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Editorial

New Advances into Nanostructured Oxides, 2nd Edition
Silvia Mostoni and Roberto Nisticò *

Department of Materials Science, INSTM, University of Milano-Bicocca, U5, Via R. Cozzi 55, 20125 Milano, Italy;
silvia.mostoni@unimib.it
* Correspondence: roberto.nistico@unimib.it; Tel.: +39-02-6448-5111

1. Introduction
The interest in inorganic nanostructured oxides is growing extensively, thanks

to their remarkable features and their wide range of applications, which include
(photo)catalysis [1–4], controlled drug-delivery and chemical release [5–7], environmental
remediation [8–10], energy and batteries [11], smart materials [12], and so on. One inter-
esting aspect of inorganic nanostructured oxides is the high level of control that can be
achieved over particle morphology, size, shape, and porosity [13], as well as their surface
properties [14,15], which further broaden the possible application of these materials in a
wide variety of fields. In fact, the use of suitable synthetic pathways and ad hoc surface
functionalization procedures provides a powerful tool to obtain pure inorganic or hybrid
inorganic–organic composite materials that represent strategic materials in the most recent
research literature [16,17].

In this context, after the success of the first edition published in Inorganics in 2022, the
second edition of the Special Issue, entitled “New Advances into Nanostructured Oxides,
2nd Edition” was launched to bring together the most recent developments on the class of
inorganic materials. This Special Issue is inserted in the “Inorganic Materials” section that,
since its birth, has rapidly grown thanks to its attention to advanced inorganic materials,
as well as their high technological demand. The aim was to collect research papers and
reviews focused on the synthesis and characterization of inorganic oxide nanomaterials
through soft chemistry approaches, favoring a high control on the particle morphology, size,
porosity and surface functionalities. In addition, in view of their application, the materials’
performances are described with the ambitious goal of identifying the structure–property
relations to connect the surface, morphological and structural features to the material
activity. This represents a shared interest in the development of innovative materials, as
the modulation of the key structural parameters may be used to tune and improve the
materials’ resulting performances.

Prior to proceeding with the overview of the contributions, the Guest Editors would
like to thank all of the reviewers who spent their valuable time thoroughly reviewing and
improving the articles published in this volume. We also sincerely thank all the authors for
choosing Inorganics, and, in particular, the “Inorganic Materials” section, as the recipient of
their excellent science.

2. An Overview of the Published Articles
Overall, this Special Issue collected 10 original papers (i.e., seven research articles

and three reviews) and received more than 16,000 views, which paved the way for the
further proposal of a third edition of the same Special Issue. The published papers can be
categorized into three main subsections as reported in Table 1, including: (i) environmental

Inorganics 2025, 13, 60 https://doi.org/10.3390/inorganics13020060
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remediation, (ii) development and optimization of new synthetic routes for metal oxides,
and (iii) drug-delivery and biomedicine. This classification was made considering both the
materials applications and the applied synthetic routes for the preparation of the materials.

Table 1. Correlation between subsections and contributions collected in the present Special Issue.

Subsections Title References

Environmental remediation

“Efficient catalytic reduction of organic pollutants using
nanostructured CuO/TiO2 catalysts: synthesis,
characterization, and reusability”

[18]

“Core/shell ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and
Al1.9Co0.1O3/TiO2 nanoparticles for the
photodecomposition of Brilliant Blue E-4BA”

[19]

“Significantly enhanced self-cleaning capability in anatase
TiO2 for the bleaching of organic dyes and glazes” [20]

“Research progress of TiO2 modification and
photodegradation of organic pollutants” [21]

“Morphological dependence of metal oxide photocatalysts
for dye degradation” [22]

Development and optimization of
new synthetic routes for metal oxides

“The influence of annealing temperature on the
microstructure and electrical properties of sputtered ZnO
thin films”

[23]

“Synthesis and redox properties of iron and iron oxide
nanoparticles obtained by exsolution from perovskite ferrites
promoted by auxiliary reactions”

[24]

“Mesoporous titania nanoparticles for a high-end
valorization of Vitis vinifera grape marc extracts” [25]

Drug-delivery and biomedicine
“Precipitative coating of calcium phosphate on microporous
silica–titania hybrid particles in simulated body fluid” [26]

“The story, properties and applications of bioactive glass
“1d”: from concept to early clinical trials” [27]

2.1. Environmental Remediation

A large portion of the contributions reported in this Special Issue is focused on the ex-
ploitation of inorganic nanomaterials (mainly TiO2) for environmental remediation. In fact,
the urgency of solving environmental pollution caused by the anthropogenic activities both
in gaseous and liquid phases has driven research interest from more than a decade [28–30].
In this field, the use of photocatalysis is one of the most studied techniques to reduce the
concentration of organic pollutants in wastewater, by using inorganic nanomaterials as
efficient photo-catalysts. At the same time, organic pollutants can be degraded by using
other catalytic reactions, such as catalytic reduction reactions in the presence of suitable
nanostructured catalysts. In this first section, three research papers and two reviews were
published [18–22].

Abouri et al. [18] reported the synthesis of nanostructured CuO/TiO2 catalysts via
a combustion technique, followed by calcination at 700 ◦C to achieve a rutile-phase TiO2

structure with varying copper loadings (in the 5–40 wt.% range). Tests were performed
aiming to reduce 4-Nitrophenol and Methyl Orange as target molecules with sodium
borohydride (NaBH4) in the presence of the CuO/TiO2 catalysts. Results indicated a
98% reduction of 4-Nitrophenol in 480 s and 98% reduction of Methyl Orange in 420 s. The
catalysts exhibited high stability over 10 reuse cycles, maintaining over 96% efficiency for
Methyl Orange and 94% efficiency for 4-Nitrophenol.

Dolatyari et al. [19] reported the synthesis of core/shell ZnO/TiO2, SiO2/TiO2, and
Al2O3/TiO2 nanoparticles using ethylene glycol for governing the nanoparticle size, fol-

2
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lowed by calcination at 400 ◦C to decompose the organic residues at the nanoparticles’
surface. Furthermore, Cobalt (Co3+) was added during the Al2O3 nanoparticle synthesis
to form Co-doped nanoparticles with formula Al1.9Co0.1O3/TiO2. All of the synthesized
nanoparticles were tested for the photocatalytic degradation of Brilliant Blue E-4BA un-
der UV and visible light irradiation. Photocatalytic tests revealed that both Al2O3/TiO2

and Al1.9Co0.1O3/TiO2 showed superior degradation under UV and visible light com-
pared to ZnO/TiO2 and SiO2/TiO2 with complete photodecomposition of the target dye
(20 ppm) in only 20 min using a 10 mg of photocatalyst. Furthermore, the “Co-doped”
Al1.9Co0.1O3/TiO2 nanoparticles showed the best performance under visible light irradia-
tion, due to the increased absorption in the visible range as Co-doping introduces additional
energy levels into Al2O3, resulting in improved electron–hole pair generation.

Zhao et al. [20] reported the hydro/solvothermal synthesis of Mg-doped TiO2 anatase
samples in water/ethanol environment at 180 ◦C for 36 h without using any surfactants
or templates. Subsequently, glaze samples were prepared by sintering the raw powders
(95% Kaolin clay, 5% Mg-doped TiO2) at ca. 1200 ◦C. Photocatalytic experiments revealed
that Mg-doped TiO2 samples have higher photocatalytic activities (99.5% in 80 min under
visible light) against Rhodamine B compared with undoped ones, due to pure anatase phase
formation. Moreover, ceramic glaze materials present self-cleaning properties, achieving a
water contact angle of ca. 6◦ at room temperature.

Mao et al. [21] analyzed the scientific literature describing the latest advances in
the synthesis procedures and strategies to produce and/or properly modify TiO2-based
nanomaterials, aiming at maximizing/improving the photocatalytic performances in envi-
ronmental remediation processes for the abatement of organic pollutants.

Lastly, Naggar et al. [22] reviewed the latest scientific literature describing the recent
progress regarding the use of metal oxides in photocatalysis, with a particular focus on the
critical role played by their morphology in the overall degradation process. The state-of-
the-art analysis revealed that non-spherical morphologies exhibit enhanced photocatalytic
performance due to their unique crystal facets and surface areas, which can promote charge
transfer and improve catalytic efficiency. Furthermore, porous design and substantial
specific surface area are responsible for an increased photocatalytic activity, whereas flake-
like structures exhibit comparatively lower performance.

2.2. Development and Optimization of New Synthetic Routes for Metal Oxides

Careful consideration has been dedicated in this Special Issue to the development of
new synthetic routes for metal oxides, and to the optimization of the synthetic approaches
for the preparation of metal oxide nanostructures. In fact, the use of specific experimental
conditions can drive the structural and morphological properties of the materials, and
the fine control of these parameters play a key role in the determination of the material
performances. Moreover, the use of innovative and more recent methodologies is reported,
as well as the preparation of hybrid materials [23–25].

Alshoaibi [23] reported a study involving the deposition of a hetero-structured
(ZnO/Zn/ZnO) thin film on a glass substrate using the DC magnetron sputtering technique.
Subsequently, samples were annealed at different temperatures in the 100–500 ◦C range.
Characterization results indicated the formation of both metallic zinc and the hexagonal
ZnO crystal structure for samples annealed below 200 ◦C, whereas pure hexagonal ZnO
formed for samples annealed at 300 and 500 ◦C, with a slight crystallinity decrease for
the sample annealed at the highest temperature. Since both roughness and particle size
are inversely proportional to the annealing temperature (with the exception of the sample
annealed at 500 ◦C), the optimal annealing temperature was determined to be 400 ◦C.

3
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Filimonov et al. [24] reported an original approach to synthesize hollow and layered
oxide magnetic nanoparticles (either Fe3O4, γ-Fe2O3, or Fe3O4/La1−xCaxFeO3−γ), by a
solid-state exsolution process carried out in a reducing environment at elevated tempera-
tures from Ca- and La-based unsubstituted (and substituted) perovskite-related ferrites,
and using h-BN as a reducing agent.

Lastly, Abduraman et al. [25] reported a synthetic sol–gel protocol assisted by
solvothermal treatment (100 ◦C, 24 h) using either a triblock copolymer (Pluronic P123) or
a nonionic surfactant (Pluronic F127) as soft-templating agents, followed by purification
through either Soxhlet extraction or calcination at 400 ◦C for the production of mesoporous
titania nanoparticles. The results indicated that samples prepared using Pluronic F127
presented a higher surface area and less agglomeration than the sample synthesized with
Pluronic P123. Furthermore, an extract from Vitis vinifera grape marc (Feteasca neagra cul-
tivar) with high radical scavenging activity was encapsulated in mesoporous titania and
compared with reference SBA-15 silica support. Both resulting materials showed biocom-
patibility and even better radical scavenging potential than the free extract. Furthermore,
the titania encapsulated sample showed better cytocompatibility than the silica one, thus
making it suitable for skin-care products.

2.3. Drug Delivery and Biomedicine

In this last part, inorganic nanomaterials for drug delivery systems and for biomedicine
purposes are discussed [26,27].

Kimura et al. [26] reported the development of a calcium phosphate-coating method
to homogeneously cover silica–titania porous nanoparticles (with a well-defined spherical
shape, uniform size, and tunable nanoporous structure) in simulated body fluids. The
results indicated that the pore size distribution is a fundamental parameter significantly
affecting the coating formation, with surfaces with bimodal pore sizes becoming rough after
the calcium phosphate precipitation, whereas those with a unimodal pore size remaining
smooth, thus indicating that pore sizes serve as different nucleation sites leading to different
surface morphologies.

Lastly, Tulyaganov et al. [27] reviewed and critically discussed the genesis, devel-
opment, properties, and applications of the bioactive glass “1d” (i.e., from the primary
crystallization field of pseudo-wollastonite in the CaO–MgO–SiO2 ternary system, after
addition of P2O5, Na2O and CaF2) and its relevant glass-ceramic derivative products (i.e.,
diopside, fluorapatite, and wollastonite crystalline phases, formed by performing a ther-
mal treatment), which are extremely appealing inorganic biomaterials alternatives to the
reference 45S5 Bioglass® exploitable in a variety of bone-regenerative clinical applications,
such as the repair of periodontal defects, ridge preservation and sinus augmentation.

3. Conclusions
With this Special Issue “New Advances into Nanostructured Oxides, 2nd Edition”

published in the “Inorganics Materials” section, and also published as a book, the Editors
hope that the high quality of the contributions collected here will receive the visibility and
attention they deserve. These would help readers to increase their knowledge in the field
of inorganic materials, and be a new source of inspiration for novel, focused investigations.

Acknowledgments: The Editors would like to thank all authors, reviewers, and the entire editorial
staff of Inorganics who provided their new science, constructive recommendations, and assisted in the
realization of the present Special Issue.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: The catalytic reduction of organic pollutants in water is a critical environmental challenge
due to the persistent and hazardous nature of compounds like azo dyes and nitrophenols. In this
study, we synthesized nanostructured CuO/TiO2 catalysts via a combustion technique, followed by
calcination at 700 ◦C to achieve a rutile-phase TiO2 structure with varying copper loadings (5–40 wt.%).
The catalysts were characterized using X-ray diffraction (XRD), attenuated total reflectance-Fourier
transform infrared (ATR–FTIR) spectroscopy, thermogravimetric analysis-differential thermal analysis
(TGA–DTA), UV-visible diffuse reflectance spectroscopy (DRS), and scanning electron microscopy
with energy-dispersive X-ray spectroscopy (SEM–EDS). The XRD results confirmed the presence of
the crystalline rutile phase in the CuO/TiO2 catalysts, with additional peaks indicating successful
copper oxide loading onto TiO2. The FTIR spectra confirmed the presence of all the functional groups
in the prepared samples. SEM images revealed irregularly shaped copper oxide and agglomerated
TiO2 particles. The DRS results revealed improved optical properties and a decreased bandgap with
increased Cu content, and 4-Nitrophenol (4-NP) and methyl orange (MO), which were chosen for their
carcinogenic, mutagenic, and nonbiodegradable properties, were used as model organic pollutants.
Catalytic activities were tested by reducing 4-NP and MO with sodium borohydride (NaBH4) in the
presence of a CuO/TiO2 catalyst. Following the in situ reduction of CuO/TiO2, Cu (NPs)/TiO2 was
formed, achieving 98% reduction of 4-NP in 480 s and 98% reduction of MO in 420 s. The effects of the
NaBH4 concentration and catalyst mass were investigated. The catalysts exhibited high stability over
10 reuse cycles, maintaining over 96% efficiency for MO and 94% efficiency for 4-NP. These findings
demonstrate the potential of nanostructured CuO/TiO2 catalysts for environmental remediation
through efficient catalytic reduction of organic pollutants.
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1. Introduction

Across the world, water and energy shortages represent urgent and increasingly
severe global challenges. On a global level, over one billion people face the critical issue
of not having access to clean drinking water, which is a necessity for human existence.
Furthermore, more than two billion individuals lack proper sanitation facilities, resulting
in almost two million annual fatalities due to diseases transmitted through impure water
sources or insufficient sewage systems [1]. Water pollution occurs when the concentration of
harmful chemicals or biological substances in a water body surpasses established standards,
leading to adverse impacts on both human health and the natural environment [2].

Azo dyes and nitroaromatic compounds exhibit high stability and are known for their
carcinogenic, mutagenic, and nonbiodegradable properties, posing a significant threat to
human life, water quality, and the environment. These substances, such as Congo red,
rhodamine B (RhB), and methyl orange (MO), are extensively used in numerous chemical
sectors, including paper, textiles, paint, and plastics. These industrial processes produce
significant quantities of dyes, leading to the emergence of dye-laden particles that are
introduced directly into the environment [3,4]. MO, for example, is a highly toxic and
nonbiodegradable azo. The adverse effects of this toxic dye may disrupt the balance of
water within ecosystems and pose health risks, including symptoms such as vomiting,
diarrhea, breathing difficulties, and nausea [5]. In particular, 4-Nitrophenol (4-NP) is a
highly toxic compound that is challenging to degrade and treat effectively [6].

Compared with alternative methods, nitrophenol and dye reduction in the presence
of a suitable catalyst and sodium borohydride (NaBH4) is a recommended protocol, since
it is relatively more affordable, secure, and environmentally friendly [7–9]. Therefore, the
exploration of techniques such as chemical reduction to efficiently degrade diverse chemical
pollutants is of considerable interest. However, this method commonly faces a challenge
in achieving a fast degradation rate at lower concentrations of reducing agents, such as
sodium borohydride. Consequently, to minimize the quantity of reducing agent required
and increase the reaction rate, the development of an efficient catalyst for this chemical
reduction becomes crucial [10,11]. Owing to their exceptional physicochemical proprieties,
there has been significant interest in the field of catalysis regarding transition and noble
metal nanoparticles in recent years [12–16]. Among these materials, copper nanoparticles
(CuNPs) have gained recognition as excellent materials that exhibit novel physiochemical
characteristics. This has prompted their investigation in various applications, including
catalysis, sensors, photocatalysis, diverse biological activities, energy storage, and organic
synthesis applications [17–21]. The catalytic activity is closely related to the degree of
dispersion of the Cu(NPs), and a superior performance has been noted with smaller-sized
nanoparticles [22,23].

One significant challenge in employing nanoparticles as catalysts involves their ag-
glomeration and accumulation, resulting in a decrease in their catalytic efficiency. A viable
solution to address this concern is the utilization of solid supports to stabilize the nanopar-
ticles [24]. For this purpose, a series of solid supports, such as polymers, metal oxides,
and carbon materials [25–28], have been adopted to avoid sintering, enhance stability,
and facilitate the optimal mobilization/dispersion of nanoparticles, aiming to maximize
catalytic activities across a wide variety of applications. Among these supports, the im-
mobilization of CuNPs on TiO2, which is a representative n-type semiconductor material,
has been extensively used as a photocatalyst, catalyst support, and cocatalyst because of
its high oxidation ability, environmental friendliness, physicochemical stability, and cost
effectiveness [29,30]. Research on the use of Cu/TiO2 for catalytic reduction has gained
significant attention because of its promising applications in environmental remediation.
One study focused on synthesizing Cu-TiO2 nanoparticles from the extract of Phoenix
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dactylifera. These catalysts effectively degraded dyes, such as RhB, in 11 min and MO
in 25 min, achieving reductions of 89.8 and 95.3%, respectively, with 21.3 mg/mL of the
catalyst [31]. Other investigations explored various shapes and sizes of Cu nanostructures
and revealed that smaller particles and specific morphologies enhanced the catalytic ac-
tivity for nitroaromatic reduction [32]. Additionally, Cu/TiO2 catalyst synthesized from
Chimonanthus praecox extract exhibited superior performance in degrading pollutants, such
as 4-nitrophenol and other organic dyes, with 10 mg of catalyst [33]. CuO/TiO2 composite
created using Tilia platyphyllos extract also demonstrated high catalytic activity, reducing
MO in 10 min and methyl blue in 9 min with 3 mg of the catalyst [34]. Recent studies of
CuO/TiO2 nanocomposite have further highlighted their exceptional catalytic performance,
particularly under direct sunlight, where these photocatalysts effectively drive the selective
hydrogenation of 4-NP to 4-AP in the presence of NaBH4 [35]. Moreover, binary CuO/TiO2
composites have demonstrated excellent reactivity in tandem hydrogenation processes for
nitro compounds [36].

In the present study, different wt.% CuO/TiO2 (rutile) were synthesized through the
combustion technique followed by calcination at 700 ◦C to ensure a complete transition from
anatase to rutile. The prepared catalysts were characterized via X-ray diffraction (XRD),
UV–vis diffuse reflectance spectroscopy, attenuated total reflectance–Fourier transform
infrared (ATR–FTIR) spectroscopy, thermogravimetric analysis-differential thermal analysis
(TGA–DTA), and scanning electron microscopy with energy-dispersive X-ray spectroscopy
(SEM–EDS). The catalytic performance of CuO/TiO2 was evaluated afterwards via the
reduction of MO and 4-nitophenol as models of organic contaminants in the presence of
NaBH4. The influence of parameters, including NaBH4 concentration, catalyst mass and
reusability of the catalyst, were examined.

2. Results and Discussion
2.1. X-Ray Diffraction

The XRD patterns of the CuO/TiO2 catalyst series are presented in Figure 1. The
results obtained reveal that the materials are primarily composed of the rutile phase of TiO2
in accordance with ICDD 21-1276. The presence of CuO in its monoclinic form was also
verified in accordance with the ICDD 48-1548 reference pattern, confirming the effective
loading of copper oxide in TiO2. Figure 1 also reveals a correlation between the deposited
quantity of Cu(II) ions and the intensities of the characteristic CuO peaks. These findings
collectively indicate the successful preparation of the CuO/TiO2 catalysts with varying
percentages of CuO deposition. The average crystallite size of CuO was determined to be
26, 27, 32, 35, 36 nm for 40, 30, 20, 10 and 5 wt.% CuO/TiO2 catalysts, respectively. The
crystallite size was determined using the Scherrer equation [37]:

L =
0.9λ

βcos θ

where λ is the X-ray wavelength (0.1540 nm), β is the full width at half maximum (FWHM),
θ is Bragg’s angle, and L represents the average crystallite size.

On the other hand, the absence of the anatase phase of TiO2 is due to its transformation
to rutile upon heating at 700 ◦C, as observed in Figure 2, which shows the XRD curves
for the 40 wt.% CuO/TiO2 catalysts subjected to various calcination temperatures. The
primary difference observed was the phase transition of TiO2 from anatase (ICDD 21-1272)
to rutile (ICDD 21-1276), with complete transformation occurring at 700 ◦C. The same
results were observed in many previous studies [38].

Following the reduction experiment using NaBH4, the rutile structure of TiO2 re-
mained unchanged, indicating its stability under the reaction conditions. However, the
monoclinic structure of CuO significantly decreased, leading to the formation of Cu(NPs),
as depicted in Figure 3. Notably, two additional peaks emerged at 43.28◦ and 50.37◦,
corresponding to the (111) and (200) planes, respectively. These peaks are characteris-
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tic of the face-centered cubic (FCC) crystal structure of metallic copper nanoparticles
(ICDD No. 04-0836). The average Cu(NP) size is about 15 nm.
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2.2. Thermal Analysis Measurement

To examine the thermal behavior of CuO/TiO2, thermal experiments involving ther-
mogravimetric and differential measurements were performed. The results are shown in
Figure 4. The initial step, characterized by a weight loss of 3% within the temperature range
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of 30 to 150 ◦C, can be attributed to the vaporization of water [39]. The notable weight
reduction occurring between 200 and 350 ◦C, as evaluated at 30%, appears to be associated
with the decomposition and combustion of the organic constituents. The latter was con-
firmed by an intense exothermic peak observed in the DTA curve and two intense peaks
in the DTG curve [40]. On the other hand, no weight loss was observed at temperatures
above 450 ◦C, and the anatase to rutile phase transition that should occur above 600 ◦C [38]
was not observed in the DTA curve because of its reduced sensitivity compared with that
of differential scanning calorimetry (DSC).
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2.3. ATR–FTIR Spectroscopy

ATR–FTIR spectroscopy was performed on the catalysts calcined at 700 ◦C. The measure-
ments were conducted across the spectrum ranging from 400 to 4000 cm−1, and the results
are shown in Figure 5. The analysis revealed similar results for the different catalysts with
different percentages of CuO. The absence of water molecules and other contaminants in
the catalyst was confirmed by the observation of strong bands in the infrared spectrum just
below 1000 cm−1. These bands typically correspond to lattice vibrations within metal oxides.
The peak observed at approximately 650 cm−1 is associated with the presence of the Ti-O-O
stretching vibration bond. Additionally, the spectra revealed two other distinct bonds below
500 cm−1 that were attributed to metal–oxygen (M–O) bond vibrations. All the observed
bands suggest the existence of both Ti–O vibrational stretching and Cu–O stretching vibration
bonds [41], which confirms the successful incorporation of CuO into TiO2.
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2.4. UV–Vis Diffuse Reflectance Spectroscopy

Figure 6a presents the diffuse reflectance spectroscopy (DRS) results for TiO2 and the
various wt.% CuO/TiO2 catalysts, revealing their optical properties in the 200–800 nm
range. TiO2 exhibits a pronounced absorption peak below 400 nm, which is attributed to
its intrinsic interbond absorption [42]. In contrast, the spectrum of the wt.% CuO/TiO2
catalysts displays additional absorption bands in the 400–800 nm range. The absorption
band between 400 and 600 nm is attributed to charge transfer from the valence band (VB)
of TiO2 to CuO. Additionally, the lower absorption band within the 500–800 nm range is
associated with the intrinsic exciton band of CuO and the d–d transition of Cu2+ species [43].
The band gap energies (Eg) of TiO2, CuO, and the different wt.% CuO/TiO2 catalysts were
determined by identifying the intersection of the linear portion of the (αhv)2 vs. energy
(eV) curves, as detailed in Figure 6b. The Eg values for TiO2 and wt.% CuO/TiO2 are
summarized in Table 1. These results indicate that increasing the CuO content leads to a
progressive narrowing of the band gap. This trend can be attributed to the incorporation of
Cu, which introduces additional energy states within the band structure, thereby lowering
the bandgap. The reduced bandgap in the CuO/TiO2 catalysts enhances their visible light
absorption, which is beneficial for photocatalytic applications [44].
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Table 1. Bandgaps of different catalysts.

Catalyst TiO2 5 wt.% CuO 10 wt.% CuO 20 wt.% CuO 30 wt.% CuO 40 wt.% CuO

Band gap (eV) 3.02 2.91 2.86 2.73 2.65 2.43

2.5. SEM–EDS Analysis

Morphological studies via SEM–EDS were carried out on the CuO/TiO2 catalyst.
Figure 7 shows representative SEM images of synthesized CuO/TiO2, which reveal a
homogeneous spherical morphology with varying diameters and numerous micrometer-
sized particles. Additionally, the catalyst has a porous structure and some aggregation
of spheres. The analysis of the CuO/TiO2 catalyst via energy dispersive X-ray (EDX)
spectroscopy aimed to examine the presence and distribution of copper, titanium, and
oxygen within the material. The EDX spectrum of CuO/TiO2 is shown in Figure 8, and the
results indicate the successful incorporation of copper into the TiO2 sample. Additionally,
the elemental mapping analysis revealed a uniform distribution of copper (depicted in
yellow), titanium (represented in pink), and oxygen (shown in blue) in the samples, as
illustrated in Figure 9.
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Figure 9. EDX mapping of the 40 wt.% CuO/TiO2 catalyst.

2.6. Catalytic Reduction of 4-NP and MO by a CuO/TiO2 Catalyst

The catalytic performance of the CuO/TiO2 samples with different CuO loadings
(5 to 40 wt.%) was evaluated for the reduction of organic pollutants via NaBH4, as shown
in Figure 10a,b. As shown in Figure 10a, which represents the reduction of 4-nitrophenol
(4-NP), the 40 wt.% CuO/TiO2 catalyst exhibited the fastest catalytic activity, reaching
nearly 100% removal within a shorter reaction time than the other catalysts and pure CuO.
Similarly, in Figure 10b, which shows the reduction of MO, 40 wt.% CuO/TiO2 again
demonstrates the fastest catalytic performance. The pure CuO sample exhibited lower
catalytic activity than the 40 wt.% CuO/TiO2 sample did, likely due to the agglomeration
of copper oxide nanoparticles, which reduced the number of accessible active sites. On
the other hand, at lower CuO loadings (e.g., 5 wt.%), the catalytic activity is the slowest,
which can be attributed to the lower number of active CuO/TiO2 sites available for the
reduction process.
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Figure 11a,b display the absorption spectra of 4-NP and MO in the presence of NaBH4
but without the use of a catalyst. Under these conditions, the peak intensities show
little change even after 180 min, indicating a negligible reduction rate, as no significant
degradation occurred during this time. However, when CuO/TiO2 is introduced alongside
NaBH4 (Figure 11c,d) and forming Cu(NPs)/TiO2, a rapid and noticeable reduction in
the characteristic absorption peaks of both 4-NP and MO is observed. For 4-NP, the peak
at ~400 nm diminished progressively, vanishing completely within 480 s (Figure 11c).
Similarly, the absorption peak of MO at approximately 464 nm disappears within 420 s
(Figure 11d). This demonstrates a much faster and more efficient reduction process in the
presence of the CuO/TiO2 catalyst than in the presence of NaBH4 alone. Simultaneously,
a pair of new peaks emerged at 297 nm and 231 nm for the reduction of 4-NP and at
242 nm during the reduction of MO. These new peaks can be attributed to the characteristic
absorption bands of the colorless 4-aminophenol (4-AP) from 4-NP and sulfanilic acid
along with dimentyl-4-phenylenediamine from OM [45,46].
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2.6.1. Kinetic Study

The pseudo-first-order kinetic model of Langmuir–Hinshelwood was employed to
analyze the kinetics data due to the substantial excess of NaBH4 compared with the organic
dyes, denoted as ([NaBH4]/[Pollutant]) = 40. The rate constants (kapp) governing the
conversion reactions for both 4-NP and MO were determined via the following equation:

ln
Ct

C0
= Ln

At

A0
= −kappt (1)

As depicted in Figure 12a,b, the Ln (At/A0) vs. time of reaction was determined by
analyzing the absorption peak intensities at 400 nm (4-NP) and 464 nm (MO). Remarkably,
the reduction process was initiated promptly, devoid of any induction time requirement.
The graphical representation of Ln (At/A0) against time exhibited a robust linear correlation,
aligning well with the expectations of pseudo-first-order kinetics. Consequently, the
calculated rate constants were determined to be 0.00517 s−1 for 4-NP and 0.00727 s−1 for
MO. To enable a comparative assessment of CuO/TiO2 performance, an activity factor
denoted as k’ was computed via the following equation:

k’ =
kapp

m
(2)
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In this equation, m(g) represents the mass of the copper in the catalyst involved in
the reaction.

In this context, the derived k′ values were 6.46 s−1 g−1 for 4-NP and 8.98 s−1 g−1 for
MO. For a comprehensive comparison, Table 2 illustrates the varying efficacies of Cu(NPs)
catalysts documented in the literature.

Tables 3 and 4 show an increase in the observed rate constants (kapp) with increasing
CuO percentage in the catalyst. The 40 wt.% CuO/TiO2 catalyst exhibits the highest rate
constant (0.005 s−1), indicating that a higher copper loading favors faster reduction kinetics
for 4-NP and MO. However, when considering the mass of active copper in the catalyst,
the normalized values (k′) indicate that the 5 wt.% CuO/TiO2 catalyst exhibits the highest
activity (17.5 s−1g−1). This suggests that, although increasing the CuO loading accelerates
the overall reaction, the efficiency per unit mass of copper is maximized at lower loadings.

After the in situ reductive reaction of CuO/TiO2 to Cu (NPs)/TiO2 with NaBH4, an un-
derlying mechanism enables the catalytic reduction of 4-NP and MO using Cu(NPs)/TiO2
in the presence of NaBH4 (Figure 13). In this process, the BH4− ions adhere to the sur-
face of the catalyst, thereby initiating the creation of BO2− through the self-hydrolysis
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of NaBH4. Moreover, BH4− interacts with the catalyst, facilitating the transfer of active
hydrogen species, leading to the formation of an energetically charged hydrogen layer
on the catalyst surface [47]. The organic pollutants subsequently attach themselves to the
catalyst surface, undergoing reduction into 4-AP for 4-NP and sulfanilic acid along with
dimentyl-4-phenylenediamine for MO during the step that governs the reaction rate. The
produced compounds are then desorbed from the surface of the Cu(NPs)/TiO2 catalyst. As
a result, Cu(NPs)/TiO2 exhibits highly efficient catalytic reduction due to the supply of
electrons to the catalyst by BH4

− ions, a mechanism that enables 4-NP and MO to bond
with the catalyst surface, consequently yielding enhanced catalytic activity [48].

Table 2. Comparison of the catalytic properties of catalysts with those of Cu(NPs) reported in the
literature and this work.

Pollutant Catalyst k′

(s−1 g−1) Time (min)
Conditions

Reference
NaBH4 (M) Pollutant (M) Catalyst Mass

(mg)

4-
N

it
ro

ph
en

ol
(4

-N
P)

Cu10/MZ 5.00 10 0.0045 0.0000675 1 [22]

Cu10/ZSM-5 1.17 50 0.0045 0.0000675 1 [22]

CuO/TiO2 6.46 8 0.014 0.00035 2 This work

Cu NPs@Fe3O4-LS 1.87 3 0.125 0.00125 7 [4]

MnO@Cu/C 17.33 1.5 0.0193 0.0008 4 [16]

C@Cu 59.00 1 0.033 0.00014 1 [49]

Cu-Ag/GP 0.40 10 0.0714 0.000857 10 [50]

Cu-Ni/GP 0.60 7 0.0714 0.000857 10 [50]

CuVOS@SiO2-3 1.57 2 0.00528 0.00014377 5 [51]

CuVOS-3 8.20 2 0.00582 0.000138 5 [52]

M
et

hy
lo

ra
ng

e
(M

O
)

C@Cu 62.00 1 0.033 0.000061 1 [49]

CuO/TiO2 8.98 7 0.014 0.00035 2 This work

Cu-Ag/GP 0.77 4 0.0714 0.00004286 10 [50]

Cu-Ni/GP 0.38 5 0.0714 0.00004286 10 [50]

CuVOS@SiO2-3 1.37 4 0.00528 0.0003055 5 [51]

CuVOS-3 6.47 2 0.00582 0.00029 5 [52]

Table 3. Rate constants obtained for 4-NP reduction by wt.% CuO/TiO2.

Catalyst kapp (s−1) k′ (s−1g−1)

5 wt.% CuO/TiO2 0.00175 17.5
10 wt.% CuO/TiO2 0.00175 8.7
20 wt.% CuO/TiO2 0.00328 8.2
30 wt.% CuO/TiO2 0.00308 5.1
40 wt.% CuO/TiO2 0.00512 6.4

Table 4. Rate constants obtained for MO reduction by wt.% CuO/TiO2.

Catalyst kapp (s−1) k′ (s−1g−1)

5 wt.% CuO/TiO2 0.00150 15.0
10 wt.% CuO/TiO2 0.00126 6.3
20 wt.% CuO/TiO2 0.00479 12.0
30 wt.% CuO/TiO2 0.00546 9.1
40 wt.% CuO/TiO2 0.00727 8.9

16



Inorganics 2024, 12, 297

Inorganics 2024, 12, x FOR PEER REVIEW 12 of 18 
 

 

Table 3. Rate constants obtained for 4-NP reduction by wt.% CuO/TiO2. 

Catalyst kapp(s−1) k’(s−1g−1) 
5 wt.% CuO/TiO2 0.00175 17.5 
10 wt.% CuO/TiO2 0.00175 8.7 
20 wt.% CuO/TiO2 0.00328 8.2 
30 wt.% CuO/TiO2 0.00308 5.1 
40 wt.% CuO/TiO2 0.00512 6.4 

Table 4. Rate constants obtained for MO reduction by wt.% CuO/TiO2. 

Catalyst kapp(s−1) k’(s−1g−1) 
5 wt.% CuO/TiO2 0.00150 15.0 
10 wt.% CuO/TiO2 0.00126 6.3 
20 wt.% CuO/TiO2 0.00479 12.0 
30 wt.% CuO/TiO2 0.00546 9.1 
40 wt.% CuO/TiO2 0.00727 8.9 

 

 

 

(a) (b) 

Figure 13. Schematic reactions of (a) 4-NP and (b) MO, by NaBH4 in the presence of Cu(NPs)/TiO2. 

2.6.2. Effects of Parameters and Reusability 
Multiple factors were investigated to understand their influence on the catalyzed 

reduction of 4-NP and MO using 40 wt.% CuO/TiO2 catalysts. The parameters examined 
included the catalyst dosage and concentration of NaBH4. Figure 14a,b show the impact 
of varying catalyst amounts on the rate of pollutant reduction. By making more active 
sites accessible for the reaction, the large amount of catalyst led to improved efficiency. 
The performance constantly increased as the catalyst amount increased from 0.02 g/L to 
0.06 g/L, which confirms the principle of Sabatier [53]. The variation in NaBH4 
concentration had a pronounced influence on the catalytic reduction of 4-NP and MO 
(Figure 14c,d). Because of the limited quantity of hydrogen emitted, the catalytic reduction 
rate decreased as the NaBH4 concentration decreased [54]. 

Figure 13. Schematic reactions of (a) 4-NP and (b) MO, by NaBH4 in the presence of Cu(NPs)/TiO2.

2.6.2. Effects of Parameters and Reusability

Multiple factors were investigated to understand their influence on the catalyzed
reduction of 4-NP and MO using 40 wt.% CuO/TiO2 catalysts. The parameters examined
included the catalyst dosage and concentration of NaBH4. Figure 14a,b show the impact of
varying catalyst amounts on the rate of pollutant reduction. By making more active sites
accessible for the reaction, the large amount of catalyst led to improved efficiency. The per-
formance constantly increased as the catalyst amount increased from 0.02 g/L to 0.06 g/L,
which confirms the principle of Sabatier [53]. The variation in NaBH4 concentration had a
pronounced influence on the catalytic reduction of 4-NP and MO (Figure 14c,d). Because
of the limited quantity of hydrogen emitted, the catalytic reduction rate decreased as the
NaBH4 concentration decreased [54].
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concentration on the reduction of (c) 4-NP and (d) MO. 

An essential characteristic of catalysts is their stability and reusability. To assess this, 
a fresh solution containing pollutants was introduced after each catalytic reduction cycle. 
The initial concentration remained constant at 0.35 mM throughout. As depicted in Figure 
15a,b, the catalyst consistently maintained over 96% MO capacity and 94% 4-NP capacity 
for reduction of the dyes across 10 successive reaction cycles. This outcome highlights the 
exceptional reusability of the CuO/TiO2 catalyst. This excellent reusability can be 
attributed to the even distribution and robust stability of Cu on the TiO2 surface, which in 
turn provides a greater number of active sites for catalytic processes. 
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An essential characteristic of catalysts is their stability and reusability. To assess
this, a fresh solution containing pollutants was introduced after each catalytic reduction
cycle. The initial concentration remained constant at 0.35 mM throughout. As depicted in
Figure 15a,b, the catalyst consistently maintained over 96% MO capacity and 94% 4-NP
capacity for reduction of the dyes across 10 successive reaction cycles. This outcome
highlights the exceptional reusability of the CuO/TiO2 catalyst. This excellent reusability
can be attributed to the even distribution and robust stability of Cu on the TiO2 surface,
which in turn provides a greater number of active sites for catalytic processes.
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citric acid. The resulting mixtures were then stirred to achieve a well-dispersed 
suspension. The suspension subsequently underwent evaporation from 80 to 130 °C to 
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(Sigma Aldrich, ≥98.0%) and 4-nitrophenylphenol (Sigma Aldrich, ≥99.0%) as the target 
pollutants for the experiments. The experimental setup involved a beaker (50 mL) placed 
at room temperature. The catalytic reaction proceeded as follows: 2 mg of CuO/TiO2 was 
uniformly dispersed in 35 mL of deionized water, followed by the addition of 10 mL of 
freshly prepared aqueous NaBH4 (Sigma Aldrich, ≥99.0%) (70 mM). The solution was 
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3. Materials and Methods
3.1. Synthesis of the CuO/TiO2 Catalysts

The combustion technique was used to prepare different percentages of wt.% CuO/TiO2
(wt = 5, 10, 20, 30, and 40%). Analytical grade Cu(NO3)2·6H2O (Sigma Aldrich, ≥99.9%),
along with TiO2-P25 (Degussa Aeroxide P25) and citric acid as a fuel (Sigma Aldrich,≥99.5%),
served as the starting materials. Initially, these materials were added to deionized water
with a fixed weight percentage of metal on TiO2 and an excess amount of citric acid. The
resulting mixtures were then stirred to achieve a well-dispersed suspension. The suspension
subsequently underwent evaporation from 80 to 130 ◦C to yield a thick gel. This gel was
subsequently converted into a dry form. Finally, the dry gel was calcined in an air atmosphere
at 700 ◦C for 4 h with a ramp rate of 10 ◦C/min. Figure 16 represents the synthesis method
for the catalysts.
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3.2. Catalytic Reduction of Organic Pollutants

The catalytic activity of CuO/TiO2 was evaluated by studying the reduction of MO
(Sigma Aldrich, ≥98.0%) and 4-nitrophenylphenol (Sigma Aldrich, ≥99.0%) as the target
pollutants for the experiments. The experimental setup involved a beaker (50 mL) placed
at room temperature. The catalytic reaction proceeded as follows: 2 mg of CuO/TiO2 was
uniformly dispersed in 35 mL of deionized water, followed by the addition of 10 mL of
freshly prepared aqueous NaBH4 (Sigma Aldrich, ≥99.0%) (70 mM). The solution was
sonicated for 10 min, resulting in a color change from a black CuO/TiO2 suspension to a
gray color, indicating the formation of Cu(NPs)/TiO2. Next, 5 mL of MO (3.5 mM) or 4-NP
(3.5 mM) was added to the mixture. The overall concentrations of the organic dyes and
NaBH4 were 0.35 mM and 14 mM, respectively. The progress of the reaction was monitored
by recording the time-dependent UV–vis absorption spectra of the reaction mixture in the
wavelength range between 210 and 600 nm via a spectrophotometer (Techcomp UV 2300).
The catalytic reduction experiment is shown in Figure 17.
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thermal stability and degradation behavior of the catalysts were verified via simultaneous 
TGA and DTA under an air flow rate of 30 mL/min via a LabsysTM (1F) Setaram 
instrument. An 8 mg sample was placed in an alumina crucible and heated from 30 °C to 
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Figure 17. Catalytic reduction experiments of organic pollutants.

3.3. Characterization Techniques

The identification of the mineral crystalline phase of the catalysts was carried out
via X-ray diffraction, via a Schimadzu 6100 powder diffractometer with a monochromatic
beam (λCukα = 1.541838◦). These measurements were taken at room temperature over
a 2θ range of 10◦ to 70◦, with a scanning rate of 2◦/min. A UV–vis spectrophotometer,
namely, a PerkinElmer Lamda 900 UV/Vis/NIR spectrometer, was used to obtain diffuse
reflectance spectra of the catalysts in the wavelength range of 200–800 nm. To identify the
main functional groups of the catalyst, ATR–FTIR spectroscopy was used with a Nicolet
iS50 instrument with a resolution of 4 cm−1 in the spectral range of 400–4000 cm−1. The
thermal stability and degradation behavior of the catalysts were verified via simultaneous
TGA and DTA under an air flow rate of 30 mL/min via a LabsysTM (1F) Setaram instrument.
An 8 mg sample was placed in an alumina crucible and heated from 30 ◦C to 800 ◦C at a
heating rate of 10 ◦C/min. The surface morphology and chemical analysis of the samples
were performed by SEM-EDX on a Quattros S-FEG-Thermofisher scientific instrument.

4. Conclusions

In this study, CuO/TiO2 catalysts were prepared through a combustion technique.
The catalysts were characterized via XRD, ATR–FTIR spectroscopy, TGA–DTA, UV–vis
DRS, and SEM–EDX techniques. Compared with TiO2 and CuO, the presence of Cu
in the CuO/TiO2 catalysts significantly enhanced the reduction of 4-NP and MO. The
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fastest dye reduction was obtained with 40 wt.% CuO, followed by 40 > 30 > 20 > 10
> 5 wt.% CuO/TiO2 in the presence of NaBH4 and 2 mg of catalyst. The kinetic data
were successfully modeled via the pseudo-first-order Langmuir–Hinshelwood mechanism,
yielding rate constants of 0.000517 s−1 for 4-NP and 0.00727 s−1 for MO. The efficiency
of 4-NP and MO reduction with the CuO/TiO2 catalyst improved as the catalyst dosage
increased from 0.02 g/L to 0.06 g/L, offering more active sites. However, a decrease
in NaBH4 concentration led to a decrease in the catalytic reduction rate due to reduced
hydrogen production. The presence of TiO2 rutile functions as a protective agent to slow
catalyst damage and agglomeration of particles. This material can be reused for several
cycles without significant loss of catalytic activity.
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Abstract: The synthesis and characterization of ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1.9Co0.1O3/TiO2

core/shell nanoparticles (NPs) is reported. The NPs were used for photocatalytic degradation of brilliant
blue E-4BA under UV and visible light irradiation, monitored by high-performance liquid chromatography
and UV-vis absorption spectroscopy. The size of the NPs ranged from 10 to 30 nm for the core and an
additional 3 nm for the TiO2 shell. Al2O3/TiO2 and Al1.9Co0.1O3/TiO2 showed superior degradation
under UV and visible light compared to ZnO/TiO2 and SiO2/TiO2 with complete photodecomposition of
20 ppm dye in 20 min using a 10 mg/100 mL photocatalyst. The “Co-doped” Al1.9Co0.1O3/TiO2 NPs show
the best performance under visible light irradiation, which is due to increased absorption in the visible
range. DFT-calculated band structure calculations confirm the generation of additional electronic levels
in the band gap of γ-Al2O3 through Co3+ ions. This indicates that Co-doping enhances the generation of
electron–hole pairs after visible light irradiation.

Keywords: photocatalyst; nanomaterials; heterojunction; dye degradation; DFT calculations

1. Introduction

Organic dyes represent an important class of environmental pollutants, and their decom-
position and removal are of technical and social importance [1–4]. Photocatalytic advanced
oxidation processes (AOPs) based on TiO2 are technically available [1–4], but are established
almost exclusively in developed countries [5]. Photosemiconducting anatase (β-TiO2, tetrago-
nal) is the base of the photocatalytic process [3–7] and is technically preferred due to its robust
oxidizing capability, good photostability, and the non-toxic nature of TiO2 materials [1–4].
However, conventional TiO2 photocatalysis faces limitations such as rapid electron–hole
recombination, low solar light absorption, and low activity on conventional crystal facets [3–8].
To overcome these obstacles and enhance photocatalytic efficiency, the creation of heterojunc-
tions with other photosemiconductors has been explored [1,6,8–11]. Amongst such TiO2-based
heterojunction materials, core/shell nanoparticles (NPs) combine the large surface with an
intimate contact of the two photosemiconductors [1]. Basically, two different approaches
are possible. The first is to cover various functional oxides (core) with TiO2 as the shell
(Approach A, Scheme 1) [7,8,11–29]. Alternatively, a TiO2 core can be supported by an oxide
shell (Approach B) [7,8,17,22,30–35].
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Scheme 1. Two different approaches for the use of TiO2 in core/shell NPs. 

Recent work on core/shell NPs for the photodecomposition of dyes, following ap-
proach A (Scheme 1), included magnetically separable Fe3O4 (core)/TiO2 (shell) [12], NPs 
ZnO/TiO2 core/shell nanorods [16], SiO2/TiO2 NPs [18], or rGO/TiO2 NPs (rGO = reduced 
graphene oxide) [26] for the photodegradation of methylene blue (MB). ZnO@TiO2 
core/shell NPs were reported for the photodecomposition of rhodamine B (RhB) along 
with antimicrobial activity [13]. Al2O2/TiO2 NPs were used for the photodecomposition of 
RhB and methyl orange [23], SiO2/TiO2 NPs were applied in the photodecomposition of 
crystal violet [19,20], and BiFeO3/TiO2 NPs, including the ferroelectric BiFeO3, were used 
for methyl violet degradation [27]. These examples have in common that the TiO2 shell 
was chemically built-up around the core, and characterization of the materials showed 
that the TiO2 shell fully covers the core and thus very likely forms an intimate heterojunc-
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Recent work on core/shell NPs for the photodecomposition of dyes, following ap-
proach A (Scheme 1), included magnetically separable Fe3O4 (core)/TiO2 (shell) [12], NPs
ZnO/TiO2 core/shell nanorods [16], SiO2/TiO2 NPs [18], or rGO/TiO2 NPs (rGO = re-
duced graphene oxide) [26] for the photodegradation of methylene blue (MB). ZnO@TiO2
core/shell NPs were reported for the photodecomposition of rhodamine B (RhB) along
with antimicrobial activity [13]. Al2O2/TiO2 NPs were used for the photodecomposition of
RhB and methyl orange [23], SiO2/TiO2 NPs were applied in the photodecomposition of
crystal violet [19,20], and BiFeO3/TiO2 NPs, including the ferroelectric BiFeO3, were used
for methyl violet degradation [27]. These examples have in common that the TiO2 shell
was chemically built-up around the core, and characterization of the materials showed that
the TiO2 shell fully covers the core and thus very likely forms an intimate heterojunction
between the core and shell (Scheme 1, Approach A). This is not necessarily the case in
examples such as the reported CuO/TiO2 heterojunction NPs that were synthesized by ball-
milling Cu2O and TiO2 [28] or the Al2O3/TiO2 (or TiO2/Al2O3) NPs that were obtained
through oxidation of bimetallic Ti/Al NPs [34].

The above examples differ also from the inverse approach (Approach B, Scheme 1)
of using TiO2 as the core, as in the TiO2/SiO2 NP photocatalysts used for singlet oxy-
gen generation or the decomposition of MB [30,32] or RhB [33], the TiO2/Al2O3 NPs for
photodecomposition of the typical textile dye reactive brilliant red, the dye X-3B [24],
the TiO2/WO3 photocatalyst reported for photocatalytic ozonation of organic contami-
nants [29], or the TiO2/Fe3O4 NPs used for photodecomposition of X-3B [35]. The approach
of modifying the TiO2 surface with SiO2, WO3, or Fe3O4 (Scheme 1, Approach A) was
driven by the idea to optimize the Fenton process, which is the production of the reactive
superoxide O2

•– and hydroxy •OH radicals [1,3,4,7,24,29–35] in addition to the electronic
effect of a heterojunction. The approach of using TiO2 as the reactive shell (Scheme 1, Ap-
proach B) relies on the TiO2 photochemistry in combination with the electronic modification
of the surface TiO2 through the formation of the heterojunction and faster charge transport,
leading to decreased recombination rates [1,3,12,13,18–20,23,26–28].

Starting from the idea that cheaper and environmentally benign oxides like ZnO,
SiO2, and Al2O3 as core materials would allow for producing metal oxide/TiO2 core/shell
NPs also for large-scale applications, we embarked on synthesizing core/shell ZnO/TiO2,
SiO2/TiO2, and Al2O3/TiO2 NPs and studying their behavior as photocatalysts for pho-
todegradation of the dye brilliant blue E-4BA, thus following the approach of modifying
the electronic inventory of TiO2 for high photoreactivity (Scheme 1). Similar materials
with ZnO, SiO2, or Al2O3 cores and TiO2 shells have been reported as photocatalysts for
such applications [13–25]. Cobalt (Co3+) was added during the Al2O3 NP synthesis to
generate Al1.9Co0.1O3/TiO2, what we will further call “Co-doped” [36]. From the fractional
replacement of Al3+ through Co3+, we expected extension of the absorption into the visible
range and thus substantial improvements in the photocatalytic properties. A similar idea
of Co doping for visible photocatalytic applications has been reported for materials such as
LuFeO3 [37], ZnO [38–40], and Eu(OH)3 [41].
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2. Results and Discussion
2.1. Synthesis and Characterization of the NPs

In the synthesis of the NPs, ethylene glycol serves as the key agent for governing the
nanoparticle size. Upon heating the glycol-covered as-prepared NPs to 400 ◦C, ethylene
glycol on the NP surface decomposed and led to an increased surface-to-volume ratio.
The decomposition of ethylene glycol begins at 110 ◦C, resulting in a color change in the
sample from white to gray. After one hour at 400 ◦C, the obtained powder turns yellowish,
indicating that the degradation of ethylene glycol is complete.

