti)

(
yi − yj +

[−ti tj
][xi

xj

])
− (tj − ti

)
(yi − yk +

[−ti tk
][xi

xk

]
,

ωn =
[

∂tθ
∂ti

∂tθ
∂tj

∂tθ
∂tk

][
∂tθ
∂ti

∂tθ
∂tj

∂tθ
∂tk

]T
.

(8)

5. Validation and Analysis

In this section, following validation, the effectiveness of the proposed method by
numerical simulations is further compared with UWB by experiments.

5.1. Simulation Validation and Analysis

The location scenarios shown in Figure 7 are designed to indicate the effectiveness
of the designed cooperation strategy and WLSM. Under condition (a), all tags locate on
the same circle, which is used to validate the cooperative strategy. Under condition (b),
tags 1, 2, and 3 are on the same circle, but tag 4 is not, and the camera moves along the
circle. This condition is used to validate that the designed WLSM can attenuate the negative
influence from the unfavorable tag group. The scenario is simulated in Prescan and the
designed location algorithm runs in Matlab. Prescan provides the integrated interfaces
for cosimulation with Matlab [24]. During the simulation, the time step is set to be 0.03 s,
the radius of the circular trajectory is 5 m, and the moving speed of the camera is about
0.5 m/s.

254



Sensors 2023, 23, 1597

Tag 1

Camera

Tag 3
Tag 4

Tag 2
Tag 1

Camera

Tag 3

Tag 4

Tag 2

(a) Cocircular condition (b) Noncircular condition

Figure 7. Simulation conditions.

Shown in Figure 8 are the location results when the camera moves from the outside
of the circle along the arrow direction shown in Figure 7a. At about 1.3~1.9 s, the camera
and tags are on the same circle. The overdetermined Equation (1) becomes singular and
the location error of LSM increases quickly to a large value. On the contrary, the proposed
cooperative algorithm can detect the singularity and switch to the interactive algorithm
as soon as possible. Accordingly, the location accuracy can be ensured during the whole
simulation process.

(a) Longitudinal location error (b) Azimuth error

Lo
ng

. l
oc

at
io

n 
er

ro
r (

m
)

Figure 8. Location results under condition (a).

Since pose and position can be solved with any 3 tags, under condition (b), 4 tags can
generate 4 combinations with every 3 tags. The combination of tags 2, 3, and 4 is denoted by
group 1, the combination of tags 1, 2, and 3 is denoted by group 2, the combination of tags 1,
3, and 4 is denoted by group 3, and the combination of tags 1, 2, and 4 is denoted by group 4.
Among them, the tags in group 2 and the camera are always on the same circle. The solution
quality for group 2 is worst. It is found from Figure 9a that the contribution from group
2 on the location results is almost zero. This shows that the designed index to evaluate
the solution quality given in Section 4.2 can measure the confidence level of results from
different tag groups. Accordingly, the presented WLSM using this index as the weight can
successfully attenuate the negative influence from unfavorable tag groups. Compared with
LSM, it can be found from Figure 9c,d that the maximum errors of azimuth, longitudinal,
and lateral location results are reduced by 89.47%, 51.61%, and 88.78%, respectively.

(a) Contribution degree (b) Azimuth error

0 20 40 60 80 100
Samples

0

0.5

1
Group 1
Group 2

Group 3
Group 4

Figure 9. Cont.
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(c) Longitudinal location error (d) Lateral location error

Figure 9. Location results under condition (b).

5.2. Comparative Test of Location Accuracy

To further test the location accuracy, the designed location system is compared with
UWB under the indoor condition shown in Figure 10 considering the following reasons:
(1) Methods such as ORB-SLAM have a high requirement for computation resources. (2)
The visual methods using complex texture features can hardly work under such disturbed
conditions because some main features are covered or light obviously changes. (3) The
average error of the methods using location fingerprint of wireless signals is up to several
meters. (4) Comparatively, UWB has the advantages of low computation complexity, high
accuracy, and robustness to environmental disturbances such as light and dynamic covering
of objects. The room size is about 4.1 m × 5.2 m, where there are several desks, which may
degrade the location performance of UWB. About 20 tags are stuck on the walls around the
room, and 4 UWB stations are used. To simulate the environmental disturbances, the light
is turned on/off and the tags are covered randomly by some objects during the test.

Visual tags

UWB base

Figure 10. Indoor location scenario.

During the test, the location algorithm runs in a Raspberry 4b board with the rate
30 fps. The board with the camera is held by hand and moves along the defined trajectory as
best we can with the speed of about 0.5 m/s. The main test equipment with their technical
parameters is listed in Table 1. The camera is used to detect the tag, and in addition to the
algorithm, the location results from both the proposed method and UWB are recorded by
the Raspberry 4b.
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Table 1. Test equipment and technical parameters.

Equipment Parameter Value

Camera

Resolution 1920 × 1080
Frame rate 30 fps

Field of view 78 degree
Focal length 747.1 pix

Raspberry 4b

CPU BCM2837B0SOC
Number of cores 4
Basic frequency 1.4 GHz

RAM 1 G

UWB
Location precision 10 cm

Communication range ≤130 m
Update frequency ≤50 Hz

The location results are shown in Figure 11 when the camera moves along the defined
trajectory.

Figure 11. Comparative test results.

The average location error of the results is shown in Table 2. Compared with UWB,
the longitudinal and lateral location error of the designed system is reduced by 65.93% and
69.75%, respectively.

Table 2. Statistical location errors.

Average Error Long. Location (cm) Lat. Location (cm) Azimuth (◦)

UWB 36.1 32.4 /
Proposed location system 12.3 9.8 0.88

Since it is difficult to control the node to move along the trajectory accurately and
strictly, the statistical error in Table 2 is larger than their actual values. Ten test points are
selected where the location results are measured statically for accuracy, and the results are
shown in Figure 12. On the whole, the average location error of UWB is more than 13.5 cm,
reaching a maximum of 49 cm at position (1.61 cm, −0.50 cm). The wireless signal of UWB
is reflected by the objects in the room, which degrades the location performance of UWB
by multipath effect. Even though with the simulated environmental disturbances of light
and covering, the average error of the proposed location system is about 5.5 cm and the
maximum error is only 9 cm. The location accuracy is obviously improved by the proposed
techniques in this study.
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Figure 12. Comparative test results under statistical conditions.

6. Conclusions

To realize indoor locations with high accuracy, low cost, and robustness, an indoor
location system is designed in this study by presenting a fast tag-matching strategy and
cooperative-solving algorithm. The system locates according to simple visual tags, which
are robust to environmental disturbances and easily deployed. The cooperative-solving
algorithm for estimation of pose and position can work under cocircular conditions, and
compared with LSM, the maximum errors of azimuth, longitudinal, and lateral location
results are reduced by 89.47%, 51.61%, and 88.78%, respectively. The average location error
for the designed location system under disturbed environments is about 5.5 cm, and the
location accuracy is higher than UWB by 62%.
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Abstract: Collaborative robots represent an evolution in the field of swarm robotics that is pervasive
in modern industrial undertakings from manufacturing to exploration. Though there has been much
work on path planning for autonomous robots employing floor plans, energy-efficient navigation
of autonomous robots in unknown environments is gaining traction. This work presents a novel
methodology of low-overhead collaborative sensing, run-time mapping and localization, and naviga-
tion for robot swarms. The aim is to optimize energy consumption for the swarm as a whole rather
than individual robots. An energy- and information-aware management algorithm is proposed to
optimize the time and energy required for a swarm of autonomous robots to move from a launch
area to the predefined destination. This is achieved by modifying the classical Partial Swarm SLAM
technique, whereby sections of objects discovered by different members of the swarm are stitched
together and broadcast to members of the swarm. Thus, a follower can find the shortest path to the
destination while avoiding even far away obstacles in an efficient manner. The proposed algorithm
reduces the energy consumption of the swarm as a whole due to the fact that the leading robots sense
and discover respective optimal paths and share their discoveries with the followers. The simulation
results show that the robots effectively re-optimized the previous solution while sharing necessary
information within the swarm. Furthermore, the efficiency of the proposed scheme is shown via
comparative results, i.e., reducing traveling distance by 13% for individual robots and up to 11% for
the swarm as a whole in the performed experiments.

Keywords: swarm robotics; collaborative sensing; multi-agent systems; energy efficient; swarm
intelligence; leader–follower; collision avoidance

1. Introduction

Swarm robotics is a field inspired by natural self-organizing swarms, such as birds,
bees, ants, and fish [1]. The aim of researchers is to create swarms of autonomous robots
that can mimic such self-organizing behavior in different situations to carry out their
collective mission in an energy-efficient manner [2]. Each robot in the swarm executes
relatively simple control routines to accomplish its task. It uses its onboard sensors for
awareness of the surrounding environment, whereas it relies on wireless messaging for
coordination with other robots of its formation, akin to behavior of individual agents in
a multi-agent system [3]. In the following text, the terms agent and robot are used inter-
changeably. Due to their small size, robustness, and ability to reach difficult or hazardous
environments, there has been exponential increase in research for the development of
novel techniques for the integration of autonomous robots in various applications, such as
surveillance [4], infrastructure inspection [5], military applications [6], GPS-denied envi-
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ronments [7], transportation [8], hazardous environments [9], and mapping or atmospheric
research [10].

Of particular interest is the problem of navigation of a swarm of autonomous robots in
an unknown environment, such as a GPS-denied area or where no prior map information
exists. Work in this field presents a wide array of research challenges, such as the ability
to maintain formation, self-localization, collision avoidance, and path finding [3]. Simul-
taneous localization and mapping (SLAM) is a classical and fundamental technique for
mapping and localizing in the field of autonomous robots in environments with no prior
map information. Until relatively recently, SLAM development was mainly concerned
with a single agent or robot, hence leaving a significant gap for the development of SLAM
techniques with multiple agents or a swarm of robots [11,12]. Various collaborative SLAM
(C-SLAM) methodologies and techniques have been researched, where the primary objec-
tive has been to integrate the data gathered by individual robots to build a global map that
is shared between all robots [13]. In collaborative navigation, the actions of one agent may
impact those of other agents in the system; therefore, it is vital to realize how the collabora-
tive navigation can be of assistance. The coordination strategies to attain autonomy for a
swarm of agents can be categorized into the following three types [14,15]: (1) centralized
coordination, in which either a central node or server or an established agent, often labeled
as a dedicated leader, provides the vital parameters to the rest of the agents in the swarm,
such as maneuver information, trajectory planning, and coordination; these are often de-
scribed as virtual structure-based approaches or leader–follower-based approaches [16];
(2) decentralized with coordination-based approaches, in which all agents in the swarm
can directly interact with other agents within their communication range; (3) decentralized
without coordination-based approaches, in which the agents do not interact with each other
to interchange the individually gathered data; in this approach, the agents work on the
observe and react principle [17].

The sensing modes utilized for C-SLAM can be divided into two broad categories,
namely,vision-based and laser/LiDAR-based. Due to their high resolution, robustness
to varying weather conditions, and resilience against lighting conditions, several LiDAR
C-SLAM techniques have been investigated [18–22]. Approaches presented in [18,20] work
by transmitting the locally generated maps of all the robots to a central base station/server
for optimization and stitching purposes. This process requires high availability of the
central server, the failure of which results in the failure of the entire mission. Furthermore,
this approach is very dependent on the communication channel between each robot and
the server, requiring it to be lossless and have high bandwidth. To alleviate the dependence
on a lossless communication channel, ref. [21] presented a three-dimensional LiDAR-based
data-driven descriptor approach to optimize the required transmission bandwidth. The pre-
sented methodology functions on a completely centralized system; it is not suitable for
larger swarms. Most of the present C-SLAM-based approaches are either highly centralized
or the database is split into several segments for assessment, have high computational
costs, or require higher communication bandwidth.

Minimization of the energy consumption of a swarm as a whole is another important
research area with core emphasis on a varied set of themes, such as dealing with external
influences [23,24], optimization of consumption due to ranging sensors [25], efficient inter-
robot communication [26], optimization of distance to be traveled [27,28], or recharging
optimization [29,30]. In this respect, we present DCP-SLAM, a LiDAR-based distributed
collaborative partial SLAM framework for swarm robotics. In the proposed DCP-SLAM
technique, we focus on energy efficiency of the swarm as a whole rather than trying to
accurately map individual obstacles. We argue that the requirement of maintaining a
safe distance from obstacles allows us to conduct trajectory planning even with partially
discovered obstacles. Moreover, a cluster of obstacles where interobstacle distance does
not allow a robot to pass between them can be fuzzified into one large obstacle without
causing excessive elongation of the collision-free path. Furthermore, this fuzzification
reduces communication cost as less data need to be transmitted. Thus, in order to have a
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low-bandwidth low-computation navigation setup for the swarm, an exact replication of
the map is not required to be communicated between the robots. Furthermore, the safe
distance requirement, also referred to as inflation, since each obstacle’s dimensions are
inflated by this amount, covers up the sacrificed error while performing active obstacle
detection and avoidance maneuvers. This is handled in three phases: (i) The first is the
detection and map building phase, in which the point cloud returned by LiDAR after each
scan is utilized to update the obstacle list. Here, we adapt the Euclidean-distance-based
incremental region growing technique of [31] by adding fuzzification while calculating
distances. The concept of fuzzification and merging of objects is explained in Figure 1.
The resulting obstacle list is broadcast to the rest of the swarm. (ii) In the second phase,
the robot generates waypoints for bypassing all known obstacles in the updated obstacle
list. (iii) Finally, the robot will align itself in order to move towards the nearest waypoint as
a temporary goal. Since the obstacle list only contains information about obstacles that have
been fully or partially discovered so far, hitherto unknown obstacles may still be present
and in the way of a robot. Therefore, the robots are required to continually perform scanning
and obstacle detection during navigation. Simulations of various scenarios show that the
DCP-SLAM technique results in swarms where later robots show marked improvement
in their trajectory by utilizing partial maps discovered by their earlier fellows. Even in
complex scenarios, the optimal path is established relatively quickly.

(a) (b)

(c)

(d) (e)

Figure 1. Illustration of DCP-SLAM technique. Unknown obstacles are illustrated in grey. Once
an obstacle (or a part of it) is detected by the onboard sensors of the robot(s), it is illustrated in
red. (a) Initial setup, launchpad where robots are launched from and unknown obstacles are shown.
(b) Robot 1 detects an obstacle while navigating towards goal. Robot 1 broadcasts the information to
following robots. (c) Partial detection of second obstacle by Robot 1, Robot 2 navigating towards the
waypoint dropped by Robot 1. (d) Robot 1 finds unobstructed path to goal, Robot 2 navigates from
the other side of the obstacle, while broadcasting the information. (e) Robot 2 finds unobstructed
path to goal. Followers opt for the optimal path.
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The organization of the rest of the paper is as follows: Section 2 provides the related
work and motivation for DCP-SLAM. Section 3 explains working of the proposed algo-
rithm in detail. Simulation results are provided in Section 4. Finally, concluding remarks,
discussion, and future work is presented in Section 5.

