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Preface

“Machines, Mechanisms and Robots: Theory and Applications (MMR-T&A)” is an interdisciplinary

collection, published in MDPI’s journal Machines, that is focused on Mechanical Systems analyzed from

both the theoretical and the applicative points of view. It aims to report scientific advancements in all

fields concerning mechanical system design. This reprint collects the first ten papers published in the

MMR-T&A collection and is the first volume of the MMR-T&A series, which will release one volume

for every ten papers published in the MMR-T&A collection. The ten papers collected in this volume

include one review on contact models, two papers addressing obstacle avoidance, one paper on geometric

constraint programming (GCP), three papers presenting novel mechanisms, one paper on mechanism

performances, and two papers addressing manufacturing issues.

This volume is dedicated to the memory of Prof. Ettore Pennestrì (Reggio Calabria, Italy, May 16,

1957 – Rome, Italy, August 29, 2024).

Raffaele Di Gregorio

Collection Editor
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Editorial

Theory and Applications on Machines, Mechanisms and Robots,
and the Figure of Ettore Pennestrì
Raffaele Di Gregorio

Laboratory of Mechatronics and Virtual Prototyping (LaMaViP), Department of Engineering, University of
Ferrara, 44122 Ferrara, Italy; raffaele.digregorio@unife.it

This editorial presents a book that marks the beginning of the MMR-T&A series, which
compiles articles from the collection Machines, Mechanisms, and Robots: Theory and Applications
(MMR-T&A), published in MDPI’s journal Machines. The first volume of this series includes the
first ten published papers from the collection. It starts with one review [1] on contact models.
Then, it continues with two papers [2,3] addressing obstacle avoidance in different contexts,
one more paper [4] on geometric constraint programming, and three papers [5–7] presenting
novel mechanisms. Finally, it closes with one paper [8] on mechanism performances and
two papers [9,10] addressing manufacturing issues. Going forward, a new volume in the
MMR-T&A series will be released for every ten papers published.

The book is dedicated to the memory of Ettore Pennestrì (Reggio Calabria, Italy,
16 May 1957–Rome, Italy, 29 August 2024), who co-authored one [1] of the papers included
in this collection. Those who knew him knew how important sharing his knowledge and
his findings was to him, especially with students and young researchers (Figure 1 shows
him during a lecture).

 

Figure 1. A picture of Ettore Pennestrì during a lecture.

Ettore Pennestrì earned his Laurea in Mechanical Engineering from the University
La Sapienza of Rome in 1980. He continued his studies at Columbia University, earning a
Master’s degree (1987) and a Ph.D. (1991) under the guidance of Ferdinand Freudenstein.
Upon returning to Italy, he began his academic career at the University of Calabria and
joined the University of Rome Tor Vergata faculty in 1991, where he initially served as an
Associate Professor and then, from 2001, served as a Full Professor of Applied Mechanics.

Throughout his career, he focused on research into kinematics, dynamics of mech-
anisms, biomechanics, gear transmission design, and vibration damping. He authored

Machines 2024, 12, 916. https://doi.org/10.3390/machines12120916 https://www.mdpi.com/journal/machines1
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over 100 scientific papers published in international journals and several textbooks used in
university education.

His contributions span theoretical research, practical applications, and advanced
numerical methodologies in applied mechanics. In computational kinematics, he developed
algorithms using dual numbers and dual quaternions for the analysis of rigid body motion
that are widely applied in robotics and biomechanics for motion optimization. In multibody
dynamics, he authored/co-authored studies on the simulation and analysis of mechanical
systems with multiple interconnected bodies, such as gears and linkages, which include
modeling dynamic systems for applications in vehicles and robotics. In gear train efficiency,
he published foundational research on the mechanical efficiency of gear trains, including
epicyclic and hybrid systems that include closed-form formulas for analyzing power flow
and losses in complex gear mechanisms. In biomechanics, he pioneered the development
of musculoskeletal models for biomechanical analysis, particularly focusing on the upper
limb, which contributed to ergonomics, rehabilitation engineering, and sports science. In
vehicle powertrains and vibrations, he investigated vibration isolation techniques and
efficiency in vehicle powertrain systems, emphasizing hybrid vehicle applications.

In addition to his scientific work, he held important roles in the editorial boards of
international journals; for example, he was an Associate Editor of the ASME Journal of
Mechanical Design; an honorary member of the Editorial Board of Mechanism and Machine
Theory; and a member of the Advisory Board of the Journal of Multibody System Dynamics.

Ettore Pennestrì held numerous prestigious positions and participated actively in
international initiatives, such as the following:

• He was a member of the scientific committee for the ECCOMAS Thematic Confer-
ences on Multibody Dynamics in several editions: 2005 (Madrid), 2007 (Milan), 2009
(Warsaw), 2015 (Barcelona), 2017 (Prague), and 2019 (Duisburg). He also contributed
to the scientific committees of international workshops in Romania and Italy.

• He was a representative of the National Research Council (CNR) at the International
Union of Theoretical and Applied Mechanics (IUTAM).

• He was an elected coordinator of the Italian study group on kinematics and dynamics
of multibody systems within AIMETA, the Italian Association of Theoretical and
Applied Mechanics.

His passion for teaching led him to publish numerous influential books on kine-
matics, dynamics, and multibody system simulation methods. His last book, Design
of Approximate Curve Tracing Linkages: The Chebyshev Min-Max Optimality Criterion (with
V.R. Shanmukhasundaram and Marco Cirelli), was published a month before his passing
away, and an e-book version was offered as a free download on his ResearchGate profile
(https://www.researchgate.net/profile/Ettore-Pennestri, accessed on 9 December 2024),
which is an example of his strong commitment towards the spread of knowledge.

Ettore Pennestrì was appreciated not only for his scientific contributions but also for
his ability to support students and colleagues in their academic and professional journeys.
As a scientist who loved science and books, his personal library contained over six hundred
volumes on kinematics and applied mechanics.

He was a scientist who went beyond science. He never read books simply to under-
stand their scientific content; he was also interested in the authors’ lives and the historical
context in which they lived. His lectures, rich in scientific content, were also filled with
references to the history of great scientists of the past.

His commitment, rigor, and generosity will continue to inspire both the scientific
and academic communities. For those who had the privilege of knowing him, Ettore will
remain a guide and a lighthouse, lighting the way for research and applied mechanics.

Acknowledgments: The author acknowledges Pier Paolo Valentini for his help in synthesizing the
many contributions of Ettore Pennestrì to mechanism and machine science.

Conflicts of Interest: The author declares no conflicts of interest.
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Review

Review with Analytical-Numerical Comparison of Contact
Force Models for Slotted Joints in Machines

Matteo Autiero 1,*,†,‡, Mattia Cera 1,†,‡, Marco Cirelli 2,‡, Ettore Pennestrì 1,‡ and Pier Paolo Valentini 1,‡

1 Department of Enterprise Engineering, University of Rome Tor Vergata, 1 00133 Roma, Italy
2 Department of Mechanical Engineering, University Niccolò Cusano, 1 00133 Roma, Italy
* Correspondence: matteo.autiero@uniroma2.it
† Current address: Dipartimento di Ingegneria dell’Impresa, via del Politecnico, 1 00133 Rome, Italy.
‡ These authors contributed equally to this work.

Abstract: The pin-in-the-slot joint is a common element in machines, and the dynamics of joints
with clearances is an actively investigated topic. Important applications of such a joint can be found
in Geneva mechanisms, robotized gear selectors, centrifugal vibration absorbers (CPVA) and other
important mechanical devices. The paper will review the main analytical steps required to obtain
the equations characterizing the different force contact models. Furthermore, a numerical test bench
where such models are introduced for modeling the clearances between the pin and slot is proposed.
In this regard, the present study will offer a comparison and discussion of the numerical results
obtained with the different force contact models herein reviewed.

Keywords: slotted joints; contact dynamics; CPVA; curvature analysis

1. Introduction

Reuleaux distinguished between lower and higher kinematic pairs. The first category
includes pairs with surface contact between kinematic elements. The second category
contains the remaining ones, i.e., all those with line or point contacts. The cited classification
is based on an ideal geometry of kinematic elements. In fact, no clearance was assumed
between the contacting surfaces of kinematic elements. This assumption is mainly adopted
for rigid body kinematic and dynamic analyses. However, the presence of clearances cannot
be avoided in actual manufacturing and is a cause of impact forces. There is a broad class
of machines, such as robotized gear selectors [1], vibrating conveyers, vibratory diggers,
centrifugal vibration absorbers (CPVA) [2–6], etc., where a reliable analysis requires an
approach to kinematic pairs modeling consistent with the presence of clearances and elastic
couplings between bodies. The clearance allows a tiny vibration displacement governed by
the geometry and compliance of both kinematic elements’ surface boundaries. The forces
between the colliding bodies are characterized by high values acting for a short time interval,
much less than the system-free vibration natural period of oscillation. The impact pulsating
forces, triggered during the indentation of surfaces, may generate phenomena having a
negative effect on system operation. These negative effects are amplified by the increase
in operation speed. In the early sixties of the nineteenth century, the modeling of elastic
couplings between machine links was pioneered by Kobrinskiy and Babitsky [7]. They
recognized that clearances play a fundamental role in machine dynamics and introduced a
joint with a one-dimensional clearances model based on the impact of pendula masses.

Many investigations (e.g., [8–11]) on impact loads caused by the presence of joint
clearances are on record. Due to their high number and the differences in the theoretical
approaches, this review does not have the ambition of being exhaustive.

Strictly related to the problem of impact dynamics is the topic of contact force models
(e.g., [10,12–14]), impact with friction (e.g., [15]) and elastodynamic contact (e.g., [16]).

Machines 2022, 10, 966. https://doi.org/10.3390/machines10110966 https://www.mdpi.com/journal/machines4
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Thoughtful reviews on the contact force models are already available (e.g., Gilardi and
Sharf [17], Schwab et al. [18], Haddadi and Hashtrudi-Zaad [19], Zhang and Sharf [13,20],
Pereira et al. [21], Machado et al. [22],) as well as dedicated important monographies (e.g.,
Goldsmith [23], Johnson [24], Flores and Lankarani [25]). In particular, Chapter 3 of this last
reference offers an interesting quantitative comparison of different viscous contact force
models. Flores and Lankarani [25] addressed the following critics of the linear Kelvin–Voigt
contact force model:

• the damping component force has a discontinuity at the beginning of the contact;
• although at the end of restitution phase there is a null indentation, the contact force is

negative due to a nonzero relative contact velocity;
• the damping coefficient is constant for the entire impact time interval.

One of the distinctive features of the present review work is the summary and discus-
sion of the main physical conditions imposed and an outline of the analytical steps that
establish the contact force models. In other words, each contact force equation is reported
after an outline of its theoretical bases. In an effort to maintain the original nomenclature of
the investigations reviewed, it is possible that there is an overlap of meaning for different
notations. The authors apologize to the readers for any inconvenience. However, the
Nomenclature section should solve any ambiguity. Moreover, the reader could skip the
analytical details and directly use the model equations herein marked.

The purposes of this paper are:

1. To propose a novel polynomial fitting of implicit elastic contact force models.
2. To offer a summary of the analytical derivations leading to some viscous force contact

models available in the literature.
3. To investigate the difference in the different elastic contact force models in a multibody

dynamics simulation.

The paper is organized as follows:

• In Section 2, the cylindrical elastic models have been summarized in their original
formulation. Then, polynomial fits that explicitly link force and elastic indentation
have been summarized in tables for different compliances.

• In Section 3, for different viscous analytical models, the main analytical steps that
brought to their deduction have been reported.

• In Section 4, the multibody dynamics simulations of a scotch–yoke linkage with a
curved pin in the slot have been discussed. In particular, for each simulation, a
different elastic contact model was assumed and tested.

• Finally, Section 5 contains the conclusions.

2. Cylindrical Elastic Contact Models

An extended review of elastic contact force models has been presented by
Skrinjar et al. [26] and Lankarani and Flores.

This section is focused on elastic contact force models that establish a polynomial
relationship between the normal force and elastic indentation of cylindrical surfaces along
a line contact. Table 1 lists some classic formulas as originally reported. A main drawback
of such formulas is the often implicit relationship between force and indentation.

Thus, the contact stiffness parameter K is not immediately available, and simulation
times increase. To avoid such inconveniences, in this paper, the various force-indentation
relationships have been expressed as fitted polynomial equations, and the corresponding
stiffness K is numerically reported.

In computer simulation, the value of δ is available and related to the amount of
interference between cylindrical shapes. Conversely, the value of Fn corresponding to a
prescribed δ must be computed. The use of implicit relationships between δ and Fn, such as
those listed in Table 1, requires an iterative computational scheme and increases computing

5
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times. To speed-up the computation, a simplified polynomial version of each model has
been deduced. In particular, the Hertz-type elastic contact force model is assumed

Fn = Kδn (1)

the values of K and n have been computed fitting the values of Fn and δ obtained from the
implicit relationship reported in Tables 2–9 for different values of ΔR and materials (Steel
and Aluminum).

Our numerical tests show that the time to evaluate the polynomial is two orders of
magnitude less than the one required for the iterative solution.

Koshy et al. [27] studied, as well as experimental tests, the influence of the use of
different contact force models with dissipative damping on the dynamic response of a
slider-crank with dry revolute clearance joints.

A general theory for the computation of tangential and torsional compliance during
the contact of two isotropic bodies has been proposed by Mindlin [28].

Hertz’s theory of impact between bodies of circular shape (e.g., [29]) considers the
indentation governed by the following differential equation:

mr δ̈ + Fn = 0 (2)

where mr =
M1+M2
M1 M2

and

Fn = Kδ
3
2 (3)

is the compliance force.
Equation (2) can be integrated into the form

1
2

(
δ̇2 − v2

i

)
= −2

5
mrKδ

5
2 (4)

where vi is the value of δ̇ at the beginning of impact. A numerical solution of (4) was
discussed by Deresiewicz [30].

Table 1. Cylindrical contact-force models.

Contact Force Model Formula Notes

Radzimovsky [31] δ =
W

πE∗

[
2
3
+ ln

(
4Ri

b

)
+ ln

(4Rj

b

)]
Goldsmith [23] δ = W

(
hi + hj

)⎡⎣ln

⎛⎝ Lm

FnR
(

hi + hj

)
⎞⎠+ 1

⎤⎦ m = 1

Dubowsky-Freudenstein [32–34] δ = π

( hi + hj

2a

)⎡⎣ln

⎛⎝
(

Ri − Rj

)
8a3

FnRiRjπ
(

hi + hj

)
⎞⎠+ 1

⎤⎦Fn

Lankarani-Nikravesh [35] δ =

(
3Fn

4E∗R0.5

) 1
n

ESDU-78035 [36] δ = W
(

hi + hj

)⎡⎣ln

⎛⎝4L
(

Ri − Rj

)
Fn

(
hi + hj

)
⎞⎠+ 1

⎤⎦
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Table 1. Cont.

Contact Force Model Formula Notes

Johnson [24] δ =
W

πE∗

[
ln
(

4πE∗ΔR
W

)
− 1

]
Pereira et al. [37,38] Fn =

(aΔR + b)LE∗
ΔR

δn

Pereira et al. [37] (internal contact)

a = 0.49 b= 0.10 n = YΔR−0.005

with

Y =

{
1.56[ln(1000ΔR)]−0.192 if ΔR ∈ [0.005, 0.750] mm
0.0028ΔR + 1.1083 if ΔR ∈ [0.750, 10.0] mm

Pereira et al. [38]

a =

{
0.965 for internal contact
0.39 for external contact

b =

{
0.0965 for internal contact
0.85 for external contact

n =

{
YΔR−0.005 for internal contact
1.094 for external contact

with

Y =

{
1.51[ln(1000ΔR)]−0.151 if ΔR ∈ [0.005, 0.34954] mm
0.0151ΔR + 1.151 if ΔR ∈ [0.34954, 10.0] mm

Table 2. Polynomial version of Radzimovsky’s [31] contact force model (Steel).

ΔR
mm

K
N/mmn n Max Error %

0.50 1.04·105 1.162 6.1
5.00 6.24·104 1.118 4.1
10.0 5.55·104 1.109 3.8
30.0 4.72·10 4 1.097 3.2
60.0 4.32·104 1.091 3.0
80.0 4.17·104 1.089 2.9

Table 3. Polynomial version of Radzimovsky’s [31] contact force model (Aluminum).

ΔR
mm

K
N/mmn n Max Error %

0.50 41.308·103 1.195 14.6
5.00 22.979·103 1.135 9.0
10.0 20.228·103 1.123 8.0
30.0 16.993·10 3 1.108 6.7
60.0 15.434·103 1.100 6.1
80.0 14.867·103 1.098 5.8

7
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Table 4. Polynomial version of Johnson’s [24] force model (Steel).

ΔR
mm

K
N/mmn n Max Error %

0.50 1.42·105 1.192 7.4
5.00 7.53·104 1.133 4.8
10.0 6.54·104 1.122 4.3
30.0 5.44·10 4 1.107 3.7
60.0 4.91·104 1.100 3.4
80.0 4.72·104 1.097 3.2

Table 5. Polynomial version of Johnson’s [24] force model (Aluminum).

ΔR
mm

K
N/mmn n Max Error %

0.50 60.628·103 1.242 18.9
5.00 28.324·103 1.155 10.9
10.0 24.286·103 1.140 9.5
30.0 19.782·10 3 1.121 7.8
60.0 17.703·103 1.111 7.0
80.0 16.962·103 1.083 6.7

Table 6. Polynomial version of Goldsmith’s [23] contact force model (Steel).

ΔR
mm

K
N/mmn n Max Error %

0.50 2.86·104 1.066 2.0
5.00 2.39·104 1.057 1.6
10.0 2.27·104 1.055 1.5
30.0 2.09·10 4 1.051 1.4
60.0 1.94·104 1.048 1.3
80.0 1.84·104 1.046 1.2

Table 7. Polynomial version of Goldsmith’s [23] contact force model (Aluminum).

ΔR
mm

K
N/mmn n Max Error %

0.50 10.032·103 1.071 3.7
5.00 8.354·103 1.061 2.9
10.0 7.933·103 1.058 2.8
30.0 7.273·10 3 1.054 2.5
60.0 6.752·103 1.050 2.3
80.0 6.394·103 1.048 2.1

Table 8. Polynomial version of the EDSU-78035 [36] contact force model (Steel).

ΔR
mm

K
N/mmn n Max Error %

0.50 2.84·103 1.165 12.2
5.00 1.77·103 1.119 8.0
10.0 1.59·103 1.110 7.2
30.0 1.36·10 3 1.098 6.1
60.0 1.25·103 1.092 5.6
80.0 1.21·103 1.090 5.4
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Table 9. Polynomial version of the EDSU-78035 [36] contact force model (Aluminum).

ΔR
mm

K
N/mmn n Max Error %

0.50 10.868·103 1.165 23.6
5.00 6.395·103 1.119 14.4
10.0 5.691·103 1.110 12.8
30.0 4.849·10 3 1.098 10.7
60.0 4.437·103 1.092 9.6
80.0 4.286·103 1.090 9.3

3. Viscous Contact Models

The damping factors due to the material hysteresis have great importance in dynamic
simulations.

Zhang and Sharf [13] and Flores and Lankarani [25] (See p. 44 of [25]) compiled tables
where, for different models, the equations of constitutive laws and the corresponding
damping factors have been summarized.

The effects of clearances on machine dynamics is a topic of great interest, and many
contributions are on record. The monograph authored by Flores et al. [10,39,40] presents
methodologies aimed at the simulation of multibody dynamics systems, taking into account
joint clearances.

3.1. Dubowsky and Freudenstein (1971)

Dubowsky and Freudenstein [32–34] developed a systematic and unified analysis of
the dynamics of general planar mechanisms with clearances. Figure 1 represents their
impact-pair model governed by the following differential equations:

• Non-contact period |Xr| ≤ r

Ẍr =
M1F2(t)− M2F1(t)

M1M2
(5a)

Ẍm =
M1F2(t) + M2F1(t)

M1M2
(5b)

• Contact period |Xr| ≥ r

Ẍr = −M1 + M2

M1M2
g(Xr) +

F2(t)
M2

− F1(t)
M1

(6a)

Ẍm =
M2 − M1

M1M2
g(Xr) +

F2(t)
M2

+
F1(t)
M1

(6b)

The contact compliance force Fn was computed by means of the following Hertz
contact formula:

Fn =

4
(

R1R2

R1 − R2

) 1
2

3(h1 + h2)
δ

3
2 (7)

where the indentation, for the internal-pin configuration, follows from

δ = π

(
h1 + h2

2a

)[
ln
(

(R1 − R2)8a3

FnR1R2π(h1 + h2)

)
+ 1

]
Fn (8)

where a is half the length of the pin.

9
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Figure 1. Dubowsky and Freudenstein elastic coupling model. F1, F2: Forces; M1, M2: Masses; X1,
X2: Displacements; r: clearance [33].

3.2. Hunt and Crossley (1975)

Hunt and Crossley [41] start by expressing the variation of the kinetic energy of a mass
impacting against a stationary body as follows:

ΔE =
1
2

mr

(
v2

o − v2
i

)
=

1
2

mrv2
i

[
1 −

(
1 − αv2

i

)]
(9)

where m is the mass of the moving body, and (The equation is valid for a Maxwell material
and low values of vi. See also [24], p. 368 or [23], plots on p. 259 and discussion on p. 265.
The constant α is determined experimentally and has the dimensions of an inverse speed.
Hunt and Crossley estimate a value within [0.08, 0.32] s/m)

α =
1 − e

vi
(10)

where e is the coefficient of restitution, and vi is the initial effective mass-relative speeds.
Since α < 1, with acceptable accuracy

ΔE = αmrv3
i (11)

Consequently, the force versus displacement plot must show a hysteresis loop, as
shown in Figure 2.

Deformation

Fo
rc
e

Figure 2. Hunt and Crossley: Indentation force hysteresis loop [41], where the area of such a loop
represents the energy loss.
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Moreover, they were well aware that the differential equation of the idealized Kelvin–
Voigt model

mr δ̈ + cδ̇ + Kδ = 0 (12)

could not reliably reproduce the overall nonlinear pattern of the impact. Thus, they
proposed an improvement substituting (12) with

mr δ̈ + (λδn)δ̇ + Kδn = 0 (13)

Moreover, they observed that for a small dissipation of energy

1
2

mrv2
i ≈

∫ δm

0
Kδndδ (14)

or

vi =

√
2K

mr(n + 1)
δ

n+1
2

m (15)

where δm is the maximum indentation value.
Similarly, for an intermediate position of the impact phase, one has

1
2

mrv2 ≈ 1
2

mrv2
i −

∫ δ

0
Kδndδ (16)

or

v =

√
2K

mr(n + 1)

√
δn+1

m − δn+1 (17)

Furthermore, assuming that the linear area of the hysteresis loop is shared sufficiently
equally between the inward and outward indentation phases, one has

E =
∮

cvdδ ≈ 2
∫ δm

0
cvdδ (18)

or

ΔE = 2

√
2K

mr(n + 1)

∫ δm

0
c
√

δn+1
m − δn+1dδ (19)

To integrate (19), a damping coefficient of the form

c = λδn (20)

is assumed, and the following expression is deduced

λ =
3
2

αK (21)

Thus, one may conclude that (12), representing the free-damped half cycle of vibration
of the vibroimpact, can be more realistically modified as follows

mr δ̈ + Kδn
(

1 +
3
2

αδ̇

)
= 0 (22)

One of the merits of Hunt and Crossley is the recognition that a linear elastic spring
cannot accurately represent the physics of the energy transfer process during the impact.
Flores and Lankarani (see Section 3.1 of [25]) clearly show, with convincing arguments, the
limits of the linear Kelvin–Voigt model.

11



Machines 2022, 10, 966

In conclusion, the contact force equation proposed is the following

Fn = Kδ
3
2

(
1 +

3
2
(1 − e)

δ̇(−)
δ̇

)
(23)

Moreover, Hunt and Crossley, well aware of the theoretical limitations of the coefficient
of restitution concept, recommended its use in an engineering context provided verifications
and extensions for new materials and impacting surfaces properties were available. It is well
known that small changes in impact conditions have a strong influence on the coefficient of
restitution. Several studies (e.g.,Tatara and Moriwaki [42], Thornton [43], Seifried et al. [44],
Minamoto and Kawamura) [45]) address the theoretical and experimental coefficient of
restitution evaluation for the impact of bodies of different materials.

3.3. Herbert and McWhannel (1975)

Herbert and McWhannel [46] followed an approach similar to the one of Hunt and
Crossley and deduced

α =
6(1 − e)

vi[(2e − 1)2 + 3]
(24)

In particular, they proposed the following formula for the contact force:

Fn = Kδ
3
2

(
1 +

6(1 − e)
[(2e − 1)2 + 3]δ̇(−)

δ̇

)
(25)

For the coefficient of restitution e, Herbert and McWhannel recommended the follow-
ing empirical equation:

e = 1 − 0.026
(

δ̇(−)
) 1

3 (26)

with the velocity expressed in mm/s.

3.4. Lee and Wang (1983)

Lee [47] observed that, due to their inherent kinematic limitations, Geneva mechanisms
are subjected to shock loading. Moreover, pin-slot compliances, elastic deflections and
imbalances interact to contribute to the dynamic load between the pin and slot. The design
procedure proposed aims to minimize shock loading and contact stresses. In particular, the
Hertz formula contacts a plane surface to estimate the pin-slot contact stress.

The physical model proposed by Lee and Wang [48,49] is the same as the one from
Dubowsky and Freudenstein [33] (see Figure 1). For the modeling of damping, the differ-
ences regard the introduction of two new functions. The first one is apt to be evaluated
by means of empirical or published experimental data. The second one is based on a
heuristic choice of the damping force consistent with the boundary conditions imposed by
the force-deformation hysteresis loop. The first damping function takes the form

D1 = ζ1T1 (27)

where ζ1 and T1 represent the damping factor and an indentation function, respectively.
The simplest choice of T1 is linear:

T1 = δ (28)

From the fitting of experimental data, it is possible to express the coefficient of restitu-
tion e as a linear polynomial

e .
= α0 − α1vi (29)

where α0 and α1 are the polynomial coefficients and vi. By definition

e = −vo

vi
(30)

12
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The differential equation governing the indentation during the contact phase between
the body surfaces can be written in the form

mr δ̈ + (ζ1δ)δ̇ + Kδ = P(t) (31)

and its solution is obtained as polynomial approximation

δ(t) .
= vit− ζ1vi + K

6mr
vit3

+
(4ζ1vi + K)(ζ1vi + K)vi

120m2
r

t5 + . . . (32)

Since the relative velocity at the end of the outward contact phase (t = te) is

vo = δ̇(te) = vi− ζ1vi + K
2mr

vit2
e

+
(4ζ1vi + K)(ζ1vi + K)vi

24m2
r

t4
e + . . . (33)

The substitution of (33) into (30) yields the coefficient of restitution

e = −1 +
Kt2

e
2mr

+

(
1 − 5Kt2

e
12mr

)
ζ1t2

e
2mr

vi −
ζ2

1t4
e

6m2
r

v2
i + . . . (34)

Comparing (29) with (34), we obtain

α0 = −1 +
Kt2

e
2mr

(35)

To estimate te, Lee and Wang set (This choice is consistent with the usual polynomial
fitting of coefficient of restitution e = 1 − α1vi.) α0 = 1 in (27) and obtained

t2
e = 4

mr

K
(36)

thus
ζ1 =

2mr(
5Kt2

e
12mr

− 1
)

t2
e

α1 ≈ 3
4

α1K (37)

The algebraic structure of the result matches with the one deduced by Hunt and
Crossley [41] by means of an energy balance. The first damping coefficient is

ζ1
.
=

(
3
4

α1K
)

δ (38)

In conclusion, the first contact force formula proposed by Lee and Wang is

fn = Kδ

(
1 +

3
4

α1δ̇

)
(39)

The derivation of the second damping function follows the same guidelines as the
first damping function. In particular, such a function is expressed as

D2 = ζ2T2 (40)

13
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where ζ2 is a damping factor, and

T2 =
δ + |δ|

2δ
exp

{
[(δ − ε)− |δ − ε|] q

ε

}
(41)

is the transition function, with ε being the width of the impact transition zone (see Figure 3)
and q a parameter specifying the curve path within the transition zone. Typical values of q
are 2, 3 and 4.
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Figure 3. Transition function T2 [48].

Parameter value ε can be arbitrarily chosen, but the conditions

0 ≤ ε ≤ δm (42)

ζ2T2(δ)δ̇ + Keδ ≥ 0 (43)

that ensure the sum of damping and spring forces to be positive must be fulfilled.
With a procedure similar to the one adopted for the first damping factor [50], one

obtains

ζ2 = 2mrω

√√√√ (ln e)2

(ln e)2 + π2
(44)

where ω is the system’s natural frequency.
It has been observed that the simulations based on the second damping function are

more stable and have a hysteresis loop wider than the one predicted with the first damping
function.

In conclusion, the second contact force model proposed by Lee and Wang is summa-
rized by the following formula:

fn = Keδ + ζ2T2δ̇ (45)

where T2 and ζ2 are computed from (41) and (44), respectively.

3.5. Khulief and Shabana (1985)

The approach of Khulief and Shabana [51–53] is aimed to be implemented within a
multibody dynamic environment and the nomenclature is thus adapted for the purpose.
Their analysis is based on the assumption that the energy dissipated during the impact is
much less than the elastic strain energy involved. Therefore, the coefficient of restitution is
e ≈ 1. The bodies are assimilated to point masses or with a relative translation motion.

As shown in Figure 4, the collision process is divided into:
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• the compression phase, during which the relative velocity
.
δij is gradually reduced to

zero and elastic energy is stored;
• the restitution phase, which begins at the release of the stored elastic energy and

finishes when the bodies separate.

Compression phase Restitution phase

Figure 4. Central collision between two circular-shaped masses: representation of the compression
and restitution phase [14,25].

The force between bodies i and j is analytically represented by the Kelvin–Voigt model

Fij =
(
Kδij + cδ̇ij

)
LGij (46)

where

LGij =

{
1 during impact
0 after separation

(47)

is a logical function. The following nomenclature is introduced: δ̂ij is the maximum value
of indentation; ui and ũi are the velocities of body i at the beginning of the compression
phase and at the end of the restitution phase, respectively; uij is the body velocity when

δ̇ij = 0 (end of compression phase); δ̇ij = uj − ui is the relative velocity at the beginning of
compression phase.

The energy conservation principle yields:

1
2

miu2
i +

1
2

mju2
j =

1
2
(
mi + mj

)
u2

ij +
∫ δ̂ij

0
Kδijdδij︸ ︷︷ ︸

Maximum strain energy

(48)

where
uij = ui + Δui (49a)

uij = uj + Δuj (49b)

Using the momentum conservation principle, one has

miΔui + mjΔuj = 0 (50)

or, taking into account (49),

uij =

[
mj

mi + mj

]
uj +

mi
mj

ui (51)
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The substitution of (51) into (48), with the hypothesis of a constant contact stiffness K,
gives [52]:

1
2

Kδ2
ij =

1
2

(
mimj

mi + mj

)
δ̇

2
ij (52)

where
δ̇ij = ui − uj (53)

Equation (52) allows a relationship between the contact stiffness upper bound K

K =
mimj

mi + mj

(
δ̇ij

δ̂ij

)2

(54)

and the impacting bodies’ kinematics.
To obtain an expression for the damping coefficient, the kinetic energy loss ΔE and

the coefficient of restitution must be taken into account.
The combination of the following three equations:

ΔE =
1
2

mi

(
u2

i − ũ2
i

)
− 1

2
mj

(
u2

j + ũ2
j

)
Energy balance (55)

e = − ũi − ũj

ui − uj
Coefficient of restitution (56)

mi(ui − ũi) + mj
(
uj − ũj

)
= 0 Momentum conservation (57)

gives

ΔE =
1
2

[
(1 − e)mimj

mi + mj

]
δ̇

2
ij (58)

This energy loss is dissipated by the damping force expressed as Dδ̇ij. Therefore, it is

ΔE =
∮

Dδ̇ijdδij (59)

where
∮

denotes the integration around the force-displacement hysteresis loop.

1
2

miu2
i +

1
2

mju2
j︸ ︷︷ ︸

Kinetic energy at start

=
1
2

miu2
i +

1
2

mju2
j +

∫ δij

0
Kdδij︸ ︷︷ ︸

Energy at intermediate time

(60)

with
ui = ui + Δui (61a)

uj = uj + Δuj (61b)

From the previous one follows:

δ̇ij = δ̇ij + Δui − Δuj (62)

Combining the momentum conservation equation

miΔui + mjΔuj = 0 (63)

with (60) and (61), taking into account (54), one obtains:

∫ δij

0
Kδijdδij =

1
2

(
mimj

mi + mj

)[
δ̇

2
ij − δ̇

2
ij

]
(64)
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or

Kδ2
ij =

(
mimj

mi + mj

)[
δ̇

2
ij − δ̇

2
ij

]
(65)

Consequently, from (65) follows

δ̇ij =

√√√√δ̇
2
ij −

[
K
(
mi + mj

)
mimj

]
δ2

ij (66)

Finally, the substitution of (66) into (59) and the choice of a damping function of
the form (The function satisfies the boundary conditions at both the contact start and
separation).

D = μδij (67)

yelds (It is assumed the area of the hysteresis loop is equally shared between compression
and restitution phase.

ΔE = 2
∫ δ̂ij

0
μδij

√
δ̇

2
ij − β

2
δ2

ijdδij (68)

After we let

β
2
=

K
(
mi + mj

)
mimj

=

(
δ̇ij

δ̂ij

)2

(69)

Equation (68) can be rewritten in the form

ΔE = −2
3

μβ

⎧⎪⎨⎪⎩
⎡⎣(

δ̇ij

β

)2

− δ̂2
ij

⎤⎦
3
2

−
(

δ̇ij

β

)3
⎫⎪⎬⎪⎭ (70)

Equating (70) and (58), one obtains

μ =
3
4

⎛⎜⎜⎜⎜⎜⎝
K
(
1 − e2)δ̇

2
ij[

δ̇
2
ij −

(
δ̇

2
ij − β

2
δ̂2

ij

) 3
2
]
⎞⎟⎟⎟⎟⎟⎠ (71)

and the force-approach law, according to Khulief and Shabana [51–53], is expressed in the
form

Fn = Kδij +
(
μδij

)
δ̇ij (72)

where μ is computed from (71).

3.6. Lankarani and Nikravesh (1988)

Lankarani and Nikravesh [8,9,35] recognized the limits and inconsistencies of the
Kelvin–Voigt model and proposed a contact force expressed by the following equation

Fn = Kδn + Dδ̇ (73)

for the entire period of contact. They assumed that the energy dissipated during the impact
is small compared to the maximum absorbed elastic energy. Moreover, within the contact
time interval, they distinguished a compression and a restitution phase. With reference to
Figure 5, let t(−), t(m) and t(+) denote the initial time of compression, the time of maximum
indentation and the final time of restitution, respectively.
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Figure 5. Indentation δ versus time for a Hertz-type contact force model [35].

Lankarani and Nikravesh start by writing the equations expressing:

• the energy loss ΔE computed as a difference between the bodies’ kinetic energies at
the beginning and at the end of the impact:

ΔE = T(−) − T(+)

=
mi
2

[(
v(−)

i

)2 −
(

v(+)
i

)2
]
+

mj

2

[(
v(−)

j

)2 −
(

v(+)
j

)2
]

(74)

• the conservation of linear momentum:

mi

[
v(−)

i − v(+)
i

]
+ mj

[
v(−)

j − v(+)
j

]
= 0 (75)

• the coefficient of restitution:

e = −
v(+)

i − v(+)
j

v(−)
i − v(−)

j

(76)

The combination of (74)–(76) gives:

ΔE =
1
2

mimj

mi + mj

[
δ̇(−)

]2(
1 − e2

)
(77)

where
δ̇(−) = v(−)

i − v(−)
j (78)

Furthermore, considering the time interval
[
t(−), t(m)

]
between the beginning and end

of the compression phase, one can write:

• the energy balance equation

T(−) =T(m) + U(m)

1
2

mi

[
v(−)

i

]2
+

1
2

mj

[
v(−)

j

]2
=

1
2
(
mi + mj

)[
v(m)

ij

]
+ U(m) (79)

• the linear momentum conservation equation

miv
(−)
i + mjv

(−)
j =

(
mi + mj

)
v(m)

ij (80)

The combination of (79) and (80) yields

U(m) =
1
2

(
mimj

mi + mj

)[
δ̇(−)

]2
(81)
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Such energy can also be evaluated by means of the integral

U(m) =
∫ δm

0
Kδndδ =

K
n + 1

δn+1
m (82)

The comparison of (81) and (82) gives

[
δ̇(−)

]2
= 2

(
mi + mj

)
K

mimj(n + 1)
δn+1

m (83)

This relationship shows how the maximum indentation δm is influenced by the contact
stiffness K and the difference in mass velocities at t(−).

Repeating the previous reasoning for a generic time interval
[
t(−), t

]
, with t(−) ≤ t ≤

t(m), one obtains

δ̇2 =
[
δ̇(−)

]2 − 2
mi + mj

mimj

Kδn+1

n + 1
(84)

With (84), the energy dissipated by the damping force is computed by means of
the integral (It is assumed the area of the hysteresis loop is equally shared between the
compression and restitution phase.):

ΔT =
∮

Dδ̇dδ =
∮

μδn δ̇dδ = 2
∫ δm

0
μδn δ̇dδ (85)

or, taking into account (83) and (84),

ΔE =
2μ

3K
mimj

mi + mj

[
δ̇(−)

]3
(86)

The comparison of (77) and (86) yields

μ =
3K

(
1 − e2)

4δ̇(−)
(87)

and the contact force is finally expressed by the following formula:

Fn = Kδn

[
1 +

3
(
1 − e2)

4
δ̇

δ̇(−)

]
(88)

3.7. Tsuji et al. (1992)

Tsuji et al. [54] assumed the indentation during the contact governed by the following
differential equation:

mr δ̈ + cδ̇ + Kδ
3
2 = 0 (89)

The damping coefficient equation

c = χδ
1
4
√

mrK (90)

has been found heuristically. Parameter χ is an empirical constant related to the coefficient
of restitution, as shown in Figure 6.
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Figure 6. The relationship between χ and the coefficient of restitution e [54].

3.8. Lankarani and Nikravesh (1994)

Lankarani and Nikravesh [55] extended their analysis to the case where, after the
impact between two spheres, a permanent indentation δp due to local plasticity is observed
(see Figure 7). Such a circumstance is realistic during the collision of metallic bodies with
an initial relative velocity larger than 10−5Vs, where Vs is the elastic wave propagation
speed in the colliding bodies.

(a) (b)

Loading Unloading

Energy loss

Figure 7. Contact force model with permanent indentation. (a) contact force versus time, (b) indenta-
tion versus time [55].

The contact force changes according to the following equation:

Fn =

⎧⎪⎨⎪⎩
Kδn compression phase

Fm

(
δ − δp

δm − δp

)n
restitution phase

(91)

As it will be shown, parameters δm, Fm and δp are computed by means of (94), (95)
and (97), respectively.

To determine δm and Fm, we use the equation of motion of the two spheres in contact

mr δ̈ + Kδn = 0 (92)

when integrated with the initial conditions δ(−) = 0, δ̇(−) = v(−)
i − v(−)

j , yields:

1
2

mr

[
δ̇2 − δ̇(−)2

]
= K

δn+1

n + 1
(93)

At the instant of maximum compression δ̇ = 0 and δ = δm. Thus, from (93), one
obtains the maximum indentation:

δm =

[
n + 1

2K
mr δ̇(−)2

] 1
n+1

(94)
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and maximum contact force
Fm = Kδn

m (95)

The comparison of the dissipated energy, computed by means of the integration of the
contact force, is

ΔT =
∫ δm

0
Kδn dδ +

∫ δp

δm
Fm

[
δ − δp

δm − δp

]n
dδ =

Fmδp

n + 1
(96)

and (77) yields the permanent indentation

δp =
(n + 1)mr δ̇(−)2

2Fm

(
1 − e2

)
(97)

In conclusion, the contact force is expressed by (91), where δm, Fm and δp are expressed
by (94), (95) and (97), respectively.

Lankarani and Shivaswamy [56,57] conducted experiments impacting a hardened
steel indentor against aluminum and steel plates. The hysteresis loop in the plot of contact-
force versus indentation has been experimentally obtained and compared with simulation
results.

Rhee and Akay [58] describe the motion of a four-bar rocker described by three sets of
equations:

• the sliding mode, when the pin and journal are in contact;
• free-flight mode, when the pin motion is governed by its own inertia and acting forces;
• impact mode, when the pin and journal begin contact.

3.9. Marhefka and Orin (1999)

Marhefka and Orin [59] obtained the same result as Hunt and Crossley but by means of
different analytical reasoning. They started assuming the relative motion between masses
at contact governed by the differential equation

mr δ̈ + λδn δ̇ + Kδn = 0 (98)

or
δ̈ = Λδn δ̇ + K̃δn (99)

where K̃ = − K
mr

and Λ = − λ

mr
.

Introducing the new variable v = δ̇, (99) can be rewritten in the form

dv
dδ

=
(Λv + K̃)δn

v
, (100)

or ∫ vdv
(Λv + K̃)

=
∫

δndδ (101)

The integration of (101), with initial conditions δ(0) = 0, v(0) = vi, gives:

Λv − K̃ ln
∣∣∣K̃ + Λv

∣∣∣ = 1
n + 1

Λ2δn+1 + Λvi − K̃ ln
∣∣∣K̃ + Λvi

∣∣∣ (102)

or

Λv − K̃ ln
∣∣∣∣1 + Λ

K̃
v
∣∣∣∣

=
1

n + 1
Λ2δn+1 + Λvi − K̃ ln

∣∣∣∣1 + Λ
K̃

vi

∣∣∣∣ (103)
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Since the values of αvi,
Λv
K̃

and
Λvi

K̃
are � 1, (103) can be expanded in Taylor series

such that

ln |1 + ε| = ε − ε2

2
+

ε3

3
+ . . . (104)

For (See also Equation (10)) δ = 0, v = −evi = −(1 − αvi)vi, solving the Taylor
expansion for Λ yields:

Λ ≈ 3αK̃(2 − αvi)

2
(
2 − 3αvi + 3α2v2

i − α3v3
i
) (105)

The result of Hunt and Crossley, as expressed in Equation (21), can also be deduced

from (105) assuming negligible αvi. After substitution of Λ =
3
2

αK̃, from the integration of

(103), one obtains the deformation of δ related to velocity δ̇ as follows

δ =

(−2mr(n + 1)
9Kα2

) 1
n+1

(
3α(v − vi) + 2 ln

∣∣∣∣2 + 3αvi
2 + 3αv

∣∣∣∣) 1
n+1

(106)

In conclusion, the following contact force equation was proposed:

Fn = Kδ
3
2

(
1 +

3α(2 − αvi)

2
(
2 − 3αvi + 3α2v2

i − α3v3
i
))δ̇ (107)

to be simplified into

Fn = Kδ
3
2

(
1 +

3α(2 − αvi)

2(2 − 3αvi)

)
δ̇ (108)

neglecting the powers of αvi equal to or greater than two.

3.10. Ghontier et al. (2004)

For Ghontier et al. [60] the differential equation governing the contact is

mr δ̈ + Kδn(1 + αδ̇
)
= 0 (109)

where
α =

K
λ

(110)

To avoid tensile forces, the following inequality is required

1 + αδ̇ ≥ 0 ∀δ̇ (111)

After the integration of (109), one obtains

∫ vo

vi

δ̇

1 + αδ̇
dδ̇ +

K
mr

∫ δo

δi

δn dδ = 0 (112)

where δi = δo = 0 are the initial and final penetration depths, respectively.
The algebraic development of (112), taking into account the definition of kinematic

coefficient of restitution (30), yields:

αvi − ln(1 + αvi) + eαvi + ln(1 − eαvi) = 0 (113)

After we introduce the new variable

d = αvie (114)
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Equation (113) can be expressed in the following form

1 +
d
e

1 − d
= exp

[
d
(

1 +
1
c

)]
(115)

which is more amenable for the solution with respect to d.
In conclusion, the force contact formula proposed by Ghontier et al. is

Fn = Kδn(1 + αδ̇
)

(116)

where, given e and vi, the damping factor α is obtained from (114), after the solution of (115)
with respect to d. In the numerical solution of (115), one should observe that:

• d < 1, a good initial guess is d = 1 − e2;
• the solution must be consistent with (110);

• the solution dHC corresponding to the model of Hunt and Crossley is dHC =
3
4

e(1− e).

3.11. Flores et al. (2011–2016)

Flores et al. [14,25] closely followed the work of Lankarani and Nikravesh [35]. One
of the novelties of their work is distinguishing between the energy ΔEc, dissipated in the
compression phase, and ΔEr, dissipated in the restitution phase :

T(−) = T(m) + U(m) + ΔEc (117)

For this purpose, they assumed that, during masses contact, the system dynamics are
governed by the differential equation

mr δ̈ + cδ̇ + Kδ = 0 (118)

This, neglecting damping, allowed the expression of the velocity of deformation
during the two phases, respectively, as follows:

δ̇ = δ̇(−)

√
1 −

(
δ

δm

)2

δ̇ = δ̇(+)

√
1 −

(
δ

δm

)2
(119)

where δm =
δ̇(−)

ω
and ω =

√
K
mr

.

Moreover, they established the mathematical relationship(
δ

δm

)2
+

(
δ̇

δ̇(−)

)2

= 1 (120)

Since

ΔEc =
∫ δm

0
λδ

3
2 δ̇(−)

√
1 −

(
δ

δm

)2
dδ

ΔEr =
∫ δm

0
λδ

3
2 |δ̇(+)|

√
1 −

(
δ

δm

)2
dδ

(121)
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with λ parameter to be determined, the total dissipated energy is computed as follows:

ΔE =ΔEc + ΔEr

= χ
(

δ̇(−) +
∣∣∣δ̇(+)

∣∣∣) ∫ δm

0
δ

3
2

√
1 −

(
δ

δm

)2
dδ (122)

A numerical evaluation of the integral provides

ΔE =
1
4

λ(1 + e)δ̇(−)δ
5
2
m (123)

Finally, the combined use of Equations (77) and (123), energy balance

1
2

mi

(
v(−)

i

)2
+

1
2

mj

(
v(−)

j

)2
=

1
2
(
mi + mj

)
v(m)

ij +
2
5

Kδ
5
2
m +

1
4

λδ̇(−)δ
5
2
m (124)

and linear momentum conservation

miv
(−)
i + mjv

(−)
j =

(
mi + mj

)
v(m)

ij (125)

yields:

λ =
8K(1 − e)

5eδ̇(−)
(126)

and the proposed contact force formula is as follows:

Fn = Kδ
3
2

(
1 +

8(1 − e)
5eδ̇(−)

δ̇

)
(127)

Machado et al. embodied (127) in a general methodology for 3D-contact problems [61]
and in biomechanic analyses of knee joints [62,63]

3.12. Gharib and Hurmuzlu (2012)

Gharib and Hurmuzlu [64] assumed a contact force of the form:

Fn = Kδn + λδn δ̇ (128)

and observed that, at the end of an elastic collision (t = t(+)), both the contact force FN and
the indentation δ f vanish, while the indentation velocity is

δ̇(+) = v(+)
i − v(+)

j 
= 0 (129)

Therefore, the following equation holds

δn
f

(
K + λδ̇(+)

)
= 0 (130)

the solution of which is
δ̇(+) = −K

λ
(131)

Since by definition of coefficient of restitution

δ̇(+) = −eδ̇(−) (132)

one has the following expression for the damping coefficient

λ =
1
e

K
δ̇(−)

(133)
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In conclusion, the first formula for the elastic contact force proposed by Gharib and
Hurmuzlu is

Fn = Kδn
(

1 +
δ̇

eδ̇(−)

)
(134)

Gharib and Hurmuzlu also analyzed the case of impact with indentation. The contact
forces can be mathematically written as follows:

Fc = Kcδn compression force (135)

Fr = Fm

[
δ − δp

δm − δp

]n
restitution force (136)

The restitution force can be alternatively expressed in the form:

Fr = Kr
(
δ − δp

)n (137)

Since
Fm ≡ Kcδn

m = Kr
(
δm − δp

)n (138)

or

δp = δm

[
1 −

(
Kc

Kr

) 1
n
]

(139)

Since ∫ δm

0
Fcdδ =

Kcδn+1
m

n + 1
Work in the compression phase (140)

∫ δp

δm
Frdδ =

Kr
(
δm − δp

)n+1

n + 1
Work in the restitution phase (141)

using the definition of the energetic coefficient of restitution ew one obtains

e2
w = −

∫ δm
0 Fcdδ∫ δp
δm

Frdδ
=

(
Kc

Kr

) 1
n

(142)

The combination of (139) and (142) gives

δp = δm

[
1 − e2

w

]
(143)

Moreover, the combination of (136) and (137) yields

Kr =
Kc

e2n
w

=
Fm(

δm − δp
)n (144)

In conclusion, for the case of impact with indentation, the second contact force formula
proposed by Gharib and Hurmuzlu is

Fn =

{
Kcδn Compression phase
Kr

(
δ − δp

)n Restitution phase
(145)

with Kc = K, Kr, Fm and δp from (144), (139) and (138), respectively.
For the impact of a slender bar against a hard wall, experimental values of the coeffi-

cient of restitution are reported in [65].
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3.13. Hu and Guo (2015)

Hu and Guo [66] estimate the energy loss by means of (79), whereas the relationship
between the deformation and deformation velocity are

δ̇ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ̇(−)

√
1 −

(
δ

δm

) 5
2

Compression phase

δ̇(+)

√
1 −

(
δ

δm

) 5
2

Restitution phase

(146)

deduced assuming the differential Equation (2) of the elastic Hertz contact model and
symmetry of behavior between compression and restitution phases.

Flores et al. [14,25] instead deduced (119) using a linear differential equation without
damping.

The energy losses for the two phases are, respectively:

ΔEc =
∫ δm

0
λδ

3
2 δ̇(−)

√√√√1 −
(

δ

δm

) 5
2

dδ =
4
15

λδ̇(−)δ
5
2
m (147a)

ΔEr =
∫ δm

0
λδ

3
2

∣∣∣δ̇(+)
∣∣∣
√√√√1 −

(
δ

δm

) 5
2

dδ =
4
15

λ
∣∣∣δ̇(+)

∣∣∣δ 5
2
m (147b)

and the overall energy loss is

ΔE = ΔEc + ΔEr = ΔE =
4

15
λ(1 + e)δ̇(−)δ

5
2
m (148)

To evaluate the hysteresis damping factor λ, the combination of energy balance

T(−) = T(m) +
∫ δm

0
Kδ

3
2 dδ + ΔEc (149)

and momentum conservation (80) yields

δ
5
2
m =

15m
4
(
2λδ̇(−) + 3K

) δ̇(−)2
(150)

or

λ =
3K(1 − e)

2eδ̇(−)
(151)

In conclusion, Hu and Guo proposed the following formula for the normal contact
force

Fn = Kδn
[

1 +
3(1 − e)

2e
δ̇

δ̇(−)

]
(152)

4. Numerical Example

Some of the contact force models listed in the previous section have been tested within
a multibody dynamics simulation. In particular, the scotch-yoke linkage with a circular
guide, depicted in Figure 8, has been chosen as a test bench. In order to highlight the effect
of different formulations for the normal contact force Fn, the only clearance introduced
is the one between the pin and the circular slot. All the remaining kinematic joints are
frictionless and without clearance.
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1
2

3

4

Figure 8. Scotch-yoke linkage.

The geometrical data, initial condition and inertia parameters are listed in Table 10.
The crank rotates at a constant angular speed of 24π rad

s , and the effect of gravity is omitted.
All bodies are made of steel with a Young modulus of 207 GPa and a Poisson ratio of 0.3.
The mechanism moves two masses m of 1 kg each fixed at both ends of the slotted slider.

As already been pointed out in the previous sections, the normal force models are
mostly implicit. To reduce the computational burden of the simulation, all the formulations
are represented as a polynomial function of the type Fn = Kδn.

The contact between the pin and circular slot has variable stiffness properties depend-
ing on the geometry bodies in contact. Three different regions can be observed:

• Pin to inner track: external contact between the pin with radius Rp and the inner track
with radius Ri;

• Pin to outer track: internal contact between the pin with radius Rp and the outer track
with radius Ro;

• Pin to circular track: internal contact between the pin with radius Rp and the circum-
ferential track with radius Rc.

Table 10. Input data.

Geometry

Inertia

Initial Conditions
Name

Mass
(kg)

Inertia (kg· mm2)

Ro 68 mm 1 Frame \\ \\ Θin 31 deg
Rm 60 mm 2 Crank 0.090 30.40 ωin 0 rad

s
Ri 52 mm 3 Pin 0.015 0.48 ω 24 · π rad

s
Rc 8 mm 4 Slotted slider 0.353 3495.6
Rp 7.9 mm
θ 120 deg

The normal contact force is governed by the equation:

Fn = Kδn +
3
2

αK|δ|n δ̇m (153)

The elastic constant K and the indentation exponent n are obtained by fitting five
different cylindrical contact force relationships. In particular, the models tested are: Radzi-
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mowsky, Johnson, Goldsmith, EDSU-78035 and Lankarani and Nikravesh. Among those
considered in this numerical example, the last one is the only model already explicit.
Table 11 reports the polynomial fitting results for each model and every contact region.

On the other hand, following the Hunt and Crossley model, the viscous coefficient
C is taken proportional to K by means of the coefficient α. For materials such as steel,
bronze and ivory, Hunt and Crossley suggest values of alpha between 0.002 and 0.008 s/in
(0.08–0.32 s/m). In this numerical example, α is set as equal to 0.32 s/m, and the penetration
velocity exponent m is set to unit value.

