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Preface

The reprint contains the papers that were published in the Special Issue of the journal

Water, titled “Water Resource Management: Hydrological Modelling, Hydrological Cycles, and

Hydrological Prediction”. The issue was open between February 2023 and August 2024. The main

objective was to design a platform for researchers to share their advances in various topics of water

resource management, such as the assessment of river flow and precipitation variability, extreme

events like floods and droughts, links between river flows and natural or human-induced catchment

alterations, the assessment of uncertainty in hydrological predictions, and the impact of climate

change on water resources. Ten original papers and one editorial were published. These papers

cover the following research areas: water balance, hydrological modeling, seasonal and long-term

variability, hydrological prediction, and the impact of anthropogenic activities on river flow changes.

We wish to express our gratitude to the authors who contributed their publications to the Special

Issue. We sincerely appreciate your willingness to share your extensive knowledge and experience

with our readers.

Our sincere gratitude also goes to the referees of the papers. We deeply appreciate your time

and consideration. Your valuable and constructive comments made a significant contribution to

improving the papers.

We also gratefully acknowledge the editorial team for their effort in making the Special Issue a

success. Finally, our heartfelt thanks go to Ms. Helen Jing, Managing Editor. We deeply appreciate

your generous support, inspiration, and the welcoming atmosphere you created.

Agnieszka Rutkowska and Katarzyna Baran-Gurgul

Guest Editors
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1. Introduction

This editorial provides a definitive review of ten articles published in the Special
Issue of the journal Water, entitled “Water Resource Management: Hydrological Modelling,
Hydrological Cycles, and Hydrological Prediction”. Each article makes an original and
significant contribution to the field of water resource management. The ten articles address
three core research areas: (a) water balance, hydrological modelling, and seasonal and
multi-year variability, (b) hydrological prediction, and (c) the impact of anthropogenic
activity on river flow changes. The papers present high-quality research, drawing practical
conclusions and insights for implementing new water resources management methods,
supported by case studies from different world regions. The proper assessment of river flow
and precipitation variability, the frequency and severity of extreme events, and the correct
development of hydrological forecasts become challenging tasks due to climate change and
land-use and land cover changes, which strongly affect water resources. We are thankful
to all the authors for their substantial contributions to the topics of this Special Issue. We
also appreciate the efforts of the reviewers of the papers. Their valuable comments and
suggestions helped the authors to improve the quality of their papers.

Water resources are impacted by external factors resulting from climate variability and
human activity. Due to intensive development and industrialisation, the level of pollution
in water resources is expected to rise, making water less available for various types of
consumption. Different approaches, such as hydrological modelling and water allocation,
can help forecast water availability under different climatic and institutional scenarios.
Thus, the field of water management is constantly changing and developing, resulting
in an increasing number of scientific papers. Using the Scopus database search engine, a
bibliographic survey was carried out using the terms included in the Special Issue title, i.e.,
(Water Resource Management) AND ((Hydrological Modelling) OR (Hydrological Cycles)
OR (Hydrological Prediction)). The number of documents containing these keywords
constantly increased over the entire period under study, i.e., 1970–2024, but was small in
the first several years—the number of documents recorded in Scopus per year between
1970 and 1987 did not exceed 100, and by 2002, it exceeded 1000 (Figure 1).

In the following years, a rapid increase in the number of published papers (up to
a multi-year maximum of 22,020 papers in 2023) was observed, indicating the growing
interest of the scientific community in issues related to water resource management. The
largest number of documents found by these keywords is expected to come from the largest
countries—the USA (with 52,143 documents published between 1970 and 2024) and China
(51,637 documents). During the study period, more than 10,000 documents were also
published by authors coming from the United Kingdom, Germany, India, Australia, and
Canada. The editors of this Special Issue are from Poland, which, with 2988 documents

Water 2024, 16, 3689. https://doi.org/10.3390/w16243689 https://www.mdpi.com/journal/water1
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published, is ranked 22nd in the number of documents found by Scopus according to
keywords.
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Water resource management encompasses the planning and control of water resources
to ensure sufficient quantity and quality for people and ecosystems. Contemporary water
management emphasises an Integrated Water Resources Management (IWRM) approach,
which takes into account social, economic, and environmental needs, as well as climate
change. IWRM is a process that promotes the coordinated development and management
of water, land, and related resources to resultant economic and social welfare in an equitable
manner without compromising the sustainability of vital ecosystems [1]. Legislation, such
as the European Union’s Water Framework Directive, plays a crucial role in supporting
water quality protection and efficient water management at the international level [2].

Water resource management requires an integrated approach that includes under-
standing hydrological cycles and hydrological forecasting. Hydrological models allow
for the simulation of flows and water use scenarios, which helps with retention planning
and drought and flood protection. Research by Bisrat et al. [3] indicates that models such
as SWAT-MODFLOW effectively contribute to assessing the impacts of climate change
on water resources, enabling the development of crisis management strategies. These
tools facilitate more sustainable water management, which not only protects against ex-
treme weather events but also supports stable water supply, essential for the economy and
ecosystems. Hydrological modelling and forecasting, combined with an understanding
of hydrological cycles, provide the basis for effective water management, contributing to
environmental protection and meeting the needs of the population.

Hydrological modelling, hydrological cycles, and hydrological prediction are integral
components of hydrology, focusing on the understanding and management of water resources.

Hydrological modelling is the process of simulating water flows and hydrological
responses in the natural environment. These models help analyse the impact of land
use changes, climate change, and extreme weather events on water systems and play an
important role in decision-making for water resource management, flood control, and
environmental protection. The history of hydrological modelling, from the 1950s to the
present, can be traced in Singh’s work [4]. From the 1960s, when computers began to
be used, it became possible to simulate the entire hydrological cycle; optimisation or
operational study techniques were also developed, which formed the basis for reservoir
management and operation and the simulation of entire river basins. Two- and three-
dimensional models of groundwater were developed, as well as of infiltration and soil
water flow or simultaneous simulation of water flow and sediment and pollutant transport.
With the development of computational capabilities, the models used user-friendly software
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and tools for acquisition, storage, retrieval, processing, and dissemination. Remote sensing
tools such as radar and satellites have been introduced to acquire spatial data for large
areas, and geographic information systems (GIS) have been developed to process vast
amounts of raster and vector data. Over the past two decades, there has been significant
development in artificial neural networks, fuzzy logic, genetic programming, and wave
models [4]. The recent studies proposed advanced decomposition techniques such as
empirical mode decomposition (EMD), wavelet transform (WT), and variational mode
decomposition (VMD) [5]. Currently, models such as SWAT (Soil and Water Assessment
Tool) and MODFLOW are popular tools in hydrology. SWAT makes it possible to analyse
processes related to land use, climate, and water management in catchments [3]. The
long-term prediction of the impact of various factors on surface water and groundwater
is possible.

The hydrological cycle, or water cycle, encompasses all processes through which
water moves from land and ocean surfaces to the atmosphere and then returns to the
Earth’s surface as precipitation [6]. The hydrological cycle includes the processes, such as
evaporation, condensation, precipitation, infiltration, and surface runoff, that regulate the
circulation of water in nature. This is key for understanding the water resource availability
in a given region. Understanding the hydrological cycles in a catchment and knowing
the water yield potential of a catchment are essential for proper water planning and
management in the area and for assessing water productivity [7]. Various human activities
and interventions (e.g., groundwater and surface water exploitation, land-use changes,
deforestation, reservoir construction, and inter–intra water transfer projects) directly and
indirectly alter hydrological processes (e.g., evapotranspiration, infiltration, and runoff),
with changes in these processes potentially influencing the development of droughts as
specific hydrological events. Some of these changes may affect the hydrological drought
characteristics, such as the deficit or severity [8]. Therefore, both climatic factors and
human activities influence the hydrological cycle, making it essential for sustainable water
management practices. Hydrological forecasting, based on advanced hydrological models
and historical data, enables the prediction of future hydrological conditions and natural
disaster risks. Regardless of the spatial detail of inputs, hydrological models inherently
contain various uncertainties due to parameters, model structure, input data, and initial
and boundary conditions [9]. Calibration and uncertainty estimation techniques, initially
developed for lumped models with simpler structures, have been modified and applied
to reduce the gap between distributed modelling and reality [10]. As shown by Hasan
et al. [10], this approach leads to an improved forecast accuracy, provided high-resolution
data are available.

2. An Overview of the Contributions to This Special Issue

In the Special Issue of Water, “Water Resource Management: Hydrological Modelling,
Hydrological Cycles, and Hydrological Prediction”, there are 10 scientific articles. It should
be emphasised that the success of this Special Issue is due to the excellent work conducted
by the 45 authors of the articles, as well as the wide range of issues discussed in them and
the high quality of the research, the results of which are presented in the articles.

The submitted papers are strongly diverse, both in terms of the subject matter, method-
ology, and research area. As mentioned earlier, the subject of “water resource management”
is universal and addressed in many countries; therefore, the research area in this Special
Issue encompassed China in three cases and Serbia, Poland, Egypt, USA, South Korea,
Romania, and Canada in the other cases.

2.1. Water Balance, Hydrological Modelling, and Seasonal and Long-Term Variability

The water balance of a catchment is a numerical summary of the individual compo-
nents of the water cycle, distinguishing between inflows, i.e., water reaching the catchment
in the form of precipitation, and outflows, including surface runoff, field evaporation,
irrigation, and groundwater recharge. An understanding of the hydrological cycle helps in
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the sustainable management of water resources, especially during dry periods, as well as
in making informed decisions regarding spatial planning.

In their work, Li et al. (Contribution 1) studied water balance components. They
assessed the temporal and spatial distribution of surface runoff, actual evapotranspiration,
and groundwater recharge in an arid area above the New Asyut Barrage (NAB) region in
the Nile Valley in Upper Egypt. The authors used the WetSpass-M model for the period
2012–2020 in their calculations. The model input data were presented as raster maps, with
such variables as the monthly meteorological data (temperature, precipitation, and wind
speed), potential evapotranspiration, and leaf area index, as well as an elevation model,
slope, land cover, irrigated area, soil map, and depth to ground water. The annual, seasonal
(four seasons), and monthly scales were considered. The results showed that, at the annual
scale, the groundwater recharge varied from 0 to 384 mm year−1, the interception from 0 to
300 mm year−1, surface runoff from 0 to 1198 mm year−1, and evapotranspiration from 0.6
to 2910 mm year−1 in the study area. The months with the highest/lowest groundwater
recharge were , September/January for evapotranspiration, and October/September for
runoff. The northeast and southwest parts of the NAB experienced lower recharge than the
other parts. The variability in recharge and evapotranspiration across different soil types
was also shown.

The relationships between the monthly precipitation and irrigation water and the
amount of real evapotranspiration, groundwater recharge, and surface runoff were found.
A significant influence of the change in land use from agricultural to built-up areas with a
decrease in the groundwater recharge, an increase in evapotranspiration, and an increase
in surface runoff was identified.

Other authors of the articles in this section studied selected components of hydro-
logical balance. Thus, Yang et al. (Contribution 2) dealt with groundwater, Augas et al.
(Contribution 3)—snow, and Blagojević et al. (Contribution 4)—river flows.

Yang et al. (Contribution 2) studied the characteristics of the groundwater distribution
of the middle and lower reaches of the Songhua River, an important agricultural region in
northeastern China. The SWAT model, which was calibrated on the data from Tongjiang
station, was used to simulate the runoff. Data from the period 2008–2016 were used in mod-
elling. The MODFLOW model was introduced to compare and assess the simulation results
of the SWAT model, which ascertained the characteristics of the shallow groundwater
distribution and its renewal, recoverable volume, and groundwater levels in the Songhua
River basin, divided into 32 sub-basins. The long-term changes in shallow aquifer water
storage were identified; the rises in several sub-basins, with water resources predominantly
derived from surface water, correspond with an increasing trend in precipitation from 2008
to 2016. The strength of the increase in the water storage in shallow aquifers is spatially
diverse. Using the groundwater balance equation, it was found that the region is in a
healthy extraction condition. When considering water storage and annual runoff, the driest
year was 2011, while the wettest years were 2014 and 2016. Precipitation was identified as
the primary source of groundwater recharge. Water loss can be assigned to absorption by
plant roots from the superficial water layer. As regards the potential evapotranspiration, an
increase in the 21st century was forecasted in the study area. The effectiveness of the SWAT
and MODFLOW models in the study region was found.

In their paper, Augas et al. (Contribution 3) presented an extension of the monolayer
model of a semi-distributed hydrological snow model (HYDROTEL) to a multilayer model
that considers snow to be a combination of ice and air, while accounting for freezing
rain. In the new model, some fundamental equations were modified, while the overall
computational structure was preserved. The inclusion of new parameters was limited. The
study was conducted at three stations in Canada using data from the period 2006–2011
(one station) and 2014–2017 (two stations). The performance measures (KGE, RMSE, and
NSE) of the multilayer snow model for various parameter sets showed an improvement in
comparison to the monolayer model. It was found that the multilayer model provides more
precise estimates of the maximum snow water equivalent and total spring snowmelt dates,
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which is a result of the model’s greater sensitivity to atmospheric thermal conditions. The
authors emphasised that although the multilayer model generally improves the estimation
of snow height, it shows excessive snow densities during the spring snowmelt. However,
it seems that this model has the potential to improve the simulation of spring snowmelt,
solving a common problem of the monolayer model.

The work of Blagojević et al. (Contribution 4) was devoted to detecting annual and
seasonal changes in river flows using marginal distributions of daily flows. The analysis
was carried out on daily flow sequences from ten river cross sections in Serbia, taking into
account changes between two 30-year periods: 1961–1990 and 1991–2020. The probabilistic
seasonal runoff pattern was constructed by determining quantiles from the marginal
distributions of daily flows for each day of the year. By applying Fourier transform to the
statistics of the daily flows’ partial series, smooth periodical functions of the distribution
parameters throughout the year and, consequently, of the quantiles were obtained. The
decrease in runoff volume in most catchments was detected at the annual and seasonal
scales (four seasons) with the strongest change of −37%. The change in runoff timing shown
as the shift in the centroid date was also noted at the annual scale indicating an earlier
occurrence of dry and average conditions. The main results are based on comparisons
between the dry, average, and wet zones of hydrological conditions defined by quantiles of
daily flows for selected probabilities. The authors noted that the relative change in runoff
volume is most pronounced during extremely dry winter conditions, and the annual time
shift is the largest in the dry and average zones.

2.2. Hydrological Forecasting

In this Special Issue, four papers were dedicated to hydrological forecasting. Hydro-
logical forecasting, based on advanced hydrological models and historical data, enables
the prediction of future hydrological conditions and the risk of natural disasters, which is
important for effective water resources management.

In their work, Wang et al. (Contribution 5) introduced a hybrid machine learning
model for river discharge forecasting. The authors used the LSTM (long short-term mem-
ory) model combined with variational mode decomposition (VMD) and principal com-
ponent analysis (PCA). The study was conducted at the Waizhou station in the Ganjiang
River Basin, China. Using the PCA method, stationary components were identified from
130 circulation indexes. The results confirm that the VMD-LSTM-LSTM model effectively
addresses the issue of the low prediction accuracy at high flows caused by a limited number
of samples. Compared to the single LSTM and VMD-LSTM models, this comprehensive
approach significantly enhances the model’s predictive accuracy during the flood season.

Xu et al. (Contribution 6) developed a hydrological real-time prediction model for
runoff calculation that combines the Shuffled Complex Evolution-University of Arizona
optimisation algorithm with the general unit hydrograph method. The main objective was
to investigate the applicability of the general unit hydrograph in runoff calculations and
its effectiveness in predicting flash flood events. In addition, the authors investigated the
influence of changing the parameters of the general unit hydrograph on flood simulations
and conducted a comparative analysis with the traditional Nash unit hydrograph. Data
from 53 flood events were used. The results confirm that the general unit hydrograph
method significantly reduced the calculation errors, improved the forecast accuracy, and
significantly reduced the time difference between the peak-to-current time difference,
thereby enhancing the simulation accuracy. The new model also showed robustness across
various flood scenarios.

Kim et al. (Contribution 7) investigated the impact of model spatial resolution on
streamflow prediction using high-resolution scenarios and parameter estimation. The study
was conducted for the Geumho River catchment in South Korea using weather research
and the forecasting hydrological modelling system with spatial resolutions of 100 m, 250 m,
and 500 m. An automatic calibration tool based on the model-independent parameter
estimation and uncertainty analysis method was developed. Two flood events with distinct
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origins were selected: the first flood resulted from a brief intense rainfall that occurred
after long-term precipitation, while the second flood was caused by sudden heavy rainfall
triggered by the impact of Typhoon Hinnamnor during very dry conditions. For both
rainfall events, a significant improvement was observed after event-specific calibration at
all resolutions. The highest quality of the model was shown for the spatial resolution of
250 m.

In their paper, Simeone et al. (Contribution 8) investigated the performance of two
widely used hydrological models: the national water model and the national hydrologic
model in characterising drought. The models’ ability to classify periods of drought and non-
drought was assessed, the error components were quantified, and the models’ simulations
of drought intensity, duration, and severity were evaluated. The study used data from over
4500 stations in the United States from 1985 to 2016. The analysis showed that the former
model better simulated the timing of the drought flows, while the latter better predicted the
drought flows. The authors noted that both models performed better in the wetter eastern
regions than in the drier western regions of the country. Both models performed worse in
regions that were most susceptible to drought.

2.3. The Influence of Anthropopressure on the Changes in River Flow

Anthropogenic pressure, including the construction of dams and barrages, urbanisa-
tion, river channel regulation, and agriculture affect the natural flow regime in the river,
changing the timing, magnitude, and frequency of low and high flows.

In their study, Bărbulescu and Mohammed (Contribution 9) analysed changes in
water discharge in the Buzău River after building one of Romania’s largest dams, the
Siru dam. The modifications in hydrological patterns were emphasised by a complex
technique that involves the decomposition of time series into trends, seasonal indices,
random components, and intrinsic mode functions. The hypothesis of stationarity in the
flow series before and after construction of the dam was rejected for all series, with positive
trends confirmed by the Mann–Kendall test. The multifractal analysis showed two distinct
data series patterns. The authors observed a decline in seasonality indices, indicating
a reduction in extreme events (high flows and floods). Empirical mode decomposition
revealed different short-term and long-term patterns in the series. The main result, that
there was a significant alteration in the river discharge after the dam’s inception, provides
a scientific background for flood modelling in the study area.

Mańko (Contribution 10) studied the impact of Międzyodrze revitalisation, including
channel clearance and hydraulic structure repairs, on the flow patterns in the estuary of the
Odra River in Poland. He used three computational scenarios: (1) treating Międzyodrze
as an uncontrolled floodplain, (2) excluding Międzyodrze from the flow (as with past
models), and (3) incorporating the hydraulic capacity of selected channels with hypothetical
restoration. The computations were supported by the Hec-Ras software. The analyses
and deductions validated the thesis proposed in this study that the potential process of
channel dredging and renovation of the hydraulic infrastructure in Międzyodrze will
significantly influence the flow distribution within the lower Odra River network. The
curvilinear relationship between the global roughness coefficient and the prevailing flow
was identified. The impact of the Międzyodrze area on water distribution in the lower
course of the Odra River was successfully demonstrated.

3. Conclusions

The future of water resources management research depends on the understanding of
the hydrological cycle and the interrelation of meteorological, hydrological, environmental,
socioeconomic, and technological factors. The editors of this Special Issue guarantee that
the work presented herein constitutes a substantial contribution to research and that the
methodologies proposed by the authors will facilitate more precise modelling and forecast-
ing of phenomena, thereby advancing understanding of water resources management.
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Abstract: Hydrologic models are the primary tools that are used to simulate streamflow drought
and assess impacts. However, there is little consensus about how to evaluate the performance of
these models, especially as hydrologic modeling moves toward larger spatial domains. This paper
presents a comprehensive multi-objective approach to systematically evaluating the critical features in
streamflow drought simulations performed by two widely used hydrological models. The evaluation
approach captures how well a model classifies observed periods of drought and non-drought,
quantifies error components during periods of drought, and assesses the models’ simulations of
drought severity, duration, and intensity. We apply this approach at 4662 U.S. Geological Survey
streamflow gages covering a wide range of hydrologic conditions across the conterminous U.S. from
1985 to 2016 to evaluate streamflow drought using two national-scale hydrologic models: the National
Water Model (NWM) and the National Hydrologic Model (NHM); therefore, a benchmark against
which to evaluate additional models is provided. Using this approach, we find that generally the
NWM better simulates the timing of flows during drought, while the NHM better simulates the
magnitude of flows during drought. Both models performed better in wetter eastern regions than in
drier western regions. Finally, each model showed increased error when simulating the most severe
drought events.

Keywords: surface water; drought; United States; hydrological modeling; evaluation

1. Introduction

Drought is a costly natural disaster, sometimes causing billions of dollars’ worth of
damage, and has wide-ranging impacts, from agriculture to public health [1–3]. While
drought has received much attention in the hydrologic literature [4], drought is a com-
plex phenomenon that is difficult to simulate [5–9]. Droughts are commonly separated
into four categories: meteorological, agricultural (or soil moisture), hydrological, and
socioeconomic [10–12]. Meteorological, agricultural, and hydrological droughts occur in
physical systems, whereas socioeconomic droughts are the social and economic impacts
of drought [12,13]. We focus on streamflow drought, which is a subset of hydrological
drought, that Van Loon [11] defines as follows: “a lack of water in the hydrologic system
manifesting itself in abnormally low streamflow in rivers.” Streamflow drought can be
costly and negatively impact many sectors that rely on streamflow quantity, quality, and
timing, such as ecosystem, agricultural, navigation, and municipal services [1].

Due to the importance of streamflow drought, there have been ongoing efforts to
simulate and predict drought occurrence and severity [8,14–19]. Many studies and models
have shown skill in simulating certain drought events; however, there are many different
types of drought indicators [11,20,21], and the methodologies used to evaluate models are
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inconsistent [22]. Differences in the methodologies used to evaluate drought simulations
can make model intercomparison difficult, as is the case more broadly in hydrology [23,24].

Streamflow drought is different to normal low flows. Although droughts may in-
clude periods of low streamflows, a recurring seasonal low-flow event is not necessarily
a drought [25]. Numerous studies have aimed to quantify low flows (e.g., 7-day mean
low-flow (Q7) [25]) and evaluate how well models simulate low-flow metrics [26–30], but
these metrics alone are inadequate for evaluating model simulations of drought as they
do not address the differences between low flows and drought, and often target a specific
low-flow magnitude like Q7 instead of evaluating the full period of a drought.

Common model evaluation metrics, like the Nash–Sutcliffe efficiency (NSE; [31]),
are often more sensitive to high flows than low flows, making them a poor indicator of
predictive accuracy for drought [32]. To address this issue, drought studies sometimes use
evaluation metrics on standardized drought indices (e.g., standardized streamflow index)
or streamflow percentiles [11] instead of directly on the streamflow [6,33,34]. This offers
some improvement, but often still focuses a large percentage of the evaluation on non-
drought periods. Streamflow droughts are, by definition, abnormal events (often between
the 2nd and 30th percentile [35,36]), meaning that, generally, 70–98% of streamflow data
represent non-drought conditions. Applying metrics across non-drought periods may
inflate or deflate model performance metrics, making them less indicative of a model’s
performance when simulating drought [32].

Studies also use different methods of identifying drought events, making model
intercomparison and benchmarking difficult. For example, drought can be identified with
a fixed method (where a river is in a drought when it drops below a single fixed long-term
level) or a variable method (where the drought threshold varies seasonally based on how
much water is typically available in that season) [7,18,35,37].

Previous efforts to evaluate the simulation of streamflow drought vary substantially
(e.g., using different temporal resolutions, periods or seasons of interest, methods for
drought characterization, and different methods for evaluation), which makes model eval-
uation intercomparisons challenging. One reason for this is that the focus of traditional
hydrologic modeling has been on local or regional catchment scales [23], where evaluations
typically vary study by study, depending on the application or location. Similarly, studies
sometimes focus on a particular drought event (e.g., [33,34,38]), which by design is not
conducive to model evaluation intercomparisons. However, as hydrologic modeling moves
to encompass national and larger spatial scales, and toward longer (multi-year) runs, there
is a need to provide systematic, comprehensive, comparable metrics to evaluate the stream-
flow drought modeled across hydroclimatic regions. Previous model intercomparison
studies have provided systematic evaluation approaches for Earth system models [39]
and long-term streamflow performance [24], but Towler et al. [24] only looked at one
low-flow metric.

Given the shift toward standardized approaches to the construction and evaluation of
national-scale hydrologic models and the importance of streamflow drought, we propose a
systematic and comprehensive approach to evaluating simulations of streamflow drought.
We demonstrate the approach through an assessment of the streamflow drought simulation
performance of two large-scale hydrological modeling applications in the conterminous
United States (CONUS): the National Water Model version 2.1 application of WRF-Hydro
(NWM; [40]; accessed through NOAA’s Office of Water Prediction) and the National
Hydrologic Model application of the Precipitation-Runoff Modeling System version 1.0
three-step calibration with routing (NHM; [41–43]).

Specifically, we use three categories of metrics to evaluate model simulations of
streamflow drought:

1. Classification: How well the models simulate the occurrence of observed drought
vs. non-drought periods [44] according to Cohen’s kappa [45]. Evaluating model
simulation of drought occurrence is one of the simplest but most important measures
of model performance in drought simulation.

10



Water 2024, 16, 2996

2. Error Components: How well the models simulate the timing, magnitude, and vari-
ability of streamflow during periods of drought according to Spearman’s r [46], percent
bias, and the ratio of standard deviations, respectively. This approach examines how
errors in streamflow are split across these three components [47].

3. Drought Signatures: How well the models simulate drought duration, intensity, and
severity according to the normalized mean absolute errors of annualized data. These
three drought characteristics are widely used by the research community and play a
large role in the impact of droughts.

This suite of metrics captures many facets of streamflow drought simulation and
evaluates them across many hydrologic environments. This approach extends existing
model evaluations of drought (e.g., [48]), with additional focus on multi-objective eval-
uation that emphasizes the critical features of streamflow drought which are relevant to
understanding error. The evaluation of these models across a wider number and density of
gages provides a more robust understanding of models [49] and importantly captures the
heterogeneity in drought responses, which, especially in mountainous regions, can have
major implications for regional responses and water security [50]. Applying this compre-
hensive evaluation in a benchmarking framework for the intercomparison of the NWM and
NHM modeling application allows for an improved understanding of the differences and
potential limitations and benefits of each model [24]. We apply advances from large sample
intercomparison studies [24,49,51] to continue to build on studies examining streamflow
drought simulations (e.g., [48]).

2. Materials and Methods

Prior to evaluating streamflow drought using the three categories of metrics, we
acquired data at stream gages with sufficient historical records, identified stream gages in
regions with similar hydroclimatic characteristics, and identified periods of streamflow
drought that were suitable for the demonstration of the drought evaluation framework.

2.1. Modeling Applications and Observed Data
2.1.1. Modeling Applications

The NHM and NWM are similar in their temporal and spatial extent (CONUS-wide),
in which the hydrologic state and flux variables are simulated, and in their use in hydrologic
estimation and research. However, these modeling applications have some key differences,
including the spatial and temporal resolution, parameter estimation techniques, parameter
datasets, calibrations, and forcings. The NHM is forced with the 1 km Daymet version 3
product [52], whereas the NWM is forced with the NOAA-produced 1 km Analysis of
Record for Calibration version 1.0 forcing dataset [53]. The NWM calculates states and
fluxes on a 1 km grid, while the NHM uses hydrological response units and a stream
network as the primary geospatial structure [24]. The NWM runs on an hourly timestep,
while the NHM is daily.

While the model calibration details can be found in [24,43], here we highlight several
key aspects of calibration for each model. The NWM calibrates its parameters for hourly
streamflow at 1378 observation stations, mostly in natural (unimpaired) basins. The
calibration uses a modified Nash–Sutcliffe efficiency (NSE; [31,54]), which includes the
standard NSE, as well as a log-transformed NSE. Then, the NWM employs hydrologic
similarity to regionalize the parameters for the remaining watersheds. On the other hand,
the NHM considers multiple objectives in a stepwise manner in its calibration routine.
First, it balances the water budgets in each hydrologic response unit (HRU), considers the
streamflow timing based on a statistically generated dataset, and finally calibrates to the
observed streamflow at 1417 gage locations.

Both the NWM and the NHM have been evaluated for their performance in simulating
streamflow (e.g., [24,27,55–58]), but have not yet been evaluated against other models for
simulating streamflow drought; they thus serve as good candidates for our methodology.
We used daily mean streamflow simulations direct from the NHM and averaged the hourly
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streamflow simulations from the NWM into a daily mean streamflow for each gage of
interest. A daily timestep was chosen for comparison to preserve as much of the event
timing relationship as possible while still accommodating common modeling applica-
tion timescales (many model applications simulate results at a daily timestep). Further
descriptions of these modeling applications and calibration techniques are explained in
Towler et al. [24] and Hay et al. [43].

2.1.2. Observed Data

The drought performance of both model applications was evaluated at 4662 U.S.
Geological Survey (USGS) stream gages across CONUS. We subset the stream gage dataset
for benchmarking the hydrologic modeling applications described in Foks et al. [59] to
include gages with at least 16 years of daily observations of flow (a longer record was
needed to obtain sufficient data during drought periods). The study period spans the
climate years (CYs, April 1–March 31) 1985–2016, which is the overlap between the NWM
and the NHM historical simulations. Climate years more consistently contain the entire
annual low-flow period than calendar years (January through December) or water years
(October through September; [60,61]) in CONUS.

2.1.3. Evaluating Regional Performance

We categorized the stream gages into 12 hydrologic regions (Figure 1), defined by their
correlation in monthly flows among the minimally altered gages in the Hydro-Climatic
Data Network (HCDN; [62]), following approaches by McCabe and Wolock [63]. We then
evaluated the regional differences in model performance when simulating streamflow
drought by examining the model performance across all stream gages in each region. These
same regions were used in the regional drought analysis by Hammond et al. [35]. We
attributed stream gages not within the HCDN to the region of the nearest HCDN gage.
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2.2. Identification of Drought

We characterized drought using fixed and variable streamflow percentiles and thresh-
olds at the 5th, 10th, 20th, and 30th percentiles, as implemented by Hammond et al. [35].
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We converted the daily streamflow observations and model simulations to percentiles for
all gages. Within observations or a single model, percentiles allow for the fair classification
of drought across different hydroclimatic regions. Percentiles allow for more direct com-
parisons of low-flow anomalies (i.e., drought) between observations and models without
the influence of model bias, which we evaluate elsewhere. The streamflow percentiles
were computed with the Weibull plotting position (r/(n + 1), where r is rank and n is
the number of data (e.g., [64])). Two types of percentile-based threshold approaches were
used: (1) fixed—all modeled or observed flows in the period on record are used to calculate
one fixed threshold, and (2) variable—unique thresholds are calculated for each day of
the year using only the values for that day from all years on record (Figure S1a,b). We
implemented a modified version [65] of the combined threshold level and continuous dry
period methods developed by Van Huijgevoort et al. [66] to handle the zero-flow measure-
ments (<0.00028 cubic meters per second; <0.01 cubic feet per second). This method breaks
ties between zero-flow days for percentile rankings based on the number of preceding
zero-flow days, with days with more preceding zero-flow days receiving lower percentile
rankings. Droughts were classified according to whether the streamflow was below the
5th, 10th, 20th, or 30th percentiles (Figure S1c), which roughly correspond to the extreme,
severe, moderate, or abnormal drought classifications used by the U.S. Drought Monitor
(https://droughtmonitor.unl.edu/, accessed 1 November 2023). This created a time series
of drought presence and absence for each stream gage, threshold, and simulated and
observed streamflow dataset. For each climate year, we calculated the following:

1. Drought duration: the total number of days below the threshold (days);
2. Drought severity: the sum of flow departures or deficit below the threshold (cms-days);
3. Drought intensity: the maximum drought intensity (minimum percentiles).

2.3. Evaluation for Drought Performance

We evaluate the performance of model simulations of drought by examining the
goodness of the match [44] between modeled and observed events (i.e., event classification)
and the quality of the simulation for matched events [44]. To evaluate the quality of the
simulations during drought, we examine the error components during drought events
(Spearman’s r, ratio of standard deviations, and percent bias) and the errors in the important
characteristics of drought (drought signatures of duration, severity, and intensity) aggre-
gated to the climate year level. Table 1 shows the streamflow drought statistical metrics
included in our systematic evaluation. We evaluated performance in three categories—
“Event Classification”, “Error Components”, and “Drought Signatures”—which are de-
scribed in the subsections below.

Table 1. Streamflow drought statistical metrics for daily streamflow drought evaluation for different
metric categories. Additional calculation details can be found in Text S1.

Category Statistic Description Range
(Perfect) Comments

Event
Classification

Cohen’s
kappa

Cohen’s kappa statistic for inter-rater
reliability [45] −1 to 1 (1)

A measure of agreement relative
to the probability of achieving
results by chance.

Error
Components

Spearman’s r Spearman’s rank correlation coefficient −1 to 1 (1) A nonparametric estimator of
correlation for flow timing.

Ratio of
standard
deviations

Ratio of simulated to observed standard
deviations (for the scorecard this is
presented as the absolute deviation from
the target of 1)

0 to Inf (1) Indicates if the flow variability is
being over or underestimated.

Percent bias
Percent bias (simulated minus observed)
(for the scorecard this is presented as the
absolute percent bias)

−100 to Inf (0)
Indicates if total streamflow
volume is being over or
underestimated.
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Table 1. Cont.

Category Statistic Description Range
(Perfect) Comments

Drought
Signatures

Drought
Duration

Normalized mean absolute error (NMAE) in
the annual time series of drought duration,
i.e., the sum of days of drought each year
for a given threshold.

0 to Inf (0)
Indicates how well the model
simulates annual drought
durations.

Drought
Intensity

NMAE in the annual time series of the
distance the minimum percentile is below
the drought threshold, i.e., the overall
maximum distance below the threshold
for any drought during the year.

0 to Inf (0) Indicates how well the model
simulates annual minimum flow.

Drought
Severity
(Flow Deficit
Volume)

NMAE in the annual time series of drought
deficit volume in cubic meters per second-
days (cms-days), i.e., the sum of drought
deficits for all droughts during the year.

0 to Inf (0)

Indicates how well the model
simulates annual flow deficit.
This is a measure of drought
severity.

2.3.1. Event Classification Evaluation

Drought and non-drought periods were first classified for modeled and observed time
series data. Evaluating if the model can correctly classify drought is one of the simplest but
most important measures of model performance in drought simulation. If a model cannot
correctly simulate when a drought is occurring, the quality of the rest of its predictions in
the context of drought may not be particularly useful. We used Cohen’s kappa to evaluate
how well the simulated drought periods capture observed drought periods considering
each day independently. Cohen’s kappa measures the accuracy of the model classification
and accounts for class imbalance in cases where categorical results are not evenly balanced
(i.e., for the 20th percentile drought threshold, 80% of days will be non-drought). Cohen’s
kappa compares the relative observed agreement (true positives and true negatives from a
contingency table or confusion matrix) to the expected agreement. Landis and Koch [67]
provide guidelines for interpreting Cohen’s kappa. They describe values < 0 as indicating
no agreement and 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as
substantial, and 0.81–1 as almost perfect agreement [67]. Cohen’s kappa was calculated
as follows:

k =
po − pe

1− pe
(1)

where po is the relative observed agreement and pe is the expected agreement or probability
of agreement.

2.3.2. Error Components Evaluation

Commonly used metrics of efficiency like NSE are aggregations of model error com-
ponents, but more information and insights can often be obtained when these error com-
ponents are decomposed [47,68,69]. Gupta et al. [47] decomposed NSE and showed that
“NSE consists of three distinctive components representing the correlation, the bias, and a
measure of relative variability in the simulated and observed value.” We evaluated these
three individual components of model error rather than a single aggregated metric in order
to provide insight into what might be driving model error during periods of drought.
To evaluate the model performance during drought periods, we calculated the correla-
tion (which shows errors from timing), bias (which shows errors in the magnitude of the
streamflow distribution), and ratio of standard deviations (which evaluates errors in the
variability of the streamflow distribution) of the simulated flows corresponding to the
observed droughts. We followed a similar approach to that used by Pushpalatha et al. [32]
(10th percentile of flow) and Pfannerstill et al. [30] (5th and 20th percentiles of flow) for
evaluating the model performance for low flows and calculated our metrics only on values
corresponding to drought events.
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To evaluate the models’ ability to reproduce the sequence of the observed time series, in
other words, the timing of streamflow, during drought periods, we calculated Spearman’s
rank correlation coefficient [70,71]. Being based on the ranks of the flow magnitudes,
Spearman’s r depends only on the monotonicity of the relation between the observed and
simulated flows. As a result, Spearman’s r is a better estimator of the timing correlation
than the more common Pearson estimator for streamflow data [72], since it is resistant to
nonlinearity and skewness. Spearman’s r is often used to assess flow timing to determine
how well a model reproduces the relative position in time of flow values [24,73]. Our
calculations began in the same way as those for standard Spearman’s r, where the observed
and modeled streamflow are each ranked by magnitude across the entire study period.
After calculating ranks, however, we subset the data into periods with observed droughts
at the various threshold levels of interest; for example, we took the lowest 20% of flow
values for the 20th percentile drought threshold. Spearman’s r is calculated on these subsets
as follows:

Spearman’s r =
cov
(

R(obsQ)obsdrought
, R(simQ)obsdrought

)

sigma
(

R(obsQ)obsdrought

)
∗ sigma

(
R(simQ)obsdrought

) (2)

where R(obsQ) and R(simQ) are the ranks of observed and modeled discharges, which are
then subset into periods of observed drought. When the streamflow was at zero, we used
the continuous dry period method, as described in Section 2.2, to break ties for ranking.

To investigate whether the model over or underestimated the total streamflow volume
during drought periods, we calculated the percent bias of the observed flows below the
drought threshold versus the modeled flows below the drought threshold ([24]; note that
these are thresholds of the equal streamflow percentile, not of the streamflow volume). Our
implementation of percent bias for drought flows focused only on flows below a threshold,
like the implementation in Yilmaz et al. [74], although they used a 30th percentile threshold
while we address a range of thresholds. Percent bias is calculated as follows:

PBias = 100 ∗
mean

(
simQsimdrought

)
−mean

(
obsQobsdrought

)

mean
(

obsQobsdrought

) (3)

To provide a first-order estimate of errors in the statistical distribution of simulated
flow magnitudes during periods of drought, we calculated the ratio of standard deviations
between the modeled and observed streamflow (rSD) [24],

rSD =
σsimdrought

σobsdrought

(4)

This metric shows the relative variability between simulation and observations [24,47,75]
and indicates if the model has over- or under-simulated the variability during periods of
drought. The combination of rSD and percent bias evaluates whether the distribution of
the simulated drought flows matches the distribution of the observed drought flows. Note
that in the scorecard summaries, we present the absolute percent bias and the difference in
the rSD from 1 so that both metrics can be presented in a range from better to worse.

2.3.3. Drought Signatures Evaluation

Duration, intensity, and severity are fundamental characteristics of drought events [76–78]
and are widely used throughout the literature covering drought. The duration, intensity,
and severity of a drought influence the impacts that the event has on socioeconomic and
ecological systems [79]. It is important to evaluate how well models simulate these three
drought characteristics as they are so heavily used by the research community and play
a large role in the impact of droughts. To capture the event characteristics throughout
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all periods of interest, we aggregated the drought events identified each year to deter-
mine the annual signatures of drought in each given climate year. We built on a previous
methodology dedicated to hydrologic signatures [80,81] to understand the signatures and
characteristics of droughts. The drought signatures we present are duration, severity, and
intensity, which capture a range of the important characteristics of drought [35]. Annual
resolution signatures provide a continuous and matched time series between simulated
and observed data. We then calculated the normalized mean absolute error (NMAE) on
this annual time series to compare across stream gages and models:

NMAE =
∑n

i=1|simi − obsi|
n

× 1
mean(obs)

(5)

where n is the number of years, and simi and obsi are the simulated and observed drought
signature values (duration, severity, or intensity), respectively, for year i. Evaluating several
different drought signature attributes is important as different indicators capture different
information [35,82].

3. Results

We present our systematic model evaluation results for each metric category in three
sections: event classification (Section 3.1), error components (Section 3.2), and drought
signatures (Section 3.3). Figure 2 presents a scorecard with an overview of the model
performance across all metrics for each model, threshold, and drought characterization
method, with more detailed results presented in the following sections. Detailed result data
from this systematic evaluation are published for both the NWM [83] and the NHM [84], so
that they may be used as benchmarks against which other hydrologic modeling applications
can be compared.
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hen’s kappa between thresholds (for both the fixed and variable methods) is substantially 
larger than the difference between the modeling applications, with the NWM only show-
ing the slightly better detection of drought events than the NHM, but there is a two-fold 
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Figure 2. Scorecard comparing median model evaluation results for the National Water Model
(NWM) and the National Hydrologic Model (NHM). The scorecard columns are the models at each
of the 5th, 10th, 20th, or 30th streamflow percentile thresholds. The rows are the metric categories
of drought, namely event classification, error components, and drought signatures (Table 1), for
fixed (top) and variable (bottom) drought methods. The metric values are in the corresponding box.
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Percent bias is the absolute value of percent bias. The ratio of standard deviations is the absolute
difference in the ratio of standard deviations from 1. Drought signatures are the normalized mean
absolute error (NMAE) of drought duration, intensity, and severity.

3.1. Event Classification

The NWM and NHM simulated droughts had moderate agreement with the observed
droughts (Cohen’s kappa 0.41–0.60) for the fixed and variable methods at the 20th and
30th thresholds, but had only fair agreement (0.21–0.40) when simulating more severe
droughts (5th and 10th percentiles; Figure 2). This difference highlights that examining
both the fixed and variable methods over a range of thresholds is necessary in relaying
the range and patterns of performance. The NWM had slightly but consistently higher
Cohen’s kappa values than the NHM across both methods (fixed and variable) and all
thresholds of characterizing drought (Figure 2). Additionally, the difference in the Cohen’s
kappa between thresholds (for both the fixed and variable methods) is substantially larger
than the difference between the modeling applications, with the NWM only showing the
slightly better detection of drought events than the NHM, but there is a two-fold increase
in the median between the most extreme threshold (5th percentile) and most moderate
threshold (30th percentile) for each model and each method. Both modeling applications
classify drought events similarly for fixed and variable drought methods, although the
models have slightly more agreement between stream gages for the fixed drought methods
(Figure S2).

The examination of model performance over varying hydroclimatic regions is needed
to understand if hydrologic models can generalize and classify streamflow drought well
across large national scales. We found that the overall streamflow drought classification
performance of the NHM and the NWM varies by region, with regions in the wetter,
eastern CONUS typically showing the better classification of drought events than regions
in the drier, western CONUS (Figure 3). This is consistent across percentile thresholds
and drought classification methods. One exception to the generally poorer drought event
classification in the west is the wetter, most northwestern region of CONUS (region 12).
The northwest region has a Cohen’s kappa that is slightly higher than the national median
for both the fixed and variable methods for the NHM and generally for the NWM, except
for the 5th and 10th percentile fixed thresholds and the 30th percentile variable threshold.

There were some minor differences between the modeling applications in the west
and east of CONUS, with the NHM classifying drought occurrence slightly more accurately
than the NWM in the Northwest, California, and Interior West for all threshold types.
The NWM classifies drought occurrence more accurately at the variable 20th percentile
threshold than the NHM for much of central and eastern CONUS, but the NHM performs
better in the Northwest and California and Interior West regions.

There was also more regional variability for the fixed threshold than the variable-
threshold classification (Figures 3 and S3). The NWM also outperforms the NHM in eastern
regions by a wider margin for the fixed method. The median values for each approach
were similar across all thresholds, with a Cohen’s kappa between 0.41 and 0.47 for the 20th
percentile threshold.

To further distinguish the model performance beyond regions, we examine the model
performance across various basin characteristics like aridity, the drainage area, and the
baseflow index (Figure 4; the baseflow index (BFI) is the long-term fractional contribution
of subsurface flow to streamflow). Both modeling applications had a poorer performance
with regards to classifying drought in more arid watersheds using the fixed and variable-
threshold methods (Figures 4d and S4). We found that both the NHM and NWM showed
the worst simulations of drought occurrence for the 20% of stream gages with the highest
BFI values (similar to [85,86]) and struggled for the 20% of stream gages with the lowest
BFI (Figure 4e). The NHM and NWM also classified drought occurrence more accurately
for moderate-sized basins (drainage area greater than 127.9 km2 and less than 3238 km2)
than for the largest and smallest basins (Figure 4f).
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Figure 3. Maps comparing drought event classification results using Cohen’s kappa for (a) the Na-
tional Hydrologic Model (NHM) and (b) the National Water Model (NWM) for the variable drought
method at the 20th percentile threshold. Darker colors indicate more agreement. The (c) box plot
shows the results by region. The y-axes represent the 12 regions described in Figure 1. The x-axes
represent the respective Cohen’s kappa values. The NWM is in blue. The NHM is in red. The vertical
black line is the median statistic value across all stream gages for both models. The event classification
results using the fixed drought method are presented in the Supplementary Materials.

3.2. Error Components

Across all thresholds, the Spearman’s r of the NWM was higher than that for the NHM,
indicating that the NWM more accurately simulates the timing of streamflows during drought
(Figures 2, S5 and S6). Like drought classification, the differences in Spearman’s r between
thresholds were larger than the differences between models for the fixed method (Figure 2).
The timing of streamflows during drought was also more accurately simulated in wetter
than dry regions. The NWM performs better in most regions, especially in the Northeast
and Northern Mid-Atlantic regions, although the NHM does better in three out of the four
westernmost regions (Northwest, Rocky Mountains, California and Interior West) for fixed-
threshold drought (Figure S5). Both the NHM and NWM captured some of the timing of flows
during the observed droughts, but not all, with overall moderate correlations for the variable
threshold across percentile thresholds (NWM, 0.58–0.69; NHM 0.48–0.58; Figure 2; [87]).
Performance for the fixed threshold was worse for both modeling applications, especially the
more severe droughts (e.g., 5th percentile) where both models had relatively weak correlations
with the observed flows during drought (NWM, 0.26; NHM 0.24).

Overall, the NWM had greater absolute bias than the NHM across all thresholds,
indicating that the NHM more accurately simulates the streamflow volume during drought
(Figure 2). Both modeling applications overestimate the streamflow during fixed drought
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(20th percentile threshold median percent bias across stream gages of 9.4% NHM, and
34% NWM), which is in line with previous studies indicating that models commonly
overestimate low flows [88–90]. Both modeling applications have lower median percent
biases for streamflow during variable drought, although this bias was much higher for
the NWM (20th percentile threshold median percent bias of −3.3% NHM and 22% NWM;
Equation (3)). Consistent with the lower median bias, the bias in the NHM was also
more balanced across sites: many sites over or underestimate drought flows, whereas
the NWM overestimates drought flows for most sites, particularly in the central CONUS
(Figure 5). Between modeling applications, the differences in bias were larger for more
extreme droughts (5th and 10th percentile thresholds) than for modest droughts (20th
and 30th percentile thresholds) (Figure 2). Additionally, the biases for individual stream
gages were not strongly correlated between modeling applications (correlation for fixed
drought = 0.22, correlation for variable drought = 0.25). The percent bias varies substantially
by region, with smaller absolute biases in the wetter Northeastern and Northwest regions,
but larger positive biases for dry western regions (No. 6, 9, 10, and 11), especially for the
NWM (Figures 5c and S7c). While the median percent biases were well balanced across the
CONUS for moderate droughts for the NHM and moderately overestimated flow for the
NWM, it is important to note that the median absolute percent biases ranged from 39.5%
for the 30th percentile NHM to 79% for the 5th percentile NWM (Figure 2) and that for
certain stream gages, particularly in southwestern regions, the percent biases exceeded
400% (Figure 5).
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Cohen’s kappa comparing (a) the performance between the National Water Model (NWM) and the
National Hydrologic Model (NHM) with fixed and variable methods, (b) the performance between
the NWM and the NHM at 5th, 10th, 20th, and 30th percentile thresholds, (c) the performance at
reference vs. non-reference [91] and Hydro-Climatic Data Network (HCDN) vs. non-HCDN gages,
(d) the performance for various quantiles of aridity (Text S2), (e) the performance for various quantiles
of the baseflow index (BFI; Text S2), and (f) the performance for various quantiles of drainage area
(DA; Text S2). In cases where it is not explicit, the model performance is shown for the fixed method
at the 20th percentile threshold combining both NWM and NHM evaluations.
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Figure 5. Maps comparing the percent bias of flows during drought for (a) the National Hydrologic
Model (NHM) and (b) the National Water Model (NWM) for the variable drought method at the 20th
percentile threshold. Lighter points indicate better results, while blue represents overestimates and
red represents underestimates of flow. The (c) box plot shows results by region. The y-axis represents
the 12 regions described in Figure 1. The x-axis represents the respective percent bias values. The
NWM is in blue. The NHM is in red. The vertical black line is the median statistic value across all
stream gages. Note that boxplot values can be above or below the target for the statistic. Additional
error component results are shown in the Supplemental Information for Spearman’s r using fixed
(Figure S5) and variable methods (Figure S6), the percent bias using a fixed method (Figure S7), and
the ratio of standard deviations using fixed (Figure S8) and variable methods (Figure S9).

The difference in the ratio of standard deviations from its target value of 1 is higher
for the NHM than for the NWM across all drought thresholds (Figure 2). There is rela-
tively little agreement between each model’s ratio of standard deviations across stream
g ages (fixed drought Spearman’s r = 0.27; variable drought Spearman’s r = 0.30). The
spatial distributions of the ratio of standard deviations across the CONUS are variable
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(Figures S8 and S9). We generally see the lowest ratio of standard deviation differences
between the modeling applications and the lowest variability among stream gages in the
central eastern CONUS. The West, other than the Northwest, has high variability in the
ratios of standard deviations across stream gages. The NWM tends to overestimate the
variability of drought flows in these regions, while the NHM median ratio of standard
deviations is close to 1. Both modeling applications tend to underestimate the variability in
the Northeast.

3.3. Drought Signatures

The NHM and the NWM perform similarly when simulating drought signatures,
as measured by the NMAE values of the time sequence of the annual drought duration,
intensity, and severity values, compared to the variability between different signature types
and between different thresholds (Figures 2 and 6). Generally, both modeling applications
have lower errors for drought duration and intensity, and higher errors for drought severity
(Figure 2).
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better reproduces drought occurrence, as well as the timing and variability of flow during 
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deviations, respectively), whereas the NHM better reproduces drought intensity signa-
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needed to provide deeper insight into the models’ performance during hydroclimatic 
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Figure 6. Maps presenting the normalized mean absolute error for (a) the National Hydrologic Model
(NHM) and (b) the National Water Model (NWM) annual drought duration signature calculated
with the variable drought method at the 20th percentile threshold. Darker colors represent lower
errors between simulated and observed data. The (c) box plot shows the results by region. The y-axes
represent the 12 regions described in Figure 1. The x-axes represent the normalized mean absolute
error values. The NWM is in blue. The NHM is in red. The vertical black line is the median statistical
value across all stream gages. Additional drought signature results are shown in the Supplemental
Information for drought severity using fixed (Figure S10) and variable methods (Figure S11), drought
intensity using fixed (Figure S12) and variable methods (Figure S13), and drought duration using a
fixed method (Figure S14).
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Both the NHM and NWM simulate lower drought duration errors using fixed-threshold
methods than variable-threshold methods (Figure 2). Despite an overall difference of less
than 5% in the NMAE values for drought duration, the correlation between models at indi-
vidual stream gages is only moderate (fixed drought correlation = 0.81; variable drought
correlation = 0.76). Both modeling applications were better at simulating the drought
duration in the eastern and northwestern CONUS than in other regions. The better model
also varies from region to region. The NWM performs better than the NHM in the Central
Plains, but worse in the Southwest and California and Interior West.

Across all percentile thresholds, both the NHM and NWM have higher errors for
drought severity than for drought duration and drought intensity, especially in the Califor-
nia and Interior West, Rocky Mountains, and Northern central plains (Figures S10 and S11).
The NWM better simulates drought severity using the fixed drought method, while the
NHM better simulates drought severity using the variable drought method. Both the NHM
and NWM perform better at the 20th percentile threshold than at lower thresholds. Agree-
ment between the NWM and the NHM at individual stream gages is lower for severity
than for other drought signatures (fixed drought correlation = 0.56; variable drought corre-
lation = 0.64), likely because drought severity is a measure integrating drought duration
and intensity and because our drought duration and intensity signatures are standardized
(unitless), unlike our severity signature of flow volume, which is inherently correlated
with basin size and flow. Model performance is better in the eastern CONUS than in
the western CONUS, with many stream gages in the western CONUS having NMAEs
much greater than 1 (Figure 6). When simulating drought severity, the NWM tends to
outperform the NHM in wet regions (1, 2, 3, 4, and 12) while the NHM performs better in
drier regions (5–11).

Simulations of drought intensity are generally better than those of drought duration.
The NHM better simulates drought intensity for both the variable and the fixed 20th
percentile thresholds. The NWM, however, better simulates the 5th and 10th percentile
fixed-threshold drought intensity. The agreement between the NWM and NHM perfor-
mance for individual stream gages is greater for variable drought intensity than it is for
drought duration (fixed drought correlation = 0.80; variable drought correlation = 0.84).
Similar patterns emerge with regard to regional model performance, with a better ability
to simulate drought intensity in the Northeast and Northern Mid-Atlantic regions and a
poor ability in the western CONUS, apart from the coastal Northwest. The variability in
performance is much less for drought intensity than it is for drought severity. With the 20th
percentile variable-threshold drought method, the NHM performs better or equal to the
NWM in nearly all regions.

Overall, both modeling applications struggle to simulate drought signatures, with a
NMAE greater than 50% for all signatures except drought duration at the 30th percentile
threshold and drought intensity at the 30th and 20th percentile thresholds. Both modeling
applications show high error when simulating drought severity, with NMAE values ranging
from 0.76 for the NHM at the 30th percentile variable threshold to 1.43 at the NHM 5th
percentile variable threshold.

4. Discussion
4.1. Tradeoffs in Specific Model Performance

Each model has distinct tradeoffs when it comes to simulating aspects of drought.
The “better” model depends heavily on the defined drought threshold and the method
for determining drought severity (fixed or variable). We generally found that the NWM
better reproduces drought occurrence, as well as the timing and variability of flow during
droughts (as measured by Cohen’s kappa, Spearman’s r, and the ratio of the standard
deviations, respectively), whereas the NHM better reproduces drought intensity signatures
(for moderate and variable drought). Though our findings are consistent with those of
Towler et al. [24], the additional streamflow drought metrics used in this study are needed
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to provide deeper insight into the models’ performance during hydroclimatic drought that
the low-flow percent bias metric in Yilmaz et al. [74] cannot provide alone.

Tradeoffs in performance for different streamflow error components like magnitude
versus timing between hydrologic models are commonly identified in the literature, often
with results similar to our findings. Gudmundsson et al. [92] similarly found distinct
tradeoffs between models’ mean and correlation errors (like metrics of magnitude and
timing we use) when simulating European annual runoff cycles. Similar types of tradeoffs
extend to simulations of drought. Some of these differences may be due to different initial
development priorities for each modeling application (see Towler et al. [24], for modeling
application descriptions). For example, the development of the NWM has focused on flood
prediction and operates at an hourly timestep [93–95]. This may be the reason why the
NWM better simulates the timing of drought events than the NHM. Another consideration
is that the NHM was designed for water availability assessments, with a focus on simulating
water quantity or magnitude, and operates on a daily timestep [96]. The calibration of
the NHM included a step for matching the water balance volumes within each modeling
unit, another step with the identified headwater catchments being calibrated using several
non-streamflow datasets and a statistically generated streamflow to target the timing of
streamflow; finally, the observed streamflow is used within each headwater catchment
as a final calibration step [43]. Spatial frameworks are often different between models,
where the NWM runs on a 1 km grid, while the NHM is based on hydrologic response
units. These differences may have impacts on model performance. The calibration focus
on water balance may be the reason why the NHM is better able to simulate streamflow
volumes during drought rather than the timing. In the broader perspective, it is important
to recognize each model’s original purpose when interpreting the comparison results using
these streamflow drought metrics, and generally any metrics used in benchmarking.

4.2. Model Performance Exhibits Regional Variation with Better Performance in Wetter Eastern
Regions than in Drier Western Regions

The NWM and the NHM both simulate drought more poorly in drier western re-
gions of the CONUS than in wetter eastern regions. Previous studies have also indicated
poorer overall and drought-specific model simulations in the western CONUS [24,48,58].
Climate factors [92], including precipitation and aridity [58,97], have been widely found
to influence model performance in different regions, so the poorer simulations of drought
in drier regions are not surprising. These findings highlight an important area for model
improvement since arid regions of the western CONUS are often the regions where drought
is a major concern.

We also note that several important factors that influence the water cycle in western
CONUS are not well captured by the hydrologic models used in this study. For example,
human water use, diversions, and reservoir regulations, which are common throughout
western watersheds [98], are not fully represented in either model. Additional processes
that are not thoroughly represented, like lake and stream channel evaporation [99] or
deep and complex groundwater systems [100], also may impact the model performance in
the western CONUS. Other studies have shown that missing groundwater processes and
not accounting for human modifications can result in poor model performance [73,101].
Benchmarking both models across our suite of metrics may help guide future development
priorities in each model when looking to address issues such as the representation of human
influences. If adding reservoir representation to the models, the NHM might benefit from
more focus on the improved representation of the impacts of reservoirs on flow regime
timing, as it had a poorer performance in simulating flow timing metrics (Spearman’s r)
during drought relative to the NWM. The NWM, on the other hand, could potentially
benefit from more focus on the improved representation of the flow magnitude impacts of
reservoirs, as it had a poorer performance when simulating the flow magnitude (percent
bias) during drought relative to the NHM.
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The relative performance also varies spatially. For example, the NHM simulates
drought occurrence (as measured by Cohen’s kappa) better in the western coastal regions
(11 and 12) despite a worse national performance. In the southcentral CONUS, both model-
ing applications overestimate the magnitude and variability of drought flows by a large
margin (like findings across all flows by Towler et al. [24]). Both modeling applications,
especially the NWM, tend to better simulate the timing of flows during drought (Spear-
man’s r) in the southcentral CONUS, with values close to the national median. The Rocky
Mountain region is the reverse: both modeling applications simulate the magnitude and
variability of flows during drought similarly well to how they do in other regions, but
Spearman’s r for both models is the lowest of all regions, which indicates difficulties simu-
lating the timing of flows during drought in the Rocky Mountains. The regional differences
in which the components of error each model perform well or poorly highlight some of the
difficulties and potential tradeoffs between these models. Efforts focusing on improving the
simulation of the magnitude of flows during drought may improve drought simulations
for the southcentral CONUS, where the model has relatively high biases during periods
of drought. In contrast, the Rocky Mountains, where the model simulations have a low
Spearman’s r with observations, might benefit most from efforts focused on improving the
simulations of flow timing during drought.

We see similar tradeoffs between metrics in regions where both modeling applications
perform relatively better. The NWM and NHM simulate the timing, magnitude, and
variability of flows during drought well in the northeastern CONUS with median statistical
values that are either the highest or close to the highest compared to other regions. The
NHM performs less well when simulating the occurrence of fixed-threshold drought in
the northeast relative to some other regions like the Northern and Southern Mid-Atlantic
(although Cohen’s kappa values are still at the national median). This indicates that the
model’s simulations during periods of drought are good, but that the NHM may not always
correctly indicate that there is a drought relative to the Mid-Atlantic regions, where the
NHM better simulates drought occurrence.