2. Related Work

Navigation in environments with no prior map information raises several research
challenges. The autonomous robots or agents, while navigating in unknown environments
and not having to bank on acquiring information from central or remote servers, must
utilize their onboard sensors to observe, analyze, and perform necessary actions based
on the information at hand for collision-free navigation and successful completion of the
mission [25]. At the same time, reducing the power consumed by the autonomous agents,
i.e., effectively exploiting the available resources, in order to increase the mission duration
is of paramount importance [32]. With reference to the existing literature, the proposed
approach relates closely to the detection, avoidance, and energy-efficient path development
for the swarm as a whole.

In SLAM, exploration is fundamental, and its importance becomes even more vital
in swarm SLAM systems (or multi-robot SLAM). Various exploration methodologies are
utilized to facilitate the exploration, such as random walk exploration [33,34], potential
field-based or frontier-based exploration; however, path planning is the most commonly
utilized scheme [35]. Authors in [34] utilized the random walk exploration scheme for a
robot swarm mapping event, and illustrated that an occupancy grid can be produced in a
closed indoor environment. However, in practical situations, the proposed methodology
struggles to work efficiently due to the poor quality of the close-range sensors. Furthermore,
by employing high-precision sensors, this issue can be rectified to virtually produce any
kind of map, as shown in the experiment performed by the authors in [36]. Ideally, the
robots in the swarm should be as simple as possible, and should employ simple algorithms
with low overhead, due to practicality. Therefore, swarm SLAM schemes that are able to
make use of low-cost and low-precision sensors and generating relatively abstract maps
for navigational purposes are of greater importance. Authors in [37] demonstrated such
an approach for generating semantic maps; however, the computational complexity of
the proposed approach is significantly high for real-world scenarios for swarms. Such an
issue, with focus on map retrieval without centralization, is an open problem in the field of
swarm SLAM. As shown in [34], a natural technique for merging the maps to be utilized
by individual robots of the swarm is to accumulate the individual maps on a single central
system. Furthermore, another approach proposed by [11] works by merging individually
generated maps in all robots in the swarm. In this manner, every robot or agent in the
swarm has access to the map; however, for the successful deployment of such an approach,
an external framework or central node is necessary.

Literature differentiates collaborative SLAM (C-SLAM) as centralized or decentralized
architectures, with centralized schemes gathering all the data into a central server (cen-
tral station or a robot) and assessing the trajectories for all the robots. Different sensing
arrangements, such as laser or LiDAR-based [18,38] and vision-based [40? ], are examined
in the centralized C-SLAM. In [38], locally generated maps constructed via utilizing Li-
DARs are sliced, and all the segments of the sliced data are accumulated for the detection
of loop closure. The authors of [18] introduced a large-scale autonomous mapping and
positioning system (LAMP) utilizing a 3D LiDAR scanner mounted on single or multiple
robots to scan the surroundings, and an RGB-D camera for the detection and localization
of known obstacles in the environment. In the proposed scheme, all the robots in the
swarm are connected to a central server or node, and in case of loss of communication
with the base station, the algorithm switches back to classical single-robot SLAM-based
navigation. For vision-based techniques, e.g., the works presented in [40? ], the odometry
key frames obtained by utilizing onboard visual sensing mechanisms are offloaded to a
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central server. Moreover, to obtain an optimized solution by discovering overlaps, the
bag-of-words approach is utilized.

On the other hand, for swarms to function effectively, especially in conditions where
communication range is limited or there are poor communication channels, distributed
SLAM is a more appropriate approach. The authors of [12] presented a decentralized
visual SLAM approach, utilizing readily accessible datasets, and analyzed how to reduce
the transmission data. Further investigation is required in order to achieve significant
reduction in data transmission to make the whole system energy-efficient. Another recent
approach [41] proposed simplification of data representation and utilizing maximum clique
outlier rejection for distributed place recognition and pose graph optimization. The algo-
rithm is able to build 3D metric semantic meshes accurately, and is able to handle loop
closure errors that may occur. Ref. [42] utilized the Gauss–Siedel technique, and presented
a two-stage distributed approach, where they used object-based models to reduce the
communication costs between the robots. Furthering the work in [42], authors in [43] pre-
sented DOOR-SLAM, a distributed SLAM technique based on peer-to-peer communication.
The presented methodology utilizes a pose graph optimizer to reject false inter-robot loop
closures. In [22], the authors employed a lightweight Scan Context descriptor to facili-
tate swarm SLAM, and presented a two-stage global and locally distributed optimization
framework. The presented approach runs on a dataset collected by one robot.

Collaborative Sensing for Map Building

The approach presented in [44] results in significant improvements in swarm SLAM
field while utilizing partial feedback from the leading agents in order to find an efficient
path to the destination. However, there is no methodology to detect whether the path to
the destination discovered by the agent is the most efficient one. This is due to the fact that
in the aforementioned approach, as soon as an agent successfully finds an unobstructed
path to the destination goal, it broadcasts the tracker points for the rest of the agents in the
swarm to follow to be able to reach the destination. Therefore, the presented methodology
of partial swarm SLAM is further enhanced in this work by the constant sharing of findings
between agents in the swarm in order to build a map in a collaborative manner.

We now present a collaborative sensing approach whereby individual agents form
partial maps of known obstacles discovered by other agents, and utilize this information
to find the shortest path to their respective goals. It is to be noted that all agents continue
sensing their environment to avoid possible collisions with hitherto unknown obstacles or
hidden parts of partially discovered obstacles, continuously passing on any such observa-
tion to all other agents to update their world view. Figure 1a shows the general map. Grey
objects are unknown obstacles, whereas red objects or red parts of the objects imply de-
tected/partially detected obstacles, respectively. As illustrated in Figure 1b, Robot 1 detects
an obstacle while navigating towards its goal. Figure 1c shows a scenario in which Robot 1
partially detected a large obstacle and decides to bypass it, while Robot 2 is following the
first waypoint dropped by Robot 1. Upon reaching waypoint 2 or the partially detected
obstacle Figure 1d, Robot 2 navigates from the other side of the obstacle to complete the
detection. This approach also facilitates finding an alternate route that may be superior to
the previously discovered path. Upon detection of the optimal path, the rest of the robots
will utilize the available information to locally evaluate the options and select the route
that is optimal for themselves, as illustrated in Figure 1e.

3. Proposed Approach

Algorithm 1 provides the general pseudocode for navigation and obstacle detection.
All agents execute this top-level algorithm locally by utilizing their onboard processing
units. In the beginning of the mission, all the agents are assigned IDs and connection
between them is set up in a leader–follower manner. A global leader is declared, and in
a hierarchical manner, the respective leaders are connected to the immediate respective
followers, in the initialization phase of the algorithm. Afterwards, the respective agent
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starts navigation if it has not reached the designated goal, i.e., |Γi
S − ΓG| > ρ, where Γi

S
and ΓG are the coordinates of the i th agent and the goal, respectively, and ρ is the radius
defined around the goal point to handle any errors that may occur while acquiring the
coordinates. If the agent has not yet reached the desired goal, and any obstacle(s) is(are)
detected by the onboard ranging sensors, the attributes of the detected obstacle are then
stored in an obstacle list (§[i][j:0→n]), where i stands for the i th agent and j : 0 → n stands
for the j th obstacle in the list. The respective agent then checks whether this particular
object has already been detected by any of the agents that may have navigated through
the same path by calling the Merge Objects() function. This Merge Objects() function will
perform the following actions if the detected obstacle is present in the obstacle list or if
the detected obstacle is not present in the obstacle list. If the latter is true, then based on
the attributes of the detected obstacles in the obstacle list and the newly detected obstacle,
it is determined whether the newly detected obstacle is a completely different obstacle
or part of a previously partially detected obstacle. These attributes are then passed onto the
Shortest Path Obstacle Avoidance() function in order for the agent to be able to perform
collision avoidance actively.

Algorithm 1 Navigation

Input: Self.ID: Sid; Leader is Alive: Lalive; Self.Coordinates: Γi
S;

Output: Obstacle list: §[i][j:0→n];
Constant: Goal.Coordinates: ΓG; Goal.Radius: ρ;

Sid ← Initialization, ID allocation;

if Sid == 1 then
Leader ← Self;
Lalive ← False;

else
Leader ← Self; � Connection to respective leaders
Lalive ← True;

end if

while |Γi
S − ΓG| > ρ do

if §[i][j:0→n] ← Obstacle Detection() then

Merge Objects and Update Map(§[i][j:0→n]);
Shortest Path Obstacle Avoidance(§[i][j:0→n], Γi

S, ΓG);
end if
Continue Navigation;

end while

3.1. Collision Avoidance and Map Building

When an agent is launched, it executes the obstacle avoidance algorithm to find the
shortest path to its destination while avoiding known obstacles. It selects the nearest
inflection point as its temporary goal or waypoint, and moves towards this waypoint while
continuously sensing its environment for hitherto unseen obstacles. In the case that an
obstacle is sensed on its way to the waypoint, the agent performs collision avoidance while
simultaneously broadcasting the coordinates of the newly discovered parts of the obstacle.
All agents update their individual maps by adding the newly gathered information and
run the Merge Objects algorithm to merge multiple sections of the same obstacle into
one obstacle. After the agent has moved clear of the obstacle, the process of selecting the
waypoint towards its goal is repeated until it completes its mission.

3.2. Merge Objects and Update Map

Algorithm 2 starts by checking whether the detected obstacle exists in the obstacle list
(§[i]). Then, for each existing obstacle in the list, the current detected obstacle’s distance is
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compared with a defined margin of error (λe). If the distance or gap between the existing
obstacle in the list and the current detected obstacle is equal to or less than λe, both obstacles
are merged together and considered to be a single obstacle. Otherwise, the current detected
obstacle is added to the obstacle list. The updated list is then broadcast by the agent to rest
of the agents.

Algorithm 2 Merge Objects and Update Map

Input: Obstacle list: §[i][j:0→n]; Self.ID: Sid; Leader is Alive: Lalive; Self.Coordinates: Γi
S;

Constant: Temporary obstacle variable: Tempobj; Obstacle dimensions: D[i][j]
o+α;Margin of

error: λe

for i in §[i] do

Tempobj ← §[i];
for j in §[i][j] do

if | Tempobj −− §[i][j]| ≤ λe then
Merge → Tempobj∪ §[i][j];

else
Add Tempobj to §[i];

end if
Broadcast();

end for

end for

3.3. Shortest Path with Obstacle Avoidance

Algorithm 3 shows the pseudocode of the shortest path calculation, as illustrated
in Figure 2, while utilizing the collision avoidance algorithm. The algorithm starts by
analyzing the attributes of the detected obstacle(s) from the obstacle list, i.e, §[j:0→n] (Line 1),

where Dj
o is the j th obstacle’s distance from the agent, ∠j

o is the angle at which the obstacle
lies, and D

j
o+α represents the obstacle’s dimensions (o: 0 → α). The agent in question then

updates the Euclidean distance (E) to the goal from its current position, i.e., ΓG and Γi
S,

respectively (Line 2). Afterwards, for each detected obstacle, it is checked whether the
obstacle poses a potential collision risk, i.e., lies within the planned trajectory of the agent.
This is achieved by analyzing whether the obstacle’s detected dimensions intersect E at
any point (Lines 3–5). It is important to note here that the agent may or may not be able to
detect the complete obstacle, as the obstacle may be larger than the detection range of the
onboard sensor system of the agent. In either case, the extreme edges of the obstacle that
are visible to the agent are recorded. If the straight line passes through any of the detected
obstacle(s), then based on the available information, the agent calculates new waypoints
for collision-free navigation (Line 6). Finally, the waypoint closest to the calculated shortest
path is selected as a temporary goal for the agent to navigate towards (Line 12).

Here, we present two methods of path selection with obstacle avoidance, namely,
shortest path planning with obstacle avoidance (SP-OA) and immediate waypoint selection
with obstacle avoidance (IWp-OA). First, we explain shortest path planning with the
obstacle avoidance algorithm with reference to Figure 3. Consider that a robot at position R
is planning its path towards its goal G. Furthermore, its map of the world is populated by
three obstacles, A, B, and C, that have been discovered by earlier robots. The steps taken by
the said robot, as described in the algorithm Y, are as follows:
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Figure 2. Shortest path planning with obstacle avoidance.

Algorithm 3 Shortest path with Obstacle Avoidance

Input: Obstacle list: §[i][j:0→n]; Self.Coordinates: Γi
S; Goal.Coordinates: ΓG;

Output: Obstacle’s distance: D[i][j]
o ; Obstacle’s angle: ∠[i][j]

o ; Obstacle dimensions: D[i][j]
o+α;

Temporary Goal: Γtemp;
Constant: Safe Distance: sd;

1: D[i][j]
o ,∠[i][j]

o ,D[i][j]
o+α ← §[i][j:0→n];

2: Order § based on increasing D[i][j]
o ;

3: E ← ΓGΓi
S; � line segment between Self and Goal

4: for § in §[i][j:0→n] do

5: for each edge DoDo+α of § do � one edge to other of the obstacle
6: if edge DoDo+α Intersects E at Point I then
7: WP(i) = (Do − sd), WP(i + 1) = (Do+α + sd);
8: end if
9: end for � End for all edges of the object §

10: Γtemp = WP(i) if (|WP(i) − I1| < |WP(i + 1) − I1| in WPi) else WP(i + 1);

11: end for � End of all objects in the object list §[i][j:0→n]

12: Move to Γtemp;

1. The robot draws a straight line from its current position R to its goal G to determine
whether it intercepts any edge of the known obstacles. In the instant case, the line RG
is intercepted by the edge C1C2 of the obstacle C at point I1.

2. Next, it chooses two waypoints that are a minimum safe distance away from vertices
C1 and C2; let us call these W1 and W2. Possible paths are RW1 followed by W1G;,
and RW followed by W2G.

3. The robot iterates steps 1 and 2 above for all possible path segments, always progress-
ing from left to right, creating a new waypoint for each edge that intercepts any path,
and repeating steps 1 and 2.

4. We now have a directed acyclic graph (DAG) with multiple obstacle-free paths from
the robots current position to the goal.
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5. The robot now selects the first waypoint on shortest obstacle-free path as its temporary
goal and starts moving towards it.
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Collision free path 
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Figure 3. Immediate waypoint selection.

This algorithm will be re-run every time a new obstacle is discovered, a hidden part
of a known obstacle is discovered by the robot’s onboard sensors, or such a finding is
communicated by other robots in the swarm. As an alternate approach in the interest
of saving computation time and energy, we propose a simplified version of the above
algorithm. In this approach, the robot works backwards from the goal, choosing the shorter
of two paths at each intersection upon reaching an obstacle. The simplified approach is
explained below with reference to Figure 3.

1. The robot draws a straight line from its current position R to its goal G and determines
whether it intercepts any edge of the known obstacles. In the instant case, the line RG
is intercepted by the edge C1C2 of the obstacle C at point I1.

2. Since the top left corner C1 is nearer to I1 than the bottom left corner C2, it decides to
circumvent the obstacle from the top left corner C1. It chooses a waypoint that is a
minimum safe distance away from C1, let us call it W1, and sets this waypoint as its
temporary goal.

