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Advances in Metal-Containing Magnetic Materials and
Magnetic Technologies
Zhongwu Liu

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
zwliu@scut.edu.cn

1. Introduction

Magnetic materials generally refer to materials with ferromagnetic or ferrimagnetic
ordering. In a broad sense, they also include weak magnetic and antiferromagnetic ma-
terials which can provide magnetism and a magnetic effect. Most magnetic materials
contain metallic elements with 3d and/or 4f electrons, and they exhibit strong magnetism
or significant interactions between magnetism and other physical properties.

Magnetic materials have found increasing applications in various fields, including
electric motors, mechanical equipment, electronic devices, information recording, sensors,
etc. The development of intelligent equipment, AI, 5G, consumer electronics, biomedicine,
aerospace technology, and the military industry has created higher requirements for various
types of magnetic materials. Since the previous century, traditional magnetic materials such
as permanent magnets and soft magnets have seen innovations in their composition, struc-
ture, and processing. Advanced magnetic materials are continuously emerging. Concepts
for new technologies are also under quick development.

This Special Issue entitled “Advances in Metal-Containing Magnetic Materials” has
collected 11 manuscripts from a broad field of research. The topics addressed in this Special
Issue include permanent magnets, soft magnets, magnetocaloric materials, magnetostrictive
materials, magnetic thin films, and magnetic technologies. Nine research papers and two
review papers provide the recent progress in magnetic materials and technology that has
been made in the following institutes: South China University, the Guangdong Academy of
Sciences, Southwest Minzu University, the University of Electronic Science and Technology
of China, the University of Science and Technology Beijing, and the Beijing Institute of
Spacecraft Environment Engineering. These articles are attractive for scholars in these fields.

2. Contributions

Two papers on permanent magnets are presented in this issue. He et al. [1] reviewed
sources of grain boundary diffusion (GBD) and their coating methods for Nd-Fe-B perma-
nent magnets. The GBD process, which is one of the most exciting technologies for rare
earth permanent magnets that has emerged in this century, provides the best route for fabri-
cating highly coercive Nd-Fe-B magnets with low levels of consumption of expensive HRE
resources. Differing from previous review articles regarding GBD, this review provides
an introduction of the typical types of diffusion sources and their fabrication approaches.
The effects of the diffusion source on the microstructure and magnetic properties of mag-
nets are summarized. In particular, the principles and applicability of different coating
approaches ae discussed in detail. It is believed that this review can provide technical
guidance for designing the diffusion process and products meeting specific requirements.
Xiao et al. [2] report the effects of partially substituting the element Holmium (Ho) on the
magnetic properties and microstructure of nanocrystalline melt-spun Nd-Fe-B alloys with a
composition of [(NdPr)1−xHox]14.3Fe76.9B5.9M2.9 (M = Co, Cu, Al and Ga). They show that
Ho can significantly enhance the coercivity (Hcj) and elevate the temperature behavior of
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the remanence (Mr) and the thermal stability. Their finding provides an important reference
for the efficient improvement of the thermal stability of Nd-Fe-B-type materials.

Four papers focus on soft magnets. Li et al. [3] investigated the soft magnetic proper-
ties of the melt-spun, high-entropy alloys (HEAs) Fe27Co27Ni27Si10−xB9Lax. They obtained
superior soft magnetic properties with a low level of coercivity Hc of ~7.1 A/m and a
high saturation magnetization Bs value of 1.07 T in an Fe27Co27Ni27Si9.4B9La0.6 alloy. They
also found that the content of La has an important effect on the primary crystallization
temperature and the secondary crystallization temperature of the alloys. Yu et al. [4] pre-
pared Fe-based amorphous magnetic cores (AMPCs) from FeSiBCr amorphous powders
with phosphate–resin hybrid coatings. The high-frequency magnetic properties of AMPCs
annealed at different temperatures were systematically studied. The annealed sample ex-
hibited the lowest hysteresis loss of about 29.6 mW/cm3 at 800 kHz, as well as a maximum
effective permeability of 36.4, which could be used in high-frequency applications of up to
3 MHz. Luo et al. [5] prepared core–shell-structured amorphous FeSiBCr@phosphate/silica
powders and soft magnetic composites (SMCs) via phosphation and a sodium silicate
treatment. By optimized the phosphating process, a uniform and dense insulation layer
can be formed on the powder surface, which is beneficial for the subsequent coating of
sodium silicate. By optimizing the sodium silicate treatment, a complete and uniform SiO2
layer can be formed well on the phosphated powders, leading to a double-layer core—shell
structure and excellent soft magnetic properties. The SMCs exhibited excellent soft mag-
netic properties with a permeability value of µe = 35 and a core loss of Ps = 368 kW/m3

at 50 mT/200 kHz. Xie et al. [6] fabricated FeSiCr SMCs via the sol–gel method, and an
Al2O3/resin composite layer was employed as insulation coating; this not only effectively
reduced the core loss, increased the resistivity, and improved the quality factor but also
increased the thermal conductivity of the SMCs. A high thermal conductivity is beneficial
to enhancing the high-temperature performance, lifetime, and reliability of SMCs.