Transmission electron micrographs (TEMs) show NPs of spherical shape for SiO2 and
ZnO, while the TiO2 particles display a cubic morphology, and Al2O3 appears flake-like
(Figure S1, Supplementary Materials). Their approximate diameters are 12, 10, 10, and
30 nm for Al2O3, TiO2, SiO2, and ZnO, respectively. After covering the NPs with TiO2, the
TEM shows sizes that are about 3 nm larger than those of the pure core materials (Figure S2).
Previously, it was suggested that NPs for efficient photocatalysis should have sizes below
30 nm with a preferred range from 10 to 20 nm [42,43].

Brunauer–Emmett–Teller (BET) analysis shows a surface area of 583 m2/g for Al2O3/TiO2,
160 m2/g for ZnO/TiO2, and 87 m2/g for SiO2/TiO2. The surface area for Al1.9Co0.1O3/TiO2
is 618 m2/g (Figure S3). The high surface areas for Al2O3/TiO2 and Al1.9Co0.1O3/TiO2 are
very promising for the adsorption of the dye on the surface for photodegradation.

Powder XRD (PXRD) patterns of the synthesized Al2O3 NPs (Figure S4A) confirm the
γ-Al2O3 (cubic, spinel, Fd-3m) structure with observed peaks at 31.92◦, 37.60◦, 45.86◦, and
67.03◦ corresponding to the (220), (311), (222), (400), and (440) planes, respectively. The
crystallinity is low, as can be seen from the broad reflections. The Al1.9Co0.1O3 NPs have
retained the γ-Al2O3 structure (Figure S4B). However, the reflections exhibit a shift to lower
angles in line with increased lattice parameters caused by the larger Co3+ (r = 75 pm) [44]
ion partially replacing the smaller Al3+ ions (r = 67 pm) [44], assuming that large parts of
the Al3+ ions residing in octahedral positions [45] were replaced by high-spin Co3+. The
ZnO particles show higher crystallinity, with peaks located at 31.84◦, 34.52◦, 36.33◦, 47.63◦,
56.71◦, 62.96◦, 68.13◦, and 69.18◦ corresponding to the (100), (002), (101), (102), (110), (103),
and (112) planes (Figure S4C) of hexagonal ZnO crystallizing in the space group P63mc
(wurtzite type). The SiO2 NPs show only a broad peak at 23.36◦ (Figure S4D), which is
probably due to the largely amorphous character of the material.

The PXRD of the TiO2-coated particles show the peaks corresponding to the core
materials together with additional signals agreeing with the anatase (β-TiO2, tetragonal,
I41/amd) structure with peaks at 25.39◦, 37.89◦, 48.1◦, and 55.18◦ corresponding to the
(101), (004), (200), and (211) planes, respectively (Figure 1, compare Figure S4E).

The sharp signals of the core materials in the core/shell NPs are in line with the
small but highly crystalline TiO2 shell of only a few nm concluded from the TEM. This
is supported by previously reported Al2O3/TiO2 core/shell NPs for which the PXRD
exclusively showed the signals for TiO2 at an estimated thickness of the TiO2 shell of
17 nm [23]. Furthermore, for SiO2/TiO2 core/shell NPs of 20 to 30 nm core and about 3 nm
shell size, broad signals for the TiO2 shell were found along with one broad reflection for
SiO2 [19]. The crystallinity of the TiO2 shell is thus strongly dependent on the preparation
method, and our method seems very suitable to produce high crystallinity.

Energy-dispersive X-ray spectroscopy (EDX) of the core/shell Al2O3/TiO2, ZnO/TiO2,
and SiO2/TiO2 NPs shows the core elements Al, Si, Zn, and O together with smaller
amounts of Ti from the shell (Figure 2) in line with a thin TiO2 shell. For Al1.9Co0.1O3,
cobalt was found with an Al/Co ratio in keeping with 5 to 10% Co in the structure.

The UV-vis absorption spectrum of the pristine Al2O3 NPs (Figure 3A) shows the
typical absorption band at around 200 nm [46]. For ZnO, a characteristic maximum at
378 nm was recorded in keeping with previous reports [47,48], and for SiO2 and TiO2
absorption, the UV-vis range shows only tails down from 170 to 1000 nm (Figure S5). The
Al1.9Co0.1O3 NPs show an additional broad absorption band in the visible range at 520 nm
(2.38 eV) (Figure 3B,C). A very similar absorption band at 2.58 eV was reported for ZnO
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NPs containing 3, 5, and 7 mol% Co [38] and for LaAl0.98Co0.02O3 containing 2% Co(III)
and corresponds to the 5T2→5E transition [49]. Thus, the spectrum of Al1.9Co0.1O3 is in line
with high-spin Co3+ ions replacing Al3+ at the octahedral sites, supporting our assumption
from PXRD.
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The photodegradation was first monitored using UV-vis absorption spectroscopy 
with the visible and UV bands of the dye with progressing reactions (Figures 4 and 5). In 
the first experiments, the optimum amount of catalyst was found at around 10 mg/100 
mL, and the time for complete photodecomposition ranged from 15 to 200 min. Without 
any catalyst, no photodecomposition was observed, neither under UV nor under visible 
light irradiation. 

When comparing identical amounts of catalyst (10 mg) under the same UV irradia-
tion conditions, the reactivity increased within the series – no catalyst (no reaction) < pure 
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Figure 3. UV-vis absorption spectra for the NPs (A) Al2O3, (B) Al1.9Co0.1O3, and (C) Al1.9Co0.1O3/
TiO2 NPs.

The tiny red shift in the peak observed at around 200 nm for Co3+-doped nanoparti-
cles compared to undoped Al2O3 can be attributed to oxygen defects in the structure of
alumina, known as F centers [50]. Two types of F centers can be created in the structure
of alumina. F and F2 centers can be reversibly interconverted by irradiating them with
different wavelengths of light. For example, irradiating with 300 nm light can convert
F2 and F2

+ centers, and irradiating with about 200 nm light can convert F centers [51,52].
Previous studies [53,54] report that the impact of electronic defects on optical properties is
more significant than that of the electronic levels introduced by the doped ions.

The UV-Vis spectra of similarly reported Al2O3/TiO2 [23], ZnO2/TiO2 [15], and
SiO2/TiO2 [16] NPs show a broad UV absorption tailing down till 400 nm (3.1 eV) originat-
ing from the TiO2 shells. This is fully in line with our results (Figure 3C).

2.2. Photocatalysis

The photocatalytic degradation of brilliant blue E-4BA (Scheme 2) under both UV and
visible light irradiation was studied for pure TiO2, Al2O3/TiO2, ZnO/TiO2, SiO2/TiO2,
and Al1.9Co0.1O3/TiO2 NPs.
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Scheme 2. The chemical structure of brilliant blue E-4BA.

The photodegradation was first monitored using UV-vis absorption spectroscopy with
the visible and UV bands of the dye with progressing reactions (Figures 4 and 5). In the first
experiments, the optimum amount of catalyst was found at around 10 mg/100 mL, and the
time for complete photodecomposition ranged from 15 to 200 min. Without any catalyst, no
photodecomposition was observed, neither under UV nor under visible light irradiation.

When comparing identical amounts of catalyst (10 mg) under the same UV irradiation
conditions, the reactivity increased within the series–no catalyst (no reaction) < pure TiO2
< SiO2/TiO2 < ZnO/TiO2 < Al2O3/TiO2 < Al1.9Co0.1O3/TiO2–(Figure 4). The time for
complete conversion under UV irradiation was 70 min for pure TiO2, 60 min for SiO2/TiO2,
30 min for ZnO/TiO2, 15 to 20 min for Al2O3/TiO2, and 15 to 20 min for Al1.9Co0.1O3/TiO2.

No significant degradation of the dye under visible light irradiation was found for
Al2O3/TiO2, ZnO/TiO2, and SiO2/TiO2 NPs within 90 min. The catalysts seem to absorb
a small amount of dye after adding it, but the solution retains the blue color of the dye.
In contrast to this, more than 95% of the dye can be degraded in the solution containing
Al1.9Co0.1O3/TiO2 NPs under visible light irradiation within 90 min (Figure 5).

27



Inorganics 2024, 12, 281Inorganics 2024, 12, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 4. Absorption spectra of brilliant blue E-4BA in H2O after addition of 10 mg catalyst (or none) 
to a 20 ppm dye solution and UV light irradiation for 15 min. 

No significant degradation of the dye under visible light irradiation was found for 
Al2O3/TiO2, ZnO/TiO2, and SiO2/TiO2 NPs within 90 min. The catalysts seem to absorb a 
small amount of dye after adding it, but the solution retains the blue color of the dye. In 
contrast to this, more than 95% of the dye can be degraded in the solution containing 
Al1.9Co0.1O3/TiO2 NPs under visible light irradiation within 90 min (Figure 5). 

 
Figure 5. Absorption spectra of brilliant blue E-4BA in H2O after addition of 10 mg Al1.9Co0.1O3/TiO2 
(or none) to a 20 ppm dye solution and visible light irradiation for 90 min. 

HPLC analysis of the reaction mixtures (Figures 6 and S6) gave the same sequence 
for the reactivity – no catalyst < pure TiO2 < SiO2/TiO2 < ZnO/TiO2 < Al2O3/TiO2 < 
Al1.9Co0.1O3/TiO2. 

200 300 400 500 600 700 800

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

In
te

ns
ity

 (a
. u

.)

Without Photocatalyst
TiO2
 SiO2/ TiO2
 ZnO/ TiO2
 Al2O3/ TiO2

Figure 4. Absorption spectra of brilliant blue E-4BA in H2O after addition of 10 mg catalyst (or none)
to a 20 ppm dye solution and UV light irradiation for 15 min.
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Figure 5. Absorption spectra of brilliant blue E-4BA in H2O after addition of 10 mg Al1.9Co0.1O3/TiO2

(or none) to a 20 ppm dye solution and visible light irradiation for 90 min.

HPLC analysis of the reaction mixtures (Figure 6 and Figure S6) gave the same se-
quence for the reactivity – no catalyst < pure TiO2 < SiO2/TiO2 < ZnO/TiO2 < Al2O3/TiO2
< Al1.9Co0.1O3/TiO2.

Inorganics 2024, 12, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 6. (A): HPLC plots of reaction solutions containing 20 ppm brilliant blue E-4BA in H2O after 
addition of 10 mg catalyst (or none) and UV irradiation for 15 min. (B): HPLC plots of products of 
a 20 ppm dye solution after visible irradiation for 90 min in the absence and presence of 
Al1.9Co0.1O3/TiO2. 

Thus, all NP catalysts were active, and the core/shell NPs were more active than the 
pure TiO2 particles. For the core/shell NPs, reactivity increased along the series SiO2/TiO2 
< ZnO/TiO2 < Al2O3/TiO2. The increase from SiO2 to ZnO is roughly in line with the de-
creasing band gap, with reported values around 4 eV for SiO2 [54] and around 3 eV for 
ZnO [55] NPs. The high activity of the Al2O3/TiO2 NPs does not agree with this idea, as γ-
Al2O3 has the highest band gap in the series, with reported values ranging from 5 to 8 eV 
[56,57]. The 195 nm absorption found in the UV-vis absorption spectrum of Al2O3 (Figure 
3) recalculates to 6.36 eV, in agreement with these reports. The superior properties of 
Al2O3/TiO2 over the other two materials can be explained in terms of the heterojunction 
effect. 

On the other hand, the activities correlate quite well with the BET analysis showing 
far larger surface areas for Al2O3/TiO2 (583 m2/g) and Al1.9Co0.1O3/TiO2 (618 m2/g) than for 
ZnO/TiO2 (160 m2/g) and SiO2/TiO2 (87 m2/g). This underlines that adsorption of the dye 
onto the surface is crucial for the photodegradation, which is supported by other reports 
[2,7,13,18–20,23,26]. The reactivity of the SiO2/TiO2 NPs in our study compares well to a 
recent report on the photodecomposition of methylene blue (MB) [18]. The therein re-
ported rather amorphous core/shell SiO2/TiO2 NPs with sizes around 330 nm (shell about 
35 nm) and BET surfaces ranging from 300 to 400 m2/g allowed for complete photodecom-
position using UV light within 30 min. Crystal violet was photodecomposed using 
SiO2/TiO2 NPs within 60 min, while the BET surface for these particles was smaller (50 to 
100 m2/g) [20]. Another study using Al2O3/TiO2 NPs for the photodecomposition of methyl 
orange and rhodamine B reported more than 120 min till completeness under similar con-
ditions [23]. 

The higher activity found for the Al1.9Co0.1O3/TiO2 compared with the non-doped 
Al2O3/TiO2 NPs can additionally be rationalized with the introduction of Co(III)-based 
traps into the Al2O3 electronic structure. To shed more light on this, a theoretical study 
based on density functional theory (DFT) was started, comparing Al2O3 and Al1.9Co0.1O3. 
While the band structure of γ-Al2O3 has previously been calculated on a high level of so-
phistication [57,58], a comparison of Al2O3 and Al-doped Al1.9Co0.1O3 has not been re-
ported. 

2.3. DFT-Calculated Electronic Structures of Al2O3 and Al1.9Co0.1O3 

The DFT-calculated band structure for Al2O3 (Figure 7A) shows a direct band gap of 
6.106 eV, in good agreement with reported values [57,58], and the experimental value of 
6.36 eV we derived from UV-vis absorption measurements. 

Figure 6. (A): HPLC plots of reaction solutions containing 20 ppm brilliant blue E-4BA in H2O
after addition of 10 mg catalyst (or none) and UV irradiation for 15 min. (B): HPLC plots of prod-
ucts of a 20 ppm dye solution after visible irradiation for 90 min in the absence and presence of
Al1.9Co0.1O3/TiO2.
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Thus, all NP catalysts were active, and the core/shell NPs were more active than the
pure TiO2 particles. For the core/shell NPs, reactivity increased along the series SiO2/TiO2 <
ZnO/TiO2 < Al2O3/TiO2. The increase from SiO2 to ZnO is roughly in line with the decreasing
band gap, with reported values around 4 eV for SiO2 [54] and around 3 eV for ZnO [55]
NPs. The high activity of the Al2O3/TiO2 NPs does not agree with this idea, as γ-Al2O3 has
the highest band gap in the series, with reported values ranging from 5 to 8 eV [56,57]. The
195 nm absorption found in the UV-vis absorption spectrum of Al2O3 (Figure 3) recalculates
to 6.36 eV, in agreement with these reports. The superior properties of Al2O3/TiO2 over the
other two materials can be explained in terms of the heterojunction effect.

On the other hand, the activities correlate quite well with the BET analysis showing
far larger surface areas for Al2O3/TiO2 (583 m2/g) and Al1.9Co0.1O3/TiO2 (618 m2/g) than
for ZnO/TiO2 (160 m2/g) and SiO2/TiO2 (87 m2/g). This underlines that adsorption of
the dye onto the surface is crucial for the photodegradation, which is supported by other
reports [2,7,13,18–20,23,26]. The reactivity of the SiO2/TiO2 NPs in our study compares
well to a recent report on the photodecomposition of methylene blue (MB) [18]. The
therein reported rather amorphous core/shell SiO2/TiO2 NPs with sizes around 330 nm
(shell about 35 nm) and BET surfaces ranging from 300 to 400 m2/g allowed for complete
photodecomposition using UV light within 30 min. Crystal violet was photodecomposed
using SiO2/TiO2 NPs within 60 min, while the BET surface for these particles was smaller
(50 to 100 m2/g) [20]. Another study using Al2O3/TiO2 NPs for the photodecomposition
of methyl orange and rhodamine B reported more than 120 min till completeness under
similar conditions [23].

The higher activity found for the Al1.9Co0.1O3/TiO2 compared with the non-doped
Al2O3/TiO2 NPs can additionally be rationalized with the introduction of Co(III)-based traps
into the Al2O3 electronic structure. To shed more light on this, a theoretical study based on den-
sity functional theory (DFT) was started, comparing Al2O3 and Al1.9Co0.1O3. While the band
structure of γ-Al2O3 has previously been calculated on a high level of sophistication [57,58], a
comparison of Al2O3 and Al-doped Al1.9Co0.1O3 has not been reported.

2.3. DFT-Calculated Electronic Structures of Al2O3 and Al1.9Co0.1O3

The DFT-calculated band structure for Al2O3 (Figure 7A) shows a direct band gap of
6.106 eV, in good agreement with reported values [57,58], and the experimental value of
6.36 eV we derived from UV-vis absorption measurements.
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The band structure of Al1.9Co0.1O3 contains a number of additional donor (below
0 eV) and acceptor (above 0 eV) levels (Figure 7B). When converting the DFT-calculated
band structure into a calculated UV-vis absorption spectrum (Figure 8), the experimentally
observed long-wavelength absorption at 520 nm was well reproduced by the calculations.
The calculated minimum band gap energy of 1.35 eV agrees reasonably well with the end
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of the broad absorption from 400 to 900 nm, which recalculates to 3.10 to 1.38 eV. The
calculations predict also a band at 280 nm and strong absorptions in the UV range around
200 nm. While the 200 nm band was found in the experimental structure and is attributed
to the Al2O3 host material, the 280 nm band was not experimentally found and might lie
below the very intense band centered at 200 nm.

Inorganics 2024, 12, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 7. Calculated band structure for (A) Al2O3 and (B) Al1.9Co0.1O3 NPs with the highest valence 
band = Fermi level set to E = 0 eV. 

The band structure of Al1.9Co0.1O3 contains a number of additional donor (below 0 eV) 
and acceptor (above 0 eV) levels (Figure 7B). When converting the DFT-calculated band 
structure into a calculated UV-vis absorption spectrum (Figure 8), the experimentally ob-
served long-wavelength absorption at 520 nm was well reproduced by the calculations. 
The calculated minimum band gap energy of 1.35 eV agrees reasonably well with the end 
of the broad absorption from 400 to 900 nm, which recalculates to 3.10 to 1.38 eV. The 
calculations predict also a band at 280 nm and strong absorptions in the UV range around 
200 nm. While the 200 nm band was found in the experimental structure and is attributed 
to the Al2O3 host material, the 280 nm band was not experimentally found and might lie 
below the very intense band centered at 200 nm. 

 
Figure 8. (A) DFT-calculated and (B) experimentally obtained UV-vis absorption spectra for 
Al1.9Co0.1O3. 

Thus, while the generation of electrons and holes in nano-Al2O3/TiO2 requires UV 
irradiation (Figure 9), the incorporation of Co3+ ions in the Al2O3 lattice generates addi-
tional donor and acceptor levels and shifts the energy into the visible range. 

Figure 8. (A) DFT-calculated and (B) experimentally obtained UV-vis absorption spectra for
Al1.9Co0.1O3.

Thus, while the generation of electrons and holes in nano-Al2O3/TiO2 requires UV ir-
radiation (Figure 9), the incorporation of Co3+ ions in the Al2O3 lattice generates additional
donor and acceptor levels and shifts the energy into the visible range.
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2.4. FT-IR Stability Tests on Al2O3/TiO2 and Al1.9Co0.1O3/TiO2

Previous reports indicated that gamma alumina exhibits limited stability in aqueous
environments, eventually becoming hydrated over time. To assess the stability of the synthe-
sized Al2O3/TiO2 nanoparticles, we used FT-IR spectroscopy. Within one week of storage in
water, the synthesized Al2O3/TiO2 nanoparticles are seemingly stable (Figure S7). After two
weeks, peaks at 3551, 3460, and 3400 cm−1 indicate hydrolysis (formation of OH-functions).
The results for the Co3+-doped particles are essentially the same (Figure S8).

3. Materials and Methods
3.1. Materials

The starting materials, tetraethyl orthosilicate Si(OEt)4, titanium tetraisopropoxide
Ti(OiPr)4, AlCl3, ethylene glycol, ethylene diamine, EtOH, cobalt nitrate hexahydrate
Co(NO3)2·6H2O, zinc nitrate dihydrate Zn(NO3)2·2H2O, Na2CO3, and ethylamine (EtNH2)
were all provided from Merck (Darmstadt, Germany) and used without further purification.
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3.2. Preparation of γ-Al2O3 NPs

A total of 1 g of AlCl3 and 3 g of ethylene glycol were dissolved in 100 mL of deionized
water. Subsequently, 10 mL of ethylene diamine diluted with 50 mL of water were added
dropwise to the reactor, and the reaction mixture was stirred for 4 h. The resulting NPs
were separated and washed with deionized water and EtOH using centrifugation. The
final material was calcinated at 400 ◦C for 1 h.

3.3. Preparation of Al2O3/TiO2 NPs

The Al2O3 particles were dispersed in 100 mL of deionized water. In a separate beaker,
1 mL of Ti(OiPr)4 and 5 mL of ethylene glycol were mixed and added dropwise to the first
beaker. The mixture was stirred for 5 h, and the resulting precipitated NPs were separated
and washed with deionized water and EtOH using centrifugation. The final material was
calcinated at 400 ◦C for 1 h.

3.4. Preparation of Al1.9Co0.1O3/TiO2 NPs

A total of 0.95 g of AlCl3, 0.09 g of Co(NO3)2·6H2O, and 3 g of ethylene glycol
were dissolved in 100 mL of deionized water. Subsequently, 10 mL of ethylene diamine,
diluted with 50 mL of water, was added dropwise to the reaction mixture. The resulting
Al1.9Co0.1O3 NPs were isolated and washed several times with deionized water and EtOH
using centrifugation. The NPs were then dispersed in 100 mL of deionized water. In a
separate beaker, 1 mL of Ti(OiPr)4 and 5 mL of ethylene glycol were mixed and added
dropwise to the first beaker. The mixture was stirred for 5 h, and the resulting precipitated
NPs were separated and washed with deionized water and EtOH using centrifugation. The
final material was calcinated at 400 ◦C for 1 h.

3.5. Preparation of ZnO NPs

A total of 1 g of Zn(NO3)2·2H2O and 3 g of ethylene glycol were dissolved in a
beaker. Subsequently, 1 g of dissolved Na2CO3 was added dropwise to the first beaker.
The precipitated NPs were separated and washed with deionized water and EtOH using
centrifugation. The final material was calcinated at 400 ◦C for 1 h.

3.6. Preparation of ZnO/TiO2 NPs

The ZnO particles were dispersed in 100 mL of deionized water. In another beaker,
1 mL of Ti(OiPr)4 and 5 mL of ethylene glycol were mixed and added dropwise to the first
beaker. The resulting mixture was stirred for 5 h, and the precipitated NPs were separated
and washed with deionized water and EtOH using centrifugation. The final material was
calcinated at 400 ◦C for 1 h.

3.7. Preparation of SiO2 NPs

A total of 10 mL of Si(OEt)4 and 50 mL of EtOH were mixed in a beaker and stirred
for 15 min. Then, 50 mL of deionized water and EtNH2 were added immediately under
stirring. After 12 h, the SiO2 NPs were separated and washed with deionized water and
EtOH using centrifugation. The final material was calcinated at 400 ◦C for 1 h.

3.8. Preparation of SiO2/TiO2 NPs

The SiO2 particles were dispersed in 100 mL of deionized water. In another beaker,
1 mL of Ti(OiPr)4 and 5 mL of ethylene glycol were mixed and added dropwise to the first
beaker. The resulting mixture was stirred for 5 h, and the precipitated NPs were separated
and washed with deionized water and EtOH, using centrifugation. The final material was
calcinated at 400 ◦C for 1 h.

3.9. Photocatalysis

A solution was prepared by dissolving 0.2 g of brilliant blue E-4BA (C31H19O9N5S2Cl2Na2)
in 100 mL deionized water (20 ppm). Subsequently, 10 mg of the NPs was added to 100 mL of
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the prepared solution. The solution was irradiated at 475 nm using an Osram, 3.8 mW/cm2 UV
light-emitting diode (LED)(ams-OSRAM International, Regensburg, Germany) or at 525 nm
using an Osram, 4 mW/cm2 visible light LED. The light sources were kept at a distance of
10 cm from the samples. During irradiation, samples were taken in time intervals of 5 to
200 min, and UV-vis absorption spectra were recorded. After the complete irradiation time,
the solutions were filtered and analyzed using HPLC.

3.10. Chromatography

The mobile phase consisted of Solution A: 0.1 M ammonium acetate adjusted to
pH = 6.7, and Solution B: MeCN. Gradient elution was set as summarized in Table 1.

Table 1. Details for the gradient elution a.

Time A B Flow

0 97 3 1

18 40 60 1

20 40 60 1
a Flow: 1 mL/min, wavelength: 261 nm, injection volume: 20 µL. Calibration curves were generated from
five different concentrations between 25 and 75 ppm of brilliant blue E-4BA with three replicates, and the
correlation coefficient was assessed.

3.11. Instrumentation

Transmission electron micrographs (TEMs) were recorded using a TEM Philips EM
208S (Philips, Beaverton, OR, USA). Powder XRD (PXRD) was carried out using a PW 1730
(Philips, Eindhoven, The Netherland) diffractometer in the range of 2θ = 4 to 100◦ and
using Cu-Kα (λ = 1.5406 Å) radiation. Energy-dispersive X-ray spectroscopy (EDX) was
measured on a FE-SEM TESCAN MIRA2 (Tescan, Kohoutovice, Czech Republic). UV-vis
absorption spectra of the NPs were measured on powder samples in transmission mode
using a T70 UV-vis photospectrophotometer (PG Instruments, Wibtoft, UK). HPLC was
carried out on an Agilent instrument AGI1200-120013780 (Agilent, Santa Clara, CA, USA).
Brunauer–Emmett–Teller (BET) analysis was measured using a BET BELSORP Mini II
instrument (Microtrac Retsch, Haan/Duesseldorf, Germany). FT-IR measurements were
recorded using an FT-IR spectrometer MB3000 (ABB, Zürich, Switzerland).

3.12. DFT Calculations

Electronic band structures and optical properties of Al2O3 and Al1.9Co0.1O3 nanopar-
ticles were computed using density functional theory (DFT) calculations. The CASTEP
code was employed for the calculations, and optimization was achieved through the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) geometry optimization method (CASTEP version
16.11) [59]. The calculations utilized the generalized gradient approximation (GGA) and
the non-local gradient-corrected exchange-correlation functional, parameterized using the
Perdew-Burke-Ernzerhof (PBE) approach [60]. The plane-wave cutoff energy was set to
550 eV. The optical characteristics of Al2O3 and Al1.9Co0.1O3 were investigated using the
CASTEP frequency computation results at the gamma point (GP). Brillouin zone summa-
tion employed k-point sampling with a Monkhorst-Pack grid at a 2 × 2 × 2 parameter
set. The “2 × 2 × 2 parameter” refers to the grid used for k-point sampling within the
Brillouin zone when performing calculations on a material’s electronic band structure. In
this case, the Monkhorst-Pack grid with a 2 × 2 × 2 parameter indicates that the Brillouin
zone is divided into a grid of k-points in each direction (x, y, z) with two points in the
x-direction, two points in the y-direction, and two points in the z-direction. This grid
defines the discretization of the Brillouin zone for numerical calculation. Additionally,
geometry optimization under applied hydrostatic pressure was utilized to determine the
material modulus (B) and its pressure derivative, B′ = dB/dP [59,61].
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4. Conclusions

Metal oxide core/shell nanoparticles (NPs), Al2O3/TiO2, ZnO/TiO2, SiO2/TiO2, and
Al1.9Co0.1O3/TiO2, were synthesized, characterized, and investigated for their photocat-
alytic activity in the degradation of the dye brilliant blue E-4BA. The size of the cores
ranged from 10 to 30 nm, while the TiO2 shells were about 3 nm thick. This thin shell
was confirmed by powder X-ray diffraction (PXRD) showing reflections for both the core
and the shell material and makes sure that both the core and shell can absorb photons.
Furthermore, both parts are highly crystalline, except for the SiO2 core. The optimal catalyst
dosage for the photodegradation was identified at 10 mg per 100 mL of a 20 ppm dye
solution using UV-vis absorption spectroscopy and HPLC for reaction monitoring. No
reactivity was found without a catalyst, while for the studied NPs, the reactivity increased
along the series–pure TiO2 < SiO2/TiO2 < ZnO/TiO2 < Al2O3/TiO2 < Al1.9Co0.1O3/TiO2–
under UV irradiation, which translates into times for complete conversion of 70 min for
pure TiO2 and 15 min for Al1.9Co0.1O3/TiO2. This aligns well with the increasing BET
surfaces SiO2/TiO2 (87 m2/g) < ZnO/TiO2 (160 m2/g) < Al2O3/TiO2 (583 m2/g) and
Al1.9Co0.1O3/TiO2 (618 m2/g), underpinning that the adsorption capacity of a material
is crucial for photodegradation. Under visible light irradiation, only Al1.9Co0.1O3/TiO2
was found to be active in photodecomposition of the dye, decomposing the dye within
90 min. DFT-based band structure calculations showed that Co-doping introduces addi-
tional energy levels into Al2O3, resulting in improved electron–hole pair generation. The
DFT-calculated absorption spectra of Al2O3/TiO2 and Al1.9Co0.1O3/TiO2 agree very well
with the experimental spectra, thus supporting the band structure calculations.

On the other hand, from this preliminary study, it is not possible to identify the “best
material” from our series or the “most important parameter” for determining this. Size,
layer thickness, specific surface area, band gap, and photon absorptions are strongly inter-
connected. Especially, we were not able to quantitatively assess the heterojunction effect
of combining ZnO, SiO2, and Al2O3 with TiO2. The experimentally observed increasing
reactivity along the series SiO2/TiO2 < ZnO/TiO2 < Al2O3/TiO2 correlates with the BET
surfaces, but additionally, Al2O3 might show a pronounced heterojunction effect decreasing
the band gap of pure Al2O3 around 6 eV, thus reaching those of ZnO (around 3 eV) and
SiO2 (around 4 eV). Thus, manufacturing of core/shell NPs with thin TiO2 shells using
these basically cheap and highly abundant metal oxides allows for generating potent pho-
tocatalysts for UV photocatalysis. The introduction of transition metals such as Co turns
out to be suitable to shift the irradiation wavelength into the visible range.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/inorganics12110281/s1, Figure S1: TEM images of syn-
thesized (A) Al2O3, (B) TiO2, (C) SiO2, and (D) ZnO nanoparticles; Figure S2: TEM images of the
synthesized (A) Al2O3/TiO2, (B) Al1.9Co0.1O3/TiO2, (C) ZnO/TiO2, and (D) SiO2/TiO2 nanoparti-
cles; Figure S3: BET plots of the ZnO/TiO2 (top left), SiO2/TiO2 (top right), Al2O3/TiO2 (bottom,
left), and Al1.9Co0.1O3/TiO2 (bottom right) nanoparticles; Figure S4: XRD patterns of the synthesized
NPs (A) Al2O3, (B) ZnO, (C) TiO2, (D) SiO2, and (E) Al1.9Co0.1O3; Figure S5: UV-vis absorption
spectra for the synthesized NPs (A) SiO2, (B) TiO2, and (C) ZnO; Figure S6: HPLC from reaction
mixtures containing 20 ppm brilliant blue E-4BA in H2O after addition of 10 mg bare SiO2 or TiO2
NPs as catalyst (or none) and UV irradiation for 15 min; Figure S7: FT-IR spectra of Al2O3/TiO2
nanoparticles stored in water and after synthesis; Figure S8: FT-IR spectra of Al1.9Co0.1O3/TiO2
nanoparticles stored in water and after synthesis.
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Abstract: In this study, the Mg2+-doped anatase TiO2 phase was synthesized via the solvothermal
method by changing the ratio of deionized water and absolute ethanol Vwater/Vethanol). This enhances
the bleaching efficiency under visible light. The crystal structure, morphology, and photocatalytic
properties of Mg-doped TiO2 were characterized by X-ray diffraction, scanning electron microscopy,
high-resolution transmission electron microscopy, N2 adsorption-desorption, UV-Vis spectroscopy
analysis, etc. Results showed that the photocatalytic activity of the Mg2+-doped TiO2 sample was
effectively improved, and the morphology, specific surface area, and porosity of TiO2 could be
controlled by Vwater/Vethanol. Compared with the Mg-undoped TiO2 sample, Mg-doped TiO2

samples have higher photocatalytic properties due to pure anatase phase formation. The Mg-doped
TiO2 sample was synthesized at Vwater/Vethanol of 12.5:2.5, which has the highest bleaching rate of
99.5% for the rhodamine B dye during 80 min under visible light. Adding Mg2+-doped TiO2 into
the phase-separated glaze is an essential factor for enhancing the self-cleaning capability. The glaze
samples fired at 1180 ◦C achieved a water contact angle of 5.623◦ at room temperature and had high
stain resistance (the blot floats as a whole after meeting the water).

Keywords: solvothermal method; Mg-doped TiO2; Vwater/Vethanol; self-cleaning properties; visible light

1. Introduction

With the deterioration of environmental pollution, low-consumption and high-efficiency
pollution technologies have received more attention [1,2]. As the durative utilizes clean
energy, solar energy has vast potential for exploitation and application. Titanium dioxide
is an important photocatalyst that has been widely studied because of its high activity,
non-toxic characteristics, environmental friendliness, and good chemical stability [3–6]. As
the energy barrier of the metastable phase was less than that of the stability phase, it was
more likely to excite electrons and holes for the metastable phase [7,8]. Hence, anatase
TiO2 is considered to be the best photocatalyst of all of the structures of TiO2 [9,10]. It
can fully effectively utilize UV light from sunlight [11–13]. Several factors affect anatase
TiO2 photoactivity, such as crystal size, specific surface area, and crystallinity [14–16]. The
performance of the TiO2 was optimized by doping [17–20], loading [21,22], and thin-film
preparation [23,24]. Available studies indicated that some ions could enter the lattice as
substitutional or interstitial; the titanium ions are substituted by metal ions in the crys-
tal lattices. Some studies illustrate that rare-metal-ion-doped titania nanoparticles were
prepared by the hydrothermal method, and their photocatalytic performance was greatly
improved under UV irradiation [25,26]. At present, there exist a few studies concern-
ing magnesium-ion-doped TiO2 obtained by the sol-gel reaction synthesis route and the
solvothermal method [27,28], but its processing is complex and needs HF as a capping
agent to form the anatase phase. It would therefore be interesting to investigate how a
simple method can be used for preparing a glaze containing Mg(II)-doped anatase that is
stable in a medium-/high-temperature (>1000 ◦C) ceramic glaze [29] and has self-cleaning
properties, as anatase TiO2 has a nanometer size.
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This study presents the simple synthetic procedure of producing Mg-doped TiO2
anatase samples without surfactants or templates and evaluates the influence of the struc-
ture and Vwater/Vethanol on their photocatalytic activity in decomposing rhodamine B
(RhB). The self-cleaning activities of Mg-doped and undoped TiO2 anatase glaze samples
are evaluated by comparing their anti-pollution ability.

2. Experimental Section
2.1. Preparation of the Samples

The samples, with various deionized water and absolute ethanol contents, were
prepared from tetrabutyl titanate (TBOT), MgCl2•6H2O, and NaOH using the hydrothermal
method. In a typical synthesis, firstly, solution A was made, which included MgCl2•6H2O,
deionized water, and absolute ethanol. Subsequently, solution B was made, which included
TOBT and ethanol. Finally, suspension C was prepared by dripping solution B into system
A. The molar ratio of MgCl2•6H2O:TBOT:ethanol: water was 0.03:1:10:50. After 15 min,
after adding suspension C into the reactor, it was heated at 180 ◦C for 36 h and then
naturally cooled to room temperature. The final sample obtained was centrifuged and
washed with deionized water and absolute ethanol. The photocatalytic properties of the
samples were investigated by changing the molar ratio of water/ethanol (Vwater:Vethanol),
keeping other experimental parameters unchanged. Figure 1 is the schematic diagram of
Mg-doped TiO2 sample preparation.
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Figure 1. Schematic diagram of Mg-doped TiO2 sample preparation.

The Mg-doped TiO2 in the glaze sample was fabricated by sintering at 1180~1200 ◦C
using raw powders, i.e., 95% of the as-prepared Kaolin clay was subjected to phase sep-
aration melting at 1500 ◦C for 4 h and 5% by adding 5% Mg-doped TiO2 (Vwater/Vethnol
of 12.5:2.5) photocatalysts, and the self-cleaning and hyper-hydrophilic properties of the
fired glaze samples were characterized and tested, respectively. Figure 2 is the schematic
diagram of the glaze firing processes.
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2.2. Characterization of the Samples

The crystalline phase was identified by X-ray diffractometer (XRD, D8 Advance Bruker
AXS, Germany) using Cu Kα radiation. Compared with the standard pattern in the XRD
standard database, including JCPDS (i.e., PDF cards), the phase composition of the sample
was analyzed using Jade 6.0 software. Photocatalyst morphology was investigated by
scanning electron microscopy (SEM, JSM-6700F, Japan) using a device equipped with
an EDS system operating at an accelerating voltage of 5.0 kV or 15 kV (15 kV for EDS).
The crystal surface of nanocrystals was evaluated by high-resolution microscopy. The
microstructures of the samples were studied by transmission electron microscopy (TEM, FEI
Tecnai G2 F-30, Holland) and high-resolution transmission electron microscopy (HRTEM,
FEI Tecnai G2 F-30, Holland) at accelerating voltages of 160 kV and 200 kV, respectively.
The valence states of the samples were characterized by X-ray photoelectron spectroscopy
(XPS, ESCALAB Xi+, United States) using Al Kα radiation. The specific surface areas were
determined by the Brunauer–Emmett–Teller method, and the pore size was determined
by the Barrett–Joyner–Hallenda method. Nitrogen adsorption-desorption isotherms were
collected on a Micromeritics TriStar ii 3020 analyzer at 77 K. The analysis of samples by
UV-Vis diffuse reflectance spectroscopy was carried out. The hydrophilicity of the samples
was tested by a contact angle meter (JGW-360D, China).

2.3. Photocatalytic Activity of the Samples

The photocatalytic activity of the TiO2 was evaluated by bleaching the RhB with a
concentration of 10−4 mol/L. The total volume of RhB was 50 mL, irradiated with 0.05 g
of the photocatalyst and a 500 WXeon light with a cut-off filter of 420 nm. This was
to prove that the RhB was exhibiting bleaching rather than adsorption after the dark
experiment was carried out. Samples were taken out at 20 min intervals and analyzed
with a spectrophotometer. The photocatalytic activity was characterized by the apparent
first-order rate constant k, as in equation k = ln(A0/A), where A was the absorbance of RhB
at 553 nm after bleaching and A0 was the absorbance of the initial RhB solution at 553 nm.

3. Results and Discussion
3.1. Structural and Morphology

The crystal phase of the samples was studied as shown in Figure 3. The obtained
diffraction peak of the doped TiO2 matched very well with the standard values (PDF-#21-
1272) and the diffraction peaks at 2θ = 25.281(101), 37.800(004), 48.049(200), 53.890(105),
and 62.688(204), illustrating that the samples were in the anatase phase. However, the
obtained undoped TiO2 was in a mixed phase of anatase and brookite. The cell volume
was calculated by Fourier synthesis with the program SHELXS−97 [30]. When the solvent
was water, the sample consisted of nanoparticles 10~20 nm in mean size, as determined
by Nano Measurer 1.2 software using 10 nanoparticles. The average crystallite size of
TiO2 samples with different Mg-doped ions was calculated by XRD–Scherrer formula:
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d = 0.91 λ/βcos θ, where d is the mean crystallite size, k is 0.9, λ is the wavelength of
Cu Kα (i.e., λ = 0.15420 nm), β is the full width at half maximum intensity of the peak
(FWHM) in radian, and θ is Bragg’s diffraction angle [31]. The crystallite size and cell
volume were calculated as shown Table 1. When increasing Vwater/Vethanol, there are
differences in the diffraction peak intensity and minor shifts in the peak occur, which
indicates a reduction in crystalline size and an increase in the volume of unit cells (Table 1).
Since the ionic radius of Mg2+ (0.072 nm) is close to that of Ti4+ (0.061 nm), Mg2+ easily
enters the TiO2 lattice [32] and the lattice volume increases (Table 1), indicating that the
formation of a crystal defect. Based on the experimental results, the formation of the crystal
defect promotes the formation of the anatase phase, which is accordance with the reported
literature [27,29]. Hence, after the addition of the magnesium source, a pure-anatase TiO2
phase appears. The intensity of the (004) direction is significantly enhanced compared to
undoped TiO2. In addition, the FWHM of the (101) peak was calculated by using Lorentz
fitting. According to the Scherrer formula, d = 0.91 λ/βcos θ, the crystallite size was
calculated; it is shown in Table 1.
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Table 1. Effect of different ratios of water: ethanol in the solvent on the crystal size, BET surface area,
pore size, pore volume, and cell volume of Mg-doped TiO2.

Vwater/Vethnol
Crystal Size

(nm)
BET

(m2/g)
Pore Size

(nm)
Pore Volume

(cm3/g)
Cell Volume

Å3

Mg-doped TiO2

15:0 13.6 152 13.8 0.415 136.458

12.5:2.5 13.2 148 12.5 0.402 136.315

10:5 10.3 105 12.4 0.378 136.452

7.5:7.5 8.1 101 12.0 0.350 136.689

Pure TiO2 12.5:2.5 14.0 98 11.2 0.340 136.089

Figure 4 shows SEM images of the as-synthesized samples. When the solvent was
water, the sample consisted of nanoparticles 5–10 nm in size. When the Vwater/Vethnol ratio
was 12.5:2.5, agglomerated nanoparticles had a grape-like morphology (Figure 4b). With
the increase in ethanol dosage, nanoparticles increased (Figure 4c,d). The experimental
results show that the morphology of the samples was greatly affected by Vwater/Vethnol.
Their morphology is determined by the relationship between crystal formation and growth.
Moreover, crystal growth is influenced by the adsorption of certain crystalline facets into
OH−. This adsorption hinders the growth of these facets, resulting in different rates
of crystalline growth. Ethanol is a typical polar solvent and amphiphilic molecule. It
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was vertically adsorbed on the hydrophilic surface of the TiO2 particles, forming a two-
amphiphilic bilayer, which limited the immersion of the water molecule in the hydrophilic
side surface and the TiO2 particles [33]. The rapid hydrolysis of TBOT promoted the
rapid generation of TiO2, which led to TiO2 particle agglomeration with an increase in
Vwater/Vethanol. Figure 5a,b show TEM and the corresponding SAED pattern (inset) and
HRTEM images of the sample prepared at Vwater/Vethnol = 12.5:2.5. From Figure 5a, it is
observed that the aggregated particles in Figure 4b consist of nanoparticles. The major
diffraction rings for the crystal surface at (101), (004), and (105) match well with XRD
analysis. The d spacing is 0.325 nm (Figure 5b), and it matches well with the lattice
spacing of anatase TiO2 (101). Furthermore, the corresponding EDX spectrum shown in
Figures 5c and S1 verifies the existence of Mg, Ti, and O ions. Other impurities were not
detected in the EDX spectra.
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(c) 10:5, (d) 7.5:7.5.

As can be seen from Table 1 and Figure 3, the morphologies of the samples strongly
depend on Mg-doped ions and Vwater/Vethanol. Because the current system contains ethanol,
water, Mg-doped ions, and TBOT, we can reasonably assume that the formation of anatase
TiO2 is due to the dehydrating condensation between Ti(OH)6

2− and Mg-doped ions under
solvothermal conditions [34]. Thus, due to the formation of a lower number of active OH−

ions and a lower number of soluble species, Ti(OH)6
2− and TiO6 octahedrons in one cluster

may construct a chain via the corner-sharing of Ti(OH)6
2− growth units. Due to doped

Mg ions entering the TiO2 lattice, resulting in TiO6 octahedron lattice distortion (Table 1)
and an increase in the charge density of Ti and reduction in the electron density of oxygen,
the preferred TiO6 octahedron chain-shaped clusters further adsorb OH− soluble species
into the (101) plane (Figure 5b) and anatase TiO2 monomers form through a dehydrating
condensation process. Therefore, these planes could be freely bonded by interactions
between OH− and nuclei to obtain aggregated nanoparticles (Figure 4). The solubility of
salt increases with the dielectric constant of the solvent [35], and the dielectric constant of
water is bigger than that of ethanol. When Vwater/Vethnol decreases, that is, ethanol content
increases, this could decrease the solubility of the precursor and increase the viscosity of
the solution, thereby decreasing the diffusion ability of Ti(OH)6

2− ions and causing the
crystal size of the TiO2 sample to decrease (Table 1).
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Figure 5. (a) TEM images and SAED pattern, (b) HRTEM images, (c,d) EDX spectra. (a–c) Mg-
doped sample prepared using Vwater/Vethnol = 12.5:2.5, (d) pure TiO2 sample prepared using
Vwater/Vethnol = 12.5:2.5.

Figure 6 shows XPS spectra of pure and Mg-doped TiO2 samples. Peaks located
around 457 eV and 464 eV resulted from Ti 2p3/2 and Ti 2p1/2, respectively, corresponding
to the oxidation state of Ti4+. Meanwhile, due to the partial substitution of Tg4+ ions by
Mg2+, the binding energy of Ti decreases, thus increasing the charge density of Ti. The
binding energy of O 1s in the pure TiO2 sample is 529.8 eV, owing to the intrinsic binding
energy of oxygen in TiO2. The Mg-doped TiO2 sample shows a shoulder peak near 532.3 eV
in addition to the intrinsic binding energy of O 1s (shown in Figure 6b). This may be due to
the addition of small amounts of Mg atoms, causing new oxygen vacancies [36]. Oxygen
vacancies in TiO2 are usually created in doped TiO2 to maintain charge neutrality and
improve the service life of the photocatalyst [37]. When oxygen vacancies are generated, a
higher energy peak can be seen due to the decrease in the electron density of oxygen [37]. A
peak at 49.93 eV was associated with Mg 2p, which is further verified by the incorporation
of Mg2+ into the titanium dioxide lattice.

Figure 7 shows the typical FT-IR spectrum of undoped TiO2 and Mg-doped TiO2 sam-
ples with different Vwater/Vethnol ratios. All samples have absorption peaks at 3380 cm−1

and 1640 cm−1, corresponding to O-H stretching vibration and bending vibration, respec-
tively [38]. For the undoped TiO2 sample, the bands at 1450 cm−1 and 1538 cm−1 are
attributed to the H-O-H bending of the lattice water [39]. The band centered at 510 cm−1

is due to isolated tetrahedral TiO4 stretching vibrations and only occurs in the pure TiO2
sample [40]. As a result of Mg-doping, the bands at 1065 cm−1 and 458 cm−1 show the
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vibration of Ti-O-Mg [41]. With the increase in ethanol content, the intensities of the ab-
sorption peaks at 3380 cm−1 and 458 cm−1 increase, respectively. This indicates that Mg
ions are doped into the lattice of TiO2, and the HRTEM, TEM, and XRD results further
confirmed this point.
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3.2. BET Analysis

Figure 8 shows the BET analysis of the samples using nitrogen adsorption-desorption.
For all samples, the isotherms are type IV, and clear hysteresis loops can be identified.
With the increase in Vwater/Vethnol, the BET surface area of the Mg-doped TiO2 samples
decreases. However, the pore volume and porosity of the samples exhibit a prominent
enhancement compared with the undoped TiO2 sample, as shown in Table 1 and Figure 8.
The BJH average pore diameters, calculated from the adsorption branch of the isotherms, are
11.205 nm, 12.560 nm, 12.365 nm, and 12.807 nm for pure TiO2 and Mg-doped TiO2 samples
prepared with different Vwater/Vethnol ratios of 12.5:2.5, 10:5, and 7.5:7.5, respectively. The
mesoporous structure is mainly due to the porous accumulation of nanoparticles [42]. The
porosity increase is due to the crystal size reducing with the decrease in Vwater/Vethnol.
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Figure 8. N2 adsorption-desorption isotherm samples with different ratio of water: ethanol (a) doped
TiO2 12.5:2.5, (b) doped TiO2 10:5, (c) undoped TiO2 12.5:2.5.

3.3. Optical Properties

Figure 9 shows the UV-Visible diffuse reflectance spectra of TiO2. The absorption
edge of doped TiO2 had more of a blue shift than the undoped TiO2. The Kulbeka–Munk
formula, (E(ev) = hC/λ, h = 6.626 × 10−34 Js, C = 3.0 × 108 ms−1), was used to acquire the
exact band gap of TiO2 from 3.26 eV to 3.13 eV, which can be attributed to the Mg2+-doped
TiO2 in the framework. Since Mg2+ ions generated from oxygen vacancies are known to
cause the photoexcitation of long-wavelength light, the UV-Vis absorption spectrum was
inferred to verify the presence of Mg2+ in the TiO2-doped sample.
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Moreover, from the spectrum, the energy gap of the semiconductor nanoparticles is
related to the particle size. The band gap increases as the particle size decreases, resulting
in a phenomenon known as a “blue shift” in light absorption at a specific wavelength
due to the quantum size effect [43]. With the increase in ethanol content, the absorption
edge of the doped TiO2 is blue-shifted, illustrating the particle size reduction. The results
obtained are well-matched with the sizes of the crystals that were measured. The band
gap energies of the prepared TiO2 doped by adding 0 to 7.5 mL ethanol were found to be
3.17 ev, 3.03 ev, 3.13 ev, and 3.25 ev, respectively. From Figure 4, it is clear that the size of
anatase nanoparticles increases with the increase in ethanol content. Optical absorption is
highly dependent on the internal structure of the material [44]. Compared with pure TiO2,
the longer-wavelength region of Mg-doped TiO2 samples implies that the only possible
transition is from the oxygen vacancies causing a red shift of the absorption edge (Figure 6),
which also implies that Mg2+ has been incorporated into the lattice of TiO2 (Table 1). From
Figure 6, it can be observed that compared with the pure TiO2 sample, the Ti and O binding
energy in Mg-doped TiO2 samples has been shifted to a lower energy and a higher energy
peak, because some Ti4+ ions are replaced by Mg2+ ions in order to increase the charge
density of Ti and reduce the electron density of oxygen [45]. The new oxygen vacancies
are created through the doping of small amounts of Mg atoms [46]. For the Mg-doped
TiO2 sample, the peak of 49.9 eV is ascribed to Mg 2p (Figure 6c), which is consistent with
the value of Mg2+ [27,41]. These observations further verify the existence of Mg2+ in the
Mg-doped TiO2 sample, which is consistent with XRD (Figure 3), increased cell volume
(Table 1), and FT-IR spectrum (Figure 7).