4.3. Larger Differences in Performance Between Thresholds than Between Models Highlights the
Importance of Using Consistent Benchmarking Methods

The differences in Cohen’s kappa, Spearman’s r, the drought duration, and drought
severity was greater between thresholds than between modeling applications. Both the
NHM and NWM performed worse for more extreme droughts. This may in part reflect
similar deficiencies in the climate input data, the applicability of the model equations to
arid regions, or the model parameterizations [24]. Once calibrated, models typically have
less variance than the original observations, so they tend to overpredict low flows and
underpredict high flows [102]. However, we did not see more modeled than observed
variability within these drought periods, as measured by the ratio of standard deviations.
Both modeling applications may be able to simulate the impact of flow generation processes
on moderate drought flows (e.g., 20 and 30%) but have difficulties simulating the processes
that drive extreme drought flows (e.g., 5 and 10%). Additionally, these severe flows are
hard to calibrate as they occur infrequently.

4.4. Summary

The results show a varied performance between the modeling applications that differs
based on the metric being evaluated, the method of identifying drought, and the region
or stream gage of interest. These results suggest that these models can provide benefits
and useful information in certain contexts and regions, particularly for more moderate
droughts in high-performance regions like the eastern CONUS. Users of these modeling
applications should exert caution because some evaluation metrics indicate potential issues.
For example, some stream gages have percent biases over 400% during periods of drought
and some have high NMAE values when simulating drought severity. These factors suggest
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that the model may be problematic for certain applications, particularly in capturing more
severe droughts in certain regions of CONUS such as the drier western regions.

The systematic evaluation of these two modeling applications highlights differences
in performance by metric and region. These differences, along with the larger differences
between drought thresholds than between modeling applications for many performance
statistics, show the importance of the systematic benchmarking of different models and the
use of the same methods of drought identification when comparing models. It also shows
the importance of evaluating a range of different thresholds, in a range of different regions,
using various performance metrics.

The consistent finding that both modeling applications have difficulties in simulating
more extreme drought and drought in more arid regions highlights the limitations of both
models and suggests a need for continued modeling improvement, as also indicated by
others [26,73]. The improved simulation of severe drought flows and drought in arid
regions is critical as these flows have large social and ecological impacts. This need for
improved simulation may become increasingly important as, in some of these arid re-
gions, extreme drought flows may become more common with a changing climate [103].
It may be especially important for regions such as the Colorado River Basin that experi-
ence major droughts with substantial impacts across social and ecological systems in the
region [104,105].

4.5. Limitations

This study helps improve the understanding of model performance in simulating
drought events, but there are important limitations to note. Our assessment does not control
for differences in the model calibration or forcing datasets, which influence the simulated
results. For ideal comparisons of the underlying models, both modeling applications would
use the same forcings and calibration techniques; however, this can be impracticable for
large simulations as they are typically funded by different entities and created for somewhat
different purposes. Similarly, the evaluation is performed on simulations at stream gages
used for calibration and therefore does not assess out-sample errors, but it is likewise
usually impractical in large-domain model implementations to perform the simulations
needed to address this issue. Nevertheless, benchmarking the specific implementations of
modeling applications or built-for-comparison modeling applications still gives insight into
how each can be used for research and improvement. Our study assesses both fixed and
variable methods of characterizing drought at four thresholds, but there are many other
methods of characterizing streamflow drought that could yield different evaluation results.
The autocorrelation of daily values is not considered in our study design, though this is
critical to address if planning to perform statistical significance testing between modeling
applications. Uncertainty in hydrologic simulations stems from several sources, including
uncertainties in the input forcings, as well as from the hydrological model structure, process
representation, absence of anthropogenic processes, and parameterization. Although we
do not explicitly investigate model uncertainty nor their interactions here, we do note that
we use two different hydrological models (NHM and NWM), which could be conducive
to developing a multi-model ensemble; studies have shown that the ensemble mean can
outperform individual models [106].

5. Conclusions

This study presents a comprehensive approach to evaluating simulations of streamflow
drought and applies it to two conterminous U.S.-scale hydrologic modeling applications,
the National Water Model (NWM) and the National Hydrologic Model (NHM). Our com-
parisons between the NWM and the NHM show varied results. The NWM tends to better
simulate the timing of streamflow during drought events (measured by Spearman’s r)
while the NHM tends to better simulate the magnitude of flow during drought events
(measured by percent bias). There were also strong spatial trends in the drought simulation
performance, with both the NHM and NWM performing better in wetter regions than
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drier ones, creating a stark east versus west divide in performance. Thus, both modeling
applications perform worse in drought simulations for the regions that are most susceptible
to drought. Finally, the differences in performance were typically greater between different
drought thresholds than between either modeling application, with both the NHM and
NWM exhibiting difficulties in simulating the most severe drought events.
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Abstract: The SWAT model primarily investigates sources of water pollution and conducts ecological
assessments of surface water in contemporary hydrology and water resources research. To date,
there have been limited accomplishments in the study of groundwater resources in China. The
MODFLOW model currently primarily simulates groundwater levels and the migration of water
quality, depending on the hydrological surface water data in the relevant area. This study aims
to investigate the groundwater distribution characteristics of the middle and lower reaches of the
Songhua River, a significant agricultural and grain production region in China. The research focuses
on the middle and lower reaches of the Songhua River basin in Northeast China and employed
the SWAT distributed hydrological model to simulate runoff. The monthly recorded runoff at
Tongjiang Station in Jiamusi City was utilized to calibrate the model parameters. Consequently, the
MODFLOW model was introduced to compare and assess the simulation outcomes of the SWAT
model, ultimately ascertaining the distribution characteristics of shallow groundwater, groundwater
recharge, recoverable volume, and groundwater levels in the Songhua River Basin. The findings
indicate that: (1) The SWAT model demonstrates efficacy in the study region, achieving R2 and
NS values of 0.81 and 0.76, respectively, thereby fulfilling the fundamental criteria for scientific
research. The MODFLOW model exhibits strong performance in the study region, achieving a
periodic R2 of 0.98 and a verification R2 of 0.97, with the discrepancy between simulated and actual
groundwater levels confined to 0.6 m, thereby satisfying the criteria for scientific research. (2) In
2011, 2014, and 2016, the groundwater recharge in the middle and lower sections of the Songhua
River was 24.33 × 108 m3, 30.79 × 108 m3, and 32.25 × 108 m3, respectively, aligning closely with the
SWAT simulation results, while the average annual groundwater level depth was 8.17 m. (3) In the
research area, groundwater recharging occurs primarily by atmospheric precipitation, while drainage
predominantly transpires via groundwater as base flow, constituting 81.46%. Secondly, the recharge
of shallow groundwater to deep aquifers is around 7.14%, with a minimal share attributed to vadose
zone loss, constituting merely 2.1%. (4) From 2010 to 2016, the average groundwater runoff modulus
of the middle and lower reaches of the Songhua River basin was 1.005 L/(s·km2), with a total recharge
of 216.58 × 108 m3 and a total recoverable amount of 105.11 × 108 m3. The mean yearly supply was
25.11 × 108 m3. The total groundwater recharge was 26.54 × 108 m3 in the driest year (2011) and
33.25 × 108 m3 in the year of most ample water (2016).

Keywords: SWAT model; MODFLOW model; Songhua River basin; Runoff simulation; groundwater
distribution characteristics; groundwater resource evaluation

1. Introduction

The Songhua River Basin possesses abundant groundwater resources, supplying fresh
water for agricultural crop development in Heilongjiang Province [1]. Specifically, in the
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middle and lower reaches of the Songhua River basin (Jiamusi Tongyi River basin, the
principal stream of the Songhua River), the groundwater resource recharge for the entire
agricultural area of Heilongjiang Province constitutes 50.1% [2] of the total natural supply
for the Sanjiang Plain. Nonetheless, swift economic advancement over the past three
decades has led to over-cultivation of paddy fields and imprudent management of water
resources [3], resulting in significant environmental and ecological issues, including the
depletion of groundwater levels and land subsidence, which have emerged as critical
impediments to the sustainable development of the economy and society. Comprehending
the condition and regulatory framework of regional groundwater resources is essential for
their judicious development [4]. Consequently, it is imperative to enhance the assessment
of groundwater resources in the middle and lower sections of the Songhua River Basin and
to diversify the methodologies for water resource evaluation [5–7].

The SWAT model (Soil and Water Assessment Tool) is a distributed hydrological
model developed for the United States Department of Agriculture, renowned globally for
its robust physical simulation capabilities. This model effectively simulates the hydrological
cycle of a basin based on environmental parameters, including basin climate, soil, and
land use in the research region [8]. The SWAT model currently emphasizes the assessment
of water pollution sources and surface water ecology in hydrological research [9]. Other-
wise, there have been limited scientific advancements in the assessment of groundwater
resources. Recently, domestic scholars Chen Peiyuan [10] and Zhao Liangjie [11] con-
ducted a preliminary investigation. Chen Peiyuan employed the SWAT model to analyze
groundwater distribution features and assess water resources in the Jinghe River Basin.
The ultimate runoff rate R2 and NS attained values of 0.83 and 0.7, respectively, and the
computed groundwater resources aligned with the Groundwater Resources Assessment
Report published by the local government. The SWAT model was deemed appropriate
for simulating shallow groundwater resources and satisfied the fundamental criteria for
scientific investigation. Zhao Liangjie initially classified hydrological characteristics using
the rainfall guarantee rate, based on runoff simulations conducted using the SWAT model.
The groundwater runoff modulus parameter inversion and rainfall infiltration coefficient
approach were employed to validate the runoff modulus. In conclusion, utilizing the runoff
modulus approach to address groundwater storage simulated by the SWAT model is both
possible and effective for calculating groundwater resources. Furthermore, Li Yuanjie
et al. [12] developed a MODFLOW model for Linhe District of Bayanzhur City, Inner Mon-
golia, and assessed water resources utilizing the water balance approach and numerical
simulation technique [13]. Zhu Henghua [14] et al. employed MODFLOW to assess the
groundwater model of Licheng District in Jinan City, utilizing the PEST module to calibrate
the permeability coefficient. The model assessed the potential increase in shallow ground-
water, provided that the groundwater level does not decrease further. Zhang Hongwei
et al. [14] developed a groundwater flow model for Linqing City, Shandong Province,
and examined the variations in groundwater levels under various rainfall scenarios. The
findings indicated that the peak groundwater level during rainy years was 3 m more than
in dry years. Foreign scientists Nguyen Ngoc [15]and colleagues utilized Visual Modflow
to develop a groundwater flow model for Dak Lak. The research findings indicated that
the reliability of the MODFLOW model’s computed outputs is significantly high, even with
limited drilling data. The impacts of recharge and evaporation on groundwater resources
and water balance were examined under several climate change scenarios (RCP4.5 and
RCP8.5). BUSHIRA K M [16] et al. employed the MODFLOW module in ModelMuse to
construct an underground flow model for the Colorado basin in Mexico and calibrated both
the steady-state surface and subterranean flow models. Xiaolong Li et al. [17] developed a
groundwater flow model for the Manas River basin in China and evaluated the groundwa-
ter levels of 43 representative observation wells. The simulation outcome was favorable.
During standard operation of the pumping wells, the groundwater level declined at a rate
of 0.15 m/d.
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Consequently, based on the aforementioned research context and prior experience,
this paper focuses on the middle and lower reaches of the Songhua River, a national key
agricultural production base, as the subject of study. It analyzes the groundwater recharge
outcomes derived from the SWAT and MODFLOW models, validates the feasibility of the
results, and subsequently delineates the groundwater levels in the study area. For thorough
assessment, this paper employs the groundwater runoff modulus method to calculate vari-
ous results simulated by the SWAT model, ultimately determining groundwater recharge in
the study area and identifying groundwater distribution characteristics in the middle and
lower reaches of the Songhua River. This research is highly important for the management
of regional water resources and the rehabilitation of regional groundwater levels.

2. Overview of the Study Area

The middle and lower reaches of the Songhua River watershed encompass the segment
of the river extending from Jiamusi to Tongjiang, measuring a total length of 267 km. This
section traverses the Sanjiang Plain, characterized by alluvial plains on either side, flat
topography, abundant vegetation, and relatively unobstructed rivers and banks. The
waterways intersect extensively, with riverbanks ranging from 5 to 10 km in width, and
numerous shoals present within the river. The location is situated in the northern temperate
monsoon climate zone, characterized by prolonged cold winters and warm, wet summers.
The annual average temperature ranges from −3 to 5 ◦C, with a maximum of 40 ◦C and a
minimum of −50 ◦C. The basin experiences yearly average precipitation of approximately
500 mm, with an average annual runoff of 762 × 108 m3, and exhibits a distinct interannual
fluctuation characterized by alternating periods of abundance and stagnation [18,19]. The
primary river basin is characterized by valley terrace landforms alongside the Songnen
Plain, Sanjiang Plain, and additional plain landforms. The soil types primarily consist
of basic black soil, calcareous alluvial soil, saturated thin layer soil, soft shallow soil,
organic soil, anthropogenic accumulation soil, simple active luvisol, and saturated conical
soil [20]. This region encompasses a large area with significant variations in hydrogeological
conditions, groundwater depth, distribution, and water quality. The groundwater aquifers
mostly consist of loose rock pore water, clastic rock pore fracture water, and bedrock
fracture water. Loose rocks constitute the most extensive pore water distribution area and
reserves, with the aquifer lithology comprising Quaternary sand, sand gravel, and gravel.
The aquifer thickness varies from 10 to 300 m, the groundwater level is typically less than
10 m deep, the water yield is substantial, and the inflow rate of an individual well generally
runs from 500 to 3000 cubic meters per day. The predominant chemical composition of
the groundwater is either calcium bicarbonate- or sodium calcium-type, with salinity
generally below 1 g/L [21]. The second type is pore fissure water found in clastic rock,
located beneath the Quaternary aquifer formations in the plains of China (visible in certain
regions) and within the meso-Cenozoic depression (fault) basins in mountainous locations
such as Mudanjiang, Qitaihe, Shuangyashan, and Jixi. The aquifer consists of Neogene,
Paleogene, Cretaceous, and Jurassic sand, sand conglomerate, and coal measures. The
lithology, thickness, and burial depth of the aquifers exhibit significant variability, the water
abundance is highly inconsistent, and the groundwater possesses a particular pressure.
The structural complex contains a greater abundance of water. Bedrock fissure water is
predominantly found in extensive bedrock mountainous regions and lava plateau areas.
Water-bearing fissures can be categorized into structural fissure water, weathering fissure
water, and basalt cavity fissure water, based on their formation and functional properties,
with the latter being found in the southeastern region of the middle and lower reaches of the
Songhua River. The distribution and degree of water richness in bedrock fissure water are
influenced by lithology, topography, hydrology, and meteorological conditions, resulting in
considerable variability in their water-rich characteristics, thus rendering them generally
unsuitable for large-scale centralized water delivery. The groundwater in the research
area is characterized by low salinity and is classified as bicarbonate-type freshwater [22].
The hydrological cycle of the bedrock fissures in the eastern mountainous region is robust,
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primarily replenished by air precipitation. Following a brief runoff, a portion is replenished
by subterranean runoff during transit. The overview of the study area is shown in Figure 1.
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Figure 1. A comprehensive diagram of the study region. (a) represents the subwatershed zoning
map created using the SWAT model (ArcSWAT2012). (b) displays a geographic elevation map of the
study region. (c,d) illustrate the distribution of soil types and land use, respectively, in the study area.
The details of (c) can be found in Table 1, while the details of (d) can be found in Table 5).

Table 1. Comparison table of soil types and abbreviations of land use types in the study area.

Name Abbreviation Description Name Abbreviation Description

ATc Anthropogenic accumulation HSs Organic soil
CMe Saturated protosol LVh Simple high activity luvisols
FLc Calcareous alluvial soil PHh Simple black soil

GLm Mollic gleysol WATER Water body

3. Data and Methods
3.1. Data Sources
3.1.1. Digital Elevation Model (DEM)

Research indicates that when utilizing SWAT for runoff simulation, the elevation
map chosen as the operational data source should have a spatial resolution ranging from
20 to 150 m [23]. This study utilized digital elevation model (DEM) data with a spatial
resolution of 30 m, obtained from the NASA Earth Science data website, to extract pertinent
parameters of the watershed.

3.1.2. Soil Type Data

The soil database included the spatial distribution and physical characteristics of
various soils within the research area. This report states that the resolution of the 2010 soil
data at 1:100,000 was 1000 km2. To ensure the model operates efficiently and to streamline
the development of the soil database, numerous soil types were reclassified based on their
physical parameters, adhering to the principle of maximizing the proportion of soils with
identical physical properties. The classification yielded eight distinct soil categories. Table 2
displays the precise proportion of each predominant soil type within the eight categorized
soil classifications.

Table 2. Proportion of main soil types %.

FLC PHh GLM HSs ATc LVh CMe

2.28 26.44 6.09 1.02 2.01 13.17 0.38

This study details the derivation of soil data parameters for the SWAT (SWAT2012)model
using SPAW [24] (Soil Profile Water Transfer,SPAW software version: 6.02.75) software, where
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the carbon content in the soil layer must be converted into organic mass before being fed
into the SPAW software for analysis. The database includes the quantities of soil gravel,
clay loam, and clay. To enable the computation of USLE-K parameters within the model,
the substitution formula suggested by Williams was utilized [25]. The precise numbers
for soil layer 1 and soil layer 2 from the final calculations are shown in Table 3, while
the corresponding explanations of the soil physical coefficients referenced in Table 3 are
detailed in Table 4.

Table 3. Soil coefficient and level calculated by SPAW.

Soil Type

Coefficient
SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1 SOL_BD2 SOL_AWC2 SOL_K2 SOL_CBN2 Hierarchy

FLc 1.53 0.14 9.32 0.6 1.48 0.14 12.65 0.4 L-L
LPe 1.55 0.1 9.36 1.13 0 0 0 0 L
PHh 1.37 0.14 14.24 1.95 1.52 0.13 8.22 0.67 L-L
GLm 1.41 0.14 13.58 1.65 1.5 0.13 5.2 0.69 L-CL
HSs 1.14 0.13 13.65 39.4 1.18 0.14 22.43 38.46 CL-SaCL
ATc 0.98 0.18 44.52 1.12 1.49 0.14 8.94 0.82 SIL-L
LVh 1.52 0.13 9.33 0.74 1.52 0.13 4.11 0.36 L-CL
CMe 1.49 0.13 10.27 1 1.55 0.12 5.70 0.37 L-L

WATER 1.72 0 260 0 0 0 0 0 -

Table 4. Related descriptions of soil coefficients involved in the calculation of SPAW.

Coefficient Description Coefficient Description

SOL_BD

weight of dried soil, comprising soil
particles and intergranular pores, per
unit volume. It stands for the moist
bulk density of soil (SOILdensity).

CLAY Clay content, %wt, refers to soil particles
< 0.002 mm in diameter.

SOL_AWC Indicates the effective water content of
soil layer, in mm/mm. SILT

SILT1 refers to the loam content of the
soil (%wt), that is, the percentage by

weight of soil particles between 0.002
and 0.05 mm in diameter.

SOL_CBN Organic carbon content (%wt) of the
soil layer. SAND

Sand content, %wt, refers to particles
with diameters between 0.05 and

2.0 mm.

SOL_K
Saturated water

conductivity/saturated hydraulic
conductivity, mm/hr.

ROCK Gravel content, %wt, refers to particles
with a diameter greater than 2 mm.

SOL_ZMS Represents the maximum root depth
of the soil profile, mm. USLE_K Erodibility factor

3.1.3. Land Use Type Data

The land use data were derived from the 2022 global land cover dataset with a 30-m
resolution, published by the Academy of Aerospace Information Innovation, part of the
Chinese Academy of Sciences. The land use types in the research region were divided into
six categories: cultivated land, forest land, grassland, water bodies, a combination of urban
and rural areas, industrial and mining land and residential land, and fallow land. Table 5
displays the relevant categories of model inputs.
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Table 5. SWAT code of land use.

Reclassification Coding Name SWAT Coding

1 Cultivated land AGRL
2 Forest land FRST
3 Grassland RNGB
4 Water bodies WATR

5 Urban and rural, industrial and
mining, and residential land URML

6 Fallow land WETL

3.1.4. Meteorological Data and Runoff Data

The meteorological database component of the SWAT model consists of two phases:
the initial phase involves inputting the recorded meteorological data into the SWAT model’s
original file; the subsequent phase entails constructing a weather generator based on the
research area’s parameters and objectives. The primary meteorological data utilized are
daily records of precipitation, temperature, relative humidity, sun radiation, and wind
velocity. The meteorological data included in this work were CMADSV1.1 data obtained
from the National Tibetan Plateau Scientific Data Center [26]. The duration spans from
2008 to 2016, effectively aligning with the temporal parameters of the model’s operation.
This database is among the most extensively utilized meteorological datasets for the SWAT
model. This database satisfies the accuracy criteria for the model’s final output outcomes
after extensive utilization by numerous scholars [27]. This article utilized DEM data
from the middle and lower portions of the Songhua River basin, selecting precipitation,
temperature, relative humidity, solar radiation, and wind speed from 60 meteorological
stations in the study area as experimental meteorological data. Monthly runoff data from
the Tongjiang Hydrological Station, situated at the basin’s complete exit, were picked for
the period from 2008 to 2016. Table 6 presents the data sources utilized for constructing the
SWAT model.

Table 6. Basic geographic data required for the middle and lower reaches of Songhua River basin
model.

Data Type Data Source

Digital Elevation Model (DEM) NASA Earth Science data website (https://nasadaacs.eos.nasa.gov/) (accessed
on 15 July 2024)

Soil type and attribute list HWSD data downloaded from the National Tibetan Plateau Scientific Data
Center (World Soil Database) (accessed on 15 July 2024)

Land type use data Institute of Aerospace Information Innovation, Chinese Academy of Sciences

Meteorological data CMADS (V1.1) downloaded from the National Tibetan Plateau Scientific Data
Center (accessed on 18 July 2024)

Runoff data Tongjiang city hydrology station

3.2. Research Methods
3.2.1. SWAT Model

The hydrological process of the SWAT model comprises two components: the surface
simulation stage and the subsurface simulation stage [28]. The surface simulation phase
comprises two stages: runoff production and slope confluence, which regulate the influx of
water and solute from each sub-basin to the principal river. The water surface simulation
phase involves the confluence of rivers and reservoirs, modeling the transport dynamics
of water and solutes to the basin’s total output. The water balance equation utilized to
simulate the hydrological cycle is presented in Equation (1).

SWt = SW0 +
t

∑
i=1

(
Rday,i − Qsw f ,i − Ea,j − Wseep,i − Qgw,i

)
(1)
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where SWt is the soil water content at the end of the period, mm; SW0 is the soil water
content at the beginning of the period, mm; t is the calculation period; Rday,i is the rainfall
on day i, mm; Ssur f ,i is the surface runoff on day i, mm; Ea,i is the evaporation amount on
day i, mm; Wseep,i is the permeability on day i, mm; Qgw is the underground runoff on day
i, mm.

SWAT models are capable of simulating surface water, soil water, and groundwater
dynamics. The basin can be further divided into several natural sub-basins according to
its actual topography, thereby mitigating the influence of spatio-temporal variations in
natural factors on simulation outcomes, and additionally delineating relevant hydrological
units within each sub-basin for collaborative simulation of changing features [29]. Figure 2
illustrates the schematic diagram of its principle.
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3.2.2. Shallow Aquifer Reservoir Variable Calculation Method

Based on the calculation principle of groundwater balance [30], the calculation formula
for shallow aquifer reservoir variables is as follows:

∆Sgw = PERC − GWQ − REVAP − DARC (2)

where ∆Sgw is the shallow aquifer reservoir variable (mm); PERC is the leakage water in
the vadose zone (mm); REVAP is the water quantity retained in the aquifer vadose zone
(mm); DARC is the seepage volume of the deep aquifer (mm); GWQ is the contribution of
underground runoff to the main river course (mm).

The groundwater runoff modulus method [31] is used to calculate the natural supply
of the basin, and the specific formula is as follows:

Q = M × F × t × 10−7 (3)

where Q is the natural supply amount (104 m3); M is the groundwater runoff modulus
(L/(s·km2)); F is the catchment area (km2); t is time (s). The groundwater runoff modulus
is M calculated as follows:

Myear =
Wyear

/

F × t × 1000 (4)

where Wyear is the average underground runoff in the time step (m3); F is the catchment
area (km2); t is time (s).
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3.2.3. Construction of MODFLOW Model

The fundamental principle of groundwater numerical simulation dates back to 1856,
introduced by the French engineer Darcy through Darcy’s law. As groundwater numerical
simulation theory and computer software advance, groundwater numerical simulation
software continues to evolve and mature. Currently, its primary simulation techniques en-
compass the finite difference method, finite element approach, and others. These methods
were extensively employed in groundwater numerical simulation during the 1960s. The
predominant simulation software encompasses Visual MODFLOW, FEFLOW, and GMS,
among others, although certain simulation programs are incorporated into open-source
compilation platforms as toolkits, exemplified by the FloPy toolkit in Python (Python
3.12.3). The ongoing advancement and enhancement of this program render the numerical
simulation of groundwater more precise and dependable. This work utilized the MOD-
FLOW module inside GMS software (GMS10.8), characterized by its user-friendly interface
and effective 3D visualization, to develop a groundwater model for the middle and lower
portions of the Songhua River basin. This paper used the MODFLOW NWT(Version num-
ber of the GMSMODFLOW model used: V2.1.1) program within the module to realize the
groundwater numerical model.

MODFLOW NWT is a Modflow-2005 adaptation of Newton’s formula created by the
United States Geological Survey to more effectively manage unconfined aquifers.

The basic governing equation of MODLFOW is:

∂

∂x

(
Kxx

∂h
∂y

)
+

∂

∂y

(
Kyy

∂h
∂y

)
+

∂

∂z

(
Kzz

∂h
∂z

)
− W = Ss

∂h
∂t

(5)

where Kx, Ky, Kz, are the permeability coefficients (m/d) along the x, y and z axes; h
is the water head (m); W is the groundwater source sink item (m/d), including precipi-
tation infiltration recharge, irrigation return water, diving evaporation, mechanical well
exploitation, water exchange between aquifer and river, and water exchange between
diving and confined water, up to the unit volume flow through medium and isotropic soil
in a non-equilibrium state; Ss is the specific water storage coefficient of the porous medium;
t is time (d).

(1) Aquifer generalization

The groundwater simulation range option aligns with the SWAT model. The shallow
aquifers in the studied area consist predominantly of Quaternary Holocene sand and gravel,
with a thickness ranging from 100 to 200 m in most regions. The riverbed and floodplain
of the Songhua River’s main stream and its tributaries are predominantly constituted of
Holocene (Q4) deposits, specifically a thin layer of yellow clay and sub-clay, together with
sand and gravel in the lower section of the basin. The terrace of the interriver zone in the
basin primarily consists of Upper Pleistocene (Q3) yellow-brown sand and gravel, with
discontinuous sub-clay overlaying it. The flat region corresponds to the Middle Pleistocene
(Q2), characterized by gray-brown, gray-black silty sand, sand, and sand gravel, with the
lower section interspersed with sub-clay and silty sub-clay. The basin’s base consists of
Lower Pleistocene (Q1) deposits, characterized by yellow-green and gray-green medium
sand, fine sand, silty sand, and sand gravel. Consequently, the characteristics of the research
region were delineated based on the aforementioned fundamental lithology, as illustrated
in Figure 3, with the specific values presented in Table 7. The model’s roof elevation was
derived from the interpolation of 30 m precision DEM elevation data, while the upper floor
was determined using the aquifer thickness indicated by borehole and pumping well data,
supplemented by the approximate aquifer thickness documented in the hydrogeological
data for the study area. Figure 4 illustrates a schematic representation of the elevation
points at the top and bottom inside the study region.
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Table 7. Schematic diagram of top and bottom elevation points in the study area.

Partition Number Initial Range of Permeability Coefficient (m/d) Initial Value Range of Water Supply Degree

I 20~25 0.1~0.2
II 15~20 0.15~0.20
III 15~20 0.10~0.15
IV 1~5 0~0.1
V 15~20 0.1~0.2
i 20.0~25.0 0.001~0.002
ii 10.0~15.0 0.01~0.02
iii 15.0~20.0 0.01~0.02
iv 10.0~15.0 0.001~0.002
v 20.0~25.0 0.01~0.02
vi 18.0~20.0 0.001~0.002
vii 15.0~20.0 0.001~0.002
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(2) Generalization of boundary conditions

The northwestern and southern edges of the research area have a significant hydraulic
connection with the basin, and the mountains in these regions receive lateral recharge,
thereby categorizing them as lateral inflow boundaries. The northern section of the study
area represents the convergence of the Heilongjiang basin and the Songhua River basin,
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which aligns approximately parallel to the isowater line, and thus was categorized as the
lateral inflow boundary. Conversely, the eastern boundary was classified as the zero flow
boundary due to the minimal vertical flow observed. The western boundary of the study
area features numerous outflowing tributaries, including the Wutong River and Anbang
River, hence it was classified as a continuous head boundary.

(3) The model’s space-time dispersion

Grid division: This study utilized the watershed area derived from the SWAT model as
the operational boundary for the MODFLOW model, encompassing an effective calculation
area of 10,788.1 km2. The study area was segmented into a 1000 m × 1000 m square grid,
comprising 168 rows, 198 columns, and 3 layers, encompassing a total of 99,792 effective
grids. Figure 5 shows the grid differentiation of the study area in the model.
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(4) Determination of initial conditions

This simulation utilized the iso-water level in the middle and lower sections of the
Songhua River basin on 31 January 2008 as the model’s initial water level (refer to the
picture below). The simulation period was designated from January 2008 to December
2018, with each month serving as the stress period. Figure 6 below shows the initial flow
field input for model operation.
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4. Results and Analysis
4.1. Subwatershed Division and HRU Unit Based on SWAT Model

The partitioning of subwatersheds is a crucial component in surface runoff simulation
in the SWAT model. Based on the imported DEM topographic map and the actual river
system vector map, the optimal threshold value for accumulated water area (21,588.43 Ha)
was utilized in this context, and the total outflow at the Tongjiang Hydrological Station in
Tongjiang City, automatically generated by the SWAT model, was selected. A total of 32
sub-basins were delineated. Each Hydrologic Response Unit (HRU) possesses a distinct
land use, soil type, and slope classification, constituting the smallest fundamental surface
unit. The quantity of HRUs is dictated by the number of subbasins, land use, soil type,
topographic slope, and reclassification threshold. This research established a minimum
area ratio of land use, soil type, and slope categorization at 10%, resulting in a division into
112 Hydrologic Response Units (HRU).

4.2. Calibration and Verification of SWAT Model Parameters

The SWAT model has numerous parameters, and since the middle and lower portions
of the Songhua River basin are situated in a cold temperate zone, parameters exhibiting
a high correlation sensitivity coefficient were chosen for model adjustment. Twenty-two
parameters were selected, and their sensitivity was assessed using SWAT-CUP(Version
of SWAT-CUP software used: 5.2.1.1) software. This study employed a global sensitivity
analysis. The t-test and p-value significance test were employed to assess the sensitivity
of the parameters. Following the establishment of the parameters and the selection of
their initial range, 500 iterative computations were executed utilizing the SU-F2 sampling
technique integrated into the model [32]. The determination coefficient (R2) and Nash
efficiency coefficient (NS) were employed to assess the model’s adequacy. The ideal
parameters are presented in Table 8.

Table 8. Sensitivity analysis table of parameters.

Encoding Parameter Name Parameter Meaning Optimal Parameter (Basin No. 1)

1 r__CN2.mgt SCS runoff curve value 0.80
2 v__GW_DELAY.gw Groundwater delay time (h) 793.90

3 v__GWQMN.gw Level threshold of shallow aquifers when groundwater
enters the main channel (mm) 2.17

4 v__REVAPMN.gw Shallow groundwater evaporation depth threshold (mm) 954.40
5 v__SOL_AWC().sol Surface water availability (mm) −0.52
6 v__CH_K2.rte Effective permeability coefficient (mm/h) 795.29
7 v__RCHRG_DP.gw Permeability coefficient of deep aquifer 0.67
8 r__SOL_K().sol Soil saturated water conductivity (mm/h) 1.104
9 r__SOL_ALB().sol Moist soil albedo 0.29
10 v__ALPHA_BNK.rte Base flow regression constant 0.31
11 v__SLSUBBSN.hru Average slope length (m) 1.91
12 r__HRU_SLP.hru Average slope (m/m) 2.25
13 v__CANMX.hru Maximum canopy water storage (mm) 227.5
14 v__SFTMP.bsn Average air temperature on snowfall days (◦C) 10.9
15 v__SMTMP.bsn Average temperature on snowfall days (◦C) 13.7
16 v__SMFMX.bsn Snowmelt factor 34.7
17 v__TIMP.bsn Temperature lag coefficient of snow cover 2.93
18 v__SNOCOVMX.bsn Snow depth threshold/cm 992.29
19 v__TLAPS.sub Temperature lapse rate (◦C/km) 4.51
20 v__ESCO.hru Soil evaporation compensation coefficient 1.41
21 v__EPCO.hru Plant absorption compensation coefficient 0.89
22 v__ALPHA_BF.gw Base flow alpha factor (1/day) 1.29

Upon reinserting the amended parameters into the model, the worksheet was revised
and the validation executed once more. The findings of runoff rate determination and
verification are presented in Figure 7.
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Ⅴ 17 0.15 
ⅰ 23.0 0.0014 
ⅱ 13.0 0.009 
ⅲ 15 0.009 
ⅳ 14 0.008 

Figure 7. Determination and verification of the runoff rate of the model (the longitudinal coordinate
indicates the runoff unit: m3).

The evaluation criteria employed in this experiment were the determination coefficient
(R2) and Nash efficiency coefficient (NSE), which are widely utilized in research. A higher
secondary coefficient indicates a stronger correlation between the simulated value and the
measured value, resulting in a more favorable outcome. The dependability distribution is
often presented as in the Table 9 below [33] under normal conditions.

Table 9. R2 and NSE confidence comparison table.

Model Reliability R2 NSE

Equivalent to gold 0.80 < R2 ≤ 1.00 0.75 < NSE ≤ 1.00
Excellent 0.70 < R2 ≤ 0.80 0.65 < NSE ≤ 0.75
Typical 0.50 < R2 ≤ 0.70 0.50 < NSE ≤ 0.65

Not satisfactory R2 ≤ 0.50 NSE ≤ 0.50

The experimental results show that the runoff simulation for Tongjiang hydrological
station is ideal with R2 > 0.8, NSE > 0.75.

4.3. Calibration and Validation of Parameters Utilizing the MODFLOW Model

This paper utilized measured well data from January 2008 to December 2012 to
evaluate the parameters, whereas data from January 2012 to December 2016 were employed
to validate the parameters. The hydrogeological parameters after calibration are shown in
Table 10 below.

Table 10. Conclusive values of hydrogeological parameters.

Partition Number Value of the Permeability
Coefficient (m/d)

Initial Value of Water
Supply

I 22 0.18
II 16 0.13
III 16 0.12
IV 2 0~0.1
V 17 0.15
i 23.0 0.0014
ii 13.0 0.009
iii 15 0.009
iv 14 0.008
v 23 0.0014
vi 17.0 0.0011
vii 17.0 0.0011
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Figure 8 illustrates a schematic representation of all observed well simulations during
the training and verification intervals. The graphic illustrates that the model’s outcomes
during the training and verification periods align closely with the measured findings. This
publication selected a total of 11 observation wells in the study region. Figure 9 illustrates
a comparative diagram of simulated and observed water levels for a single well during
the training and verification phases. The disparity between the actual water level and
the simulated water level is within 0.6 m, satisfying the fundamental criteria for scientific
research and providing a more accurate representation of the conditions in the study area.
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4.4. Evaluation of Groundwater Resources Based on SWAT Model

The water storage statistics for shallow aquifers at the end of each year as simulated
by the model were correlated with the 32 sub-basins in the aforementioned division (refer
to Figures 10 and 11). The long-term changes in shallow aquifer water storage align
closely with the findings presented in the 2021 Songhua River Basin Health Assessment
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Report by the Heilongjiang Institute of Water Resources Science, indicating strong model
applicability. The substantial rise in shallow aquifer water storage in sub-basins 1, 2, 3,
4, and 5 corresponds with the regional precipitation distribution trend from 2008 to 2016,
as illustrated in Figure 12 (the sub-basin serial numbers are indicated on the survey map
of the study area). Overall, the allocation of water storage in shallow aquifers within
the basin exhibits significant variability. The primary trend is centered on the Jiamusi
area, with a gradual decline towards the northeast and southeast. The net discharge trend
of groundwater in the simulated results aligns closely with actual conditions, generally
accumulating in the southeast and northwest directions while decreasing from the center
to the periphery. Sub-basins 1, 2, 3, 5, and 7 constitute the shallow aquifers within the
primary flow region of the Songhua River, with water resources predominantly derived
from surface water.
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Figure 11. Variation map of water storage in a shallow aquifer in a sub-watershed. (a) shows the
geographical distribution characteristics of the average annual water storage in the shallow aquifer,
while (b) illustrates a schematic diagram of the changes in average annual water storage in the
shallow aquifer. Unit: 108 m3).
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The groundwater balance was employed to ascertain groundwater reserves in the
middle and lower portions of the Songhua River basin from 2010 to 2016 (refer to Table 11).
The average storage variable is 838 million m3/year, indicating that the studied region is
predominantly in a healthy extraction condition. In 2016, the simulated runoff reached its
peak, with a storage variable of 872 million m3/year. It is in a state of positive equilibrium.
The primary groundwater discharge occurs as base flow to replenish the river, constituting
81.46%. The second, around 7.14%, primarily represents the infiltration recharge from the
shallow aquifer to the deep aquifer. The smallest percentage of discharge is the loss of
water flow via the vadose zone, constituting 2.1%.

Table 11. Groundwater storage variable units in the middle and lower reaches of Songhua River
basin, in 108 m3.

Year
Supply Term Excretion Term

Subtotal ∆Sgw
PERC REVAP GWQ DARCHG

2010 25.9 2.0 16.10 8.63 6.93 +6.93
2011 13.1 2.51 17.3 9.05 15.76 −15.76
2012 28.1 1.48 17.44 0.93 8.25 8.25
2013 23.77 0.1 20.6 1.08 1.99 1.99
2014 26.65 0.1122 22 1.16 3.38 3.38
2015 18.1 0 22.08 1.15 5.13 −5.13
2016 32.01 0.06 22.06 1.17 8.72 8.72

Mean value 23.94 0.60 17.18 3.31 50.16 8.38
Discharge percentage/% 2.8 81.46 15.69

Owing to the intricate geology of the middle and lower sections of the Songhua River
and the varying hydrogeological conditions across the molecular basins, a characteristic
hydrological year was chosen for the assessment of water resources based on the delineation
of these basins. The monthly recorded runoff data from the Tongjiang Hydrology Station,
which represents the total discharge of the middle and lower reaches of the Songhua River,
spanning from 2008 to 2016 were utilized. Empirical frequency analysis [34] was employed
to determine the driest year, 2011 (p = 75%), within the simulation period, yielding an
annual runoff of 662 million m3. In 2014, with a probability of 50%, the annual runoff
amounted to 981 million cubic meters. In 2016, with a precipitation rate of 25%, the annual
runoff amounted to 1.216 billion cubic meters. The recoverable quantity of groundwater is
assessed in average years.
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This research used the groundwater runoff modulus approach to calculate the natural
recharge of the groundwater system within the watershed. Initially, the model computed
the output of each sub-basin for a typical year, then converted the average runoff of each sub-
basin into the groundwater runoff modulus, followed by calculating the natural recharge
for each sub-basin. Furthermore, to determine the exploitable groundwater volume inside
the basin at the study area’s size, the exploitable coefficient approach was employed to
estimate the groundwater availability in representative years for each sub-basin.

To enhance the accuracy of the estimation results, the average extraction coefficient
(ρ = 0.45) for several hydrogeological zones in Jiamusi City was utilized for computation,
with the findings presented in Table 12.

Table 12. Subsurface runoff modulus and recharge in sub-basins of the study area.

Subcatchment

Dry Year (2011) Normal Water Year (2014) Wet Year (2016)

Runoff
Modulus

(l·s−1·km2)

Supply
(104 m3·a−1)

Recoverable
Amount

(104 m3·a−1)

Runoff
Modulus

(l·s−1·km2)

Supply
(104 m3·a−1)

Recoverable
Amount

(104 m3·a−1)

Runoff
Modulus

(l·s−1·km2)

Supply
(104 m3·a−1)

Recoverable
Amount

(104 m3·a−1)

1 0.44 838.89 377.50 0.54 4091.70 1841.27 0.51 3968.50 1785.83
2 0.43 5441.23 2448.55 0.68 7283.90 3277.76 0.62 6427.05 2892.17
3 0.41 7825.90 3521.66 0.60 9888.50 4449.83 0.64 10,191.80 4586.31
4 1.09 5532.00 2489.40 0.98 6996.00 3148.20 1.02 7864.50 3539.03
5 0.88 5938.80 2672.46 0.88 7543.97 3394.79 0.94 8346.50 3755.93
6 0.24 784.61 353.07 0.47 1164.85 524.18 0.40 1070.60 481.77
7 1.75 27,620.44 12,429.20 2.13 37,619.41 16,928.73 1.89 34,748.30 15,636.74
8 1.44 9113.07 4100.88 1.65 11,380.22 5121.10 1.77 12,513.80 5631.21
9 1.72 10,855.50 4884.98 1.93 12,809.49 5764.27 1.90 12,440.40 5598.18

10 1.88 26,439.69 11,897.86 1.68 19,364.28 8713.93 1.71 20,369.70 9166.37
11 0.15 1653.00 743.85 0.15 1118.82 503.47 0.19 1129.20 508.14
12 0.38 4341.00 1953.45 0.26 1650.06 742.53 0.26 1697.80 764.01
13 1.61 25,585.30 11,513.39 1.60 21,921.37 9864.62 1.63 23,753.40 10,689.03
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.55 5388.50 2424.83 0.65 9579.00 4310.55 0.66 9931.70 4469.27
16 0.12 1682.10 756.95 0.31 3143.90 1414.76 0.28 2222.77 1000.25
17 1.88 114,631.00 51,583.95 1.98 144,797.70 65,158.97 2.01 152,842.08 68,778.94
18 1.45 20,271.00 9121.95 1.58 26,564.70 11,954.12 1.49 25,445.30 11,450.39
19 0.19 125.00 56.25 0.23 153.16 68.92 0.25 166.14 74.76
20 0.21 600.80 270.36 0.48 4344.30 1954.94 0.50 4390.52 1975.73
21 0.55 1417.20 637.74 0.63 1811.23 815.05 0.66 1942.50 874.13
22 1.44 77,046.78 34,671.05 1.71 92,524.61 41,636.07 1.81 94,238.00 42,407.10
23 0.34 3621.00 1629.45 0.41 4637.70 2086.97 1.55 4976.37 2239.37
24 0.55 1725.00 776.25 0.74 2150.50 967.73 0.74 2127.50 957.38
25 1.27 33,780.00 15,201.00 1.49 42,752.40 19,238.58 1.51 45,773.50 20,598.08
26 0.37 7780.00 3501.00 0.61 11,707.48 5268.37 0.68 12,226.17 5501.78
27 1.71 32,163.60 14,473.62 1.86 36,586.00 16,463.70 1.77 32,806.80 14,763.06
28 0.68 18,201.00 8190.45 1.21 27,736.00 12,481.20 1.14 26,522.55 11,935.15
29 0.73 15,840.00 7128.00 1.15 21,519.36 9683.71 1.10 18,530.56 8338.75
30 0.58 9028.00 4062.60 0.71 13,296.80 5983.56 0.68 12,000.30 5400.14
31 1.69 38,314.00 17,241.30 1.96 51,930.90 23,368.91 1.85 44,141.26 19,863.57
32 1.88 17,256.00 7765.20 2.13 24,190.60 10,885.77 2.32 30,336.84 13,651.58

total — 530,840.41 238,878.18 — 662,258.91 298,016.51 — 665,142.41 299,314.08

4.5. Prediction of Groundwater Recharge Based on MODFLOW Model

This work employed the MODFLOW model to simulate groundwater recharge, and
the validity of the research findings was substantiated through comparison with the sim-
ulation results of the SWAT model. This work delineated the research area into a water
equilibrium zone characterized by an annual equilibrium period. Figure 13 below shows
trends in groundwater recharge from 2008 to 2016. The annual groundwater recharge is as
follows: 24.06 × 108 m3, 24.33 × 108 m3, 21.80 × 108 m3, 24.33 × 108 m3, 22.04 × 108 m3,
30.11 × 108 m3, 30.79 × 108 m3, 25.15 × 108 m3, and 32.25 × 108 m3, respectively. The
simulation outcomes resemble those of the SWAT model.
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Figure 14 illustrates the distinctive trend of yearly mean groundwater level changes
predicted by the MODFLOW model. The figure illustrates that the groundwater level
distribution trend diminishes progressively from the northwest to the east and from the
south to the north, with the water level fluctuations aligning closely with the groundwater
storage variations simulated by the SWAT model. The mean depth of the groundwater
level over several years is 8.15 m.
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5. Discussion
5.1. Relevance and Constraints of the Model in Groundwater Resource Assessment Research and
Potential for Future Developments

This paper compares the groundwater storage and recharge results simulated by the
SWAT model with those published in the “Songhua River Basin Health Report 2021” and
the results simulated by the MODFLOW model. The SWAT model was deemed appropriate
for simulating groundwater resources. The primary factors influencing the formation and
evolution of groundwater resources include precipitation, evaporation, infiltration, runoff,
freeze–thaw cycles, soil water movement, and groundwater recharge, among others [35].
The SWAT model operates based on the aforementioned fundamental physical processes
to simulate functionality. While a singular SWAT model can only mitigate errors in the
freeze–thaw cycle through parameter adjustments, its influence is comparatively minor
within the broader hydrologic cycle physical process group, and these errors can be rectified
using appropriate parameters. Furthermore, the SWAT model necessitates extensive input
of meteorological, terrain, soil, land use, and other data, which may have previously
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been challenging to acquire. However, advancements in remote sensing technology and
geographic information systems have facilitated data collection, rendering the application
of the SWAT model in groundwater resource evaluation increasingly viable [36].

The SWAT model [37] has been extensively developed over more than 20 years since
1990 and is relatively mature. It is a semi-distributed model, making it easier to comprehend
and utilize compared to fully distributed models. Additionally, it offers faster computation
than conceptual models, effectively representing the physical mechanisms of the water cycle
with improved accuracy. Secondly, the model thoroughly accounts for the material cycle,
simulates various types of material migration, and effectively utilizes land use and other
remote sensing data to compile extensive foundational databases, including information
on crops, pesticides, and fertilizers [38]. Nonetheless, in comparison to other hydrological
models, its capacity to elucidate the water cycle mechanism is inadequate. The research area
discussed in this paper is situated in northeast China, characterized by pronounced seasonal
climate variations and distinct climatic, topographical, and soil attributes compared to
other regions [39]. Cold regions exhibit prolonged winters, low temperatures, varied
precipitation types, and intricate soil freezing and melting processes. The development
and application of the SWAT model may not fully account for the characteristics of cold
regions. This study is situated in the cold temperate zone of the North Temperate Zone
(Songhua River basin), where freeze–thaw conditions are moderate, resulting in relatively
consistent simulation outcomes; however, it is also located in a cold permafrost region. In
regions such as Russia and Alaska, ensuring model accuracy is challenging.

This paper integrated the SWAT model with the MODFLOW model to perform dual-
model auxiliary verification in order to address the aforementioned issues [40,41]. Despite
the enhanced reliability of the results, the watershed simulated by the SWAT model was
inappropriately employed as the boundary condition for MODFLOW, resulting in con-
siderable errors and numerous instabilities. The watershed boundary was utilized as a
no-flow water boundary, resulting in significant discrepancies with the actual conditions. A
LU-SWAT-MODFLOW model should be developed in the future to calibrate and validate
the model using multi-source data to mitigate the impact of temperature.

Land use change significantly affects hydrology and non-point source pollution sim-
ulation. In the processes of flow, sediment, and non-point source pollution simulation,
it is essential to dynamically update land use data to recalibrate the threshold, thereby
enhancing the model’s simulation accuracy in the context of land use change. Consequently,
dynamic land use input must be incorporated into the model [42].

The Songnen Plain and Sanjiang Plain in northeast China represent the regions with the
highest agricultural grain yield in the country [43]. The topography in this area is intricate,
featuring diverse land use and soil classifications. The existing SWAT model exhibits
inadequate processing capabilities for high-precision and multi-transformation terrain
data, leading to significant inaccuracies in simulated groundwater recharge, discharge,
and shallow groundwater storage [44]. It should be enhanced according to the planting
configuration. Accurate planting structure data, derived from the integration of high-
resolution drone imagery, remote sensing images, and ground-measured data, serve as the
input land use data for the SWAT model. This approach aims to enhance the simulation
of the migration and transformation processes of agricultural non-point source pollution,
thereby improving the accuracy of watershed runoff simulations.

5.2. Analysis of Groundwater Recharge and Distribution Characteristics

Analysis of the simulation results indicates that precipitation is the primary source
of groundwater recharge in the middle and lower reaches of the Songhua River. The
predominant component of drainage is groundwater recharge as base flow, while the least
significant is loss in the regression vadose zone. The primary mechanism of water loss
is absorption by plant roots from the superficial water layer. The Songhua River basin
experiences a temperate continental climate characterized by significant annual tempera-
ture variation. The disparity between evapotranspiration and precipitation is excessive.
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Forecasts indicate that the potential evapotranspiration of the Songhua River basin will
rise in the 21st century. Although the region is primarily replenished by atmospheric
precipitation, the supply is inadequate. The primary reason is the extended duration of the
cold season, during which the river freezes, leading to significant groundwater recharge
into the river [45].

The groundwater storage in the study area exhibited a gradual increase over 10 to 16 years,
based on its distribution characteristics. The primary distribution trend centers on the Jia-
musi area, with a gradual decline towards the northeast and southeast directions. Seventy-
five percent of the land in the northeast and southeast quadrants of the study area is
allocated for agricultural cultivation, resulting in substantial water extraction for irrigation
purposes. Furthermore, the southeast direction is distanced from the primary river trunk,
resulting in a comparatively limited water supply. The simulation results indicate a signifi-
cant alteration in the southeastern region of the basin. In recent years, the optimization of
paddy field planting systems has effectively allocated water demand and alleviated the
strain on groundwater extraction, leading to a substantial increase in the water reserves
of the phreatic aquifers in this region [46]. Besides the annual rise in precipitation, the
gradual augmentation of water reserves is attributable to Fujin City’s optimization of its
flood control and diversion irrigation management system for the three adjacent reservoirs
since 2014, thereby diminishing the groundwater demand for agricultural irrigation [47].

6. Conclusions

1. The application of the SWAT and MODFLOW models for assessing groundwater
resources yielded favorable simulation results in this region. The runoff simulation
at the Tongjiang Hydrological Station, located at the basin’s total water outlet, was
exemplary. R2 exceeded 0.8, NSE surpassed 0.75, and the R2 values for simulation and
verification of groundwater levels were 0.98 and 0.97, respectively. The discrepancy
between the simulated value and the actual value was less than 0.6 m.

2. The study area is predominantly characterized by a robust extraction sector. In 2016,
the simulated runoff reached its peak, with a storage variable of 872 million m3/a. It is
in a state of positive equilibrium. The primary source of groundwater in the discharge
item, represented as base flow recharge from the river, constituted 81.46%. The second
factor accounts for approximately 7.14%, primarily attributed to the replenishment of
deep aquifers, while the least significant factor, the loss to the vadose zone, constitutes
merely 2.1%.

3. From 2010 to 2016, the average groundwater runoff modulus in the middle and
lower reaches of the Songhua River basin was 1.005 L/(s·km2), with a total recharge
of 216.58 × 108 m3 and a total recoverable amount of 105.11 × 108 m3. The mean
annual recharge was 25.11 × 108 m3, while the total groundwater recharge was
26.54 × 108 m3, 33.11 × 108 m3, and 33.25 × 108 m3 in the super dry year (2011),
normal year (2014), and high water year (2016), respectively, with the groundwater
recharge in the high water year being 1.25 times greater.

4. The MODFLOW model was employed to simulate groundwater recharge in the mid-
dle and lower reaches of the Songhua River for the years 2011, 2014, and 2016. The dis-
crepancies in results compared to the SWAT model were 2.22 × 108 m3, 2.32 × 108 m3,
and 1.0 × 108 m3, respectively, with a minimal relative error base. The SWAT model
effectively simulates groundwater resource assessment in cold regions.
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Abstract: Accurate forecasting of monthly runoff is essential for efficient management, allocation,
and utilization of water resources. To improve the prediction accuracy of monthly runoff, the long
and short memory neural networks (LSTM) coupled with variational mode decomposition (VMD)
and principal component analysis (PCA), namely VMD-PCA-LSTM, was developed and applied
at the Waizhou station in the Ganjiang River Basin. The process begins with identifying the main
forecasting factors from 130 atmospheric circulation indexes using the PCA method and extracting
the stationary components from the original monthly runoff series using the VMD method. Then, the
correlation coefficient method is used to determine the lag of the above factors. Lastly, the monthly
runoff is simulated by combining the stationary components and key forecasting factors via the
LSTM model. Results show that the VMD-PCA-LSTM model effectively addresses the issue of low
prediction accuracy at high flows caused by a limited number of samples. Compared to the single
LSTM and VMD-LSTM models, this comprehensive approach significantly enhances the model’s
predictive accuracy, particularly during the flood season.

Keywords: monthly runoff forecasting; factor selection; variable modal decomposition; principal
component analysis; long short-term memory neural network

1. Introduction

Runoff prediction is essential for water resource management, allocation, and effec-
tive utilization [1,2]. Accurate runoff prediction, especially in medium- and long-term
timescales, can provide effective scientific support for agricultural irrigation, industrial and
domestic water use, reservoir optimization, water conservancy project planning and design,
etc. [3,4]. Another significant aspect of runoff prediction is providing early warnings for
floods and drought, which are strongly correlated with certain meteorological factors, such
as precipitation and runoff, as indicated by relevant studies [5,6]. However, due to its
vulnerability to climate change and human activities, runoff has the characteristics of being
highly nonlinear, unstable and complicated [7]. Therefore, it is still a challenge to obtain
high-precision runoff-prediction results.

Currently, runoff prediction models can be divided into two types: process-driven
models [8–10] and data-driven models [11–13]. Process-driven models are modeled to sim-
ulate complex non-linear physical hydrological process through a series of mathematical
equations based on an understanding and simplification of the principles of the natural
water system [14,15]. For example, the Xin’anjiang model [16], the Soil and Water Assess-
ment Tool [17], and Sacramento Soil Moisture Accounting [18] are the most widely used
physically driven models. Although they can reveal the physical mechanism of runoff
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generation [19,20], there is still another important factor that can affect the hydrological
processes, e.g., human activities such as hydropower, which are processes hardly modeled
using traditional physically based models. Additionally, the modeling demands a great
deal of accurate and reliable information on hydrological processes (e.g., precipitation and
evapotranspiration), which leads to common shortcomings such as difficulty in determin-
ing the parameters and poor versatility of the model. With improvements in computing
power, data-driven models have shown great potential in capturing the rainfall–runoff
relationship and predicting the runoff in a given basin. Without considering the hydrologi-
cal physical processes, data-driven models are widely employed to address a variety of
classification and regression problems by establishing the statistical relationships between
inputs and outputs. For the prediction of medium- and long-term runoff, researchers
have used data-driven models such as artificial neural networks (ANNs), support vector
machines (SVMs), and long short-term memory (LSTM) networks to capture the nonlinear
and unsteady characteristics of runoff time series [21–23], and some studies have achieved
better performance than those using traditional process-driven models [24,25]. As a branch
of data-driven models, deep learning models can better address the insufficient ability
of classical data-driven models to deal with nonlinear relationships in difficult situations.
Recently, with the rapid development of deep learning models, it has been increasingly
studied in the simulation and prediction of hydrological elements such as runoff, evap-
otranspiration, and soil moisture [26–28]. For instance, Castangia et al. [29] explored the
applicability of the transformer model to flood forecasting and found that the model has
higher prediction accuracy than recurrent neural networks. Although many new deep
learning models have been applied to the hydrologic forecasting field, long short-term
memory (LSTM) still keeps a wide application in runoff prediction [30], especially for
monthly runoff prediction.

In addition to the selection of appropriate hydrological models, identifying the key
forecasting factors that drive runoff variability is another aspect of building a reliable fore-
cast model [31]. Since runoff is a non-stationary component with periodicity, stochasticity,
and trend, the accuracy of direct prediction using the above models is limited [32]. The
signal decomposition technique can decompose the runoff series into several relatively
stable components to reduce the non-stationarity of the time series with high complexity
and strong nonlinear, which can help the model better capture the change patterns of the
runoff series and improve the prediction accuracy [33,34]. For example, Wang et al. [35]
found that the runoff prediction results of the auto-regressive integrated moving average
(ARIMA) model combined with the ensemble empirical mode decomposition (EEMD) are
more accurate and stable than that of a single ARIMA model. Zuo et al. [36] developed a
single-model forecasting (SF) scheme based on variational mode decomposition (VMD)
and LSTM to predict daily runoff with a lead time of 1–7 days, and found that the SF-VMD-
LSTM can effectively capture the unsteady and nonlinear nature of the runoff. Additionally,
previous studies have shown that the rainfall–runoff process is also closely connected with
climatic conditions and human activities except for traditional meteorological factors such
as precipitation and potential evapotranspiration [37,38]. Champagne et al. [39] quantified
the contribution of atmospheric circulation on runoff response for four basins in southern
Ontario and found that the temporal increase in high pressure contributed more than 40%
to the increase in runoff in winter. To improve the model performance of runoff simula-
tion, factors such as EI Nino, LaNina, and atmospheric circulation affecting the regional
hydrological cycle were selected as model inputs. For example, Yan et al. [40] found that
considering atmospheric circulation anomaly factors can effectively reduce the influence
of extreme weather and climate anomalies on the prediction accuracy of medium- and
long-term runoff. Mostaghimzadeh et al. [41] studied the impact of climate–atmospheric
indices on runoff predictions and found that runoff is highly correlated with the Pacific
STT in the Great Karon system. However, many studies based on the LSTM model only
consider a single forecast period, and whether decomposition technology can improve
the performance of the LSTM model in multiple forecast periods is not clear. Moreover,
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the effect of atmospheric circulation indexes on the model runoff prediction based on
decomposition technology remains to be investigated.

Therefore, a hybrid machine learning model coupled with LSTM, VMD, and PCA
was created in this study to predict monthly runoff in the Ganjiang River Basin, aiming
to explore the effect of decomposition technology and atmospheric circulation indexes
on the performance of the hybrid machine learning model in multiple forecast periods.
Key forecasting factors were extracted from 130 atmospheric circulation indexes using the
PCA method; meanwhile, stationary components were derived from the original monthly
runoff series using the VMD method. Subsequently, the lag time of the above factors was
determined by the correlation coefficient method. Lastly, the impact of VMD decomposition
and the incorporation of atmospheric circulation on the runoff prediction of the LSTM
model were investigated. The paper is organized as follows. Section 2 describes the model
and evaluation indicators. Section 3 delineates the study area and data preprocessing.
Section 4 provides an analysis and discussion of the results. The main findings and
conclusions are given in Section 5.