Table 11. Fitting results.

ΔR Lankarani Radzimowsky Johnson

(mm) K [ N
mmn ] n K [ N

mmn ] n K [ N
mmn ] n

Ri/Rp 60.1 1.220 · 105 1.50 4.321 · 104 1.09 4.914 · 104 1.10
Ro/Rp 59.9 1.424 · 105 1.50 4.315 · 104 1.09 4.907 · 104 1.10
Rc/Rp 0.1 1.198 · 106 1.50 1.846 · 105 1.22 3.147 · 105 1.28

ΔR Goldsmith EDSU-78035

(mm) K [ N
mmn ] n K [ N

mmn ] n
Ri/Rp 60.1 1.717 · 104 1.04 1.300 · 104 1.09
Ro/Rp 59.9 1.743 · 104 1.04 1.254 · 104 1.09
Rc/Rp 0.1 2.221 · 104 1.05 4.786 · 104 1.22

As it is possible to observe from the fitting results, the values of K for the inner track
region (Ri to Rp) and the outer track region (Ro to Rp) are very similar, especially for
Johnson and Radzimowsky formulations. In fact, these models give the same force result
for internal and external contact with the same ΔR.

To clarify this statement, both the formulation of Johnson and Radzimowsky are
reported below, emphasizing the ΔR dependence

δ =
W

πE∗

[
ln

(
4πΔRE∗

W

)
− 1

]
, Johnson

δ =
W

πE∗

[
2
3
+ ln

(
8ΔRE∗

1.62W

)]
, Radzimowsky

In the slot without clearance condition, referring to Figure 9, and minding that ΔR =
Ri ± Rj (+/− : external/internal contact), one can write:

ΔRext = R∗
p + Ri

ΔRint = Ro − R∗
p = Ri + 2R∗

p − R∗
p = Ri + R∗

p = ΔRext

*

Figure 9. Scotch-yoke linkage, without (left) and with clearance (right).
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This relationship, valid for pin-slot coupling without clearance, can be generalized
with a clearance δ as

ΔRext = ΔRint + δ

This geometrical condition can be used to simplify the dynamic analysis of curved
slots, calculating just one of the two values of K and using it for both the inner and outer
track. As highlighted in Figure 10a for steel and Figure 10b for aluminum-like material,
the error involved in such a simplification will be proportional to the clearance. The
penetration reported is computed for a contact force per unit length of 10 kN/mm and
variable clearance. The error does not exceed 2%. This supports the righteousness of
considering only one stiffness coefficient when the clearance is quite small.

(a) Steel

(b) Aluminum

Figure 10. Effect of clearance on the error.

For a complete crank rotation, the comparison of contact forces computed according
to the different models is depicted in Figure 11. To minimize the effects of the initial
conditions, the second full crank revolution is monitored. A region with a null contact
force is visible around 100 degrees of the relative crank angle corresponding to pin-slot
separation caused by clearance.
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Figure 11. Contact force comparison.

When the contact is continuous (i.e., neither impact nor rebound occur), there is no
relevant difference between the models. In fact, the contact force must be consistent with
the dynamic equilibrium matching all the other forces acting on the system. On the other
hand, the penetration, as well as its oscillation frequency, heavily depends on the contact
model due to the different stiffness characteristics, as observed in Figures 12 and 13.

The detail on the impact sections, depicted in Figure 14, is useful to highlight the
differences in the model’s dynamic behavior. Since the exponent n values are close for all
models, except for the Lankarani–Nikravesh model, one can state (for all the remaining
formulations) that the higher the K value, the higher the amplitude of contact forces during
the impact phases (i.e., until 100 deg of relative crank angle). Moreover, a high value of
K, and, consequently, a high value of C, provides contact steadiness. In this regard, the
Goldsmith model (the less stiff) is the only model that shows the detachment of the pin
from the slot in the range between 120 and 300 degrees.

Figure 12. Penetration comparison.
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Figure 13. Detail of penetration comparison.

Figure 14. Detail of contact force comparison.
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Figure 15 depicts the differences between the hysteresis profile obtained isolating a
situation of contact and rebound within the dynamic simulation of interest.

Figure 15. Hysteresis comparison.

In accordance with the previous considerations, higher forces and more steep loops
are noticeable in the Johnson and Radzimowsky models. Conversely, Goldsmith and EDSU
exert less abrupt profiles. The Lankarani–Nikravesh model provides intermediate behavior.

Finally, the contact formulation affects the position, velocity and acceleration of the
slider. However, the small clearance between the pin and slot causes the position to be
slightly influenced by the contact formulation. Conversely, in the velocity and acceleration
plots versus the relative crank angle, some differences are detectable and are consistent
with the effects observed in the contact force variation (See Figure 16).

Figure 16. Slotted slider kinematics.

5. Conclusions

The availability of reliable and computationally efficient contact force models is an
important requirement in multibody dynamics simulations. A review of methods on the
basis of analytical developments and behavior in simulations has been presented herein.
Our main focus was the dynamic analysis of mechanisms with the pin-in-the-slot kinematic
pairs. The discussion herein offered gives guidelines about the distinctive computational
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features of each model, but cannot offer a definitive answer on how faithfully the model
reproduces reality. This would require an extensive campaign of experimental validation.
As an element of novelty and to speed-up the simulation, the polynomial fitting of implicit
equations has been presented in tabular form to compute static indentation with different
models. Moreover, the possibility of taking into account just one track stiffness instead of
differentiating between internal and external contact has been studied. We inferred that
this simplification is feasible with small clearances. Lastly, choosing high-stiffness models
will provide severe contact forces with high-frequency oscillation, but with a high value of
exponent n the contact proved to be more stable in this particular case study.
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Nomenclature

c damping coefficient
D damping coefficient
e kinematic coefficient of restitution

E∗ =
1

hi + hj
composite Young modulus

Ek Young modulus of body k (k = i, j, 1, 2)
Fm maximum contact force
Fn normal force
F1, F2 forces acting on the masses of the Dubowsky and Freudenstein impact pair
Fm maximum contact force
g(Xr) contact force as function of relative displacement

hk =
1 − ν2

k
Ek

(k = i, j, 1, 2)

K contact stiffness parameter
L length of the contact
m exponent of penetration velocity δ̇

mr
M1 M2

M1 + M2
effective mass

n Hertz exponent
Mk masses (k = 1, 2, i, j)
Rk cylinder radius of body k (k = i, j)
t time
te time at the end of outward contact phase
vi, vo relative speeds before and after collision
ΔR = Ri ± Rj clearance (+/−: External/Internal contact)
ΔE variation of kinetic energy

t(−), t(m) and t(+) initial time of compression, the time of maximum indentation and the final
time of restitution, respectively

T(−), T(+) system kinetic energies at times t(−) and t(+), respectively
T(m) kinetic energy at the end of impact compression phase
U(m) maximum strain energy at the end of impact compression phase

v(−)
k , v(+)

k body k velocities at times t(−) and t(+), respectively (k = i, j)
v(m)

ij common velocity of the bodies at the end of the contact compression phase
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vi, vo relative velocities at the beginning and at the end of contact, respectively
Vs elastic wave propagation speed in colliding solids

W =
Fn

L
contact force per unit length

X1, X2 masses displacements of the Dubowsky and Freudenstein impact pair
α a constant based on the slope of the (e, vi) curve
δ relative indentation between contacting bodies
δ f relative indentation at the end of contact
δk indentation of sphere k, (k = i, j)
δm maximum relative indentation value
δp permanent indentation after impact
δ̇(−) relative approach velocity (same as vi)
δ̇(+) relative departing velocity (same as vo)
λ hysteresis damping factor
ε width of the transition zone (see Figure 3)
νk Poisson ratio of body k (k = i, j)
ω system natural frequency
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Abstract: Kinematic control of redundant serial manipulators has been carried out for the past half
century based primarily on a generalized inverse velocity formulation that is known to have mathe-
matical deficiencies. A recently developed inverse kinematic configuration mapping is employed in
an operational configuration space differentiable manifold formulation for redundant-manipulator
kinematic control with obstacle avoidance. This formulation is shown to resolve deficiencies in
the generalized inverse velocity formulation, especially for high-degree-of-redundancy manipula-
tors. Tracking a specified output trajectory while avoiding obstacles for four- and twenty-degree-of-
redundancy manipulators is carried out to demonstrate the effectiveness of the differentiable manifold
approach for applications with a high degree of redundancy and to show that it indeed resolves
deficiencies of the conventional generalized inverse velocity formulation in challenging applications.

Keywords: obstacle avoidance; kinematic control; redundant manipulators; manipulator differentiable
manifold

1. Introduction

1.1. Basics of Redundant-Serial-Manipulator Kinematics

A serial manipulator is comprised of a chain of bodies that are connected by single-degree-
of-freedom joints. Joint relative input coordinates yi between bodies in the chain define
the configuration of outboard bodies relative to their inboard counterparts. The terminal
body in the chain is the end effector, whose output coordinates characterize manipulator
working capability and are defined as twice continuously differentiable functions of input
coordinates, in the form of forward kinematic mapping.

z = G(y) (1)

Input coordinates y ∈ Rn are independent generalized coordinates [1] that define the
configuration of the underlying mechanism, and output coordinates z ∈ Rm of the end
effector, with m < n, define functionality of the kinematically redundant manipulator.
Here, Rk refers to k-dimensional Euclidean vector space with elements x ∈ Rk in the form
of column vectors x =

[
x1 · · · xk

]T, where superscript T denotes matrix transpose. Bold
characters denote vectors and matrices.

An input–output pair (y, z) that satisfies Equation (1) defines a manipulator configu-
ration, denoted x =

[
yT zT]T ∈ Rn+m. The manipulator configuration space is defined as

X =
{

x ∈ Rn+m : G(y)− z = 0
}

(2)

As observed in [2], X is the graph of Equation (1). As such, under moderate reg-
ularity conditions, it is a differentiable manifold with the single chart (Rn, φ(x)), where

Machines 2024, 12, 10. https://doi.org/10.3390/machines12010010 https://www.mdpi.com/journal/machines37
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φ(x) = y [2]. This manifold, however, contains information only on forward kinematics
and no information regarding inverse kinematics.

The manipulator configuration space often contains singular configurations relative to
inverse kinematics. If the rank of the Jacobian matrix of derivatives of G(y) with respect
to y, defined as the m × n matrix G′(y) ≡ [

∂Gi(y)/∂yj
]
, is less than m at a configuration

x =
[
yT zT]T ∈ X, then in a neighborhood of x, there exists no continuously differentiable

set-valued inverse kinematic mapping with n − m arbitrary parameters [3,4]. To avoid
difficulties associated with inverse kinematic singular configurations in X, the regular
configuration space is defined as

X̃ =
{

x ∈ X : rank(G′(y)) = m
}

(3)

In X̃, the manipulator degree of redundancy is r = n − m.

1.2. A Four-Degree-of-Redundancy Manipulator

Most applications of redundant manipulators have just one degree of redundancy,
i.e., r = n − m = 1. To relate the mathematical formulation to a real manipulator, consider
the planar serial manipulator of Figure 1 that has n = 6 inputs, y ∈ R6, and two outputs,
z ∈ R2, hence r = 6 − 2 = 4 degrees of redundancy.

y1

y2

(z1, z2)

y3

y4

y5

y6

1
1

1

1

Figure 1. Serial manipulator with a degree of redundancy of 4.

Using the notation yij = yi + · · ·+ yj, the forward kinematic mapping of Equation (1) is

z = G(y) =
[

y1 + cos y3 + cos y34 + cos y35 + cos y36
y2 + sin y3 + sin y34 + sin y35 + sin y36

]
(4)
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with the full-rank Jacobian, for all x ∈ X = X̃,

G′(y) =
[

1 0 a b −(sin y35 + sin y36) −sin y36
0 1 c d (cos y35 + cos y36) cos y36

]
a = −(sin y3 + sin y34 + sin y35 + sin y36)
b = −(sin y34 + sin y35 + sin y36)
c = (cos y3 + cos y34 + cos y35 + cos y36)
d = (cos y3 + cos y34 + cos y35)

(5)

1.3. Generalized-Inverse-Velocity-Based Redundancy Resolution

Differentiating Equation (1) with respect to time yields the kinematic velocity equation:

.
z = G′(y) .

y (6)

Since Equation (6) is linear in velocity, for a given configuration, it may be thought that
analysis in the linear velocity space is easier than in the nonlinear regular configuration
space of Equation (3). When m = n and the manipulator is nonredundant, this may in
fact be the case. In X̃, if m = n, the manipulator is nonredundant, G′(y) is square and
nonsingular, and there is a unique solution of Equation (6) for

.
y,

.
y = G′(−1)

(y)
.
z (7)

In this special case, Equation (7) is an ordinary differential equation (ODE). For specified
continuous

.
z(t) and initial condition y(0) = y0, the initial-value problem with Equation (7)

has a unique solution in a neighborhood of t = 0.
For redundant manipulators with n > m, attractive properties of ODE for Equation (6)

are no longer available. At a redundant manipulator configuration x ∈ X̃, G′(y) has full
rank, but G′(y) is not a square matrix, and Equation (6) with given

.
z(t) cannot be solved

for a unique value of
.
y. In this case, Equation (6) is not an ODE in y. It is a Pfaffian

differential equation [5] that behaves more like a partial differential equation than an ODE.
While the ODE of Equation (7) with m = n has a general solution for y that depends on
n arbitrary constants, a general solution of Equation (6) for y with n > m depends on
arbitrary vector functions p(t) [5]. As shown in [4], trading the nonlinear manipulator
equations of Equations (2) and (3) for the Pfaffian differential equation of Equation (6) is a
questionable decision.

A generalized-inverse-velocity-based redundancy resolution formulation for Equation
(6) was introduced by Whitney [6] half a century ago in an attempt to create an ODE
formulation for redundant-manipulator kinematics. At a configuration x ∈ X̃ with n > m,
G′(y) has full rank and the Moore–Penrose generalized inverse [6–8] is defined as

G′†(y) = G′T(y)
(

G′(y)G′T(y)
)−1

(8)

Direct manipulation verifies that G′(y)G′†(y) = I, and

.
y = G′†(y) .

z +
(

I − G′†(y)G′(y)
) .

y0
(t) (9)

satisfies Equation (6) for arbitrary
.
y0
(t) ∈ Rn. While

.
y of Equation (9) satisfies Equation (6),

it does not provide a solution y(t) of Equation (1), and there is no reason to believe
Equations (6) and (9) are equivalent.

1.4. Problems with Generalized-Inverse-Velocity-Based Redundancy Resolution

In the redundant-manipulator literature, e.g., [6–10] and references cited therein,
Equation (9) has been treated as a differential equation that relates output to input. It has
been analytically and computationally shown, however, that use of Equation (9) leads to
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irregularities in predicted manipulator performance [4,11–13], including numerical drift,
nonholonomic behavior, and divergence of computation. Analysis has shown that use of
the generalized inverse of Equation (8) leads to nonholonomic equations of redundancy
resolution that create systematic noncyclicity of the manipulator [12,13], i.e., a periodic out-
put trajectory maps into a nonperiodic input trajectory. While some effort has been devoted
to creating generalized inverses that overcome these problems, e.g., [14,15] and references
cited therein, no comprehensive result has been reported. A treatment based on concepts
similar to those employed herein is shown to partially resolve the noncyclicity problem [16].
Theoretical and numerical results presented in [4,16] complement the literature cited and
show that the generalized inverse velocity approach to manipulator redundancy resolution
is fundamentally flawed.

While the foregoing analyses of deficiencies of the generalized inverse velocity ap-
proach do not focus specifically on obstacle avoidance, the inaccuracies implied cast doubt
on use of the approach for kinematic control with obstacle avoidance. In particular, no
inverse kinematic mapping at the configuration level is defined with free parameters, which
means that an indirect velocity approach to obstacle avoidance must be employed. Since
obstacle avoidance occurs in configuration space, not in velocity space, an adaptation of
generalized inverse velocity differential equations must be created to treat an application
that is stated in terms of manipulator configuration.

1.5. Manipulator Trajectory Planning and Obstacle Avoidance

An extensive literature on kinematically redundant manipulator trajectory planning
and kinematic control appeared in the last quarter of the 20th century, based primarily on
the generalized inverse velocity representation of Equation (9), e.g., [6–10] and references
cited therein. The most basic kinematic control formulation seeks to use manipulator
redundancy to cause manipulator output z(t) to follow a desired output trajectory zd(t)
and to satisfy constraints such as avoiding collision of manipulator links with obstacles.
Objectives and constraints in these applications are most naturally stated in terms of
manipulator input and output coordinates, rather than velocities. The apparent simplicity
of the velocity equations of Section 1.3, with the redundancy-related arbitrary velocity
.
y0
(t) of Equation (9), however, has led research and development engineers to adopt the

generalized inverse velocity mapping of Equation (9) to address the kinematic control
objective, e.g., [7,8] and references cited therein.

Quite recently, a configuration-based inverse kinematic mapping for kinematically
redundant serial manipulators has been presented that avoids deficiencies associated with
the generalized inverse velocity mapping approach [3,4]. This method is summarized in
Section 3 and applied for manipulator path planning with obstacle avoidance.

2. Generalized-Inverse-Velocity-Based Kinematic Control and Obstacle Avoidance

The conventional approach to satisfying constraints such as obstacle avoidance using
the generalized inverse velocity approach is the projected-gradient method, employing the
second term of Equation (9), i.e., the null space term, to minimize a cost function f (y) that
models the secondary criterion. This is performed by defining

.
y0
(t) = −k∇yf(y(t)) (10)

with k > 0, where ∇y f (y) = [∂ f (y)/∂y1, . . . , ∂f(y)/∂yn]
T , and projecting it onto the null

space of the Jacobian matrix by means of the projector
(

I − G′†(y)G′(y)
)

of Equation
(9) [17]. As a result, y(t) will move in a direction that decreases f (y), without affecting
the desired output trajectory zd(t), i.e., self-motion. When the constraint is to avoid ob-
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stacles, f (y) can be chosen as any function that penalizes manipulator link proximity to
obstacles [18]. For example, if f (y) is defined as

f (y) = ∑
i,j

1/dij(y) (11)

where dij(y) is the minimum distance between link i and obstacle j, manipulator links will
tend to move away from obstacles.

Another approach to obstacle avoidance using the generalized inverse velocity method
consists in choosing

.
y0
(t) as an input velocity that attempts to generate an escape velocity

.
zo(t) at the point P0 of the manipulator that is closest to the obstacle, where such escape
velocity is directed away from the obstacle. This requires yet another generalized inversion
of the Jacobian matrix Jo that maps input velocities to the velocity of P0 [19]. Alternatively,
Lee and Buss [18] use the transpose of Jo that has lower computational burden than
generalized matrix inversion and avoids problems with singularities, at the expense of
accuracy in generation of the desired escape velocity. This is not crucial, as long as the link
moves away from the obstacle.

When a hierarchy of tasks exists, i.e., there is a primary task and several secondary
tasks with different levels of priority, where each task has an associate Jacobian, lower-
priority tasks are optimized by projecting velocities on the null space of higher-priority
tasks [20]. This hierarchy of projections is used in the method of Saturation in the Null
Space (SNS) [21], which saturates input velocities that reach their limits and slows the task,
i.e., scales time, to restore feasibility if such saturations render the desired task infeasible.
The SNS method can achieve obstacle avoidance by adapting limits of joint velocities near
obstacles [22] or by augmenting joint velocities with velocities of control points on links
of the manipulator and limiting these velocities in the vicinity of obstacles [23]. The SNS
method is usually formulated at the velocity level, but it has been extended in [24,25] to
function also at acceleration and torque levels.

In any case, the foregoing methods are based on use of the generalized inverse in the
velocity equation, which leads to deficiencies discussed in Section 1.4. Moreover, these
methods operate at velocity or acceleration levels, whereas constraints such as obstacle
avoidance are naturally defined at the configuration level. This requires recasting these
constraints approximately to set bounds on velocities, e.g., joint range limits are typically
reformulated as bounds on joint velocities by using a forward difference approximation of
the derivative of configuration [22], which may lead to violation of these constraints.

Use of the generalized inverse in the velocity equation is not a robust way to handle
obstacle avoidance, because it is based on a velocity equation that needs to be numeri-
cally integrated to obtain the configuration of the manipulator. For example, if

.
y0
(t) of

Equation (10) is inserted into Equation (9), which is integrated numerically with a given
time step Δt, the resulting trajectory of the manipulator may not be feasible. This is be-
cause, as time progresses, Equation (9) is integrated, and the cost function f (y) may not
be minimized at a sufficiently high rate to avoid obstacles. Indeed, if the minimization
of f (y) is not performed sufficiently quickly as the manipulator approaches obstacles,
penetration of an obstacle will occur that will produce a zero denominator in Equation (11),
i.e., dij(y) = 0 for some (i,j), and this will lead to failure of numerical integration. As is
demonstrated in Sections 4.1.2 and 4.2.3, it is necessary to carefully select the values of Δt
(time step) and k (gain appearing in Equation (10)). In fact, as shown, it may be necessary to
use extremely small values of Δt and k to obtain motion that is free of obstacle penetration.
On the one hand, simulating the full trajectory using a small Δt means long computation
times. On the other hand, when using Equation (9) for real-time kinematic control of the
manipulator, a small Δt imposes extreme demands on the control hardware, which must be
able to operate at such small sample times.
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3. Operational Configuration Space Kinematic Control and Obstacle Avoidance

To replace the generalized inverse velocity formulation of Section 2 with a configu-
ration space formulation, it is required that a set-valued inverse configuration kinematic
mapping be constructed, i.e., that a solution y = g(z, v) of Equation (1) be found with
an arbitrary vector of parameters v ∈ Rn−m. Such a mapping has been presented in [3]
and extended in [4] on an operational space differentiable manifold, as summarized in
this section.

3.1. Inverse Configuration Kinematics

The entire regular configuration space X̃ cannot, in general, be characterized by a
single continuously differentiable inverse kinematic mapping. The only practical global
inverse kinematic representation is based on concepts of differential geometry [2] that
employ local representations on open subsets Nj ∈ X̃, whose union is the entire regular
configuration space, i.e., ∪jNj = X̃. In each Nj, there is a base point xj about which the
inverse kinematic mapping is constructed. The inverse kinematic mapping process that
follows takes place on each Nj. For a given j and base point xj in Nj, define the n×m matrix
Uj and an n × (n − m) matrix Vj such that

Uj = G′T(yj) G′(yj)Vj = 0 VjTVj = I (12)

where Vj is computed as a matrix whose columns form an orthonormal basis of the null
space of G′(yj), e.g., in MATLAB, using singular-value decomposition [26]. The matrices
Uj and Vj are defined to be constant on Nj. Note from the second equation of Equation
(12) that UjTVj = 0 and VjTUj = 0. Since G′(yj) has full rank, so do Uj and Vj. Further,
since VjTUj = 0, the columns of Vj are orthogonal to the columns of Uj and vice-versa.
The n linearly independent columns of Uj (m columns) and Vj (n − m columns) therefore
span Rn.

Using Vj and Uj of Equation (12), any solution of Equation (1) for y in a neighborhood
of yj can be written in the form

y = yj + Vj(v − vj)− Uj(u − uj) (13)

where vj and uj are values of v and u associated with xj on the trajectory that first enters
Nj. They are introduced to assure continuity of y as a function of v and z. On N1, v1 = 0

and u1 = 0. Note that, at y = yj in Equation (13), v = vj and u = uj. To see that there is a
unique solution of Equation (1) with y of Equation (13), i.e., a unique solution of

G(yj + Vj(v − vj)− Uj(u − uj))− z = 0 (14)

for u as a function of z and v in a neighborhood of z = zj and v = vj, the derivative of
the left side of Equation (14) with respect to u, evaluated at xj, i.e., at z = zj and v = vj,
using the chain rule of differentiation, is −G′(yj)Uj = −UjTUj, which is nonsingular.
Thus, the implicit-function theorem [27] implies existence of a unique, twice continuously
differentiable solution,

u = hj(z, v) (15)

of Equation (14) in a neighborhood of xj. From Equation (13),

y(z, v) = yj + Vj(v − vj)− Uj(hj(z, v)− uj) (16)

This is the desired set-valued inverse configuration kinematic mapping on Nj.
If z(t) and v(t) are periodic of period tp on Nj, i.e., z(t+ tp) = z(t) and v(t + tp) = v(t),

since Equation (16) holds throughout Nj,

y(t + tp) = yj + Vj(v(t + tp)− vj)− Uj(h(z(t + tp), v(t + tp))− uj) = y(t) (17)
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Thus, y(t) is periodic of period tp, and the manipulator is cyclic on Nj. This shows that, with
the differentiable manifold formulation, the manipulator is locally cyclic [4,16]. In kinematic
control with obstacle avoidance, however, during a transient control time interval in which
v( t) is activated to resist penetration of an obstacle, it will generally not be periodic. During
this time interval, the manipulator will not be locally cyclic. If, after transient action to avoid
obstacles, the desired periodic output goes through cycles without control action required
to avoid obstacles, i.e., v(t) becomes constant, then during these cycles, the manipulator
will be locally cyclic.

The role of the function hj(z, v) is important in assuring satisfaction of Equation (1).
This is in contrast with the generalized inverse velocity approach presented in Section 2, in
which Equation (1) is ignored. A computationally efficient iterative method for evaluation
of hj(z, v) is presented in [3,4]. In this computation, when the number of iterations required
for convergence exceeds a specified tolerance, the associated configuration x =

[
yT zT]T

is designated xj+1, the associated y, v, and u are designated yj+1, vj+1, and uj+1, a new
neighborhood Nj+1 is entered, and the parameterization is redefined. As shown in [28]
for dynamic system simulation, less than 0.1% of CPU time and no user interaction are
required for reparameterization. For more detail on the process of selecting configurations
xj and reparameterization calculations, see [3,4,28].

For a given output z, with v ∈ Rn−m arbitrary in a neighborhood of v = vj, Equation (16)
defines a set of input coordinates,

SMM(z) =
{

y = yj + Vj(v − vj)− Uj(hj(z, v)− uj) : v in a neighborhood of vj
}

(18)

called the manipulator self-motion manifold in input space associated with output z. Since
hj(z, v) is the solution of Equation (14), G(yj + Vj(v − vj)− Uj(hj(z, v)− uj))− z = 0, for
all v in a neighborhood of v = vj, y(z, v) of Equation (16) maps into z, i.e., z = G(y(z, v)).
Components of the vector v ∈ Rn−m are called self-motion coordinates. With arbitrary self-
motion coordinates v in a neighborhood of vj, Equation (16) defines n−m redundant degrees
of freedom v ∈ Rn−m of the manipulator that enables it to meet requirements that could
not be met with a nonredundant manipulator. The restriction of v to a neighborhood of
vj in the foregoing is to meet hypotheses of the implicit-function theorem. As shown in
Sections 4.1.1 and 4.2.2, Equations (16) and (18) may hold for large v in applications.

It is important to note that the self-motion manifold of Equation (18) is defined at
the configuration level. Since configuration information is not defined in the generalized
inverse velocity formulation, the self-motion manifold and self-motion coordinates cannot
be explicitly defined and are not available for obstacle avoidance in that formulation.

3.2. Operational Space Differentiable Manifold

Defining manipulator operational coordinates w =
[
zT vT]T ∈ Rn and functional

coordinates s =
[
yT wT]T ∈ R2n, the manipulator regular functional configuration space is

S̃ = ∪
Nj

{
s ∈ R2n : xj =

[
yjT zjT]T ∈ X̃,y ≡ ψj(w) = yj + Vj(v − vj)− Uj(hj(z, v)− uj)

}
(19)

Similar to the definition of the manipulator configuration space of Equation (2) as the
product of input and output spaces, the serial manipulator regular functional configura-
tion space is defined as the product of input and operational spaces. This is important
in establishing S̃ as a differentiable manifold, as presented in [4]. A family of charts (Nj,
ψj(w)) (an atlas) is defined to cover S̃, such that the mappings ψj are compatible and S̃ is a
differentiable manifold that is parameterized by w [2,4]. The differentiable manifold can
thus be parameterized by either y or w. It cannot, however, be parameterized by only
output z.

Kinematics on S̃ must be carried out on individual charts (Nj, ψj(w)) and transitioned
to adjacent charts as manipulator configurations progress along a trajectory in S̃, as shown
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schematically in Figure 2. Piecewise analysis on charts is unavoidable since, in general,
there is no globally valid operational coordinate parameterization ψ(w) of S̃ [2]. This
attribute of differential geometry that transforms local to global properties of sets and
mappings is one of its greatest contributions. The unavoidable reality, however, is that one
must adopt local operational space parameterizations, since no global parameterization
generally exists.

Figure 2. Trajectory along charts in S̃.

3.3. Differentiable-Manifold Output Trajectory Tracking and Obstacle Avoidance Algorithm

An output trajectory tracking and obstacle avoidance algorithm based on the inverse
kinematic mapping of Equation (16) is presented to carry out kinematic control more rigor-
ously and efficiently than with the generalized-inverse-velocity-based method of Section 2.
In [3], the inverse mapping was employed to avoid collisions in redundant manipulators
using an algorithm that marched along one-dimensional self-motion manifolds. That al-
gorithm, however, is limited to manipulators with a degree of redundancy of one. First, a
nominal trajectory yn(t) for the inputs y is selected that yields the desired output trajectory
zd(t), without exploiting kinematic redundancy. When the manipulator starts to move, it
follows this nominal trajectory until a collision is detected at some z∗ of the desired output
trajectory, i.e., until the intersection of two bodies is not empty. When a collision is detected,
the algorithm presented in [3] performs self-motions defined by Equation (18) that keeps
z = z∗, i.e., the self-motion coordinate v is varied on a grid with a given step Δv along
one direction (or the opposite) of the self-motion manifold until the interference disap-
pears. This algorithm is feasible only when the self-motion manifold is one-dimensional,
because one only needs to march along self-motion curves, exhaustively searching until a
collision-free configuration is found.

In manipulators with higher degrees of redundancy, such as the manipulator of
Section 1.2, the obstacle avoidance algorithm used in [3] is not feasible, because one would
need to perform an exhaustive grid search in the higher-dimensional space of self-motion
coordinates v, which would be computationally prohibitive, e.g., a four-dimensional grid
for the manipulator of Section 1.2. The new algorithm employed herein efficiently treats
obstacle avoidance using the inverse mapping of Equation (16) for higher degrees of
redundancy, as the examples of Sections 4.1.1 and 4.2.2 demonstrate.
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The new algorithm is based on the fact that, in the vicinity of a contact between two
bodies, it is possible to define a gap function g [29,30] that is the signed distance between
the closest points of the two bodies along their common normal. This works even when
one of the bodies has a nonsmooth shape and does not have a unique normal at the point
of contact [29,30]. Figure 3 illustrates this gap function g. Note that g is a signed distance,
which is positive when the bodies do not intersect, zero when their boundaries touch, and
negative when one body has penetrated the other. The gap function g depends on the
relative pose of the contacting bodies, which is defined by input coordinates, i.e., g = g(y).
Using the inverse mapping of Equation (16), one can write the gap function in terms of the
operational coordinates, i.e., g = g(y(z, v)).

Common 
normal

Body 1

Body 2

Gap 
function  g

g > 0 : no penetration

g < 0 : penetration

g = 0 : contact

Figure 3. Definition of gap function g.

Taking the foregoing into account, the new algorithm is as follows:
STEP 1: Initialize t = t0 and select a time step Δt. The desired output trajectory is zd(t)

for t0 < t < t1. The initial configuration y0 yields the initial desired z, i.e., G(y0) = zd(t0).
Construct the inverse mapping of Equation (16) in a neighborhood of y = y0, i.e., compute
U and V and initialize v = 0 and u = 0. Throughout execution of the algorithm, the self-
motion vector v is updated only when necessary to avoid obstacles. If other secondary
goals are to be met, the self-motion vector v can be used to optimize these secondary goals.
In the present algorithm, the focus is on the use of redundancy only for obstacle avoidance.

STEP 2: Set z = zd(t), solve for u = h(z, v) as in Section 3.1, and evaluate y = y(v, u)
of Equation (16). Whenever necessary, perform a reparameterization, i.e., a transition
between charts illustrated in Figure 2, as outlined in Section 3.2.

STEP 3: For the computed configuration y, check if interferences occur, i.e., if any link
of the manipulator intersects an obstacle. If no intersections occur, continue with step 4.
Otherwise, go to step 5.

STEP 4: Send the collision-free configuration y to the controller of the manipulator and
proceed to the next time step, i.e., update t = t + Δt. If t ≤ t1, return to step 2. Otherwise,
the desired trajectory has been completed and the algorithm ends.

STEP 5: If the algorithm has reached this step, there exists mechanical interference
between the manipulator and at least one obstacle for the current value of y = y∗, which
is obtained from z = z∗ and v = v∗. Assume that c > 0 contacts have occurred between
links of the manipulator and obstacles. In that case, contacts define gap functions gi(z, v),
i = 1, . . . ,c, which will be negative because obstacles are penetrated. The objective is to
find a value of v that renders the gap functions non-negative. This can be formulated as the
following nonlinear system:

g1(z, v) = k2
1

. . .
gc(z, v) = k2

c

(20)

where k = [k1, . . . , kc]
T is a vector of auxiliary variables that are introduced to transform

the desired inequalities gi(z, v) ≥ 0 into equivalent equalities gi(z, v) = k2
i . Next, Equation
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(20) is solved for r = [vT , kT ]
T

, using the Newton–Raphson (N-R) method [26], where
the starting values of v and k for N-R iteration are v = v∗, i.e., the value that produced
the interference that led to this step of the algorithm, and k = 0. Since Equation (20) is c
equations in (c + n − m) unknowns, it comprises an underdetermined system. Therefore,
when inverting the Jacobian used in the N-R method, the minimum-norm Moore–Penrose
pseudoinverse is used, which updates the unknowns r with the vector Δr of minimum
norm. The N-R method used to solve Equation (20) is described by Algorithm 1 shown
below, where

g̃(r) =
[
g1(z, v)− k2

1, . . . , gc(z, v)− k2
c

]T
(21)

and g̃′(r) is the c × (c + n − m) Jacobian of g̃(r) with respect to r.

Algorithm 1. Newton–Raphson iterations to solve Equation (20)

1: r ← [(v∗)T , 0]
T

2: iterations ← 0
3: do

4: Δr ← −g̃′†(r)g̃(r)
5: r ← r + Δr
6: iterations ← iterations + 1
7: while ‖g̃(r)‖ > ε AND iterations < max_iterations

Since the increment Δr with minimum norm is used in lines 4–5 of Algorithm 1 to
update the unknowns, this favors continuity of the configuration of the manipulator. In fact,
as the examples of Section 4 demonstrate, the proposed algorithm generates continuous
trajectories for the manipulator, and execution of Algorithm 1 (whose objective is to find a
new value of self-motion coordinates v that avoids collisions) takes only a few milliseconds
on a modern computer. The N-R method stops when a solution r = [vT , kT ]T that satisfies
Equation (20) is found, or when a maximum of max_iterations is exceeded. In the first case,
the algorithm yields a configuration y that is collision-free, and the algorithm jumps to step
4. In the second case, the desired trajectory zd(t) can be considered as infeasible, because no
configuration (sufficiently near to the configuration at the previous time step) can be found
to continue executing the trajectory while avoiding obstacles, and the algorithm ends.

4. Numerical Examples

The foregoing theory and computational algorithms are tested in this section using
planar examples with four and twenty degrees of redundancy. The selection of planar
examples is for ease of analysis and visualization of results. The theory and algorithm of
Section 3.3 is equally applicable for spatial and planar manipulators. For an application of
the differentiable manifold formulation with a seven degree of freedom spatial redundant
serial manipulator, see [3].

4.1. Four-Degree-of-Redundancy Trajectory Tracking and Obstacle Avoidance
4.1.1. Differentiable-Manifold Output Tracking and Obstacle Avoidance

In this section, the method described in Section 3.3 is applied to plan the motion of the
manipulator of Section 1.2 that has four degrees of redundancy. The manipulator starts
with input y0 = [0.5688, 0.4694, 0.0119, 0.3371, 0.1622, 0.7943]T , and its end-effector is
required to follow the periodic elliptic trajectory

zd(t) = [a cos(θ) cos(t)− b sin(θ) sin(t) + x0, a sin(θ) cos(t) + b cos(θ) sin(t) + y0]
T (22)

while its links must avoid a circular obstacle centered at (1.5, 2) with radius 0.5. Equation (22)
is the parametric equation of an ellipse centered at (x0 = 1.7, y0 = 2.9) with semiaxes a = 2
and b = 0.25, whose longer semiaxis forms an angle of θ = −0.15 rad with the x axis. The
end-effector is required to follow three cycles on this ellipse, i.e., t runs from t = 0 to t = 6 π,
with a time step of Δt = 0.01 s.
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The algorithm described in Section 3.3 is carried out with the following parameters:

(1) Iterations in the method presented in [4] to evaluate u = hj(z, v) stop when ‖Δu‖ < 0.0001.
(2) Iterations in Algorithm 1 stop when ‖g̃(r)‖ < 0.001 or when iterations > 10 = max_iterations.

With these parameters, the algorithm generates the time histories of y(t) and v(t)
shown in Figure 4. As this figure shows, the time history of these variables is periodic after
the first cycle, where vertical dashed lines separate cycles. In particular, v is constant after
the first cycle. It can be seen in Figure 4 that the trajectory of y(t) becomes cyclic when v
becomes constant, even before the output trajectory of Equation (22) has completed its first
cycle. This locally cyclic behavior is consistent with the theory presented in Section 3.1.

6π

y1

y3
y5

6π

y2 y6

y4
1st cycle 2nd cycle 3rd cycle

(a) (b)
6π

(c)

v1

v4

v2

v3

Figure 4. (a–c) Time history of y(t) and v(t) becomes cyclic after the first cycle, when the end-effector
follows Equation (22) while avoiding an obstacle using the obstacle avoidance algorithm of Section 3.3.

Snapshots of the manipulator executing this trajectory are shown in Figure 5. An
animation is shown in supplementary video S1 attached. Figure 5a–i show execution of the
first cycle. In Figure 5a, the manipulator moves with v = 0 as it approaches the obstacle,
until touching it. Then, the algorithm of Section 3.3 starts to actively update v(t) to avoid
penetration of the obstacle. Figure 5b–g show how the manipulator continues tracking
the desired elliptical trajectory, while some of its links touch the circular obstacle, until
contact is lost in Figure 5h and v is no longer updated. After this, the manipulator continues
executing the trajectory far from the obstacle until it completes the first cycle, as shown
in Figure 5i.

Execution of the second cycle begins with the manipulator approaching the obstacle, as
illustrated in Figure 5j. As shown in Figure 5k–n, during the second cycle, the manipulator
is not in contact with the obstacle except during a very short period of time shown in
Figure 5m, in which one of the links becomes tangent to the obstacle. This contact period is
very short, as can be better observed in the supplementary animation S1 attached to the
paper. After this short contact is lost (Figure 5n), the manipulator continues moving far
from the obstacle until completing the second cycle (Figure 5o). The third and subsequent
cycles are identical to the second cycle, as shown in Figure 4.

As Figures 4 and 5 show, during the first cycle of the desired trajectory given by
Equation (22), the algorithm of Section 3.3 actively updates v(t) to prevent penetration of
the obstacle during contact. After contact is lost, v(t) does not need to be further updated
and the input trajectory becomes cyclic, by virtue of Equation (17). Interestingly, the
constant value that v(t) adopts after contact is lost in the first cycle allows the manipulator
to continue repeating subsequent cycles during which contact without penetration occurs
only during a very short fraction of the cycle, as illustrated in Figure 5m.
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(a) (c)(b)

(m) (o)(n)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)

Initial

Figure 5. (a–i) Execution of the first cycle of the desired output trajectory given by Equation (22).
(j–o) Execution of the second cycle. Supplementary video S1 attached shows this figure in motion,
including a third cycle that is identical to the second one.

The average time required to run Algorithm 1 is 1.2 milliseconds (time measured on
the following CPU running MATLAB R2022b: Intel Core i7-8750H at 2.20 GHz). This is
the time required to find a new value of self-motion coordinates v that avoids penetration
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of obstacles every time that such penetration is detected, which demonstrates a rapid
correction of the trajectory to avoid obstacles, compatible with real time requirements.

As shown in Figure 5, to prevent obstacle penetration, the algorithm of Section 3.3
keeps the links in contact with the obstacle and moving smoothly around it until contact
is lost, as required by the trajectory of the end-effector. If it were necessary to avoid the
obstacle without contacting it, leaving some safety distance ds, then one would only need
to change the gap functions in Equation (20) to gi(z, v) − ds = k2

i , making it easier to
accurately regulate distance to obstacles than with the generalized-inverse-velocity-based
approach, which is illustrated next.

4.1.2. Generalized-Inverse-Velocity Output Tracking and Obstacle Avoidance

In this section, the approach described in Section 2 is used to solve the problem treated
in Section 4.1.1, where the manipulator with four degrees of redundancy must track the
periodic trajectory given in Equation (22). The manipulator starts at the same configuration
y0 as in Section 4.1.1. The same time step, Δt = 0.01 seconds, is used in the present section
to numerically integrate Equation (9) using a fourth-order Runge–Kutta integrator [26].
In contrast to the generalized-inverse-velocity-based method, the algorithm of Section 3.3
does not need to perform any numerical integration. The time step in that case is used only
to progress in time according to step 4 of the algorithm.

The method described In Section 2 is carried out by numerically integrating with a
fixed time step of Δt = 0.01 s. For a given time step Δt, the main parameter that can be
tuned in the method of Section 2 is the coefficient k > 0, which adjusts the intensity of
the penalty function f (y). A higher k will give greater weight to minimization of the cost
function, which means that the manipulator links will tend to have larger distances from
the obstacles.

Figure 6 presents a sequence of configurations adopted by the manipulator for three
different values of k when executing the first half of the first cycle of the periodic trajectory
given by Equation (22), i.e., when integrating Equation (9) from t = 0 to t = π seconds.
According to Figure 6c, for higher values of k, the manipulator adopts configurations that
are unnecessarily far from the obstacle. Thus, in the following, the value k = 0.01, which
generates the result shown in Figure 6a, is used. Note, however, that if k is chosen too
small, the rate of minimization of f (y) may be too slow for the motion of the robot, and
one or more links may penetrate the obstacle before the term

.
y0
(t) of Equation (10) leads to

a trajectory that avoids the obstacle.
When the manipulator is required to transit the elliptic trajectory three times by

integrating Equation (9) with k = 0.01 from t = 0 to t = 6π, the time evolution of inputs
yi(t) presented in Figure 7 is obtained. As this figure shows, the time history of yi(t) is
not cyclic, because the value of each yi(t) at the end of each cycle of the output trajectory
of Equation (22) does not coincide with its value at the beginning. This is an example of
noncyclicity of the generalized inverse velocity approach to redundancy resolution, as
discussed in Section 1.4. In contrast, as shown in Section 4.1.1, the differentiable manifold
approach leads to a locally cyclic trajectory after nonzero control action is required to avoid
the obstacle.

To better illustrate this noncyclic trajectory, Figure 8 presents a sequence of snapshots
of the manipulator as its inputs yi(t) traverse the trajectories graphed in Figure 7. Only the
first two cycles are presented in Figure 8. Supplementary video S2 attached displays the
animation of these two cycles, as well as a third cycle.

Figure 8a–i show execution of the first cycle. In Figure 8a, the manipulator is approach-
ing the obstacle. Between Figure 8b,e, the gradient term of Equation (10) acts to avoid
the obstacle. Between Figure 8f,i, the links of the manipulator are sufficiently far from
the obstacle, and the cost f of Equation (11) is negligible (with negligible derivative), so
the corrective term of Equation (10) does not have significant effect. Figure 8i shows the
configuration of the manipulator at the end of the first cycle of the elliptic trajectory, which
does not coincide with the initial configuration shown in Figure 8a.
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(a) k = 0.01 (b) k = 0.1 (c) k = 1

InitialInitial Initial

Motion

Figure 6. (a–c) Comparison of the postures adopted by the manipulator when integrating Equation (9)
using Equation (10) for different values of k while describing half of the ellipse defined by
Equation (22).

6π 6π

y1

y3
y5

1st cycle 2nd cycle 3rd cycle

(a) (b)

y2

y4y6

Figure 7. (a,b) Time evolution of yi(t) when tracking the trajectory of Equation (22) with k = 0.01.

Figure 8j–o show a sequence of snapshots of the configuration of the manipulator
during execution of the second cycle, completing the second cycle in Figure 8o. When
comparing these snapshots to those of the first cycle, one observes the noncyclicity of the
input trajectory, where the manipulator is further away from the obstacle than in Figure 8a,i.
A third cycle can be observed in attached video S2, which ends with the manipulator even
further away from the obstacle.

As this example shows, generalized-inverse-velocity-based kinematic control can be
used for obstacle avoidance, but its performance is not easy to tune or predict. For this
example, a time step of Δt = 0.01 seconds was sufficient to achieve obstacle avoidance for
different values of k, and it was possible to avoid obstacles without excessively conservative
distances between links and obstacles by choosing a small value of k = 0.01. However,
this worked well only for the first cycle. After completing the first cycle, due to the
nonholonomic nature of Equation (9), the manipulator drifts and executes subsequent
cycles far from the obstacle, where

.
y0
(t) of Equation (10) becomes negligible, yielding

postures similar to those that would have been adopted if the first cycle had been executed
using a larger value of k, as demonstrated in Figure 6. This suggests that the choice of
parameters k and Δt (which have been kept constant throughout this example) may actually
be rather arbitrary, because nonholonomy may end up wasting or undoing a careful choice
of such parameters. This is even more important in difficult scenarios such as the one
treated in Section 4.2.3, where a highly redundant manipulator must avoid several obstacles,
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and choice of parameters k and Δt is critical for performance of generalized-inverse-velocity-
based kinematic control.

(a) (c)(b)

(m) (o)(n)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)

Initial

Figure 8. (a–i) Execution of the first cycle of the desired output trajectory given by Equation (22), for
k = 0.01. (j–o) Execution of the second cycle. Supplementary video S2 attached shows this figure in
motion, including a third cycle that is different from the previous two cycles.
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4.2. Twenty-Degree-of-Redundancy Trajectory Tracking and Obstacle Avoidance
4.2.1. A Twenty-Degree-of-Redundancy Manipulator

Consider a highly redundant variant of the manipulator of Figure 1 that is shown in
Figure 9. Instead of having four links with relative angles y3 . . . y6, it has 21 links with
relative angles y3 . . . y23, where all links have unit length.

The initial configuration of the manipulator is shown in Figure 10, given by the
following input angles.

y0 =

⎡⎣ 0. 7727 0. 1546 0. 1040 0. 4934 0. 9715 0. 3697 0. 6284 . . .
. . . 0. 2710 0. 7981 0. 2884 0. 5227 0. 6964 0. 8729 0. 9409 . . .
. . . 0. 5358 0. 1209 0. 1221 0. 2128 0. 7854 0. 2131 0. 7936 0. 2532 0. 9685

⎤⎦T

(23)

This manipulator has n = 23 degrees of freedom. Outputs of the manipulator are the
position coordinates of the outboard end of the last link and its orientation, i.e.,

z = G(y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 +
23
∑

i=3
cos

(
i

∑
j=3

yj

)

y2 +
23
∑

i=3
sin

(
i

∑
j=3

yj

)
23
∑

i=3
yi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(24)

Since there are m = 3 outputs, the degree of redundancy is r = n − m = 23 − 3 = 20, so this
can be considered a hyper-redundant manipulator.

The task of this manipulator is to follow the output trajectory

zd(t) = [−2.1164 + 2.5(cos(4 t)− 1) , 4.0455 + sin(3 t) , − 1.6035 rad]T (25)

which means that the outboard endpoint of the manipulator must describe the desired
path given by the first two coordinates of Equation (25), and the last link maintains a
constant orientation given by the last coordinate of Equation (25). The desired path is
displayed in Figure 10. The desired trajectory must be achieved from t = 0 to t = 1.2, while
the manipulator avoids three circular obstacles that are shown in Figure 10. Two obstacles
are stationary, labeled O1 and O2 in Figure 10, where O1 is a circle centered at (0, 2) with
unit radius, and O2 is another circle of unit radius centered at (−2, 7). Note that, initially,
the manipulator wraps around obstacle O1. There is a third circular obstacle labeled Om
in Figure 10 with radius 0.75 that is mobile. Its center starts at (−4, 2) and translates with
constant speed until reaching the point (−3, 5.5) at t = 1, remaining static at that point for t > 1.

4.2.2. Differentiable-Manifold Output Tracking and Obstacle Avoidance

The path-planning obstacle avoidance problem is first treated using the differentiable
manifold algorithm of Section 3.3 with a time step of Δt = 0.001 s, which results in
the sequence of postures shown in Figure 11 (supplementary video S3 is attached that
illustrates the continuous motion). As demonstrated by Figure 11, the algorithm is able to
resolve redundancy and obtain a feasible motion that tracks the desired output trajectory of
Equation (25), while avoiding penetration of all obstacles for all time. First, the manipulator
contacts obstacle O1 (Figure 11b), and then it contacts obstacle O2 (Figure 11c–d), to lose
contact later (Figure 11e–h). In Figure 11i, the manipulator contacts the mobile obstacle Om
and subsequently adjusts its configuration continuously to avoid penetrating this mobile
obstacle as it approaches stationary obstacle O2 (Figure 11i–l). A difficult situation occurs,
as shown in Figure 11m, when the mobile obstacle Om stops close to obstacle O2, after
which Om and O2 create a narrow corridor through which the manipulator must maneuver
(see the magnified view of the corridor in the inset of Figure 11m). The differentiable
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manifold algorithm of Section 3.3 is able to handle this situation seamlessly. It completes
the desired trajectory, as demonstrated in Figure 11m–o.
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Figure 9. A manipulator with r = 20 degrees of redundancy.
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Figure 10. Obstacles and manipulator initial configuration.
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4.2.3. Generalized-Inverse-Velocity Output Tracking and Obstacle Avoidance

The problem treated in Section 4.2.2 is attempted using the generalized inverse velocity
method, numerically integrating Equation (9) with the term of Equation (10) to avoid
obstacles. For this method, it is necessary to select two parameters, the time step Δt used to
numerically integrate Equation (9) (using again the fourth-order Runge–Kutta method) and
the coefficient k used in Equation (10) to tune the rate of minimization of the cost function
that penalizes proximity to obstacles. For a less complex example such as the one studied in
Section 4.1.2, these two parameters were successfully set. However, for this more complex
example with three obstacles (one of them mobile) and, more importantly, a narrow corridor
such as the one shown in Figure 11m, the choice of parameters becomes critical. A smaller
time step Δt allows accurate numerical integration and smooth motions, but the simulation
takes more CPU time to complete the full trajectory (or, in case the method is used to update
the configuration in a real-time controller, it requires a more demanding controller that is
able to operate at smaller sample times Δt). A smaller k performs the minimization of the
cost function more slowly, which yields smoother motions that come closer to obstacles.
However, a small value of k requires using a very small time step Δt to enable the algorithm
to avoid penetrating obstacles.

Table 1 shows 16 combinations of (k, Δt) and the result of obstacle avoidance for each
combination. The result of each combination is represented by a grade F, D, or C, with the
following meaning:

Grade F means that the simulation fails when the first obstacles (O1 or O2) are contacted,
long before the narrow corridor indicated in Figure 11m is formed. The failure consists in
the manipulator suffering a discontinuity in its configuration upon contact.
Grade D means that the simulation fails when the manipulator is trapped by the narrow cor-
ridor. The failure consists in the manipulator suffering a discontinuity in its configuration
when the corridor is formed, without penetrating obstacles.
Grade C means that, when the narrow corridor is formed, the manipulator starts to pene-
trate obstacles and suffers discontinuous jumps in its configuration.

Table 1. Results of the generalized inverse velocity method for different pairs (k, Δt).

k\Δt(Seconds) 0.01 0.001 0.0001 0.00001 (Very Slow Simulation)

0.1 F D D D

0.01 F D D D

0.001 F C D C

0.0001 F F D C

The lower-right case of Table 1 (k = 0.0001 and Δt = 0.00001) is illustrated in Figure 12.
This case has been chosen for illustration because, despite not being fully successful (in fact,
no case of Table 1 is fully successful), it exhibits the most similar behavior to Figure 11. It
should be noted that the result of Figure 12 required a very slow simulation, due to the small
time step of 0.00001 s, in contrast to the simulation of Figure 11 that worked well with a time
step of 0.001 s. As Figure 12 shows, the generalized-inverse-velocity-based method yields a
solution that is not very different from the one shown in Figure 11 during the beginning
of the trajectory. The links contact obstacles and wrap around them as the manipulator
progresses, including the mobile obstacle Om. The problem occurs when the mobile
obstacle forms the narrow corridor with static obstacle O2. In that case, as Figure 12m
shows, the manipulator starts to penetrate obstacles. It also suffers discontinuities in its
configuration that occur between Figure 12l and m. This behavior can be better observed
in supplementary video S4 attached. In any case, the trajectory becomes infeasible. In
fact, according to Table 1, no valid combination of (k, Δt) was found that accomplishes
this trajectory while avoiding obstacles with the generalized inverse velocity method. In
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contrast, the differentiable manifold method of Section 3.3 was able to easily solve this
problem, as demonstrated in Figure 11 and Supplementary video S3.

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)

(m) (o)(n)

Initial

O1

O2

Om

Desired 
path

Figure 11. (a–o) Successful redundancy resolution in a highly redundant manipulator with obstacle
avoidance, using the differentiable manifold algorithm of Section 3.3. Supplementary video S3 of this
sequence is attached.
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)

(m) (o)(n)

Figure 12. (a–o) Unsuccessful redundancy resolution in a highly redundant manipulator with obstacle
avoidance, using the generalized inverse velocity method of Equation (9). Supplementary video S4 of
this sequence is attached.