3.4. Photocatalytic Activity

Figure 10 shows the photocatalytic bleaching of RhB through the as-prepared sample
under visible light. As shown in Figure 10, RhB concentration is unchanged, illustrating that
RhB adsorbed on the TiO2 surface had reached equilibrium in 30 min. Figure 10b shows
kinetic curves of ln(C0/C) versus irradiation time during RhB bleaching under visible
light irradiation. It has been found that the apparent rate constants [47] for the reaction
of RhB with Mg-doped TiO2 samples (Vwater/Vethanol = 15:0, 12.5:2.5, 10:5, 7.5:7.5) and
Mg-undoped TiO2 (Vwater/Vethanol = 12.5:2.5) were 0.01704, 0.06335, 0.04153, 0.01668, and
0.00203 min−1, respectively, which illustrates that the photocatalytic activity of the samples
was effectively improved by Mg2+-doping (due to pure anatase phase formation (Figure 3)).
Moreover, the photocatalytic properties of Mg-doped TiO2 can be further improved by
changing the ratio of water to ethanol. The photocatalytic properties of the samples
increased first and then decreased gradually with the increase in Vwater/Vethanol. When
the Vwater/Vethanol ratio was 12.5:2.5, Mg-doped TiO2 had the maximum photocatalytic
activity. In addition, by combining Table 1 with Figures 4 and 9, we can observe that
the aggregated nanoparticles increase in size and thus Eg increases, which leads to the
easy recombination of the electron and hole in the migration process, and therefore, the
photocatalytic activity of the samples decreases with the increase in ethanol volume (i.e.,
Vwater/Vethanol decreases). Although TiO2 (Vwater/Vethanol = 15:0) has a larger specific
surface area and smaller crystal size (Table 1) compared with the Mg-doped samples, the
sample had lower porosity and pore size, which caused the decrease in the sample of RhB
adsorption. This clearly indicates that the adsorption of samples was determined by the
surface area and characteristics of the pore. Obviously, Mg-doped TiO2 samples exhibited
better photocatalytic activities than pure TiO2 samples. The narrowing of the band gap is a
result of Mg doping into the TiO2 lattice, which enables the trapping of the photo-induced
electron and facilitates the separation of electron-hole pairs (Figure 11a).
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3.5. Self-Cleaning Properties of Mg-Doped TiO2 in Glaze Sample

It can be seen the wet angle of pure TiO2 glaze samples is obviously higher than those
of Mg-doped TiO2 glaze samples (Figure 12). The super-hydrophilicity of Mg-doped TiO2
glaze samples is attributed to several comprehensive factors. Based on the experimental
results, Mg ions are helpful for the growth of the TiO2 crystal grain, and thus separates
the phase size in Mg-doped TiO2 glaze more than pure TiO2. This makes the Mg-doped
TiO2 glaze surface rougher than that of the pure TiO2 glaze (Figure 12). A large surface
roughness could improve the hydrophilicity, according to the Wenzel equation (1): cos
θr = rcos θ, where r denotes the surface roughness of the glaze, cos θ is the classical
contact angle depicted by the Young equation, and θr is the measured real contact angle.
Moreover, the partial substitution of Mg2+ ions for Ti sites increases the slight TiO2 lattice
distortion, which is available for a low initial contact angle and hydrophilicity [48]. From
Figure 12, it can be seen that the contact angles of Mg-doped TiO2 samples are smaller
than that of the pure TiO2 glaze sample in the dark condition, indicating that the greater
roughness and lattice distortion are helpful for decreasing the contact angle. This could
be because the incorporation of Mg makes the band gap of TiO2 narrow, thus the visible
light can excite pairs of electrons and holes (Figure 11a), just as in the case of ultraviolet
irradiation for the pure TiO2 glaze. Ti4+ ions could be united with the photo-induced
electron and thus Ti3+ ions could be obtained. Ti3+ sites can be substituted by Mg2+ ions,
which produces one excess positive charge. Those excess positive charges could capture
the photo-induced electrons quickly, and thus photo-generated holes are available for
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combining more H2O adsorbed on the glaze surface and react with water, producing
hydroxyl radicals that are also available for maintaining the hydrophilicity of Mg-doped
TiO2 glaze samples [29]. Therefore, the super-hydrophilicity of Mg-doped TiO2 glaze
samples could be attributed to the visible-light-exciting photo-induced pairs of electrons
and holes. For the sample with a Vwater/Vethanol ratio of 10:5 and 7.5:7.5, the contact
angles of water droplets on Mg-doped TiO2 glaze samples increase slightly, which could be
attributed to the decrease in the Vwater/Vethanol ratio. However, when Vwater/Vethanol is 10:5
and 7.5:7.5, the hydrophilicity of Mg-doped TiO2 glaze samples decreases slightly, though
it still has super-hydrophilicity. The hydroxy groups anchoring on the Mg-doped TiO2
glaze surface have a significant impact on the hydrophilicity. The formation of hydroxy
groups results in the dissociative adsorption of water molecules at oxygen vacancy sites
on the Mg-doped TiO2 glaze surface. The extra hydroxy groups and oxygen vacancies on
the surface are produced by electron–hole pairs, which lead to the hydrophilicity of the
Mg-doped TiO2 glaze surface [39]. Because oxygen vacancy is produced by the doping of
Mg in the TiO2 crystal and the separation of electron–hole pairs is facilitated (Figure 11a),
the Mg-doped TiO2 glaze surface has more photo-induced wettability than the pure TiO2
glaze surface.
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The self-cleaning performance was tested using a Japan Marker pen. The glaze surface
was drawn on after drying for 1 h. After that, after placing a few drops of water on the
glaze, we could observe whether the ink blots were floating. Table 2 shows that after firing
at 1180~1200 ◦C, the water contact angle (5.623◦ vs. 15.23◦) and stain resistance (the blot
floats as a whole vs. not floating, as shown in Figure 13) of the sample fabricated were
improved compared to commercial self-cleaning ceramic glazes [49]. The above results
indicate the great potential application for enhancing the self-cleaning properties of glazes
by introducing Mg-doped TiO2.

Table 2. Performances of Mg-doped TiO2 in the ceramic samples obtained in this study and from
other literature studies.

Type Firing Temperature
(◦C)

Water Contact Angle (◦)
Stain Resistance Ref.

Before Use Irradiation after Use

Mg-doped TiO2 in glaze sample 1180~1200 5.623 5.124 After dripping water droplets,
the blot floats as a whole This work

TiO2 doped in glaze sample 1180~1200 12.26 13.56 Not floating This work
The commercial self-cleaning

ceramic products 1180~1200 21.23 28.96 Not floating This work

C-PEG/TiO2 coating - 26 11 Blot cannot be
completely removed [50]

Commercial ceramic tiles with
groove-like

microstructure surfaces
- 164.75 - Blot cannot be

completely removed [51]

Hybrid sol–gel coating and
industrial application on

polished porcelain
stoneware tiles

- - -
With the help of cleaning
agent, the stains can be

removed from the surface
[52]
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4. Conclusions

In this paper, Mg-doped TiO2 samples with various Vwater/Vethanol ratios were suc-
cessfully prepared through the solvothermal method at 180 ◦C for 36 h. The Mg-doped
(Vwater/Vethanol = 12.5:2.5) sample had higher surface area, porosity, optical performance,
and photocatalytic activity than other samples. Undoped and Mg-doped TiO2 glaze ce-
ramic samples were prepared using a medium-/high-temperature solid-firing process.
Mg-doped TiO2 samples (Vwater/Vethanol = 12.5:2.5) illustrated superior hydrophilicity
properties, photocatalytic activity in terms of bleaching organic dye, and self-cleaning capa-
bility in ceramic glaze samples than other samples after visible light exposure. This study
provides a preparation approach for the synthesis of TiO2 while controlling crystal size and
morphology, which can be utilized with solar energy for bleaching the contaminants in
water and enhancing the self-cleaning properties of medium-/high-temperature glazes.
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Abstract: Titanium dioxide (TiO2) photocatalysts, characterized by exceptional photocatalytic activity,
high photoelectric conversion efficiency, and economic viability, have found widespread application
in recent years for azo dye degradation. However, inherent constraints, such as the material’s
limited visible light absorption stemming from its bandgap and the swift recombination of charge
carriers, have impeded its broader application potential. Encouragingly, these barriers can be
mitigated through the modification of TiO2. In this review, the common synthesis methods of TiO2 are
reviewed, and the research progress of TiO2 modification technology at home and abroad is discussed
in detail, including precious metal deposition, transition metal doping, rare earth metal doping,
composite semiconductors, and composite polymers. These modification techniques effectively
enhance the absorption capacity of TiO2 in the visible region and reduce the recombination rate of
carriers and electrons, thus significantly improving its photocatalytic performance. Finally, this paper
looks forward to the future development direction of TiO2 photocatalytic materials, including the
exploration of new modified materials, in-depth mechanism research, and performance optimization
in practical applications, to provide useful references for further research and application of TiO2

photocatalytic materials.

Keywords: titanium dioxide; modification; photocatalysis; organic pollutants

1. Introduction

In recent years, acid rain, eutrophication of water bodies, black and smelly water bod-
ies, PM2.5 exceeding standards, and other environmental issues have occurred frequently,
warning us that environmental protection cannot be delayed. Among them, the content
of organic pollutants and pigments is high, which seriously affects the regional water
quality [1,2]. Due to their highly stable structure and difficulty in handling, most of them
are toxic to organisms, including direct lethality and carcinogenicity [3–5]. This highlights
the urgent need for effective treatment of pollutants in water, and the current treatment
methods for organic pollutants are mainly the combination of physical, biochemical, and
chemical treatment methods [6].

Physical treatment methods include adsorption, extraction, radiation-based tech-
niques, and membrane separation [7–9]. Biochemical treatment methods include aerobic
treatment, anaerobic treatment [10,11], and so on. Chemical treatment methods include
chemical oxidation, photocatalytic oxidation, electrochemical methods, chemical coagula-
tion, and others [12–14]. Although the traditional physical and chemical treatment methods
can remove azo dyes to a certain extent, there are often problems such as high energy
consumption, long treatment cycles, and secondary pollution. Therefore, the development
of efficient and environmentally friendly treatment of water pollutants has become the
focus of current research.
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As a new type of wastewater treatment technology being gradually developed based
on photochemical oxidation [15], photocatalytic technology has garnered widespread favor
among scholars due to its numerous advantages including good stability, high activity,
non-toxicity, a wide range of applicability, and the absence of secondary pollution. Its ability
to effectively degrade dye pollutants in water bodies is particularly noteworthy [16,17].
Photocatalysts are primarily composed of n-type semiconductor materials, including TiO2,
ZnO, CdS, and others. TiO2 stands out as the most extensively studied and utilized n-type
semiconductor material due to its exceptional chemical stability, non-toxicity, low cost, and
strong photosensitivity [18,19]. Its application areas span water treatment, air purification,
solar cell photosensitizers, self-cleaning materials, and medical applications [20]. In the
degradation of organic pollutants in water, TiO2 photocatalysis technology has shown
unique advantages. TiO2 photocatalyst can generate photogenerated electrons and holes
under ultraviolet irradiation and then trigger a series of REDOX reactions. These reactions
can break the chemical bonds of organic pollutant molecules and degrade them into small
molecular compounds, ultimately achieving the purpose of removing the pollutants [21].

Although TiO2 photocatalysis technology has many advantages in the degradation
of pollutants in water, pure TiO2, with a band gap of 3.0~3.2 eV [22], can only be excited
by ultraviolet light with a wavelength less than 387 nm and photogenerated electron-
hole pairs are easy to recombine, resulting in low photo quantum efficiency and limited
photocatalytic activity [23]. To further improve the photocatalytic performance of TiO2,
researchers modified TiO2 through doping [24], composite, surface modification [25], and
other means to optimize the structure of TiO2, thereby expanding its photoresponse range
and reducing the carrier recombination rate [26,27]. Thus, its application effect in the
photodegradation of organic pollutants was enhanced. These modification methods can
significantly improve the efficiency and performance of TiO2 photocatalysts in degrading
pollutants and provide better technical support for practical applications. In addition, the
study of TiO2-modified photocatalysis technology has far-reaching significance [28]. It not
only helps to solve the environmental problems of organic pollutants such as azo dyes
but also promotes the application and development of photocatalysis technology in other
fields [29]. Through in-depth research on the mechanism and methods of TiO2 modification,
theoretical guidance, and practical experience can be provided for the development of
more efficient and environmentally friendly photocatalytic materials and contribute to
environmental protection and sustainable development [30].

2. Mechanism and Kinetics of Photodegradation of Organic Pollutants by
TiO2 Photocatalyst
2.1. Mechanism of Photodegradation of Organic Pollutants by TiO2 Photocatalyst

TiO2 is a semiconductor, and its band structure is composed of a low-level valence
band and a high-level conduction band [31]. The valence band is mainly composed of 2p
orbitals of oxygen atoms, and the conduction band is mainly composed of 3d, 4s, and 4p
orbitals of titanium atoms [32]. The band discontinuity of the semiconductor is bandgap
between the valence band and the conduction band, and the energy difference between the
conduction band and the valence band is called bandgap width [33].

TiO2 mainly has three crystal structures, namely Anatase type, Rutile type, and
Brookite type, of which rutile TiO2 is the most stable crystal type, even at high temperatures
will not be transformed and decomposed. The photocatalytic activity of anatase TiO2 is
higher than that of rutile TiO2 because anatase TiO2 has a lighter effective mass, smaller
particle size, and longer life of photoexcited electrons and holes [34]. As a metastable
phase, titanite is rarely found in nature, is difficult to synthesize, and has low practical
application value, so anatase-type TiO2 is often used to photocatalyze the degradation
of organic pollutants in water. For anatase phase TiO2, when it is irradiated by photons
with energy greater than 3.2 eV (wavelength < 387.5 nm), the photoexcitation reaction will
produce free electrons and holes:

TiO2 + hv→ h+ + e− (1)
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Excited electrons react with oxygen in the air to produce superoxide radical anions,
which combine with water molecules to form hydroxyl radicals:

e− + O2 → ·O2− (2)

h+ + H2O→ ·OH + H+ (3)

Hydroxyl radicals and superoxide radicals with strong oxidation react with organic
pollutants, destroying their molecular structure; they are easily broken by oxidation. After
a series of reactions, organic pollutant molecules are decomposed into harmless small
molecules or low-toxicity compounds, such as water and carbon dioxide. The process is
as follows:

Organic pollutant molecules + ·OH + O2− → CO2 + H2O + Other small molecules (4)

The photocatalytic mechanism of TiO2 is depicted in Figure 1.
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2.2. Kinetics of Photodegradation of Organic Pollutants by TiO2 Photocatalyst

The photocatalytic degradation of organic pollutants by TiO2 is analyzed by the
Langmuir–Hinshelwood model [35]; Arikal [36] et al. used chitosan as a carrier to immobi-
lize TiO2/MgO nanocomposites on chitosan beads. MO and azo red S (ARS) were used as
model dye compounds. The experimental results showed that the degradation of the pollu-
tants followed first-order kinetics, and the Langmuir–Hinshelwood model was suitable for
describing the kinetics of the photocatalytic degradation of wastewater. This is simplified
as the first-order kinetics formula: In(C0/C) = kt, (C0) the initial concentration of organic
pollutants, (C) the concentration of organic pollutants after degradation, (k) the apparent
reaction rate constant, and (t) the photodegradation time. The model takes into account
the adsorption and reaction processes on the catalyst surface and can describe the kinetic
behavior of photocatalytic degradation well. The kinetics of photocatalytic degradation
can be described by the degradation rate constant. The degradation rate constant reflects
the relationship between degradation rate and pollutant concentration.

The influencing factors of reaction kinetics are as follows:

• Solution pH value has an important effect on photocatalytic degradation. The photo-
catalytic activity of TiO2 may vary under acidic and alkaline conditions.

• The amount of catalyst dosing will also affect the degradation rate. Less than or more
than the optimal dosage will lead to a decrease in the degradation rate.

• Factors such as organic pollutant’s initial concentration and light intensity also affect
the kinetic process of photocatalytic degradation.
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In summary, the process of photodegradation of organic pollutants using TiO2 photo-
catalyst involves complex chemical reactions and kinetic behaviors. Through an in-depth
understanding of its mechanism and kinetics, the photocatalytic degradation process can
be optimized, and the degradation efficiency and environmental protection effect can
be improved.

3. Synthesis Method of TiO2 Photocatalyst

As a functional material, TiO2 has high photocatalytic activity and, therefore, has
an excellent advantage in the field of photocatalytic degradation. At present, the methods
commonly used to synthesize TiO2 include the sol-gel method, hydrothermal method,
atomic layer deposition method, and microemulsion method. In terms of structure and
morphology, a variety of morphologically controllable TiO2 micro-nano meters, such as
nanorods, nanotubes, nano-flowers, nano-hollow spheres, and mesoporous structures, were
prepared through various experiments. As shown in Figure 2, these micro-nano TiO2 mate-
rials with large specific surface areas usually have more excellent photocatalytic properties.
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images; (i) carbon cluster TiO2TEM image [37].

3.1. Sol-Gel Method

Sol-gel is the most commonly used process method for preparing TiO2 photocatalytic
materials [38]. Inorganic salts and Alkoxides (including tetraethyl titanate, butyl titanate,
isopropanol titanium, etc.) are placed in distilled water, mixed evenly at room temperature
under liquid phase conditions, and a stable, transparent sol system is formed in solution
through chemical reaction steps such as hydrolysis and condensation, as shown in Figure 3.
After aging for some time, the colloidal gel slowly polymerizes to form a wet gel with
a three-dimensional network structure, and the gel network is filled with solvent that
loses fluidity. The wet gel is prepared by vacuum drying, high-temperature roasting, and
curing to produce molecular and even nanostructured materials. Nanomaterials prepared
by the sol-gel method have the advantages of high purity, uniformity, and controllable
morphology and have been widely used in the preparation of TiO2.
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Jamil [39], Huo [40], Fermeli [41], et al. prepared a composite photocatalyst by
sol-gel method. The results show that the prepared TiO2 composite photocatalyst has
good dispersibility, a large specific surface area, and good photocatalytic activity. Dinkar
Parashar [42] prepared photocatalysts by sol-gel method at different calcination tempera-
tures (400–800 ◦C) and hydroalcohol ratios. The activity of TiO2 prepared by the sol-gel
method was higher than that of commercially available pure anatase TiO2 nanoparticles
due to the smaller average particle size. It was found that the ratio of water to alcohol in
the preparation of TiO2 catalysts had a significant effect on antibiotic removal. Namely,
the removal-rate constants of metronidazole (MNZ), ciprofloxacin (CIP), and tetracycline
(TET) were improved by a factor of 2.7, 3.3, and 1.6, which further indicates that the sol-gel
prepared TiO2 can effectively remove the harmful substance. Lalitha [43] et al. synthesized
TiO2/ZnO with quadrilateral and hexagonal structures by sol-gel method; the catalyst
displayed 90% degradation within 40 min under UV light conditions.

3.2. Hydrothermal Synthesis

The hydrothermal synthesis method is a reaction occurring at high temperature and
high pressure [44], which uses water or organic solvent as a medium through heating so
that insoluble or insoluble substances are dissolved or recrystallized after washing and cen-
trifugation to obtain the required nanoparticle. Rawat [45], Matakgane [46], et al. prepared
composite photocatalysts by hydrothermal method. The results of photocatalytic perfor-
mance show that it has good absorption ability to ultraviolet light and good transmittibility
to visible light. Yang [47] et al. synthesized a novel 3D sea urchin-type titanium dioxide
by the EDTA-Na2-assisted hydrothermal method (Figure 4). Benefiting from the conical
structure prepared by the hydrothermal method and the rapid separation of photogener-
ated electron holes in the mixed crystal phase, the sub-micron-sized 3D sea urchin-type
titanium dioxide can efficiently degrade 94.1% of the methicillin in the aqueous solution in
90 min, which is superior to that of the commercially available 25 nm-sized rutile titanium
dioxide. Zhang [48] et al. modified TiO2 with a carboxyl group and amino group by hy-
drothermal method, making the adsorption performance of functionalized TiO2 better than
P25 (unmodified commercial TiO2). Moreover, the functionalized TiO2 has good reusability
for the removal of azo dye acid red G even after 5 adsorption–desorption cycles.

With the progress of scientific research, the hydrothermal method has attracted more
and more attention from researchers, especially hydrothermal crystal growth, which has
become the focus of research and will become the development object of the scientific re-
search community. Hydrothermal preparation of nanomaterials equipment and conditions
still need to be further explored and studied.
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3.3. Atomic Layer Deposition Method

Atomiclayer deposition (ALD) technology, also known as Atomiclayer epitaxy (ALE)
technology, is a chemical vapor deposition technology based on ordered surface autosatu-
ration reactions. Generally speaking, it is a method of coating the material layer by layer on
the substrate surface in the form of a single atomic film. Jialin [49], Abidi [50], et al. used the
atomic deposition method to prepare TiO2 and found that the prepared TiO2 nanoparticles
were still anatase-type at high temperatures, had particularly good dispersion, and had
high photocatalytic activity after degrading dyes. Cao [51] et al. modified the ultra-thin
Fe2O3 layer of industrial anatase TiO2 powder by atomic layer deposition (ALD). The
ultra-thin Fe2O3 coating with a small band gap of 2.20 eV can increase the visible light
absorption of the TiO2 carrier, and the degradation efficiency of TiO2 powder coated with
ALD Fe2O3 is the highest within 90 min, reaching 97.4%. Feng [52] et al. used atomic
layer deposition (ALD) to deposit TiO2 nanoparticles on carbon nanotube membranes to
prepare hydrophilic electrodes, as shown in Figure 5. After 20 ALD cycles, the modified
carbon nanotube membranes showed better electrosorption performance and reusability
in the CDI process. The total Cr and Cr(VI) removal significantly increased to 92.1% and
93.3%, respectively. This work demonstrates that ALD is a highly controllable and simple
method for the preparation of advanced CDI electrodes, broadening the application of
metal oxide/carbon composites in electrochemical processes, especially in the field of
photocatalytic degradation of organic pollutants.
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Furthermore, Ostyn et al. [53] prepared TiO2 film on graphene with ALD and oxidized
the surface of graphite. The film has a high UV transmittance of 95%, which simplifies the
experimental design. No chemical reagents are used to reduce the risk of contamination.
TiO2 films prepared by ALD react rapidly in graphite photooxidation, which is superior
to traditional powder photocatalysts. Ke et al. [54] grew TiO2 films by depositing atomic
layers on silica support (SBA-15) and depositing precious metal Au on them and found
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that titanium dioxide films can successfully grow on mesoporous materials, increasing the
specific surface area of the catalyst. Lys et al. [55] successfully combined laser-induced Si
nano-fringes (SiNR), MXene, and TiO2 to produce efficient ternary photocatalytic materials
through ALD technology. Experiments show that the material has strong absorption
capacity in the spectrum range, high stability, repeatability, and photocatalytic efficiency,
which provides a new way for the photodegradation of azo dyes in wastewater treatment
and shows broad application prospects.

3.4. Microemulsion Method

The microemulsion method is used for the preparation of nano or polymeric materials
by adding surfactants and co-solvents and mixing the immiscible solution into a homoge-
neous phase [56]. Its advantage is that it can prepare nano-sized and highly dispersible
materials with mild conditions and high-quality performance. Because of the large interfa-
cial area and high surface activity of microemulsion, it can improve the reaction efficiency
and yield, which is widely used in the preparation of nanomaterials, polymer materials,
and catalysts.

Sun [57] et al. prepared Fe3O4@TiO2 composite photocatalyst by microemulsion-
solvothermal method. It was found that Fe3O4@TiO2 could reduce the band gap, and
the degradation rates of Fe3O4@TiO2 and TiO2 for acid red 73 were 93.56% and 74.47%,
respectively. Yang [58] et al. successfully prepared TiO2 nanofibers with porous and mixed-
crystal structures by the microemulsion method, which can directly regulate the structure of
titanium dioxide nanofibers by changing the microemulsion system. The titanium dioxide
obtained by the microemulsion method shows a porous and mixed-crystal structure and
excellent photocatalytic properties. It is simple to prepare and is of great importance for the
application of the preparation and enhancement of the performance of the special-shape
photocatalytic materials. The degradation rate of methylene blue solution was as high as
98% after 90 min, which was effective in the treatment of printing and dyeing wastewater.

However, the microemulsion method also has limitations that include the following:
the product purity is not high, the reagent is difficult to completely remove, the precursor
must be water-soluble or oil-soluble, and the preparation and control of the microemulsion
is complicated, which requires experimental experience and technical skill.

3.5. Other Synthesis Methods

In addition to the above four most common methods for synthesizing TiO2, there
is also the Suzuki coupling reaction method [59], the electrostatic spinning method [60],
the one-pot method [61], etc. Suzuki coupling reaction is a palladium-catalyzed cross-
coupling reaction of aryl or alkenyl boronic acids or boronic esters with chlorine, bromine,
iodine-substituted aromatic hydrocarbons or olefins. The one-pot method is a method
in which the reactants are made to undergo successive multi-step reactions in a single
reactor to improve the reaction efficiency. TiO2 preparation by electrostatic spinning is
a method of stretching titanium-containing solution into fibers using a high-voltage electric
field, followed by heat treatment to obtain TiO2 nanofibers. Djeda [62] et al. prepared
layered double hydroxide (LDH)/TiO2 nanocomposites with photocatalytic properties
by immersion and direct coprecipitation methods and compared them with pure TiO2
colloidal solutions. The degradation experiments showed that MgAl LDH/TiO2 prepared
by the coprecipitation method had the highest photodegradation efficiency for Orange II,
which emphasized the importance of the preparation method of nanocomposites. Suitable
synthesis methods can be selected according to different application requirements.

In summary, the most commonly used synthesis methods of TiO2 photocatalysts, their
reaction principles, and their advantages and disadvantages are shown in Table 1.
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Table 1. Reaction Principle of TiO2 Photocatalyst Common Preparation Methods and Their Advan-
tages and Disadvantages.

Preparation Methods Reaction Principle Advantages Disadvantages

sol-gel method

Inorganic salts and alcohol salts
are hydrolyzed in distilled water,

polymerized into a gel after
hydrolysis, dried in a vacuum,

and cured by
high-temperature calcination.

Good dispersion; easy to control
the reaction; simple process; low

cost and cost-effective.

Long preparation time; many
operating steps.

hydrothermal
synthesis

In a closed system, using water as
a solvent, the mixture reacts

under certain
temperature conditions.

Mild reaction conditions; high
purity, good dispersion,

crystalline form, controllable
shape; environmentally friendly.

High equipment requirements;
technically difficult and costly.

atomic layer
deposition

A chemical vapor phase thin film
deposition technique in which
a substance is deposited on the
surface of a substrate layer by

layer in a single-atom-film format.

High accuracy;
high atom utilization.

Expensive equipment;
cumbersome process; difficult
to promote industrialization.

microemulsion
method

Mutually incompatible liquids
form microreactors in the

presence of surfactants for the
preparation of nanomaterials.

Good dispersion of prepared
samples; mild conditions;

improved precursor reaction rate.

Poor purity; precursors may
not be soluble;

complex preparation.

Combined with the advantages and disadvantages of the four preparation methods—the
sol-gel method, hydrothermal method, microemulsion method, and atomic deposition
method—the improvement measures of TiO2 preparation in the future can be focused
on improving the preparation efficiency, reducing the cost, optimizing the performance,
and meeting specific application needs. Through the above different preparation methods,
two or more preparation methods can be combined according to the need to prepare the
new, more stable, and higher photocatalytic efficiency of terpolymer or multi-component
modified TiO2 photocatalytic materials.

4. Modification Method of TiO2 Photocatalyst

The direct preparation of TiO2 sols can effectively solve the application challenges
of TiO2 particles, such as easy agglomeration and difficult loading [63]. However, TiO2
nanocrystals in sol still face the problems of limited photoresponse range and high carrier
complexation rate. To further enhance its photocatalytic performance, it is necessary to
broaden the light absorption range of TiO2 nanocrystalline sols and improve the separation
efficiency of their photogenerated carriers by various modification methods.

4.1. Precious Metal-Doped Titanium Dioxide

Precious metals and TiO2 have different Fermi energy levels, and the work function
of the metal is higher than that of the semiconductor TiO2; electrons usually tend to flow
from the semiconductor to the metal when the two are in contact [64]. This cross-interface
migration of electrons contributes to the efficient separation of electrons and holes in the
semiconductor, as shown in Figure 6 Therefore, noble metals such as gold (Au), silver (Ag),
platinum (Pt), and palladium (Pd) can significantly enhance the photocatalytic activity
of TiO2 materials [65]. In these applications, noble metal nanoparticles play a key role in
trapping or transferring photogenerated electrons [66].
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The precious metal silver is relatively cheap and readily available [68]. Several studies,
such as Chacon-Argaez [69], Borrego Pérez [70], etc., have found that the photocatalytic
activity of composites is indeed significantly improved. Mohammed, W [71] et al. found
that Schottky promoted electron transfer at Ag-TiO2, transferred the absorption to the
visible region, reduced the band gap of TiO2, and inhibited electron-hole recombination,
thus enhancing the photocatalytic activity and stability.

Other precious metal deposits, such as Wang et al. [72] promoted the interaction
between Pt and TiO2 by introducing oxygen vacancies through the carrier material, which
facilitated the charge transfer from the carrier to Pt and exhibited excellent redox properties.
Liu et al. [73] successfully prepared Au-TiO2 nanoparticles by the hydrothermal synthesis
method and found that the optical band gap value of the composites decreased due to the
doping of Au or the formation of oxygen vacancies, etc., which induced a narrowing of
the Au-TiO2 band gap and increased visible light absorption, thus effectively degrading
the MB.

The noble metal nanoparticles have a high specific surface area, good surface activity,
and small particle size, which are characteristic of multiphase catalysis [74,75]. However,
the catalytic activity may be limited by the limited ability of noble metals to absorb light
at specific wavelengths [76,77]. In addition, the precious metal deposited TiO2 is less
efficient in utilizing visible light and requires higher energy of UV light for better catalytic
effect. However, precious metals are expensive resources, and doping them into TiO2 also
increases the processing cost, which may be less economical in large-scale applications.

4.2. Transition Metal-Doped Titanium Dioxide

Interestingly, doping a moderate amount of transition metal ions in TiO2, the electrons
in the d- and f-orbitals can undergo a transition and enter into the TiO2 structure, which
reduces the bandgap and shifts the absorption edge to the visible region and reduces the
rate of carrier complexation, thus improving the photocatalytic efficiency of TiO2 [78].
At present, the transition metal doped ions are applied more: iron (Fe3+), copper (Cu2+),
manganese (Mn2+), vanadium (V4+), zinc (Zn2+), etc [79].

4.2.1. Doping with a Single Transition Metal Elements

When TiO2 is doped with a single transition metal ion, the addition of the transition
metal elements will change the lattice structure of TiO2 and thus its crystal crystallinity since
they have multiple valences. This change affects the compounding process of photogener-
ated electrons and holes, thus improving the photocatalytic activity. Meshram et al. [80]
microwave synthesized TiO2-Al composite photocatalysts and found that the surface area
and porosity of the composites were significantly reduced compared to their pristine
components and were successfully used for the degradation of mixed azodyes such as
methylene blue and rhodamine B. Zhu et al. [81] prepared iron-doped TiO2 thin films, and
concluded that the right amount of iron ions effectively inhibited the composite to enhance
the photogeneration of the rate of electron holes and that the enhanced photoactivity of
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Fe-doped TiO2 samples was due to the generation of new elements to generate electronic
states within the TiO2 band gap. Mingmongkol et al. [82] prepared TiO2-doped composite
photocatalysts with transition metal Cu and found that Cu doping did not cause any
difference in the particle size or specific surface area, and on the other hand, the surface
of the TiO2 material doped with high concentration of Cu charge transfer had a negative
effect. Cu-doped TiO2 showed much greater photocatalytic degradation of methylene blue
compared to undoped TiO2.

4.2.2. Co-Doping of Transition Metal Elements

In contrast, co-doping transition metals may produce more complex effects. Co-doping
implies the simultaneous introduction of two or more different transition metal ions into
TiO2. Co-doping may further enhance the efficiency of photogenerated electron-hole separa-
tion through synergistic effects or broaden the light absorption range of TiO2 by introducing
new energy levels. Rao et al. [83] prepared Cu and Zn co-doped TiO2 nano-photocatalysts
and found that the addition of Cu and Zn to TiO2 hindered the growth of nanoparticles, and
there existed a more efficient electron-hole generation. Sukhadeve et al. [84] prepared Zn
and Fe co-doped TiO2 nanoparticles using a simple sol-gel process, and the absorption spec-
tra of the prepared nanoparticles showed strong absorption in visible light. The synergistic
effect produced by Zn and Fe blocked the photoinduced charge carriers and delayed the
complexation probability, which greatly improved the RhB, MG, and MB mixture pollution
degradation efficiency.

Transition metal elements have multiple valence, which can promote the chemical
reaction in the electronic conduction of TiO2, but it is worth noting that the doping amount
should be controlled. Otherwise, it is not conducive to the improvement of the catalytic
performance, and dopants are prone to agglomeration [85], such as the surface of the
enriched or even the formation of new phases, so that the effective surface area of the
semiconductor material is reduced, resulting in a decrease in the activity [86].

4.3. Rare Earth Metal-Doped Titanium Dioxide

Due to their unique electronic orbital structure [87], the doping of rare earth metal
ions can adjust the energy level structure of TiO2, enabling it to absorb more light within
the visible light range and thus enhancing photocatalytic activity [88]. Additionally, rare
earth metal doping can introduce additional energy levels, promoting the separation of
photogenerated electrons and holes [89]. It can also improve the photostability of titanium
dioxide, enhancing its long-term stability and extending the lifespan of photocatalytic mate-
rials [90]. This opens up new possibilities for its application in environmental purification,
water treatment, energy conversion, and other fields [91]. Common rare earth metals used
for doping include ytterbium, erbium, holmium, lan, cerium, yttrium, and europium [92].

4.3.1. Doping with a Single Rare Earth Metal Element

Single rare earth element doped TiO2 is relatively easy to synthesize and can be more
easily achieved in the TiO2 lattice for control and regulation [93]. Ćurković et al. [94]
prepared ce doped TiO2 nanocomposites by sol-gel method and found that the absorption
of the composites in the visible light band was higher than that of pure TiO2 nanomaterials,
and three cycles could be reused. Ikram Benammar et al. [95] used a hydrothermal-assisted
sol-gel-gel method to prepare rare earth ytterbium and erbium-doped TiO2, respectively,
and the optical properties were improved after heat treatment of the powders and down-
conversion of erbium-doped nanoparticles was observed.

4.3.2. Co-Doping with Rare Earth Metal Elements

Single transition metal element doping may not be able to fully optimize the energy
band structure of TiO2 [96], while rare earth element co-doping can extend the light
absorption range of TiO2, enabling it to absorb wider wavelength bands of light [97],
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enhancing the light absorption capacity and photoelectric conversion efficiency of TiO2,
and improving the stability of the catalyst surface [98].

Pascariu [99] et al. used electrospinning calcination of normal TiO2 doped with Sm3+

and Er3+ to demonstrate the stability and reusability of the catalyst in five repeated cycles
of photodegradation of MB. Guetni et al. [100] designed a new co-doped TiO2 with Nd-Sm
and La/Y apatite nanoparticles, which showed the highest degradation rate of 96.49% for
azo dye Orange Yellow G within 105 min. Ren et al. [101] used the classical sol-gel method
to prepare TiO2 nanoparticles co-doped with rare earth elements Ce and Er, as shown in
Figure 7. The composite photocatalyst is a spherical particle with an uneven radius. It can
be seen in Figure 7c that the polyhedral structure is mainly composed of hexagons and
rhomboids, with an average size of 30 nm. The results show that Ce doping can reduce the
band gap width of the composite and give it the ability to respond to visible light. At the
same time, the upconversion luminescence characteristics of Er can convert near-infrared
light in the solar spectrum into short-wave light that is more easily absorbed by TiO2,
thus enhancing the utilization rate of sunlight by the material. In addition, the doping
of these two rare earth elements can effectively promote the separation and migration of
photogenerated electrons and holes and optimize carrier utilization efficiency. Therefore,
doped TiO2 nanoparticles show better photocatalytic performance.
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4.3.3. Co-Doping of Rare Earth Elements with Other Elements

Co-doping of rare earth elements with other elements has also attracted extensive
research [102,103]. Li Jia et al. [104] synthesized lanthanum, graphene oxide (GO), and TiO2
by sol-gel method to prepare an efficient photocatalytic material with visible light response.
Lattice distortion occurred in the samples added with the rare earth element lanthanum,
which increased the surface area of the photocatalyst and significantly improved the
photocatalytic activity of TiO2. The degradation efficiency of acid red B reached 95.6% after
5 h of simulated sunlight irradiation.

Co-doping of rare earth elements with other elements increases the separation effi-
ciency of photogenerated electron-hole pairs and the number of surface active sites and
improves the utilization efficiency of visible and infrared light. However, the co-doping of
rare earth elements with other elements involves the synthesis and control of multi-element
systems, so the preparation process and conditions are more complicated [105,106].
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4.4. Compound Semiconductors Based on Titanium Dioxide

Semiconductor compounding is a method used to enhance photocatalytic efficiency
by combining different types of semiconductor materials to form heterojunctions, as ex-
emplified in Figure 8, which depicts a p-n heterojunction formed by TiO2 and ZnO. The
semiconductor composite effectively improves photocatalytic efficiency due to the follow-
ing advantages:

1. By manipulating the size of the modified particles, the spectral absorption range and
bandgap of the semiconductor material can be effectively tuned utilizing the quantum
size effect [107,108].

2. Surface modification of TiO2 plays a role in improving the photostability of the
semiconductor materials [109].

3. Given that light absorption in semiconductors mainly occurs at the band-edge, the
semiconductor composite facilitates more efficient harvesting of sunlight [110].
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4.4.1. Titanium Dioxide Composites with Common Semiconductors

Wongburapachart [111] et al. prepared TiO2/NiO-TiO2 bilayer film photocatalyst
(BLF) for photocatalytic degradation measurement using acid orange 7 (AO7) solution
under light and dark conditions. It was found that compared with ordinary TiO2, the
photocatalytic activity of the prepared sample was increased by about 8 times after 48 h
of AO7 degradation. Bai [112] et al. synthesized TiO2/ZnO composites by the sol-gel
method and the hydrothermal method and found that they have obvious heterostructures,
which can reduce the band gap width and improve the light absorption intensity. The
photocatalytic mechanism is shown in Figure 9. Ratanathavorn Wittawat et al. [113]
prepared TiO2/ZnO composite spherical particles. TiO2/ZnO composite also showed much
higher catalytic activity compared to a single component. In addition, Wang et al. [114]
also prepared ZnO-TiO2 materials with different composite ratios and found that the
specific surface area, pore volume, and pore diameter of ZnO-TiO2 composites were
significantly larger than those of TiO2 and the ZnO-TiO2 composites were more surface
acidic. The energy band structure facilitates the efficient separation of electrons and holes,
and the catalytic reduction activity and selectivity are stronger. It is further shown that
TiO2 composite with ZnO can inhibit TiO2 crystal transition and particle growth, and
the UV absorption ability is enhanced [115]. Abumousa [116] et al. prepared ternary
TiO2/Y2O3@g-C3N4 nanocomposites by a simple sonochemical method, which showed
excellent photocatalytic properties in the degradation of Congo red dye, Malachite green,
and other dyes in aqueous solutions in a short time. These binary semiconductor composites
and ternary composites are based on TiO2 to form heterostructures, and the interface
effect and energy band migration in the heterostructures can promote the transfer of
photogenerated electrons and holes, thereby improving the rate and efficiency of the
photocatalytic reaction.
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TiO2 is composited with other semiconductors to form a composite semiconductor
material. This new composite material broadens the excitation wavelengths available to
the catalyst, effectively regulates the performance of individual materials, and generates
numerous novel photochemical and photophysical properties. In recent years, numerous
studies have been conducted on binary semiconductor composites, such as TiO2/ZnO,
TiO2/CdS, TiO2/WO3, and ZnO/ZnS, among others. The photocatalytic performance of
these compound semiconductors surpasses that of a single semiconductor.

4.4.2. Titanium Dioxide Hybrid Materials with Graphene

In recent years, the modification of graphene composite TiO2 has become the focus
of many researchers. Graphene with a two-dimensional structure has a large number
of two-dimensional conjugated structures, so people combine graphene with TiO2 to
enhance the photocatalytic performance of TiO2, which has been extensively studied in
this area. Heltina [117], Wang [118], and others prepared TiO2 with different graphene
(GO) composite ratios compared to the pure TiO2 and the composite TiO2/GO catalysts.
The smaller grain size and higher adsorbed oxygen/lattice oxygen ratio exhibited superior
photocatalytic performance. In addition, GO acts as a capture center for photogenerated
electrons and transfers electrons to the target reactants, thus inhibiting the recombination
rate of photogenerated electron-hole pairs and increasing the photocatalytic rate of TiO2.

However, graphene tends to aggregate in solution to form clusters, which can lead to
difficulties in controlling the homogeneity and dispersion of graphene in the composites [119],
and the preparation of composites of titanium dioxide and graphene usually requires special
synthesis techniques and equipment, which may lead to high preparation costs. This makes
these composites difficult to commercialize on a large scale for some applications.

4.5. TiO2 Composite Polymers

Combining modified TiO2 with polymers can endow nanocomposite materials with
new properties. Additionally, polymers can enhance the adsorption and photocatalytic
performance of nano-TiO2, facilitating its separation and recovery [120].

Maeda et al. [121] first employed a phosphorus coupling agent to modify the surface
of the modified TiO2 particles, aiming to enhance their compatibility with specific organic
monomers (Figure 10). TiO2@PMMA hybrids were successfully obtained through in situ
polymerization. It can be observed that as the in situ polymerization time elongates, the
PMMA polymer chains growing on the surface of TiO2 particles lead to an increase in the
distance between the nanoparticles, thereby enhancing the transparency of the PMMA
composites. This method maintains the flexibility, film forming, and electrical conductivity
of the polymer. In addition, the composite may also exhibit better photocatalytic activity
and antimicrobial properties.
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Figure 10. Appearance and TEM image of TiO2/PMMA hybrid plate at different polymerization
times [121].

Interestingly, Shi et al. [122] first coated stearic acid on the surface of TiO2 particles by
impregnation method and then further modified it with paraffin wax to prepare TiO2 with
Janus structure, which enhances the surface charge separation efficiency and adsorption
capacity of organic matter (Figure 11). In addition, the modified Janus-like TiO2 can be used
as an additive to stabilize Pickering emulsion, which in turn enhances its efficiency in de-
grading oil-phase pollutants in high-concentration kerosene and nitrobenzene wastewater.
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Nair [123] et al. fixed PANI-TiO2 nanocomposites in polystyrene cubes to form PANi-
TiO2@polystyrene cubes for photocatalytic degradation of acid yellow 17 (AY 17) dyes
under visible light. And the photocatalytic activity was significantly improved. It provides
a way to prepare more excellent new photocatalysts. Tran et al. [124] formulated different
concentrations of acrylic acid (AA) mixed with isopropanol to modify the nano-TiO2 and
then uniformly coated it on the surface of polyvinylidene fluoride (PVDF) film. At high
temperatures, AA reacts with PVDF, and nano-TiO2 is fixed on the surface of the film to
maintain its flexibility and film formation, which can improve the photocatalytic activity of
the composite. Neves et al. [125] used polydimethylsiloxane-modified TiO2 nanoparticles
to increase the surface roughness, enhance their hydrophobic strength and photocatalytic
activity, and provide ideas for achieving complete degradation of polymers.

5. Summary and Outlook

In recent years, significant progress has been made in the field of TiO2 modified
photodegradation of organic pollutants. Through a series of modification methods, the
photocatalytic performance of TiO2 has been significantly improved, providing a more
efficient and reliable solution for the photodegradation process of organic pollutants. The
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following is a summary of the research progress in this field in recent years, including
prospects of future research development.

5.1. Summary of Research Progress

• By doping precious metals, transition metals, rare earth metals, or non-metallic ele-
ments, TiO2 can change the band structure, broaden its light absorption range, and
improve the separation efficiency of photoelectron-hole pairs, which can significantly
improve the photocatalytic activity of TiO2.

• TiO2 was mixed with other semiconductor materials to form a composite photocat-
alytic material with a heterogeneous structure. This modification method can make
use of the synergistic effect between different materials to improve the utilization effi-
ciency of photogenerated electron-hole pairs and enhance photocatalytic performance.
For example, the composite of TiO2 with SiO2, ZnO, and other materials can form
heterogeneous structures and improve photocatalytic efficiency.

• By introducing functional material polymer on the surface of TiO2, the surface proper-
ties of TiO2 are improved, and the photocatalytic performance is improved. Surface
modification can increase the active sites on the surface of TiO2 and promote the
separation and migration of photogenerated electrons and holes.

The five modification methods mentioned in this paper, the dopants commonly used,
the specific surface area, the band gap energy, and degradation effects of the modified TiO2
photocatalyst are shown in Table 2.

Table 2. Characterization and degradation effect of modified TiO2 photocatalyst.

Modification
Methods of

TiO2

Doping Agents The Surface Area
(Before~After/m2 g−1)

Bandgap Energy
(Before~After/eV) Catalytic Effect Reference

Precious
Metal-Doped

TiO2

Ag — — 3.15~2.31 The degradation rate of methylene
blue under visible light was 93%. [126]

Au 17.8~28.7 3.15~2.9 Methyl orange is completely
dissolved within 90 min. [127]

Pt 42~68 3.24~2.92
The degradation rate of

Dichlo-Rophenoxyacid (2,4-D)
was 99%.

[128]

Transition
Metal-Doped

TiO2

Fe — — 3.22~3.20 The removal rate of pollutants
reached 97% within 240 min. [129]

Mn 50~93.35 3.20~2.21 The degradation rate of pollutants
increased from 48.17% to 60.12%. [130]

Cu 43~46 3.08~2.78 The reduction rate of organic carbon
within 6 h is 75%. [131]

Rare Earth
Metal-Doped

TiO2

La — — 3.16~3.12
The degradation rate of p-azo dye

orange-yellow G was 96.49% in 105
min under UV-VIS spectral radiation.

[100]

Er — — 3.15~2.69 The degradation rate of methylene
blue was 80% under visible light. [132]

Eu — — 3.43~3.40 The degradation rate of Congo red
reached 97%. [133]

TiO2 Composites
with Common

Semiconductors

ZnO 50.05~107.98 3.26~2.76
Under sunlight irradiation, when pH
is 5.8, the degradation efficiency of the

dye is the highest, which is 92%.
[134]

SiO2 217~256 3.22~3.22
At 300 W Xenon lamp irradiation for
60 min, the degradation efficiency of

TC is 96%.
[135]

BiVO4 60.6~95.3 3.2~3.03 The degradation rate of formaldehyde
reached 97.1%. [136]

WO3 95~117 3.0~2.6
Under no light conditions, the
degradation rate of pollutants

reached 22%.
[137]

66



Inorganics 2024, 12, 178

Table 2. Cont.

Modification
Methods of

TiO2

Doping Agents The Surface Area
(Before~After/m2 g−1)

Bandgap Energy
(Before~After/eV) Catalytic Effect Reference

TiO2 composite
polymers

Triformyl
chlorine-melamine

polymer (TMP)
13~17 3.78~2.82 It can degrade 96.1% RhB. [138]

Polyaniline titanium
Dioxide quantum
Dots (PAN-TiQD)

— — 2.95~2.82 The degradation rate of Dianix blue
dye reached 91%. [139]

Polydopamine (PDA) — — 3.22~3.15

The photocatalytic CO2 reduction
yield of CH4 by the composite was up
to 1.50 µmol/g·h, which was 5 times

that of pure TiO2.

[140]

In summary, the modified TiO2 photocatalyst significantly improves its photocatalytic
performance in UV and visible light by increasing the specific surface area and reducing
the band gap energy. The larger specific surface area increases the catalyst’s active site
and improves the contact efficiency with pollutant molecules, while the reduced band gap
energy enables the catalyst to absorb a wider spectrum, including visible light, thereby
broadening the photoresponse range and enhancing the utilization of sunlight. In addition,
the specific modification method can further promote the separation and migration of
photogenerated electrons and holes and further improve photocatalytic efficiency. These
improvements make the modified TiO2 photocatalyst show a broader application potential
in the field of environmental governance and new energy development.

The photocatalytic performance of TiO2 was improved to varying degrees. However,
due to problems such as low efficiency, insufficient stability, and secondary pollution, TiO2
modification methods cannot be widely used. The advantages and disadvantages of TiO2
modification methods are shown in Table 3.

Table 3. Advantages and disadvantages of TiO2 modification methods.

Modification Methods Advantages Disadvantages

TiO2-doped noble metals High specific surface area; good surface activity;
good stability; characteristics of multiphase catalysis.

Inefficient use of visible light;
Expensive precious metals.

TiO2-doped transition metal

The presence of polyvalent transition metals
promotes chemical reactions, modulates the

electronic structure of TiO2 to improve its
photocatalytic properties, and extends the light

absorption range.

Prone to focusing; not
environmentally friendly.

TiO2-doped rare earth metals
Good stability; high catalytic activity; expanding the

range of TiO2 light absorption and promoting
photocatalytic reactions.

Complicated operating procedures;
not easy to recycle.

TiO2 compound semiconductors

Formation of heterojunctions to expand the light
absorption range of the material and improve

photocatalytic efficiency. Reduction in electron-hole
complex reaction.

The complexity of design
and preparation.

TiO2 composite polymers
More environmentally friendly;

Mechanical properties will be improved;
Can be repeated many times.

The dispersion is not good; May
degrade the polymer matrix.

5.2. Future Research Direction and Development Trend

Although TiO2 modified photodegradation of organic pollutants has made remarkable
progress, there are still some key problems and shortcomings. First, the stability of the
modification effect is still a challenge, which can lead to performance fluctuations in
practical applications. Secondly, the high preparation cost limits the possibility of large-scale
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applications. Therefore, future research needs to further explore and optimize modification
methods to improve their stability and reduce costs.

In addition, the importance of mechanism research cannot be ignored. Strengthening
the mechanism study can not only provide solid theoretical support for the optimization of
modification methods but also help us to understand more deeply the reaction mechanism
of TiO2 photocatalytic degradation of organic pollutants. This will lay the foundation for
the design of more efficient and stable TiO2 photocatalytic materials.

In practical applications, the effect of TiO2 photocatalytic degradation of organic
pollutants may be affected by a variety of factors, including water quality, light conditions,
dye type, and concentration. Therefore, future research also needs to focus on how to
optimize the performance of TiO2 photocatalytic degradation of organic pollutants in
various real-world environments.

In conclusion, optimizing the preparation method and process of TiO2 composite
photocatalytic materials has become an important direction of future research on the pho-
todegradation of organic pollutants. By introducing visible light absorbing inorganic
substances or modifying TiO2, we can prepare multi-functional composite materials that
can expand the range of light absorption and, at the same time, play the role of photocatal-
ysis, adsorption, and catalysis, thus significantly improving the degradation efficiency of
organic matter. With continuous research and exploration, we look forward to developing
more efficient, stable, and environmentally friendly TiO2 photocatalytic materials, making
important contributions to environmental protection and sustainable development.
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90. ReszczyŃska, J.; Grzyb, T.; Sobczak, J.W.; Lisowski, W.; Gazda, M.; Ohtani, B.; Zaleska, A. Visible Light Activity of Rare Earth
Metal Doped (Er3+, Yb3+ Or Er3+/Yb3+) Titania Photocatalysts. Appl. Catal. B Environ. 2015, 163, 40–49. [CrossRef]

91. Tang, X.; Xue, Q.; Qi, X.; Cheng, C.; Yang, M.; Yang, T.; Chen, F.; Qiu, F.; Quan, X. DFT and Experimental Study on Visible-Light
Driven Photocatalysis of Rare-Earth-Doped TiO2. Vacuum 2022, 200, 110972. [CrossRef]

92. Zhou, F.; Yan, C.; Sun, Q.; Komarneni, S. TiO2/Sepiolite Nanocomposites Doped with Rare Earth Ions: Preparation, Characteriza-
tion and Visible Light Photocatalytic Activity. Microporous Mesoporous Mater. 2019, 274, 25–32. [CrossRef]

93. Kobwittaya, K.; Oishi, Y.; Torikai, T.; Yada, M.; Watari, T.; Luitel, H.N. Bright Red Upconversion Luminescence from Er3+ and
Yb3+ Co-Doped Zno-TiO2 Composite Phosphor Powder. Ceram. Int. 2017, 43, 13505–13515. [CrossRef]
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Abstract: There is no doubt that organic dyes currently play an indispensable role in our daily
life; they are used in products such as furniture, textiles, and leather accessories. However, the
main problems related to the widespread use of these dyes are their toxicity and non-biodegradable
nature, which mainly are responsible for various environmental risks and threaten human life.
Therefore, the elimination of these toxic materials from aqueous media is highly recommended to
save freshwater resources, as well as our health and environment. Heterogeneous photocatalysis is
a potential technique for dye degradation, in which a photocatalyst is used to absorb light (UV or
visible) and produce electron–hole pairs that enable the reaction participants to undergo chemical
changes. In the past, various metal oxides have been successfully applied as promising photocatalysts
for the degradation of dyes and various organic pollutants due to their wide bandgap, optical,
and electronic properties, in addition to their low cost, high abundance, and chemical stability in
aqueous solutions. Various parameters play critical roles in the total performance of the photocatalyst
during the photocatalytic degradation of dyes, including morphology, which is a critical factor in the
overall degradation process. In our article, the recent progress on the morphological dependence of
photocatalysts will be reviewed.