2. Methodology
2.1. Variational Mode Decomposition

The VMD algorithm is an adaptive, completely non-recursive mode variational and sig-
nal processing method with the core of constructing and solving variational problems [42].
It overcomes the endpoint effect and the problem of modal component overlapping in
the empirical mode decomposition (EMD) method by determining the number and the
best center frequency of modal decompositions of the sequence according to the actual
situation, and effectively obtains multiple smooth subsequences with different frequencies.
Assuming that the original signal f is decomposed into k modes with finite bandwidth
and center frequency, to ensure that the sum of the estimated bandwidths of each mode is
minimum and all modes’ sum is kept constant, the constraint variational problem can be
shown as follows:

min
{uk},{uk}

{
∑
k
‖ ∂t[(δ(t) + j/πt) ∗ uk(t)]e−jwkt ‖2

2

}
(1)

s.t.
K

∑
k=1

uk = f (2)

where k is the number of decomposed modes, uk and ωk correspond to the kth modal
component and the center frequency after decomposition, δ(t) is the Dirac function, ∗ is
the convolution operator, and f is the original time series. See reference [43] for a detailed
solving process.

2.2. Principal Component Analysis

PCA method is a data dimensionality reduction algorithm that transforms multiple
variables into a few composite variables through orthogonal transformations with minimal
loss of data information [44]. It screens principal forecasting factors by standardizing
variables and calculating the covariance matrix and its eigenvectors and eigenvalues. A
smaller variance contribution means less information for the selected factors. The equation
for the extraction of the forecasting factors can be described as follows:





y1 = a11x1 + a12x2 + · · ·+ a1nxn
y2 = a21x1 + a22x2 + · · ·+ a2nxn
· · ·
ym = am1x1 + am2x2 + · · ·+ amnxn

(3)

where A is the feature vector matrix composed of coefficient a. y1 is the linear combina-
tion of x1, x2, · · · , xn with the largest variance among all linear combinations. Similarly,
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ym is the linear combination of x1, x2, · · · , xn with the mth largest variance among all
linear combinations.

2.3. Long Short-Term Memory Network

The LSTM model (see Figure 1) is a special form of RNN with cell state and gate
structure as the core [45]. The cell state plays a role in the transmission of information,
while the gate structure determines the retention and forgetting of information, and the
interaction of the two ensures the efficient transfer of information through the sequence. It
overcomes the problem of long-term dependencies and is more suitable for dealing with
time series forecasting problems. The computation process of the LSTM unit is described in
Equations (4)–(8):

Input gate : It = σ(wi · G[ht−1, xt] + b f ) (4)

Forget gate : Ft = σ
(

w f · G[ht−1, xt] + b f

)
(5)

Output gate : Ot = σ(wO · G[ht−1, xt] + bO) (6)

Cell state :

{
G̃t = tanh

(
wg · [ht−1, xt] + bg

)

Gt = Ft · Gt−1 + It · G̃t
(7)

Output vector : ht = Ot · tanh(Ct) (8)

where h represents time output; w is the weights of gates; b is the bias of gates; C is the cell
state; x is the input; σ denotes the sigmoid function; G̃t is the information status through
the input gate; t represents the time step.
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Figure 1. The process of monthly runoff prediction via the VMD-PCA-LSTM model.

The LSTM model’s hyperparameters including hidden layer nodes, learning rate,
dropout rate, and batch size are determined by the Bayesian optimization (BO) algo-
rithm [46] in the training period. The rest refer to the previous research [47]. The initial
point and iteration times of the BO algorithm are set to 20 and 30 times, respectively.

2.4. VMD-PCA-LSTM

The hybrid VMD-PCA-LSTM model mainly includes the following three steps (see
Figure 1):
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(1) Multiple stationary intrinsic modal components (IMF) and a residual component (resid-
ual) were obtained by decomposing the runoff series according to the VMD method;

(2) The PCA method was used to reduce the dimension of the atmospheric circulation
indexes, and then principal components with a cumulative contribution rate greater
than 90% were selected as forecasting factors;

(3) Normalized processing and determinations of the inputs and outputs of the LSTM
model were carried out.

Each inherent modal component (IMF1
(t−L,t), IMF2

(t−L,t), · · · IMFn
(t−L,t)) and trend com-

ponent (Residual(t−L,t)) are used as predictors to predict the different forecasting periods
of runoff (Rt+1, Rt+3, Rt+6) in Waizhou station. In the LSTM model, L represents the lag time.
According to the periodic variation law of monthly runoff, the L of a single LSTM model can
be directly set to 12. However, the interannual variation law of runoff decomposed by VMD
has changed, which means that the L value of the hybrid model cannot be set to 12 directly,
and the optimal value of L needs to be determined by repeated debugging. Likewise,
considering that the effect of atmospheric circulation on runoff has a lag time [48,49], the
optimal value of L needs to be determined by repeated debugging.

2.5. Evaluation Metrics

The evaluation metrics used in this study consist of Nash–Sutcliffe efficiency (NSE),
root mean square error (RMSE), correlation coefficient (r) and volume error (VE). The closer
the NSE and r values are to 1, the smaller the RMSE, and the closer the VE value is to 0, the
more accurate the runoff predictions. These metrics can be represented mathematically:

NSE = 1− ∑n
t=1(Qsim,t −Qobs,t)

2

∑n
t=1
(
Qobs,t −Qobs

)2 (9)

RMSE =

√
∑n

t=1(Qsim,t −Qobs,t)
2

n
(10)

r =
∑n

t=1
(
Qobs,t −Qobs

)(
Qsim,t −Qsim

)
√

∑n
i=1
(
Qobs,t −Qobs

)2 ×∑n
i=1
(
Qsim,t −Qsim

)2
(11)

VE = 1− ∑n
t=1 Qsim,t

∑n
t=1 Qobs,t

(12)

where Qsim and Qobs are the simulated and observed monthly runoff, respectively; Qsim
and Qobs are the mean value of the time series; t denotes the tth month; n is the length of
the series.

3. Study Area and Data Preprocessing
3.1. Gangjiang River Basin

The Ganjiang River, which originates from Huangzhuling in Wuyi Mountain, is the
main river in the Poyang Lake basin, accounting for 51% of its area (see Figure 2). The basin
is located between the longitudes 113◦45′–114◦45′ E and latitudes 25◦55′–26◦35′ N and has
a total drainage area of 80,948 km2, all within Jiangxi Province. The landscape is mainly
mountainous and hilly, with a terraced distribution from the south to the north and an
altitude of 23–2103 m above sea level. The basin belongs to the subtropical humid monsoon
climate, characterized by abundant rainfall, while the spatiotemporal distribution of pre-
cipitation is unevenly affected by the terrain and monsoon, with 50% of the precipitation
concentrated from April to June. The average annual rainfall, potential evapotranspiration,
and runoff are about 1550 mm, 1070 mm, and 870 mm, respectively [50]. According to local
government documents, April to September is defined as the flood season of the basin.
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Figure 2. Location of the Ganjiang River Basin.

The monthly runoff data of Waizhou Station are collected from the local hydrological
departments with time ranges from 1957 to 2016. Likewise, Atmospheric circulation indexes
consist of 88 atmospheric circulation indexes, 26 sea temperature indexes, and 16 other
indexes provided by the National Climate Center of China Meteorological Administration
(http://cmdp.ncc-cma.net/Monitoring/cn_indexes_130.php accessed on 4 December 2023).
Note that the first 80% of the above sequence data are used for training, while the last 20%
are used for verifying.

3.2. Monthly Runoff from the VMD Decomposition

The decomposition effect of VMD is largely influenced by the number of mode decom-
positions (K), and the subsequent prediction effect will be affected if the selecting value of K
is unreasonable. In general, the appropriate K value can be preliminarily selected according
to the distribution of center frequency under different modes. To further determine K, the
correlation of the decomposed adjacent mode components is analyzed, as shown in Table 1.
In the table, rn–m represents the correlation coefficient of the decomposed nth mode and
the mth mode. It can be seen that when the K is less than 6 or larger than 8, the correlation
coefficients of adjacent modal components fluctuate greatly, which indicates that the mode
component is stacked, leading to the over-decomposition of the runoff signal. When K is
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between 6 and 8, the correlation coefficient of the adjacent mode components is stable and
less than 0.2, and each mode shows the runoff signal characteristics of the corresponding
central frequency. Therefore, the K value of Waizhou station is selected as 8.

Table 1. Correlation coefficients of adjacent modes.

K r1–2 r2–3 r3–4 r4–5 r5–6 r6–7 r7–8 r8–9

2 0.128 - - - - - - -
3 0.011 0.113 - - - - - -
4 0.009 0.071 0.203 - - - - -
5 0.031 0.035 0.050 0.184 - - - -
6 0.044 0.029 0.050 0.174 0.170 - - -
7 0.076 0.082 0.024 0.045 0.170 0.169 - -
8 0.092 0.075 0.081 0.018 0.042 0.168 0.169 -
9 0.085 0.089 0.051 0.153 0.026 0.035 0.166 0.169

The results of monthly runoff from Waizhou station after VMD decomposition are
shown in Figure 3. The original monthly runoff series is decomposed into eight stationary
components (IMF) and a residual term representing the trend, which not only reduces the
noise but also helps the model identify the internal transformation law of the runoff series.
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4. Results and Discussion
4.1. Determining Forecasting Factors and Model Parameter

At present, there is no specific principle on how to screen the input elements of
machine learning models, and the correlation coefficient method is commonly used in
previous studies [30,51]. However, considering VMD decomposition causing the change
in runoff interannual variation law, the optimal value of lag time (L) is selected according
to the value of correlation coefficients (r) between the IMF and the original runoff series.
Taking L equal to 1 month as an example, Figure 4 shows the value of r between each
IMF and the original runoff series under different L; red and yellow shading indicate a
good related degree, and blue shading represents poor. It can be seen that when the mode
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number is larger than 5, the value of r decreases as L increases, and when the mode number
is less than 5, the value of r slightly fluctuates; meanwhile, the r of IMF5 presents a decrease
and then an increase trend with increasing L. Additionally, to further determine the optimal
value of L, the sum of r is obtained by each IMF in the same L, and the value of L is finally
determined as 1 by selecting the L corresponding to the maximum sum of r.
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Similarly, the optimal value of lag time (L) is determined according to the value
of r between atmospheric circulation indexes and the original runoff series. In order to
select circulation indexes that are as strongly correlated with monthly runoff as much as
possible, the top 1% of r among circulation indexes that pass the 0.01 significance test is
selected as model additional input factors. It can be found from Table 2 that L is mainly
equal to 7 and 8, and the r of North African Subtropical High Ridge Position Indexes,
Indian Subtropical High Ridge Position Indexes, and Western Pacific Subtropical High
Ridge Position Indexes separately are the top three, which confirms previous studies about
the effect of atmospheric circulation indexes on moisture transport in eastern China [52].
Additionally, considering that excessive input factors in the machine learning model will
cause an overfitting phenomenon, the PCA method is used to reduce the input dimensions
of the above circulation indexes. The ranking of variance contribution for the partial
components is shown in Table 3. In general, the greater the variance contribution of the
principal component, the more information on the selected factor. It should be noted that
the variance contribution of the first principal component reaches 85.42%, indicating that
it contains most of the information of the selected circulation indexes. According to the
cumulative contribution rate threshold set in Section 2.4, the first two principal components
are finally determined as the additional forecasting factors.
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Table 2. The rank of correlation coefficient (r) between the atmospheric circulation indexes and the
original runoff series in the optimal lag time.

Rank of r Factor Type Lag Time
/(Month)

6 Northern Hemisphere Subtropical High Ridge Position Indexes

7
3 Western Pacific Subtropical High Ridge Position Indexes
10 South China Sea Subtropical High Ridge Position Indexes
5 Pacific Subtropical High Ridge Position Indexes

11 North African-North Atlantic-North American Subtropical High
Area Indexes

8

13 North American Subtropical High Area Indexes
9 Atlantic Subtropical High Area Indexes
8 North American-Atlantic Subtropical High Area Indexes
1 North African Subtropical High Ridge Position Indexes

12 North African-North Atlantic-North American Subtropical High
Ridge Position Indexes

2 Indian Subtropical High Ridge Position Indexes
7 Northern Hemisphere Polar Vortex Central Intensity Indexes
4 East Asian Trough Intensity Indexes

Table 3. The ranking of variance contribution for the partial components.

Component Total Variance/(%) Cumulative Variance/(%)

1 11.10 85.42 85.42
2 0.90 6.94 92.36
3 0.35 2.68 95.04
4 0.17 1.34 96.38
5 0.11 0.83 97.21
6 0.098 0.75 97.96

4.2. Effect of VMD Decomposition on Runoff Prediction of LSTM Model

To investigate the influence of the VMD decomposition method on the runoff predic-
tion results of the LSTM model, the single LSTM model and the VMD-LSTM model are
used to predict the monthly runoff of Waizhou hydrographic stations. The runoff prediction
results of different forecast periods are shown in Table 4.

Table 4. The performances of LSTM and VMD-LSTM model during the validation period.

Forecast Period Model NSE RMSE/(m3/s) VE/(%)

1 month
LSTM 0.518 1185 −0.77

VMD-LSTM 0.954 366 −1.97

3 months
LSTM 0.430 1292 0.76

VMD-LSTM 0.931 450 7.81

6 months
LSTM 0.424 1299 1.62

VMD-LSTM 0.828 710 4.21

The VMD-LSTM model demonstrates significant improvements over the single LSTM
model. Specifically, it increases the NSE by 0.404–0.501 and decreases the RMSE by
589–842 m3/s. This suggests that the VMD method significantly enhances the predic-
tive performance of the single LSTM model. Figure 5a further shows the performance of the
single LSTM model and the VMD-LSTM model in predicting the monthly runoff for differ-
ent forecasting periods. A great improvement occurs in predicting the monthly runoff for
3 months, with the NSE increasing by 116.7% and RMSE decreasing by 922.1%. However,
it is worth noting that the VE obtained by the VMD-LSTM model increases by 45.3–69.1%
compared with the single LSTM model. The reason can be inferred from Figure 6, that
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the single LSTM model’s overestimation of medium and low flow compensates for its
underestimation of high flow.
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Additionally, the prediction accuracy of all models gradually degenerates as the
forecast period prolongs, while the VMD-LSTM model degenerates less; for example, the
NSE of the LSTM and VMD-LSTM model decreases by 18.1% and 13.2% in the foresight
period from 1 month to 6 months, respectively. In comparison, when the forecast period
increases from 1 month to 3 months, the NSE of the VMD-LSTM model shows no significant
change, indicating that the VMD decomposition method not only improves the prediction
performance of the LSTM model but also extends the forecast period in a certain extent. As
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shown in Figure 6, the prediction performance of the VMD-LSTM model for high flow is
significantly better than that of the single LSTM model in the same forecast period. It is
worth noting that the NSE of the VMD-LSTM is greater than 0.8, as the forecast period is
prolonged, which further explains that the prediction ability improvement of the LSTM
model by the VMD decomposition method is mainly reflected in the improvement of the
prediction of the high flow.

4.3. Effect of Considering Atmospheric Circulation on Runoff Prediction of LSTM Model

The above research shows that the VMD-LSTM model can simulate the runoff with a
lead time of 1, 3 and 6 months more accurately than the single LSTM model. To further
enhance the prediction performance, the first two principal components of the atmospheric
circulation indexes screened by the PCA method are used as the additional input of the
VMD-LSTM model for the simulation of the monthly runoff with a lead time of 1, 3
and 6 months. The runoff prediction results for different forecast periods before and
after integrating atmospheric circulation indexes are shown in Table 5. Different from
only considering the VMD method, all metrics obtained by the VMD-PCA-LSTM model
are better than the VMD-LSTM model, which means that considering the atmospheric
circulation indexes as the forecasting factors can comprehensively enhance the prediction
performance of the VMD-LSTM model.

Table 5. Predicted results before and after integrating atmospheric circulation indexes. Note: the
data on the left and right of the arrow represent the predicted results before and after integrating the
atmospheric circulation indexes, respectively.

Forecast Period NSE RMSE/(m3/s) VE/(%)

1 month 0.954→0.964 366→322 −1.97→−1.61
3 months 0.931→0.936 450→432 7.81→1.43
6 months 0.828→0.879 710→595 4.21→−1.82

Figure 5b further shows the prediction performance of the VMD-LSTM and VMD-
PCA-LSTM models for different forecasting periods. It can be found that the improvement
degree of the VMD-LSTM model after integrating atmospheric circulation indexes becomes
more significant as the forecast period prolongs, particularly when the forecast period is
6 months, the NSE and RMSE have the most significant improvement with increasing by
6.2% and 16.3%, respectively. The reason may be that the long-term continuous influence of
atmospheric circulation on regional climate leads to the fact that the atmospheric circulation
indexes of the previous period still affect the climate for a long time in the future, and then
affect the runoff through the water cycle process. Therefore, with the increase in the forecast
period, the effect of historical runoff gradually weakens, and the prediction performance
of the model gradually decreases, while the atmospheric circulation factors still play a
certain role in the runoff prediction in the following months, which makes the accuracy
of the model improve more significantly with the increase in the forecast period after the
integration of atmospheric circulation indexes.

Figure 7 intuitively displays the forecast performance of the VMD-LSTM and VMD-
PCA-LSTM models in different forecast periods. When the forecast period is one month,
all models can predict well the future change trend of runoff. With the increase in the
forecast period, the predicted runoff of the VMD-PCA-LSTM model still maintains a high
degree of correspondence with the observed, while the predicted runoff of the VMD-LSTM
model has a significant deviation, mainly manifesting as an overestimation of high flow
prediction. Due to the small number of samples at the high flow, the accurate prediction of
high flow becomes a difficult problem in runoff prediction. The results indicate that adding
atmospheric circulation indexes to the model input can effectively solve the problem of low
prediction accuracy at high flow caused by a small number of samples.
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4.4. Performance of Runoff Prediction in Flood and Non-Flood Season

As a result of the uneven spatiotemporal distribution of precipitation in the basin,
issues such as flood disasters, drought, and mismatch between water supply and demand
have become progressively prominent. Therefore, the accurate prediction of runoff in flood
and non-flood seasons can provide a scientific basis for effectively reducing the risk of
flood damage and mitigating the mismatch between water supply and demand.

The prediction results for three models during different forecast periods are displayed
in Figure 8. It is quite obvious that the LSTM model slightly overestimates the low flow and
strongly underestimates the high flow at all times, which is resolved by the introduction
of the VMD method, and the forecast period equaling 1 month is especially significantly
improved, while the difference between the VMD-LSTM and VMD-PCA-LSTM models
is not obvious. Table 6 demonstrates the runoff prediction results of the VMD-LSTM and
VMD-PCA-LSTM models. Compared with the VMD-LSTM model, the performance of the
VMD-PCA-LSTM model is better in flood season and degrades in non-flood season, with
the r and RMSE decreased by 1.7–5.8% and increased 0.7–6.5% in non-flood season and
increased by 1.7–5.8% and decreased 0.7–25.1% in flood season, respectively. The results
indicate that consideration of atmospheric circulation indexes is not a comprehensive
improvement of the model’s runoff prediction ability, but rather focuses only on the flood
season, particularly for high flows.

Figure 9 presents the results of predicted monthly mean runoff in different forecast
periods. There is no significant difference between all models from November to February,
and only considering VMD decomposition can improve the LSTM model accuracy of
other monthly runoff predictions, while the VMD-PCA-LSTM model slightly improves
the VMD-LSTM model overestimation of runoff in all forecast period. In addition, the
VMD-LSTM and VMD-PCA-LSTM models have good robustness with increasing forecast
periods compared to the LSTM model.

63



Water 2024, 16, 1589Water 2024, 16, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 8. Comparison of predicted results for three models during different forecast periods: (a–c) 
non-flood season; (d–f) flood season. 

Table 6. Predicted results of VMD-LSTM and VMD-PCA-LSTM model for different forecast periods 
during the flood and non-flood seasons. Note: the data on the left and right of the arrow represent 
the predicted results of the VMD-LSTM and VMD-PCA-LSTM models, respectively. 

Season Forecast Period r RMSE/(m3/s) 

non-flood season 
1 month 0.974→0.957 215→269 
3 months 0.940→0.923 343→359 
6 months 0.846→0.797 564→568 

flood season 
1 month 0.978→0.982 469→366 
3 months 0.966→0.966 532→491 
6 months 0.907→0.941 833→589 

Figure 9 presents the results of predicted monthly mean runoff in different forecast 
periods. There is no significant difference between all models from November to Febru-
ary, and only considering VMD decomposition can improve the LSTM model accuracy of 
other monthly runoff predictions, while the VMD-PCA-LSTM model slightly improves 
the VMD-LSTM model overestimation of runoff in all forecast period. In addition, the 
VMD-LSTM and VMD-PCA-LSTM models have good robustness with increasing forecast 
periods compared to the LSTM model. 

Figure 8. Comparison of predicted results for three models during different forecast periods:
(a–c) non-flood season; (d–f) flood season.

Table 6. Predicted results of VMD-LSTM and VMD-PCA-LSTM model for different forecast periods
during the flood and non-flood seasons. Note: the data on the left and right of the arrow represent
the predicted results of the VMD-LSTM and VMD-PCA-LSTM models, respectively.

Season Forecast Period r RMSE/(m3/s)

non-flood season
1 month 0.974→0.957 215→269
3 months 0.940→0.923 343→359
6 months 0.846→0.797 564→568

flood season
1 month 0.978→0.982 469→366
3 months 0.966→0.966 532→491
6 months 0.907→0.941 833→589

Water 2024, 16, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 9. Radar chart of the predicted and observed monthly mean runoff in different forecast peri-
ods. 

4.5. Discussion 
This study uses an LSTM model coupled with VMD and PCA methods to predict the 

monthly runoff and finds that the hybrid model can enhance the model’s predictive accu-
racy, particularly during the flood season. This is consistent with previous studies that 
reported an improvement based on the deep learning and decomposition technique for 
the runoff prediction [53,54]. It is worth noting that considering the structural differences 
of the model, different results can be obtained under different deep learning models. For 
example, Li et al. [55] found that the prediction results of back propagation neural net-
work (BPNN), SVM and LSTM had significant differences, and the performance of the 
LSTM model was the best, especially for the peak flow forecasting. Meanwhile, many re-
searchers often use the LSTM model for hydrological simulation and prediction. There-
fore, our study only tests the effect of the LSTM model under VMD and PCA methods 
and does not further explore the effects of different models. 

On the other hand, with the rapid development of decomposition methods, new 
methods such as the wavelet packet decomposition (WPD), complete ensemble empirical 
mode decomposition with adaptive noise (CEEMDAN) and singular spectrum analysis 
(SSA) demonstrate some advantages in medium- and long-term term runoff forecasting 
[56,57]. However, it cannot simply be concluded that new methods will always produce the 
best simulations under all conditions. Wang et al. [58] pointed out that selecting an appro-
priate data pre-processing method based on the specific characteristics of the study area can 
lead to more accurate prediction results. Therefore, further research is needed on the appli-
cation of various decomposition techniques in the Ganjiang River Basin. 

In addition, the goodness of the result for screening the input factors also influences 
the model performance. Global sensitivity analysis is a feasible method for selecting me-
dium- and long-term runoff prediction factors based on physical causes, while it is not 
computationally efficient for complex models and large amounts of data [59]. The corre-
lation coefficient method used in this study is simple and effective based on statistical 
relationships, but it still requires a subjective setting of the threshold [30]. Recently, atten-
tion mechanisms have shown great application potential in identifying key input factors 
of runoff prediction by automatically assigning weights to all factors [13]. Consequently, 
it is necessary to further study the LSTM model of coupled attention mechanism and ad-
vanced optimization algorithm in the future. 

5. Conclusions 
This study introduces a hybrid machine learning model built upon the LSTM model 

coupled with the VMD and PCA for monthly runoff prediction. The VMD decomposition 
was employed to reduce the noise in the runoff series, while correlation analysis deter-
mined the lag time for each IMF and the atmospheric circulation indexes. The PCA 
method was then utilized to select the forecasting factors from the atmospheric circulation 

Figure 9. Radar chart of the predicted and observed monthly mean runoff in different forecast periods.

4.5. Discussion

This study uses an LSTM model coupled with VMD and PCA methods to predict
the monthly runoff and finds that the hybrid model can enhance the model’s predictive
accuracy, particularly during the flood season. This is consistent with previous studies that
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reported an improvement based on the deep learning and decomposition technique for
the runoff prediction [53,54]. It is worth noting that considering the structural differences
of the model, different results can be obtained under different deep learning models. For
example, Li et al. [55] found that the prediction results of back propagation neural network
(BPNN), SVM and LSTM had significant differences, and the performance of the LSTM
model was the best, especially for the peak flow forecasting. Meanwhile, many researchers
often use the LSTM model for hydrological simulation and prediction. Therefore, our study
only tests the effect of the LSTM model under VMD and PCA methods and does not further
explore the effects of different models.

On the other hand, with the rapid development of decomposition methods, new
methods such as the wavelet packet decomposition (WPD), complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) and singular spectrum analysis
(SSA) demonstrate some advantages in medium- and long-term term runoff
forecasting [56,57]. However, it cannot simply be concluded that new methods will always
produce the best simulations under all conditions. Wang et al. [58] pointed out that selecting
an appropriate data pre-processing method based on the specific characteristics of the study
area can lead to more accurate prediction results. Therefore, further research is needed on
the application of various decomposition techniques in the Ganjiang River Basin.

In addition, the goodness of the result for screening the input factors also influences
the model performance. Global sensitivity analysis is a feasible method for selecting
medium- and long-term runoff prediction factors based on physical causes, while it is
not computationally efficient for complex models and large amounts of data [59]. The
correlation coefficient method used in this study is simple and effective based on statistical
relationships, but it still requires a subjective setting of the threshold [30]. Recently, attention
mechanisms have shown great application potential in identifying key input factors of
runoff prediction by automatically assigning weights to all factors [13]. Consequently, it is
necessary to further study the LSTM model of coupled attention mechanism and advanced
optimization algorithm in the future.

5. Conclusions

This study introduces a hybrid machine learning model built upon the LSTM model
coupled with the VMD and PCA for monthly runoff prediction. The VMD decomposition
was employed to reduce the noise in the runoff series, while correlation analysis determined
the lag time for each IMF and the atmospheric circulation indexes. The PCA method was
then utilized to select the forecasting factors from the atmospheric circulation indexes.
Finally, the Bayesian optimization algorithm was used to optimize the LSTM network
parameters. The constructed hybrid LSTM model was applied to the Waizhou station,
considering lead times of 1, 3 and 6 months, aiming ultimately to investigate the impact of
VMD decomposition and the inclusion of atmospheric circulation indexes on the runoff
prediction accuracy of the LSTM model. The main conclusions are presented below:

(1) For Waizhou station, the number of mode decomposition K is 8, with lag time (L)
equaling 1 month. The L of atmospheric circulation indexes is mainly equal to 7
and 8, and the r of North African Subtropical High Ridge Position Indexes, Indian
Subtropical High Ridge Position Indexes, and Western Pacific Subtropical High Ridge
Position Indexes separately are the top three. The first two principal components are
selected as the forecasting factors from the above atmospheric circulation indexes by
the PCA method.

(2) The VMD decomposition method can significantly improve the prediction accuracy
of the single LSTM model, especially concentrating on the prediction of high flow
during the flood and non-flood seasons, and the improvement rate of NSE and RMSE
are 84.3–116.7% and 156.9–922.1% except the VE. Additionally, as the forecast pe-
riod increases, the prediction accuracy of the VMD-LSTM model degenerates less,
indicating that the VMD-LSTM model has good robustness. Only considering VMD
decomposition can improve the LSTM model accuracy of other monthly runoff pre-
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dictions except from November to February, which is not significantly different from
the VMD-PCA-LSTM model.

(3) Considering the atmospheric circulation indexes as the forecasting factors, compared
to the VMD-LSTM model, significantly enhances prediction accuracy in high flow
caused by a small number of samples, especially the decrease in VE of up to 81.6%.
With the increase in the forecast period, the improvement after integrating atmospheric
circulation indexes becomes more significant, especially when the forecast period is
6 months. The NSE and RMSE have the most significant improvement increasing by
6.2% and 16.3%. However, it is worth noting that the VMD-PCA-LSTM model does
not offer a comprehensive enhancement over the VMD-LSTM model in all periods,
but rather focuses only on the flood season, particularly for high flows.
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Abstract: This paper presents the extension of the monolayer snow model of a semi-distributed
hydrological model (HYDROTEL) to a multilayer model that considers snow to be a combination of
ice and air, while accounting for freezing rain. For two stations in Yukon and one station in northern
Quebec, Canada, the multilayer model achieves high performances during calibration periods yet
similar to the those of the monolayer model, with KGEs of up to 0.9. However, it increases the KGE
values by up to 0.2 during the validation periods. The multilayer model provides more accurate
estimations of maximum SWE and total spring snowmelt dates. This is due to its increased sensitivity
to thermal atmospheric conditions. Although the multilayer model improves the estimation of snow
heights overall, it exhibits excessive snow densities during spring snowmelt. Future research should
aim to refine the representation of snow densities to enhance the accuracy of the multilayer model.
Nevertheless, this model has the potential to improve the simulation of spring snowmelt, addressing
a common limitation of the monolayer model.

Keywords: multilayer structure; snow water equivalent; ice/air mixture; snow modeling; snowmelt;
sensitivity analysis; snow height; winter snow peak

1. Introduction

Understanding the hydrological cycle is a paramount challenge for humanity, as it
is essential for protecting against floods, mitigating droughts, meeting water needs for
industrial and domestic purposes, and informing weather and climate predictions. Within
this cycle, one crucial component is snowfall. Although in the Northern Hemisphere, snow
typically constitutes around 6–10% of total precipitation, it can exceed 50% in specific
regions [1]. Accumulating as a heat-deficient solid water reservoir, snowpacks experience
rapid spring melting, leading to distinctive seasonal flooding patterns. Notably, snowmelt
has been found to contribute substantially to annual streamflow in various geographic
contexts. For example, in Indian glacier-fed basins, snowmelt accounts for 27–44% [2], and
in Czech Republic watersheds 17–42% [3]. Meanwhile, snowmelt can play a pivotal role in
groundwater recharge. For example, in the Nelson River Basin, Canada, Jasechko et al. [4]
determined that the fraction of precipitation recharging aquifers is 1.3 to 5 times higher
during cold months, with negative mean monthly temperatures, than during warmer
months. Snow can pose a challenge in mountainous areas like the Andes [5] or Iran [6], and
snowmelt remains a concern. Consequently, accurate modeling of snow cover becomes
crucial for streamflow modeling.

Snow–water equivalent (or SWE) represents one of the key physical characteristics
and is defined as the depth of water on the ground if the snow were in a liquid state. For hy-
drological models simulating water transfers within the hydrological cycle, SWE represents
an essential variable and is equivalent to the product of snowpack height and snow density
(mass of snow per unit volume of snowpack). Another key characteristic, albedo, represents
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the proportion of solar radiation reflected by the snowpack surface and thus directly affects
the amount of absorbed solar energy. In the case of fresh snow, assuming reflectivity is
isotropic, its specular component—which entails unidirectional reflection—strengthens
as the snowpack ages and undergoes repeated melting and recrystallization events [7],
affecting snow metamorphosis and sublimation [8]. Finally, the temperature or calorific
deficit of the snowpack assists in determining the snow maturation process and proximity
to melting.

Given our physical understanding of snow, multiple snow models have been devel-
oped to tackle specific issues related to water resource management, including integrated
management, avalanche prediction, climate studies, infrastructure planning, environmental
impact, or even scientific research in fields such as ecology or glaciology. As is typical with
modeling, the complexity of those models is tailored to the objective they seek to address.
Table A1 in Appendix A presents a selection of snow models that differ in their design
approach, consideration of the simulated phenomena given the available data, and thus
representation of the snowpack structure.

Without delving into the details of each snow model, which would go beyond the
scope of this paper, Table A1 highlights a major difference in complexity between monolayer
models, which are all daily models and consider only a limited number of phenomena, and
multilayer ones that can provide snow cover modeling at 10 min intervals and consider a
wider range of phenomena. The snow model of HYDROTEL stands out among monolayer
models as the most advanced in terms of physical representation. It encompasses phe-
nomena found in simple models like CEMANEIGE and HBV (i.e., snow accumulation and
melting), as well as numerous phenomena typically associated with multilayer modeling
approaches (e.g., convective heat, precipitation heat, soil heat, compaction, mixing, radia-
tion heat/melting degree-day, water retention). HYDROTEL [9,10] is the semi-distributed
hydrological model at the core of operational hydrologic forecasting systems in the Que-
bec [11,12], Yukon [13–15], and Southern Québec Hydroclimatic Atlas [16–18], as well
as in several other studies, such as on the effect of global warming on environmental
flows [19–21] or the role of wetlands on mitigating floods and droughts [22–24]. These ap-
plications are made in a Canadian context, where most watersheds are subject to significant
snowfall. In these regions, spring freshets often result in annual streamflow peaks, some-
times accompanied by rain-on-snow events [25], which can augment lateral outflows and
impede soil infiltration [26]. As a result, accurate simulation of snowmelt becomes critical
for effectively predicting streamflow, accounting for both surface runoff and groundwater
recharge [27]. One notable feature of HYDROTEL’s snow model is its consideration of snow
as a monolayer structure [28]. However, the literature suggests that adopting a multilayer
representation of the snowpack can significantly improve SWE dynamics. For instance,
Saha et al. [29] demonstrated substantial enhancements in snowpack height and SWE esti-
mations with the use of the six-layer Noah model compared to its conventional monolayer
version. In addition, Domine et al. [30] highlighted the significance of accurately modeling
the thermal properties of snow for estimating soil water mass balance, suggesting that a
multilayer structure can effectively capture density profiles and improve the representation
of thermal characteristics. In addition to incorporating a multilayer structure, some models
treat snow as a heterogeneous material, accounting for the proportions of air, ice, and water
in the snow cover. For example, the SNOWPACK model [31] considers these factors, while
the GEOTOP [32] and SeNORGE [33] models represent snow as a mixture of solid and
liquid water. Furthermore, the integration of freezing rain enables the direct formation of
an ice layer over an existing snow cover, as observed in studies by Henson et al. [34] and
Quéno et al. [35].

These different considerations offer potential directions of improvement for snow
modeling in HYDROTEL. Given the advancements in modeling sophistication and compu-
tational capabilities, this paper focuses on developing a multilayer version of the hybrid
energy balance/degree-day snow model of HYDROTEL, assuming snowpack is predomi-
nantly composed of ice with interspersed air. As ice exhibits distinct thermal properties
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compared to those of air, this development impacts heat transfer between layers while
creating discontinuities in the physical properties and ensuing temperature and density
profiles. This development aligns with the parsimonious structure of HYDROTEL, which
has positioned the model as a robust model in Canada. The end goal is not to transform
HYDROTEL into a complex and computationally intensive model but rather to assess the
potential improvements associated with using a multilayer structure within a relatively
simple, physics-based, semi-distributed model.

This paper is organized as follows. First, we describe the original snow model design
of HYDROTEL, detailing the modifications from a monolayer model to a multilayer one,
and present a sensitivity analysis of the additional parameters. The mono- and multilayer
models are then calibrated based on SWE, and the resulting differences are highlighted.
The modeling is validated using Gamma MONitor (GMON) stations in the Necopastic
watershed (Quebec), Lower Fantail, and Wheaton (Yukon) River basins. The effects of the
model design on energy balance dynamics, state variables, and characteristic dates of the
snowpack are analyzed, followed by a discussion and conclusion.

2. Materials and Methods
2.1. Core Equations of the Monolayer Snow Model

This section presents the governing equations of the monolayer snow model of HY-
DROTEL [28] focusing on modeling the phenomena introduced in Table A1, namely, snow
accumulation, advected heat transfer from precipitation, soil heat transfer, snow com-
paction, snow water content, and construction of the thermal energy budget (through
blending net short-wave radiation and degree-day concepts).

The operation of the model is parsimonious and only requires three input variables,
that is, daily total precipitation, and minimum and maximum air temperatures. The model
is physics-based, using degree-day equations while building a thermal energy budget based
on the heat deficit of a monolayer snowpack. This budget is as follows (see Appendix B for
a detailed mathematical description of each term):

∆U
∆t

= ur + uc + us−s + ua−s + uac − us (1)

where ∆U
∆t is the daily rate of change in the snowpack heat deficit (J.m−2.s−1); ur, uc, us−s,

ua−s, and uac are decreases in heat deficits due to rainfall, conduction, transfer from the
soil (at the snow–soil interface), net radiation (at the air–snow interface), and from the
water retained on the previous day, respectively; and us is the increase in heat deficit due
to solid precipitation.

The energy assessment is applied to a snow layer. Liquid and solid precipitations are
derived from total precipitation, daily minimum and maximum air temperatures, and a
temperature threshold. When the air temperature is sufficiently cold (below the threshold),
all precipitation falls as snow (Equation (2a)), whereas when the temperature is warm
enough (above the threshold), it falls as rain (Equation (2b)). In between, total precipitation
results in a mix of snow and rain (Equation (2c)).

R = 0; S = Pt i f Tmax ≤ Ts (2a)

R = Pt; S = 0 i f Tmin > Ts, (2b)

R = Pt

(
Tmax − Ts

Tmax − Tmin

)
; S = Pt

(
Ts − Tmin

Tmax − Tmin

)
otherwise (2c)

where R, S, and Pt are liquid, solid, and total daily precipitation rates (m.s−1), respectively;
Tmax and Tmin are the maximum and minimum daily air temperatures, respectively; and Ts
is the temperature threshold.
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The density of falling snow is computed as follows:

ρs = 151 + 10.63
(

Tmax + Tmin
2

)
+ 0.2767

(
Tmax + Tmin

2

)2
if

Tmax + Tmin
2

≥ −17 (3a)

ρs = 50 i f
Tmax + Tmin

2
< −17 (3b)

where ρs is the density of fresh snowfall (kg.m−3), and Tmax and Tmin are the maximum
and minimum daily air temperatures, respectively.

The snowpack is subject to compression, and a reduction in height (Sett) is estimated
using Equation (4). Thus, Sett is subtracted from the current height of the snow layer. When
negative, Sett is set to 0.

Sett = H SetCoe f

(
1 − ρsnow

ρmax

)
(4)

where Sett is snowpack height lost to compaction (m), H is the snow height (m), SetCoe f is
the compaction coefficient (−), and ρmax is the maximum achievable density (kg.m−3).

When the total snowpack heat deficit is replenished, a potential snow melt is computed
from the excess heat, triggering a phase change as per Equation (5).

PM =
∆Utot

C f ρw
(5)

where PM is the resulting amount of SWE undergoing a phase change (m), ∆Utot is the
total heat deficit (J.m−2), ρw is the liquid water density (1000 kg.m−3), and C f is the latent
heat of the fusion of water (335,000 J.kg−1).

The maximum water retention capacity (RCmax) is computed as follows:

RCmax = 0.1
ρsnow

ρw
SWE (6)

where RCmax is the maximum snow cover capacity of water retention (m), and SWE is the
snow water equivalent following the removal of PM (m).

The actual snowmelt (AR) is computed as the difference between potential melt and
RCmax (Equations (7a) and (7b)).

AR =
PM
∆t

if PM ≤ RCmax then AM = 0 (7a)

AR =
RCmax

∆t
and AM =

PM − RCmax

∆t
otherwise (7b)

where AM is the actual snowmelt (m.s−1), AR is the actual retention, and ∆t is the compu-
tational time step.

Finally, the snowpack mass balance is the sum of the snowfall and rainfall when there
is snow on the ground; otherwise, rainfall either percolates or runs off.

∆SWE
∆t

= R + S − AM (8)

2.2. Extension of the Monolayer Snow Model

Several modifications to the model are considered, including a change from a mono-
layer to a multilayer structure. Additionally, some variables are estimated by considering
snow as a material composed of both ice and air. Furthermore, freezing rain is made
possible given its potential to alter the heat transfer inertia between each layer. Finally,
some modifications are introduced to the equations describing snow compression and
maximum water retention capacity to account for the changes. These modifications are
described in the next subsections.

72



Water 2024, 16, 1089

2.2.1. A Multilayered Structure

Any snowfall in the absence of snow on the ground or above a pure ice layer (layer
with a density of 917 kg.m−3) leads to the creation of a new layer with a specific mass and
heat deficit. If these criteria are not met, and if the snowfall water equivalent is less than
a threshold value St, then the incoming mass and heat deficit are incorporated into the
current layer at the air–snow interface. Otherwise, a new layer is established, as illustrated
in Figure 1. St serves as a calibration parameter, allowing for concurrent optimization of
energy transfers and restricting the number of layers. Some energy transfer processes solely
affect specific layers. For instance, heat input from the ground solely influences the layer at
the ground–snow interface, while radiation exclusively warms up the layer at the air–snow
interface. For the latter layer of the monolayer model, heat loss through conduction and
heat gain via radiation are enabled when the air temperature is below or above the melting
threshold temperature T0, respectively. Furthermore, in instances where melting exceeds
the water retention capacity, excess water seeps into the underlying layer at a temperature
of 0 ◦C. Excess heat is used for phase change; if the uppermost snow layer has undergone a
phase change, any residual heat is then transferred downwards. Consequently, the energy
balance can be expressed using Equations (9a)–(9c) for the top layer, any intermediate
layers, and the bottom layer, respectively.

∆Uk
∆t

= ur + uc + ua−s + uac − us (9a)

∆Uk
∆t

= uc + uac + uex,k+1 + uperc,k+1 − uex,k − uperc,k (9b)

∆U1

∆t
= uc + us−s + uac + uex,2 + uperc,2 (9c)

where uex is the excess heat from melting in the upper layer or the heat transfer due to phase
change of freezing rain from the upper layer (more detail below in the article) (J.m−2.s−1),
uperc is the heat variation due to infiltration from the upper layer (J.m−2.s−1), and k stands
for the kth snow layer from the ground surface.

Figure 1. Snow layer creation scheme for the proposed multilayer model.
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The heat input from percolation, uperc, is evaluated in a similar manner to ur. In both
cases, the heat input to the snowpack comprises the cumulative sensible heat loss of the
liquid water lowered to 0 ◦C, the ensuing latent heat of fusion (phase change), and the heat
released to adjust the new ice crystals to the snowpack temperature. They are described
by Equations (10a) and (10b) for the modification of thermal energy from rainfall and
percolation, respectively. The rainfall occurred on the top layer, which is noted as k′ below.





ur = ρw R
(

Cw Tm + C f

)(
1 − R

SWEk′+R

)
+

R Uk′
SWEk′+R if Tm > 0

ur = ρw R
(

Cs Tm + C f

(
1 − R

SWEk′+R

))
+

R Uk′
SWEk′+R otherwise

(10a)

uperc,k = ρw Ruk+1 C f

(
1 − Ruk+1

SWEk + Ruk+1

)
+

Ruk+1 Uk
SWEk + Ruk+1

(10b)

where Cw and Cs are specific heat capacities of water and snow (4184 J.kg−1.◦C−1 and
2093.4 J.kg−1.◦C−1), respectively; C f is the heat of fusion of water (335,000 J.kg−1); R is the
rainfall rate (m.s−1); Ruk+1 is the percolation rate of the k + 1th layer (m.s−1); Tm is the mean
air temperature (◦C); SWEk is the snow water equivalent (m); and Uk is the heat deficit of
the kth layer.

2.2.2. Snow as a Medium of Ice and Air

The snowpack is regarded as a medium comprising different constituents whereby
the properties and proportions of each component contributes to the estimation of various
snow characteristics. Appendix E describes how the volumetric proportions of air and ice
are estimated, assuming liquid water constitutes a non-significant portion of the snowpack
during winter. This assumption is based on observations made by Koch et al. [36], where
the volumetric liquid water content peaked at a maximum of 8% at the end of the melting
phase or during instances of liquid precipitation. This is consistent with the assumption that
liquid water in the original snow model is entirely frozen at the daily time step. Leveraging
the relationship derived for snow density (Appendix E) and the linear correlation proposed
by Evans [37] to gauge the relative dielectric permittivity of snow from those of ice and air,
all snow layer characteristics are determined based on the proportions of ice and air. For
heat loss by conduction, the thermal diffusivity of snow is computed for each layer using
Equation (11).

Ds,k =

(
ρs,k − ρa,k

ρi − ρa,k

)
Di,k +

(
ρi − ρs,k

ρi − ρa,k

)
Da,k (11)

where Ds,k is the snow diffusivity (m2.s−1); ρs,k, ρa,k, and ρi are the snow, air, and ice
densities (kg.m−3), respectively; Di,k and Da,k are the ice and air thermal diffusivities
(m2.s−1), respectively; and k stands for the kth snow layer.

The thermal diffusivities of ice and air are computed using Equation (12):

Dm,k =
Km,k

ρm,k Cs,m,k
(12)

where Dm,k is the thermal diffusivity of the kth snow layer made of a material m (m2.s−1),
Km,k is the thermal conductivity (W.m−1.◦C−1), ρm,k is the density (kg.m−3), and Cs,m,k is
the specific heat (J.kg−1.◦C−1).

Estimates of the thermal conductivities of ice [38] and air [39] are derived from
Equations (13) and (14), respectively.

Ki,k = 1.16
(

1.91 − 8.66. 10−3 Tk + 2.97.10−5 Tk
2
)

(13)

where Tk is the temperature of the kth layer (◦C).
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Ka,k = 1.5207.10−11(273.15 + Tk)
3 − 4.857.10−8(273.15 + Tk)

2

+1.0184.10−4(273.15 + Tk)− 3.9333.10−4 (14)

Tk is a function of the total heat deficit ∆Utot,k computed for the kth layer using
Equation (15):

Tk =
∆Utot,k

SWEk Cs ρw
(15)

For ice, the density and specific heat are deemed constant for any temperature and
are set at 917 kg.m−3 and 2093.4 J.kg−1.◦C−1, respectively. For air, the density (ideal
gas law under normal pressure conditions) and specific heat [39] are computed using
Equations (16) and (17), respectively:

ρa,k = 1.292
273.15

273.15 + Tk
(16)

Cs,a,k = 1.9327.10−10(273.15 + Tk)
4 − 7.999.10−7(273.15 + Tk)

3

+1.1407.10−3(273.15 + Tk)
2 − 4.489.10−1(273.15 + Tk)

+1.0575.103
(17)

where Tk stands for the temperature of the kth layer (◦C).
Snow albedo is determined by snow grain metamorphism, which also causes the

snowpack to become denser. However, our snow model assesses albedo based on snow
density since snow grain size and shape are not evaluated. Here, snow albedo is estimated
based on the proportion of ice and air in the surface layer. This approach is reminiscent of
the optical paths of radiation that are absorbed by ice crystals instead of being reflected or
transmitted through them. Nevertheless, since the albedo of air cannot be defined, fresh
snow was employed as a surrogate material. Indeed, fresh snow constitutes a blend of ice
and air with a very high porosity.

Perovich et al. [40] measured an ice albedo of 0.5 in the Arctic for snow on a frozen
pothole. The albedo of fresh snow is 0.9 [41] for a 50 kg.m−3 density, which is consistent
with that of snowfall computed in the monolayer mode. The albedo of snow as a composite
material is thus computed using Equation (18):

αs =

(
ρs − ρ f s

ρi − ρ f s

)
αi +

(
ρi − ρs

ρi − ρ f s

)
α f s (18)

where αi and α f s are albedos of ice (0.5) and fresh snow (0.9), respectively, and ρ f s is the
fresh snow density (50 kg.m−3).

2.2.3. Freezing Rain

Freezing rain occurs upon contact with surfaces when raindrops become supercooled
while passing through a freezing layer of air. It is characterized by a heat deficit due to
changes in both phase and air temperature. Like how the monolayer model manages
precipitation that freezes within the snow cover, the freezing rain heat deficit from the
newly created layer is computed using Equation (19):

us = ρw

(
C f − Cw

Tmax + Tmin
2

)
R (19)

where ρw is the liquid water density (1000 kg.m−3); C f is the heat of fusion of water
(335,000 J.kg−1); Cw is the specific heat capacity of water (4184 J.kg−1.◦C−1); Tmax and Tmin
are the maximum and minimum daily air temperatures, respectively (◦C); and R is the
daily liquid precipitation rate (m.s−1).
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Ice is a better heat conductor than air—about 100 times more, according to
Equations (13) and (14). That is why upon freezing, the excess heat from the phase change
is transferred to the snowpack (see Equation (20)). The ice-layer temperature subsequently
impacts the conduction heat loss of the lower layer.

uex = ρwC f R (20)

where ρw is the liquid water density (1000 kg.m−3), C f is the heat of fusion of water
(335,000 J.kg−1), and R is the daily liquid precipitation rate (m.s−1).

It is noteworthy that in the original monolayer model, the cooling of ice from 0 ◦C
down to the snow layer temperature was neglected. This oversight stands corrected in the
multilayer model.

2.2.4. Compression

Snow is made of ice crystals and can undergo compression due to its own weight.
Throughout this process, there is no melting or loss of mass, and the snow is contained
within a time-dependent volume, as the bonds between ice crystals strengthen, resulting in
a structure that can better withstand gravitational force. For this purpose, compaction is
computed using Equation (4), with a distinct maximum density ρmax,l .

2.2.5. Maximum Water Retention Capacity

Some snow models, such as MASiN [42], estimate the maximum water retention
capacity of a layer as a proportion of the volume of air that can retain the melted snow.
Since the volume of air is now a variable in the proposed model (see the Section 2.2), this
capacity can be computed as follows:

RCmax,k = %air
ρi − ρs,k

ρi − ρa,k
Hk (21)

where RCmax,k is the maximum water retention capacity of the kth layer (m), %air is the
ratio of the volume of air that can be filled in by water (−), and Hk is the height of the kth

layer after melting (m).
Table 1 displays the calibration parameters and their respective physical ranges con-

sidered for the two versions of the snow model. They align with typical values employed
in HYDROTEL. However, the lower limit of parameter T0 is relatively small, intended for
an open vegetation environment. Despite the low probability of reaching this value during
the calibration of the hydrological model, it was retained to evaluate the behavior of the
snow model should an optimal solution be identified using such a value.

Table 1. Snow model calibration parameters.

Parameter Model Meaning Lower
Threshold

Upper
Threshold

ρmax Original Maximum snow density (kg.m−3) 250 550

T0 Original/multilayer Temperature threshold for net radiation heat gain (◦C) −8 3

Ts Original/multilayer Precipitation separation temperature (◦C) −1 3

SetCoe f Original/multilayer Settling coefficient (−) 0.0001 0.1

MRa−s Original/multilayer Melt rate at air–snow interface (m.day−1.◦C−1) 0.001 0.04

MRs−s Original/multilayer Melt rate at snow–ground interface (m.day−1) 0.0001 0.002

St Multilayer New-layer snow precipitation threshold (m.day−1) 0 0.06

ρmax,l Multilayer Settling maximum snow-layer density (kg.m−3) 350 750

%air Multilayer Ratio of the volume of air that can be filled in by water (−) 0.05 0.15
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It is noteworthy that the multilayer snow model introduces three additional calibration
parameters while removing one, keeping it relatively parsimonious while allowing for the
integration of one new phenomenon: freezing rain.

2.3. Framework for Evaluating Different Versions of the Snow Model

The models were calibrated using OSTRICH [43], which provides a choice of different
deterministic algorithms, such as steepest descent [44] or multi-start GML with trajectory
repulsion [45], as well as stochastic algorithms such as dynamically dimensioned search
(DDS) [46] or shuffled complex evolution [47,48]. For this study, we used DDS following
the guidelines proposed by Tolson et al. [46]. For the mono- and multilayer versions of the
snow model, there are six calibration parameters, requiring at least 18 calibration repetitions
(trials) of 100 iterations each.

The Kling–Gupta efficiency (KGE) was used as the objective function [49]:

KGE = 1 −
[
(1 − µs/µo)

2 + (1 − σs/σo)
2 + (1 − r)2

]1/2
(22)

where µs et µo are the simulated and observed SWE averages, respectively; σX is the
standard deviation; and r is the Pearson correlation coefficient.

We conducted a sensitivity analysis using the variogram analysis of response surface
(VARS) toolbox from Razavi et al. [50]. Among the various suggested tools, the STAR-VARS
method [51], based on a “star-based” sampling strategy, was retained because it is an
efficient global sensitivity analysis (GSA) technique for analyzing the variograms of the
model. A variogram characterizes the model’s spatial covariance structure and takes the
following form:

γ(
→
h ) =

1

2|N(
→
h )|

∑
(i,j)∈N(

→
h )

(y(
→
x

A
)− y(

→
x

B
))2 (23)

where
→
h is the distance (or direction) between the parameter sets

→
x

A
and

→
x

B
in the factor

space, N(
→
h ) is the number of pairs of points in the factor space with a distance

→
h between

them, and y(
→
x

A
) and y(

→
x

B
) are the response of the model in the parametric space at

locations
→
x

A
and

→
x

B
, respectively.

Therefore, an increase in the variogram in a direction
→
h in the factor space implies a

greater variation on
→
h , indicating a higher sensitivity of the model in this direction.

To combine the various variograms for each parameter, a sensitivity index (IVAR) is
generated for each one of them, which integrates the variograms over a scale interval from
0 to Hi for a parameter i:

IVARi(Hi) =
∫ Hi

0
γ(hi)dhi (24)

Based on the recommendation of Razavi and Gupta [52], we calculated the sensitivity
index for 50% of the interval (IVARi(0.5)), corresponding to a scale of Hi = 0.5. To
facilitate parameter comparison, a relative sensitivity index (IVARi,50n) is estimated for
each parameter i as follows:

IVARi,50n =
IVARi(0.5)

∑n
j=1 IVARj(0.5)

(25)

A temporal sensitivity analysis was performed by estimating the IVARi,50n for each
day using a generalized global sensitivity matrix approach (or GGSM) instead of the
previously employed GSA method.

The Latin hypercube sampling method was adopted to generate the parameter sets,
using a sampling of parameter sets based on 50 stars with a resolution of 0.1. The time
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frame aligns with each period of accessible data, which will be elaborated upon in the case
study section.

Two calibration strategies were evaluated to optimize the information obtained from
the different datasets of the SWE gauge stations presented below. The first strategy was to
test the prediction ability of both the monolayer model and the multilayer model. Various
calibrations were performed by extracting one year of the datasets for validation, while the
remaining years were used for calibration. All possible permutations were evaluated. The
second strategy involved using the complete dataset to compare the overall performance
of each model. The top ten KGE performances, assessed on SWE during the calibration
period (or as the optimal compromise between calibration and validation periods for the
first strategy), were compared for both models at every SWE gauge station. A Wilcoxon
rank sum test was performed to compare the median of these performances at each station.
A p-value of less than 0.05 indicated a significant difference at a 5% type-I error rate.
The second strategy consisted of using all available data for calibration with the KGE. In
addition to the KGE, the root mean squared error (RMSE) and Nash–Sutcliffe Efficiency
(NSE) [53] were computed. For the remainder of this paper, the monolayer model is referred
to as “Mo”, while the multilayer model is referred to as “Multi”.

RMSE =

√
∑n

i=1(SWEo,i − SWEs,i)
2

n
(26)

where n is the number of daily time steps, and SWEo,i and SWEs,i are the observed and
simulated SWE for day i (m), respectively.

NSE = 1 − ∑n
i=1(SWEs,i − SWEo,i)

2

∑n
i=1
(
SWEo,i − SWEo

)2 (27)

where SWEo is the mean observed SWE over the entire dataset.
Finally, to further substantiate differences between the Mo and Multi models, the

snowpack onset and end dates as well as the date of maximum SWE and height were
compared on an annual basis. The results are presented relative to their absolute seasonal
deviations for each set of parameters using Equation (28). The median results are then
compared between models at each SWE station.

Ac =
√
(Ck,m − Ck,o)

2 or Ac = 100

√
(Ck,m − Ck,o)

2

Ck,o
(SWE max, in %) (28)

where Ac is the mean value of characteristic C, and m stands for the tested model (Mo or
Multi) and o the observations for year k.

2.4. Case Study

Three SWE stations were selected for this study based on their differences in altitude
and climate. As shown in Figure 2, they are in two distinct regions of Canada. The first
SWE station (a.k.a. GMON station) and meteorological stations are in the Necopastic River
watershed, in a subboreal climate. It is in a 50 m-radius forest clearing, surrounded by a 7
to 8 m-tall spruce trees, with vegetation reaching 3 to 4 m beyond 30 m. The exact altitude
of the station is uncertain, but the altitudes of the watershed are between 100 and 180 m.
The observed data used in this study were taken from Oreiller et al. [54]. The two other
SWE stations are in the Upper Yukon River watershed, namely, the Lower Fantail and the
Wheaton stations [55]. The Lower Fantail stations are located on an outcrop surrounded
by a wetland, at the bottom of a river valley, while the Wheaton stations are located on
a ridge crest close to a glacier, surrounded partially by subalpine firs and shrubs. These
stations are located in the alpine, subalpine, and boreal eco-climatic regions of the Northern
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and Central Cordillera [56]. The exact station altitude is uncertain, but the altitudes of this
watershed fall between 640 and 2010 m.

Figure 2. Locations of the upper Yukon (left) and Necopastic (right) watersheds in Canada. Weather
and ground snow stations are in blue circles. LF stands for Lower Fantail, W for Wheaton, and Neco
for Necopastic.

The weather and SWE station metadata are provided in Table 2. During the study,
ground-based precipitation measurements were non-continuous in Yukon. Given these
conditions, the precipitation times series for modeling was assumed to be the daily increase
in observed water equivalents due to the lack of information about wind-related snow
transport. The modeled SWE was compared to data from the GMON stations, which
measure gamma rays naturally emitted by the Earth and attenuated by the snowpack.
The measuring principle, developed by Choquette et al. [57], converts gamma radiation
measurements into SWE (mm). The station sensors at Necopastic and Upper Yukon are
GMON3 [58] and CS275s [59], respectively, with measurement uncertainties ranging from
±15 mm (for SWE less than 300 mm) to ±15% otherwise. Figure 3a–c depict precipitation,
average air temperature, and SWE time series at the three stations. The evaluation of model
performance excluded days without SWE data.

Table 2. Weather and GMON station metadata. Data for the Necopastic watershed are from Oreiller
et al. [54]; Upper Yukon data were provided by Yukon Energy.

Station Code Period Temporal Resolution Type Basin

Necopastic Meteo_Neco
2006–2011

Daily and hourly
Auto Necopastic

GMON Neco 6 h

Lower
Fantail

Meteo_LF
2014–2017

Daily and hourly
Auto Upper Yukon

GMON LF 6 h

Wheaton
Meteo_W

2014–2017
Daily and hourly

Auto Upper Yukon
GMON W 6 h

Table 3 shows the average temperature and cumulative precipitation for each hydro-
logical year. The fifth year of the Necopastic station appears to be an aberration. However,
the dataset for that year did not account for the summer temperature or precipitation.
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Figure 3. Daily precipitation, average air temperature, and SWE at the three stations.

Table 3. Cumulative precipitations and average temperature for each hydrological year.

Station Data Y1 Y2 Y3 Y4 Y5

Lower Fantail
Years 2014/2015 2015/2016 2016/2017 - -

Precipitation (mm) 643 556 721 - -
Average temperature (◦C) 1.8 1.5 2.0 - -

Necopastic
Years 2006/2007 2007/2008 2008/2009 2009/2010 2010/2011

Precipitation (mm) 803 855 840 819 462
Average temperature (◦C) 2.2 2.3 2.3 2.2 1.7

Wheaton
Years 2014/2015 2015/2016 2016/2017 - -

Precipitation (mm) 525 352 489 - -
Average temperature (◦C) −0.2 0.6 −1.9 - -
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3. Results
3.1. Sensitivity Analyses

The sensitivity analysis was conducted for the three stations. Figure 4 depicts the
relative sensitivity index IVARi,50n for each parameter for both models.