5. Discussion

Kinematic control of redundant manipulators has traditionally been conducted at the
velocity level, where a generalized inverse is used with the velocity equation of Equation
(9) to obtain joint velocities

.
y in terms of the task (or output) velocities

.
z and arbitrary
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input velocities. Joint trajectories are then determined by numerical integration of
.
y. Ob-

stacle avoidance is traditionally treated by performing self-motions that approximately
minimize a cost function of Equation (11) that penalizes proximity to obstacles. As shown
in Section 4.1.2, this approach leads to difficult-to-predict behavior, due to nonholonomy,
as the manipulator performs quite different postures between cycles of specified output
trajectories for the four-degree-of-redundancy manipulator, despite fine-tuning the pa-
rameters of the method (the rate of minimization of the cost function) to avoid obstacles
during the first cycle. As shown in Section 4.2.3, regardless of the values of tunable param-
eters, the generalized inverse velocity approach encounters insurmountable difficulties
for the twenty-degree-of-redundancy manipulator in a complicated situation such as a
narrow corridor between obstacles, leading to infeasible trajectories that exhibit discontinu-
ities or penetration of obstacles. These examples show that theoretical deficiencies of the
generalized-inverse-velocity-based redundancy resolution method identified in Section 1.4
lead to severe problems in manipulator control applications.

An operational configuration space differentiable manifold formulation is presented
for kinematic control of redundant manipulators during obstacle avoidance. In contrast
with the traditional generalized-inverse-velocity-based approach, the differentiable mani-
fold formulation resolves kinematic redundancy at the configuration level, constructing an
inverse mapping that parameterizes input coordinates y as functions of output coordinates
z and self-motion coordinates v. This mapping is holonomic, locally cyclic, and can be used
to generate global obstacle-free motion plans, as described in Section 3.3. The algorithm
presented defines a gap function g in the vicinity of every collision that is a function of
self-motion coordinates v. The algorithm actively adjusts self-motion coordinates v to avoid
penetration of obstacles, keeping g non-negative by solving an under-constrained system of
nonlinear equations. The example of Section 4.1.1 demonstrates the cyclicity and real-time
capability of the algorithm with the four-degree-of-redundancy manipulator. The example
of Section 4.2.2 demonstrates its ability to treat very restrictive obstacle situations with the
twenty-degree-of-redundancy manipulator, negotiating a narrow corridor while accurately
completing the desired task.

Although this paper has focused on redundant serial manipulators, the differentiable
manifold formulation is presented for non-serial redundant manipulators in [3], which
makes it possible to extend the algorithm presented to non-serial manipulators. Future
applications of the formulation presented will not only consider control at the kinematics
level but also control at the dynamics level [4], where accurate holonomic control of obstacle
avoidance can be exploited for controlling contact forces between links and obstacles.
Kinematic control applications involving constraints on velocities and accelerations can
also be addressed.
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Abstract: Making full use of the cooperation of multi-robots can improve the success rate of apursuit
task. Therefore, this paper proposes a multi-robot cooperative pursuit strategy based on the zero-sum
game and surrounding points adjustment. First, a mathematical description of the multi-robot pursuit
problem is constructed, and the zero-sum game model is established considering the cooperation
of the pursuit robots and the confrontation between the pursuit robots and the escape robot. By
solving the game model, the optimal movement strategies of the pursuit robots and the escape
robot are obtained. Then, the position adjustment method of the pursuit robots is studied based
on the Hungarian algorithm, and the pursuit robots are controlled to surround the escape robot.
Based on this, a multi-robot cooperative pursuit strategy is proposed that divides the pursuit process
into two stages: pursuit robot position adjustment and game pursuit. Finally, the correctness and
effectiveness of the multi-robot cooperative pursuit strategy are verified with simulation experiments.
The multi-robot cooperative pursuit strategy allows the pursuit robots to capture the escape robot
successfully without conflicts among the pursuit robots. It can be seen from the documented
simulation experiments that the success rate of the pursuit task using the strategy proposed in this
paper is 100%.

Keywords: multi-robot cooperative pursuit strategy; zero-sum game; Hungarian algorithm; pursuit
robot position adjustment

1. Introduction

A multi-robot system consists of more than two robots, which can improve the effi-
ciency of task completion with cooperation [1]. It has good scalability to adapt to different
tasks by adjusting the number and types of robots in the system [2,3]. Multi-robot sys-
tems can replace humans to complete tasks such as information collection [3,4], target
pursuing [3–6], target capture [7,8], etc. There is usually a certain degree of a confronta-
tion relationship between the targets and the multi-robot system during tasks. The target,
namely the escape robot, wants to be away from the multi-robot system, and the multi-robot
system, namely the pursuit robot team, tries every means to capture the target at the same
time. The multi-robot system cooperative pursuit strategy is the key to improving the task
efficiency and success rates. If there is no cooperation, it will lead to low pursuit efficiency,
long task completion time, and even task failure, which will threaten the security of the
robots involved in the pursuit. Therefore, it is of great significance to conduct research on
the multi-robot pursuit problem and to design a multi-robot cooperative pursuit strategy.

Currently, many scholars have researched the multi-robot pursuit problem. The multi-
robot pursuit problem includes two cases: multi-pursuit robots capture multi-escape robots
(many-vs.-many) and multi-pursuit robots capture a single-escape robot(many-vs.-one). In
the case of many-vs.-many, the task assignment should be done first to determine if all of
the pursuit robot sets correspond to every escape robot, and the pursuit robots sets are then
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used to capture the corresponding escape robots. Thus, it can be seen that a case of many-
vs.-many is transformed into a case of many-vs.-one based on the task assignment [9–11].
In addition, in the field of space, there is often only one pursuit robot that is used to capture
the escape robot, such as the “Phoenix” and “Shenzhou 12 docking with Chinese space
station” projects, etc. Additionally, the research focus is gradually expanded to capture an
escape robot with many pursuit robots to reduce the control difficulty of the pursuit robot.
A mature research system has not yet been formed for the pursuit problem of many-vs.-one,
so this paper conducts research on that subject.

When the escape robot moves faster than the pursuit robots do, it is necessary to give
full play to the advantages of the cooperative multi-robot system, which puts forward
higher requirements for the design of a multi-robot cooperative pursuit strategy. To
realize the pursuit of the escape robot with high speed, some scholars have researched
the constraints of the initial position distribution of the pursuit robots and the number of
the pursuit robots required to complete the pursuit tasks. Breakwell [12] completed the
boundary analysis of two pursuit robots with slower speeds pursuing an escape robot
with a faster speed based on a differential game and determined the relative positional
relationship of the pursuit robots at the beginning of the pursuit task. Zha [13,14] applied
the boundary analysis method to the pursuit constraint analysis of tasks with many pursuit
robots and one escape robot. The minimum number of pursuit robots required and
the speed relationship between the pursuit robots and the escape robot were further
determined. Jin [15] also conducted a pursuit constraints analysis based on the Apollonius
circle, which included the minimum number of pursuit robots required and the position
distribution at the beginning of the pursuit task. All of the above studies are based on the
constraints analysis of the number and initial position of pursuit robots. However, the
positions of the pursuit robots are random at the beginning of the pursuit task, so the initial
position constraints may not be satisfied, which may lead to task failure. Considering that
the perception ranges of the robots are limited and considering that when the pursuit robots
are outside the perception range of the escape robot, the process of pursuit and escape will
not start immediately. Su [16] proposed a multi-robot cooperative pursuit strategy based on
the Q-learning algorithm, where the pursuit robots are moved to a certain distance from the
escape robot. However, this strategy does not analyze whether the positions of the pursuit
robots meet the initial position constraints, which results in the pursuit task having a high
probability of failure. The analysis of the above research shows that the key to improving
the success rate of the pursuit task is to determine the initial pursuit conditions of the initial
position and the number of pursuit robots. Therefore, this paper designs a multi-robot
cooperative pursuit strategy that can adjust the positions of the pursuit robots to form a
pursuit configuration that satisfies the pursuit conditions before the pursuit begins.

After the pursuit robots surround the escape robot with the pursuit configuration,
the movement strategies of the pursuit robots will directly affect the pursuit result. In the
previously conducted research on the movement strategies of pursuit robots, many scholars
have adopted discrete methods to simplify the problem and to improve the efficiency.
Benda [17] conducted a study with many pursuit robots and one escape robot based on
a discrete grid environment, and each robot was restricted to move in the horizontal or
vertical direction. On this basis, Korf [18] introduced movement along the diagonal to
expand the robots’ movement strategies. Zhou [19] regarded the pursuit process as a
multi-stage game and established a game model to obtain the movement strategies of
pursuit robots in the pursuit process. However, rasterization of the environment causes the
robots’ movement to be limited to the horizontal, vertical, and diagonal directions in these
research studies. This causes a big difference between the research and the actual scenario.
Skrzypczyk [20] discretized and combined the angular velocity and linear velocity of the
robots to obtain the movement strategy of the robots so that the robots can move in more
directions. This reduces the limitation influence of the rasterization method on the robots’
movement strategy, thereby reducing the difference between the research and the actual
scenario. This method used to conduct this research on the multi-robot target pursuit
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problem is based on non-cooperative game theory. However, the escape robot did not take
the initiative to escape, which is not consistent with the actual situation.

In research previously conducted on multi-robot pursuit, the movement of the escape
robot also needs to be considered. For this problem, Selvakumar [21] regarded the team
of pursuit robots as a players in a game and the escape robot as the another player. They
proposed a method using the game matrix to determine the movement strategy of the
pursuit robots to achieve the pursuit of the active escape robot. However, there is always
only one pursuit robot at a time in this study, and the remaining pursuit robots are not
well used, resulting in a waste of resources. In order to improve the participation degree
of various pursuit robots in the pursuit process, some experts give full play to the coop-
eration of the multi-robot system. Alexander [22] proposed multiple two-player game
decomposition (MTPGD) by changing the player selection method in the game and by
considering the pursuit problem as a combination of multiple zero-sum games. Among
them, the encapsulated-team two-player game decomposition (ETTPGD) embodies the
strict confrontation relationship between the pursuit and escape robot during thepursuit
process. Both MTPGD and ETTPGD can complete the pursuit. However, they have not
considered the cooperative relationship between the pursuit robots, which may easily lead
to conflicts among the pursuit robots. Therefore, it is necessary to not only consider the
competitive relationship between the pursuit robots and the escape robot, but also the
cooperative relationship of the pursuit robots by analyzing the mutual influence of the
pursuit robots in the pursuit process.

In summary, in order to improve the success rate of a pursuit task with a multi-robot
system, this paper divides the multi-robot pursuit process into two stages. First, this paper
adjusts the position distribution of the pursuit robots to form a pursuit configuration for
the escape robot based on the pursuit conditions. Then, a movement strategy is proposed
for the pursuit robots that is based on a zero-sum game to complete the pursuit task. The
main contributions of this paper are:

1. The problem of multi-robot cooperative pursuit: a multi-robot cooperative pursuit
strategy including two stages and considering both pursuit robot position adjustment
and the pursuit robots’ pursuit of the eacape robots based on a zero-sum game is
proposed to improve the success rate of the pursuit task;

2. The cooperation of the pursuit robots and the competition between the pursuit robots
and the escape robot are considered comprehensively to establish a zero-sum game
model in this paper, which avoids conflict among the pursuit robots and improves
the safety of the multi-robot system during the pursuit process.

The article structure is as follows. The second part describes the problem of multi-
robot pursuit. The third part establishes the zero-sum game model of the multi-robot
pursuit problem and proposes a method to solve the game model. Then, a pursuit robot
movement strategyis proposed in the game stage in order to pursue the escape robot. The
fourth part completes the position adjustment of the pursuit robots based on the Hungarian
algorithm and form a pursuit configuration for the escape robot. The overall design of
the multi-robot cooperative pursuit strategy is completed in this part. In the fifth part, a
simulation experiment for the four pursuit robots and an escape robot are designed to
verify the effectiveness of the multi-robot cooperative pursuit strategy mentioned in this
paper. Finally, the summary of this paper is presented.

2. The Description of the Multi-Robot Pursuit Problem

In the study of multi-robot cooperative pursuit, the form of the pursuit tasks will have
an important impact on the design of the cooperative pursuit strategies. Therefore, the
multi-robot pursuit task will be analyzed in this part to determine the movement of the
pursuit robots during the pursuit process and to give a mathematical description of the
multi-robot pursuit problem.

In the two-dimensional space, the schematic diagram of the multi-robot pursuit task
is shown in Figure 1. Where the escape robot is recorded as E, the n pursuit robots are
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recorded as P = {P1, P2, · · · , Pn}. Combined with the polygon forming conditions, it can
be seen that n ≥ 3 must be met to ensure that the pursuit robots can form an effective
encirclement for the escape robot. Considering the operating safety of the robots, there
are n circular areas that represent the safe operation area of each robot with the center of
each pursuit robot’s position and the radius of dsafe. At the same time, the circle area at the
center of the escape robot’s position and the radius of dE is the safe area for the escape robot.
The escape robot will not play games with pursuit robots outside of this area. During the
pursuit process, the position of the pursuit robot team is recorded as P = [P1, P2, · · · , Pn]

T.
Pi is the position of the i-th pursuit robot Pi, and E is the position of escape robot. The
distance between the i-th pursuit robot and the escape robot is di(t). When Equation (1) is
satisfied, the capture condition is met, and the pursuit task is completed.

Dmin(P, E, t) = min{d1(t), d2(t), · · · , dn(t)} ≤ Dcaptured (1)

where Dmin(P, E, t) is the minimum distance between the pursuit robots and the escape
robot, Dcaptured is the capture distance.

Figure 1. The schematic diagram of the multi-robot pursuit task.

During the pursuit process, the movement of each pursuit robot is shown in Figure 2.
Each robot moves at the maximum speed VP(the magnitude of the velocity), and the
velocity of the i-th pursuit robot is denoted as vi. The velocity of the escape robot is
denoted as vE, and the speed of it is VE. The position of the pursuit robot Pi at the moment
of t is recorded as Pi(t) = [xi(t), yi(t)], i = 1, 2, · · · , n,t ≥ 0. After a decision period T, the
position of Pi changes to Pi(t + T) = [xi(t + T), yi(t + T)], and it can be calculated by the
following equation: {

xi(t + T) = xi(t) + VPT cos(θi + ϕi)
yi(t + T) = yi(t) + VPT sin(θi + ϕi)

(2)

where θi is the angle between the velocity direction of Pi and the positive direction of the X
axis at the moment of t. ϕi is the velocity direction deflection angle of Pi in the decision
period T, and the counterclockwise deflection is specified as positive. Due to the limited
deflection ability of the robots, ϕi ∈ [−ϕmax, ϕmax] needs to be met, and ϕmax(ϕmax > 0)
is the maximum deflection angle. Since the movement description process of the escape
robot E is similar to that of the pursuit robots, it will not be described in detail.
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Figure 2. The schematic diagram of the movement of Pi.

Based on the above, the mathematical description of the multi-robot pursuit problem
is as follows:

S(t) = [S
1
(t), S

2
(t), · · · , Sn(t), SE(t)], Si(t) = ϕi

s.t.Dmin(P, E, kT) = min{d1(kT), d2(kT), · · · , dn(kT)} ≤ Dcaptured

t ∈ [0, kT], k ∈ N

(3)

where S(t) represents the deflection angles of all of the robots at the moment of t, and k is
the number of decisions required to complete the pursuit.

3. Movement Strategy Solving Method Based on Zero-Sum Game

After completing the mathematical description of the multi-robot pursuit problem,
the multi-robot cooperative pursuit model is be conducted and solved based on a zero-sum
game in order to achieve the movement strategy of the pursuit robots in this part. The
pursuit robot team P = {P1, P2, · · · , Pn} is regarded as a player in the game, and the
escape robot is regarded as another player. The cooperation of the pursuit robots and
the competition between the pursuit robots and the escape robot are comprehensively
considered to design the game payoff function to improve the zero-sum game model.
Then, the optimal movement strategy for the pursuit robots during the pursuit process is
designed by solving the game model.

3.1. Establishment of Multi-robot Pursuit Zero-Sum Game Model

Combined with the aforementioned robot movement method, the pursuit process of
the multi-robot pursuit is decomposed into multiple decision-making stages. Each stage is
regarded as a round of the game. The strategy set of players P and E should be determined
first, which represents the possible movements of the pursuit robot team and the escape
robot in a round of the game. In each round of the game, the construction process of the
strategy set is as follows:

The deflection angle ϕi of the i-th pursuit robot Pi can be discretized as shown in
Figure 3. Then, the movement strategy of pursuit robots can be obtained:

Si =
{

ϕ1
i , ϕ2

i , · · · , ϕK
i |ϕj

i ∈ [−ϕmax, ϕmax], j ∈ [1, K], i = 1, 2, · · · , n
}

(4)

where ϕmax is the maximum deflection angle of the pursuit robots, and K is the number
of the deflection angle discretization. ϕ

j
i represents the j-th deflection angle of Pi, which

is optional.
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Figure 3. Discretization of robot motion deflection angle.

The strategy set SP of the pursuit robots team can be obtained by combining the
movement strategies of the pursuit robots. Similarly, the strategy set SE of the escape robot
can be obtained:

SE =
{

ϕ1
E, ϕ2

E, · · · , ϕK
E |ϕj

E ∈ [−ϕE
max, ϕE

max], j ∈ [1, K]
}

(5)

When the pursuit robots and escape robot adopt a certain strategy from their strategy
set, the pursuit situation Ω(SP, SE) is formed. Then, we need to design the payoff function,
which is used to determine the optimal solution. Combined with the basic elements of
the game, the payoff function Payo f fP(SP, SE) of the pursuit robots team and the payoff
function Payo f fE(SP, SE) of the escape robot can be designed to evaluate the strategy
adopted by the two parties. Based on the zero-sum game, it can be known that the sum of
the gains and losses of both parties involved in the game is always zero in the case of strict
competition. That is, the gains of one party must mean the equal losses of the other party.
According to the characteristics of the zero-sum game, the payoff function of the pursuit
robot team and the escape robot has the following relationship:

Payo f fE(SP, SE) = −Payo f fP(SP, SE) (6)

It can be seen from Equation (6) that when one of the payoff functions is designed
completely, another payoff function can be subsequently determined. The payoff function
design of the pursuit robot team should take into account the cooperative relationship
among the pursuit robots, while the payoff function of the escape robot needs to destroy this
cooperative relationship. In the case that each robot operates safely, the pursuit robot team
should maintain a compact state to enhance the cooperation capability and to gradually
move towards the escape robot. The escape robot needs to break the compactness of the
pursuit robot team and move away from the pursuit robots. Therefore, the payoff function
of the pursuit robot team and the escape robot are designed as follows:

1. Pursuit robot team distribution and maintenance item F1
P:

In order to ensure that the pursuit robot team maintains a compact distribution, we
propose the pursuit robot team distribution and maintenance item F1

P. It presents the
compact degree of the pursuit robots’ positions. Adjusting this item can make the pursuit
robots distribute compactly, and it is not easy for one robot to remove itself too far away
from the team.

In the inertial coordinate system, the virtual center Cb
team =

[
xb

C
(t), yb

C
(t)

]
of the

pursuit robots team, can be represented as follows:⎧⎨⎩ xb
C(t) =

xb
1(t)+···+xb

n(t)
n

yb
C(t) =

yb
1(t)+···+yb

n(t)
n

, (b = 0, 1) (7)

where b = 0 represents the current pursuit situation, and b = 1 represents the new situation
with the pursuit strategy.
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Comprehensively consider the distance standard deviation σb(P, E) between each
pursuit robot and the escape robot and the distance db

(
Cb

team, E
)

between the virtual center
of the pursuit robot team and the escape robot to design a pursuit robot team distribution
and maintenance item F1

P.

F1
P = −η1 tan

((
σ1(P, E)− σ0(P, E)

)
/KA

)
−η2 tan

((
d1

(
Cb

team, E
)
− d0

(
Cb

team, E
))

/KA

) (8)

where KA is a constant, and η1, η2 are the weight coefficients, η1 + η2 = 1. When it is
more focused on keeping the distance di between the pursuit robots and the escape robot
consistent, the η1 is larger. When it is more focused on creating the distance d

(
Cb

team, E
)

between the virtual center of each pursuit robot and the escape robot, the η1 is shorter, and
the η2 is larger. The coefficients of η1 and η2 are adjusted according to experience. The dis-
tribution of the pursuit robots can be kept compact by adjusting η1 and η2. Meanwhile, the
pursuit robots can be prevented from leaving the team to move alone, and the cooperative
relationship between the pursuit robots can be enhanced during the pursuit process in
this way.

2. Pursuit distance item F2
P:

In order to make the pursuit robot team approach the escape robot gradually and to
ensure that the escape robot gradually moves away from the pursuit robots, we propose
the pursuit distance item F2

P. It represents the distance between the pursuit robot team and
the escape robot. By adjusting this item, the pursuit robot team can gradually approaches
the escape robot. During the pursuit process, Db

team(P, E) is the total distance between the
pursuit robot team and the escapee.

Db
team(P, E) =

n

∑
i=1

db
i (t) (9)

Db
min(P, E) is the closest distance between the pursuit robot team and the escape robot.

Db
min(P, E) = min

{
db

1(t), db
2(t), · · · , db

2(t)
}

(10)

In combination with the above two distances, the pursuit distance item F2
P can be

designed as
F2

P = −β1 tan
((

D1
team(P, E)− D0

team(P, E)
)
/KB

)
−β2 tan

((
D1

min(P, E)− D0
min(P, E)

)
/KB

) (11)

where KB is a constant, β1, β2 are the weight coefficients, and β1 + β2 = 1. When the
coefficient β1 is larger, it ensures that the pursuit robots are more inclined to shorten the
overall distance and realize the contraction of the surrounding points. When the coefficient
β2 is larger, it ensures that the pursuit robot team is more inclined to continuously control
the closest pursuit robot to approach the escape robot. The coefficients β1 and β2 are
adjusted according to experience.

3. Robot collision avoidance item F3
P:

In order to improve the safety of the robots and to avoid a multi-robot collision, we
propose the robot collision avoidance item F3

P. It represents the collision status of each
robot. By adjusting this item, the safe operation of the robots can be ensured, and the
robots do not collide with each other ocer the course of the pursuit task. The robot collision
avoidance item F3

P is designed as follows.

F3
P =

{ −∞, ∃d1
ij(S

ω
P , Sυ

E) ≤ 2dsafe

0, ∀d1
ij(S

ω
P , Sυ

E) > 2dsafe
, i 
= j, i, j = 1, 2, · · · , n, E (12)
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where d1
ij(S

ω
P , Sυ

E) represents the distance between any two robots after the pursuit robot
team adopts the movement strategy Sω

P and after the escape robot adopts the movement
strategy Sυ

E.
Based on the above sub-items, the payoff function expression is as follows:

Payo f fP(SP, SE) = τ1lg
(

F1
P + KC

)
+ τ2lg

(
F2

P + KC

)
+ τ3F3

P (13)

where KC is a constant, the weight coefficients τ1, τ2, τ3 are adjusted according to experience,
and τ1 + τ2 + τ3 = 1.

Equation (13) can be used to evaluate the possible strategy combination adopted
by the pursuit robots and the escape robot. Then, a multi-robot team payoff matrix and
the escape robot payoff matrix can be built with the evaluation results, as shown in
Equations (14) and (15).

IP =

⎛⎜⎝ Payo f f 11
P

. . . Payo f f 1K
P

...
. . .

...
Payo f f U1

P
· · · Payo f f UK

P

⎞⎟⎠, U = Kn (14)

IE =

⎛⎜⎝ Payo f f 11
E

. . . Payo f f 1K
E

...
. . .

...
Payo f f U1

E
· · · Payo f f UK

E

⎞⎟⎠ = −

⎛⎜⎝ Payo f f 11
P

. . . Payo f f 1K
P

...
. . .

...
Payo f f U1

P
· · · Payo f f UK

P

⎞⎟⎠ (15)

Among them, after the escape robot adopts the movement strategy Sυ
E and the pursuit

robots adopt the movement strategy Sω
P , the corresponding payoff function Payo f fp

(
Sω

P , Sυ
E
)

is abbreviated as Payo f f ωυ
P

. K is the strategies number obtained by discretizing the move-
ment strategy of the robots.

In this section, the zero-sum game model of the multi-robot pursuit problem is
established based on the three basic elements of the game player, strategy sets, and
payoff function.

3.2. The Solution Method of Optimal Game Movement Strategy

Based on the multi-robot pursuit zero-sum game model, in order to obtain the optimal
movement strategy of the pursuit robots in each round of the game, this section solves the
game model by solving the game payoff matrix.

In one round of the game, when the pursuit robots adopt the strategy S∗
P and the

escape parties adopt the strategy S∗
E that satisfy Equation (16), the game reaches a Nash

equilibrium state. At this time, strategy S∗
P and S∗

E are the pure strategy Nash equilibrium
solution of the game. In the Nash equilibrium state, neither the pursuit robots nor the
escape robot can unilaterally change their adioted strategy to make the situation more
beneficial to itself. S∗

P and S∗
E are the optimal movement strategies that the pursuit robot

team and the escape robot can adopt in this round of the game. That is, the movement
strategy corresponding to the pure strategy Nash equilibrium solution is the current
optimal movement strategy.

Payo f fP(S∗
P, S∗

E) ≥ Payo f fP
(
S∗

P, Sυ
E
)
, ∀Sυ

E ∈ SE

Payo f fE(S∗
P, S∗

E) ≥ Payo f fE
(
Sω

P , S∗
E
)
, ∀Sω

P ∈ SP

(16)

Combining the definition of the Nash equilibrium solution and the method in refer-
ences [23,24] can solve the model. First, for each of the escape robot’s escape strategies,
the optimal pursuit strategy of the pursuit robots team to deal with the escape strategy is
solved and forms a set TP.

TP =
{

Sυω |max
ω

{
Payo f f 1υ

P
, · · · , Payo f f Uυ

P

}
, υ = 1, 2, · · · , K

}
(17)

where Sυω indicates the strategy combination with the strategy Sυ
E that the escape robot

adopts and the corresponding optimal strategy Sω
P that the pursuit robots team adopts.
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Similarly, for each pursuit robot team movement strategy, the corresponding optimal
movement strategy of the escape robot can be determined as shown in Equation (18) and
can form a strategy set TE.

TE =
{

Sωυ|max
υ

{
Payo f f ω1

E
, · · · , Payo f f ωK

E

}
, ω = 1, 2, · · · , U

}
(18)

where Sωυ indicates the strategy combination with the strategy Sω
P that the pursuit robot

team adopts and the corresponding optimal escape strategy Sυ
E that the escape robot adopts.

The pure strategy Nash equilibrium solution NE of the game can be obtained by
solving the intersection of sets TP and TE. When there is only one solution for NE, the
strategy combination for NE can be considered to be the optimal movement strategy
adopted by the pursuit robot team and the escape robot in this round of the game.

In view of the possible situation that there is no solution or a multi-solution, the
following processing is conducted to ensure the existence and uniqueness of the movement
strategy of the pursuit robot team and the escape robot:

In the case of TP ∩ TE = ∅, the pursuit robot team and the escape robot cannot obtain
the optimal movement strategy through the pure strategy Nash equilibrium solution in
this round of the game. Taking into account the confrontational relationship between the
pursuit robot team and the eacape robot, the two sides should determine their respective
movement strategies according to the principle of avoiding taking on the strategy that
would have the most adverse effect on them. By determining the minimum element
e = min(IP) of the payoff matrix IP and by removing the row where the e is located, the
most unfavorable situation caused by the movement strategy of the escape robot being
adopted is avoided. If e is located in multiple rows, the second minimum elements of these
rows are compared until only one row is determined.This operation should be repeated
until there is only one row left in the payoff matrix, and the corresponding strategy is the
movement strategy S∗

P of the pursuit robot team under the aforementioned principles. The
movement strategy S∗

E of the escape robot can be determined using similar methods to deal
with the columns of the payoff matrix IE in the current round round.

In the case of TP ∩ TE = NE and NE have multiple solutions, the optimal pursuit
strategy is not unique. Taking into account the stability of the pursuit task, the shortest
distance D1

min(P, E) between the pursuit robots team and the escape robot after using the
execution strategy

[
Si∗

P (t), Si∗
E (t)

]
is introduced as an additional evaluation criterion. The

strategy with the smallest D1
min(P, E) is selected as the optimal choice of movement strategy.

S(t) =

{[
Si∗

P (t), Si∗
E (t)

]
| min
Si∗

P (t),Si∗
E (t)

D1
min(P, E)

}
(19)

The pursuit robot and escape robot movement strategies can be obtained by the above
method for each round.

S(t) = [S∗
P(t), S∗

E(t)] =
[
S

1
(t), S

2
(t), · · · , Sn(t), SE(t)

]
(20)

4. Design of Multi-Robot Pursuit Strategy

Based on the establishment of the zero-sum game model and the design of the game
model solution method, it is necessary to conduct research on the multi-robot pursuit
strategy to improve the success rate of the pursuit task. Additionally, the success rate of
the pursuit task can be improved by pre-forming the surrounding configuration of the
escape robot.

It can be seen from the literature [15,16] that when the number of pursuit robots meets
the condition VP/VE = λ ≥ sin(π/n) and when the pursuit robots are evenly distributed
on the circle centered around the escape robot, the pursuit robots with a slower velocity can
adopt appropriate strategies to pursue the escape robot with a higher velocity to increase
the success rate of the pursuit task. At this time, the positional relationship between the
pursuit robots and the escape robot is shown in Figure 4.
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Figure 4. Schematic diagram of robot surround.

Where P1
i = [xi, yi] and P2

j =
[
xj, yj

]
(i = 1, 2, · · · , n, j = 1, 2, · · · , n) represent the

initial position of Pi and the target position after the escape robot is surrounded.
In order to control each pursuit robot to move from the initial position to the target

position at the same time and to improve the position adjustment efficiency, this paper
adopts the Hungarian algorithm [23], which is widely used to solve small and medium
scale assignment problems to complete the surround points allocation of pursuit robots.

In the process of surround points allocation, the task cost matrix Cn×n is constructed
using the distance f (P1

i , P2
j ) between the initial position of the pursuit robots to the target

position. By solving the task cost matrix, the target position of each pursuit robot can be
determined. Then, each pursuit robot can be controlled to complete the position adjustment
before the start of the pursuit game and can form a surrounding configuration for the
escaped robot.

After the surround points allocation and the position adjustment of the pursuit robots,
combining the aforementioned establishment and solve method of the zero-sum game
model, the multi-robot pursuit strategy can be constructed to realize the capture of the
escape robot with the pursuit robot team. The detailed process is as follows:

Step 1: Randomly generate the initial positions of the pursuit robots and the escape robot;
Step 2: The initial position distribution constraints of the pursuit task are considered to

select the target position of the pursuit robots to surround the escape robot and
use the Hungarian algorithm to complete the target position allocation of each
pursuit robot;

Step 3: Each pursuit robot moves according to the result of the target position allocation
and forms a surrounding configuration for the escape robot;

Step 4: A zero-sum game model of the multi-robot pursuit problem is established;
Step 5: The zero-sum game model is solved to obtain the movement strategies of the pur-

suit robots and the escape robot at each decision-making stage and to complete
the pursuit process of the escape robot.

In summary, the overall process of the multi-robot cooperative pursuit strategy de-
signed in this chapter is shown in Figure 5.

So far, this paper has completed research regarding a multi-robot cooperative pursuit
strategy. This strategy divides the process of multi-robot pursuit into two stages: pursuit
robot position adjustment and the pursuit of the escape robot based on a zero-sum game.
In the first stage, this paper realized the position transition of the pursuit robots from the
randomly generated initial configuration to the surround configuration that satisfies the
pursuit constraints. In the second stage, this paper designed a pursuit strategy to realize
the capture of the escape robot based on a zero-sum game.
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Figure 5. Multi-robot cooperative pursuit strategy.

5. Results and Discussion

In this chapter, the correctness and effectiveness of the multi-robot cooperative pursuit
strategy proposed in this paper will be simulated and verified. When the number of pursuit
robots is equal to or greater than three, it is sufficient to form the pursuit conditions. The
increase in the number has little effect on the success rate of the pursuit task. For the sake
of simulation experiments without a loss of generality, there are four pursuit robots and an
eacape robot that are used as experimental objects. When the speed of the robots meets
the condition VP/VE = λ ≥ sin(π/4), the simulation experiments are conducted for the
three cases when the speed of the pursuit robots is greater than, equal to, and less than that
of the escape robot. The simulation results verify the correctness and effectiveness of the
multi-robot cooperative pursuit strategy designed in this paper.

5.1. Verification of the Multi-Robot Game Pursuit Model

In order to verify the generality of the multi-robot game pursuit model, four pursuit
robots with the speeds of 1.2 m/s, 1.0 m/s, and 0.8 m/s are used to pursue the escape robot
with a speed of 1 m/s in this section.

Before the game’s pursuit process, the position E of the escape robot and the posi-
tion P of the pursuit robots located on the boundary of the escape robot safe area are
randomly generated. The radius dE of the escape robot safe area is set to 20 m. During
the pursuit process, the range of motion deflection angle of each pursuit robot is set to
ϕ ∈ [−π/3 π/3]rad, and the deflection angle ϕ is discretized with the interval π/18rad.
The radius of the robots’ safe operation area dsa f e is set to 1 m. The capture distance Dcapture
is set to 3m. When the distance between each pursuit robot and the escape robot satisfies
Equation (1), the pursuit task is completed successfully.

Each pursuit robot should be made to repeat the game pursuit process 30 times for
the aforementioned three different speed situations; the success rate of the pursuit task is
shown in Figure 6.
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Figure 6. The success rate of pursuit tasks with different pursuit speeds.

During the repeated game pursuit simulation experiment, the pursuit processes of the
pursuit robots with different speeds were selected to be shown in Figure 7.

Figure 7. Cont.
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Figure 7. Pursuit robot team pursuit of the escape robot with different speeds: (a) VP = 1.2 m/s,
VE = 1 m/s, and successful capture; (b) VP = 1 m/s, VE = 1 m/s, and successful capture;
(c) VP = 1 m/s, VE = 1 m/s, and failed capture; (d) VP = 0.8 m/s, VE = 1 m/s, and successful
capture; (e) VP = 0.8 m/s, VE = 1 m/s, and failed capture.

Figure 7a,b,d show the movement trajectory of each pursuit robot and the escape
robot when the task is completed successfully. Figure 7c,e show the movement trajectories
of the robots when the task fails.

Through the comprehensive analysis of the above simulation results, it can be seen that
when the pursuit robots move faster than the escape robot, the pursuit robots can always
capture the escape robot with their speed advantage In addition, from the trajectories of
Pursuit Robots 2 and 3 in Figure 7a, we know that since the initial positions of Pursuit
Robots 2 and 3 are very close, it is a dangerous situation for the pursuit robots. However,
under the effect of the collision avoidance term of the payoff function, the pursuit robots
adopted a collision-avoidance movement strategy at the initial stage of the pursuit, which
increased the distance between Pursuit Robots 2 and 3 and avoided a collision between the
pursuit robots. From the simulation results of the successful pursuit tasks in Figure 7b,d,
we know that when the escape robot is faster, the pursuit robots maintain the surrounding
state of the escape robot through cooperation and gradually shorten the shortest distance
between the pursuit robots and the escape robot until the capture conditions are met and the
escape robot is captured. It is verified that the multi-robot game pursuit model established
in this paper can fully exert the advantage of the cooperative relationship between the
pursuit robots. From the simulation results of the failed pursuit tasks in Figure 7c,e, we
know that an unreasonable position distribution of the pursuit robots will cause the pursuit
task to fail and result in a reduction of the pursuit success rate.

5.2. Validation of the Multi-Robot Cooperative Pursuit Strategy

According to the simulation in the above section, we know that the initial position
distribution of the pursuit robots will directly affect the result of the multi-robot pursuit
strategy. This section will verify the correctness and effectiveness of the multi-robot
cooperative pursuit strategy with the position adjustment of pursuit robots.

In the e multi-robot cooperative pursuit process, the initial position E of the escape
robot and the initial position P1 of each pursuit robot are randomly generated. Suppose
that the initial positions of the robots are shown in Equation (21).

P1 =

⎡⎢⎢⎣
32 93
50 19
91 98
44 12

⎤⎥⎥⎦m, E = [46 49]m (21)
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According to the multi-robot cooperative pursuit strategy designed in this paper, the
Hungarian algorithm is first used to allocate the surrounding point of the escape robot,
and the pursuit robots adjust their positions according to the allocation results to form
the surrounding configuration of the escape robot. After surround points allocation, this
paper adopts the A* path-planning algorithm to plan the movement trajectories and to
calculate the distance between the initial position and the designated surround position of
each pursuit robot. The selection and allocation results of the surrounding points of the
escape robot based on the Hungarian algorithm are shown in Figure 8.

Figure 8. Position adjustment with the Hungarian algorithm.

In order to verify the effect position adjustment on the pursuit robots in this paper in
improving the success rate of multi-robot cooperative pursuit, the pursuit robot position
adjustment method proposed in [16] is used for comparison. The pursuit conditions only
have constraints on the target positions of the pursuit robots, but they do not determine
the target positions. In this position adjustment method, each pursuit robot moves from
the initial position towards the escape robot until it reaches the escape robot’s safe area
boundary. When all of the pursuit robots move to the boundary of the escape robot’s safe
area, the robots start the game’s pursuit process. The selection of the surrounding points of
the escape robot based on the pursuit conditions is shown in Figure 9.

Figure 9. Position adjustment with pursuit conditions.

In Figures 8 and 9, the red and blue circles are the initial and target positions for the
pursuit robot position adjustment. The black lines are the trajectory of the pursuit robot
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position adjustment. The blue dot is the escape robot, and the dotted circle indicates the
escape robot’s safe area. It can be seen from Figures 8 and 9 that during the pursuit robot
position adjustment, the trajectory of each pursuit robot is always outside of the escape
robot’s safe area, and the game pursuit process will not start.

After the pursuit robot position adjustment with the above two methods, a multi-robot
pursuit zero-sum game model is established to obtain the movement strategies of the robots
to complete the multi-robot pursuit task. The pursuit robots team have different speeds VP
and pursue the escape robot based on the zero-sum game; the pursuit results are shown in
Figure 10.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Pursuit results corresponding to the different initial positions and different speeds of
pursuit robots: (a) Vp < Ve with the pursuit robot position adjustment method in this paper; (b) Vp < Ve
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with the pursuit robot position adjustment method in [16]; (c) Vp = Ve with the pursuit robot position
adjustment method in this paper; (d) Vp = Ve and the with pursuit robot position adjustment method
in [16]; (e) Vp > Ve with the pursuit robot position adjustment method in this paper; (f) Vp > Ve with
the pursuit robot position adjustment method in [16].

The multi-robot cooperative pursuit comparison experiment with the different pursuit
robot position adjustment methods is repeated 30 times. Additionally, the success rate
statistics are shown in Figure 11.

Figure 11. Statistical table of the pursuit results of the different pursuit strategies.

Figure 10a,c,e are the simulation results of the multi-robot cooperative pursuit strategy
with different pursuit robto speeds and the same position adjustment method proposed in
this paper. The figure shows that the pursuit task can be successfully completed by forming
a surrounding configuration for the escape robot based on the Hungarian algorithm before
the start of the pursuit game. Figure 10b,d,f are the simulation results of the multi-robot
cooperative pursuit strategy, which adjusts the pursuit robot positions using the method
in [16]. The pursuit tasks in Figure 10b,d failed because the pursuit robots did not form a
surrounding configuration that satisfied the position distribution constraints for the escape
robot. This pursuit robot position adjustment method leads to a reduction in the pursuit
success rate. In Figure 10f, the pursuit duration is longer than in Figure 10e. This shows
that the position adjustment method in [16] leads the pursuit efficiency of the pursuit task
to be lower than the method in this paper. The repeated experiment results in Figure 11
show that the success rate of the pursuit tasks using the position adjustment method in
this paper can be improved to 100%. This is because when the pursuit robots adjust their
positions based on the Hungarian algorithm, the escape robot is tightly surrounded by
the pursuit robots. Additionally, even if the escape robot is faster than the pursuit robot,
the pursuit robot can capture it pretty successfully. This futher proves that the multi-robot
cooperative pursuit strategy in this paper can guarantee the capture of the escape robot
and can effectively improve the success rate of multi-robot cooperative pursuit tasks.

6. Conclusions

Aiming to solve the problem of multi-robot pursuit, this paper proposed a multi-robot
cooperative pursuit strategy based on a zero-sum game and surrounding points adjustment.
First, this paper describes the problem of multi-robot pursuit mathematically and abstracts
the actual problem into a theoretical model. Second, this paper discretizes the multi-robot
cooperative pursuit process and establishes a zero-sum game model for each decision-
making stage to obtain the movement strategies of the pursuit and escape robot. Third, this
paper controls the pursuit robots to form a surround configuration that satisfies the initial
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position distribution constraints of the pursuit task based on the Hungarian algorithm and
designs a multi-robot cooperative pursuit strategy that divides the multi-robot pursuit
task into two stages: pursuit robot position adjustment and game pursuit. Finally, the
simulation shows that the multi-robot cooperative pursuit strategy proposed in this paper
can realize the capture of the escape robot by means of the cooperation of pursuit robots
and can effectively improve the pursuit success rate. The multi-robot cooperative pursuit
strategy proposed in this paper mainly has the following innovations:

1. A multi-robot cooperative pursuit strategy was designed, and the pursuit task was
divided into two stages: pursuit robot position adjustment and game pursuit, which
improved the success rate of multi-robot cooperative pursuit tasks;

2. The game model of the multi-robot cooperative pursuit tasks was optimized based
on a zero-sum game, which comprehensively considered the cooperative relationship
between the pursuit robots and the confrontation relationship between the pursuit
robot team and the escape robot in the multi-robot cooperative pursuit process.
Three pursuit robots team distribution payoff functions and a maintenance item, a
pursuit distance item, and a robot collision avoidance item were constructed to give
full weight to the advantages of the multi-robot cooperation and to ensure that the
multi-robot cooperative pursuit task was completed based on the safe operation of
the robots.

The multi-robot cooperative pursuit strategy proposed in this paper is versatile. In
follow-up research, the many-to-one confrontation problem of multiple aircraft pursuit can
be considered based on the strategy proposed in this paper. In addition, in the position
adjustment stage for the pursuit robots, the movement state of the escape robot is assumed
to be stationary and was not considered adequately in this paper. This is not in line with a
realistic scenario, and we will pay attention to this problem in follow-up research.
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Abstract: In the study and design of planar mechanisms, graphical techniques for solving kinematic
analysis/synthesis and kinetostatics problems have regained interest due to the availability of
advanced drawing tools (e.g., CAD software). These techniques offer a deeper physical understanding
of a mechanism’s behavior, which can enhance a designer’s intuition and help students develop their
skills. Geometric Constraint Programming (GCP) is the term used to describe this modern approach
to implementing these techniques. GeoGebra is an open-source platform designed for the interactive
learning and teaching of mathematics and related STEM disciplines. It offers an object-oriented
programming language and a wide range of geometric tools that can be leveraged to implement
GCP. This work presents a systematic technique for studying and designing planar linkages, based
on Assur’s groups and GeoGebra’s tools. Although some kinematic analyses and syntheses of
planar linkages using GeoGebra have been previously introduced, the proposed systematic approach
is novel and could serve as a guide for implementing similar problem-solving methods in other
graphical environments. Several case studies will be presented to illustrate this novel approach
in detail.

Keywords: planar linkage; kinematics; kinetostatics; parametric modeling; geometric constraint
programming; Assur group; GeoGebra

1. Introduction

Graphical techniques [1] were the primary tools used for kinematic analysis and
synthesis of planar mechanisms until about the mid-twentieth century [2], when the
first kinematic synthesis programs for digital computers appeared [3]. From then on,
many software packages for the kinematic analysis and synthesis of planar linkages were
developed during the second half of the twentieth century. Such programs moved the
central interest of researchers from graphical to numerical techniques. Unfortunately, even
though numerical techniques fully exploited the power of digital computers, they were
less prone than graphical ones to guide the intuition of students and designers toward a
full understanding of the practicable solutions of kinematic problems.

In the meantime, solid-modeling software packages enhanced both their user interfaces
and their integrated numerical solvers. These tools, together with the greatly increased
computational speeds of digital computers, created advanced drafting platforms where the
parametric programming of linkage sketches [1] made implementing graphical techniques
for solving kinematic problems easy and fast through trial-and-error procedures. In these
software packages, imposing geometric conditions (e.g., coincidence, parallelism, etc.) on
points and lines does not require any computation, and redrawing the whole sketch, after
the value of a parameter changes, is automatic and fast.

The evolution of solid-modeling software packages led, in the first decade of the
twenty-first century, to the rediscovery of graphical techniques as central tools for solving
kinematics and kinetostatics problems. In 2006, Kinzel et al. [4] referred to the implementa-
tion of graphical techniques for solving kinematic synthesis problems using the sketchers
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of CAD software as ‘Geometric Constraint Programming’ (GCP). Since then, a body of
literature [5–15] has emerged, focusing on GCP-based solution methods for both classical
and novel kinematic synthesis problems.

By extension, the term GCP can be used to indicate the implementation of any graphi-
cal technique related to kinematic or kinetostatic problems using any advanced graphical
platform [1,16,17]. GeoGebra (geogebra.org (accessed on 31 October 2024)) [18] is an open-
source environment designed for interactively learning and teaching mathematics and
related STEM disciplines. It features an object-oriented programming language and a wide
array of geometric tools, which can be used for implementing GCP.

In the context of planar mechanism sketches, GeoGebra allows users to insert geomet-
ric objects (e.g., points, lines, vectors, etc.) containing variable parameters and then generate
additional objects through geometric operations (e.g., intersection of curves, etc.) on the
inserted objects. These features are sufficient to build and animate mechanism sketches
where the variable parameters allow both the definition of motion inputs (i.e., actuated-joint
variables) and the mechanism geometry changes needed for matching design requirements.

Moreover, by defining geometric constraints (e.g., parallelism/perpendicularity be-
tween a line and a vector, etc.) among the objects, GeoGebra allows for drawing vector
diagrams, tied to the mechanism sketch, which dynamically vary during the mechanism
animation or because of a geometric constant change. Such a property is sufficient to
draw velocity/acceleration vector diagrams corresponding to the velocity/acceleration
loop equations of the mechanism and static-equilibrium vector diagrams of the forces
applied to the mechanism’s links. On this point, it is worth noting that sketchers of CAD
software are not able to insert vectors [2], which makes building vector diagrams much
more difficult/uncertain in those platforms than it is in GeoGebra.

Eventually, GeoGebra contains a long list of predefined functions and algebraic op-
erators that are usable to state (even cumbersome) math relationships among geometric
parameters (i.e., analytic constraints).

Drawing a mechanism’s sketch is the prerequisite for implementing, manually or
through GCP, any graphical technique. Such an operation involves the translation of the
kinematic constraints into geometric relationships among relevant points/lines/segments
used to build the sketch. From a conceptual point of view, once the sketch is completed,
the position analysis of the mechanism is graphically solved at a particular configuration
of the mechanism. Therefore, formulating the position analysis solution as a sequence of
geometric operations to implement is the central task to address using either traditional
drafting tools or any advanced graphical platform.

The decomposition of a planar linkage into Assur groups [19–22] is a technique pro-
posed in the literature for transforming the position analysis solution of planar linkages into
a sequence of modular operations [23–28]. An Assur group is a kinematic chain with zero
mobility that does not contain any smaller zero-mobility kinematic chain. Artobolevskii [21]
stated that any linkage is obtainable by connecting a number of Assur groups.

The position analysis solution through linkage decomposition starts from the data of
the frame and of the input links (driving links), whose poses (positions and orientations)
are known. Successively, it solves the position analysis of the Assur groups adjacent to the
driving links, and it continues by solving the position analysis of the Assur groups adjacent
to the already-solved part of the linkage until covering the whole linkage. It is applicable
and has advantages when the solution algorithms of the smaller modules (i.e., the Assur
groups) are known and simpler than the solution of the whole linkage. This is true for
the Assur groups named dyads (Figure 1), which feature two binary links (links i and j in
Figure 1) connected through single-degree-of-freedom (DOF) lower kinematic pairs (i.e.,
either a revolute (R) pair or a prismatic (P) pair) both to one another at one end and to the
remaining part of the linkage at the other end. A large family of planar linkages, which
contains the most common and studied ones, are decomposable by using only dyads over
driving links and frame.
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(a) (b) 

 

(c) (d) 

 

(e)  

Figure 1. Dyad types (i and j are the two links of the dyad, the green elements are the free endings
of the dyad, the red parameters are the geometric constants of the dyad): (a) RRR, (b) RRP, (c) RPR,
(d) RRP, and (e) RPP.

This paper addresses the kinematic analysis/synthesis and kinetostatic analysis of
this family of linkages using GeoGebra. In particular, firstly, how dyads’ kinematic analysis
is solvable by using purely geometric conditions, which are easy to implement through
GeoGebra, is shown. Secondly, how such geometric solutions allow building parametric
sketches of linkages, which can also be animated, and the associated vector diagrams
necessary to study/design the linkage from kinematic and kinetostatic points of view, is
also addressed. Eventually, a number of case studies is presented to better illustrate the
novel GCP methodology. Even though the kinematic analyses/syntheses of some planar
linkages with GeoGebra have already been presented, the proposed systematic approach is
novel and could guide the implementation of the solutions of the same problems even in
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other graphical environments. The results of these works are useful both to mechanism
designers and to conceiving a novel teaching methodology for higher education courses.

The paper is organized as follows. Section 2 presents the methodology together
with some background materials. Section 3 illustrates a number of relevant case studies.
Successively, Section 4 discusses the obtained results and Section 5 draws the conclusions.

2. Materials and Methods

In GeoGebra (see [18] and the options “Manual” or “Tutorial” of the “Help & Feedback”
menu of https://www.geogebra.org/classic (accessed on 31 October 2024)), geometric
object and geometric operations can be introduced either by typing commands in the
“Algebra” menu or by choosing on a graphic menu, named “Tools”, the specific object (e.g.,
point or line symbols) or operation, and, then, clicking, with the mouse, on the position of
the Cartesian plane window where the object/operation must be located/executed. Here,
for the sake of clarity, the procedures are illustrated through the commands of the “Algebra”
menu. The use of the graphic menu “Tools” is intuitive, and the reader can autonomously
master it after having understood the commands of the “Algebra” menu.

Also, in GeoGebra, scalar parameters are introducible by typing the command “Slider-
Name = Slider(minimum value, maximum value, increment)” or, simply, “SliderName”.
They are, by definition, variable and are usable for animating the drawing (i.e., as joint
variable) or for changing the geometry of the introduced objects (i.e., as a design parameter
to adjust according to the design requirements).

Eventually, in the Cartesian plane window of GeoGebra, by right-clicking on an
already-introduced geometric object, a submenu appears where the option “Show Trace”
can be chosen to provide the trace of the object during the animation (e.g., the path of
a point of a link during the link motion). In the same submenu, by choosing the option
“Settings”, another window appears on the right where all the properties of the object can
be modified. In this window, by deselecting the option “Show Object”, the object remains
defined, but it is not shown in the Cartesian plane window. Such a choice is useful, when
a linkage has multiple assembly modes, to hide all the assembly modes the user is not
interested in.

2.1. Building the Linkage and Generating Its Motion

The planar linkages of the family under study contain only dyads, driving links and
the frame.

In GeoGebra, modeling the frame corresponds to the introduction of the geometric ob-
jects that define the joints connecting the links to the frame. Such joints are either R-pairs or
P-pairs. Consequently, for R-pairs, the coordinates of the R-pair centers must be introduced
through the command “PointName = Point({x,y})” or, simply, “PointName = (x,y)”, where
x and y can be either numeric values or names of scalar parameters. For P-pairs, the lines
parallel to the P-pair sliding directions, chosen as joint axis, must be introduced through the
command “LineName = Line(<Point>, <Point>)” or “LineName = Line(<Point>, <Direc-
tion>)”, where the points belong to the joint axis and the direction is assigned by means of a
vector or a line/segment parallel to the joint axis. Since the frame is at rest, all these points
and lines have null velocity and acceleration during the linkage animation, even though
their position can be modified by using the scalar parameters that have been introduced
during the object definitions.

Differently, the introduction of dyads and driving links can be achieved through the
short command lists presented below.

2.1.1. Dyads

Considering all the possible combinations of R- and P-pairs in a dyad brings one to
the conclusion that there are only five types of dyads (Figure 1): (a) RRR, (b) RRP, (c) RPR,
(d) PRP, and (e) RPP. From a kinematic point of view, each type of dyad is considerable as a
module whose inputs and outputs are the kinematic data of the two free endings (i.e., the
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green elements in Figure 1) and of the intermediate joint between the two links (i.e., the black
joint in Figure 1), respectively. For an R-pair, such data refer to the position, velocity and
acceleration of the R-pair center, whereas, for a P-pair, they are pose, velocity characteristics
(e.g., a given point velocity and the angular velocity) and the acceleration characteristics
(e.g., a given point acceleration and the angular acceleration) of the line parallel to the
P-pair slider direction that has been chosen as the joint axis. The analytic relationships that
express the kinematic data outputs as functions of the kinematic data inputs are known
and used in analytical/numerical modular solution algorithms for planar linkages (see [16],
for instance). Reinterpreting such relationships in term of geometric conditions easy to
implement in GeoGebra is feasible, as follows. In the zipped file “GGB files.zip” uploaded
as “Supplementary Materials”, the folder “Dyads” contains the GeoGebra files (extension
ggb) with the GeoGebra programs that build the five types of dyads together with their
velocity/acceleration vector diagrams. In Appendix A, these GeoGebra programs are
reported together with comments that explain what each command line generates in the
Cartesian plane window of GeoGebra.