3. It repeats steps 1 and 2 above; this time, the line RW1 is intercepted by the edge A1 A2
of obstacle A at point I2. The robot avoids obstacle A from bottom left corner A2
and chooses a waypoint WP2 that is a minimum safe distance away from vertex A2.
The robot now sets its temporary goal to WP2.

4. The robot repeats step 1 by drawing a straight line RW2. Since this line is not inter-
cepted by any known obstacle, the algorithm finishes, and the robot starts moving
towards its temporary goal WP2.

The concept of fuzzification of objects is exemplified in Figure 4. In this example, three
points, A, B and C, are returned by the LiDAR sensor. The level of inflation or minimum
safe distance sd is shown by the red line. The three points are fuzzified in all directions by
the level of inflation, shown as red lines in the four dimensions around each point. Next,
rectangular objects are created that encompass all edges of the fuzzified points. The objects
that overlap, or are adjacent, are merged into one object. Thus, in Figure 4, points A and B
are assumed to belong to one object, while point C probably belongs to a second object.

Since there may be other obstacles in the way that are yet to be discovered, planning a
complete path to the final goal may be an unnecessary effort at this stage. Additionally,
for this reason, the robots continually scan their immediate environment for any hitherto
unseen obstacles. They also continue listening to broadcasts from other robots for informa-
tion about a discovery of a new obstacle or the discovery of further sections of a known
obstacle. In either case, the path planning algorithm is executed again to ensure that the
path followed by the robot is obstacle-free.
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Figure 4. Concept of fuzzification.

4. Simulation Results

A two-dimensional XY plane, i.e., all the objects (robots and obstacles) are at the same
altitude, of 12 km × 6 km is used, with unknown obstacles randomly scattered in space.
The number of agents are set to ten and are launched from the same coordinates one after
the other. Robots move with a maximum speed of 72 km per hour, or 20 m per second.
Python graphics are utilized for simulation purposes. For simulation and testing, we
utilized the mathematical models of differential drive robots, and further equipped them
with the output of a simulated LiDAR sensor in a two-dimensional plane. The following is
a kinematic model of a differential drive robot:

ẋ = vcosθ,

ẏ = vsinθ,

θ̇ =
vΔ

W

(1)

where ẋ and ẏ are the x and y positions of the robot, v is the velocity, and θ̇ is the heading
angle of the robot.

The following equation is utilized to calculate the turning curve of the robot:

ΔV =
vr − vl

W
(2)

where ΔV is the difference between the left and the right wheel speed, vr and vl are the
right and the left speeds, respectively, and W is the width of the robot.

In order to show the progress of the swarm graphically, the field was scaled to fit
the available screen resolution, each pixel representing 10 m. The following are the initial
conditions and assumptions defined for our work:

1. The robots pass through a vast passage area between the launch zone and delivery
zone.

2. There are randomly placed multiple obstacles in the passage area.
3. The communication channel between the robots is considered to be ideal and lossless.
4. Utilizing onboard localization methods, the robots obtain their position vector.
5. The range of LiDAR sensors is 100 m.

Figure 5 shows the effectiveness of utilizing the fuzzy nature of the proposed technique.
As can be seen in Figure 5a, Robot #1, on the left of the figure moves along the straight line
towards the goal, shown by red circle in the bottom right, and discovers obstacle #1 using
a LiDAR sensor; the point cloud is indicated by red dots on the left edge of the obstacle.
Using the immediate waypoint with Obstacle Avoidance (IWp-OA) algorithm, it chooses
to circumvent the obstacle from below since the the length of edge discovered so far is
smaller on this side. As shown in Figure 5b, Robot #2 finds that an already discovered part
of obstacle #1 is in the way of the goal, and it decides to circumvent obstacle #1 from above
since, by then, most of the left edge is discovered and the top corner seems the shorter way.
In another instance, presented in Figure 5c, Robot #1 has discovered, and communicated
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to other robots, obstacle #4 and the bottom part of obstacle #5. Robot #2 has discovered
obstacle #3 and avoids this obstacle by going below it. It has also discovered the top
part of obstacle #5. Utilizing the already available information, Robot #3 initially aims
to go over the top of obstacle #3, and later discovers obstacle #2; however, since the gap
between obstacle #2 and obstacle #3 is narrower than the minimum safe distance, the two
are merged and recorded as one obstacle, shown by the blue grid encompassing both
obstacles in Figure 5d. As robot #3 is already near the top edge of the merged obstacle,
as shown in the simulation screenshot in Figure 5e, it decides to circumvent it from above.
Robot #4, after clearing obstacle #1 from above, finds the merged obstacle in its way and
decides to bypass it from below. Similarly, Figure 5f shows that Robot #5, or any other
following robots, benefits from the information gathered by earlier robots and chooses to
pass over the top right corner of obstacle #5, resulting in the shortest path.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Simulation snapshots: showing the operation of the IWp-OA algorithm. (a) Robot 1
avoiding the first detected obstacle from the bottom edge. (b) Robot 2 circumvents the obstacle from
above to discover an alternate route. (c) Robots 1 and 2 have partially discovered obstacle 5. (d) Robot
3 discovers obstacle 2, and utilizing fuzzification, combines it with the already discovered obstacle
3. (e) Robot 4 chooses the trajectory, by utilizing the broadcast information, to bypass obstacle 3
from below. (f) Robot 5 utilizes information provided by all other robots and chooses the optimal
trajectory.

Similarly, Figure 6 shows the trends of the routes taken by robots from different
experimental setups with different launch and goal coordinates. Figure 6a,b show the
overall traces of the robots in the swarm from launch to goal, where the launch and goal
are slightly towards the center of the initial obstacles. Figure 6c shows the detection and
resultant trend when the launch and goal are both moved towards one side of the obstacles.
All the robots take similar routes. The robots 1 and 2 performed the optimization for finding
an efficient path; afterwards, the rest of the robots followed the discovered optimal path,
as shown. Figure 6d shows the trend when the goal is moved diagonally to the other side
with same placements of the obstacles, and Figure 6e shows the optimization trend when

270



Sensors 2023, 23, 1025

the obstacles are randomly relocated. Figure 6f,g show the optimization trend over time
by the robots when the goal is moved from one point to another while keeping the launch
coordinates the same. Similarly, Figure 6h–j show the overall trend while covering all
possible scenarios for testing the efficiency of the proposed DCP-SLAM technique.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. Simulation results: different experimental scenarios. (a) Experimental scenario 1. (b) Ex-
perimental scenario 2. (c) Experimental scenario 3. (d) Experimental scenario 4. (e) Experimental
scenario 5. (f) Experimental scenario 6. (g) Experimental scenario 7. (h) Experimental scenario 8.
(i) Experimental scenario 9. (j) Experimental scenario 10.
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Figure 7 shows the distances traveled by individual robots from mission start until
they reach the goal of the experiments performed in Figure 6. As reflected, the proposed al-
gorithm manages to find the optimal path to the goal relatively effectively and aggressively.
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Figure 7. Simulation results: results for respective experiments, showing the total distance traveled by
each robot along with the time it took to reach the goal. (a) Experimental scenario 1. (b) Experimental
scenario 2. (c) Experimental scenario 3. (d) Experimental scenario 4. (e) Experimental scenario 5.
(f) Experimental scenario 6. (g) Experimental scenario 7. (h) Experimental scenario 8. (i) Experimental
scenario 9. (j) Experimental scenario 10.
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Figure 8 shows the maximum and minimum distance traveled by a single robot in each
experimental scenario, along with the average distance the whole swarm traveled. As is
evident from the results, utilizing the proposed approach optimizes the traveling distance
relatively quickly as compared to the previously proposed PS-SLAM technique [44] or
non-collaborative methods. The results shown in Figure 9 clearly indicate the efficiency
in terms of distance traveled by individual robots and, consequently, the swarm as a whole,
of the proposed DCP-SLAM technique as compared to the PS-SLAM technique. Evidently,
significant consumption is reduced while utilizing the proposed approach, as the distance
the swarm traveled is reduced on average by around 10 km. This amounts to an efficiency
increase by approximately 10% over the previously developed algorithm [44].
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Figure 8. Distance (minimum, maximum, and on average) traveled by the swarm in all experimen-
tal scenarios.
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Figure 9. Comparative results of distance traveled by the swarm as a whole

Tables 1–3 show total communication cost of each robot in number of messages, Table 1,
in number of bytes transmitted, Table 2, and energy consumed in transmission, Table 3.
We compare two scenarios for all experiments, firstly, where a robot transmits the point
cloud every time it detects an obstacle, resulting in high communication cost for each robot
and secondly, where a robot transmits its list of vertices of all obstacles detected so far
only when it discovers a new object or hitherto unseen part of an object. As can be seen
from the three tables, the latter scheme results in significant saving in communication cost.
Since obstacles are gradually discovered and communicated by leading robots, the robots
towards the tail end of the swarm have almost zero communication cost.

273



Sensors 2023, 23, 1025

T
a

b
le

1
.

N
um

be
r

of
m

es
sa

ge
tr

an
sm

is
si

on
s.

E
x

p
1

2
3

4
5

6
7

8
9

1
0

R
o

b
o

t
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j

1
29

,3
40

10
5

32
,3

53
15

4
29

,9
07

24
5

29
,1

87
18

5
22

,0
97

10
1

30
,6

06
16

7
20

,9
00

14
0

26
,5

82
16

0
16

,4
20

13
1

27
,2

25
14

0

2
27

,3
93

89
30

,7
66

10
5

35
,2

16
80

35
,1

97
10

7
20

,5
23

35
21

,8
68

42
15

,3
38

0
19

,0
78

11
17

,8
67

32
18

,7
70

10

3
12

,1
82

0
23

,9
14

38
18

,7
81

0
15

,4
95

0
11

,9
87

0
22

,1
12

1
26

,8
24

82
18

,7
04

1
14

,2
70

56
18

,7
17

1

4
12

,1
82

0
22

,4
02

0
18

,7
81

0
15

,8
54

5
11

,9
87

0
22

,1
12

0
22

,0
22

10
18

,7
00

0
14

,2
71

0
18

,7
17

0

5
12

,1
82

0
19

,0
30

0
18

,7
81

0
15

,8
54

0
11

,9
87

0
22

,1
12

0
23

,9
51

1
18

,7
00

0
10

,0
52

0
18

,7
17

0

6
12

,1
82

0
19

,0
30

0
18

,7
81

0
11

,0
92

0
11

,9
87

0
22

,1
12

0
16

,9
33

56
18

,7
00

0
10

,0
52

0
18

,7
17

0

7
12

,1
82

0
19

,0
30

0
18

,7
81

0
11

,0
92

0
11

,9
87

0
22

,1
12

0
16

,9
33

0
18

,7
00

0
10

,0
52

0
18

,7
17

0

8
12

,1
82

0
19

,0
30

0
18

,7
81

0
11

,0
92

0
11

,9
87

0
22

,1
12

0
15

,7
26

2
18

,7
00

0
10

,0
52

0
18

,7
17

0

9
12

,1
82

0
19

,0
30

0
18

,7
81

0
11

,0
92

0
11

,9
87

0
22

,1
12

0
15

,7
26

0
18

,7
00

0
10

,0
52

0
18

,7
17

0

10
12

,1
82

0
19

,0
30

0
18

,7
81

0
11

,0
92

0
11

,9
87

0
22

,1
12

0
15

,7
26

0
18

,7
00

0
10

,0
52

0
18

,7
17

0

T
a

b
le

2
.

N
um

be
r

of
kB

(k
ilo

by
te

s)
tr

an
sm

it
te

d.

E
x

p
1

2
3

4
5

6
7

8
9

1
0

R
o

b
o

t
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j

1
82

.1
5

5.
46

90
.5

9
8.

01
83

.7
4

12
.7

4
81

.7
2

9.
62

61
.8

7
5.

25
85

.6
9

8.
68

58
.5

2
7.

28
74

.4
3

8.
32

45
.9

8
6.

81
76

.2
3

7.
28

2
76

.7
0

4.
63

86
.1

5
5.

46
98

.6
1

4.
16

98
.5

5
5.

56
57

.4
6

1.
82

61
.2

3
2.

18
42

.9
5

0
53

.4
2

0.
57

50
.0

3
1.

66
52

.5
6

0.
52

3
34

.1
1

0
66

.9
6

1.
98

52
.5

9
0

43
.3

9
0

33
.5

6
0

61
.9

1
0.

05
75

.1
1

4.
26

52
.3

7
0.

05
39

.9
6

2.
91

52
.4

1
0.

05

4
34

.1
1

0
62

.7
3

0
52

.5
9

0
44

.3
9

0.
26

33
.5

6
0

61
.9

1
0

61
.6

6
0.

52
52

.3
6

0
39

.9
6

0
52

.4
1

0

5
34

.1
1

0
53

.2
8

0
52

.5
9

0
44

.3
9

0
33

.5
6

0
61

.9
1

0
67

.0
6

0.
05

52
.3

6
0

28
.1

5
0

52
.4

1
0

6
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
47

.4
1

2.
91

52
.3

6
0

28
.1

5
0

52
.4

1
0

274



Sensors 2023, 23, 1025
T

a
b

le
2

.
C

on
t.

E
x

p
1

2
3

4
5

6
7

8
9

1
0

R
o

b
o

t
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j

7
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
47

.4
1

0
52

.3
6

0
28

.1
5

0
52

.4
1

0

8
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
44

.0
3

0.
10

52
.3

6
0

28
.1

5
0

52
.4

1
0

9
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
44

.0
3

0
52

.3
6

0
28

.1
5

0
52

.4
1

0

10
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
44

.0
3

0
52

.3
6

0
28

.1
5

0
52

.4
1

0

T
a

b
le

3
.

En
er

gy
co

ns
um

ed
in

tr
an

sm
is

si
on

(m
J)

.

E
x

p
1

2
3

4
5

6
7

8
9

1
0

R
o

b
o

t
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j
R

a
w

O
b

j

1
82

.1
5

0.
55

90
.5

9
0.

80
83

.7
4

1.
27

81
.7

2
0.

96
61

.8
7

0.
53

85
.6

9
0.

87
58

.5
2

0.
73

74
.4

3
0.

83
45

.9
8

0.
68

76
.2

3
0.

73

2
76

.7
0

0.
46

86
.1

4
0.

55
98

.6
1

0.
42

98
.5

5
0.

56
57

.4
6

0.
18

61
.2

3
0.

22
42

.9
5

0
53

.4
2

0.
06

50
.0

3
0.

17
52

.5
6

0.
05

3
34

.1
1

0
66

.9
6

0.
19

52
.5

9
0

43
.3

9
0

33
.5

6
0

61
.9

1
0.

01
75

.1
1

0.
43

52
.3

7
0.

01
39

.9
6

0.
29

52
.4

1
0.

01

4
34

.1
1

0
62

.7
3

0
52

.5
9

0
44

.3
9

0.
03

33
.5

6
0

61
.9

1
0

61
.6

6
0.