Figure 4. Normalized sensitivity analysis of the monolayer (Mo) and multilayer (Multi) snow model.

Before comparing parameter sensitivity differences between the two models, it is
necessary to evaluate those of the three additional parameters of the Multi snow model.
Notably, St, the new snow layer precipitation threshold, displayed high sensitivity and
requires calibration, while ρmax,l and %air exhibited minimal sensitivity values and could
therefore be set to a constant value prior to calibration. Both Dahe et al. [60] and Nishimura
et al. [61] observed a maximum value of 550 kg.m−3 for ρmax,l . Considering its sensitivity
and range of values set at 250–550 kg.m−3 in the Mo model, it was set to 550 kg.m−3 for
the Multi model. As for %air, it was established as 10% of the snowpack depth in the Mo
model. In the multilayer model MASiN [42], it was set at 8% of the volume of the snowpack
not occupied by the SWE or the liquid water content, with some allowance possible for
values varying between 5 and 10%. Würzer et al. [62] set a value of 3.5% of the snow depth
in the SNOWPACK model. Taking these divergent values into account, %air was set at 10%
of the snowpack height occupied by air in the Multi model.

The most sensitive phenomenon in the Mo model was located at the boundary between
the atmosphere and snow. Two parameters, T0 (the threshold temperature for considering
melt due to radiation) and MRa−s (the degree-day rate of melt due to radiation), are
crucial in this context. SetCoe f (i.e., compression rate) and Ts (threshold temperature
for precipitation partitioning into rain and snow) are insensitive. By incorporating a
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multilayer structure into the model, the significance of Ts is given greater importance while
simultaneously minimizing the relative sensitivity of the boundary phenomenon between
the atmosphere and snow.

Figure 5 illustrates the daily relative sensitivity IVARi,50n of both models at the three
stations. The discontinuity arose from limited data over few years. The parameter factor
space did not allow the Mo model to simulate snow during the summer season, in contrast
to the Multi model.
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Figure 5. Daily relative sensitivity analysis of the monolayer and multilayer models at the (a) Lower
Fantail station, (b) Necopastic station, and (c) Wheaton station.

The seasonal phenomena are highlighted in both models. For the Mo model, the
temperature threshold for separating precipitation (Ts) was quite sensitive early in the
formation of the snowpack. The most significant phenomenon during spring was melting
caused by radiation (MRa−s). As the melting season drew to a close, melting from the soil
became increasingly important (MRs−s). The parameter SetCoe f (settling rate) was also
quite sensitive prior to the melting season, particularly at the Wheaton station.

For the Multi model, variations in sensitivity were less severe but still revealed the
same seasonal phenomena as in the Mo model. However, the new snow layer precipitation
threshold (St) served as a buffer during the melting period.

3.2. Modeling Performances—Validations

Figure 6 depicts the performances of the snow models for the top ten best parameter
sets for the calibration and validation periods at the three GMON stations.

For the Lower Fantail station, the Wilcoxon test indicated no significant difference
(p-value > 0.05) between the median of the models during the “Y23” combination calibration
period, where the first year of data was used for validation, which was the driest and coldest
year. For the remaining combinations, the Multi model improved median performances by
0.021 to 0.033 for the calibration period and by 0.125 to 0.223 for the validation period.

The performances of both models for the Necopastic station did not exhibit significant
differences over the calibration period for combinations “Y1235” and “Y1245”, and over the
validation period for the combinations “Y1234” and “Y1245”. However, during the calibra-
tion period, the Multi model boosted performance by 0.01 to 0.017 of KGE, and during the
validation period, it improved by 0.009 to 0.154. The Mo model improved the performance
by 0.012 for “Y2345” for the calibration period and by 0.012 for the validation period for
“Y1345”. Notably, there was no relationship with annual meteorological characteristics.

Conversely, for the Wheaton station, there was no significant difference between the
models over the validation period for combination “Y12” or “Y23”. However, the Mo model
enhanced the performance by 0.03 for combination “Y13”, which considered the driest and
warmest year for validation. During the calibration period, the Mo model improved the
performance by 0.008 to 0.04.
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Figure 6. KGE values for Mo and Multi models for (a) Lower Fantail, (b) Necopastic, and (c) Wheaton.
In red are the median performances of the top ten best parameter sets. The missing number in each
column corresponds to the year used for validation; for example, Y12 means that year 3 was used
for validation.
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Of the eleven configurations detailed above for the calibration period, there were three
cases where the snow models performed equally. It is important to note that this evaluation
is objective and based solely on performance. The Mo model performed better in four
configurations (with an average gain of 0.019 of KGE), whereas the Multi model performed
better in the remaining four configurations (with an average gain of 0.020 of KGE). The
gains were comparable across the calibration periods. Out of the configurations for the
validation period, there were four cases where the snow models showed no difference. The
Mo model performed better on two configurations (average gain: 0.021 of KGE), whereas
the Multi model performed better on the remaining five configurations (average gain: 0.146
of KGE). The Multi model demonstrated a clear improvement in result consistency over
the validation period.

3.3. Modeling Performances—All Calibrations

In the third part of this paper, calibration was performed using all years. For the
Lower Fantail and Wheaton stations, the results of the Wilcoxon tests rejected the median
equality hypothesis, yielding p-values of 9.8 × 10−3 and 2 × 10−3, respectively (with Multi
median values of 0.95 and 0.92, respectively, and Mo model median values of 0.93 and 0.95,
respectively). Conversely, for the Necopastic station, the medians (Multi: 0.95, and Mo:
0.96) are considered equal, given an 8.4 × 10−2 p-value. Regarding the root mean squared
error (RMSE) and the Nash–Sutcliffe efficiency (NSE), the Wilcoxon test failed to reject the
null hypothesis that the medians are equal. Figure 7 illustrates the calibration performances
(KGE, RMSE, and NSE values) of the top 10 sets of parameters obtained for each model at
the three stations, as well as the coefficients derived from linear regression analysis.

It is evident that the slopes obtained from the Mo model had a narrower range than
those of the Multi model during the snow accumulation (defined as the observed period
between the first day of snow on the ground and the winter peak) and the melt period
(defined as the observed period between the winter peak and the day when the snow cover
has completely melted). Furthermore, the range increased more during the melting period
compared to the accumulation period for each model.

Figure 8 depicts SWE simulations based on the top ten parameter sets for each model
at the Lower Fantail station. Results for the two other stations can be found in Appendix F.

The results show minimal disparities in the optimal performances, with KGE values
consistently exceeding 0.95 for the optimal sets of parameter values. Assessing robustness
through the minimum values of the red interval indicated a similarity for both models.
However, because of their inherent differences, SWE absolute values differed substantially
between models. Notably, the Multi model showed more pronounced seasonal variability
(red interval width), thereby enabling a more precise representation of the first winter peak
at the Lower Fantail station with certain parameter sets, whereas the Mo model failed to
represent adequately the observed SWE profiles.

Similarly, Figure 9 displays the range of snow height and density modeled by the
top ten sets of parameter values for each model. Analyzing the snow height time series is
relevant, as this variable is used for the SWE estimation in both models. The snow height
series was overestimated by the Mo model, whereas the Multi model underestimated them,
except for a few sets of parameters. This resulted in underestimated snow densities by the
Mo model, as opposed to the output of the Multi model. It is evident that the Multi model
overestimated the density during each phase of melting.

The modeled snow height and density time series for the Lower Fantail and Necopastic
GMON stations are presented in Appendix F. Figure 10 shows the KGE values for snow
height and density time series achieved by the top ten sets of parameter values, calibrated
on SWE for both models.
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Figure 7. Modeling performances (KGE, RMSE, and NSE) and average rate of change (i.e., slope)
of SWE during the snow accumulation and melt periods of the top ten sets of parameter values
obtained for the multilayer snow model (Multi) and the monolayer model (Mo) for (a) the Lower
Fantail station (LF), (b) the Necopastic station (Neco), and (c) the Wheaton GMON station (W). In
orange is the median performance. KGE, RMSE, and NSE stand for Kling–Gupta efficiency, root
mean squared error, and Nash–Sutcliffe efficiency, respectively.
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Figure 8. Modeled SWE time series at the Lower Fantail station for the (a) monolayer (Mo) and
(b) multilayer (Multi) models. The red shaded interval shows the range of values provided by the top
ten sets of parameters, with the red line for the best parameter set. The observed SWE time series is
shown in black, while the blue interval depicts the measurement uncertainty.

Although the minimum performances can be considered unsatisfactory for each model,
the median performances indicate that the Multi model more frequently generated physi-
cally accurate simulations (with a KGE around or greater than 0.5), whereas the acceptable
results provided by the Mo model were achieved only by a few sets of parameters. Con-
sequently, the Multi model can offer more parameter sets for SWE, providing satisfactory
performances for snow height, compared to the Mo model. However, it is noteworthy
that during the melting period, the densities of the snowpack layers remained high for the
Multi model, incorporating layers of ice (density of 917 kg.m−3) with thicknesses exceeding
20 cm.

Furthermore, the modeling of freezing rain was of little impact. Out of the ten best
sets of parameter values obtained for each station, only one parameter set modeled this
type of rain for Necopastic, and none for Lower Fantail and Wheaton. More importantly,
during calibration, only 9.6% of the parameter sets accounted for any freezing rain event
for the Necopastic GMON station, and none for the Lower Fantail and Wheaton stations.
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Figure 9. Modeled height and density time series at the Wheaton station for the (a) monolayer (Mo)
and (b) multilayer (Multi) models. The red shaded interval shows the range of values provided by
the top ten sets of parameters, with the red line for the best parameter set. The observed height and
density time series are shown in black.
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Figure 10. KGE values computed from the ten best parameter sets using time series of observed
and modeled snow heights (a) and densities (b) for the Mo and Multi models. In orange is the
median performance.

3.4. Modeling Snowpack Characteristics

Snowpack characteristics derived from the top ten sets of parameter values of each
model were compared in terms of the onset and end dates of the snowpack, as well as
the maximum SWE values and dates. The seasonal discrepancies between the modeled
and observed data were analyzed across the top sets of parameter values in Table 4.
This assessment provides insights into the equifinality of each feature of interest. For
instance, the top 10 parameter sets presented here for each station and model yielded global
KGE values greater than 0.9. However, snow peaks or melting periods may be modeled
differently given the set of parameter values used.

Table 4. Medians of annual differences between observations and snowpack characteristics from the
top ten best sets of parameter values of each model at the three GMON stations.

Station Lower Fantail Necopastic Wheaton

Models Mo Multi Mo Multi Mo Multi

Onset date (days) 3 4 3 3 3 4
End date (days) 8 7 4.5 4 6 1.5

Maximum SWE date (days) 5.5 7 9 11 1 8
Maximum SWE relative difference (%) 17 6.7 11 5.9 8.8 13.2

Both Mo and Multi onset dates showed consistent median deviations of 3–4 days from
the observed data. The end date deviations were similar, except for the Wheaton station,
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where the Multi model showed a 4-day improvement over the Mo model. Comparing with
the Multi model, the maximum SWE dates were better represented with the Mo model by
1.5, 2, and 7 days for the Lower Fantail, Necopastic, and Wheaton stations, respectively.
Notably, the Multi model outperformed the Mo model in representing the maximum SWE,
particularly exhibiting a halved error at the Lower Fantail and Necopastic stations, but
with a higher error at the Wheaton station.

As previously introduced, the Multi model uses a different approach to estimate snow
albedo compared to the Mo model. Mo assumes that the albedo decays with time as a
function of snowpack liquid water content, whereas Multi estimates albedo as a linear
function based on the proportion of ice and air in the top snow layer. Figure 11 illustrates
the albedo values of the top ten best parameter sets for both models for the Wheaton station
(the albedos for the Lower Fantail and Necopastic stations are depicted in Appendix F).
It can be observed that the estimated albedo for the Mo remained consistent across each
parameter set, whereas more variations were observed for Multi. Although both approaches
demonstrate a decreasing albedo over winter, Multi’s behavior was consistent throughout
the winter, except following a snowfall, which could have temporarily increased the albedo
after the new snow blended in the uppermost layer or after adding a new layer. The
decreasing albedo of Mo fluctuated within a certain range during winter until the spring
melt, when it strongly decreased. Finally, the albedo of Multi was greater than that of
Mo because it is calculated for the uppermost snow layer only, whereas Mo considers an
equivalent albedo for the entire snow cover.

Figure 11. Albedo time series modeled by the top ten best sets of parameter values for the Mo model
(pink envelope) and the Multi model (green envelope) for the Wheaton GMON station. The best
parameter sets are depicted by the red and green lines for the Mo and Multi models, respectively.

4. Discussion

This paper has proposed a set of modifications to the monolayer snow model of
HYDROTEL, including the integration of a multilayer structure, estimation of snowpack
properties based on the proportion of ice and air, freezing rain modeling, and changes in
compression and maximum water retention capacity. The modeling was assessed with
respect to SWE modeling and other snow characteristics, such as snow height and density.

The sensitivity analysis indicated that amongst the changes implemented in the Mo
model, the precipitation threshold for adding a snow layer (St) was highly sensitive,
whereas the ratio of the volume of air that can be filled in by water (%air) and the settling
maximum snow-layer density (ρmax,l) were less sensitive. The addition of these parameters
changed the hierarchy of sensitivity of the other parameters. For instance, whereas the melt-
ing temperature threshold at the air–snow interface became less sensitive (To), the melting
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rate sensitivity at this interface (MRa−s) increased. Similarly, the temperature precipitation
threshold temperature (Ts) becoming more sensitive was deemed significant. In addition,
the melting rate at the ground–snow interface (MRs−s) became less sensitive, except for
a slight increase in sensitivity for the Necopastic GMON station. These modifications
rendered the Multi model more sensitive to phenomena at the snow–atmosphere interface.
Furthermore, the melt rate at the snow–ground interface (MRs−s) became generally less
sensitive, emphasizing the influence of the atmosphere on snow melt rather than at the
snow–ground interface. This change in behavior is consistent with observations made by
Lackner et al. [63], who showed that temperature variations within the snowpack exhibit
amplitudes more akin to those in the atmosphere than those at the ground level.

The calibration/validation strategies were based on 22 combinations when examining
their respective periods separately. Among these, seven combinations showed no signifi-
cant difference in performance between models. During the calibration period, increases
in performance did not exceed 0.04. Thus, both models demonstrated similar levels of
performance over this period. However, during the validation period, the Mo model’s
performance did not surpass 0.03, whereas the range of increased performance for the Multi
model varied between 0.046 and 0.223. Notably, there was a subset of four combinations
that exhibited an increase in performance of more than 0.1. Overall, the Multi snow model
demonstrated greater robustness during the validation period compared to the Mo model.
When both models were calibrated using the full datasets, with respect to their relative
performances in reproducing SWE, the results highlighted some very good performances,
with KGE values consistently greater than 0.9. Thus, neither model gained a clear advan-
tage over the other. The reconstruction of precipitation records for the Lower Fantail and
Wheaton stations may have contributed to these performances, providing the appropriate
amount of water to the snowpack on the correct days until the melting period. However,
for the Necopastic station, performances were still good even though precipitation records
were not reconstructed. This suggests that the reconstruction of precipitation does not
necessarily affect the conclusions of this paper. The modifications introduced in the Multi
model made it possible to maintain a level of performance similar to that of the Mo model
while also providing more flexibility for the computation of energy transfer within the
snowpack, as suggested by the sensitivity of the additional parameter (St) on modeled
SWEs. Furthermore, from a hydrological modeling perspective, snowpack melt rates are
crucial for estimating streamflow, especially the maximum SWE, with snowpack heights
being a somewhat secondary objective.

Although SWE modeling performances were comparable, model behaviors for snow
heights were not. The Mo model tended to overestimate snow heights, whereas the Multi
model tended to be consistent with observed heights or even slightly underestimate them.
For the Mo model, the height is used solely to estimate compression while affecting thermal
diffusivity; it can also be adjusted using the calibrated maximum density. In contrast, for
the Multi model, although the height is used for compression, it is also used to compute
snowpack density, which is required for computations of thermal diffusivity, albedo, and
maximum water retention. Since energy transfer by radiation governs snowmelt, a low
albedo increases this transfer. During spring snowmelt, minimizing snowpack height
implies high densities—which is not surprising given that SWE is also equivalent to the
product of snow height and relative snow density—which in return reduces albedo. An
additional indication that simulated densities are larger than what may be observed in
general can be inferred through a comparison reported by Keenan et al. [64] between
simulated and observed density profiles using the SNOWPACK model. The densities they
observed reached values of about 475 kg.m−3 at ground level, whereas the Multi model
formed snow layers limited to 550 kg.m−3, or 917 kg.m−3 for ice layers during the spring
melt, with thicknesses exceeding 20 cm, which is unrealistic. Indeed, these densities are
more akin to those observed for glaciers [65].

The attempt to model freezing rain indicated that this phenomenon seldom occurred
for all the tested parameter sets. Indeed, the required condition that the atmospheric
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temperature near the ground be negative may be too restrictive, and it is emphasized
that atmospheric phenomena must be considered to model this type of precipitation as
effectively as possible. However, it was decided to keep this phenomenon in the model, as
it is a mean of creating snow layers under conditions of temperatures close to 0 ◦C.

The results of this study showed that transforming the Mo model into a Multi model
improves the simulation of the end date of the snowpack as well as the seasonal maximum
SWE, albeit at the expense of the occurrence date. Oreiller et al. [54] considered wind-
induced snow transport as a plausible explanation for SWE discrepancies for the Necopastic
station. This could also be a plausible hypothesis for discrepancies at the other GMON
stations, but that remains to be validated. The different approaches used by the Multi
and Mo models to estimate snow albedo can be interpreted in terms of the location where
phenomena are assessed. For the Mo model, the albedo mimics the distribution of the
radiative heat flux throughout the snow cover. In contrast, the approach used by the Multi
model emphasizes the distribution of this flux throughout the top layer. Furthermore, the
albedo of the Mo model varies within a certain range during winter before decreasing
during the spring melt, whereas that of the Multi model decreases throughout the winter.
Based on observations made by Gray et al. [66] and Stroeve et al. [67], the behavior of the Mo
model albedo is more accurate, but the range of values of the Multi model remains coherent
(albedo > 0.65 during winter). In other words, (i) the Mo albedo is for the whole snow cover;
(ii) the observed albedo is based on upgoing and outgoing radiation measurements, which
depends on the depth of snow penetrated by shortwave radiation; and (iii) the albedo of the
Multi model is assumed to be that of the top snow layer only, regardless of the thickness.

5. Conclusions

The snow model of HYDROTEL is a daily monolayer (Mo) model combining degree-
day and physics-based equations. This paper proposed a multilayer (Multi) alternative,
modifying some of the fundamental equations while preserving the overall computational
structure and limiting the addition of new calibration parameters. These modifications
increased the sensitivity of processes occurring at the atmosphere–snow interface and
the subsequent energy balance of each snow layer, improving the realism of the model.
Although snow heights were overestimated by the Mo model, the Multi model more accu-
rately depicted them, although some underestimation persisted. These underestimations
resulted from the development of excessively dense, thick, and persistent snow layers dur-
ing melting periods. Nonetheless, the vertical density profiles became consistent, with the
densest layers located at ground level. Also, SWE modeling performances were very good
(KGE consistently above 0.9) for both models, with the Multi snow model demonstrating
more robustness during the validation period. By focusing on snowpack characteristics,
the Multi model improved estimations of snowpack end dates and maximum SWE but
compromised the modeled dates of the latter occurrence. These behavioral changes point
towards the potential for improving snowmelt runoff and consequently spring peak flows,
which are ultimately linked to the maximum SWE. As the frequency of the freezing rain
events will, in all likelihood, increase in Eastern Canada given global warming [68], it
would be relevant to find a parsimonious way to model these events. However, given that
it is primarily an atmospheric phenomenon, the challenge remains. As the hydrological
science community is becoming increasingly interested in rain-on-snow events [69–73], the
suggested modifications can be viewed as a first step toward modeling them using the
Multi version of the HYDROTEL snow model. From a structural standpoint, it may be
beneficial to include a basal snow layer to emphasize the thermal discontinuity at ground
level. Moreover, future work will involve integration of the multilayer snow model into
HYDROTEL to evaluate the effect on stream flow modeling.
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Appendix A. Snow Model Characteristics

Table A1. Snow model characteristics.

Model Design Input Data Considered Phenomena Structure/Time
Step Reference

CEMANEIGE Conceptual
- Atmospheric temperature
- Precipitation

- Accumulation
- Melt

Monolayer/
day [74]

HBV Physics-based
Degree-day

- Atmospheric temperature
- Precipitation

- Accumulation
- Degree-day melt
- Latent heat flux

Monolayer/
day [75–77]

SWAT Physics-based
Degree-day

- Atmospheric temperature
(min and max)

- Precipitation

- Accumulation
- Degree-day melt
- Sublimation

Monolayer/
day [78,79]

HYDROTEL Physics-based
Degree-day

- Atmospheric temperature
(min and max)

- Precipitation

- Accumulation
- Compression
- Mixed (radiation and

degree-day melt)
- Precipitation heat
- Soil heat
- Sensible heat flux
- Water retention

Monolayer/
day [28]

VIC Physics-based
Complex

- Atmospheric temperature
- Precipitation
- Relative humidity (may

be estimated)
- Short- to long-wave

radiations (may be
estimated)

- Wind speed

- Accumulation
- Compression
- Precipitation heat
- Turbulent heat flux

(Sensible and latent)
- Radiation
- Water retention

Bilayer/
hourly to daily [80]

CROCUS Physics- based
complex

- Atmospheric temperature
- Precipitation
- Relative humidity
- Short- and long-wave

radiations
- Wind speed

- Accumulation
- Compression
- Heat conduction
- Metamorphism
- Precipitation heat
- Radiations
- Runoff and intra-snow

cooling
- Soil heat
- Sublimation
- Turbulent heat flux

(sensible and latent)
- Wind transport

Multilayer/
hour [81,82]
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Table A1. Cont.

Model Design Input Data Considered Phenomena Structure/Time
Step Reference

MASiN Physics-based
Complex

- Atmospheric temperature
- Precipitation
- Relative humidity
- Wind speed

- Accumulation
- Soil heat
- Cloud cover
- Compression
- Conduction
- Radiation (estimation)
- Turbulent heat flux

(sensible and latent)
- Water retention

Multilayer/
hour [42]

SnowPack Physics-based
Complex

- Atmospheric temperature
- Precipitation
- Relative humidity
- Wind speed and direction

- Accumulation
- Compression
- Conduction
- Turbulent heat flux

(sensible and latent)
- Radiation (estimation)
- Water retention

Multilayer/
10 min to day [83,84]

SNOWPACK Physics-based
Complex

- Atmospheric temperature
- Precipitation
- Relative humidity
- Short- and long-wave

radiations
- Wind speed

- Accumulation
- Compression
- Microstructure
- Precipitation heat
- Radiation
- Runoff
- Subsurface melt
- Surface haze
- Surface melt
- Turbulent heat flux

(sensible and latent)
- Wind erosion
- Wind transport

Multilayer/
hour [31,85,86]

Appendix B. Energy Balance Terms of the HYDROTEL Monolayer Snow Model

The different terms of the energy balance equation of HYDROTEL’s monolayer snow
model are described below.

The heat input from rain, ur, is computed as follows:

ur = ρw

(
C f + Cw

Tmax + Tmin
2

)
R (A1)

where ρw is the density of water (1000 kg.m−3); C f is the latent heat of fusion of water
(335,000 J.kg−1); Cw is the specific heat capacity of water (4184 J.kg−1.◦C−1); Tmin and Tmax
are the minimum and maximum air temperatures (◦C), respectively; and R is the daily
rainfall rate (m.s−1).

The heat input from the ground, us−s, is computed as follows:

us−s = ρwC f
MRs−s

86400
(A2)

where MRs−s is the melting rate at the snow–ground interface (m.day−1), and 86,400 is the
conversion from day to seconds.

The snow heat deficit, us, is computed as follows:

us = ρwCs
Tmax + Tmin

2
S (A3)

where Cs is the specific heat capacity of snow (2093.4 J.kg−1.◦C−1), and S is the daily
snowfall rate (m.s−1).
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Heat loss by conduction and heat gain by radiation are enabled depending on the tem-
perature threshold for radiation heat gain T0. Indeed, if the daily average air temperature is
lower than T0, the conduction heat losses are estimated; otherwise, the heat gain estimation
by radiation is enabled. Heat loss by conduction is estimated using the solution for heat
transfer in a semi-infinite material with air temperature as a Dirichlet boundary condition.
Thermal diffusivity is computed using estimations of the conductivity and depth of snow.
The heat deficit is then updated using the snow temperature resulting from the conductive
heat loss.

The radiation heat input, ua−s, is computed as follows:

ua−s = ρwC f
Mpot

86400
(A4)

where Mpot is the potential melting rate due to radiation (m.day−1), computed as follows:

Mpot = I MRa−s

(
Tmax + Tmin

2
− T0

)
(1 − α) (A5)

where I is a radiation index, MRa−s is the melting rate at the air–snow interface
(m.day−1.◦C−1), and α is the snow albedo.

The radiation index is the ratio of the index for a sloped surface to that of a flat
surface [87]. The snow albedo is computed using the snowpack and fresh snowfall albedos,
accounting for the exponential decay of radiation penetration within the snowpack [28].
The equations are presented in Appendices B and C.

When the snowpack melts, water is retained within the medium and is considered
frozen at the next computational time step. The phase change then warms up the snowpack
as follows:

uac = ρwC f
AR

86400
(A6)

where AR is the water retained within the snowpack of the previous day (m.day−1). It is
computed using Equation (7) from the maximum water retention capacity estimated in
Equation (6).

Appendix C. Radiation Index Equations of the Monolayer Snow Model

θ is the GMON station latitude in radians:

θ =
lat

rad1
(A7)

where lat is the GMON station latitude (◦), and rad1 is the conversion factor from radians
to degrees (≈57.295779513◦.rad−1 = (180◦)/π.rad−1).

k is the slope angle (rad):
k = arctan(slope) (A8)

where slope is the ground slope (rad).
h is the surface azimuth angle (rad):

h =
(495 − 45ori)360

rad1
(A9)

where ori is the ground orientation (1 for east, 2 for north/east, 3 for north, . . ., and 8 for
south/east). Detailed information is available in Rousseau et al. [88].

θ1 is the equivalent slope latitude (rad):

θ1 = arcsin(sin(k) cos(h) cos(θ) + cos(k) sin(θ)) (A10)

95



Water 2024, 16, 1089

α is the longitude variation between the slope and its horizontal surface:

α = arctan
(

sin(k) sin(h)
cos(k) cos(θ)− cos(h) sin(k) sin(θ)

)
(A11)

e2 is the Sun’s/Earth’s distance to its average on a specific day:

e2 =

(
1 − exc cos

(
day − 4

deg1

))2
(A12)

where exc is the Earth’s orbit eccentricity (=0.01673), day is the Julian day, and deg1
(≈58.1313429644 day.rad−1 = 2π/365.25), 4 January, is the Earth at its perihelion.

ie2 is the solar constant as a function of the Earth–Sun distance (W.m−2):

ie2 =
i0
e2

(A13)

where i0 is the solar constant (=1361 W.m−2).
decli is the solar declination (rad), which is the angle between solar rays and the plane

of the equator:

decli = 0.410152374218sin
(

day − 80.25
deg1

)
(A14)

tampon and tampon1 are the angles (rad) that correspond to the sunshine duration on
a flat surface and on a sloped surface, respectively:

tampon = −tan(θ) tan(decli) (A15)

tampon1 = −tan(θ1) tan(decli) (A16)

durhor is the sunshine duration on a flat surface:

durhor = 0 i f tampom > 1 (A17a)

durhor = 12 i f tampon < −1 (A17b)

durhor =
arccos(tampon)

w
otherwise (A17c)

where w is the Earth’s angular speed (15◦.h−1 =15/rad1 rad.h−1).
durslp is the sunshine duration on a sloped surface:

durslp = 0 i f tampon1 > 1 (A18a)

durslp = 0 i f tampon1 < −1 (A18b)

durslp =
arccos(tampon1)

w
otherwise (A18c)

t1slp and t2slp are the irradiation starting and end times on a sloped ground,
respectively.

t1slp = −durslp −
α

w
(A19a)

t1slp = −durhor i f t1pte < −durhor (A19b)

t2slp = durslp −
α

w
(A20a)

t2slp = durhor i f t2slp > durhor (A20b)

t1hor and t2hor are the irradiation starting and end times on flat ground, respectively.

t1hor = −durhor (A21a)
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t2hor = durhor (A21b)

ij1 and ij2 are the radiation for a flat and a sloped surface, respectively.

ij1 = 0 if t1hor > t2hor (A22a)

ij1 = 3600 ie2

(
(t2hor − t1hor)sin(θ)sin(decli) +

cos(θ)cos(decli)(sin(w t2hor)− sin(w t1hor))

w

)
otherwise (A22b)

ij2 = 0 if t1sip > t2sip (A23a)

ij2 = 3600 ie2



(

t2slp − t1slp

)
sin(θ1)sin(decli) +

cos(θ1)cos(decli)
(

sin
(

w t2slp + α
)
− sin

(
w t1slp + α

))

w


 otherwise (A23b)

I is the radiation index.

I =

∣∣∣∣∣
ij2
ij1

∣∣∣∣∣ if ij1 ̸= 0 (A24a)

I = 1 otherwise (A24b)

Appendix D. Albedo Equations of the Monolayer Snow Model

wet stands for a wet snowpack:

wet = 1 if R > 0 or T > 0 (A25a)

wet = 0 otherwise (A25b)

where R is rainfall, and T is the snow temperature (relative to the heat deficit).
With snow on the ground:
A maximum snowpack albedo albt+1 is computed relative to the snowfall’s or snow-

pack’s state of humidity.

albt+1 = (1 − exp(−0.5 eqsnow))0.8 + (1 − (1 − exp(−0.5 eqsnow)))

(
0.5 + (alb − 0.5)exp

(
−0.2

pdth
24

(1 + wet)
))

(A26)

where eqsnow is the snowfall water equivalent (mm), alb is the snowpack albedo of the
previous time step, and pdth is the time step’s number of hours.

beta2 is the snowpack radiation penetration exponential decay coefficient.

beta2 = 0.2 if alb < 0.5 (A27a)

beta2 = 0.2 + (alb − 0.5)otherwise (A27b)

alb = (1 − exp(−beta2 stsnow))albt+1 + (1 − (1 − exp(−beta2 stsnow)))0.15 (A28)

where stsnow is the snowpack water equivalent (mm).
Without snow on the ground:

alb = (1 − exp(−0.5 eqsnow))0.8 + (1 − (1 − exp(−0.5 eqsnow)))0.15 (A29)

Appendix E. Relationships between the Densities of Snow, Ice, and Air

The mass of a composite material is that of its constituent elements. The mass of snow
as a mixture of ice and air is computed as follows:

Ws = Wi + Wa (A30)

where Ws, Wi, and Wa are the snow, ice, and air weights (kg), respectively.
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The snow density is estimated for a snow volume that is the sum of the ice and
air volumes.

ρs =
Ws

Vi + Va
=

Wi
Vi + Va

+
Wa

Vi + Va
(A31)

where ρs is the snow density (kg.m−3), and Vi and Va are the ice and air volumes (m3),
respectively.

Per the definition of density, Wi = Viρi and Wa = Vaρa:

ρs =
Vi

Vi + Va
ρi +

Va

Vi + Va
ρa (A32)

where ρi and ρa are the ice and air densities (kg.m−3), respectively.
This equation then shows that by considering snow a composite material, its density

can be related to the densities of ice and air, with coefficients corresponding to the respective
proportions. In general, this amounts to considering that there is the following relationship:

ρs = Aρi + Bρa (avec A + B = 1) (A33)

Since the volumes of ice and air are not explicitly estimated in the snow models
proposed in this paper, and knowledge of the volumetric proportions A and B is necessary,
an alternative method must be used:

ρs = Aρi + (1 − A)ρa (A34)

Thus, the volumetric proportion of ice A in the snow can be estimated from equation
A + B = 1 as follows:

A =
ρs − ρa

ρi − ρa
(A35)

Thus, the volumetric proportion of air B in the snow can be estimated from equation
A + B = 1; that is:

B =
ρi − ρs

ρi − ρa
(A36)

Thus, the knowledge or estimation of the densities of ice, air, and snow enables
the derivation of the volumetric proportions of ice and air within the snow from
Equations (A35) and (A36), respectively.

Appendix F. Results

Figure A1. Cont.
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Figure A1. Modeled SWE series at the Wheaton station (W) for the (a) monolayer (Mo) and (b) mul-
tilayer (Multi) models. The red shaded interval shows the range of values provided by the top ten
sets of parameters values. The observed SWE time series is shown in black, while the blue interval
depicts the measurement uncertainty.

Figure A2. Modeled SWE series at the Necopastic station for the (a) monolayer (Mo) and (b) multilayer
(Multi) models. The red shaded interval shows the range of values provided by the top ten sets of
parameters values. The observed SWE time series is shown in black, while the blue interval depicts
the measurement uncertainty.
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Figure A3. Modeled height and density series at the Lower Fantail station (LF) for the (a) monolayer
(Mo) and (b) multilayer (Multi) models. The red shaded interval shows the range of values provided
by the top ten sets of parameters values. The observed height and density time series is shown
in black.
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Figure A4. Modeled height and density series at the Necopastic station for the (a) monolayer (Mo)
and (b) multilayer (Multi) models. The red shaded interval shows the range of values provided by
the top ten sets of parameters values. The observed height time and density series is shown in black.
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Figure A5. Albedo time series modeled by the top ten best sets of parameter values for the Mo model
(pink envelop) and the Multi model (green envelop) for the (a) Lower Fantail and (b) Necopastic
GMON stations. The best parameter sets are depicted by the red and green lines for the Mo and Multi
models, respectively.
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Abstract: This article aims to analyze the alteration in water discharge due to the building of one of
the largest dams in Romania. Modifications in the hydrological patterns of the studied river were
emphasized by a complex technique that includes decomposition models of the series into trends,
seasonal indices, and random components, as well as into Intrinsic Mode Functions (IMFs). The Mann–
Kendall trend test indicates the existence of different positive slopes for the subseries S1 and S2 (before
and after the inception of the Siriu dam, respectively) built from the raw series, S. The stationarity
hypothesis was rejected for all series. The multifractal analysis shows two different patterns of the
data series. After decomposing the subseries S1 and S2, it resulted that the seasonality indices are
not the same. Moreover, the seasonal variations decreased after building the dam. Empirical Mode
Decomposition (EMD) unveils different short- and long-term patterns of the series before and after
building the dam, concluding that there is a significant alteration in the river discharge after the
dam’s inception.

Keywords: monthly water discharge series; decomposition model; seasonal components; empirical
mode decomposition

1. Introduction

River systems are lifelines that sustain ecological balance, support civilizations, and
reflect the complex interplay between natural processes and human interventions. Ancient
civilizations thrived along riverbanks, leveraging the waterways for sustenance, irrigation,
and transportation. The river discharge dynamic is influenced by diverse factors, from
climatic variations to anthropogenic alterations [1]. Infrastructural developments like
dam-building can profoundly impact the natural river flows [2–4]. When dams interfere
with flow regimes, it often results in significant environmental damage and biodiversity
deterioration [5–7]. China’s Yangtze River’s Three Gorges Dam stands out as a testament
to this influence, causing extensive alterations in river flow patterns. These changes have
ripple effects, challenging ecosystems and posing notable dilemmas for local communities
reliant on the river [8]. Significant river flow alterations have trapped sediments, modified
the natural flow pattern, and disrupted the nutrient balances, affecting delta, estuarine, and
marine ecosystems [9–11]. These ecological concerns emphasize the need for a balanced
approach to infrastructural developments [12].

Despite the extensive studies on the dam’s impact on river flow and the environment,
some gaps persist. One concerns the study of the cumulative impacts of smaller dams [13].
Although large dams have been the target of most research, the role of smaller dams
has been emphasized recently [14]. Unlike mega-projects like the Three Gorges Dam
which received extensive coverage, smaller dam projects need to be scrutinized more,
leaving potential knowledge unknown [15]. Even if small dams might appear insignificant
individually, their collective impact can be at least as potent as bigger dams, especially
when it comes to flows that matter ecologically [14,15]. While the scientific literature
contains numerous studies on this subject, a comprehensive critique is essential. There is
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a pressing need to examine how much dam constructions deviate river flows from their
natural state, preserving intact ecological functions [16–18].

In pursuing a more holistic understanding, the research community has seen a con-
vergence of conventional wisdom and innovative techniques for analyzing the rivers’
discharge. Given the urgent global imperative for sustainable water resource manage-
ment, these research endeavors take on heightened significance [14]. As time evolved, the
methodologies to study these dynamics expanded, including statistical analysis [19–22],
wavelets decomposition [23], artificial intelligence methods—neural networks [24–26],
support vector regression [27], time series models [28], hydrological simulation [29], etc.

IHA (Indicator of Hydrologic Alteration) [30] represents another tool to assess the
hydrological alteration that is widely used by researchers [31–38]. The IHA software [30]
can compute 33 flow statistical parameters divided into three classes—low, medium, and
high—containing values less than or equal to the 33rd percentile, between the 33rd and
the 67th percentiles, and above the 67th percentile, respectively. The software allows for
the determination of the frequency of each annual post-impact value belonging to each
category [37]. One main drawback is that many of these indices are intercorrelated [37],
so the question is how many indicators are necessary to describe the river flow alteration.
Other shortcomings are that no IHA directly quantifies the amplitude of high flow condi-
tions, and no seasonality indices are provided. The latter are essential for understanding
the seasons with high flows corresponding to possible floodings.

Within this complex realm, our research combines different approaches to cross-
validate the results of the hydrological alteration in the Buzău River flow after operating
the Siriu dam, Romania’s second biggest accumulation lake. Very few articles [38–40]
have approached the impact of building the Siriu dam on the river flow, one of them
using IHA [38] and the other [39] using statistical methods to test the existence of specific
trends in seasonal series (winter, spring, summer, and autumn) before and after the dam’s
inception. Another attempt was made by modeling the daily mean flow series using
general regression neural networks (GRNNs) [40]. None of these studies have provided a
complete analysis given that (1) assessing the tendency by the Mann–Kendall test followed
by utilizing Sen’s slope (which computes a linear trend) [39] cannot capture the complex
behavior of the data series (such as seasonality), (2) the linear parametric regression [38,40]
was not satisfactory from the viewpoint of the extracted information, and (3) the GRNN
model [40] was not accurate enough. In the GRNN, the correlation between the actual and
predicted values on the test set was not very high, and the time taken to run the algorithm
was very long (a few hours).

Our approach complements these procedures, providing seasonality indicators and
emphasizing the flow pattern at short and long scales through Empirical Mode Decomposi-
tion (EMD), which offers granularity by breaking down intricate oscillatory patterns in river
data [32]. The procedures utilized in the present study are easy to use and do not involve
the computation and comparison of a high number of indicators, which can sometimes
lead to confusing interpretations (as in IHA methods). Moreover, the time necessary to run
the algorithms is extremely low (a few seconds) compared to the GRNN model.

The novelty of this research is that it introduces a unique framework that amalgamates
the strengths of multifractal analysis with time series decomposition and EMD. The first
one emphasizes the existence of periods with different behaviors of monthly river discharge
series, the second provides the seasonality factors, and the last underscores the differences
between the river’s short- and long-term variations before and after the dam’s construction.
This combination gives a more nuanced view of the dam’s impact on Buzău discharge
dynamics and clarifies the extent of the streamflow alteration.

2. Materials and Methods
2.1. Study Area

The Buzău River’s catchment, with a surface of 5264 km2 and an average elevation
of 1043 m (Figure 1), is situated in the Romanian Curvature Carpathians. The climate
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of the study area is temperate–continental. From 1955 to 2010, the average (minimum)
temperature was 6 ◦C (1 ◦C), the multiannual mean precipitation varied between 500 mm
and 1000 mm [41], and the mean monthly precipitation (%) varied from 4.4 (in January) to
15 (in June and July).

Water 2024, 16, x FOR PEER REVIEW 3 of 21 
 

 

2. Materials and Methods 

2.1. Study Area 

The Buzău River’s catchment, with a surface of 5264 km2 and an average elevation of 

1043 m (Figure 1), is situated in the Romanian Curvature Carpathians. The climate of the 

study area is temperate–continental. From 1955 to 2010, the average (minimum) temper-

ature was 6 °C (1 °C), the multiannual mean precipitation varied between 500 mm and 

1000 mm [41], and the mean monthly precipitation (%) varied from 4.4 (in January) to 15 

(in June and July). 

 

Figure 1. The study area [38]. 

The sub-basin catchment from where the River’s water is drained at Nehoiu is 1567 

km2. The average river discharge ranges from 0.76 to 5000 m3/s, while the specific and 

multiannual averages are 17 L/s.km2 and 25.2 m3/s [42]. The Siriu dam, which can store 

up to 125 million m3 of water, was put in operation on 1 January 1984, on the Buzău River, 

upstream of Nehoiu. It drains about 56% of the water of this river and its tributaries [43] 

and supplies water to settlements and industrial plants downstream and for irrigating 

50,000 ha [41]. 

Many catastrophic floods were recorded on the Buzău catchment after 1948, the 

biggest one in 1975, recording a maximum discharge of 2100 m3 /s. One of the reasons 

that the dam was built was to avoid or at least diminish the effects of such events. Still, it 

does not protect the settlements downstream from floods produced by the Buzău’s trib-

utaries (as in the case of flooding events in July 2004 and May 2005) [43]. In June–July 

2010, a great flood affected many villages downstream of Nehoiu, damaging 14 pedes-

trian bridges and 1.2 km of water supplies and interrupting the communication between 

different villages. 

Details about the geography and geomorphology of the Buzău River catchment and 

the hydrological constructions can be found in [41,44,45] and on the flooding events and 

damages in [43]. 

  

Figure 1. The study area [38].

The sub-basin catchment from where the River’s water is drained at Nehoiu is
1567 km2. The average river discharge ranges from 0.76 to 5000 m3/s, while the spe-
cific and multiannual averages are 17 L/s.km2 and 25.2 m3/s [42]. The Siriu dam, which
can store up to 125 million m3 of water, was put in operation on 1 January 1984, on the
Buzău River, upstream of Nehoiu. It drains about 56% of the water of this river and its
tributaries [43] and supplies water to settlements and industrial plants downstream and
for irrigating 50,000 ha [41].

Many catastrophic floods were recorded on the Buzău catchment after 1948, the biggest
one in 1975, recording a maximum discharge of 2100 m3/s. One of the reasons that the
dam was built was to avoid or at least diminish the effects of such events. Still, it does not
protect the settlements downstream from floods produced by the Buzău’s tributaries (as in
the case of flooding events in July 2004 and May 2005) [43]. In June–July 2010, a great flood
affected many villages downstream of Nehoiu, damaging 14 pedestrian bridges and 1.2 km
of water supplies and interrupting the communication between different villages.

Details about the geography and geomorphology of the Buzău River catchment and
the hydrological constructions can be found in [41,44,45] and on the flooding events and
damages in [43].

2.2. Data Series

The studied series is formed by the monthly mean flow of the Buzău River measured
at the Nehoiu station (45◦25′29′′ latitude and 26◦18′27′′ longitude) during January 1955–
December 2010 (Figure 2).
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Figure 2. Monthly series of the Buzău River discharge.

The values of river discharge were measured daily at 7 a.m. and 7 p.m. and provided
to the National Institute of Hydrology and Water Management (INGHA), where specialists
checked them. The daily series were aggregated to obtain the monthly mean discharge.
The dataset had no missing values.

To analyze the changes in water discharge after building the Siriu dam, the entire
series, denoted by S, in the following, was split into two parts: S1—the series from January
1955 to December 1983 (before starting operating the Siriu dam), and S2—the series from
January 1984 to December 2010 (after starting operating the Siriu dam). This split was
performed to compare S1 and S2 and determine if the river discharge was altered due to
the dam’s operation.

The mean values for S, S1, and S2 are 21.83, 23.15, and 20.41 m3/s, respectively. The
maximum decreases significantly from 117.29—for S and S1—to 92.79 m3/s for S2. The
highest variance is noticed for S1 (347.58) and the lowest for S2 (259.14). There is no
significant difference between the series skewness, but the kurtosis decreases from 3.93 (for
S and S1) to 3.43 for S2. So, all distributions are right-skewed and leptokurtic. The outliers
of S and S1 are in the same range, but those of S2 have values lower than 100 m3/s, mostly
under 70 m3/s. The histograms and boxplots are shown in Figure 3.
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2.3. The Study Stages

This study introduces a complex framework to clarify the extent of Buzău River water
discharge modifications after building the Siriu dam. The study’s flowchart is presented in
Figure 4 and the detailed steps of the methodology are introduced below.

1. Perform the statistical analysis to determine if there are common futures (trend or
stationary) of S, S1, and S2. This includes the following:

• We rest the null hypothesis that there is no trend in the data series against the
alternative of a monotonic trend existence using the Mann–Kendall (MK) [46]
and seasonal Mann–Kendall (SMK) trend test [47]. Since there are n seasons,
with m observations each, the null hypothesis in SMK is that observations are
independent and identically distributed, and the alternative is that a monotonic
trend is presented in the data series. First, a test statistic similar to the MK test’s
is built for each season. Then, the MK statistic for the seasonal test is obtained
by summing the n statistics. The decision is made to reject the null as in the MK
test [48]. When the null hypothesis is rejected, the trend is determined by the
non-parametric Sen’s method [49] as the median of the slopes of all of the pairs of
ordinal time points.

• We test the series stationarity by following the KPSS [50] procedure. The null hypothe-
sis is the series level or trend stationarity; the alternative is its non-stationarity. Testing
this hypothesis is important for building forecast models for the studied series.

2. Assess the existence of the different behaviors of the studied series on subintervals
and emphasize their scaling characteristics through the multifractal analysis [51,52].
It was shown [47,48] that if a time series exhibits scaling properties, its behavior can
be expressed in an exponential form (1), with the mass exponent τ(q), which can be
estimated by fitting a linear regression of logZq(λ) vs. logλ (λ > 0) [53]. So,

Zq(λ)~λτ(q) for λ→ 0 , (1)

where Zq(λ) is the partition function, whose values can be computed by covering the
series chart with a certain number of boxes of size λ and summing up the probabil-
ities of the appearance of a gray value in a box [54]. The multifractality can also be
assessed by computing Renyi’s dimension, D(q) [55], whose relationship with τ(q)
is [56] as follows:

D(q) = τ(q)/(q− 1). (2)

The series presents multifractality if D(q) decreases when q increases. When D(q)
has a constant value (equal to D(0)), the series is monofractal. An alternative way
to characterize the multifractality is by using the f (α) spectrum, which is defined by
the equation

f (α(q)) = qα(q)− τ(q) (3)

and can be computed by using a Legendre transform of τ(q) in the following form:

α(q) =
dτ(q)

dq
(4)

where α is the Hölder exponent [57]. In the multifractality case, the f (α)’s chart shape
is single-humped. The steps in the MFDFA are [53] as follows:

• Compute the series cumulative sum, F.
• Split F into Ns subseries (each containing s values).
• Apply the least squared method for fitting an n-th order polynomial.
• Build the detrended F series by subtracting the polynomial values from the sub-

series’ values.
• Build the fluctuation function, Fq, by taking the q-th root of the mean of the square

functions from the previous stage.
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• Fit the function Fq(s)~sh(q), with h(q) as the generalized Hurst exponent.

3. Perform the time series decomposition to analyze the changes in the seasonality factors
before and after the dam’s inauguration. The series (yt) is decomposed into a trend
(Tt), seasonality (St), and random noise component (εt) using an additive model or
multiplicative model. The best model is selected based on the smallest mean standard
error (MSE), mean absolute error (MAE), or mean absolute percentage error (MAPE). So,
the additive decomposition model—ADM (the multiplicative decomposition model—
MDM)—will be calculated as follows:

yt = Tt + St + εt (yt = Tt × St × εt). (5)

In this approach, the trend is computed by a moving average of the 12th order, and
then, the deseasonalized series (yt − Tt) is determined. The row seasonality indices
are computed as averages of the values of each month. These final seasonality indices
are calculated by adjusting the raw ones to add up to zero. The random component
(residual) is the difference between the detrended series and the series obtained by
replicating the 12 seasonality indexes for each year. In the case of the MDM, the
deseasonalized series is computed by yt/Tt. The seasonality indices are obtained
similarly to the ADM case, and the residual is obtained by dividing the deseasonalized
series by the seasonality indices [58].

4. Perform EMD to determine the short and long-term variations in S1 and S2 and detect
the differences in their patterns. EMD is an adaptive data analysis technique of non-
linear and non-stationary time series aiming to decompose the series into a collection
of oscillatory components called IMFs [59,60]. The importance of this technique is
given by the following characteristics [60–62]:

• Adaptability and Flexibility: Unlike other decomposition methods, which often
impose predetermined basis functions (like sine and cosine functions in Fourier
analysis), EMD does not rely on any a priori basis. This means it can adapt to the
nature of the data and make the decomposition more accurate and meaningful.

• Local Characterization: EMD provides a local representation of data. Each IMF
captures oscillations occurring over a specific time scale, crucial in analyzing data
where different periodic components might overlap or where transient features
(like spikes or dips) are of interest.

• Versatility: While initially developed for time series analysis, EMD has shown
remarkable performance in various fields, including climatology, biomedical signal
analysis, and financial market research.

• Handling Non-Linearity and Non-Stationarity: Most traditional methods fail or
require stringent preprocessing when dealing with non-linear or non-stationary
data. EMD is inherently suited for such data types, providing a robust decomposi-
tion even in challenging conditions.

The steps of the EMD algorithm are [60–63] as follows:

(a) Initialization: with the entire dataset, data(t), as the input, identify the sets of local
maxima and minima and denote them by Max(t) and Min(t), respectively.

(b) Building the envelope through interpolation:

• Use a cubic spline interpolation or any suitable method to generate the upper
envelope by connecting all of the Max(t) points.

• Similarly, connect all of the Min(t) points to create the lower envelope.

(c) Compute the mean envelope, m(t), by using the following equation:

m(t) = (upper envelope + lower envelope)/2. (6)

(d) Extract the detail, h(t), by using the following equation:

h(t) = data(t) − m(t). (7)
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(e) Verify the Intrinsic Mode Function (IMF) criteria:

• Check if h(t) is an IMF, that is, by the following:

X The number of extrema and zero-crossings must be equal or differ at most
by one.

X For any t, the mean value of the envelope defined by the local maxima (minima,
respectively) is null.

• If h(t) is an IMF, go to (f); otherwise repeat the procedure from (b) using h(t)
as input.

(f) Perform iterations and compute the residual:

• For an identified IMF, h(t), subtract it from the original data and rename the
resultant as the new data.

• Continue the new data-sifting process, extracting further IMFs.
• Continue the iteration until the residue becomes monotonic, showing no more

IMFs can be extracted.

(g) Compile the results:

• Collate all extracted IMFs.
• Record the final residue left after all possible IMFs have been derived. It should

be a monotonic function.
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Figure 4. The study’s flowchart.

This approach will underscore the differences in trend and seasonality of S1 and S2
and clarify the extent of the river flow alteration after operating the dam.

3. Results
3.1. Results of Statistical Analysis, Multifractal Analysis and Series Decomposition

Table 1 contains the results of the statistical tests on the data series performed at a
significance level of 0.05. A p-value (computed in a test) less than 0.05 leads to the rejection
of the respective null hypothesis.
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Table 1. The p-values in the MK, SMK, and KPSS test, and Sen’s slopes (marked with * inside
the brackets).

Series MK SMK KPSS Trend KPSS Level

S 0.2851 0.2850 0.0571 0.1000
S1 0.0290 (0.0139 *) 0.0289 (0.0139 *) 0.0891 0.1000
S2 0.0000 (0.0311 *) 0.0000 (0.0311 *) 0.1000 0.6550

The MK and SMK tests could not reject the randomness hypothesis for S. They rejected
it when applied to S1 and S2 (Table 1, column 2, row 3). The trend values, computed by
Sen’s method, are indicated inside the brackets and marked with * in Table 1. They are
0.0139 for S1 and 0.0311 for S2, so there is an increasing trend in the river discharge for both
subseries, but not for the entire series. The result indicates that the trends of the subseries
are different, indicating a different behavior of S1 and S2. Still, the slopes of the trends of S1
and S2 are very small, and putting together S1 and S2 (resulting in S) will not guarantee
a significant trend for S. Indeed, the rejection of the null hypothesis for S shows that no
significant trend was detected for it.

The stationarity hypothesis could not be rejected for all series. The results of the
multifractal analysis are displayed in Figure 5.
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Figure 5. Results of the multifractal analysis: (a) the mass exponent; (b) the chart of the generalized
Hurst exponent; (c) the segmentation function; (d) the f (α) spectrum.

The chart of the mass exponent (Figure 5a) presents two subseries for which two linear
trend lines can be fitted—for q ∈ [−10, 0] and for q ∈ [0, 10]. The slope change is at zero,
so the series has a multifractal character. The shape of the generalized Hurst’s exponent
chart (hq vs. q, Figure 5b) is a damped sine shape, with an inflection point at q = 0. In
Figure 5c, one may notice deviations in the estimated segmentation function values from
the linear trend (represented by straight lines in black, blue, and green, respectively). This
variability is higher for q = 10, as the right-hand side of the chart shows the distribution
of the function’s values (represented by rectangles) with a higher slope than its values
situated at the chart’s right hand. The f (α) spectrum (Figure 5d) has a parabolic shape,
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indicating the series multifractality. The previous remark shows that the Buzău River’s
flow series has a multifractal character. We may assume that it is the effect of the pattern
change in the rivers’ discharge after building the dam.

The decomposition of the S series was performed to emphasize this change and
find the seasonality components in particular. The elements in the ADM and MDM are
presented in Figures 6 and 7.
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Figure 6. The ADM for S: (a) the initial series (series), (b) the trend obtained by the moving average
of the 12-th order, (c) the seasonality indices, and (d) the residual.

The raw series and the trend are the same but the seasonal and the residual components
are different. The values of the seasonality indices are presented in Table 2. In both cases, the
highest indices were registered in April and May and the lowest in January. In the case of the
MDM, all indices are positive and vary in the interval [0.4986, 2.1326]. In the ADM, seven
indices are negative, only five are positive, and the variation interval is [−10.700, 23.5093].

Table 2. Seasonality indices in the ADM and MDM for the S series.

Index January February March April May June July August September October November December

ADM −10.7800 −8.3037 3.4178 23.5093 15.5835 7.7747 4.6647 −3.2790 −6.2985 −8.6096 −8.8271 −8.8521
MDM 0.4986 0.6410 1.2014 2.1329 1.6923 1.3937 1.1742 0.834 0.6874 0.5811 0.5816 0.5820
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Figure 7. The MDM for S: (a) the initial series (series), (b) the trend obtained by the moving average
of the 12-th order, (c) the seasonality indices, and (d) the residual.

The positive indices correspond to the spring and summer months (March–July),
indicating a higher impact of the seasonal variations on the water flow (more precipitation,
and thus a higher flow, is recorded in spring and the beginning of summer). The residuals
comparison shows a smaller amplitude for the MDM compared to the ADM, with a
lower autocorrelation order (Figure 8a,c) and lower skewness and kurtosis (Figure 8b,d),
respectively: 1.4351 compared to 1.5316, and 2.7742 compared to 5.2396.
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Figure 8. (a) The residual correlogram in the ADM, (b) the residual histogram in the ADM, (c) the
residual correlogram in the MDM, and (d) the residual histogram in the MDM.
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The residuals’ MAE, MSE, and MAPE are 8.3273, 144.7643, and 50.5265 in the ADM
and 0.9917, 1.2364, and 6.3449 in the MDM. Therefore, the best decomposition is provided
by the second method. So, based on the MDM, similar seasonal variations are recorded in
the last month of autumn and the first month of winter, being slightly higher in February
and September and lower in January. The seasonal factor of 1.2012 in March might be
explained by the snowmelt at the beginning of spring, and that from April to June is due to
the high precipitation in spring.

The same analysis was performed for the subseries S1 and S2 to examine if there are
significant differences between the seasonality factors. These indices in the MDMs are
given in Table 3.

Table 3. Seasonality indices in the MDM for S1 and S2.

Series January February March April May June July August September October November December

S1 0.4751 0.6289 1.1361 2.1553 1.7975 1.3180 1.2582 0.8205 0.6734 0.5467 0.5985 0.5918
S2 0.5380 0.6739 1.3000 2.1215 1.5102 1.4778 1.0937 0.7758 0.7134 0.6280 0.5785 0.5893

The seasonality indices’ pattern is similar to that in the MDM for S, with the highest
values in April, May, June, and March or July and the lowest in January. The amplitude of
the seasonality indices’ decreased from 1.6902 = 2.1553 − 0.4751 to 1.5835 = 2.1215 − 0.538,
indicating an attenuation of the extreme events.

3.2. Cross-Validation of the Results Using EMD

EMD was finally applied to cross-validate the above findings. A set of plots was
created to represent and analyze the data effectively. The initial step was to display the
original data over time as scattered points, with the amplitude of monthly averages depicted
through a color map. Subsequent plots showcased each computed IMF, with enhanced
subplots for improved readability. Cubic spline interpolation was utilized to visualize each
IMF in greater detail. Furthermore, residuals were also visualized individually and in
combination with the IMFs to provide an all-encompassing view.

In data analysis, accurate and clear visualization is essential. Therefore, two methods
were used to draw the IMFs: fine indexing and cubic spline interpolation. Fine indexing
is similar to zooming into an image to see details. It increases the number of examined
points, allowing for a more detailed view of data trends. Cubic spline interpolation uses
polynomial functions to connect these points, creating a smoother curve. It ensures that the
curve passes through the data points and transitions smoothly between them.

These two techniques provide a more detailed and smooth visualization, making
data trends more evident. With more data points from fine indexing and smoother curves
from interpolation, subtle patterns in the data can be more easily identified. Without these
methods, data visualizations can appear disjointed, and some subtler patterns might be
overlooked or misinterpreted.

Figure 9 contains details from visualizing IMF 3 and IMF 4 for S using the abovemen-
tioned techniques. In the first case, the interpolated IMF 3 passes through the original
points of IMF 3. In the second one, the original IMF 4 is formed by points on parallel
lines, and the interpolated IMF 4 provides a smooth image of the original one. Upon
decomposing the data with EMD, several IMFs are obtained. Figure 10 shows eight of them
in EMD for the S series.
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Figure 9. Details for building IMFs with spline interpolation for IMF 3 (left) and by fine tuning for
IMF 4 (right) of the monthly series.
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Figure 10. EMD of the S series: IMF 1, IMF8, and the residuals.

The first IMF presents the highest frequency oscillations observed in the dataset,
typically corresponding to short-term changes. The periods with high oscillations might
correspond to the months when floods were recorded. These oscillations are still kept by
IMF 2. IMFs 3 and 4 show long periods with similar behavior, followed by some peaks.
IMFs 3–5 reveal a slightly lower frequency, indicating seasonal fluctuations. IMFs 6 and
7 show an almost perfect sine behavior, whereas IMF 8 has a decreasing trend. They
display patterns that might be correlated with multiyear climate cycles or longer-term
environmental changes. The remaining values are very low (of the order 10–15), signifying
good series decomposition.