Magnetocaloric and magnetostrictive materials have also attracted significant attention.
Zhong et al. [7] prepared magnetocaloric La(Fe,Si)13/Ce-Co composites via a one-step
sintering process. Using 15 wt.% Ce2Co7 as a dopant and binder, the Curie temperature
(TC) increased from 212 K to 331 K, and the change in the maximum magnetic entropy
(−∆SM)max decreased from 8.8 to 6.0 J/kg·K under a 5 T field. High values of compressive
strength of up to 450 MPa and high thermal conductivity values of up to 7.5 W/m·K were
obtained. Their work demonstrates that the one-step sintering process is a feasible route
to producing La(Fe,Si)13-based magnetocaloric composites with large MCE values, good
mechanical properties, attractive thermal conductivities, and tunable TC values. Yang
et al. [8] reviewed the recent advances in magnetostrictive Tb-Dy-Fe alloys. They began
with a brief introduction to the characteristics of Tb-Dy-Fe alloys and then focused on
the research progress in recent years, including improved processes such as directional
solidification, the magnetic field-assisted process, ferromagnetic MPB theory and sensor
applications, and the reconstruction of the grain boundary phase for sintered composite
materials. This review will be helpful for the design of novel magnetostrictive Tb-Dy-Fe
alloys with improved properties.

He et al. [9] carried out a quantitative study of the surface composition of a NiFe
thin film exposed to atmospheric conditions via angle-resolved X-ray photoelectron spec-
troscopy (ARXPS). The coexistence of metallic and oxidized species on the surface was
demonstrated. The thicknesses of the oxidized species, including NiO, Ni(OH)2, Fe2O3,
and Fe3O4, were also estimated. This work provides an effective approach to clarifying the
surface composition and demonstrated the dependence between the magnetic properties
and thicknesses of NiFe thin films.

Fluxgate magnetometers are commonly used to detect weak magnetic targets, but
the detection accuracy of a fluxgate magnetometer is affected by its own error. To obtain
more accurate detection data, the sensor must be error-corrected prior to its application.
Previous researchers easily fell into the local minimum when solving error parameters.
In a paper by Li et al. [10], an error correction method is proposed to tackle the problem;
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this method combines the dragonfly algorithm (DA) and the Levenberg–Marquardt (LM)
algorithm, thereby solving the problem of the LM algorithm and improving the accuracy
of solving the error parameters. The simulation results show that the DA–LM algorithm
can accurately solve the error parameters of the triaxial magnetic sensor, and the difference
between the corrected and the ideal total value was decreased from 300 nT to 5 nT.

Due to the complex environment of the ocean, underwater equipment has become
a very threatening means of surprise attack in modern warfare. The timely and effective
detection of underwater moving targets is the key to obtaining warfare advantages and
has important strategic significance for national security. Xu et al. [11] proposed a moving
target detection method based on magnetic flux induction technology. Their results showed
their technology has an obvious response to moving targets and can effectively capture
target signals.

3. Conclusions and Outlook

This Special Issue focuses on the preparation, microstructure, and properties of various
metal-containing magnetic materials, including hard magnetic materials, soft magnetic
materials, magnetocaloric materials, magnetostrictive materials, magnetic thin films, and
magnetic technologies. Some advanced approaches to producing and synthesizing hard
magnetic and soft magnetic materials and magnetic refrigeration materials are described.
The surface characterization of magnetic thin films is proposed. In addition, we also
accepted contributions which focused on magnetic technologies with reduced errors or
improved detection. The main goal of this Special Issue to describe the most recent advances
in strong magnetic materials and emerged magnetic technologies has been fulfilled.

Hard and soft magnets are the fundamental materials for electrical and electronic
devices and will be constantly developed with the aim of achieving high levels of perfor-
mance, small sizes, and low costs with the help of new concepts and new technologies.
Other magnetic materials based on the interactions between magnetic properties and other
properties, such as thermal, electric, optical, and mechanical properties, have attracted and
will attract more attention in the future.

I would like to thank all the Authors for their contributions to this Special Issue and
thank the managing office of Metals (MDPI) for their constant support and hard work.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Nd-Fe-B magnets containing no heavy rare earth (HRE) elements exhibit insufficient
coercivity to withstand the demagnetization field at elevated temperatures. The grain boundary
diffusion (GBD) process provides the best route to fabricate high-coercive Nd-Fe-B magnets with
low consumption of expensive HRE resources. Here we give a special review on the grain boundary
diffusion sources and their coating methods. Up to now, various types of grain boundary sources
have been developed, starting from the earliest Tb or Dy metal. The HRE-M eutectic alloys were firstly
proposed for reducing the cost of the diffusion source. After that, the diffusion sources based on light
rare earth and even non rare earth elements have also been proposed, leading to new understanding
of GBD. Now, the diffusion sources including inorganic compounds, metals, and alloys have been
employed in the industry. At the same time, to coat the diffusion source on the magnets before
diffusion treatment, various methods have been developed. Different from the previous review
articles for GBD, this review gives an introduction of typical types of diffusion sources and their
fabrication approaches. The effects of diffusion source on the microstructure and magnetic properties
are summarized briefly. In particular, the principles and applicability of different coating approaches
were discussed in detail. It is believed that this review can provide a technical guidance for the
industry for designing the diffusion process and products meeting specific requirements.