Keywords: organic dyes; wastewater treatment; photocatalyst; photocatalytic degradation; metal
oxides; morphology

1. Introduction

Due to the growth of societies and the speeding up of industry over the last few
decades, environmental pollution is considered the biggest challenge facing our soci-
eties [1]. Almost all activities of humans to produce commodities and services lead to
the creation of environmental contaminants. These pollutants cause harm to the health
of people, plants, animals, and microbes when they are discharged into the air, water,
and soil [2]. Since humans depend on the creation and enhancement of commodities and
services to survive on earth, these practices cannot be completely abandoned [2]. Major
contributors toward aquatic pollution include industrial dyes, which are the greatest class
of organic pollutants [3,4]. Due to their intricate chemical compositions, the majority of
synthetic dyes are poisonous and extremely durable. Currently, synthetic dyes as organic
compounds or mixtures are widely utilized in the leather, pharmaceutical, food, cosmetic,
color photography, paper printing, textile dyeing, and textile dyeing industries [5–8].
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The last two decades have seen a dramatic rise in public understanding of the toxic
and cancer-causing effects of many pollutants that were previously not thought to be
dangerous [2]. Some man-made chemicals can linger in the environment for a very long
time without degrading, in contrast to naturally occurring compounds that break down
immediately. These substances, which include pesticides, organochlorines, polychlorinated
biphenyls, synthetic polymers, and synthetic dyes, are regarded as the main environmental
contaminants [9]. Most dyes are organic, multidimensional compounds with the property
of adhering to various surfaces, including fabrics, leathers, and others. The paper, textile,
dyestuff, and distilling industries release highly colored wastewaters [10]. By increasing
the demand for dyes, a larger amount of water is polluted [11,12]. As reported by Couto
et al., in traditional dying processes, each 1 kg of textile materials required about 100 L of
water to obtain the final product [5]. As per O’Neill et al., not every type of dye adheres
to fabric, and their discharge in wastewater varies. Basic dyes may lose up to 2% while
reactive dyes can lose up to 50%, resulting in the contamination of surface and ground
waters in the dyeing industries [13].

It has been reported that each year about 280,000 tons of textile dyes are released into
industrial wastewater by the textile industry [14]. In general, it is thought that throughout
the industrial processes, roughly 12% of the total generated synthetic dyes, including
methyl orange (MO), methyl red (MR), methylene blue (MB), rhodamine B (RhB), remazol
brilliant blue (RB), congo red (CR), and many others, are lost [3,15]. Additionally, 15–20% of
global dye production is wasted during the dying process and released into water without
additional treatment, resulting in significant environmental damage [16]. The presence
of color in dye effluents serves as a clear indicator that water is contaminated since it is
easier to see, and the discharge of these strongly colored effluents can directly impact the
receiving waterways [17]. Even a very small concentration (1 mg L−1) of synthetic dyes
in water can generate color and create an unfavorable concentration for ingestion, and
also can significantly harm the environment and pose substantial health risks [18]. When
utilizing the untreated dyeing effluents in agriculture purposes, both the environment and
human health are badly affected [19]. In light of the harmful and cancer-causing proper-
ties associated with dyes, and considering that numerous dyes are known carcinogens,
significant recent endeavors have been directed towards regulating the release of dyes
into the environment [20,21]. The remediation of dye wastewaters can be accomplished
using various techniques. A variety of procedures are involved, comprising biological
and microbiological methods, along with physicochemical techniques such as adsorption,
chemical oxidation, precipitation, coagulation, filtration, electrolysis, and photodegrada-
tion [22]. Based on its suitability, each strategy can be used to target a certain class of toxins
and offers advantages of its own. Despite their usefulness, physicochemical techniques
often suffer from several limitations, including high costs, low efficiency, limited flexibility,
susceptibility to interference from other wastewater constituents, and the challenge of
managing the waste generated [18].

Therefore, it is crucial to develop affordable, effective, and environmentally friendly
methods to reduce the amount of dye in wastewater [5]. Advanced oxidation processes
(AOPs) can be used for treating most industrial effluents. Among the numerous AOPs
that are recognized, photocatalytic degradation has emerged as a promising method for
destroying organic substances [23,24]. The photodegradation process of dyes involves
oxidizing large dye molecules into smaller ones such as water, carbon dioxide, and other
byproducts. Compared to other AOPs, photocatalytic degradation is more successful since
semiconductors are less expensive and can easily mineralize a variety of organic molecules.
The materials used as effective photocatalysts should have an appropriate energy band
gap, appropriate morphology, high surface area, long term stability, and considerable
recycling ability [25,26]. Due to the high surface-to-volume ratio of nanomaterials, more
surface area is available for redox reactions. In recent years, metal oxides have garnered
significant interest in environmental remediation due to their ability to generate charge
carriers upon activation by sufficient energy [27]. Numerous metal oxide nanoparticles

76



Inorganics 2023, 11, 484

have been employed as photocatalysts in the past, including zinc oxide (ZnO), titanium
dioxide (TiO2), copper oxide (CuO), nickel oxide (NiO), and tungsten oxide (WO3). This is
a result of their potential optical, chemical, and physical capabilities, including their distinct
electronic structures, abilities to absorb light, and capacities for charge transport [28]. The
composition, size, doping, and shape of metal oxides are only a few of the variables that
might influence their photocatalytic activity. These factors are all crucial for photocatalytic
activity [29–32]. This study mainly reviews the recent progress on the morphologically
dependent photocatalytic activity of the metal oxides toward degradation of organic dyes
from aqueous solutions. From the metal oxides, TiO2, ZnO, CuO, NiO, and WO3, with
various morphologies, will be presented. To provide a big picture, our article starts with
an introduction that outlines the dye classifications and their environmental problems.
Additionally, this article outlines the principle of the photocatalytic process and the different
photocatalytic reaction mechanisms.

In addition, this review presents a comprehensive study of the recent progress made
in the field of the morphological dependence of photocatalysts for the photocatalytic
degradation of organic dyes. It discusses the latest developments in the synthesis and
characterization of metal oxide photocatalysts with tailored morphologies. Furthermore, it
analyzes the underlying mechanisms governing morphology-induced effects and provides
insights into the prospects and challenges in this research area.

According to publication records during the last decade, there were about 77,214 publi-
cations on photocatalysis. The research output on photocatalysis has continued growing
with time, with 4155 and 10,550 publications in 2013 and 2023, respectively, as shown in
Figure 1. Among the metal oxides, most publications investigated TiO2, ZnO, CuO, NiO,
and WO3 materials.
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2. Principles of Photocatalysis

In the last decades, the use of photocatalysis technology as a quick, affordable, and
efficient way to get rid of the majority of poisonous dyes has received a lot of interest [33–35].
Photocatalysis is a field that utilizes catalysts to enhance the speed of some chemical
reactions. A photocatalyst is a material capable of absorbing light, generating electron–hole
pairs that enable the participants in a reaction to undergo chemical transformations [36].
The primary factor behind photocatalytic activity (PCA) is the catalyst’s capability to
produce electron–hole pairs, which leads to the creation of free radicals such as hydroxyl
radicals (•OH). These radicals can then undergo secondary reactions. There are two primary
categories of photocatalytic reactions: homogeneous photocatalysis and heterogeneous
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photocatalysis. The ability of any specific photocatalytic technique to work properly
depends on several characteristics, including bandgap, shape, and high surface area [37].

Since dyes are colored, it is simple to track how they change color throughout the
experiment. The dye sample is exposed to UV light for a predetermined amount of time
in the photocatalytic process. The variations in solution color are then measured in terms
of decreasing absorbance using a spectrophotometer. The degree of discoloration (τ) is
determined from the dye absorption before and after irradiation by the following relation
(Equation (1)) [38].

τ = 1 − Ai
Ao

∗ 100 (1)

The equation includes Ao, which denotes the absorbance of the dye solution before
irradiation, and Ai, which represents the absorbance of the dye solution after irradiation.

Heterogeneous photocatalysis is an environmentally friendly, low-cost method of
decontaminating organic materials. Organic contaminants can be effectively reduced
through heterogeneous photocatalysis in both the atmosphere and water. The mechanism
of the photocatalytic degradation of organic pollutants has been previously discussed by
several groups [39,40]. Usually, sunlight in the presence of a semiconductor photocatalyst
is utilized to speed up the removal of environmental contaminants and the obliteration of
extremely harmful compounds [41]. The process of heterogeneous photocatalysis comprises
five sequential steps: (i) transferring the reactants from the liquid phase to the catalyst
surface; (ii) adsorbing the reactants onto the catalyst surface; (iii) enabling the reaction to
occur in the adsorbed phase; (iv) desorbing the final product; and (v) removing the final
products from the liquid phase [42].

The following steps are stated as the mechanism of dye and other organic compound
degradation via photocatalysis: When the catalyst is exposed to UV light, electrons move
from the valence band (VB) to the conduction band (CB), resulting in the formation of an
electron–hole pair (Equation (2)) [43,44].

catalyst + hv → e−CB + h+
VB (2)

Here, e−CB and h+
VB, respectively, represent the electrons in the CB and the holes in

the VB.
The produced excited substances (excitons) may travel to the catalyst surface and

engage in a redox reaction with other species already there. Usually, h+
VB may readily

form •OH radicals through the reaction with surface-bound H2O molecules (Equation (3)),
whereas e−CB can produce superoxide radical anions of oxygen through the reaction with
O2 (Equation (4)) [42].

H2O + h+
VB → •OH + H+ (3)

O2 + e−CB → O•−
2 (4)

The combination of the electron and the hole created in the first step is prevented by
this reaction. The •OH and O2 that are created in the following equations react with the
dye to create additional species, which results in the dye discoloration.

O.−
2 + H+ → •OH2 (5)

H2O2 → 2•OH (6)

•OH + dye → dyeoxi (7)

dye + e−CB → Reductant products (8)

Due to the presence of dissolved oxygen and water molecules, all above reactions
are possible in photocatalysis. In Figure 2, the pathways of oxidative species formation in
photocatalytic research are presented schematically.
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3. Mechanisms of Photocatalyzed Dye Degradation

There are two main pathways for photocatalytic reactions, as described below.

3.1. Direct Photocatalytic Pathway

There are two proposed mechanisms describing heterogeneous photocatalysis.

3.1.1. The Langmuir–Hinshelwood Model

This model is used to describe the mechanism of solid catalytic reactions [45]. As re-
ported in the published review by Uyen N. P. Tran et al. [46], typically, the L–H mechanism
model consists of four sequential steps: (1) molecules are absorbed on a catalytic surface,
(2) adsorbed molecules dissociate, (3) products are produced by reactions between dissoci-
ated molecules, and (4) products are liberated to the medium. Usually, this model is used to
study the heterogeneous catalytic degradation of organic pollutants in wastewater [47,48].

Based on step (1), the adsorption and desorption rate can be expressed as
Equations (9) and (10).

ra = ka(1 − θ)CP (9)

rd = kdθ (10)

Here, ka and kd are the adsorption and desorption rate constants, θ is a fraction of the
coverage site, and Cp is the concentration of pollutant “p”.

At equilibrium, ra = rd, which results in Equation (11) [49].

θ =
kCp

1 + kCP
(11)

k = the equilibrium constant, k = ka
kd

Usually, the photocatalytic degradation of an organic pollutant (P) occurs after adsorp-
tion; thus, the degradation rate is proportional to θ, as shown in Equation (12) [45].

rdeg = kdegθ =
kdegkCP

1 + kCP
(12)

Here, kdeg is the degradation rate constant.
Based on the rate law of chemical reaction, the rate of the degradation can also be

expressed by the following relation:

rdeg = −dCP
dt

(13)

79



Inorganics 2023, 11, 484

By combining Equations (12) and (13), L–H kinetic model can be obtained.

−dCP
dt

=
kdegkCP

1 + kCP
(14)

By integrating Equation (14) from CP = CP,0 at t = 0 to CP at the interval time, t:

1
kdegk

ln
CP

CP,0
+

1
kdeg

(CP − CP,0) = −t (15)

−t
CP − CP,0

=
1

kdeg
+

1
kdegk

ln
(

CP
CP,0

)
/(CP − CP,0) (16)

By linearly plotting the above equation, the obtained intercept and slope are 1
kdeg

and
1

kdegk , respectively.
According to previous studies, the kinetic of the photocatalytic degradation is fitted

well with the L–H model. For instance, Cao et al. showed that the kinetics of the pho-
todegradation of gaseous benzene by nitrogen-doped TiO2 (N-TiO2) under visible light
irradiation agreed with the L–H model [50]. Another study by M. Klumpp et al. [51]
confirmed that the experimental data of the degradation of rhodamine B (RhB) by TiO2
thin film also agreed with L–H model. Furthermore, Yang et al. [52] reported that the cat-
alytic photodegradation of norfloxacin and enrofloxacin under visible light irradiation with
bismuth tungstate (Bi2WO6) synthesized by combining ultrasonic solvothermal treatment
and high-temperature calcination adopted the L–H kinetic model with a high correlation
coefficient (R2 > 0.95).

3.1.2. The Eley–Rideal Model

In this method, the holes are first photo-created, then the free charged carriers are
trapped by surface flaws. The dye is then chemically altered by the active centers (AS)
to produce an adduct species such as (S-dye)+, which can then degrade further to pro-
duce products or recombine with electrons. The subsequent reactions depict the reaction
structure [34,53]:

Catalyst + hv → e− + h+(photogeneration of charges) (17)

AS + h+ → AS+(Trapping holes by AS) (18)

AS+ + e− → AS(Physical decay of AS) (19)

AS+ + dye →
(
AS − dye)+(Adduct; chemisorption) (20)

(
AS − dye)+ + e− → AS + products (21)

3.2. Indirect Photocatalytic Pathway

On the surface of the catalyst, electron–hole pairs are photogenerated during this
process. After that, water molecules trap the holes and create H+ and •OH radicals. The
•OH radicals can attack the dye to produce intermediates and finished products, or they
can interact with one another to form H2O2. The superoxide radical, which can start a chain
reaction that produces HO.

2 and H2O2, can also trap the electron by binding to molecules
of oxygen.

The organic molecule is oxidized as a result of all these radicals being produced, creat-
ing intermediates and finished products [54]. The following equations serve as examples of
the mechanism [54]:

TiO2 + hv → e− + h+ (22)

h+ + H2O(ads.) → •OH(ads.) + H+(ads.) (23)
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O2 + e− → O−.
2 (ads.) (24)

O−.
2 (ads.) + H+ ↔ HO.

2(ads.) (25)

HO.
2(ads.) → H2O2(ads.) + O2 (26)

H2O2(ads.) → 2HO•(ads.) (27)

•OH + dye → intermediate → CO2 + H2O (28)

The photodegradation efficiency and oxidation rates of a photocatalytic system are
heavily dependent on various operational parameters. These parameters play a crucial
role in regulating the degradation of organic molecules and include the effects of the
dye concentration, catalyst dose, solution pH, light intensity, and exposure period. A
comprehensive discussion of all these factors can be found in the literature [47,54].

4. Morphological Dependence of Metal Oxide Photocatalysts

Due to their capacity to produce charge carriers when stimulated with effective en-
ergy, metal oxides are generally of great interest in both environmental remediation and
electronics. Numerous metal oxide nanoparticles have been utilized as photocatalysts
and adhere to the fundamental principles of photocatalytic activity [28,55,56]. The first
step in the photocatalytic reaction is the absorption of light, which separates charges and
creates (h+) positive holes that can oxidize substrates [57]. The metal oxide is activated by
exposure to UV light, visible light, or a combination of both. Consequently, photoexcited
electrons are raised from the valence band to the conduction band, forming an electron–hole
pair (e−/h+). This generated pair (e−/h+) has the capability to either reduce or oxidize a
compound adsorbed on the photocatalyst’s surface. These excitons initiate the oxidation or
reduction of substrates and reactants on the surface of photocatalysts. The photocatalytic
efficacy of the metal oxide originates from two distinct mechanisms: (i) the generation of
•OH radicals through the oxidation of OH− anions and (ii) the production of O2

− radicals
through the reduction of O2. Both these radicals and anions can subsequently interact with
pollutants, resulting in their degradation or conversion into less harmful byproducts. These
produced radicals and anions cause contaminants to degrade and change into byproducts
with low risks [58]. In the following sections, the recent progress on the morphological
dependence of TiO2, ZnO, CuO, NiO, and WO3 in the degradation of organic dyes in
aqueous media will be presented.

4.1. Titanium Dioxide Photocatalysts

Since Fujishima and Honda’s great discovery of water splitting in 1972 [59], great
attention has been paid to utilizing the photocatalytic properties of some materials to
convert solar energy into chemical energy for the oxidation or reduction of materials to
produce useful materials such as hydrogen [60] and hydrocarbons [61], as well as to remove
pollutants and bacteria from air, water, wall surfaces, and other environments [62,63].

TiO2 has four polymorphs in nature, namely, tetragonal anatase, orthorhombic brookite,
tetragonal rutile, and monoclinic. Two extra high-pressure forms were also produced using
the rutile, TiO2, and hollandite structures. Rutile, which is the most stable form of TiO2, is
the primary source of this compound. Conversely, anatase and brookite are metastable and
transform into rutile during calcination [64]. TiO2 is categorized as an n-type semiconductor
and has varying energy bandgaps depending on its crystalline form. The energy bandgap is
approximately 3.2 eV for anatase, 3.0 eV for rutile, and 3.2 eV for brookite [42]. Among the
many different photocatalysts, TiO2 has received the most attention and has been utilized
in the most applications. This is due to its potent oxidizing properties [65–68], its ability
to degrade organic pollutants [69], its superhydrophilicity [70], its chemical stability, long
durability, nontoxicity, low cost, and transparency to visible light [62,71], as well as its good
anti-corrosion performance, high mechanical strength, low density, and a competitive price.
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TiO2 exhibits photocatalytic properties by producing photogenerated charge carriers
upon absorption of UV light which correspond to the energy band gap of TiO2. These
photogenerated holes in the valence band (VB) move to the TiO2 surface and interact with
adsorbed water molecules, resulting in the formation of hydroxyl radicals (•OH). Nearby
organic molecules on the catalyst’s surface are oxidized by the photogenerated holes and
the •OH radicals. Meanwhile, superoxide radical anions (O2

•−) are typically produced
when molecular oxygen in the air reacts with electrons in reduction processes in the CB.

It has been reported that using pristine TiO2 is not recommended because of its
low electron transfer rate, light absorption, and electron–hole pair recombination. Thus,
TiO2 is produced in various nanostructures to improve electron transport and reduce
electron–hole recombination in order to weaken these restrictions [72]. Several factors can
significantly impact the effectiveness of photocatalytic systems, such as the size, specific
surface area, pore volume, pore shape, crystalline phase, and exposed surface facets of the
photocatalyst. Morphological factors can also affect photocatalytic performance as well
as the properties of TiO2 materials. Therefore, recently, there has been a lot of interest in
the preparation of TiO2 nano- or micro-structures with various morphologies [73,74], and
a variety of TiO2 nanostructural materials have been created, including spheres [74,75],
nanorods [76], fibers [77], tubes [78], sheets [79], and interconnected architectures [80]. Due
to their interconnected structure, three-dimensional (3D) monoliths may have high carrier
mobility and be used in environmental decontamination as opposed to two-dimensional
(2D) nanosheets, which have flat surfaces and good stickiness [69,81,82]. In the following
section, the photocatalytic properties of TiO2 with various morphologies are used for the
breakdown of organic pigments.

In the last decade, Zhen et al. [83], simply treated amorphous anodic TiO2 nanotubes
(TiO2 NTs) in situ hydrothermally at 70 ◦C to prepare anatase porous TiO2 nanowires
(TiO2 NWs) (Figure 3a–f). The estimated BET surface area of the prepared TiO2 NWs was
267.56 m2 g−1, nearly four times that of the utilized amorphous anodic TiO2 NTs. The
photocatalytic capability of porous TiO2 NWs towards MB and Rhodamine 6G (Rh6G)
were studied. Compared to TiO2 NTs or Degussa P25, the porous TiO2 NWs had superior
photocatalytic activity (Figure 3g,h). The porous design and the substantial specific surface
area are responsible for the increased photocatalytic activity.

Furthermore, anatase TiO2 NWs were prepared by Lou et al. [84] using a facile one-
pot solvothermal approach (Figure 4). Due to the high productivity and yield of the
solvothermal reaction, a significant amount of what appears to be white mud is produced
afterward. The choice of the DMF/HAc volumetric ratio in the solvent system used for
synthesis determines whether the TiO2 NWs assemble into hierarchical architectures or
remain in freestanding form. The 1D nanostructure with outstanding photocatalytic activity
for RhB degradation was perfectly preserved in both the synthesized and the annealed
TiO2 NWs.

Recent studies on the morphology of TiO2 nanostructures in the photocatalytic degra-
dation of several organic dyes (MB, MV, MO) have been published by Zhang et al. [85]. The
balanced angle deposition technique (GLAD) was used to create nanorod, nanohelic, and
nanozigzag TiO2 nanofilms (Figure 5a). It can be observed that the morphology displayed
significantly influences the performance of the photocatalytic degradation under UV–Vis
light irradiation (Figure 5b,c). This is mostly explained by the variation in the produced
nanostructures’ specific surface area and pore volume. TiO2 nanozigzag films demonstrate
superior degradation capabilities compared to nanohelics and nanorods due to their ex-
tensive surface area, increased porosity, distribution of active sites at varying pore lengths,
and the existence of oxygen vacancies.
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By carefully hydrolyzing titanium tetrachloride (TiCl4) with a homemade glass appa-
ratus, Zidki et al. [86] prepared TiO2 nanoparticles. The photoactive anatase and brookite
phases make up the TiO2 nanoparticles, as indicated by XRD and TEM/HRTEM image
studies (Figure 6a,b). The photodegradation of MB and CR under UV–Vis light was used to
illustrate the photocatalytic activity of TiO2 nanoparticles. The degradation of MB showed
that, in contrast to the CR degradation, the photocatalytic degradation of MB on TiO2
nanoparticles is more effective in an alkaline environment (Figure 6c,d).
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Habibi and Jamshidi [87] conducted a study in which they synthesized TiO2 in various
shapes using cellulose nanofibers (CNFs) as a template and a sol-gel technique. Three dif-
ferent forms of TiO2 were produced: hydrogel, aerogel, and alcogel (as shown in Figure 7).
The hydrogel-produced TiO2 nanofibers were porous and strongly entangled, while the
aerogel-produced TiO2 had a sheet-like structure. The alcogel-produced TiO2 had a struc-
ture similar to a hydrogel, but water was replaced with isopropanol. By using the Stober
method with ammonia, the sol-gel process was modified by the researchers to produce TiO2
nanowhiskers and nanosheets. The morphology of the nanowhiskers transformed into
nanosheets as the ammonia level was raised, as confirmed by FESEM images. Moreover,
the specific surface area of the TiO2 samples was found to have increased. The photocat-
alytic efficiency of the prepared samples was examined using methylene blue (MB) as a
model pollutant. All samples exhibited high photocatalytic efficiency under UV light, with
over 98% degradation of MB in 2 h. Additionally, TiO2 nanowhiskers displayed higher
photodegradation efficiency under visible light compared to TiO2 NPs and nanosheets.
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TiO2 NTs have received a lot of interest in recent years because of their one-dimensional
ion exchange direction, increased surface area, and light absorption [88]. TiO2 NTs can
typically be made using one of three methods: hydrothermal, template, or electrochemical
anodization. The most effective of these techniques, electrochemical anodization, is the least
expensive and produces remarkably ordered nanotubes [89]. Additionally, the anodization
technique stands out for its ability to control the morphology of nanotubes by simply
changing the process parameters. In contrast to nanotubes grown over foils, Subramanian
et al. [90] found that anodized TiO2 NTs over titanium wires (TWs) significantly improved
the photocatalytic degradation of MO.

In the presence of nanotubes grown on titanium wires, photocatalytic degradation
rises from 20% to about 40%. Additionally, MO degradation in the presence of Pt-loaded
TiO2 nanotubes over foils matches the degradation in the presence of TiO2 nanotubes on
wires. This increased photoactivity is attributed to nanotubes formed in a radially outward
orientation along a titanium backbone, which effectively absorb light that is reflected
and refracted. Further enhancement was achieved by Rojviroon et al. [78]. In this study,
electrochemical anodization was used to create TiO2 nanotubes using thin titanium sheets
at voltages of 20, 30, 40, and 50 V. The obtained TiO2 nanotubes are shown in Figure 8a.
The characterization investigation revealed that the inner diameter and depth of TiO2 NTs
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rose with increasing anodization voltages, but their wall thickness dropped. It seems that
the TiO2 NTs anodized at 50 V have shown promising photocatalytic activities towards the
decolorization of indigo carmine (IC) and reactive black 5 (RB5) dyes. The decolorization
efficiencies were measured to be 74.14% and 65.71%, respectively, under UV irradiation for
180 min and with an initial dye concentration of 4 µM. These results suggest that TiO2 NTs
anodized at 50 V can be a potential photocatalytic material for dye wastewater treatment.
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Nozaki et al. [91] prepared TiO2 nanosheet (TiO2 NSs) photocatalysts for the degra-
dation of MB when exposed to UV radiation (365 nm, 2.5 mW cm−2). Ti(OBu)4 and
(NH4)2TiF6 were both employed as starting materials, and a variety of samples with vari-
ous side lengths were produced through hydrothermal synthesis by varying the F/Ti ratio
between 0.3 and 2.0. Titania nanosheets produced with an F/Ti ratio of 0.3 led to the best
degrading efficiency. The increase in surface area brought on by the reduction in size is
what is responsible for the increased catalytic activity.
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Recently, Nair developed a floating photocatalyst to accelerate the photocatalytic
degradation of a TiO2 nanosheet in a cellulose acetate matrix and supplied support using
ethylene vinyl acetate (Figure 9a–c) [92]. The degradation of CR dye by a floating photocat-
alyst made of TiO2 nanosheets performed well in both UV and solar light (Figure 9d,e).
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4.2. Zinc Oxide Photocatalysts

ZnO is commonly found in a hexagonal wurtzite crystal structure, which has a non-
centrosymmetric lattice and exhibits piezoelectric and pyroelectric properties. The crystal
structure also affects the photocatalytic activity of ZnO, with the (001) crystal facet showing

89



Inorganics 2023, 11, 484

the highest photocatalytic activity due to its high surface energy and abundance of surface
defects [93,94]. The photocatalytic activity of ZnO is attributed to the formation of electron–
hole pairs upon the absorption of light with energy equal to or greater than its bandgap
energy. The photogenerated holes can oxidize water or hydroxide ions to produce hydroxyl
radicals, while the photogenerated electrons can reduce oxygen or organic molecules [95].
However, the recombination of electron–hole pairs limits the efficiency of photocatalytic
reactions, and various strategies have been employed to enhance the separation of photo-
generated charge carriers and improve the photocatalytic activity of ZnO, including doping
with transition metals, surface modification with noble metals or semiconductors, and use
of a heterostructure with other semiconductors [95,96].

Until now, various morphologies of ZnO nanomaterials such as nanorods, nanowires,
nanotubes, and hollow structures have been prepared [97]. ZnO nanomaterials are usually
prepared via different techniques including evaporative decomposition of solution [98],
solid state reaction [99], sol-gel [100], and so on. The preparation technique shows a
noticeable effect on the particle size and the morphology, which directly affects the physical
and chemical properties of the prepared ZnO nanostructured materials. As reported by
Singh et al., the morphology of ZnO nanostructures can be controlled by adding additives
or capping agents such as triethanolamine (TEA), oleic acid, and thioglycerol [101]. The
creation of ZnO nanostructures with different morphologies requires the application of
many surfactants, including sodium dodecyl sulfate (SDS), tetraethylammonium bromide
(TEAB), and cetyltrimethylammonium bromide (CTAB). The photocatalytic activity of ZnO
is significantly influenced by its structural morphology [102,103]. This influence stems from
the crystal structure, which facilitates the separation of charge carriers. However, some
studies have shown that non-spherical morphologies such as nanorods and nanowires
can also exhibit enhanced photocatalytic performance due to their unique crystal facets
and surface areas, which can promote charge transfer and improve catalytic efficiency.
Ultimately, the selection of a particular morphology for a photocatalyst relies on the
specific application and the desired properties. The flake-like structure, however, exhibits
comparatively lower performance [102].

Although a great deal of attention has been devoted to the photocatalytic activity of
ZnO, its photocatalytic activity suffers from the following drawbacks: (i) the large bandgap
of ZnO (3.37 eV), which inhibits light absorption in the UV (380 nm) range, which means
ZnO cannot absorb visible light, drastically lowering photocatalytic efficiency [104,105];
(ii) the degradation reactions at the semiconductor–liquid interface are slowed down by
the quick recombination of the charge carriers; (iii) the difficulties of using a traditional
filtration process to recover ZnO powder from a suspension; (iv) the propensity to clump
together during catalytic processes and the vulnerability to UV-induced corrosion; and (v)
photocorrosion is one of the main restrictions of ZnO as a photocatalyst for wastewater
treatment [106]. The following four phases describe how photocorrosion occurs [107].

O2−
surface + h+

VB → O−
surface (29)

O−
surface + 3O2− + 3h+

VB → 2
(

O − O2−
)

(30)
(

O − O2−
)
+ 2h+

VB → O2 (31)

2Zn2+ → 2Zn2+aq (32)

The net equation for the photocorrosion of ZnO is shown below.

ZnO + 2h+
VB → Zn2+ +

1
2

O2 (33)

Therefore, the majority of ZnO photocatalytic studies have been carried out under UV
radiation. Recently, various studies have been conducted on utilizing ZnO with different
morphologies for the elimination of organic pollutants. To use as a photodegradation for
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MO dye, Bhatia and Verma [108] synthesized ZnO nanoparticles (ZnO NPs) with varying
defect concentrations by burning at 700 ◦C and subsequent quenching in air.

From FESEM images (Figure 10a–d), ZnO NPs are less than 45 nm in size, and an
uneven grain boundary distribution was discovered in the quenching-induced defects. The
improvement of the photocatalytic effectiveness of synthesized nanoparticles is greatly in-
fluenced by their various morphologies. The photodegradation of MO dye has been proven
to follow a first order model through kinetic analysis, with a rate constant of 0.0165 min−1.
(Figure 10f). Additionally„ it has been reported that approximately 100% MO degradation
has been achieved in 150 min under UV irradiation (Figure 10e). Recently Dodoo-Arhin
prepared ZnO NPs using the sol-gel method, with zinc acetate as a Zn source [109]. The
effect of calcination temperature on the particle size of ZnO was investigated. As shown
in SEM, the obtained wurtzite ZnO NPs showed crystallite sizes ranging from 16 nm to
30 nm. Increasing the calcination temperature increases the crystallite size and reduces
the energy band gap of the obtained ZnO NPs. In addition, the prepared ZnO showed a
rice-like microstructure morphology (Figure 10g–i). The prepared ZnO NPs were utilized
as a photocatalyst toward the degradation of RhB dye under UV– light. The obtained anal-
ysis showed that ZnO NPs calcined at 400 ◦C obtained the highest degradation efficiency
(95.41%), as shown in Figure 10h.

ZnO NPs also showed important catalytic activity under solar illumination. For
example, ZnO NPs of various morphologies were developed by Saikia et al. [110] for the
photodegradation of malachite green (MG) (Figure 11a–d). Under solar light, the flower-
shaped homocentric bundles of hydrothermally synthesized ZnO nanorods (ZnO NRs)
in the form of pencil-like structures demonstrate outstanding photocatalytic activity, as
evidenced by the pseudo first-order kinetics of the Langmuir–Hinshelwood model in the
photodegradation of MG dye (Figure 11e,f). Additionally, ZnO NPs and homocentric
pencil-like ZNRs bundles in the shape of flowers were prepared.

Additionally, photocatalytic degradation of organic dyes by ZnO nanosheets (ZnO
NSs) was also investigated. For example, Komarneni et al. [111] used a simple, ultra-rapid
solution approach to create ZnO NSs with many oxygen-vacancy defects. The surface area
was significantly increased from 6.7 to 34.5 m2 g−1 by the addition of 1 mol L−1 Na2SO4.
With a rate constant of 0.0179 min−1 under visible light (>420 nm), the as-prepared ZnO
NSs showed abundant oxygen vacancies, which are crucial for improving visible light
absorption and, consequently, high photocatalytic activities towards the degradation of
RhB. These rates were about 13 and 11 times higher, respectively, than those of ZnO NPs
with few oxygen defects.

Further enhancement with a rate constant k = 0.0421 min−1 was achieved by hy-
bridized ZnO NSs with Ag3PO4 nanoparticles. A synergistic effect of surface oxygen
vacancies and Ag3PO4 coupling was suggested by this augmentation, which was attributed
to the improved visible light absorption as well as the well-matched energy level that
is responsible for effective charge transfer between oxygen-vacancy-rich ZnO NSs and
Ag3PO4. ZnO nanowires also display a significant superior photocatalytic activity toward
organic dye degradation. For example, by using a low-cost, low-temperature hydrother-
mal approach, Leprince-Wang et al. [112] demonstrated an effective synthesis of nontoxic,
biocompatible ZnO nanostructures only on the surface of commercially available concrete
and tiling pavements (Figure 12a–e).

The obtained data showed an enhancement in photocatalytic activity for degrading
organic dyes in aqueous media with high photocatalytic stability (Figure 12f–h).

The degradation of Acid Red 57 (AR57) under UV irradiation was studied further
by El-Bindary et al. [113]. In this study, ZnO nanowires (ZnO NWs) were prepared by a
low-temperature co-precipitation technique employing zinc sulfate as a precursor. After
190 min, the effectiveness of the photocatalytic degradation of ZnO NWs produced at 400,
500, and 600 ◦C was 90.03, 77.67, and 72.71%, respectively. Moreover, the degradation of
AR57 fitted first-order kinetics. Recently, the effect of several kinds of organic dyes as a
guiding agent for the formation of ZnO NWs was described by Yang et al. [114].
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Figure 10. (a) Low and high magnification SEM images of ZnO, (b) air quenched ZnO, (c) pho-
todegradation vs. irradiation time of MO dye for pristine ZnO and air quenched ZnO, (d) rate
constant for after 150 min of UV exposure (Adopted with permission from Ref. [108] Copyright 2017,
Elsevier), SEM images of ZnO calcined at (e) 400 ◦C, (f) 500 ◦C, and (g) 600 ◦C. (h) RhB degradation vs.
irradiation time and (i) the effect of the catalyst load on RhB degradation (Adopted with permission
from Ref. [109] Copyright 2019, Elsevier).
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Figure 12. (a) Scheme of the ZnO NWs growth on a flat substrate (i.e., Si wafer) vs. a construction
material (i.e., concrete), (b) top views of the gray tiling, and (c) red concrete pavement before and
after the growth of ZnO nanostructures. (d) SEM top-view of ZnO NWs on the tiling surface, (e) ZnO
NRs on the concrete surface, and (f–h) the photodegradation rate of MB, AR, and MO dyes vs. time.
Adopted with permission from Ref. [112] Copyright 2019, Springer Nature.
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EBT was found to effectively direct the growth of ZnO NWs, inhibiting their growth
along the c-axis direction. Additionally, the introduction of UV light during growth
significantly enhanced the photocatalytic degradation of EBT absorbed on the surface of
the ZnO NWs. ZnO NWs arrays grown on glass fiber cloth with a dominant exposed polar
(0001) facet exhibited superior photocatalytic performance compared to other arrays.

4.3. Copper Oxide Photocatalysts

Copper (II) oxide, also known as cupric oxide (CuO), is a naturally occurring p-type
semiconducting metal oxide. This is due to the presence of oxygen vacancy defects in its
crystal structure. CuO has an indirect small bandgap of 1.2 eV at room temperature [115].
Copper also exists in other polymorphs such as copper (I) oxide, commonly known as
cuprous oxide (Cu2O), and copper (III) oxide (Cu4O3). CuO displays higher thermal stabil-
ity than Cu2O, whereas Cu4O3 is a challenging metastable phase due to its mixed copper
atom oxidation state, making its synthesis problematic [116,117]. CuO is a brownish-black
powder that is used in various applications, such as catalysis, chemical and gas sensors,
superconductors, and energy conversion and storage devices, as well as in biomedicine and
textile production [118–120]. CuO has been extensively used as a heterogeneous catalyst in
diverse chemical processes such as the oxidation of carbon monoxide (CO), hydrocarbons,
and phenol in supercritical water, the selective catalytic reduction of nitric oxide with
ammonia, and the breakdown of nitrous oxide [121].

Furthermore, CuO has been investigated as a photocatalytic material [122]. Addi-
tionally, it has been reported how the bandgap of CuO nanostructures is influenced by
their morphology [123]. The subsequent section will demonstrate the effectiveness of CuO
nanostructures as a photocatalyst for eliminating organic dyes from aqueous solutions,
including an analysis of the removal mechanism and the impact of morphology on the
removal efficiency.

CuO nanostructures are among the interesting photocatalytic materials usually utilized
for the removal of various organic pollutants due to their high abundance, low cost,
narrower bandgap, excellent chemical stability, and facile synthesis [124]. The narrow
bandgap of CuO makes it active in the visible region of the electromagnetic spectrum.
To enhance the catalytic activity of CuO, H2O2 is often added to the reaction mixture.
H2O2 is a better electron acceptor than O2, so it quickly captures the photogenerated
electrons from the photocatalyst’s surface, becoming reduced and forming hydroxyl radicals
(•OH) [125]. This is important for offering more active radicals, as well as reducing
the rate of electron–hole recombination, which boosts the utilization of holes during the
photocatalytic process. Without H2O2, CuO displays an inability to generate a sufficient
amount of •OH radicals, and thus CuO is considered as an ineffective photocatalyst for
degrading organic pollutants [126]. This is because the redox potential required to produce
•OH radicals is higher than the VBs of CuO. Thus, CuO has weaker oxidative capabilities
for the breakdown of organic contaminants and cannot produce hydroxyl radicals when
illuminated. There are many works that indicate that without H2O2, CuO in different
morphologies displays no catalytic activity, as reported by He et al. [127]. Recently Latief
et al. prepared CuO NPs with a range of sizes between 25 and 90 nm (Figure 13a,b) to
depredate CR dye from aqueous solutions. The analysis showed that the addition of H2O2
to CuO NPs significantly enhanced the degradation of CR dye under UV light, as presented
in Figure 13c. In addition, increases in H2O2 result in improvements in the degradation
rate (Figure 13d).

CuO nanostructures with various morphologies, including flower-like, boat-like, plate-
like, and ellipsoid-like structures, were prepared and showed excellent catalytic activity
towards the degradation of MB. However, without H2O2, the degradation stopped after
15 h, highlighting the significant dependence of CuO nanostructure photocatalytic activity
on H2O2. Adsorption–oxidation–desorption is the postulated possible mechanism for the
photocatalytic degradation of dyes by CuO in the presence of H2O2 under light illumi-
nation [127]. In this mechanism, various free radicals such as HO., HOO., and O.−

2 are
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mainly responsible for the degradation of dyes. The first step is adsorption of dye and
H2O2 molecules on the surface of the CuO nanostructure. The second step involves the
decomposition of H2O2 into free radicals (HO., HOO., or O.−

2 ). These free radicals display
a high oxidative ability to oxidize the organic dye. The third step involves desorption of
the small molecules from the CuO surface, and finally the catalyst is recovered [128].

Inorganics 2023, 11, x FOR PEER REVIEW 22 of 36 
 

 

 
Figure 13. (a) SEM image of CuO NPs, (b) histogram spectrum of CuO NPs, (c) effect and removal 
of CR dye by UV/H2O2, and (d) effect of H2O2 concentration in the degradation of CR dyes (Adopted 
with permission from Ref. [125] Copyright 2023, MDPI). 

CuO nanostructures with various morphologies, including flower-like, boat-like, 
plate-like, and ellipsoid-like structures, were prepared and showed excellent catalytic ac-
tivity towards the degradation of MB. However, without H2O2, the degradation stopped 
after 15 h, highlighting the significant dependence of CuO nanostructure photocatalytic 
activity on H2O2. Adsorption–oxidation–desorption is the postulated possible mechanism 
for the photocatalytic degradation of dyes by CuO in the presence of H2O2 under light 
illumination [127]. In this mechanism, various free radicals such as HO., HOO., and Oଶ.ିare 
mainly responsible for the degradation of dyes. The first step is adsorption of dye and 
H2O2 molecules on the surface of the CuO nanostructure. The second step involves the 
decomposition of H2O2 into free radicals (HO., HOO., or Oଶ.ି). These free radicals display a 
high oxidative ability to oxidize the organic dye. The third step involves desorption of the 
small molecules from the CuO surface, and finally the catalyst is recovered [128]. 

Morphology is a critical factor that affects the photocatalytic activity of CuO 
nanostructures toward the degradation of organic dyes. For example, Wang et al. reported 
that CuO nanowires (Figure 14a,b) showed excellent catalytic activity toward the degra-
dation of RhB [129]. The CuO nanowires demonstrated a total degradation efficiency of 
95.5% after 9 h of UV light irradiation (as shown in Figure 14c), which was significantly 
higher than that of commercial CuO powders (which achieved only 39.6% degradation). 
In addition, Sadollahkhani et al. investigated the photocatalytic performance of CuO na-
noparticles with various morphologies (as depicted in Figure 14d–f) for the degradation 
of CR dye under UV illumination [130]. The decomposition of CR dye takes place on the 
surface of CuO; thus, adsorption plays a critical role in the photocatalytic degradation. 
Samples doped with Zn appear to have improved degradation performance (63%) 

Figure 13. (a) SEM image of CuO NPs, (b) histogram spectrum of CuO NPs, (c) effect and removal of
CR dye by UV/H2O2, and (d) effect of H2O2 concentration in the degradation of CR dyes (Adopted
with permission from Ref. [125] Copyright 2023, MDPI).

Morphology is a critical factor that affects the photocatalytic activity of CuO nanos-
tructures toward the degradation of organic dyes. For example, Wang et al. reported that
CuO nanowires (Figure 14a,b) showed excellent catalytic activity toward the degradation of
RhB [129]. The CuO nanowires demonstrated a total degradation efficiency of 95.5% after
9 h of UV light irradiation (as shown in Figure 14c), which was significantly higher than
that of commercial CuO powders (which achieved only 39.6% degradation). In addition,
Sadollahkhani et al. investigated the photocatalytic performance of CuO nanoparticles
with various morphologies (as depicted in Figure 14d–f) for the degradation of CR dye
under UV illumination [130]. The decomposition of CR dye takes place on the surface
of CuO; thus, adsorption plays a critical role in the photocatalytic degradation. Samples
doped with Zn appear to have improved degradation performance (63%) according to the
photocatalytic examination of the degradation of MB dye (Figure 14g). The photocatalytic
studies revealed that the degradation of CR for nanorods was the highest among the other
prepared materials, with a total degradation efficiency of 67% after 210 min irradiation
(Figure 14h). Moreover, the CR degradation reaction follows a first order kinetics model
with the three CuO morphologies. On the other hand, Anandan et al. [131] prepared
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dandelion-like CuO microspheres with sizes of ~1–2 µm through the ultrasound process
without any surfactants. The photocatalytic performance of the CuO nanoparticles that
were synthesized was investigated for the degradation of Reactive Black-5. The study
found that the CuO microspheres with a dandelion-like morphology exhibited excellent
photocatalytic activity, with approximately 76% of the dye degraded in just 5 h under visible
light exposure. The degradation reaction followed a pseudo-first-order kinetic model, with
a rate constant of 0.312 h−1. Recently, George et al. prepared flowers similar to CuO 3D
nanostructures doped with nickel, zinc, and iron (Figure 14h) [132].
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Using NaBH4 as q reducing agent in an aqueous medium, Nazim et al. [133] recently
synthesized porous CuO nanosheets (Figure 15a) for use as a photocatalyst towards the
degradation of food dye. The optical energy band gap of the prepared CuO was found
to be approximately 1.92 eV. The CuO nanosheets were tested as photocatalysts for the
degradation of Allura Red AC (AR) dye and showed excellent photocatalytic degradation
efficiency of around 96.99% in just 6 min under visible light irradiation at room temperature
(Figure 15b,c). The photodegradation kinetics of AR followed a pseudo-first-order reaction
model, with a rate constant of 0.524 min−1. Additionally, the CuO nanosheets exhibited
remarkable recycling ability for AR degradation (Figure 15d).
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Figure 15. (a) FESEM images of CuO nanosheets, (b) UV–Vis spectrum of dye degradation at different
times, (c) gradual degradation histogram against time of the AR dye in aqueous medium, and
(d) recyclability of the CuO nanosheets after ten degradation cycles for AR dye. Adopted with
permission from Ref. [133] Copyright 2021, American Chemical Society.

4.4. Nickle Oxide Photocatalysts

NiO is a broad bandgap (3.6–4.0 eV) p-type semiconducting oxide. NiO has attracted
a lot of attention due to its application in numerous areas, including fuel cell electrodes,
battery cathodes, dye-sensitized solar cells, etc. [134–137].

In addition, NiO displays a promising ability to produce OH radicals and thus is a
potential candidate toward the degradation of organic pollutants. For example, Jayakumar
et al. [138] prepared NiO nanoparticles through a chemical precipitation method for use
as photocatalysts for the degradation of MB dye in aqueous media. The photocatalytic
degradation results showed that the NiO nanoparticles are potential photocatalysts for the
degradation of MB dye.

Saeed et al. utilized a chemical reduction process to prepare NiO NPs and NiO/nanoclay
nanocomposite (NiO/Nc) and evaluated their photocatalytic efficiency for the degrada-
tion of orange II dyes in aqueous solution [139]. According to the SEM examination, the
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NiO NPs were spherical with variable forms and diameters in the range of 100–400 nm
(Figure 16a,b). The photodegradation investigation showed that, within 20 min, orange II in
aqueous medium was degraded by the NiO NPs and NiO/Nc by 93% and 96%, respectively
(Figure 16c). Green methods are successfully applied for preparing NiO as a photocatalyst.
For example, using the antioxidant property of Punica granatum L. (pomegranate) juice
extract and its bio-reducing ability for MO breakdown in water, Barzinjy et al. [140] pre-
pared NiO NPs. The biosynthesized NiO nanoparticles displayed an active catalytic ability
toward the degradation of MO from media with a total degradation performance of 96%.
Furthermore, Sarani et al. [141] prepared NiO nanoparticles via a green method by using
extract as a stabilizing agent. The average crystal size of prepared NiO nanoparticles was
approximately 54–58 nm, and the estimated energy band gap was 3–3.7. The prepared
NiO nanoparticles were investigated as photocatalysts for degradation of acid orange
7 (AO7) dye in aqueous solution under visible light. The NiO nanoparticles exhibited
excellent photocatalytic performance (90.2%) toward the AO7 dye and displayed excellent
re-usability several times. Table 1 summarizes different metal oxide morphologies and
their photodegradation performances.
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Figure 16. SEM image of (a) NiO NPs and (b) NiO/Nc composite, and (c) percent of degradation for
orange II dye. Adopted with permission from Ref. [139] Copyright 2022, Springer Nature.

Table 1. Summary of different metal oxide morphologies and their photodegradation performances.

Photocatalyst Morphology Pollutant Degradation Conditions Degradation Rate (%) Ref.

TiO2
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Table 1. Cont.
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4.5. Tungsten Oxide Photocatalysts

In recent decades, tungsten-based oxides (WO3) have been the subject of substantial
research, with a variety of morphologies being exhibited. A twisted WO6 octahedron
connects the crystal in the stoichiometric ratio of the WO3 structure to generate a perovskite
crystal structure. Its crystal forms are hexagonal, orthorhombic, and monoclinic. At the
same time, oxygen vacancies and unsaturated, coordinated W atoms might arise from
the easy loss of the oxygen lattice. Consequently, there are numerous non-stoichiometric
compounds in tungsten oxide, including WO2.72, WO2.8, WO2.83, and WO2.9.

Among the low-cost semiconductors with potential photocatalytic activity is tungsten
oxide (WO3) [56]. Its highly adjustable stoichiometries and structures, together with its
Earth-abundance and strong sensitivity to the solar spectrum due to its low band gap
of 2.5–3.0 eV [144], make it a popular choice for photocatalysis under visible light [145].
Furthermore, WO3 has stable physical and chemical characteristics, little toxicity, and a
strong capacity to oxidize valence band holes [39]. Nanoparticles, nanowires, nanosheets,
and nanospheres are among the frequently occurring morphologies. There are many
ways to produce different WO3 dimensions: 0 dimensional (0D), 1D, 2D, and 3D WO3,
in that order. Characteristics vary among dimensions. It is possible to create 0D WO3
monodisperse monoclinic WO3 quantum dots by breaking down the ammonium tungstate
oxide complex, which is created hydrothermally using hydrazine hydrate and WCl6 [146].
It is possible to carefully regulate the particle size distribution of WO3−x QDS within the
range of 1.3–4.5 nm by varying the reaction temperature [147]. 1D WO3 is widely available
and simple to synthesize. Today, various structures of 1D WO3 have been discovered, such
as those of nanofibers, nanotubes, nanorods, and nanowires. As for 2D WO3, thin films,
nanosheets, nanoplates, and so on, these have garnered a great deal of interest because
of their high surface volume ratio, surface polarization, modulated surface activity, and
oxygen-rich vacancies. The majority of 2D WO3 structures are thin layers. As previously
reported by Yin et al., 3D WO3 is a layered structure made of nanoparticles, nanoplates,
nanorods, and nanosheets. It can take the form of irregular structures such as mesoporous
structures, microspheres, micro flowers, and sea urchin-like formations. Typically, 3D WO3
displays high porosity, a large specific surface area, and a distinctive shape [148].

For photocatalytic applications, WO3 shows some advantages, such as its high physio-
chemical catalyst stability that is limited to photo-corrosion and has strong solar spectrum
absorption. Under UV–Vis light, WO3 is a highly reactive catalyst that effectively oxidizes
various organic and inorganic pollutants in wastewater. WO3 is a photocatalyst with a
wide range of hues that can change from yellow to green to bluish to grayish depending on
its oxidation state. There are many techniques that have been used to enhance the catalytic
activity of WO3. For example, doping with other materials such as dyes to form dye-doped
WO3 as reported by Tahir et al. [149], or doping with Pt to form Pt–WO3 composite [150].