05
52

.3
6

0
39

.9
6

0
52

.4
1

0

5
34

.1
1

0
53

.2
8

0
52

.5
9

0
44

.3
9

0
33

.5
6

0
61

.9
1

0
67

.0
6

0.
01

52
.3

6
0

28
.1

5
0

52
.4

1
0

6
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
47

.4
1

0.
29

52
.3

6
0

28
.1

5
0

52
.4

1
0

7
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
47

.4
1

0
52

.3
6

0
28

.1
5

0
52

.4
1

0

8
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
44

.0
3

0.
01

52
.3

6
0

28
.1

5
0

52
.4

1
0

9
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
44

.0
3

0
52

.3
6

0
28

.1
5

0
52

.4
1

0

10
34

.1
1

0
53

.2
8

0
52

.5
9

0
31

.0
6

0
33

.5
6

0
61

.9
1

0
44

.0
3

0
52

.3
6

0
28

.1
5

0
52

.4
1

0

275



Sensors 2023, 23, 1025

5. Conclusions and Future Work

In this article, we present a methodology for finding an optimal solution for the navi-
gation of a swarm of autonomous robots in environments with no prior map information,
utilizing only local onboard sensors for observational purposes and inter-robot commu-
nication for the sharing of observations in a concise manner. In the presented technique,
robots utilize their onboard ranging sensors to detect and avoid close-range obstacles while
navigating towards their goal. The approach works by utilizing the information regarding
maps built by leading robots for optimizing the routes for rest of the robots in the swarm.
Interestingly, this partial map building approach is robust against communication failure
of one or more robots, since the followers build upon whatever information is at hand and
utilize onboard sensors to augment it. Thus, any gaps owing to lost information are quickly
filled by followers. We have simulated various situations with multiple objects obstructing
the straight path to the destination, and show that the proposed approach results in the
swarm learning its environment in sufficient detail with the passage of few leading robots
so that the remaining members of the swarm can find an optimal path.

Thus, considering the arrival of the whole swarm at the destination as the mission to
be carried out with optimal path traversal, some of the leading robots end up taking longer
routes and discovering hidden parts of partially discovered obstacles. This additional
information is shared with the rest of the swarm, and results in a more informed choice of
route by following robots. This results in optimal path selection for the followers and up to
13% saving in the travel path for individual robots. Furthermore, utilizing the proposed
approach results in efficiency of up to 11% in traveling distance for the swarm as a whole.

Another contribution of this work is that communication cost is limited to transmitting
only significant new discoveries rather than sending the whole point cloud with each
detection event of LiDAR by each member of the swarm. This is a direct result of the
fuzzification and merging of detected obstacles that reduces the number of obstacles.
As long as an obstacle is within the sensing range of a robot’s LiDAR sensor, it receives
several detection points in the point clouds for each scan. If this detection data were to
be communicated to the rest of the swarm, it would result in high communication cost.
Instead, the robot performs several preprocessing steps before transmission. Firstly, it
evaluates whether a detection point belongs to an already detected object or not. Here,
our fuzzification of the detected objects helps in returning affirmative answers for very
close points. If the answer of the first step is negative, it is assumed that the said point
belongs to an undetected object. The aforementioned point is fuzzified to form an object
with dimensions equal to the minimum clearance distance, and the resulting object is added
to the obstacle list. Next, the whole obstacle list is scanned to determine whether any two
objects are adjacent or overlapping, merging such objects into one larger object. Since
the obstacle list is maintained in a sorted order, only one scan is sufficient to merge all
adjacent or overlapping objects. After this final step of merging, the updated obstacle list is
broadcast to the rest of swarm. This scheme results in the saving of communication cost
and economy of associated communication energy.

In our future work, we aim to further develop the proposed methodology by extend-
ing the approach to dynamic environments with moving obstacles. Furthermore, other
interesting aspects to analyze will be the effects of communication delays, IMU drifts,
and other environmental disturbances in dynamic environments.
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Abstract: As a fundamental issue in robotics academia and industry, indoor autonomous mobile
robots (AMRs) have been extensively studied. For AMRs, it is crucial to obtain information about
their working environment and themselves, which can be realized through sensors and the extraction
of corresponding information from the measurements of these sensors. The application of sensing
technologies can enable mobile robots to perform localization, mapping, target or obstacle recognition,
and motion tasks, etc. This paper reviews sensing technologies for autonomous mobile robots in
indoor scenes. The benefits and potential problems of using a single sensor in application are analyzed
and compared, and the basic principles and popular algorithms used in processing these sensor data
are introduced. In addition, some mainstream technologies of multi-sensor fusion are introduced.
Finally, this paper discusses the future development trends in the sensing technology for autonomous
mobile robots in indoor scenes, as well as the challenges in the practical application environments.

Keywords: sensing technology; SLAM; obstacle avoidance; sensor fusion

1. Introduction

In recent times, there has been a rapid development in autonomous mobile robots
(AMRs). Due to their excellent work ability, AMRs are being used to replace humans in
some indoor scenarios. Mobile robots can help reduce the burden of human work and
improve production efficiency. They have been widely used in many industries and services,
such as warehousing, logistics, healthcare, restaurant service, and personal services [1–3].

The basics of mobile robotics consist of the fields of locomotion, perception, cognition,
and navigation [4]. The locomotion problem is mainly concerned with the motion system of
the mobile robot. The motion system design is based on the requirements of the provided
services, such as the motion environment, controllability, efficiency, stability, and other
relevant indicators. Perception involves acquiring information about the mobile robot’s
working environment and itself. Cognition involves analyzing and processing data from
the perception system and providing control solutions to the motion system to accomplish
the mobile robot’s tasks. Mobile robot navigation relies on perception, cognition, and
motion control to move from a starting point to a task goal point in a work environment,
whether known or unknown. Perception is a crucial part of mobile robotics research.
For mobile robots to safely and efficiently perform mobile tasks, they must sense their
environment and make decisions based on that information. If a mobile robot cannot
perceive its environment accurately and efficiently, then it will not be able to perform even
simple tasks [5].

The perception system of the mobile robot utilizes relevant sensing techniques to
provide information about the environment, the robot itself, and the relationship between
the two. This information is then used for path planning, controlling the robot’s movement,
and ultimately completing the navigation task. The main tasks of the perceptual system
include localization, map building, object detection, etc.
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Localization is the process of estimating a mobile robot’s position relative to the
surrounding work area during its movement. This information serves as the foundation for
the mobile robot’s navigation [6–8]. Mobile robot localization techniques include inertial
navigation, global positioning systems (GPS), active beacon-based navigation, landmark
navigation, and model matching. Inertial navigation is a navigation method that utilizes
data from sensors responding to inertial forces. The global positioning system (GPS) is
a satellite-based technology that provides accurate information on longitude, latitude,
and altitude for any location on Earth. It is a highly effective technique for locating
mobile robots in outdoor environments. However, GPS is of limited use for localizing in
indoor environments, due to non-line-of-sight and signal-blocking problems in complex
environments [9]. Active beacon-based navigation and landmark navigation use relative
positional relationships to beacons or landmarks with known locations in the environment
for localization, as shown in Figure 1a. Model matching is a method of positioning by
matching sensor data with specific map model data. For instance, in 2D LiDAR localization,
the LiDAR measurement obtains 2D laser point cloud data, and the map model is an
occupancy grid map. The mobile robot localization is performed by matching the point
cloud data with the occupancy grid map, as shown in Figure 1b.

Figure 1. Schematic diagram of the localization method: (a) the localization method base on active
beacon or landmark, and (b) the localization method base on model matching of 2D LiDAR.

Map building typically involves Simultaneous Localization and Mapping (SLAM),
which is a crucial research field for mobile robots. SLAM is a technique used by mobile
robots to determine their location in an unknown environment while simultaneously
constructing an accurate map of the environment. The localization component estimates
the robot’s position on an existing map, while the mapping component constructs the
environment’s map [10–12]. The two components are interdependent in completing the
map building process and enhancing accuracy through continuous iteration. The two
most frequently used sensors in SLAM are LIDAR and vision cameras. SLAM techniques
can be classified into two main categories based on short- and long-time optimization
processing: filter-based methods and graph optimization-based methods. Filter-based
SLAM algorithms typically use various types of filters to estimate and optimize the robot’s
trajectory and map, as shown in Figure 2. The two most common filter-based algorithms
are the Kalman filter SLAM algorithm and the particle filter SLAM algorithm.

The graph optimization algorithm mainly consists of two processes, front-end and
back-end, as shown in Figure 3a. The graph optimization algorithm models the robot’s
trajectory and the environment’s topology as a graph, and minimizes the error by optimiz-
ing the nodes and edges in the graph to estimate the robot’s position and obtain a mao
of the environment, as shown in Figure 3b. Nodes generally represent the variables to
be optimized in the SLAM process of the sensor, such as sensor position, feature point
location, estimated trajectory, etc. Edges represent the errors or constraints between the
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variables. The optimization algorithm is iterated to minimize the error of the edges to find
the optimal solution [13].

Figure 2. Schematic diagram of the SLAM method based on filter.

Figure 3. Schematic diagram of the SLAM method based on graph optimization: (a) representation of a
graph optimization SLAM process, and (b) schematic representation of the graph optimization algorithm.

With the development of artificial intelligence, the emergence of reinforcement learn-
ing gradually allows mobile robots to gradually discard the limitations associated with a
priori maps, and achieve the judgement of navigation actions only through image inges-
tion [14,15]. The main logic is: to set up a series of exploration reward mechanisms around
the mobile robot exploration problem, such as: arrival reward, collision reward, curiosity
reward, etc., and to establish the relevant neural network through reinforcement learning
methods, and to train the network using the data set. Finally, the navigation decision of the
autonomous mobile robot is realised.

To accomplish the navigation task efficiently and accurately, the mobile robot must
avoid colliding with obstacles. Obstacle avoidance is a crucial task for autonomous mobile
robots moving in uncertain environments [16,17]. Obstacle avoidance focuses on the prob-
lem by obtaining the global position information of the robot relative to the surrounding
environment to the mobile robot only needs to obtain the local position information of the
close objects around the robot relative to itself. Obstacle detection is crucial for perception
systems as well. The mobile robot’s cognition system performs path planning to avoid
obstacles based on the distance and direction information about obstacles obtained from the
perception system. In principle, range sensors (ultrasonic sensors and LiDAR) are highly
suitable for obstacle detection tasks. In addition, vision cameras can recognize obstacles in
the environment and even predict the trajectory of dynamic obstacles.

The perception system achieves these functions through the use of sensors and ex-
tracting relevant information from their measurements. Sensors used for data collection
are categorized into two major aspects: proprioceptive/exteroceptive sensors and ac-
tive/passive sensors [3]. Proprioceptive sensors gather data about the interior of the mobile
robot, such as motor speed, wheel rotation angle, etc. Currently, encoders [18], accelerom-
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eters, and gyroscopes [19] are widely used in this type of sensor. Exteroceptive sensors
acquire information about the environment around the mobile robot, such as images, sound
waves, and wireless signals. Examples of exteroceptive sensors include vision sensors [20],
ultrasonic sensors [21], and LiDAR [22]. Active sensors send energy to the external envi-
ronment and then measure the environmental feedback, such as sonar sensors, LIDAR, etc.
Passive sensors measure the environmental energy coming into the sensor, such as vision
sensors (Charge Coupled Device (CCD) or Complementary Metal Oxide Semiconductor
(CMOS) cameras).

This paper describes the functions and principles related to the perception system of
mobile robots. Further, this paper analyzes the application of various types of sensors in
sensing technology. Additionally, the research results for multi-sensor fusion are presented
here. The rest of this article is organized as follows: Section 2 describes some extensively
adopted sensors; Section 3 presents the mainstream multi-sensor fusion schemes; and
Section 4 discusses perception techniques and potential technology trends.

2. Overview of Single Sensor Sensing Technologies

2.1. Inertial Measurement Unit (IMU)

An IMU is an electronic device that integrates an accelerometer, gyroscope, and mag-
netometer to measure an object’s acceleration, angular velocity, and the direction of the
geomagnetic field [23]. The IMU is the proprioceptive sensor. The Inertial Navigation
System (INS) is a dead-reckoning navigation system that uses the Inertial Measurement
Unit (IMU) and is commonly used for mobile robot navigation. Magnetometer-measured
orientation parameters have low accuracy and are challenging to use for precise navigation
tasks. Therefore, the most frequently used parameters in IMUs are acceleration and angular
velocity. The principle of dead reckoning is demonstrated in Figure 4. By using the consid-
ered IMU, the trajectory of an indoor AMR is determined by integrating the acceleration
and angular velocity based on the initial position, direction, and velocity.

Figure 4. IMU dead reckoning.

An IMU has two typical advantages: a high output update rate and immunity to
external interference. These advantages are irreplaceable when a high data update rate
or high reliability are required, or when the external signal acquired by the mobile robot
system is unreliable.

However, IMUs have limitations when applied to mobile robots. IMUs have two
typical disadvantages:

1. The calculation process must depend on the initial conditions.
2. The navigation error increases with time, which is due to the need for double integra-

tion of its measurements.

It should be mentioned that its duration and sensor accuracy have a significant impact
on the accuracy of IMU-based navigation [23]. To overcome these disadvantages, an IMU
is frequently used in fusion with other sensors and as auxiliary measurements in other
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navigation methods. L. Luo et al. [24] designed a positioning method that combines an
IMU, Bluetooth, and a magnetometer for the mobile robot positioning problem. In the
above-mentioned method, the inertial navigation system (INS) serves as the core, and the
Bluetooth AOA positioning base station observes the position, while the magnetometer
observes the heading angle. Alatise M. B. et al. [25] fused IMU and vision sensors in order
to achieve accurate positioning of a mobile robot. The accelerometer data are used as inputs
to the control, while gyroscope and image data are used as observations for position pose
estimation using extended Kalman filtering. Zhang et al. [26] developed an algorithmic
framework for the indoor localization of mobile robots by combining a wheel odometer, an
inertial navigation unit (IMU), and Ultra-Wideband (UWB). The framework uses a fusion
method with extended Kalman filtering, where the wheel odometer provides localization
information as a prediction and the IMU and UWB provide attitude angle and position
information as observations.

2.2. Ultrasonic Sensor/Sonar

Ultrasound refers to sound waves that vibrate at frequencies above 20 kHz, which
are beyond the upper limit of human hearing. Sonar also employs ultrasound. Ultrasonic
sensors are typically distance measurement sensors. Distance measurement sensors can be
classified into two types of measurement methods: the reflection-type distance measuring
method and the unidirectional distance measuring method, as shown in Figure 5. In the
reflection-type method, the sensor sends a signal to the surrounding environment, which is
then reflected when it encounters an obstacle. The sensor then receives the reflected signal
to measure the distance between the sensor and the obstacle. The unidirectional distance-
measuring method involves placing the transmitter and receiver in different locations.
The receiver measures the distance between the two by accepting the signal from the
transmitter. Ultrasonic ranging measures distance using three main criteria: time, phase,
and acoustic vibration.

Figure 5. Sensor distance measuring method: (a) reflection-type distance measuring method. (b) uni-
directional distance measuring method.