Keywords: Nd-Fe-B; grain boundary diffusion; coercivity; diffusion source; coating method

1. Introduction

Nd-Fe-B permanent magnets have been widely used in various fields including con-
ventional electric motors, renewable energy, and mobile communication industries [1–3].
The total world production of sintered Nd-Fe-B magnets in 2019 was 1.9 × 105 tons, and
the demand of Nd-Fe-B magnets is constantly increasing due to the large employment
of electric motors and generators in the near future [4]. The magnets in the motors and
generators should operate at temperatures greater than 150 ◦C [3], but the Nd-Fe-B magnets
without the addition of heavy rare earth (HRE) elements have insufficient coercivity (Hcj) to
withstand the demagnetization field at high such temperatures because the hard magnetic
Nd2Fe14B (2:14:1 phase) compound has a low Curie point (Tc) of ~312 ◦C, and its anisotropy
field (HA) decreases drastically with the increasing temperature [5,6]. A conventional route
for fabricating high-coercive Nd-Fe-B magnets is adding the HRE elements of Dy and Tb
during smelting. However, it results in a large consumption of expensive HRE resource and
a sacrifice of remanence (Jr).

The grain boundary diffusion (GBD) process for the Nd-Fe-B magnets, which was
firstly proposed in 2005, provides the best route to enhance the Hcj with less consumption
of HRE [7,8]. By this way, HRE infiltrates from the surface to the interior of the magnets
during a diffusion heat treatment, mainly strengthening the surface of Nd2Fe14B grains by

Metals 2021, 11, 1434. https://doi.org/10.3390/met11091434 https://www.mdpi.com/journal/metals5
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forming (Nd,HRE)2Fe14B structured shells. With the coercivity increment of 560 kA/m, the
amount of Dy introduced by GBD is only 10% of that added by the conventional route [8].
Up to now, GBD has attracted much interest from both industry and academic, and it has
become an important approach for the industry to fabricate cheap yet strong products.
Now, most commercial Nd-Fe-B magnets with Hcj > 1600 kA/m (SH grade) are fabricated
by GBD [9]. Their maximum working temperatures can be greater than 150 ◦C.

The HRE-based compound is regarded as the first generation of diffusion source. To
get rid of the dependence of HRE, in 2010, a diffusion alloy of Nd-Cu without any HRE
element was demonstrated effective for coercivity enhancement, which started the research
and development (R&D) of the second generation of sources based on light rare earth
(LRE) elements [10]. Subsequently, in 2015, a cost-effective diffusion source of MgO was
proposed [11]. It gave an idea that the non-rare earth (non-RE) compound or alloy can be
used to modify the grain boundary (GB) phase as the next generation of diffusion source.

The GBD process for the Nd-Fe-B magnets have been extensively reviewed in some
recently published articles [12–16]. The development of GBD sources and their positive
effects on magnetic properties have been discussed in detail. Different from them, this
review mainly focuses on the introduction of the design and fabrication of several typical
types of GBD sources. Their coating methods of the diffusion sources are described in detail.
The advantages, disadvantages, and the applied ranges of various coating methods are
discussed. Since the Nd-Fe-B products are mainly fabricated under customization, different
diffusion sources and coating methods can be employed to meet the specific applications. It
is believed that this review can provide a technical guidance for the industry for designing
the diffusion process and products.

2. Development of Diffusion Sources and Their Fabrication

Figure 1 shows a comparison of the coercivity increment after GBD by HRE, LRE,
and non-RE based diffusion sources, as well as their underlying mechanisms of coercivity
improvement. Among the three types of GBD sources, the HRE-based one can directly
enhance the Hcj by increasing the HA of 2:14:1 phase, and has been industrialized. Generally,
a two-step diffusion heat treatment is needed for commercial sintered magnets. During
the first step GBD, the heating temperature range is generally selected at 800 to 1000 ◦C
to ensure that the melting GB phase provides effective diffusion channels for HRE atoms.
At this stage, the surface of Nd2Fe14B grains also melts due to the eutectic reaction of
Nd-Nd2Fe14B system at ~685 ◦C [17], which is lower than the temperature of the first step
GBD. In this case, HRE atoms substitute Nd atoms in the 2:14:1 lattice at the surface of the
2:14:1 grain, forming (Nd,HRE)2Fe14B shells around the hard magnetic grains [18,19]. The
temperature of the second step GBD is usually selected between 400 to 600 ◦C to modify
the distribution of GB phase, i.e., facilitating the formation of continuous GB layers for
magnetic decoupling. The reported HRE-based diffusion sources can enhance the Hcj by >
900 kA/m for the magnets with a thickness of <5 mm. The effective HRE containing GBD
sources mainly include fluorides, hydrides, and metals/alloys [20–29].

The LRE-based alloys with low melting points can form thick and continuous GB
layers, effectively isolating the hard magnetic grains for decoupling. The GBD conditions
of LRE sources are similar to those of the HRE sources, i.e., using a two-step heat treatment
process. At present, the effective LRE-based diffusion sources mainly include Pr- and
Nd-based low-melting alloys [30–36]. The coercivity increment caused by Pr-Al-Cu reaches
700 kA/m and ~500 kA/m for 2 mm- and 10 mm-thick magnets, respectively [33]. In
addition to the Pr- and Nd-based diffusion alloys, high-abundance La- and Ce-based
alloys have been also studied as diffusion sources recently [34–36]. However, their caused
coercivity enhancement is still marginal. Some recent researches demonstrated that the non-
RE elements have positive effects on microstructure modification, i.e., wetting the GB phase
and reducing the defects at 2:14:1grain/GB interfaces [11,36–39]. Therefore, various non-RE
metals, alloys, and compounds have been selected as the diffusion sources. The diffusion
of ZnO can lead to a coercivity enhancement of 205 kA/m in a 4-mm thick magnet [37].
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So far, although the coercivity enhancement by the non-RE diffusion (<250 kA/m) is still
much lower than that by the RE diffusion, the non-RE GBD is expected to improve the
corrosion resistance and mechanical properties of the magnets.
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Figure 1. A comparison of coercivity increment in sintered magnets for different types of diffusion sources, including HRE,
LRE, and non-RE based metals, compounds and alloys. The main mechanisms of the three generations of diffusion sources
on coercivity enhancement are given.