2.1.1.a. RRR Dyad

For RRR dyads, with reference to Figure 1a, the data inputs are the coordinates of
the R-pair centers at the free endings, that is, points A and B, and the link lengths, that is,
rc and rd, whereas the data outputs are the coordinates of the center of the intermediate
R-pair, that is, point C.

Since point C must keep a constant distance rc (rd) from A (from B) during motion,
point C must be located at one of the two possible intersections of two circumferences (c
and d in Figure 1a), one centered at A with radius rc and the other centered at B with radius
rd. Accordingly, the list of GeoGebra commands that implement this geometric condition
is reported in Appendix A. Such a GeoGebra program generates in the Cartesian plane
window of GeoGebra the RRR dynamic sketch of Figure 1a, where the style properties
(colors of lines and points, etc.) of the introduced objects have been modified by selecting
the object and clicking on “Settings”, as explained above.

In this draft, the dyad configuration is modifiable by clicking on one free ending A
or B and moving the mouse. Also, the dyad geometry is modifiable through the defined
“Sliders” rc and rd. When an RRR dyad is added to an already-built linkage, points A and
B are already defined as linkage points, and the first two commands of the above cited list
must be omitted.

2.1.1.b. RRP Dyad

For RRP dyads, with reference to Figure 1b, the data inputs are the coordinates of the
R-pair center at the left free ending, that is, point A; the pose data of the P-pair joint axis at
the right free ending, that is, line f; the length of link i, that is, rc, and the distance from line
f of the center of the intermediate R-pair, that is, dgf. The data outputs are the coordinates
of the center of the intermediate R-pair, that is, point C.

Since point C must keep a constant distance rc (dgf) from point A (from line f) during
motion, point C must be located at one of the two possible intersections between the
circumference (c in Figure 1b) centered at A with radius rc and a line (line g in Figure 1b)
parallel to the P-pair joint axis and distant dgf from it. Accordingly, the list of GeoGebra
commands that implement this geometric condition is reported in Appendix A. Such
a GeoGebra program generates in the Cartesian plane window of GeoGebra the RRP
dynamic sketch of Figure 1b, where the style properties (colors of lines and points, etc.) of
the introduced objects have been modified by selecting the object and clicking on “Settings”,
as explained above.

In this draft, the dyad configuration is modifiable by clicking on one free ending A or
D and moving the mouse, and by acting on the defined “Slider” θ to change the slope of line
f. Also, the dyad geometry is modifiable through the defined “Sliders” rc and dgf. When an
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RRP dyad is added to an already built linkage, point A and line f are already defined as
linkage parts and the first three commands of the above-cited list must be omitted.

2.1.1.c. RPR Dyad

For RPR dyads, with reference to Figure 1c, the data inputs are the coordinates of
the R-pair centers at the free endings, that is, points A and B, and their distances from the
P-pair joint axis, that is, dAk and dBk, whereas the data outputs are the pose of P-pair joint
axis, line k, and the position on this axis of the P-pair’s slider (i.e., of point C).

Since line k must keep at a constant distance dAk (dBk) from A (from B) during motion,
line k must be always tangential to two circumferences (c and d in Figure 1c), one centered
at A with radius dAk and the other centered at B with radius dBk. Once the pose of line
k is determined, the pose of the P-pair slider immediately comes out from the geometry
of the two links i and j. Accordingly, the list of GeoGebra commands that implement this
geometric condition is reported in Appendix A. Such a GeoGebra program generates in the
Cartesian plane window of GeoGebra the RPR dynamic sketch of Figure 1c, where the style
properties (colors of lines and points, etc.) of the introduced objects have been modified by
selecting the object and clicking on “Settings”, as explained above.

In this draft, the dyad configuration is modifiable by clicking on one free ending A
or B and moving the mouse. Also, the dyad geometry is modifiable through the defined
“Sliders” dAk, dBk, xk, and yk. When an RPR dyad is added to an already built linkage,
points A and B are already defined as linkage points, and the first two commands of the
above-cited list must be omitted.

2.1.1.d PRP Dyad

For PRP dyads, with reference to Figure 1d, the data inputs are the pose data of the
two P-pair joint axes at the free endings, that is, lines c and f, and the distance from line c
(line f) of the center of the intermediate R-pair, that is, dcn (dgf). The data outputs are the
coordinates of the center of the intermediate R-pair, that is, point C.

Since point C must keep a constant distance dcn (dgf) from line c (from line f) during
motion, point C must be located at the intersection between two lines, one (line n in
Figure 1d) parallel to line c and distant dcn from it and the other (line g in Figure 1d)
parallel to line f and distant dgf from it. Accordingly, the list of GeoGebra commands that
implement this geometric condition is reported in Appendix A. Such a GeoGebra program
generates in the Cartesian plane window of GeoGebra the PRP dynamic sketch of Figure 1d,
where the style properties (colors of lines and points, etc.) of the introduced objects have
been modified by selecting the object and clicking on “Settings”, as explained above.

In this draft, the dyad configuration is modifiable by clicking on one free ending E or
D and moving the mouse, and by acting on the defined “Slider” θ (ϕ) to change the slope of
line f (line c). Also, the dyad geometry is modifiable through the defined “Sliders” dcn and
dgf. When a PRP dyad is added to an already built linkage, lines c and f are already defined
as linkage parts, and the first four commands of the above-cited list must be omitted.

2.1.1.e. RPP Dyad

For RPP dyads, with reference to Figure 1e, the data inputs are the coordinates of the
R-pair center at the left free ending, that is, point A; the pose data of the P-pair joint axis at
the right free ending, that is, line f; the distance, dAm, from A of the joint axis (line m in
Figure 1e) of the intermediate P-pair and the angle, δ, that the same joint axis forms with
line f. The data outputs are the pose data of the joint axis of the intermediate P-pair, that is,
line m, and the positions of the two P-pair sliders on lines f and m.

During motion, line m must keep a constant distance, dAm, from point A, that is, it
must be tangential to a circle (circle c in Figure 1e) centered at A with radius dAm, because
of the R-pair; and it must keep a constant slope angle, δ, with respect to line f, since lines f
and m are both fixed to link j. Accordingly, the list of GeoGebra commands that implement
this geometric condition is reported in Appendix A. Such a GeoGebra program generates
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in the Cartesian plane window of GeoGebra the RPP dynamic sketch of Figure 1e, where
the style properties (colors of lines and points, etc.) of the introduced objects have been
modified by selecting the object and clicking on “Settings”, as explained above.

In this draft, the dyad configuration is modifiable by clicking on one free ending A
or D and moving the mouse, and by acting on the defined “Slider” θ to change the slope
of line f. Also, the dyad geometry is modifiable through the defined “Sliders” dAm and δ,
whereas the links’ geometry is modifiable through the defined “Sliders” dBF, xj and dj, for
link j, and xi, for link i. When an RPP dyad is added to an already-built linkage, point A and
line f are already defined as linkage parts, and the first three commands of the above-cited
list must be omitted.

2.1.2. Driving Links

The driving link (link j in Figure 2) is a binary link that at one ending is connected to a
link (link i in Figure 2) of the linkage, whose motion is known, through either an actuated
R-pair (Figure 2a) or an actuated P-pair (Figure 2b), and at the other ending (free ending)
through a non-actuated joint. These two cases can be modeled in GeoGebra as follows. In
the zipped file “GGB files.zip” uploaded as “Supplementary Material”, the folder “Driving
Link” contains the GeoGebra files (extension ggb) with the GeoGebra programs that build
the two types of driving links. In Appendix B, these GeoGebra programs are reported
together with comments that explain what each command line generates in the Cartesian
plane window of GeoGebra.

 

(a) (b) 

Figure 2. Driving links (link j is the driving link; link i is a link of the studied linkage whose motion
is known): (a) driving link with actuated R-pair and (b) driving link with actuated P-pair.

2.1.2.a. Driving Link with Actuated R-pair

For a driving link with actuated R-pair (see Figure 2a), the input data are the value
of the actuated-joint variable, that is, the angle θji, and the positions of points A and P of
link i, whereas the output data are the coordinates of point B, that is, of the free ending of
link j. Moreover, the length, say r, of the segment AB is a geometric parameter of link j.
Accordingly, the list of GeoGebra commands that generates point B and link j as functions
of the data input is reported in Appendix B.

The parametric draft of Figure 2a was generated in GeoGebra through the above-cited
command list followed by the adjustment of the style properties (colors of lines and points,
etc.) of the introduced objects. When this driving link is added to an already-built linkage,
points A and P and link i, together with their motion, are already defined as linkage parts,
and the first three commands of the list must be omitted.

2.1.2.b. Driving Link with Actuated P-pair

For a driving link with an actuated P-pair (see Figure 2b), the input data are the value
of the actuated joint variable, that is, the length of segment AC, and the positions of points
A and B of link i, whereas the output data are the position of the P-pair slider, that is of point
C, and the coordinates of the free ending of link j, that is, of point D. Moreover, the distance,
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say d, of point D from the segment AB is a geometric parameter of link j. Accordingly, the
list of GeoGebra commands that generates point C and link j as functions of the data input
is reported in Appendix B.

The parametric draft of Figure 2b was generated in GeoGebra through the above-cited
command list followed by the adjustment of the style properties (colors of lines and points,
etc.) of the introduced objects. When this driving link is added to an already-built linkage,
points A and B and link i, together with their motion, are already defined as linkage parts,
and the first three commands of the list must be omitted.

2.1.3. Position Analysis’ Geometric Solution

The geometric solution of the position analysis through linkage decomposition starts
from the data of the frame and of the driving links adjacent to the frame, and builds them
in GeoGebra through the above-described lists of commands. This is always possible since
their poses (positions and orientations) and motion are known. Successively, by using the
same lists of GeoGebra commands, it builds the dyads/driving links adjacent to the frame
and to the already-inserted driving links, and it continues by building the dyads/driving
links adjacent to the already-built part of the linkage until completing the GeoGebra sketch
of the linkage.

Once the linkage sketch has been completed, all the poses of the links are known, that
is, the position analysis has been geometrically solved. Also, the GeoGebra sketch can be
animated by selecting “Animation on” in the properties of the “Slider()” used to define the
actuated joint variables. Eventually, the geometric constants can be adjusted by selecting
“Show object” in the properties of the “Slider()” used to define the geometric constants, and
by clicking on the slider that appears in the Cartesian plane window and then moving the
mouse. The positions of points assigned with coordinates that are parameters of the object
can be moved by simply clicking on the points and then moving the mouse.

2.2. Velocity and Acceleration Analyses’ Vector Diagrams

After the linkage’s dynamic sketch has been built, the geometric solution of velocity
and acceleration analyses, that is, the construction of the velocity and acceleration vector
diagrams, proceeds by following the same sequence of substructure analyses used to build
the linkage sketch.

Indeed, it starts from the velocity/acceleration data of the frame and of the driving
links adjacent to the frame, and draws the velocity/acceleration vectors of their free endings.
Successively, it uses these vectors to geometrically determine the velocity/acceleration
vectors of the reference points/lines of the intermediate joint (for dyads) or of the output
endings (for driving links) of the dyads/driving links adjacent to the frame and to the
already solved driving links. Then, it continues by drawing velocity/acceleration vector
diagrams of the dyads/driving-links adjacent to the already-solved part of the linkage
until covering the whole linkage. Therefore, the modules to repeatedly implement in this
methodology are velocity/acceleration analyses of frame, driving links and dyads.

Velocity/acceleration analyses are linear problems. As a consequence, the geometric
determination of the output velocity/acceleration vectors involves only intersections of
lines and the introduction of dependent variables related to the already-determined vectors
by simple analytic formulas. Moreover, the motion input data of a linkage are the time
histories of the actuated joint variables, and the frame is assumed either at rest or with
known motion. Consequently, the velocity/acceleration analyses of frame and driving
links are straightforward; they only involve the introduction of well-known simple analytic
formulas reported in textbooks (see, for instance, [29]). For the sake of brevity, such
formulas are not recalled, and the following part of this subsection is devoted to the
graphical implementation in GeoGebra of the velocity/acceleration analyses of the dyads.

Hereafter, the following notations are used:

- vP,g (aP,g) denotes the velocity (acceleration) of point P considered fixed to link g when
measured from the frame;
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- vPR,g (aPR,g) denotes the velocity (acceleration) difference vP,g − vR,g (aP,g − aR,g);
- vP,gm (aP,gm) denotes the velocity (acceleration) of point P considered fixed to link g

when measured from link m;
- ωg (αg) denotes the signed magnitude, positive if counterclockwise, of the angular

velocity (acceleration) of link g when measured from the frame;
- ωgm (αgm) denotes the signed magnitude, positive if counterclockwise, of the angular

velocity (acceleration) of link g when measured from link m.

With these notations, the following relationships hold:

vPR,g = ωg
∣∣P − R

∣∣vg ; aPR,g = αg

∣∣∣P − R
∣∣∣vg −ω2

g

∣∣∣P − R
∣∣∣ug = aPR⊥,g + aPR‖,g ; (1a)

vP,gm = vP,g − vP,m; aP,gm = aP,g − aP,m − 2ωm(k × vP,gm); (1b)

ωgm = ωg −ωm; αgm = αg − αm; (1c)

where k is a unit vector perpendicular to the sheet and pointing toward the reader, and the
following definitions have been introduced:

ug =
P − R
|P − R| ; vg = k × ug ; aPR⊥,g = αg

∣∣∣P − R
∣∣∣vg ; aPR‖,g = −ω2

g

∣∣∣P − R
∣∣∣ug . (2)

2.2.1. RRR Dyad

Figure 3 shows the reference sketch of the RRR dyad (Figure 3a) previously built in
GeoGebra and the vector diagrams of the velocity/acceleration loops (Figure 3b,c) built in
GeoGebra, with the lists of commands reported below.

 

(a)  

 

(b) (c) 

Figure 3. RRR dyad: (a) reference dynamic sketch, (b) vector diagram of the velocity loop associated
to the sketch, and (c) vector diagram of the acceleration loop associated to the sketch.
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2.2.1.a. Vector Diagram of RRR Dyad’s Velocities

The intermediate R-pair with center at C (Figure 3a) brings one to write the following
velocity loop equation:

vC,i = vC,j ⇒ vA,i + vCA,i = vB,j + vCB,j (3)

where vA,i and vB,j are the known velocities (i.e., the data inputs) of points A and B,
respectively, whereas vCA,i and vCB,j are velocity differences whose directions must be
always perpendicular to segment AC and BC (i.e., they have known directions), respectively,
and whose signed magnitudes must be determined by solving Equation (3). The vector
diagram that geometrically solves Equation (3) in GeoGebra can be generated with the list
of commands reported in Appendix A.

The vector diagram of Figure 3b has been generated in GeoGebra by implementing
the above-cited list of commands, and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point O, and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad, and automatically changes
its shape when either the dyad changes its configuration and/or its geometry or the data
inputs (i.e., vA,i and vB,j) change their values.

2.2.1.b. Vector Diagram of RRR Dyad’s Accelerations

The intermediate R-pair with center at C (Figure 3a) brings one to write the following
acceleration loop equation:

aC,i = aC,j ⇒ aA,i + aCA,i = aB,j + aCB,j ⇒ aA,i + aCA‖,i + aCA⊥,i = aB,j + aCB‖,j + aCB⊥,j (4)

where aA,i and aB,j are the known accelerations (i.e., the data inputs) of points A and B,
respectively, and the vector component aCA‖,i (aCB‖,j) is computable by using the already-
computed ωi (ωj) and the last of Formulas (2). Also, the vector component aCA⊥,i (aCB⊥,j)
must always be perpendicular to segment AC (BC), that is, it has a known direction.
As a consequence, only the signed magnitudes of aCA⊥,i and aCB⊥,j are unknown and
must be determined by solving Equation (4). The vector diagram that geometrically
solves Equation (4) in GeoGebra can be generated with the list of commands reported in
Appendix A.

The vector diagram of Figure 3c has been generated in GeoGebra by implementing
the above-cited list of commands, and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point P and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad and automatically changes
its shape when either the dyad changes its configuration and/or its geometry or the data
inputs (i.e., aA,i and aB,j) change their values.

2.2.2. RRP Dyad

Figure 4 shows the reference sketch of the RRP dyad (Figure 4a) previously built in
GeoGebra and the vector diagrams of the velocity/acceleration loops (Figure 4b,c) built in
GeoGebra, with the lists of commands reported below.
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(a)  

 

(b) (c) 

Figure 4. RRP dyad: (a) reference dynamic sketch, (b) vector diagram of the velocity loop associated
to the sketch, and (c) vector diagram of the acceleration loop associated to the sketch.

2.2.2.a. Vector Diagram of RRP Dyad’s Velocities

The intermediate R-pair with center at C (Figure 4a) connecting links j and i and the
P-pair with line f as the joint axis bring one to write the following velocity loop equation:

vC,i = vC,j ⇒ vA,i + vCA,i = vB,j + vCB,j
ωj = ω f
vB,j = vB,f + vB,jf
vB,f = vD,f + vBD,f

⎫⎪⎪⎬⎪⎪⎭ ⇒ vA,i + vCA,i = vD,f + vBD,f + vB,jf + vCB,j (5)

where vA,i, vD,f and ωf (=ωj) are known (i.e., they are the data inputs) and the velocity
difference vBD,f (vCB,j) is computable by using the known ωf (ωj) and Formula (2). Also,
the velocity difference vCA,i (the relative velocity vB,jf) has a known direction since it must
be always perpendicular to segment AC (parallel to line f). As a consequence, the signed
magnitudes of vCA,i and vB,jf are the unknowns of Equation (5) and are determinable
by solving Equation (5). The vector diagram that geometrically solves Equation (5) in
GeoGebra can be generated with the list of commands reported in Appendix A.

The vector diagram of Figure 4b has been generated in GeoGebra by implementing
the above-cited list of commands, and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point O, and then moving the mouse. Also, it is
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geometrically constrained to the dynamic sketch of the dyad and automatically changes its
shape when the dyad changes its configuration and/or its geometry or the data inputs (i.e.,
vA,i, vD,f and ωf) change their values.

2.2.2.b. Vector Diagram of RRP Dyad’s Acceleration

The intermediate R-pair with center at C (Figure 4a) connecting links j and i, and the
P-pair with line f as the joint axis bring one to write the following acceleration loop equation:

aC,i = aC,j ⇒ aA,i + aCA‖,i + aCA⊥,i = aB,j + aCB,j
αj = α f ; acor = 2ω f (k × vB,jf)
aB,j = aB,f + aB,jf + acor
aB,f = aD,f + aBD,f

⎫⎪⎪⎬⎪⎪⎭ ⇒ aA,i + aCA‖,i + aCA⊥,i = aD,f + aBD,f + aB,jf + acor + aCB,j (6)

where aA,i, aD,f and αf (=αj) are known (i.e., they are the data inputs) and the accelerations
aBD,f, aCB,j, acor, and aCA‖,i are computable by using ωf, αf, ωj, αj and vB,jf, which are either
data inputs or already-computed data, and Formulas (1) and (2). Also, the acceleration
difference component aCA⊥,i (the relative acceleration aB,jf) has a known direction, since
it must be always perpendicular to segment AC (parallel to line f). As a consequence,
the signed magnitudes of aCA⊥,i and aB,jf are the unknowns of Equation (6) and are deter-
minable by solving Equation (6). The vector diagram that geometrically solves Equation (6)
in GeoGebra can be generated with the list of commands reported in Appendix A.

The vector diagram of Figure 4c has been generated in GeoGebra by implementing
the above-cited list of commands, and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point P, and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad and automatically changes
its shape when either the dyad changes its configuration and/or its geometry, or the data
inputs (i.e., aA,i, aD,f and αf) change their values.

2.2.3. RPR Dyad

Figure 5 shows a reference sketch of the RPR dyad (Figure 5a) previously built in
GeoGebra and the vector diagrams of the velocity/acceleration loops (Figure 5b,c) built in
GeoGebra, with the lists of commands reported below.

2.2.3.a. Vector Diagram of RPR Dyad’s Velocities

The intermediate P-pair joining links i and j (Figure 5a) brings one to write the relationships

vA,ji = vC,ji = −vC,ij; ωj = ωi (7)

and the equations

vA,j = vA,i + vA,ji
vA,j = vB,j + vAB,j

}
⇒ vA,i + vA,ji = vB,j + vAB,j (8a)

vC,j = vA,j + vCA,j = vB,j + vCB,j ⇒ vAB,j = vCB,j − vCA,j (8b)

vC,i = vC,j + vC,ij (8c)

where vA,i and vB,j are the known velocities (i.e., the data inputs) of points A and B,
respectively, whereas the relative velocity vA,ji (=vC,ji = −vC,ij) must always be parallel
to the P-pair joint axis and the velocity differences vAB,j, vCA,j and vCB,j must always be
perpendicular to segments AB, CA, and CB, respectively. Consequently, only the signed
magnitudes of vA,ji and vAB,j are unknown in Equation (8a) and can be determined by
solving Equation (8a). Then, by introducing the so-determined vAB,j into Equation (8b),
vCA,j, vCB,j and vC,j can also be determined and, eventually, the introduction of the so-
determined vA,ji (=vC,ji = −vC,ij) and vC,j into Equation (8c) gives vC,i. This solution
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procedure can be geometrically implemented through vector diagrams that can be built in
GeoGebra with the list of commands reported in Appendix A.

 

(a)  

 
(b) (c) 

Figure 5. RPR dyad: (a) reference dynamic sketch, (b) vector diagram of the velocity loop associated
to the sketch, and (c) vector diagram of the acceleration loop associated to the sketch.

The vector diagram of Figure 5b has been generated in GeoGebra by implementing
the above cited list of commands, and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point O and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad, and automatically changes
its shape when either the dyad changes its configuration and/or its geometry, or the data
inputs (i.e., vA,i and vB,j) change their values.

2.2.3.b. Vector Diagram of RPR Dyad’s Acceleration

The intermediate P-pair joining links i and j (Figure 5a) brings one to write the follow-
ing relationships

aA,ji = aC,ji = −aC,ij; αj = αi (9)

and the following equations

aA,j = aA,i + aA,ji + acor
acor = 2ωi(k × vA,ji)
aA,j = aB,j + aAB,j
aAB,j = aAB⊥,j + aAB‖,j
aAB‖,j = −ω2

j (A − B)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⇒ aA,i + aA,ji + acor = aB,j + aAB⊥,j + aAB‖,j (10a)
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aC,j = aA,j + aCA,j = aB,j + aCB,j

αj =
aAB⊥,j·[k×(A−B)]

‖A−B‖2

βj = arctan
(

αj

ω2
j

)
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⇒ aAB,j = aCB,j − aCA,j (10b)

aC,i = aC,j + aC,ij + acor (10c)

where aA,i and aB,j are the known accelerations (i.e., the data inputs) of points A and B,
respectively, and acor (aAB‖,j) is computable from the velocity analysis results. Moreover,
the relative acceleration aA,ji (=aC,ji = −aC,ij) must always be parallel to the P-pair joint axis
and the acceleration differences aAB,j, aCA,j and aCB,j must always form the angle βj with
segments AB, CA, and CB, respectively. Consequently, only the signed magnitudes of aA,ji
and aAB⊥,j are unknown in Equation (10a), and can be determined by solving Equation
(10a). Then, introducing the so-determined aAB⊥,j into Equation (10b) brings one firstly to
compute αj and βj, and then, to determine aCA,j, aCB,j and aC,j. Eventually, the introduction
of the so-determined aA,ji (=aC,ji = −aC,ij) and aC,j into Equation (10c) gives aC,i. This
solution procedure can be geometrically implemented through vector diagrams that can be
built in GeoGebra with the list of commands reported in Appendix A.

The vector diagram of Figure 5c has been generated in GeoGebra by implementing
the above-cited list of commands, and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point P, and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad, and automatically changes
its shape when the dyad changes its configuration and/or its geometry or the data inputs
(i.e., aA,i and aB,j) change their values.

2.2.4. PRP Dyad

Figure 6 shows the reference sketch of the PRP dyad (Figure 6a) previously built in
GeoGebra and the vector diagrams of the velocity/acceleration loops (Figure 6b,c) built in
GeoGebra, with the lists of commands reported below.

2.2.4.a. Vector Diagram of PRP Dyad’s Velocities

The intermediate R-pair with center at C (Figure 6a) connecting links j and i and
the P-pairs with line f and line c as joint axes bring one to write the following velocity
loop equation:

vC,i = vC,j ⇒ vA,i + vCA,i = vB,j + vCB,j
ωj = ω f ; ωi = ωc;
vB,j = vB,f + vB,jf; vA,i = vA,c + vA,ic;
vB,f = vD,f + vBD,f; vA,c = vE,c + vAE,c;

⎫⎪⎪⎬⎪⎪⎭ ⇒ vE,c + vAE,c + vA,ic + vCA,i = vD,f + vBD,f + vB,jf + vCB,j (11)

where vE,c, vD,f, ωc (=ωi) and ωf (=ωj) are known (i.e., they are the data inputs) and the
velocity differences vBD,f and vCB,j (vAE,c and vCA,i) are computable by using the known
ωf (ωc) and Formulas (2). Also, the relative velocity vA,ic (the relative velocity vB,jf) has a
known direction since it must always be parallel to line c (to line f). As a consequence, the
signed magnitudes of vA,ic and vB,jf are the unknowns of Equation (11) and are determinable
by solving Equation (11). The vector diagram that geometrically solves Equation (11) in
GeoGebra can be generated with the list of commands reported in Appendix A.

The vector diagram of Figure 6b has been generated in GeoGebra by implementing
the above-cited list of commands, and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point O and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad and automatically changes
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its shape when either the dyad changes its configuration and/or its geometry, or the data
inputs (i.e., vE,c, vD,f, ωc and ωf) change their values.

 

 

(a)  

 

(b) (c) 

Figure 6. PRP dyad: (a) reference dynamic sketch, (b) vector diagram of the velocity loop associated
to the sketch, and (c) vector diagram of the acceleration loop associated to the sketch.

2.2.4.b. Vector Diagram of PRP Dyad’s Acceleration

The intermediate R-pair with center at C (Figure 6a) connecting links j and i and
the P-pairs with line c and f as joint axes bring one to write the following acceleration
loop equation:

aC,i = aC,j ⇒ aA,i + aCA,i = aB,j + aCB,j
αj = α f ; acor,f = 2ω f (k × vB,jf)

aB,j = aB,f + aB,jf + acor,f
aB,f = aD,f + aBD,f
αi = αc; acor,c = 2ωc(k × vA,ic)
aA,i = aA,c + aA,ic + acor,c
aA,c = aE,c + aAE,c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⇒ aE,c + aAE,c + aA,ic + acor,c + aCA,i = aD,f + aBD,f + aB,jf + acor,f + aCB,j (12)

where aE,c, aD,f, αc (=αi) and αf (=αj) are known (i.e., they are the data inputs) and the
accelerations aBD,f, aCB,j, acor,f, aAE,c, aCA,i and acor,c are computable using ωf, αf, ωc,
αc, vB,jf, and vA,ic, which are either data inputs or already-computed data, along with
Formulas (1) and (2). Also, the relative acceleration aA,ic (aB,jf) has a known direction since
it must always be parallel to line c (line f). As a consequence, the signed magnitudes of aA,ic
and aB,jf are the unknowns of Equation (12) and are determinable by solving Equation (12).
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The vector diagram that geometrically solves Equation (12) in GeoGebra can be generated
with the list of commands reported in Appendix A.

The vector diagram of Figure 6c has been generated in GeoGebra by implementing
the above-cited list of commands and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point P and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad and automatically changes
its shape when either the dyad changes its configuration and/or its geometry or the data
inputs (i.e., aE,c, aD,f, αf and αf) change their values.

2.2.5. RPP Dyad

Figure 7 shows the reference sketch of the RPP dyad (Figure 7a) previously built in
GeoGebra and the vector diagrams of the velocity/acceleration loops (Figure 7b,c) built in
GeoGebra, with the list of commands reported below.

 

(a)  

 
(b) (c) 

Figure 7. RPP dyad: (a) reference dynamic sketch, (b) vector diagram of the velocity loop associated
to the sketch, and (c) vector diagram of the acceleration loop associated to the sketch.

92



Machines 2024, 12, 825

2.2.5.a. Vector Diagram of RPP Dyad’s Velocities

The intermediate P-pair with line m as joint axis (Figure 7a) connecting links j and i and
the P-pair with line f as joint axis bring one to write the following velocity loop equation

vC,i = vC,j + vC,ij ⇒ vA,i + vCA,i = vB,j + vCB,j + vC,ij
ωi = ωj = ω f
vB,j = vB,f + vB,jf
vB,f = vD,f + vBD,f

⎫⎪⎪⎬⎪⎪⎭ ⇒ vA,i + vCA,i = vD,f + vBD,f + vB,jf + vCB,j + vC,ij (13)

where vA,i, vD,f and ωf (=ωi = ωj) are known (i.e., they are the data inputs) and the velocity
differences vCA,i, vBD,f, and vCB,j are computable by using the known ωf (=ωi = ωj) along
with Formulas (2). Also, the relative velocity vC,ij (vB,jf) has a known direction since it must
be always parallel to line m (parallel to line f). As a consequence, the signed magnitudes
of vC,ij and vB,jf are the unknowns of Equation (13), and are determinable by solving
Equation (13). The vector diagram that geometrically solves Equation (13) in GeoGebra can
be generated with the list of commands reported in Appendix A.

The vector diagram of Figure 7b has been generated in GeoGebra by implementing
the above-cited list of commands, and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point O and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad and automatically changes
its shape when either the dyad changes its configuration and/or its geometry or the data
inputs (i.e., vA,i, vD,f and ωf) change their values.

2.2.5.b. Vector Diagram of RPP Dyad’s Acceleration

The intermediate P-pair with line m as joint axis (Figure 7a) connecting links j and
i and the P-pair with line f as joint axis bring one to write the following acceleration
loop equation:

aC,i = aC,j + aC,ij + acor,j ⇒ aA,i + aCA,i = aB,j + aCB,j + aC,ij + acor,j
aB,j = aB,f + aB,jf + acor,f
aB,f = aD,f + aBD,f

}
⇒ aB,j = aD,f + aBD,f + aB,jf + acor,f

acor,j = 2ωj(k × vC,ij); acor,f = 2ω f (k × vB,jf)
ωi = ωj = ω f ; αi = αj = α f

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⇒ aA,i + aCA,i = aD,f + aBD,f + aB,jf + acor,f + aCB,j + aC,ij + acor,j (14)

where aA,i, aD,f and αf (=αi = αj) are known (i.e., they are the data inputs). The acceleration
differences aCA,i, aBD,f, and aCB,j together with the Coriolis accelerations acor,j and acor,f are
computable by using ωf (=ωi = ωj), αf (=αi = αj), vB,jf, and vC,ij, which are either data
inputs or already-computed data, and Formulas (1) and (2). Also, the relative acceleration
aC,ij (aB,jf) has a known direction since it must be always parallel to line m (parallel to
line f). As a consequence, the signed magnitudes of aC,ij and aB,jf are the unknowns of
Equation (14) and are determinable by solving Equation (14). The vector diagram that
geometrically solves Equation (14) in GeoGebra can be generated with the list of commands
reported in Appendix A.

The vector diagram of Figure 7c has been generated in GeoGebra by implementing
the above-cited list of commands and then adjusting the properties (i.e., colors, captions,
etc.) of the introduced objects. The so-generated vector diagram can be rigidly moved on
the Cartesian plane window by clicking on point P and then moving the mouse. Also, it is
geometrically constrained to the dynamic sketch of the dyad, and automatically changes
its shape when either the dyad changes its configuration and/or its geometry or the data
inputs (i.e., aA,i, aD,f and αf) change their values.

2.3. Kinetostatics Analysis’ Vector Diagram

Kinetostatics analysis (KA) of a linkage is the determination of the generalized torques,
applied by the actuators in the actuated joints, when the external forces applied to the
linkage and the linkage motion (i.e., the inertial forces) are known. The classic approaches
for solving this problem are two: (a) the free-body method and (b) the virtual work
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principle. Both these approaches are graphically implementable when the mechanism
sketch is available, the first one using free-body diagrams [29] and the latter with active-load
diagrams [30–32]. Since both the methods require only sums of vectors and intersections of
lines, they can be easily implemented in GeoGebra.

2.3.1. Free-Body Method

The graphic solution of the free-body method is based on graphically solving the force
equilibrium equation of each link, when separated from the rest of the linkage and loaded
by the external forces and the constraint reactions coming from the joints, after having
satisfied the moment equilibrium equation by imposing geometric conditions on the line
of actions of those forces. In particular, the conditions that make the moment equilibrium
equation satisfied [29] are as follows:

(a) in the case of only two forces, if the two forces share the same line of action;
(b) in the case of two forces and a pure moment, if the two forces have parallel and

non-coincident lines of action;
(c) in the case of only three forces, if the lines of action of the three forces share a common

intersection point;
(d) in the case of four forces, if the four forces, separated into two subsystems of two

forces, gives two resultants, one for each subsystem, that are aligned along the line
passing through the two intersections of the two lines of action of each subsystem.

The analysis of the joint types provides the known pieces of information regarding
the action line of the constraint reaction forces, that is, in ideal constraints, the center of
an R-pair (the direction perpendicular to the P-pair sliding direction) belongs to (is the
direction of) the line of action of the R-pair’s (P-pair’s) constraint reaction force.

It is worth remembering that a planar system of forces with non-null resultant (with
null resultant and non-null resultant moment) can always be reduced to a unique force on
the system’s central axis (to a unique pure moment).

This method is always applicable to directly solve the linkage’s static analysis when
only one link is loaded by either one external force, which replaces a general system of
planar forces with non-null resultant, or by one pure moment, which replaces a general
system of planar forces with null resultant and non-null resultant moment. Also, it is able
to indirectly solve any case of a linkage static analysis with the superposition principle, that
is, by summing up the results obtained when only one loaded link at a time is analyzed.

2.3.2. Method Based on Active Load Diagrams

The method based on active-load diagrams has been recently proposed [30–32]. This
method analyzes any multi-degrees-of-freedom (DOF) linkage passing through the single-
DOF linkages generated from it by locking all the actuated joints but one. In doing so, it
uses the velocity coefficients, expressed using the instant centers (ICs), of the so-generated
single-DOF linkages together with suitable moment arms to write the geometric and
the analytic formulas that give the generalized torques. The interested reader can refer
to [30–32] for details.

Since, in the vast majority of single-DOF linkages, the IC locations are geometrically
determinable by intersecting suitable couples of lines [32] that move with the mechanism
sketch, this approach is easily implementable in GeoGebra after the dynamic sketch of the
linkage has been built.

3. Results

In this section, the systematic approach presented above to build dynamic sketches of
planar linkages and to study their kinematics and kinetotostatics is applied to three case
studies: a) generation of coupler curves, b) four-bar kinetostatics, and c) kinematic analysis
of shaper mechanisms. In the zipped file “GGB files.zip” uploaded as “Supplementary
Material”, the folder “Case Studies” contains the GeoGebra files (extension ggb) with the
GeoGebra programs of the three case studies. In Appendix C, these GeoGebra programs
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are reported together with comments that explain what each command line generates in
the Cartesian plane window of GeoGebra.

3.1. Generation of Coupler Curves

Four-bar linkages’ coupler curves play a role in designing four-bar and six-bar (Stephen-
son) linkages that satisfy a number of design requirements (one or two dwells, path with
an about-linear arc, etc.). In [2], the graphical procedures for solving these design problems
using coupler curves are illustrated; all those graphical procedures can be implemented in
GeoGebra after having built a four-bar dynamic sketch that parametrically generates the
coupler curves.

With the above illustrated methodology, such a sketch is buildable in GeoGebra by
recognizing that a four-bar linkage is obtained through the assemblage of one driving
link (the crank) with actuated R-pair (Figure 2a) and one dyad of RRR type (Figure 1a)
constituted by the coupler and the rocker of the four bar. Also, in GeoGebra, the coupler
point, say E, that traces the coupler curve is parametrically generable, for instance, as
follows. Two mutually perpendicular unit vectors, say uc and vc, fixed to the coupler are
introduced, and the position of point E is defined as E = C + xc*uc + yc*vc, where C is
the moveable ending of the crank, whereas xc and yc are two scalar parameters defined
through “Slider” commands. Eventually, by setting “Show Trace” in the properties of point
E, when the crank is animated, the coupler curve is generated. The commented list of
GeoGebra commands that build this dynamic sketch is reported in Appendix C.

Figure 8 shows the dynamic sketch and the generated coupler curve together with
the “Sliders” necessary to change the mobile links’ geometry and to animate the sketch. In
this sketch, the frame geometry can be modified by clicking on point A or B and moving
the mouse.

 

Figure 8. Coupler curve generated in GeoGebra.
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3.2. Four-Bar Kinetostatics

A four-bar dynamic sketch, built as illustrated in the previous subsection, can be
exploited to make graphical analyses of four-bar linkages’ kinetostatics. Indeed, the mass
distribution data of the mobile links can be assigned through “Slider” commands; more-
over, the barycenter accelerations and the angular accelerations of the same links can be
graphically determined with the proposed methodology and successively used to apply
the inertia forces to the mobile links; eventually, the kinetostatic analysis of the so-loaded
four bar can be graphically solved. In GeoGebra, such a procedure is implementable, for
instance, with the list of commands reported in Appendix C. Hereafter, Fij denotes the
constraint reaction force applied by link i to link j, while Fij.n denotes the contribution to Fij
due to the inertial and external load applied to link n.

Figure 9 shows a dynamic sketch and the velocity/acceleration diagrams generated in
GeoGebra for the case of the constant angular velocity of the crank (ω2 = 2π/3 rad/s and
α2 = 0 rad/s2) at the instant of motion t = 0.5 s (all the measurement units are in SI).

 

Figure 9. Four-bar linkage: dynamic sketch and velocity/acceleration diagrams generated in GeoGe-
bra for the case of constant angular velocity of the crank (ω2 = 2π/3 rad/s and α2 = 0 rad/s2) at the
instant of motion t = 0.5 s (all the measurement units are in SI).

Figure 10 shows the geometric solution of the kinetostatic analysis of four-bar linkages,
at the instant of motion t = 0.54 s (all the measurement units are in SI), built in GeoGebra
with the above-cited list of commands, after having adjusted the properties (i.e., colors,
captions, etc.) of the introduced objects in their “Settings” menu. The motion inputs are
as follows: the crank rotates at a constant angular velocity (ω2 = 2π/3 rad/s and α2 = 0
rad/s2). The static inputs are as follows: only the inertial forces load the links. M12 is the
generalized torque that must be computed; it is applied by the unique actuator mounted
in the R-pair centered at A. On the linkage sketch, the blue (green (violet)) lines of action
and forces refer to the case in which only link 3 (link 4 (link 2)) is loaded, whereas the
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red forces are the resultants obtained through the superposition principle. The sketch is
animated by the “Slider” t, which is the time in seconds. The zipped file uploaded as
“Supplementary Material” contains the video “4-bar_KinetostaticsAnimation.wmv” that
shows this animation. The mobile links’ lengths can be modified through the “Slider”s
a2 (for link 2), a3 (for link 3), and a4 (for link 4). The frame geometry can be modified by
clicking on point A (point B) and then moving the mouse.

 

Figure 10. General geometric solution of the kinetostatic analysis of four-bar linkages, at the instant
of motion t = 0.54 s (all the measurement units are in SI), implemented in GeoGebra in the case in
which the crank rotates at constant angular velocity (ω2 = 2π/3 rad/s and α2 = 0 rad/s2) and the
R-pair centered at A is actuated. Only the inertial loads are applied to the links. On the linkage sketch,
the blue (green (violet)) lines of action and forces refer to the case in which only link 3 (link 4 (link 2))
is loaded, whereas the red forces are the resultants obtained through the superposition principle.

In GeoGebra (version geogebra.org/classic), one “SpreadSheet” window and a second
graphic window, named “Graphic2”, can be generated. The values assumed during
animation by the introduced independent or dependent variables are recordable on the
“SpreadSheet” window, and then are usable to generate a polyline (“Polyline” command)
in the window “Graphic2”, which represents their diagrams. Figure 11 shows the diagram
of the generalized torque M12 as a function of time, t, during one full cycle of crank motion,
that is, for t ranging from 0 s to 3 s, generated in GeoGebra with this procedure (the recorded
variables are t and M12, and the polyline refers to the sequence of points with coordinates
(t, M12)).
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Figure 11. Diagram of the generalized torque M12 as a function of time, t, during one full cycle of
crank motion, that is, for t ranging from 0 s to 3 s, generated in GeoGebra.

3.3. Shaper Mechanism’s Kinematic Analysis

A shaper mechanism (see Figure 12) is a single-DOF two-looped linkage obtainable by
assembling in sequence one driving link, the frame and two dyads, one of RPR type and
the other of RRP type. The driving link is a crank (link 2 in Figure 12) hinged to the frame
(link 1 in Figure 12) at one ending (point A in Figure 12) through an actuated R-pair, and to
the RPR dyad (the one constituted by links 3 and 4 in Figure 12) on the other ending (point
C in Figure 12) through a passive R-pair. The RPR dyad, at its other ending (point B in
Figure 12), is joined to the frame. Also, the same RPR dyad, through a third passive R-pair
(the one centered at point D in Figure 12), is joined to the RRP dyad (the one constituted by
links 5 and 6 in Figure 12). The RRP dyad closes the second loop of the mechanism through
its P-pair (the one with horizontal sliding direction in Figure 12) that joins it to the frame.

Figure 12 shows the dynamic sketch and the velocity/acceleration diagrams generated
in GeoGebra for the case of constant angular velocity of the crank (ω2 = 1 rad/s and
α2 = 0 rad/s2) at the instant of motion t = 4.27 s (all the measurement units are in SI). With
reference to Figure 12, the geometric parameters, introduced through “Slider” commands,
are the following ones: a1, a2, a4, and a5 are the lengths of segments AB, AC, BD, and
DE, respectively, and b1 is the distance of point A from the black dash-dot line. Also, the
slider T assigns the motion period (i.e., ω2 = 2π/T rad/s) in seconds and the sketch is
animated through the slider t, which is the time in seconds. The zipped file uploaded as
“Supplementary Material” contains the video “ShaperMechanismAnimation.wmv” that
shows this animation. The list of GeoGebra commands used to generate the dynamic sketch
and the velocity/acceleration diagrams of Figure 12 are reported in Appendix C.
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Figure 12. Shaper mechanism: dynamic sketch and velocity/acceleration diagrams generated in
GeoGebra for the case of constant angular velocity of the crank (ω2 = 1 rad/s and α2 = 0 rad/s2) at
the instant of motion t = 4.27 s (all the measurement units are in SI).

4. Discussion

The presented technique for building dynamic sketches in GeoGebra is applicable to
all the planar linkages decomposable into driving links, frame and dyads. This approach
is extendable to planar mechanisms that also contain other types of Assur groups (e.g.,
triads, etc.) provided that the position analysis of those other groups be solved in analytical
form. Indeed, for complex Assur groups, the geometric construction starting from the free
endings’ data is cumbersome and needs to be bypassed by directly inserting formulas.
Once the dynamic sketch has been built, either geometrically or with specific formulas, all
the other (velocity/acceleration/kinetostatic) analyses are geometrically implementable
since they always correspond to the solution of linear problems (i.e., they only need to find
the intersections of suitable lines).

The presented case studies show that the systematic fully graphic solution of kinematic
and kinetostatic problems based on dynamic sketches of mechanisms with dyads is able
to provide pieces of information useful during design that are not easy to extract from
purely analytic/numeric approaches. In particular, it is worth noting that the diagrams
of Figure 10 immediately show how to change the external loads on the links to modify
particular components of the constraint reactions, and how accelerations directly influence
the loads on the links. Indeed (see Figure 10), the acceleration diagrams generate the loads
on the links, which, for each link, are reduced to one resultant force lying on the central axis.
Then, the static analysis of the mechanism is graphically solved considering only one force
at a time, which generates the green, the blue and the violet action lines and constraint
reactions for F4, F3, and F2, respectively. Eventually, by using the superposition principle,
the actual (red) constraint reactions and generalized torque are determined by summing
up their green, blue and violet components.

The usefulness of these diagrams is mainly related to the fact that they are constrained
to follow the mechanism motion. In fact, their manual construction was not suitable to
make them an efficient design tool, as they are when they automatically follow a dynamic
sketch whose geometry can also be varied. As far as these authors are aware, this is the first
time that the fully graphical solution, tied to a dynamic sketch, of four bars’ kinetostatic
analysis has been presented; also, the adopted methodology is general, and can be used for
any linkage decomposable into dyads, frame and driving links.
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Regarding linkages’ synthesis, the possibility of tracing the paths of points (e.g., the
coupler curves built in Section 3.1) and of other geometric objects during the mechanism
animation allows the implementation of all the synthesis techniques that use those paths [2].
Also, since the eight geometric constraint tools listed in [2] as necessary to implement all
the GCP synthesis procedures reported in the literatures are present in GeoGebra, together
with the possibility of writing equations [4], all these synthesis techniques can also be
implemented in GeoGebra.

Differently from CAD platforms, vectors and captions are easy to generate in GeoGe-
bra, which greatly facilitates building vector diagrams and finding graphical solutions of
vector equations.

5. Conclusions

Geometric constraint programming (GCP) has enabled us to rediscover graphic tech-
niques for solving the kinematics/kinetostatics analysis/synthesis of planar linkages. Such
techniques, when easy to implement, are superior with respect to analytic/numeric tech-
niques both in a design context and in the higher-education didactic. Indeed, over the
numeric solution of the specific problem, they provide a clear physical representation of
linkages’ behavior that helps designers to satisfy design requirements and students to reach
a deeper comprehension of linkages’ mechanics.

The use of GeoGebra for implementing GCP has been explored in this work. In
particular, the systematic construction of dynamic sketches of linkages composed by frame,
driving links and dyads has been presented together with how to use them for graphically
solving kinematics and kinetostatics problems.

This study proves that GeoGebra has all the tools necessary for implementing any
GCP synthesis procedure already presented in the literature for this type of linkage, and
for building any vector diagram that solves kinematic/kinetostatic analysis problems. This
result is useful both to designers and in mechanical engineering higher education.

The three case studies, which have been illustrated, show the effectiveness of the
proposed approach and of GeoGebra for GCP implementations.

As far as these authors are aware, the proposed systematic approach for the graphical
implementation of the analytic techniques that solve the kinematic/kinetostatic analyses of
these linkages is presented here for the first time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines12110825/s1: one zipped file containing the ggb files
with the list of GeoGebra commands presented in the paper and two videos showing the animation
of Figures 10 and 12.
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Abstract: Variable-DOF (or kinematotropic) mechanisms are a class of reconfigurable mechanisms
that have varying degrees of freedom (DOF) in different motion modes and can be reconfigured
without disassembly. However, the number of proposed variable-DOF multi-loop planar mechanisms
is currently limited. This paper introduces a new 8-link variable-DOF planar mechanism that has five
motion modes. Firstly, the 8-link variable-DOF planar mechanism is described. Then, reconfiguration
analysis of the mechanism is performed using a hybrid approach that combines elimination and
computer algebraic geometry methods. The analysis reveals that the 8-link mechanism has one
2-DOF motion mode and four 1-DOF motion modes. It can switch among three motion modes
at four transition configurations and between two motion modes at the remaining four transition
configurations. The paper also highlights the geometric characteristics of the mechanism in different
motion modes. In contrast to variable-DOF planar mechanisms presented in the literature, the
proposed 8-link mechanism has two inactive joints in one of its 1-DOF motion modes. Moreover, both
closed-loop 4R kinematic sub-chains of the mechanism must appear as either a pair of parallelograms
or a pair of anti-parallelograms in the same motion mode. As a by-product of this research, a method
for factoring trigonometric functions in two angles is also proposed.

Keywords: variable-DOF mechanism; reconfigurable mechanism; reconfiguration analysis; motion
mode; factorization of two-angle trigonometric function

1. Introduction

One of the current research focuses in mechanisms and robotics is reconfigurable
mechanisms and robots [1,2], which could help meet the needs of robots and manufacturing
systems that can rapidly adapt to changes in environment and production.

Variable-DOF (or kinematotropic) mechanisms [3–15] are a class of reconfigurable
mechanisms that have varying degrees of freedom (DOF) in different motion modes and
can be reconfigured without disassembly. Considerable progress has been made in the
type synthesis and reconfiguration analysis of variable-DOF mechanisms, including single-
loop spatial mechanisms [5,7,12], parallel mechanisms [11,13–20], multi-mode mobile
parallel mechanisms [21], and multi-loop mechanisms [4,5,22–29]. It should be noted
that variable-DOF mechanisms are composed of conventional kinematic joints and do not
involve variable kinematic joints [30], reconfigurable kinematic joints [31] or metamorphic
kinematic joints [32].

Apart from the construction methods [7,23,27], most approaches for the type synthe-
sis of variable-DOF mechanisms are based on different mathematical methods ranging
from displacement group theory [5,11], intersection of surfaces [10,20], factorization of
polynomials [12,33], and primary decomposition of ideals [14,17–19] to the comprehen-
sive Gröbner basis of parametric polynomial equations [19,34]. Through the construction
methods in [7,23,27], a number of variable-DOF mechanisms have been constructed from
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existing overconstrained mechanisms. No overconstrained mechanisms are required in
advance if using methods in [5,10–12,33]; however, only several variable-DOF mechanisms
have been obtained by using these methods. Using the methods in [14,17,18], one can
detect whether a multi-DOF overconstrained parallel mechanism is a variable-DOF parallel
mechanism. Using the methods in [19,34], one can investigate the impact of link parameters
of multi-DOF overconstrained parallel mechanism on the number and types of motion
modes and identify different variable-DOF parallel mechanisms of the same topological
structure. Variable-DOF mechanisms were obtained by using multi-mode single-loop
kinematic chains as building blocks in [16,23]. With further development and application of
the above methods, more and more variable-DOF mechanisms are expected to be revealed.

Methods for the reconfiguration analysis of variable-DOF mechanisms mainly in-
clude the elimination approaches [22], algebraic geometry methods [24,35,36], numerical
algebraic geometry methods [37], branch-and-prune methods [38], singular value decom-
position approaches [39–42], and the higher-order kinematics based approaches [43–46].
The first five methods can be used to identify all the motion modes of a variable-DOF mech-
anism as long as the link parameters of the mechanism are given, whereas a singular or
transition configuration of the variable-DOF mechanism must be given in advance if the last
method, which is more computationally efficient, is used for the reconfiguration analysis.

It is noted that there are no variable-DOF planar single-loop mechanisms composed of
R (revolute) and P (prismatic) joints, and the number of variable-DOF multi-loop planar
mechanisms is still very limited. The only four variable-DOF multi-loop planar mechanisms
proposed so far are the 12-link Wunderlich mechanism in [3], the 10-link Kovalev mecha-
nism in [4], the 8-link variable-DOF planar mechanism in [5], and the 8-link variable-DOF
planar mechanism in [47].

One difference between these four variable-DOF multi-loop planar mechanisms lies in
the number of their inactive joints. An inactive joint in a variable-DOF mechanism under a
specified motion mode is a kinematic joint that loses its DOF due to intrinsic constraints
within the mechanism. The 8-link variable-DOF planar mechanism proposed in [5] has
four inactive joints in its 3-DOF motion mode and no inactive joint in its 1-DOF motion
mode. In the 3-DOF motion mode, this 8-link mechanism degenerates to a planar serial 3R
mechanism. The 8-link variable-DOF planar mechanism presented in [47] has four inactive
joints in four of its 1-DOF motion modes and no inactive joint in its 2-DOF motion mode.
In these four 1-DOF motion modes, a closed-loop 4R kinematic sub-chain of the 8-link
mechanism degenerates (or loses its DOF).

One question arising from the above observations is the following: Are there variable-
DOF 8-link planar mechanisms which have neither a serial mechanism motion mode nor
a motion mode with a degenerated closed-loop 4R sub-kinematic chain? This paper will
answer the above question by presenting a novel 8-link variable-DOF planar mechanism.
As will be shown later, this 8-link mechanism has two inactive joints in one of its 1-DOF
motion modes and no inactive joints in the other motion modes.

This paper is organized as follows. In Section 2, a geometric description of a novel
variable-DOF 8-link planar mechanism is given. A set of kinematic equations is set up in
Section 3 with the variables selected to better reflect the geometric characteristics of the
mechanism in different motion modes. The motion modes and transition configurations
of the variable-DOF 8-link planar mechanism are identified using a hybrid approach that
combines elimination and computer algebraic geometry methods in Sections 4 and 5.
The reconfiguration of the variable-DOF 8-link planar mechanism is detailed in Section 6.
Finally, conclusions are drawn.

2. Geometric Description of a Novel 8-Link Variable-Dof Planar Mechanism

The 8-link variable-DOF planar mechanism [47] constructed using two parallelograms
is composed of four binary links and four triangular ternary links and has four inactive
joints in four of its 1-DOF motion modes and no inactive joint in its 2-DOF motion mode.
Recently, it was revealed in [48] that in addition to the 1-DOF motion mode, a 3-RR planar

118



Machines 2023, 11, 529

parallelogram may have up to two structure modes if the two ternary links are triangular
or no structure mode if the two ternary links are collinear. The four inactive joints in a
motion mode of the 8-link variable-DOF planar mechanism correspond to the structure
mode of a 3-RR planar parallelogram. Using two parallelograms with no structure mode,
we can construct an 8-link variable-DOF planar mechanism that does not have 1-DOF
motion mode with four inactive joints. Alternatively, by simply replacing each triangular
ternary link in the 8-link variable-DOF planar mechanism in [47] with a collinear ternary
link, the 1-DOF motion modes with four inactive joints of the original 8-link mechanism
will be eliminated. This would lead to a novel 8-link variable-DOF planar mechanism
(Figure 1).