An additional investigation was carried out for S1 and S2 (Figure 11) to analyze any
potential differences or anomalies in the discharge pattern before and after 1984. The EMD
process was repeated for each dataset, followed by respective visualizations. Six significant
IMFs came from EMD of the series S1 and S2 (Figure 12).
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S2, (m) residual for S1, and (n) residual for S2. 
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Figure 12. (a) IMF1 for S1, (b) IMF1 for S2, (c) IMF2 for S1, (d) IMF2 for S2, (e) IMF 3 for S1, (f) IMF 3
for S2, (g) IMF 4 for S1, (h) IMF 4 for S2, (i) IMF5 for S1, (j) IMF5 for S2, (k) IMF6 for S1, (l) IMF6 for
S2, (m) residual for S1, and (n) residual for S2.

Analyzing the frequency domain in the IMFs (Figure 12) provides key insights, as follows.

- In all cases, the amplitudes of the IMFs of S1 are higher than those of S2.
- IMF1 reveals high-frequency oscillations, highlighting probable monthly anomalies.

Unequal variances in different periods are also recorded, emphasizing inhomogeneities
in the data series. At the end of the study period (after 2005), a decreasing amplitude of
oscillations is observed.

- IMF2 and IMF3 predominantly illustrate seasonal cycles, hinting at the spring snowmelt
and autumnal rain, aligning with the temperate–continental climate attributes. IMF3 for
S2 is almost uniformly distributed, with low variations in the amplitudes with respect
to IMF3, whose chart presents more accentuated variations in subperiods.

- IMF4–IMF6 are tied to longer temporal scales, suggesting multiyear, possibly decadal
trends. These could be attributed to broader climatic shifts, land-use changes, or long-
term anthropogenic impacts on the river basin. We can observe different shapes of
IMFS 5 and 6 for S1 and S2, suggesting a different distribution of the subsequent series.

- In both cases, residuals have values close to zero (order 10−15), indicating good
decomposition.

Comparing these findings with prior studies [29,63], the oscillatory patterns observed
in the Buzău River seem consistent with those of other rivers in a temperate–continental
climate. The seasonal fluctuations, as captured by the second IMF, align well with the
expected regional snowmelt and rainfall patterns.
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While the high-frequency oscillations indicated by the first couple of IMFs can be
associated with shorter-term events like storms or immediate snowmelt responses, the
subsequent IMFs’ longer-term patterns might hint at broader climatic or anthropogenic
influences on the river flow. It would be interesting to juxtapose these results with other
datasets from surrounding river basins to identify if these patterns are localized to Buzău
or represent a regional trend.

4. Discussion

In short, the multifaceted approach used in this study provides a more complete
understanding of the dam’s impact on Buzău discharge dynamics.

The current analysis provides a comprehensive and nuanced view of the dam’s im-
pact on Buzău discharge dynamics, validating and complementing the findings from the
articles [38,39]. While the research conducted in [39] only tested for the existence of a trend
in the annual and quarterly flow series and built an AR(5) model to forecast the mean quar-
terly series, the present study has a larger scope. With a higher-resolution data series, it can
detect monthly seasonality factors. This approach offers increased flexibility and accuracy
for forecasting, unlike the AR(5) model which only captures the shape of the series but fails
to account for extremes. The EMD analysis highlights differences between the river’s short-
and long-term variations before and after the dam’s construction, emphasizing the need
for a more nuanced approach.

Compared to the results obtained in [38] by utilizing the IHA methodology, the present
article provides new insights into the series variability by building IMFs. The output of
this study is in concordance with the finding of [39], indicating the significant alteration
in the river flow after building the dam, emphasized by the differences between the IMFs’
amplitudes and frequencies corresponding to S1 and S2. Meanwhile, in [38], it was shown
that a decrease of 12.6% in the maximum monthly discharge was noticed after 1984 with
respect to 1955–1983, and in the same period, the minimum and the maximum of the 90-day
maximum flow decreased from 28.6 to 16.4 m3/s, and from 92.6 to 69.8 m3/s, respectively,
but no chart of the time series components is provided.

Another advantage of the proposed methodology over the deterministic ones is that
no initial conditions on the data series are required, and no validation of certain coefficients
(using the least-squares or similar methods) is required, as in the econometric models.
The same advantage is shared by building a linear trend (when it exists) by Sen’s non-
parametric method.

Utilizing the Thomas–Fiering (TF) equation might be another possibility for modeling
the S, S1, and S2 series. It relies on the following equation:

Qi+1 = Qk+1 + bk
(
Qi −Qk

)
+ tiσk+1

(
1− r2

k

)1/2
(8)

where:

Qi+1—flow in month i +1;
Qk+1—average flow in month k + 1;
bk—gradient of line between the flow in month j + 1 and the flow in month j;
Qi—flow in month i;
Qk—average of flows in month k;
ti —normal random function;
σk+1—standard deviation for flows in month k + 1;
r2

k—correlation coefficient between flows of months k and k + 1.

The difference between the decomposition models used here and the TF model is that
the latter takes into account the correlations between the flows in successive months and
the average flow in a month i to estimate the flow in the next month, whereas the ADM
and MDM focus on the values recorded in the same months to compute the seasonality
indices which are further subtracted from the detrended series to estimate the residual. The
TF model fits the series but does not indicate the seasonality indices separately. Utilizing
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the TF model will add value to the knowledge related to the discharge series, especially
when the river flow presents high variations (as in spring when snowmelt or in months
with high precipitation).

5. Conclusions

This article aimed to address the Buzau River flow alteration due to the building of the
Siriu dam. The multifractal analysis rejected the monofractality, sustaining different scaling
behavior of the monthly data series. The decrement in the seasonality indices indicates
attenuation of the extreme events (high flows and flooding).

Since the river basin is situated in a temperate continental zone and the climate
variation during the study period was not significant, one cannot attribute the modification
of the water flow regimen to the change but to the hydrotechnical works on the Buzău
River catchment.

When interested in different time horizons for the series evolution, the use of the EMD
technique is recommended. The existence of IMF1 to IMF3′s high-frequency oscillations
indicates the need for a deeper insight into short-term disturbances, possibly from industrial
effluents, rapid urbanization, or land use. The slow, evolving changes in IMFs 4–6 suggest
that Buzău River’s flow is influenced by more than just its immediate environment. A
multivariate analysis must further investigate these correlations to clarify the anthropic
impact on the river and the river flow variation on land use.

The findings of this article provide scientific background for flood modeling, which
is necessary for building hazard maps. Specific software can be used for this purpose,
and different hypotheses on water discharge can be adopted. No matter the underlying
modeling technique, the resulting models are calibrated using the existing data series. With
knowledge of the existence of two different river flow patterns, the calibration must be
performed with the most recent data series (which are those after 1984 for the flood risk
evaluation). Using the entire S series for such a purpose would introduce significant bias
in the flood forecast. Studying the correlation between precipitation and discharge would
be necessary to better understand the impact of torrential rain on the prediction of river
discharge and floods. Given that in Romanian, hazard and flood risk maps are essential
for establishing the National Plan for Risk Management, comprehensive knowledge of
river discharge is essential for molding water management policies and influencing land-
use decisions.
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Abstract: In this study, we analyzed the impact of model spatial resolution on streamflow predictions,
focusing on high-resolution scenarios (<1 km) and flooding conditions at catchment scale. Simulation
experiments were implemented for the Geumho River catchment in South Korea using Weather
Research and the Forecasting Hydrological Modeling System (WRF-Hydro) with spatial resolutions
of 100 m, 250 m, and 500 m. For the estimation of parameters, an automatic calibration tool based on
the Model-Independent Parameter Estimation and Uncertainty Analysis (PEST) method was utilized.
We assessed the hydrological predictions across different spatial resolutions considering calibrated
parameters, calibration runtime, and accuracy of streamflow before and after calibration. For both
Rainfall Events 1 and 2, significant improvements were observed after event-specific calibration in
all resolutions. Particularly for 250 m resolution, NSE values of 0.8 or higher were demonstrated at
lower gauging locations. Also, at a 250 m resolution, the changes in the calibrated parameter values
(REFKDT) were minimized between Rainfall Events 1 and 2, implicating more effective calibration
compared to the other resolutions. At resolutions of 100 m and 500 m, the optimal parameter values
for the two events were distinctively different while more computational resources were required for
calibration in Event 2 with drier antecedent conditions.

Keywords: spatial resolution; distributed modeling; WRF-Hydro; PEST; parameter estimation;
streamflow prediction

1. Introduction

Hydrological models are simplified representations of real-world hydrological pro-
cesses with different levels of approximation, and a wide range of such models have been
developed and implemented to improve understanding of these processes and to provide
better support for making decisions. Among the various models with different spatial
abstractions, distributed hydrological modeling has been gaining increased attention in
various fields, including streamflow and drought forecasting, climate and land-use change
assessment, and water resources management, due to its ability to handle spatial variations
of hydrological variables based on the rapidly increasing spatial information. Some recent
studies reported that the performance of distributed hydrological modeling could be im-
proved through the use of high-resolution input (Maxwell et al. [1], Abbazadeh et al. [2]).
For instance, Maxwell et al. [1] simulated surface and subsurface flows at a high spatial
resolution (1 km) in illustrating the feasibility of continental-scale integrated modeling
for enhancing our understanding of large-scale hydrological systems. In addition, Ab-
bazadeh et al. [2] investigated the impact of soil moisture on streamflow prediction in the
Houston catchment area in Texas, USA at varying spatial resolutions. Their simulation
results indicated the improved streamflow with a finer spatial resolution of 1 km compared
to coarser resolutions such as 36 km.
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Regardless of the degree of input spatial detail, however, hydrological models inher-
ently contain various uncertainties stemming from the parameters, model structure, input
data, and initial and boundary conditions (Moges et al. [3]). Calibration and uncertainty
estimation techniques, once developed for lumped models with simple model structures,
have been modified and employed to reduce gaps between distributed modeling and
reality. Chen et al. [4] proposed optimal parameters for a Physically Based Distributed
Hydrological Model (PBDHM) using the Particle Swarm Optimization (PSO) technique in
the southern region of China. Verri et al. [5] used the Weather Research and Forecasting
Hydrological Modeling System (WRF-Hydro) model to reduce uncertainties, analyzing
parameter sensitivity and developing an interpolation method for mitigating rainfall uncer-
tainties. Tolson et al. [6] analyzed the sensitivity of model equations and the Nash–Sutcliffe
coefficient of efficiency for daily flows in relation to parameters using the Soil and Water
Assessment Tool (SWAT 2000) model. Setegn et al. [7] applied the SWAT model in flow
analysis of the Tana Lake catchment in Ethiopia, implementing parameter estimation using
the SUFI-2, GLUE, and ParaSol algorithms.

The WRF-Hydro adopted in this study is a distributed hydrological model developed
by the U.S. National Center for Atmospheric Research (NCAR) that consists of land sur-
face model, terrain routing, river, and reservoir components. This model offers flexible
coupling between its components and has been used for diverse applications in various
research studies. Most of the research using WRF-Hydro can be categorized into analyses
of its integration with the Weather Research and Forecasting (WRF) atmospheric model
and proposals for model improvements, including advances achieved through artificial
intelligence (AI) and post-processing research. Examples of research on utilizing the in-
tegration between WRF and WRF-Hydro include a study by Senatore et al. [8] in which
observations with simulations from standalone WRF and combined WRF/WRF-Hydro
models were compared at Land Surface Model (LSM) 2.5 km-Routing 250 m resolution in
the Crati river catchment in southern Italy. In their study, Naabil et al. [9] demonstrated
the improved performance of the WRF/WRF-Hydro coupled model over standalone WRF
in rainfall estimation for the Tono catchment. Moreover, Wang et al. [10] evaluated the
simulated results of the WRF standalone model and the coupled WRF/WRF-Hydro model
as hydrological elements for six different 24 h storm events with varying spatiotemporal
homogeneity in rainfall distribution. Lee et al. [11] applied standalone WRF-Hydro to
assess drought characteristics in South Korea. Several studies suggest that use of a hybrid
model combining Long Short-Term Memory (LSTM) and the WRF-Hydro model enhances
the accuracy of streamflow predictions. Cho et al. [12] proposed a hybrid model that
combines LSTM and the WRF-Hydro model for improved streamflow prediction. They
demonstrated that the predictive capabilities were enhanced using the proposed approach
and various targeted model sensitivity analyses. Liu et al. [13] applied four traditional
statistical post-processing methods based on Quantile Mapping (QM) and two proposed
machine learning methods (SVR, CNN) to a distributed model (WRF-Hydro), aiming to
reduce systematic biases in streamflow simulation. Zhang et al. [14] evaluated the impact
of soil infiltration processes on simulation by calibrating the WRF-Hydro model using
the Dynamically Dimensioned Search (DDS) technique and analyzing the importance of
infiltration effects in urban areas. These studies collectively contribute to understanding the
uncertainties within distributed hydrological models and their calibration, enabling more
accurate interpretations of hydrological responses. Kim et al. [15] investigated the impact
of the modeling resolution of WRF-Hydro on the land surface and streamflow in the built
environment of Dallas–Fort Worth area, USA. Their findings showed that by increasing the
spatial resolution from 100 m to 10 m in surface flow and river routing models, the duration
of simulation was extended by over 100 times. As simulation time increased, a correspond-
ing increase in the calibration time of automatic parameter estimation techniques became
evident. Therefore, achieving higher accuracy through high-resolution input data requires
additional computational resources for both simulation and calibration.
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The Model-Independent Parameter Estimation (PEST) method applied in this study is
a nonlinear parameter optimization technique that operates independently of the model
itself. It requires only the preparation of necessary files for PEST without the need for
additional programs. As an example of applying the PEST method to a hydrological model,
Abbas et al. [16] applied the SWAT+ model and PEST based on the gwflow module com-
bined with the Morris screening method to evaluate the effect of parameters on streamflow
and groundwater head prediction. de Wit et al. [17] presented a dynamic modeling ap-
proach with combined SWAP and PEST to simulate groundwater levels and soil moisture.
As some examples of the applications of PEST to WRF-Hydro modeling, Fersch et al. [18]
implemented parameter optimization for six parameters of the WRF-Hydro across six sub-
catchments utilizing PEST. Sofokleous et al. [19] investigated the influence of WRF-Hydro
model parameters of soil moisture, groundwater, and vegetation on hydrological balance,
employing grid-based calibration methods within PEST to mitigate overestimation and
validate its applicability. Furthermore, Wang et al. [20] implemented PEST in a parallelized
fashion for High-Performance Computing (HPC), integrating its functionality alongside
WRF-Hydro, and assessed the suitability and computational advantages of parallel PEST
techniques in a 2013 flooding case study in the Midwestern United States.

The main objective of this investigation is to evaluate the influence of model spatial
resolution on parameter estimation in distributed hydrological modeling. To achieve
this, we utilize WRF-Hydro models with model spatial resolutions of 100 m, 250 m, and
500 m for the Geumho River catchment, a medium-sized catchment in South Korea. First,
we assess the impact of spatial resolution on the hydrological processes under the same
default parameter conditions. Then, we evaluate how various resolutions of model impact
parameter estimation using the PEST technique, taking into account streamflow prediction
results and computational time. In addition, we investigate how the adjusted model affects
the prediction results of streamflow at multiple observation gauges within the catchment.
The paper is organized as follows: Section 2 describes the materials and methods in detail,
including the study area, data, model configurations, simulations, and calibrations; the
results with discussions are presented in Section 3; Section 4 presents the conclusions and
directions for future research.

2. Materials and Methods
2.1. Study Area and Data

The study area is the Geumho River catchment (area: 2087.9 km2; river length: 69.3 km).
Within the catchment, the Geumho River traverses Daegu Metropolitan City, the fourth
largest city in South Korea in terms of population, and merges into the mainstream of the
Nakdong River (Figure 1). There are multiple dam reservoirs in the study catchment, includ-
ing the Yeongcheon Dam (235 km2), whose artificial controls are not explicitly considered
in the hydrological simulation. Land use in the Geumho River catchment comprises 66.4%
forested land and 28.8% agricultural land. The average annual temperature is at 13 ◦C with
an annual rainfall of 1007 mm, less than the average annual precipitation of 1306.3 mm in
South Korea where about 56% of the precipitation is concentrated during summer.

There are a total of 11 ground weather observation gauges within the Geumho River
catchment, including 9 Automatic Weather Stations (AWS) and 2 Automated Synoptic
Observing Systems (ASOS). The Inverse Distance Weighted (IDW) method was employed
to build meteorological forcing data of WRF-Hydro with eight components (i.e., incoming
shortwave radiation, incoming longwave radiation, specific humidity, air temperature,
surface pressure, near-surface wind in the u- and v-components, and liquid water precipi-
tation rate). IDW is one of the most widely selected techniques for interpolating spatial
data in estimating the value of a point without data using the value of a point with data.
The reciprocal of the distance between points is used as a weight to allow the values of
closer points greater influence. The two selected events (Table 1) are flood events, each
with distinct characteristics. The rainfall event in 2020, referred to as Rainfall Event 1, was a
concentrated heavy rainfall event characterized by antecedent rainfall before the event. In
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contrast, in the year 2022, during Rainfall Event 2, dry conditions were experienced from
the beginning of the year until the event, with minimal antecedent rainfall. This event was
triggered by the sudden landfall of Typhoon Hinnamnor, which led to heavy rainfall.

Figure 1. Map of the Geumho River catchment: the three yellow circles represent the streamflow
gauges at Geumchang, Ansim, and Gangchang, respectively.

Table 1. Two selected Rainfall Events for simulation with warm-up periods to minimize the impact
of initial conditions.

Rainfall Event Warm-Up Period Simulation Period

Event 1 1 July–5 August 2020 5–13 August 2020
Event 2 1 July–1 August 2022 1–9 September 2022

The Digital Elevation Model (DEM) data with resolutions of 100 m, 250 m, and 500 m
were built based on the National Aeronautics and Space Administration (NASA) Shuttle
Radar Topography Mission (SRTM) 1-Arc second dataset through resampling. Table 2
provides detailed information regarding spatial dimensions, with varying resolution. We
generated land cover and soil data in a WRF binary format by resampling based on datasets
from the Ministry of Environment and the National Institute of Agricultural Sciences in
Korea and according to United States Geological Survey (USGS) standards (Figure 2).

Table 2. Comparison of grid numbers by resolution, including details on the number of model input
data grids determined by resolutions of 100 m, 250 m, and 500 m for comparison in this study.

Resolution No. LSM Grids No. Routing Grids No. Channel Grids

100 m 459,441 (639 × 719) 459,441 9804
250 m 72,865 (247 × 295) 72,865 1484
500 m 18,081 (123 × 147) 18,081 378
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Figure 2. Soil and land use distribution maps (100 m resolution).

2.2. Methodology
2.2.1. WRF-Hydro

In this study, we used WRF-Hydro version 5.2 in conjunction with Noah-Multiparameterization
(Noah-MP) (Niu et al. [21]) LSM model. The employed WRF-Hydro model (Figure 3) in-
tegrates atmospheric and hydrological processes, comprising LSM, hydrological, and
separate-aggregate modules. Among various LSM models available within the current
WRF-Hydro framework, Noah-MP LSM has an advantage over Noah LSM in replicating
surface flux, surface temperature during dry periods, snow characteristics (snow water
equivalent and depths), and runoff (Niu et al. [21]). The Noah-MP LSM operates as a
spatially distributed 1D model based on four soil layers, addressing surface and subsurface
flow paths vertically with respect to meteorological forcing. The ranges of soil depth config-
uration are 0–0.1 m, 0.1–0.4 m, 0.4–1 m, and 1–2 m. Both LSM resolution and hydrological
routing resolution were consistently set at 100 m, 250 m, and 500 m. For instance, if the
LSM resolution is 100 m, hydrological routing (i.e., overland flow and channel routing)
also operates at 100 m resolution. The spatial resolution characteristics in the WRF-Hydro
simulation experimental setup can be summarized in terms of the following: number of the
grid (Table 2), channel grid (Figure 4), and streamflow order. Figure 5 is the distribution
of streamflow order according to spatial resolution. The streamflow order in WRF-Hydro
comprises parameters such as roughness coefficients and width, corresponding to orders
from 1st to 10th. However, no channels higher than the 5th order have been generated in
the medium-sized Geumho River catchment.
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Figure 3. Schematic diagram of the WRF-Hydro modular modeling structure (adapted from [22]).
Submodules and mode (Standalone Mode) opted for modeling are colored in blue.

Figure 4. Distribution of channel grids according to resolution.

Hydrological modules enhance the descriptions of the infiltration excess process of
Noah-MP and the lateral movement in saturated subsurface processes. Overland routing,
subsurface flow, baseflow, and channel routing are incorporated. The methods for channel
routing include vector-based routing such as Muskingum and Muskingum–Cunge, as
well as grid-based routing based on diffusive wave approximation. Of these methods, the
explicit, one-dimensional, variable time-stepping diffusive wave (Downer et al. [23]) was
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employed for the gridded channel network in this study. The equations for the variable
time-stepping diffusive wave are as follows:

∂A
∂t

+
∂Q
∂x

= ql (1)

− ∂h
∂x

+ So = Sf =

(
nQ

AR2/3

)2
(2)

where A denotes the wetted channel cross-sectional area, Q denotes the flow rate, ql denotes
the lateral inflow, h denotes the water depth, So denotes the channel bed slope, n denotes
the Manning’s roughness coefficient for the channel bed, and R denotes the hydraulic
radius of the channel cross-section.

1 2 3 4 5

Stream Order

C
ou

nt

0
20

00
40

00
60

00
80

00

(a) 100 m

1 2 3 4 5

Stream Order

C
ou

nt

0
20

0
40

0
60

0
80

0
10

00
14

00

(b) 250 m

1 2 3 4 5

Stream Order

C
ou

nt

0
10

0
20

0
30

0
40

0

(c) 500 m

Figure 5. Distribution of streamflow order according to resolution.

To maintain computational stability and prevent numerical dispersion, a 6 s time
interval was chosen for the overland and channel routing, satisfying the Courant condi-
tion criteria for diffusive wave routing at resolutions of 100 m, 250 m, and 500 m. Both
one-way (standalone) and fully coupled integration of WRF and WRF-Hydro are sup-
ported within the current WRF-Hydro modeling system. In this study, a standalone version
of WRF-Hydro was configured actively considering overland flow, saturated subsurface
flow, gridded channel routing, and conceptual baseflow while without the lake and reser-
voir modules.

We adopt the following approach to focus on integrating PEST and WRF-Hydro in
analyzing the impact of spatial resolution on model calibration. The aim is to identify
the most influential parameters and adjust them with multiplicative scaling factors across
the entire catchment to maintain spatial variation and model relationships, as suggested
by Gupta et al. [24]. As a result of the literature review, decay coefficient ‘k’ is identified
as the most influential parameter in Equation (3) for infiltration capacity (Kim et al. [15];
Lee et al. [11]; Zhang et al. [14]; Tolson et al. [6]; Chen et al. [4]). Infiltration capacity ‘Ic’ in
this equation is modeled as follows (Schaake et al. [25]):

Ic = Dx(1 − e−kt) (3)

where Dx represents the maximum water-holding capacity of the soil column, k indicates
the decay coefficient, and t denotes the elapsed time. Decay coefficient k is defined by the
following equation:

k = (REFKDT
DKSAT
REFDK

) · ( DT
REFDK

) (4)

where DKSAT represents the saturated hydraulic conductivity, while REFKDT and REFDK
stand for parameters related to surface streamflow (Gochis et al. [26]). DT denotes the
time step in seconds. Both REFKDT and REFDK are adjustable parameters. As the effect
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of adjusting REFDK is equivalent to the effect of adjusting REFKDT for parameter ‘k’, it
is not necessity to calibrate both (Kim et al. [15]). As such, we calibrate only REFKDT
in this work. Regarding Equation (4), if REFKDT increases or decreases, k increases or
decreases. k influences infiltration capacity when the maximum water holding capacity,
Dx, is given. Accordingly, REFDK may be considered as controlling the streamflow. For
PEST calibration of REFKDT, the default values are set at 3, with minimum and maximum
values of 1 × 10−3 and 1 × 102, respectively. All other parameters in the LSM are set to
default values in WRF-Hydro (Gochis et al. [26]).

REFKDT is calibrated based on simulations spanning 8 days for Rainfall Event 1
(from 5th to 13th, August 2020) and Rainfall Event 2 (from 1st to 9th, September 2022).
Prior to PEST calibration, we manually adjusted groundwater bucket model parameters
by comparing them with observed streamflow at the gauge of Gangchang during the
warm-up periods for each rainfall event to calibrate the initial conditions. Table 3 outlines
the parameters and their ranges that were tested in an effort to match model conditions.

Table 3. Manual calibration parameters and ranges. The groundwater bucket model equation is
as follows: Qexp = C(exp(E(Z/Zmax))− 1). As E increases, C increases, and as Zmax decreases,
discharge increases.

Calibrated Parameter Range

Zmax 50–200
C 0.5–1.5
E 1–4

2.2.2. PEST

We adopted an automated calibration procedure based on PEST software version 17.5
(Doherty et al. [27]). This procedure minimizes the objective function, which is the sum of
the mean squared differences between the modeled and observed streamflow, employing
the Gauss–Marquardt–Levenberg nonlinear least squares method. We calibrated a single
parameter using 8-day observation data and one observation gauge along with prior
information items. For each prior information item, we assigned a value equal to the
default value provided by WRF-Hydro v5.2 (or the logarithm of that default value) to the
adjustable parameter, assuming that the default parameter set is preferred.

2.2.3. Assessment Index

In this study, simulated streamflow is assessed using two statistical assessment criteria:
Root Mean Square Error (RMSE) and the Nash–Sutcliffe Efficiency (NSE; Nash et al. [28],
Moriasi et al. [29]). RMSE is a measure of the difference between the model-predicted
and actual observed values in which the square root of the average of squared differences
between predicted and observed values is calculated in evaluating how close the model is
to the observed data. The equation defining the variables for RMSE calculation is

RMSE =

√
1
n

n

∑
t=0

(Yobs
t − Ysim

t )2 (5)

where n represents the total number of observed data points, Yobs denotes the observed
discharge values, and Ysim indicates the WRF-Hydro simulated results.

NSE quantifies the accuracy of modeled discharge by comparison to the mean of
observed data. The equation defining the variables for NSE calculation is

NSE = 1 − n ∑n
t=0(Y

obs
t − Ysim

t )2

n ∑n
t=0(Y

obs
t − Yobs

mean)
2

(6)
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where Yobs
mean is the mean observed discharge. The NSE values range from −∞ to 1. The

closer the NSE value is to 1, the higher the accuracy of the evaluated model, and the higher
the degree of agreement between the model prediction and the observed data. An NSE
value below 0 means that the model’s performance is worse than the prediction by an
average of the observed data.

3. Results
3.1. Comparative Analysis of Streamflow Predictions with Varying Spatial Resolution

In the analysis of streamflow predictions using WRF-Hydro, the model spatial input
data were generated at resolutions of 100 m, 250 m, and 500 m, and simulations were
performed for two rainfall events in 2020 and 2022, utilizing default parameters in all
cases. This section analyzed the results of no-calibration streamflow predictions, with
emphasis on the outcomes based on model spatial resolution. Figure 6 shows a comparison
of the simulated streamflow for Rainfall Event 1, from 5th to 13th, August 2020, at three
different model spatial resolutions in comparison with the observation at two gauges:
Gangchang (in the lowermost region of the Geumho River) and Ansim (in the mid-lower
region of the same river). The black solid, green dashed, light blue dashed lines illustrate the
observation and the simulations at 100 m and 250 m resolutions, respectively. In Figure 6,
the hydrograph at 100 m resolution has a similar pattern to the observed hydrograph with
a slightly overestimated peak flow. At resolutions of 250 m and 500 m, the simulated
hydrographs are found to be underestimated in a magnitude of approximately half of the
observed data. For Event 1, the observed peak flow at Gangchang (lowermost location)
was 2305 m3/s. Simulated peak flows at resolutions of 100 m, 250 m, and 500 m were
2775.3 m3/s, 1042.2 m3/s, and 1214.2 m3/s, respectively. While the peak flow at 100 m
resolution was higher than the observed value, it showed the smallest difference. This
trend is also evident in terms of NSE for no calibration cases in Event 1 shown in Table 4,
with the highest NSE value of 0.868 at 100 m resolution. The Root Mean Square Error
(RMSE) and NSE values of the no-calibration cases were lower for Rainfall Event 2 than for
Event 1. It was presumably because Rainfall Event 2 was triggered by a sudden heavy rain
event due to Typhoon Hinnamnor in the absence of preceding rainfall implicating different
hydrological initial conditions from Event 1 which could be characterized as a typical
torrential rainfall during a monsoon season. Nonetheless, among the three resolutions,
100 m resolution demonstrated the smallest associated errors in no-calibration cases for
Event 2.

Figure 6. Streamflow prediction results based on model spatial resolution. The simulation of stream-
flow prediction results is performed for Rainfall Event 1 and compared with observed streamflow
data at the gauges of Gangchang and Ansim.
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Table 4. Evaluation metrics before (no calibration) and after calibration (calibrated) by PEST across
different grid resolutions.

Event Forecast
Gauges Resolution

RMSE (m3/s) NSE

No
Calibration Calibrated No

Calibration Calibrated

Event 1

Gangchang
100 m 147.9 135.5 0.868 0.889
250 m 245.1 168.5 0.266 0.843
500 m 250.4 134.7 0.476 0.872

Ansim
100 m 124.6 109.9 0.791 0.841
250 m 160.6 111.9 0.255 0.794
500 m 169.1 89.5 0.524 0.906

Geumchang
100 m 85.5 85.4 0.832 0.848
250 m 118.5 106.0 0.277 0.644
500 m 108.8 83.2 0.427 0.808

Event 2

Gangchang
100 m 113.6 43.7 0.058 0.938
250 m 127.0 37.5 −0.187 0.972
500 m 153.4 33.5 −0.322 0.971

Ansim
100 m 100.3 60.2 −0.053 0.742
250 m 111.1 44.7 −0.145 0.934
500 m 129.0 38.6 −0.244 0.928

Geumchang
100 m 75.8 38.4 −0.058 0.684
250 m 74.9 29.8 −0.087 0.903
500 m 82.2 26.3 −0.142 0.830

3.2. Impact of Scale-Specific Parameter Estimation on Streamflow Simulation

To analyze the impact of spatial resolution and model calibration, event-specific
calibration was implemented for Rainfall Events 1 and 2 using streamflow data from the
Gangchang station (downstream observatory) while those from the Ansim and Geumchang
gauges were not included in the calibration process.

Table 4 presents the results from evaluation of streamflow predictions before and after
model calibration, utilizing performance metrics such as RMSE and NSE for each grid
resolution. For Rainfall Event 1, the resolution that yielded the smallest RMSE (m3/s) error
was 500 m for Gangchang and Geumchang and 250 m for Ansim. For Gangchang, the error
was significantly reduced from 250.4 to 134.7 at 500 m resolution. In terms of NSE, the
best results were 100 m for Gangchang and Geumchang and 500 m for Ansim, with the
greatest improvement of NSE from 0.266 to 0.843 for Gangchang at a resolution of 250 m.
In particular, the calibration for 250 m resolution enhanced the performance in terms of the
NSE with values higher than 0.9, improved by about twofold compared to no-calibration
cases in all three locations (Gangchang, Ansim, and Geumchang). In the case of 500 m
resolution, the NSE increased by 80 % compared to no-calibration cases. At 100 m spatial
resolution, the NSE varied by less than 5 % after calibration due to superior streamflow
simulations without calibration for Event 1.

In Rainfall Event 2, the spatial resolution with the smallest RMSE error for each
point was 500 m for Gangchang, Ansim, and Geumchang. The error was significantly
reduced from 153.4 to 33.5 for Gangchang. In terms of NSE, the best results were 250 m for
Gangchang, Ansim, and Geumchang, with the greatest improvement of NSE from −0.322
to 0.971 for Gangchang at a resolution of 500 m.

Upon comparing the pre- and post-calibration results of the two rainfall events, Rain-
fall Event 2 exhibited significant improvements based on NSE and RMSE, as shown in
Table 4. When calibration was implemented, significant enhancements were observed
in the results for grid resolutions of 250 m and 500 m in comparison to the 100 m grid
resolution for Event 2.
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Figure 7 presents streamflow simulations with and without calibration across varying
grid resolutions. Figure 7a,c,e correspond to Rainfall Event 1 while Figure 7b,d,f correspond
to Rainfall Event 2. The black solid, red dashed, and purple dashed lines indicate the obser-
vations, no-calibration, and calibrated simulations, respectively. No-calibration cases were
simulated using a default REFKDT parameter value of three. For both Rainfall Events 1
and 2, calibrated streamflow simulations exhibit significant improvement compared to
no-calibration ones.

Figure 7. A comparison of resolution-specific simulations before (red) and after (purple) calibration.
The inverted y-axis at the top of the graph represents rainfall.

In Figure 8, the analysis is focused on the results of streamflow prediction before and
after calibration at Ansim and Geumchang during Rainfall Event 1. Figure 8a,c,e display
WRF-Hydro streamflow simulations at various grid resolutions in Ansim, both before and
after calibration by PEST. Similarly, Figure 8b,d,f illustrates WRF-Hydro simulations in
Geumchang at multiple resolutions. Comparable patterns to those observed in Gangchang
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were identified at both the Ansim and Geumchang locations for resolutions of 100 m, 250 m,
and 500 m.

Figure 8. Model calibration results by resolution. Results of the calibration of the WRF-Hydro
model were obtained using streamflow from Rainfall Event 1 at Gangchang Bridge and compared for
Gangchang, Ansim, and Geumchang.

As depicted in Figure 8a,b, 100 m resolution showed the most improved predictions in
terms of peak flow after calibration. The calibrated results at 250 m resolution, as illustrated
in Figure 8c,d, also demonstrated significant improvements in both the maximum peak
flow and its timing. In contrast, a higher peak flow for the previous rainfall was observed
in the calibrated results. In Figure 8e,f, representing 500 m resolution, enhancements in
both peak and post-peak flows were observed, despite the high peak for the prediction of
previous rainfall streamflow, such as at the Ansim gauge.

Table 5 presents the calibrated parameters for the WRF-Hydro model, differentiated by
spatial resolution, for Rainfall Events 1 and 2, along with calibration runtime. The runtime
for PEST parameter calibration exhibited significant variation across different resolutions
and rainfall events. Specifically, during Rainfall Event 2, which had considerably less
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preceding rainfall compared to Rainfall Event 1, calibration runtime for 100 m and 500 m
resolutions more than doubled. There was no clear pattern between the resolution and the
calibrated parameters. In Rainfall Event 2, the calibrated parameters of 100 m and 500 m
differed by more than twofold compared to Rainfall Event 1. For 250 m resolution, there was
no significant difference in the calibrated parameters between Rainfall Events 1 and 2 and
only a small variation in calibration time. This implies that with default parameters set for
250 m resolution, both the computational time and the required adjustments to parameter
values are minimal. This suggests there is an advantage in using a 250 m resolution for
constructing new models.

Table 5. Optimized PEST parameters and calibration runtimes on different resolutions. With the
same parameters, the single model runtimes were approximately 263 ± 10 s for 100 m, 84 ± 10 s for
250 m, and 68 ± 10 s for 500 m, respectively.

ID
Resolution

100 m 250 m 500 m

Event 1 REFKDT 1.283 0.203 0.555
PEST Runtime (min) 216 71 54

Event 2 REFKDT 0.079 0.158 0.070
PEST Runtime (min) 695 90 125

Our findings show differences and similarities compared to previous spatial resolution
studies. Kim et al. [15] reported that in the absence of parameter calibration, 250 m spatial
resolution was a good choice in terms of performance and calculation requirements for
both LSM and routing models. Meanwhile, in our case, without calibration, the streamflow
predictions were the most accurate at 100 m resolution. However, in terms of calibration
performance and calibration calculation requirements, the strong advantage of a 250 m
spatial resolution was found, in line with the suggestions of Kim et al. [15]. In other studies,
such as Abbazadeh et al. [2], streamflow prediction accuracy was reported to increase
with finer resolution from 36 to 9 to 1 km. However, simulation experiments in this study
revealed that the accuracy did not increase linearly when the resolution became finer than
1 km such as 100 m, 250 m, and 500 m. At 250 m resolution, both calibration runtime and
changes in the calibrated parameter values were minimized.

4. Conclusions

This study investigated the effects of spatial resolution on streamflow predictions by
employing distributed hydrological modeling in conjunction with the parameter estimation
tool, PEST. Simulation experiments for the Geumho River catchment in South Korea were
performed using WRF-Hydro with spatial resolutions of 100 m, 250 m, and 500 m for land
surface and routing components, focusing on flood periods. To assess the impact of model
spatial resolution, no-calibration simulations were examined with default parameter sets at
different model spatial resolutions. We then evaluated event-specific calibration results in
terms of calibrated parameters and calibration runtimes. The key findings are summarized
as follows:

1. In the simulations without calibration using the default parameter set, 100 m res-
olution exhibited superior performance in terms of NSE, although calibration was
deemed necessary for Rainfall Event 2 (Rainfall Event 1 NSE: 0.868; Rainfall Event 2
NSE: 0.058).

2. For Rainfall Event 2, the NSE and RMSE results of calibrated simulations indicated
significant improvement compared to those for Rainfall Event 1. In particular, at
250 m resolution, the NSE was 0.9 or higher at all gauges, with the evaluation index
value more than doubled relative to no-calibration cases, thereby indicating more
effective calibration compared to other resolutions.
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3. Calibration runtime for calibrating PEST parameters varied significantly across reso-
lutions and rainfall events. In particular, for Event 2 with a drier hydrological initial
condition, the calibration runtimes at 100 m and 500 m resolutions nearly doubled
compared to those for Event 1. For 250 m resolution, there was no significant dif-
ference in the calibrated parameters between Rainfall Events 1 and 2 (calibrated
parameter of Rainfall Event 1: 0.203; Rainfall Event 2: 0.158).

We evaluated the effect of spatial resolution on the parameters and streamflow simu-
lations, postulating that there might be a pattern in the variation of calibrated parameter
values as spatial resolution changes. However, no scale-dependent patterns were found
in calibrated parameters at least for the two selected rainfall events. This phenomenon
is partly due to the changes in configuration and interaction among hydrological compo-
nents at a finer spatial resolution. Therefore, we propose that resolution-aware parameter
regionalization schemes be developed as a potential future research area. Such schemes
would enable effective calibration in high-resolution models by integrating insights from
lower-resolution calibrations and taking into account resolution-specific discrepancies. In
the era of digital twins and hyperconnectivity, distributed modeling using new information
with increasing volume and finer spatial resolution is expected to provide an improved
understanding of hydrological processes and their interactions.
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Abstract: The components of water balance (WBC) that involve precipitation, evapotranspiration,
runoff, irrigation, and groundwater recharge are critical for understanding the hydrological cycle and
water management of resources in semi-arid and arid areas. This paper assesses temporal and spatial
distributions of surface runoff, actual evapotranspiration, and groundwater recharge upstream of
the New Assiut Barrage (NAB) in the Nile Valley, Upper Egypt, using the WetSpass-M model for the
period 2012–2020. Moreover, this study evaluates the effect of land cover/land use (LULC) alterations
in the study period on the WBC of the NAB. The data provided as input for the WetSpass-M model in
the structure of raster maps using the Arc-GIS tool. Monthly meteorological factors (e.g., temperature,
rainfall, and wind speed), a digital elevation model (DEM), slope, land cover, irrigation cover, a soil
map, and depth to groundwater are included. The long-term temporal and spatial mean monthly
irrigation and precipitation (127 mm) is distributed as 49% (62 mm) actual evapotranspiration, 15%
(19 mm) groundwater recharge, and 36% (46 mm) surface runoff. The replacement of cropland by
built-up areas was recognized as the primary factor responsible for the major decrease in groundwater,
an increase in evapotranspiration and an increase in surface runoff between LCLU in 2012 and 2020.
The integration of the WetSpass model with GIS has shown its effectiveness as a powerful approach
for assessing WBC. Results were more accurate and reliable when hydrological modeling and spatial
analysis were combined. The results of this research can help make well-informed decisions about
land use planning and sustainable management of water resources in the upstream area of the NAB.

Keywords: WetSpass-M; LULC; actual evapotranspiration; groundwater recharge; arid areas; Egypt

1. Introduction

Water shortage has been the most obvious consequence of climate change in the
Middle East and North Africa (MENA) region; experts have frequently referred to this
region as “the world’s most water-stressed”. The MENA region is expected to be among
the first in the world to “effectively run out of water”, which is alarming due to water
resources being depleted faster than precipitation can replenish them [1]. Egypt is an
African country in the northeast. The majority of its area is desert, which the Nile River
cuts across from south to north. Since the Nile River is the nation’s primary source of
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freshwater, the majority of people reside in the Nile Valley. Egypt has a hot desert climate,
with nearly zero annual average precipitation in the driest regions of Upper Egypt—the
south and western deserts [2]. In order to fully utilize Egypt’s most valuable natural
resource, the water from the Nile, several regulating structures, such as dams and barrages,
have been constructed along the river since the early 20th century. One of these is the
Assiut barrage, which is currently in need of significant repairs. The rehabilitation design
for the barrage includes the creation of a head-pond with water levels that are 0.6 m higher.
This development has resulted in an increased flow of seepage water towards agricultural
lands and villages, which may potentially lead to a rise in groundwater levels in affected
areas, including floodplains located 60 km upstream of the NAB [3,4]. Groundwater is
considered the second primary source of drinkable and irrigation water in the Assiut
province [5]. Groundwater recharge is a vital aspect in assessing groundwater resources;
nevertheless, it is challenging to compute [6]. Due to increased human demand and climate
change, as well as the need to compensate for declining surface water supplies during
dry months, groundwater usage is anticipated to increase in the future [7]. In addition,
evapotranspiration is a critical component of the hydrological cycle that has a direct link
with temperature and is one of the most essential results in the water balance equation
for any natural region or water body [8]. Recharge estimation is challenging in arid and
semi-arid areas where potential evapotranspiration surpasses average precipitation [9,10].

Consequently, different supplies of water must be researched and managed, and the
assessment of aspects of water balance is vital for the proper oversight of water manage-
ment and land, for instance, estimating water availability, quantifying the sustainable rate
of groundwater depletion, and preventing land degradation and desertification [11]. The
Grand Ethiopian Renaissance Dam (GERD) has significantly increased the vulnerability and
sensitivity to water supplies [12]. Several methods have traditionally been used for assess-
ing groundwater recharge, such as experimental techniques, empirical methods, statistical
approaches such as water table fluctuation (WTF), the Rorabaugh method, the hydrological
budget (HB), and numerical methods such as the simulation of water balance [13,14]. There
are various hydrological models accessible today for predicting groundwater recharge,
including the soil and water assessment tool (SWAT), a simple daily soil–water balance
(SWB), the Système Hydrologique (MIKE SHE), a GPU-accelerated (GPU: Graphics Pro-
cessing Unit) and LTS-based (LTS: local time step) finite volume shallow water model,
Topmodel (topographic hydrologic model), and other physically distributed models that
work well in assessing runoff regions in mountainous terrain [15–19]. Recently, water and
energy transfer between plants, the atmosphere, and the soil (WetSpass model) [20] has
been seen in a quasi-steady state in several studies, and many authors have used it in
different zones as it gives good results. It has been constantly used to estimate WBC [21]
and has been updated to a WetSpass-M model by reducing the temporal resolution to
a monthly scale [22]. A calibrated WetSpass model for the Nile Delta was created by
changing the parameters for Nile Valley conditions [23], Palestine, the GAZA strip [24],
the Drava basin, Hungary [25,26], the Moulouya basin, Morocco [21], and in Khadir Canal
Sub-Division, Pakistan [27]. The WetSpass model has appeared as a very good method for
assessing the water balance budget under many parameters as an input dataset: LULC,
slope, groundwater depth, and soil texture are taken into account, which are not involved
in other methods. Table A1 in Appendix A summarizes the purpose/scope, key features,
advantages, and disadvantages of different hydrological/hydrodynamic models.

The spatial and temporal distribution of WBC in the upstream region of the NAB
has not yet been studied. Better awareness of the spatial and temporal changes of WBC,
particularly surface runoff, actual evapotranspiration, and recharge, is vital for the long-
term sustainability and efficient management of water resources upstream of the NAB. The
main aims of this work are (1) the evaluation of the temporal and spatial distribution of
groundwater recharge, actual evapotranspiration, and surface runoff using a WetSpass-M
model under the Geographic Information System (GIS) framework, (2) the evaluation
of the relationship between WBC with various land-use classes and years, and (3) the
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assessment of the effect of land use/land cover changes on the total water budget of
the NAB between the LULC in 2012 and 2020. This study is also the first to assess the
geographic variability of long-term annual, seasonal, and monthly WBC upstream of the
NAB. The data, along with boundary conditions and aquifer geometry, will be applied to
develop a groundwater model.

2. Methods and Materials
2.1. Area of Study

The investigated area covers the southern part of Assiut City, located in Upper Egypt,
approximately 1080 km2 along the Nile River (Figure 1). The Nile River splits the region
into two portions—the Eastern bank expands between the Tema district in the south and the
Abnoub district in the north, while the western part expands between the Tema district in
the south and the Assiut District in the north [3]. Its geographical coordinates are 27◦20′ N,
31◦30′ E. The NAB region extends 60 km towards the south (upstream) and 20 km towards
the north (downstream). The upstream area of the NAB includes 8 districts [4], serving an
irrigation area of 795 km2 according to the change in cropland as the main area in 2018.
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2.2. Hydrological Simulation (WetSpass-M)

The WetSpass model is a physically based technique that has been developed to
estimate the long-term mean of WBC [20,28]. For quasi-steady conditions of spatially
distributed water balance, a WetSpass-M model is used in this study to estimate WBC
in annual, seasonal, and monthly periods. The total WBC of the vegetated, open-water,
bare soil, and impervious fractions per raster cell are determined using the subsequent
equations [20]:

Sraster = asSs + aoSo + aiSi + avSv (1)
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ETraster = asEs + aoEo + aiEi + avETv (2)

Rraster = asRs +aoRo + aiRi + avRv (3)

where each following symbol represents Sraster (surface runoff), ETraster (total evapotranspi-
ration), and Rraster (recharge). Each of them has open water (o), bare soil (s), impervious
area (i), and vegetation (v), while as, ao, ai, and av are the fractions of each LULC in a grid
cell. Figure 2 depicts the WetSpass-M model’s scheme. The WetSpass-M model equations
used to compute monthly WBC are available in [29]. The calibrated WetSpass model of
Armanuos et al. [23] in the Nile Delta aquifer is used in this study.

Water 2024, 16, x FOR PEER REVIEW 4 of 21 
 

 

Sraster = asSs + aoSo + aiSi + avSv (1) 

ETraster = asEs + aoEo + aiEi + avETv (2) 

Rraster = asRs +aoRo + aiRi + avRv (3) 

where each following symbol represents Sraster (surface runoff), ETraster (total evapotranspi-

ration), and Rraster (recharge). Each of them has open water (o), bare soil (s), impervious 

area (i), and vegetation (v), while as, ao, ai, and av are the fractions of each LULC in a grid 

cell. Figure 2 depicts the WetSpass-M model’s scheme. The WetSpass-M model equations 

used to compute monthly WBC are available in [29]. The calibrated WetSpass model of 

Armanuos et al. [23] in the Nile Delta aquifer is used in this study. 

 

Figure 2. Schematic representation for the modeling process of the WetSpass–M model. 

2.3. Input Parameter 

The WetSpass-M model’s input data are divided into two categories: GIS grid maps 

and parameter tables [30]. The first category is ASCI maps, including meteorological data, 

potential evapotranspiration (PET), wind speed, precipitation and average temperature, 

topography, slope, LULC, irrigation cover, soil type, groundwater depth, and leaves area 

index (LAI). Secondly, the parameter tables of soil type and LULC are attached to the 

model via soil and LULC attribute tables. Furthermore, the attribute tables enable re-

searchers to alter parameter values associated with the defined soil or LULC types in the 

future [28]. All input data were set as a raster map derived from the DEM with 100 m × 

100 m cells with a total of 495,614 raster cells in ESRI ASCII grid format accumulated be-

tween the years 2012 and 2020. Table 1 shows the WetSpass-M model’s input parameters. 

Table 1. Input data and sources of the WetsPass-M model. 

Input Parameter Periods Source of Data Cell Size 

Topography DEM and 

slope 
constant https://earthexplorer.usgs.gov/ (accessed on 02 January 2023) 100 m × 100 m 

land use land cover 

2012 
https://www.ear’thexplorer.usgs.gov// (accessed on 12 March 

2023) 
100 m × 100 m 

2018–2020 
https://livingatlas.arcgis.com/landcoverexplorer// (accessed on 

10 March 2023) 

soil Constant FAO-UNESO 1988 100 m × 100 m 
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2.3. Input Parameter

The WetSpass-M model’s input data are divided into two categories: GIS grid maps
and parameter tables [30]. The first category is ASCI maps, including meteorological data,
potential evapotranspiration (PET), wind speed, precipitation and average temperature,
topography, slope, LULC, irrigation cover, soil type, groundwater depth, and leaves area
index (LAI). Secondly, the parameter tables of soil type and LULC are attached to the model
via soil and LULC attribute tables. Furthermore, the attribute tables enable researchers to
alter parameter values associated with the defined soil or LULC types in the future [28]. All
input data were set as a raster map derived from the DEM with 100 m × 100 m cells with a
total of 495,614 raster cells in ESRI ASCII grid format accumulated between the years 2012
and 2020. Table 1 shows the WetSpass-M model’s input parameters.
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Table 1. Input data and sources of the WetsPass-M model.

Input Parameter Periods Source of Data Cell Size

Topography DEM and slope constant https://earthexplorer.usgs.gov/ (accessed on
2 January 2023) 100 m × 100 m

land use land cover
2012 https://earthexplorer.usgs.gov/ (accessed on

12 March 2023) 100 m × 100 m

2018–2020 https://livingatlas.arcgis.com/landcoverexplorer//
(accessed on 10 March 2023)

soil Constant FAO-UNESO 1988 100 m × 100 m

Groundwater depth 2012–2020 72 borehole piezometer monitoring monthly
during the NAB project establishing, MWRI 100 m × 100 m

Precipitation mm/month 2012–2020 https://crudata.uea.ac.uk/cru/data/hrg//
(accessed on 12 January 2023) 100 m × 100 m

Wind speed 2012–2020 https://crudata.uea.ac.uk/cru/data/hrg///
(accessed on 12 January 2023) 100 m × 100 m

Temperature 2012–2020 https://crudata.uea.ac.uk/cru/data/hrg///
(accessed on 12 January 2023) 100 m × 100 m

Table 1. Cont.

Input Parameter Periods Source of Data Cell Size

Irrigation cover 2012–2020 GAD M.I., ElGamal M. m. 2020—MWRI 100 m × 100 m
Potential evapotranspiration 2012–2020 Calculated from the Thornthwaite formula 100 m × 100 m

Lookup table land use land cover - WetSpass model processing -
Lookup table runoff coefficient - WetSpass model processing -

A lookup table of soil parameter - WetSpass model processing -

2.3.1. Topographic Features and Slope

Based on the majority of the investigations, geomorphology is the most essential
component of groundwater [31]. The DEM upstream of the NAB region is derived from
the Shuttle Radar Topography Mission (SRTM) (Figure 3a). The investigated area’s highest
point is 178 m in the southeast portion of the Assiut mountains; however, the lowest point
is 42 m in the middle section of the valley, and the mean elevation of the study area is found
to be 57 m. The slope map is generated directly using the DEM and the slope analysis tool
under the GIS environment. The slope ranges from 0% to 49%, with an average of 0.97%
(Figure 3b). The grade of the slope directly impacts surface water infiltration. Steep slopes
have restricted groundwater recharge due to excessive surface runoff [32]. On a low slope,
on the other hand, the gradient inhibits the flow of water and hence increases the rate of
infiltration [33].
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2.3.2. Land Use/Land Cover (LULC) Data

Upstream of the NAB is surrounded by agricultural land, and the amount of usable
land is rapidly decreasing [34]. Moreover, among the most critical controlling factors in
valley hydrology is LULC [35]. The LULC also has the ability to determine the values
of vegetative parameters like LAI and evaporative zone depth. The parameter of LAI
drives both surface evaporation and transpiration [36]. The data were derived from multi-
temporal satellite images, as shown in Table 1, for the years 2012 and 2014, downloaded
from the USGS Earth Explorer, while for the years 2018–2020, data were sourced from ESRI/
Sentinal-2 land cover 10 m resolution. The study area is distinguished by 7 land cover
types, as shown in Figure 4a. The region is predominantly characterized by agricultural
land (73%), built area (20%), water bodies (4%), bare ground (2.2%), and a total area of
range land, trees, and flooded vegetation (1.8%). LULC type is re-coded into 12 classes
according to the standard code of WetSpass.
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2.3.3. Soil Data

Runoff and recharge are controlled by soil properties. Soil infiltration capacity is
determined by soil texture and permeability, which determines storage capacity and con-
trols the speed at which water penetrates deep layers. Sandy soil has the most rapid rates
of infiltration, but loamy and heavy clay soil have lower rates of infiltration and more
surface runoff [37]. The soil map is derived from the Harmonized World Soil Database
(HWSD) (Figure 4b) [38]. The prevailing soil type of the region is silty clay [39], which
covers 88% (949.50 km2) of the total study region, while clay loam and clay soil represent
10.17% (109.55 km2) and 1.64% (17.74 km2), respectively.

2.3.4. Meteorological Data

The monthly dataset of meteorological parameters, e.g., precipitation, wind speed, and
temperature for the period 2012–2020, was obtained from CRU TS (Climatic Research Unit
gridded Time Series). CRU TS is a widely utilized climate dataset that encompasses all
land areas of the world on a 0.5◦ longitude by 0.5◦ latitude grid [40]. The research area
experiences an average annual precipitation ranging from 2.11 mm year−1 to 6.91 mm year−1,
with a mean rate of 4.74 mm year−1 (Figure 5a). The precipitation amount is significantly
restricted, being relatively minor in comparison to the water used for irrigation and the
extensive irrigation canal system throughout the year. Approximately 60% of the total
amount of precipitation falls during the winter and autumn seasons, with the remaining
40% occurring in the summer and spring. The studied region experiences an average
maximum temperature of 31 ◦C in July and an average lowest temperature of 12 ◦C in
January. Additionally, the average yearly wind speed is recorded at 5 m/s.

The calculation potential evapotranspiration (PET) is determined using the Thornth-
waite formula depending on latitude and temperature [41], taking into consideration the
mean monthly temperature and the thermal index:

PET = 1.6k
(

10T
I

)a
(4)

where
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PET: monthly potential evapotranspiration in cm
T: average monthly temperature in Celsius
k: daylight and days in the month related to the altitude of the place

a = 0.000000675 I3 − 0.0000771 I2 + 0.01792 I + 0.49239 I

I = ∑12
m=1 im im =

(
tm
5

)1.5

where
I: annual thermal index
im: monthly thermal index
tm: main temperature for the month
m: take value from January to December
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Figure 5. (a) Annual precipitation of study area from 2012–2020, (b) average potential ET.

The average monthly PET varies from 52 mm/month to 121 mm/month, with an
average of 116 mm/month (Figure 5b). The highest PET is in July, with a total of 246 mm,
while January has the lowest at 15 mm. The annual PET of the NAB is 1392 mm. About
88% of the PET is observed in dry seasons (summer and spring), while the remaining 12%
is in wet seasons (winter and autumn). The Aridity Index (AI) of the upstream of the NAB
region was determined using the following equation [42]:

AI = P/PET (5)

where P represents annual rainfall, and PET represents annual potential evapotranspira-
tion. AI is a climatic measure that can be applied to quantify the extent of availability of
precipitation relative to the atmospheric water demand. Based on AI classification limits in
Table A2 in Appendix A, the study area was classified as a hyper-arid climatic zone.

2.3.5. Groundwater Depth and Irrigation Cover

The records of groundwater level data for 72 observation wells were obtained from the
Reservoir and Grand Barrage sector of Egypt (RGBS) from 2012 to 2019 (Figure 6a). Kriging
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interpolation was employed to generate a spatial distribution map of the average monthly
groundwater depth, as depicted in Figure 6b. The groundwater depth ranged from 7.11 m
to 7.56 m, with a mean average of 7.40 m. Moreover, the majority of the irrigated land in
the investigated area relies heavily on water sourced from the Nile River via a sophisticated
network of irrigation canals, serving the area of agricultural land (795 km2) an average
of 127 mm/month [4]. The monthly irrigation map prepared depends on the amount of
irrigation water under land use/cover in the study area. Then WetSpass-M model is able to
add the irrigation water cover to rainfall, as shown in Figure 6c.
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Figure 6. (a) Location of observations wells; (b) monthly groundwater depth; (c) monthly rainfall
and irrigation water.

3. Results
3.1. Water Balance Component

The WetSpass-M model simulation produces digital maps that display the spatial
distribution in addition to the numerical values of WBC. The digital maps are composed
of raster maps, with each pixel representing the magnitude of the corresponding WBC (in
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mm/month) for the period 2012–2020. The WetSpass-M model has been used to compute
actual evapotranspiration, which encompasses the combined values of vegetation water
evaporation, vegetative cover transpiration, and bare soil evaporation occurring between
the plants. The calculation of surface runoff relies on a reasoning technique that incorporates
soil moisture coefficients and real surface runoff. Groundwater recharge, on the other hand,
is determined as the residual elements derived from subtracting the combined values of
actual evapotranspiration and surface runoff from the total amount of precipitation and
irrigation water [43]. This study is the initial investigation into WBC upstream of the NAB
region. An evaluation of the many components that contribute to the annual water balance
is necessary in order to analyze the water budget upstream of the NAB region. Furthermore,
it is crucial to evaluate these components periodically, both on a monthly and seasonal
basis, to ascertain the precise water demands for agricultural pursuits. The results obtained
from WetSpass describing the different components of the water balance will be used as
boundary conditions and inputs for incorporating groundwater modeling for the upstream
portion of the NAB [44]. The spatial representation of annual, seasonal, and monthly actual
evapotranspiration, as simulated by the WetSpass model, is provided in Table 2.

Table 2. Long-term monthly, seasonal, and annual WetSpass simulated components of the upstream
of the NAB area during 2012–2020.

Period Value Prec. and Water Irrig.
(mm)

Groundwater Recharge
(mm)

Surface Runoff
(mm)

Evapotranspiration
(mm)

Monthly Range 0–175 0–32 0–99 0–242
avg. 127 19 46 62

st.dev. 77 11 35 45
Annual Range 2.11–2106 0–385 0–1189 0.6–2910

avg. 1533 228 566 739
st.dev. 930 139 426 542

Winter Range 1.36–464 0–169 0–347 0.44–124
avg. 338 97 192 49

st.dev. 204 59 119 28
Spring Range 0.71–530 0–91 0–265 0–722

avg. 386 53 126 207
st.dev. 234 33 93 141

Summer Range 0.3–587 0–67 0–257 0–1497
avg. 428 39 104 285

st.dev. 258 25 97 266
Autumn Range 0–524 0–70 0–318 0–566

avg. 381 39 144 198
st.dev. 230 23 116 122

The WetSpass-M model estimated the monthly actual evapotranspiration in the upstream
area of the NAB to vary between 0 mm/month and 242 mm/month, with an average of
62 mm/month and a standard deviation of 45 mm/month (Figure 7b). The annual actual
evapotranspiration is calculated by summing up monthly data for the whole year. The study
period yielded annual actual evapotranspiration values ranging from a low of 0.6 mm to
a maximum of 2910 mm, with a mean value of 739 mm (Figure 7e). The average annual
actual evapotranspiration contributes 48% of the combined average annual precipitation and
irrigation water. The average long-term actual evapotranspiration values throughout the
wet seasons (autumn and winter) and dry seasons (spring and summer) are 247 mm and
492 mm, respectively. The spring and summer seasons account for approximately 66% of
the total evapotranspiration, with the remaining 34% occurring in other seasons (Table 2 and
Figure 8). The variation in water demand between the two seasons accounts for this inequality.
Furthermore, numerous farmers utilize their cultivated land for irrigation, particularly during
the summer season when there is a significant demand for water in upper Egypt [45]. The

150



Water 2024, 16, 543

southern section of the Nile River experienced the highest actual evapotranspiration 520 mm,
while the northern half has a slightly lower value of 460 mm (Figure 7).