2.1. HRE-Based Diffusion Sources and Their Fabrication

The HRE-based diffusion sources mainly include fluorides, hydrides, and metals/alloys.
Generally, various rare earth (RE) oxides symbiotically exist in ores, and HRE elements
should be separated from other RE elements for application. HRE oxides can be directly
used for diffusion sources, but, due to their great stability and high melting points of
>2000 ◦C, they generally exhibit poor diffusion efficiency [7,40]. Furthermore, the HRE
atoms are difficult to enter into the 2:14:1 phase from the oxides, leading to a low coercivity
enhancement. Therefore, the HRE oxides should be further modified to the diffusion
sources with higher efficiency.

HRE fluorides are important raw materials for producing single HRE metals by
thermal reduction. In the industry, the fluorides with high purity are generally fabricated
from oxides by using hydrogen fluoride (HF) and ammonium hydrogen fluoride (NH4HF2)
gases, and their reaction equations are HRE2O3 + 6HF→ 2HREF3 + 3H2O, and HRE2O3 +
6NH4HF2 → 2HREF3 + 6NH4F + 3H2O (HRE = Dy, Tb), respectively. By using the HF gas
as the reducing agent, less impurity is introduced, but, due to its high reaction temperature
of 600 to 700 ◦C and strong causticity, it is difficult to treat the tail gas. In comparison,
the reaction product from using NH4HF2 is easy to be recycled due to its relatively low
reaction temperature of <300 ◦C, but it needs several repeated fluorination processes for
controlling the oxygen content. DyF3 and TbF3 have much lower melting points of 1360
and 1172 ◦C, respectively, than their oxides, indicating that the HRE-F bonds have stronger
tendency than HRE-O to be broken during the diffusion heat treatment at ~900 ◦C. This is
beneficial for HRE atoms to enter into the 2:14:1 grain for improving the HA. In addition, F-

has positive effects on saving the HRE resources. For instance, since a reaction of Nd2O3 +
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2DyF3 → (Nd,Dy)4O3F6 occurs during GBD, Dy is suppressed to be consumed at a stable
(Nd,Dy)2O3 phase [41,42]. The chemical potential for Dy diffusion can be increased by F−

anions in Nd2Fe14B grain, and thus the Dy atoms in the (Nd,Dy)4O3F6 phase can diffuse
into the 2:14:1 lattice [43,44].

Mass-produced HRE metals with high purity are mainly prepared by thermal reduc-
tion from their fluorides. Active non-RE metals of Ca, Mg, and Li can be employed as
reductants, and Ca metal is used most widely in the industry. The reaction of 2HREF3
+ 3Ca→ 2HRE + 3CaF2 occurs during the reduction process. The melting points of Dy
and Tb are 1409 and 1356 ◦C, respectively, slightly higher than their fluorides. However,
it has been reported that Dy and Tb have a higher diffusion rate than their fluorides due
to the different reactions occurring in the GB phase, and thus perform better in coercivity
enhancement [45]. For achieving higher efficiency, the metallic HRE can be alloyed by LRE
elements of Pr, Nd, La, and Ce, and non-RE elements of Al, Cu, Mg, etc., to form eutectic
alloys with low melting points [26,28,32,45–47]. These added elements also play important
roles in enhancing the coercivity through thickening the GBs for magnetic decoupling
or reducing the defects at the interface to hinder the nucleation of reversed domains. In
addition, the HRE content in the diffusion source can be reduced for reducing the material
cost.

The HRE hydrides can be produced from HRE metals under a hydrogen pressure at
350 to 450 ◦C [48]. Compared with the HRE metals, the HRE hydride powders are more
stable, indicating that the hydrides can be fabricated into the powders with smaller size.
Furthermore, the hydrogen tends to be desorbed during the diffusion heat treatment. For
instance, two dehydrogenation reactions of DyH3 are 2DyH3→ 2DyH2 + H2 (352.4 ◦C, ∆H
> 0) and DyH2 → Dy + H2 (984.5 ◦C, ∆H > 0) [48]. Once the hydrogen is desorbed, the
powders become very reactive, which is beneficial to the diffusion of HRE. Furthermore,
since a reaction of NdOx + xH2 → Nd + xH2O occurs during GBD, the deoxidized Nd-
rich phases have better wettability with the main phase grain, helping the formation of
continuous GB layer surrounding the 2:14:1 grain for decoupling. This is also beneficial
to forming the uniform HRE-rich shells [19,41,48]. However, during the GBD, the 2:14:1
could also absorb the hydrogen with a reaction of Nd2Fe14B + (2 ± x) H2 → 2NdH2±x +
12Fe +Fe2B + ∆H2. The caused volume expansion could lead to the propagation of crack
along the GB, which is not beneficial to the mechanical properties of the magnets.