One of the promising strategies is to design WO3 with a different morphology, and we
will present the recent progress in utilizing WO3 with different morphologies in degradation
some organic dyes. Ojha et al. [142] used the sol-gel method to prepare WO3 nanorods
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and sheets in various crystal phases. As presented in Figure 17a, they showed that the
calcination temperature plays a critical role in the shapes and crystal phases of the WO3
nanostructures, and thus in the photocatalytic activity toward degradation of MB dye due
to the modified electronic structure, which causes a variation in the value of the band gap
(Figure 17b). The synthesized WO3 nanosheets showed improved photocatalytic activity for
the photodegradation of MB dye compared to WO3 nanorods (Figure 17c). The sheet-type
structure provides more active surface for the interaction of dye molecules compared to
the rods.
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Figure 17. (a) TEM images with various resolutions of WO3 calcined at different temperatures,
(b) variation in band gap with calcination temperature, and (c) C/Co vs. UV irradiation time plot
for degradation of MB dye with W1 (at 400 ◦C), W2 (at 450 ◦C), W3 (at 550 ◦C), and W4 (at 550 ◦C).
Adopted with permission from Ref. [142] Copyright 2022, Springer Nature.

Yin et al. [148] prepared WO3 photocatalyst through a hydrothermal process. The pre-
pared WO3 nanoparticles showed promising absorption of UV, visible, and near-infrared
(NIR) bandwidths. WO3 photocatalyst exhibited excellent catalytic activity toward the
degradation of MB. Furthermore, they confirmed that the temperature showed different
morphology (Figure 18a–d) and that the higher temperature displayed better catalytic activ-
ity (Figure 18e). Recently, Mzimela et al. [143] prepared highly agglomerated WO3 nanopar-
ticles through the facile acid precipitation method at various temperature (Figure 18f–h)
for degradation of RhB dye. The results showed that WO3 calcined at 300 ◦C, 5 g L−1

catalyst dose, 5 ppm RhB concentration, and pH of 9.5, while the catalyst showed an
excellent degradation efficiency of 96.1% after 4 h under visible light irradiation (Figure 18i).
Furthermore, the degradation kinetics obeys the L–H model, which describes heterogenous
photocatalytic surface reactions.
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5. Conclusions and Future Perspectives

Due to the industrial revolution in the modern world, various pollutants are emitted
into the environment, both directly and indirectly. Thus, great efforts have been devoted to
develop advanced technology for the elimination of such environmental pollutants. One of
the most promising methods for meeting global needs in an environmentally responsible
manner is photocatalysis. Metal oxides are found to be potential photocatalysts because of
their affordability, effectiveness, and environmental friendliness. Furthermore, metal oxides
may be widely used in a wide range of applications because of their large surface area,
simplicity of fabrication, and sufficient supply. Moreover, metal oxides are abundant, highly
active, and could be prepared either through eco-friendly or conventional methods in large
quantities. Unfortunately, a few drawbacks prevent them from being used practically,
including a large bandgap, a high rate of photogenerated electron–hole pair recombination,
and catalyst deactivation. Therefore, various strategies have been developed to overcome
these limitations; one of these techniques is the design of metal oxides with unique mor-
phologies. The morphology of metal oxides displayed a significant influence on the overall
degradation performance, as indicated by shifting the photocatalytic degradation toward
various kinds of dyes in aqueous solutions. Therefore, in the current study, the recent
progress in the photocatalytic degradation of organic dyes by prominent metal oxides with
different morphologies is discussed. The metal oxide nanoparticles, namely, TiO2, ZnO,
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CuO, NiO, and WO3, all are widely utilized for the photodegradation of various organic
dyes. The non-spherical morphologies such as nanorods and nanowires exhibit enhanced
photocatalytic performance due to their unique crystal facets and surface areas, which can
promote charge transfer and improve catalytic efficiency. Ultimately, the selection of a
particular morphology for a photocatalyst relies on the specific application and the desired
properties. The porous design and the substantial specific surface area are responsible for
the increased photocatalytic activity. On the other hand, the flake-like structure exhibits
comparatively lower performance.

In the future, its highly recommended to do more research to more deeply understand
the degradation mechanisms of metal oxides with different morphologies. Until now,
most of the prepared metal oxides with different morphologies were obtained by using
conventional methods on their appropriate precursors. Some of them are toxic or require
the use of a high temperature or organic solvents during the procedure, which is not
preferred for sustainability. Thus, it is important to find alternative, sustainable methods
for preparing these oxides with different morphologies. Presently, there are some studies
reporting the preparation of NiO using green methods; however, they are limited in number
and need to be more accurate, as well as to prepare other metal oxides such as TiO2, ZnO,
CuO, and WO3 for organic dye degradation in aqueous solutions.
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Abstract: Thin films are the backbone of the electronics industry, and their widespread application in
heat sensors, solar cells, and thin-film transistors has attracted the attention of researchers. The cur-
rent study involves the deposition of a hetero-structured (ZnO/Zn/ZnO) thin film on a well-cleaned
glass substrate using the DC magnetron sputtering technique. The samples were then annealed at 100,
200, 300, 400, and 500 ◦C. The structural, morphological, and electrical characteristics of the annealed
samples as well as one as-deposited sample were then examined using atomic force microscopy
(AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and a Hall effect measuring
apparatus. XRD analysis showed a hexagonal ZnO crystal structure for the samples annealed at
300 and 400 ◦C, whereas the samples annealed at 100 and 200 ◦C showed metallic zinc and hexagonal
ZnO, and the crystallinity decreased for the sample annealed at 500 ◦C with pure hexagonal crystal
symmetry. According to the AFM study, as the annealing temperature increases, the average rough-
ness (Ra) decreases. Temperature has an inverse relationship with particle size. The optimal annealing
temperature was determined to be 400 ◦C. Over this temperature range, the average roughness and
particle size increased. Similarly, when Ra decreased, the conductivity increased and the resistance
decreased. A fundamental difficulty is that the heating of the heterostructure to 400 ◦C melts the
Zn-based intermediate layer, which alters the Zn phase and disrupts the sample homogeneity.

Keywords: ZnO; Zn; heterostructure; annealing; sputtering

1. Introduction

Semiconductor nanomaterials play a significant role in renewable energy, notably in
thin-film solar cells, and have attracted the attention of scientists and researchers world-
wide [1]. Many elemental and compound semiconductor nanomaterials have been investi-
gated, with ZnO being one of the most prominent and promising [2]. ZnO is a binary II–VI
compound semiconductor material having Wurtzite crystal structure, a wide and direct
bandgap of 3.3 eV at ambient temperature, and an exciton binding energy of 60 meV [3–5].
It can be grown in several different types of nanoscales, thus making it possible to obtain
various novel products [6]. Moreover, the properties of ZnO can be altered by fabricating
thin films [7]. ZnO thin films have been extensively researched in various areas due to their
high bond strength [8], good optical performance [9], severe exciton stabilisation [10], and
outstanding piezoelectric properties [11], and they have many prospective applications
in multiple technological areas, such as clear film/electrodes [12] in screen systems and
solar energy [13]. Another benefit of ZnO compared to other metals is its substantial cost,
which makes it an extremely prospective candidate for industrial applications [14]. ZnO is
currently one of the leading materials used as a window layer [9], transparent conducting
oxide (TCO) [15,16], and buffer layer in the solar cell industry [17].

The transparent conductive oxides (TCOs) thin films have several options in opto-
electronic devices. Such thin films can be used especially for organic light-emitting diodes
(OLEDs) [16], solar cells, heat sensors [18,19], and thin-film transistors (TFTs) [20]. One of
the most studied and industrially used TCO is tin-doped indium oxide (ITO) [17,21]. The
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latest rise in consumption by the optoelectronic devices sector ITO has become rare and
more expensive [6,22]. Because of its advantages in several fields and its unique charac-
teristics like low price, non-toxicity, and good chemical stability in maintaining plasma,
an extremely successful substitute for indium tin oxide (ITO) is ZnO [21,23]. Native and
extrinsic defects in ZnO nanostructures, however, are considered to reach profound concen-
trations that limit their application performance [24]. A detailed understanding of the type,
composition, and electronic parameters of deep-level facilities is the key to understanding
and controlling electronic characteristics [7,25]. Understanding surface defect behaviour
is essential for ZnO to be successfully applied [26]. Inherent defects and vacancies in
ZnO are mainly classified into four kinds: surface defects including O vacancies (VO) and
Zn vacancies (VZn) and interstitials (Zn and O), which are part of the majority of the fab-
ric [27,28]. ZnO’s large-scale development process regulates the development of its inherent
flaws [29,30]. It is recognized that the number of failures depends on a post-growth sample
therapy, which can change its characteristics significantly [31,32]. However, in many practi-
cal systems, no control over defects is one of the major problems in using ZnO [33,34]. Thus,
one way to control point and surface defects is to post-anneal the ZnO nanoparticles to
obtain high UV photodetection in a short interval of time [26,32]. Higher temperature treat-
ment in air and N2 results in excellent monitoring of surface-related abnormalities such as
VO and VZn and decreases radiative recombination of the surface defects [22,35]. To achieve
a defect-free ZnO thin film, we used the magnetron sputtering method to deposit thin
film at room temperature with a ZnO/Zn/ZnO heterostructure accompanied by thermal
annealing at various temperatures. The objective of the ZnO/Zn/ZnO heterostructure was
to obtain a defect-free ZnO thin film by harnessing the characteristics of the intermediate
Zn layer. The metallic Zn layer exhibits a ‘surfactant effect’, promoting recrystallization
during the deposition process. In conjunction with moderate-temperature annealing, the
Zn layer facilitates the ‘therapy’ of surrounding ZnO crystallites, enhancing the overall
crystalline quality by addressing lattice mismatches and thermal expansion differences,
thereby reducing defects in the ZnO layers [36,37]. Furthermore, the Zn layer facilitates
grain coalescence during thermal treatment, resulting in larger grain sizes and fewer grain
boundaries, which are crucial factors in achieving a high-quality, defect-free ZnO thin film.

2. Results and Discussion
2.1. Surface Morphology
2.1.1. Atomic Force Microscopy (AFM) Analysis

Figure 1 shows atomic force microscopy (AFM) images of annealed thin films in
comparison to as-deposited films, whereas Figure 2 describes the influence of annealing
temperature on the average roughness (Ra) of the films. Ra measures the average length
between the peaks and valleys and the deviation from the mean line on the entire surface
within the sampling length. From Figure 1, one can observe that Ra first increases with
an increase in the annealing temperature and then decreases to a minimum value. A
minimum roughness was observed for the sample annealed at 400 ◦C, which is about
4.95 nm. A further increase in the annealing temperature results in an increase in the Ra
value. A maximum Ra value was obtained for the sample annealed at 500 ◦C, which is about
10.60 nm. The initial decrease in roughness with increasing annealing temperature was
attributed to the coalescence of the grains. A further increase in roughness with an increase
in the annealing temperature may be due to the further increase in grain size. Moreover,
the heterostructure is composed of three layers; that is, Zn is sandwiched between the
ZnO layers. The melting point of Zn is 420 ◦C, whereas that of ZnO is 1975 ◦C. Increasing
the annealing temperature from 400 ◦C to 500 ◦C changed the Zn phase from solid to
liquid. The liquid Zn layer might penetrate or percolate into the interstitial pores in the
underlying ZnO layers. This penetration can lead to a disruption in the uniformity of the
ZnO structure, as the liquid Zn may fill voids and create localized regions of different
densities or compositions. As can be seen, an increase in the peaks and valleys in the
film results in an increase in the average roughness above the optimum value of the
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annealing temperature. The infiltration of liquid Zn into the ZnO layers can also promote
the formation of microcracks or other structural imperfections as the film cools down and
as Zn solidifies, leading to an increase in the Ra of the film. Furthermore, the increase
in Ra at higher annealing temperatures can be linked to the thermodynamic instability
introduced by the liquid phase of Zn. As Zn re-solidifies upon cooling, it may not return to
its original crystalline orientation, leading to further imperfections and non-uniformities in
the ZnO/Zn/ZnO heterostructure.
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Figure 1. Cont.
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Figure 1. AFM 2D and 3D images of thin films: (a,b) as deposited, (c,d) annealed at 100 ◦C, (e,f) an-
nealed at 200 ◦C, (g,h) annealed at 300 ◦C, (i,j) annealed at 400 ◦C, and (k,l) annealed at 500 ◦C.

113



Inorganics 2024, 12, 236

Inorganics 2024, 12, x FOR PEER REVIEW 5 of 13 
 

 

  

Figure 1. AFM 2D and 3D images of thin films: (a,b) as deposited, (c,d) annealed at 100 °C, (e,f) 
annealed at 200 °C, (g,h) annealed at 300 °C, (i,j) annealed at 400 °C, and (k,l) annealed at 500 °C. 

0 100 200 300 400 500

5

6

7

8

9

10

11

 

 

R a
 (n

m
)

Temperature (oC)

 (ZnO/Zn/ZnO)

 
Figure 2. Average roughness (Ra) vs. annealing temperature of thin films. 

2.1.2. Scanning Electron Microscopy (SEM) Analysis 
Figure 3 shows the scanning electron microscopy (SEM) images of the ZnO/Zn/ZnO 
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Figure 2. Average roughness (Ra) vs. annealing temperature of thin films.

2.1.2. Scanning Electron Microscopy (SEM) Analysis

Figure 3 shows the scanning electron microscopy (SEM) images of the ZnO/Zn/ZnO
heterostructure of the as-deposited thin film in comparison with annealed thin films. The
annealed samples have a smooth surface morphology compared to the as-deposited thin
films. However, the surface smoothness is disturbed by the higher annealing temperature.
Moreover, the average particle size also has a great impact on the annealing tempera-
ture. Table 1 lists the average particle size calculated for all the thin films along with the
annealing temperature.

1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

(a) (b) 

(c) (d) 

Figure 3. Cont.

114



Inorganics 2024, 12, 236

 

2 

  

  

  

  
 

(e) (f) 

(g) (h) 

(i) (j) 

(k) (l) 

Figure 3. SEM images of thin films with low and high magnifications: (a,b) as deposited, (c,d) an-
nealed at 100 ◦C, (e,f) annealed at 200 ◦C, (g,h) annealed at 300 ◦C, (i,j) annealed at 400 ◦C, and
(k,l) annealed at 500 ◦C.
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Table 1. Average particle size of thin films annealed at different temperatures in comparison to the
as-deposited sample.

S. No. Thin Film Average Particle Size

1 As deposited 74.41 ± 1.75 nm
2 100 ◦C 78.08 ± 1.83 nm
3 200 ◦C 66.85 ± 1.62 nm
4 300 ◦C 54.46 ± 1.23 nm
5 400 ◦C 50.67 ± 1.02 nm
6 500 ◦C 163.00 ± 2.51 nm

From the table, we can see that the average particle size decreases with an increase in
the post-heat treatment (annealing temperature). An optimum value of the particle size
was calculated for the sample annealed at 400 ◦C. A further increase in temperature in the
middle layer, which is comprised of Zn, affects the surface morphology and smoothness of
the films. Figure 4 shows the energy dispersive X-ray (EDX) spectra of the film annealed at
400 ◦C, confirming that ZnO film is deposited.
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2.2. Structural Analysis

Figure 5 displays the XRD patterns of the as-prepared ZnO/Zn/ZnO thin films that
were prepared and subjected to annealing temperatures of 100, 200, 300, 400, and 500 ◦C.
XRD offers valuable information regarding the crystalline structure and phase composition
of the samples at various annealing temperatures. The XRD patterns of the sample that
underwent annealing at 100 ◦C indicated the existence of a zincite hexagonal crystal
structure. The diffraction peaks observed in the figure match those of the hexagonal zincite
ZnO. However, there was also an extra peak corresponding to metallic Zn. This suggests
that a portion of the Zn still existed in its metallic form. The XRD spectrum of the sample
annealed at 200 ◦C exhibited peaks corresponding to both Zn and ZnO. The identification
of the ZnO peaks provides evidence for the creation of the hexagonal structure of zincite,
whereas the Zn peak indicates that a portion of the zinc did no undergone conversion at this
particular temperature. The samples annealed at 300 and 400 ◦C displayed XRD patterns
indicative of pure ZnO with a hexagonal crystal structure. There were no discernible peaks
in the spectra corresponding to metallic Zn. This indicates the complete transformation
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of Zn into ZnO, leading to the formation of a ZnO crystal structure with only one phase.
Significantly, the strength of the diffraction peaks increased as the annealing temperature
increased, culminating in the highest intensity at 400 ◦C. These findings indicate that the
quality of the ZnO crystal structure is enhanced as the temperature increases, reaching
its peak at 400 ◦C. However, the sample annealed at 500 ◦C exhibited a reduction in the
intensity of the ZnO diffraction peaks in comparison to the sample annealed at 400 ◦C while
still maintaining the pristine hexagonal structure of ZnO. The decrease in the maximum
intensity at 500 ◦C can be ascribed to various factors. At elevated temperatures, excessive
grain growth occurs, as discussed in the SEM and AFM results, and the particle size and
roughness increase, resulting in the formation of imperfections within the crystal structure.
The presence of these imperfections causes X-rays to disperse more widely, resulting in a
decrease in the overall intensity of the diffraction patterns. Extended exposure to elevated
temperatures can generate thermal stress in the thin film, which may lead to the formation
of microcracks or other structural flaws that diminish the crystalline quality of the material.
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2.3. Electrical Properties

Figure 6 shows the electrical resistivity and conductivity of the thin films annealed at
different temperatures. In addition, Table 2 lists the electrical resistivity and conductivity
values of the annealed and deposited thin films. From the figure and table, we can see that
the electrical resistivity/conductivity of the film changes with an increase in the annealing
temperature. The electrical behaviour demonstrates a complex relationship among particle
size, surface roughness, and electrical conductivity, which is closely connected to the
microstructural evolution during thermal annealing. The electrical conductivity of the thin
films exhibited a substantial increase from the as-deposited state to a thin film annealed
at 400 ◦C, as displayed in Figure 6. This improvement in conductivity is linked to the
reduction in particle size and enhancement in crystalline quality, as demonstrated by the
XRD analysis, as well as a corresponding decrease in surface roughness, which facilitates
crystalline quality. The decrease in surface roughness from the as-deposited thin film to
the 400 ◦C annealed film indicates a smoother film surface, which minimizes scattering
sites for charge carriers, thus enhancing conductivity. Smaller particle sizes and improved
crystal structures decrease the number of grain boundaries, which are known to act as
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scattering centres for charge carriers (electrons and holes) [38–40]. The reduction in grain
boundary scattering allows for more efficient carrier transport, thereby increasing the
electrical conductivity of the films. However, a significant change occurred at 500 ◦C,
where the particle size increased dramatically and the conductivity dropped sharply. This
decline in conductivity can be ascribed to the formation of larger grains, which may
introduce structural imperfections such as microcracks. These imperfections likely result
from thermal stress or excessive grain growth, which disrupts the crystal structure and
increases the scattering of carriers, ultimately leading to a higher electrical resistance [41].
This phenomenon aligns with the established understanding that while smaller grains
typically increase resistance due to grain boundary scattering, excessively large grains can
introduce new defects that also adversely affect conductivity.
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Table 2. Electrical resistivity and conductivity values of thin films annealed at different temperatures
in comparison to a deposited thin film.

S. No. Thin Film Electrical Conductivity (S/m) Electrical Resistivity (Ω.m)

1 As deposited 0.0095 105
2 100 ◦C 4.637 0.2157
3 200 ◦C 7.292 0.1371
4 300 ◦C 9.49 0.105
5 400 ◦C 18.79 0.05321
6 500 ◦C 0.187 5.348

3. Conclusions

In summary, magnetron sputtering was used to deposit hetero-structured (ZnO/Zn/ZnO)
thin films on clean glass substrates. The resulting samples were annealed in an inert envi-
ronment at 100, 200, 300, 400, and 500 ◦C. XRD analysis confirmed the presence and highly
crystalline hexagonal structure of ZnO at 300 and 400 ◦C, whereas at other annealing tempera-
tures, the sample either possessed metallic zinc or low crystallinity. Atomic force microscopy
(AFM) and scanning electron microscopy (SEM) were used to effectively study the surface
morphology and particle size. A Hall effect measurement device was used to analyse the
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electrical characteristics. The annealed thin-film data were plotted in comparison with the
deposited thin film. AFM analysis indicated that the average roughness (Ra) of the film
decreased with an increase in the annealing temperature, reaching an optimum value of
4.95 nm for the sample annealed at 400 ◦C, and then increased with a further increase in
the annealing temperature. SEM analysis showed that the particle sizes initially decreased
with increasing annealing temperature but increased at higher temperatures. The Hall effect
measurement system showed that the electrical resistivity decreased for the annealed samples.
In addition, the resistivity showed a good relationship with the surface roughness of the thin
films; the lower the surface roughness with lower scattering centres of charge carriers, the
lower the resistivity. The sample annealed at 400 ◦C exhibited the lowest resistivity.

4. Experimental

This section discusses the fabrication process of a hetero-structured (ZnO/Zn/ZnO)
thin film and its thermal annealing at different temperatures and gives the description used
to analyse the morphological, topographical, structural, and electrical properties of the
samples. Magnetron sputtering was used to deposit a hetero-structured (ZnO/Zn/ZnO)
thin film on a glass substrate, which was subsequently annealed at 100, 200, 300, 400, and
500 ◦C.

4.1. Films Deposition
4.1.1. Substrate Preparation

The cleanliness of the substrate is crucial for achieving high-quality thin films. Soda-
lime glass slides (SLG) (cat. No. 7105) were cut into small squares (10 cm × 10 cm × 1 cm)
using a diamond saw cutter. The cleaning process involved several steps. First, the
substrates were immersed in methanol and cleaned ultrasonically for 30 min to remove
organic residues. Washing with the soap solution was then carried out, followed by
rinsing in deionised water. Subsequently, the substrates were immersed in a chromic acid
solution for 20 min. Finally, the substrates were ultrasonically cleaned with water for
30 min. Subsequently, the substrate surface was dried by blowing pressurised inert gas and
immediately transferred to the deposition chamber.

4.1.2. Sputtering System and Film Deposition Process

Deposition of ZnO and Zn thin films over SLG substrates was performed using a
disk-shaped ZnO and Zn target (100 mm diameter, 8.25 mm thickness) in a magnetron
sputtering system (Alliance Concept, DP650, Annecy, France). The system consisted of
mechanical and turbomolecular pumps, sputtering guns, RF and DC power supplies, and
heating and bias capabilities for substrate support. Each film deposition cycle included
the following steps: After loading the substrates, the chamber was evacuated to a base
pressure of a few microtorr, followed by the introduction of argon gas. The argon flow
rate was maintained at 20 sccm to achieve a pressure of 10 mTorr. The DC power was then
turned on, and its value was adjusted to the desired level. Initially, the target was sputtered
with its shutter closed for approximately 15 min to remove any native oxide layer present
on its surface. Subsequently, ZnO (bottom layer), Zn (middle layer), and ZnO (top layer)
film deposition was performed to fabricate films with a thickness of 1.5 µm, 30 nm, and
75 nm, respectively. The base pressure was maintained at 7.49 × 10−6 bar, and a 300 W DC
power source was employed to keep the potential difference between the target and glass
substrate constant. During growth, the film thickness was monitored using a quartz crystal
microbalance. The sputtered samples were annealed in an inert argon atmosphere for 1 h
at 100, 200, 300, 400, and 500 ◦C. The deposition parameters are listed in Table 3.
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Table 3. Deposition parameters of ZnO/Zn/ZnO thin films heterostructure.

Deposition Parameters ZnO Zn ZnO

Pressure (mTorr) 25 50 50
Power (Watt) 300 300 300

Thickness 1.5 µm 30 nm 75 nm

Annealing Temperature (◦C)

100 200 300 400 500

4.2. Characterization Tools

The surface morphologies of the as-grown and annealed multilayer structures were
examined using scanning electron microscopy (SEM) (JSM-840, JEOL, Tokyo, Japan) with
an operating voltage of 15–20 kV, spot size of 30–50 nm, and working distance of 10 mm.
For SEM analysis, samples were coated by sputtering 100 nm gold, and small silver strips
were placed on the sample to make it conductive. Atomic force microscopy (AFM) (JEOL
SPM-5200) was used to examine the topography and measure the surface roughness of the
multilayer structure while operating in the non-contact mode with scan sizes of (10 × 10)
and (3 × 3) µm2. X-ray diffraction (XRD) was used to determine the structural and phase
purity of the prepared samples using a D8 ADVANCE, Bruker, Germany instrument over
the range of 20–80◦ with Cu Kα radiation (λ = 1.5418Å) and a step size and dwell time
of 0.041 and 3 s, respectively. The electrical conductivity was measured using either a
four-point electrical resistance probe or a Hall automated measuring system utilizing the
Van-Der-Pauw method (Ecopia HMS-5000, Bridge Technology, USA). Four electrodes of
gold paste were placed at four different equal points, and four needle tips were placed to
measure the voltage and current.
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Abstract: Nanoparticles of iron and iron oxides, as well as their composites, are of great scientific
and technological interest. However, their properties and sustainability strongly depend on the
preparation methods. Here, we present an original approach to synthesizing Fe and FeNix metal
nanoparticles by exsolution, in a reducing environment at elevated temperatures from perovskite
ferrites (La1−xCaxFeO3−γ, CaFeO2.5, etc.). This approach is made possible by the auxiliary reactions
of non-reducible A-site cations (in ABO3 notation) with the constituents of reducing compounds
(h-BN etc.). The nanoparticles exsolved by our process are embedded in oxide matrices in individual
voids formed in situ. They readily undergo redox cycling at moderate temperatures, while maintain-
ing their localization. Fe nanoparticles can be obtained initially and after redox cycling in the high-
temperature γ-form at temperatures below equilibrium. Using their redox properties, a new route to
producing hollow and layered oxide magnetic nanoparticles (Fe3O4, Fe3O4/La1−xCaxFeO3−γ), by
separating the oxidized exsolved particles, was developed. Our approach provides greater flexibility
in controlling exsolution reactions and matrix compositions, with a variety of possible starting com-
pounds and exsolution degrees, from minimal up to ~100% (in some cases). The described strategy is
highly important for the development of a wide range of new functional materials.

Keywords: transition metal-embedded nanoparticles; metal exsolution; 57Fe Mössbauer spectroscopy;
redox behavior; hollow and layered oxide nanoparticles; cup-shaped nanoparticles; nano zero valent
iron (nZVI) particles; γFe nanoparticles

1. Introduction

Nanomaterials based on nanoparticles of transition metals and/or their oxides are
of great interest from both scientific and practical viewpoints. Their applications are very
diverse and include catalytic, magnetic, electronic, sorption, and pharmaceutical func-
tional materials, utilizing various types of nanoparticles (supported, embedded, individual
nanoparticles of various shapes) [1–3]. Many transition metal nanoparticles are chemically
active and, therefore, suffer from a lack of stability, which is further exacerbated by their
tendency for recrystallization, agglomeration, and growth, etc., especially at elevated tem-
peratures. Supported/embedded nanocomposite materials have the potential to combine
useful properties of both nanoparticles and matrices and maintain long-term stability and
durability [1,3,4]. Moreover, those materials can develop new features due to the synergy
between nanoparticles and the support, which is attributed to the intrinsic properties of the
components and the strength of their interaction [4–7].

There are a wide variety of ways to produce these diverse nanoparticle-based nanoma-
terials [5,8,9]. One of the actively developing strategies for the synthesis of nanocomposite
materials with stronger metal nanoparticle–substrate interactions (and, therefore, enhanced
functionality and stability) is based on the thermal decomposition of complex oxides under
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reducing conditions. This kind of decomposition can be complete or partial and, espe-
cially the latter, is termed metal exsolution. In this approach, the complex oxides must
contain both reducible and non-reducible metals under conditions of synthesis [10–13]. The
main progress in this field is associated with the use of perovskite-related oxides of transi-
tion metals. It is a vast family of oxides with various stoichiometry (ABO3, An+1BnO3n+1
Ruddlesden–Popper (RP) phases, etc.), whose crystal structures are based on [AO3] close-
packed layers, where the main constituents of A-sites are non-reducible rare-earth or
alkaline-earth cations, while B-sites, in the interstices, can contain reducible cations of tran-
sition metals (Fe, Co, Ni, Cu, etc.) [14,15]. A series of Ln2O3/M nanocomposites, obtained
by complete redox decomposition of the perovskite precursors of easily reducible transition
metals (M = Ni, Co, etc.), were reported as metal nanoparticle-supported catalytic materials
with enhanced productivity and stability [16,17]. However, the synthesis of nanocompos-
ites by partial redox decomposition of perovskites requires methods to control the processes
of metal nanoparticle exsolution and matrix transformations. Several approaches are pro-
posed in the literature to facilitate metal exsolution in this manner [10–12,18]. One approach
includes modification of the initial oxides, such as introducing an A-site deficiency [19,20],
doping of B-sites with easily reduced cations [19,21,22], and promoting the formation of RP
phases by adjusting the composition of A-sites [13], as well as others. Another approach
is to use special reduction conditions, such as lattice strains, voltage biasing, and plasma
assistance, as well as varying the temperature and pO2 [13,18].

Metal reduction and exsolution is accompanied by changes in the parent perovskite
matrices, which can occur in different ways. One such change is that the starting A-site-
deficient perovskites are converted into stoichiometric ones, with minimal topotactical
changes [21,23]. Another possible change is the formation of the corresponding oxides of
non-reducible metals (La2O3, etc.) [17]. Yet another change is that the initial ABO3-based
perovskites can be transformed into RP phases, with different A to B ratios for some A-site
compositions (containing Sr2+, etc.) [13].

Although the metal exsolution process is widely employed to enhance surface proper-
ties, it can also be used to modify the bulk properties of functional nanocomposites [24–26].
The exsolution at the interior grain and phase boundaries, together with the simultaneous
transformation of host oxide matrices, provide a new pathway for the modification of a
wide range of electrical, optical, and magnetic properties [25,26].

Overall, metal exsolution is a smart and effective strategy, with great potential for
the preparation of new functional materials, with enhanced and unique properties. Its
implementation, however, largely depends on the specific parent perovskite oxides and the
appropriate reaction conditions [10,13,25]. Consequently, further development of methods
for tuning the properties of the resulting nanocomposites, by controlling the exsolution
process, is needed.

Herein, we present a novel approach to metal exsolution using perovskite-related
ferrites, where B-metal exsolution is promoted by the additional auxiliary reactions involv-
ing non-reducible A-site cations. We have explored the behavior of a number of La and
Ca-based ferrites in this new type of reaction, resulting in the formation of nanocomposites
with nanoparticles embedded in individual voids, which are significantly different from
the exsolved materials reported previously. The unique properties of the nanoparticles
obtained in this manner, as well as the transformation of oxide matrices, will be discussed.
It was shown that exsolved metal nanoparticles can be reversibly transformed into oxides
in redox cycling, while maintaining their location inside the matrices. Moreover, the use
of the chemical properties of nanocomposite matrices derived from alkaline earth-based
ferrites makes it possible to separate and investigate the oxide nanoparticles obtained by
the oxidation of exsolved metal nanoparticles.
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2. Results and Discussion
2.1. The Main Concept of Metal Exsolution Promoted by Auxiliary Reactions

In this study, the synthesis of Fe-containing nanoparticles and nanocomposites is based
on a specially developed process for metal exsolution from complex perovskite-related
oxides of reducible transition metals (Fe, Ni, etc.). Our new strategy is to facilitate B-site
reducible metal exsolution through additional auxiliary reactions (ARs) of non-reducible A-
site (in the ABO3 notation) cations with the constituents of reducing compounds, resulting
in new complex oxides. This strategy, in a general simplified form, is described by schematic
reaction (1):

ABO3−γ + [Rn] + {H2}→ B + AR1
ηOy + {H2O} + {R2} (1)

Here, [Rn] is a reducing compound that reduces B cations, and at the same time, some
(or all) of its constituents (R1) form new complex oxides with non-reducible A-site cations
that do not contain reducible B cations. In general, [Rn] (R1R2, etc.) compounds can have a
different chemical nature and aggregate states. For clarity of the explanation, the overall
reaction can be nominally split into two consecutive pseudo-reactions, (2) and (3):

ABO3−γ + [Rn] + {H2}→ B + AOy1 + ηR1Oy2 + {H2O} + {R2} (2)

AOy1 + ηR1Oy2 → AR1
ηOy (3)

Chemical reactions for the formation of complex oxides containing R1 and non-
reducible A-site cations (1b type) are designated here as auxiliary reactions. Curly brackets
{} denote possible compounds. The reaction proceeds at elevated temperatures and under
low pO2 conditions, which are required for the formation and preservation of the B compo-
nents in metal form. An important feature of reaction (1) is that the main source of oxygen
for the formation of the resulting oxides is the initial oxides. This imposes limitations on
the possible ratios of R1 and A cations in the resulting complex oxides. If the initial oxides
include two or more different B cations, then reaction (1) will be more complex depending
on the B cation properties, as shown schematically below:

AB’χB′′ψO3−γ + [Rn] + {H2}→ B’ + {B′′} + AR1
ηOy + AB’χ−ξB′′ψ+φO3−β + {H2O} + {R2} (4)

Reaction (4) illustrates that all the different B cations can be exsolved to various
degrees, or that the irreducible or less reducible ones can remain in perovskite oxides. The
exsolved metals can also form alloys.

2.2. LaFeO3 and Ca2Fe2O5-Based Nanocomposites

For LaFeO3 as a starting material and hexagonal BN as a reducing compound, the
A-site cation AR (ACAR)-promoted exsolution can be written as reaction (5) (for clarity
purposes, along with the nominal pseudo-reactions (6) and (7)):

LaFeO3 + BN→ Fe + LaBO3 + 1/2N2 (5)

{2LaFeO3+ 2BN→ 2Fe + La2O3+ B2O3 + N2} (6)

{La2O3 + B2O3 → 2LaBO3} (7)

Herein, the processes involving reaction (5) were carried out at elevated tempera-
tures of 700–750 ◦C, in a reducing atmosphere, provided by a 10% H2/Ar flow. Although
hydrogen is not formally involved in the reaction, its role here is to maintain low pO2
conditions, essential for the existence of metal Fe nanoparticles. The formation of lan-
thanum borate LaBO3 provides an additional driving force for the reduction of LaFeO3
and decreases the reaction temperature compared to a reduction with hydrogen. The
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specified temperatures of reaction (5) are below the decomposition temperature of LaFeO3
in a hydrogen-containing atmosphere, which is reported to be >850 ◦C [27,28]. Thus, its
decomposition, described by reaction (3), does not occur under these conditions.

LaFeO3 + 3/2H2 → Fe + 1/2La2O3 + 3/2H2O (8)

It is important to maintain reaction (5) as a main process. It should be noted that the
higher temperature stability under reducing conditions makes ferrites more preferable
starting materials compared to other perovskite-like compounds of reducible transition
metals (cobaltites, nickelates, cuprates, etc.) [27].

Moreover, h-BN has a number of properties making it suitable for reactions of type (1,
5). First of all, it has decent reactivity in reactions of type (1, 4) with rare-earth (La, Y, etc.)
and alkali-earth (Ca, Sr, etc.) perovskite-related ferrites. At the same time, it is exceptionally
stable in inert and reducing atmospheres, and is also quite resistant to oxidation at moderate
temperatures in air.

Figure 1 shows the powder XRD patterns of the LaFeO3 ferrite-based samples after
interaction with h-BN at ~750 ◦C with different amounts of exsolved Fe, depending on
the LaFeO3/h-BN ratio. As the reaction proceeds, the peaks corresponding to LaBO3
and metal Fe appear in patterns, which are consistent with reaction (5) (Figure 1(a1)).
The metal Fe peaks are distinguishable, but they strongly overlap with the LaBO3 ones.
The corresponding Mössbauer spectra are shown in Figure 1(b1,b2). Each of the spectra
consist of two magnetically split sextet components and a paramagnetic singlet component.
All the components are well resolved and do not broaden. According to their hyperfine
parameters (Table 1), the first of two sextets with an isomer shift (δ) of 0.37 mm s−1 and
a hyperfine magnetic field (Hhf) of 52.4 T correspond to LaFeO3 and the second, with
δ ~0 mm s−1 and Hhf = 33 T, correspond to αFe. The paramagnetic singlet, according to
its hyperfine parameters (δ~−0.1 mm s−1 at 298 K), corresponds to metal γFe. Moreover,
γFe is a high-temperature paramagnetic form, with a close-packed fcc crystal structure.
It is important to note that γFe is metastable at temperatures below 910 ◦C [29], while
the synthesis temperature was ~750 ◦C. The metal γFe nanoparticles, however, may be
undetectable in the XRD patterns (Figure 1(a2,b3)). The SEM images of LaFeO3 after the
ACAR exsolution display smooth surfaces, without distinguishable metal Fe nanoparticles
distributed on them (Figure 2a). Figure 2b,c shows typical TEM images of such samples.
For the samples at the low or moderate extent of reaction (Figure 2b,c), the images reveal
agglomerated grains of different contrast, probably due to variations in thickness, but
exsolved metal Fe particles are not clearly distinguishable. For the samples at the high
extent of reaction >40%, obtained after prolonged heating for more than 15 h, the metal Fe
particles are also largely undistinguishable, but some whisker-like metal Fe agglomerates
are visible (Figure 2d) in small amounts with respect to the reaction extent. Additionally,
the EDX analysis revealed numerous La-rich oxide grains, which, according to the XRD
analysis, are actually LaBO3, since boron is undetectable. Therefore, the metal Fe particles
are embedded in the oxide matrix after the ACAR-promoted exsolution, which makes them
hard to distinguish, except for the formation of whiskers, if any.

Table 1. Hyperfine parameters of Mössbauer spectra of the LaFeO3/h-BN-derived nanocompos-
ites measured at RT (except Figure 1(b2) at 78 K): δ—isomer shift, ∆EQ—quadrupole splitting,
H—hyperfine magnetic field, A—relative area, —linewidth.

Sample Component
δ

(mm s−1)
±0.01

∆EQ
(mm s−1)
±0.01

H
(T)
±0.1

A
(%)
±0.5

(mm s−1)
±0.01

Comments

In Figure 1(b1)
s11 0.37 −0.07 52.4 71 0.26 Fe3+ oct. in LaFeO3
s21 −0.01 −0.01 33.0 18 0.24 αFe
d11 −0.10 0.00 - 11 0.25 γFe
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Table 1. Cont.

Sample Component
δ

(mm s−1)
±0.01

∆EQ
(mm s−1)
±0.01

H
(T)
±0.1

A
(%)
±0.5

(mm s−1)
±0.01

Comments

In Figure 1(b2)
78 K

s12 0.48 −0.07 56.2 71 0.25 Fe3+ oct. in LaFeO3
s22 0.11 0.01 33.8 18 0.25 αFe
d12 0.01 0.00 - 11 0.25 γFe

In Figure 1(b3)
s13 0.37 −0.07 52.4 46 0.27 Fe3+ oct. in LaFeO3
s23 0.00 0.00 33.0 45 0.24 αFe
d13 −0.10 0.00 - 8 0.25 γFe

In Figure 1(b4) s15 0.37 −0.07 52.3 72 0.25 Fe3+ oct. in LaFeO3
s25 0.00 0.00 33.0 28 0.24 αFe

In Figure 3(1)
s123 0.37 −0.06 52.4 68 0.27 Fe3+ oct. in LaFeO3
s223 0.00 0.01 33.1 23 0.23 αFe
d123 −0.10 0.00 - 9 0.26 γFe

In Figure 3(2)
s124 0.37 −0.07 52.2 70 0.26 Fe3+ oct. in LaFeO3
s224 −0.01 0.01 33.0 17 0.21 αFe
d124 −0.10 0.00 - 13 0.23 γFe

In Figure 3(3)

s125 0.37 −0.07 52.2 71 0.25 Fe3+ oct. in LaFeO3
s225 0.35 −0.17 51.0 5 0.33 Fe3+ oct. in αFe2O3
s325 0.00 0.01 33.0 23 0.23 αFe
d125 −0.10 0.00 - 1 0.26 γFe

In Figure 3(4)
s126 0.37 −0.07 52.2 69 0.26 Fe3+ oct. in LaFeO3
s226 0.00 0.00 33.0 30 0.22 αFe
d126 −0.12 0.00 - 1 0.25 γFe

In Figure 3(5) s127 0.37 −0.08 52.3 70 0.25 Fe3+ oct. in LaFeO3
s227 0.38 −0.18 51.4 30 0.25 Fe3+ oct. in αFe2O3

In Figure 3(6)
s128 0.37 −0.06 52.2 70 0.26 Fe3+ oct. in LaFeO3
s228 0.00 0.00 33.0 14 0.21 αFe
d128 −0.10 0.00 - 16 0.24 γFe
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Figure 1. (a) Powder XRD patterns of the LaFeO3/h-BN-derived nanocomposites: (a1) 29% of the
total Fe amount exsolved, where 11% is in γ form; (a2) 54% of Fe exsolved (8% γFe); (a3) sample (a1)
oxidized at 300 ◦C and subsequently reduced at 700 ◦C, all 29% of Fe exsolved is in α form (all the Fe
contributions were evaluated by Mössbauer spectroscopy). (b) Corresponding Mössbauer spectra:
(b1,b2) of sample (a1) at RT and 78 K, respectively; (b3) of sample (a2); (b4) of sample (a3) at RT.
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the surfaces of oxide matrixes [10–13]. In these processes, the reducible metal cations mi-
grate toward the outer and inner grain surfaces, which are exposed to the reducing envi-
ronment, and reduce to metal, with subsequent agglomeration, grain growth, etc. The ox-
ide matrices, in turn, undergo shrinkage because of a loss of oxygen and metal constitu-
ents, promoting socketing of the exsolved nanoparticles [5,10,12,23]. In our ACAR-pro-
moted exsolution process, metal reduction/exsolution is accompanied by the formation of 
other complex oxides of two or more elements instead of the initial perovskite oxide, even 
those of lower density, i.e., LaBO3 vs. LaFeO3. Their formation begins in the contact areas 
between the initial ferrite grains and the reducing reagents. These newly formed Fe-free 
oxides (viz. LaBO3) on the top of the initial perovskite grains presumably create a diffusion 
barrier for the Fe species. Consequently, the exsolved metal Fe nanoparticles do not ap-
pear on top of the oxide grain surfaces, but instead localize underneath their surfaces in 
generated in situ voids. 

Figure 2. SEM and TEM images of the LaFeO3/h-BN-derived nanocomposites: (a,b) SEM and bright
field (BF) TEM images of the nanocomposites with ~45% of Fe total exsolved; (c,d) high-angle annular
dark-field scanning TEM (HAADF-STEM) image and energy-dispersive X-ray (EDX) elemental
analysis in selected locations of the nanocomposites with ~12% of Fe total (~10% γFe); (d) formation
of the Fe whisker (w) in sample (a,b).
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700 ◦C) (~30% αFe); (5) after oxidation of sample (4) (air, 500 ◦C) (~30% αFe2O3); (6) after reduction
(10% H2/Ar, 700 ◦C) of sample (5) (~30% of Fe total, ~16% γFe).

This is rather different from the metal exsolution from the A-site-deficient perovskites
or the high-temperature hydrogen reduction of stoichiometric perovskite oxides reported
previously, where the exsolved metal nanoparticles are typically clearly visible on the
surfaces of oxide matrixes [10–13]. In these processes, the reducible metal cations migrate
toward the outer and inner grain surfaces, which are exposed to the reducing environment,
and reduce to metal, with subsequent agglomeration, grain growth, etc. The oxide matrices,
in turn, undergo shrinkage because of a loss of oxygen and metal constituents, promoting
socketing of the exsolved nanoparticles [5,10,12,23]. In our ACAR-promoted exsolution
process, metal reduction/exsolution is accompanied by the formation of other complex
oxides of two or more elements instead of the initial perovskite oxide, even those of lower
density, i.e., LaBO3 vs. LaFeO3. Their formation begins in the contact areas between the
initial ferrite grains and the reducing reagents. These newly formed Fe-free oxides (viz.
LaBO3) on the top of the initial perovskite grains presumably create a diffusion barrier
for the Fe species. Consequently, the exsolved metal Fe nanoparticles do not appear on
top of the oxide grain surfaces, but instead localize underneath their surfaces in generated
in situ voids.

Perovskite-like ferrites of alkaline-earth elements, such as Ca2Fe2O5 and Sr2Fe2O5, can
also be used in reaction (1, 4) to produce metal nanoparticle-bearing composites. Because
Ca is lighter than La and Sr, it may be more favorable for microscopic investigations in terms
of the nanoparticle–matrix contrast. As stated above, the starting ferrite is the main source

128



Inorganics 2024, 12, 223

of oxygen for the formation of the resulting oxides in ACAR-promoted exsolution processes
involving reaction (1, 4). Consequently, in the case of La ferrite, other La borates, such as
LaB3O6, cannot be formed from the LaFeO3 precursor due to a lack of oxygen. For Ca2Fe2O5
and h-BN as starting materials, the formation of several Ca borates is possible, viz. Ca2B2O5
and Ca3B2O6 (without/with CaB2O4). The powder XRD patterns of Ca2Fe2O5 after the
ACAR-promoted exsolution reactions with h-BN and the corresponding Mössbauer spectra
are shown in Figure 4. According to Figure 4(a2), the main complex oxide product is
Ca3B2O6 and, therefore, the primary reaction can be written as follow:

3Ca2Fe2O5 + 4BN + 3H2 → 6Fe + 2Ca3B2O6 + 2N2 + 3H2O (9)

Inorganics 2024, 12, x FOR PEER REVIEW 8 of 25 
 

 

 
Figure 4. (a) Powder XRD patterns and, (b), corresponding Mössbauer spectra of the Ca2Fe2O5/h-
BN-derived nanocomposites with different amounts of metal Fe exsolved: (1) 7% of the total Fe 
amount exsolved, where 4% is in γ form; (2) 97% of Fe exsolved (2% γFe); (3) 28% of Fe exsolved 
(3% γFe); (4) after oxidation–reduction of sample (3), 10% of Fe exsolved (7% γFe). 

 
Figure 5. SEM and TEM images of the Ca2Fe2O5/h-BN-derived nanocomposites with ~23% of metal 
Fe exsolved (~9% γFe): (a) SEM image; (b,c) BF TEM and HAADF-STEM images with the corre-
sponding EDX compositional map; (d) HAADF-STEM image, with EDX analysis of the Fe whisker. 

The data show that the Ca2Fe2O5/h-BN system demonstrates similar behavior to the 
LaFeO3/h-BN system in the exsolution reactions facilitated by ACARs. In both the systems, 
the exsolved metal Fe nanoparticles, which can be determined by EDX analysis, are mostly 
located within oxide matrices, consisting of initial ferrites and newly formed iron-free bo-
rates, in the generated in situ voids. Presumably, the reaction zones and, hence, the adja-
cent voids are somehow connected to the low pO2 environment, otherwise, in most cases, 
the metal reduction reaction will not proceed to any significant extent. Metal Fe in the 
exsolved nanoparticles can exist in two forms, namely metastable at temperatures <910 °C 
γFe and stable αFe, the latter can also form whiskers in some cases. The interior particle 
growth in a confined space in voids appears to be a key factor, along with a nanosized 
dimension, for the γFe formation at temperatures well below 910 °C. The fcc close-packed 
crystal structure of γFe is denser than the bcc structure of α(δ)Fe [30,31], so that the com-
pressive strain developed when the particles of nano-scale dimensions grow under con-
fined conditions is conducive to the formation of γFe nanoparticles and their subsequent 
stabilization upon cooling. The strain-induced formation of γFe nanoparticles, smaller 

Figure 4. (a) Powder XRD patterns and, (b), corresponding Mössbauer spectra of the Ca2Fe2O5/h-
BN-derived nanocomposites with different amounts of metal Fe exsolved: (1) 7% of the total Fe
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(3% γFe); (4) after oxidation–reduction of sample (3), 10% of Fe exsolved (7% γFe).

Hydrogen, in addition to maintaining the low pO2, reacts with excessive oxygen in
this case. It is worth noting that no diffraction peaks corresponding to Ca3B2O6 and/or
other possible resulting oxides were observed at the low extent of reaction, indicating that
the oxide products were X-ray amorphous (Figure 4(a1)). Ca2Fe2O5 is more active in this
type of reaction compared to LaFeO3 and is less stable in reducing conditions as well, so
minor additional peaks of CaO can be observed in the patterns of some samples depending
on the preparation and reduction conditions (Figure 4(a3)). The Mössbauer spectra of the
Ca2Fe2O5-derived samples are shown in Figure 4b. The spectra are comprised of three
magnetically split sextet components and a paramagnetic singlet component. The Ca2Fe2O5
(=CaFeO2.5) has a brownmillerite structure, which is oxygen deficient compared to ABO3
perovskites with fully ordered oxygen vacancies at room temperature, where Fe3+ cations
equally occupy distorted octahedral and tetrahedral oxygen polyhedra. Consequently,
two of the sextets of nearly equal spectral contributions, according to their hyperfine
parameters, correspond to the brownmillerite subspectrum, i.e., Fe3+tet (δ~0.19 mm s−1 and
Hhf = 43.4 T) and Fe3+oct (δ~0.37 mm s−1 and Hhf = 51.2 T) in Ca2Fe2O5. The third sextet
(δ~0 mm s−1 and Hhf = 33 T) and a singlet (δ~−0.1 mm s−1) correspond to metal Fe in α and
γ forms, respectively, i.e., to the metal Fe subspectrum (Table S2). Like in the LaFeO3 case, at
~650–730 ◦C, the temperatures during the ACAR-promoted exsolution process were much
lower than 910 ◦C. Both the Fe forms can be distinguished in the powder XRD patterns
(Figure 4a). Similar to the previous case, the SEM images of the Ca2Fe2O5-derived samples
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display smooth surfaces, without distinguishable metal Fe particles (Figure 5a). The TEM
images (Figure 5b,c) show agglomerates of different contrasts, without metal Fe particles
being clearly visible on the surfaces. At the same time, a small number of Fe whiskers
can be observed in some samples (Figure 5d). However, as it follows from Figure 5c,
the EDX mapping in several locations shows areas of Fe segregation, which, taking into
account the distributions of other elements, can be identified as Fe-embedded nanoparticles.
These exsolved, embedded Fe nanoparticles, identified by the EDX analysis, were about
15–25 nm in size. The EDX analysis also displays Ca-rich O-containing agglomerates
(i.e., Ca3B2O6, etc.).
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the corresponding EDX compositional map; (d) HAADF-STEM image, with EDX analysis of the
Fe whisker.

The data show that the Ca2Fe2O5/h-BN system demonstrates similar behavior to
the LaFeO3/h-BN system in the exsolution reactions facilitated by ACARs. In both the
systems, the exsolved metal Fe nanoparticles, which can be determined by EDX analysis,
are mostly located within oxide matrices, consisting of initial ferrites and newly formed
iron-free borates, in the generated in situ voids. Presumably, the reaction zones and, hence,
the adjacent voids are somehow connected to the low pO2 environment, otherwise, in most
cases, the metal reduction reaction will not proceed to any significant extent. Metal Fe
in the exsolved nanoparticles can exist in two forms, namely metastable at temperatures
<910 ◦C γFe and stable αFe, the latter can also form whiskers in some cases. The interior
particle growth in a confined space in voids appears to be a key factor, along with a
nanosized dimension, for the γFe formation at temperatures well below 910 ◦C. The fcc
close-packed crystal structure of γFe is denser than the bcc structure of α(δ)Fe [30,31], so
that the compressive strain developed when the particles of nano-scale dimensions grow
under confined conditions is conducive to the formation of γFe nanoparticles and their
subsequent stabilization upon cooling. The strain-induced formation of γFe nanoparticles,
smaller than ~20 Å, under confined conditions in oxide matrices (Al2O3, MgO), which are
stable at an ambient temperature, has been reported previously [32,33]. The stabilization
of γFe was also observed in iron coatings produced by arc plasma deposition on porous
alumina substrates, when Fe was localized inside pores with a diameter <160 nm [34]. Note
that in this case, the deposited Fe layers only covered the inner walls of the pores and did
not completely fill their interior space, leaving central gaps.