Ultrasonic sensors typically use a reflection-type distance measuring method to deter-
mine the distance to an object, which is used for mobile robot positioning and navigation.
However, the sonar sensor’s ultrasound beam width is too wide to precisely determine
the object’s direction. Additionally, specular reflection on object surfaces often results in
inaccurate distance calculations, reducing the reliability of distance measurements from
sonar sensors. It is not possible to construct a complete grid map using erroneously mea-
sured sonar data when the frequency of erroneous distance measurements is too high. To
overcome this problem, S.-J. Lee et al. [27] designed a method for constructing occupancy
grid maps for mobile robots using sonar data. This method assigns weights to each sonar
data point based on its geometric reliability to minimize the impact of incorrect sonar data
on the grid map construction. Anomalous sonar data are identified and assigned a lower
geometric reliability value through a morphological comparison with neighboring sonar
data. H. Liu et al. [28] used sonar sensors to overcome the limitations of sensor perfor-
mance by accumulating sonar data to achieve room-level localization. Y. Liu et al. [29]
presented a mobile robot on the basis of LEGO MINDSTORM NXT, in which an ultrasonic
sensor was mounted on a 360◦ rotating motor and a particle-filtering approach was used
to implement its localization function. Mingqi Shen et al. [30] provided a localization
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method for autonomous mobile robots based on multiple ultrasonic sensors. The method
calculates the target’s coordinates based on the ratio of three flight times measured by
three ultrasonic sensors. This improves the localization accuracy by avoiding the effect of
ambient temperature on localization.

In addition, ultrasonic sensors can also be used for the unidirectional distance mea-
suring method, which has been applied in the localization of indoor mobile robots. R.
Li et al. [21] set up an ultrasonic receiver on the robot and had multiple ultrasonic genera-
tors in the scene. The three-sided localization principle is used to achieve the localization
of the mobile robot. Chen-Chien Hsu et al. [31] presented a localization method based
on omnidirectional ultrasonic sensing. The proposed method utilizes reflective cones to
generate a 360◦ propagating ultrasonic beam to address the detection angle limitation of
conventional ultrasonic sensors. Ultrasonic waves are emitted directly onto a cone, which
reflects them in all directions. The ultrasonic signal is received by the installed receiver in
the environment. The mobile robot’s position is determined through the ToF (time-of-flight)
method and the trilateration localization method.

Ultrasonic sensors are susceptible to environmental noise and long-range strength
degradation [32] and are not accurate enough to measure detailed features of the envi-
ronment. There are relatively few cases where ultrasonic sensors are used for positioning
in high-precision indoor navigation applications. However, ultrasonic sensors have a
noticeable advantage in obstacle detection. They are highly accurate in detecting highly
transmissive or reflective objects, such as glass and mirrors, which can be challenging
for many optical sensors. H. Takai et al. [33] used ultrasonic stereo sonar and a single
image sensor to detect obstacles in the workspace. J.-H. Jean et al. [34] mainly used the
environmental distance information collected by ultrasonic sensors to guide the robot
along the wall baseline using a steering controller based on the potential field method.
Grami T. et al. [35] designed a mobile robot equipped with seven ultrasonic sensors and
used a particle-filtering approach to implement its localization function. The mobile robot
can move freely while avoiding obstacles. Maryna Derkach et al. [36] utilized four ul-
trasonic sensors for obstacle avoidance in mobile robots. Their proposed algorithm uses
a linear recursive Kalman filter to process the sensor data, allowing the robot to avoid
additional obstacles.

2.3. Infrared Sensor

Infrared is an electromagnetic wave with a wavelength between visible light and
microwaves. Infrared sensors use an emitter to emit an infrared beam and a receiver
to measure the intensity of the beam. The intensity of the infrared beam decreases as
the distance traveled increases. Infrared sensors can be used to measure distance by
assessing the intensity of the beam, in addition to the ToF (time-of-flight) method. Similar
to ultrasonic sensors, infrared sensors use reflection-type and unidirectional distance
measuring methods.

There are many early studies applying infrared sensors to mobile robot localization.
Eric Brassart et al. [37] designed a mobile robot localization system based on infrared
beacons. In this system, a ceiling-mounted infrared beacon sends an encoded infrared
signal, which is then received by a CCD camera mounted on the mobile robot. The robot’s
location is determined using triangulation and trilateration methods. J. Krejsa et al. [38]
presented an interior localization method for mobile robots that uses infrared beacons. The
beacons are placed at known locations in the environment, and a ring beacon scanning
device with 16 receivers is used to receive the infrared signals. The scanner is mounted on
the robot to measure the relative angle between the robot and the beacon. The position
of the mobile robot is estimated by fusing orientation information with motion controller
commands or an odometer through an extended Kalman filter. Infrared sensors can be
used to track targets when the transmitter and receiver are mounted on different robots.
Tzuu-Hseng S. Li et al. [39] have designed a tracking control scheme for an autonomous
mobile robot by using infrared sensors. The scheme involves a target mobile robot with
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an infrared reflector and a tracking mobile robot with an infrared receiver and a reflective
sensor. The latter was designed to track the target robot. Juang J. G. et al. [40] designed
wheeled mobile robots with integrated ultrasonic and infrared sensors that can move
along walls and avoid obstacles. Ultrasonic and infrared sensors were used to detect
obstacles and identify unknown environments. Infrared-based localization technology is
currently mature. However, it is difficult for it to penetrate objects and is susceptible to
its surroundings. Additionally, obstacles can directly block infrared rays in the infrared
beacon-based localization method. As a result, the application of infrared sensors in mobile
robot localization is limited.

In obstacle detection, infrared sensors are frequently used because of their rapid
response and compact size [41–43]. Jianwei Zhao et al. [44] designed a multi-sensor mobile
robot that uses infrared sensors mounted in front of the two front wheels at the bottom of
the robot to detect ground pits.

2.4. LiDAR

LiDAR (Light Detection and Ranging) uses laser beams to measure the position
and distance of target objects. Multiple laser beams are sent out from transmitters, and
when they hit objects, they reflect back. The reflected beams are received by the LiDAR
receivers. LiDAR measures the distance traveled by each beam using time-of-flight (ToF)
and combines the distance information from all the laser beams to obtain information
about the surroundings. LiDAR operates similarly to radar, but with a higher accuracy,
measurement speed, and measurement distance compared to conventional radar.

In indoor mobile robot navigation, mobile robots mainly use 2D LIDAR to sense
environmental information, while 3D LIDAR is more often used in the field of intelligent
driving because it needs more information to process [45]. LiDAR is widely used for
mobile robot localization due to its excellent distance measurement accuracy. Localization
with LiDAR is based on an environment map [46]. Dirk Hähnel et al. [47] presented an
algorithm for acquiring 3D models with mobile robots. Xipeng Wang et al. [48] devised a
method for global localization using only schematic floor plans as prior maps. The method
achieves global localization by matching features observed from LiDAR with features in
the floor plan. The method performs comparably to a baseline system using a conventional
LiDAR-based prior map. Haofei Kuang et al. [49] proposed a global localization method
for mobile robots using 2D LiDAR. In this method, the neural occupancy field uses a neural
network to implicitly represent the scene, and 2D LiDAR scans of arbitrary robot poses
are synthesized by using a pre-trained network. The MCL system integrates the similarity
between the synthesized scans and the actual scans as an observation model to perform
accurate localization based on the implicit representation.

As LiDAR distance measurement is based on the principle of light reflection, the
measurement has a large error in environments with glass obstacles or mirror obstacles. To
overcome the limitations, J. Kim et al. [50] proposed a method for LIDAR-based localization
schemes in glass wall environments. In this method, all candidate distances from the glass
wall are pre-calculated based on the occupancy grid map and the reflection characteristics
of the laser beam. The type of reflection phenomenon on the glass surface is then estimated
on the basis of actual measurements. The robot’s local position tracking is performed by
using a scan-matching method that considers the estimated results. Additionally, the fusion
of ultrasonic sensors and LiDAR during obstacle detection can achieve a higher detection
accuracy as ultrasonic sensors are not affected by glass or mirror obstacles.

In the absence of a prior environment map, LiDAR SLAM uses sensors to measure the
surrounding environment and obtain a LiDAR point cloud, which is then used to estimate
its position and construct a map based on the position information.

Typical 2D LiDAR SLAM methods include Gmapping [51], Hector SLAM [52], Karto
SLAM [53], and Cartographer [54]. The Gmapping algorithm framework is based on
the RBPF (Rao-Blackwellized Particle Filters) algorithm, and Gmapping makes two main
improvements, including improving proposal distribution and selectively resampling.
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The Hector SLAM algorithm framework is based on the EKF (extended Kalman filter)
algorithm. Hector SLAM can be used without an odometer and is suitable for airborne
or uneven road environments, but it is prone to drift errors when the LiDAR is rotating
too fast. Karto SLAM is the first open-source algorithm based on the PGO (pose graph
optimization) algorithm. It relies on efficient linear matrix construction and sparse non-
iterative Cholesky decomposition to efficiently represent and solve large sparse pose graphs.
The most important point of Karto SLAM is the introduction of back-end optimization and
loop closure detection. Compared with Gmapping and Hector SLAM, Karto SLAM is more
advantageous for mapping in large environments. Cartographer is based on the PGO (pose
graph optimization) algorithm. It eliminates the cumulative errors generated during the
map building process mainly through loop closure detection, in which the submap is the
basic unit. It accelerates loop closure detection by combining local and global data and has
high real-time performance, which makes it a reliable 2D LIDAR SLAM method.

In recent years, many improvements have been made based on these SLAM methods.
Xiang Y. et al. [55] designed a LIDAR-based localization and mapping method for indoor
mobile robots. The method makes improvements in distribution and limiting the number
of resamplings based on the original RBPF-SLAM algorithm. Han Wang et al. [56] proposed
an intensity-assisted SLAM framework for LiDAR-based localization systems. The pro-
posed SLAM includes intensity-based front-end odometry estimation and intensity-based
back-end optimization. Yingzhong Tian et al. [57] proposed a method to improve the tradi-
tional ICP method by incorporating intensity into the calculation. This method reduces the
number of iterations and arithmetic required. The method uses an objective function that
considers the distance and intensity residuals of the LiDAR point cloud to determine the op-
timal initial transformation estimation. Weiwei Hu et al. [58] proposed keyframe extraction
by clustering 2D LiDAR point clouds in indoor environments. In this method, firstly, the
dimension of the scan is reduced to a histogram, and the key frames are extracted using the
histogram. Then, the laser points in the key frames are divided into different regions using
a region-segmentation method. Next, the points are clustered in separate regions, and the
point sets from neighboring regions are merged. Finally, the sets with laser points below
a threshold are discarded as anomalous clusters. Saike Jiang et al. [59] designed an au-
tonomous navigation method for indoor mobile robots by fusing LiDAR, IMU, and encoder
data. The method optimizes and combines the 3D point cloud information from multi-line
LiDAR into a 2D LiDAR point cloud. This reduces computational power consumption
in the SLAM process and improves map building efficiency. Additionally, this method
can recognize obstacles at varying heights, overcoming the limitations of 2D LiDAR in
acquiring height-related information and enhancing the safety of mobile robot movement.
Weipeng Guan et al. [60] proposed a loosely coupled multi-sensor fusion method for VLP
and LiDAR SLAM. In this method, the LiDAR sensor detects the surroundings to avoid
obstacles during navigation and compensates for the cumulative error of the odometer.
And VLP is used to provide high-precision pose initialization and correction for the LiDAR
SLAM and odometer.

For obstacle detection, compared to ultrasonic sensors, LiDAR has significant advan-
tages in distance measurement accuracy and efficiency for obstacles. J. H. Lee et al. [61]
proposed a method for tracking multiple walking humans based on 2D LiDAR. The algo-
rithm considers the fact that 2D LiDAR is often positioned at the height of human legs and
uses the geometric characteristics of the legs to detect their position. The method utilizes
a pendulum model of the angle between the two legs as well as an extended Kalman
filter to extract the frequency and phase of the walking motion. Mozos O. M. et al. [62]
used a multilayer 2D LiDAR for person detection. The multilayer LiDAR method scans
different parts of the human body using different layers. A supervised learning approach
is used to obtain a classifier for each layer of LiDAR data, which is then used to detect
and recognize specific body parts. The results of each classifier are ultimately combined to
achieve human body detection. Ángel Manuel Guerrero-Higueras et al. [63] devised a 2D
LiDAR-based method for tracking people. The 2D LiDAR is mounted at knee height in
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a mobile robot, and the method is based on an offline trained full Convolutional Neural
Network that can track pairs of legs in the environment. Yan, Z. et al. [64] proposed an
online learning framework based on 3D LiDAR scanning for human detection. Ailing
Zou et al. [65] proposed a nearest neighbor clustering algorithm based on the adaptive
threshold to detect obstacles in the path of indoor robots by using 2D LiDAR.

2.5. Vision-Based Sensor

Visual sensors are devices that mimic the function of the human visual system. They
capture, perceive, and interpret visible light information in the environment and convert it
into digital signals or other forms of output for analysis, processing, and decision-making
by robots or other systems. Compared to other sensors, visual sensors have the ability to
represent the surrounding environment in the form of an image, making them capable
of describing complex texture features in the environment. Moreover, vision sensors are
widely utilized in the field of mobile robotics due to their relatively low cost. The main
types of vision sensors are monocular cameras, binocular cameras, RGBD cameras [66],
and event cameras [13].

The imaging principle of a monocular camera is similar to that of a normal camera
and is usually represented by the pinhole camera model. Light enters through the camera’s
aperture and is projected onto an imaging plane, typically a CMOS or CCD sensor [67].
The projected image is de-distorted and aligned with pixels to present a two-dimensional
image similar to what is observed by the human eye. Despite its low cost, there are still
significant technical challenges in research and development due to the difficulty of directly
computing depth information. A stereo camera is a camera sensing system consisting of two
monocular cameras, similar to the structure of the human eye. The depth information can
be calculated from the baseline distance between the optical centers of the two cameras [68].
Depth estimation of a pixel point can be achieved by the underlying geometric model, as
shown in Equation (1).

z =
f b
d

(1)

where z is the actual depth estimation, f is the camera focal length, b is the actual base-
line distance, and d is the parallax between the pixel points in the left and right screen
projections. From this equation, it can be seen that, due to the influence of the baseline
distance b, a truncation error will occur if the depth z is too large, resulting in inaccurate
depth estimation.

RGBD cameras are sensors obtained by integrating a depth sensor with a monocular
sensor. The depth camera actively provides depth measurements at each pixel. Currently,
the main depth sensors for RGBD cameras are infrared structured-light sensors and ToF
(time-of-flight) sensors [69]. The main difference between the two cameras is the depth
estimation principle. The infrared structured-light sensor calculates the depth information
by recognizing the structured light pattern. The Time of Flight (ToF) sensor calculates
the depth information of each pixel point in the camera by sending pulses of light and
measuring the time it takes for the light to return. The depth map is then mapped to the RGB
image using the relative position relationship between the sensors, resulting in a composite
image of color and depth. However, due to the limitations of the depth sensor, searching
for depth information is not feasible in large-scale and large-range spatial environments.