The novel 8-link variable-DOF planar mechanism is composed of four identical bi-
nary links, A11B11, A12B12, A21B21, and A22B22, and four identical collinear ternary links,
AA11A12, BB11B12, AA21A22, and BB21B22, connected by 10 R joints. Link A22B22 is the
frame. The link parameters of the 8-link variable-DOF planar mechanism are

AA11 = BB11 = AA21 = BB21 = a1, AA12 = BB12 = AA22 = BB22 = a2,
and A11B11 = A12B12 = A21B21 = A22B22 = L1.

The link parameters of an example 8-link variable-DOF planar mechanism are a1 = 45,
a2 = 75, and L1 = 25. Here, link lengths are represented by dimensionless numbers that
indicate their relative length, subject to the condition that L1 < (a2 − a1) in order to avoid
link interference.

A ≡ O
B

A11

X

Y

A12

B11

B12

A21

A22

B21

B22

φa ψa φb
ψb

Figure 1. A novel 8-link variable-DOF planar mechanism.

3. Kinematic Equations

To facilitate the identification of the geometric characteristics of the 8-link mechanism,
the coordinate system O-XY is set up such that O coincides with R joint center A, and R
joint center B is located on the positive X-axis. Let φa (ψa) denote the angle between the
negative direction of the X-axis and the link AA11 (AA21) measured clockwise and φb (ψb)
the angle between the positive direction of the X-axis and the link BB11 (BB21) measured
anti-clockwise. An auxiliary variable, L = AB (L > 0), is introduced to simplify the
reconfiguration analysis.

The loop closure equations of loops ABB11A11A, ABB12A12A, ABB21A21A, and
ABB22A22A written in vector form are⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
−→
AB +

−−→
BB11 −−−−→

AA11) · (−→AB +
−−→
BB11 −−−−→

AA11) = L2
1

(
−→
AB +

−−→
BB12 −−−−→

AA12) · (−→AB +
−−→
BB12 −−−−→

AA12) = L2
1

(
−→
AB +

−−→
BB21 −−−−→

AA21) · (−→AB +
−−→
BB21 −−−−→

AA21) = L2
1

(
−→
AB +

−−→
BB22 −−−−→

AA22) · (−→AB +
−−→
BB22 −−−−→

AA22) = L2
1
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Rewriting the above equation in complex number form, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
(L + a1eiφb − a1ei(π−φa)(L + a1e−iφb − a1e−i(π−φa)− L2

1 = 0
(L + a2eiφb − a2ei(π−φa)(L + a2e−iφb − a2e−i(π−φa)− L2

1 = 0
(L + a1eiψb − a1ei(π−ψa)(L + a1e−iψb − a1e−i(π−ψa)− L2

1 = 0
(L + a2eiψb − a2ei(π−ψa)(L + a2e−iψb − a2e−i(π−ψa)− L2

1 = 0

Simplifying the above equation, we obtain⎧⎪⎪⎨⎪⎪⎩
a1C(φb + φa) + L(Cφb + Cφa) + (L2 − L2

1)/(2a1) + a1 = 0
a2C(φb + φa) + L(Cφb + Cφa) + (L2 − L2

1)/(2a2) + a2 = 0
a1C(ψb + ψa) + L(Cψb + Cψa) + (L2 − L2

1)/(2a1) + a1 = 0
a2C(ψb + ψa) + L(Cψb + Cψa) + (L2 − L2

1)/(2a2) + a2 = 0

(1)

where S∗ and C∗ denote sin ∗ and cos ∗, respectively.

4. Motion Mode Analysis of an 8-Link Variable-Dof Planar Mechanism Using a
Hybrid Approach

In this section, we will reveal all the motion modes of the novel 8-link variable-DOF
mechanism (Figure 1) by using resultant elimination, which has been extensively used in
the kinematic analysis of mechanisms [49,50], and the primary decomposition of ideals
from computer algebraic geometry [35], which has been used in the reconfiguration analysis
of multi-mode mechanisms [17,24,36].

Eliminating φb from the first and second equations of Equation (1) and ψb from the
third and fourth equations of Equation (1), Equation (1) is reduced to the following set of
two equations in three variables φa, ψa, and L (see Appendix A for details)

{
(1 − C2φa)[1 − (k2 − Cφa)2]− [k1 − Cφa(k2 − Cφa)]2 = 0
(1 − C2ψa)[1 − (k2 − Cψa)2]− [k1 − Cψa(k2 − Cψa)]2 = 0

(2)

where k1 = (L2 − L1
2)/(2a1a2)− 1 and k2 = −(a1 + a2)(L2 − L1

2)/(2La1a2).
For simplicity reasons and without loss of generality, we will investigate the recon-

figuration analysis of the 8-link variable-DOF mechanism via the example mechanism
given in Section 2. Substituting the link parameters of the example 8-link mechanism into
Equation (2), we obtain {

(L − 25)(L + 25) f1 = 0
(L − 25)(L + 25) f2 = 0

(3)

where f1 = L4 + 240L3Cφa + 6750C(2φa)L2 + 7025L2 − 150, 000CφaL − 9, 000, 000 and
f2 = L4 + 240L3Cψa + 6750C(2ψa)L2 + 7025L2 − 150, 000CψaL − 9, 000, 000.

Since L > 0, Equation (3) leads to two cases:
Case A

L − 25 = 0 (4)

Equation (4) represents a 2-DOF motion mode, motion mode 1 (Figure 2a), of the 8-link
mechanism. In motion mode 1, both closed-loop 4R kinematic sub-chains, A11B11B12A12
and A21B21B22A22, are parallelograms. Throughout the remainder of this paper, including
Figure 2, line AB will be kept in a horizontal position by releasing the frame. This is to
ensure that the geometric characteristics of the 8-link mechanism are clearly illustrated.
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Figure 2. The 8-link variable-DOF planar mechanism in (a) 2-DOF motion mode 1; (b) 1-DOF motion
mode 2: Kite motion mode; (c) 1-DOF motion mode 3: Planar 4R mechanism mode; (d) 1-DOF
motion mode 4: Parallelogram motion mode; and (e) 1-DOF motion mode 5: Isosceles trapezium
motion mode.

Case B{
L4 + 240L3Cφa + 6750C(2φa)L2 + 7025L2 − 150, 000CφaL − 9, 000, 000 = 0
L4 + 240L3Cψa + 6750C(2ψa)L2 + 7025L2 − 150, 000CψaL − 9, 000, 000 = 0

(5)

In the following, we will identify the motion modes associated with Equation (5)
by eliminating L using resultant first and then using the primary decomposition of ide-
als from the algebraic geometry [35] to find the positive-dimensional solutions to the
resulted equations.

Eliminating L using resultants from Equation (5), we obtain

36, 905, 625, 000, 000, 000, 000, 000, 000g(Cφa − Cψa)
4 = 0 (6)

where g = 72, 900Cφ4
a − 5940Cφ3

aCψa − 215, 280Cφ2
aCψ2

a − 5940CφaCψ3
a + 72, 900Cψ4

a +
63, 661Cφ2

a + 12, 122CφaCψa + 63, 661Cψ2
a − 57, 600.
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From Equation (6), we obtain the following two sub-cases

Cφa − Cψa = 0 (7)

and

g = 0 (8)

Equation (7) has two solutions:

ψa = −φa (9)

and

ψa = φa (10)

Equation (9) represents a 1-DOF motion mode, motion mode 2 (Figure 2b), of the 8-link
mechanism. In motion mode 2, both closed-loop 4R sub-kinematic chains, A11B11B12A12
and A21B21B22A22, are anti-parallelograms, and the 8-link mechanism is symmetric about
line AB. Motion mode 2 is called the kite motion mode because, in this motion mode,
the 8-link mechanism takes the shape of a kite.

Equation (10) represents a 1-DOF motion mode, motion mode 3 (Figure 2c), of the
8-link mechanism. In motion mode 3, both closed-loop 4R kinematic sub-chains, A11B11B12A12
and A21B21B22A22, coincide, and the 8-link mechanism has two inactive joints A and B.
Motion mode 3 is called the planar 4R mechanism mode because, in this motion mode,
the 8-link mechanism degenerates to a planar 4R mechanism.

Using the primary decomposition of ideals from computer algebraic geometry,
Equation (8) can be rewritten as (See Appendix B for details)

g1g2 = 0 (11)

where g1 = −281 + 135C(2φa) − 306C(φa − ψa) + 295C(φa + ψa) + 135C(2ψa) and
g2 = −281 + 135C(2φa) + 295C(φa − ψa)− 306C(φa + ψa) + 135C(2ψa).

Equation (11) has two solutions:

g1 = 0 (12)

and
g2 = 0 (13)

Equation (12) represents a 1-DOF motion mode, motion mode 4 (Figure 2d), of the 8-link
mechanism. In motion mode 4, both closed-loop 4R sub-kinematic chains, A11B11B12A12
and A21B21B22A22, are anti-parallelograms, and the 8-link mechanism is rotational symmet-
ric. Motion mode 4 is called the parallelogram motion mode because, in this motion mode,
the 8-link mechanism is in the shape of a parallelogram.

Equation (13) represents a 1-DOF motion mode, motion mode 5 (Figure 2e), of the
8-link mechanism. In motion mode 5, both closed-loop 4R kinematic sub-chains, A11B11B12A12
and A21B21B22A22, are anti-parallelograms, and the 8-link mechanism is symmetric about
the perpendicular bisector of AB. Motion mode 5 is called the isosceles trapezium motion
mode because, in this motion mode, the 8-link mechanism is in the shape of an isosce-
les trapezium.

It can be observed that if (φ∗
a , ψ∗

a , L∗) is a set of solution to Equation (5), then (π ± φ∗
a ,

π ± ψ∗
a , −L∗) are also solutions to Equation (5). Since L > 0, the φa − ψa curve for motion

mode 4 (or 5) (see Figure 3) is only one half of the curve obtained using Equation (12)
(or Equation (13)) that lies outside of the region enclosed by lines ψa − φa = ±π (or
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φa + ψa = ±π). In other words, in motion mode 4, we have ψa − φa > π or ψa − φa < −π.
In motion mode 5, we have ψa + φa > π or ψa + φa < −π.

ψa = φa + π

ψa = φa − π

g1 = 0

φa

ψa

(a)

ψa = −φa + π

ψa = −φa − π

g2 = 0

φa

ψa

(b)

Figure 3. Kinematic analysis of the 8-link variable-DOF planar mechanism in: (a) motion mode 4;
(b) motion mode 5.

In summary, the 8-link variable-DOF mechanism has one 2-DOF motion mode and
four 1-DOF motion modes (Figure 2). Table 1 summarizes all the five motion modes of the
8-link mechanism and their geometric characteristics. Figure 4 shows the φa − ψa curves
for the four 1-DOF motion modes 2 (Equation (9)), 3 (Equation (10)), 4 (Equation (12)) and
5 (Equation (13)).

Unlike the two 8-link variable-DOF planar mechanisms in [5,47] which have four
inactive joints in some of their motion modes, this 8-link variable-DOF planar mechanism
has two inactive joints A and B in one of the 1-DOF motion modes (motion mode 3).

Figure 2 shows that both closed-loop 4R kinematic sub-chains of this novel 8-link
variable-DOF planar mechanism must appear as parallelograms in its 2-DOF motion mode
or anti-parallelograms in any of its 1-DOF motion mode, whereas both the 8-link variable-
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DOF planar mechanism [47] and the 12-link Wunderlich mechanism have a motion mode
with an odd number of 4R sub-kinematic chains appearing as anti-parallelograms.

Table 1. Five motion modes of the 8-link variable-DOF mechanism.

No DOF Constraint Equations Description

1 2 L = 25
Both closed-loop 4R sub-kinematic chains are

parallelograms (Figure 2a). φa and ψa
are independent.

2 1 ψa = −φa

Both closed-loop 4R kinematic sub-chains are
anti-parallelograms. The 8-link mechanism is

symmetric about line AB (Figure 2b).

3 1 ψa = φa

Both closed-loop 4R sub-kinematic chains are
anti-parallelograms that coincide with each other

(Figure 2c), and the 8-link mechanism has two
inactive joints A and B.

4 1

−281 + 135C(2φa)

−306C(φa − ψa)

+295C(φa + ψa)

+135C(2ψa) = 0

Both closed-loop 4R kinematic sub-chains are
anti-parallelograms. The 8-link mechanism is

rotational symmetric (Figure 2d).

5 1

−281 + 135C(2φa)

+295C(φa − ψa)

−306C(φa + ψa)

+135C(2ψa) = 0

Two closed-loop 4R sub-kinematic chains are
anti-parallelograms. The 8-link mechanism is

symmetric about the perpendicular bisector of AB
(Figure 2e).

Motion mode 2

Motion mode 3

Motion mode 4

Motion mode 5

φa

ψa

Figure 4. Four 1-DOF motion modes on φa − ψa plane.

Although one can solve Equation (5) directly using the primary decomposition of
ideals to identify all the motion modes of the 8-link variable-DOF mechanism, it was found
hard to obtain the concise equations (Equations (12) and (13)) for motion modes 4 and 5
that were obtained by eliminating L before calculating the primary decomposition of ideals.

It is important to note that the reconfiguration analysis approach described in [47] is
not applicable to the 8-link variable-DOF planar mechanism shown in Figure 1. This is
because the method in [47] cannot distinguish between motion mode 2 (Figure 2b) and
motion mode 4 (Figure 2d), or between motion mode 3 (Figure 2c) and motion mode 5
(Figure 2e), for this mechanism.
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5. Transition Configuration Analysis of the 8-Link Variable-Dof Planar Mechanism

The transition configurations between two or more motion modes can be obtained by
solving the kinematic equations composed of equations of these motion modes [36].

Let us take the transition configurations between motion modes 2 and 4, T(2
∧

4),
of the 8-link mechanism as an example.

The set of equations composed of Equations (9) (motion mode 2) and (12) (motion
mode 4) is{

ψa = −φa
−281 + 135C(2φa)− 306C(φa − ψa) + 295C(φa + ψa) + 135C(2ψa) = 0

(14)

Section 4 shows that in motion mode 4, we have ψa − φa > π or ψa − φa < −π. Solving
Equation (14) under these conditions, we obtain two solutions:{

φa = 2.5559(rad)
ψa = −φa

(15)

{
φa = −2.5559(rad)
ψa = −φa

(16)

Equations (15) and (16) show that there are two transition configurations between
motion modes 2 and 4, T(2

∧
4)I (Figure 5a) and T(2

∧
4)I I (Figure 5b). In these two

transition configurations, links Ai1Bi1 and Bi2Ai2 are parallel to AB. One can readily obtain
that the instantaneous DOF of the 8-link variable-DOF mechanism is two in these transition
configurations. The details are omitted here since the calculation of instantaneous DOF of a
mechanism has been well-documented in the literature.

A B

A11

A12

B11

B12

A21

A22

B21

B22

(a)

A B

A21

A22

B21

B22

A11

A12

B11

B12

(b)

A B

A11 (A21)

A12(A22)

B11(B21)

B12(B22)

(c)

A B

A11 (A21)

A12(A22)

B11(B21)

B12(B22)

(d)

A BA11 (A21)A12(A22)

B11(B21)B12(B22)

(e)
A B A11 (A21) A12(A22)

B11(B21) B12(B22)

(f)

Figure 5. Cont.
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A B A11 A12B11 B12A21A22 B21B22

(g)

A B A21 A22B21 B22A11A12 B11B12

(h)

Figure 5. The 8-link variable-DOF planar mechanism in transition configuration: (a) T(2
∧

4)I ;
(b) T(2

∧
4)I I ; (c) T(3

∧
5)I ; (d) T(3

∧
5)I I ; (e) T(1

∧
2
∧

3)I ; (f) T(1
∧

2
∧

3)I I ; (g) T(1
∧

4
∧

5)I ; and
(h) T(1

∧
4
∧

5)I I .

Following the above steps, we can identify six more transition configurations of
the 8-link mechanism, including two transition configurations, T(3

∧
5)I (Figure 5c) and

T(3
∧

5)I I) (Figure 5d), in which the mechanism can switch between two motion modes
and four transition configurations, (T(1

∧
2

∧
3)I (Figure 5e), T(1

∧
2

∧
3)I I (Figure 5f),

T(1
∧

4
∧

5)I (Figure 5g), and T(1
∧

4
∧

5)I I) (Figure 5h), in which the mechanism can switch
among three motion modes. It is noted that there are no transition configurations between
motion modes 2 and 5 or between motion modes 3 and 4. The geometric characteristics of
the 8-link mechanism in all the eight transition configurations are summarized in Table 2.
All the transition configurations are singular configurations. The instantaneous DOF
of the 8-link variable-DOF in transition configurations can be readily obtained as two in
transition configurations T(2

∧
4)I , T(2

∧
4)I I , T(3

∧
5)I , and T(3

∧
5)I I and four in transition

configurations T(1
∧

2
∧

3)I , T(1
∧

2
∧

3)I I , T(1
∧

4
∧

5)I , and T(1
∧

4
∧

5)I I .

Table 2. Transition configurations of the 8-link mechanism.

No φa and ψa (rad) Description Instantaneous DOF

T(2
∧

4)I
{

φa = 2.5559
ψa = −φa

Links Ai1Bi1 and Bi2Ai2
are parallel to AB
(Figure 5a).

2

T(2
∧

4)I I
{

φa = −2.5559
ψa = −φa

Links Ai1Bi1 and Bi2Ai2
are parallel to AB
(Figure 5b).

T(3
∧

5)I
{

φa = 2.5559
ψa = φa

Links Ai1Bi1 and Bi2Ai2
(i = 1 and 2) are parallel
to AB (Figure 5c).

T(3
∧

5)I I
{

φa = −2.5559
ψa = φa

Links Ai1Bi1 and Bi2Ai2
(i = 1 and 2) are parallel
to AB (Figure 5d).

T(1
∧

2
∧

3)I
{

φa = 0
ψa = 0

All the R joint centers are
collinear (Figure 5e). 4

T(1
∧

2
∧

3)I I
{

φa = π
ψa = π

All the R joint centers are
collinear (Figure 5f).

T(1
∧

4
∧

5)I
{

φa = π
ψa = 0

All the R joint centers are
collinear (Figure 5g).

T(1
∧

4
∧

5)I I
{

φa = 0
ψa = π

All the R joint centers are
collinear (Figure 5h).
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6. Reconfiguration of the Variable-Dof 8-Link Planar Mechanism

Figure 6 illustrates the reconfiguration of the 8-link planar mechanism among the five
motion modes via the eight transition configurations in the φa − ψa plane. The curves in
the φa − ψa plane of the four 1-DOF motion modes, motion modes 2, 3, 4, and 5, are shown
in green, pink, red, and blue, respectively. The 2-DOF motion mode, motion mode 1 in
which L = 25, covers the whole φa − ψa plane. However, the 8-link mechanism can only
transit among motion modes 1, 2, and 3 at two transition configurations T(1

∧
2

∧
3)I

and T(1
∧

2
∧

3)I I and among motion modes 1, 4, and 5 at two transition configurations
T(1

∧
4
∧

5)I and T(1
∧

4
∧

5)I I since we have L > 25 in the other configurations in motion
modes 2, 3, 4, and 5.

Photos of the LEGO model of this 8-link mechanism at all the transition configurations,
configurations with φa = ±π/2 and/or ψa = ±π/2 in 1-DOF motion modes 2, 3, 4, and 5,
and a configuration with φa = π/2 and ψa = −π/2 in 2-DOF motion mode 1 are given. To
distinguish the only 2-DOF motion mode from the 1-DOF motion modes, the photos of the
sample configuration and the four transition configurations associated with motion mode 1
are framed. In the LEGO model, the links are allocated in six layers, and the axis of R joint
A is in a curved shape to allow the mechanism to switch among all the five motion modes
through the eight transition configurations without link interference. An animation of the
reconfiguration of the 8-link mechanism among the five motion modes can be found in the
supplementary materials. In the animation, link AA21A22 is selected as the frame of the
mechanism, and all “

∧
” have been omitted in the notations for transition configurations

for simplicity reasons.

Figure 6. Reconfiguration of the example variable-DOF 8-link planar mechanism among the five
motion modes.

The mechanism could be more compact if it is only required to switch among some
but not all of its motion modes. For example, if one needs the 8-link mechanism to switch
among four motion modes 1, 2, 4 and 5 only (Figure 7), all the links can be located in four
layers without encountering link interference as shown in the CAD model of the mechanism
in transition configuration T(1

∧
4
∧

5)I . This four-layer 8-link planar mechanism could be
used as a construction unit of new variable-DOF multi-loop mechanisms, which would
enrich the types of reconfigurable/multi-mode deployable mechanisms [25–27,42,51,52].
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T(1 ∧ 4 ∧ 5)I

Motion mode 1 Motion mode 5

Motion mode 4 T(2 ∧ 4)II Motion mode 2

Figure 7. A variable-DOF 8-link planar mechanism in compact design that can transit among four
motion modes.

7. Conclusions

A novel 8-link variable-DOF planar mechanism with five motion modes has been
proposed. Reconfiguration analysis has shown that the mechanism has one 2-DOF double
parallelogram motion mode and four 1-DOF motion modes. In addition, the mechanism
can switch among three motion modes at four transition configurations and between two
motion modes at four other transition configurations.

In contrast to the two 8-link variable-DOF planar mechanisms in [5,47], which have
four inactive joints in some of their motion modes, this novel 8-link variable-DOF planar
mechanism has two inactive joints in one of its 1-DOF motion modes. The two closed-
loop 4R kinematic sub-chains of the novel mechanism must appear either as a pair of
parallelograms in the 2-DOF motion mode or a pair of anti-parallelograms in a 1-DOF
motion mode.

The hybrid approach that combines elimination and computer algebraic geometry
methods has been found to be more efficient than the algebraic geometry approach without
elimination. As a by-product, a method for factoring trigonometric functions in two angles
has been proposed.

This work, together with reference [47], provides a starting point for the design and
analysis of variable-DOF multi-loop mechanisms constructed using more than two parallel-
ograms, which could be used as reconfigurable/multi-mode deployable mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines11050529/s1, Video S1: Reconfiguration of a novel
8-link variable-DOF planar mechanism with five motion modes.
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Appendix A. Derivation of Equation (2)

Solving the set of equations composed of the first and second equations in Equation (1)
as a set of linear equations in C(φb + φa) and Cφb + Cφa, we have

{
C(φa + φb) = k1
Cφa + Cφb = k2

(A1)

To eliminate φb from Equation (A1), rewrite the first equation in Equation (A1) as

−SφaSφb = k1 − CφaCφb

Squaring both sides, we have

(−SφaSφb)
2 = (k1 − CφaCφb)

2

Eliminating Sφa and Sφb from the above equation using the trigonometric identities S2φa +
C2φa = 1 and S2φb + C2φb = 1, we have

(1 − C2φa)(1 − C2φb)− (k1 − CφaCφb)
2 = 0 (A2)

Solving the second equation in Equation (A1) for Cφb, we obtain

Cφb = k2 − Cφa (A3)

Substituting Equation (A3) into Equation (A2), we obtain the following equation in L
and φa.

(1 − C2φa)[1 − (k2 − Cφa)
2]− [k1 − Cφa(k2 − Cφa)]

2 = 0 (A4)

Similarly, the third and fourth equations in Equation (1) can be reduced to

(1 − C2ψa)[1 − (k2 − Cψa)
2]− [k1 − Cψa(k2 − Cψa)]

2 = 0 (A5)

Combining Equations (A4) and (A5), we obtain Equation (2).

Appendix B. Derivation of Equation (11)

Equation (11) can be derived from Equation (8) using the primary decomposition of
ideals in the following five steps.

Step 1: Convert Equation (8) into a polynomial equation.
Substituting Cφa = ca and Cψa = cb into Equation (8), we obtain a polynomial
equation in ca and cb.

f = 0 (A6)
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where f = 72,900ca4 − 5940ca3cb − 215,280ca2cb2 − 5940cacb3 + 72,900cb4 +
63,661ca2 + 12,122cacb + 63,661cb2 − 57,600.

Step 2: Calculate the primary decomposition of ideal J =< f , ca2 + sa2 − 1, cb2 + sb2 −
1 >, where sa = Sφa and sb = Sψa. The last two polynomials correspond to the
trigonometric identities S2φa + C2φa = 1 and S2ψa + C2ψa = 1.
Calculating the primary decomposition of J using computer algebra system soft-
ware, such as MAPLE command PrimeDecomposition(J, ’removeredundant’), we have

J =
2⋂

j=1

Jj (A7)

where the irreducible components, J1 and J2, of J are
J1 =< ca2 + sa2 − 1, cb2 + sb2 − 1, −270ca2 + 11cacb − 270cb2 + 601sasb +
551, 270ca2sa + 601ca2sb − 11cacbsa + 270cb2sa − 551sa − 601sb, −162,270ca2sa−
288,301ca2sb + 6611cacbsa − 2970cacbsb + 72,900cb2sb + 168,881sa + 212,431sb,
72,900ca4 − 5940ca3cb−215,280ca2cb2 − 5940cacb3 + 72,900cb4 + 63,661ca2 +
12,122cacb + 63,661cb2−576,00>, and J2 =< ca2 + sa2 − 1, cb2 + sb2 − 1, 270ca2 −
11cacb + 270cb2 + 601sasb − 551, 270ca2sa − 601ca2sb − 11cacbsa + 270cb2sa −
551sa + 601sb, 162,270ca2sa−288,301ca2sb − 6611cacbsa − 2970cacbsb +
72,900cb2sb − 168,881sa + 212,431sb, 72,900ca4 − 5940ca3cb−215,280ca2cb2 −
5940cacb3 +72,900cb4 + 63,661ca2 + 12,122cacb + 63,661cb2−57,600>.

Step 3: Calculate the Gröbner basis for each irreducible component.
Using the MAPLE command, Basis(J1, tdeg(sa, ca, sb, cb)), we obtain the Gröbner
basis of J1 as
J ′

1 =< cb2 + sb2 − 1, 270ca2 − 11cacb + 270cb2 − 601sasb − 551, 11cacb − 270cb2 +
270sa2 + 601sasb + 281 >.
Similarly, the Gröbner basis of J2 is
J ′

2 =< cb2 + sb2 − 1, 270ca2 − 11cacb + 270cb2 + 601sasb − 551, 11cacb − 270cb2 +
270sa2 − 601sasb + 281 >.

Step 4: Convert the polynomials in each of the irreducible components into trigonometri-
cal functions.
Substituting ca = Cφa, sa = Sφa, cb = Cψa and sb = Sψa into J ′

1 and simplifying
the results, we obtain
J ′

1 =< C2ψa + S2ψa − 1, 270C2φa − 11CφaCψa + 270C2ψa + 601SφaSψa
− 551, 11CφaCψa − 270C2ψa + 270S2φa − 601SφaSψa + 281 >. i.e., J ′

1 =< 0, g1,
−g1 >
where g1 = −281 + 135C(2φa) + 295C(φa + ψa)− 306C(φa − ψa) + 135C(2ψa).
Similarly, we obtain J ′

2 =< 0, g2,−g2 >
where g2 = −281 + 135C(2φa) + 295C(φa − ψa)− 306C(φa + ψa) + 135C(2ψa).

Step 5: Divide the trigonometrical function in Equation (8) by the product of the trigono-
metrical functions obtained in Step 4.
Divide g by g1g2, we can readily obtain

g/(g1g2) = 1

i.e.

g = g1g2 (A8)

Substituting Equation (A8) into Equation (8), we obtain Equation (11).
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Abstract: In this paper, a spatial cable-driven parallel mechanism in a V-shaped cable arrangement is
proposed. It is further simplified as a planar hybrid cable-driven parallel mechanism to analyze its
kinematics, which consists of two identical active cable chains and a passive cross-slide mechanism.
In order to investigate the degrees of freedom (DoFs) of the hybrid mechanism using screw theory,
cable chains are represented as rotational–prismatic–rotational (RPR) chains. The motion pairs of
all the chains are denoted according to screw theory. Firstly, the number and the types of DoFs of
each chain are determined. Then, the number and the types of DoFs for the hybrid mechanism are
calculated. Furthermore, the theoretical result is verified using the modified Grübler–Kutzbach (G-K)
formula. It shows that the unique DoF of the equivalent mechanism is a rotation with a continuously
changing axis, which is consistent with the V-type cable-driven mechanism with elliptical trajectories.
Finally, the kinematics analysis of the cross-slider mechanism driven by two cables is carried out. The
length, velocity and acceleration of the cables are obtained from numerical calculation in MATLAB,
and the results are demonstrated using ADAMS simulation.

Keywords: screw theory; degrees of freedom; kinematic screw; cable-driven mechanism; cross-slide
mechanism; kinematic analysis

1. Introduction

Cable-driven parallel mechanisms are a special type of parallel mechanism driven by
flexible cables, which have been widely used in several applications [1–4]. One prominent
advantage of cable-driven mechanisms is their capability of fast transportation with high
payload over a large-span distance. A mobile cable-driven parallel robot proposed in [5] is
capable of changing its geometric architecture to increase the wrench-feasible workspace for
specific tasks. To improve the mobility of end-users across a river or other civil structures,
a cable-suspended robot with merely prismatic DoFs is studied by Castelli in [6]. The
singularity analysis of cable-driven parallel robots in a pairwise cable arrangement is per-
formed in [7]. Cable-suspended manipulators can also be used in industrial environments
for pick-place operations using a reconfigurable end-effector [8]. Furthermore, a particular
application of cable-driven parallel mechanisms is the astronomical observation of deep
space. Six cables are utilized to carry a feed-supporting platform over the range of a radius
of 250 m for the purpose of collecting out-of-space signals in China [9,10].

In the present paper, a specific cable-driven parallel mechanism, assembled with V-
shaped cable units, is proposed to fulfill the need of achieving large rotation for astronomy
observation near the workspace boundaries. It will be described in Section 3 in detail.
In particular, in observation tasks, a signal receiver of a large radio telescope has to be
positioned around the border of workspace with a large rotational angle. However, it was
demonstrated that the rotation angle is limited to less than 40 degrees in the present cable
configuration [11]. Due to the cable flexibility, a cable-driven parallel configuration in a

Machines 2023, 11, 710. https://doi.org/10.3390/machines11070710 https://www.mdpi.com/journal/machines133
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V-type cable arrangement was adopted, as shown in Figure 1. Khakpour [12] analyzed the
features of several V-shaped cable-driven planar manipulators with differential actuation.
A basic unit of the V-shaped cable-driven parallel mechanism is the connection of both static
and moving platforms with one cable via a pulley. As a result, the position of the attachment
points of the moving pulleys follows an elliptical trajectory. A V-shaped configuration
(i.e., a V-type configuration) was employed to construct a planar cable-driven robot with a
parallelogram arrangement [13]. Based on the geometrical feature of an elliptical trajectory,
the proposed cable-driven parallel mechanism is capable of realizing large rotation near
the workspace boundary accordingly. The contouring control problem with uncertainty
is solved for a five-DoF robotic manipulator [14]. Then, the first issue to be solved for
the implementation of the proposed cable-driven robot was to determine the DoFs of
the mechanism.

Figure 1. Cable-driven parallel mechanism with four V-shaped cable units.

Screw theory plays an important role in the study of robot configuration and freedom
type. During the middle of the 20th century, Dimentberg [15] applied screw theory to first
analyze the spatial mechanism. Later, Hunt [16] and Duffy [17] made great contributions
to screw theory and its applications. Mohamed [18] exploited screw theory to investigate
the kinematics of parallel mechanisms. Referring to [19–22], a breakthrough was made in
the generalized method for the DoF analysis of spatial closed-loop mechanisms, especially
multi-loop parallel mechanisms using screw theory.

Although screw theory is a versatile method to determine the DoFs of mechanisms,
the mechanism has to be composed of only rigid links. To further simplify the kinematic
analysis of the spatial cable-driven mechanism, an equivalent planar hybrid mechanism
with both rigid links and cables is proposed to implement an elliptical trajectory. The
determination of an alternative mechanism is essentially configuration synthesis. Three
types of configuration synthesis methods include displacement group theory [23], screw
theory [24] and topological theory [25]. Hu proposed the concept of a motion-equivalent
parallel mechanism. The study showed that some parallel mechanisms with different
structures have the same kinematics and performance. It provides better selection criteria
for a specific configuration of parallel mechanisms [26–28]. According to screw theory,
the kinematic constraint screws of a parallel mechanism are obtained. Then, from the
relationship of the constraint screws and the motion screws, the corresponding parallel
mechanism with identical motion but different configurations can be identified. In this
process, the constraint screws of the mechanism may have changed, but the constraint
space remains the same. The kinematic analysis of the present V-shaped cable-driven
parallel mechanism is fundamental work for the astronomical application. It paves the
way to the establishment of the dynamic modeling and motion control of the cable-driven
parallel mechanism in a V-shaped arrangement.
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The main contribution of this paper is to propose a new V-shaped cable-driven parallel
mechanism for astronomical observation using elliptical trajectories. An equivalent planar
hybrid mechanism is presented by investigating the kinematic constraints. The resulting
DoF of the simplified hybrid mechanism was derived as a continuously changing axis
along a global axis through screw theory. In addition, the kinematic analysis of the hybrid
mechanism was performed and demonstrated using ADAMS simulation. The obtained
results of the cable length can be applied in the control of the proposed V-shaped cable-
driven parallel mechanism. To the knowledge of the authors, there is no literature on the
kinematic analysis of the hybrid mechanism using screw theory, which has the potential to
design a more complex cable-driven mechanism in a V-shaped cable configuration.

Except for its potential usage in astronomical observation, there are some practical
applications with the requirement of an elliptical trajectory. For instance, elliptical trajectory
motion is introduced in the field of pick-place industrial applications [29]. Robotic-assisted
elliptical training is being widely employed to help patients retain walking ability [30],
where the proposed cable-driven mechanism is suitable due to safety.

The rest of the paper is organized as follows: The preliminary definitions on screw
theory are introduced in Section 2. The description of the proposed spatial cable-driven
parallel mechanism and the equivalent planar hybrid mechanism are illustrated in Section 3.
More importantly, the determination of DoFs for the equivalent mechanism was carried out
using screw theory. The obtained results validated using the improved G-K formula are in
Section 4. In Section 5, the kinematic analysis of the cable-driven cross-slider mechanism
was carried out to further verify the DoF of the mechanism, and ADAMS simulation was
performed to compare with the theoretical results. Finally, the conclusions obtained are in
Section 6.

2. Preliminary on Screw Theory

Spiral, denoted as $, is also referred to as screw, which is represented by a pair of dual
vectors

(
s, s0) in space:

$ =
(

s; s0
)
= (l, m, n; p, q, r), s·s0 
= 0, (1)

where s is the main part, and s0 is the dual part. When the inner product of a pair of dual
parts is zero, i.e., s·s0 = 0, it means that the spiral degenerates into a line vector.

If the reciprocal product of two screws $ =
(
s; s0) and $r =

(
sr; s0

r
)

is zero:

$·$r = s·s0
r+sr·s0 = 0, (2)

then $ and $r are defined as two reciprocal screws. To calculate DoFs, screws are expressed
as motion and constraint screws. For example, $ = (s; 01×3) denotes a pure rotation motion
or a force vector at the origin of the coordinate system, while $ =

(
01×3; s0) denotes a

pure prismatic motion. As $ represents a motion screw, the corresponding $r represents its
constraint screw.

Each chain of a parallel mechanism imposes several constraints on the moving plat-
form [31,32]. Moreover, synthesis of the constraint screws of each chain determines the
DoFs of the moving platform [33]. All the motion pairs in a chain constitute the motion
screw system of the chain. The reciprocal screw of the motion screw system constitutes the
constraint screw system of the chain. The constraints of a chain imposed on the moving
platform are determined accordingly. The constraint screw system of each chain synthesizes
the entire constraint screw system of the mechanism, which represents the constrained
DoFs of the parallel mechanism. Thus, the DoFs of the proposed mechanism are finally
calculated on the basis of screw theory.
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3. Equivalent Rigid Parallel Mechanism

The present cable-driven parallel mechanism consists of a moving platform (1), four
V-type cable units (2), a fixed platform (3) and a passive motion chain (4), which is depicted
in Figure 2. Each V-type cable unit formed by only one cable connects the moving platform
and the fixed platform via a pulley attached on the moving platform. Four pulleys are
located in a circular array at an angle of 90 degrees, as illustrated in Figure 2. One end of
each cable is connected to a servo-motor directly or a winch, and the other end is fixed to the
fixed platform at an anchor point, whose shape is described as ‘V’. The cables are retracted
or extended such that an elliptical motion of the moving platform is implemented. There
are two mounting approaches for four cable units. One approach corresponds to the case
that the plane of the cable is always perpendicular to the moving platform, while the other
produces a slope with respect to the moving platform. The passive motion chain consists
of a hook hinge and a prismatic joint, which is applied to constrain the feasible motion
of the proposed mechanism on Plane 1, as shown in Figure 2. Additionally, the angular
bisectors of sectors formed by V-type cable units are limited to being on Plane 1 and Plane
2, respectively. Moreover, due to V-type differential cable arrangement and corresponding
constraints imposed by the passive chain, the motion trajectory of the moving platform is
limited to being elliptical. It is also noted that only one pair of cable units works actively,
while the other pair maintains a constant cable length.

Figure 2. Sketch of cable-driven parallel mechanism for elliptical trajectory.

For the convenience of analysis, a planar hybrid cable-driven mechanism for elliptical
trajectory is presented to investigate as a simplified mechanism, as shown in Figure 2.
Furthermore, a cross-slide rigid mechanism was exploited to substitute V-shaped cable
units to achieve elliptical trajectories. According to the cable configuration, two RPR chains
were employed to replace the active cable chains, while the passive cable chain was driven
by the cross-slide mechanism in Figure 3.
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Figure 3. Cross-slide mechanism.

Thus, the simplified planar hybrid cable-driven mechanism is represented by a rigid
parallel mechanism of 2RPR-PRRP, as shown in Figure 4, where R denotes rotational pair,
and P means prismatic pair.

Figure 4. Equivalent mechanism diagram of a rigid parallel mechanism.

As there is a closed loop sub-chain, it is necessary to develop the equivalent motion
screw system of the cross-slide mechanism (prismatic–rotational–rotational–prismatic,
namely, PRRP), and the specific steps are given as follows:

(1) List the motion screw system of each chain;
(2) Find the reverse screw of (1);
(3) The quadratic anti-screw of (2) is solved to obtain kinematic screws of the mechanism

allowed by constraint screws.

The closed-loop chain of the cross-slide mechanism is transformed into two sub-
chains, which are regarded as 2PR (Prismatic-Rotational) sub-chains. The motion pair of a
horizontal sub-chain was selected as the origin of the coordinate system. x axis is located
along the axis of rotational pair, y axis is along the motion direction of prismatic pair, and z
axis is defined according to the right-hand rule, as shown in Figure 5.

Figure 5. Closed-loop of sub-chain.
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Chain 1 is composed of a prismatic pair and a rotational pair. The motion screw system
is given as

$11 = (0, 0, 0; 0, 1, 0), $12 = (1, 0, 0; 0, 0, 0). (3)

Screws $11 and $12 represent the prismatic motion along y axis and the rotation motion
around x axis. As two screws are independent, the number of anti-screws is 6 − 2 = 4.
According to the definition of anti-screws, one can obtain

$r
11 = (0, 1, 0; 0, 0, 0),

$r
12 = (0, 0, 1; 0, 0, 0),

$r
13 = (0, 0, 0; 1, 0, 0),

$r
14 = (0, 0, 0; 0, 0, 1).

(4)

These represent the constraint forces along x, z axis and the constraint moments around
y, z axis, respectively.

As for Chain 2, it also includes a rotational pair and a prismatic pair, whose motion
screw system $2 = {$21, $22} is

$21 = (0, 0, 0; 0, 0, 1), $22 = (1, 0, 0; q22, 0, 0). (5)

where q22 represents the distance of common normal between the rotational axis and y
axis. Regarding $2, the two screws are independent. Similarly, the number of anti-screws is
obtained as 6 − 2 = 4, and one can get the following screws as

$r
21 = (0, 1, 0;−q22, 0, 0),
$r

22 = (0, 0, 1; 0, 0, 0),
$r

23 = (0, 0, 0; 1, 0, 0),
$r

24 = (0, 0, 0; 0, 1, 0),

(6)

Finally, the quadratic inverse screw of the inverse screw system involving
Equations (4)–(6) is solved. The motion screws of the mechanism restrained by the con-
straint screws are determined. As the rank r of the anti-screw system is 5, the number of the
secondary anti-screws of the anti-screw system is 6 − 5 = 1, and the solution is yielded as

$rr = (1, 0, 0; 0, q22, 0). (7)

It means that the moving platform can rotate around the axis parallel to x axis. Thus,
the closed-loop sub-chain in Figure 4 can be equivalent to a rotation pair with a continu-
ously changing axis, and the final equivalent parallel mechanism configuration diagram is
illustrated in Figure 6.

Figure 6. Configuration diagram of the equivalent rigid mechanism with R* around continuously
changing axis.
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Next, constraints of each chain of the equivalent rigid parallel mechanism on the
moving platform were studied. A new coordinate system was established at the axis of
the rotational pair. x axis is along the axis of the rotation pair, z axis is perpendicular to the
moving platform, and y axis is determined by the right-hand rule, as shown in Figure 7.

Figure 7. Coordinate system of the equivalent rigid mechanism with R*.

The motion screw system of each chain was calculated. For Chain 1, the motion
screw is

$11 = (1, 0, 0; 0, 0, 0) (8)

The constraint inverse screws are

$r
11 = (1, 0, 0; 0, 0, 0)

$r
12 = (0, 1, 0; 0, 0, 0)

$r
13 = (0, 0, 1; 0, 0, 0)

$r
14 = (0, 0, 0; 0, 1, 0)

$r
15 = (0, 0, 0; 0, 0, 1)

(9)

Equation (9) shows that Chain 1 imposes constraint force along x, y, z axis and con-
straint moments around y axis and around z axis on the moving platform.

For Chain 2, in the coordinate system, its motion screws are expressed as

$21 = (1, 0, 0; 0, q21, r21)

$22 = (0, 0, 0; 0, q22, r22)

$23 = (1, 0, 0; 0, q23, r23)

(10)

Then, the corresponding constraint inverse screws are solved as

$r
21 = (1, 0, 0; 0, 0, 0)

$r
22 = (0, 0, 0; 0, 1, 0)

$r
23 = (0, 0, 0; 0, 0, 1)

(11)

Equation (11) shows that Chain 2 imposes constraint forces along x, y, z axis on the
moving platform. Similarly, for symmetric Chain 3, the anti-screw of its motion screw is:

$r
31 = (1, 0, 0; 0, 0, 0)

$r
32 = (0, 0, 0; 0, 1, 0)

$r
33 = (0, 0, 0; 0, 0, 1)

(12)
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Based on Equations (10)–(12), the reciprocal product of three constraint screws and
all motion screws is zero, thus the equivalent rigid parallel mechanism has three common
constraints. The linear independent anti-screw system is

$r
1 = (1, 0, 0; 0, 0, 0)

$r
2 = (0, 1, 0; 0, 0, 0)

$r
3 = (0, 0, 1; 0, 0, 0)

$r
4 = (0, 0, 0; 0, 1, 0)

$r
5 = (0, 0, 0; 0, 0, 1)

(13)

It can be clearly observed that the chains restrict the rotation of the moving platform
in y, z directions and the prismatic motion in x, y, z directions. In conclusion, the parallel
mechanism has only one rotational DoF with a continuously changing axis, which shows
the equivalence of the V-type cable-driven parallel mechanism [34].

4. Verification of DoFs of the Mechanism

The conventional solution formula of the DoFs of the mechanism is given as a
G-K formula

M = 6(n − g − 1) +
n

∑
i=1

fi (14)

where M represents the DoFs of the mechanism, n is the number of components of the
mechanism (including the moving platform and the fixed platform), g is the number
of motion pairs in the mechanism, and fi is the number of DoFs of the ith motion pair.
More importantly, the modified G-K formula was derived by considering the geometric
constraints as

M = d(n − g − 1) +
n

∑
i=1

fi + v − ζ, (15)

where d means the order of the mechanism d = 6 − λ, v stands for redundant constraint
number, λ is common constraint number, and ζ is the number of local DoFs of the mecha-
nism. Thus, the modified G-K formula was used to check the DoFs of the hybrid mechanism.

Case 1: The DoFs of the mechanism including the PRRP-closed loop are analyzed. The
value of the parameters are given as follows:

λ = 3, d = 6 − λ = 3, n = 8, g = 10, ∑n
i=1 fi = 10, v = 0, ζ = 0.

Substitute the above values into Equation (15) and yield M = 1.
Case 2: The DoFs of the final equivalent mechanism with R* are analyzed. The

parameters are calculated as

λ = 3, d = 6 − λ = 3, n = 6, g = 7, ∑n
i=1 fi = 7, v = 0, ζ = 0.

Take these above values into Equation (15), and M = 1 is obtained in accordance with
the proposed parallel mechanism design for elliptical trajectories.

5. Kinematic Analysis of Hybrid Mechanism

The kinematic analysis of the hybrid mechanism was divided into position analysis,
velocity analysis and acceleration analysis, where position analysis was the basis of velocity
analysis and acceleration analysis.

5.1. Position Analysis

Position analysis of the cross-slider mechanism is dependent on the elliptical trajectory
of the moving platform to calculate the cable length. For the hybrid mechanism, the
connection points between the cable and the moving platform are denoted as Ai and Bi,
respectively. The relative coordinate system P-xy and the global coordinate system O-XY
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are established. The origin P and O of the coordinate systems are located at the geometric
center of the moving and fixed platforms, respectively. The lengths of the moving platform
and the fixed platform are denoted as 2e and 2f, respectively. Then, in the fixed coordinate
system O-XY, the coordinates of Ai (i = 1,2) in the global coordinate system are represented
as A1= (−e, 0), A2= (e, 0). Similarly, in the relative coordinate system P-xy, the coordinates
of Bi (i = 1,2) on the moving platform are presented as B1 = (−f, 0), B2 = (f, 0), as shown
in Figure 8.

Figure 8. Parameters of the hybrid planar mechanism.

Suppose the rotation matrix from P-xy to O-XY:

R =

[
cosγ −sinγ
sinγ cosγ

]
, (16)

where γ means the Euler angle of the relative coordinate system in the global coordinate
system. The position vector bo

i in the global coordinate system is obtained by the position
vector bi in the relative coordinate system:

bO
i = Rbi + p, (i = 1, 2), (17)

where p = [x, y]T. According to the principle of a closed vector loop, the length vectors of
the two driven cables in the global coordinate system are represented as

li = bO
i − aO

i = Rbi + p − aO
i , (i = 1, 2). (18)

The direction of the vector li is expressed from Ai to Bi. Accordingly, the cable length
li is obtained as below:

li = ‖li‖ =
∥∥∥Rbi + p − aO

i

∥∥∥ =
√

lT
i li, (i = 1, 2). (19)

The analytical expressions of two cable lengths are given as

l2
1 = (− f cosγ + x + e)2 + (− f sinγ + y)2,

l2
2 = ( f cosγ + x − e)2 + ( f sinγ + y)2.

(20)

where x = (m + n)cosα, y = nsinα, m is the length of the rod between Slider 1 and Slider
2, and n is the length of the rod between Slider 2 and the moving platform. The relation
between α and γ is obtained from the tangent equation of the ellipse

n
(m + n)

cotα = tanγ. (21)

From Equations (20) and (21), one can clearly observe that only one parameter, γ, is
independent, which is consistent with the analytical DoF of the mechanism in Section 3.
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5.2. Velocity Analysis

In this paper, the attitude change is described as the moving platform driven by
two cables to a prescribed position. The attitude of the moving platform is controlled by
manipulating the lengths of the two cables. In a summary, the relationship between the
velocity of each cable and the attitude change speed of the moving platform was analyzed.

By the derivation with respect to time t on both sides of Equation (19), the velocity of
each cable is obtained as

li
dli
dt

= (Rbi + p − aO
i )

T
(

dR

dt
bi +

dp

dt
), (i = 1, 2), (22)

where dR
dt , the derivative of the rotation matrix, can be expressed as

dR

dt
= ω× R= S(ω )R=

[
0 − .

γ
.
γ 0

]
R, (23)

where ω represents the angular velocity of the moving platform, and S(ω) is an anti-
symmetric matrix concerning the angular velocity vector ω. Substitute Equation (23) into
Equation (22), then one obtains

li
dli
dt

= (Rbi + p − aO
i )

T
(ω× Rbi + v), (i = 1, 2), (24)

where v is the linear velocity of the moving platform. Furthermore, Equation (22) can be
transformed into .

li = ρi
Tv + (Rbi × ρi)

Tω, (i = 1, 2). (25)

where ρi =
li

‖li‖ . Therefore, the relationship between the velocity of the two cables and the
generalized speed of the moving platform is derived as[ .

l1.
l2

]
=

[
ρT

1 (Rb1 × ρ1)
T

ρT
2 (Rb2 × ρ2)

T

][
v

ω

]
, (26)

where the Jacobian matrix J is defined as follows:

J =

[
ρT

1 (Rb1 × ρ1)
T

ρT
2 (Rb2 × ρ2)

T

]
. (27)

Moreover, the singularity analysis of this mechanism can be obtained by deriving
the degeneration configurations of the Jacobian matrix J. In addition, the stability of the
proposed mechanism is able to be evaluated by the Hessian matrix based on the Jacobian
matrix J.

5.3. Acceleration Analysis

The second derivation of both sides of Equation (22) can obtain the velocity change
rate of the cable length, i.e., the acceleration of the cable length:

li
d2li
dt2 = (ω× Rbi + v)T(ω× Rbi + v) + (Rbi + p − aO

i )
T
(

d2R

dt2 bi +
.
v), (28)

where d2R
dt2 is expressed as

d2R

dt2 =
dS(ω)R

dt
+ S(ω)2R. (29)
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Substituting Equation (29) into Equation (28), one can obtain

..
li =

(ω× Rbi + v)T(ω× Rbi + v)

li
+ ρi

T
[(

dS(ω)

dt
R + S(ω)2R

)
bi +

.
v

]
, (i = 1, 2).

(30)

5.4. Kinematics Simulation

The structural parameters of the hybrid cable-driven parallel mechanism, i.e., the
length of the rod between Slider 1 and Slider 2 as m = 0.25 m and the length of the rod
between Slider 2 and moving platform n = 0.25 m, was adopted as a case study in the simula-
tion. The lengths of the moving platform and the static platform are
2e and 2 f (e = 0.5 m, f = 0.05 m).

The motion function of the moving platform is given as

x = lopcosα,
y = −lopsinα.

(31)

The relationship between the displacement of Slider 2 and angle α is shown in Figure 9.

Figure 9. Diagram of relationship between displacement of Slider 2 and angle α.

When Slider 2 is the active joint, let the distance of motion be s. Suppose the initial
value of log is 0.15 m. The expressions of other parameters are

log = 0.15 − s,
l2
oq = m2 − l2

og,

sinβ =
log
m ,

l2
op = l2

oq + (m + n)2 − 2loq(m + n)cosβ,

cosα =
l2
og+l2

op−n2

2loglop
.

(32)

After several mathematical manipulations, the following expression is obtained on the
basis of Equation (32):

α = arccos
[

2m
(

m − loqcosβ

loglop

)]
, (33)

where β, log, loq and lop are expressed as functions of displacement s.
To verify the present kinematic analysis, a simulation was performed in ADAMS

and MATLAB, as depicted in Figure 10. The simulation model of the hybrid cable-driven
cross-slide mechanism was created in ADAMS using the aforementioned values of each
parameter. The lengths of each cable can be attained during a cycle of an elliptical motion
within a period of 20 s.
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(a) 

 
(b) 

 
(c) 

Figure 10. Kinematics simulation in MATLAB and ADAMS. (a) Length variation of Cable 1 and
Cable 2 from ADAMS and MATLAB. (b) Velocity variation of Cable 1 and Cable 2 from ADAMS and
MATLAB. (c) Acceleration variation of Cable 1 and Cable 2 from ADAMS and MATLAB.
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From Figure 10, it can be observed that the fluctuation amplitude and numerical
value of the curves in MATLAB and ADAMS are in good agreement with each other. The
efficiency of the kinematic analysis of the hybrid mechanism is verified accordingly. The
cross points of acceleration are because the initial acceleration of the cable was set to 0. For
the elliptical trajectory, the kinematic characteristic curves of two cables are smooth and
continuous. The sinusoidal-like function for cable length control was identified from both
the theoretical and simulation results. Thus, the proposed cable-driven parallel mechanism
is considered to have good kinematic characteristics for implementing a large rotation
angle over the border of the workspace. In addition, the limitation of this method was
obtained by comparing the V-type cable mechanism and the hybrid mechanism. It is worth
noting that two cables of constant length should be kept in tension due to the unidirectional
force feature.

6. Conclusions

This paper deals with a spatial cable-driven parallel mechanism in a V-shaped cable
arrangement, which is simplified as a planar hybrid cable-driven parallel mechanism with
two identical active cable chains and a passive cross-slide mechanism. The DoFs of the
planar hybrid cable-driven mechanism were analyzed using screw theory. This paper
focuses on an alternative approach from V-type cable sub-chains to the equivalent rigid
closed-loop chains. The presented method solves easily the DoFs of the rigid parallel
mechanisms using screw theory. It is neither limited to the selection of the coordinate
systems nor needs to solve the specific parameters of screws, which leads to an effective
approach for solving the DoFs of the cable mechanisms with a V-shaped configuration. The
kinematic characteristic curves of two cables for the planar hybrid cable-driven mechanism
are smooth and continuous under the elliptic trajectory, which show good kinematic
characteristics in terms of velocity and acceleration smoothness. Future work will focus
on the singularity analysis and stability analysis of the proposed V-shaped cable-driven
parallel mechanism based on the Jacobian matrix.