The spatial distribution of the annual mean interception is presented in Figure 7d.
The annual interception varies from 0 mm/year to 300 mm/year, with an average rate
of 100 mm/year. Approximately 61% of the simulated interception takes place during
the dry seasons, specifically summer and spring. The remaining 39% occurs in the wet
seasons (winter and autumn). The WetSpass-M model determines the monthly surface
runoff in millimeters per month through a logical approach that takes into account both the
current surface runoff and the coefficient of soil moisture [28]. The annual observed surface
runoff has significant regional variability, ranging from 0 mm to 1189 mm (Figure 7g). The
monthly surface runoff ranges from 0 mm month−1 to a maximum of 99 mm month−1, with
an average of 46 mm month−1 and a standard deviation of 35 mm month−1. The annual
mean and standard deviation of this distribution are 566 mm year−1 and 426 mm year−1,
respectively (Figure 7c and Table 2).

The estimation of annual surface runoff involves the accumulation of monthly simu-
lated data over the whole time. The average surface runoff in the study area accounts for
around 36% of the annual average precipitation and irrigation water. The average surface
runoff during the summer and spring seasons is 230 mm, while the runoff during the
winter and autumn seasons is roughly 338 mm. The middle of the upstream area of the
NAB along the Nile River exhibits the greatest average annual and seasonal surface runoff
values due to its gradual incline and the prevalence of silty clay, clay loam, and clay soils
with limited permeability.
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Figure 8. Average monthly WBC upstream of the NAB between 2012 and 2020.

Groundwater recharge is a critical determinant in the evaluation of groundwater
resources; nevertheless, its assessment presents inherent challenges [6,46]. As a residual
parameter of WBC, the WetSpass simulates groundwater recharge for the upstream area
of the NAB by deducting evapotranspiration and discharge from the monthly precipi-
tation and irrigation water, climate conditions, slope, topography, LULC, soil type, and
groundwater depth, which all influence the spatial variation of groundwater recharge. The
spatial distribution of seasonal groundwater recharge in the investigated area is influenced
by the valley’s topography and other distinctive features (Figure 7a). The estimation of
the annual mean of groundwater recharge is performed using simulated monthly data.
The mean value of groundwater recharge is 228 mm year−1, with a standard deviation of
139 mm year−1. The annual mean of groundwater recharge ranges from 0 mm year−1 to
384 mm year−1 (Figure 7e and Table 2). The monthly groundwater recharge of the upstream
of the NAB region, as simulated, varies between 0 mm and 32 mm month−1. The mean
and standard deviations are 19 and 11 mm month−1, respectively (Table 2). Fifteen percent
of the average annual precipitation and irrigation water represents the amount of average
groundwater recharge. The simulated monthly groundwater recharge in the investigated
area is presented in Figure 9. Approximately 61% of the annual recharge of groundwater
happens during the wet seasons. The remaining 39% occurs in the dry seasons, as shown
in Figure 9c,d. The mean long-term groundwater recharge during the wet seasons and dry
seasons is 134 mm and 92 mm, respectively (Table 2 and Figure 9). The highest value of
groundwater recharge is observed in agricultural regions in the east and west parts of the
Nile Valley.

The northeast and southwest account for less groundwater recharge, which is related
to the existence of hot and barren regions with less-permeable clay loam soils. Additionally,
the urban area experiences the lowest recharge due to limited water use for irrigation and
low rainfall.
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Figure 9. Long-term seasonal groundwater recharge during the period 2012–2020. (a) Winter;
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3.2. Water Balance Components Values under Different LULC Types and Soil Textures

The WBC may exhibit variability across different LULC types and soil textures [47].
The amount of groundwater recharge, actual evapotranspiration, and surface runoff are
influenced by LULC, as shown in Figure 10. Around 73% of the upstream NAB region is cov-
ered by agricultural land, which is distributed throughout the surveyed region. Agricultural
land exhibits a significant amount of groundwater recharge, averaging 858 mm year −1,
as well as has the highest surface runoff, averaging 966 mm year−1. Built-up areas are
defined by a surface that does not allow water to pass through easily, resulting in a limited
ability to replenish groundwater and release water through evapotranspiration, with an
average of 3 mm year−1. In the WetSpass model, open water (i.e., lakes and rivers) is
given a zero-groundwater recharge value because open water surfaces are presumed to be
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groundwater discharge destinations, while it has a significant amount of evapotranspira-
tion of 2788 mm year−1. Increased runoff in the region is a result of the conventional flood
irrigation system that is being followed [48]. In addition, the study area characterized by
silt clay soil and clay loam has increased surface runoff. Therefore, studying the temporal
and spatial distribution of surface runoff might help us understand the main elements that
affect the variability of runoff in the Nile Valley.
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Figure 10. Water balance components under different types of LULC.

The WBC are significantly influenced by soil textures. The varying spatial distribution
of soil textures significantly influences the hydraulic properties at the local and regional
scales [46]. Heavy soils (silty clay and clay loam) upstream of the NAB region exhibit
high surface runoff due to their low hydraulic conductivity. Clay soils have approximately
two-thirds of the groundwater recharge of loamy soils. The WetSpass-M model simulated
the annual actual evapotranspiration of silty clay soils as 667 mm year−1, whereas the
surface runoff was 257 mm year−1 (Figure 11). Additionally, the model estimated that the
annual groundwater recharge of silty clay soil is 89 mm year−1. The increasing variability
in the amount of WBC across different types of soil indicates that the WBC rate in the
investigated area is more dependent on soil texture.
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3.3. Effects of LULC Changes on WBC

Approximately 75% of the total area consists of agricultural land, which is primarily
located along the banks of the Nile River on both the eastern and western banks of the Nile.
Figure 12 displays the proportion of land use categories from 2012 to 2020. According to
Figure 13, agriculture is the most prevalent and influential land use in the NAB, followed by
built-up areas and open water. Rangeland, bare ground, flooded vegetation, and trees have
a scattered distribution with low percentages. From 2012 to 2020, there was a noticeable
decrease in the agricultural area (cropland), with a fall from 82% to 72%. This decrease can
be attributed to the considerable expansion in urban areas, as shown in Figure 12.
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To investigate the impact of LULC changes on WBC, four separate runs were initiated,
each matching a certain LULC from the years 2012, 2018, and 2020, respectively. The other
input variables, including meteorological data, soil types, topography (slope and digital
elevation model), and distributed groundwater depth, were maintained at a constant level
for all four trials. The simulation utilized meteorological parameters from the period
2012–2020 as climate input, together with the Digital Elevation Model (DEM), soil data,
and slope of the research area for all four iterations. Each run replicated the long-term
average WBC over 9 years, specifically from 2012 to 2020, which consisted of 108 time steps.
Between 2012 and 2020, there was a significant rise in built-up areas, from 7.73% to 21.55%.
This expansion was mostly achieved by transforming cropland into urban areas. Therefore,
an evaluation was conducted to assess the effects of urbanization on the variations in WBC
in built-up areas during this period.

The simulated average annual WBCs upstream of the NAB for each LULC of the
years 2012, 2018, and 2020 are presented in Figure 13. The replacement of cropland by
built-up areas was recognized as the primary factor responsible for the major decrease in
groundwater recharge by 15 and 18 mm year−1, an increase in evapotranspiration by 8 and
11 mm year−1, and an increase in surface runoff by 7 and 11 mm year−1 for LCLU between
2012–2018 and 2018–2020, respectively (Figures 12 and 13). From 2012 to 2020, there was an
increase in surface runoff and evapotranspiration, while groundwater recharge experienced
a decrease. The increase in surface runoff between 2012 and 2020 corresponds to the increase
in built-up areas and range land (Figures 12 and 13). The analysis of alterations in LULC
maps and surface runoff reveals that the rise in average yearly runoff may be ascribed
to the expansion of built-up areas and range land from 2012 to 2020. These surfaces are
largely or completely impermeable, and they were deemed to have a detrimental effect on
the upstream of the NAB. The main driver of the shift in surface runoff from 2012 to 2020
was the observed growth in built-up areas, which was deemed to have a detrimental effect
on the region upstream of the NAB.

The changes in built-up areas and cropland had the most significant impact on the
changes in groundwater recharge and actual evapotranspiration. The biggest factor con-
tributing to the significant decrease in groundwater recharge by 18 mm per year and the
rise in evapotranspiration by 11 mm per year in the period 2012–2020 has been identified.
The decrease in groundwater recharge is linked to the increase in urban areas and the
decline of cropland. Furthermore, urbanization leads to a reduction in the recharge of
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groundwater [47]. Average groundwater recharge experienced a significant drop of 6%
from 2012 to 2018. The findings indicate that LULC alterations significantly impact the
comprehensive water balance upstream of the NAB. The technique used in this study
enables the calculation of hydrological components, spatial and temporal, taking into
account the alterations in LULC. This provides decision-makers and stakeholders with
precise quantitative data to facilitate the implementation of effective and sustainable water
resource management in the Nile Valley upstream of the NAB.

4. Conclusions

The upstream region of the NAB experiences substantial human impacts, resulting
in water scarcity and increased vulnerability to drought events. In order to create a
groundwater model for the valley, an accurate assessment of groundwater recharge and
actual evapotranspiration is essential as boundary conditions. The upstream region of
the NAB was analyzed using the WetSpass-M model to determine the annual, monthly,
and seasonal rates of surface runoff, groundwater recharge, and actual evapotranspiration
from 2012 to 2020. The WBC for each grid pixel was determined for the vegetated land,
impervious fractions, bare soil, and open water. The primary input variables for the model
consisted of climate data (such as air temperature, precipitation, wind speed, irrigation
cover, and potential evapotranspiration), LAI, groundwater level, soil types, slope, DEM,
and LULC. The input data were generated as raster maps using the ArcGIS framework.
The upstream region of the NAB was mostly characterized by agricultural areas and silty
clay soils, as observed in the LULC and soil texture analysis. The WBCs were assessed for
different LULC and soil texture conditions.

The annual simulated evapotranspiration ranges from 1 mm year−1 to 2880 mm year−1,
with an average of 739 mm year−1, which is 49% of the yearly average rainfall and water
irrigation cover. Approximately 15% (228 mm year−1) of the total annual precipitation and
irrigation water is attributed to the recharge of groundwater. The lowest recorded recharge
is 0 mm year−1, while the highest recorded recharge is 385 mm year−1. The annual surface
runoff of the investigated area ranged from 0 mm to 1189 mm in the period between 2012
and 2020. The surface runoff accounts for 36% of the average annual precipitation and water
irrigation cover at 566 mm year−1. The simulation outputs confirm the accurate utilization
of the WetSpass-M model for estimating the various components of the water budget
upstream of the NAB. This study can be employed to create a comprehensive groundwater
model and assess potential locations for regulated artificial recharge by collection of runoff
discharge to enhance groundwater storage. The findings suggest that LULC changes have
a significant impact on groundwater level and water balance. Specifically, the primary
factor responsible for the 11 mm year−1 rise in surface runoff in the NAB between 2012
and 2020 was the growth of built-up areas. Moreover, there is a downward trend in
groundwater recharge in response to these changes, which primarily stems from human
activities related to land use, particularly the reduction in agricultural land. Consequently,
the agricultural conditions, which are the primary means of sustenance for the indigenous
community and ecological services, became crucial. The proposed approach is a significant
tool for assessing and managing the rehabilitation upstream of the NAB in an effective
and sustainable manner. Given the rapid decline of water resources in the region due to
human activity, it is imperative to take immediate and effective measures to mitigate the
decrease in groundwater recharge and increase in surface runoff. Policymakers should
take into account the impact of LULC change during the restoration of the region. They
should also identify and implement measures to mitigate the negative impact of LULC
alterations. Furthermore, the surveyed region necessitates effective water management
and a modification in the irrigation system to enable the agricultural land to absorb an
appropriate quantity of water.

158



Water 2024, 16, 543

Author Contributions: Conceptualization, A.S.E., E.M.A., A.S. and Z.L.; methodology, A.S.E. and E.M.A.;
investigation A.S.E., E.M.A., A.S., M.M.H., K.E.Y., J.L. and Z.L.; software: A.S.E., E.M.A. and M.M.H.;
validation, A.S.E. and E.M.A.; formal analysis, A.S.E. and E.M.A.; writing the paper, A.S.E.; review and
editing the paper; J.L., A.S. and Z.L.; visualization, A.S.E., E.M.A., A.S., M.M.H., K.E.Y. and J.L.; supervision,
Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 51779215), the Natural Science Foundation of Jiangsu Province (Grant No. BK20171288), and
the Major Scientific and Technological Project of Shandong Gangshiyuan Construction Engineering
Group Co., Ltd. (Grant No. 2020RS-1058).

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Acknowledgments: The present scientific contribution is dedicated to the 120th anniversary of the
foundation of the University of Yangzhou, CHINA. The first author would like to thank the Egyptian
Ministry of Water Resources and Irrigation (MWRI) and Reservoir AND Grand Barrage Sector (RGBS)
for providing him. Furthermore, the authors would like to acknowledge the support from the
National Natural Science Foundation of China (Grant No. 51779215), the Natural Science Foundation
of Jiangsu Province (Grant No. BK20171288), and the Major Scientific and Technological Project of
Shandong Gangshiyuan Construction Engineering Group Co., Ltd. (Grant No. 2020RS-1058).

Conflicts of Interest: The authors declare that this study received funding from the Major Scientific
and Technological Project of Shandong Gangshiyuan Construction Engineering Group Co., Ltd. The
funder was not involved in the study design, collection, analysis, interpretation of data, the writing
of this article or the decision to submit it for publication.

Appendix A

Table A1. Purpose/scope, key features, advantages, and disadvantages of different hydrologi-
cal/hydrodynamic models.

Model Name Purpose/Scope Key Features Advantages Disadvantages

WETSPASS Model

The WETSPASS model
integrates water and
energy fluxes within
the soil–vegetation–
atmosphere system. It
simulates various
hydrological processes,
including
evapotranspiration,
interception, runoff,
and groundwater
recharge.

The WETSPASS model
adopts a simplified
simulation approach
that balances accuracy
and computational
efficiency. It provides a
comprehensive
representation of the
hydrological cycle and
its interactions with the
energy balance. It can
be applied at different
spatial scales and is
designed to be
user-friendly.

The WETSPASS model
is known for its
simplicity, ease of use,
and flexibility in
parameterization. It
can be customized to
different ecosystems
and climatic conditions,
and it integrates well
with GIS platforms.

It may not capture all
the complexities of
hydrodynamic
processes or finer-scale
spatial variations.

GPU-accelerated and
LTS-based 2D
Hydrodynamic Model

The GPU-accelerated
and LTS-based 2D
hydrodynamic model
specifically focuses on
simulating
two-dimensional
hydrodynamic
processes, such as river
flow, flood inundation,
and stormwater runoff.
It leverages the
computational power
of GPUs (Graphics
Processing Units) to
enhance simulation
speed and efficiency.

This model utilizes
parallel computing on
GPUs to accelerate the
simulation of complex
hydrodynamic
equations. It may
employ adaptive
time-stepping
algorithms, such as the
Local Time Stepping
(LTS) method, to
enhance numerical
stability and efficiency.

The use of GPUs allows
for faster simulations
compared to traditional
CPU-based models,
enabling real-time or
near-real-time
simulations. The LTS
method can improve
computational
efficiency by
dynamically adjusting
time steps based on
local conditions.

GPU-accelerated
models may require
specialized hardware
and software setups
and expertise in GPU
programming.
Additionally, the
applicability and
performance of the
model may depend on
the availability and
quality of
high-resolution
topographic and
bathymetric data.
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Table A1. Cont.

Model Name Purpose/Scope Key Features Advantages Disadvantages

TOPMODEL
(Topographic
Index-Based
Hydrological Model)

TOPMODEL is a
hydrological model
used for simulating the
spatial distribution of
water flow and soil
moisture within a
watershed. It focuses
on the influence of
topography on
hydrological processes.

TOPMODEL utilizes a
topographic index,
which represents the
relative wetness of a
location based on its
position in the
landscape. It considers
the variable source area
concept, where only a
portion of the
watershed contributes
to the runoff
generation.

TOPMODEL accounts
for the spatial
variability of soil
moisture and flow
connectivity based on
topographic
characteristics. It can
capture the effects of
landscape
heterogeneity and
preferential flow paths.

TOPMODEL may
require accurate and
high-resolution digital
elevation models
(DEMs) to capture the
topographic variability.
Calibration of the
model can be
challenging due to the
sensitivity of the
topographic index
parameter.

SWAT (Soil and Water
Assessment Tool)

SWAT is a widely used
hydrological model for
simulating water flow,
sediment transport,
and nutrient cycling in
watersheds. It assesses
the impacts of land
management practices
on water resources and
quality.

SWAT integrates
various components,
including weather, land
use, soil, and
vegetation, to simulate
hydrological processes
at different spatial and
temporal scales. It
considers both surface
runoff and
groundwater flow.

SWAT provides a
comprehensive
representation of the
hydrological cycle and
can handle a wide
range of land use and
management scenarios.
It allows for the
evaluation of different
conservation practices
and their impacts on
water resources.

SWAT requires
extensive input data,
including detailed soil,
land use, and weather
data. Calibration and
parameterization can
be time-consuming and
challenging.

HEC-HMS (Hydrologic
Engineering Center’s
Hydrologic Modeling
System)

HEC-HMS is a widely
used hydrological
model for simulating
rainfall-runoff
processes in
watersheds. It is
primarily used for
engineering and water
resources planning
purposes.

HEC-HMS employs a
modular approach that
allows users to build
custom hydrological
models by selecting
and integrating various
components. It can
simulate different
runoff generation
mechanisms and has
options for different
routing methods.

It offers flexibility in
model configuration
and allows for a
detailed representation
of watershed
characteristics. It is
widely recognized and
supported in the
engineering
community.

It requires substantial
input data, including
precipitation, soil
properties, and land
use. It may require
expertise in
hydrological modeling
and engineering
concepts.

MIKE SHE

It is a comprehensive,
integrated hydrological
model that simulates
the entire hydrological
cycle, including surface
water and groundwater
interactions.

It combines surface
water flow,
groundwater flow, and
unsaturated zone flow
in a coupled manner. It
can simulate complex
hydrological processes,
such as overland flow,
infiltration,
evapotranspiration,
and stream-aquifer
interactions.

It provides a detailed
representation of the
hydrological system
and can handle
complex hydrological
scenarios. It allows for
the assessment of water
resources, flooding,
and groundwater
management.

It requires extensive
input data, including
hydraulic properties,
climatic data, and
topographic
information. Model
setup and
parameterization can
be complex and require
expertise in
hydrological modeling.

Table A2. The UNEP classification limitations for the Aridity Index [42].

Climatic Zone P/PET (Thornthwaite Method)

Hyper-arid <0.05
Arid 0.05–0.2

Semi-arid 0.2–0.65
Sub-humid 0.5–0.65

Humid >0.65
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Abstract: The estuarine section of the Odra River network is influenced by various phenomena that
shape its hydrological regime. The Lower Odra region includes “Miedzyodrze,” an area between the
main branches of the Odra River that was previously used for agriculture. However, due to a lack of
maintenance in the 20th century, Miedzyodrze’s infrastructure suffered significant damage, resulting
in blockages and channel shallowing. Previous models of the lower Odra River network overlooked
Miedzyodrze’s hydrodynamic impact on flow. To address this, a study aimed to assess Miedzyodrze’s
influence on flows within the network. Three computational scenarios were developed: one treating
Miedzyodrze as an uncontrolled floodplain, another excluding it from the flow like past models, and
a third incorporating the hydraulic capacity of selected Miedzyodrze channels with hypothetical
restoration. The construction of the models involved extensive field research, including bathymetric
surveys and an inventory of channels and structures. Challenges arose from legal and technical
constraints during the research. The hydraulic network model was developed using Hec-Ras software
and underwent calibration and verification processes for accuracy and reliability. The study focused
on analyzing changes in water distribution, flow reduction along the East Odra, flow ratios at specific
points, and downstream flow alterations based on different scenarios and the aperture extent of
the Widuchowa weir. The conducted analyses and deductions validate the thesis proposed in this
study that the potential process of channel dredging and renovation of the hydraulic infrastructure in
Miedzyodrze will significantly influence the flow distribution within the lower Odra River network.
The significant impact of the Międzyodrze area on water distribution in the lower course of the Odra
River has been successfully demonstrated. Under specific hydrological scenarios, a potential increase
in flow through the Międzyodrze area from approximately 10–100 m3/s to a range of 60–420 m3/s
has been identified. This dynamic alteration of river flow exerts a pronounced influence on further
water distribution within the entire river network. For the purpose of addressing the matter at
hand within this study, the following procedures were undertaken: → analysis of characteristic flow
regimes and states,→ bathymetric measurements,→ flow measurements at selected cross-sections,
→ construction of a numerical model of the river network,→model calibration,→ formulation of
a set of boundary conditions,→modeling,→ results analysis.

Keywords: Miedzyodrze; Odra River; Hec-Ras

1. Introduction

The issue of river floods and storm surges, as well as flood protection in river estuaries,
has been a subject of interest for hydrologists for many years. The processes shaping
water level profiles in river estuaries are highly complex problems that do not have unique
mathematical solutions. Water level profiles in these areas are determined by multiple
factors, such as flow values, the influence of the sea, and wind conditions, which do not
have strict relationships. Currently, the most effective tool for describing and forecasting
flow in open channels is mathematical modeling. For the model to function accurately, it
requires verification and calibration based on field studies. The model will represent the
hydrodynamics of water flow more accurately when more measurement data is available
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for the verification process, obtained under different hydrological conditions (during low
and high flows and sea level profiles).

River estuaries have a significant impact on human settlements, serving as a source of
water supply and wastewater discharge as well as supporting economic activities such as
maritime ports and fisheries. Despite the enormous economic and social benefits associated
with locating settlements in estuarine regions, it is important to acknowledge the significant
flood risk associated with these areas. In the case of river estuaries, floods can occur in
two ways: floods resulting from increased flow within the river channel and floods caused
by storm surges during storm events. One approach to passive flood protection is the
construction of flood embankments, retention reservoirs, and polder areas. These measures
aim to mitigate flood risks and provide a level of flood protection to the surrounding
communities and infrastructure.

A particular example is the Lower Odra area between Gozdowice and Roztoka Odrzan-
ska. This area is highly complex from a hydrographic perspective. The dense river network
with a ring-like structure, the presence of the Miedzyodrze area, and the existence of Lake
Dabie make it an exceptionally interesting research subject for hydrologists [1]. Currently,
due to the devastation of hydrotechnical infrastructure, the Miedzyodrze area serves pri-
marily as an embanked floodplain, significantly influencing the hydraulic conditions of
the lower Odra River network. A characteristic feature of the lower Odra River channels is
their significant depth and very small water surface gradients.

An important factor influencing the water flows in the lower Odra River network is
the weir in Widuchowa, which determines the discharge values into the East and West Odra
branches. Hydrotechnical structures located within the river channels require separate
consideration during the construction of numerical models [2,3], for which a separate
calibration process should also be conducted.

The first comprehensive measurements of water flow in the channels of the Lower
Odra network were conducted in 2009–2010 by Kurnatowski [1]. Despite numerous studies
in the Lower Odra network, no measurements of water flow in the Miedzyodrze channels
have been conducted. Research in the Miedzyodrze area from the Widuchowa node to the
Skosnica channel has been limited to qualitative water quality studies, while hydraulic
calculations focused on determining the distribution of flows into the East and West Odra
branches and the contribution of Skosnica to the flow balance. As part of this work, field
research was conducted, including point measurements of the depths of the Miedzyodrze
channels, to create an up-to-date bathymetry model of this area for simulating various
hydrological scenarios.

The main branches of the lower Odra River network are traversed by international
waterways [4], and therefore, carrying out revitalization works on the Miedzyodrze can
significantly impact the hydrodynamic conditions along these routes.

The primary objective of this research is to undertake a comprehensive numerical
analysis of hydraulic phenomena in the lower Odra River network and assess the influence
of channel clearance and the renovation of hydraulic infrastructure on flow characteristics
within the network. To accomplish this objective, a one-dimensional water flow model has
been constructed, employing three computational variants:

• Current situation—the Miedzyodrze area is treated as an uncontrolled floodplain.
• Situation after the renovation of hydraulic infrastructure—all hydraulic structures are

closed, preventing the involvement of the Miedzyodrze area in water flow.
• Situation after channel clearance—selected channels within the Miedzyodrze area are

hydraulically passable, while the areas between the channels are considered small
floodplain zones.

Before achieving the stated objectives, a fundamental requirement must be met, namely
the positive verification of the model based on measurement data. Due to the absence of
a correlation between water levels and flows in the lower Odra River network and the
consequent lack of rating curves, even a well-established measurement network can only
provide reliable water level hydrographs, while the essential flow hydrographs, necessary
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for the process of model verification, calibration, and subsequent validation, will still
be unavailable.

Due to the nature of the study, the author did not undertake a detailed analysis of the
anticipated repair and modernization works. The focus of the study is the outcome, which
is the restoration of the functionality of the hydraulic structures. The author limited the
scope to the inventory of hydrotechnical devices in the Miedzyodrze area, emphasizing
that any potential repair work should be preceded by a thorough investigation. One should
take into consideration the scope of pertinent preparations. In [5], it was indicated that
the example of Indian water management policy highlights the consideration of numerous
factors, primarily emphasizing the focus on conservation activities, which must form an
integral part of climate change strategies. Furthermore, it has been underscored that water
management systems must account for the requirements of clean water while maintaining
suitable cultural and recreational objectives.

In the first half of 2022, a deepened waterway section with a depth of 12.5 m and simul-
taneous widening to 100 m was commissioned for use between Szczecin and Świnoujście,
Poland. Currently, the maximum ship draft is approximately 9 m, which is insufficient
for conducting international cargo exchanges [6]. The deepening significantly enhances
the accessibility of inland ports in the Szczecin area [7,8]. The contract value amounted to
around 450 million USD. Due to the high value of the contract, the impact of the deepened
waterway on flow hydraulics must be carefully considered. As early as 2021 [9], concerns
were raised about the potential effects of the deepened waterway on flow patterns in the
lower Odra River network, leading to the potential destabilization of sediment transport
dynamics. The present study serves as the initial step in further analyzing the hydraulic
implications within the lower Odra River network.

2. General Characteristics of the Lower Odra River and the Miedzyodrze Area

In a typical river, three stages of its course can be observed: the upper, middle, and
lower reaches. The division into these sections is based on the occurring channel-forming
processes [1]. The lower reach of the river is characterized by a smaller channel gradient,
reduced bed erosion, and increased sediment accumulation. The Odra River serves as
a model example of this three-part division in the Polish context. According to this division,
the Odra can be classified into three distinct sections:

• Upper Odra,
• Middle Odra,
• Lower Odra.

The Odra River originates in the Odra Mountains in the Czech Republic. The total
length of the river from its source to the mouth is 854 km, with 742 km located in Poland.
The catchment area of the Odra River covers nearly 120,000 km2, of which 106,000 km2 are
located within Poland (Figure 1).
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Figure 1. Lower Odra River location [10].

Depending on the adopted research criteria, the concept of the “Lower Odra” can be
ambiguous. Over the years, four criteria have been developed to define the area of the
lower Odra:

• Hydrological criterion: The Lower Odra is defined as the section of the river from
Roztoka Odrzanska, near Trzebiez, to the water gauge section in Gozdowice, beyond
the Baltic Sea influence [11].

• Geographic criterion: The Lower Odra begins at the mouth of the Warta River and
ends at Lake Dabie.

• Hydrographic criterion: The term Lower Odra refers to the section of the Odra River
from the Warta River to Roztoka Odrzanska.

• Navigational criterion: The Lower Odra is considered the section from Zaton Gorna
(Odra-Havel Canal) to the Long Bridge in Szczecin and Lake Dabie.

Buchholz [11,12] and later Kowalewska-Kalkowska [13] introduced the term “Odra
River Mouth Area”, which encompasses: The river network consisting of the section of the
Odra River from Gozdowice to Roztoka Odrzanska near Trzebiez, including Lake Dabie;
The Szczecin Lagoon; and the maritime straits through which the Odra River flows into the
Baltic Sea: Dziwna, Swina, and Piana.

According to [14,15], the Odra River Mouth Area can be classified into three types of
estuaries based on the upper and lower boundaries:

• First-order estuary: Pomeranian Bay,
• Second-order estuary: Greifswald Bay and Szczecin Lagoon, including Achterwasser

Bay and Lake Wrzosowskie,
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• Third-order estuary: Lake Dabie, which is connected to the Szczecin Lagoon via Inski
Nurt, West Odra, and Roztoka Odrzanska.

From Gozdowice (at km 645.3) to Widuchowa (at km 701.8), the Odra River flows
in a wide curve with an initial northwest deviation of about 17 km, then northward for
approximately 14 km, and finally turns northeast for about 27 km. The entire stretch of
the Odra River in this section forms the border between the Republic of Poland and the
Federal Republic of Germany. The average depths on this stretch range from 2.5 to 3.0 m,
and the average water surface width is around 140–150 m [9,13]. Between the Widuchowa
and Gozdowice water gauge cross-sections, the Slubia River (at km 652.5), Cedynski Canal
(at km 673.4), and Rurzyca River (at km 695.2) are tributaries [16]. At km 704.1, the Odra
River branches into the East Odra, which is the main navigation channel, and the West
Odra, separated by a weir called the Widuchowa weir. After the bifurcation, both branches
of the Odra generally run parallel to each other and are oriented northeast. The West
Odra, from Widuchowa to Roztoka Odrzanska, has varying depths ranging from 6 to
10 m and water surface widths between 140 and 200 m. The East Odra flows into the
large flow-through Lake Dabie and has average depths of around 7 m and water surface
widths ranging from 150 to 160 m throughout its length. The area between the West and
East Odra is called Miedzyodrze and was used for agricultural purposes before World
War II. In the northern part of Miedzyodrze, at km 730.5, the East Odra connects to the
West Odra (29.8 km of its course) through the Skosnica channel, which is approximately
2.5 km long. The average depth of Skosnica is about 3.5–4 m, and the water surface width
is around 110 m [11,12]. Other important connections between the East and West Odra
include the Odynca, Gryfino, Mielenski, and Parnica channels. From this point, the East
Odra is referred to as Regalica, and from Parnica to its mouth, it is known as the Mienia
River. The Marwice-Gartz Canal is a significant connection between the Odra branches.
It is the only canal crossing Miedzyodrze that allows vessels with outboard combustion
engines to navigate. A comprehensive depiction of the lower Odra valley’s attributes
can be examined within reference [16]. Due to the typical nature of a river estuary, the
lower Odra is less susceptible to alterations in its morphology compared to its middle and
upper reaches [17]. One characteristic feature of the Odra River Mouth is its kilometrage,
which has been divided into three ways due to various factors such as navigation, the
Widuchowa weir, and the administrative division between maritime inland waters and
inland waters [18]:

According to the Institute of Meteorology and Water Management, the Odra River
stretches from Gozdowice (645.3 km) through the East Odra and then Skosnica (starting
at 730.5 km and ending at 733.2 km), and further via the West Odra to the Inski stream
(753.1 km of the Odra River).

According to the Maritime Office in Szczecin, the waterway extends from the central
breakwater (formerly known as the east breakwater) in Swinoujscie to the Long Bridge in
Szczecin, known as the Swinoujscie-Szczecin waterway (66.5 km).

According to the Maritime Institute in Szczecin, the West Odra is a separate kilometer
from the Widuchowa weir to the Long Bridge (36.6 km).

Due to various kilometrage systems, distances between cross-sections or even individ-
ual objects calculated along the river axis may often only be approximated [1], resulting in
divergent values presented in the scientific literature.

Lake Dabie, where the East Odra flows, has an area of 56 km2. The maximum length of
Lake Dabie is approximately 15 km, the maximum width is about 7 km, and the maximum
depth is around 4.2 m [6,7]. Lake Dabie is a relatively shallow body of water. Between
1962 and 1996, the average depth of Lake Dabie decreased from 2.84 to 2.61 [19], indicating
a reduction in the lake’s volume of approximately 13 million cubic meters [20].

In Figure 2 [1], the area of the lower Odra network (from the Widuchowa junction to
Roztoka Odrzanska) is presented.
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The area bounded by the East Odra and West Odra, from the Widuchowa junction to
the Inski stream, is called Miedzyodrze [21]. In the southern part of the Miedzyodrze area
(from the Widuchowa junction to the Odyniec Canal), the Lower Odra Valley Landscape
Park is located, designated as an area of exceptional natural and cultural value since 1 April
1993. The Park is a unique collection of peat bogs and wetlands on a European scale [1].

As a consequence of World War II, numerous hydro-technical structures in the Miedzy-
odrze area were damaged. It was not until the 1960s that these structures were recon-
structed and put back into operation, allowing for the renewed agricultural utilization of
the Miedzyodrze region. However, due to the escalating operational costs of the hydro-
technical facilities, agriculture became financially unviable. The lack of maintenance and
oversight of the hydraulic devices led to the re-destruction of the majority of these struc-
tures. Subsequently, near-complete naturalization and ecological succession took place.

Due to the prevailing marshiness of most of the Miedzyodrze area, the region has
become poorly accessible and, in certain locations, entirely inaccessible to humans. The
numerous instances of canal and hydro-technical equipment devastation have rendered
them currently devoid of any regulatory functions within Miedzyodrze. Despite the
distinctive natural values presented by Miedzyodrze in comparison to Europe (and possibly
the world), it is essential to bear in mind and frequently emphasize that the current state is
attributable to human influence, specifically the political circumstances of the 1950s and
1960s, which facilitated the degradation and naturalization of this area.

One characteristic feature of the Miedzyodrze area, from the Widuchowa Junction
to the Skosnica channel, is the presence of polders. These are flat areas designated for
inundation during the autumn-winter period, slightly elevated above the average water
level in the river. The elevations of the polders range from approximately 0.00 to 0.40 m
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above sea level. Following the network arrangement, Miedzyodrze has been artificially
divided hydrographically into three independent polders:

• Widuchowa Polder, also known as the southern polder, encompasses the area from
the Widuchowa Junction to the embankment of the Gryfino-Mescherin road.

• Gryfino Polder, known as the middle polder, covers the area from the embankment of
the Gryfino-Mescherin road to the embankment of the A6 Motorway.

• Szczecin Polder, referred to as the northern polder, extends from the embankment of
the motorway to the Skosnica.

The Miedzyodrze area also includes the region between Skosnica and the Odynca
Canal, which is also known as the Regatta Track. [11]

Detailed information about the Miedzyodrze polders, including their surface area,
watercourse area, and average elevations, is presented in Table 1 [18].

Table 1. Miedzyodrze’s polders.

No Polder Name Polder Area [ha] Watercourse Area [ha] Average Elevation (m above Sea Level)

1 Widuchowski 2465.44 348.5 0.10
2 Gryfinski 2232.32 135.0 0.20–0.30
3 Szczecinski 758.64 137.3 0.20–0.30

Hydrotechnical structures in the Miedzyodrze area
During the construction works aimed at proper water management, 35 hydrotechnical

structures were built, including:

1. 18 chamber-economic locks,
2. 2 chamber-navigation locks,
3. 6 weirs (embankment overflow structures),
4. 5 embankment culverts,
5. 4 pumping stations.

Chamber-economic locks:
The purpose of the chamber-economic locks was economic transportation, mainly for

transporting hay from the Miedzyodrze area. The majority of these locks, specifically 10 of
them, were located in the southern polder. Each of the middle and northern polders had
four locks.

Chamber-navigation locks:
The main function of the chamber-navigation locks was to provide a navigable con-

nection between the East Odra and the West Odra. Both locks facilitated the passage of
barges with a displacement of up to 400 tons.

The locks are single-chamber locks without a drop gate. They were entirely made of
concrete, with reinforced concrete main walls and concrete retaining walls. The upper parts
of the chamber navigation locks were faced with clinker bricks. Each lock was equipped
with double-leaf supporting gates operated manually from the shore using lifting rods and
gear mechanisms. The gates had closing orifices controlled by valves, which allowed for
changing the water level in the chambers during the passage of floating vessels [11,12,14].
Both locks are located on the Marwice-Gartz channel, which is the only channel in the
Miedzyodrze area that allows the movement of motor-powered vessels.

Embankment overflow structures:
Six embankment weirs let floodwaters into the Miedzyodrze area during the summer

period and inundated the polders during the autumn-winter season. These weirs are
concrete structures with one or two spans equipped with flat gates (2 embankments) or
sliding flaps (4 embankments). The closures were manually operated through a system of
gear transmissions, lifting rods, and coupling devices [22]. Three weirs are located in the
southern polder, two in the middle polder, and only one in the northern polder.

Embankment culverts:
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The purpose of the embankment culverts was to assist in water level regulation in the
Miedzyodrze area. The self-closing supporting gates installed in the culverts protected
the Miedzyodrze area from excessive water inflow during high water levels in the East
Odra. During low water levels, the culverts discharged excess water from the Miedzyo-
drze area, thus supporting the pumping stations. The embankment culverts are concrete
structures with one or multiple rectangular-shaped channels. The southern polder has four
embankment culverts, while the middle polder has one.

Stations pumping
The main purpose of the pumping stations was to maintain the optimal water table

level in the Miedzyodrze area, ensuring optimal water conditions for the green areas located
there. There are two pumping stations in the southern polder and one each in the middle
and northern polders.

Flood embankments
The Miedzyodrze area is protected by embankments from the east, west, and northern

sides. The flood embankments, with an average height of 1.5 m, protected the Miedzyo-
drze polders up to an Odra flow rate of 1600 m3/s (according to the Hohensaaten water
gauge) [22]. Buchholz [11], based on archival materials, determined the lengths of the flood
embankments in the respective polders, which are presented in Table 2.

Table 2. Lengths of flood embankments in the Miedzyodrze area.

River
Lengths of Embankments in Polder [km]

Widuchowa Gryfino Szczecin

East Odra 14.08 9.77 2.55
West Odra 14.55 10.85 4.18
Skosnica - - 2.57

Total 28.63 20.62 9.30

Similar to the hydrotechnical structures in the Miedzyodrze area, the flood embank-
ments have undergone extensive deterioration due to a prolonged lack of maintenance.
The embankment slopes have experienced significant slippage, resulting in localized re-
ductions in the height of the flood embankments. Animals, particularly beavers, have had
a significant impact on the degradation of these embankments. An example of embankment
slippage at the beginning of the East Odra is depicted in Figure 3.

Figures 4 and 5 depict selected deteriorated hydrotechnical structures in the
Miedzyodrze area.

The exact causes behind the devastation of water infrastructure remain partially elu-
sive. The destruction of locks can be attributed to a multitude of factors. Primarily, the
aging of infrastructure emerges as a significant cause, particularly in the case of older locks
that have endured inadequate maintenance or upgrading over prolonged periods. More-
over, deliberate acts of sabotage, acts of vandalism, or unforeseen technical malfunctions
can precipitate damage to locks.

Miedzyodrze’s channels
The absence of regular maintenance practices and unimpeded sedimentation and

debris accumulation have been key factors contributing to the shallowing of the Miedzyo-
drze channels, ultimately leading to the cessation of unimpeded surface water flow within
the area. The exchange of water within the channels now predominantly occurs during
significant flood events, effectively submerging the entire Miedzyodrze area. The lack of
continuous water exchange within the channels has resulted in the complete colonization
of certain channel segments by vegetation (see Figures 6 and 7).
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Figure 7. Overgrown channel in Miedzyodrze.

Due to the current condition of the channels, aerial photographs are insufficient for
identifying all the channels in Miedzyodrze. Therefore, on-site inspections were necessary
to accurately assess the actual state of the channels. It is estimated that there are over 200 km
of channels in the Miedzyodrze area, which significantly extended the time dedicated to
field surveys. The water quality across the entire Międzyodrze area until the year 2022
was of a significantly poor nature [24]; however, following the ecological catastrophe
spanning nearly the entire length of the Odra River, the quality of these waters further
deteriorated [25].

Widuchowa weir
The Widuchowa weir is located at the beginning of the West Odra (approximately

100 m from the bifurcation). Its main function is to control the flow distribution at the
Widuchowa node. By diverting a significant portion of the flow through the East Odra, it
increases the difference in water levels in the main branches of the Odra, allowing for the
gravitational drainage of excess water from the Miedzyodrze area. Higher water levels in
the East Odra improve the navigability of the river.

The weir has a width of 78 m and is divided into five spans by four piers. Each span,
with a width of 15.6 m, is equipped with guides that divide it into eight sections, each
1.72 m wide [26]. The gates are made of wide-flange steel profiles measuring 260 mm,
allowing for the operation of stoplogs to close individual sections. Each section is closed
using three stoplogs measuring 1.87 × 1.50 m, operated by a gantry crane that moves
along rails on the weir. The weir is equipped with a concrete threshold with an elevation
at the crown of −3.00 m above sea level, which is a permanent part of the structure. The
height and width of the threshold are 2.05 m and 70 m, respectively. The piers are made of
concrete, while the casing of the pier heads, upper edges of the piers, and outer edges of
the abutments are made of granite slabs [27]. Figures 8 and 9 depict the Widuchowa weir
(Figure 8—viewed from the upstream side, Figure 9—viewed from the downstream side).
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The occurrence of weirs in looped river networks can introduce additional challenges
in the determination of coefficients. A novel approach to deducing the chasing coefficients
in looped river networks with weirs is presented in [28].

3. Hydrology of the Lower Odra Area

Table 3 presents characteristic water levels and flows in the lower Odra network
between Trzebiez and Gozdowice. There are six cross-sections in this section where ob-
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servations have been continuously conducted by the Institute of Meteorology and Water
Management for several decades. Characteristic water levels and flows for the long-term
period are determined based on annual data. For each year, three flow values are analyzed:
the minimum, average (mean), and maximum, along with their corresponding water level
values. Subsequently, these data are arranged in a time series, from which the minimum,
mean, and maximum characteristic values are derived for the entire long-term period.

Table 3. Characteristic flow and stages in the Lower Odra area [29].

Gauge Statistical Analysis Period Characteristic Values

Characteristic flows NNQ SNQ SSQ SWQ WWQ

Gozdowice 1959–2007 158 252 535 1251 3180

Characteristic stages NNW SNW SSW SWW WWW

Gozdowice 1959–2007 144 208 322 492 659
Bielinek 1954–2007 147 209 333 532 754

Widuchowa 1949–2007 440 479 545 652 771
Gryfino 1952–2007 440 466 523 601 685

Podjuchy 1993–2007 442 474 524 598 628
Long Bridgw in Szczecin 1959–2000 433 459 512 587 622

Trzebiez 1949–2000 429 456 510 583 614

Notes: NNQ/NNW—Lowest flow/stage of the lowest from the multi-year period. SNQ/SNW—Mean flow/stage
of the lowest from the multi-year period. SSQ/SSW—Mean flow/stage of the averages from the multi-year period.
SWQ/SWW—Mean flow/stage of the highest from the multi-year period. WWQ/WWW—Highest flow/stage of
the highest from the multi-year period.

An influential determinant of the states and flows in the lower Odra network is the
Baltic Sea. In shaping the water surface elevations at the Odra estuary, it is the Baltic Sea
that exerts the most significant influence [30–32]. Despite its closed nature, the Baltic Sea
manifests pronounced fluctuations in water surface elevation, with a potential amplitude
of up to 3 m between extreme values. The key factors contributing to the variability of the
water level encompass the following factors [33].

Over the years, a gradual rise in the average annual sea level has been observed,
amounting to approximately 0.7 ± 0.1 mm per year for the Swinoujscie region. This
systematic increase in sea level in the Swinoujscie area over the coming decades may
substantially alter the flow regime within the lower Odra network [19].

Due to the significant influence of the sea on the formation of flows, the lower Odra
River area is not exposed to the risk of floods like the middle and upper sections of the Odra
River [34]. The influence of the sea also translates into the development of hypothetical
flood hydrographs [35].

4. Mathematical Description and Field Research

The study utilized the widely available Hec-Ras software, employing its one-dimensional
module for calculating flows and water levels in open channels. The mathematical founda-
tions of the equations used were extensively described in [36,37].

The fundamental equations used to solve flow problems in the Hec-Ras program are
the Saint-Venant equations.

∂Q
∂t

+
∂

∂x

(
Q2

A

)
+ gA

∂z
∂x

+
Q |Q|n2g

RH
4
3 A

= 0 (1)

∂A
∂t

+
∂Q
∂x

= 0 (2)

The aforementioned equations are known as the Saint-Venant system of equations,
often referred to in the literature as the full dynamic model. These equations are a widely
used mathematical model for describing one-dimensional flow in open channels. In the
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literature, various forms and extensions of these equations can be encountered. In specific
scenarios, lateral inflows, channel bifurcation, and the storage capacity of floodplain cross-
sections can be considered.

Individual terms in the equation represent energy losses caused by variations in flow
intensity over time, flow intensity changes along the channel length, water surface slope,
and bed shear stresses (friction forces). In the continuity equation, the individual terms
account for the changes in the cross-sectional area over time and the change in flow intensity
along the channel length.

When the Saint-Venant system of equations is expanded to include:

• The storage capacity of retention areas— ∂S
∂t

• Lateral momentum inflow at the node—ξ ∂QB
2

∂x
• The coefficient of non-uniformity in velocity distribution (Boussinesq coefficient)—β

We obtain the complete governing equations in the HEC-RAS model.
The Manning coefficient is one of the most significant parameters in hydraulic calcu-

lations of open channels. The accuracy of the estimation of the roughness coefficient has
a significant impact on the accuracy of the calculations. The magnitude of the coefficient
is influenced by various factors, including bed roughness, vegetation, channel regularity,
type of transported and entrained sediment and its flow intensity, channel shape and
depth, seasonality, and any obstacles (such as tree trunks, bridge piers, etc.) affecting flow
hydrodynamics [38].

Calculations involving looped river networks can be reviewed in, among others,
references [10,39], where [39] applied methods including A Prediction-Correction Solver
for Real-Time Simulation of Free-Surface Flows.

If it is not possible to estimate the value of the Manning coefficient, it should be deter-
mined based on field surveys and mathematical models where the roughness coefficient
is treated as an identifiable parameter involving the minimization process of a specific
function dependent on the sought coefficient [29]. Due to the non-uniformity of the bed ma-
terial in the cross-sectional and longitudinal channel profiles, only the concept of equivalent
roughness (Manning roughness) can be applied, which integrates the values of individual
channel parts [40–42]. Adopting an equivalent roughness as a global value is acceptable
due to the small variations in channel morphology and bed and bank coverings [43].

The identification of Manning coefficients for the lower Odra River channels has been
extensively analyzed by researchers from the Department of Hydraulic Engineering at the
Szczecin University of Technology. Orlewicz [40] reported that for average flow conditions,
the Manning coefficient for the lower Odra River channels is 0.030 m−1/3s. Kurnatowski
in 2004 [13,43,44] determined the influence of changes in the height reference system and
geoid position on the values of roughness coefficients. It was established that for different
reference systems, the global roughness ranges from 0.0175 to 0.0418 for the “Amsterdam
zero”, and from 0.0163 to 0.0306 for the “zero Kronsztad”. Roszak [45] investigated the
impact of sediment grain size on the roughness of the lower Odra River channels. The
forms of the channel bed play a significant role in hydraulic roughness. Arcement and
Schneider [46] identified changes in the roughness coefficient for various types of channel
bed forms, obtaining the highest values for dunes in the final phase of development and
the lowest values for flat beds.

Insight into solving the problem of identifying the roughness coefficient and its varia-
tions as flow parameters can be gained from references such as [38,47]. Interestingly, the
modification of the Manning coefficient can also be employed to expedite the modeling of
tsunamis [48].

The values of roughness coefficients for river channel sections should be systematically
verified and calibrated based on new data obtained from field surveys.

Field studies of the lower Odra River network involve measurements of hydrological
and meteorological parameters, as well as bathymetric surveys. The measurement of water
levels and flows has been continuously conducted for several decades by the Institute of
Meteorology and Water Management. Kurnatowski [1] performed an analysis of hydrolog-
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ical data, complemented by water level measurements at the Widuchowa weir, resulting
in 34 independent steady flow situations, including water levels in Trzebiez (WT), water
levels in Widuchowa (WW), flows in the Odra River at the Gozdowice section (QG), and the
difference in water levels between the upper and lower sections at the Widuchowa weir.
Results are presented in Table 4.

Table 4. Measurements of steady flow in the lower Odra River network—Part 1.

Lp. WT
[cm]

WW
[cm]

QG
[m3s−1]

∆W
[cm]

1 490.6 520.0 454.3 8
2 495.4 523.4 387.3 10
3 504.1 536.2 445.0 9
4 502.0 537.9 479.0 16
5 508.4 611.1 1264.0 10
6 531.2 561.4 578.0 4
7 496.1 584.2 864.1 47
8 496.9 599.5 1031.3 50
9 505.0 532.7 417.3 18
10 522.2 544.9 423.6 11
11 491.9 567.9 771.5 33
12 505.8 542.7 509.3 16
13 499.2 531.8 458.3 19
14 502.1 533.6 467.2 19
15 506.1 617.0 1300.0 6
16 503.0 631.6 1383.3 11
17 492.8 559.6 696.0 41
18 490.6 518.5 453.0 17
19 502.5 535.5 465.2 20
20 504.9 541.0 520.3 20
21 491.6 508.0 291.0 5.5
22 496.2 514.2 362.3 9
23 514.4 532.3 269.7 7
24 487.6 531.3 565.8 29
25 495.8 516.3 292.0 7
26 487.2 509.4 274.0 7
27 500.4 518.6 235.5 3
28 501.4 519.4 373.2 10
29 520.7 560.8 703.5 4
30 504.9 525.0 321.0 9
31 502.9 532.0 424.0 10
32 496.7 526.6 399.3 10
33 477.8 570.4 928.7 51
34 506.0 583.8 924.4 40

Recent studies of the lower Odra River network were conducted using a state-of-the-
art ultrasonic velocity meter called the ADCP (Acoustic Doppler Current Profiler). The
research focused on the main node of the lower Odra River network, which includes the
junction of the West Odra (26), the Odra—Pucka part (17), Skosnica (23), Regalica (24), and
the East Odra (27) (numerical labels according to Figure 2). The schematic diagram of the
river node where the measurements were conducted is presented in Figure 10.

The measurements conducted allowed for the identification of a group of measure-
ments characterized by flow steadiness, indicating small errors in flow balance closure
within the network nodes. The adjusted measurement values for the selected section of the
river network are presented in Table 5.
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Table 5. Measurements of steady flow in the lower Odra River network—Part 2.

Lp.
Flow [m3s−1] Elevation of the Water at Long Bridge

[Meters above Sea Level]East Odra West Odra Skosnica Regalica Odra—Pucka Part

1 524.5 350.5 64.5 460.0 415.0 0.07
2 373.0 221.0 57.4 315.6 278.4 0.04
3 268.0 176.0 36.3 231.7 212.3 0.01
4 553.0 363.1 63.8 489.2 426.9 0.05
5 553.0 346.0 63.3 489.7 409.3 0.04
6 747.0 497.0 84.2 662.8 581.2 0.01

Due to an absolute prohibition on the movement of combustion engine-powered
vessels in the Miedzyodrze channels, it was not possible to conduct comprehensive mea-
surements using specialized measuring equipment. Therefore, the study was limited to
conducting 25 series of individual sounding surveys using an electric-powered vessel,
which resulted in a limited time for each series. From these surveys, average depths were
obtained at selected points within the Miedzyodrze channel network. Ultimately, over
500 depth measurements were performed in the Miedzyodrze area. The measurements of
average channel depths in Miedzyodrze were used by the author to estimate the geometric
parameters of the channels that could be achieved after dredging operations.

The river network in the Hec-RAS model can be treated as a system of individual
river segments (channels) connected at nodes. Within this study, three variants of the lower
Odra model have been prepared for which calculations and comparative analyses will
be conducted.

The first analyzed variant assumes the possibility of utilizing the retention area of
Miedzyodrze. The exchange of water between the polders and the East and West Odra
occurs through completely open hydraulic structures located on both branches of the Odra
River and Skosnica. Due to the “slenderness” (length-to-width ratio) of the Widuchowa
polder, it has been divided into two separate cooperating polders: Polder 1a—the southern
part of the Widuchowa polder, and Polder 1b—the northern part of the Widuchowa polder.
Polders 2 and 3 marked in Figure 11 represent the Gryfino and Szczecin polders.

Based on Variant 0, it is relatively easy to construct Variant 1 by disconnecting the
Miedzyodrze area from the surrounding river channels. Variant 1 includes the section of
the lower Odra River network from Widuchowa to Regalica and the “Odra—Pucka part”.
The schematic diagram of the Variant 1 river network is presented in Figure 12.
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Figure 12. River structure—Variant 1.

Currently, due to the devastation of hydrotechnical devices, the situation where the
Miedzyodrze area remains “dry” is not possible. Therefore, this variant should be treated
as an idealized scenario, corresponding to a situation where the technical condition of
all devices (locks, culverts, etc.) in Miedzyodrze has been restored to its original state,
and during flood events, all devices are closed, preventing water from flowing into the
Miedzyodrze area.
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Variant 1 is composed of 14 river and canal sections connected at 8 nodes. The re-
maining cross-sections were obtained through interpolation. The average distance between
measured cross-sections is approximately 430 m. The total length of all channels in this
variant exceeds 81 km.

Variant 2 is the final variant of the prepared model for the lower Odra River network.
As the first model developed to date, it considers the possibility of free flow through the
Miedzyodrze channels. Using aerial photographs of the Miedzyodrze area, a Preliminary
Variant 2 was prepared, which is presented in Figure 13. Due to the large number of channel
sections in Miedzyodrze, a selection process was initially conducted to determine which
channels would ultimately be included in Variant 2.
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Figure 13. River structure—Preliminary Variant 2.

Preliminary Variant 2 comprises 215 interconnected canal segments at 134 nodes,
spanning a total length of over 200 km. The variant encompasses more than 5500 cross-
sections, which were determined based on field measurements to estimate the average
depths at specific locations within the channel network.

The process of selecting the channel network structure involved the exclusion of canal
segments from the initial “preliminary Variant 2” that exhibited average flow velocities
below 0.025 m/s. This determination was made considering a fixed hydrological scenario
and specific model parameters:

• The upper boundary condition was set as Q = 500 m3/s.
• The lower boundary conditions were defined as WOP = WR = 0.00 m above mean sea

level.
• The global roughness coefficient was established as n = 0.030 m−1/3s.

During the model optimization process, numerous canal segments within “preliminary
Variant 2” were identified where the average velocities did not surpass the predefined
threshold. Consequently, these segments were excluded from the final version of Variant 2,
as illustrated in Figure 14.
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Figure 14. River structure—Variant 2.

Variant 2 consists of 116 segments interconnected at 76 nodes. The river network in
Variant 2 comprises over 4000 cross-sections. During the optimization process, the canal
network was reduced, leading to the redefinition of the boundaries of retention areas. The
resulting areas were included in the model following a similar approach as in Variant 0,
thus creating Variant 2, which includes 39 polder areas.

5. Boundary Conditions

The boundary conditions in the model consist of flow hydrographs at the upstream
section of the Odra River in Widuchowa, as well as water level hydrographs at the outlets
of Regalica and the Odra—Pucka part. Due to the lack of correlation between water levels
and flows at arbitrary cross-sections along the lower Odra River from Widuchowa to the
outlets, there is significant flexibility in choosing these boundary conditions.

The basis for establishing the boundary conditions is characteristic water levels. Con-
sidering the absence of systematic flow measurements in the Widuchowa profile, the lack
of correlation between water levels and flows, and the small increase in the Odra River
catchment area downstream of Gozdowice, it is assumed that the flow in Widuchowa is
equal to the flow in Gozdowice. The author has selected 10 upper boundary conditions
based on established characteristic water levels. The minimum flow is represented by the
lowest recorded flow, and subsequent flows are increased by 40%, resulting in the final
flow approximation of the highest recorded flow. As a result of the analysis, 10 different
flows were obtained, ranging from 158 m3/s to over 3200 m3/s.

The lower boundary conditions (Table 6), in the form of water level hydrographs at the
mouths of the Odra—Pucka part and Regalica, are also based on characteristic values. Due
to the significant influence of the sea on water levels in Dabie Lake and the channels in the
estuary section of the Odra, the author of the study assumed identical boundary conditions
for the profiles at the mouths of the Odra—Pucka part and Regalica. The simplification
made by the author is also a result of the fact that no comparative statistical analysis of
water levels in the Odra—Pucka part and Regalica has been conducted so far, which could
be crucial in developing the boundary conditions of the model.
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Table 6. Lower boundary conditions (as water stages at outlets) [29].

No. Stages
[m a.s.l] No. Stages

[m a.s.l] No. Stages
[m a.s.l]

W1 −0.70 W2 −0.50 W3 −0.30
W4 −0.10 W5 0.00 W6 0.10
W7 0.30 W8 0.50 W9 0.70
W10 0.90

The lack of correlation between water levels and flows in the downstream section of
the Odra necessitates the analysis of all possible combinations of lower and upper boundary
conditions, resulting in a total of 100 hydrological scenarios.

Despite using the term “steady flow”, the author refers only to the steady bound-
ary conditions, while the entire computational process for the steady flow regime is
based on unsteady flow equations. This is directly due to limitations in the Hec-Ras
system, which cannot accurately distribute flows in ring-shaped river networks during
steady-state calculations.

The manipulation of weir gates has a significant impact on the flow distribution in the
lower Odra network, resulting in the division of flow between the East and West Odra. It
can be inferred that increasing the number of open gate spans diverts a larger portion of
the flow to the West Odra. For this study, an internal boundary condition was assumed,
represented by the maximum gate opening.

6. Model Calibration

A model calibration was conducted for Variant 0, which currently provides the best
representation of the actual situation. The process of model calibration involves adjusting
the roughness coefficient to minimize the discrepancies between measured and calculated
values. In the study, a manual calibration approach was employed, similar to that in [49],
despite the availability of numerous tools for calibration automation within the Hec-Ras
software package [50]. Table 7 presents the measured and calculated flow values in the
indicated segment of the lower Odra network, where the calculated values represent the
global roughness coefficient from this variant that yielded the smallest model fit error.
Furthermore, the table includes information about the difference between measured and
calculated values and provides the error value calculated using the formula:

ε =

∣∣∣∣
Qm −Qc

Qc

∣∣∣∣× 100%, (3)

where Qm is the flow measured and Qc is the flow calculated.
The conducted analysis revealed the agreement of results at verification points for

the majority of cases. The best agreement was obtained for cases 2, 4, 6, 8, 9, 11, and 12,
with an average error of approximately 1.9% and an average difference of about 2.9 m3/s.
For the remaining 2 cases, the corresponding averages were 6.8% and 11.4 m3/s. The
average percentage error for all measurements was 4.1%. The best fit was achieved for
measurement number 8, with an average flow mismatch of around 0.2 m3/s and an average
percentage error of 0.17%. The poorest fit was observed for case 13, where the difference
between calculated and measured values reached 47 m3/s for the West Odra section, with
a percentage error of 21.4% at Skosnica. In case number 3, an even greater percentage error
is observed for Skośnica, reaching as high as 34.8%. This significant discrepancy indicates
substantial differences between the actual values and the analysis results for this specific
scenario. The main reason for such a large percentage of errors in Skośnica is primarily
the presence of low flows. Compared to other analyzed streams, the flows in Skośnica are
several times smaller, leading to larger deviations between the actual flow values and the
estimated results. Additionally, in some instances, the differences between flow values are
similar, further contributing to the increased percentage of errors. It is crucial to consider
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these factors during the analysis and interpretation of results to ensure more accurate flow
estimations for the Skośnica area in future studies. In general, it can be concluded that the
model has been properly calibrated and can be applied in further stages of the study.