Figure 2 summarizes the fabrication steps of the HRE-based diffusion sources. With the
further treatment of HRE oxides, the diffusion efficiency of HRE sources can be enhanced.
As a result, a higher coercivity increment can be obtained, and a thicker magnet can be
treated. However, the processing cost of the diffusion sources is also increased. Therefore,
the industry should select the diffusion source reasonably according to the performance
requirement of the products.
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2.2. Design of LRE-Based Diffusion Sources

In comparison to the HRE-based diffusion sources, the LRE-based ones are still not
widely industrialized. Due to their much lower material prices, the LRE-based diffusion
sources will attract more attention in the near future and have a foreseeable development.
This section mainly introduces several principles to design LRE-based diffusion alloys.

Based on the basic underlying mechanism of the LRE-based diffusion sources on
coercivity improvement, most of the effective LRE sources are low-melting alloys at present.
Forming LRE-M (LRE = Pr, Nd, La, Ce; M = Cu, Al, Mg, Zn, Ni) eutectic alloys by melting
is a common method to obtain the low-melting diffusion sources (Figure 3a). The LRE
elements, on the one hand, play significant roles in increasing the amount of the RE-rich
intergranular phase for magnetic decoupling, and on the other hand, could replace Nd
atoms within the 2:14:1 grains. In this case, Pr2Fe14B exhibits higher HA of 87 kOe than
Nd2Fe14B (67 kOe) at 300 K [6], and thus the substitution of Nd by Pr in the main phase
can enhance the coercivity. In contrast, poor intrinsic magnetic properties were found in
the 2:14:1 compounds of La and Ce [5,49], and the induced La and Ce are expected to
segregate at GB. Previous results showed that the La, Ce-based alloys still performs much
more inferior than the Pr/Nd-based ones as the diffusion source [36]. This is attributed to
not only the different diffusion behavior of RE elements, but also the different wettability
between the modified intergranular phase and the 2:14:1 grain.

Metals 2021, 11, x FOR PEER REVIEW 5 of 15 
 

 

sources will attract more attention in the near future and have a foreseeable development. 

This section mainly introduces several principles to design LRE-based diffusion alloys. 

Based on the basic underlying mechanism of the LRE-based diffusion sources on co-

ercivity improvement, most of the effective LRE sources are low-melting alloys at present. 

Forming LRE-M (LRE = Pr, Nd, La, Ce; M = Cu, Al, Mg, Zn, Ni) eutectic alloys by melting 

is a common method to obtain the low-melting diffusion sources (Figure 3a). The LRE 

elements, on the one hand, play significant roles in increasing the amount of the RE-rich 

intergranular phase for magnetic decoupling, and on the other hand, could replace Nd 

atoms within the 2:14:1 grains. In this case, Pr2Fe14B exhibits higher HA of 87 kOe than 

Nd2Fe14B (67 kOe) at 300 K [6], and thus the substitution of Nd by Pr in the main phase 

can enhance the coercivity. In contrast, poor intrinsic magnetic properties were found in 

the 2:14:1 compounds of La and Ce [5,49], and the induced La and Ce are expected to 

segregate at GB. Previous results showed that the La, Ce-based alloys still performs much 

more inferior than the Pr/Nd-based ones as the diffusion source [36]. This is attributed to 

not only the different diffusion behavior of RE elements, but also the different wettability 

between the modified intergranular phase and the 2:14:1 grain. 

 

Figure 3. (a) Fabrication of LRE-M diffusion alloys, and (b) design principles in selecting non-RE alloy elements. 

The non-RE elements play important roles in lowering the melting points of the dif-

fusion source, and they also should exhibit positive effects on magnetic properties. These 

non-RE elements can greatly influence the diffusion behavior of LRE elements, and deter-

mine the improvement of magnetic properties at a certain extent. For instance, it was 

found that the coercivity enhancement caused by Pr-Al-Cu diffusion was quite sensitive 

to the ratio of Al/Cu [33]. The diffusion of Pr70Al20Cu10 alloy can lead to an Hcj increase of 

712 kA/m, much higher than that caused by Pr70Al10Cu20 diffusion (360 kA/m). A similar 

phenomenon can be observed in the La-Al-Cu system [34]. Therefore, the selection of non-

RE alloying elements is very important for designing effective LRE-M diffusion source. 

Furthermore, the non-RE elements such as Al and Ni can also modify the 2:14:1 phase by 

substituting Fe for a higher HA [16]. The positive effects of the non-RE elements on micro-

structure modification have been summarized in a recent review article [16], which is not 

described in detail here.  

Since the intergranular phases possess much lower corrosion potentials than the 

Nd2Fe14B main phase, a galvanic corrosion tends to occur in corrosive medium, leading to 

a preferential failure of GB phases and a resultant detachment of main phase grains 

[50,51]. Therefore, the corrosion resistance of the magnets should be considered for prac-

tical applications, especially for those employed in seashore wind turbines. However, re-

cent results showed that the diffusion of LRE-based alloys, such as Pr-Al-Cu and La-Al-

Cu, unexpectedly decreased the corrosion resistance of the magnets due to the formed 

multiple intergranular phases [36]. In this case, introducing the non-RE elements with 

Figure 3. (a) Fabrication of LRE-M diffusion alloys, and (b) design principles in selecting non-RE alloy elements.