Author Contributions: Conceptualization, L.W. and L.T.; methodology, D.Z.; software, X.L.; valida-
tion, D.Z., M.W. and L.W.; formal analysis, D.Z.; investigation, X.L.; resources, L.T.; data curation,
L.T.; writing—original draft preparation, D.Z.; writing—review and editing, L.W.; visualization, X.L.;
supervision, L.T.; project administration, L.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported by the research project from Xiangtan Institute of Technology
(Project No. XTLG2022B017) and the research development project from Development and Reform
Commission of Hunan Province (Project No. 2112-430000-04-03-549452).

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Z.; Shao, Z.; You, Z.; Tang, X.; Zi, B.; Yang, G.; Gosselin, C.; Caro, S. State-of-the-art on theories and applications of
cable-driven parallel robots. Front. Mech. Eng. 2022, 17, 37. [CrossRef]

2. Qian, S.; Zi, B.; Xu, Q. A review on cable-driven parallel robots. Chin. J. Mech. Eng. 2018, 31, 66.
3. Tang, X. An overview of the development for cable-driven parallel manipulator. Adv. Mech. Eng. 2014, 6, 823028. [CrossRef]
4. Tang, L.; Gouttefarde, M.; Sun, H.; Yin, L.; Zhou, C. Dynamic modelling and vibration suppression of a single-link flexible

manipulator with two cables. Mech. Mach. Theory 2021, 162, 104347. [CrossRef]
5. Rasheed, T.; Long, P.; Caro, S. Wrench-feasible workspace of mobile cable-driven parallel robots. J. Mech. Robot. 2020, 12, 031009.

[CrossRef]
6. Castelli, G.; Ottaviano, E.; Rea, P. A cartesian cable-suspended robot for improving end-users’ mobility in an urban environment.

Robot. Comput.-Integr. Manuf. 2014, 30, 335–343. [CrossRef]
7. Tang, L.; Shi, P.; Wu, L.; Wu, X.; Tang, X. Singularity analysis on a special class of cable-suspended parallel mechanisms with

pairwise cable arrangement and actuation redundancy. J. Mech. Des. 2020, 142, 024501. [CrossRef]
8. Barbazza, L.; Oscari, F.; Minto, S.; Rosati, G. Trajectory planning of a suspended cable driven parallel robot with reconfigurable

end effector. Robot. Comput. -Integr. Manuf. 2017, 48, 1–11. [CrossRef]

145



Machines 2023, 11, 710

9. Tang, X.; Zhu, W.; Sun, C.; Yao, R. Similarity model of feed support system for FAST. Exp. Astron. 2011, 29, 177–187. [CrossRef]
10. Yin, J.; Jiang, P.; Yao, R. An approximately analytical solution method for the cable-driven parallel robot in FAST. Res. Astron.

Astrophys 2021, 21, 46–60. [CrossRef]
11. Yao, R.; Jiang, P.; Sun, J.-H.; Yu, D.-J.; Sun, C. A motion planning algorithm for the feed support system of FAST. Res. Astron.

Astrophys 2020, 20, 68. [CrossRef]
12. Khakpour, H.; Birglen, L.; Tahan, S. Synthesis of differentially driven planar cable parallel manipulators. IEEE Trans. Robot. 2014,

30, 619–630. [CrossRef]
13. Khodadadi, N.; Hosseini, M.I.; Khalilpour, S.A.; Taghirad, H.D.; Cardou, P. Multiobjective optimization of a cable-driven robot

with parallelogram links. In Cable-Driven Parallel Robots. CableCon 2021; Gouttefarde, M., Bruckmann, T., Pott, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2021; Volume 104, pp. 170–181.

14. Nuchkrua, T.; Chen, S. Precision contouring control of five degree of freedom robot manipulators with uncertainty. Int. J. Adv.
Robot. Syst. 2017, 14, 1729881416682703. [CrossRef]

15. Dimentberg, F. The Screw Calculus and Its Applications to Mechanics; Clearinghouse for Federal Scientific & Technical Information:
Online, 1968.

16. Hunt, K. Kinematic Geometry of Mechanisms; Clarendon Press: Oxford, UK, 1978.
17. Sugimoto, K.; Duffy, J. Application of Linear Algebra to Screw Systems. Mech. Mach. Theory 1982, 17, 73–83. [CrossRef]
18. Mohamed, M.G.; Duffy, J. A direct determination of the instantaneous kinematics of fully parallel robot manipulators. J. Mech.

Des. 1985, 107, 226–229. [CrossRef]
19. Huang, Z. Modelling formulation of 6-dof Multi-loop Parallel Manipulators, Part 1-Kinematic Influence Matrix. In Proceedings

of the 4th IFToMM Conference on Mechanisms and CAD, Bucharest, Romania, 27–30 September 1985; Volume 2, pp. 163–170.
20. Huang, Z.; Liu, J.; Zeng, D. A general methodology for mobility analysis of mechanisms based on constraint screw theory. Sci.

China Ser. E-Technol. Sci. 2009, 52, 1337–1347. [CrossRef]
21. Huang, Z.; Liu, J.; Li, Y. Mobility of Mechanisms; Science Press: Beijing, China, 2011.
22. Yang, T.; Shen, H.; Liu, A.; Dai, J. Review of the Formulas for Degrees of Freedom in the Past Ten Years. J. Mech. Eng. 2015,

51, 69–80. [CrossRef]
23. Hervé, J.M. The mathematical group structure of the set of displacements. Mech. Mach. Thoery 1994, 29, 73–81. [CrossRef]
24. Huang, Z.; Li, Q. General methodology for type synthesis of lower-mobility symmetrical parallel manipulators and several novel

manipulators. Int. J. Robot. Res. 2002, 21, 131–145. [CrossRef]
25. Yang, T.; Liu, A.; Luo, Y.; Hang, L.; Shen, H.; Shi, Z. Basic principles, main characteristics and development tendency of methods

for robot mechanism structure synthesis. J. Mech. Eng. 2010, 46, 1–11. [CrossRef]
26. Hu, B. Kinematically identical manipulators for the Exechon parallel manipulator and their comparison study. Mech. Mach.

Theory 2016, 103, 117–137. [CrossRef]
27. Hu, B.; Huang, Z. Kinematically identical manipulators of a 2-RPU+UPR parallel manipulator and their kinematics analysis. In

Proceedings of the 14th IFToMM World Congress, Taipei, Taiwan, China, 25–30 October 2015; pp. 310–319.
28. Hu, B. Theoretical Study of Limited-Dof Parallel Manipulators and Serial-Parallel Manipulators Based on Constrained

Force/Torque. Ph.D. Thesis, Yanshan University, Qinhuangdao, China, 2010.
29. Li, W.; Xiao, Y.; Bi, S.; Du, G. Automatic elliptical trajectory planning algorithm for pick and place operation. In Proceedings of

the 2013 International Conference on Advanced Mechatronics Systems, Luoyang, China, 19–22 February 2013.
30. Fallahtafti, F.; Pfeifer, C.M.; Buster, T.W.; Burnfield, J.M. Effect of motor-assisted elliptical training speed and body weight support

on center of pressure movement variability. Gait Posture 2020, 81, 138–143. [CrossRef] [PubMed]
31. Tang, Z.; Dai, J. Bifurcated configurations and their variations of an 8-bar linkage derived from an 8-kaleidocycle. Mech. Mach.

Theory 2018, 121, 745–754. [CrossRef]
32. Wang, R.; Song, Y.; Dai, J. Reconfigurability of the origami-inspired integrated 8R kinematotropic metamorphic mechanism and

its evolved 6R and 4R mechanisms. Mech. Mach. Theory 2021, 161, 104245. [CrossRef]
33. Shi, C.; Guo, H.; Zhang, S.; Liu, R.; Deng, Z. Configuration synthesis of linear foldable over-constrained deployable unit based on

screw theory. Mech. Mach. Theory 2021, 156, 104163. [CrossRef]
34. Khakpour, H.; Birglen, L.; Tahan, S.-A. Analysis and optimization of a new differentially driven cable parallel robot. J. Mech.

Robot. 2015, 7, 034503. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

146



Citation: Simas, H.; Di Gregorio, R.;

Simoni, R.; Gatti, M. Parallel Pointing

Systems Suitable for Robotic Total

Stations: Selection, Dimensional

Synthesis, and Accuracy Analysis.

Machines 2024, 12, 54. https://

doi.org/10.3390/machines12010054

Academic Editor: Dan Zhang

Received: 2 December 2023

Revised: 2 January 2024

Accepted: 6 January 2024

Published: 12 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Parallel Pointing Systems Suitable for Robotic Total Stations:
Selection, Dimensional Synthesis, and Accuracy Analysis

Henrique Simas 1, Raffaele Di Gregorio 2,*, Roberto Simoni 3 and Marco Gatti 2

1 Raul Guenther Lab. of Applied Robotics, Department of Mechanical Engineering,
Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; henrique.simas@ufsc.br

2 Laboratory of Mechatronics and Virtual Prototyping (LaMaViP), Department of Engineering,
University of Ferrara, Via Saragat, 1, 44100 Ferrara, Italy; marco.gatti@unife.it

3 Department of Mobility Engineering, Federal University of Santa Catarina, Joinville 89219-600, SC, Brazil;
roberto.simoni@ufsc.br

* Correspondence: raffaele.digregorio@unife.it; Tel.: +39-0532-974828

Abstract: Robotic Total Stations (RTS) are fully automated theodolites with electronic distance mea-
surement (EDM) that include a number of additional tools (e.g., camera, laser rangefinder, onboard
computer, and tracking software, etc.) enabling them to work autonomously. The added tools make
RTSs able to track mobile targets on civil structures thus opening to the use of RTSs in structural
monitoring. Unfortunately, the available RTSs are able to track a target up to a motion rate of 3 Hz. Re-
ducing mobile masses is a viable design strategy for extending this frequency border. Such a strategy
is pursued in this study by proposing the use of parallel pointing systems (PPS) as basic mechanical
architectures for RTSs. The literature on PPSs is reviewed and the applicable PPS architectures are
selected. Successively, the selected architectures are sized according to RTSs’ functional requirements,
and the positioning precision of the sized mechanisms is evaluated. The result of this study is that
there are three PPS architectures suitable for RTSs, whose detailed comparison is also presented.

Keywords: parallel mechanism; pointing system; dimensional synthesis; accuracy analysis; robotic
total station

1. Introduction

A theodolite [1] is an instrument that measures two angles, named pan and tilt angles,
which locate the orientation of a line pointing at a target. It consists of a telescope connected
to a frame (base) by the means of a universal (U) joint, which allows its rotation around
a vertical axis (pan rotation) and a horizontal axis (tilt rotation), and a set of graduated
circles that make the two angles accurately measurable. The base is levelled before the
angle measurement and provides the reference horizontal plane. The telescope is equipped
with a crosshair that enables the operator to point at a particular target; the axis of the
telescope is the line whose pan and tilt angles are measured. Land surveying, construction,
and mapping are the applicative fields of theodolites, where they establish points, lay out
boundaries, and determine the heights and positions of objects or other features on the
Earth’s surface.

Theodolites evolved into total stations, which also feature a laser rangefinder and
an onboard computer that calculates the position of the target point with respect to the
instrument. The added tools allow the operator (usually a surveyor) to point at a target,
record the measured angles and distance, and repeat the two previous operations for
many target points without moving the instrument to create a detailed 3D map of the site.
Successively, total stations evolved into robotic total stations (RTS) that include a number
of additional tools (e.g., actuators for controlling their motion, camera, tracking software,
etc.), enabling them to work autonomously by following a loaded measurement program
or remote controller.
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The added tools [2–6] make RTSs also able to track mobile targets on civil structures,
thus making possible their use in structural monitoring [7–14]. Indeed, they have been em-
ployed either together with other instruments, as GPS [7,8], or alone to measure the natural
frequencies of road bridges [9,10], railway bridges [11,12], and pedestrian bridges [13,14]
excited by the transit of people or vehicles, that is, when the oscillation amplitude has the
order of centimeters and the oscillation frequency is lower than 1 Hz. In civil structures, the
frequency border of 1 Hz is sufficient for many applicative cases; nevertheless, extending
this border up to 5 Hz, or better, to 10 Hz, would greatly extend this field of application.

Despite the fact that recently presented RTSs (see Table 1) are equipped with 360◦
reflector prisms [15] and have doubled their recording rate [16], extending this frequency
border over 3 Hz still is a goal to reach [17]. Since RTSs’ angle/distance measurements
come after the telescope collimation toward the target point and the collimation is a
mechanical operation, extending this frequency limitation is intimately related to increasing
the dynamic performance of the mechanism that moves the telescope.

Increasing the dynamic performances of any mechanical system unavoidably passes
through a reduction in the mobile masses. Table 1 shows that the total mass of commercial
RTSs ranges roughly from 5 kg to 9.5 kg and that most of their mass is loaded on mobile
parts, even though the telescope, which is the component to move, usually weighs less than
0.5 kg. In short, until now, the automation of total stations has been implemented by simply
adding actuators in the two revolute (R) pairs of the U-joint, which connects the telescope
to the base, without redesigning the mechanical system for reducing all the mobile masses.

Moving the electrically supplied parts (e.g., actuators, Wi-Fi antenna, and display,
etc.) together with their batteries onto the base is the design strategy to implement for
greatly reducing the mobile masses. The vast majority of these components (e.g., Wi-Fi
antenna, onboard computer, and display) are moveable onto the base without changing
the mechanism that moves the telescope; whereas, moving the actuators onto the base
needs to change such a mechanism from a serial architecture to a parallel architecture1.
Replacing a serial architecture with a parallel one also brings other advantages. Indeed,
parallel architectures, in general, are stiffer and more precise than their serial counterpart.
Parallel architectures that orientate a line with respect to their base are named parallel
pointing systems (PPS).

This paper reviews the PPS architectures proposed in the literature and selects those
that are more suitable for RTSs with reference to RTSs’ functional requirements. Suc-
cessively, it addresses the dimensional synthesis and accuracy analysis of the selected
architectures. The result of this study is that there are three PPS types that are more suitable
for RTSs. The pros and cons of these three PPS architectures are also discussed.

The paper is organized as follows. Section 2 reviews the literature on PPSs, defines the
functional requirements for a PPS to be used in an RTS, and selects the most suitable ones.
Section 3 addresses the position analysis and dimensional synthesis of the PPSs selected
in the previous section, using the RTS’s functional requirements identified in the same
section. Finally, Section 4 discusses the results, also evaluating their accuracy, and Section 5
draws conclusions.

1 Serial architectures are open kinematic chains (in this case, the U joint) that connect the base to the end effector
(in this case, the link carrying the telescope). Differently, parallel architectures feature more-than-one kinematic
chains (limbs) that simultaneously connect the end effector to the base.
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2. Selection of PPS Architectures for RTS

The literature on the type synthesis2 of parallel architectures is practically complete.
Indeed, type synthesis methods based on graph theory [18–23], screw theory [24–30] group
theory [31–38], and evolutionary morphology [39], among others, have been proposed to-
gether with a long list of parallel-architecture types that satisfy many motion requirements.
In this literature, the most extended lists of PPS architectures are reported in [37], [38]
(Chap. 12), [39] (Vol. 4). Over these lists, papers (e.g., [40,41]) and patents (e.g., [42]) on
specific PPS architectures have been presented, too.

PPSs are two degrees-of-freedom (DOF) closed-chain mechanisms. All the PPS archi-
tectures proposed in the literature exhibit a U-joint that directly connects the end effector to
the base. Such a U-joint is either fully passive (i.e., the two R pairs of the U-joint are both
non-actuated) or partially active (i.e., one out of the two R pairs of the U-joint is actuated). It
is fully passive in PPS architectures (e.g., [40,41]) that have two more limbs connecting the
end effector to the base: these two additional limbs contain the two actuators (one per limb).
These two-looped architectures pay their higher stiffness with a workspace reduction; they
are suitable for applications (e.g., orientating satellite antennas or solar panels, etc.) where
the end effector is heavy and the requested orientation workspace is limited.

Differently, the U joint is partially active in PPS architectures (e.g., [42]) that contain
only one additional limb, which carries the second actuator. Since the telescope of an RTS
is not a heavy object and it needs an ample orientation workspace, these single-looped
architectures with a partially active U-joint must be chosen for RTSs. In particular, in the U
joint, the R pair adjacent to the base, that is, the one with a vertical axis (see the images in
Table 1), which makes the telescope perform the pan rotation, must be actuated. Moreover,
in the additional limb, the first joint (i.e., the one adjacent to the base) must be actuated so
that the remaining part of the limb can play only the role of a mechanical transmission that
controls the motion of the non-actuated R pair of the U joint (i.e., the one that makes the
telescope perform the tilt rotation). Figure 1 shows a generic PPS architecture that satisfies
these requirements.

According to the Grübler–Kutzbach mobility criterion [43] and Euler’s formula [44],
a two-DOF single-looped spatial mechanism, like the PPS architectures selected for RTSs,
must satisfy the following condition to be non-overconstrained:

2 = 6(m − 1)− ∑
i=1,5

(6 − i)ci

m = ∑
i=1,5

ci

⎫⎪⎬⎪⎭ ⇒ ∑
i=1,5

i ci = 8 (1)

where m is the number of links and ci is the number of joints with i DOFs. Since the U
joint yields a term equal to 2 in the summation on the left-hand side of Equation (1), the
following relationships hold for the additional limb of a non-overconstrained PPS:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
i=1,5

i ci,limb = 6

∑
i=1,5

ci,limb = ∑
i=1,5

ci − 1

mlimb = m − 2 = ∑
i=1,5

ci,limb − 1

(2)

where mlimb is the number of links of the additional limb and ci,limb is the number of joints
with i DOFs of the additional limb.

Choosing non-overconstrained PPS architectures is preferable since they do not require
the imposition of tight tolerances on the unavoidable geometric errors that come out during
manufacturing. Nevertheless, reducing the number of links and joints under the values
provided by Equation (2) is also interesting when the introduced overconstraint is as “easy”
to obtain as, for instance, it is for some planar or spherical kinematic chains. Moreover,

2 Type synthesis is the identification of mechanism topologies that match some motion requirements.
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PPS architectures that do not contain passive (i.e., non-actuated) prismatic (P) pairs must
be preferred.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Generic PPS architecture suitable for an RTS.

The above-defined requirements, together with the fact that the pan rotation must be
a complete rotation in an RTS (i.e., the additional limb must not limit the pan rotation),
lead one to select the PPS architectures shown in Figures 2–4 with five, six, and seven links,
respectively. Such architectures are deduced from the three main families of single-looped
PPS architectures without passive P pairs reported in [37], [38] (Chap. 12), [39] (Vol. 4) by
imposing that the additional limb must not limit the pan rotation and that its number of
links and joints must be as small as possible.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 

Figure 2. Spherical five-bar PPSs of type (C and S stand for cylindrical and spherical pair, respectively;
the underscore indicates the actuated pairs): (a) RR-RRR (overconstrained solution), and (b) RR-RCS
(non-overconstrained solution).

The PPS of Figure 2a, hereafter named the “spherical PPS”, is obtained from the
general scheme of Figure 1 by choosing an additional limb of the RRR type (the underscore
indicates an actuated joint). The peculiarities of this RRR limb are the following: (a.1)
the axes of the three R pairs are so oriented that they all pass through the center of the
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partially active U joint (i.e., the purple RR limb in the figure), and (a.2) the axis of the
actuated R-pair, adjacent to the base, coincides with the pan-rotation axis. The resulting
single-looped architecture is a particular spherical five-bar linkage of the RR-RRR type that
has the spherical motion center coincident with the U-joint center. Condition (a.2) is the one
that allows the telescope to perform a complete pan rotation. This spherical five-bar linkage
is overconstrained (i.e., it does not satisfy Equation (1)); nevertheless, its overconstraint can
be easily removed by replacing, in the RRR limb, the intermediate R-pair with a cylindrical
(C) pair and the R-pair adjacent to the end effector with a spherical (S) pair, as shown in
Figure 2b. Doing so, the additional limb becomes of the RCS type.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 

Figure 3. Six-bar PPSs of type (P and S stand for prismatic and spherical pair, respectively; the
underscore indicates the actuated pairs): (a) RR-PRRR (overconstrained solution), and (b) RR-PRRS
(non-overconstrained solution).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) (b) 

Figure 4. Overconstrained 7-bar PPS of type RR-PRRRR (a) and its equivalent non-overconstrained
6-bar PPS of type RR-PRRS (b).
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The PPS of Figure 3a, hereafter named the “1st decoupled PPS”, is obtained from
the general scheme of Figure 1 by choosing an additional limb of the PRRR type. The
peculiarities of this PRRR limb are the following: (b.1) the axis of the first R-pair, adjacent
to the actuated P pair, coincides with the pan-rotation axis, (b.2) the sliding direction of
the actuated P pair is parallel to the pan-rotation axis, and (b.3) the axes of the second
and the third R pairs are both parallel to the tilt-rotation axis. The resulting single-looped
architecture is a particular six-bar linkage of the RR-PRRR type that, when the actuated P
pair (the actuated R pair) is locked, keeps the tilt (the pan) angle fixed (i.e., the pan and
tilt rotations are independently moveable). This six-bar linkage is overconstrained (i.e., it
does not satisfy Equation (1)); nevertheless, its overconstraint can be easily removed by
replacing, in the PRRR limb, the R-pair adjacent to the end effector with an S pair, as shown
in Figure 3b. Doing so, the additional limb becomes of the PRRS type.

The PPS of Figure 4a, hereafter named the “2nd decoupled PPS”, is obtained from the
general scheme of Figure 1 by choosing an additional limb of PRRRR type. The peculiarities
of this PRRRR limb are the following: (c.1) the axis of the first R-pair, adjacent to the
actuated P pair, coincides with the pan-rotation axis, (c.2) the sliding direction of the P pair
and the axes of the second and third R pairs are all parallel to the pan-rotation axis, and
(c.3) the axis of the fourth R pair, adjacent to the end effector, is parallel to the tilt-rotation
axis. The resulting single-looped architecture is a particular seven-bar linkage of the RR-
PRRRR type that, when the actuated P pair (the actuated R pair) is locked, keeps the tilt
(the pan) angle fixed (i.e., the pan and tilt rotations are independently moveable). This
seven-bar linkage is overconstrained (i.e., it does not satisfy Equation (1)); nevertheless, its
overconstraint can be easily removed by replacing, in the PRRRR limb, the last two R-pairs
with an S pair, as shown in Figure 4b. Doing so, the additional limb becomes of the PRRS
type and the resulting linkage has only six links.

After having selected the PPS architectures suitable for RTSs, the dimensional synthesis
of these architectures must be completed by imposing that:

(i) the tilt angle can cover a variation range (at least 90 degrees) suitable to make the
telescope axis assume any direction inside the upper hemisphere;

(ii) the additional limb guarantees a sufficiently good transmission angle at any
PPS configuration.

The next section, firstly, will deduce the kinematic relationships necessary to control
the motion of the selected PPS architectures; then, it will exploit the deduced relationships
to complete the dimensional synthesis of the selected PPS architectures by imposing the
above-defined additional design requirements.

3. Kinematic Analysis and Dimensional Synthesis

In order to evaluate and compare the selected PPS architectures, the analytic rela-
tionships necessary to solve their kinematic analysis problems, which are involved in
their motion control, must be deduced. Moreover, their dimensional synthesis must be
completed for the determination of the geometric constants’ values that make the PPS
satisfy the above-defined design requirements (i) and (ii).

In the following part of this section, these analytic/numeric computations are imple-
mented for each of the three PPS architectures identified in the previous section. In doing
so, a variation range of 120◦ is chosen for the tilt angle when imposing design requirements
(i) and (ii). Hereafter, ψ, ζ, and θ1 denote, respectively, the pan angle, the tilt angle, and the
actuated-joint variable of the partially active U joint that directly connects the end effector
to the base, which is the rotation angle of the R pair adjacent to the base (see Figure 1).
Moreover, without losing generality, no phase difference is assumed between ψ and θ1,
that is, for all the selected PPSs (see Figure 1), the following relationship holds:

ψ = θ1 (3)

Eventually, the kinematic analyses of the overconstrained mechanisms (i.e., Figures 2a,
3a and 4a) and their non-overconstrained counterparts (i.e., Figures 2b, 3b and 4b) coincide
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with one another if no geometric error occurs. As a consequence, since the evaluation of
geometric error effects is out of the scope of this work, the kinematic analyses that follow
will refer to the nominal geometry and, for the sake of simplicity, all the notations will
be defined by using the overconstrained or non-overconstrained architectures according
to convenience.

3.1. Spherical PPS

Figure 5a illustrates the adopted notations for the kinematic analysis and dimensional
synthesis of the PPSs shown in Figure 2a. With reference to Figure 5a, Ox0y0z0 (Ox1y1z1) is
a Cartesian reference system fixed to the base (to the cross link of the U joint (see Figure 2a)
with the origin, O, coincident with the center of the U joint, the z0-coordinate axis (z1-
coordinate axis) coincident with the pan rotation axis, and the y0-coordinate axis as a phase
reference for measuring the pan rotation (the y1-coordinate axis is coincident with the tilt
rotation axis). The x0y0-coordinate plane, coincident with the x1y1-coordinate plane, is the
horizontal plane of the theodolite, which is also the phase reference for measuring the tilt
angle, ζ, whereas the two mutually orthogonal axes of the two R pairs constituting the U
joint lie on the y1z1-coordinate plane. Angle αi, for i = 0, . . .,4, is the constant angle between
the axes of the R pairs at the endings of link i. In particular, links 0 and 3 are the base and
the cross link of the U joint, respectively; as a consequence, α0 and α3 are equal to 0◦ and
90◦, respectively, whereas α1, α2, and α4 must be sized by imposing design requirements
(i) and (ii). Eventually, angle θ2 is the joint variable of the first R pair, adjacent to the base,
of the additional limb of the RRR type, and angle ϕ is equal to (θ2 − θ1).

 
 

(a) (b) 

Figure 5. Kinematic scheme of the spherical PPS: (a) notations, and (b) spherical 4-bar obtained by
locking the pan rotation, ψ.

When the pan rotation, ψ (=θ1 (Equation (3))), is locked, the spherical five-bar linkage
becomes the spherical four-bar linkage shown in Figure 5b, which has link 1 as an input
link with ϕ (=(θ2 − θ1)) as the input variable and link 4 as the output link with the tilt
angle, ζ, as the output variable. Such a spherical four-bar linkage is the same for any value
of ψ. As a consequence, the kinematic model of this spherical four-bar linkage, together
with Equation (3), provides the kinematic model of this spherical PPS.
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With reference to Figure 5b, τ is the transmission angle [45] of this spherical four-bar
linkage and h is the convex angle between segments OB0 and OA. Moreover, the following
relationships hold:

ζ + μ =
π

2
; μs + μu + μ = π; μs + μu =

π

2
+ ζ. (4)

The cosine law for spherical triangles [45], when applied to the spherical triangles
ΔA0B0A and ΔAB0B of Figure 5b, which share side h, yields:

cosα2 = cos h cosα4 + sin h sinα4 cosμu (5a)

cos h = cosα1 cosα3 + sinα1 sinα3 cosϕ (5b)

cosα1 = cos h cosα3 + sin h sinα3 cosμs (5c)

whereas the application of the sine law for spherical triangles [45] to the spherical triangle
ΔA0B0A gives:

sin h
sinϕ

=
sinα1

sinμs
⇒ sin h sinμs = sinα1 sinϕ (6)

By taking into account the value of α3 (=π/2), the introduction of Equation (5b) into
Equation (5a) transforms it as follows:

cosα2 = sin α1 cosϕ cosα4 + sin h sinα4 cosμu (7)

which, after having introduced the expressions of μu coming from Equation (4) and cosμs
and sinμs coming from Equations (5c) and (6), respectively, yields

sinα1 sinα4 sinϕ cos ζ − cosα1 sinα4 sin ζ + sinα1 cosα4 cosϕ− cosα2 = 0 (8)

Equation (8) is the closure equation of the spherical four-bar linkage of Figure 5b.
Over ζ (i.e., the output variable) and ϕ (=(θ2 − θ1), i.e., the input variable), it contains only
the geometric constants of the linkage (i.e., α1, α2, and α4). If the geometric constants are
known (as happens when a control algorithm must be implemented), it can be used to
compute ζ as a function of ϕ (direct position analysis (DPA)), or, vice versa, ϕ as a function
of ζ (inverse position analysis (IPA)). Differently, if the function ζ = ζ(ϕ) is fully or partly
known (i.e., design requirements are assigned), it can be used to compute the linkage’s
geometric constants α1, α2, and α4 (dimensional synthesis).

3.1.1. Position Analysis of the Spherical PPS

The computation of ζ for the assigned values of the geometric constants and ϕ (i.e.,
the solution of the DPA) is implementable by rewriting Equation (8) as follows:

m1 sin ζ + m2 cos ζ + m3 = 0 (9)

where: ⎧⎨⎩
m1 = − cosα1 sinα4
m2 = sinα1 sinα4 sinϕ

m3 = sinα1 cosα4 cosϕ− cosα2

(10)

and then, by solving the quadratic equation obtained from Equation (9) through the half-
tangent substitution (i.e., the change of variable sinx = 2t/(1 + t2) and cosx = (1 − t2)/(1 + t2)
where t = tan(x/2)). Doing so, the following closed-form solution is obtained:

ζi = 2 atan2
(
−m1 + (−1)i

√
m1

2 + m22 − m32, m3 − m2

)
i = 0, 1 (11)
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Analogously, the computation of ϕ for the assigned values of the geometric constants
and ζ (i.e., the solution of the IPA) is implementable by rewriting Equation (8) as follows:

n1 sinϕ+ n2 cosϕ+ n3 = 0 (12)

where: ⎧⎨⎩
n1 = sinα1 sinα4 cos ζ
n2 = sinα1 cosα4
n3 = − cosα1 sinα4 sin ζ − cosα2

(13)

and then, by solving the quadratic equation obtained from Equation (12) through the
half-tangent substitution. Doing so, the following closed-form solution is obtained:

ϕi = 2 atan2
(
−n1 + (−1)i

√
n1

2 + n22 − n32, n3 − n2

)
⇒ θ2,i = ϕi +ψ i = 0, 1 (14)

3.1.2. Dimensional Synthesis of the Spherical PPS

Here, design requirement (i) with Δζ = ζmax − ζmin = 120◦ must be imposed by taking
into account that a crank-rocker four-bar has to be preferred and that design requirement
(ii) must be satisfied, too. In order to have a crank-rocker four-bar, the Grashof rule [45]
must be satisfied, that is, the following additional conditions must be imposed:{

α1 = αmin = min(α1,α2,α3,α4)
αmin + αmax ≤ 1

2 ∑
i=1,4

αi
(15)

where αmax = max(α1, α2, α3, α4).
The two extreme positions of link 4 (i.e., the rocker) correspond to the minimum, ζmin,

and the maximum, ζmax, values of ζ and occur [45] when links 1 and 2 are flattened, that is,
when the three segments OA0, OA, and OB lie on the same plane. The application of the
cosine law to the spherical triangle ΔBA0B0 at the occurrence of such a condition leads one
to write the two equations:

cos(α1 + α2) = cos α3 cosα4 − sin α3 sinα4 sin(ζmin +
2
3
π)

α3 = π
2

↓
= − sinα4 sin(ζmin +

2
3
π) (16a)

cos(α2 − α1) = cos α3 cosα4 − sin α3 sinα4 sin ζmin

α3 = π
2

↓
= − sinα4 sin ζmin (16b)

which, by expanding the left-hand sides, can be transformed as follows:

[
cosα1 cosα2 − sinα1 sinα2 =

= − sinα4 sin(ζmin + 2
3π)[

cosα1 cosα2 + sinα1 sinα2 =

= − sinα4 sin ζmin

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sin ζmin = − cosα1 cosα2 + sinα1 sinα2
sinα4

cos ζmin =

cosα1 cosα2

[
cos

(
2
3
π

)
− 1

]
+ sinα1 sinα2

[
1 + cos

(
2
3
π

)]
sin

(
2
3
π

)
sinα4

(17)

where the trigonometric identity sin(ζmin +
2
3
π) = sin ζmin cos

(
2
3
π

)
+ cos ζmin sin

(
2
3
π

)
has also been introduced. Eventually, the introduction of Equation (17) into the trigonomet-
ric identity sin2ζmin + cos2ζmin = 1 yields:

2 cos2 α1 cos2 α2

[
1 − cos

(
2
3
π

)]
+ 2 sin2 α1 sin2 α2

[
1 + cos

(
2
3
π

)]
= sin2

(
2
3
π

)
sin2 α4 (18)
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The transmission angle, τ, reaches its minimum, τmin, and maximum, τmax, values
when links 1 and 3 are flattened [45], that is, when the three segments OA0, OA, and OB0
lie on the same plane. The application of the cosine law to the spherical triangle ΔAB0B at
the occurrence of such a condition leads one to write the two equations:

cos(α3 + α1) = cos α2 cosα4 + sin α2 sinα4 cos τmax (19a)

cos(α3 − α1) = cos α2 cosα4 + sin α2 sinα4 cos τmin (19b)

which, since α3 = π
2 , become:

− sinα1 = cos α2 cosα4 + sin α2 sinα4 cos τmax (20a)

sinα1 = cos α2 cosα4 + sin α2 sinα4 cos τmin (20b)

If the values of τmin and τmax are assigned so that design requirement (ii) is satis-
fied, Equations (18) and (20) become a system of three trigonometric equations in three
unknowns (i.e., α1, α2, and α4), whose solution provides the sought-after sizes that satisfy
both the design requirements. If the found solution also satisfies condition (15), it can be
accepted; otherwise, the system must be solved again with new assigned values of τmin
and τmax until all the conditions are satisfied.

The replacement of Equation (20a) with the sum of Equation (20a,b) and the intro-
duction of Equation (20b) into Equation (18) after replacing cos2α1 with the trigonometric
identity cos2α1 = 1 − sin2α1 transform the system to solve as follows:⎡⎢⎢⎣ 2(cos α2 cosα4 + sin α2 sinα4 cos τmin)

2
[

sin2 α2 − cos2 α2 + cos
(

2
3
π

)]
+

+2 cos2 α2

[
1 − cos

(
2
3
π

)]
= sin2

(
2
3
π

)
sin2 α4

(21a)

2 cos α2 cosα4 + q sin α2 sinα4 = 0
with
q = (cos τmax + cos τmin)

⎫⎬⎭
i f α2 
= π

2
↓⇒ tan α2 = −2 cosα4

q sinα4
(21b)

sinα1 = cos α2(cosα4 + tan α2 sinα4 cos τmin) = ±cosα4 + tan α2 sinα4 cos τmin√
1 + tan2 α2

(21c)

where Equation (21c) is Equation (20b) transformed by taking into account the trigonometric
identity cos x = ±1/

√
1 + tan2 x. It is worth stressing that the value α2 = π/2, excluded

in the deduction of Equation (21b), leads the determination of acceptable values of α4
(i.e., α4 ∈ [0, π]) only if simultaneously q = (cos τmax + cos τmin) = 0. In this case, such
a condition makes Equation (21b) identically satisfied and transforms Equation (20b) as
follows sinα1 = sinα4 cos τmin, whose substitution into Equation (18) yields the following

condition on τmin: 2 cos2 τmin

[
1 + cos

(
2
3
π

)]
= sin2

(
2
3
π

)
, that is, cosτmin = −cosτmax

=
√

3/2. Such formulas make one determine τmin = 30◦, τmax = 150◦, and, as possible
values for α1 and α4 that also satisfy condition (15), α1 = 46.7805◦ = 0.81647 rad and α4
= 57.29578◦ = 1 rad. Eventually, the introduction of α2 = π/2 into Equation (17) yields
sin ζmin = − sinα1/ sinα4 ≡ − cos τmin, which provides ζmin = −60◦ and ζmax = ζmin +
120◦ = 60◦ for τmin = 30◦.
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The introduction of Equation (21b) into Equation (21a,c), where cosα2 and sinα2

have been replaced through the trigonometric identities cos x = ±1/
√

1 + tan2 x and
sin x = ± tan x/

√
1 + tan2 x, transforms system (21) into the final form:

tan α2 = −2 cosα4

q sinα4
(22a)

sinα1 = ± r|sinα4| cosα4√
q2 sin2 α4 + 4 cos2 α4

(22b)

2q2

q2 sin2 α4 + 4 cos2 α4

{[
1 − cos

(
2
3
π

)]
+ cos2 α4

(
r
q

)2
[

1 + cos
(

2
3
π

)
− 2q2 sin2 α4

q2 sin2 α4 + 4 cos2 α4

]}
= sin2

(
2
3
π

)
(22c)

with r = (cos τmax − cos τmin).
The introduction of the trigonometric identity sin2α4 = 1 − cos2α4 into Equation (22c),

together with the variable change p = cos2α4, transforms it into the following quadratic
equation:

g2 p2 + 2g1 p + g0 = 0 (23)

with:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g0 = q4
{

2
[

1 − cos
(

2
3
π

)]
− sin2

(
2
3
π

)}
g1 = q2

{
[4 − q2]

[
1 − cos

(
2
3
π

)
− sin2

(
2
3
π

)]
+ r2

[
cos

(
2
3
π

)
− 1

]}
g2 = 2r2

{
4
[

1 + cos
(

2
3
π

)]
−

[
cos

(
2
3
π

)
− 1

]
q2

}
− sin2

(
2
3
π

)
[4 − q2]

2

(24)

whose solutions are:

pi =
−g1 + (−1)i√g1

2 − g0g2

g2
⇒ (cosα4)ij = (−1)j√pi i, j = 0, 1 (25)

The values of α4 obtained from Equation (25) as a function of τmin and τmax, when
back substituted into Equation (22a,b), provide the corresponding values of α1 and α2.
Eventually, the back substitution of the so-obtained triplets (α1, α2, α4) into Equation (17)
yields the corresponding values of ζmin. Equation (25) yields, at most, four real values for
cosα4 and as many values of α4 in the range of [0, π] rad. Successively, Equation (22a)
(Equation (22b)) associates one value of tanα2 (two values of sinα1), which corresponds
to two values of α2 (of α1) in the range of [0, π] rad, to each computed value of α4. In
conclusion, system (22) can have up to eight values of (α1, α2, α4), with α1, α2, and α4
belonging to the range of ]0, π[ rad that solve it and are selectable as possible sides of the
studied spherical four bar.

This procedure has been implemented by using many values of τmin and τmax, but
it has not led to the identification of values of α1, α2, α4, and ζmin that correspond to the
values of τmin and τmax better than the ones found above for the case α2 = 90◦ = π/2 rad
(i.e., τmin = 30◦, τmax = 150◦). As a consequence, those values (i.e., τmin = 30◦, τmax = 150◦,
α2 = 90◦ = π/2 rad, α1 = 46.7805◦ = 0.81647 rad, α4 = 57.29578◦ = 1 rad, and ζmin = −ζmax
= −60◦ = −1.0472 rad) are adopted as the optimal solution of the dimensional synthesis.

3.2. First Decoupled PPS

Figure 6 illustrates the adopted notations for the kinematic analysis and dimensional
synthesis of the PPS shown in Figure 3a. With reference to Figure 6, d2 is the actuated-joint
variable of the P pair; τ is the transmission angle; and a1, a3, and a4 are the distances
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between the two ending R-pair axes of links 1, 3, and 4, respectively, and they are the
geometric constants of this PPS.

When the pan rotation is locked, the additional limb becomes a single-DOF planar
linkage of type PRRR, whose motion plane is the plane perpendicular to the tilt-rotation
axis that passes through the pan-rotation axis. In this plane, the adopted notations make it
possible to write the following two relationships:

d2 = a3 sin(τ+ ζ)− a1 sin ζ (26a)

a1 cos ζ = a4 + a3 cos(τ+ ζ) (26b)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

O 

A 

B 

C 

Figure 6. Kinematic scheme of the 1st decoupled PPS: notations.

Equation (26a,b) immediately allow for the determination of the explicit expressions of
sin(τ+ ζ) and cos(τ+ ζ), respectively, whose introduction into the trigonometric identity
cos2(τ+ ζ) + sin2(τ+ ζ) = 1 yields the closure equation:

a3
2 = (d2 + a1 sin ζ)2 + (a1 cos ζ − a4)

2 ⇒ a3
2 = d2

2 + a4
2 + a1

2 + 2a1(d 2 sin ζ − a4 cos ζ) (27)

3.2.1. Position Analysis of the 1st Decoupled PPS

The computation of ζ for assigned values of the geometric constants and d2 (i.e., the
solution of the DPA) is implementable by rewriting Equation (27) as follows:

k1 sin ζ + k2 cos ζ + k3 = 0 (28)

where: ⎧⎨⎩
k1 = 2a1d2
k2 = −2a1a4
k3 = d2

2 + a4
2 + a1

2 − a3
2

(29)

and then, by solving the quadratic equation obtained from Equation (28) through the
half-tangent substitution. Doing so, the following closed-form solution is obtained:

ζi = 2 atan2
(
−k1 + (−1)i

√
k1

2 + k22 − k32, k3 − k2

)
i = 0, 1 (30)

159



Machines 2024, 12, 54

Differently, the computation of d2 for assigned values of the geometric constants and
ζ (i.e., the solution of the IPA) is implementable by simply noting that Equation (27) is a
quadratic equation in d2, whose solution is:

d2,i = −a1 sin ζ + (−1)i
√

a1
2 sin2 ζ − a4

2 − a1
2 + a32 + 2a1a4 cos ζ i = 0, 1 (31)

3.2.2. Dimensional Synthesis of the 1st Decoupled PPS

With reference to Figure 6, the transmission angle is computable as a function of the
actuated-joint variable, d2, as follows:

[
‖B − O‖2 = [(B − A) + (A − O)]× [(B − A) + (A − O)] =

= ‖B − A‖2 + ‖A − O‖2 + 2(B − A)× (A − O)

‖B − O‖2 = d2
2 + a4

2; ‖B − A‖2 = a3
2; ‖A − O‖2 = a1

2

(B − A)× (A − O) = 2a1a3 cos(π− τ) = −2a1a3 cos τ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos τ =

a1
2 + a3

2 − a4
2 − d2

2

2a1a3
=

=

1 +
(

a3

a1

)2
−

(
a4

a1

)2
−

(
d2

a1

)2

2
(

a3

a1

) (32)

The same figure reveals that τmax (ζmin) and τmin (ζmax) correspond to the maximum,
d2,max, and minimum, d2,min, values of d2, respectively. Accordingly, if ζmax = 60◦ and
ζmin = −60◦ (considering that design requirements (i) with Δζ = ζmax − ζmin = 120◦ must
be imposed) are chosen, the introduction of (τmax, ζmin), and then, of (τmin, ζmax), into
Equation (26b) yields the following two relationships:(

a4

a1

)
+

(
a3

a1

)
cos

(
τmax − π

3

)
= cos

(π
3

)
(33a)

(
a4

a1

)
+

(
a3

a1

)
cos

(
τmin +

π

3

)
= cos

(π
3

)
(33b)

which are compatible if and only if the following relationship holds:

cos
(
τmax − π

3

)
= cos

(
τmin +

π

3

)
⇒ τmax − π

3
= ±

(
τmin +

π

3

)
⇒

⎧⎪⎪⎨⎪⎪⎩
τmax − τmin = 2π

3
or

τmax + τmin = 0
(34)

Since 90◦ is the best transmission angle and the variation range of τ should be centered
on this value, the condition τmax + τmin = 0 is not valid, whereas the other condition can
be satisfied by choosing τmax = 150◦(= 90◦ + 60◦) and τmin = 30◦(= 90◦ − 60◦), which,
when introduced into Equation (33), yield the condition a4 = 0.5a1 (see Figure 7). Moreover,
Equation (26a) yields (see Figure 7):

d2,max = a3 sin(τmax + ζmin)− a1 sin ζmin
d2,min = a3 sin(τmin + ζmax)− a1 sin ζmax

}
⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎣ Δd2 = d2,max − d2,min =
= a3[sin(τmax + ζmin)− sin(τmin + ζmax)]+

+a1(sin ζmax − sin ζmin)⎡⎣ 2d2,average = d2,max + d2,min =
= a3[sin(τmax + ζmin) + sin(τmin + ζmax)]+

−a1(sin ζmax + sin ζmin)

(35)

System (35) leads one to determine the following explicit formulas:⎧⎪⎨⎪⎩
a1 =

2d2,average[sin(τmax + ζmin)− sin(τmin + ζmax)]− Δd2[sin(τmax + ζmin) + sin(τmin + ζmax)]

Δ

a3 = −Δd2(sin ζmax + sin ζmin) + 2d2,average(sin ζmax − sin ζmin)

Δ

(36)
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with: [
Δ = −{[sin(τmax + ζmin)− sin(τmin + ζmax)](sin ζmax + sin ζmin)+

+(sin ζmax − sin ζmin)[sin(τmax + ζmin) + sin(τmin + ζmax)]} (37)

which, for the above-determined values of τmax, ζmin, τmin, and ζmax, yields:

a1 =
Δd2√

3
; a3 = 2d2,average = 2d2,min + Δd2

Δd2 = a1
√

3
↓
= a1

√
3(

2d2,min

Δd2
+ 1) (38)

where the values of d2,min and Δd2 depend on how the actuated P-pair is sized (in Figure 7,
d2,min = d20 and Δd2 = d1 = 2a1 sinζ+). Formula (38), together with the above-deduced
relationship a4 = 0.5a1, provides the sizes of the 1st decoupled PPS for the chosen values of
τmax, ζmin, τmin, and ζmax.

 
Figure 7. First decoupled PPS sized so that a4 = a1 cosζ±.

3.3. Second Decoupled PPS

Figure 8 illustrates the adopted notations for the kinematic analysis and dimensional
synthesis of the PPS shown in Figure 4b. With reference to Figure 8, d2 is the actuated-joint
variable of the P pair and τ is the transmission angle. The lengths a2, a3, and a4 are the
distances of the S-pair center (point A in Figure 8), respectively, from the tilt-rotation axis,
from the plane perpendicular to the pan-rotation axis that passes through point C, and
from the axis of the second R pair of the RRS limb. Eventually, a5 is the distance between
the axes of the two R pairs of the RRS limb.

The following relationships hold among the above-defined geometric parameters:

d2 = a3 − a2 sin ζ (39a)

τ =
π

2
− ζ (39b)
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C 

Figure 8. Kinematic scheme of the 2nd decoupled PPS: notations.

3.3.1. Position Analysis of the 2nd Decoupled PPS

Equation (39a) immediately provides the unique IPA solution (i.e., the determination
of d2 for assigned values of the geometric constants and ζ); whereas, for the DPA (i.e., the
computation of ζ for assigned values of the geometric constants and d2), it straightforwardly
gives the following solution formula:

ζ = arcsin
(

a3 − d2

a2

)
(40)

which provides a unique solution for ζ ∈ [−90◦, 90◦].

3.3.2. Dimensional Synthesis of the 2nd Decoupled PPS

Equation (39b) states a linear relationship between the transmission angle, τ, and the
tilt angle, ζ, that does not depend on the geometric constants of the PPS and gives the best
transmission angle (i.e., 90◦) for ζ = 0. Therefore, the best choice is ζmax = −ζmin = 60◦,
which gives τmax = 150◦(= 90◦ + 60◦) and τmin = 30◦(= 90◦ − 60◦). Moreover, since the
geometric constants are not involved in Equation (39b), they can be freely chosen, provided
that the following geometric constraints are satisfied (see Figure 8 and Equation (39a)):

Δd2 = d2,max − d2,min = a2(sin ζmax − sin ζmin)

ζmax = −ζmin = 60◦
↓
= a2

√
3 (41a)

d2,average =
d2,max + d2,min

2
= a3 − a2

sin ζmax + sin ζmin

2

ζmax = −ζmin = 60◦
↓
= a3 (41b)

√
‖A0 − O‖2 + a22 ≤ a4 + a5 (41c)

where the values of d2,average and Δd2 depend on how the actuated P-pair is sized.
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4. Discussion and Accuracy Analysis

The above-reported kinematic analyses show that all three PPS architectures have
closed-form solutions to their IPA and DPA, even though the formulas of the spherical PPS
are slightly more cumbersome than those of the other two PPSs. Since the complexity of
the formulas is not a problem when a motion control software uses them, the three selected
architectures are equivalent from the motion control point of view. Of course, the fact
that the spherical PPS has slightly coupled kinematics, which need the motion of both the
actuators to keep the tilt angle fixed when only the pan angle has to change, requires a
motion control software slightly more complex than that of the other two PPSs. Indeed,
the “complexity” simply reduces to satisfying the condition that ϕ (=(θ2 − θ1)) be constant
(see, Figure 5).

The above-reported dimensional synthesis determined the same optimal values of
ζmin, ζmax, τmin, and τmax (i.e., ζmax = −ζmin = 60◦, τmin = 30◦, and τmax = 150◦) for all of
the three PPSs. Thus, even though the extreme values of the transmission angle are too
far from its optimal value (i.e., τ = 90◦), this drawback is common to all of them, and, in
practice, is acceptable, since the telescope is light and does not carry heavy loads.

In order to complete the comparison among the selected PPSs, the relationships and
sizes determined in the previous section must be used to evaluate the positioning precision
(accuracy) of the additional limbs. Such an evaluation consists of estimating how a possible
error in the actuated-joint variable of the additional limb affects the tilt angle, and it is
implementable as follows.

For the spherical PPS, the differentiation of Equation (8) yields:

dζ =
sinα1(sinα4 cosϕ cos ζ − cosα4 sinϕ)

sinα4(sinα1 sinϕ sin ζ + cosα1 cos ζ)
dϕ (42)

where, in the coefficient that multiplies dϕ, ζ is related to ϕ through Equation (11), whereas
the values of α1 and α4 are the optimal ones determined in the above-reported dimen-
sional synthesis (i.e., α1 = 46.7805◦ = 0.81647 rad and α4 = 57.29578◦ = 1 rad). By replac-
ing the differentials dζ and dϕ with the joint-variable errors Δζ and Δϕ, respectively, in
Equation (42), and then, by taking the maximum absolute value of the coefficient that
multiplies dϕ in Equation (42), Equation (42) leads to the determination of the following
limitation on |Δζ|:

|Δζ| ≤ 1.7321 |Δϕ| (43)

which proves that, for the spherical PPS, |Δζ| has the same order of magnitude as |Δϕ|.
For the 1st decoupled PPS, the differentiation of Equation (27) yields:

dζ = −

(
d2

a1

)
+ sin ζ(

d2

a1

)
cos ζ +

(
a4

a1

)
sin ζ

d
(

d2

a1

)
(44)

where, in the coefficient that multiplies d(d2/a1), (d2/a1) is related to ζ through
Equation (31), whereas the values of a1 and a4 are the optimal ones determined in the
above-reported dimensional synthesis (i.e., a4 = 0.5a1, a1

√
3 = Δd2). By replacing the

differentials dζ and d(d2/a1) with the joint-variable errors Δζ and Δ(d2/a1), respectively,
in Equation (44), and then, taking the maximum absolute value of the coefficient that
multiplies d(d2/a1), for ζ ∈ [−60◦, 60◦], Δd2 =

√
3, and d2,min = 0.5a1, in Equation (44),

Equation (44) leads to the determination of the following limitation on |Δζ|:

|Δζ| ≤ 2
∣∣∣∣Δ(

d2

a1

)∣∣∣∣ (45)

which proves that, for the 1st decoupled PPS, |Δζ| has the same order of magnitude as
|Δ(d2/a1)|.
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For the 2nd decoupled PPS, the differentiation of Equation (39a) yields:

dζ = − 1
cos ζ

d
(

d2

a2

)
(46)

where, in the coefficient that multiplies d(d2/a2), ζ is related to (d2/a2) through
Equation (39a). By replacing the differentials dζ and d(d2/a2) with the joint-variable
errors Δζ and Δ(d2/a2), respectively, in Equation (46), and then, taking the maximum abso-
lute value of the coefficient that multiplies d(d2/a2), for ζ ∈ [−60◦, 60◦], in Equation (46),
Equation (46) leads to the determination of the following limitation on |Δζ|:

|Δζ| ≤ 2
∣∣∣∣Δ(

d2

a2

)∣∣∣∣ (47)

which proves that the 2nd decoupled PPS has the same accuracy as the 1st decoupled PPS
with |Δζ| that has the same order of magnitude as |Δ(d2/a2)|.

The comparison of inequalities (45)–(47) shows that the three selected PPSs have
essentially the same accuracy, with the spherical PPS being slightly better. In short, the
kinematic analysis, the dimensional synthesis, and the accuracy analysis do not make any
out of the three PPSs prevail over the remaining two. As a consequence, the fact that the
spherical PPS has the minimum number of links and can actuate the tilt angle by using
a continuous rotation as the input motion leads one to the conclusion that it should be
preferred. Figure 9 shows the 3D CAD model of an RTS actuated through the spherical
PPS with the above-determined sizes (i.e., α2 = 90◦ = π/2 rad, α1 = 46.7805◦ = 0.81647 rad,
and α4 = 57.29578◦ = 1 rad (see Figure 5)), whereas Figures 10 and 11 show the tilt angle, ζ,
and the transmission angle, τ, respectively, as a function of ϕ (=θ2 − θ1) for the same PPS.
Eventually, the video “video_RTS.mp4” that shows the motion of the 3D CAD model (only
tilt rotation followed by only pan rotation and, then, combined pan and tilt rotations) is
downloadable from the supplementary materials that accompany this paper.

Figure 9. Two views of the 3D CAD model of an RTS actuated by means of a spherical PPS whose
sizes are the ones determined in Section 3.
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Figure 10. Diagram of the tilt angle, ζ, as a function of ϕ (=θ2 − θ1) for the spherical PPS with
α2 = 90◦ = π/2 rad, α1 = 46.7805◦ = 0.81647 rad, and α4 = 57.29578◦ = 1 rad (see Figure 5).