The γFe/αFe ratio depends on the reaction conditions and extent: the contributions
of γFe are larger in the initial stages and at the low extent of reactions. However, the
nanocomposites containing only γFe have not been obtained using individual Ca2Fe2O5 or
LaFeO3 ferrites. Ca2Fe2O5 is more active during the described process than LaFeO3 and
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reacts at lower temperatures, and the reaction can proceed almost completely, whereas
for LaFeO3, its extent is limited to ~50–60% (based on the Fe content in coexisting phases
obtained from the Mössbauer spectra).

2.3. ACAR-Promoted Metal Exsolution Using the Substituted Ferrites

The properties of Ca2Fe2O5 or LaFeO3 ferrites can be significantly modified by substi-
tutions. Accordingly, the effect of cation substitution on ACAR-promoted metal exsolution
and γFe formation was investigated. Rare-earth and alkaline-earth ABO3−γ perovskite
ferrites allow substitution in both A- and B-sites and a wide variation in oxygen content of
0 ≤ γ ≤ 0.5 [14,15]. Figure 6b shows the powder XRD patterns of A and B double-
substituted compounds, Ca1.4Y0.6Fe1.8Zn0.2O5.2 (=Ca0.7Y0.3Fe0.9Zn0.1O2.6), after ACAR-
promoted exsolution using h-BN. Y was chosen as the lightest rare-earth 3+ cation. The
Ca1-xYxFeO3−γ solid solutions have not been studied in detail in the literature, but for
our process it is important that they belong to a pseudobinary system, i.e., no additional
phases other than the perovskite solid solutions coexist. The solubility ranges from both
the Ca side (the brownmillerite type solid solutions with oxygen excess) and the Y side (the
LaFeO3−γ type ones with mainly disordered oxygen vacancies) are not well defined and,
presumably, depend on the temperature [35]. Similar to the case of unsubstituted Ca ferrite,
the resulting borates can only be correctly identified at relatively large reaction extents,
such as in the sample in Figure 6(b2), with ~29% of Fe exsolved, according to the Mössbauer
spectrum shown in Figure 6(a2). The XRD phase analysis revealed that substitution with
Y increases the number of oxide products formed, and the ACAR-promoted exsolution
process in this case can be written in a simplified form as follows:

Ca0.7Y0.3Fe0.9Zn0.1O2.6 + BN + H2 → Fe + Ca3B2O6 + Y2O3 +
Ca0.7−zY0.3+zFe0.8−βZn0.1+βO2.6+γ + {Zn5B4O11} + N2 + H2O

(10)
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Figure 6. (a) RT Mössbauer spectra of the Ca0.7Y0.3Fe0.9Zn0.1O2.6/h-BN-derived nanocomposites
with different amounts of metal Fe exsolved: (a1) 3.5% of γFe exsolved; (a2) 29% of Fe exsolved
(~9% γFe); (a3) the same sample (a2) measured at 78 K; (a4) after oxidation–reduction of sample (a2),
18.5% of Fe exsolved (14% γFe). (b) Powder XRD patterns, (b1) of the initial Ca0.7Y0.3Fe0.9Zn0.1O2.6

ferrite and, (b2) of sample (a2).

The main oxide products are Ca3B2O6 and Y2O3 (Zn5B4O11 could be a minor phase).
The Mössbauer spectra (Figure 6(a2,a3)) show that 29% of the Fe total content was ex-
solved in this sample, where γFe accounted for ~9% and αFe for 20%. The substitution
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manifests itself in a significant broadening of lines in the Mössbauer spectra, due to the
introduction of local distortions and the disruption of the magnetic superexchange interac-
tions. Consequently, the components of the brownmillerite subspectrum that correspond
to the tetrahedral and octahedral plus pentagonal positions in the ferrite structures were
fitted with combinations of several Zeeman sextets. Sextets with δ~0.34–0.37 mm s−1 and
Hhf~49–51 T correspond to Fe3+ cations in octahedral and pentagonal positions (poorly
resolved at RT), while those with δ~0.18–0.20 mm s−1 and Hhf ~40–43 T correspond to the
tetrahedral ones. The two other components with narrow lines correspond to the metal Fe
subspectrum, comprising of the αFe sextet with δ~0 mm s−1 and Hhf ~33 T and the γFe
singlet with δ~−0.1 mm s−1. The Mössbauer measurements at 78 K result in the narrower
lines of the components, but the spectral contributions of the subspectra remain about the
same. At a lower exsolution level of ~3–6%, all metal Fe was in the γ form (Figure 6(a1),
Table S3). The TEM images of the latter samples are shown in Figure 7. Similar to the
unsubstituted Ca2Fe2O5-derived samples, it was difficult to differentiate the Fe particles
among the agglomerates with different contrasts. However, the Fe nanoparticles <50 nm
in size embedded in the oxide matrix were clearly identified by the EDX analysis and
mapping (Figure 7a,c). The HAADF-STEM images, together with the Fourier transform
imaging, confirmed that the exsolved nanoparticles are metallic γFe (Figure 7b). The EDX
mapping also shows some degree of Y and O segregation on the scale of tens of nanometers,
which is consistent with the XRD phase analysis.
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Figure 7. (a) HAADF-STEM images with the corresponding EDX compositional maps of the
Ca0.7Y0.3Fe0.9Zn0.1O2.6/h-BN-derived nanocomposites with 3.5% of γFe exsolved (Figure 6(a1)).
(b) [110] HAADF-STEM image of the γFe nanoparticle, along with the Fourier transform. (c) HAADF-
STEM image with EDX analysis of other Ca0.7Y0.3Fe0.9Zn0.1O2.6/h-BN-derived nanocomposites with
6% of γFe exsolved.

Since Ca is more active in the exsolution reactions than Y, the remaining Ca–Y ferrite
can also be enriched in Y despite the formation of Y2O3. This can be seen from the spectra
of the samples with high degrees of exsolution, as shown in Figure S1 and Table S4. They
reveal that the contributions of spectral components corresponding to Fe3+ in tetrahe-
dral coordination decrease significantly because of the transformation of Ca ferrite-based
Ca1−xYxFeO3−γ solid solutions with x = 0.3 to Y ferrite-based solid solutions (presumably
with x > 0.6 [35]).

Preferable formation of Ca-rich borates was similarly observed for the La-substituted
Ca1−xLaxFeO3−γ starting ferrites. This system is also pseudobinary. Within this system,
the Ca2LaFe3O8 Grenier phase, with a crystal structure intermediate between brownmil-
lerite and perovskite types, was reported. In addition, the formation of microdomains
of close compositions is possible at different values of x and γ [36–38]. The main oxide
product in ACAR-promoted exsolution reactions of Ca–La ferrites with h-BN is Ca3B2O6,
like for Ca0.7La0.3FeO2.65 in Figure 8(a2,a3)), while the formation of La2O3 was not ob-
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served. At higher exsolution degrees, double borate Ca3La3(BO3)5 was additionally formed
(Figure 8(a3)). Since La is retained more in the Ca0.7-zLa0.3+zFeO2.65+δ solid solution, its con-
tent increases, as does the oxygen index value. At some level of La content, the resulting fer-
rite solid solution loses oxygen vacancy ordering, i.e., it becomes the La0.3+zCa0.7−zFeO3−γ
type perovskite-like solid solution. This is reflected in the Mössbauer spectra as the dis-
appearance of Fe3+ tetrahedral spectral components (Figure 8(b2), Table S5). A simplified
reaction is shown in (11):

Ca0.7La0.3FeO2.65 + BN + H2 → Fe + Ca3B2O6 + La0.3+zCa0.7-zFeO3−γ +
{Ca3La3(BO3)5} + N2 + H2O

(11)
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Figure 8. (a) Powder XRD patterns of the Ca0.a0.3FeO2.65/h-BN-derived nanocomposites with
different amounts of metal Fe exsolved: (a1) the initial Ca0.7La0.3FeO2.65 ferrite; (a2) 66% of Fe
exsolved (2% γFe); (a3) 76% of Fe exsolved (8% γFe). (All Fe contributions were evaluated by
Mössbauer spectroscopy). (b) Mössbauer spectra (b1) of the initial Ca0.7La0.3FeO2.65 ferrite; (b2)
of sample (a3).

In the case of LaFeO3-based compounds, the substitution of Fe3+ cations by non-
reducible cations can also lead to the formation of γFe exclusively. Figure 9 shows that
the Zn-substituted solid solution, LaFe0.8Zn0.2O2.9, reacts with h-BN, according to the
simplified reaction:

LaFe0.8Zn0.2O2.9 + BN→ Fe + LaBO3 + LaFe0.8−βZn0.2+βO3−γ + N2 + {ZnO} (12)

At ~8% of the total metal Fe content, all of the exsolved Fe is in the γ form (Figure 9(b1),
Table S5). The TEM EDX mapping of this LaFe0.8Zn0.2O2.9-derived sample with ~8% of γFe
exsolved, allowed for the identification of the embedded Fe metal nanoparticles (Figure 10a).
The HAADF-STEM images, together with the Fourier transform imaging, confirmed that
the exsolved nanoparticles are highly twinned metal γFe nanocrystals (Figure 10b,c).

In the case of double substitution by Ca and Zn, the ACAR exsolution with h-BN will
proceed as follows (Figure S2(a2,a3,b2,b3)):

La0.8Ca0.2Fe0.8Zn0.2O2.8 + BN + H2 → Fe + LaBO3 + Ca3La3(BO3)5 +
La0.8+zCa0.2−zFe0.8−βZn0.2+βO3−γ + {ZnO} + N2 + H2O

(13)

At low reaction extents only γFe will be exsolved (Figure S2(b2)). In both cases, Zn-
containing phases may precipitate at high reaction extents, presumably in oxide (ZnO) or
borate forms, but in most of our samples they did not appear in the XRD patterns.
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ites obtained by the ACAR exsolution from Zn-substituted LaFeO3: (1) from LaFe0.8Zn0.2O2.9/h-BN
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~20%—γFe; (3) sample (2) after grinding in a mortar.
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The lattice parameters of the cubic fcc cell of the exsolved γFe nanocrystals can be esti-
mated from the room-temperature powder XRD patterns, in the range of 0.357–0.358 nm.
These values correspond to those calculated for austenite solid solutions at room tem-
perature when extrapolated to pure iron [39,40]. Since the γFe nanoparticles synthe-
sized here at 650–750 ◦C are crystalline and are confined in oxide/borate matrices, they
are not pyrophoric in air at room temperature. Moreover, they persist during heat-
ing/cooling cycles in a reducing atmosphere. However, a mild mechanical impact on
the nanocomposites with high γFe content, by gently grinding in a mortar and pestle
for 1–2 min, leads to the transformation of most of the γFe into αFe, and irreversibly so
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(Figures 9(a2,a3,b2,b3) and S2(a3,a4,b3,b4), Table S6). This transition is, to some extent,
analogous to transformations of retained austenite caused by mechanical deformation at
low temperatures [41,42].

Note that for all the substituted ferrites investigated, the formation of Fe whiskers,
which is considered undesirable during the described processes, was not observed.

2.4. Redox Behavior of the Exsolved Nanoparticles

The exsolved metal nanoparticles can be oxidized in air to iron oxides at elevated
temperatures. The oxidation of metal nanoparticles is generally associated with a decrease
in density and an increase in volume. As it was shown in [23], for CoNi exsolved, socketed
nanoparticles, these volume changes lead to their migration from the initial sites under
redox cycling conditions. In addition, redox cycling can cause the growth and coarsening of
oxidized metal nanoparticles or their reintegration into perovskite matrices during oxida-
tion [10,43,44]. For all the nanocomposites obtained herein, the embedded nanoparticles are
also completely oxidized to αFe2O3 at 500 ◦C and above, in air. The γFe nanoparticles are
oxidized first, and at lower temperatures of 200–300 ◦C, and their oxidation is accompanied
by the transition of residual γFe into the α form (Figure 3(3,5), Table 1). However, the
nanocomposites produced by ACAR-promoted exsolution exhibited peculiar behavior
during redox cycling, or at least at the temperatures investigated. In these nanocomposites,
the initial metal nanoparticles, after complete oxidation into αFe2O3 at 500 ◦C and above,
can revert back to the metallic state by subsequent reduction in 10% H2/Ar at 650–750 ◦C
and, remarkably, the metal γFe nanoparticles can be reinstated in the γ form through such
a reduction of αFe2O3. Moreover, the γFe fractions may increase compared to the initial
content, especially when Ca2Fe2O5 and its solid solutions have been used (Figures 3(1,2)
and 4(a3,a4,b3,b4)). To our knowledge, the formation of γFe nanoparticles from Fe oxides
by hydrogen reduction at temperatures below 910 ◦C has not been reported previously.
Like the formation of the initial γFe nanoparticles, this is presumably a compressive strain-
driven behavior, which can be attributed to the preservation of the localization of all the
nanoparticles, i.e., initially exsolved metallic-derived oxide and restored metallic oxide,
within the voids, along with their strong binding to the void walls during the redox cycles.
The γFe formation can, thus, be considered as a kind of indicator of the localization of
nanoparticles inside the voids during these processes. Note that at the same time, there
should also be free space inside the voids close to nanoparticles, sufficient to compensate
for the metal/oxide volume difference, otherwise the matrix may be destroyed.

Using the above assumption on the nanoparticle redox behavior, the reversible trans-
formation of γFe into αFe, and vice versa, through redox cycling at different oxidation
temperatures can be realized (Figure 3, Table 1). The sample of the LaFeO3/h-BN based
nanocomposite with ~30% of Fe exsolved was subjected to a preliminary oxidation (at
500 ◦C)/reduction cycle to maximize the γFe contribution (Figure 3(1,2), Table 1 (d123,
d124)). To convert most of the Fe into the α form, the first stage involved oxidation at a
low temperature of ~300 ◦C, where more chemically active γFe nanoparticles were par-
tially oxidized/partially converted into αFe (Figure 3(3)), but the resulting oxides did not
sufficiently sinter with the matrix. In the second stage, subsequent reduction at 700 ◦C
yields αFe (Figure 3(4), see also Figure 1(a3,b4)). To regenerate γFe, the obtained αFe
nanoparticles were first completely oxidized at 500 ◦C (Figure 3(5)), which provides suffi-
cient sintering of the formed αFe2O3 particles and the matrix. Subsequent reduction, at the
same temperature of 700 ◦C, regenerated the γFe nanoparticles (Figure 3(6)). According to
the Mössbauer spectra, the Fe0 (metal)/Fe3+ (in matrix) ratio remained approximately the
same during redox cycling (Table 1).

The TEM images of the reduced sample with ~11% of γFe and ~6% of αFe, obtained
by the ACAR-promoted exsolution reaction of Ca0.7Y03(Fe0.9Zn0.1)O2.6 with h-BN, after
an oxidation–reduction cycle demonstrate features similar to uncycled (only exsolved)
nanocomposites: using EDX analysis, the Fe nanoparticles can be identified in some
locations, embedded in the oxide matrix, along with some Y segregation (Figure S3).
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2.5. ACAR-Promoted Exsolution of FeNix Alloys

It is well-established that the existence of a region of the γ form can be significantly
extended to lower temperatures by creating an Fe alloy with certain elements, such as
Ni [29]. The exsolution of NiFe alloy nanoparticles from Ni and Fe-containing perovskite-
like oxides has also been reported [10,16,21], so the formation of FeNix alloys was expected
during our process as well. Ni is less chemically active and more reducible compared to
Fe, so Ni additions to La, and especially Ca, ferrites significantly decrease their stability
in a reducing H2-containing atmosphere [27]. For this reason, the starting ferrites with
low Ni content were used herein, to avoid decomposition. According to the XRD patterns
shown in Figure 11a, the ACAR-promoted exsolution with h-BN from LaFe0.8Ni0.2O2.9,
La0.8Ca0.2Fe0.8Ni0.2O2.8, and La0.5Ca0.5Fe0.9Ni0.1O2.7 can be written as follows:

LaFe0.8Ni0.2O2.9 + BN→ FeNix + LaBO3 + LaFe0.8+βNi0.2−βO2.9+δ + N2 (14)

La0.8Ca0.2Fe0.8Ni0.2O2.8 + BN + H2 → FeNix + LaBO3 + Ca3La3(BO3)5 +
La0.8+zCa0.2−zFe0.8+βNi0.2−βO2.8+δ + N2 + H2O

(15)

La0.5Ca0.5Fe0.9Ni0.1O2.7+ BN + H2 → FeNix + Ca3La3(BO3)5 + Ca3B2O6 +
La0.5+zCa0.5−zFe0.9+βNi0.9−βO2.7+δ + N2 + H2O

(16)
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Figure 11. (a) Powder XRD patterns and (b) corresponding RT Mössbauer spectra of the
nanocomposites obtained by the ACAR-promoted exsolution from Ni-substituted ferrites: (1)
La0.5Ca0.5Fe0.9Ni0.1O2.7/h-BN with ~41% of γFeNi exsolved; (2) from LaFe0.8Ni0.2O2.9/h-BN with
~53% of γFeNi exsolved; (3) sample (2) after grinding in a hand mortar (~25% γFeNi, ~29% αFeNi);
(4) from La0.8Ca0.2Fe0.8Ni0.2O2.8/h-BN with ~82% of γFeNi exsolved; (5) sample (4) oxidized at 500
◦C (~44%—NiFe2O4, ~16% αFe2O3, ~13% superparamagnetic phase); (6) after reduction of sample
(5) (10% H2/Ar, 700 ◦C) (~83% γFeNi).

In these reactions, the resulting borates are the same as for the Ni-free ferrites described
before (Figure 11(a1,a2,a4)). Note that while it is difficult to achieve exsolution levels of
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more than ~50% using metal Fe for the Ni-free ferrites due to cation mobility limitations,
the reaction extent can be significantly higher for Ni-containing ferrites. As follows from
the Mössbauer spectra shown in Figure 11(b1,b2,b4) and Table S7, Ni additions effectively
stabilize the fcc structure of the exsolved nanoparticles. Their spectra are mainly comprised
of two subspectra. The first, magnetically split with broad lines, correspond to Fe3+ cations
in ferrites. It was fitted as a set of sextets, with δ~0.37 mm s−1 and Hhf~49–53 T. The
second subspectrum, which was fitted as a paramagnetic singlet with δ~−0.07 mm s−1,
corresponds to Fe in γFeNix alloys. According to the Fe–Ni phase diagram, at temperatures
close to ambient, the αFe-based bcc phase αFeNix coexists with intermetallic compounds
of Fe3Ni and FeNi fcc types in the Fe-rich region; although, the phase boundaries at these
temperatures are difficult to determine [29]. The thermodynamically stable phases of
FeNix alloys, viz. the Fe-rich bcc and the Ni-rich fcc alloys, are magnetically ordered at
room temperature [45]. At elevated temperatures, there is a continuous solid solution of
γFeNix with the eutectoid temperature of ~345–400 ◦C at ~50 at% of Ni. At ~10–20 at%
of Ni, which matches the initial ferrite stoichiometry, the transition temperature is about
~650–700 ◦C. Since Ni is more reducible than Fe, the alloys at low degrees of exsolution will
be enriched in Ni and their transition temperatures will be even lower. These temperatures
are below the temperatures of 700–750 ◦C at which reactions (14, 15, and 16) were carried
out. When cooled to room temperature, the XRD patterns show that all the exsolved
FeNix nanoparticles retained their γ structure at room temperature (Figure 11(a1,a2,a4)).
The Mössbauer subspectra corresponding to the FeNix nanoparticles consist of singlets
with δ~−0.1 mm s−1 (Figure 11(b1,b2,b4)), evidencing that they are paramagnetic. It is
consistent with their γ form, since paramagnetic behavior at room temperature has been
reported for metastable γFeNix alloys with high Fe content [46,47]. The stabilization of the
most exsolved γFeNix nanoparticles in γ form upon cooling, which can be explained by
the strain developed due to their localization in voids, suggests that this is the main type of
localization. Similar to γFe exsolved nanoparticles, a large part of γFeNix nanoparticles
can be transformed into ferromagnetic αFeNix (Figure 11(b3)) by gently grinding in a
mortar and pestle for 1–2 min. This treatment significantly reduced the FeNix reflections
visually, in the XRD pattern of those samples (Figure 11(a3)). The mechanical stress-induced
martensite γ to α transformation in Fe-rich Fe-Ni bulk alloys at room temperature has been
previously reported in the literature [48,49].

The exsolved γFeNix nanoparticles can be completely oxidized at 500 ◦C and above,
to the spinel solid solution Ni1±xFe2±xO4 (Figure 11(a5,b5)). Subsequent reduction in
10% H2/Ar atmosphere at 650–700 ◦C will restore the γFeNix metal nanoparticles
(Figure 11(a6,b6)). It is noteworthy that the exsolution level for this sample was >80%
(Table S7).

The TEM images of Ni-containing samples after the ACAR exsolution from
La0.5Ca0.5Fe0.9Ni0.1O2.7 ferrite, with ~41% of Fe exsolved (Figure 11(a1,b1)), are shown in
Figure 12a–d. Similar to other samples, the images show agglomerates of different contrast
(Figure 12a–c). The embedded FeNix nanoparticles <30 nm in size, however, can be identi-
fied by EDX analysis, e.g., like in locations 2, 3, and 4 in Figure 12d. The alloy nanoparticles
contained approximately about ~30 at% of Ni at this exsolution degree. Figure 12e shows
the TEM images of this sample after gently grinding in a mortar with a pestle. There is not
much difference compared to the unground ones, except for some rounded agglomerates
of <25–30 nm located on the grain surfaces enriched in Fe and Ni, which can be identified
as alloy nanoparticles (Figure 12e, loc. 2). Figure 12f shows the TEM images of the same
unground sample after the oxidation (at 500 ◦C, air)/reduction (700 ◦C, 10% H2/Ar) cycle.
Here again, it looks similar to the original sample with embedded FeNix nanoparticles,
which were identified by EDX analysis (Figure 12f, loc. 2).
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Figure 12. (a,b) BF TEM, (c) HAADF-STEM images, and (d) EDX elemental analysis in the se-
lected locations of the La0.5Ca0.5Fe0.9Ni0.1O2.7/h-BN nanocomposite with ~41% of γFeNi exsolved
(Figure 11(1)) at different locations; (e) BF TEM and HAADF-STEM images and EDX elemental
analysis in the selected locations after mortar grinding; (f) BF TEM and HAADF-STEM images and
EDX elemental analysis of the same sample (a–d) in the selected locations of the sample after the
oxidation/reduction cycle.

2.6. Separation of the Individual Nanoparticles

The reversible oxidation/reduction of metallic nanoparticles, while maintaining their
localization within the in situ-created individual voids, is a remarkable feature of the
nanocomposites produced by ACAR-promoted exsolution. It makes it possible to transform
the initial metallic nanoparticles into various oxides, viz. Fe1−xO, Fe3O4, α/γFe2O3 etc.,
while preventing their agglomeration. The components of matrices, viz. the starting and
resulting ferrites, resulting borates, etc., in turn, have very diverse chemical properties
depending on their composition. In particular, unsubstituted, and certain substituted,
Ca ferrites are susceptible to hydrolysis and dissolve in dilute mineral acids like HCl.
Ca3B2O6 is also soluble in dilute acids. Since Fe3O4 (and γFe2O3) particles can dissolve
reasonably slowly in dilute acidic aqueous solutions at RT, the crystallized and sintered Fe
oxide nanoparticles, produced by the oxidation of the exsolved metal nanoparticles, can be
separated from such oxide matrices by acid hydrolysis.

The TEM and SEM images of the nanoparticles separated from the Ca2Fe2O5/h-BN
and Ca2FeAlO5/h-BN-derived nanocomposites (~30–35% of Fe exsolved) are shown in
Figures 13 and S5. Ca2Fe2−xAlxO5 ferrites of the brownmillerite type, including Ca2FeAlO5,
obtained by the isovalent substitution of Fe3+ cations with Al3+, are also prone to hydrolysis
as unsubstituted Ca2Fe2O5. They react with h-BN, similar to Ca2Fe2O5, according to the
simplified reaction (17), where Al is mainly retained in the ferrite phase (Figure S4):

Ca2Fe2−xAlxO5 + BN + H2 → yFe + Ca3B2O6 + Ca2Fe2−x−yAlx+yO5 + N2 + H2O (17)
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Figure 13. Separated nanoparticles: (a) powder XRD patterns and (b) corresponding RT Mössbauer
spectra of the nanoparticles obtained from the Ca2FeAlO5/h-BN-derived nanocomposite (a1,b1) and
from the Ca0.8La0.2FeO2.6/h-BN derived nanocomposite (a2,b2). (c) SEM and BF TEM images of
the Fe3O4 nanoparticles obtained from the Ca2Fe2O5/h-BN-derived nanocomposite. (d) BF TEM
and HAADF-STEM images of the Fe3O4 nanoparticles obtained from sample (a1,b1) (dashed lines
indicate the cup shape of the particles). (e) BF TEM and (f) HAADF-STEM images with corresponding
EDX compositional map of the Fe3O4/La0.2+zCa0.8−zFeO3−γ nanoparticles obtained from sample
(a2,b2).
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The RT Mössbauer spectrum of the Ca2FeAlO5/h-BN-derived nanocomposite is
shown in Figure S4(1). The subspectrum corresponding to Ca2Fe2−xAlxO5 is significantly
broadened and unresolved due to the magnetic dilution by diamagnetic Al3+ cations. There-
fore, the spectral contribution of exsolved Fe, which totaled ~35% (~5% γFe), was evaluated
from the 78K Mössbauer spectra (Figure S4(2)).

Figure 13(a1,b1) shows the powder XRD patterns and Mössbauer spectra (Table S8)
of the Fe3O4 nanoparticles separated from the Ca2FeAlO5/h-BN-derived nanocomposite.
The transformation of metal Fe nanoparticles into Fe3O4 nanoparticles was carried out by
their oxidation to αFe2O3 at 500 ◦C, followed by their reduction in 10% H2/Ar flow at
460–480 ◦C. The matrices were dissolved in 0.5–1.5% HCl aqueous solutions at RT. The
Fe3O4 nanoparticles were magnetically separated and washed thoroughly with distilled
water. It is worth noting that the leaching process of Fe3O4 can be carried out with high
yields. This is facilitated by the fact that the particles were produced at relatively high
temperatures at both stages of synthesis, viz. at oxidation of the metallic particles to Fe2O3
and at their subsequent reduction to Fe3O4 and were, therefore, crystallized and sintered
well, which should reduce their solubility in diluted acids. Similar acid leaching in diluted
aqueous HCl solutions has previously been successfully utilized to extract SrFe12O19-based
nanoparticles, during high-temperature glass–ceramic synthesis [50].

The HAADF-STEM and SEM images of the separated nanoparticles obtained from
the Ca2Fe2O5/h-BN and Ca2FeAlO5/h-BN-derived nanocomposites (~30–35% of Fe ex-
solved) reveal that most of them are cap-shaped (hemispherical) hollow nanostructures
with sizes below ~200 nm and ~100 nm, respectively (Figures 13c,d and S5). According
to Figures 13 and S5, the wall thickness of the oxide nanoparticles is of the order of a
few nm, thus the wall thickness of the parent metallic nanoparticles should be of the
same scale.

The separated nanoparticles provide insight into the shape and size of the parent
metal nanoparticles within the matrices. These hollow cap-shaped oxide nanoparticles
indicate that the exsolved metal nanoparticles are formed as an inner layer in individual
voids generated in situ within the matrices. This particle shape can potentially provide
free space sufficient to accommodate the volume increase during oxidation, if the hollow
particles are not completely filled with other reaction products. At the same time, these
shapes and locations appear to play an important role in creating the conditions necessary
for the development of compressive strain in metal nanoparticles sufficient to stabilize γFe,
which is somewhat analogous to the γFe formation in cylindrical pores [34].

The extracted nanoparticles were different when La-substituted Ca1−xLaxFeO2.5+δ ferrite
was used as the starting material in the ACAR-promoted exsolution process. Figures 13e,f
and S6 show the TEM images of the oxide nanoparticles extracted from the nanocompos-
ite obtained by the reaction of Ca0.8La0.2FeO2.6 with h-BN (~35% of Fe exsolved). Metal-
lic Fe nanoparticles were converted into Fe3O4 nanoparticles in a similar manner as de-
scribed above. According to reaction (14), the La content in the remaining perovskite oxide
Ca0.8−zLa0.2+zFeO2.6+δ increases and, thus, its solubility in the dilute HCl aqueous solution
decreases.

Using Mössbauer spectroscopy and XRD analyses, it was found that the extracted
nanoparticles consisted mainly of spinel Fe3O4 and perovskite La0.2+zCa0.8−zFeO3−γ
phases (Figure 13(a2,b2), Table S8). The TEM with EDX analysis revealed that the
La0.2+zCa0.8−zFeO3-γ crystallites were segregated around Fe3O4 nanoparticles
(Figures 13e,f and S6). Most of them were almost completely covered by the resulting
La–Ca ferrite, forming open shells. The size of the Fe3O4 nanoparticles was estimated to
be smaller (<40–50 nm) than in the previous case. The composition and microstructure
of the extracted nanoparticles reflect the relative arrangement of the metal/resulting
ferrite phases in the parent nanocomposites. They show that the growth of exsolved
metal nanoparticles in matrices is accompanied by the formation of shells, consisting
of the resulting La-rich ferrites.
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2.7. Variety of ACAR-Promoted Metal Exsolution Reactions

The new approach we have developed is not limited to the aforementioned ferrites
and h-BN as starting compounds. The range of suitable compounds is wider and includes,
but is not limited to, for example, Sr-containing ferrites and some other nitrides like Si3N4,
etc. In particular, Figure S7 (Table S9) illustrates the ACAR-promoted exsolution of metal
Fe nanoparticles from Sr2Fe2O5, with Si3N4 as a reducing agent, according to the simplified
reaction (18):

Sr2Fe2O5 + 1/3Si3N4 + H2 → 2Fe + Sr2SiO4 + H2O + 2/3N2 (18)

Even CO gas can be utilized in reactions of this type with Ca and Sr ferrites, when it is
added to 10%H2/Ar flow at ~650 ◦C, according to reaction (19):

(Sr,Ca)2Fe2O5 + 2CO + H2 → 2Fe + 2(Sr,Ca)CO3 + H2O (19)

This reaction also leads to embedded metal α and γ Fe nanoparticles, as shown in
Figure S8 [51].

The chemical activity of reducing reagents in ACAR processes is different, so that
Si3N4 and CO are active with Ca and Sr-based ferrites, forming the corresponding silicates
or carbonates, but are inactive towards La-based ferrites.

2.8. In Situ Reactions of Exsolved Nanoparticles

The exsolved metallic nanoparticles and their oxides can also be converted into other
functional compounds, directly inside the matrices. For instance, embedded αFe2O3
nanoparticles obtained by the oxidation of exsolved metallic nanoparticles inside (La-based
ferrite La0.8Ca0.2Fe0.8Zn0.2O2.8)/h-BN-derived nanocomposites (Figure 14(1)) can be con-
verted into embedded χ-Fe5C2 (Hagg carbide) nanoparticles by the reaction with gaseous
CO at 300–350 ◦C (Figure 14(2), Table S10), according to the scheme in Figure S9. This car-
bide is considered to be an active phase in Fischer–Tropsch synthesis [52–54]. Its Mössbauer
subspectrum at RT consists of three broad Zeeman sextets, with δ of 0.18–0.25 mm s−1 and
Hhf of 10–22 T, providing reliable identification [52]. The matrix, consisting of La ferrites
and La borates, does not react with CO under the above conditions and remains unchanged.
The α and, more significantly, γ Fe metallic nanoparticles can then be regenerated by the
oxidation of carbide to αFe2O3 at 500 ◦C, followed by reduction to metal (Figure 14(3)),
indicating that the metal/oxide/carbide nanoparticles retain their localization in the voids.

Inorganics 2024, 12, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 14. RT Mössbauer spectra of the La0.8Ca0.2Fe0.8Zn0.2O2.8/h-BN-derived nanocomposites during 
redox cycling involving CO: (1) as prepared with ~51% of Fe exsolved (~14% γFe); (2) sample (1) 
after oxidation (air, 500 °C) following by the reaction with CO at 350 °C (~46% of Fe in χ-Fe5C2 
carbide); (3) the same sample after the oxidation (air, 500 °C)–reduction (10%H2/Ar, 700 °C) cycle 
(~47% of metal Fe total, ~30% γFe). 

3. Materials and Methods 
3.1. Materials Preparation 

The initial perovskite-like compounds used for the nanocomposite syntheses were 
prepared using a sol–gel routine from the respective nitrate precursors and citric acid as 
a complexing agent. All the chemicals were of reagent grade, from commercial sources 
(AO Reachem, Moscow, Russian Federation). The aqueous solution of metal nitrates in 
the calculated amounts were mixed with concentrated citric acid solutions in the molar 
ratio of citric acid to metals at ~1.1. The pH of the solution was adjusted by a dilute am-
monia solution to values of ~5–7. Several samples, mostly Sr-containing ones, were syn-
thesized using ethylenediaminetetraacetic acid (EDTA) as a complexing agent. In this case, 
the respective nitrate solution was dropwise added to an EDTA solution in diluted aque-
ous ammonia and then the pH was adjusted to ~8. The water was evaporated from the 
mixed solution and the resulting viscous gels were heated to ~200 °C to yield porous 
brownish materials. The materials were ground and then calcined in air at 500 °C (heating 
rate was 5 °C/min) for 4 h. The samples were then calcined in air for 8–10 h at 700–900 °C. 
The substituted perovskites, usually containing Fe4+ and/or Fe(3+δ)+ cations in mixed oxida-
tion states, were additionally treated in 10% H2/Ar gas flow at 600 °C for 1 h to reduce 
them to Fe3+. 

The nanocomposites with exsolved particles were synthesized through the solid-state 
method. The required amounts of perovskite powders and h-BN (Plasmotherm, Moscow, 
Russian Federation) or other reducing reagents were dry grounded in an agate mortar 
until homogeneous for 20–30 min. The mixture powders were placed into a silica reactor 
in alumina crucibles and heated in 10% H2/Ar gas flow of ~1–4 mL/min. The synthesis 
temperatures were ~650–700 °C and ~700–780 °C for the Ca- and La-based ferrites, respec-
tively. For most of the samples used in this work, the exsolution reactions were carried 
out in a single step over ~10–16 h to reach completeness or a steady state. The experimental 
conditions for the synthesis of the nanocomposites are summarized in Table S1. The dif-
ferent extents of the exsolution reactions in this work were mainly predetermined by the 
ferrite/(h-BN, etc.) ratio, and the final amounts of exsolved Fe were quantified experimen-
tally using Mössbauer spectroscopy. 

3.2. Materials Characterization 

Figure 14. RT Mössbauer spectra of the La0.8Ca0.2Fe0.8Zn0.2O2.8/h-BN-derived nanocomposites
during redox cycling involving CO: (1) as prepared with ~51% of Fe exsolved (~14% γFe); (2) sample
(1) after oxidation (air, 500 ◦C) following by the reaction with CO at 350 ◦C (~46% of Fe in χ-Fe5C2

carbide); (3) the same sample after the oxidation (air, 500 ◦C)–reduction (10%H2/Ar, 700 ◦C) cycle
(~47% of metal Fe total, ~30% γFe).
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3. Materials and Methods
3.1. Materials Preparation

The initial perovskite-like compounds used for the nanocomposite syntheses were
prepared using a sol–gel routine from the respective nitrate precursors and citric acid as
a complexing agent. All the chemicals were of reagent grade, from commercial sources
(AO Reachem, Moscow, Russia). The aqueous solution of metal nitrates in the calculated
amounts were mixed with concentrated citric acid solutions in the molar ratio of citric
acid to metals at ~1.1. The pH of the solution was adjusted by a dilute ammonia solution
to values of ~5–7. Several samples, mostly Sr-containing ones, were synthesized using
ethylenediaminetetraacetic acid (EDTA) as a complexing agent. In this case, the respective
nitrate solution was dropwise added to an EDTA solution in diluted aqueous ammonia
and then the pH was adjusted to ~8. The water was evaporated from the mixed solution
and the resulting viscous gels were heated to ~200 ◦C to yield porous brownish mate-
rials. The materials were ground and then calcined in air at 500 ◦C (heating rate was
5 ◦C/min) for 4 h. The samples were then calcined in air for 8–10 h at 700–900 ◦C. The
substituted perovskites, usually containing Fe4+ and/or Fe(3+δ)+ cations in mixed oxidation
states, were additionally treated in 10% H2/Ar gas flow at 600 ◦C for 1 h to reduce them
to Fe3+.

The nanocomposites with exsolved particles were synthesized through the solid-state
method. The required amounts of perovskite powders and h-BN (Plasmotherm, Moscow,
Russia) or other reducing reagents were dry grounded in an agate mortar until homoge-
neous for 20–30 min. The mixture powders were placed into a silica reactor in alumina
crucibles and heated in 10% H2/Ar gas flow of ~1–4 mL/min. The synthesis temperatures
were ~650–700 ◦C and ~700–780 ◦C for the Ca- and La-based ferrites, respectively. For
most of the samples used in this work, the exsolution reactions were carried out in a single
step over ~10–16 h to reach completeness or a steady state. The experimental conditions
for the synthesis of the nanocomposites are summarized in Table S1. The different extents
of the exsolution reactions in this work were mainly predetermined by the ferrite/(h-BN,
etc.) ratio, and the final amounts of exsolved Fe were quantified experimentally using
Mössbauer spectroscopy.

3.2. Materials Characterization

The phase composition of the nanocomposites was characterized by X-ray powder
diffraction (XRD), with a Huber G670 Image Plate Guinier diffractometer (CuKα1 radiation,
curved Ge monochromator, image plate detector) (Huber Diffraktionstechnik GmbH & Co.,
Ltd., Rimsting, Germany).

The 57Fe Mössbauer spectra were recorded in terms of the transmission geometry on
a commercial MS-1104EM spectrometer, using a 57Co(Rh) source (13.5 mCi), equipped
with a custom liquid nitrogen bath cryostat (77–320 K) (ZAO, Kordon, Russia). The fitting
procedure was performed with a special original least-squares fitting software developed
at Lomonosov MSU. All the isomer shift values refer to αFe at room temperature (RT).

Scanning electron microscopy (SEM) analysis was performed using a Quattro S scan-
ning electron microscope (LaB6 field emission cathode, Thermo Fisher Scientific, Bleiswijk,
The Netherlands). Transmission electron microscopy (TEM) images and energy-dispersive
X-ray (EDX) spectra were obtained with a JEOL 2100 F/Cs, operated at 200 kV and equipped
with a JEOL system for EDX analysis (JEOL Ltd., Tokyo, Japan), and using an aberration-
corrected Titan Themis Z transmission electron microscope at 200 kV (Thermo Fisher
Scientific, The Netherlands), equipped with a Super-X system for EDX analysis. For the
TEM studies, the powder samples of the nanocomposites were prepared by dispersing in
ethanol or heptane without additional grounding to avoid sample destruction, and then
depositing a few drops of the suspension on special grids.
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4. Conclusions

The novel approach to metal exsolution using ABO3−γ (B = Fe, Ni, etc.) complex per-
ovskite oxides of reducible transition metals has been developed to produce Fe-containing
metal and metal oxide nanoparticles and nanocomposites. Our strategy is based on the
additional auxiliary reactions of irreducible alkaline-earth and/or rare-earth A-site cations
of the parent perovskite oxides with the constituents of reducing compounds resulting
in the formation of complex oxides, which facilitate the exsolution of reducible transition
metals from the B-sites of perovskites. The approach was applied mainly to Ca- and
La-based unsubstituted and substituted ferrites as starting compounds and h-BN as a
reducing compound. The metal nanoparticles exsolved by the described approach are
largely localized within oxide matrices, in individual voids generated in situ. Moreover,
the metal nanoparticles of Fe and FeNix alloys can be formed and stabilized in γ form,
presumably due to induced compressive strain that develops in such locations.

The redox behavior of the exsolved nanoparticles was investigated. It was shown
that they readily undergo redox cycling at moderate temperatures, where they maintain
localization in the voids. The latter allows, under certain conditions, the regeneration of
γFe and γFeNix from oxides during redox cycling. The nanoparticles can be chemically
modified by reagents inside the matrices, while maintaining their localization.

The oxide matrices consist of unreacted initial perovskites and reaction products
(borates, silicates, resulting perovskites, etc.) in various combinations and exhibit a wide
variety of chemical and physical properties. They undergo significant transformation
during the exsolution process, and their phase and chemical compositions depend on
various factors, such as the composition of the initial ferrites and reducing reagents, the
extent of reactions, and the reaction conditions, etc.

For certain Ca and Sr ferrite-based nanocomposites, a method has been developed for
the separation oxide nanoparticles produced by the oxidation of the initially exsolved metal
nanoparticles. The separated Fe3O4 nanoparticles (which can also be γFe2O3, etc.), obtained
using Ca ferrites as starting materials, had a cup-shaped hollow shape. The separated
nanoparticles obtained using La-substituted Ca ferrites were composite Fe3O4/(La-based
resulting ferrite) layered particles. The separated nanoparticles provide insight into the
shape, size, and relative arrangement of the phases of the parent metal nanoparticles within
the matrices. This approach provides a new high-temperature templateless route for the
synthesis of hollow and layered nanoparticles of Fe oxides and related compounds.

Our proposed strategy is applicable to a wide range of both perovskite-like oxides and
reducing compounds. The developed approach provides greater flexibility in controlling
the reaction extent, as well as the composition and properties of the resulting nanocom-
posites and nanoparticles. The approach can also be applied to the surface modification
of perovskite oxide ceramics, since the starting perovskite compounds are considered
stable under the reaction conditions. Our novel strategy is expected to be viable for the
development of various new functional materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics12080223/s1, Figure S1. RT Mössbauer spectra of the
Ca0.7Y0.3Fe0.9Zn0.1O2.6/h-BN-derived nanocomposites with 57% of Fe exsolved (~11% γFe);
Figure S2. (a) Powders XRD patterns of the nanocomposites obtained by the ACAR exsolution
from Zn-substituted LaFeO3: (a1) from LaFe0.8Zn0.2O2.9/h-BN with ~8% of γFe exsolved; (a2) from
La0.8Ca0.2Fe0.8Zn0.2O2.8/h-BN with ~5% of γFe exsolved; (a3) from La0.8Ca0.2Fe0.8Zn0.2O2.8/h-BN
with ~50% of Fe exsolved, where ~20%—γFe; (a4) sample (a3) after grinding in a mortar; (a5) sample
(a3) oxidized at 500 ◦C (all Fe contributions are evaluated by Mössbauer spectroscopy) and (b) corre-
sponding RT Mössbauer spectra: (b1) of sample (a1); (b2) of sample (a2); (b3) of sample (a3); (b4) of
sample (a4); (b5,6) of sample (a5) at RT and 78K, respectively; Figure S3. (a) BF TEM image of the
Ca0.7Y0.3Fe0.9Zn0.1O2.6/h-BN-derived nanocomposites (~18% of Fe) after the oxidation–reduction
cycle; (b) HAADF-STEM images with corresponding EDX compositional maps of the sample in (a);
Figure S4. The powder XRD pattern (a) and the corresponding RT Mossbauer spectrum (b) of the
Ca2FeAlO5/h-BN-derived nanocomposite with ~35% of Fe exsolved (~5% of γFe); Figure S5. TEM
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images of the separated Fe3O4 nanoparticles obtained from the Ca2FeAlO5/h-BN-derived nanocom-
posites: (a) BF TEM; (b) HAADF-STEM images and EDX elemental analysis in the selected locations;
Figure S6. TEM images of the separated Fe3O4/La1−yCayFeO2.5+ő nanoparticles obtained from the
Ca0.8La0.2FeO2.6/h-BN-derived nanocomposite: (a) HAADF-STEM images with the corresponding
EDX compositional map; (b) HAADF-STEM images and EDX elemental analysis in the selected loca-
tions; Figure S7. The powder XRD pattern (a) and the corresponding RT Mössbauer spectrum (b) of
the Sr2Fe2O5/Si3N4-derived nanocomposite with ~60% of Fe exsolved (~9% of γFe); Figure S8. The
RT Mossbauer spectrum of nanocomposites by ACAR-promoted by CO exsolution reactions: (1) from
Sr2Fe2O5/CO with ~16% of Fe exsolved (~5% γFe); (2) from Ca2Fe2O5/CO with ~12% of Fe exsolved
(~3% γFe); Figure S9. Scheme of transformations of the exsolved Fe nanoparticles during the redox
cycle involving CO treatment; Table S1. Experimental conditions for the synthesis of nanocomposites
by ACAR-promoted metal exsolution; Table S2. Hyperfine parameters of the RT Mössbauer spectra
of the samples in Figure 4b; Table S3. Hyperfine parameters of the RT Mössbauer spectra of the
Ca0.7Y0.3Fe0.9Zn0.1O2.6-derived nanocomposites in Figure 6a; Table S4. Hyperfine parameters of the
RT Mössbauer spectra of the Ca0.7Y0.3Fe0.9Zn0.1O2.6-derived nanocomposites in Figure S1; Table S5.
Hyperfine parameters of the RT Mössbauer spectra of the samples in Figure 9b; Table S6. Hyperfine
parameters of the RT Mössbauer spectra of the samples in Figure S2b; Table S7. Hyperfine parameters
of the RT Mössbauer spectra of the samples in Figure 11b; Table S8. Hyperfine parameters of the RT
Mössbauer spectra of the samples in Figure 13d; Table S9. Hyperfine parameters of the RT Mössbauer
spectra of the samples in Figure S7b; Table S10. Hyperfine parameters of the RT Mössbauer spectra of
the samples in Figure 14.
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Abstract: Mesoporous titania nanoparticles (NPs) can be used for encapsulation polyphenols, with
applications in the food industry, cosmetics, or biomedicine. TiO2 NPs were synthesized using
the sol-gel method combined with solvothermal treatment. TiO2 NPs were characterized through
X-ray diffraction, FTIR spectroscopy, the N2 adsorption method, scanning and transmission electron
microscopy, and thermal analysis. The sample prepared using Pluronic F127 presented a higher
surface area and less agglomerated NPs than the samples synthesized with Pluronic P123. Grape
marc (GM), a by-product from wine production, can be exploited for preparing extracts with good
antioxidant properties. In this regard, we prepared hydroethanolic and ethanolic GM extracts from
two cultivars, Feteasca Neagra (FN) and Pinot Noir. The extract components were determined
by spectrometric analyses and HPLC. The extract with the highest radical scavenging activity, the
hydroethanolic FN extract, was encapsulated in titania (FN@TiO2) and compared with SBA-15 silica
support. Both resulting materials showed biocompatibility on the NCTC fibroblast cell line in a
50–300 µg/mL concentration range after 48 h of incubation and even better radical scavenging
potential than the free extract. Although titania has a lower capacity to host polyphenols than SBA-15,
the FN@TiO2 sample shows better cytocompatibility (up to 700 µmg/mL), and therefore, it could be
used for skin-care products.

Keywords: mesoporous titania; grape marc extract; mesoporous silica; extract encapsulation;
antioxidant properties; phenolic compounds; biocompatibility

1. Introduction

An effective carrier for biologically active molecules should meet the following condi-
tions: a high specific surface area and pore volume, tunable pore size, good biocompatibility
and no toxicity, and the possibility to adjust the interactions between biologically active
molecules and the support. The most used inorganic matrix for the encapsulation of bi-
ologically active compounds is mesoporous silica, which presents outstanding porosity
(up to 1200 m2/g specific surface area and 1.5 cm3/g pore volume), good biocompatibility
depending on particle size and shape, surface properties, concentration, etc. [1–3]. Silica
nanoparticles are generally assessed as safe and biocompatible by the US Food and Drug
Administration (FDA) and have been employed as additives in cosmetics and foods [4].

Among functional inorganic materials, nanostructured titania is of particular interest
due to its remarkable features: good chemical and thermal stability, low cost, biocompati-
bility, resistance to photochemical erosion, and excellent optical and electrical properties.
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Titania is used intensively in environmental applications to remove pollutants from both
air and water [5]. Titania, which has already been successfully applied as an implant
material or in cosmetic formulations, can also be employed as a carrier for biologically
active compounds [6]. For example, in 2012, mesoporous titania was tested as a carrier for
ibuprofen [7].

Titania exhibits photocatalytic properties under UV irradiation but has a lower ad-
sorption capacity than mesoporous silica, so by combining the properties of both silica
and titania, titania–silica composites have been successfully applied as photocatalysts for
environment purification [8], as well as for biomedical applications [9]. Titania nanoparti-
cles (NPs) are poorly soluble in biological fluids and thus pose challenges when used in
biomedical applications. However, titania NPs have been applied in photodynamic therapy
for the tumors’ treatment [10,11]. There are reports that showed that titania NPs help to
neutralize bacterial or fungal strains [12].

Unlike silica, mesoporous titania exhibits lower porosity values (up to 250 m2/g
specific surface area and 0.4 cm3/g pore volume) and a lower concentration of surface
OH groups that can be involved in functionalization reactions, but it could interact with
biologically active substances through donor–acceptor bonds.

Typically, mesoporous titania is produced by the soft-templated sol-gel method based
on the hydrolysis and condensation reactions involving the cooperative assembly of tita-
nium precursor, usually, titanium isopropoxide or titanium butoxide, with the structure
directing agent in the presence of a complexation agent that slows down the rate of hy-
drolysis and condensation reactions. The sol-gel process of Ti precursors differs from that
of silicon alkoxides because of their higher chemical reactivity, resulting from the lower
electronegativity of titanium and its ability to spontaneously enhance the coordination
number with water molecules, with the hydrolysis rate of titanium alkoxide being five
times faster than silicates, hindering the cooperative assembly of inorganic species with
surfactant molecules [13].

Red Vitis vinifera L. grape marc (GM) resulting from winemaking is an affordable
source of polyphenols, including anthocyanins, flavonoids, stilbenes, flavan-3-ols, and
phenolic acids, which have antioxidant, anti-inflammatory, antidiabetic, and cardioprotec-
tive properties, antiproliferative effects [14], and potent broad virucidal activity [15]. For
instance, Balea et al. [16] reported that Feteasca Neagra extract prepared in 70% ethanol
from fermented grape pomace exhibited antiproliferative activity on A549 lung carcinoma,
MDA-MB-231 human breast adenocarcinoma, and B164A5 murine melanoma, with the
best results being obtained for the last cell line.

There are studies on phenolic compounds in wines. For example, malvidin glycosides
are formed during wine maturation [17]. Goldberg et al. [18] highlighted that climate
influences the concentration of quercetin, as wines originating from areas with a warmer
climate and greater exposure to sunlight had a higher concentration of quercetin. The
presence of p-coumaric acid in wines seems to be more random than that of quercetin, with
this phenolic acid being important because it acts as a precursor of flavonols, flavan-3-ols,
and trihydroxy stilbenes [17].

Lately, the demand for natural extracts with antioxidant properties for cosmetics and
nutraceuticals is of growing interest and the use of an abundant waste such as grape marc
from wine production can contribute to the sustainability of this field [19]. Wasilewski
et al. [20] reported a shower gel formulation enriched with compounds extracted from
grape pomace, which was safe for utilization as natural cosmetics.

The recovery of biologically active substances from GM is done by extraction, with the
yield and chemical profile depending on the type of solvent, the extraction technique and
its parameters, and the quality of the grape pomace, which in turn is strongly influenced
by the climate, etc. [21–23].