Event cameras are biologically inspired to work, so their imaging principles are not
the same as those cameras described above. In traditional cameras, the main camera unit
is a monocular camera, where the sensor captures the surrounding image at a constant
frame rate to obtain environmental information. However, considering the frame rate and
aperture factors, it will appear shadowy or blurred when facing environmental factors such
as high dynamic and strong exposure. The event camera changes the recording method of
the captured image to the recording of pixel changes. This means that the change in the
pixels on the screen is recorded as an “event”, and the environmental information is read
by the change in pixel brightness in the image on the output screen. As a result, the event
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camera can calculate quickly, with a frame rate of up to 1 KHz, and will not overexpose in
high light intensity environments.

The light field camera is based on a monocular camera. A microlens array is added
to the monocular camera to achieve a composite collection of environmental information.
Due to the addition of the microlens array, the light sensor is able to sense light information
in different directions at the same pixel point. The light field can be solved by the light
information in different directions to achieve depth estimation in the surrounding environ-
ment. Similar to the binocular camera, it is able to estimate the depth of the surroundings
from the line of sight in one frame. However, in contrast to the binocular camera’s simple
two-frame camera, the light field camera can provide richer depth information for depth
estimation or scene reconstruction at a later stage. The table below (Table 1) shows the pros
and cons of each visual sensor.

Table 1. The advantages and disadvantages of each sensor and the related representative SLAM
work applied for the first time to autonomous mobile robot perception.

Camera Type Application Time Characteristic Advantages and Disadvantages

Monocular Camera 2007 [70] Contains only one lens, the basic
unit of the visual sensor

Pros: easy to integrate, low cost Cons:
cannot directly provide in-depth
information

Stereo Camera 2008 [71] Simultaneous generation of left and
right images for stereoscopic visual

Pros: produces two images (left and
right), and can be used for stereo visual
Cons: calibrates camera, computationally
complex, limited depth estimation range

RGBD Camera 2011 [72] RGB images and depth images can
be provided directly

Pros: Provides accurate depth
information Cons: Depth information is
susceptible to environmental influences

Event Camera 2017 [73]
Uses pixel changes as events.
Captures luminance changes with
microsecond time resolution

Pros: able to cope with high dynamics
and scenes with large lighting variations,
low power consumption Cons: requires
image pre-processing to obtain
traditional image information

Light Field Camera 2017 [74]
Adding microlens arrays to camera
lenses to add scale information to
monocular cameras

Pros: provides scale information for
monocular cameras Cons: high
computational volume, difficult to
achieve real-time computing

In indoor environments, the effects of lighting, dynamic objects, and unstructured
scenes can cause images that do not accurately represent the indoor environment. Addi-
tionally, before performing localization, the screen must be depicted as a scene that can
be modified by the mobile robot. Therefore, it is necessary to pre-process the images to
facilitate the extraction of environmental information by the camera.

Image pre-processing is mainly divided into the following aspects:

1: Eliminating image distortion.
2: Assigning semantic labels to specific objects. The extraction of specific objects or

features in the picture can be achieved by neural networks or traditional feature
extraction algorithms. Assigning semantic labels to them is more suitable for human
understanding of environmental features.

3: Image Partial Reconstruction. In indoor environments, deep learning techniques like
generative adversarial networks (GAN) and diffusion should be considered for recon-
structing specific images due to the significant impact of light and dynamic objects on
environmental representation. This reduces or reconstructs interfering factors in the
image for the map construction process, such as dynamic objects, visible light, and
shadows from occlusions. The goal is to acquire suitable images for scene localization.
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Liu et al. [75] solved the issue of depth estimation between day and night by using the
DCNN neural network. Considering the similarities and differences of the images between
the environment with and without lighting, the images are divided into a private domain
(lighting conditions) and a public domain (texture features). The reconstruction of a night
image from a day image is achieved by the GAN neural network. This reduces the effect of
the day/night boundary on the position and image construction errors. Bescos et al. [76]
utilized CNN neural networks to implement multi-category semantic segmentation for
the removal of dynamic objects and their accompanying shadows. GANs were employed
along with a loss function based on image steganalysis techniques to achieve an absolutely
static environment in the scene.

The conventional method for localizing mobile robots using visual sensors involves
capturing image information with a camera and then comparing the images to determine
the robot’s current position [77]. It is mainly divided into two major steps: feature extraction
and data association. The decision of whether to extract features is divided between the
feature point method and the direct method. For the data association part, the main goal is
to achieve a real-time estimation of the camera’s own position change through the image
comparison between frames. As the monocular camera cannot detect depth information
directly, the relative positional relationship between the front and back frames of the camera
corresponds to the rotation and translation in 3D space, which is achieved by establishing
the rotational position between the front and back frames. That is, the pair of pole geometry
problem, as shown in the following equation:

E = t∧R xT
2 Ex1 = 0 E =

⎡⎣e1 e2 e3
e4 e5 e6
e7 e8 e9

⎤⎦ (2)

where E is the essential matrix, which represents the positional transformation of the
robot’s translation and rotation, and x1 and x2 denote the normalized coordinates of
the corresponding pixel points of both on the projection plane. Since e9 can be directly
designated as one, it is possible to solve the polar geometry problem for eight pairs of pixel
points corresponding to the eight pairs in the frame, thus realizing the position estimation
of the camera. The depth information of the environment in the camera positioning scene is
solved by triangulation, that is, the positional transformation relationship between the two
frames and the corresponding pixel projection coordinates in the two frames are known, so
as to calculate the corresponding depth information of the pixel points. This can be shown
in the following equation:

s1x1
∧x1 = 0 = s2x1

∧Rx2 + x1
∧t (3)

Although the monocular camera can realize the position estimation of the robot from
eight mutually matching pixel points, it still has problems such as the large initialization
error and degradation of position estimation due to pure rotation. For the stereo camera
and depth camera, they can directly glean the pixel information from the environment
and its corresponding depth information. Therefore, the position calculation is relatively
simple, i.e., through the PNP algorithm [78]. As shown in the following equation:

s

⎡⎣u
v
1

⎤⎦ =

⎡⎣t1 t2 t3 t4
t5 t6 t7 t8
t9 t10 t11 t12

⎤⎦
⎡⎢⎢⎣

X
Y
Z
1

⎤⎥⎥⎦ (4)

where u, v are the pixel points in normalized coordinates and X, Y, Z are the 3D coordinates
corresponding to the pixel point.The T matrix represents the camera’s positional transfor-
mation. From the above, it can be concluded that the positional estimation of the camera
can be achieved by six pairs of well-matched pixel points. Due to the addition of depth
information, other constraints can be added to the PNP algorithm to achieve fewer points
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for the pose estimation, such as the P3P algorithm, the EPNP algorithm, etc., [68]. The
event camera serves as the basic unit of the camera. Unlike monocular camera processing,
the event camera performs feature matching by matching time, pixel coordinates, and light
intensity changes in the event stream to generate environmental features in the frame that
can be correlated with the data [79].

The position estimation of mobile robots can be implemented using a neural implicit
approach due to the excellent generalization and iterative capabilities of neural networks.
The traditional explicit representation of position estimation is to represent the relevant
objects in the frame and the relevant features as the exact six-degree-of-freedom relevant
point, line, and surface features. Neural implicit methods favor the representation of the
features in the frame over functions or neural networks, such as voxels, meshes, distance
fields, etc. The advantage of implicit representation is that it can effectively represent
complex texture features and more effectively represent complex surfaces such as voids
and surfaces as opposed to explicit point clouds or grids. Furthermore, neural implicit
methods have the advantage of compact spatial representation and the ability to store
a large amount of information, allowing them to represent a larger map space with less
memory compared to explicit networks. By using neural networks to predict and update
maps, neural implicit methods have end-to-end learning capabilities that allow for greater
flexibility in updating maps and estimating poses in real-time applications. Compared to
traditional feature extraction and matching-based methods, neural implicit methods have
better adaptability and robustness when dealing with dynamic scenes or fast movements.
Zhu et al. [80] employs a neural implicit representation to capture the geometric and
appearance attributes of a scene in terms of hierarchical network features. They utilize a
pre-trained neural implicit decoder encoded at different spatial resolutions. By rendering
the generated depth and colour images, they optimise the feature mesh within the field of
view cone by minimising the re-rendering loss function.

There are many types of visual map building, but map functions generally have the
following characteristics:

1: The ability to effectively represent the characteristics of the surrounding environment.
2: The amount of computation and storage required can match the hardware carried by

the robot.
3: The ability to achieve the functionality required by the mobile robot.

As for map types, the main ones are point cloud maps [81,82], 3D occupancy grid
maps [83], TSDF maps [84], semantic maps [85], etc.

A point cloud map generally consists of a camera frame that represents the camera’s
position, the camera’s historical trajectory, and a pixel point cloud. It accurately depicts
the surrounding environment and the camera’s position transformation. However, the
redundant point cloud features result in large storage space and construction costs. Vijaya-
narasimhan et al. [86] introduced the SfM-Net network, which retrieves depth maps and
performs camera pose estimation using a single video stream. The network generates a
corresponding depth image from the input single image and fuses the depth point cloud
to create a comprehensive representation. Finally, the positional relationship between the
resulting images is computed based on the input pair of consecutive frames. Furthermore,
the method identifies and segments any moving objects within the scene, presenting them
in the form of a mask.

The 3D occupancy grid map divides space into occupied subspaces based on a certain
volume. If an object is present in the occupied subspace, it is considered occupied. While
it sacrifices clarity in environmental information representation compared to the point
cloud map, it significantly reduces computation and map information storage requirements.
This is advantageous for constructing large-scale maps. Cao et al. [87] proposed a 3D
semantic occupancy raster map completion method for inferring indoor and outdoor
scenes in a single RGB image. The method is applicable to a wide range of scenes and
environments and does not require additional depth sensors or specific scene types. The
article introduces the FLoSP mechanism to correlate 2D and 3D networks. Additionally,
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a new loss function is proposed to optimize inference results by taking into account the
semantic relationships and local structure of voxel groups. This improves the quality and
consistency of scene completion.

TSDF maps are maps represented by the TSDF notation (Truncated Signed Distance
Function). Similar to three-dimensional occupancy grid maps, TSDF divides the space
equally into an infinite number of voxel representations denoted by (x, y, z, v). The map is
iteratively updated by a mobile robot in a continuous positioning process. Since updating
the voxels directly is required, RGBD cameras are generally used to implement TSDF map
construction. Kim et al. [88] predicted 3D Truncated Signed Distance Function (TSDF)
voxels from a single RGB image by integrating depth prediction and TSDF generation
processes seamlessly. This approach enables the generation of highly accurate TSDF maps
with greater efficiency compared to TSDF conversion from depth prediction alone. The
comprehensive TSDF model is utilized to improve the precision and robustness of camera
pose estimation, resulting in more effective scene facilitation.

Semantic maps differ from the above three maps. They are created by using image
processing or deep learning network methods to extract the physical properties of points,
lines, surfaces, or object features from an image and assign corresponding semantic infor-
mation during the map construction process. Thus, we can create maps that align with
human thinking and are more conducive to human–machine interactions based on the
aforementioned maps. Yu et al. [89] proposed a methodology for extracting semantic seg-
mentation information from the conventional SLAM framework. This process is executed
as an independent thread within the image preprocessing module. The approach effectively
identifies and eliminates dynamic objects present in each frame by combining semantic
data with the concurrent detection of motion feature points. A dense semantic octree
map is generated to meet the specific task requirements associated with advanced robot
decision-making and path planning.

The development of mapless navigation can improve the computational speed of in-
door mobile robots, which is conducive to autonomous decision making and path planning
in dynamic environments. However, how to set up an effective reward mechanism and
network structure is a major research challenge in mapless navigation. Kulhanek et al. [90]
used auxiliary tasks consisting of reward prediction, pixel control, and semantic segmenta-
tion prediction to achieve effective training of neural net structure, and introduced LSTM as
a memory module in the process of the network structure to cope with the before and after
state correlation problem in the POMDP problem. Xiao et al. [91] addressed the problem
of how to make a mobile robot learn to find the target point by passing through corners
and such places when the initial target is not visible, creating arrival rewards, collision
penalties, and proximity rewards. An “action consistency” mechanism was designed to
achieve consistency between the learned behaviour of the mobile robot and its accumulated
experience. Xie et al. [92] proposed a framework for a mapless navigation method for
mobile robots based on a hierarchical approach with DL and DRL. It is assumed that the
mobile robot can be provided with navigation instructions and images of key locations be-
fore task execution. The upper layer “watches” the navigation instructions and the current
state to determine whether it is time to reach the place where it needs to act according to
the navigation instructions. The lower layer is responsible for completing the navigation
function of the mobile robot in between the upper layer’s updated decisions.

Vision cameras have a significant advantage in obstacle recognition compared to
other sensors, making them a popular choice for obstacle avoidance in mobile robots.
The obstacle avoidance system designed by Tai et al. [93] does not provide real-time
estimations of the robot’s position during obstacle avoidance but builds a convolutional
neural network for the original depth image. Subsequently, it establishes a fully connected
network with five decisions on obstacle avoidance for the mobile robot, which enables
the mobile robot to autonomously realize obstacle avoidance planning during indoor
movement. Cristóforis et al. [94] achieved autonomous obstacle avoidance by building a
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“teach-learning” system that only requires texture information about the path of the screen
rather than the position estimated since localization.

The perception of indoor mobile robots covers a variety of map representations. Point
cloud maps are discrete point cloud data acquired by sensors such as LIDAR or camera
sensors that provide highly accurate information about the structure of the environment.
Three-dimensional occupancy raster maps divide the environment into a three-dimensional
grid that is used to represent the location and occupancy of objects.TSDF maps provide
highly accurate geometric information by modelling the surface of an object. Semantic
maps further incorporate semantic information to enable the robot to understand the
semantic meaning of different areas in the environment. In contrast to traditional navigation
techniques, the mapless navigation function based on image information is a lightweight
and efficient navigation method. It acquires environmental images through sensors such as
cameras, and uses deep reinforcement learning and other methods to achieve end-to-end
perception and decision making by learning the environmental features in the images,
so as to realize autonomous navigation for robots. As the method does not need to pre-
construct maps, it alleviates the dependence on expensive sensors, while showing a strong
adaptability in dynamic environments. Therefore, mapless navigation based on image
information is robust, with a small computation and memory footprint, making it perform
well on resource-constrained mobile robot systems.

2.6. Radio Frequency Technologies

Radio frequency (RF)-based sensing technology is mostly used for indoor mobile robot
localization. The RF-based localization system comprises beacon stations (BS) that transmit
radio signals and mobile robots that receive them. Unlike infrared and ultrasound-based
beacon location systems, RF waves can penetrate doors and walls, providing ubiquitous
coverage of buildings. RF-based localization systems applied to indoor mobile robots
typically include: WiFi [95], Bluetooth [96], Zigbee [97], Ultra-Wideband (UWB) [98],
and Radio Frequency Identification (RFID). The advantages and disadvantages of the RF
techniques [99] are shown in Table 2.