Figure 11. Diagram of the transmission angle, τ, as a function of ϕ (=θ2 − θ1) for the spherical PPS
with α2 = 90◦ = π/2 rad, α1 = 46.7805◦ = 0.81647 rad, and α4 = 57.29578◦ = 1 rad (see Figure 5).

5. Conclusions

The literature on parallel pointing systems (PPS) has been reviewed to identify PPS
architectures suitable for actuating robotic total stations (RTS). This review has led to the
selection of three PPS architectures, named “Spherical PPS”, “1st Decoupled PPS”, and
“2nd Decoupled PPS”.

The kinematic analysis, the dimensional synthesis, and the accuracy analysis of the
selected PPS architectures have been addressed in detail in order to compare them. These
studies have yielded the following conclusions: all of them (i) have simple motion control
algorithms based on closed-form formulas, (ii) can be sized so that the telescope of the RTS
can collimate toward any target on the upper hemisphere, and (iii) have a good accuracy.

Even though the three PPSs have comparable performances, the fact that the “Spherical
PPS” has the minimum number of links and can actuate the tilt angle by using a continuous
rotation as the input motion makes it prevail over the remaining two.

Supplementary Materials: The file “video_RTS.mp4”, containing a video of the RTS, shown in Figure 9,
in motion, can be downloaded at https://www.mdpi.com/article/10.3390/machines12010054/s1.
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Abstract: As one of the fastest running animals on land, the ostrich’s excellent athletic ability benefits
from its unique leg structure. Based on the idea of bionics, this paper intends to obtain a kind of
robotic leg structure with a similar buffering capacity to that of the ostrich. For this purpose, the
structural characteristics of a seven-link parallel mechanism are analyzed firstly, having some specific
features similar to ostrich legs, such as the center of mass (COM) located at the root of the leg, a large
folding/unfolding ratio, and so on. Then, the kinematic model of the bionic leg is established, and
the energy storage of the flexible parts of the leg is investigated. Finally, an impact experiment of the
structure onto the ground is carried out to verify the accuracy of the established kinematic model.
This paper systematically reveals the nonlinear law of the elasticity of an ostrich-like leg and provides
the buffering performance characteristics of the leg in the process of hitting the ground, based on its
elastic properties by the kinematic model and the experiment.

Keywords: biomimetic robotics; parallel mechanism; buffering; leaf spring

1. Introduction

The flexible locomotion of humans and pods depends on close cooperation between
legs. Compared with terrestrial animals without feet, bipeds move faster, adapt to more
complex environments, and have stronger anti-interference abilities [1,2]. At present, many
researchers have reported the dynamics of robotic bionic legs. For example, He et al. [3]
studied the nonlinear mechanical control of a single-legged jumping robot in the flight stage.
By transforming the dynamics into chain form, an exponentially stabilizable control method
based on the integral backstepping process was proposed. Komarsofla et al. [4] established
a single-leg jumping mechanism performing hopping by transferring linear momentum
between the reciprocating mass and its main body. Larin et al. [5] considered the inertia
characteristics of single-leg jumping and designed the spatial motion model. The reports
presented above all focus on driving mechanisms. As for underactuated robots, Zhang
et al. [6] proposed a 3-DOF underactuated leg mechanism and built dynamics formulas to
calculate the driving force based on the principle of virtue work. He et al. [7] investigated
the locomotion control method of an underactuated jumping robot and proposed the
corresponding modeling, motion planning, and control method. In these papers, the elastic
properties of the mechanism were rarely analyzed from the perspective of the material
characteristics of the elastic parts [8]. In this study, the influence factors of the nonlinear
elasticity of the underactuated leg are investigated systematically, including the elasticity
of the leaf springs, and the buffering performance is concluded by a kinematic model
and experiment.
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2. Structural Analysis of Ostrich Leg

As the fastest biped running on land, the ostrich has strong and powerful lower limbs
and has the ability for steady, lasting, and high-speed running [9] (Figure 1). The ostrich
weighs 100 kg, with a continuous running speed of about 60 km/h, a sprint speed of more
than 70 km/h, and can last for about 30 min [10]. Ostriches have such obvious advantages
in speed and energy saving, partly because of their unique leg and foot structure [11]. The
muscle at the root of the ostrich’s thigh accounts for 80% of the weight of the whole lower
limb [12], which can reduce the moment of inertia of the ostrich’s leg during movement and
facilitate the rapid change of its speed. In addition, the length of the ostrich’s calf bone is
similar to that of the thigh bone, and there are few muscles in the knee and calf. Therefore,
the leg has a large folding/unfolding ratio. What is more, the distance between the two
legs of an ostrich is four-fifths of its body width; this ratio makes it difficult to fall when the
upper body swings from side to side.

Figure 1. Ostrich and its leg structure: (a) ostrich running, (b) bone and muscle structure, (c) leg structure.

What is more important, the ostrich’s legs have good buffering performance because
the muscles and tendons on the ostrich’s thigh are mixed, and the tendons have good
elasticity, which slows down the impact acceleration of the legs when they collide with the
ground. This characteristic, in turn, helps the ostrich keep running at a high speed on an
uneven road without damaging the legs due to the mild collision with the ground [13].

3. Structural Characteristics of Bionic Legs

The leg is an important part of a robot and plays a very important role in the movement
of a legged robot [14]. According to the principle of engineering bionics, the superior
performance of the ostrich leg can be applied to the design of a biped robot leg structure.
The single leg designed in this experiment is shown in Figure 2. Two motors are set at the
hip to simulate the hip and knee joints of an ostrich. The hip motor (M) is mainly used to
control the swing of the leg. The knee motor (N) is mainly used to control the expansion
and contraction of the leg. In order to imitate the tendon of the thigh, an additional joint is
set at point P and constrained with a leaf spring to form the elastic joint, and BQ is also set
as a leaf spring to reduce impact acceleration [15]. The center of mass (COM) of the whole
leg is located at its root, which is similar to the mass distribution of the ostrich leg. In order
to imitate the meniscus buffer structure of the ostrich knee joint, the output link of the
driving motor for the toe joint is set as a leaf spring, so that the impact acceleration will be
greatly reduced when the leg collides with the ground. In addition, the energy stored in the
leaf spring can help the bionic leg take off from the ground during running [16]. In terms
of leg length distribution, following the leg size of an ostrich, the length ratio of connecting
rod AF to AN is set to 0.75.

169



Machines 2022, 10, 306

 
Figure 2. Schematic diagram of the single-leg structure: (a) prototype, (b) schematic diagram of
the structure.

Analyzed in essence, the leg belongs to a seven-link parallel structure. The weight of
the connecting rod is much lighter than that of the motor, thus it can be ignored in order
to facilitate calculation. If the leg stands on the ground, the corresponding static balance
relationships are:

F(MC)
Mx = F(MN)

Mx (1)

F(CM)
Cy + F(NM)

Ny = GM + GN (2)

F(MN)
My × MN+F(MN)

Mx × MN = 0 (3)

F(BC)
Bx × BC−F(BC)

By × BC = 0 (4)

F(BC)
Mx × BQ+F(MC)

My × BQ − KQδQ = 0 (5)

F(An)
Ax × AN−F(AN)

Ay × AN + KPδP = 0 (6)

The letters in the above equations correspond to those in Figure 2b.
The leaf springs of elastic joints are equivalent to cantilever beam under loading, and

the relationship between its stiffness and elastic modulus is as follows:

F =
3EI
L3 Y (7)

where F is the bending force, E is the elastic modulus, I is the inertial moment, and L is the
length of the cantilever beam.

M = FL = Kpδ =
Ebh3

4L
δ (8)
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where M is the moment of the cantilever beam, δ is the joint angle, in rad, b = 50 mm, h = 3
mm considering the influence of connectors at both ends, L is equal to the 0.57l0, and l0 is
the length of the leaf spring. Therefore,

E =
4LKp

bh3 (9)

3.1. Influencing Factors of Equivalent Elastic Modulus of the Ostrich-like Leg

Different from active compliance control [17], this mechanism improves the buffering
properties through passive compliance. The material 65 Mn spring-steel is selected for
the two leaf springs P and Q, thus the elastic moduli Ep and Eq are both 197 GPa, and
the compression force range is from 300 N to 1300 N. This loading range is employed
here because the weight of a single bionic leg is 17 kg. Considering the jump gait during
rapid movement, the maximum impact force is more than 300 N. As shown in Figure 3,
the equivalent elastic modulus (E) of the leg, i.e., the change rate of the compressive
force to compression, decreases during the process of compression. The data fitting of the
equivalent elastic modulus is shown in Formula (10), and the fitting error is 2.679, indicating
that the ability of the spring leg to store elastic properties is nonlinear and decreases with
the increment of compression.

F = 44 + 15x−0.082x2 + 1.9 × 10−4x3 (10)

 
Figure 3. Leg length change under different compressive forces, Ep = 197 GPa, Eq = 197 GPa, initial
length = 800.9 mm.

3.2. Influence of Ep, Eq on the E and Fx of the Ostrich-like Leg

The core problem we are concerned about is the influence of the leaf spring as a flexible
part on the energy storage and buffering capacity of the structure. Therefore, the effect of
the elastic modulus of the P and Q leaf springs on the equivalent elastic modulus (E) of
the structure is analyzed. When Eq = 197 GPa, the initial length equals 800.9 mm and the
compressive force F equals 300 N. The change of the equivalent elastic modulus E with
Ep is shown in Figure 4. The results indicate that the increasing rate of E decreases with
the increase in Ep. The horizontal swing of the leg first decreases, arriving at 0, and then
increases positively, the rate of change decreasing with the increasing Ep.
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Figure 4. Variation of equivalent elastic modulus E and the x-direction displacement of the bionic leg
(Fx) with Ep, Eq = 197 GPa, initial length 800.9 mm, and the compressive force is 300 N.

While simplifying the structure as a spring, we find that when the compressive force
is applied, the F point of the leg (Figure 2) will move in the x-direction (Fx), which indicates
that the robot will move in the horizontal plane when squatting. This may cause the change
of the robot’s centroid of mass (COM) on the horizontal plane, and it should be corrected
by the control algorithm. In order to reduce the adjusting time, it is feasible that the change
on the horizontal plane is small during the squatting process of the robot, so the Ep and Eq
that makes the Fx close to 0 should be preferred.

In order to analyze the influence of Eq on the equivalent elastic modulus of the spring
leg, we set Ep = 197 GPa and initial length = 800.9 mm (Figure 5). The value range of Eq is
100–700 GPa and the elastic modulus of few materials exceeds 300 GPa. Here, it is extended
to 700 GPa to analyze the trend of change. The results show that both the equivalent elastic
modulus and the displacement of the F point of the structure increase with Eq, and the rate
of change keeps decreasing.

Figure 5. Variation of equivalent elastic modulus and displacement in the x-direction of the bionic
leg with Eq, Ep = 197 GPa, initial length 800.9 mm, and compressive force 300 N.
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When Ep is 197 GPa, the initial length is 800.9 mm, and the compressive force is 300 N,
from the perspective of control stability, the greater the elastic modulus of the Q leaf spring,
the greater the swinging of the fuselage. Generally, the larger the elastic modulus of the
leaf spring, the lower the flexibility of the structure; however, the rule breaks here. The
cause is the parallel structure characteristics of bionic legs. If the elastic modulus of the P
leaf spring is smaller than that of the Q leaf spring, more deformation is concentrated on
the P leaf spring, resulting in an increment in the horizontal displacement of the upper end
of the fuselage. If the P and Q elastic moduli are configured in an appropriate proportion,
the sloshing on the horizontal plane of the fuselage can be close to 0.

For the underactuated parallel mechanism [18], the swing of the fuselage cannot
be fully controlled by the driving motors. Because the flexible parts of the leg will lose
their static balance in a short time after being loaded, they inevitably have a process of
swinging to consume energy and rebalance. The superposition of this swinging and the
active rotation of the motors will reduce the locomotion stability of the robot.

The equivalent elastic modulus can be controlled by the thickness of the leaf spring;
specifically, the value of the elastic modulus can be increased by adding the number of leaf
springs. Therefore, when the elastic modulus of the leaf spring needs to be increased, the
material of the spring does not need to be changed. It is also effective to stack and fix two
or more original leaf springs to the connection position of the leg.

Moreover, it should be noted that the influence of the Q leaf spring here is limited. The
reason is that the elastic modulus of most materials that can be employed as the leaf springs
is below 250 GPa, therefore the displacement of Fx in this range is below 15 mm for the
bionic leg with an initial length of 800.9 mm, so it has little influence on the control stability.

In order to verify the universality of the above laws, the variation trend of equivalent
elastic modulus E with Ep under different Eq is investigated. As shown in Figure 6, the blue
curves represent the value of Fx and red curves represent the E of the single leg. Among
the curves with the same colors (red or blue), the lighter colors represent smaller Eq, and
the curves with darker colors correspond to the values on the condition of larger Eq. The
results show that the value of E increases with Eq under the same Ep condition, and so does
the increment rate. With the increase in the value of Eq, the displacement of the F point in
the x-direction, Fx, increases, and the rate increases too. The laws presented above are the
same as the ones illustrated in Figure 5, indicating that the variation trend is universal.

Figure 6. Effect of different Ep and Eq on the equivalent elastic modulus and x-direction displacement
(Fx) of the bionic leg.
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As can be seen from Figure 6, with appropriate values of Ep and Eq, the horizontal
displacement in the x-direction can turn to 0, but this does not mean that the horizontal
displacement of the F point of the bionic leg in Figure 2 can remain unchanged in the whole
process of locomotion, because the other two influencing factors, namely the initial length
and load, will also lead to the change in the displacement of the F point in the x-direction.
Therefore the absolute zero horizontal displacement in the process will not be realized,
while a deformation range that approximates zero can be selected.

3.3. Influence of Initial Length to E, Fx of the Ostrich-like Leg

The initial length is adjusted by the angle at points M and N. The effect of the initial
length of the spring leg on E, Fx. E increases with the initial length, and the variation rate
also increases with the initial length. This rule allows us to adjust the length of the leg on
the appropriate premise so that the leg can store more energy during impact.

Fx decreases first and then increases with the increase of the initial length. The lowest
extreme point is located at about 840 mm (Figure 7). Therefore, the leg length should be set
near this value, at which the shaking of the upper body during locomotion turns out to be
the least, in theory.

Figure 7. Effect of different initial lengths on the equivalent elastic moduli and the lateral displace-
ment of the bionic leg.

In order to eliminate the interference of randomly selected compressive force on the
above conclusions, The variation law of E and Fx is obtained under different initial lengths
and loads, as shown in Figure 8. E increases with the increment of compressive force in a
static equilibrium state at the same initial length, and the increment of the elastic modulus
increases monotonously. Fx also increases with the compression force, and the increment
is the largest when the initial height is about 840 mm, while Fx first decreases and then
increases with compressive force when the initial height is about 680 mm.
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Figure 8. Effect of the E and Fx of the bionic leg under different compression forces and initial lengths.

4. Buffering Characteristics of the Bionic Leg

4.1. The Energy Storage of the Leaf Spring

The influence of Ep and Eq on energy storage is reflected in the rotation angle of the
leaf spring under compression. The stored energy increases with the increment of the
rotation angle. Therefore, the change of energy stored in the leaf spring with compression
force is calculated according to Formula (1):

k(y) = A1 + 2A2y + 3A3y2 (11)

Q =
∫

k(y) ydy =
1
2

A1y2 +
2
3

A2y3 +
3
4

A3y4 (12)

where, A1 = 15, A2 = −0.082, and A3 = 1.9 ×10−4

Q=
∫

F(δ) dδ =
Ebh3

4L2 ·1
2

δ2 =
Ebh3

8L2 δ2=
K
2L

δ2=
K
2L

δ2 (13)

E =
4 × 0.57 × l0K

bh3 =
4 × 0.57 × 130

50 × 27
K = 0.22 × 106K (14)

Qp =
Kp

2L
δ2

p =
Ep

2 × 102 × 0.22 × 106 δ2
p (15)

Qq =
Kq

2L
δ2

q =
Eq

2 × 110.42 × 0.22 × 106 δ2
q (16)

where the initial length is 800.9 mm and Ep and Eq are both equal to 197 GPa.
The variation law of compressive force to Qp, Qq can be calculated and is shown in

Figure 9, by calculating δp, δq with regard to the change of compressive force.

175



Machines 2022, 10, 306

Figure 9. Energy storage of two leaf springs of the bionic leg under different compression forces
and Ep.

As shown in Figure 9, the blue curves represent the elastic energy of Q and the red
curves represent the elastic energy of P of the single bionic leg. Among the curves with
the same colors (red or blue), the lighter colors represent smaller Ep, and the curves with
darker colors correspond to the values on the condition of larger Ep. It can be seen from
the trend that the energy stored in the P and Q leaf springs increases with the compression
force, and the rate is also increasing. Under the same compression force, the stored energy
of P and Q increases with the increment of the elastic modulus of the P leaf spring, The
increasing rate of P is larger than that of Q.

4.2. Buffering Model Prediction

The buffering performance of the structure is usually evaluated by impact acceleration
during the compression of the bionic leg:

1
2

mv2 + mgy =
∫

k(y) ydy (17)

where k(y) = A1 + 2A2y + 3A3y2, y is the compression when considering the leg as spring.
Ep = 197 GPa, Eq = 197 GPa, and the initial length is equal to 800.9 mm:∫

k(y) ydy =
∫ (

A1y + 2A2y2 + 3A3y3
)

dy =
1
2

A1y2 +
2
3

A2y3 +
3
4

A3y4 (18)

where h = 100 mm, y is obtained through Newton’s iterative calculation, and the value is
90.14 mm:

ma = k(y)y − mg (19)

The maximum impact acceleration, a, is equal to 1.57 g.
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5. Experimental Process and Analysis

An experiment is designed to test the accuracy of the above kinematic model. The peak
value of the acceleration while the leg impacts the ground is measured by the acceleration
sensor. The sensor is set at the upper end of the bionic leg, which is buffered by the leaf
spring (Figure 10).

Figure 10. Impact acceleration detection device: (a) the single leg assembled on the test platform,
(b) an enlarged view of the single-leg installation, (c) the acceleration sensor, and (d) the power
supply and data acquisition system.

Based on the designed model, the single leg was processed and assembled. The maxi-
mum torque of the hip and knee driving motor is 60 N·m. The maximum speed is 60 rpm,
the rated voltage is 48 V, and Ethernet communication was adopted. The movable end of
the bionic leg was mounted on the movable table of the assembled frames. The movable
table has one degree of freedom along the vertical direction. The acceleration sensor was
fixed on the top surface of a movable table. The impact acceleration measurement system
includes a sensor, NI data acquisition system, DC power supply, and a LabVIEW data
display terminal. The sensor range is 30 g, the corresponding voltage of 1 g is 0.02 V, and
the sampling frequency is set to 10 kHz, which can capture the impact wave.

The motor was powered to maintain its designed behavior after the fixing of the leg.
The leg was let down from a height of 10 cm and the impact acceleration was measured
at the upper end of the movable table. The data measured by the sensor is illustrated in
Figure 11. According to the analysis of the data results, the frequency of the impact wave is
about 3 Hz, which is very low due to the buffering of the leaf springs. The measured value
of the first wave peak is 0.04 V, indicating that the impact acceleration is about 2 g, which is
close to the calculated value. There may be two factors responsible for the prediction error:
(1) connection mode, the leaf spring is connected to the fuselage by screws, thus the actual
action length of the leaf spring is uncertain; (2) the complex stress state of the leaf spring
is simplified as a plane force state in the model, however, it will be subjected to the force
along the width direction under actual conditions, which can affect the prediction results
of the model to a certain extent.
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Figure 11. Signal voltage of bionic leg detected by the acceleration sensor.

The subsequent decaying waveform indicates that there are several damped cyclic
movements of the bionic leg after the first impact.

The leaf spring is an important flexible part of the mechanism. If the elastic modulus
of the leaf spring is extremely large, it would not have an ideal buffering effect, while a
too-small elastic modulus would worsen the control accuracy. The mechanical properties
of spring steel are most suitable for the requirements of this experiment, however, its
determination is high density. Therefore, several fiber-reinforced composites were tried
as illustrated in Figure 12, including high-strength carbon fiber-reinforced thermosetting
composites (HSCF + TSM), high-strength carbon fiber-reinforced thermoplastic composites
(HSCF + TPM), high-strength glass fiber-reinforced thermosetting (HSGF + TSM) and
thermoplastic (HSGF + TPM) matrix materials, and medium-strength glass fiber-reinforced
thermosetting (MSGF + TSM) and thermoplastic (MSGF + TPM) matrix materials.

 

HSCF+TSM,3 3mm

HSGF+TPM,3 3mm

HSGF+TSM,5 2mm

MSGF+TPM,3 3mm

MSGF+TSM,3 3mm

HSCF+TPM,2 5mm

Figure 12. Failure of leaf springs made of different materials.

Various thicknesses of leaf springs were employed for these materials as required
because the stiffness and strength of each plate are different. The results indicate that no
matter what material of the matrix of the composite is used, the brittle fracture always
occurs in carbon fiber reinforced composite, indicating that the high strength and low
elongation of carbon fiber make it unsuitable for leaf spring materials.
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The toughness of the glass fiber composite plate is much better than that of carbon fiber.
Even if the medium-strength glass fiber-reinforced and thermoplastic polymer-matrixed
(MSGF + TPM) plate breaks at the joint, its property can be further improved by optimizing
the structure of the joint. The HSGF + TPM plate is proved to be the most suitable material,
better than the spring steel after a comprehensive comparison in strength and weight.

In addition, it is found through experiments that the bending strength of the leaf
spring is different even for the same material and total thickness, For example, the bending
leaf spring shown in Figure 12 is made of five 2 mm thick stacked plates with a 10 mm total
thickness, whose material is HSGF + TPM, and the bionic leg cannot stand on the ground
completely after the motor is powered on, which results from over-bending at the Q leaf
spring. However, two 5 mm stacked plates with a 10 mm total thickness are qualified for
jumping even when made of the same material.

6. Prospect

On the basis of the above exploration, further research on the following aspects
is planned:

Firstly, the two legs should be assembled to improve the stability in the process of
standing up and squatting and the buffering effect of the leaf spring in boosting gait should
be analyzed.

Subsequently, as the leaf spring is the core part of the bionic leg, and its performance
directly affects the buffering and jumping ability of the bionic leg, the analysis of the
optimal value of the mechanical performance of the leaf spring is necessary for updating
the bionic leg.

Finally, further improvements to the structure are needed to reduce the movement
of the center of mass on the horizontal plane. The center of mass should be specially
investigated and adjusted by controlling the rotation angle of the motors.

7. Conclusions

This paper intends to obtain a kind of robotic leg with a similar buffering capacity to
that of the ostrich based on the idea of bionics. The structural and functional characteristics
of the ostrich-like leg are investigated and the buffering performance of the seven-link
parallel mechanism is analyzed from the perspective of the leaf spring. The feasibility of the
kinematic model is verified by experiments. Attempts are made to optimize the material of
the leaf spring. The following conclusions could be drawn:

1. For a single leg with an initial length of 800.9 mm and a compressive force of 300 N,
the equivalent elastic modulus of the structure (E) and the displacement of point F
in the x-direction (Fx) also increases with the increase of the elastic moduli of the P
and Q leaf springs, and the rate of change decreases with the elastic moduli of the
leaf springs.

2. Compared with the ~1000 Hz impact wave frequency of the rigid body, the frequency
of this leg is about 3 Hz, indicating that the structure has good buffering performance.

3. The initial height of the bionic leg has a significant impact on the equivalent elastic
modulus of the structure and the movement stability of the robot in the horizontal
plane. When the initial height is about 850 mm, the stability of the robot is the best.

4. The calculation result of impact acceleration by the kinematic model is close to the
measured one, and the error is due to the connection mode and the complex stress
form of the leaf spring.

5. Due to the small bending strain of carbon fiber-reinforced leaf spring, it has less ability
for energy storage in this structure and is prone to brittle fracture. The material of
HSCF + TPM composite has the merits of being lightweight and having good impact
resistance. It may be ideal for the spring leaf of a bionic leg.
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Abstract: With advances in additive manufacturing technologies, the creation of medical devices
which are tailored to the geometry of a patient’s unique anatomy is becoming more feasible. The
following paper details the capabilities of a seven-degree-of-freedom fused filament deposition
modeling system which enables a wide variety of user-control over previously restricted parameters,
such as nozzle angle, print bed rotation, and print bed tilt. The unique capabilities of this system will
be showcased through the production of a patient-specific tracheal stent using three different methods:
segmented overmolding, transverse rastering, and longitudinal rastering. The resulting opportunities
and time savings demonstrated by the prints will provide a case for greater implementation of
seven-degree-of-freedom manufacturing technologies.

Keywords: seven-degree-of-freedom; additive manufacturing; overmolding; tracheal stent

1. Introduction

1.1. Additive Manufacturing for Patient-Specific Medical Devices

Due to advantages such as streamlined preoperative planning, device cost-reduction,
and improved clinical outcomes, patient-specific design within the medical devices in-
dustry has become increasingly popular [1]. Researchers have found that intraoperative
computer technologies for patient-specific device planning are being utilized at a higher
rate, while new advantages of patient-specific designs are being demonstrated across a
wide variety of medical fields [2]. As planning and design is being improved, there remains
a demand for manufacturing techniques which can seamlessly and accurately fabricate
patient-specific devices according to medical tolerances. A potential solution exists in
additive manufacturing, because it allows for computer-assisted designs to be quickly
generated with physical material.

Additive manufacturing techniques such as selective laser sintering (SLS), stereolithog-
raphy (SLA), and fused deposition modeling (FDM), are currently being used to meet a
wide subset of clinical needs. For example, many orthopedics companies are using SLS
to create high resolution, small-scale, porous scaffolds, bone plates, and implants [3,4].
Furthermore, SLS can generate fine surface details, overhangs, and ductal structures that
might be applied to patient-specific design [5]. The tolerances, specificity, and cost of SLS in
many cases make it optimal compared to its manufacturing counterparts [6], and has given
rise to greater commercialization of SLS-manufactured medical products in the US [7].

SLA and FDM additive manufacturing techniques provide additional utility due to
their cost-effectiveness and rapid realization of geometries. Both SLA and FDM are used
in rapid prototyping, construction of anatomical models, and manufacturing of medical
devices such as stents, shunting tubes, surgical tools, and other simple static forms [8]. They
have become such a universal standard in translating raw ideas into testable prototypes, that
some products of SLA and FDM manufacturing have even been developed for clinical use,
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including drug-delivery systems, tissue grafts, and tissue scaffolds [9,10]. SLA techniques
are usually able to produce higher resolution models compared to FDM, while FDM
systems are usually cheaper, easier-to-use, and can access a wider array of rigid and flexible
deposition materials [11]. Both tools have been highly beneficial to the patient-specific
device design space, particularly due to their cost-effectiveness in producing anatomical
molds. Finally, creative modifications to the above techniques have been employed to
solve complications associated with radial or highly non-uniform geometries. A six degree-
of-freedom FDM printing system has been created wherein a filament deposition nozzle
mounted on a serial motor arm allows the user to access more surfaces of a workpiece [12].
Similarly radial FDM systems which are capable of depositing along curved or cylindrical
print surfaces have also been formulated [13]. Finally, a seven-axis serial robotic additive
manufacturing system has been suggested by the large additive manufacturing technologies
company, Stratasys [14]. These technologies represent what may be the future standard
in patient-specific device manufacturing, providing more tools to address the unique
geometric challenges of human anatomy.

1.2. Limitations of Current Additive Manufacturing Methods

While the current scope of technologies fulfills many specific commercial and clinical
needs, several limitations prevent any singular method from expanding beyond its set
of established use-cases. SLS manufacturing is limited in large part due to the post-
processing of the workpiece, wherein excess powder must be removed from porous or
ductal spaces [15], limiting the creation of certain geometries. In addition, some toolpaths of
an SLS print are restricted or entirely unfeasible due to the thermal deformation of the part
during sintering [16,17]. Even allowable paths may sometimes require scaffold networks
to be constructed if there is large separation between two branches of the workpiece in
3D-space. Finally, the segmented nature of the sintering process, wherein material is fused
in a series of layers, can produce variations in molecular grain structure which introduce
undesirable macro-scale anisotropy to printed structures [18].

SLA printers are similarly limited in the geometries they can create. Because parts are
being constructed from a photocured resin bath, there is no solid or dense surrounding
material to support larger structures as they are being printed [19]. Therefore, as with
SLS, scaffolds must frequently be built to prevent larger prints from shifting or collapsing.
The post-processing removal of these scaffolds often blemishes the surface of the part, or
entirely limits some hollow structures from being created. SLA also only gives partial
user-influence over the global structural properties of a part, limited to part orientation on
a print-bed, layer-height, and curing methods [20].

FDM is perhaps the most limited with regard to patient-specific design, with pri-
mary drawbacks stemming from the method by which FDM adds material to a work-
piece. Strands of filament are heated, extruded, and deposited along a toolpath to build
a geometry, giving rise to characteristic layer artifacts created by the orientation of the
layered material [21]. These artifacts pose potential problems for devices that must be
manufactured with tight surface-finish tolerances and are difficult to mitigate without
post-processing [22]. In addition, typical FDM methods cannot realize complex features or
enclosed hollow structures without making significant sacrifices to accuracy, surface finish,
or strength [23,24]. Similar to SLS and SLA methods, these types of FDM prints require
scaffolds to support toolpath layers suspended in 3D space, meaning hollow, branching, or
overhanging structures are very difficult to produce.

Fundamentally, these limitations can be tied to a universal constraint among systems.
Current methods rely on fixed cartesian or radial coordinate systems to drive the deposition
or sintering toolpath, thus limiting user-control over directional mechanical properties
and demanding some form of post-processing which reduces the accuracy of the final
structure. Without universal influence over the toolpath, the scope in which each method
can be applied must be narrowed to a particular subset of geometries and structures. Such
limitations inhibit patient-specific design, as they cannot account for the dynamic demands
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that each unique person’s anatomy might present. This paper will explore the advantages of
a new seven-axis fused filament deposition 3D printer. This system will allow for enhanced
user-control over the deposition toolpath and layer orientation of prints. These unique
advantages will be showcased through a method and workflow for creating a tracheal stent
from patient-specific scan data.

1.3. The Seven-Degree-Of-Freedom Additive Manufacturing System

The FDM system constructed for this research is able to reposition parts as they are
built in order to manipulate the orientation of deposited material and give access to exposed
surfaces of the workpiece. Specifically, the base of such a system, acting as a traditional
build plate, can tilt and rotate independently of the filament nozzle, which itself can tilt
laterally and transversely, as well as move by way of a gantry in the three traditional X, Y,
Z directions. This system, shown in Figure 1 [25] and demonstrated in Videos S1–S4, has
been designed and built at the University of Minnesota for a mechanical engineering PhD
thesis project by Dr. John Huss. The inverse kinematics and other details of the robotic
system can be found in [26].

 

Figure 1. Seven-degree-of-freedom 3D-printing system designed by Dr. John Huss. The build plate
rotates along the U-axis and tilts along the V-axis. The filament nozzle moves in the X, Y, and Z
directions by way of the gantry, tilts laterally along the W-axis, and transversely along the A-axis.

When additively manufacturing devices for medical applications, one can imagine
scenarios where devices must contain widely spaced, ductal, weblike, or highly non-
uniform geometries with predictable structural properties. Oropharyngeal airways, heart
valves, and medical stents are examples where the devices must take on highly non-uniform
geometries with tightly regulated material and structural properties [27], limiting current
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additive manufacturing methods from impacting their production in a significant way.
These applications are particularly well suited to the seven-axis system because of its ability
to fabricate complicated and non-uniform shapes. Parts require little, if any, sacrificial
support structure because newly deposited material can be supported by the model itself.
This greatly reduces the amount of support material used and discarded as waste and
provides more flexibility while printing part features, giving the user increased control over
local deposition density or other properties. This self-supporting capability is combined
with a five-degree-of-freedom print head to allow for changing layer line directions as
well. Finally, the general nature of this printer allows it to print on surfaces that are more
complex than two-dimensional build trays and part layers [28]. This leads to the possibility
of printing onto existing additively manufactured parts, or more interestingly, objects that
are not additively manufactured, such as machined parts, or anatomical structures.

To fully demonstrate and evaluate the benefits of the seven-axis system, a series of
methods was devised to manufacture both a patient-specific anatomy model of a tracheal
airway, and an airway-supporting stent prototype to adhere to its outer surface. A future
tracheal stent device based on the concept introduced here, could potentially be used in
patients with a stenotic, or narrowed, tracheal airway [29]. The stent example demonstrates
the system’s ability to both control material deposition properties and produce geometries
with open spaces. The airway anatomy mold will demonstrate the system’s ability to
follow curvilinear toolpaths along cylindrical surfaces according to patient-specific medical
data. Finally, these combined models will demonstrate the system’s ability to enable device
processing parallelization and streamlining.

The methods were chosen to highlight the unique capabilities afforded by the seven-
axis system, rather than the clinical efficacy of the product. The produced stent is meant
to be a prototyping example rather than a clinically viable medical device. Therefore,
considerations that would be important in a clinical use, such as the biocompatibility of
the filament used, the deployment of the stent itself, and mechanical integrity of the stent
during medical use, were not showcased. Further directions for the system’s evaluation
and use will be addressed below.

2. Materials and Methods

2.1. Overview

The methodology introduced in this paper follows a sequence summarized in Figure 2.
First a series of mathematical and programming steps was taken to transform a conventional
standard triangle language (STL) printing file of a patient trachea airway scan to a stent
tool path compatible with the seven-axis printing system. The trachea airway was printed
in three different ways: segmented, transversely rastered, and longitudinally rastered, to
highlight the system’s key advantages. Finally, a patient specific stent was printed onto the
surfaces of the various trachea models.

In summary, these steps create a replicable process which allows for an STL file of a
patient airway to be transformed into a physically printed stent device formed directly to
its anatomy. The individual steps are covered in more detail below.

2.2. Trachea Model Generation

The first step is to transform a magnetic resonance imaging (MRI) scan from a patient
into an STL file which captures the geometry of a specific organ. Typically, to obtain a
3-dimensional STL mesh file of a patient’s anatomy, a process called segmentation is done.
In segmentation, a computed tomography scan or a stack of MRI images are opened in a
software which allows the user to manually or automatically identify and separate areas of
tissue in each image [30]. For the purposes of this paper, a patient-specific STL model of a
trachea was downloaded from an online repository of anatomical 3D files and segmented
via the Mimics version 19.0 [31] software package. The tissue model of the trachea was then
inverted using a Boolean operation to recreate a model of the tracheal lumen rather than
the tracheal tissue itself. A locking base was added to the bottom of the section of trachea to
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allow for mating with a matching receptacle located in the center of the seven-axis printer
build plate, shown below in Figure 3a,b, respectively. The locking receptacle in Figure 3a
was printed directly onto the center of the build plate to ensure it was located in a known
position. Locking the trachea model into the printer using this mechanism ensures it does
not move while material is added and allows for additional trachea molds to be swapped
between prints.

Figure 2. Flowchart describing the patient stent manufacturing process.

 
(a) (b) 

Figure 3. (a) The trachea mesh with added base for registration and locking. (b) The matching
3D-printed locking receptacle.
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2.3. Toolpath Generation for the Trachea Airway Print

Three different methods were utilized to convert the STL file into a printed tracheal
airway model: traditional FDM, transverse overmolding, and longitudinal overmolding.
Beginning with the traditional FDM method, the STL file was imported to the Ultimaker
Cura v3.3.0 [32] slicing software which turns the geometry into a conventional three-
axis G-code. The G-code was then loaded into a Creality3D CR-10 traditional three-axis
printer [33] which executed a segmented, layer-by-layer print of the tracheal airway. This
segmented print acts as a baseline, while the transverse and longitudinal overmolding
methods demonstrate the seven-axis system’s unique capabilities.

The transverse and longitidunal overmolding methods highlight potential process
parallelization using the seven-axis system. Given that much of the tracheal airway is
made up of filler material, an “anatomy blank” can be created that approximates invarient
features such as the inner core of the model. This blank is subtracted from the patient
specific details, like the variable trachea tissue surface, which can be added back on later
using the seven-axis system, saving time and resources. For a trachea, this blank can be
a cylinder with a diameter slightly smaller than the expected minimum diameter of the
airway, shown in Figure 4.

Figure 4. This blank represents the bulk air volume within a patient’s trachea. The patient specific
model will be added on the surface of the blank. Units in mm.

From this point, the seven-axis system can print on the surface of the blank using the
transverse and longitudinal rastering methods. The transverse method adds material by
rotating the model underneath the nozzle while slowly maneuvering from the bottom to
the top of the model. The longitudinal method deposits material by following along the
long axis of the blank, rotating a user-specified amount of 2.5 degrees, and then moving
back in the other direction while depositing additional rows. Each of these methods
requires modification of the STL file to obtain a toolpath which can be interpreted by the
seven-axis system.

This toolpath was created through the following process. First, candidate toolpath
points were generated such that they formed an even distribution of points within a hollow

186



Machines 2022, 10, 1144

cylindrical volume, with an inner radius equal to the radius of the blank and an outer
radius slightly larger than the maximum radius of the patient’s airway. The points were
chosen based on the parameters in Table 1 and are shown (with many points removed for
clarity) in Figure 5.

Table 1. Slicing parameters used in the final toolpathing.

Parameter Value Description

Ri 7.25 mm Radius of the blank
Length 70 mm Length of section to print
Longitudinal spacing 0.5 mm Vertical spacing of points
Angular Spacing 2.5◦ Angular spacing of points
Layers 30 Max number of layers to generate
Offset 35 mm Distance from base to start
Retraction 1 mm Nozzle retraction during movement

Figure 5. Points are generated as candidates for the final toolpath.

Rays were then cast from the central axis of the blank through the candidate points
surrounding the blank. Using a ray/triangle intersection algorithm each point was deter-
mined to be inside the final patient specific model and therefore kept as a final toolpath
point, or outside the model and rejected. A given point was considered inside the model
if its distance from the central Z axis (the norm of its (X,Y) coordinate) was less than the
norm of the triangle/ray intersection point of the ray passing through the point. The final
selection of points were then connected together to create a toolpath, which is where the
two methods diverge. Longitudinal toolpathing connects the points along the long axis
of the airway first in a series of vertical lines, and transverse toolpathing connects them
around the blank into a series of rings. While ultimately both toolpaths cover the same
volume, different axes are primarily utilized. Primarily (X,Y,Z) linear motion is used in the
transverse toolpath, while more rotation around the center of the part, defined from here as
the U axis of rotation (see Figure 1), is used in the transverse toolpath. The final step was to
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connect the often disconnected printing segments (since many candidate points outside
of the final model were removed) with nonprinting retracted moves above the surface of
the object. The resulting toolpaths are shown below in Figure 6, again with many points
removed for clarity.

 

(a) (b) 

Figure 6. Toolpaths generated for stent print (a) Simplified view of the longitudinal toolpath genera-
tion (b) Simplified view of the transverse toolpath generation.

Both of these developmental processes, longitudinal and transverse rastering, result in
completely solid layers rather than the traditional shell and infill style typical of FDM, and
an unfortunate loss of much of the fine surface detail. Once a toolpath was created, a blank
can be loaded into the printer and a file can be run to create the final trachea model out of a
dissolvable PVA material. The meshes were compared to see exactly how their accuracy
compared to standard FDM printing.

2.4. Stent Model Generation and Transform

The next step is to generate the toolpath for the patient specific stent based on the
trachea model. This process was initiated using a basic stent model consisting of a series
of eight lines forming a helix pattern. The helix was given a 40 mm Z axis offset from the
printer bed to allow the printer nozzle to have adequate access to the side of the trachea
model without colliding with the locking base features. A script was created in MATLAB
R2018b (MATLAB 9.5) [34] to both generate this basic stent design and import the STL file
faces and vertices. The sample stent design is shown below in Figure 7a. After aligning
the coordinate systems of the trachea model and the proposed stent design, seen below in
Figure 7b, this script determines how to deform the basic stent to match the patient model.

The script accomplishes this by casting hundreds of rays from the central axis out-
wards through each of the stent struts and through the surface of the trachea model. The
hundreds of rays are shown extending through the airway STL in Figure 8a. The rays
were programmed to be spaced 0.05 mm apart, so they appear as a helical plane. The
trachea STL model created had 25,530 faces and 11,269 vertices. The intersection points
of the cast rays and the trachea mesh faces were finally determined using a ray/triangle
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intersection algorithm first developed by Moller and Trumbore [35]. The algorithm com-
pletes a search by examining all rays in order and checking each ray against all triangles.
Shown in Figure 8a, this model contains 25,530 faces, which were cast through by 8000 rays,
resulting in 204,240,000 calculations if each ray intersects the last triangular face checked.
In practice, this number is substantially lower because once a ray is found to intersect a
face, the algorithm moves onto the next ray. Once the intersection points of each ray were
determined, the stent radius was deformed to match each of the intersecting points on the
airway model, plus a small 0.1 mm offset so that the stent is on top of the surface, shown
below in Figure 8b. Extra layers were then added by repeating the patient specific stent
toolpath at the specified layer height to give the stent the desired thickness. Using at least
three layers at 0.15 mm thickness provided a stent that was strong enough to survive the
post processing. Ten layers were used for most testing and images shown.

 
(a) (b) 

Figure 7. (a) The untransformed stent model composed of eight helical struts, four in each direction
(b) The stent is overlaid onto this trachea model.

 
(a) (b) 

Figure 8. (a) Many rays are cast outwards through the trachea walls from the central axis. Each color
represents a different pass of the print head in the final toolpath. (b) The intersection points are used
to deform the basic stent struts and extra layers are added as specified by the user.
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2.5. Nozzle Angle Calculation

With a tool path generated, the printer nozzle position and angle could be calculated.
Referring to Figure 9, the nozzle must tilt 90 degrees sideways relative to the build plate
and to access and print on the airway model from the side. The bed also must be tilted
on the V axis, that is, the axis which is manipulated according to the reference X axis of
the ground frame (see Figure 9), at 45 degrees so that the airway model will be below the
extruded plastic. The trachea model will then rotate on the U axis through the center of the
build plate and the nozzle will move axially along its length. For the best print quality it
is imperative to keep the nozzle as perpendicular to the surface as possible, matching the
contours of the airway.

 

Figure 9. The stent is printed onto the patient’s trachea model from the side. The object frame rotates
with the U axis, while the V frame is static and tilted 45 degrees.

To communicate the original toolpath to the seven-axis system, a transform was
performed using two separate reference frames: the rotating object frame (centered at the
U-axis) and the stationary V frame. X, Y, and Z were selected to represent coordinates
within the object frame, which rotates and tilts on the print bed with respect to the ground
frame, and Xv, Yv, Zv were selected to represent coordinates in the stationary V-frame,
which only tilts with the V axis of the tilting bed. U was chosen to represent the current
angle of the continuous rotation axis through the center of the bed, and Vz is the constant
5 mm vertical offset between the reference frames due to the construction of the printer.
Shown in Equation (1), this transform results in a series of coordinates which map the
movement of the nozzle system.⎡⎢⎢⎣

X
Y
Z
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos(U)
sin(U)

0
1

− sin(U)
cos(U)

0
0

0
0
1
0

0
0
VZ
0

⎤⎥⎥⎦×

⎡⎢⎢⎣
Xv
Xv
Xv
1

⎤⎥⎥⎦ (1)
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As stated, it is also imperative that the nozzle remain normal to the surface of the
airway model to preserve print quality and properly extrude material. To accomplish this,
the nozzle compensation angle, W, must be calculated for each point on the stent. Figure 10
below shows how the coordinate system rotates around the U-axis as the printing process
progresses and what the W angle represents. The U-axis is a rotational axis that is congruent
with the linear Z axis of the object frame. The W axis is measured in reference to the V
frame and does not rotate with the object.

 
(a) (b) 

Figure 10. (a) The trachea model viewed end-on during stent printing. (b) The object frame and
model rotate while the nozzle follows the surface contours.

The W angle of any given point is a measure of the slope in degrees at that particular
point on the airway model. Since this model is made of discrete points, the W angle at any
point n was determined by the arctangent of the line between the current point n and the
previous point n − 1 relative to a flat reference line. The slope equation must also take into
account the round surface, and handle angular positions starting under 360 degrees and
wrapping around 0 by using the modulo operator. Equation (2) calculates W according to
these relations.

Wn = rad2deg(mod(a tan 2(Yn − Yn−1, Xn − Xn−1)− a tan 2(Yn, Xn), π)− π/2) (2)

The resulting Wn angle produced by the function was then filtered to produce smooth
continuous motion of the W axis using a ten-point moving average filter. However, since a
filter introduces undesired phase delay into the new W angle data, the data was passed
back through the filter in reverse to remove the phase delay using zero-phase digital
filtering. Performing this filter operation twice, once forward and once reversed, doubles
the effective order of the chosen filter transfer function and squares the magnitude of the
input transfer function. The ten-point moving average transfer function was chosen with
these effects in mind. The results of the filtering process are shown below in Figure 11. Each
line in the plot represents one of the eight supporting struts of the stent. In the figure below
the left end of the x-axis is the portion of the stent closest to the printer bed beginning at 40
mm from the surface, and the right side is the highest portion of the stent ending at 90 mm
from the bed surface.
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Figure 11. A moving average filter is used to smooth the W axis motion as the stent prints. Each line
in the plot represents one of the eight stent struts.

2.6. G-Code Finalization

With the printing movements computed, the final toolpath can be calculated. A set
of various commands were created to form the start and end G-code including heating,
feeds and speeds settings, homing, and a pause feature that allows time to connect the
airway model upon which the stent is printed to the locking receptacle after homing is
complete. Non-printing travel commands were added next, between each printing move.
These commands retract the nozzle and filament away from the surface, interpolate extra
coordinates between the end of one printing segment and the start of another, and then
un-retract the nozzle back into place on the model surface at the start of the next printing
move. Once all printing moves have been completed, a standard end code is executed,
turning off the heaters and fans, and pausing for the completed stent to be removed from
the system. The toolpath is shown in several forms in Figure 12.

192



Machines 2022, 10, 1144

  
(a) (b) 

 
(c) (d) 

Figure 12. (a) The final toolpath in the object frame. (b) The toolpath in the non-rotating V frame.
(c) The W axis compensation angle as the stent prints, with each color denoting a single radial pass of
the extruder. (d) The transformed stent vs. untransformed base stent as seen from above.

2.7. Printing of the Stent

The stent printing G-code file was executed in the same way any other G-code file
would, except that it additively manufactured an object onto an existing geometrically
complex object by following the toolpath generated earlier. In this case, the existing object
was a dissolvable PVA printed airway model that can be dissolved after the stent is created.
The trachea model rotates underneath the printer nozzle, which is oriented perpendicular
to the surface of the airway as seen in Figure 9. Due to the complexity of a seven axis
system, there are limitations to the range of positions that are calibrated. Staying closer to
the neutral position results in a more accurate print because the printer is calibrated in the
neutral position. As much trachea material as possible is removed by hand before letting
the remaining PVA material dissolve away completely in warm water. The whole process
of removing the inner core takes as little as five minutes with a bit of manual labor as the
PVA softens.

3. Results

With regard to testing the physical products of the process, both the final medical
device and the overmolded trachea were evaluated. The stent print details were observed
to verify radial orientation of the print layers, while the quality and utility of the trachea
airway print surfaces were analyzed through a Hausdorff and time-to-print analysis. A
Hausdorff analysis measures the distance from every point of a reference mesh to the
closest point on a target mesh [36].
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3.1. Stent Print

The final stent is shown below in Figure 13 printed on a standard and overmolded
airway model. A stent with the airway model dissolved is also shown. Finally, Figure 14
shows a close up of the layers of the stent oriented along a specific axis.

Figure 13. The stent is once again printed onto the patient’s trachea model.

 
 

(a) (b) 

Figure 14. (a) The completed stent model. (b) Close up of the radial layers of the stent.
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3.2. Trachea Airway Prints: Mesh Analysis

A 3D scan of the surfaces of the final airway prints is shown in Figure 15. On the
overmolded prints, many of the surface features are left appearing rough, such as the re-
peating pattern of bulges due to the trachea cartilage. A Hausdorff analysis was performed
to determine the overall accuracy and repeatability of the printed trachea models in the
segmented and overmolding methods. Three of each standard, longitudinal, and transverse
trachea models were examined here. All nine models were truncated to be the same height
of 70 mm, for a proper comparison.

 

Figure 15. Comparison of the original, longitudinally rastered, and transversely rastered airway models.

In this case, all nine of the scanned meshes in Figure 15 were compared to the reference
mesh sliced directly from the original Mimics file. A heatmap showing root mean square
(RMS) values for each point from the analysis is also shown below in Figure 16. The
higher the value, the less accurate the mesh. Unfortunately, Meshlab 2016 [37], the software
package used to generate the heatmaps in Figure 16, does not provide an absolute scale for
these analyses. Each model uses a relative scale, where red indicates the lowest value and
blue indicates the highest for that specific model.

 

(a) (b) 

Figure 16. (a) Sample Hausdorff heatmap for the standard airway model. (b) Sample Hausdorff
heatmap for the longitudinal airway model.
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The RMS Hausdorff values are recorded below in Table 2, along with the averages and
standard deviations of the three samples in each group.

Table 2. RMS Hausdorff distances for each printing method.

Airway Hausdorff
RMS (mm)

Sample 1 Sample 2 Sample 3 Mean SD

Standard 0.2997 0.4275 0.3713 0.3662 0.052
Longitudinal 0.8602 0.7921 0.7769 0.8098 0.036
Transverse 0.8272 1.3325 0.8673 1.0090 0.229

3.3. Comparisons for Airway and Stent Printing

The three methods chosen to print the trachea airway and the stent were compared
based on the time they contributed to the entire stent fabrication process. Table 3 shows
that once segmentation is complete, the printing time of the stent is relatively short.

Table 3. Time savings between standard and alternative methods in hours.

Time
(Hours)

Segmenting Blank Airway Stent
Total (Blank Not

Included)

Standard 2.00 - 1.25 0.25 3.50
Longitudinal 2.00 0.50 0.50 0.25 2.75
Transverse 2.00 0.50 1.50 0.25 3.75

4. Discussion

4.1. Implications of the Patient-Specific Stent Case Study

The stent print represents an example of a patient-specific medical device prototype
which highlights the unique advantages of the seven-axis printer system. The stent’s
geometry contains properties which could not be reconstructed without the system’s ability
to manipulate the influence of gravity and print on a rotating surface. For example, in
Figure 14, it can be observed that because scaffolding was not required, the surface of the
part remains unblemished. In addition, curvilinear print layers form the entirety of the
stent body. Compared to other additive manufacturing methods, a primary observation
about this system’s utility can be made. While many available additive manufacturing
technologies are capable of producing various types of medical stents [38,39], the system
introduces novel material deposition directional control which can positively impact the
strength and stiffness properties of the finished part [26]. For example, giving the user
control over the layer orientation, allows for creation of structures with applications in high-
stress biological environments. Overall, the particular created device could not be used
in clinical practice at this level of development, but indicates that it is highly reasonable
that patient-specific devices like a large-scale airway stent could be generated quickly and
effectively using the methods outlined.

4.2. Evaluation of Processes Parallelization

Although requiring print quality to be sacrificed in the process, the trachea airway
prints represent additional manufacturing capabilities made available by the seven-axis
system. The system allows the user to parallelize the printing of a large volume of the
anatomy mold with the segmenting of the patient’s unique anatomical surface features.
A manufacturing pipeline could theoretically be developed wherein patient data is re-
ceived, segmented, and immediately transferred to a pre-printed anatomy blank, saving
time in the translation of medical data into a patient specific device. The parallelization
methods will require significant development however, with only the longitudinal over-
molding generating moderate time-savings. The overmolded models also have fewer or
no remaining trachea cartilage rings or defining features of the original patient anatomy.
In addition, they have significantly higher Hausdorff error values than the segmented
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models. One may therefore assume these models are poor representations of the original
anatomy. Comparing the overmolding methods to each other, the longitudinal models
are more accurate than the transverse models despite the fact that the transverse models
do clearly at least capture the rings of cartilage. This can be explained by examining the
mechanics of the system; the rotation axis through the centerline of the trachea model,
U, is less accurate than the (X,Y,Z) axes used in the longitudinal method due to the fact
that the nozzle position in Cartesian space is affected by both the angle and the distance
from the U axis. Any inherent angular inaccuracies in the rotational axis are magnified as
deposition occurs farther from the axis. The rings remain visible in the transverse method
because they are aligned with the printing travel direction in this case, despite the less
accurate model. Overall, the statement can be explored, that with future optimization,
surface finish and overmolded print quality can be improved to the point where it parallels
segmented printing. Potential areas of improvement include the mechanical components
of the system, improved slicing and filtering algorithms, and filament variation capabilities.
Also worthy of note, the standard deviation for the longitudinal models is less than that
of the standard models, indicating that while they may not be as accurate to the reference
mesh, the alternative process is repeatable and consistent.

4.3. Current Benefits and Future Directions

Indeed a benefit of the technology presented in a paper would be for training of
physicians and/or helping them become more familiar with patient-specific anatomy. The
above case study could currently be employed as a surgical planning tool, thereby providing
physical models which can be handled and examined by physicians and patients prior to
actual surgery. In the future, other features could be added to the seven-axis technology
to fully realize the proposed patient-specific design scenario. For example, other moving
printheads, such as powder direct energy deposition (DED) heads or screw-extrusion
based nozzles, could replace the direct extruder shown, to allow for the use of filaments
commonly associated with medical products, such as metal filaments or non-filamentous
biocompatible compounds. In addition, the resolution of the system could be improved to
match the resolutions of other common additive manufacturing methods. While lacking
some of these developments, the study demonstrates potential advantages for incorporating
additional additive manufacturing technology in the patient-specific design space, and
provides an idealized pipeline for translating anatomy data into a patient-specific medical
device prototype.