Herein, we report the synthesis of a series of mesoporous titania NPs by combining
the sol-gel process and solvothermal treatment using two metal precursors, titanium(IV)
isopropoxide and titanium(IV) butoxide, and two nonionic surfactants, the triblock copoly-
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mer EO20-PO70-EO20 (Pluronic P123) or EO99-PO70-EO99 (Pluronic F127), in various
molar ratios, 2-propanol or n-butanol, as the solvent and acetic acid was used to delay
the hydrolysis rate of the metallic alkoxide. Titania NPs with the best features were used
to encapsulate a hydroethanolic extract prepared from red grape marc, and the resulting
material was compared with the material obtained by incorporating the same extract in
mesoporous SBA-15 silica. We also evaluated the chemical profile of several ethanolic or
hydroethanolic extracts prepared from the red grape marc from two varieties: Feteasca
Neagra and Pinot Noir.

2. Results
2.1. Obtaining and Characterization of Mesoporous Matrices

A series of mesoporous titania nanoparticles were synthesized by the sol-gel method
assisted by solvothermal treatment using as a template agent either the triblock copolymer,
EO20-PO70-EO20 (Pluronic P123) or the nonionic surfactant EO99-PO70-EO99 (Pluronic
F127). The scheme showing the steps of obtaining the titania samples can be seen in Figure 1,
while Table 1 lists the titanium precursor, the solvent, the molar ratio between the titanium
precursor and template agent used in the synthesis of titania NPs, and how the samples
are denoted. Titania samples obtained after solvothermal treatment and purified through
Soxhlet extraction (samples labeled Sn_E) or calcined at 400 ◦C (samples labeled Sn_C) were
characterized by wide-angle powder X-ray diffraction (XRD), FTIR spectroscopy, thermal
analysis, scanning electron microscopy, transmission electron microscopy, and porosity
evaluation based on N2 adsorption–desorption isotherms.
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Figure 1. Main steps of the titania samples preparation.

Table 1. Synthesis conditions for mesoporous titania obtaining.

Sample Solvent Titania Precursor Template Agent Ti Precursor/Template Agent
Molar Ratio

S1 n-butanol Ti(OnBu)4 P123 1/0.017
S2 n-butanol Ti(OnBu)4 P123 1/0.034
S3 2-propanol Ti(OiPr)4 P123 1/0.017
S4 2-propanol Ti(OiPr)4 P123 1/0.034
S5 2-propanol Ti(OiPr)4 F127 1/0.017
S6 n-butanol Ti(OnBu)4 F127 1/0.017

2.1.1. X-ray Diffraction

The XRD patterns of the titania samples demonstrated the formation of an anatase
crystalline phase, having tetragonal symmetry for all samples irrespective of the structure
directing agent, titanium precursor, or quantity of the surfactant used in the synthesis. The
thermal treatment determined the preservation of the anatase phase (JCPDS no. 21-1272)
and an increase in its crystallinity, with a crystallite size of D101 = 8 nm, calculated using
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Rigaku PDXL software version 1.8 from the most intense diffraction peak at 2θ = 25.27◦

for uncalcined materials (Figure 2A), and D101 = 10 nm for the samples obtained at 400 ◦C
(Figure 2B).
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Figure 2. XRD patterns of titania samples obtained after solvothermal treatment and purified by
Soxhlet extraction (A) and for TiO2 samples calcined at 400 ◦C, 3 h. (B) The JCPDS no. 21-1272 for
anatase phase is shown as reference.

2.1.2. Morphology of Mesoporous Inorganic Matrices

The morphology of titania samples was investigated by scanning and transmission
electron microscopy (Figure 3). The use of titanium(IV) butoxide as a precursor yielded
more agglomerated nanoparticles (Figure 3A,B,D) than in the case of titanium(IV) iso-
propoxide (Figure 3C,E). TEM investigation demonstrated the crystalline nature of TiO2
NPs and the interparticle pores formation (Figure 3F,G). Titania samples present polyhedral
nanoparticles with around 10 nm dimension, which are agglomerated. The particle sizes
of the calcined S3_C (Figure 3F) and S5_C (Figure 3G) samples observed on the TEM
investigation were consistent, with the crystallite size found based on XRD analyses. Meso-
porous SBA-15 silica presents rod-type particles with an average diameter of 447 nm and a
length/diameter ratio in the range of 2.04–2.20 (Figure 3H).
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Figure 3. SEM micrographs for the following samples: S1_E (A) and S6-E (B) purified by Soxhlet
extraction, S5_C (C), S2_C (D) and S4_C (E) titania samples obtained at 400 ◦C, TEM images of S3_C
(F) and S5_C (G) calcined samples, and SEM image of SBA-15 silica (H).

2.1.3. FTIR Spectroscopy

In the FTIR spectra of the titania samples isolated after solvothermal treatment
(S3 and S5), one can notice the characteristic bands of methyl and methylene groups
in the range of 2850–2930 cm−1, as well as the ether bridge vibrations ranging in the
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1410–1530 cm−1 domain that demonstrate the presence of the polymer on the surface of
titanium dioxide nanoparticles (Figure 4). The extraction process in ethyl alcohol for 24 h
did not completely remove the structure directing agent, as its characteristic vibrations
were still present but less intense in the FTIR spectra of the samples purified by extraction,
S1_E and S3_E (Figure 4). The calcining step at 400 ◦C caused the removal of the template
agent regardless of the polymer type (Figure 4—spectrum of S3_C sample). In the FTIR
spectra of all TiO2 samples, irrespective of the stage in which the samples were analyzed,
one can notice the specific bands of Ti–O and Ti–O–Ti bonds at 677 cm−1 and 466 cm−1,
respectively [24], as well as the stretching modes of vibration of hydroxyl groups with
the lowest transmittance value at 3420 cm−1 and the bending band of adsorbed water
molecules at 1634 cm−1. The stretching vibrations of -OH groups are less intense in the case
of the calcined S3_C sample than in the spectra of the other NPs isolated after solvothermal
treatment, S3 and S5, or after Soxhlet extraction, S1_E and S3_E (Figure 4).
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Figure 4. FTIR spectra of the following samples: S1_E and S3_E obtained after Soxhlet extraction, S3
and S5 isolated after solvothermal treatment, and S3_C calcined at 400 ◦C.

2.1.4. Thermal Analysis

The copolymers decompose in steps up to 400 ◦C. The extraction process was not
very efficient, a content of about 10% (wt.) copolymer remained in the materials purified
by Soxhlet extraction (Figure 5A). In agreement with FTIR spectra, the DTA-TG analysis
showed that the thermal treatment at 400 ◦C for 3 h completely removed the surfactant, as
no effect was recorded on the DTA traces of the calcined samples (Figure 5B).
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2.1.5. Evaluation of the Porosity for Mesoporous Inorganic Matrices

The textural properties of the titania samples were determined from nitrogen adsorption–
desorption isotherms, recorded at liquid nitrogen temperature, that are type IV with hysteresis
at P/P0 > 0.5, characteristic for mesoporous materials with wormlike pores. The porosity of
the titania samples is mainly due to interparticle pores, evidenced by a sharp increase
in the volume of adsorbed gas in the region of high P/P0 values (Figures 6A,B and
S1). Table 2 gathered the parameters determined from nitrogen adsorption–desorption
isotherms: specific surface area, SBET, determined by applying BET theory, total pore
volume measured at relative pressure, P/P0 = 0.985, and average pore diameter, dBJH,
calculated from the desorption branch of the isotherms with BJH method. The uncal-
cined titania samples have a higher specific surface area, SBET, than the calcined materials
(312 and 274 m2/g for S2_E and S4_E, respectively, and 154 m2/g in the case of S4_C),
probably because of the contribution of remaining copolymer on titania nanoparticles
surface (Table 2). When Ti(OnBu)4 was used as the precursor in the synthesis, this resulted
in higher values of average pore size (6.3 nm for S6_C in comparison with 5.4 nm for
S5_C for which Ti(OiPr)4 was used), although the specific surface area and total pore
volume did not change significantly (153 m2/g and 0.33 cm3/g for S5_C and 153 m2/g and
0.31 cm3/g for S6_C-Table 2). The use of the copolymer F127 instead of Pluronic P123 for
titania nanoparticles synthesis did not have an important contribution to the porosity of
the resulting materials. A higher copolymer quantity introduced in the synthesis led to a
diminution of the pore size (7.4 nm and 5.8 nm for S3_C and S4_C, respectively, Table 2).
SBA-15 silica had higher porosity than all titania NPs with the following textural features:
SBET = 984 m2/g, V = 1.31 cm3/g, and the average diameter of the mesopores computed
from the desorption branch of isotherm, dBJH = 6.3 nm.
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2.2. Obtaining and Characterization of Red GM Extracts

The polyphenols extraction was carried out using Vitis vinifera L. red grape marc (GM)
from two cultivars, Feteasca Neagra (FN) and Pinot Noir (PN), from the Research Station
for Viticulture Murfatlar (Constanta County, Romania). The extracts were obtained by
conventional technique at reflux using FN and PN grape pomace samples collected after
wine production in 2018 or 2019 and ethanol or 50% ethanol aqueous solution as solvent.

For all extracts, the following data were determined by UV-vis methods: the total
polyphenols index (TP) expressed as gallic acid (GA) equivalents based on the chemical
reaction between phenolic substances and Folic Ciocâlteu reagent, the total flavonoids
index (TF) expressed as quercetin (Q) equivalents, based on the chemical reaction between
flavonoids and the aqueous solution of AlCl3, and the total anthocyanin pigments (TA)
expressed as cyanidin-glucoside (CG) equivalents using the method described by Lee
et al. [25]. All these data are presented in Table 3. The radical scavenging activity (RSA)
was expressed as Trolox (T) equivalents using two assays: DPPH and ABTS.

Table 3. Solvents used for extraction, yield values, and spectrometric data expressed per gram of dry
extract for prepared extracts.

Extract Year, Solvent Yield
(%)

TP
(mgGA/g)

TF
(mgQ/g)

TA
(mg CG/g)

FN 2019, 50% ethanol 13.2 295.46 ± 1.33 14.82 ± 0.51 7.35 ± 1.89
FN(E) 2018, ethanol 0.4 71.02 ± 0.22 12.31 ± 0.64 20.42 ± 4.26
FN(E-W) 2018, 50% ethanol 6.5 147.71 ± 8.6 5.06 ± 0.12 3.56 ± 0.24
PN 2019, 50% ethanol 11.8 138.49 ± 3.49 11.94 ± 0.03 4.29 ± 0.00
PN(E) 2018, ethanol 1.3 47.09 ± 0.99 13.34 ± 4.11 2.86 ± 0.00

All spectrometric measurements were performed in triplicate.

Upon first glance at the data in Table 3, one can observe that the type of red GM and
the harvest year strongly influenced the quantity of phenolic compounds in the extracts.
The extract richest in polyphenols is the hydroethanolic FN extract prepared from Feteasca
Neagra GM collected in 2019. Both GMs used in this study from 2018 were very poor in
phytocompounds, probably because the climate has altered the quality of these wastes.
For all extracts prepared from GMs collected in 2018, we obtained very low yields (in the
range of 0.4–6.5%) and TP index values (47.09–147.71 mgGA/g extract). Regarding the
solvent, the 50% ethanol aqueous solution was more effective in the recovery of polyphenols
(147.71 for FN(E-W) vs. 71.02 mgGA/g extract for FN(E) extract) than absolute ethanol,
which was better at extracting flavonoids (12.31 and 5.06 mgQ/g extract for FN(E) and
FN(E-W), respectively, or 13.34 and 11.94 mgQ/g extract for PN(E) and PN, respectively.

Figure 7 shows the radical scavenging activity (RSA) expressed as Trolox equivalents
(TE) using two assays: DPPH and ABTS. The FN sample prepared from GM collected
in 2019 has the highest value for antioxidant activity assessed by both DPPH and ABTS
assays, (566.00 ± 13.08 and 572.37 ± 5.78 mgTE/g extract, respectively), followed by the
other hydroethanolic FN extract obtained from GM collected in 2018 (316.92 ± 21.6 and
267.11 ± 9.04 mgTE/g extract, respectively). Both ethanolic extracts prepared from GMs
collected in 2018 had weak radical scavenging activity (35.18 ± 4.88 and 47.89 ± 7.12 mgTE/g
extract for FN(E) and PN(E), respectively), which could be correlated with the low amount of
polyphenols, though the FN(E) sample has the highest index of TA (20.42 ± 4.26 mgCG/g
extract)—Table 3.

Phenolic substances present in the extracts were quantified using reverse-phase high-
performance liquid chromatography and the data are listed in Table 4. The chromatograms
can be seen in Figure S2. We identified in all the extracts the following phenolic acids: gallic,
protocatechuic, vanillic, and syringic acids from the class of flavonoids, rutin and quercetin,
and catechin (except for the FN(E) sample) and (-) epicatechin (except the extracts prepared
in absolute ethanol) from the flavan-3-ol class. The only extract in which delphinidin
(0.593 ± 0.010 mg/g extract) and the esterified phenolic acid—caftaric acid (0.050 mg/g
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extract)—were quantified was FN(E-W), while p-coumaric acid was found only in the
FN(E) sample. Being poorly soluble in water but soluble in ethanol, trans-resveratrol was
quantified in higher amounts in the ethanolic extracts: FN(E) and PN(E) (Table 4).
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Table 4. Chemical profile of prepared extracts determined by HPLC-PDA analysis.

Phenolic Substance
Concentration (mg/g Dried Extract)

FN FN(E) FN(E-W) PN PN(E)

Gallic Acid 1.150 ± 0.004 0.594 ± 0.001 0.437 ± 0.000 0.238 ± 0.008 0.723 ± 0.000
Protocatechuic acid 0.541 ± 0.001 0.714 ± 0.000 0.078 ± 0.002 0.367 ± 0.001 1.748 ± 0.001

Catechin 0.087 ± 0.001 nd 5.978 ± 0.000 1.164 ± 0.002 0.504 ± 0.001
Caftaric acid nd nd 0.050 ± 0.000 nd nd
Vanillic acid 1.091 ± 0.003 0.826 ± 0.000 0. 334 ± 0.007 1.424 ± 0.004 0.309 ± 0.000
Syringic acid 2.492 ± 0.004 1.490 ± 0.000 0.674 ± 0.000 2.043 ± 0.006 1.869 ± 0.003

p-Coumaric acid nd 0.083 ± 0.000 nd nd 0.035 ± 0.001
(-) Epicatechin 2.755 ± 0.006 nd 4.757 ± 0.001 0.644 ± 0.002 nd

Delphinidin nd nd 0.593 ± 0.010 nd nd
Rutin 0.582 ± 0.001 0.191 ± 0.001 0.702 ± 0.001 0.427 ± 0.000 0.139 ± 0.000

trans-Resveratrol 0.023 ± 0.001 0.082 ± 0.000 nd nd 0.080 ± 0.000
Quercetin 0.160 ± 0.001 0.370 ± 0.000 0.133 ± 0.000 0.073 ± 0.001 0.280 ± 0.000

nd—not determined.

2.3. Characterization of Materials Containing FN Extract

The hydroethanolic FN extract with the best antioxidant potential (572.37 mgTrolox/g
extract) was selected to be encapsulated into mesoporous SBA-15 silica with an ordered
pore framework with hexagonal symmetry determined by small-angle X-ray diffraction
(Figure S3) and in S5_C titania nanoparticles through the impregnation method, followed
by solvent evaporation under low pressure (3 mbar) according to the procedure described
elsewhere [26].

The resulting materials containing FN extract were analyzed by TG-DTA analysis
to evaluate the amount of phenolic compounds incorporated in mesoporous inorganic
matrices. The main feature influencing the quantity of phenolic compounds that can
be encapsulated in the mesopores of inorganic matrices is the total pore volume. The
extract amount from the considered inorganic supports was computed based on the weight
loss for materials containing extract, taking into account the weight loss of hydroxyl
groups during the support heating, and the removal of moisture, which corresponds to
the first endothermic event of the DTA curve for each sample subjected to the analysis
(Figure 8). As expected, the quantity of encapsulated phenolic substances was lower
in the case of FN@TiO2, 20% (wt) (Figure 8A) than for FN@SBA-15 material, 39% (wt)
(Figure 8B). Another observation from the thermal analyses is that the temperature at
which the polyphenol decomposition rate reached the maximum, 312 ◦C, was higher in the
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case of FN@SBA-15 (Figure 8B, black dash-dot curve) than 281 ◦C for FN@TiO2 (Figure 8A,
red dash-dot line), which could be explained by the bigger exposure of biologically active
compounds to oxidation in the case of their embedding in mesoporous titania since its
mesopores are interparticle pores, and the polyphenols were on the titania NPs’ surfaces,
unlike in the case of the SBA-15 matrix, which has cylindrical channels of mesopores.
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(B) performed in air flow.

The sharp decrease in the porosity of materials with encapsulated extract demonstrated
the presence of phytocompounds in the mesopores of the inorganic matrices (Figure S4). In
the case of FN@SBA-15 material, the values of SBET and V decreased from 984 m2/g and
1.31 cm3/g, respectively, for SBA-15, to 209 m2/g and 0.36 cm3/g, respectively. In the case
of FN@TiO2, practically all pores were filled with FN extract (V = 0.01 cm3/g), though the
extract quantity was lower than in the case of FN@SBA-15.

FTIR spectroscopy highlighted the presence of phenolic components in the spectra of
the FN extract and FN@SBA-15 and FN@TiO2 samples (Figure 9A) through the presence of
the asymmetric stretching vibrations of C=O bonds belonging to the carboxylic groups at
1726 cm−1, asymmetric and symmetric stretching bands of C–H bonds of methylene groups
at 2929 cm−1 and 2843 cm−1, respectively. The stretching vibration of C–O bonds overlapped
with the deformation band of O–H groups linked on aromatic rings from 1391 cm−1 and
the vibration mode of aromatic C–H bonds at 1100 cm−1, the last band being superimposed
the very intense asymmetrical stretching band of the Si–O–Si bonds of the SBA-15 matrix in
the case of FN@SBA-15 material. In all the spectra, including that of mesoporous inorganic
matrices, the broad band with the minimum transmittance at 3470 cm−1 due to hydroxyl
groups, which belong either to the phenolic substances or the inorganic matrices, and the
bending vibration of adsorbed water at 1627 cm−1 can be observed [27].
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Figure 9. FTIR spectra of FN extract, SBA-15 matrix, FN@SBA-15 material, TiO2 support, and
FN@TiO2 sample (A). Radical scavenging activity assessed by DPPH assay for FN@TiO2 and FN@
SBA-15 in comparison with FN extract alone and corresponding inorganic matrices, TiO2 and SBA-15,
in the same quantities as in the FN-loaded supports (B).
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Spectrometric determinations of radical scavenging activity (DPPH method) for mate-
rials containing FN extract showed the preservation of this property over time (Figure 9B).
The antioxidant potential was also determined for the FN extract after three months of
storage in dark conditions, in a refrigerator, and for mesoporous inorganic matrices, which
showed no contribution to the radical scavenging potential of FN@TiO2 and FN@SBA-15.

2.4. Assessment of Cytocompatibility of the Polyphenolic Extract, Materials Containing Extract,
and Corresponding Mesoporous Supports

The cytocompatibility of FN and PN extracts, FN extract encapsulated in SBA-15 and
TiO2, and the corresponding inorganic materials was assessed on NCTC clone L929 murine
fibroblasts cell line at 24 h and 48 h incubation times using MTT assay. All samples were
tested in triplicate.

Both extracts, FN and PN, are biocompatible at concentrations lower than 300 µg/mL,
either after 24 h or 48 h of incubation. PN extract showed lower cytotoxicity than FN extract
at 700 µg/mL concentration, and in the case of FN extract, cell viability decreased to 35.86%
at 24 h and 19.47% after 48 h, while for PN extract, cytotoxic effects were observed only after
48 h of incubation (69.17% cell viability). Cell viability decreased sharply at a treatment
dose of 1000 µg/mL for both FN and PN extracts to 15.64% and 47.71%, respectively after
24 h and 7.59% and 15.64%, respectively, after 48 h of incubation (Figure 10A).
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extracts (A) and FN extract encapsulated in TiO2 (B) and SBA-15 matrices compared to the corre-
sponding supports, TiO2 and SBA-15, assessed using MTT assay (C). Results are presented as average
value of three replicates ± standard deviation (n = 3). # (p < 0.05) shows significant differences
between the fibroblasts incubated with samples in comparison to control. Treatments with samples
of cells are not considered toxic when cell viability is higher than 80%.

The FN extract encapsulated in TiO2 NPs, FN@TiO2, showed biocompatible behavior
for all tested concentrations, between 50 µg/mL and 700 µg/mL, with cell viability val-
ues in the range of 104.22–82.89%. TiO2 NPs also showed no cytotoxic effect on NCTC
fibroblasts at concentrations up to 700 µg/mL (Figure 10B). FN@SBA-15 showed cytocom-
patibility at concentrations in the range of 50–300 µg/mL after both incubation periods.
At high concentrations, 500 and 700 µg/mL of FN@SBA-15, the cell viability decreased
to 75.95% and 72.91%, respectively. SBA-15 support presents no cytotoxicity at the tested
concentrations (Figure 10C).

3. Discussion

Antioxidants are very important for cellular health because they help neutralize free
radicals and thus can prevent various inflammation-based diseases. In recent years, many
interdisciplinary research groups have studied their biological effects on human health,
their recovery from various sources, including plant waste [28–30], and how to preserve or
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enhance their effectiveness by developing new approaches, such as including antioxidants
in various formulations with improved features and benefits [26,31,32].

Grape pomace, a by-product from wine production, is a source of antioxidants and
antimicrobial agents, especially against foodborne bacteria strains, which can be used in
various fields, such as fertilizers, the food industry, cosmetics, and supplements, after
their recovery by solid–liquid extraction [33–35]. Grape pomace extracts can improve the
antibacterial activity of antibiotics because they inhibit biofilm formation and could be
used in the treatment of resistant-biofilm-related infections [35]. Until now, this valuable
source of antioxidants and antimicrobials has not been very well exploited.

We valorized fermented dried grape marc from two cultivars, Feteasca Neagra and
Pinot Noir from Constanta County, Romania, collected in two years, by preparing extracts
through conventional extraction technique in non-toxic solvents: 50% ethanol aqueous
solution and absolute ethanol for further application in cosmetics. We observed that the
quantity of phenolic compounds is very different depending on the variety and the harvest
year of the grapes. The extracts obtained from Feteasca Neagra were generally richer in
polyphenols and had more total anthocyanins expressed per mass of dried extract than
those prepared from Pinot Noir GM, results that are in agreement with the data reported
by Balea et al. [16].

Thus, the richest extract in bioactive compounds obtained in this study was the
hydroethanolic FN extract with 39.00 ± 0.17 mg GA/g GM, followed by hydroethanolic
PN extract with 16.34 ± 0.41 mg GA/g GM, with the TP index values being in the domain
of total phenolic content reported by Constantin et al. [36] for the extracts prepared in
water at 28 ◦C from Feteasca Neagra grapes, Galati County, Romania (0.77–83.62 mg/g
dried mass). They reported the following distribution of phenolic compounds: 3%, 1%,
and 96% in grape pulp, skins, and seeds, respectively. This study and previous results
demonstrated that the climatic conditions and cultivar strongly influence the content of
phenolic compounds in not only wines but also in fermented GM, and thus, if exploited,
the quality of extracts. For instance, we reported for a polyphenolic extract prepared in
the same way as the PN sample in this study, but using GM collected in 2020, values for
TP of 43.16 mgGA/g GM and RSA of 689.09 mgTE/g extract, which are 2.6 and 2.2 times
higher, respectively, than those of the hydroethanolic PN extract from reference [26]. If we
compare the ethanolic FN(E) extract with our previous results from an extract obtained
from the same GM variety but collected in 2017, the TP index and antioxidant potential are
3.9 and 3.4 times lower for the FN(E) sample than for the FN extract (GM from 2017) [23].
Previously, we also prepared and characterized Cabernet Sauvignon extract for which the
TP index was 265.21 ± 4.97 mg GA/g extract and the RSA value was 344 mgTE/g extract
(DPPH assay), with both values being lower than those of FN extract (295.46 mg GA/g
extract and 566.00 mgTE/g extract, respectively) discussed here.

With respect to the TA index expressed as CG equivalents per mass of dry extract,
all the extracts prepared from Feteasca Neagra had higher TA index values, especially
the ethanolic extract (20.42 for FN(E) vs. 7.35 and 3.56 mgCG/g for FN and FN(E-W),
respectively) than extracts obtained from Pinot Noir (2.86 and 4.29 mgCG/g for PN(E)
and PN, respectively). Also, for the Pinot Noir extracts, for the preparation of which we
used GM collected in 2020, we determined a lower value of the TA index, 4.52 mgCG/g
extract, [23] than for Feteasca Neagra extracts.

Nevertheless, bioactive substances derived from plants are susceptible to degrada-
tion. Hence, one approach to enhance their chemical stability and thus their shelf-life is
to encapsulate bioactive compounds in various carriers. In this regard, Castro et al. [37]
proposed formulations for a grape seed extract using microdispersion based on soy lecithin
and pectin with a very good yield of the entrapment and controlled delivery of the extract
polyphenols. Raschip et al. [38] reported the embedding of Feteasca Neagra and Merlot
extracts in ice-templated 3D xanthan–PVA composites. They showed that the polymeric
films containing Feteasca Neagra extract presented a high antioxidant potential, while the
Merlot extract embedded in xanthan–PVA composites exhibited a better antibacterial poten-
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tial against Gram-positive or Gram-negative bacterial strains than the samples containing
FN extract or samples without extract. By microencapsulation through the freeze-drying
method of grape pomace extracts in sodium alginate with gum Arabic coated with gelatin,
an improved in vitro bioaccessibility of polyphenols was demonstrated [39].

Reports on polyphenols, like quercetin- or resveratrol-based delivery systems for can-
cer therapy have emerged in recent years [40–42]. For example, functional lipid–polymer
nanoparticles with high biocompatibility have been developed as carriers for bioactive
substances from Curcuma zedoaria and Platycodon grandiflorum to treat breast cancer metas-
tases [43], in addition to quercetin-loaded lipid nanoparticles with improved release prop-
erties for anticancer therapy, thus mitigating the side-effects of chemotherapy [40].

Among carriers, mesoporous inorganic materials, especially silica, have been used for
embedding various extracts, the resulting extract-loaded materials exhibiting improved
stability, radical scavenging potential or anti-inflammatory properties, and desirable bio-
compatibility [23,44,45]. Usually, mesoporous silica nanoparticles increase the solubility of
poorly water-soluble bioactive compounds due to their nanoconfinement in mesopores in
amorphous state, improving their bioavailability [46].

In our previous papers, we showed the improved properties of the extracts when
loaded on supports based on mesoporous MCM-41 silica, depending on the surface func-
tionalization [47,48]. For example, we reported that the hydroethanolic Pinot Noir extract
(GM collected in 2020) presented better anti-inflammatory properties when encapsulated in
fucoidan-coated aminopropyl functionalized MCM-41 silica than that of corresponding free
extract or reference drugs [26]. We carried out a stability study of polyphenolic extract from
wild bilberries free and encapsulated in mesoporous silica. During the accelerated degrada-
tion study, the free extract lost a part of the polyphenols, while when it was incorporated in
mesoporous silica, better stability in time was observed [48].

Herein, for the first time, we tested mesoporous SBA-15 silica as a carrier for phenolic
compounds, which has a larger pore volume and wider pore diameter than MCM-41. We
demonstrated that SBA-15 silica has desirable cytocompatibility, being suitable for use as a
matrix for the incorporation of bioactive compounds (with the FN@SBA-15 sample having
a high content of polyphenols, 39% wt.). The FN@SBA-15 formulation showed non-toxic
effects up to 300 µg/mL on NCTC fibroblast cells (Figure 10C). Also, the encapsulation
of FN extract in SBA-15 support did not alter the radical scavenging properties of the
extract (Figure 9B). Also, liposomal formulations of sea buckthorn and grape pomace
extracts showed an enhanced antioxidant activity of extracts due to the protective effect of
liposomes against acidic degradation [49].

The use of titania NPs is approved by the Food and Drug Administration and the EU
Commission in cosmetics and sunscreen formulations [11,50]. The challenge in using TiO2
NPs for biomedical applications is related to their poor solubility in water and biological
fluids, but titania can be used for topical applications.

Previously, we reported the use of titania NPs as support for common sage and wild
thyme extracts [51]. TiO2 NPs, used to incorporate these extracts, were obtained by sol-gel
method, followed by an aging step of the reaction mixture at reflux using Pluronic P123 as a
template agent. Finally, titania was calcined at 450 ◦C. In this study, we report the synthesis of
a series of titania nanoparticles synthesized through the sol-gel technique combined with a
solvothermal treatment, showing the parameters that influence the textural features of NPs.

We demonstrated that both Pluronic P123 and Pluronic F127 can be used for mesopore
formation. By using this method, we obtained smaller pore diameters ranging from 3.7 to
7.4 nm versus 10.5 nm and higher SBET in the range of 126–312 m2/g (Table 2) compared
to 115 m2/g [51], 112 m2/g for a sample also prepared in the presence of Pluronic F127 in
ethanol [52], or 39 m2/g [53]. The use of Pluronic F127 led to less aggregated TiO2 NPs,
the formed spherical agglomerates having nanometric size (100–400 nm). In this study,
we selected the titania sample obtained in the presence of F127 copolymer, which was
thermally treated at 400 ◦C/3 h to encapsulate the hydroethanolic FN sample, the resulting
sample being denoted as FN@TiO2. The biocompatibility of titania support and FN@TiO2
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was assessed on NCTC fibroblasts, and the results demonstrated no cytotoxic effects of
either titania NPs or the FN@TiO2 sample for all tested concentrations, in the range of
50–700 µg/mL after 24 h and 48 h incubation time periods (Figure 10B). As in the case
of FN@SBA-15 sample, titania nanoparticles containing FN extract preserved the radical
scavenging capacity of the extract (Figure 9B). Our findings are in agreement with the
literature data that showed a good in vitro biocompatibility of titania nanostructures on
various cell lines [54–56].

Regarding the morphology of titania NPs prepared in the presence of both Pluronic
F127 and P123, small crystals of 10 nm average size with polyhedral shape were obtained.
Samsudin et al. observed that Pluronic F127 acts as a crystallographic controlling agent
favoring the formation of {0 0 1} anatase facet that finally led to truncated octahedral
bipyramidal particles, while the {1 0 1} facets led to the formation of almost spherical
particles [53]. During TEM investigation, a similar particles shape was observed of titania
NPs synthesized in the presence of either Pluronic F127 or Pluronic P123, so both triblock
copolymers probably favor the formation of the {0 0 1} anatase facet.

4. Materials and Methods

All chemicals utilized for the red GM polyphenolic extracts preparation and analyses,
as well as for the synthesis of the mesoporous inorganic matrices, are provided in the
Supplementary Materials.

4.1. Obtaining of Mesoporous Inorganic Matrices

The first step of the synthesis of titania nanoparticles consisted of dissolving 1.25 g
of the structure directing agent (Pluronic P123 or Pluronic F127) in 50 mL of solvent
(2-propanol or n-butanol) at 40 ◦C, under magnetic stirring. Then, 1.5 mL of glacial acetic
acid were added dropwise to slow down the hydrolysis reaction of the titanium precursor.
A volume of Ti(IV) isopropoxide or Ti(IV) n-butoxide was poured into the reaction mixture
kept at 40 ◦C, under magnetic stirring. After 1 h, in the resulting solution, 1 mL of
deionized water was dropped to promote the hydrolysis and condensation reactions of
titanium alkoxide. The reaction mixture was maintained under magnetic stirring at 40 ◦C
for 24 h. Then, the resulting mixture was transferred into a reactor under autogenous
pressure for a solvothermal treatment carried out at 100 ◦C for 24 h. After cooling, the solid
was separated by centrifugation, washed with corresponding solvent, water, and ethanol,
and then dried at 60 ◦C. The removal of the structure directing agent was carried out by
Soxhlet extraction in ethanol for 24 h. Then, a part of each sample was calcined at 400 ◦C
for 3 h with a heating rate of 0.5 ◦C/min.

Mesoporous SBA-15 silica was synthesized by an established procedure [57] starting
with 2.5 g of Pluronic P123 dissolved at room temperature in 92.8 mL aqueous solution of
hydrochloric acid (prepared by adding 13.8 mL HCl 37% (wt) in 79 mL deionized water),
and then tetraethyl orthosilicate (5.9 mL) was added to the solution of the structure directing
agent. The resulting mixture was stirred at 35 ◦C for 24 h and then was solvothermally
treated in statical conditions under autogenous pressure for another 24 h at 100 ◦C. The
solid was filtered off, washed 3 times with 25 mL ethanol and 3 times with 50 mL deionized
water, and dried at room temperature overnight. Finally, SBA-15 silica was thermally
treated at 550 ◦C for 5 h.

4.2. Materials Characterization

The materials were investigated through X-ray diffraction in the range of 2θ = 10–70◦

and at a scanning rate of 2◦/min and 0.01◦ step (Miniflex 2, Rigaku Holdings Corporation,
Tokyo, Japan), FTIR spectroscopy using 64 scans, a resolution of 2 cm−1 in 4000–400
cm−1 range (KBr pellets technique; Bruker Tensor 27, Bruker Corporation Optik GmbH,
Bremen, Germany), thermogravimetric analysis coupled with differential thermal analysis
carried out in air flow (50 mL/min), with a heating rate of 10◦/min in the temperature
range of 20−850 ◦C (DTA-TG, Mettler Toledo GA/SDTA851e, Greifensee, Switzerland),
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scanning electron microscopy (Tescan Vega 3 LMH microscope, Brno, Czech Republic), and
transmission electron microscopy (FEI TECNAI F30 G2 S-TWIN, Hillsboro, OR, USA), as
well as N2 adsorption–desorption isotherms recorded at liquid nitrogen temperature after
outgassing of the samples at 120 ◦C for 17 h (Quantachrome Autosorb iQ2, Quantachrome
Instruments, Boynton Beach, FL, USA).

4.3. Extracts Preparation

The grape marc (GM) samples were collected after fermentation stage during wine-
making process. The fermented GM was dried in fresh air, in a thin layer, at ambient
temperature on metallic mesh. Every 24 h, the GM was aerated by turning to facilitate the
evaporation of water and ethylic alcohol and to avoid the development of bacteria and
fungi because of the moisture. The dry GM was grounded in a food processor to increase
the contact surface between vegetal waste and solvent.

For all extracts, a maceration step of 18 h was carried out at room temperature, under
magnetic stirring before the three steps of 60 min, performed by refluxing the mixture
containing red GM (3 g) and solvent (18 mL), adding on each stage a new solvent volume,
and keeping the same ratio between the vegetal waste mass and solvent volume (1/6 g/mL).
All three fractions obtained after extraction were put together, and then the solvent was
completely evaporated using a DLAB RE100-Pro rotary evaporator (DLAB SCIENTIFIC
Co., Ltd., Beijing, China).

4.4. Characterization of Polyphenolic Extracts

Total polyphenols index, total flavonoids content, total amount of anthocyanins,
and radical scavenging potential (DPPH and ABTS assays) were determined using UV-
vis spectroscopy (Shimadzu UV-1800 spectrophotometer, Shimadzu Corporation, Kyoto,
Japan), the methods being described in reference [23]. The components of the extracts
from twenty-three standard substances (see Supplementary Materials) were quantified by
reverse-phase HPLC-PDA (Shimadzu Nexera X2 with SPD-M30A detector) operating in
the wavelength range of 250–600 nm and using a Nucleoshell® C18 column 4.6 × 100 mm
(2.7 µm) (Macherey-Nagel GmbH & Co. KG, Düren, Germany). The details of the HPLC
method were provided elsewhere [23].

4.5. Cytocompatibility Evaluation

The cytocompatibility of FN and PN extracts, as well as of nanoparticles containing
FN extract compared to that of mesoporous inorganic matrices in which FN extract was
incorporated, was evaluated on NCTC clone L929 murine fibroblasts obtained from the
European Collection of Authenticated Cell Cultures. The samples were sterilized under
UV irradiation for 2 h, and then stock suspensions/solutions of 1 mg/mL were prepared in
culture medium, which contained 10% fetal bovine serum and 1% antibiotics. The stock
solutions/suspensions were incubated at 37 ◦C for 24 h in humid atmosphere containing
5% carbon dioxide. After 24 h, the stock suspensions were dispersed in ultrasounds for at
least 1 h, and the extract solutions were filtered off through 0.22 µm Millipore membrane.
Mouse NCTC fibroblast cells were seeded in sterile 96-well culture plates (4 × 104 cells/mL)
in culture medium. Fibroblasts were treated with the tested samples and incubated for
24 h and 48 h. The in vitro testing of biocompatibility of the samples was carried out at the
following concentrations: 100, 300, 700, and 1000 µg/mL for the free FN and PN extracts
and 50, 100, 200, 300, 500, and 700 µg/mL for encapsulated FN extract in TiO2 NPs and
SBA-15 silica (FN@TiO2 and FN@SBA-15) and corresponding supports (TiO2 and SBA-15).
The determination of cell viability (MTT assay, Sigma-Aldrich, Merck Company, Darmstadt,
Germany) was performed after 24 h and 48 h incubation periods of the cells with samples.
The experiments were performed according to the procedure described in reference [58].
The spectrophotometric determinations were performed on a Berthold Mithras LB 940
Multimode Plate Reader (Berthold Technologies GmbH & Co., Bad Wildbad, Germany),
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at 570 nm wavelength. Untreated cells were considered the control with 100% cellular
viability, based on which were calculated the cell viability for the samples.

Experiments were performed in triplicate, and the results were presented as mean
± standard deviation. Student’s t-test was performed for the statistical analysis, using
two-tailed distribution and two-sample equal variance, in Microsoft 365 Excel software.
Statistical differences were considered for p < 0.05.

5. Conclusions

We report the parameters that influenced the morphology of mesoporous titania NPs
synthesized by sol-gel method combined with solvothermal treatment. The use of Pluronic
F127 as a porogenic agent in the synthesis showed the formation of less agglomerated
TiO2 nanoparticles based on SEM and TEM investigation with higher SBET and lower pore
diameter (153 m2/g vs. 126 m2/g and 5.4 nm vs. 7.4 nm, respectively) than in the case of
Pluronic P123.

We determined the chemical profiles of several extracts prepared from two types of
red GM (Feteasca Neagra and Pinot Noir), and we could conclude that it depended on
the cultivar and solvent. The extract with the best antioxidant properties, hydroethanolic
FN extract prepared from GM collected in 2019, was encapsulated in TiO2 NPs and com-
pared with the resulting material obtained by the incorporation of FN extract in SBA-15
silica support.

We have successfully obtained and characterized materials containing FN extract,
FN@TiO2, and FN@SBA-15, with desirable cytocompatibility on NCTC clone L929 murine
fibroblasts in the concentration range of 50–300 µg/mL after 24 h and 48 h of incubation
time and radical scavenging properties.

A long-term stability study for the FN extract alone and encapsulated in titania
nanoparticles must be performed to obtain data regarding shelf-life. Also, further in vivo
studies should be carried out for the safe use of the proposed extract-loaded nanoparticles
in skincare products.
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Abstract: Titania and silica have been recognized as potential drug delivery system (DDS) carriers.
For this application, controllable biocompatibility and the suppression of the initial burst are required,
which can be provided by a calcium phosphate (CP) coating. However, it is difficult to control the
morphology of a CP coating on the surface of carrier particles owing to the homogeneous nucleation of
CP. In this study, we report the development of a CP-coating method that homogeneously corresponds
to the shapes of silica–titania (SiTi) porous nanoparticles. We also demonstrate that controlled surface
roughness of CP coatings could be achieved in SBF using SiTi nanoparticles with a well-defined
spherical shape, a uniform size, and a tunable nanoporous structure. The precipitation of CP was
performed on mono-dispersed porous SiTi nanoparticles with different Si/Ti molar ratios and pore
sizes. The pore size distribution was found to significantly affect the CP coating in SBF immersion;
the surfaces of the nanoparticles with bimodal pore sizes of 0.7 and 1.1–1.2 nm became rough after
CP precipitation, while those with a unimodal pore size of 0.7 nm remained smooth, indicating that
these two pore sizes serve as different nucleation sites that lead to different surface morphologies.

Keywords: bioceramic nanoparticles; simulated body fluid; nanopore; CP precipitative coating;
silica–titania nanohybrid

1. Introduction

Various nanomaterials composed of bioinert ceramics have been synthesized for
use as artificial joints, implants, and drug delivery system (DDS) carriers [1,2]. In these
applications, a DDS carrier needs to fulfill many requisites, including not only the inherent
biocompatibility of bioceramic-based materials but also other properties including being of
a uniform shape, size, and size distribution and possessing high affinity for aqueous media
in order to form a stable suspension [3–5]. A sol–gel method based on the hydrolysis and
condensation of a metal alkoxide has been used to synthesize a variety of biocompatible
metal oxide nanoparticles with controlled morphologies, for which titania and silica have
been extensively studied [6–8]. For example, amorphous titania in nanotube form has
been investigated with respect to its use as a DDS carrier [9,10]. Since the surface of titania
exhibits a Zeta potential of −18 mV [11] in water (at pH 7.4), serious aggregate formation
can occur depending on the experimental conditions. By contrast, amorphous silica shows
a higher Zeta potential of −60 mV in water (at pH 7.4) [12], allowing for the formation of
a relatively stable suspension [13,14]. Although mixed oxide nanoparticles composed of
silica and titania (SiTi nanoparticles) [15] have been explored as another potential option,
their use also poses the problems such as biotoxicity due to the release of a silicate ion
elusion into the biological solution [16] and difficulty in controlling drug release owing to
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the initial burst [17,18]. Therefore, the surfaces of SiTi nanoparticles need to be properly
designed before being used for DDS applications.

Calcium phosphate (CP) coating has been developed as a technique to improve the
osteoconductivity of the surfaces of titanium implants [19–21]. The CP coating is thought
to suppress the initial burst of drug molecules [22], allowing them to be released gradually
over several weeks. This is due to the fact that the CP coating itself can act as a reservoir for
drug molecules, which slowly dissolve and diffuse over time as the coating degrades. The
general CP-coating methods are electrochemical deposition, sputtering, and plasma spray-
ing, which are performed under unphysiological conditions such as at high temperatures
to provide different chemical and crystalline states with respect to the bone hydroxyap-
atite [23–25], leading to lower bioactivity in vivo. The biomimetic method has attracted
attention due to its potential benefits. In this approach, CP is precipitated on particles in
simulated body fluid (SBF) under conditions that mimic the biological environment of a
living body [26,27]. Biomimetic CP synthesized under these conditions has been found
to be more bioactive than CP synthesized under higher-temperature conditions [28–30].
However, biomimetic CP has generally only been coated on flat substrates [31–35]. In the
case of nanoparticles, uniform nucleation occurs at different positions from the particle
surfaces due to their high curvature and lower ability to induce heterogeneous nucleation.
Therefore, a coating technique that adapts to the shapes of nanoparticles and provides a
uniform coating has not been developed.

In this study, we demonstrate that controlled surface roughness of CP coatings can be
achieved in SBF by using SiTi nanoparticles with a well-defined spherical shape, a uniform
size, and a tunable nanoporous structure (Scheme 1). We synthesized SiTi nanoparticles
using a microfluidic approach [15], which allowed us to design their size and shape so
that they were suitable for DDS, and used them as a scaffold for the CP coating. The SiTi
nanoparticles serve two critical functions in the SBF: they (1) provide CP nucleation sites
that promote the substitution of phosphate ions with silicate ions and (2) create nanopores
that induce the selective adsorption of hydrated ions in SBF. As described, the silicate
ions elute readily into biological fluids [36,37] and can be replaced by phosphate ions [38],
facilitating Ca2+ ion adsorption and subsequent CP nucleation. Moreover, the hydrated
ions in SBF, including Na+, K+, and Ca2+, can be adsorbed into the nanopores in their
hydrated states and their sizes differ from each other. We prove that SiTi nanoparticles
with tunable nanostructures can effectively function as an ion (molecular) sieve [39,40] that
enables the selective adsorption of Ca2+ from SBF, leading to the formation of CP coatings.
We also discuss the effect of nanopore sizes on the surface roughness of CP coatings.
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Scheme 1. Illustration of the CP precipitation process of the SiTi nanoparticles via immersion in SBF.
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2. Results and Discussion
2.1. Synthesis Result of XSiTi Nanoparticles

The Si/Ti molar ratios were measured via XRF and the values were X, and the sample
was named as XSiTi (X = 0, 0.1, 0.7, and 1.2). The FE-SEM images and size distributions of
the XSiTi nanoparticles are shown in Figure 1. All the SiTi nanoparticles exhibited spherical
and mono-dispersed states. The diameter of the particles was around 150–200 nm, which is
considered a size that does not induce cytotoxicity [41,42].
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Figure 1. FE-SEM images and particle size distributions of the SiTi nanoparticles.

The XRD patterns (Figure S1) of the XSiTi nanoparticles indicated that all the nanopar-
ticles were amorphous. Comparing the properties of these particles (e.g., particle shape,
particle size, and CV value) with those of previously reported particles [15], we confirmed
that they were identical and that equivalent particles were synthesized.

Figure 2 shows the N2 adsorption and desorption isotherms of the SiTi nanoparticles.
In the results regarding the specific surface area calculated using the αs-plot (Figure 2a),
it is evident that the surface area increased with the increase in the Si/Ti molar ratio.
According to the nanopore size distributions based on the MP (micropore) method in the
results regarding the XSiTi nanoparticles (Figure 2b,d), 0SiTi and 0.1SiTi exhibited bimodal
nanopore sizes of 0.7 and 1.1~1.2 nm, and 0.7SiTi and 1.2SiTi exhibited only monomodal
pores of 0.7 nm. The different nanopore sizes occurred due to the increase in the Si/Ti
molar ratio. We propose that the hydrated ions of SBF were potentially diffused and
adsorbed into the nanopores (Figure 2c,e). We suggest that nanopores 0SiTi and 0.1SiTi,
with pore sizes of 1.1~1.2 nm, enable the diffusion and adsorption of the hydrated Ca2+,
Na+, and K+ ions, while 0.7SiTi and 1.2SiTi, with a pore size of 0.7 nm, only allows for the
diffusion and adsorption of the hydrated Na+ and K+ ions. According to the nanopore size
distribution, 0SiTi and 0.1SiTi were defined as Group1.1, while 0.7SiTi and 1.2SiTi were
defined as Group0.7. By comparing these nanopore diameters with those of previously
reported particles [15], we confirmed that they are identical and that comparable particles
had been synthesized.

2.2. Results Regarding the SBF-Immersed SiTi Nanoparticles

The chemical element (Ca, Na, and K) amounts adsorbed by the SiTi nanoparticles
through immersion in SBF were evaluated via XRF (Figure 3). The adsorbed elements
increased with an increased immersion time. Referring to the results regarding the change
in the amount of Ca on the nanoparticles (Figure 3a), the amount in Group1.1 was clearly
larger than that in Group0.7 at the initial stage, indicating that Ca was preferentially
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adsorbed on the nanoparticles in Group1.1. By observing the amount changes of Na
and K adsorbed on the nanoparticles (Figure 3b,c), it is evident that those of Group0.7
were significantly larger than those in Group1.1 at the initial stage, indicating that Na
and K were preferentially adsorbed on the nanoparticles in Group0.7. These differences
are thought to be due to the difference in the nanopore sizes between Group1.1 and
Group0.7. The diameters of the hydrated ions that could diffuse and be adsorbed inside
the nanopores were determined as shown in Figure 2. The adsorption of Ca in Group1.1
reached equilibrium within 1 day of immersion, while the other ions in Group0.7 did not
reach equilibrium even after 3 days. In addition, most of the adsorption of Na and K for
Group0.7 reached equilibrium within 1 day of immersion, whereas that for Group1.1 did
not reach equilibrium until 3 days.
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Figure 3. Adsorbed amount changes of the chemical elements of (a) Ca, (b) Na, and (c) K on the SiTi
nanoparticles from SBF with immersion time.

The nucleation sites pertaining to the CP precipitation of SiTi nanoparticles immersed
in SBF are discussed in Figure 4. Figure 4a shows the FT-IR spectra of the change in
the absorbance band due to the OH group of the nanoparticles. The band intensity of
Group1.1 did not change after immersion, whereas Group0.7 showed an increase in band
intensity. The result of the change in the Si/Ti molar ratio of the nanoparticles after
immersion is shown in Figure 4b. Group1.1 did not change in terms of its Si/Ti molar ratio,
whereas Group0.7 showed a significant decrease, suggesting that the Si component was
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eluted from Group0.7 into SBF. Regarding the changes in the average particle sizes of the
nanoparticles following immersion (Figure 4c), all the nanoparticles showed a decrease
in the size, and a significant decrease was observed in Group0.7. Group1.1 containing
lower Si-content did not show a change, while Group0.7 with higher Si-content showed
a change, indicating that the Si component’s elution can induce CP precipitation. The
mechanism behind the CP nucleation in the precipitation on Group0.7 is suggested in
Figure 4d. Group0.7 preferentially absorbed the hydrated Na+ and K+ ions inside the
nanopores. The Si-components in Group0.7 were eluted as the silicate ions outside the
nanopores, and the phosphate ions interacting with the H2O component in SBF were
adsorbed into the eluted sites [38]. The intensity of the OH group of Group0.7 increased
through immersion in SBF due to the subsequent adsorption of the hydrated Ca2+ ions and
the consequent promotion of CP nucleation. Therefore, the outside nanopore surfaces are
considered the CP nucleation sites for Group0.7.
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Figure 4. (a) FT-IR spectra, (b) Si/Ti molar ratio, and (c) average particle size changes of the SiTi
nanoparticles with immersion time in SBF, and (d) illustrations of the possible interfacial reactions of
Group0.7 with the ions in SBF. Xd represents the immersion time of X days (X = 0, 1, 3, and 7).

In Figure 5, the characteristics of phosphate ion adsorption for the CP nucleation sites
on Group1.1 and Group0.7 are evaluated and discussed. According to the changes of the
absorption band generated by phosphate ions after immersion (Figure 5a), Group1.1 and
Group0.7 showed increases in the absorbance bands of the stretching vibrations due to
Ti–P–O [43], P–O, and P–OH bonds [44] at 1100, 1039–997, and 866–842 cm−1 following
immersion. For Group0.7, the bands produced by Si–O–Si [45] and Si–OH [46] at 1039–997
and 866–842 cm−1 were also included in the spectra, and the shapes were different from
those of Group1.1. The amount changes in the adsorbed phosphorous components of
Group1.1 and Group0.7 showed an increase in the amount after immersion (Figure 5b).
In particular, Group1.1 reached the adsorption equilibrium after approximately 1 day of
immersion, whereas Group0.7 showed a slower adsorption rate, suggesting that the CP
precipitate emerged at a relatively earlier stage in Group1.1 compared to that of Group0.7.
Figure 5c shows the possible illustrations of the nucleation sites of Group1.1 and Group0.7.
In Group1.1, the hydrated Ca2+ ions in addition to the Na+ and K+ ions were preferentially
diffused and absorbed inside the nanopores, which serve as sites for CP nucleation. In
Group0.7, the hydrated Na+ and K+ ions were preferentially diffused and absorbed inside
the nanopores, and the phosphate ions were replaced with the sites where the silicate ions
were eluted, suggesting that the outside of the nanopores serve as CP nucleation sites.