Table 2. The characteristics of different RF technologies used for indoor localization.

RF Range (m) Cost Advantages Disadvantages

WiFi 250 high Implementation simplicity, large coverage,
high transmission rate

High power consumption,
meterlevel accuracy, vulnerable
to NLOS path

Zigbee 100 medium Extremely low energy consumption, low
system cost

Low transmission rate, high
latency, vulnerable to NLOS path

Bluetooth 100 low Implementation simplicity, low
energy consumption

Small coverage, low
transmission rate, vulnerable to
NLOS path

UWB 100 high
High accuracy, extremely high
transmission rate, low latency, immune to
interference, robustness to NLOS path

High energy consumption and
system cost

RFID 5 low
Extremely low energy consumption,
implementation simplicity, low system
cost, high accuracy with specific approach

Small coverage, vulnerable to
NLOS path

2.6.1. Radio Frequency Technology Localization Algorithms

RF-based indoor localization technologies use two main methods: geometry and
fingerprinting. The geometry-based localization method determines the location of the
mobile robot using geometric knowledge, either by measuring the distance to fixed beacon
stations (BS) or by calculating the received signal angle. Several typical RF-based position-
ing algorithms are Time of Arrival (TOA), Time Difference of Arrival (TDOA), Angle of
Arrival (AOA), and Received Signal Strength Indication (RSSI), as shown in Figure 6.
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Figure 6. RF localization technologies: (a) Time of Arrival (TOA). (b) Time Difference of Arrival
(TDOA). (c) Angle of Arrival (AOA). (d) Received Signal Strength Indication (RSSI).

TOA is a localization method that measures signal propagation time. A signal sent
from a transmitter on a mobile robot travels through the air at approximately the speed
of light. When the signal reaches receivers mounted at multiple beacon stations (BSs), the
receivers record their respective arrival times [100]. The distance of signal propagation is
calculated by measuring the propagation time. This allows for the localization of the mobile
robot using the triangulation method, as shown in Figure 6a. The signals emitted by the
transmitters are time-stamped to calculate the propagation time. It is crucial to synchronize
the time of the beacon stations with the time of the mobile robot [101].

TDOA is a method used to determine the location of a signal transmitter by measuring
the time difference between the signal’s arrival at different receivers [102]. The arrival
time of the same signal is recorded by multiple signal receivers, and the time differences
between the different receivers are calculated. These time differences are then used to
construct a system of equations. Each equation represents the positional constraint of the
corresponding receiver on the transmitter. These constraints are reflected in the coordinate
graph as hyperbolas. The position of the signal transmitter, i.e., the mobile robot, is
determined by solving these equations, as shown in Figure 6b. Unlike the TOA method, the
TDOA method only requires time synchronization between the beacon sites, not between
them and the mobile robot [103].

AOA is a method used to determine the position of a signal transmitter by measuring
the angle at which the signal arrives at different receivers [104]. The signal receiver consists
of multiple signal-receiving elements, and the angle of arrival is calculated by comparing
the arrival times or phase differences of the signals between the different receiving elements.
The angle of arrival of a signal is recorded by a plurality of signal receivers. Geometric
relationships are then used to calculate the position of the signal transmitter, which is the
mobile robot, as shown in Figure 6c.

The received signal strength indicator (RSSI) is a measurement of the power of a
radio signal that has been received. Signal strength decays during propagation, which is
characterized by the propagation power loss model. Therefore, the strength of the received
signal can also be used to calculate the signal propagation distance. Triangulation is then
used to measure the position of the mobile robot [105].
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Fingerprint localization is a technique used to determine location by comparing re-
ceived signals with a pre-established fingerprint database [106]. It consists of fingerprint
database construction and location estimation. The process involves deploying a set of
RF sensor receiver stations throughout the area to collect RF signals at each sampling
point and record their characteristic parameters. The sampling point locations are cor-
related with these characterization parameters to construct a fingerprint database. This
database contains pre-measured and recorded correspondences between signal features
and locations. The most commonly used signal characteristic parameter is RSSI. Once the
fingerprint database is established, the RF sensor stations collect real-time wireless signal
parameters, which are then matched and compared with the fingerprint information in
the database [107]. Accurate target location is estimated through the use of comparison
and inference algorithms. Compared to the geometry-based method, the fingerprint local-
ization method is more accurate. However, constructing the fingerprint database requires
significant effort, and it must be re-collected and constructed if the signal receiver station’s
location changes [103].

2.6.2. WiFi

WiFi is a widely used wireless technology that follows the IEEE 802.11 standards.
WiFi utilizes wireless communication frequencies of 2.4 GHz and 5 GHz. It can support
multiple device connections simultaneously and is widely used in indoor settings such
as factories and offices. While WiFi technology offers advantages such as convenience,
flexibility, and high speed, it has limitations when used for indoor localization. Factors
such as the volatility of the WiFi signal and the non-line-of-sight (NLOS) path may affect
the accuracy of localization.

For WiFi-based positioning methods, RSSI is most commonly used because of its
high accuracy. Hemin Ye et al. [108] optimized the traditional WiFi fingerprint positioning
method. Compared to traditional methods for fingerprint localization, this approach
reduces the distance between sampling points and improves fingerprint matching accuracy
by collecting and normalizing WiFi signals from different time periods. Additionally, the
method uses Mahalanobis distance as a similarity reference and filters out noise using an
improved adaptive K-value WKNN algorithm to enhance location estimation accuracy.
Zhang L. et al. [109] optimized WiFi-based RSSI localization with Deep Fuzzy Forest. In
their work, a deep fuzzy random forest is used as a mapping function, which estimates
the corresponding coordinates of fingerprint vectors from an offline database. The deep
fuzzy forest can inherit the merits of decision trees and deep neural networks within an
end-to-end trainable architecture. Guangbing Zhou et al. [110] combine WiFi, vision, and
LIDAR for the indoor localization of mobile robots.The WiFi-based RSSI fingerprinting
localization method was used for coarse area estimation.

2.6.3. Zigbee

Zigbee is a wireless communication technology based on the IEEE 802.15.4 standard.
It uses a distributed network topology that supports multiple devices communicating with
each other, with all terminators communicating directly with the coordinator. ZigBee has a
low cost, low power consumption, and low data transfer rate compared to WiFi standards,
as well as a longer latency time.

Zhang Lei et al. [111] conducted an experimental analysis of Zigbee location using
RSSI technology for the influence of reference node layout and number on the location
accuracy. The experimental results indicate that Zigbee reference nodes with triangular
layouts achieve higher localization accuracy than those with rectangular and prototypical
layouts. Anbalagan Loganathan et al. [97] combined Zigbee-based RSSI and odometry for
the indoor localization of mobile robots. Their method fuses the results of Zigbee-based
RSSI triangulation with odometer data through an adaptive filtering method to find the
robot’s position. Zhu Wang et al. [112] designed a Zigbee-based localization algorithm
for mobile robots. The method corrects the RSSI ranging results by least squares and uses
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triangulation to calculate the robot’s position. The coordination nodes and mobile nodes
of the ZigBee network are embodied in mobile robots, thus enhancing the mobility and
flexibility of the network.

2.6.4. Bluetooth

Bluetooth is a standardized wireless communication technology based on the IEEE
802.15 standard. It is commonly used for short-range data transmission due to its low
power consumption, low cost, high security, and ease of use. Bluetooth technology is
widely used in various electronic products, automobiles, and medical devices. However,
the accuracy of indoor positioning is affected by the non-line-of-sight (NLOS) path due to
obstacles affecting Bluetooth signal propagation.

Aswin N. Raghavan et al. [113] proposed a method for the localization of mobile
robots using Bluetooth. This method is based on RSSI for distance estimation and uses
trilateration measurements for localization. The localization accuracy is within 1 m. Y.
Yamami et al. [114] designed a Bluetooth-based AOA method for indoor mobile robot
localization. The method makes use of Bluetooth 5.1 with the Constant Tone Extension
(CTE) at the end of a packet, enabling the Bluetooth module to receive signals from multiple
antennas simultaneously. In the study conducted by Katrina Weinmann et al. [115], a mobile
robot controller employs Bluetooth as a sensor to measure the localization of the target
object. The Bluetooth beacon is mounted on the target object, while the mobile robot is
equipped with a Bluetooth antenna array. The mobile robot achieves target tracking by
estimating the direction and distance of the target object. The direction is estimated using
the AoA method, while the distance is estimated using RSSI. Astafiev Alexandr et al. [116]
experimentally analyzed indoor localization based on a sensor network using Bluetooth
Low Energy (BLE) beacons. The experiments demonstrate that the transmission of BLE
signals can be affected by the presence of other radio signals in the localization area. The
level of signal interference directly impacts BLE-based localization accuracy, resulting
in greater errors and a lower accuracy. Additionally, obstacles such as people interfere
with the RSSI measurement of BLE, further affecting positioning accuracy. To enhance the
anti-interference capability of the BLE positioning system, it can be combined with other
sensors, such as the IMU.

2.6.5. Ultra-Wideband (UWB)

UWB (Ultra-Wideband) technology is a wireless communication technology that uses
short, non-continuous pulse signals to transmit data. It has a wide frequency bandwidth
and offers advantages such as low power consumption, fast transmission rate, and strong
anti-interference capability. Additionally, UWB is theoretically less affected by non-line-of-
sight (NLOS) paths, making it highly accurate and stable for indoor localization.

Dongqing Shi et al. [117] designed a positioning system based on UWB sensors. To
optimize localization results in the presence of nonlinearity and noise in UWB ranging,
the system employs the gradient descent method and the least squares method. Jiajun
Leng et al. [118] designed a two-stage UWB positioning algorithm for indoor mobile robots.
First, the distance measured by the TDOA method was optimized by Gaussian filtering.
Then, the final location coordinates were obtained by weighting the corrected range values
with coordinates.

To reduce the influence of the LOS/NLOS environment on positioning accuracy,
Peisen LI et al. [119] designed a positioning method combining the inertial navigation
system (INS) with Ultra-Wideband (UWB). In this method, an interactive multiple model
(IMM) algorithm is proposed to integrate the different distance error characteristics of LOS
and NLOS states. The algorithm uses two Kalman filter models for different states and
transforms them using the Markov chain. The filter results are then fused using weighting
for position estimation. The localization method corrects the UWB’s estimated position
with the INS position estimation results, resulting in the final localization estimation. Tao
Xu et al. [120] proposed a Weighted Adaptive Kalman Filter (WAKF) positioning method
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based on UWB andodometry. To minimize the effect of LOS/NLOS scenarios on UWB
positioning accuracy, a Kalman filter is used to integrate the odometry data. Additionally,
the method uses power differences to distinguish between LOS and NLOS environments,
and it adjusts the Kalman filter weights accordingly. Haoyu Zhou et al. [121] designed an
online multi-robot SLAM system based on Lidar/UWB fusion. The system fuses distance
measurements provided by UWB sensors with Lidar data provided by different mobile
robots and constructs a globally consistent map based on the UWB coordinate system.

2.6.6. Radio Frequency Identification (RFID)

RFID (Radio Frequency Identification) technology uses radio waves for data transmis-
sion and identification. It typically consists of three components: a tag, a reader, and a data
processing system. RFID tags are small devices that contain a chip and an antenna and are
used for data storage and transmission. The reader communicates with the tag via radio
and reads or writes the tag’s information. The RFID data are processed and managed by
the data processing system. RFID technology offers the benefits of low energy consumption
and low system costs. However, it has a short signal transmission distance of about 1–5 m,
which requires the presetting of numerous beacon sites for large-area localization. RFID is
advantageous for short-range target tracking and identification.

Haibing Wu et al. [122] proposed a method for mobile robot navigation based on
RFID technology to track targets. The method uses a particle filter to measure the real-time
relative position between the mobile robot and the RFID-tagged object based on the RFID
phase difference observation model. Jun Wang et al. [123] proposed a SLAM method for
mobile robots based on high-frequency band RFID by using the particle smoother for
landmark mapping and the particle filter for the self-localization of the mobile robot. F.
Shamsfakhr et al. [124] proposed a mobile robot localization method based on passive UHF
radio frequency identification technology. The method combines odometry and RSSI-based
position estimation results to determine the robot pose by the linear least squares method.

2.7. Summary and Discussion

IMU sensors have a high output frequency and are extensively adopted in mobile
robot localization and SLAM fields. As a proprioceptive sensor, it is not influenced by the
environment, but it does not have a role in obstacle detection. To mitigate error accumula-
tion, an IMU is often used in conjunction with encoders as a short-term odometer and is
part of the sensor fusion method in mobile robot positioning and SLAM. Ultrasonic sensors
are less accurate in distance detection than infrared sensors and LiDAR. Therefore, they are
rarely used as primary sensors in mobile robot localization and SLAM in recent studies.
However, they have significant advantages over other sensors in obstacle detection and are
widely used in mobile robot obstacle avoidance. Infrared sensors, as optical sensors, are
susceptible to other light sources or reflections in the environment. However, infrared sen-
sors are very low cost and are often used as auxiliary sensors in mobile robots, responsible
for obstacle or target distance detection. LiDAR and vision sensors are the most commonly
used sensors in SLAM for mobile robots, and they can both be used for navigation in
unknown environments. In contrast, LiDAR has a higher distance measurement accuracy,
and vision sensors can collect richer information about the working scenes. However, the
accuracy of LiDAR measurements can be affected by transparent or reflective objects in
the environment. Vision sensors are advantageous for detecting obstacles or targets due to
their excellent object recognition technology. They can efficiently filter out obstacle data,
improving localization precision during robot navigation. Radio frequency (RF) sensors
are widely adopted in mobile robot localization, and the localization accuracy will not
be influenced by environmental factors such as low-visibility conditions. However, RF
sensor-based localization requires additional anchor nodes with prior position information
and cannot provide orientation information for mobile robots. A comparison of results of
the relating sensors is demonstrated in Table 3.
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Table 3. The characteristics of the sensors.

Sensors Advantages Disadvantages

IMU High output frequency, free from
environmental interference.

Initial conditions required, error accumulation,
accelerometer is susceptible to vibration.

Ultrasonic sensor Low cost, not influenced by transparent or
reflective objects

long-range intensity attenuation, vulnerable to
ambient noise.

Infrared sensor Low cost. Susceptible to environmental interference
(light source, reflection).

LiDAR High distance measurement accuracy. Restricted in environments surrounded by
transparent or reflective objects.

Vision-based sensor Rich collection of information Large computational volume, vulnerable to
light.

Radio Frequency Sensor Environment and obstacles have less effect on
positioning.

Not suitable for unknown or unpredictable
environments, unable to measure orientation.