The non-RE elements play important roles in lowering the melting points of the
diffusion source, and they also should exhibit positive effects on magnetic properties.
These non-RE elements can greatly influence the diffusion behavior of LRE elements, and
determine the improvement of magnetic properties at a certain extent. For instance, it was
found that the coercivity enhancement caused by Pr-Al-Cu diffusion was quite sensitive to
the ratio of Al/Cu [33]. The diffusion of Pr70Al20Cu10 alloy can lead to an Hcj increase of
712 kA/m, much higher than that caused by Pr70Al10Cu20 diffusion (360 kA/m). A similar
phenomenon can be observed in the La-Al-Cu system [34]. Therefore, the selection of
non-RE alloying elements is very important for designing effective LRE-M diffusion source.
Furthermore, the non-RE elements such as Al and Ni can also modify the 2:14:1 phase
by substituting Fe for a higher HA [16]. The positive effects of the non-RE elements on
microstructure modification have been summarized in a recent review article [16], which is
not described in detail here.

Since the intergranular phases possess much lower corrosion potentials than the
Nd2Fe14B main phase, a galvanic corrosion tends to occur in corrosive medium, leading to
a preferential failure of GB phases and a resultant detachment of main phase grains [50,51].
Therefore, the corrosion resistance of the magnets should be considered for practical
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applications, especially for those employed in seashore wind turbines. However, recent
results showed that the diffusion of LRE-based alloys, such as Pr-Al-Cu and La-Al-Cu,
unexpectedly decreased the corrosion resistance of the magnets due to the formed multiple
intergranular phases [36]. In this case, introducing the non-RE elements with high chemical
stability in GB through GBD could be a feasible route to improve the corrosion resistance of
the magnets, and this deserves more attention for the future investigations. Furthermore,
since LRE elements are reactive to oxygen [52], the oxidation of the alloy diffusion sources
during storage and diffusion heat treatment could be a crucial reason which limits the
employment of the LRE-based diffusion sources. The oxidation could severely decrease
the diffusion efficiency, and particularly, deteriorate the wettability between the liquid GB
phase and the 2:14:1 phase. In this case, theoretically, the non-RE elements of Al, Ni, Ti, and
Cr, which exhibit a self-passivation effect in air, can be selected to alloy with the LRE to
form diffusion alloys for a higher oxidation resistance. However, not many investigations
have been focused on this point at the present. Much effort should be made to reveal the
effects of the non-RE elements on the chemical stability of LRE-M diffusion alloys.

In summary, the design principles for LRE-M diffusion alloys in selecting non-RE
alloy elements are present in Figure 3b. Firstly, the non-RE elements should be able to form
eutectic alloys with the LRE elements for high diffusion efficiency. Secondly, these elements
should enhance the chemical stability of the diffusion sources to avoid the oxidation during
the storage and diffusion heat treatment. Finally, the added non-RE elements should also
have positive effects on optimizing the microstructure. Noted that the microstructure
modification is not only for enhancing the coercivity by forming continuous GB phase
or reducing the amount of defects at the GB/2:14:1 interface, but also for improving the
corrosion resistance of the magnets by reducing the corrosion potential between the GB and
2:14:1 phases. If the coercivity and corrosion resistance can be simultaneously enhanced by
GBD process, the surface protection by anti-corrosion coatings for the Nd-Fe-B products can
even be canceled, which is beneficial to further cut down the process cost. Unfortunately,
the reported LRE-M diffusion sources tend to deteriorate the corrosion resistance of the
magnets due to the formation of multiple RE-rich intergranular phases [36]. Therefore, the
LRE-M systems should be painstakingly optimized in future investigations.

2.3. Design of Non-RE-Based Diffusion Sources

Inspired from the LRE-based diffusion alloys, if any introduced elements can modify
the microstructure and wet the liquid phase to form continuous and uniform GB layers,
they are candidates to be employed in the diffusion sources for the Nd-Fe-B magnets. This
indicates that the critical RE elements may be not necessary for GBD. The reported non-RE
based diffusion sources includes compounds and metals/alloys [34–36]. Although their
positive effects on coercivity enhancement are still weaker than those of RE-based sources,
it was found interesting that the diffusion of non-RE elements is effective to improve the
chemical stability of the magnets [34–36]. The existing results imply that the non-RE GBD
could have a broader application range than the RE GBD.