Table 7. Comparison of measured and calculated steady flow rates.

Case Manning Coefficient Odra East Odra West Odra Skosnica Regalica Odra—Pucka Part

1

Qm

0.021 875.0

524.5 350.5 64.5 460.0 415.0
Qc 537.9 334.1 67.0 470.0 402.0

|∆Q| 13.4 16.4 2.5 10.0 13.0
ε 2.5 4.9 3.7 2.1 3.2

2

Qm

0.030 378

233.1 145.7 31.7 201.4 177.4
Qc 232.4 146.4 30.7 201.4 177.4

|∆Q| 0.7 0.7 1.0 0.0 0.0
ε 0.3 0.5 3.2 0.0 0.0

3

Qm

0.033 256.7

171.9 84.8 28.9 143.0 113.7
Qc 189.1 98.4 21.4 135.3 120.4

|∆Q| 17.2 13.6 7.5 7.7 6.7
ε 9.1 13.8 34.8 5.7 5.6

4

Qm

0.027 404.9

250.4 154.6 33.4 216.9 188.0
Qc 238.2 147.1 33.0 203.5 179.7

|∆Q| 12.1 7.5 0.4 13.4 8.3
ε 5.1 5.1 1.2 6.6 4.6

5

Qm

0.027 594.0

373.0 221.0 57.4 315.6 278.4
Qc 362.2 230.6 46.9 316.2 276.7

|∆Q| 10.8 9.6 10.5 0.6 1.7
ε 3.0 4.2 22.4 0.2 0.6

6

Qm

0.033 384.3

234.3 150.0 35.0 199.3 185.0
Qc 233.3 147.8 31.6 201.6 179.5

|∆Q| 1.0 2.2 3.4 2.3 5.5
ε 0.4 1.5 10.8 1.2 3.1

7

Qm

0.030 363.4

217.8 145.7 31.3 186.4 177.0
Qc 210.9 131.8 30.1 179.7 160.8

|∆Q| 6.8 13.9 1.2 6.7 16.2
ε 3.2 10.5 4.0 3.7 10.0

8

Qm

0.030 339.2

208.3 130.9 28.1 180.2 159.0
Qc 208.5 131.0 28.1 180.0 159.5

|∆Q| 0.2 0.1 0.0 0.2 0.5
ε 0.1 0.1 0.1 0.1 0.3

9

Qm

0.033 444.0

268.0 176.0 36.3 231.7 212.3
Qc 268.5 170.8 36.3 232.4 206.9

|∆Q| 0.5 5.2 0.0 0.7 5.4
ε 0.2 3.0 0.0 0.3 2.6

10

Qm

0.021 916.1

553.0 363.1 63.8 489.2 426.9
Qc 563.7 348.4 70.5 491.6 420.5

|∆Q| 10.7 14.7 6.7 2.4 6.4
ε 1.9 4.2 9.5 0.5 1.5

11

Qm

0.021 899.0

553.0 346.0 63.3 489.7 409.3
Qc 553.0 342.5 69.0 482.6 412.8

|∆Q| 0.0 3.5 5.7 7.1 3.5
ε 0.0 1.0 8.3 1.5 0.8

12

Qm

0.024 659.7

407.5 252.2 56.8 350.7 309.0
Qc 406.4 250.5 56.0 347.8 306.8

|∆Q| 1.1 1.7 0.8 2.9 2.2
ε 0.3 0.7 1.4 0.8 0.7

13

Qm

0.027 1244.0

747.0 497.0 84.2 662.8 581.2
Qc 767.2 450.4 107.2 648.4 568.8

|∆Q| 20.2 46.6 23.0 14.4 12.4
ε 2.6 10.3 21.4 2.2 2.2

The result of calibration will be a functional relationship between the input flow to the
model and the channel roughness coefficient. After excluding the results from cases 6 and
13, the dependency curve can be presented in Figure 15.
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7. Calculations

The main objective of this study is to comprehensively investigate the impact of chan-
nel clearance and hydraulic structure repairs in the Miedzyodrze area on the flow patterns
in the lower Odra River network. The lower Odra River network covers a significant
area; therefore, the author of the study focused on analyzing selected cross-sections that
were considered crucial for understanding and monitoring the influence of these flows.
These cross-sections were carefully selected and presented in Figure 16, which provides
a graphical representation of their locations.
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Figure 16. Cross-section locations [51].
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Based on the obtained simulation results, the impact of channel clearance in the
Miedzyodrze area and the influence of hydraulic structure repairs were assessed on the
flows in selected cross-sections of the lower Odra River network. The calculations con-
ducted allowed for the following analyses of steady-state flow in the network:

• Distribution of water from the Odra to West Odra_1 and East Odra_1.

dQ1 =
QEO,1

QWO,1
(4)

• Changes in flow values in the cross-sections of East Odra_1 and East Odra_2.

dQ2 = QEO,1 −QEO,2 (5)

• The ratio of flows from Regalica to Odra Pucka

dQ3 =
QOP
QR

(6)

where:

QEO,1—Flow in East Odra_1 cross-section [m3/s]
QEO,2—Flow in East Odra_2 cross-section [m3/s]
QWO,1—Flow in West Odra_1 cross-section [m3/s]
QWO,2—Flow in West Odra_2 cross-section [m3/s]
QR—Flow in Regalica cross-section [m3/s]
QOP—Flow in Odra—Pucka part cross-section [m3/s]

In Figures 17 and 18, the changes in the ratio of flows between East Odra and West
Odra are presented as a function of variations in the input flow to the model and as
a function of changes in water level in the outlet cross-sections of the model (ZR,OP).
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Figure 17. Changes in the value of dQ1 at a steady water level in the outlet cross-section
ZR,OP = 0.00 [m a.s.l.].
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Figure 18. Changes in the value of dQ1 at a steady water flow in the input cross-section QO = 599 [m3/s].

The analysis of the graphs indicates that the highest flow distribution values are
observed in Variant 2, which assumes the complete dredging of all channels in the Miedzy-
odrze area. Furthermore, it is notable that the changes in flow values do not show
a monotonous relationship on the graphs, and for each variant, there exist two local extrema.

Regarding the analysis of the graphs presented in Figure 18, there is a noticeable lack
of significant changes in the dQ1 values (flow change) relative to the water level elevations
of approximately 0.3 m above sea level. Only exceeding this threshold leads to a noticeable
increase in the dQ1 values.

The following figures (Figures 19 and 20) depict variations in flow reduction along
the longitudinal profile of the East Odra. Significant dependencies are observed only for
variants 0 and 2, as variant 1 completely excludes the hydraulic connection within the
Miedzyodrze area.
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Figure 19. Changes in the value of dQ2 at a steady water level in the outlet cross-section
ZR,OP = 0.00 [m a.s.l.].
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Figure 20. Changes in the value of dQ2 at a steady water flow in the input cross-section QO = 599 [m3/s].

The presented figures indicate that for Variant 2 of the lower Odra network model,
there is a greater influence of the Miedzyodrze area on the water flow through the network.
It is noteworthy that in the case of Variant 0, as shown in Figure 20, there is no influence
of the Miedzyodrze area on the hydraulic flow until reaching approximately the average
water level of 0.0 m above sea level.

The last group of steady-state flow analyses focuses on the flow values at the outlets
of the models, specifically the ratio of flow in the Regalica to the flow in the Odra—Pucka
part. This analysis is analogous to the first group of analyses, where the ratio of flow in the
East Odra to the flow in the West Odra River was examined (Figures 21 and 22).
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Figure 21. Changes in the value of dQ3 at a steady water level in the outlet cross-section
ZR,OP = 0.00 [m a.s.l.].
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Figure 22. Changes in the value of dQ3 at a steady water flow in the input cross-section QO = 599 [m3/s].

From the presented graphs, it can be observed that the highest dQ3 value occurs in
variant 1, which corresponds to the complete closure of the Miedzyodrze area. However,
compared to variant 0, which represents the current situation, the differences are not
significant. This indicates that the Skosnica Channel serves as a compensatory feature in
the distribution of flows in the downstream network of the Odra River. The simulation
results of variant 2 aim to achieve a more balanced distribution of flows at the outlet of
the model.

8. Discussion

Due to the rather innovative treatment of the Międzyodrze within the lower Odra
River network system, a practical comparison of all the presented results in the study with
prior research is not feasible. The values of characteristic flows presented in the study,
which served as the basis for determining boundary conditions, align with those reported
in [11,12].

In investigations conducted by Kurnatowski [1,52], it was identified that assuming
a constant Manning coefficient value for the entire lower Odra River network area can yield
erroneous outcomes. As demonstrated in this study, the calibration process successfully
managed to identify Manning coefficient values as a function dependent on the incoming
flow to the network.

Previous research regarding flow modeling in the lower Odra River network was pred-
icated on the geometry of rivers alone without accounting for the adjacent floodplain areas
associated with these channels, as reflected in Variant 1 within this study. Such models were
developed by Kurnatowski [1] and Ewertowski [53]. However, earlier models exclusively
operated under steady-state conditions, entailing substantial modeling limitations.

It is important to emphasize the limitations of this study. All investigations are
grounded in historical measurements. While flow values tend to remain relatively stable,
the bathymetry of lower Odra River channels exhibits variability. Additionally, Hec-Ras
has its own constraints, including geometric limitations and numerical simplifications,
which have been discussed in [54].

9. Conclusions

There is a possibility of constructing a complex model of the lower Odra River net-
work in three computational variants using the Hec-Ras software, which also allows for
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the incorporation of controlled hydraulic structures such as weirs or locks into the river
structure, as explicitly described in the program documentation.

The two-stage verification has demonstrated the accuracy of the constructed model.
The verification phase yielded very good results, with errors occasionally not exceeding
1%. However, localized, significant discrepancies were observed between the measured
and computed values.

The calculations confirmed the existence of a curvilinear relationship between the
global roughness coefficient and the prevailing flow. The results of these calculations are
crucial for understanding flow dynamics under various hydraulic conditions.

Dredging works on the Miedzyodrze channels have produced significant effects, such
as an increase in the flow ratio at the Widuchowa node, which is of paramount importance
for improving the overall functioning of the water network. Dredging the Miedzyodrze
channels involves the removal of sediments, silt, and other pollutants from the riverbed
to ensure better water flow. This investment is particularly important due to the strategic
role of the Widuchowa node in the water flow system. Through dredging operations, it is
possible to increase the channel’s capacity, which affects the smoothness of water traffic
and may reduce the risk of flooding.

The renovation of hydrotechnical structures, which is one aspect of these activities,
aims to improve the stability and efficiency of the entire hydrotechnical infrastructure.

Dredging and hydrotechnical renovations require proper planning, financial resources,
and collaboration between different institutions and services responsible for water manage-
ment. It is also important to monitor the effects of these activities to assess their effectiveness
and make further adjustments and improvements if necessary.

In summary, dredging works on the Miedzyodrze channels and the renovation of
hydrotechnical structures aim to improve the functioning of the water network, increase the
capacity of the channels, enhance infrastructure stability, and optimize water management.
These investments bring benefits not only in terms of smoother water traffic but also have
broader implications for overall water management.

Regrettably, the planned renovation of the Międzyodrze area has been indefinitely
deferred due to financial constraints. Nevertheless, the possibility of implementing the
renovation in the future remains contingent upon the amelioration of the budgetary situa-
tion and pertinent circumstances. However, during the forthcoming preparatory stages,
careful consideration should be given to specific technical challenges in modeling, design,
and execution.

The most noteworthy technical challenge arises from the absence of a contemporary
bathymetric database, which may negatively impact the modeling and design process of
the renovation. Undertaking costly surveying studies to obtain up-to-date bathymetric
data becomes imperative to ensure the accuracy and reliability of the outcomes. This en-
deavor is time-consuming and necessitates substantial financial investment, thus potentially
introducing formidable challenges in the planning phase of the renovation.

Despite these difficulties, there remains a firm commitment to undertake the reno-
vation in the future to enhance the condition of the Międzyodrze area. This aspiration
mandates meticulous planning and the identification of appropriate funding sources to
fulfill the technical and budgetary requisites associated with this ambitious endeavor.

Due to the analysis and conclusions conducted, the following stages of model expan-
sion should be included:

• Extending the study area directly to the Baltic Sea, considering the Szczecin Lagoon.
• Developing a broader set of hydrological scenarios, including the occurrence of low

water levels and low sea states.
• Analyzing the influence of wind direction and magnitude on the formation of flows in

the lower Odra River network.
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Abstract: Changes in the hydrological regime are widely investigated using a variety of approaches.
In this study, we assess changes in annual and seasonal flow characteristics based on a probabilistic
representation of the seasonal runoff regime at the daily time scale. The probabilistic seasonal
runoff pattern is constructed by determining quantiles from marginal distributions of daily flows
for each day within the year. By applying Fourier transformation on the statistics of the daily flow
partial series, we obtain smooth periodical functions of distribution parameters over the year and
consequently of the quantiles. The main findings are based on the comparison of the dry, average, and
wet hydrologic condition zones as defined by the daily flow quantiles of selected probabilities. This
analysis was conducted for ten catchments in Serbia by considering changes between two 30-year
nonoverlapping periods, 1961–1990 and 1991–2020. It was found that the relative change in runoff
volume is the most pronounced in the extreme dry condition zone in the winter season (−33% to
34%). The annual time shift is the largest in the dry and average condition zones, ranging from −11
to 12 days. The applied methodology is not only applicable to the detection of hydrologic change,
but could also be used in operational hydrology and extreme flow studies via drought indices such
as the Standardized Streamflow Index.

Keywords: time series analysis; daily flow; Fourier series; annual periodicity; marginal distribution
of daily flows; probabilistic thresholds; annual and seasonal regime change

1. Introduction

Hydrologic systems, and the water cycle in general, are subject to stresses and change
caused by a range of drivers. The obvious or direct stressors on hydrologic systems include
widespread land-cover change, urbanization, industrialization, and significant engineering
interventions, while the indirect stressors are linked to the growing demands for drinking
water, food, and energy for the population [1]. The major changes to the global hydrologic
cycle over the last century are attributed to global warming and other influences of climate
change in many regions of the world. The changes in frequency, intensity, and timing of
precipitation directly contribute to modifications in the magnitude and timing of flow in
rivers, including extreme floods and hydrologic droughts [1].

Assessment of expected change in the future hydrological regime is of interest for
different projects and applications in water resources management and engineering, as well
as in environmental studies. The aim and scope of the application determine the type of
information needed from the assessment, as well as the baseline and future time horizons
and spatial and temporal scales. The hydrologic change assessments may therefore differ
significantly in aspects such as spatial extent (e.g., one location, catchment, region), assess-
ment periods (past and/or future), timestep (e.g., daily, monthly, yearly), and hydrologic
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regime (mean-, high-, low-flow). In addition to the objectives of the assessment, data
availability is a key factor in selecting the analysis technique.

Selection of the appropriate period for the assessment of any indicator of the hydro-
logical regime may have a significant effect on the results because of the variability in
hydrological regimes over longer periods. Climatological normal periods of 30 years often
impose the use of 30-year-long periods for hydrological assessments in climate change im-
pact studies. According to the World Meteorological Organization (WMO) [2], the 30-year
normal period currently in use is acceptable for hydroclimatic applications. However,
WMO [2] also warns that 30-year periods may not be acceptable for an analysis of extreme
events (floods and low flows). The period of record is preferred for hydrologic and water
resources engineering applications; for situational assessment and forecasting, a common
period of record across the region of interest is preferred when using a record length less
than 30 years is acceptable [2].

In Europe, the longest assessment period reported in the literature was related to the
detection of long-term changes in the annual flow regime at the Ceatal Izmail hydrologic
station on the Danube River over 1840–2015, which was the period of record for this
station [3]. Renner et al. [4] used the 1930–2009 period for investigating 27 basins throughout
Saxony/Germany, while the flood levels of the Danube at Novi Sad over the 1919–2007
period were analyzed in [5]. Stewart et al. [6] studied the period between 1948 and 2002 to
detect changes toward earlier flow timing in a network of 302 western North American HSs,
while the shortest period of twenty years (1977–1996) was used by Laaha and Blöschl [7] for
analyzing hydrographs from 325 catchments in Austria. The studies that focus on future
conditions and projections of hydrologic change are mostly based on 30-year baseline
catchment behavior, such as 1981–2010 [8,9], but also 1975–2005 [10], 1980–2012 [11], and
1985–2008 [12]. Having in mind long-term persistence and oscillations in the hydrologic
regime, shorter assessment periods in hydrologic change studies may lead to false signals
about the tendency and signs of changes [13,14]. This is particularly important when
trend assessment is used as a change detection technique. According to Kundzewicz and
Robson [15], a hydrologic time series of at least 50 years in length is required to distinguish
between trends and variability in the hydrologic regime.

Identifying and assessing the changes in the hydrological regime usually implies
looking for different trends or other types of changes in the historical hydrological data.
Application of various statistical tests prevails in this group of approaches, such as tests
for trend detection, homogeneity, serial correlation, etc. The use of the nonparametric
Mann–Kendall test for trends has been extremely popular, especially after it was modified
by Hamed and Rao [16] for autocorrelated data. Tests for abrupt changes, such as Pettitt’s
test [17], are also used often (e.g., [18]) and mainly for detection of human-induced changes
to river regimes. The use of statistical tests for detecting changes in hydrological time
series has also been criticized, mainly because their null hypotheses and assumptions may
be compromised by the correlation structure of the hydrological time series [19]. While
these tests are always numerically feasible, their outcomes may not be truly informative if
their basic assumptions are violated. Furthermore, the outcomes of the trend tests depend
heavily on the period of record and may indicate false tendencies characteristic of a part of
a long-range dependence such as long-term oscillations [14,20]. Moreover, trends are rarely
identified from data with a time scale finer than annual (e.g., [21]).

Seasonal runoff variation is one of the most important indicators of the hydrological
regime, i.e., one of the most important hydrological signatures. Information on seasonal
runoff distribution over the annual cycle is essential for water resources management and
hydroecology because it provides predictable patterns of water availability [22]. While the
mean seasonal pattern over the annual cycle describes the average hydrological regime
at the location of interest, seasonal runoff also exhibits interannual variability that is also
important for other water- and environment-related management. Therefore, detecting the
change in the seasonal runoff regime is important for water management and for adaptation
and mitigation strategies.
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Seasonal runoff variation is typically described over the annual cycle at the monthly
time scale and less often at the daily time scale. Daily streamflow data have several
advantages over monthly data: they provide a more functional representation of the runoff
regime [23] by offering important insights for water resources management, including
linking hydrological regimes to habitats and biotic communities [24], introducing variable
hydrologic drought thresholds [25], and predicting streamflow characteristics in ungauged
basins [12]. Most runoff indicators of interest for studying aquatic and riparian ecological
response (magnitude, frequency, duration, timing, and rate of change [24]) can be assessed
from the daily representation of the annual and seasonal runoff regimes. Daily flows also
facilitate estimating different measures of runoff seasonality. The annual and seasonal
changes in position of the hydrograph centroid are frequently considered [6,10,26], while
the floods and droughts are investigated through onset date, end date [6,27], or duration [3].

Variability in the seasonal runoff pattern from year to year is typically described by
computing and drawing lines around the mean (or median) pattern that correspond to
seasonal runoff of certain non-exceedance probability. These lines may be considered as
boundaries between the zones of different hydrological conditions such as average, wet,
or dry conditions. There are no general recommendations in the literature about specific
probabilities that could serve to define the boundaries between the hydrological conditions.
These boundaries are frequently associated with various threshold levels that are used in
water resources management to define certain design or reference quantities. In drought-
related studies, the threshold levels used to identify drought events can either represent
water demand or the boundary between normal and low-flow conditions [28]. Although
some applications may require fixed threshold levels, the thresholds’ variation throughout
the year reflects seasonally different hydrological conditions, ecological requirements, or
water demands. For instance, in [23] the 10th percentile of monthly flows delineates very
dry and dry hydrological conditions, the 25th and 75th percentiles define the zone of
average hydrological conditions, and wet conditions are those above the 75th percentile.
Daily flows that exceed the 75th percentile are also classified as high flows by Pekarova
et al. [3], but those below the 50th percentile are classified as low flows, with additional
separation into extreme low flow and low flow categories.

The probabilistic approach to defining time-varying threshold levels is also embedded
in the methodology for computing the Standardized Precipitation Index (SPI) [29], where
monthly precipitation aggregated over scales of 1, 2, 3, . . ., 12 months for each calendar
month is transformed into a standard normal quantile, SPI, based on non-exceedance
probability of aggregated precipitation. Typically, a threshold of SPI = 0 is used to define
meteorological droughts as periods with less accumulated precipitation than expected in a
long-term period. Similarly, the Standardized Streamflow Index (SSI) [30], as a probabilistic
hydrologic drought index based on monthly flows, was introduced. Computation of both
the SPI and the SSI involves an intensive procedure of determining the type of probability
distribution for each aggregation scale [31,32]. The standardization of precipitation and
flows in this probabilistic approach explicitly introduces fixed SPI or SSI thresholds (e.g.,
−1, 0, 1) corresponding to certain probabilities, which translate into variable thresholds for
precipitation or runoff volume in each calendar month.

Representing the annual runoff cycle at the daily time scale has its advantages and dis-
advantages. The advantage is that the daily resolution provides more detail and smoother
transitions compared with the monthly scale [33]. On the other hand, the disadvantage is
that the calculation is much more demanding and extensive because it includes analyzing
and fitting 365 probability distributions [33]. Furthermore, using the daily step requires
smoothing to avoid jumps in consecutive days [25,33,34].

Considering all the above, the main issues in detecting annual and seasonal hydro-
logical change are threefold. First, the analysis of changes, and particularly trend analysis,
mainly deals with the annual scale while the changes in seasonal patterns are seldom
addressed. In many cases, the change is not detectable on the annual scale, but is obvious
on the seasonal (monthly) scale. Second, the seasonal pattern is typically described in terms
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of monthly flows, which may not be useful for some applications and creates an abrupt
transition in flows from one month to another. Third, the change in the seasonal runoff
pattern is usually identified from the average pattern, and the year-to-year variability in the
pattern is typically neglected. In cases when this is considered, it is assessed from empirical
distributions of monthly flows. Moreover, the change in hydrological conditions with the
assessment period has not been analyzed to our best knowledge.

To address the above identified issues, the goals of this paper are as follows: (i) to
investigate seasonal change despite the lack of significant change on the annual scale in
our study area; (ii) to utilize probabilistic representation of the seasonal runoff cycle at the
daily time scale; and (iii) to detect changes in zones of different hydrological conditions. To
do so, we use a probabilistic approach for defining the seasonal runoff pattern at the daily
time scale by fitting 365 marginal distributions of daily flows (MDDFs). The parameters for
the 365 marginal distributions are modeled as periodic functions to avoid abrupt changes
in quantiles in consecutive days. The estimated quantiles from the 365 MDDFs result in
smooth lines in the plot of the annual runoff cycle and represent the boundaries of the
zones with flows for the given probability of occurrence. To detect changes in the seasonal
runoff pattern, we compare wetness (hydrological) conditions as defined by probabilistic
thresholds between two nonoverlapping 30-year subperiods. The two subperiods are
compared in terms of the overall seasonal runoff pattern, runoff volume, and timing of
the annual and seasonal runoff. The analysis is performed for the selected catchments in
Serbia for which the statistical tests do not reveal any change or trend at the annual scale
in the 1961–2020 period. Therefore, the purpose of this research is to investigate potential
alterations in the seasonal runoff pattern despite the lack of significant changes on the
annual scale.

This paper is organized as follows. Section 2 describes the study area and data sets,
while Section 3 presents the methodological framework used to construct a probabilistic
annual runoff cycle using MDDFs, define hydrological condition zones, and evaluate annual
and seasonal hydrologic changes per zones. Section 4 shows the results of distribution
fitting, zoning, and the detected changes. Section 5 discusses the results from two aspects,
first by comparing them with the previous findings on hydrologic change in the study area,
and then by highlighting the benefits of the MDDF approach for hydrological applications.
Section 6 gives the key conclusions of the presented work.

2. Study Area and Data

This study was conducted on daily flows in the period 1961–2020 at ten hydrolog-
ical stations that belong to the Danube River basin in the Republic of Serbia (Figure 1)
and are operated by the Republic Hydrometeorological Service of Serbia (RHMSS). Basic
information about the ten stations and their drainage areas is given in Table 1.

The daily flow series were checked for data completeness and only minor gaps were
found that were filled either through interpolation or through regression analysis using
data from the neighboring stations as predictors. The series homogeneity and randomness,
as well as the presence of trends, were tested on the annual flow series with a range of
parametric and nonparametric tests. The results of all tests (p-values) are given in Table A1
in Appendix A, showing that the null hypothesis on homogeneity, randomness, and absence
of trends cannot be rejected at a significance level of 0.05 for all stations.
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Figure 1. Locations of the hydrological stations used in this study on the hydrographic map of Serbia
(left) and a schematic of the river network and stations (upper right panel).

Table 1. Hydrological stations (HS) used in this study.

HS# Station Name River Catchment Area
[km2] Watershed

1 Sremska Mitrovica Sava 87,996 Sava
2 Valjevo Kolubara 340 Kolubara
3 Bagrdan Velika Morava 33,446 Velika Morava
4 Ljubičevski most Velika Morava 37,320 Velika Morava

5 Jasika Zapadna
Morava 14,721 Zapadna Morava

6 Ušće Studenica 540 ZapadnaMorava
7 Grdelica Južna Morava 3782 Južna Morava
8 Mojsinje Južna Morava 15,390 Južna Morava
9 Doljevac Toplica 2052 Južna Morava
10 Niš Nišava 3870 Južna Morava

3. Methodology

Detection of changes in hydrological regime at selected stations follows the method-
ology organized in the workflow consisting of four steps and illustrated in Figure 2. The
first three steps (a–c) result in probabilistic representation of the annual runoff cycle at
daily time scale, while the fourth step (d) is dedicated to defining hydrologic condition
zones, calculating indicators, and detecting the annual and seasonal change. The workflow
in Figure 2 relates to the analysis for one station and is repeated for each one. The analy-
sis is performed for the 1961–2020 period of the available data, and for two subperiods,
1961–1990 and 1991–2020, representing two standard 30-year periods used by the WMO [2].
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Figure 2. Illustration of methodological steps to detect changes in hydrological regime.

The core of the proposed methodological approach is the use of daily flows for con-
struction of the probabilistic annual runoff cycle. In the first step (a), daily flows are
prepared for analysis by defining the data series for each day within a year, resulting in
a total of 365 data series for which the corresponding statistics are computed. This step
is described in Section 3.1. In the second step (b), statistics of the partial daily series are
modeled as the periodic functions to achieve their smooth representation over the year.
This step is described in Section 3.2. In the third step (c), the periodic daily statistics are
transformed into periodic parameters of marginal distributions of daily flows (MDDFs).
The quantiles of MDDFs for different probabilities are then estimated for each day, and the
diagrams of these quantiles are created to represent probabilistic seasonal runoff pattern.
The lines of MDDF quantiles are smooth because an implicit, anterior smoothing is achieved
by using periodic probability distribution parameters, thus avoiding sudden changes in
flow between two successive days. The third step is described in Section 3.3. The fourth
step (d) of the methodology comprises the definition of the zones of different hydrologic
conditions (Section 3.4) and detection of changes in hydrological regime from one period
to another (Section 3.5). The changes in the seasonal pattern, runoff volumes, and runoff
timing at annual and seasonal scales are considered.

3.1. Daily Flows as a Stochastic Process

The continuous stochastic process {xt; t ≥ 0} is mathematically formulated [35] by the
time function xt = f (t; α, β, γ,. . .), where t is time, and α, β, γ, etc. are the parameters of a
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multidimensional distribution describing the temporal structure of the process. Hydrologic
daily time series are a close approximation to the continuous stochastic processes, where
the process xt is represented by the observed daily flows xτ,i (with i = 1, 2, . . ., N—number
of years, and τ = 1, 2, . . ., 365—number of days). Hence, the xτ,i series is a set of N process
realizations over the [0, 365 days] interval.

The observed daily flow series xτ,i at each station is arranged in a matrix, in which
each row represents one date (i.e., the ordinal number of a day) within a year, and each
column represents one year: 


x1, 1 · · · x1, N

...
. . .

...
x365, 1 · · · x365, N


. (1)

The data are arranged in the matrix (1) by hydrologic years, starting on 1 October
(τ = 1) and ending on 30 September (τ = 365). In the leap years, 29 February is omitted,
similar to many studies (e.g., [25,36]).

For each of the 365 dates, i.e., for each row in the matrix (1), the sample statistics are
estimated using the method of moments for both the original series (x) and its logarithmic
transformation (y = log x). In this way, column vectors of the statistics with 365 rows are
obtained for each day in the year. We will refer to these series of statistics as daily statistics.
They include the mean mτ , standard deviation sτ , and coefficient of skewness Csτ (τ = 1, 2,
. . ., 365).

3.2. Periodicity Analysis

The series of daily means mτ , τ = 1, 2, . . . , 365, represents the mean seasonal runoff
pattern. Due to variability in daily flows, the annual cycle of mτ may not resemble a
periodic-like function that would be obtained in a similar process with monthly data. The
same is valid for the other daily statistics as well. Therefore, the seasonal runoff pattern
can be described by introducing the periodic functions of the mean, standard deviation, or
other parameters. These periodic functions are estimated from the column vectors of the
statistics of the observed daily flow series. For any parameter υ, its periodic component
υτ,per may be expressed using the Fourier series [35,37]:

υτ,per = υτ +
h

∑
j=1

(
Ajcos

2π jτ
ω

+ Bjsin
2π jτ

ω

)
(2)

where υτ is the mean of υτ , h is the number of significant harmonics, Aj and Bj are the
Fourier coefficients, fj = j/ω is the frequency of the j-th harmonic, ω is the base period of
365 days, and τ = 1, 2, . . ., 365. The Fourier coefficients are calculated as follows:

Aj =
2
ω

ω

∑
τ=1

(υτ−υτ)cos
2π jτ

ω
(3)

Bj =
2
ω

ω

∑
τ=1

(υτ−υτ)sin
2π jτ

ω
(4)

while the amplitude of the j-th harmonic is computed from the Fourier coefficients:

C2
j = A2

j + B2
j . (5)

Modeling the periodicity of the daily flow series includes finding significant harmonics
for the periodic component shown in Equation (2) [35]. The number of significant harmonics
adopted in this study is three, as identified in the previous study for the same stations [38]
based on the periodicity analysis for the mean via the periodograms, as suggested by
Yevjevich [35].
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3.3. Marginal Distributions

The row vectors of the process xt in matrix (1), i.e., the vectors
[
xτ,1 xτ,2 . . . xτ,N

]
, τ = 1, 2, . . . 365, (6)

represent N realizations of the process for day τ in the annual cycle. The process in matrix
(1) can therefore be seen as a 365-dimensional random variable. For each day, based
on vector (6), a one-dimensional or marginal distribution is identified representing the
distribution law of the process at the point τ in time. A family of 365 distributions defines
a multidimensional distribution of the observed stochastic process.

The series of daily flows is nonstationary because of the intra-annual periodicity of
its parameters. Therefore, the parameters of the 365 marginal distributions also change
periodically during the year because they are estimated from the periodic daily statistics.

There are several approaches for identifying marginal distribution functions [35]. The
simplest approach that is suitable for extensive multisite computations at regional level is to
apply a unique theoretical distribution type for all marginal distributions, while allowing its
parameters to change periodically during the year. Radić and Mihailović [38] have shown
that the log-Pearson type 3 (LPT3) distribution is the most appropriate choice among the
two- and three-parameter distributions in the studied region of Serbia not only according
to the statistical tests, but also because it satisfies two conditions related to the nature of
the modeled physical process: (i) the upper bound of the marginal distribution should
be higher than the observed maximum flows; and (ii) the lower bound of the marginal
distribution should not be less than zero.

The flow quantiles Qpτ of a non-exceedance probability p = p(x) are estimated from
the 365 fitted LPT3 marginal distributions. The probability density function of LPT3
distribution is given with

f (x; a, b, c) =
k

x|b|Γ(a)

[
lognx− c

b

]a−1
·e

(logn x−c)
b , a > 0 (7)

where a, b, and c are the shape, scale, and location parameters of LPT3 distribution,
respectively, and Γ(a) denotes a gamma function. If the natural logarithm of data is used
(y = ln x), then n = e and k = 1. In this study, we use the common (decadic) logarithm with
n = 10 and k = 0.434. The LPT3 parameters are estimated using the method of moments
with log-transformed data as

a = 4/C2
sy, b = Sy·Csy/2, c = y− ab (8)

where y, Sy, and Csy are the mean, standard deviation, and coefficient of skewness of the
log-transformed observed data y = log10, respectively. The bounds of LP3 distribution
depend on the sign of the shape parameter b:

b > 0 : ec/k ≤ x < +∞
b < 0 : 0 ≤ x < ec/k (9)

3.4. Hydrological Condition Zones

The family of 365 MDDFs allows us to understand how the daily flows at some
locations can change within the annual cycle. It also provides the basis for constructing the
intervals in which the daily flows can occur with certain probability, and thus it could be
used to define an interval, or a zone, of typical, “normal” conditions at different times in
the year. The zone is bounded by the specific lower and upper quantiles of MDDFs. The
zones outside the “normal” condition zone are characterized by deviations of daily flows
from the typical regime for a given day [39].
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Hydrological condition zones are defined here for specific probabilities of occurrence
of daily flows in the annual cycle. The zone thresholds, i.e., boundaries, are quantiles of
specific probabilities (Figure 3a), selected to represent dry, average, and wet conditions,
based on the previous research [3,7,23,36,40]. The average condition zone is the interval
between the 0.3 and 0.7 quantiles. This zone is divided into two subzones by the median
flow, p(x) = 0.5, an important hydrological indicator recommended by WMO as a measure
of central tendency when undertaking assessments that focus on characterizing typical
conditions [2]. The 0.05 quantile delineates the dry condition zone from the lowest zone
representing extremely dry conditions, while the 0.99 quantile delineates the wet condition
zone from the upper zone representing extremely wet conditions.
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Figure 3. Hydrological condition zones based on probabilistic threshold levels for (a) flows, (b) runoff
volumes.

Runoff volumes corresponding to different hydrologic conditions are computed by
integrating the area under the MDDF quantile line representing the upper boundary of that
zone, as shown in Figure 3b.

3.5. Estimating Change in Hydrological Regime

The changes in seasonal runoff patterns are first examined visually by comparing the
average zone and the median threshold (Figure 3a), as well as the periodical function of
the mean daily flows. The changes in the annual and seasonal runoff volumes and timing
between the two periods are computed by examining the area below the upper threshold
of the hydrologic condition zone. The runoff volume is obtained by integrating this area
(i.e., the flows representing specific MDDF quantiles), while the timing is described by the
time coordinate of the centroid of this area [6,26]. The following two indicators of change
are computed at annual and seasonal scales:

1. Relative change in runoff volume, ∆Vp (%):

∆Vp =
Vp1991−2020 −Vp1961−1991

Vp1961−1991
·100 (10)

where Vp is runoff volume below the p-th MDDF quantile representing the upper
threshold of the zone for the given period.

2. Time shift of the centroid of the area below the MDDF quantile line, ∆t (in days):

∆t = Cp1991−2020 − Cp1961−1990 (11)

where Cp is the time coordinate (ordinal number of day within year) of the centroid of
the area under the p-th MDDF quantile for the given period.
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The seasons within the hydrological year used for evaluation of the changes are defined
as follows: October, November, and December represent autumn, January, February, and
March—winter, April, May, and June—spring, and July, August, and September—summer.

4. Results
4.1. Daily Flow Statistics and Their Periodicity

The daily statistics computed for each day within a year include the mean (mτ),
standard deviation (sτ), and coefficient of skewness (csτ). Figure 4 shows the seasonal
variation in the daily statistics for HS3 in all three considered periods, together with their
corresponding periodic functions (smooth lines). The mean and standard deviation both
exhibit distinct seasonal patterns which agree in phase. The highs occur in the spring
and the lows in the summer (Figure 4a,b). This pattern is characteristic for all but two
considered stations (HS1 and HS6). The skewness does not exhibit a distinct seasonal
pattern like the mean and standard deviation, but a complex one with more highs and lows.
It is also worth noting that there is a significant positive skewness over the entire annual
cycle at all stations, as shown for HS3 in Figure 4c.
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Figure 4. Seasonal variation in daily flow statistics (peaky lines) and their corresponding periodic
functions (smooth lines) at HS3 estimated for the three periods: (a) mean, (b) standard deviation, and
(c) coefficient of skewness. Modified from [41].

Figure 5 shows the daily statistics of the log-transformed data at HS3: mean (myτ),
standard deviation (syτ), and skewness (csyτ), as well as their corresponding periodic
functions. Expectedly, logarithmic transformation suppresses the variability in the daily
statistics compared with the ones in the original space. The distinct seasonal pattern is
still visible for the mean, but not for the standard deviation, for which the amplitude
of the intra-annual oscillation is significantly smaller. The logarithmic transformation
reduced the skewness and even produced negative values in both the daily skewness series
and the estimated periodic function during certain parts of the year. This was noticed
at all stations in some part of the year for at least one period considered. This further
affects the parameters and the shape of the LPT3 marginal distributions. The statistics
and their periodic functions for all stations are given in the Supplementary Materials
(Figures S1 and S2).
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Figure 5. Seasonal variation in log-transformed daily flow statistics (peaky lines) and their corre-
sponding periodic functions at HS3 estimated for the three periods: (a) mean, (b) standard deviation,
and (c) coefficient of skewness. Modified from [41].

4.2. Periodic Parameters of the Marginal LPT3 Distributions

The parameters of marginal LPT3 distributions are periodic functions, resulting from
the periodic statistics myτ,per, syτ,per, and csyτ,per. Figure 6 shows the seasonal variation
in the three LPT3 distribution parameters at HS3. The LPT3 parameters highly depend
on the value and sign of the skew, csy. Therefore, a comparison of periodical functions of
statistics (Figure 5) with LPT3 distribution parameters (Figure 6) expectedly shows that
the differences between studied periods are transferred from the statistics (especially the
skew) to the distribution parameters in accordance with the expressions in Equation (8).
The results for all stations are given in the Supplementary Materials (Figure S3).
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Figure 6. Periodical parameters of LPT3 marginal distribution of daily flows at HS3: (a) shape
parameter ατ,per, (b) scale parameter β τ,per, (c) location parameter γ τ,per. Modified from [41].

4.3. Marginal Distributions of Daily Flows

The flow quantiles Qpτ of a non-exceedance probability p = p(x) are estimated from the
365 fitted LPT3 distributions, one per each day within a year, with its periodic parameters.
The smooth lines shown in Figure 7 represent the quantiles of MDDFs for the three periods
considered at HS3. The results for all stations are given in the Supplementary Materials
(Figure S4).
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Figure 7. The diagrams of MDDFs at HS3 for the three periods showing the quantiles (a) for a full
range of probabilities p(x), from 0.01 to 0.99, and (b) for low to median probabilities. The solid lines
represent the later 1991–2020 period, the dashed lines represent the earlier 1961–1990 period, and the
dotted lines represent the whole 1961–2020 period.

In general, the patterns of MDDFs in Figure 7 are defined by the periodic function of
the mean (Figure 4a). The periodic functions of standard deviation (Figure 4b) and skew
(Figure 4c) influence the spread and skewness of the annual MDDFs, respectively. Despite
the peaky pattern for ατ,per and γ τ,per (Figure 6), the MDDF quantiles are represented
by smooth lines. For days with a negative skew of log-transformed data (csyτ,per < 0) for
1961–1990 (green line in Figure 5c), marginal LPT3 distributions are bounded from above
(Equation (9), also, e.g., [42]). The values of the upper bound were computed for all such
cases and it was found that they do not cause underestimation of daily flow upper-tail
quantiles for any non-exceedance probability of interest in hydrologic applications.

Visual inspection of the MDDFs in Figure 7 reveals that the differences between the
three periods are the smallest for the median daily flows and in the average zone, and grow
larger for the upper and lower quantiles. For this station, HS3, the maximum quantiles
for 1991–2020 are higher and occur later compared with those for 1961–1990. For the joint
1961–2020 period, the quantile lines lie expectedly between the lines of the two subperiods.

4.4. The Zones of Hydrological Conditions

The zones of hydrological conditions for all stations are shown in Figure 8 in accor-
dance with the adopted classification.

The patterns of thresholds (quantile lines) in Figure 8 obviously change with the
period. The changes occurring in the wet condition zone at all stations are more visible due
to the scale, but the changes in the dry condition zone are also significant, as can be seen
in Figure 7b. At all stations, the pattern remains the same for quantiles 0.3, 0.5, and 0.7,
which define the normal hydrological conditions. The seasonal pattern is not changed at
any station from a simple unimodal shape to a mixed bimodal shape, or vice versa. The
bimodal shape of the seasonal pattern is the most visible at HS1, where the most interesting
change is for the 0.99 quantiles. Here, the primary peak in 1961–1990 was in the autumn
while the secondary one was in the spring; in 1991–2020, the primary peak was in spring,
while the secondary was in winter.
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Figure 8. Hydrological condition zones for all stations defined by the quantiles of marginal daily
flow distributions for selected probabilities. The zones for the 1961–2020 period are shaded, while the
zones for two subperiods are indicated by their upper threshold lines.

4.5. Annual and Seasonal Hydrologic Condition Changes

The graphical presentation of hydrologic condition zones defined in Figure 3a is
helpful for detecting changes in daily flow patterns, while the quantification of change in
respect to runoff timing and volume (the areas defined in Figure 3b) is required for practical
purposes. Change in runoff timing is assessed from the shifts of the centroids of the areas
below the upper thresholds of the hydrologic condition zones, as shown in Figure 9a for
the annual scale and in Figure 9b for the seasonal scale at HS3.

204



Water 2023, 15, 2919

 

  

 
 

(a) (b) 

  

  

0

500

1,000

1,500

2,000

1/
O
ct

1/
Ja
n

1/
A
pr

1/
Ju
l 

Qpτ
[m3/s]

HS3

0

500

1,000

1,500

2,000

1/
O
ct

1/
Ja
n

1/
A
pr

1/
Ju
l



Qpτ
[m3/s]

HS3

Figure 9. The centroids of the area below the upper thresholds of the hydrologic condition zones for
(a) annual and (b) seasonal scales. Red dots refer to the recent 1991–2020 period, and green ones to
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Relative changes in runoff volume and time shifts of the centroids, calculated from
Equations (10) and (11), are shown in Table 2 and Table 3, respectively, for all stations.

Table 2. Relative change in runoff volume (%) in the recent 1991–2020 period compared with the
1961–1990 period. The first column indicates the probabilities p(x) of the upper thresholds of the
hydrologic condition zones. Changes are shown for annual (Ann.) and seasonal scales (Autumn,
Winter, Spring, and Summer), and colored in blue (increase) and red (decrease).

p(x) Season HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 HS9 HS10

0.05

Ann. −8 11 −1 −2 5 7 −8 −15 9 −23

Aut. −3 −9 −10 −3 7 −2 −24 −25 0 −37

Win. 14 34 −9 −13 −1 6 −16 −28 2 −33

Spr. −22 2 16 11 16 17 8 3 28 −12

Sum. −16 −13 −10 −7 −4 −2 0 −17 −15 −13

0.3

Ann. −5 −1 −6 −5 −2 10 −5 −11 1 −18

Aut. 12 4 −2 3 5 8 −7 −3 −5 −8

Win. 5 15 −5 −6 −4 13 −11 −14 −2 −16

Spr. −19 −16 −5 −4 −1 12 2 −12 10 −23

Sum. −19 −13 −14 −10 −7 2 1 −8 −10 −15

0.5

Ann. −4 −5 −7 −5 −5 10 −4 −10 −2 −15

Aut. 15 9 0 4 3 11 −2 3 −8 4

Win. 3 6 −4 −4 −6 15 −9 −9 −2 −11

Spr. −16 −20 −11 −8 −7 9 −2 −16 3 −25

Sum. −19 −11 −15 −10 −8 3 −1 −6 −9 −13

0.7

Ann. −2 −8 −8 −5 −7 9 −5 −10 −4 −12

Aut. 15 11 1 5 1 12 −1 6 −11 12

Win. 2 −2 −4 −3 −7 15 −6 −7 −1 −7

Spr. −11 −23 −14 −10 −10 6 −6 −19 −3 −26

Sum. −17 −7 −16 −10 −9 3 −4 −6 −9 −8
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Table 2. Cont.

p(x) Season HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 HS9 HS10

0.99

Ann. 5 −6 −11 −6 −12 −2 −15 −19 −5 −8

Aut. −3 12 −11 −2 −8 −1 −21 −20 −19 −4

Win. 5 −26 −8 −9 −13 5 3 −17 14 −14

Spr. 15 −9 −12 −5 −14 −10 −28 −21 −18 −15

Sum. 3 29 −13 −2 −7 2 −24 −21 −13 38

Legend:
∆V (%)
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Table 3. The changes in runoff timing expressed as the shift in the centroid date (in days) in the
recent 1991–2020 period compared with 1961–1990. The first column indicates the probabilities p(x)
of the upper threshold of the hydrologic condition zones. Changes are shown for annual (Ann.) and
seasonal scales (Autumn, Winter, Spring, and Summer), and colored in blue (later date) and red
(earlier date).

p(x) Season HS1 HS2 HS3 HS4 HS5 HS6 HS7 HS8 HS9 HS10

0.05

Ann. −8 −4 4 3 0 1 9 8 3 12

Aut. 0 −1 −1 −1 −2 1 2 −1 0 −1

Win. 0 2 2 1 1 −1 −1 1 2 1

Spr. 0 −2 1 1 1 1 0 1 2 3

Sum. 0 2 −2 −1 −1 −1 −1 −2 −5 −4

0.3

Ann. −11 −7 −3 −2 −2 −1 4 −1 1 −3

Aut. 0 −2 −1 −1 −3 −1 2 −1 −2 −2

Win. −1 2 1 1 2 1 1 0 1 −1

Spr. 0 −2 −1 −1 −1 0 0 1 0 2

Sum. 1 1 2 2 2 0 −3 0 1 0
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0.7
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Spr. −1 −1 −3 −2 −2 −1 −1 −1 −2 0

Sum. 2 2 3 3 2 1 −2 2 3 3

0.99

Ann. 4 4 −1 0 0 −2 −6 −2 −2 4

Aut. −1 −8 4 3 1 2 4 5 4 4

Win. −1 2 3 2 3 2 2 1 6 −1

Spr. −1 0 −5 −4 −2 −2 −9 −8 −4 −5

Sum. 4 7 −1 0 −3 −2 7 6 −5 4

Legend:
∆t (days)
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A general impression from Table 2 is that there is less runoff volume in the recent
30-year period compared with the previous one. HS6 is the only station at which runoff
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volume has increased in the recent period. HS2 and HS9 have distinct increases in extremely
dry conditions in the winter and spring seasons, respectively. Additionally, HS2 exhibits a
significant runoff volume increase in the wet condition zone in summer, as does HS10. The
most unfavorable changes are found in HS10, with significant volume reductions in dry
condition zones both annually and seasonally, and in all hydrologic condition zones in the
spring. This station is located approximately 90 km downstream of the outflow of the Pirot
hydropower plant (HPP) that started operation in 1990, at the very end of the first 30-year
study period, as a peaking HPP [43]. It should be noted that we did not detect a change in
the mean annual flow series of HS10 in the data preparation phase. This is most likely due
to the small effect of this HPP and its reservoir on the regime of the downstream HS10 for
several reasons: the small drainage area of the reservoir compared with the drainage area
of HS10, the annual water balancing mode of the reservoir, and subdaily disturbance of the
regime at HS10 by HPP outflows.

The shift in runoff timing shown in Table 3 is less pronounced compared with the
relative volume change. The changes in more than 7 or 10 days might be significant
for some applications in the water sector such as irrigation and hydropower operation
planning. In that respect, the most significant changes are found at the annual scale in
the dry and average condition zones in HS1 and HS2 of the Sava River basin, where the
runoff centroids occur up to 11 and 8 days earlier, respectively. A later occurrence of dry
conditions is found at the annual scale in HS7, HS8, and HS10, which are all situated in
the upper and middle parts of the Južna Morava River basin. Wet hydrologic conditions
occur 7 days later in HS2 and HS7 in summer, and 9 and 8 days earlier in HS7 and HS8,
respectively, in the spring season.

The data from Tables 2 and 3 are shown as boxplots in Figure 10 and Figure 11,
respectively. The results are organized in such a way that annual and seasonal changes in
the hydrologic condition zones are easily grasped for the whole study area.

 

 
  Figure 10. The boxplots of changes in the annual and seasonal runoff volumes in 1991–2020 compared
with 1961–1990 at all stations for the wetness condition zones defined using the upper quantiles of
probability p(x). The lines in the boxplots indicate the median value and x indicates the mean, while
the whiskers correspond to 1.5 × IQR, where IQR is the interquartile range, with the outliers outside
IQR displayed.
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Figure 11. The boxplots of changes in the annual and seasonal runoff timing in 1991–2020 compared
with 1961–1990 at all stations for the wetness condition zones defined by the upper quantiles of
probability p(x). The lines in the boxplot indicate the median value and x indicates the mean, while
the whiskers correspond to 1.5 × IRQ, where IRQ is the interquartile range, with the outliers outside
IQR displayed.

A general decreasing tendency in annual runoff volume in 1991–2020 compared
with 1961–1990 at all stations is clearly visible from the boxplot in Figure 10. The most
pronounced decrease is for the wet condition zone. Runoff volume has also decreased
in all seasons and for all hydrological condition zones, except the autumn runoff in the
average zone (for the 0.5 and 0.7 quantiles), and the spring runoff in the extremely dry
zone. There is less water available in wet zones (0.7 to 0.99 quantiles) during the high-flow
season in winter and spring. Similarly, in dry zones (0.3 and 0.05 quantiles) there is less
water available in the summer and autumn seasons in the recent period 1991–2020.

In terms of runoff timing at the annual level (Figure 11), the centroids for dry and aver-
age conditions occur earlier in 1991–2020 compared with 1961–1990, while the centroids for
wet conditions occur somewhat later. The seasonal changes in timing are not pronounced
for all zones, but the centroids for wet conditions appear earlier in spring at all stations,
and later in winter at most stations.

The annual changes in both runoff volume and runoff timing at all stations are mapped
for spatial analysis in Figure 12 and Figure 13, respectively.

The spatial distribution of the relative volume change between the two periods shown
in Figure 12 reveals that the catchments in western Serbia have experienced an increase in
runoff volume in the recent period for the dry condition zone. It should be noted that these
catchments are small to medium areas in size. The decrease in annual runoff volume is
more pronounced at the transition from the average to wet condition zone in all catchments.
The most western station, HS1, behaves differently compared with the other stations. It has
the largest catchment area and represents the only station with runoff generated almost
completely out of the country. This difference in behavior is pronounced in respect to runoff
timing, as shown in Figure 13. The runoff timing for extreme dry conditions is later in the
recent period at the annual level for all other stations. For the average wetness conditions,
runoff generally occurs earlier, but this change is insignificant, while it generally occurs a
bit later for wet conditions. The most southern station, HS7, shows earlier runoff timing
for wet conditions. Expectedly, the timing shifts at the annual level are more pronounced
compared with the shifts within seasons.
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Figure 12. The maps of relative change in annual runoff volume at ten stations for dry, average, and
wet condition zones, represented by upper quantiles of probability p(x). Red circles denote volume
reduction in 1991–2020 compared with 1961–1990, and blue circles indicate volume increase. The
circle size corresponds to the amount of change.
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Figure 13. The maps of changes in timing of annual runoff at ten stations for dry, average, and wet
condition zones, represented by upper quantiles of probability p(x). Red circles denote earlier runoff
occurrence in 1991–2020 compared with 1961–1990, and blue circles indicate later timing. The circle
size corresponds to the amount of change.

5. Discussion
5.1. Long-Term Changes in Hydrological Regime

The majority of previous studies considering the same area used trend detection of
annual/seasonal/extreme flows to study hydrologic change in the past or in the future,
or the “climate-hydrology-assessment chain” approach [44], in which a selected climate
scenario plays an important role. Comparison of the approach presented here with other
studies can therefore only be made indirectly, i.e., based on the detected changes. The
methodology presented here can be used to analyze the seasonal runoff pattern, but it is
less convenient for the analyses of phenomena at short, event-based time scales (such as
flow flashiness) or at time scales longer than one year (such as interannual variability), as
underlined by Blum et al. [36]. The probabilistic seasonal runoff pattern obtained from
the MDDFs is used here to define zones of different hydrologic conditions and to detect a
change in this pattern by looking into the changes in runoff timing and volume between
the two 30-year periods. Our study is therefore aimed at detecting a structural change in
the hydrological regime instead of the simple detection of trends or projections via climate
change scenarios. The proposed approach is also not aimed at detecting the changes in
intensity and frequency of flood events, which are often considered important consequences
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of climate change. However, our approach can be useful for a general understanding of the
hydrological regime at a given location and can provide indications of the changes in the
high-water regime, which is related to the floods.

In general, our results are consistent with the findings of Blöschl et al. [45], who
reported decreasing flows in the Balkan region, and with Lobanova et al. [46], who used
hydrologic simulations with a daily timestep under future climate conditions and con-
cluded that shifts in runoff seasonality, particularly earlier occurrence of high flows in
the snowmelt-driven catchments, can be expected. Also, according to [46], winter and
early spring runoff in Central and Eastern Europe (in the high-flow season) are expected
to increase. This is fairly consistent with our results (Figure 9), which show an increase
in runoff in the wet season over 1991–2020 that is not significant (yet), but later timing of
winter runoff and earlier timing of spring runoff (Figure 10) are detected, indicating the
shifts in the wet period projected for the future in [46].

In a comprehensive analysis of trends in mean annual and seasonal flows in Serbia
over 1961–2010 [47], no trend in mean annual flows was detected at all stations used in our
study except HS8 and HS10, for which moderate decreasing trends were found. This is not
in agreement with our findings from the data preparation phase (Table A1 in Appendix A)
on the absence of trends over the 1961–2020 period at all stations considered. On the other
hand, we found the greatest negative changes in annual runoff volume at HS8 and HS10
for the 0.5 quantile zone (−10% and −15%, respectively; see Table 2). In the same zone,
HS6 exhibits the highest positive change in annual runoff volume of 10%, while there was
no trend detected at this station in [47]. These discrepancies may stem from the difference
in the periods for analysis (1961–2010 in [47] vs. 1961–2020 in our study), because the
additional 10 years in our study cover a wetter period in Serbia, including an extremely
wet year, 2014 (also known for extreme floods). On the seasonal level, a low-significance
positive trend is found in [47] in autumn and winter runoff at HS6, whereas we found
changes in seasonal runoff volume of 11% and 15% for autumn and winter, respectively.
Additionally, a moderate negative trend in spring runoff at HS10 was found in [47], while
our results show a change in spring runoff volume of −25%. However, we detected several
considerable seasonal changes exceeding 10%, both positive and negative, in the average
condition zone, while these were not detected as trends in [47].

A variety of studies about different aspects of hydrologic change for the Sava River
(e.g., [14,48–50]) are in line with our results for HS1, showing that the mean flow is slightly
declining. Hydrologic simulations in [49] for the near future (2011–2041), which partially
overlaps with the second period in our study, indicate changes consistent with our results
about increases in winter runoff volume in all hydrologic condition zones. An increase
in winter runoff at HS1 is also found as a weak (statistically insignificant) positive trend
over the long period of 1928–2017 [48]. A substantial decrease in river flows expected in
the spring and summer seasons [49] is also visible in our results for all zones except for
wet condition zones. The analysis of long-term trends of climate drivers and assessment
of runoff in [50] also shows declining runoff in the Sava River basin as a consequence of
increased air temperature and evapotranspiration. General findings in [13] for HS1 and
HS4 indicate decreasing trends in summer and autumn runoff, and mostly increasing
trends in winter and spring runoff, which are partially in accordance with our results. Our
study indicates that HS1 and HS4 exhibit decreases in spring runoff volume and an increase
in autumn runoff volume for the 0.5 quantile zone.

The hydrologic projections for the Kolubara (HS2) and Toplica (HS9) catchments
indicate a decrease in snow storage and a substantial decrease in runoff in 2001–2030
(near future) compared with 1961–1990 (baseline period) [51]. Our results do not show
a substantial but rather a slight decrease in runoff volume in the average and wet zones,
which is closer to the findings of Idrizović et al. [52] for HS9. In [51], the largest decrease in
runoff at HS9 is associated with the spring season, which is in accordance with our results
for the wet zone only. The flood flow series simulated in [51] indicate little change for HS9
and a small increase for HS2 in median annual maximum floods. Our results for the wet
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zone at the annual scale for HS9 are consistent with these results, and also with the results
in [52]. The analyses in [51] additionally show that the future droughts are expected to be
more frequent, to last longer, and to start earlier in the summer for both the HS2 and HS9
catchments. Judging by the combination of change in runoff volume and time shifts in the
dry and extremely dry zones (Tables 2 and 3, 0.05 and 0.3 quantile), runoff reduction in
these zones is already evident, but the time shift toward an earlier date can be seen in the
extremely dry zone at HS9 only.

5.2. Probabilistic Annual Runoff Cycle as an Indicator of Hydrological Conditions

The probabilistic annual runoff cycle obtained from the MDDFs is used in this study
to assess the changes over time in hydrological regime at selected rivers and locations in
Serbia. It can also be used for other purposes, including operational monitoring of the
hydrological regime aimed at early warnings and water management, and especially in
operational reservoir management and management of droughts. The diagram with the
MDDF of the annual runoff cycle (Figure 7) shows the zones of different hydrological
conditions. Plotting actual hydrological data over this diagram clearly indicates current
conditions in the catchment, but it can also reveal departures from normal conditions and
anomalies. It can therefore be a support for responding to unfavorable situations and their
mitigation.

The zones of hydrological conditions in the probabilistic annual runoff cycle are de-
limited by different probabilistic thresholds, which vary over the annual cycle because they
represent the quantiles of MDDFs. This type of zoning based on probabilistic thresholds is
very similar to the application of the SPI and SSI as drought indicators [29,30]. The main
rationale behind the SPI and SSI as nondimensional (standardized) probabilistic indicators
is to enable comparative analyses of precipitation or streamflow at different locations and
at different times. Application of these two indices in monitoring hydrological conditions
therefore requires the transformation of current precipitation or streamflow observations
into standardized values. Contrary to this, the probabilistic annual runoff cycle allows
direct evaluation of current streamflow observations for a given location.

A common characteristic of the methodologies for assessing the probabilistic annual
runoff cycle and the SPI/SSI is related to fitting probability distributions to the observations.
The SPI and SSI are usually calculated from monthly data over different accumulation
periods from 1 to 12 months, whereas precipitation or streamflow accumulations for
each month in a year are fitted by separate parametric or nonparametric distributions.
Stagge et al. [33] attempted to fit a set of 365 parametric probability distributions for daily
SPI estimation, but they retained the monthly averaging period. When compared with
the SPI/SSI applications, using the daily time scale for the probabilistic annual runoff
cycle provides information on runoff conditions with finer resolution and helps to avoid
discontinuities when using the monthly scale and transiting from one month to another.