169



Inorganics 2023, 11, 235Inorganics 2023, 11, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 5. (a) FT-IR spectral changes of the SiTi nanoparticles with immersion time in SBF and (b) 
the adsorbed amount changes of phosphorus from SBF. (c) Illustrations of the possible calcium 
phosphate nucleation processes of Group1.1 and Group0.7. 

According to the FE-SEM images and particle size distributions of the SiTi nanopar-
ticles (Figure 6), even after immersion for 7 days, the particles still exhibited spherical 
shapes and mono-dispersed states, indicating a preserved particle size of approximately 
150–200 nm. In particular, Group1.1 exhibited rough surfaces, whereas Group0.7 retained 
smooth surfaces. These results show that CP was roughly precipitated on Group1.1 but 
was smoothly precipitated on Group0.7, indicating that a smooth CP coating was achieved 
using Group0.7. 

 
Figure 6. FE-SEM images and particle size distributions of the SiTi nanoparticles after immersion in 
SBF for 7 days. 

Figure 5. (a) FT-IR spectral changes of the SiTi nanoparticles with immersion time in SBF and (b) the
adsorbed amount changes of phosphorus from SBF. (c) Illustrations of the possible calcium phosphate
nucleation processes of Group1.1 and Group0.7.

According to the FE-SEM images and particle size distributions of the SiTi nanopar-
ticles (Figure 6), even after immersion for 7 days, the particles still exhibited spherical
shapes and mono-dispersed states, indicating a preserved particle size of approximately
150–200 nm. In particular, Group1.1 exhibited rough surfaces, whereas Group0.7 retained
smooth surfaces. These results show that CP was roughly precipitated on Group1.1 but
was smoothly precipitated on Group0.7, indicating that a smooth CP coating was achieved
using Group0.7.
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The elemental mapping results and TEM images of 0.1SiTi and 1.2SiTi after their immer-
sion are shown in Figure 7. The particle images (i.e., BF: STEM HAADF images) and shapes
(i.e., locations) of the chemical elements were similar between Group1.1 and Group0.7
(Figure 7a,d), indicating that a homogeneous CP precipitation on the surfaces could be
achieved by immersing the nanoparticles in SBF. The Ca signal for 0.1SiTi (Group1.1) was
weaker than that for 1.2SiTi (Group0.7), which is possibly due to the different CP nucleation
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mechanisms between Group1.1 and Group0.7 (as shown in Figure 5c). In Group1.1, the
hydrated Ca2+ ions in addition to the Na+ and K+ ions were preferentially diffused and
adsorbed inside the nanopores, which served as CP nucleation sites. The results suggested
that the number of nucleation sites in Group1.1 is smaller than that in Group0.7, indicating
a lower amount of the CP precipitation. The contrast of 0.1SiTi (Group1.1) was different
from that of 1.2SiTi (Group0.7), indicating the presence of rough surfaces due to the CP
precipitation of Group1.1 (Figure 7b,c,e,f).
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The αs plots of the SiTi nanoparticles after immersion in SBF are shown in Figure S2.
The changes in the specific surface area of the nanoparticles, which were determined based
on the aforementioned results, are shown in Figure 8. Group1.1 and Group0.7 showed a
decrease in the specific surface area following immersion, indicating the adsorption of the
ions inside the nanopores. In particular, Group1.1 showed a faster rate of decrease in surface
area compared with Group0.7 since nitrogen (N2) molecules could not enter the nanopores
where CP had effectively precipitated inside. Based on Figure 8, it can be observed that
Group1.1 presents a higher rate of reduction in external surface area determined from the αs-
plot, indicating that the effective precipitation of CP was due to pore blockage. As a result,
Group1.1 exhibits a higher concentration of adsorbed phosphorous (i.e., phosphate ions).
The lower reduction in the specific surface area in Group0.7 suggests lesser pore blockage
through calcium ion adsorption. Since the slight reduction in the surface area is attributed
to Na+ and K+ ions, it can be inferred that this reduction in surface area is less significant in
the present paper. Therefore, the distribution of pores in Group 1.1 is considered a random
array shape. Moreover, the peaks of Group1.1 with bimodal distributions decreased after
immersion (Figure S3). The nanopores of 0SiTi at 1.2 nm decreased to 1.0 nm, while the
nanopores of 0.1SiTi at 1.1 nm decreased to 0.9 nm. Figure S4 shows the N2 adsorption
and desorption isotherms during immersion. According to a previous report [47], the
isotherm type of Group1.1 was type IV before immersion, which changed to type I after
immersion. The isotherm of Group0.7 remained type I after SBF immersion, indicating
that the nanopore structures in Group1.1 were preserved upon their immersion. Regarding
pore size distribution, Group1.1 shows bimodal shapes in Figure S3. It was suggested that
pore blockage in the 1.1 nm sized particles of Group1.1 would occur, whereas the pores at
0.7 nm remained unblocked, thereby maintaining microporous structures. After immersion,
the adsorption isotherm of Group1.1 in SBF was changed such that is similar in shape to
that of Group0.7 (Figure S4).
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Figure 8. Specific surface area changes of the SiTi nanoparticles with immersion time in SBF. The
reduction percentages in the surface areas of 0SiTi, 0.1SiTi, 0.7SiTi, and 1.2SiTi were 50, 46, 26,
and 38%.

Accoring to the XRD pattern results, after their immersion in SBF for 14 days, Group1.1
and Group0.7 remained amorphous (Figure S5). All of the nanoparticles showed an
amorphous calcium phosphate (ACP) halo peak at 2θ = 30◦, indicating the precipitation of
ACP on their surfaces.

2.3. Mechanism of ACP Precipitation on XSiTi Nanoparticles after Immersion

Based on the above results and discussion, the mechanisms of ACP precipitation in
Group1.1 and Group0.7 are shown in Scheme 2. Regarding Group1.1, the Ca2+ ions were
diffused and adsorbed inside the nanopores after immersion within one day. The Ca2+ ions
inside the nanopores reacted with the phosphate ions in SBF, and the nanopores became
the ACP nucleation sites, leading to rough ACP precipitation. For Group0.7, only the Na+

and K+ ions were diffused and adsorbed inside the nanopores after immersion for one
day. The phosphate ions exchanged with the eluted silicate ions outside the nanopores and
became the ACP nucleation sites. Therefore, it was determined that the ACP precipitation
state was smooth without changing the surface morphology of Group0.7.
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3. Materials and Methods
3.1. Chemicals

TEOS (C8H20O4Si: CAS No. 78-10-4) and TTIP (C12H28O4Ti: CAS No. 546-68-9)
were purchased from Tokyo Chemical Industry Co., Ltd. 2-Propanol (IPA, CAS No.
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67-63-0), hydrochloric acid (HCl, 1 N, CAS No. 7647-01-0), ethanol (EtOH, 99.5 vol
%, CAS No. 64-17-5), tris-hydroxymethylaminomethane (Tris, C4H11NO3, CAS No. 77-
86-1), sodium chloride (NaCl, CAS No. 7647-14-5), potassium chloride (KCl, CAS No.
7447-40-7), dipotassium hydrogenphosphate (K2HPO4, CAS No. 7758-11-4), magnesium
chloride hexahydrate (MgCl2·6H2O, CAS No. 7791-18-6), calcium chloride (CaCl2, CAS
No. 10043-52-4), and sodium sulfate (Na2SO4, CAS No. 7757-82-6) were purchased from
FUJIFILM Wako Pure Chemical Co., Ltd. Sodium hydrogen carbonate (NaHCO3, CAS
No. 144-55-8) was purchased from Nacalai Tesque Co., Ltd. Octadecylamine (ODA,
CH3(CH2)17NH2, CAS No. 124-30-1) was purchased from Sigma Aldrich Co., Ltd. All
reagents are unpurified.

3.2. Synthesis
3.2.1. Synthesis of SiTi Nanoparticles

In a previous report [15], SiTi nanoparticles were synthesized via microfluidic syn-
thesis. Initially, three solutions (A–C) were prepared. Volumes of 1.63 mL of TTIP and 0,
0.187, 1.705, and 15.34 mL of TEOS were added to solution A to form Si/Ti molar ratios
of 0, 0.15, 1.4, and 12, respectively, and 43.30, 43.11, 41.60, and 27.96 mL volumes of IPA
were added according to the ratios. Solution B was prepared by mixing 44.60 mL of IPA
and 0.277 mL of ultrapure water. Solution C was prepared by mixing 236.1 mL of IPA,
3.00 mL of ultrapure water, and 0.205 g of ODA. Solutions A and B were then mixed and
reacted in a microreactor to generate nucleation via a sol–gel process, and the reaction
solution was dropped into Solution C at a flow rate of 60 mL/min at 1000 rpm and left to
grow the particles for 24 h under the room temperature. The liquid portion was removed
via centrifugation, washed with ethanol and ultrapure water, and then dried at 60 ◦C for
24 h to obtain the SiTi nanoparticles with ODA (SiTi-ODA). Next, 10.2 mL of 1 N HCl and
150 mL of ethanol were added into 1 g of the dried SiTi-ODA, and the mixture was stirred
at 700 rpm for 3 h at room temperature to remove ODA through solvent extraction. The
solid phase was then removed via centrifugation and washed once with ethanol and once
with ultrapure water. The particles were dried at 60 ◦C for 24 h to obtain nanoporous
SiTi nanoparticles.

3.2.2. Immersion of SiTi Nanoparticles into SBF

The 1.0 SBF (Na+, 142 mM; K+, 5.0 mM; Mg2+, 1.5 mM; Ca2+, 2.5 mM; Cl–, 148.8 mM;
HCO3

–, 4.2 mM; HPO4
2–, 1.0 mM; SO4

2–, 0.5 mM; and Tris, 50 mM) was prepared according
to the method provided in a previous report [48], and the pH value was adjusted to 7.4 with
HCl. Then, 0.5 SBF and 1.5 SBF were prepared at 0.5 and 1.5 times the inorganic ion
concentrations of 1.0 SBF. After the XSiTi nanoparticles were added to 0.5 SBF, the pH value
was adjusted to 8.60 with Tris and kept at 37 ◦C for 1 day. The particles were then immersed
in 1.5 SBF for 7 days. The solid phase was removed via centrifugation and dried at 37 ◦C
for 24 h to obtain CP-coated SiTi nanoparticles.

3.3. Characterization

The morphologies were observed on a carbonblack-coated Cu grid using a field
emission scanning electron microscope (FE-SEM: HITACHI Co., Ltd., SU-8230) at an ac-
celerating voltage of 200 kV; the vertical size, side size, and particle size distributions of
the SiTi nanoparticles’ shapes were calculated by counting 150 particles, and their average
(Ave.) and coefficient of variation (Cv.) values were also calculated. Size distributions of the
SiTi nanoparticle images obtained through FE-SEM were calculated by randomly selecting
150 particles.

X-ray diffraction (XRD) patterns were obtained using a powder X-ray diffractometer
(Rigaku Co., Ltd., Smart Lab) with CuKα radiation (λ = 0.15418 nm), a voltage of 40 kV,
and a current of 200 mA.

Specific surface area and pore size distribution determined via N2 adsorption and
desorption isotherms were measured at −196 ◦C with a BELSORP-Mini II instrument
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(Microtrac BEL Co., Ltd.) to estimate the total surface areas. Prior to measurement, 100 mg
of each sample was degassed and pretreated at 80 ◦C under a vacuum. The following
methods were used to analyze the nanopores. The specific surface area was evaluated
using the αs-plots [49], and the pore size distribution was determined using micropore
analysis (MP). Furthermore, t-plots were used to calculate the specific surface area inside
the pores and the adsorbed layers’ thickness [50,51]; then, the pore volume was obtained.
In this study, the Harkins−Jula equation representing the standard t-curve was used to
investigate the standard isotherm. This curve is one of the most commonly used MP
methods. Pore size was defined as dp, which was plotted against dVp/dlog dp to show
the pore size distribution.

Elemental composition was evaluated using an X-ray fluorescence analyzer (XRF: ZSX
Primus II, Rigaku Co., Ltd.). XRF analysis was performed on sample powders in the
state of pellets, which were pressurized and molded without dilution. The fundamental
parameter method was conducted using software for semi-quantitative analysis (EZ Scan
Program, Rigaku Co., Ltd.). Specifically, the amount of each element (Ca, Na, K, and P)
adsorbed from SBF was detected and then evaluated in terms of mmol·(mg of sample)–1 on
a semi-quantitative basis.

Infrared absorption spectra were measured using a Fourier transform infrared spec-
trometer (FT-IR: FT/IR-4600, Japan Spectroscopic Co., Ltd.) operating in the wavenumber
range 4000–500 cm–1 with a KBr background, 128 accumulation times, and a spectral reso-
lution of 4 cm–1. FT-IR spectra were measured using KBr powder, and all weights were
determined with 49 mg of KBr and 1 mg of sample. All the spectra were recorded after
subtracting the background spectrum of KBr.

Transmission electron microscopy (TEM) was performed using a JEOL JEM-2100F
transmission electron microscope. Scanning TEM high-angle annular dark-field
(STEM−HAADF) images and elemental mapping energy-dispersive X-ray (EDX) spectroscopy
images were recorded using a JEM-2100F and a JED-2300 instrument (EX-24200M1G2T, JEOL
Ltd.) at an accelerating voltage of 200 kV. The sample suspension was dropped onto a Cu
grid (a high-resolution carbon substrate on STEM 100CuP grids, Okenshoji Co., Ltd.), and
the grids were dried under vacuum for a few days before each measurement. STEM and
EDS elemental mapping (Ca, P, Si, and Ti) images of the SiTi nanoparticles were taken after
the nanoparticles’ immersion in SBF for 7 days. The detected energies for Ca(K), P(K), Si(K),
and Ti(K) were 3.69, 2.01, 1.74, and 4.52 keV, respectively.

4. Conclusions

We established a CP-coating method that homogeneously corresponds to the shapes
of SiTi nanoparticles. CP precipitation was performed on mono-dispersed nanoporous
SiTi nanoparticles with different Si/Ti molar ratios and pore sizes. The pore size distri-
bution was found to significantly affect the CP coating in SBF immersion; the surfaces of
the nanoparticles with bimodal pore sizes of 0.7 and 1.1~1.2 nm became rough after CP
precipitation, while those with unimodal pore sizes of 0.7 nm remained smooth, indicating
that these two pore sizes work as different nucleation sites that lead to different surface
morphologies. These CP-coated SiTi nanoparticles could improve osteoconductivity while
retaining the properties of SiTi nanoparticles, which we believe may be suitable for use in
the DDS carriers in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11060235/s1, Scheme S1: XRD patterns of the SiTi
nanoparticles.; Figure S2: αs-plots of the SiTi nanoparticles with the immersion time Xd (X days,
X=0, 1, 3, 7) in SBF; Figure S3: The MP pore size distribution of SiTi nanoparticles with the immersion
time in SBF; Figure S4: N2 adsorption (close marks) and desorption (open marks) isotherms of the
SiTi nanoparticles with the immersion time in SBF; Figure S5: XRD patterns of the SiTi nanoparticles
at the immersion time in SBF for 14 days.
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Abstract: Bioactive glasses in the CaO–MgO–Na2O–P2O5–SiO2–CaF2 system are highly promising
materials for bone and dental restorative applications. Furthermore, if thermally treated, they can
crystallize into diopside–fluorapatite–wollastonite glass-ceramics (GCs), which exhibit appealing
properties in terms of mechanical behaviour and overall bone-regenerative potential. In this review,
we describe and critically discuss the genesis, development, properties and applications of bioactive
glass “1d” and its relevant GC derivative products, which can be considered a good example of
success cases in this class of SiO2/CaO-based biocompatible materials. Bioactive glass 1d can be
produced by melt-quenching in the form of powder or monolithic pieces, and was also used to
prepare injectable pastes and three-dimensional porous scaffolds. Over the past 15 years, it was
investigated by the authors of this article in a number of in vitro, in vivo (with animals) and clinical
studies, proving to be a great option for hard tissue engineering applications.

Keywords: bioactive glass; glass-ceramic; oxide system; diopside; fluorapatite; wollastonite; bone
regeneration

1. Introduction

The first bioactive glass composition, trade named as 45S5 Bioglass®, was designed
by Larry Hench [1] in the early 1970s and addressed to bone replacement applications.
After the invention of 45S5 glass, many other bioactive glasses have been reported for
various medical applications like drug delivery [2], cancer treatment [3] or even soft tissue
applications for organ repair [4]. The original 45S5 composition (45SiO2-24.5CaO-24.5Na2O-
6P2O5 in wt.%) is based on silica (SiO2) as the main glass-forming oxide and could create
bonds with the living bone after in vivo implantations. A sequence of 11 reaction steps is
involved in the bonding process of silicate bioactive glasses to living tissue [5], where the
steps 1 to 5 are key for the formation of a hydroxyapatite-like layer on the surface of glasses.

Biomedical glasses are conventionally classified as “bioactive” based on these two
mechanisms: (i) the formation of a calcium phosphate (hydroxyapatite-like) layer on the
surface of the glass when it dissolves in a physiological environment (also in vitro in
simulated body fluid (SBF)), and (ii) the release of biologically active ions during in vitro
and in vivo testing. Hence, bioactive silicate glasses are both osteoconductive (mechanism
(i)) and osteoinductive (mechanism (ii)). The interaction of bioactive glass surfaces with
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body fluids begins with an exchange of ions that leads to an increment of the pH in
the medium, resulting in the development of a SiO2-rich layer and then the growth of a
CaO/P2O5-rich layer on the glass surface. This layer is further enriched with carbonates
and then crystalizes to form hydroxycarbonate apatite, which mimics the mineral phase of
natural bone and ultimately helps to bond with the osseous tissue [6].

The hydroxyapatite-like layer also promotes the next biological reaction stages, includ-
ing cell migration, proliferation and differentiation to form new bone with good mechanical
bonds to the implant surface. The hydroxyapatite layer thickness plays a major role in
the bone-bonding ability of the glass as well as on the interfacial shear strength. It was
reported that an interface thickness of 20 µm yields adequate shear strength and interfacial
bonding [7].

Borate and borosilicate glasses are more reactive than silicate materials when in contact
with body fluids or, in general, aqueous media; hence, they are less durable and can convert
faster to hydroxyapatite compared to SiO2-based glasses. In principle, the bioactivity
mechanism is very similar except for the formation of a borate-rich gel layer, analogous
to the silica gel layer in silicate systems. The apatite-formation rate can be controlled by
changing the glass composition, thus varying the reaction time from hours to months [8].

Phosphate glasses have also been proposed for bone tissue engineering applications;
their tendency to rapidly dissolve is aqueous media depending on the composition—and,
especially, on the metal oxide content—has pushed their use towards advanced therapies
mediated by controlled ions release [9].

When high-strength and/or load-bearing applications are major goals, the controlled
crystallization of silicate glasses yielding bioactive glass-ceramic (GC) materials is an attrac-
tive option. For example, the commercial apatite/wollastonite (A–W)-containing Cerabone
(SiO2-CaO-MgO-P2O5-F parent system) has been produced by controlled heat treatment,
obtaining 38 wt.% apatite, 34 wt.% of wollastonite and 38 wt.% of residual glass phase,
and used as a coating for titanium alloys, artificial vertebrae and bone fillers [10,11]. The
bending strength of these A–W glass-ceramics (GCs) is typically higher than that of human
cortical bone (160 MPa), but the fracture toughness is three times lower (6 MPa m1/2) [12].
Interestingly, it was observed that hydroxyapatite can form on the surface of these GCs
even if the silica gel on the surface is absent, as the apatite and wollastonite crystals act as
sites for direct nucleation of calcium phosphate phases [13].

Other common examples of bioactive GCs include A–W Ceravital and diopside-
containing products, such as apatite–diopside (AD), wollastonite–diopside (WD) and
diopside–combeite (DC) GCs. Ceravital (SiO2-CaO-MgO-Na2O-K2O-P2O5 parent sys-
tem) [14] has an analogous bioactivity mechanism to Hench’s 45S5 Bioglass®, along with
good mechanical properties and better stability in the long term. After the implantation
of Ceravital material, an initial degradation of the surface caused by ionic exchange was
observed, followed by the formation of reaction layers that protect the implant from further
chemical attacks.

The phase in common for the other GC types mentioned above is diopside, which is
very appealing for biomedical applications due to its attractive mechanical performance.
For example, diopside was combined with hydroxyapatite in order to increase the fracture
resistance of the latter [15]. In this case, the fracture strength of the AD bioceramic was
found to be 2–3 times higher compared to hydroxyapatite alone; moreover, the material
was non-toxic to the body cells and promoted bone regeneration.

In wollastonite–diopside GCs, wollastonite and diopside phases form when the parent
glass is thermally treated above 900 ◦C. Both wollastonite and diopside have good mechan-
ical properties and the latter has a slower dissolution rate upon contact with body fluids.
These bioactive GCs have been used in bulk, granular and porous forms for bone graft
applications [16].

DC GCs have also been proposed for bone-contact applications; it is worth mentioning
that combeite is a highly biocompatible phase, which is typically found in sintered 45S5
Bioglass® treated above 550 ◦C, too [17].
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Therefore, all these studies witnessed that diopside was an attractive crystalline phase
to have inside GC biomaterials. These results pushed scientists to design new glass-derived
formulations that could originate GC products with superior biological and mechanical
properties, of which the “1d” composition is a valuable example.

2. The Genesis of the 1d Composition

The glass composition 1d (Table 1) was designed so that, upon thermal devitrification,
a final GC material containing diopside, fluorapatite and wollastonite could be obtained
with high mechanical strength and excellent bioactive properties [18].

Table 1. Chemical composition of 1d glass and some of its derivatives (in wt.%) [18–20].

Composition SiO2 CaO MgO P2O5 Na2O K2O CaF2

Parent glass composition
1d 46.1 28.7 8.8 6.2 4.5 0 5.7

1d-a 41.8 32.85 8.85 6.24 4.54 0 5.72
1d-b 37.51 37.07 8.88 6.26 4.55 0 5.73

1e 43.5 30.4 8.8 7.2 4.5 0 5.6
1e-a 43.09 30.13 8.67 9.17 4.44 0 4.47
1e-b 42.71 29.85 8.59 11.1 4.41 0 3.33
1e-c 42.33 29.59 8.52 13.00 4.37 0 2.19

K2O for Na2O substitution
1d-k 45.0 28.0 8.60 6.1 0 6.7 5.6
1e-k 42.5 29.7 8.5 7.1 0 6.7 5.5

MgO for CaO partial substitution
1d-m 46.6 24.8 11.9 6.3 4.6 0 5.8
1e-m 44.00 26.7 11.8 7.3 4.5 0 5.7

The 1d composition relies on the primary crystallization field of pseudowollastonite in
the CaO–MgO–SiO2 ternary system, in which P2O5, Na2O and CaF2 were added. Following
a melt-quenching route, 1d products can be obtained in an amorphous form (glass) but the
development of the three crystalline phases mentioned above can be induced by applying
a proper thermal treatment.

The 1d glass was the most promising member of a family of compositions, which
were originally designed and studied by a multidisciplinary international research team
and resulted in numerous publications since 2006; other sister formulations include 1e
glass—having the same components as 1d in different amounts [18–20]—and 1b glass [21,22],
also containing B2O3 as an additional oxide.

Similarly, other glasses based on the 1d and 1e compositions have been created
by replacing the components and changing the ratio of percentages by weight, such as
the following:

• 1d-a and 1d-b: in which the CaO/SiO2 ratio has been progressively increased [18]
(Table 1);

• 1e-a, 1e-b, 1e-c: in which the P2O5/CaF2 ratio has been progressively increased [18]
(Table 1);

• 1d-k, 1e-k: where Na2O was replaced with K2O [19,20] (Table 1);
• 1d-m, 1e-m: where CaO was partially replaced with MgO [19,20] (Table 1).

3. Material Preparation and Basic Properties

The 1d glass is typically synthesized by following a melt-quenching route; several
publications can be found in the literature where the basic preparative process has been
applied with some modifications, as summarized in Table 2, from the reagent powders
to frit production. Examples of 1d glass frit and glass powders after milling are given in
Figure 1.
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Pre-heating at 900 
°C for 1 h for 

decarbonization. 

Frits are obtained by quenching 
of melted glass in water. 

Frits are dried and then milled 
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Figure 1. Example of (a) 1d glass frit, (b) glass powders after ball milling.

The density of 1d glass was reported to be 2.57 ± 0.13 g/cm3, the characteristic tem-
peratures, i.e., glass transition (Tg), onset of crystallization (Tc) and peak of crystallization
(Tp), were assessed in various publications (also by using different experimental methods)
and are collected in Table 3.

Table 3. Characteristic temperatures of 1d glass: glass transition (Tg), onset of crystallization (Tc) and
peak of crystallization (Tp).

Article Tg (◦C) Tc (◦C) Tp (◦C)

K. Dimitriadis et al. [19] 649 ± 9 783 ± 2 815 ± 13
F. Baino et al. [25] 640 785 830

K. Dimitriadis et al. [20] 655 ± 5 783 ± 2 845 ± 13
D. U. Tulyaganov et al. [24] 607 ± 7 - 815 ± 13
D. U. Tulyaganov et al. [22] 590 ± 10 - -

4. Crystalline Phases and Mechanical Properties

Powders of 1d glass have been used as-is, even in clinical trials (as discussed later [26]),
or as starting materials to fabricate other products, such as 3D porous scaffolds for bone
tissue engineering. To obtain these 1d-derived implants, a thermal treatment is necessary
to consolidate and join the glass particles together, during which sinter-crystallization
may take place. In other words, the formation of crystalline phases is promoted upon
heating, leading to the material’s transformation from purely amorphous to a GC state
with the development of wollastonite, fluorapatite and diopside. Figure 2 shows the
microstructure of 1d-derived GCs, in which the part formed by prisms corresponds to
diopside, wollastonite crystals have a needle-like shape, and flakes refer to fluorapatite [19].

Table 4 illustrates the influence of heat-treatment temperatures on the mechanical prop-
erties of various 1d-derived GCs. It is known that crystallization yields an improvement
in the mechanical properties of GCs compared to parent glass; accordingly, the highest
increments of flexural strength, elastic modulus, hardness and fracture toughness, were
achieved in the GC produced by heat treatment at 850 ◦C, i.e., a temperature close to Tp
(see Table 3). It was also determined that the brittleness indexes of the produced 1d- and
1e-derived GCs ranged between 3.6 and 3.7 and 3.3 and 3.5 µm−0.5, respectively. Qualita-
tively, machinability reflects the easiness of a material to be cut, and it can be quantified
by the magnitude of brittleness [27]. The 1d- and 1e-derived GCs exhibited a brittleness
index higher than 3 µm−0.5 [28], thus being in the preferred range as the brittleness index
for glasses and ceramics typically ranges from 3 to 9 µm−0.5 [27]. This discovery holds
significance for dental materials production, as these materials are often shaped using
specialized cutting tools. Therefore, the aforementioned brittleness index values suggest
a reduced risk of fractures or cracks occurring during these processes especially for the
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1d-derived GC, since it shows a higher value on the brittleness index compared to the
1e-derived GC [28].
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Figure 2. Typical microstructure of 1d-derived GCs produced by heat treatment at 850 ◦C for 1 h.
Observation was performed after etching the polished surface with 2% HF solution (D: diopside; FA:
fluorapatite; W: wollastonite).

Table 4. Mechanical properties of different 1d-derived GCs compared to other GCs containing
diopside, wollastonite and fluorapatite as crystalline phases.

Materials Heat Treatment
(◦C)

Flexural Strength
(σ, MPa)

Elastic Modulus
(E, GPa)

Vickers
Microhardness

(HV, GPa)

Fracture
Toughness (KIC,

MPa · m0.5)

1d-derived GCs [28]
800 119 ± 10 24 ± 6 6.0 ± 0.4 1.6 ± 0.1
850 171 ± 11 27 ± 5 6.1 ± 0.5 1.7 ± 0.1
900 141 ± 6 22 ± 4 5.2 ± 0.7 1.4 ± 0.1

GCs containing
diopside and

fluorapatite [29]
850 120–195 - - -

GCs containing
wollastonite and

quartz [30]
900–1000 98 ± 6 - 5.9–6.7 -

GCs containing
wollastonite,

hydroxyapatite and
fluorite [31,32]

700–1000 - 89–100 - 4.6–5.6

GCs containing
wollastonite [33]

3100
(flame-spraying) - 37–56 2.6–5.4 -

GCs containing
wollastonite and

diopside [33]

3100
(flame-spraying) - 62–77 2.2–6.5 -

The main characteristics of these three crystalline phases contributing to mechanical
properties of GCs (Table 4) are described in the following sections.

4.1. Fluorapatite

Fluorapatite is a mineral that is part of the apatite family with the chemical formula
Ca10(PO4)6F2. It is a double salt resulting from the bond between calcium phosphate
and calcium fluoride. It is a highly biocompatible material and fits well with bone repair
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applications. In fact, it is present in nature and is part, for example, of the mineralized
phase of bones and teeth in mammals [34].

Moreover, having the fluoride ion instead of the hydroxyl ion, fluorapatite exhibits
peculiar characteristics that differentiate it from hydroxyapatite; in fact, the former is much
less soluble in an acidic environment, such as that of the human mouth, compared to
hydroxyapatite. However, despite few differences in some physicochemical properties, the
structure of both calcium phosphates is substantially the same. If in hydroxyapatite there
are calcium phosphate tetrahedra arranged around hydroxyl ion columns, in fluorapatite
there are tetrahedra which develop around fluoride columns (Figure 3).
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The crystalline structure of fluorapatite, characterised by flake-like crystals, can be
visualized in the SEM image displayed in Figure 4. These morphological observations are
also in agreement with theoretical expectations (see Figure 3).
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4.2. Wollastonite

Wollastonite is a mineral with interesting characteristics for biomedical applications,
including biocompatibility, biodegradability, thermal stability/low thermal expansion,
low thermal conductivity and high mechanical properties [37,38]. Given these appealing
properties, in the early 1980s, Kokubo et al. [39] first produced a bioactive GC containing
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both apatite and wollastonite. This new biomaterial belonged to a more complicated system
than that invented by Hench one decade earlier (45S5 Bioglass®) [40]. This GC contained
apatite (38%), wollastonite (24%) and residual amorphous phase (38%) [39] and has been
since marketed under the commercial name of Cerabone®.

Wollastonite is a simple calcium silicate with the chemical formula CaSiO3; alter-
natively, it can be seen as a mixture of silica (SiO2) and lime (CaO) having a theoretical
percentage of 51.7% and 48.3%, respectively [37]. Due to its crystal structure (Figure 5),
wollastonite belongs to the class of minerals known as pyroxenoids. It was reported that
pyroxenoid chains are more kinked and have a great repeat distance [37].
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Two polymorphs of wollastonite, α-phase and β-phase, potentially exist in nature:
the β-phase is the stable state at low temperatures, while the α-phase is found above
1125 ◦C [41]. Therefore, wollastonite used in biomedical implants is typically the β type
and has been proposed as filler in composite fabrication in orthopaedics as well as for
dental restoration [37]. The needle-like shape of β-CaSiO3 crystals is shown in Figure 6.
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4.3. Diopside

Diopside (CaMgSi2O6) is a prismatic monoclinic mineral, but it is not always possible
to have this structure; on the contrary, it is easier to find granular and globular struc-
tures [43]. The crystalline structure of diopside is very similar to pyroxene, as displayed in
Figure 7.
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Figure 7. Crystalline structure of diopside found by Warren and Bragg: light blue spheres are calcium
atoms, orange spheres are magnesium atoms, each tetrahedron consists of 1 silicon atom and 4 oxygen
atoms (red spheres) [44].

Diopside was found to exhibit superior mechanical properties compared to other com-
monly used bioceramics. For example, it presents a bending strength of 300 MPa and a frac-
ture toughness of 3.5 MPa m1/2, which are higher with respect to wollastonite-containing
ceramics with similar densities and exceed those of hydroxyapatite by 2–3 times [45].

Diopside was also found to be able to bond with living bone tissue. In this regard,
Nonami and Tsutsumi [15] conducted a high-resolution electron microscopy study reveal-
ing the continuity between diopside implants and bone tissue in monkeys and rabbits,
which was possible due to growth of new tissue at the interface. The same authors also
reported that diopside had a much longer degradation time than hydroxyapatite, which
was not optimal for bone regeneration; however, this can be useful in those cases where
more chemical stability is required or for dental roots.

5. Comparison between 1d Formulation and 45S5 Bioglass®

As previously stated, bioactive glasses in the CaO-MgO-SiO2 ternary system as well
as their relevant GC derivatives can indeed be designed for potential use in bone repair,
but it is necessary to compare the major characteristics of these new materials with a “gold
standard” reference, such as 45S5 Bioglass®. A series of studies were carried out for this
specific purpose, as discussed in the next sections.

5.1. Chemical Composition

Table 5 highlights the quantitative differences in the composition of 1d and 45S5
glasses, in terms of amount of ingredients.

Table 5. Nominal compositions of 1d glass and 45S5 Bioglass®.

Glasses SiO2 CaO MgO P2O5 CaF2 Na2O

1d glass (wt.%) 46.1 28.7 8.8 6.2 5.7 4.5
45S5 Bioglass® (wt.%) 45 24.5 - 6 - 24.5

The two bioactive glasses have a similar number of former oxides (SiO2 and P2O5);
the content of CaO is higher for 1d glass.

The main differences between the two bioactive glasses can be summarized in two points:

1. The content of Na2O in 45S5 is more than five times greater when compared to 1d;
2. The 1d glass contains additional MgO and CaF2, which are not present in the case of

the 45S5 Bioglass®.

The presence of magnesium within the glass composition is useful because Mg2+ ions
are naturally contained in bone tissue and play an active role in human bone metabolism.
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Magnesium ions promote cell adhesion, proliferation and differentiation of osteoblasts [23].
Moreover, Dietrich et al. [46] noted that having an amount of MgO in the glass compo-
sition between 0.4 and 1.2 wt.% accelerates glass dissolution, consistent with its role as
network modifier.

Instead, the partial substitution of Na2O with CaF2 has the effect of decreasing the pH
in the surrounding solution during in vitro tests, as well as the melting and glass transition
temperatures of the glass; furthermore, a change in cell response was also reported [23]. In
this regard, in vitro results with mesenchymal stem cells suggested an advantage of 1d glass
concerning cell viability and proliferation. On the other hand, the ions released from 45S5
material appeared to have a stronger osteoinductive effect, whereas no clear superiority
of either of the bioactive glasses was observed upon direct cell–glass contact [23]. Further
tests are necessary to elucidate these issues, also considering that different experimental
conditions could have played a role (e.g., the particle sizes used in that study: <32 µm for
1d and <56 µm for 45S5 glass).

5.2. Advanced Microstructural Analysis (Qn Units)

Figure 8 shows the Fourier-transformed infra-red (FTIR) spectra of 1d and 45S5 glasses
acquired in the wavenumber range of 300 to 1300 cm−1. In order to study the distribution of
Qn (i.e., the degree of polymerization of the structure inside the glass, where n indicates the
number of bridging oxygens), Kansal et al. [18] focused on the range within 900–1100 cm−1,
which corresponds to SiO4 with a different number of bridging oxygens.
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There were two interesting bands in this range, around 1040 cm−1, which indicate
the presence of silicate Q3 units, and around 930 cm−1, which indicate the polymerization
of silicate Q2 units along with some Q1 units. As reported by Tilocca [47], the highest
bioactivity of phosphosilicate glasses can be expected if Qn units are dominated by chains
of Q2 metasilicates, which are sporadically cross-linked through Q3 units, whereas the
chains are terminated by Q1 units. The structures of 1d and 45S5 glasses are similar since the
predominant units are Q2 and Q3 for both materials; hence, a high apatite-forming ability
is expected. The number of non-bridging oxygens per each tetrahedron was calculated for
both 45S5 and 1d glasses, resulting to be 1.99 and 1.88, respectively. These values suggest
that 1d glass has a more cross-linked structure than 45S5 Bioglass® because, although
predominantly containing Q2 units, it has a larger fraction of Q3 units compared to the
other glass [21].
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5.3. pH In Vitro

Tulyaganov et al. [26] conducted immersion studies in SBF to evaluate the effect of 1d
and 45S5 glasses on the pH of the solution. Over the first 300 h, there was a noticeable rise
in pH in the case of 45S5 Bioglass® from 7.10 to about 7.75. This increase was due to the ion
exchange mechanism already proposed by Hench [5,6,10,13] and explained above. On the
contrary, a more moderate increment in pH was observed in the experiment with 1d glass,
which was associated with the presence of fluoride ions that were exchanged with OH−

ions from the SBF (from the dissociation of water into H+ and OH−), eventually leading
to a pH decrease. This was also consistent with other findings about fluoride-containing
bioactive glasses [48].

Having a moderately alkaline pH around the implant (up to 7.8–8.0) carries some
advantages, such as the accelerated formation of the apatite layer on the glass surface
and the stimulation of the viability of osteoblasts; however, if the pH value is too high,
damage to tissues and bone cells may occur as well as the inhibition of endothelial cell
proliferation [26].

5.4. Mass Loss

Because of the different chemical compositions, there is also a different dissolution
rate of 1d and 45S5 glasses in testing solutions. Tulyaganov et al. [26] reported that the
mass loss was much higher in the case of Hench’s glass (3.7 wt.%) when compared to the
1d composition (2 wt.%) after soaking for 120 h in Tris-HCl. For completeness, it was also
reported that the pH value inside this solution increased more significantly after immersion
of 45S5 when compared to 1d glass (9.7 versus 8.1, from a starting value of 7.2).

5.5. In Vitro Bioactivity

XRD patterns of the two different bioactive glass compositions, before and after
immersion in SBF for different time frames, are reported in Figure 9.
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Figure 9. XRD patterns of 1d glass (left) and 45S5 Bioglass® (right). HA = hydroxyapatite; C = calcite.
Reproduced from [26] with permission.

The common feature in both as-produced materials is the presence of the amorphous
halo in the range of 28 to 35◦, which is typical of silicate glasses. No detectable modifications
can be seen after 1 day of immersion in SBF but, after 3 days, the characteristic peaks of
hydroxyapatite—especially the main reflection (211) at ~32◦—begin to develop. At this
time point, the (211) diffraction peak of hydroxyapatite was sharper in the case of the
1d glass compared to 45S5 [26].

The results after 21 days show a different behaviour for the two bioactive glasses;
in fact, while only hydroxyapatite was found to grow on the 1d surface, in the case of
45S5 glass, there were some peaks related to calcium carbonate (calcite), too. The coexistence
of apatite and calcite was reported to occur in some in vitro studies, which may depend on
multiple factors (e.g., glass particle size, volume of solution used, glass composition) not
fully elucidated yet, as comprehensively discussed elsewhere [49].
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5.6. Direct and Indirect Cell Culture

Schmitz et al. [23] performed an experiment to investigate the biological responses
elicited by 45S5 and 1d glasses in two different cell-culture settings with a focus on cell
proliferation, viability and osteogenic differentiation:

(a) Indirect culture: the bioactive glasses were immersed in a solution for 24 h at body
temperature and shaken to promote the release of ionic dissolution products. At the
end of this first phase, the glasses were removed, and the solution was filtered and
used as a culture medium for mesenchymal stem cells (MSCs). This setting is used to
verify the effects of the ions released.

(b) Direct culture: the bioactive glasses removed from the solution in the point (a) were
placed in direct contact with MSCs.

The use of both settings was very useful to describe in detail both the action of the
ions that were released by the bioactive glasses through the indirect culture setting and the
reactions that take place once the physical contact of the materials with the cells occurs
through the direct culture setting.

The major results from the two different settings can be summarized as follows:

- Indirect culture setting: 45S5 glass elicited a better osteogenic action compared to
1d glass. This behaviour was because, in the former case, there was a higher concen-
tration of P and Si ions in the cell culture medium having osteostimulatory effects. In
fact, phosphorus stimulates osteogenic differentiation and bone mineralization [50],
and Si ions also activate gene families in bone cells, ultimately promoting osteogenic
differentiation [51].

- Direct culture setting: there was a reversal in the trend compared to the indirect
culture setting. In fact, the osteogenic action was no longer so different between the
two bioactive glasses, although the expression of the specific protein OCN (marker
of osteogenic differentiation) was greater in the 1d cultures. The concentration of
magnesium, which was released by the 1d glass, in the first 24 h was one tenth of that
detected after a week, and the concentration of Ca increased over time in the medium.
This progressive, increasing release of beneficial ions is important as magnesium ions
have the ability to increase cell viability [52], and calcium ions improve cell viability
and proliferation [53]. These promising in vitro results on 1d glass were corroborated
by in vivo tests.

The obtained results demonstrated an advantage of 1d glass in regard to cell viability
and proliferation. Owing to its good osteogenic potential compared to the benchmark
45S5 glass and its higher biocompatibility, 1d glass was proposed to be an interesting
alternative to 45S5 glass for bone tissue engineering applications [23].

5.7. Antibacterial Properties

The antibacterial properties of some experimental compositions based on 1d glass
were tested against Escherichia coli (E. coli) [54]. Silver from 0.035 M, 0.077 M, 0.150 M
and 0.220 M AgNO3 aqueous solutions have been incorporated into the surface of 1d
bioactive glass through the ion exchange approach assisted with ultrasonic treatment.
Antibacterial tests showed that the silver-containing glasses inhibited the growth of E. coli,
which exhibited a rapid decrease in its viability, reaching the limit of detection after a
maximum of 2 h. Parent 1d glass induced a slight decrease in bacterial number after one
hour compared with the bacterial inoculum. However, after two hours of incubation at
37 ◦C, the number of bacteria increased again, being comparable to the inoculum. It was
observed that, according to the mid IR spectra, the structure of silver-modified glasses was
similar to that of the parent 1d glass, which indicates that the treatment performed did not
significantly alter the structure of the glass network and, thus, was not expected to interfere
with its bioactivity mechanisms.
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6. In Vivo Experiments and Clinical Trials

Tulyaganov et al. [26] studied the effects of bioactive glass 1d on both animals and
human patients. In the first set of experiments, 1d glass particles were inserted directly
into osseous defects produced in rabbit femora after being properly sterilized. Reactions in
rabbits were monitored at different time points, i.e., 1 week, 2 weeks, 1 month, 2 months,
3 months, 4 months and 6 months (Figure 10).

Inorganics 2024, 12, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 10. Histopathological sections of the bone in cortical area of bone (magnification 400×) after 
implantation for different periods: (a) 1 week; (b) 2 weeks; (c) 1 month; (d) 2 months; (e) 3 months; 
(f) 4 months; and (g) 6 months. Reproduced from [26] with permission. 

The same 1d glass particulate was clinically tested over 8 months to treat jawbone 
defects in human patients mainly after a cystectomy operation. The test was conducted in 
45 volunteers (21 males and 24 females) aged between 19 and 60. Patients were examined 

Figure 10. Histopathological sections of the bone in cortical area of bone (magnification 400×) after
implantation for different periods: (a) 1 week; (b) 2 weeks; (c) 1 month; (d) 2 months; (e) 3 months;
(f) 4 months; and (g) 6 months. Reproduced from [26] with permission.
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Since the first week, the presence of low inflammatory infiltrate and an increase in
the thickness of blood vessels was observed. From the first month onwards, the forma-
tion of new bone began, starting from the outside and spreading inwards. As the months
passed, the bone trabeculae became thicker and thicker, and the implanted material was
progressively embedded inside the newly formed bone. After 6 months, the surgically
created cavities were completely filled with regenerated bone, which was mature and ho-
mogeneous. Overall, 1d glass powders were fully compatible with the surrounding tissues
without eliciting any significant adverse reaction throughout the experiment duration.

The same 1d glass particulate was clinically tested over 8 months to treat jawbone
defects in human patients mainly after a cystectomy operation. The test was conducted in
45 volunteers (21 males and 24 females) aged between 19 and 60. Patients were examined
before and after surgery at 2 weeks, 2 months and 6 months. In this study, glass particles
were inserted where there was a defect in the alveolar bone in order to avoid the progressive
loss of bone over time (resorption) and assure the stability of the patient’s teeth. These
early clinical trials showed that the glass formed a cohesive mass with the patient’s blood,
thus demonstrating a homeostatic effect. Figure 11 shows that new, regenerated bone was
formed after 2 months where there was the empty space of a jawbone defect before surgery.
Similar results were found in all patients and, thus, these early clinical trials support the
suitability of 1d glass for the conventional treatment of bone defects (highly biocompatible
and bioactive filler). Figure 12 shows two other radiographs of the patient showing that
after a cystectomy operation, the lesions were filled up with newly formed cancellous bone.
However, in order to gain regulatory approval and consider this bioactive glass for routine
surgery, it will be necessary to increase the number of patients during a further phase of
clinical trials.
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Figure 11. Radiographic images of jawbone defects before ((left) side) and after surgical intervention
(2 months of follow-up) with implantation of 1d glass particulates ((right) side). Reproduced from [26]
with permission.

In an attempt to avoid undesired losses of glass particulates during the grafting pro-
cedure and to further improve the handling properties, composites based on bioactive
glass 1d and organic carriers, i.e., glycerol and polyethylene glycol (PEG), were synthe-
sized [55]. Homogeneous mixtures were obtained that could be handled as mouldable
pastes, demonstrating cohesive injectability. All pastes exhibited high apatite-forming rates
after immersion in SBF, consistent with the in vitro bioactivity of 1d particles. The potential
suitability of these materials for osteostimulatory bone healing was recently confirmed
in vivo through implantation experiments in rabbit femoral defects [24].
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Figure 12. High-magnification radiographs of the patient before ((left) side) and after 2 months from
operation ((right) side) showing that the lesions were filled up with trabeculae of new bone.

7. Towards the Future: 1d-Derived GC Dental Implants and Porous Scaffolds
7.1. GC Dental Implants

Dental implants rely on osteointegration through osteoinduction (whereby osteo-
genesis is induced) and osteoconduction, which involves the formation of hydroxyap-
atite [56–58]. The mechanical properties of natural tissues like the jawbone and dental hard
tissue play a crucial role in the longevity of dental implants in the oral cavity [58,59]. After
the placement of a prosthetic restoration, the dental implant receives the loads from the
occlusal forces. When the elastic modulus and fracture toughness of the implant material
align closely with those of the jawbone, the implant can effectively distribute the load to the
adjacent bone, maintaining its density. However, if these properties differ significantly from
those of the jawbone, then the dental implant is the only one that is loaded mechanically
by the occlusal forces; as a result, the implant does not transfer the occlusal forces to the
jawbone. This phenomenon is called stress shielding [60], whereby the osteocytes lose
their main role (i.e., the preservation of the extracellular matrix), resulting in a reduction
in the bone density of the jawbone, and eventually in the failure of the dental implant.
The high elastic modulus of commonly-used dental implant materials like titanium alloys
and zirconia (110 and 220 GPa, respectively) compared to the jawbone (7–30 GPa) and
dentine (15–30 GPa) [31,61–64] is a common cause of implant failure and decreased bone
density post-implantation. Bone grafts are utilized in various clinical scenarios when a
patient’s jawbone fails to meet the necessary criteria for optimal dental implant placement
(specifically, due to insufficient bone quantity resulting from tooth loss) [31,62–64]. Initially,
autogenous and allograft jawbone grafts were employed for their osteogenic and osteoin-
ductive/osteoconductive properties, respectively. Subsequently, researchers redirected
their focus towards synthetic materials (hydroxyapatite, tricalcium phosphates, bioactive
glasses and GCs) to overcome the drawbacks associated with traditional grafts (such as
patient discomfort, infection, complex surgical procedures, non-simultaneous absorption
of the graft/new bone formation) and reduce costs [61–67].

According to Dimitriadis et al. [20,60], 1d-derived GCs display an excellent bioactive
behaviour, yielding to spontaneous formation of hydroxyapatite on their surface after
immersion in SBF at 37 ◦C. Besides having an adequate bioactivity, these GCs exhibited
a well-sintered, dense microstructure embedding biocompatible crystalline phases that
affected their mechanical properties (Table 4). These features, along with the attractive
aesthetics (a white colour) [19,20], encourage further studies on such highly promising
dental implant materials. More specifically, heat-treatment at 850 ◦C yielded GCs with
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mechanical properties comparable to those of dentine (which is the biological tissue to be
replaced by a dental implant) and the jawbone (which is the biological tissue put in direct
contact with the material of a dental implant). Therefore, these appealing characteristics
warrant further investigation regarding the suitability of 1d-based GCs in the production
of dental implants.

The range of mechanical properties could be further modulated and finely tuned by
combining the bioactive glass with biocompatible polymers, thus obtaining glass/polymer
composites. These multiphasic biomaterials allow combining the peculiar features of bioac-
tive glasses, such as bioactivity and osteostimulatory properties, with the added values of
polymers, including flexibility [68,69]. These composites show great promise in overcom-
ing some traditional limits of bioactive glasses such as low fracture toughness, which is a
particularly critical issue in glass-derived porous scaffolds [70].

7.2. Glass-Derived Porous Scaffolds

Biomaterials addressed to bone repair, including bioactive glasses or GCs, are often
produced in the form of porous templates with architectural characteristics mimicking the
trabecular structure of cancellous bone [71]. Following this “biomimicry-guided” criterion
is thought to improve the regenerative properties of the implants, which are thus dictated
not only by the inherent characteristics of the material (e.g., apatite-forming ability, bio-
compatibility with bone cells) but also by the porous geometry, allowing biofluids to flow
in and out, cells to colonize the scaffold walls and blood vessel to grow in. Macroporous
1d-derived scaffolds have been recently fabricated for the first time using the sponge replica
method [25]. Upon high-temperature thermal treatment at 800 ◦C for 3 h, the 1d glass parti-
cles underwent sinter-crystallization, leading to the consolidation of a scaffold structure
and the concurrent development of diopside, fluorapatite and wollastonite, as expected
from the material design. The sintered 1d-derived GC scaffolds exhibited a 3D pore-strut
architecture and total porosity (68 vol.%) comparable to those of cancellous bone, while
the compressive strength (29.7 MPa) and elastic modulus (1.4 GPa) were even superior
to those of trabecular bone tissue (50–500 MPa), suggesting suitability for application in
load-bearing sites. The scaffolds were also highly bioactive in vitro as demonstrated by
the formation of a calcium phosphate layer after immersion in SBF for just 48 h. In an
attempt to improve the scaffold reproducibility and the scalability of the whole fabrication
process, early trials using additive manufacturing technologies to process 1d glass powders
are currently ongoing in the context of a research collaboration among the authors of this
review article.

8. Conclusions

Since its invention, 45S5 Bioglass® has been implanted in millions of human patients
and is currently being marketed for various dental and orthopaedic applications. This
has led to a considerable effort towards understanding the fundamentals that govern the
physical, chemical and biological properties of bioactive glasses based on—or inspired
by—45S5 glass. On the other hand, some limitations of the 45S5 composition—e.g., the high
pH environment created by a high sodium content and poor sinterability—pushed scientists
to develop new bioactive glass formulations. In this regard, bioactive glasses belonging
to the CaO-MgO-SiO2 ternary system as well as their relevant GC derivatives that feature
low sodium oxide contents can indeed be used in bone repair as an alternative to the “gold
standard” reference 45S5 Bioglass®. This was demonstrated through promising in vitro
results on 1d glass that were corroborated by in vivo tests. The experimental data collected
over the past 15 years supports the suitability of 1d glass in a variety of clinical applications
for the repair of periodontal defects, ridge preservation and sinus augmentation. The full
potential of bioactive glasses and GCs based on the CaO-MgO-SiO2 ternary system, with
special reference to the 1d composition, is still to be fully exploited and indeed deserves
further investigation in the near future.
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