Previous investigations gave several feasible approaches to enhancing corrosion re-
sistance of the Nd-Fe-B magnets by non-RE diffusion with different physical mechanisms.
Figure 4a shows the corrosion mechanism of Nd-Fe-B magnets. Due to the strong corrosion
tendency of intergranular phase, the corrosion tends to occur along the GB and corrosive
media such as H2O, O2, and Cl- can easily enter from the surface into the interior of the mag-
nets through the wide corrosion channels. The GBD of non-RE oxides, including MgO [11]
and ZnO [37], have been demonstrated effective to resist the corrosive medium infiltrating
into the magnet. As shown in Figure 4b, the diffusion of non-RE oxides mainly lead to the
formation of stable block oxides, such as Nd-Fe-O-Mg and Nd-Fe-O-Zn at triple-junction
regions, which narrows the corrosion channels. The low-melting non-RE metals or alloys,
such as Al [38] and Al75Cu25 [36], enhance the chemical stability of the magnets mostly by
modifying the GB phases to increase their corrosion potentials (Figure 4c). These two types
of non-RE sources mainly resist the corrosion process from kinetics and thermodynamics
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aspects, respectively, but their protection may not be as effective as that caused by an
anti-corrosion coating. Since the anti-corrosion coatings can greatly isolate the reactive
magnet substrate from the corrosive environment, we proposed an annealed Al-Cr coating
recently for combining both surface coating and GBD [39]. Refractory Cr element was
selected to modify the diffusion of Al, i.e., during the annealing, a small amount of Al
was allowed to enter into the magnet for GB modification, while the added Cr led to a
dense surface coating (Figure 4d). The results showed that the coercivity of the Al62.5Cr37.5
diffused magnet was increased from 1089 to 1178 kA/m. Meanwhile, in 3.0 wt.% NaCl
solution, the corrosion current density of this magnet decreased significantly from 35.32
to 2.53 µA/cm2. This method gives an idea to integrate the surface protection with the
GBD process, which could further improve the competitiveness of non-RE based diffusion
sources.
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3. Coating Methods of Diffusion Sources

Section 2 introduced various sources for GBD. Compared with the investigations of
diffusion sources, the studies about how the sources can be deposited onto the magnets
are relatively insufficient. However, this issue is quite critical for the industry. With the
development of GBD process, more and more coating techniques have been employed for
coating the diffusion sources. This section summarizes various coating methods for GBD
sources and show how they have been applied or they will be employed. As shown in
Figure 5, at present, the coating methods for GBD sources can be mainly classified into
three types: adhesive coating, electrodeposition, and vapor deposition.
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3.1. Adhesive Coating

By the adhesive coating, the powder-form diffusion sources are firstly mixed with
liquid organic binders to obtain suspensions or slurries. Subsequently, the suspensions
or slurries are deposited onto the surface of the magnets by dipping, spraying, and roller
coating.

Dipping has been a common method to deposit the HRE inorganic compounds,
including oxides [7], fluorides [7,53], and hydrides [19,41,53]. The particle size of those
compounds is generally controlled at 1 to 5 µm [7,41]. By this method, the magnets are
immersed in the suspensions of the diffusion source, soaked for a short time, and then
removed from the container, as shown in Figure 6a. During the removal of the coated
magnets, the excess diffusion sources will flow back into the container. Therefore, the
dipping exhibits a high production efficiency and a simple process to deposit thick coatings
with a thickness of 20 to 30 µm. However, it was suggested that the dipped coatings of
diffusion sources are uneven and rough [22], indicating that it could cause an unexpected
waste of HRE resource or an inhomogeneous diffusion. Furthermore, the consumption
of diffusion source cannot be greatly controlled, which is not beneficial to obtaining the
products with high stability.
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Spraying is also effective for the inorganic compounds with small particle size of
several micrometers. By the spraying, the suspensions of the diffusion source are atomized
by a spray gun and deposited onto the surface of magnets, as shown in Figure 6b. This
method also possesses a high production efficiency, and is suitable for both manual work
and automatic production. Compared with the dipping, the spraying can easily fabricate
a flat coating of diffusion source, but more diffusion sources will be consumed upon the
deposition process. In addition, the highly dispersed spray can lead to a fierce volatilization
of the organic solvents, which is not environmentally friendly and does harm to human
health. Both the dipping and the spraying can treat profiled and large-scale magnets. For
these two methods, the viscosity of the suspension greatly influences the quality of the
coatings, i.e., an over-low viscosity causes an insufficient thickness of coatings while an
over-high viscosity leads to a formation of uneven and over-thick coatings.

In comparison to the inorganic compounds, HRE metals/alloys are more difficult to
suspend in the organic solvents due to their relatively low affinity to the organic solvents.
It requires the metal/alloy powders to have a much smaller size than inorganic compound
particles. However, the metal/alloy powders, especially the LRE-based alloys, are too
reactive to be pulverized into fine powders. Hence, most of the reported alloy sources such
as Dy-Ni-Al [3], Pr-Al [54], and Pr-Dy-Al [54], were mixed with paraffin and polyvinyl
pyrrolidone (PVP), respectively, and were painted onto the surface of magnets. In this
case, the roller coating provides a feasible approach to deposit the metal or alloy diffusion
source carried by a roller (Figure 6c), since it is applied for not only the suspensions, but
also the slurries with high viscosity. This method exhibits a simple process and is suitable
to treat the large-scale magnets with regular shapes such as cube and cuboid.

In general, the adhesive coating methods exhibit a simple process and are suitable to
treat magnets with large sizes. However, the amount of source coating cannot be precisely
controlled. Furthermore, the organic solvents added into the diffusion sources play quite
important roles to obtain an appropriate viscosity of adhesive coatings, but they have not
been the focus of research. In addition, high contents of carbon [55] and oxygen [56,57] in
the magnets have negative impacts on GBD since they facilitate the formation of refractory
Nd-carbides and Nd-oxides, respectively, in GB. Therefore, during the temperature-rise
period of diffusion heat treatment, the organic solvents should decompose into products
with strong volatility to ensure the less residual carbon and oxygen on the surface of
magnets. For industrialization, more attention should be focused on develop suitable
solvents for various diffusion sources.
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3.2. Electrodeposition

The electrodeposition for GBD sources mainly includes electroplating and electrophore-
sis. These two methods have quite different deposition principles, and thus exhibit different
applications.