Regardless of temporal resolution, finding appropriate distribution type(s) for pre-
cipitation or streamflow is a crucial issue because it can considerably affect the computed
SPI/SSI series and the derived drought characteristics [30,53]. Inappropriate distribution
can lead to inconsistencies in the SPI or SSI such as the average not being equal to 0 and the
variance not being equal to 1 [30]. When assessing the probabilistic annual runoff cycle for
a given location, finding the most appropriate distribution is still a great challenge, but the
targets of this process are less demanding regarding spatial comparability and in terms of
constraints related to statistical properties.

Furthermore, the probabilistic annual runoff cycle is obtained here using the periodic
functions for statistical properties of daily streamflow. This approach leads to smooth
periodic-like lines of streamflow quantiles within a year and additionally ensures continuity
of the thresholds that delineate certain hydrological condition zones.

As the SPI and SSI are devised as indices that should facilitate comparability of
conditions in space and time, relevant thresholds that define specific conditions (e.g.,
droughts) are obtained via the equiprobability transformation from a selected distribution
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into the standardized normal quantiles. Typical thresholds are SPI = 0 or SSI = 0, and they
are constant over the annual cycle. Conversely, the thresholds in the probabilistic annual
runoff cycle are expressed directly in the physical units of streamflow at a given location
and are therefore variable throughout a year. This provides a more intuitive presentation of
the hydrological conditions in the annual cycle, and the zones delimited by these thresholds
readily show deficits and surpluses in available water quantities.

6. Conclusions

Hydrologic change detection involves different identification approaches, temporal
scales, and spatial scales. This study presents an analysis of changes in the annual and
seasonal runoff of ten catchments in Serbia in the 1961–2020 period at the daily time scale.
The analysis is based on the probabilistic representation of the seasonal runoff pattern that
is obtained from marginal distributions of daily flows (MDDFs) with periodic distribution
parameters inherited from the periodic statistical parameters of daily flow series. The
hydrologic (wetness) conditions are defined as the zones between the MDDF quantiles
of specific probabilities, selected to depict dry, average, and wet normal conditions in the
catchment.

Based on a comparison of these zones between the two 30-year periods at the annual
and seasonal scales, the following may be concluded:

1. The seasonal runoff pattern changed from one period to another in terms of temporal
shift and the occurrence of more extreme flows. However, the general pattern of
seasonal runoff remained the same. The prevailing pattern is simple and unimodal,
while the less present mixed regime is bimodal.

2. In most of the catchments, runoff volume has decreased in the recent 1991–2020 period
at both the annual and seasonal scales. The critical season is summer for dry and
average conditions, with volume reduction in all catchments.

3. The most pronounced shift in runoff timing is found on the annual scale. Dry and
average conditions occur earlier at this scale. The change in runoff timing is found
to be insignificant for all seasons and zones, except for wet conditions, which occur
earlier in spring.

The proposed zoning of hydrologic conditions based on probabilistic variable daily
flow thresholds enables more precise analysis of runoff volume and timing between the
selected periods. It also enables more detailed analysis of zones that are critical for some
applications in a certain period of the year. For instance, such an analysis may be of interest
in drought-related studies in the seasons when water deficit conflicts with water demand.

The results of this study are generally in line with the results of the previous hydrologic
change analyses in the study area, in terms of both past changes and those predicted for
the near-future climate, but our results may be considered more detailed due to the applied
approach based on MDDFs with periodic distribution parameters. It is demonstrated that
the proposed approach allows for detecting a structural change in the hydrological regime,
and detecting changes in the regulated flow regime when statistical tests cannot detect
the change. The daily time scale of the seasonal runoff pattern representation makes this
approach more useful for monitoring actual catchment wetness and runoff conditions and
therefore for operational water management and early warning systems. In situational
assessment and forecasting, the wetness condition zones may be used for flow forecasting
by focusing on the zone to which current daily flows belong. It is worth noting that
the boundaries of the wetness zones could be changed easily depending on the purpose
required. Furthermore, the zone boundaries, i.e., the probabilistic thresholds, can also be
converted to hydrologic drought indicators such as the SSI.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/w15162919/s1. Figure S1: Seasonal variation of daily flow statistics
(peaky lines) and their corresponding periodic functions (smooth lines) at all HS estimated for the
three periods: (a) mean, (b) standard deviation, and (c) coefficient of skewness; Figure S2: Seasonal
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variation of log-transformed daily flow statistics (peaky lines) and their corresponding periodic
functions (smooth lines) at all HS estimated for the three periods: (a) mean, (b) standard deviation,
and (c) coefficient of skewness; Figure S3: Periodical parameters of LPT3 marginal distribution of
daily flows at all HS: (a) shape parameter ατ,per, (b) scale parameter βτ,per, (c) location parameter γ

τ,per; Figure S4: The diagrams of MDDF at all HS for the three periods showing the quantiles (a) for a
full range of probabilities p(x), from 0.01 to 0.99, and (b) for low to median probabilities. Solid lines
represent the latest 1991–2020 period, the dashed lines represent the earlier 1961–1990 period, and
the dotted lines represent the whole 1961–2020 period.
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Appendix A

Table A1 shows the results of statistical tests for the homogeneity, randomness, and
trends of annual flows at the 10 hydrological stations used in this study over the 1961–2020
period. The table shows p-values of the test statistics in the following tests: a test on the
difference between two means (Z-test), two tests on the difference between two variances
(Fisher’s F-test and Levene’s test), the Mann–Whitney test for homogeneity, the Wald–
Wolfowitz run test for independence, and the Mann–Kendall test for trends (with the null
hypothesis that there is no trend in the data).

Table A1. Results (p-values) of the tests applied to the annual flow series for the period 1961–2020.

HS# Z 1 F 2 L 3 M-W 4 W-W 5 M-K 6

1 0.792 0.888 0.946 0.792 0.520 0.444
2 0.507 0.469 0.732 0.584 0.367 0.329
3 0.150 0.430 0.563 0.092 0.899 0.211
4 0.402 0.344 0.442 0.382 0.700 0.506
5 0.206 0.809 0.420 0.152 0.896 0.367
6 0.374 0.673 0.619 0.393 0.053 0.415
7 0.358 0.089 0.215 0.184 0.520 0.255
8 0.111 0.729 0.793 0.084 0.367 0.154
9 0.254 0.968 0.588 0.262 0.520 0.293

10 0.601 0.654 0.390 0.516 0.700 0.354

Note(s): 1 Z-test; 2 Fisher’s F-test; 3 Levene’s test; 4 Mann–Whitney test; 5 Wald–Wolfowitz test; 6 Mann–Kendall
test.
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Abstract: Implementing real-time prediction and warning systems is an effective approach for mit-
igating flash flood disasters. However, there is still a challenge in improving the accuracy and
reliability of flood prediction models. This study develops a hydrological prediction model named
SCE-GUH, which combines the Shuffled Complex Evolution-University of Arizona optimization
algorithm with the general unit hydrograph routing method. Our aims were to investigate the
applicability of the general unit hydrograph in runoff calculations and its performance in predicting
flash flood events. Furthermore, we examined the influence of parameter variations in the general
unit hydrograph on flood simulations and conducted a comparative analysis with the conventional
Nash unit hydrograph. The research findings demonstrate that the utilization of the general unit
hydrograph method can considerably decrease computational errors and enhance prediction accuracy.
The flood peak detection rate was found to be 100% in all four study watersheds. The average Nash–
Sutcliffe efficiency coefficients were 0.83, 0.83, 0.84, and 0.87, while the corresponding coefficients
of determination were 0.86, 0.85, 0.86, and 0.94, and the absolute errors of peak present time were
0.19 h, 0.40 h, 0.91 h, and 0.82 h, respectively. Moreover, the utilization of the general unit hydrograph
method was found to significantly reduce the peak-to-current time difference, thereby enhancing
simulation accuracy. Parameter variations have a substantial influence on peak flow characteristics.
The SCE-GUH model, which incorporates the topographic and geomorphological features of the
watershed along with the optimization algorithm, is capable of effectively characterizing the catch-
ment properties of the watershed and offers valuable insights for enhancing the early warning and
prediction of hydrological forecasting.

Keywords: general unit hydrograph; rainfall–runoff relationship; optimization algorithm; flash flood
simulation; application test; surface confluence

1. Introduction

In the context of global climate change, extreme rainfall occurs frequently, with flash
floods contributing significantly to natural disasters [1]. Flash floods pose significant
challenges for flood control and disaster management, given their abruptness, destructive
impact, and the difficulty of providing early warnings and forecasts [2]. One of the central
topics in flood forecasting research is the theory of watershed confluence, which analyzes
the interaction between various factors of natural phenomena [3]. Nevertheless, the ex-
isting concentration calculation methods have several unknown parameters, leading to a
commonly observed low accuracy in predicting peak discharge [4].

The primary methods used for responding to flash flood forecast and early warning are
the dynamic critical rainfall method and the constructed hydrological model. The dynamic
critical rainfall method aims to determine the relationship between rainfall and runoff
using hydrological techniques [5]. This involves analyzing the measured soil moisture and
rainfall data in the study area to establish the correlation between rainfall and soil moisture;
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subsequently, a correlation model is developed for rainfall–runoff and soil moisture [6].
The outlet flow of the flash flood watershed is then derived based on the soil moisture,
and a specific method is employed to calculate the rainfall, which corresponds to the early
warning flow. This calculated rainfall value is defined as the dynamic critical rainfall. The
decision to issue early warning information for flash flood disasters is made based on
real-time synchronous or predicted rainfall. If the rainfall reaches or exceeds the specified
threshold, immediate early warning information is sent to the threatened area. The Flash
Flood Guidance System (FFGS) has been designed and developed by the Hydrologic
Research Center (HRC) of the United States [7,8]; The Japan International Cooperation
Agency has developed a community-based flash flood early warning system [9]. This
system determines early warning indicators by establishing a correlation between rainfall
intensity and effective cumulative rainfall, drawing from both experiential knowledge
and statistical data [10]; Europe has developed its own flood awareness system called the
European Flood Awareness System (EFAS) [11,12]; Malaysia has provided assistance in the
development of the internet-based Geospatial Data Exchange System (GEOREX FLOOD),
which is specifically designed to serve the local area [13]. A constructed hydrological model
is another method used for predicting and issuing early warnings for flash flood disasters.
This model involves creating a mathematical representation of the hydrological processes
in a specific area, such as rainfall–runoff relationships, soil moisture dynamics, and channel
flow. By inputting real-time or forecasted rainfall data into the model, it can simulate the
response of the watershed and provide estimates of potential flood events, enabling early
warnings to be issued to at-risk areas [14]. Progea, an Italian company, has implemented
the TOPKAPI distributed hydrological model for conducting research on forecasting and
early warning systems. Furthermore, they have successfully established a flood forecasting
system specifically designed for small and medium-sized watersheds in the region [15]; The
National Hydrological and Meteorological Administration of the United States employs
the HL-RMS hydrological model to establish flood forecasting systems specifically tailored
for the Red River watershed in Arkansas and the Colorado watershed [16].

The watershed catchment theory forms the fundamental basis for flood forecasting,
and the analysis of slope catchments has emerged as a prominent research focus [17]. The
core of catchment calculation involves the convergence of net rain droplets toward the outlet
section of the watershed. Building upon this physical foundation, numerous scholars had
put forth a multitude of methods to calculate the watershed catchment process utilizing
the unit hydrograph principle. In 1945, Clark examined the calculation method of the
instantaneous unit hydrograph, which was based on research conducted by Sherman, Zoch,
and other researchers; however, an accurate mathematical expression was not obtained
at that time [18–20]. It was not until 1957 that Nash summarized the method of time
conversion and derived the equation for the unit hydrograph [21,22]. In 1997, Gupat and
other researchers integrated the topographic distribution characteristics of the watershed to
develop the geomorphic unit hydrograph [23,24]. In 1989, Lai Peiying and other researchers
introduced the concept of the variable speed geomorphic unit hydrograph, recognizing the
nonlinear characteristics of catchment processes [25]. Subsequently, researchers successively
developed the applications of fractional instantaneous unit hydrograph and time-variant
distributed unit hydrograph for calculating river watershed concentration [4,26,27]. In
2021, Guo Junke proposed a physical perspective challenging the assumption made in most
current unit hydrograph concentration calculations, where the watershed is considered
as being in series with linear reservoirs. However, Guo argued that the actual watershed
concentration should predominantly occur in parallel [28]. Guo Junke developed a GUH
model based on a negative exponential function distribution and utilized this model to
simulate 10 actual watersheds located in the United States and the United Kingdom, and
the simulation results demonstrated good performance [29–31].

While the existing flash flood prediction models come in various types and offer
a rich assortment of runoff structures, a significant number of these models are struc-
turally complex and involve a multitude of parameters. Consequently, these models are
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unable to satisfy the demands for swift and accurate early warning and prediction of flash
floods [32]. Accurate prediction becomes difficult in areas with inadequate data because
of the demanding requirements for fundamental data on flash flood occurrence. Given
the complex underlying surfaces commonly found in flash-flood-prone areas, it is cru-
cial to introduce prediction models featuring simple structures and a reduced number of
parameters. This approach enables rapid predictions to effectively respond to the swift
onset of flash floods [33]. Choosing the parameters for the flash flood model can be chal-
lenging. Consequently, it is essential to leverage computer technology to optimize these
parameters, resulting in streamlined and simplified model parameters. This optimization
process facilitates accurate predictions while reducing reliance on extensive basic data [34].
Duan Qingyun, a professor at the University of Arizona, proposed the Shuffled Complex
Evolution-University of Arizona (SCE-UA) algorithm in 1992 [35]. This algorithm is based
on the simplex algorithm developed by Nelder and Mead in 1965, integrating concepts from
both natural biological competition principles and the fundamental principle of genetic
algorithms [36]. SCE-UA is an effective approach for addressing nonlinear constrained op-
timization problems. It possesses the ability to consistently, efficiently, and swiftly explore
the global optimal solution of hydrological model parameters [37]. The SCE-UA algorithm
is applicable for parameter estimation in hydrological models, optimization of decision
variables in water resource management models, evaluation of flood risk, and support of
water resource planning [34]. Utilizing the SCE-UA algorithm for parameter estimation
enhances the accuracy and predictive ability of hydrological models. This aspect is particu-
larly crucial for rainfall–runoff models, evapotranspiration models, and other hydrological
models [38]. Through thorough exploration of the parameter space and identification of
the optimal parameter combination, the model can accurately reflect real-world conditions.
The SCE-UA algorithm is widely regarded as the most effective approach for parameter
optimization in watershed hydrological models, and it finds extensive application in this
area [39].

Our study strives to develop a streamlined and precise flood prediction model, which
tackles the intricacy and data dependency of the current prediction models. To accomplish
this objective, we introduce a hybrid hydrological prediction model named SCE-GUH.
By integrating the SCE-UA algorithm with the calculation of a general unit hydrograph,
this model aims to enhance prediction accuracy while simultaneously streamlining the
complexity. In this study, the SCE-UA mixed complex evolution theory was employed to
optimize the parameters of the general unit hydrograph. Furthermore, the general unit
hydrograph was extended to flash flood watersheds where data scarcity exists, bringing
forth fresh perspectives for international flash flood warning and forecasting. As an
example, we conducted rainfall–runoff simulations in four watersheds. In these simulations,
we utilized the Nash unit hydrograph method to re-calculate the surface concentration. By
doing so, we aimed to compare and validate the predictive effectiveness of the general unit
hydrograph principle in simulating flash floods.

2. Materials and Methods
2.1. Study Area

The applicability of the SCE-GUH model was tested by selecting control watersheds
(Lixin and Xiagushan watersheds) from the Lixin and Xiagushan hydrological stations in the
Huaihe River in China, as well as control watersheds (Liqingdian and Miping watersheds)
from the Liqingdian and Miping hydrological stations in the Yangtze River in China,
with similar climatic characteristics. The geographical distribution of the study area is
presented in Figure 1. These study areas are characterized by hilly terrain and complex and
changeable weather patterns. The spatial and temporal distribution of annual precipitation
is uneven, and the instability of precipitation often results in frequent flash flood disasters,
which can cause significant impacts and damages. The fundamental information of these
four watersheds is summarized below:
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• Lixin watershed: Located within the Huaihe River Basin of China, it covers an area of
79 km2 (113◦36′–113◦46′ E, 32◦86′–32◦98′ N). The watershed experiences a continental
monsoon climate, characterized by hot and rainy summers, and a humid climate. The
average annual precipitation is 960 mm. Land use analysis reveals that farmland and
grassland dominate the area, accounting for 39.51% each, followed by forest land at
14.81%.

• Xiagushan watershed: Located within the Huaihe River Basin of China, it covers an
area of 383.5 km2 (112◦28′–112◦43′ E, 33◦48′–34◦00′ N). The watershed experiences a
warm temperate continental monsoon climate with four distinct seasons and abundant
rainfall, averaging 1000 mm annually. Land use analysis reveals that the largest
proportion of land is dedicated to farmland (45.50%), followed by grassland (41.64%)
and forest land (9.51%).

• Liqingdian watershed: Located within the Yangtze River Basin of China, it covers an
area of 634 km2 (112◦06′–112◦31′ E, 33◦27′–33◦44′ N). The watershed exhibits distinct
features of transitioning from a subtropical to warm temperate zone, with precipitation
concentrated in the summer. It has an average annual precipitation of 868.8 mm. The
largest proportion of land use in the watershed is grassland (73.63%), followed by
farmland (18.97%) and forest land (4.01%).

• Miping watershed: Located within the Yangtze River Basin of China, it covers an
area of 1402.8 km2 (110◦49′–111◦29′ E, 33◦34′–33◦59′ N). The watershed experiences
a warm temperate continental monsoon climate with mild weather conditions, four
distinct seasons, and moderate rainfall. It has an average annual rainfall of 830 mm.
Land use analysis shows that grassland accounts for the largest proportion (90.52%),
followed by farmland (7.86%) and forest land (2.41%).
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Figure 1. Map showing the geographical distribution of the study area.

2.2. Data Processing

Rainfall and discharge data were obtained from China’s Hydrological Statistical
Yearbook (1980–2013), ensuring a temporal resolution of 1 h. DEM data were obtained
from China’s geospatial cloud data (https://www.gscloud.cn/) with a spatial resolu-
tion of 30 m. The access date was 6 May 2023. The land use data were obtained from
the 1:100,000 land use dataset provided by the National Tibetan Plateau Scientific Data
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Center (http://data.tpdc.ac.cn) and the Global Geographic Information Public Product
(http://www.globallandcover.com). The access date was 8 May 2023.

2.3. Methods
2.3.1. General Unit Hydrograph

The rainfall–runoff simulation approximates the watershed as a time-invariant linear
hydrological system. The simulation assumes that the regulation and storage of the wa-
tershed’s net rain on the surface can be represented by the regulation of M parallel linear
reservoirs, as illustrated in Figure 2. Each linear reservoir within the confluence adheres
to the watershed’s water storage equation and the conservation law of mass [28]. The
unit hydrograph is divided into three sections. The rising and recessing sections follow
the “exponential” pattern of growth and decline. As time approaches infinity, the unit
hydrograph tends to zero [30]. The equation for the instantaneous unit hydrograph is
obtained through the superposition of multiple negative exponential functions [29,31]. It
can be expressed as

u(t) =
µ

tp
e

µ
tp (t−tp)(1 + me

µ
tp (t−tp))

−(1+1/m)

(1)

where u(t) represents the instantaneous unit hydrograph; µ represents the rising coefficient
determined by watershed characteristics (s); tp represents the time interval from the peak
of net rainfall to the peak of flood (s); m represents the recessing coefficient affected by the
downstream water surface conditions.
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To make µ dimensionless, we can perform a transformation by letting µ
tp
→ µ . This

transformation leads to the general unit hydrograph g(T):

g(T) =
Tw

0

u(t)dt = 1−
{

1 + me[µ(T−tp)]
}−1/m

(2)

Given the knowledge of the surface runoff RS(t) for different durations ∆τ (starting at
t = τ and ending at t = τ + ∆τ), the general unit hydrograph can be employed to deduce
the corresponding surface runoff Qs,t:

Qs,t = ∑
τ

F× Rs(τ)
1

∆τ [g(t−τ) − g(t−τ−∆τ)]

= ∑
τ

F× RS(τ)
1

∆τ

{[
1 + meµ(t−τ−∆τ−tp)

]−1/m
−
[
1 + meµ(t−τ−tp)

]−1/m
} (3)

where Qs,t represents the surface runoff at time t (m3·s−1); F represents the watershed area
(m2); ∆τ represents rainfall duration starting at t = τ and ending at t = τ + ∆τ; RS(τ)
represents the surface runoff depth in duration ∆τ (m); τ represents a dummy variable
in terms of time starting at τ = 0 and ending at τ = t (s). For the selected flood data, we
assume that τ changes with a magnitude equal to the selected time step, which is 1 in
this case.

2.3.2. SCE-UA Algorithm

The SCE-UA algorithm is an efficient and robust global optimization method, known
for its ability to effectively exploit population information, thereby enhancing algorithm
convergence speed. The method integrates four key concepts: (1) a combination of deter-
ministic and probabilistic approaches; (2) systematic evolution across point groups in the
parameter space to achieve global improvement; (3) competitive evolution; (4) complex
recombination [35]. Complex recombination improves survival capability by enabling
the sharing of independently acquired information about the search space among the
complexes. While the SCE-UA algorithm involves numerous parameters, most of them can
adopt default values based on existing research findings. The determination of the complex
number “p” is the only parameter, which needs to be tuned based on the specific problem
at hand [40]. Based on the recommendation in the literature, “p” represents the number
of complexes; “n” represents the number of parameters; “m1” represents the number of
vertices in each complex; “q” represents the number of vertices in each subcomplex; “s”
represents the population size; while “α” and “β” correspond to the number and algebraic
characteristics of offspring generated from the parent generation; the values of the parame-
ters are defined as follows: m1 = 2n + 1, q = n + 1, s = pm1, α = 1, and β = 2n + 1 [35]. Figure 3
illustrates the flowchart framework of the SCE-UA method employed in this study. Here,
we provide a detailed description of the method:

1. Initialization: Set the dimensionality of the problem, “p” (value = 2); the value of
“n” is 3 in the calculation process using the general unit hydrograph method, which
involves only three parameters: µ, m, tp; “m1” (value = 7); “s” (value = 14).

2. Sample generation: Randomly generate s sample points within the feasible parameter
space and compute the criterion value F for each point. F comprises four components:
fNSE denotes the Nash efficiency coefficient function; fR2 represents the determination
coefficient function; fRE corresponds to the absolute error function; and f∆t symbolizes
the peak time difference function.

F = 0.6× ( fNSE + fR2) + 0.2× (1− fRE) + 0.2× (1− f∆t) (4)

3. Sorting points: Arrange the s points in descending order based on their criterion
values, with the first point corresponding to the maximum F value and the last
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point representing the F value (in the study, the maximum value is considered as the
objective function).

4. Partition into complexes: Divide the s points into p complexes, where each complex
contains m points.

5. Complex evolution: Evolve each complex using the competitive complex evolution
(CCE) algorithm.

6. Complex recombination: Merge the points from the evolved complexes into a sample
population; sort this population in ascending order of F.

7. Criterion evaluation: If the termination criteria are satisfied, stop; otherwise, go to Step 4.
The convergence criteria for the optimization process are as follows: the iteration terminates
when the objective function F attains the maximum allowable value or when the rate of
change satisfies the specified minimum ratio (0.01%), indicating convergence.
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2.3.3. SCE-GUH Model

This study investigates the suitability of the general unit hydrograph routing calcula-
tion for hydrological forecasting and flood disaster defense by analyzing the characteristics
of its flow routing calculation. A relatively simple two-source model is implemented, where
the routing module is divided into surface runoff and groundwater runoff components.
The linear reservoir method, a well-established approach, is utilized to compute the ground-
water runoff by simulating the processes of groundwater storage and release. To compute
the surface runoff, the general unit hydrograph recession calculation, investigated in this
study, is utilized, with parameter values being optimized using the SCE-UA algorithm.
The SCE-GUH model integrates the SCE-UA optimization algorithm with the general unit
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hydrograph routing method. Specifically, the coupling process involves iterative com-
putation. Initially, the SCE-UA algorithm generates a set of parameters for optimization,
determined by the specified parameter range and initial values. Subsequently, these pa-
rameter values are utilized to compute the output of the general unit hydrograph method,
which is compared with observed data in order to obtain the objective function, serving
as an indicator for model fitting. Subsequently, the SCE-UA algorithm employs specific
strategies to update or adjust the parameters, considering the current parameter values
and the objective function. These changes may include parameter increases, decreases,
or substitutions. The updated parameter values are subsequently employed to calculate
the output of the general unit hydrograph routing method, repeating the process for the
subsequent round of computing the statistic and adjusting the parameters. This process
continues until the statistic achieves its maximum value or meets other specified stopping
criteria. In summary, the aim of integrating the optimization algorithm with the model
is to iteratively update the parameters and identify the parameter combination, which
optimally aligns the general unit hydrograph routing method with real-world observed
data, ultimately enhancing the SCE-GUH model’s applicability and predictive accuracy.

2.3.4. Model Benchmarks and Methods

Multiple benchmarks were employed to assess the performance of the SCE-GUH
model. These benchmarks comprise Nash’s instantaneous unit hydrograph (NIUH), Nash’s
instantaneous unit hydrograph coupled with the SCE-UA algorithm model (SCE-NIUH),
and traditional general unit hydrograph (GUH). The model construction framework is
depicted in Figure 4. The 53 flood scenarios employed for model calibration and verification
are consistent, which is the premise for comparing the performance of different benchmarks.
Among the four watersheds, we select flood events with strong data availability, where
the first 70% of the data is used as the calibration period, and the remaining 30% is used
as the validation period. Both the calibration and validation periods encompass different
hydrological conditions, such as drought periods, normal periods, and high-flow periods,
to ensure the model performs well under various hydrological conditions. We concurrently
calculated and compared the performance evaluation metrics of all benchmarks.
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Figure 4. Diagram illustrating the structure of the model: (a) GUH; (b) NUIH; (c) SCE-GUH;
(d) SCE-NUIH.
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The NIUH and SCE-NIUH models were calculated using the Nash unit hydrograph
method, which assumes linearity and time invariance in the watershed’s response, treating
the watershed as a sequence of linear reservoirs connected in series, depicted in Figure 5.
The Nash unit hydrograph calculates the confluence using the gamma function distribu-
tion, which has emerged as one of the most frequently utilized methods for confluence
calculation [22,41].
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Figure 5. Schematic diagram illustrating the calculation of watershed concentration using the Nash
unit hydrograph method.

2.3.5. Selection of Evaluation Indicators

The mathematical expressions for these metrics can be described as follows.
The average Nash–Sutcliffe efficiency coefficient (NSE) quantifies the model’s ability to

predict variables deviating from the mean. It indicates the proportion of the initial variance
explained by the model and varies from −∞ to 1, where 1 represents a perfect fit. Higher
values closer to 1 indicate more accurate predictions:

NSE = 1−

n
∑

i=1
(Qi

S −Qi
O)

2

n
∑

i=1
(Qi

S −QO)
2

(5)

where n represents the total number of measured data; Qi
S and Qi

O denote the simulated
and observed discharge, respectively; Q0 represents the average observed discharge.

The coefficient of determination (R2) is commonly employed to quantify the level of
fit between data. A higher R2 value indicates a stronger association with the reference
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equation, while a lower R2 value (closer to 0) implies a weaker association, as illustrated in
Equation (5):

R2 =

[
∑n

i=1 (Q
i
S −QS)(Qi

O −QO)
]2

∑n
i=1 (Q

i
S −QS)

2
(Qi

O −QO)
2 (6)

where Qs represents the average simulated discharge.
The relative error (RE) is calculated by multiplying the ratio of the absolute error of

a measurement to the actual value by 100%. Equation (6) shows the calculation. In the
evaluation of flash flood models, RE is commonly employed to assess the reliability of the
simulated flood peak discharge:

RE =
Qmax

s −Qmax
o

Qmax
o

× 100% (7)

where Qmax
s , Qmax

o represent the maximum simulated peak discharge and observed peak
discharge, respectively.

The absolute error of peak present time (∆t) can be calculated as the difference between
the moment when the maximum flood discharge appears in the forecast process and
the moment when it appears in the actual flood process. The formula to calculate ∆t is
as follows:

∆t = tmax
s − tmin

o (8)

where tmax
s , tmin

o represent the occurrence time of simulated and observed flood peaks,
respectively.

3. Results
3.1. Model Calibration and Validation Results

The evaluation employs multiple discriminant indicators, including NSE, R2, RE,
and ∆t. Considering the small drainage area and short flood duration in the study area,
the allowable accuracy for predicting the flood peak is set at 20% of the measured flood
peak. This implies that the predicted flood peak should be within ±20% of the actual
observed value. Furthermore, a permissible deviation of up to 3 h is set for the peak time to
avoid significant differences between the predicted and actual peak times. Table 1 presents
the optimal parameter values utilized in computing surface flow concentration using the
SCE-UA algorithm. These parameters are determined during the calibration process of the
SCE-GUH model and the SCE-NUIH model.

Table 1. The parameter values were derived using the SCE-UA algorithm.

Watershed
SCE-GUH SCE-NIUH

m tp/h µ n k

Lixin 1.60 0.96 2.18 1.61 3.32
Xiagushan 1.90 0.60 0.20 1.86 3.74
Liqingdian 6.70 2.10 2.50 2.53 3.11

Miping 1.00 2.00 1.50 2.79 4.40

A total of 39 representative floods were selected from 53 flood events in four wa-
tersheds: 12 from the Lixin watershed, 11 from the Xiagushan watershed, 8 from the
Liqingdian watershed, and 8 from the Miping watershed. The selection process aimed to
capture a range of different flood characteristics. The simulation results of the four models
during the parameter calibration period are presented in Table 2, and Figure 6 illustrates
the simulated hydrograph. The hydrographs generated by the NIUH, SCE-NIUH, GUH,
and SCE-GUH models exhibit a close agreement with the observed hydrographs. These
representative floods were utilized for model parameter calibration.
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Table 2. Summary table of simulated results for flood events during the calibration period.

Basin

RE/% Nse R2 4t/h

NUIH SCE-
NUIH GUH SCE-

GUH NUIH SCE-
NUIH GUH SCE-

GUH NUIH SCE-
NUIH GUH SCE-

GUH NUIH SCE-
NUIH GUH SCE-

GUH

Lixin 14.21 17.30 9.70 11.35 0.69 0.73 0.75 0.82 0.73 0.74 0.79 0.85 0.67 0.50 0.42 0.17
Xiagushan 14.33 15.72 8.55 8.40 0.73 0.76 0.80 0.82 0.75 0.83 0.84 0.85 0.82 1.00 0.73 0.45
Liqingdian 12.13 12.52 13.35 12.60 0.71 0.76 0.82 0.84 0.79 0.86 0.87 0.87 1.13 1.00 0.75 0.75

Miping 13.70 16.78 8.21 5.54 0.70 0.72 0.83 0.87 0.75 0.79 0.93 0.95 2.38 2.38 0.63 0.63

1 

 

 

Figure 6. Calibration period flood events simulation results. Among them, (a–d) represents the
process diagram of observed and simulated runoff in Lixin, Xiagushan, Liqingdian, and Miping
watersheds; (e–h) is a scatter plot of observed and simulated runoff in Lixin, Xiagushan, Liqingdian,
and Miping watersheds; (i–l) is the NSE map of Lixin, Xiagushan, Liqingdian, and Miping watersheds.

We conducted 12 typical flood simulations in the Lixin watershed. The average RE
calculated for these simulations were 14.21%, 17.30%, 9.70%, and 11.35% for the NIUH,
SCE-NIUH, GUH, and SCE-GUH models, respectively. The respective models achieved
peak flow rates with qualification rates of 83.33%, 83.33%, 100%, and 100%. ∆t across all
four models were determined as 0.67 h, 0.50 h, 0.42 h, and 0.17 h, respectively. Each model
achieved a peak flow time qualification rate of 100%. The average NSE values for the
NIUH, SCE-NIUH, GUH, and SCE-GUH models were 0.69, 0.73, 0.75, and 0.82, respectively.
Additionally, the corresponding R2 values were 0.73, 0.74, 0.79, and 0.85. However, when
performing calculations with the NIUH model, the relative errors of peak flow rates for
the floods on 14 June 1984 and 20 July 1987 exceeded 20%, violating the allowable error
threshold. In contrast, the flood simulations conducted using the GUH model produced
peak flow rates, which closely matched the measured flow rates within the acceptable
error limit for both floods. It is worth noting that the simulation results obtained from the
GUH model exhibited superior performance compared to the NIUH model in terms of
RE, peak flow rate qualification, R2, ∆t, and NSE. We simulated 11 typical flood events in
the Xiagushan watershed using four models: NIUH, SCE-NIUH, GUH, and SCE-GUH.
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The RE of the average simulation results for these models were obtained and found to be
14.33%, 15.72%, 8.55%, and 8.40%, respectively. The flood peak qualification rates for each
model were calculated as 90.91%, 90.91%, 100%, and 100%, respectively. The ∆t were 0.82 h,
1 h, 0.73 h, and 0.45 h, respectively. Furthermore, all four models achieved a peak timing
qualification rate of 100%. Moreover, the average NSE values were 0.73, 0.76, 0.80, and 0.82,
and the average R2 values were 0.75, 0.83, 0.84, and 0.85, respectively. It is worth noting
that applying the SCE-NIUH model in this watershed resulted in an overall improvement
of 0.03 in NSE and 0.08 in R2 compared to the NIUH model. However, the simulations of
average RE and ∆t using the SCE-NIUH model slightly underperformed compared to the
NIUH model. This discrepancy can be attributed to the SCE-UA algorithm, which assigns
an NSE proportion of up to 0.6 during parameter calibration for the objective function
and prioritizes improving the model’s NSE [42]. Additionally, the simulation results using
GUH for flow routing showed significant improvements over the NIUH. Moreover, the
simulation results using the SCE-GUH model outperformed the GUH model. Specifically,
the average RE and ∆t values were reduced by 0.15% and 0.28 h, respectively, and the
average NSE and R2 improved by 0.02 and 0.01, respectively, compared to the GUH model.

We simulated eight typical flood events in the Liqingdian watershed using four models:
NIUH, SCE-NIUH, GUH, and SCE-GUH. The resulting average RE values for the models
were 12.13%, 12.52%, 13.35%, and 12.60%, respectively. While the RE values of other models
decreased compared to the NIUH model, all models (except NIUH, with a peak flow rate
passing the rate of 87.5%) achieved a 100% pass rate. The average ∆t were obtained as
1.13 h, 1 h, 0.75 h, and 0.75 h, corresponding to peak time pass rates of 87.50%, 90.91%,
100%, and 100%, respectively. Moreover, the NIUH, SCE-NIUH, GUH, and SCE-GUH
models achieved average NSE values of 0.71, 0.76, 0.82, and 0.84, and average R2 values of
0.79, 0.86, 0.87, and 0.87, respectively. A case analysis of the flood event, which occurred on
23 July 2005, showed that the NUIH model had RE, ∆t, and NSE values of 15.38%, 5 h, and
0.71, respectively, while for the SCE-NIUH model, the corresponding values were 16.7%,
4 h, and 0.71, respectively. In contrast, the GUH model produced RE, ∆t, and NSE values
of 13.36%, 1 h, and 0.79, and the SCE-GUH model had values of 13.38%, 1 h, and 0.78,
respectively. It is important to note that utilizing the NIUH model led to a ∆t value for
the flood event, which exceeded the acceptable error range. While the SCE-UA algorithm
reduced the error by 1 h, it still exceeded the forecast accuracy standards. However, by
utilizing the GUH model, enhancements in NSE were observed, and ∆t was significantly
reduced to 1 h, effectively controlling it within the allowable error range.

We conducted eight typical flood simulations in the Miping watershed using four
models, namely NIUH, SCE-NIUH, GUH, and SCE-GUH. The average RE values for
these models were determined as 13.70%, 16.78%, 8.21%, and 5.54%, respectively. The
qualification rates for flood peak accuracy were recorded as 87.50%, 87.50%, 100%, and
100% for these models, respectively. The average ∆t values were determined as 2.38 h,
2.38 h, 0.63 h, and 0.63 h for the four models, respectively, while achieving qualification
rates of 75%, 75%, 100%, and 100%. The average NSE values were calculated as 0.70, 0.72,
0.83, and 0.87 for the NIUH, SCE-NIUH, GUH, and SCE-GUH models, respectively. The
average R2 values were 0.75, 0.79, 0.93, and 0.95 for NIUH, SCE-NIUH, GUH, and SCE-
GUH, respectively. Notably, the NIUH and SCE-NIUH models displayed significant errors
in simulating the floods, which occurred on 4 September 2003 and 1 October 2005, with
average ∆t of 4 h and 6 h, respectively. In contrast, the GUH and SCE-GUH models precisely
reproduced the timing of flood peaks observed in the actual hydrographs. Consequently,
there was a significant improvement in the NSE values, with the NIUH model transitioning
from 0.67 and 0.62 to 0.75 and 0.73, and the SCE-NIUH model transitioning from 0.67 and
0.65 to 0.80 and 0.81 for the GUH and SCE-GUH models, respectively.

The simulation results of the four models, based on the application practices during
the calibration period in four watersheds, demonstrate that the general unit hydrograph
algorithm significantly outperforms the NIUH algorithm in terms of controlling peak
timing error and relative peak flow error. Figure 7 illustrates the error in peak present
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time. Additionally, calibrating unit hydrograph parameters using the SCE-UA algorithm
can enhance simulation accuracy. This demonstrates that the optimized parameter values
are reasonably close to the true values, making them suitable for broader application. In
summary, the performance of the four models can be ranked as follows: SCE-GUH > GUH
> SCE-NIUH > NIUH.
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Figure 7. Diagram showing the time difference of simulated flood peaks during the calibration period.

The verification period involved four typical flood events in the Lixin and Xiagushan
watersheds, respectively, as well as three events in the Liqingdian and Miping watersheds,
respectively. Table 3 provides the simulated results for flood events during the verification
period, whereas Figure 8 illustrates the simulated rainfall and runoff, along with the
performance evaluation chart of the four models throughout this period.

Table 3. Table of simulated results during the validation period for flood events. In the relative error,
a negative sign (−) indicates that the simulated peak flow is lower than the observed flow. In the peak
timing error, a negative sign (−) indicates that the simulated peak occurs earlier than the actual peak.

Number

RE/% Nse R2 4t/h

NUIH SCE-
NUIH GUH SCE-

GUH NUIH SCE-
NUIH GUH SCE-

GUH NUIH SCE-
NUIH GUH SCE-

GUH NUIH SCE-
NUIH GUH SCE-

GUH

Lixin watershed

20030830 −2.22 −15.76 −5.83 1.19 0.89 0.93 0.92 0.94 0.93 0.95 0.95 0.96 0 0 0 0
20050708 10.47 13.33 8.19 11.42 0.79 0.94 0.82 0.87 0.84 0.88 0.88 0.90 0 0 0 0
20080722 10.39 −15.23 −12.23 −5.54 0.54 0.72 0.77 0.83 0.70 0.77 0.82 0.85 −1 −1 −1 −1
2010019 7.71 −14.30 −16.21 −16.14 0.73 0.78 0.81 0.86 0.81 0.85 0.88 0.89 0 0 0 0
Average 7.70 14.66 10.62 8.57 0.73 0.82 0.83 0.87 0.82 0.86 0.88 0.90 0.25 0.25 0.25 0.25

Xiagushan watershed

20000714 −85.90 −57.85 −25.88 −18.66 0.52 0.61 0.59 0.60 0.62 0.65 0.62 0.63 0 0 −1 1
20020626 −4.30 −16.26 0.20 6.99 0.62 0.78 0.91 0.95 0.65 0.79 0.92 0.96 −1 −1 0 0
20100718 −0.84 −17.95 −7.24 −11.38 0.66 0.67 0.89 0.91 0.70 0.69 0.89 0.92 0 0 0 0
20130525 −1.62 3.50 1.87 5.53 0.71 0.79 0.86 0.89 0.72 0.79 0.86 0.89 3 3 0 0
Average 23.17 23.89 8.80 10.64 0.63 0.71 0.81 0.84 0.67 0.73 0.82 0.85 1 1 −0.25 0.25

Liqingdian watershed

20100819 −23.99 −17.58 0.77 1.28 0.62 0.59 0.72 0.73 0.72 0.63 0.76 0.76 1 1 −1 1
20100823 4.46 10.23 3.95 6.23 0.70 0.76 0.77 0.81 0.79 0.85 0.82 0.84 3 0 −3 3
20110914 1.02 8.92 −8.55 −3.35 0.80 0.88 0.93 0.94 0.88 0.94 0.95 0.95 0 1 0 0
Average 9.82 12.24 4.42 3.62 0.71 0.74 0.80 0.83 0.8 0.81 0.84 0.85 1.33 0.67 1.33 1.33

Miping watershed

20090816 −17.62 −19.04 −12.74 −7.06 0.54 0.55 0.86 0.85 0.73 0.75 0.86 0.87 3 1 −1 −1
20100724 −7.81 −2.60 −7.69 −4.86 0.79 0.83 0.88 0.88 0.89 0.89 0.89 0.89 −1 −1 2 2
20110913 0.81 4.62 −3.13 1.59 0.75 0.82 0.92 0.91 0.84 0.87 0.93 0.93 1 1 1 −1
Average 8.75 8.75 7.85 4.50 0.69 0.73 0.89 0.88 0.82 0.84 0.89 0.90 1.67 1 1.33 1.33
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Figure 8. Verification period flood events simulation results. Among them, (a–d) represents the
process diagram of observed and simulated runoff in Lixin, Xiagushan, Liqingdian, and Miping
watersheds; (e–h) is a scatter plot of observed and simulated runoff in Lixin, Xiagushan, Liqingdian,
and Miping watersheds; (i–l) is the NSE map of Lixin, Xiagushan, Liqingdian, and Miping watersheds.

The four models in the Lixin watershed all achieved a total qualification rate of 100%.
There was a 1 h time lag for the flood event, which occurred on 22 July 2008, while no time
lag was observed for other events. The average NSE values for the four models, namely
NIUH, SCE-NIUH, GUH, and SCE-GUH, were 0.73, 0.82, 0.83, 0.87, while the average R2

values were 0.82, 0.86, 0.88, 0.90, respectively. In the Xiagushan watershed, the RE values
for simulating the typical flood event on 14 July 2000 were 85.90%, 57.85%, 25.88%, and
18.66% for the NIUH, SCE-NIUH, GUH, and SCE-GUH models, respectively. The total
qualification rates for the NUIH, SCE-NUIH, GUH, SCE-GUH models were 75%, 75%,
75%, and 100%, respectively, with average time lags of 1 h for the NIUH and SCE-NIUH
models, and 0.25 h for the GUH and SCE-GUH models. The average NSE values for the
models were 0.63, 0.71, 0.81, and 0.84, while the average R2 values were 0.67, 0.73, 0.82,
and 0.85, respectively. In the Liqingdian watershed, the RE values for the four models
during the flood event on 19 August 2010 were 23.99%, 17.58%, 0.77%, and 1.28% for NUIH,
SCE-NUIH, GUH, and SCE-GUH, respectively. Consequently, the NUIH model had a total
qualification rate of only 66.67%. However, the simulation results of the other three models
were within the acceptable prediction error range, resulting in a total qualification rate
of 100%. The SCE-NIUH model had an average time lag of 0.67 h, while the other three
models had an average time lag of 1.33 h. The average NSE values for the models were
0.71, 0.74, 0.80, 0.83, respectively. Similarly, the average R2 values were 0.80, 0.81, 0.84,
and 0.85, respectively. The four simulated models in the Miping watershed all achieved
a total qualification rate of 100%. The average time lags for the NUIH, SCE-NUIH, GUH,
SCE-GUH models were 1.67 h, 1 h, 1.33 h, and 1.33 h, respectively. The average NSE values
for the models were 0.69, 0.73, 0.89, and 0.88, while the average R2 values were 0.82, 0.84,
0.89, and 0.90, respectively. Figure 9 shows the errors in peak time presentation for the four
watersheds based on the four methods.
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Figure 9. Diagram showing the time difference of simulated flood peaks during the validation period.

We conducted a comprehensive performance analysis of the four models across the
selected watersheds. The SCE-GUH model was calibrated, and the average values of NSE,
R2, RE were found to be 0.82, 0.85, 11.35%, respectively, with ∆t of 1.67 h in the Lixin
watershed. The calibration period yielded results of 0.82 for NSE, 0.85 for R2, 8.40% for
RE, and ∆t of 0.45 h in the Xiagushan watershed. Average values of 0.84 (NSE), 0.87 (R2),
12.60% (RE), and 0.75 h (∆t) were obtained in the Liqingdian watershed. The values during
the calibration period were 0.87 for NSE, 0.95 for R2, 5.54% for RE, and ∆t of 0.63 h in
the Miping watershed. The SCE-GUH model was validated, and the average values of
NSE, R2, RE were found to be 0.87, 0.90, 8.57%, respectively, with ∆t of 0.25 h in the Lixin
watershed. The validation period yielded results of 0.84 for NSE, 0.85 for R2, 10.64% for
RE, and ∆t of 0.25 h in the Xiagushan watershed. Average values of 0.83 (NSE), 0.85 (R2),
3.62% (RE), and 1.33 h (∆t) were obtained in the Liqingdian watershed. The values during
the validation period were 0.88 for NSE, 0.90 for R2, 4.50% for RE, and ∆t of 1.33 h in the
Miping watershed. Thus, it can be concluded that the SCE-GUH model demonstrates
favorable applicability in simulating rainfall and runoff in the four watersheds.

The peak occurrence time errors for Lixin, Xiagushan, Liqingdian, and Miping in
the SCE-GUH model were 0.19 h, 0.40 h, 0.91 h, and 0.82 h, respectively. In the GUH
model, the errors were 0.38 h, 0.60 h, 0.91 h, 0.82 h. In the SCE-NUIH model, the errors
were 0.38 h, 1.00 h, 0.91 h, 2.00 h. In the NUIH model, the errors were 0.51 h, 0.87 h,
1.18 h, 2.19 h. Compared with the other three models, the SCE-GUH model showed a
significant reduction in peak time error. Among the four studied watersheds, the peak
time qualified rate was 100% in both the GUH and SCE-GUH models, while in the NUIH
and SCE-NUIH models, the qualified rates were only 81.80% in the Miping watershed
and 90.91% in the Liqingdian watershed. The NSE values for the four watersheds in the
SCE-GUH model were 0.83, 0.83, 0.84, 0.87; in the GUH model, the values were 0.77, 0.81,
0.82, 0.84; in the SCE-NUIH model, the values were 0.75, 0.75, 0.76, 0.72; in the NUIH
model, the values were 0.70, 0.70, 0.71, 0.70. By comparing the results, it can be observed
that the SCE-GUH model improved the fitting degree of the flood hydrograph. Analyzing
the overall qualification rate of the four watersheds, the SCE-GUH model achieved a
100% qualification rate. The GUH model had the second highest qualification rate, with
all watersheds except Xiagushan achieving a 100% qualification rate. It is worth noting
that the overall qualification rate of the Xiagushan watershed is 93.33%. However, in
the SCE-NUIH model, only the Liqingdian watershed achieved a 100% qualification rate,
while the other three watersheds had qualification rates of 87.5% for Lixin, 86.67% for
Xiagushan, and 72.73% for Miping. In the NUIH model, the highest qualification rate
was 87.50% in the Lixin watershed, while the lowest qualification rate was only 72.73% in
the Liqingdian and Miping watersheds. Fluctuations occurred between the observed and
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simulated data during the simulation process of the four models. The main reasons for these
fluctuations can be summarized as follows. First, there is an error in calculating the runoff
phase. Second, in some cases, the rainfall during flood events exhibits scattered patterns,
characterized by multiple rainfall peaks and downstream accumulation. The centralized
model employed in this experiment utilized Thiessen polygons for processing rainfall, but
it neglected the uneven spatial distribution of rainfall, leading to an error in simulating
the flow rate. Lastly, the time intervals for the measured flow data are inconsistent. The
study utilized a 1 h interval obtained through interpolation, which might compromise the
accuracy of the simulation results.

The comparison among the four models reveals that the model constructed with the
general unit hydrograph produces superior simulation results in comparison to the model,
which uses the same conditions but relies on the Nash unit hydrograph. Consequently, the
general unit hydrograph model, by utilizing runoff calculations, provides a more accurate
depiction of the hydrological processes within the watershed compared to the Nash unit
hydrograph model. This finding significantly contributes to enhancing our understanding
and facilitating efficient management of water resources within the watershed.

3.2. Typical Site Flood Analysis

Figure 10a presents the simulation results of the flood event of 4 August 1995 in
the Lixin watershed using four models, NIUH, SCE-NIUH, GUH, and SCE-NIUH, with
corresponding ∆t of 1 h, 1 h, 0, and 0. The NSE values for these models were 0.62, 0.63,
0.79, and 0.88, respectively. The comparison clearly shows that applying the general unit
hydrograph method significantly enhances the accuracy of flood forecasting and reduces
errors in predicting the timing of peak flow. Furthermore, optimizing the parameters
of the SCE-UA algorithm led to additional enhancements in the NSE. The floods, which
occurred on 20 August 1995, were studied in the Xiagushan watershed. The RE for this
flood, as predicted by the four models, were 12.79%, 3.90%, 5.90%, and 0.61%. The ∆t
used in the models were 1 h, 1 h, 0, and 0, while the NSE values were 0.81, 0.82, 0.97,
and 0.97, correspondingly. Figure 10b demonstrates that the rising and falling water
process, specifically in the rising and falling water section, based on the GUH model
closely resembles the observed process. The peak time is in perfect agreement with the
measured process. In contrast, the total duration of the confluence as predicted by the
NIUH differs from the observed process and is considerably shorter in duration. The
results indicate that the SCE-GUH model demonstrates superior simulation performance.
Moreover, the application of the general unit hydrograph method significantly enhanced
the accuracy of flood forecasting while reducing the discrepancy between the simulated
time of peak occurrence and the actual observed time of peak occurrence. By optimizing the
parameters of the SCE-UA algorithm, the NSE and the rate of prediction qualification were
further improved to a certain extent. The simulation of the flood event, which occurred
on 14 September 2011 in the Liqingdian watershed, indicates that the RE and ∆t values
obtained from the four models fall within an acceptable range. Moreover, the NSE values
exceed 0.80, indicating satisfactory simulation results. Please refer to Figure 10c for the
simulation hydrograph. The simulation results of the four models exhibit a high degree
of similarity during the rising stage of the flood. However, during the initial phase of
recession, the two models based on NIUH and SCE-NIUH demonstrate a noticeably slower
decline in the simulated flood compared to the observed flood. Nevertheless, the parameter
m utilized in the calculations for both the GUH and SCE-GUH models partly accounts for
the regression rate by incorporating the hydrological characteristics of the watershed. This
integration helps align the simulated regression process more closely with the observed
regression process. Figure 10d presents the simulation results of the flood event, which
occurred on 29 July 2007 in the Miping watershed, using four models: NIUH, SCE-NIUH,
GUH, and SCE-NIUH. The RE for these models were 19.00%, 16.82%, 17.01%, and 2.20%,
respectively. The ∆t were 1 h, 1 h, 0, and 0, respectively. Additionally, the NSE values
were 0.64, 0.69, 0.94, and 0.94, respectively. The simulation results for the rising and falling
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stages of this flood exhibit considerably higher accuracy in the GUH and SCE-GUH models
compared to the NUIH and SCE-NUIH models. This flood is categorized as a major flood;
due to the NUIH and SCE-NUIH models’ sensitivity to early rainfall, within the first 10 h
of rainfall, the water levels rise rapidly, and the flood peak recedes swiftly after reaching
its maximum. These processes occur at a shorter duration compared to the observed
measurements. Moreover, the flood peak emerges earlier than recorded in the observation
period. This suggests that the SCE-GUH model exhibits superior simulation performance,
followed by the GUH model in the second place. Conversely, the SCE-NUIH and NUIH
models perform notably worse than the previously mentioned two models in simulating
this flood event.
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Figure 10. Results of a typical flood simulation. Subfigures (a–d) show the comparison between the
simulated results and the measured results of the selected typical flood events in four basins: Lixin,
Xiagushan, Liqingdian, and Miping, respectively, under four different models.

The combined use of the general unit hydrograph and the SCE-UA algorithm holds
significant practical implications. The ranking order of flood simulation performance for the
four models in the four watersheds is as follows: SCE-GUH > GUH > SCE-NIUH > NIUH.
The concentration calculation equation of the general unit hydrograph is based on a nega-
tive exponential function, according to the calculation principle. The parameters, such as µ
and m, partially reflect the watershed characteristics and control the amplitude of flood
rise and fall [31]. The convergence of the Nash unit hydrograph is typically calculated
using a gamma function with parameter n. When calculating runoff from the instantaneous
unit hydrograph S curve, a table lookup is commonly used [43]. Consequently, the general
unit hydrograph convergence model exhibits higher flexibility and is more aligned with
the actual confluence process. The Nash unit hydrograph is based on the fundamental
assumption of a linear reservoir series within the watershed [17]. Higher sensitivity to
net rainfall is observed when the current soil moisture content is relatively high, resulting
in a greater change in the hydrograph amplitude compared to the measured hydrograph.
The three parameters of the general unit hydrograph integrate rainfall characteristics and
watershed features, including water system shape and watershed slope, based on the
analysis of parameter characteristics [28]. For instance, in the case of the Liqingdian water-
shed, which possesses a parallel water system with an elevation difference close to 2000 m,
incorporating these factors into the confluence calculation leads to improved simulation
results for rainfall–runoff. In conclusion, the application of the general unit hydrograph
principle in the simulation of rainfall–runoff provides a more accurate characterization of
watershed catchment characteristics compared to the Nash unit hydrograph.

3.3. Analysis of the Influence of Parameters on Unit Hydrograph

Extensive research had been conducted on the influence of Nash unit hydrograph
parameters in the existing literature. Previous studies have revealed that two parameters
in the Nash unit hydrograph exert a certain influence on the three elements of the unit
hydrograph, namely peak flow, peak lag time, and total duration [20,44]. Nonetheless,
further discussion is needed regarding the influence of the three parameters of the general
unit hydrograph on the three elements of the unit hydrograph [28]. For instance, as an
illustration, a net rainfall input of 10 mm per unit time period (1 h) in the Liqingdian
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watershed was considered. In the experiment, only one parameter was debugged at a time,
allowing for an analysis of the effects of parameter changes on the three elements of the
unit hydrograph. The results are depicted in Figure 11.
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Figure 11. Illustration of how variations in parameters affect the general unit hydrograph. Subfigures
(a–c) respectively represent the effects of parameter µ, m, tp variations on the general unit hydrograph.

Figure 11a illustrates that as µ increases, the unit hydrograph exhibits a “tall and thin”
shape, resulting in an increase in the flood peak, a decrease in the delay time of the flood
peak, and a reduction in the total duration. The results presented in Figure 11b demonstrate
that increasing the value of m leads to a “squat” shape of the unit hydrograph, which in
turn causes a decrease in the flood peak. However, the change in m has minimal impact on
the delay time and total duration of the flood peak. It is worth noting that at the end of the
confluence, the flow will increase alongside the increase in m. The observation depicted in
Figure 11c indicates that an increase in tp results in a “plump and flat” shape of the unit
hydrograph. This change leads to a decrease in the flood peak, a significant increase in the
delay time of the flood peak, and a significant extension of the total duration.

4. Discussion

The performance of the four constructed test models in the watershed is satisfactory.
These models effectively capture the variations and attenuation of flood events, maintaining
the simulation errors of peak flow and peak time within acceptable limits. Nevertheless,
all models typically underestimate the magnitude of flood peaks, a common observation
in other lumped models [6]. The performance of the four models is ranked as follows:
SCE-GUH > GUH > SCE-NIUH > NIUH. This ranking result aligns with the expectations
and validates the applicability of the SCE-GUH model, which outperforms the other three
models in simulating episodic floods. The GUH model exhibited slightly better overall
error control and simulations of flood fluctuation and dissipation compared to the NIUH
model. Consistent with previous studies, this article’s research confirms that the general
unit hydrograph method is more applicable than the Nash unit hydrograph method [29,30].
Furthermore, the SCE-GUH model exhibited superior overall performance compared to
the GUH model. This is due to the effective reduction in errors in predicting peak flow
and flood volume achieved by utilizing the complex evolutionary theory within the SCE-
UA algorithm for parameter optimization. The model is also automatically calibrated to
improve the NSE and R2 based on the constraints of the objective function [38,42]. The SCE-
GUH model demonstrates superior compliance in terms of the relative error of peak flow
and enhances the correlation coefficient compared to other lumped models [45]. Overall, the
SCE-GUH model demonstrates superior performance, notably in accurately simulating the
peak flow and improving the correlation coefficient. This distinction sets it apart from other
models in the field, making it a valuable tool for hydrological and flood prediction research.
Regrettably, we did not consider the problem of target function divergence during the
model construction process [46]. Further discussion is required to address the divergence
issue, enhance convergence speed, and ensure the target function achieves the desired
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effect. Our experiments were conducted exclusively in small watershed areas, which are
susceptible to flash floods in the Yangtze River and Huaihe River regions of China. The
performance of this model may be influenced by variations in climate change, terrain,
hydrological processes, and data availability across different regions. Consequently, further
research is necessary to investigate the model’s applicability in other regions worldwide
based on this theory, as well as to explore its practical utilization in decision support and
disaster management.

5. Conclusions

This study introduces a new flood forecasting model, SCE-GUH, which combines
the general unit hydrograph with the SCE-UA optimization algorithm. The SCE-GUH
model is founded on a robust theoretical basis and substantiated by scientific evidence.
The applicability of SCE-GUH in simulating flash flood was examined using data from
53 observed flash flood events in the Lixin, Xiagushan, Liqingdian, and Miping watersheds.
Moreover, a comparison was made between the simulation results of SCE-GUH and those
of the NIUH, SCE-NIUH, and traditional GUH models. The key findings of this study are
summarized as follows.

The performance ranking of these four models across the four watersheds is as follows:
SCE-GUH > GUH > SCE-NIUH > NIUH. The SCE-GUH model exhibits stability and
robustness across various flood scenarios. The model’s structure is succinct, optimizing
a mere three parameters. This reduces the risk of overfitting, lowers computational and
storage costs, and enhances overall efficiency. The calculation formula of the general unit
hydrograph method is relatively simple. The application of the general unit hydrograph
enhances the description of surface runoff processes and introduces a new perspective into
flood prediction research. Additionally, the application of the negative exponential function
in the confluence is simpler compared to the gamma function (Nash unit hydrograph).
This simplification reduces error transmission and the cumulative effect. The parameters
involved in the calculation include the topographic and geomorphic characteristics of the
watershed and the rainfall characteristics. Changes in these parameters have a significant
impact on the three elements of the general unit hydrograph, with the flood peak being
the most sensitive. The utilization of the SCE-UA composite optimization strategy for
parameter optimization allows for an improved characterization of the catchment char-
acteristics in the watershed, resulting in enhanced timeliness and prediction accuracy.
Therefore, the SCE-UA model is well suited for regions prone to flash floods, where data
are limited. By considering factors such as rainfall, soil moisture content, and topography
comprehensively, it enables precise simulation of water flow and accumulation processes in
a watershed, thus facilitating accurate prediction of flood propagation and evolution trends.
Furthermore, this serves as a vital scientific basis for flood forecasting and prevention
within the watershed while also providing a fresh perspective on international flash flood
early warning and prediction. However, it is important to note that this experiment was
only conducted in four selected flow domains, and its applicability should be tested further
in other watersheds.
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