5. Conclusions

Additive manufacturing as a set of technologies has expanded in recent years. Many
additive manufacturing methods are being used to great effect in the medical devices field
for creating structures that are tailored to specific patient anatomy. However, limitations of
this technology still exist. Before now, additive manufacturing systems have provided users
with limited control over the local deposition orientation of material onto a workpiece,
minimizing user-control over material properties and workpiece geometry. The seven
degree-of-freedom additive manufacturing system described here solves a number of these
problems, by allowing for the simultaneous control over the orientation of the deposition
nozzle and the workpiece in 3D space. With this control, users can specify the local
deposition properties of material via user-generated custom toolpaths as well as print on
highly nonuniform surfaces in changing coordinate planes. These developments show
promise beneficial to the patient-specific device prototyping field due to the suitability in
working with highly nonuniform anatomical geometries. With continued improvement to
the software and hardware components, seven-axis additive manufacturing systems will
likely solve new challenges in patient-specific medical device design.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines10121144/s1. Video S1. Demonstration of the seven-
axis system modifying the deposition nozzle angle around a single point. Video S2. Demonstration of
the print bed tilting along the seven-axis system’s V axis to create a structure with an overhang. Video
S3. Demonstration of the print bed tilting along the seven-axis system’s V axis to create a structure
with angularly offset deposition layers. Video S4. Timelapse of the fabrication of a curved structure
with angularly offset deposition layers.
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Abstract: Innovations in food manufacturing support the agenda for sustainable development goal
9 (SDG9) on industry, innovation and infrastructure. Pursuant to this goal, this study aims to
develop an automated multi-spit lamb rotisserie machine that potentially improves the lamb-roasting
productivity for small and medium enterprises (SMEs). The conceptualisation involved patents,
scholarly literature and product reviews of lamb-roasting devices. The design and analysis are
performed using Autodesk Inventor 2019. A scaled-down prototype is developed and tested with (1)
roasting output, (2) roasting time and (3) temperature stability tests. The data for test (1) are analysed
by comparing the means between control and experimental groups. The data for tests (2) and (3) are
analysed using the t-test and Mann–Whitney U test, respectively. Significant differences are observed
in tests (1) and (2), with outcomes being in favour of the proposed invention. The prototype cooks
92.27% faster with 700% more meat than a regular lamb roaster. It also cooks at a stable temperature.
The cost analysis indicated that this invention could be sold at USD 278 if mass-produced. The design
is structurally simple, inexpensive and easy to manufacture, allowing SMEs that rely on traditional
spit-based machines to enhance their ability in producing roast lamb.

Keywords: rotisserie machine; engineering design; productivity; roast lamb; meat; usability; SDG9

1. Introduction

Innovation- and productivity-driven small and medium enterprises (SMEs) play an
important role in propelling the advancement of middle-income countries to high-income
nations [1–3]. In Malaysia, SMEs are the drivers of the economy, accounting for 38.9% of the
country’s GDP in 2019, which is an increase of 0.6% from 2018 [3,4]. For food sector SMEs,
there is a need to develop smart, energy-saving and cost-saving technologies in supporting
the United Nation’s objective for SDG 9 (industry, infrastructure and innovation) [5–7].
One of the growing food SMEs in Malaysia includes the lamb-roasting industry.

Roast lamb, or also known as Kambing Golek in Malay, is a dish where a whole lamb is
roasted on a rotisserie machine. This dish has a deep cultural significance in Malaysia and
Indonesia, especially during the Eid al-Adha festival where roast lamb is often prepared
for the celebration [8].

Malaysia, in particular, often sees a steep increase in the demand for roast lamb around
the middle of the year. In a survey, it was found that sheep or goat meat is consumed
by 72% of Malaysian consumer respondents. This meat delicacy is normally served at
celebration banquets, restaurants and hotels [9].

Seasonal changes in the demand introduced several problems for roast lamb suppliers.
One of the problems includes the difficulty in increasing roast lamb productivity. The
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roasting process for a single lamb takes about 4–5 h, and while being roasted, the lamb
needs to be basted once every 15 min to prevent the loss of moisture in the meat [10].
During seasons of high demand, the quantity of roast lambs that a vendor can produce
is limited by the number of roasting machines they own. Moreover, a traditional lamb-
roasting machine is only capable of roasting one lamb at a time and takes up an area of
approximately 900 mm × 400 mm [11].

The contemporary solution that vendors often consider to fulfil the high demands on
roast lambs is to purchase more roasting machines. The average cost for a single-spit lamb
rotisserie machine ranges from USD 150 to 350. Hence, this solution might not be ideal as
the investment-to-profit ratio is rather low, and the supplier may face problems storing the
unused machine during seasons of low demand.

Problem Statement

There have been a few products developed in the market that attempted to solve the
productivity issues in meat roasting. In the rotisserie chicken industry, a machine known as
the 1425.4SMiE uses four spits with independent motors to increase the capacity of chicken
roasting. In the 1425.4SMiE, a total of 20 to 24 chickens can be roasted to completion within
1.5 h [12].

Some existing products use infrared as the heat source to replace conventional heating
methods such as charcoal and gas. This type of roasting method has its benefits, such as
short preheating duration and evenly distributed heat [13]. Compared to charcoal roasting,
which has a preheating duration of 15 min, an infrared burner takes only 3 min to preheat.
This duration excludes the time taken to arrange the charcoal on the tray and to start the
fire [14].

Nonetheless, the above-mentioned features are not applicable for the mass production
of roast lambs for several reasons. The cooking method for a roast lamb is already well
established, and having charcoal as the heat source is an important factor due to customer
preferences for charcoal roasting over other roasting methods. The long cooking duration
allows the charcoal to infuse a smoky aroma into the meat that other types of heat sources
are unable to render. This aroma stems from a chemical compound known as guaiacol [15].
Guaiacol is an aroma compound produced when heat is used to break down lignin, the resin
responsible for holding strands of cellulose together to form wood [16]. Food produced
from charcoal grills often has this smoky aroma that most people associate with roast lamb.

In the case of machines such as the 1425.4SMiE, it is not applicable for mass production
in the context of roasting lambs due to the high cost required. A whole lamb weighs about
18 to 22 kg, while a whole chicken weighs around 2.2 to 3.2 kg. Hence, the motor power
output required to rotate one whole lamb on a spit would be higher compared to the output
required for a few whole chickens on a spit.

The aforementioned limitations in existing solutions assert that there are no studies
that investigate inventive solutions applicable to roasting lambs for improved productivity.
Hence, the study aims to develop an inventive solution that is capable of solving the
inherent productivity issues of existing lamb-roasting machines in the market.

This study adds value to the community of researchers in the area of machine design
as it accounts for underlying stages in the mechanical design process, which includes
conceptualisation, design, development and usability evaluation [17]. There is also a
need for machine designers to advance from developing rigid, single-output and manual
machines to flexible, multi-output and automated machines to stay formidably competitive
in productivity, efficiency and operating cost [18,19]. As such, with a special emphasis on
lamb roasting, this study serves as a beneficial reference for machine design researchers
in their quest to improve the productivity of their machines inventively and at a reduced
operating cost.
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2. Literature Review

The lamb-roasting machine is classified as a rotisserie machine because of the nature
of its cooking method. Rotisserie, also known as spit roasting, is a roasting method where
the meat is skewered on a spit. A spit refers to a slender solid rod used to lock the
food in place while it is being cooked on fire [20]. This cooking method is common for
roasting whole animals because it not only cooks the meat evenly in its own juices but also
facilitates continuous basting [21]. The rotisserie cooking method is found to be used as
early as the Tudor Period (1485–1603). In those days, the spit was operated through manual
rotation, usually by a servant of a large community. Later on, mechanical “roasting jacks”
or turnspits were invented to cook more efficiently. These devices were first powered by
dogs on treadmills and by steam power and clockwork mechanisms later on [22]. Other
mechanisms, such as worm gears (for torque and speed transmissions), were also used in
the past.

Currently, electric motors are often the preferred actuators for lamb rotisserie ma-
chines due to the high reliability of the motors. A conventional lamb-roasting machine is
characterised by a few features, namely the electric motor for automatic rotation, stainless
steel body, charcoal as the heat source and grilling platforms for auxiliary cooking. There
are advantages and disadvantages to each of these features.

Electric motors assist in rotating the spit. As opposed to manual rotations, rotating
with electric motors eliminates the need for manpower to rotate the spit, which is consid-
ered a one-dimensional task for a worker. Although electric motors are reliable solutions,
the motors are not fully utilised in conventional lamb rotisserie machines. For instance,
while a 15 W electrical motor used by a lamb rotisserie product may be able to provide a
torque of about 6800 Nm, the amount of torque it takes to turn a 70 kg lamb is only about
800 Nm. This condition indicates that only around 12% of the motor’s turning power is
utilised to turn a single lamb.

2.1. Contemporary Lamb-Roasting Devices
2.1.1. Existing Product Review

Product 1: Electric Grill Stainless Spit Roaster [23]. The body and frame of this modern
lamb rotisserie machine are made of stainless steel. Stainless steel is a common choice for
such machines because it prevents surface corrosion, which is important when cooking
is involved. The maintenance of stainless steel products is also easy. If utilised properly,
products made from stainless steel can be expected to last for many years [24]. This product
is designed to make use of charcoal as the heating source. It is also equipped with four
lockable wheels for easy manoeuvring. Table 1, which was adapted from [23], shows a
summary of its features and specifications.

Table 1. Summary of the features and specifications.

Price USD 268.59

Features Height adjustable, automatic rotation, lockable
wheels, peripheral accessories

Grill Type Charcoal grill

Material Stainless steel

Dimension 400 mm (W) × 1180 mm (L) × 800 mm (H)

Motor specification 28 W, 110 V/50 Hz

Product 2: XL Lamb Rotisserie [25]. This lamb rotisserie device is manufactured by an
Austrian company known as the Pig Lamb Rotisserie Shop and is sold on their website
at the price of 279 USD/unit. Similar to Product 1, this rotisserie machine uses an electric
motor to turn the spit. It includes a 110 V 40 W and 2.5 RPM motor capable of turning
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an entire lamb that weighs 57 kg at most. The spit is 1650 mm in length and 33 mm in
diameter.

In contrast to the previous device, which has four legs with lockable wheels, this
device only has two legs supported by three beams in a tripod formation. This design also
does not possess a stainless steel body to hold the charcoal. Instead, the user is expected to
set up an area for the charcoal in between the device’s legs.

Although this design lacks manoeuvrability and built-in charcoal storage features,
the 2-legged design is more segmented and can be taken apart when it is not in use. This
aspect makes it portable. Table 2, which was adapted from [25], shows a summary of the
device’s features and specifications.

Table 2. Summary of the features and specifications.

Price USD 279

Features Automatic rotation, high portability, ease of assembly
Grill Type Depending on user
Material Stainless steel spit, stainless steel hooks, cast iron stands

Dimension Height: 250–500 mm; Spit: 1650 mm, 32 mm diameter
Motor specification 220 V, 3 RPM—up to 50 kg

2.1.2. Patent Review

Charcoal Barbeque Rotisserie Grill Cooker [26]: This invention is a charcoal-fired bar-
beque grill that transforms interchangeably between two cooking modes, namely rotisserie
cooking and barbeque grill. It comes in a compact and portable design and has a charcoal
basket, which rotates between a lowered horizontal orientation for grilling and a raised
vertical orientation for rotisserie cooking. A handle located outside the cooker’s frame is
used to change the cooking modes.

The rotisserie spit lowers into the container along the sidewalls of the cooker’s frame.
When the charcoal basket is upright, a drip pan can be placed under the spit. In order to
ensure that hot air flows over the roast, a combination of vents and a heat shield located
between the vertical charcoal basket and the back wall of the cooker is included. The
handle on the lid can be used to pick up the entire cooker.

Charcoal Grill [27]: This invention provides a method of igniting charcoal with im-
proved safety and convenience compared to the traditional methods of charcoal ignition.
This design requires only 1 to 2 sheets of newspaper to ignite any number of charcoal
briquettes piled above the hole in the bottom of the bowl. Bringing the charcoal to a
condition that is ready for cooking requires about 5 to 10 min depending on the amount of
charcoal ignited.

This invention uses a few sheets of newspaper to start the fire, which is safer than
methods that require the use of flammable fluid. Another advantage of this invention
includes the prolonged life of the grill, which is applicable if the user complies with the
recommended guidelines of use. These guidelines include using the grill without any
layers of gravel, aluminium foil or the like. After the cooking is done, the coals should be
burned out, and the ashes should be raked towards the hole at the grill’s base. The ashes
go into the receptacle for further disposal. Alternatively, water can be sprinkled on the
coals to douse the embers. The excess water will flow out of the hole at the grill’s base
together with the dirt and ashes.

2.2. Cooking Method (Roasting/Rotisserie)

Roasting is a way of cooking that uses dry heat where hot air is used to cover the
food, cooking it evenly on all sides [28]. The style of roasting known as rotisserie is
commonly used because of the enhanced flavours that stem from the caramelisation and
Maillard browning on the surface of the food. Maillard browning happens when the
water molecules on the surface of the food are eliminated, and molecular rearrangement
occurs, which subsequently produces the Amadori product (1-amino-1-deoxy-2-ketose).
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The Amadori product does not contribute to flavour but is an important precursor for the
flavour compound [29].

Compared to the faster types of roasting, such as oven roasting, rotisserie cooks
the meat at a much slower rate, which allows the meat to retain more of its original
moisture, dissolves more of the collagen that makes the meat tough and improves the
meat’s tenderness.

The tenderness of roast meat is greatly affected by the temperature and time of roasting.
This relationship has been studied empirically. In a particular study, around 240 roasts
were cooked to calculate the ideal cooking time [30]. Table 3, which was adapted from [30],
shows the recommended cooking times for the corresponding lamb roasts.

Table 3. Cooking time (min/kg) for roast lamb in varying doneness degree.

Type of Roast Doneness Degree
Recommended Time of

Cooking (Min/kg)

Leg, whole bone-in
(3.2–4.1 kg)

Rare 33–44
Medium 44–55

Well done 55–66

Leg, boneless
(2.3–3.2 kg)

Rare 55–66
Medium 66–77

Well done 77–88

Leg, shank-half
(0.9–1.8 kg)

Rare 66–77
Medium 88–99

Well done 99–110

Leg, sirloin-half
(1.1–2.3 kg)

Rare 55–66
Medium 77–88

Well done 99–110

Shoulder, boneless
(1.8–2.7 kg)

Rare 66–77
Medium 77–88

Well done 88–99

Shoulder, pre-sliced
(0.9–2.3 kg)

Rare 77–88
Medium 88–99

Well done 99–110

Seven-rib rack
(0.7–1.1 kg)

Rare 66–77
Medium 77–88

Well done 88–99

Crown-rib, not stuffed
(0.9–1.4 kg)

Rare 33–44
Medium 55–66

Well done 66–77

The findings suggested that the lamb roasts increased in doneness with time. There
was no difference observed between the rare and medium groups of pre-sliced shoulders.
This outcome was the same for the medium and well-done groups of the boneless leg,
seven-rib rack and crown-rib roasts. An average increase of 15.6 min/kg was required
to raise the internal temperature from 60 to 70 ◦C, while an average of 11.4 min/kg was
needed to raise the internal temperature from 70 to 77 ◦C. In terms of reaching a common
internal temperature, the time/kg value required was found to be lesser in larger roasts
than in smaller roasts [30].

2.3. Meat Doneness

Doneness is a measure of how thoroughly cooked the piece of meat is based on its
internal temperature and colour when cooked. The definition and gradation in relation
to its internal temperature vary across different dishes. For steaks, common gradations
include rare, medium rare, medium, medium well and well done [31]. Apart from investing
in proper cooking equipment, it is important to monitor meat doneness when roasting to
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avoid food safety concerns and prevent serious foodborne illnesses such as food poisoning,
typhoid, cholera, hepatitis A and dysentery [32–34].

The United States Department of Agriculture (USDA) recommends that for cuts of beef,
veal and lamb to be considered safe for consumption, the internal cooking temperature
should be at least 145 ◦F (63 ◦C) [35]. The same meats should be thoroughly cooked
to 160 ◦F (71 ◦C) when ground or tenderised by cutting since these processes distribute
bacteria throughout the meat. Table 4, which was adapted from [35–37], shows a scale used
for meat doneness concerning beef and lamb.

Table 4. The meat doneness scale.

Description Scale
Temperature Range USDA Recom-

mendation◦C ◦F

Very red Extra rare 46–49 115–125 -

Red centre; soft Rare 52–55 125–130 -

Warm red centre; firm Medium rare 55–60 130–140 -

Pink and firm Medium 60–65 140–150 145 ◦F and rest
for at least 3 min

Small amount of pink in the
centre Medium well 65–69 150–155 -

Gray-brown throughout; firm Well done 69–71 155–160 160 ◦F for
ground beef

Blackened throughout; hard Overcooked >71 >160 -

3. Materials and Method

3.1. Concept Generation

This section includes the generation of new lamb rotisserie machine concepts. These
concepts are created according to the features selected from patents, journal articles and
existing products. These features are shown in Table 5. The features are deemed useful in
potentially improving the productivity of conventional lamb-roasting machines and are
adopted into several concepts. Table 6 shows the draft of all the concepts.

Table 5. A list of useful features.

Feature Description Comment Sources

Spit Height
Adjustability

Adjustability of the rotisserie spit height (distance
between roast lamb and heat source). Can be

achieved by pin joints/mechanism.

Important feature for temperature
control. [23,25]

Automatic Spit
Rotation

The roast lamb is rotated as it is being roasted. Can
be achieved by an electric motor/pulley system.

Very important feature for
productivity. [23,25]

Grilling Platform
A metal grill that is placed on top of a heat source

to grill secondary items such as vegetables and
smaller pieces of meat.

Good features for productivity.
Eliminates the need for another

apparatus for grilling.
[23,26,27]

Accessible Skewer The skewer can be taken out from the stand easily
for basting purposes.

Important feature for
productivity. [25]

Multiple Rotisserie
Spits Increased number of roast lamb output.

Very important feature for
productivity. Able to increase

productivity without changing
the cooking method.

[12]

Lockable Wheels Wheels at the base of the machine for portability. Average for productivity. [23,27]
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Table 6. Draft of the concepts.

Concept Draft

A

 

B

 

C

 

D

 

Concept A: This concept utilises a central bevel/mitre gear mechanism to rotate an
array of lamb rotisserie stations. A pulley is used to rotate a long, central pinion gear,
and as the mitre gear mechanism is engaged, the pinion gear drives the rotisserie spits of
multiple lamb-roasting stations. This design aims to increase productivity by increasing the
number of rotisserie machines without increasing the number of rotisserie spit actuators.
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By using a central mitre gear mechanism, multiple rotisserie stations are driven by a motor.
The number of rotisserie stations can be increased further by increasing the length of the
pinion mitre gear.

Concept B: This concept includes a rack-and-pinion gear mechanism and a roller
chain/sprocket mechanism. The rack-and-pinion gear is placed at the centre of the platform
and is used to adjust the distance between the rotisserie spits and heat source. Multiple
rotisserie spits are located on top of a platform. The platform is installed with a roller chain
mechanism that is driven by an electric motor. The rotisserie spits are modified to include
a sprocket near the handle. The sprocket interacts with the roller chain mechanism. As the
roller chain moves in a linear and horizontal direction, the rotisserie spits are rotated due
to the sprocket-roller chain interaction.

Concept C: Concept C aims to solve the productivity issue of the traditional lamb-
roasting machine by replacing the charcoal-fired heat source with an infrared burner.
Unsuch as charcoal fire, an infrared burner has a faster heat-up time and does not require
maintenance to sustain the temperature of the heat source. An infrared burner is located at
the back wall of the cooker’s body, and a lid is used to prevent the escape of hot air from
the cooker.

Concept D: Concept D intends to increase the productivity of a lamb-roasting station
by installing an automatic basting mechanism. Basting is the action of applying marination
to the lamb’s surface to retain the meat’s moisture, and it is done every 15 min. On average,
a roast lamb takes about 3–4 h to cook from start to finish, which means that a user of the
traditional lamb-roasting device would have to baste the lamb about 6–8 times throughout
a single cooking session. The automatic basting mechanism solves this problem of incessant
basting, which potentially reduces the workforce, thereby increasing productivity.

3.2. Concept Selection

The concept selection is done through a scoring process. The concepts are rated
numerically using scales relative to a benchmark. The following steps are taken to conduct
the scoring process.

1. A set of criteria is created.
2. A reference design is identified. In this case, a typical lamb rotisserie machine is

chosen as a reference.
3. Weights are designated to each individual criterion.
4. The different concepts are evaluated and assigned ratings.
5. The weighted score and rank of the concepts are determined.

The list of selection criteria includes productivity, cost-effectiveness, ease of storage
and portability. The justifications for using each of the selection criteria are as follows:

1. Productivity. The core purpose of this study involves developing an inventive solution
to improve the productivity of conventional lamb-roasting solutions. Based on this
core purpose, the concept selection should emphasise productivity. Hence, a 50%
weightage is allotted to the productivity criterion.

2. Ease of storage. The demand for roast lamb fluctuates all year round. It is somewhat
important for the solution to be easily stored or possess space-saving attributes so
that it can be kept away easily when not in use. Thus, a weightage of 10% is assigned
to this selection criterion.

3. Portability. Lamb rotisserie cooking is mostly done outdoors due to the high tempera-
ture and burning of charcoal. In view of this condition, it is somewhat important for
the solution to be portable for the user to conveniently move it around (for instance,
from indoors to outdoors). Hence, a weight of 10% is allocated to this selection
criterion.

4. Cost-effectiveness. Every invention needs to be cost-effective, as it improves manu-
facturability and start-up costs. Therefore, a weight of 30% is given to this selection
criterion.
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Table 7 shows the scoring process. The ratings were solely proposed by the main
author based on his specific experience and knowledge of various rotisserie machines, with
over 4 years of research experience in this area of study. In reference to the main author’s
superior design sense in this specific area, the co-authors of this study concurred with
the ratings and rankings provided by the main author. This process has been used and
published in previous studies [38–40]. The scores range from 1 to 5. The description for
each numerical value is as follows:

� Score 1: much worse than reference;
� Score 2: worse than reference;
� Score 3: matches reference;
� Score 4: better than reference;
� Score 5: much better than reference.

Table 7. Scoring of the concepts.

Criteria W (%)

Concept

Concept A Concept B Concept C Concept D Reference

R WS R WS R WS R WS R WS

Productivity 50 4 2.0 4 2.0 4 2.0 3 1.5 3 0.6
Ease of Storage 10 3 1.8 3 0.3 3 0.3 3 0.3 3 0.3

Portability 10 2 0.2 3 0.3 2 0.2 2 0.2 3 0.6
Cost-Effectiveness 30 4 1.2 4 1.2 3 0.9 1 0.1 3 0.9

Total Score 5.2 5.3 3.4 2.1 2.4
Rank 2 1 3 5 4

Continue? No Yes No No -

Notes: W—Weight; R—Rating; WS—Weighted score; Reference—Conventional lamb-roasting machine.

The scoring results show that concept B ranked first among the other concepts, with a
total weighted score of 5.3. This design excels in the productivity aspect as it uses multiple
spits for the machine to produce multiple roast lambs. It is also more cost-effective than the
other concepts as it allows for multiple rotisserie spits to be actuated with only 1 electric
motor, making it an inexpensive option with regard to its production. Hence, concept B is
selected as the finalised design for further development.

3.3. Material Selection Standards in the Food Industry

In food manufacturing, cleanliness and hygiene are of paramount importance. The
most effective materials for food processing equipment include non-corrosive and inert
materials [41]. The material chosen for this study needs to have high heat resistance as
charcoal burns at temperatures exceeding 1100 ◦C [42]. In comparison, the melting point of
iron is approximately 1200 to 1550 ◦C. The most common form of corrosion is oxidation,
where oxygen reacts with a metal, usually in the presence of water, to produce more
non-reactive material such as rust. For ferrous metals, iron and steel, rust ruins the surface
quality and structural stability of the equipment. However, for other types of metals,
oxidation may be beneficial [43].

Stainless steel is used widely in food manufacturing. It is characterised by the addition
of chromium (at least 10.5% of the total composition). Chromium is highly reactive to
oxygen-enriched environments and quickly forms a strong passivated barrier on its outer
surface. This barrier is highly resilient and protects the internal structures from further
corrosion [44].

All components in contact with food during machine operations have to abide by
the above-mentioned constraints. Apart from these constraints, the material selected for
the base of the machine also has to be strong enough to withstand the total load on the
entire machine. Due to its cost, heat resistance, strength, corrosive resistance, ease of
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machining, availability and conventional use in food manufacturing equipment, stainless
steel is chosen for further design simulations.

3.4. Design Drawing of Modified Concept

The design drawing and optimisations are presented in the data availability sheet.
After careful considerations, the rack and pinion gear mechanism used for the height
adjustment of the rotisserie spits (distance from heat source) is eliminated. Instead, a
second platform is created to support more rotisserie spits for enhanced productivity. The
modified design supports up to 10 rotisserie spits. Figure 1a shows the 3D drawing of
the modified design’s complete assembly. A groove is made at the side of the motor
bracket in Figure 1b so that a sprocket can be installed on top to guide the movement of
the roller chain. Therefore, the tension of the roller chain is adjustable for maintenance or
emergencies. The space between the rotisserie spits is about 300 mm wide.

(a) The assembly after design modification

(b) Motor bracket (c) Spit stopper (near the handle) (d) Spit stopper (near the tip)

(e) Sprocket (f) Spit with sprocket (g) Spit with sprocket (Enlarged)

Figure 1. A 3D drawing of the complete assembly and parts.
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During the roasting process, the rotisserie spits will rest on top of the moving roller
chain. In order to prevent the translational motion of the spits, a stopper must be included.
Figure 1c,d shows the isometric views of the rotisserie spit stopper placed near the rotisserie
spit handle and near the tip of the rotisserie spit. Figure 1e shows the 3D drawing of the
sprocket. Figure 1f,g shows the rotisserie spit assembled with the sprocket and an enlarged
view of the sprocket on the spit. The sprocket will rest on the moving roller chain and
facilitate the rotation of the spit.

3.5. Simulation on Modified Concept

The load on the design is represented by the mass of the rotisserie spits and the
lamb. Each spit weighs 2.761 kg, and each lamb weighs 23.6 kg. During the operation,
each rotisserie spit rests on the frame at 2 opposing points. Thus, each load component
represents half of the load composed of the rotisserie spit and lamb, which is around
129.3 N. The material assigned to the frame is steel.

Figure 2 shows the maximum displacement of the frame, which occurs in the middle
of the upper platform’s horizontal column as indicated. The maximum displacement is
0.249 mm, which happens at the horizontal bars on which the rotisserie spits are positioned.
The minimum displacement is 0 mm, which happens at most of the frame columns where
no static force is exerted. The maximum displacement of 0.249 mm is insignificant in
relation to the length of the horizontal column, which is 600 mm. In addition, the maximum
equivalent strain from the analysis is 0.00006052 mm/mm or 60.52 με, which is reflective
of the small displacement obtained.

Figure 2. Stress simulation results for the frame (displacement).

Figure 3 shows the von Mises stress analysis. The maximum von Mises stress acting
on the frame is 8.16 MPa. Most of the stress concentrates on the edge of the frame, where
the surface area is the smallest. The von Mises stress exerted on the frame does not exceed
the tensile strength of steel which is approximately 370 MPa.

The safety factor remained as 15 despite optimisations in the design’s column dimen-
sion (as per the data availability sheet). This design is still considered over-engineered. A
change of material might be able to reduce the safety factor to an appropriate level. How-
ever, it was established that stainless steel is the preferred material for food production
equipment due to its high corrosion resistance, heat resistance and ease of maintenance.
This preference is also recommended under the guidelines of the FDA [45]. Considering
the preference of using stainless steel coupled with a concern of exceeding the slenderness
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ratio, which creates risks in buckling and also the time constraint of completing the project,
the researchers decided to proceed with the present design and material.

Figure 3. Stress simulation for the frame (von Mises stress).

3.6. Prototype Fabrication
3.6.1. Prototype Scaling

Due to project cost constraints, the prototype design is scaled down for fabrication.
Table 8 shows the dimension comparison of the full-size lamb rotisserie machine and the
prototype lamb rotisserie machine. The frame of the prototype is scaled down at a ratio of
2.25:1 in height, 4:1 in length, and 3:1 in width.

Table 8. Size comparison between full-size and prototype lamb rotisserie machine.

Dimension Full Size (mm) Prototype Size (mm)

Height 900 400
Length 1400 360
Width 1900 600

3.6.2. Parts Procurement

Based on the optimal dimensions and specifications, the researchers identified that
the 12SB12 sprocket and the RS25 roller chain are suitable parts to be used in the proposed
lamb rotisserie machine. The motor used is the SPG30-120 K 12 V electric motor [46]. This
motor is chosen for its low RPM as the prototype requires a slow rotational speed and
high torque.

3.6.3. Fabrication of Frame

The metal frame of the prototype is made out of 25 mm rectangular mild steel columns.
The mild steel columns were purchased from the subcontractor’s warehouse. Table 9 shows
the assortment of mild steel columns required to make up the frame of the prototype. The
machinist separated the mild steel columns into 4 pieces of 400 mm columns, 4 pieces of
360 mm columns and 6 pieces of 620 mm columns.

Table 9. Dimension and amount of mild steel columns required.

Dimension of Mild Steel Column (mm) Amount

400 4
360 4
600 6
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3.7. Test Plan

There are 3 main experiments conducted to test the prototype’s functionality. The
first two experiments focus on the productivity of the prototype, while the remaining
experiment investigates the temperature stability or heat distribution when the prototype is
in use. Two set-ups will be used in this experiment, one being the experimental set-up and
another being the control set-up. The proposed lamb rotisserie machine is used for both
set-ups. When the prototype is utilised at its full capacity (all 10 rotisserie spits used), it is
a representation of the experimental set-up. When the prototype is utilised at its limited
capacity (only 1 rotisserie spit used), it is a representation of the control set-up. In the
experiments, the controlled variable is roasting time and the number of cooked lamb meat
produced. Figure 4a,b shows the experimental and control set-up, respectively.

(a) The experimental set up (b) The control set up

Figure 4. The prototype set-up for the experiments.

In this project, two experiments are conducted to test whether the prototype improves
productivity in comparison with a regular lamb-roasting machine. The experiments are
(1) the roasting output test and (2) the roasting time test. Minitab 17 is used to run the
two-sample t-test, Mann–Whitney U test and other basic statistical calculations such as
mean and standard deviation.

The main researcher (main author) gave his written informed consent prior to the
experiments. All procedures and protocols have been approved by the Research Ethics
Committee (REC) from the Technology Transfer Office (TTO) of Multimedia University.
The research ethics approval for the project has been granted with the approval number
EA0052021 on 26 February 2021, and the approval letter has been endorsed by the TTO
Director-cum-REC Secretariat of the university.

3.7.1. Experiment 1: Roasting Output Test

This experiment compares the roasting capabilities (amount of roasted meat produced
in a total fixed time of 16 min) between the experimental set-up and the control set-up.
The range of temperatures at which the meat was deemed to be successfully cooked is
60–71.11 ◦C (140–160 ◦F). The internal temperature of the meat is measured using a meat
temperature probe. The procedures used for the experimental set-up are as such:

1. The lamb meat is cut into small chunks with a uniform thickness of 20 mm in the
cross-section.

2. Ten pieces of lamb meat are inserted into the ten separate rotisserie spits and set aside.
3. The charcoal is ignited with a charcoal starter and then placed onto the charcoal tray

of the prototype.
4. All rotisserie spits are placed onto their respective slots.
5. The timer is started as soon as the motor of the prototype is started.
6. The timer is paused after 16 min. The cooked pieces of meat are taken out, and another

batch of raw meat is inserted into the rotisserie spit.
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7. The internal temperature of the cooked meat is measured immediately by inserting
the meat internal temperature thermometer into the lamb meat for 5 s.

8. The timer is resumed when the new batch of raw meat is placed onto their respective
slots.

9. Steps 6 and 7 are repeated after every interval of 16 min until the timer reaches the
total time fixed time of 80 min.

10. The number of successfully cooked meat is recorded.

The procedures used in the control set-up are similar to the ones used in the experi-
mental set-up. The only difference for the control set-up is in step 2, whereby instead of
using 10 pieces of lamb meat and 10 separate rotisserie spits, the researcher only needs to
use 1 piece of lamb meat and 1 rotisserie spit.

3.7.2. Experiment 2: Roasting Time Test

This experiment compares the difference in roasting time per unit when producing
successfully cooked meat with the experimental and control set-up. Similar to experiment
1, the researcher only roasts 1 piece of meat for the control set-up. In order to observe the
roasting time per unit for the experimental set-up, the researcher cooks 2 pieces of meat
simultaneously. The procedures used for the experimental set-up are as such:

1. The lamb meat is cut into small chunks with a uniform thickness of 20 mm in the
cross-section.

2. Two pieces of lamb meat are inserted into two separate rotisserie spits and set aside.
3. The charcoal is ignited with a charcoal starter and then placed onto the charcoal tray

of the prototype.
4. The rotisserie spit is placed onto their respective slots.
5. The timer is started as soon as the motor of the prototype is started.
6. The internal temperatures of the meat are measured every 4 min by inserting the meat

internal temperature probe into the lamb meat for 5 s.
7. A piece of lamb meat is taken out of the prototype as soon as its internal temperature

registers at least 60 ◦C or 140 ◦F.
8. The timer is stopped once the two pieces of meat have been successfully cooked.

The procedures used in the control set-up are similar to the ones used in the experi-
mental set-up. The only difference for the control set-up is in step 2, whereby instead of
using 2 pieces of lamb meat and 2 separate rotisserie spits, the researcher only needs to use
1 piece of lamb meat and 1 rotisserie spit. Figure 5a shows the standardised thickness for
the lamb meat, and Figure 5b shows the meat internal temperature thermometer.

(a) Thickness of all lamb meat standardised to 20 mm

(b) Meat internal temperature thermometer

Figure 5. The lamb meat and thermometer.
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4. Results and Discussion

4.1. Finalised Prototype

The prototype for the automated multi-spit lamb rotisserie machine possesses two
platforms, each accommodating up to five rotisserie spits. All the spits are automatically
rotated on a roller chain which is moved by an electric motor. The inventive configuration
of the sprocket-roller chain mechanism allows the entire machine to be actuated by only 1
electric motor. Figure 6a–d shows the isometric, front, back and side view of the prototype.

(a) Isometric view (b) Front view

(c) Back view (d) Side view

Figure 6. The finalised prototype.

The total weight of the entire rotisserie machine with all parts and components
considered is 37.5 kg. This weight is considered moderate when compared to commercial
lamb rotisserie machines in the market. Commercial-grade single spit lamb rotisserie
devices weigh from 8 to 70 kg [25,47,48].

4.2. Sprocket-Roller Chain Mechanism

In Figure 7a, the circled locations show the freely rotating sprockets. There are 6 freely
rotating sprockets installed onto the frame of the prototype. These sprockets are installed
at their specific locations to hold the roller chain in place.

Figure 7b–d shows the sprocket configuration that creates a link from the top platform
to the bottom platform. These links allow the rotational movement from the bottom
platform to be transmitted to the top platform, thus reducing the need for individual electric
motors for each platform. During the design phase of this project, the frame dimension
and sprocket placement were designed to allow enough clearance for the movement of
the roller chain. In Figure 7c, when the motor is turned on, the circled sprocket will rotate
clockwise and move the entire roller chain in the direction of the arrows.
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(a) Location of sprocket roller chain engagements (b) Top bottom roller chain link, right side

(c) Sprocket configuration on the motor bracket (d) Top bottom roller chain link, left side

Figure 7. Sprocket-roller chain mechanism.

Figure 8a shows the rotisserie spit of the prototype. The rod of the rotisserie spit is
made out of stainless steel, while the handle is made out of wood. A 25SB12 sprocket is
installed on the top of the handle. As shown in Figure 8b, the sprocket on the rotisserie
spit will rest on top of the roller chain. As the roller chain moves, the sprocket teeth move
along the slots of the roller chain, causing the rotisserie spit to rotate concurrently. Table 10
shows the specification of the prototype.

Table 10. Specifications of the prototype.

Part Specification

Frame dimensions 600 (L) × 400 (H) × 360 (W) mm

Frame material Mild steel

Frame weight 10.9 kg

Number of sprockets 10

Sprocket specification 25B12

Roller chain length 10 ft

Motor Speed: 38 RPM
Torque: 0.49 Nm

Spit 295 cmm
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(a) Rotisserie spit with a sprocket (b) Spit roller chain mechanism

Figure 8. The rotisserie spit used for the spit-roller chain engagement.

4.3. Results and Discussion of Experiments

The experimental set-up includes the use of the automated multi-spit lamb rotisserie
machine prototype, while the control set-up includes the use of the same prototype in the
capacity of a single-spit rotisserie machine.

Roasting Time Test

This experiment aims to assess the time taken to produce one unit of successfully
roasted lamb meat. The time is recorded when the internal temperature of the meat
reaches 60 ◦C. Two pieces of lamb meat are roasted at the same time for each batch of the
experimental set-up, whereas only one piece of lamb meat is roasted for each batch of the
control set-up. The average time taken to successfully roast the lamb meat for each batch
under the experimental set-up can be calculated as such:

tE =
tA + tB

2
(1)

where tA —time taken to roast meat A per batch under the experimental set-up; tB—time
taken to roast meat B per batch under experimental set-up; tE—average time taken to roast
meat A and B per batch under experimental set-up.

The average roasting time for the experimental and control set-up is also compared.
There are two pieces of lamb meat roasted for each batch in the experimental set-up (NE = 2)
and one piece of lamb meat roasted for each batch in the control set-up (NC = 1). The
roasting time per unit for the experimental and control set-up can be calculated using
Equations (2) and (3). The data collected will be available in the data availability sheet.

rE =
tE

NE
=

tE

2

rE =
tE

2
(2)

rC =
tC

NC
=

tC

1
= tC

rC = tC (3)

where rE—roasting time per unit for each batch under experimental set-up (s/unit); NE—
number of meat roasted per batch under experimental set-up; rC —roasting time per unit
for each batch under control set-up (s/unit); tC—average time taken to roast meat per batch
under control set-up; NC —number of meat roasted per batch under control set-up.

Sample Size Estimation and Normality

Before a two-sample t-test is conducted, it is essential to inspect if the sample size is
adequate. Using the pooled standard deviation, mean difference and a power value of 80%,
the sample size is estimated to be 2 (see Table 11). The sample size of the current dataset
is 10, which exceeds the sample size calculated by Minitab 17, indicating that the current
sample size is sufficient for this study.
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Table 11. Sample size estimation by Minitab.

Parameter Value

Pooled standard deviation 9.524
Mean difference (s/unit) 476.3

Target power 80%
Sample size 2

Actual power 100%

For the assumption of normality, the Ryan–Joiner normality test proved that the data
are not significantly different from a normal distribution (p > 0.05). Thus, the dataset is
appropriate for further parametric tests. The F-test and Levene’s test also verified that
there is a significant difference in the variance of the dataset between the experimental and
control group (p < 0.05). Hence, the t-test used would apply the assumption of unequal
variance.

Two-Sample t-Test

The following hypotheses are used for the roasting time test.

� Null Hypothesis, H0a: There is no significant difference in the roasting time between
the control and experimental set-up (p > 0.05).

� Alternative Hypothesis, H1a: There is a significant difference in the roasting time
between the control and experimental set-up (p < 0.05).

Table 12 shows the mean and standard deviation of the roasting time for the experi-
mental and control set-up. The results show that the experimental set-up uses a shorter
roasting time than the control set-up. It is important to note that the unit for roasting time
is seconds/unit (s/unit), which measures the amount of time it takes to cook one piece of
meat to the internal temperature of 60 ◦C. The experimental set-up uses a mean roasting
time of 497.3 s/unit, while the control set-up uses a mean roasting time of 973.6 s/unit.

Table 12. Statistics for the roasting time per unit.

Set-Up Mean (s/Unit) StDev

Experimental 497.3 7.64
Control 973.6 20.5

Notes: N = 10; StDev—standard deviation.

According to the results in Table 13, there is a significant difference in the roasting
time between the experimental and control group (t(11) = −66.62, p < 0.05). The results
indicate that the automated multi-spit lamb rotisserie machine prototype is significantly
more productive than a regular lamb-roasting set-up which only produces one roast lamb
at a time. Therefore, H1a is supported.

Table 13. Two-sample t-test results.

Parameter Value

Estimate for difference −476.35
95% CI for difference (−491.59, −461.11)

t-value −68.79
p-value 0.000

DF 11

Roasting Output Test

In this experiment, both the experimental and the control set-ups are used to roast
lamb meat in five cooking sessions. The aim is to roast as much lamb meat as possible
within each cooking session which lasts for 16 min. For the experimental set-up, all
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10 rotisserie spits are used to cook the pieces of lamb meat. The control set-up only used
one rotisserie spit to cook one piece of lamb meat. After roasting for 16 min, all the pieces
of lamb meat are removed from the rotisserie spits. The internal temperature for each meat
is measured. If the internal temperature of a piece of lamb meat is within the range of
60 ◦C to 71.11 ◦C, it is considered successfully cooked. Otherwise, the particular sample is
rejected. In other words, only cooked meat that is classified as medium rare, medium well,
medium and well done are considered successfully cooked. The ones that are classified as
extra rare, rare and overcooked are considered not successfully cooked.

Table 14 shows the summary of data from the roasting output test. The results show
that the experimental group is able to produce an average of eight successfully roasted
lamb meat while the control group is only able to produce an average of one successfully
roasted lamb meat for all five cooking sessions. All in all, the experimental set-up produces
an average surplus in roast meat output of 700% as compared to the control set-up (see
Table 15).

Table 14. A summary of data from the roasting output test.

Set-Up
Average Roast Meat Output (Unit)

Mean (Unit)
a b c d e

Experimental 7 8 8 9 8 8
Control 1 1 1 1 1 1

Notes: a, b, c, d, e—Cooking sessions.

Table 15. Surplus roast meat output (experimental versus control set-up).

Cooking Session Roast Meat Output Surplus (%)

1 600
2 700
3 700
4 800
5 700

Mean 700

Productivity issues that are inherent in regular lamb-roasting machines are partly
because the regular machine is only able to produce one roast lamb at a time. The roasting
time and output tests proved that the present study’s automated multi-spit lamb rotisserie
machine could significantly increase the amount of roast lamb produced and significantly
shorten the overall time taken to produce roast lamb.

The concept used in this study is akin to the design of an existing product known
as the 1425.4SMiE Special Market chicken rotisserie machine [12]. This product is able to
accommodate multiple whole chickens (up to 24 units) in one cooking session and also
aims to improve productivity.

While this product possesses a similar aim, its focus is mainly on producing roast
chicken. In addition, the way it produces multiple roasts at a time is also different from
the way the prototype of this study functions. For instance, the 1425.4SMiE emphasises
roasting multiple whole chickens inserted in a single spit, while the prototype of this study
emphasises roasting multiple spits of a whole lamb. The inventive solution used by this
study (i.e., using the sprocket and roller chain) also makes the current prototype unique
apart from being productive.

4.4. Temperature Stability Test

When the prototype runs at its full capacity (i.e., 10 rotisserie spits running concur-
rently), it is noticed that at least one unsuccessfully roasted meat would be produced, be it
undercooked or overcooked. This issue is possibly due to the uneven heat exposure caused
by factors such as the distance of the meat to the heat source and unregulated air flow.
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Therefore, it is essential to perform an overall temperature stability test using the
temperature dataset collected from the previous experiment. Since the temperature dataset
violated the assumption of normality, the Mann–Whitney U test (a non-parametric test)
is used to determine if the temperature distribution differs significantly between the
experimental and control set-up. The following hypotheses are used.

� Null Hypothesis, H0b: There is no significant difference in the temperature distri-
bution of the meat roasted with the experimental set-up as compared to the control
set-up (p > 0.05).

� Alternative Hypothesis, H1b: There is a significant difference in the temperature
distribution of the meat roasted with the experimental set-up as compared to the
control set-up (p < 0.05).

In this analysis, the temperature distribution is determined by the internal temperature
of the lamb meat after being roasted for 16 min (as per the roasting output test procedures).
As shown in Table 16, the Mann–Whitney U test indicated that the temperature of the
experimental group (median = 150.1 ◦F) does not significantly differ from the temperature
of the control group (median = 151.5 ◦F), U = 1370, p = 0.3878.

Table 16. Results of median calculated from Mann-Whitney U test.

Set-Up N Median (◦F) U p-Value

Experimental 50 150.1
1370 0.3878

Control 5 151.5

In summary, the null hypothesis, H0, is accepted, and the analysis confirms that the
overall temperature distribution for the experimental group is considered stable even with
a few samples being unsuccessfully roasted for some cooking sessions.

4.5. Temperature Outlier Tests

Although the overall meat temperature is stable with the experimental set-up, the
prototype still consistently produced around 1 to 2 pieces of unsuccessfully cooked meat.
It is noticed that the unsuccessful outputs come from the rotisserie spits located at the sides
of the rotisserie machine. In order to verify this observation, four tests are conducted to
compare the roast meat temperature in different rotisserie spit locations.

As shown in Figure 9, each rotisserie spit is assigned a number. The tests aim to
identify if the meat from spits 1, 5, 6 and 10 have significantly different temperatures than
the meat from spits 3 and 8 after being roasted for 16 min (as per the roasting output test
procedures). Spits 3 and 8 are selected as references since there are normally no defects
produced in these spit locations. Based on the location of the platforms, spits 1 and 5
are compared with spit 3, while spits 6 and 10 are compared with spit 8. Therefore, the
hypotheses can be formulated as such:

� Null Hypothesis, H0c: There is no significant difference in the internal temperature of
the meat cooked for spits 1, 5, 6 and 10 as compared to spits 3 and 8 (p > 0.05).

� Alternative Hypothesis, H1c: There is a significant difference in the internal tem-
perature of the meat cooked for spits 1, 5, 6 and 10 as compared to spits 3 and 8
(p < 0.05).

Table 17 shows the t-test results for the temperature outliers. All of the meat cooked
in spits 1, 5, 6 and 10 are found to register an internal temperature of less than 60 ◦C after
being roasted for 16 min. The meat cooked in spits 3 and 8 registered internal temperatures
of 60 ◦C and above. The tests show that there is indeed a significant difference in the
internal temperature of the meat cooked for spits 1, 5, 6 and 10 as compared to spits 3 and
8 (p < 0.05). Hence, H1c is supported.
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Figure 9. Rotisserie spit position numbering.

Table 17. t-test results for temperature outliers.

Parameters
Tests

Test 1–3 Test 3–5 Test 6–8 Test 8–10

Estimate for difference −13.32 18.26 −13.12 19.14
95% CI for difference (−24.17, −2.47) (3.61, 32.91) (−18.91, −7.33) (9.82, 28.46)

t-value −3.41 3.46 −5.23 4.73
p-value 0.027 0.026 0.001 0.001

DF 4 4 8 8

The analysis concludes that the heat exposure for the spits located at the sides of the
prototype is not as uniform in comparison to the heat exposure for the spits located in
the middle. In terms of productivity, such an uneven distribution of heat is undesirable.
This issue may be due to the position of the charcoal fire during the experiments. Apart
from controlling the air flow of the surrounding area, one way to mitigate the issue is to
periodically refill the platform with charcoal for more consistent burning.

4.6. Brief Cost Analysis

Table 18 shows the price list for the parts that make up the prototype. The cost to
produce one automated multi-spit lamb rotisserie machine is 216.30 USD/unit. The high
costs of workmanship and material are due to the make-to-order nature of this project. If
the product were to be mass-produced in the future, the total cost will decrease. Hence, if
mass production were to take place, the material and workmanship costs can be reduced by
about 40%. The high cost is also attributed to the price of the 25SB12 sprockets. The price
of this particular sprocket is high due to the limited supply from the gear manufacturer.
The 25SB12 sprocket is also not frequently manufactured. If this prototype were to be sold
commercially, the cost of the parts would also reduce. Hence, if mass production were to
take place, the sprocket costs can be reduced by about 50%. However, since this prototype
is actually a scaled-down version, the total cost is still estimated at USD 216.30.

There are also other variable costs involved if the plan in the future is to set up a
company that manufactures these lamb-roasting machines. The manufacturing of this
prototype requires skilled workers for metal cutting and welding. The minimum wage
in Malaysia is forecasted to be around 1200 MYR/month (around 286 USD/month) by
the end of 2021 [49]. Hence, a total salary of 450 USD/month per skilled worker would
be sufficient. The total salary of 2 skilled workers is around 900 USD/month, which is
about 5.63 USD/hour (accounting for 40 h a week, for 4 weeks a month). If the company
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considers these skilled workers as permanent workers, the labour cost of making a single
prototype becomes:

Labour cost (USD) = 216.30 − 23.50 + 5.63 = 198.43 USD

Table 18. Price list for the product parts.

No. Parts Description Unit
Unit Price

(USD)
Total Cost (USD)

1 Mild steel column

400 mm 4 5.50 22

360 mm 4 4.80 19.20

620 mm 6 3.60 21.60

2 Sprocket 25SB12 18 3.80 68.40

3 High Torque
Brushless Motor SPG30-120 K, 12 V 1 9.70 9.70

4 Roller Chain RS25, 10 ft 1 5.00 5.00

5 Workmanship Professional welding, cutting 1 23.50 23.50

6 Welding cost Material cost of welding 1 23.50 23.50

7 Charcoal
briquettes - 5 4.30 21.50

8 Charcoal tong To pick and place hot charcoal 1 1.90 1.90

Total 216.30

The USD 23.50 is subtracted as the original workmanship cost is not required (the
workmanship is replaced with permanent skilled workers). By accounting for a 40% profit
margin from the labour cost, the sales price of the automated multi-spit lamb rotisserie
machine is estimated to be around USD 278. This price is reasonable for owners of small
and medium enterprises (SMEs) who wish to ramp up the production of their roast lamb
and compete in a larger market.

5. Conclusions

The aim of this study was to develop an automated multi-spit lamb rotisserie machine
for improved productivity. In order to achieve this aim, reviews of patents, research articles
and existing products in the market were done. The ideas and features extracted from the
literature review were then utilised to design concepts that can be used to roast lamb for
improved productivity. Apart from the conceptualisation stage, the development accounted
for material selection, designing with CAD, stress analysis and prototype fabrication.

The productivity and performance of this solution were also tested with several
usability experiments that measured the roasting time, roasting output and temperature
stability. The data were analysed using t-tests.

5.1. Summary of Findings and Main Outcomes

The proposed lamb rotisserie invention was able to consistently outperform the
conventional way of roasting lambs by a significant margin. In the roasting output test,
the proposed invention was able to cook 700% more meat than a regular lamb-roasting
set-up. In the roasting time test, the proposed invention was able to produce successfully
cooked lamb meat 92.27% faster than the regular lamb-roasting set-up. There was also
no significant difference between the proposed invention and the regular lamb roaster in
terms of cooking temperature stability.

Lastly, the sales price for the proposed invention was estimated to be around USD
278, which is a reasonable price for lamb-roasting SME owners. In summary, the proposed
invention successfully demonstrated the capability of enhancing the productivity and
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efficiency of producing roast lamb at a decent price with minimal changes to the system’s
roasting reliability. This achievement benefits not only SMEs in increasing lamb-roasting
production capacity but also lamb-roasting machine designers and manufacturers that
wish to gain a competitive edge over the existing lamb roaster market competition with
this new invention.

5.2. Limitations

This study describes the novelty of the machine to escalate the productivity of roast
lamb, which is not influenced in any way the origin of the meat [50], which could affect its
texture or appearance when it is roasted. It is also believed that the quality of meat obtained
for the experiment is consistent or standard, which is not affected by any external factors
such as COVID-19, referring to a study carried out in China [51] or even any unfavourable
economic landscape [52].

A limitation of this design is its uneven heat exposure. Through several t-tests using
the temperature data from the roasting output test, it was found that the undercooked
pieces of meat were consistent in number and often positioned close to the sides of the
roasting pit. These positions included the rotisserie spits that were placed on slots that
were farther away from the centre of the heat source compared to the other rotisserie spits.
This uneven heat exposure caused some of the meat to be undercooked. Another limitation
includes the lack of safe insulation around the frame of the body. During the roasting
process, the metal frame of the prototype can get dangerously hot, exposing the risks of
burning to the user.

Although proof of concept has been established in this study, an actual usability test
and survey were not done among the relevant SMEs due to cost and time limitations
in creating a full-scale prototype. The effects of thermal stress on the reliability of the
prototype over time were also not studied in this paper.

5.3. Recommendations for Future Research

For an evenly distributed heat exposure, a thermometer can be embedded within the
design to monitor the temperature of the charcoal fire and charcoal briquettes. The position
of the charcoal briquettes could also be spread out evenly. In order to mitigate the risk
of burning to the user, an insulation layer could be added to all vertical columns of the
frame and all horizontal columns of the bottom platform as the user needs to be near these
columns during the roasting process.

It would also be of interest to conduct design of experiments with the prototype
to investigate various factors that can influence its performance and use more statistical
analyses such as ANOVA, regression or paired samples t-tests. It is recommended that a
full-scale prototype is developed in the future to account for further analyses and actual
field testing amongst SMEs. One of the analyses can include the reliability analysis of
the structure after being repeatedly subjected to high thermal stress over a period of time.
Sensory analysis can also be performed to test the quality of the roast lamb produced by
this machine.
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