3. Overview of Multi-Sensor Fusion Sensing Technologies

Various sensors can gather diverse forms of measurement data. Sensor fusion al-
lows for a more comprehensive acquisition of sensory information, thereby enhancing
localization efficiency in task completion. It is important to note that each sensor has its
own superiorities, limitations, and potential scenarios. It is noted that sensor information
fusion is able to enhance mobile robot positioning accuracy, obstacle recognition efficiency,
and other characteristics by leveraging strengths and compensating for weaknesses. This
approach can meet the requirements of diverse working environments. For instance, visual
sensors provide a vast amount of image data that is valuable for recurrent closed-loop
detection and optimization of the same scene in large-scale environments. This method
enables the elimination of cumulative sensor errors. However, visual sensors in indoor
environments are also limited by their image information. They suffer from long image
processing times (generally 30 fps is required for the vision SLAM image in real-time),
and environmental information is susceptible to occlusion. Therefore, improving visual
sensor performance through other sensors is also a hot topic for mobile robot perception.
As for multi-sensors, sensors that are often mixed with visual sensors are sonar [125,126],
laser rangefinders [127,128], radio frequency identification (RFID) [128,129], inertial sen-
sors [130,131], GPS [132,133]. However, in the case of GPS sensors, they are based on
satellite systems to achieve global positioning. In indoor environments, objects are affected
by buildings as well as other signals, causing a significant reduction in their positioning
accuracy, implying that GPS may be inappropriate for mobile robot location positioning in
indoor obscured environments [134,135].

Sensor data fusion algorithms mainly include improved algorithms based on Kalman
filters, particle filters, and neural networks.

3.1. Multi-Sensor Fusion Algorithm Based on Kalman Filter

Kalman filtering methods are mainly used for fusing high-frequency and high-precision
dynamic data and have been widely applied in multi-sensor fusion [51,136,137]. When as-
suming that the system state model and observation model are linear and follow a Gaussian
distribution and that the noise is also Gaussian, the Kalman filtering method only requires
the mean and variance of the noise to iteratively solve for the state. Kalman filter mainly
includes prediction and update steps to realize real-time state estimation of the mobile
robot from the previous frame to the current one, as shown in Figure 7. However, the
traditional Kalman filter cannot meet the requirements of nonlinear problems. Therefore,
researchers have developed improved versions of the Kalman filter, such as the Extended
Kalman Filter method (EKF) and the Untraceable Kalman Filter method (UKF), to deal
with nonlinear problems.
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Figure 7. Multi-sensor fusion algorithm based on Kalman filter.

Daniel Magree et al. [138] proposed a modified navigation system by integrating
visual SLAM and LiDAR SLAM, thus achieving an EKF-based inertial navigation system.
In this vision SLAM approach, the robot’s position can be determined by analyzing the
environment’s image features. The position is estimated and updated using the EKF
method. LiDAR SLAM is based on the Monte Carlo method for scan matching. Its results
are used to correct the results of visual SLAM and reduce the effect of ambiguous geometry
on visual SLAM. Chengguo Zong et al. [139] presented an EKF multi-sensor information
fusion method for obstacle avoidance in mobile robots. This method utilizes the previous
moment’s pose and encoder data to estimate the predicted position. The observed position
can be obtained on the basis of observations from ultrasonic sensors, infrared sensors, and
an electronic compass. The EKF updates the pose estimation by incorporating the predicted
and observed positions, resulting in the optimal estimate of the required pose. LILI
MU et al. [140] offered a SLAM approach that fuses LIDAR, an RGBD camera, an encoder,
and an IMU. This method utilizes UKF to fuse the data from the four sensors for localization.
In this method, the current position of the mobile robot is obtained from the IMU and
wheel encoder, and it is input into the UKF for updating the rough position, which is used
as the initial position for scanning matching by LIDAR and depth camera point clouds.
This speeds up the matching speed of the point cloud and improves the matching accuracy.
The optimized pose obtained by point cloud matching is sent to UKF as the measured
value. Ping Jiang et al. [141] designed a rank Kalman filtering method for obtaining the
robot motion trajectory by utilizing the IMU and LiDAR observations. The proposed
method improves the localization accuracy of indoor mobile robots under nonlinear and
non-Gaussian noise models. Lin et al. [142] proposed an iterative Kalman filtering scheme
by using the error states. It utilizes the IMU information as an information carrier to
discretize the continuous motion model and integrate the three sensors to generate more
accurate trajectories. Wei Xu et al. [143] proposed a LiDAR–inertial odometry framework
that contains a state estimation module and a mapping one. In this way, the IMU and
LiDAR data are input into the iterative Kalman filter for optimal estimating position.

3.2. Multi-Sensor Fusion Algorithm Based on Particle Filter

The Kalman filter and its improved algorithms are only capable of handling Gaussian
distributions. When dealing with arbitrary distributions, the adoption of Kalman filter-
related methods may result in more errors. The particle filter-based approach, known
as the Monte Carlo algorithm, is able to deal with the arbitrary distribution of multiple
samples [144]. In this method, the probability density function of the indoor AMR’s position
can be approximated using a set of “samples” or “particles”, and regions with a larger
number of particles have a higher probability. Each particle denotes a hypothetical pose of
the considered mobile robot, while its weight indicates the extent of the match between the
hypothesis and the true state. Typically, larger samples are used for global localization, and
smaller samples are used for pose tracking.

When using the Monte Carlo algorithm for global localization, particles must be
distributed throughout the entire map due to the unknown initial position. However,
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this can result in a significant amount of computation and reduced localization efficiency.
To enhance global localization efficiency, researchers have conducted numerous studies
on sensor fusion. This involves rough localization followed by accurate localization, as
shown in Figure 8. Song Xu et al. [145] designed a global localization method using the
camera and LiDAR. In this method, global localization includes two processes: coarse
localization and fine localization. In coarse localization, existing features from a pre-trained
convolutional neural network (CNN) are used for determining the candidate positions
based on images extracted from a monocular camera. In fine localization, the precise robot
position is estimated by adaptive Monte Carlo localization based on LiDAR, where the
candidate position is used as a seed for initial random sampling. Gengyu Ge et al. [146]
proposed a method for localizing mobile robots by fusing camera and LiDAR data. The
method first obtains coarse localization from the camera’s text-level semantic information,
and then enhances the localization by using the Monte Carlo localization (MCL) method
with LiDAR data. Huang Y et al. [147] presented a global localization approach using
LiDAR and dual AprilTag for enhancing the global localization of mobile robots. This
method utilizes AprilTag-based localization results as a rough localization for the adaptive
Monte Carlo global localization algorithm. Based on this rough localization, precisely
located particles are generated, which enhances the efficiency, as well as the success rate
during global localization.

Figure 8. Multi-sensor fusion algorithm based on particle filter.

3.3. Multi-Sensor Fusion Algorithm Based on Neural Network

In recent years, researchers have introduced machine learning technology to mobile
robots, which has led to the rapid development of mobile robotic systems [148,149]. Neural
networks have also been widely studied and applied in multi-sensor fusion for mobile
robots. Neural network-based methods can automatically extract features from data,
avoiding the difficulty and uncertainty of manually designing features while having an
improved generalization ability and robustness, as shown in Figure 9. Compared to
Kalman filter-based methods, neural network-based methods are more capable of handling
nonlinear problems and achieving higher accuracy.

Figure 9. Multi-sensor fusion algorithm based on neural network.
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Carlos Eduardo Magrin et al. [150] proposed a hierarchical sensor fusion (HSF) method
with an artificial neural network (ANN) for mobile robot self-localization. This method uses
a two-level multilayer perceptron (MLP) to fuse the normalized sensor data of the sonar
octagon, digital compass, and wireless network signal strength measure. Li et al. [151]
applied neural network fusion of LiDAR and an encoder for mobile robot localization. In
this method, LiDAR data and odometer data obtained through an encoder are fed into a
three-layer neural network for fusion to improve the mobile robot’s positioning accuracy.
Chi Li et al. [152] presented a deep learning-based approach to localizing a mobile robot
using a 2D LiDAR and an IMU. The method utilizes a recursive convolutional neural
network (RCNN) to fuse laser and inertial data and estimate the scan-to-scan attitude.
The approach demonstrates greater robustness than traditional geometric-based methods
in challenging situations, such as high angular speeds. Jieun Lee et al. [153] provided
a deep neural network architecture (FusionLoc) for mobile robot relocalization with a
camera and 2D LiDAR. This method contains two feature extraction modules, i.e., a multi-
head self-attention (MHSA) module and a regression one. To be more specific, the feature
extraction module extracts features from RGB images and LiDAR point clouds, respectively;
the MHSA module performs feature fusion; and the regression module realizes position
estimation. This approach is capable of achieving improved performance as compared with
traditional end-to-end relocalization approaches that only acquire data from one sensor. A
fingerprint-assisted localization scheme for mobile robots is explored, which fuses RSSI
and magnetometer measurements [154]. However, the accuracy and stability of RSSI-based
fingerprint localization methods can be affected by various environmental disturbances.
The magnetic field strength can provide information about the level of disturbances. The
method uses a fusion of magnetometer measurements and fingerprint data from RSSI
for mobile robot localization through multilayer perceptron (MLP) feedforward neural
networks. Andres J. Barreto-Cubero et al. [155] fused an ultrasonic sensor and a stereo
camera with 2D LiDAR through the artificial neural network to improve obstacle detection
in mobile robots by using the capability of ultrasonic sensors to detect glass and the ability
to accurately detect objects in the 3D environment of the stereo camera.

3.4. Other Multi-Sensor Fusion Algorithms

The weighted average method is a direct and effective approach that simplifies the data
fusion process during algorithm design and ensures real-time calculations. The core idea of
the method is how to weight multiple sensors and how to determine the correction method.
Wen et al. [156] combine an incremental encoder with a camera to calculate the encoder-based
local position and globally update the position through the similarity of the camera to the
environment. Jiang et al. [157] achieved the combination of feature point cloud maps and grid
maps by establishing joint error co-visual between LiDAR and the monocular camera. Zheng
et al. [81] divided the SLAM system into two subsystems, i.e., VIO and LIO. The coupled
relationship between the two subsystems is achieved by sharing the point map data between
the two to achieve accurate position estimation. However, because the weighted average
method does not take into account the relationship between the front and rear states of the
robot, its anti-disturbance ability is not excellent in the face of highly dynamic environments.
Kosisochukwu Pal Nnoli et al. [43] fused infrared and ultrasonic sensors to detect obstacles.
Their approach uses an error-filtering covariance and averaging algorithm to logically fuse
distance measurements from a pair of infrared and ultrasonic sensors to track the proximity
of environmental obstacles within a 180-degree range in front of a mobile robot.

Graph optimization algorithms in SLAM are also used as a framework for multi-sensor
fusion. Ran Liu et al. [158] presented a map-building scheme for UWB, LiDAR, and odom-
etry. In this method, a graph optimization framework with two optimization processes is
designed to handle the fusion problem of UWB ranging information, odometry, and LiDAR
information. The first optimization process takes the poses of the UWB nodes as vertices in
the graph, and the edges of the UWB ranges and odometers are used as constraints, and
roughly optimized robot trajectories are obtained. The second one integrates the edges
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determined based on LiDAR ICP scan matching to obtain the accurate robot trajectory.
Along this line, then, the resulted trajectory can be incorporated into the LiDAR data,
yielding the occupancy map of the industrial scenes. The graph optimization process can
better deal with the influence of nonlinear systems on the robot. However, the algorithm’s
high calculation complexity, caused by the need to traverse previous state variables, can
make real-time updating difficult during robot navigation. The robot’s state is generally
optimized when loop closure and relocalization are triggered.

4. Discussions and Future Trends

4.1. Discussions

The perception system of an AMR offers information about the robot’s association with
the environment, which is essential for successful navigation. To ensure the indoor mobile
robot completes the navigation task successfully, it is essential to reasonably select and
optimize the sensors and algorithms used in the perception system based on the specific
needs of the scenario.

IMU-based trajectory inference methods can only be used for short periods of time and
can be used to assist other localization systems. For mobile robot localization, beacon-based
positioning systems (including RF sensors, ultrasonic sensors, and infrared sensors) can
provide stable and accurate absolute position information. However, they require regular
installation and maintenance, and widespread deployment can lead to increased costs.
LiDAR, or vision cameras, can be used for accurate and stable positioning. However,
their localization relies on environmental information extracted by the sensors, making
them susceptible to changes in the environment. For scenarios with frequent changes,
beacon-based localization methods are more appropriate.

For the SLAM of a mobile robot, both LIDAR and vision cameras have their own
advantages. Laser point cloud data require less computation, are easy to compute, are
accurate in ranging, and are less susceptible to large changes in lighting. However, the
environmental information collected by LiDAR is not sufficient, and the map constructed
using 2D LiDAR only contains distance information about the environment. The rotating
mechanism of the device is simple, which negatively impacts the stability of its internal
structure over time. Vision SLAM provides a more detailed description of the environment,
including texture information, which enhances accuracy and enables the recognition of dif-
ferences between environments. While laser SLAM has limitations, vision SLAM, equipped
with a camera, offers greater stability in terms of internal structure. Mobile robots with
only a single camera as a sensor in indoor environments are limited by environmental
conditions and lack robustness.

For obstacle detection, vision cameras are effective for recognizing obstacles as they
provide rich environmental information. Ultrasonic sensors and LiDAR are precise in
measuring the distance and position of obstacles.

4.2. Future Trends

Benefiting from computer science, artificial intelligence, and visual approaches, per-
ception technology will develop rapidly, and the following aspects are worth emphasizing:

1: Multi-source Information Fusion. The study and development of mobile robots
have extended their possible applications, along with increased demands for their
usage. However, a single sensor may struggle to satisfy the navigation requirements
of complex scenes due to its inherent limitations. Along this line, then, multi-sensor
fusion becomes a crucial area of research and development for indoor AMR. Multi-
sensor fusion can improve the accuracy, efficiency, and stability of localization, map
building, and obstacle detection by providing more comprehensive environmental
information to the perception system. Multi-sensor fusion provides accurate and
comprehensive information to the decision-making system, enabling mobile robots to
adapt better to complex environments and complete navigation tasks more efficiently
and robustly.
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2: Flexible and efficient optimization strategies. When mobile robots work in various
complex and dynamic environments, there is a large amount of unknown model
noise and roughness in the observation information obtained by sensors. To ensure
the efficiency, stability, and accuracy of the AMR system, appropriate optimization
strategies should be explored based on the specific environment and dynamic changes.
In addition, there are many complex nonlinear operations in the optimization process.
To improve computational efficiency when dealing with large-scale or multi-modal
data, methods such as parallel computing and distributed computing can be adopted.

3: Integration with neural networks. Since neural networks are able to enhance the stabil-
ity of mobile robot systems, the combination of relevant neural networks and mobile
robots has attracted significant interest. Additionally, the self-learning capabilities of neu-
ral networks can address sensor interference and external environmental factors, thereby
improving localization anti-interference ability. However, current neural network-based
algorithms still encounter limitations for localizing in various indoor scenarios. When
employing the same neural network algorithm, the mobile robot experiences signifi-
cant errors in varying environments. Further research should explore the combination
of additional sensors and the application of more complex neural network structures
to meet the navigation requirements in diverse indoor environments. With the emer-
gence of large-scale language models and advancements in chip technology, neural
network-based approaches are expected to rapidly expand in the future.
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