As shown in Figure 7a, by the electroplating, reduction-oxidation (REDOX) reactions
occur and the metal ions in electrolytes are reduced on the surface of magnets to form
metal/alloy source coatings. The magnet substrate generally acts as a cathode. In Nd-
Fe-B industry, the electroplating is mainly used for depositing anti-corrosion coatings,
such as Ni-P and Ni/Cu/Ni [58,59]. If the metal or alloy diffusion sources can be also
prepared by electroplating, it is convenient for the companies to make full use of the existing
production line. The metal and alloy source coatings, including Dy [60] and Nd-Cu [61],
have been successfully fabricated by electroplating. The composition of alloy coatings can
be controlled by the mixing ratio of their precursors. For instance, the Nd/Cu ratio can
be regulated by changing the ratio of Nd(NO3)3 and Cu(NO3)2 in the electrolytes or the
deposition potential [61]. The electroplating has a distinct advantage on fabricating smooth
and thick coatings. However, the environmental concerns still exist and the pollution
problems are urgent to be solved.
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Compared with the electroplating, the electrophoresis is more applicable for GBD
sources of inorganic compounds, such as Dy2O3 [40], DyF3 [22,62], and TbF3 [63,64]. As
shown in Figure 7b, during the electrophoretic process, the charged particles of diffusion
sources in the suspensions move towards the magnet electrodes with an opposite polarity,
and the deposition can be realized. Based on the different polarity of the source particles,
the magnet substrate can be anode or cathode. It was suggested that compared with
the dipping, the electrophoretic deposition can fabricate the uniform coatings with lower
porosity, which is beneficial to the efficient use of diffusion sources [22,64]. Under the
same condition of diffusion heat treatment, the DyF3 coatings deposited by dipping and
electrophoresis enhanced the coercivity of the sintered magnets from 1200 to 1540 and
1620 kA/m, respectively [22]. However, by the electrophoretic deposition, the bonding
between source particles in the coating is mainly dependent on the van der Waals force,
indicating that the coatings could be easily detached from the magnets due to the poor coat-
ing/substrate adhesion. Therefore, the agglomerants such as polyethyleneimine (PEI) [40],
are needed to be introduced into the suspensions.
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Generally, the electrodeposition methods are applicable to treating the profiled mag-
nets. They have advantages on fabricating dense and even coatings with thickness >10 µm,
which is easy to employ for mass production. The thickness of the coating can be controlled
by regulating deposition potential and keeping time. However, their processing cost is
higher than that of adhesive coating methods due to their relatively longer processing
cycle.

3.3. Vapor Deposition

Up to now, the vapor deposition for GBD sources is mainly physical vapor depo-
sition (PVD). PVD is a rapidly growing technology in recent decades, which vaporizes
the material source into gaseous atoms and molecules, or partially ionizes into ions by
physical methods under vacuum, and realizes the deposition of films at room temperature.
In comparison to the two mentioned coating methods of the adhesive coating and the elec-
trodeposition, PVD can prepare the GBD source coatings without any effluent disposal, and
therefore it can be regarded as the “greenest” coating techniques for GBD sources [65,66].
Based on the different ways to vaporize or ionize the material sources, the PVD can be
mainly clarified into three types: evaporation deposition, sputtering deposition, and ion
plating.

By evaporation deposition, the heated GBD sources are vaporized and sublimated
onto the surface of the magnet. This method is mostly applicable for fabricating metallic
and alloy coatings, and its deposition rate is relatively high among the PVD methods.
Table 1 presents the temperature of several RE elementary substances for GBD in different
vapor pressures. Generally, the temperature at which the saturated vapor pressure is 10−2

Torr is defined as the vaporization point. All of the listed RE metals for GBD exhibit the
high vaporization points of >1000 ◦C, indicating that the costs from both equipment and
energy consumption are undoubtedly increased. Previous work mainly paid attention to
the evaporation of HRE metals of Dy [67] and Tb [68,69]. Among the critical RE elements
of Pr, Nd, Dy, and Tb, the vaporization points of Nd and Dy are relatively low, and thus
their metals and alloys are more capable for evaporation deposition.

Table 1. Temperatures of several RE metals in different vapor pressures. The data are extracted from [52].

RE Metal
Temperature in ◦C for a Vapor Pressure of

10−8 Atm
(7.60 × 10−6 Torr)

10−6 Atm
(7.60 × 10−4 Torr)

10−4 Atm
(7.60 × 10−2 Torr)

10−2 Atm
(7.60 Torr)

La 1301 1566 1938 2506
Ce 1290 1554 1926 2487
Pr 1083 1333 1701 2305
Nd 955 1175 1500 2029
Tb 1124 1354 1698 2237
Dy 804 988 1252 1685

By sputtering deposition, solid GBD source targets are bombarded by accelerated
particles, and the escaped atoms or molecules reach the surface of the magnet substrates to
form coatings. This approach has been widely used to deposit not only HRE metals/alloys
of Dy [20,70], Tb [70], Dy-Zn [71], and Dy-Mg [72], but also non-RE diffusion sources
of MgO [11], ZnO [37], and Al [38]. Compared with the evaporation, the sputtering
deposition can obtain greater coating/substrate adhesion and more stable product quality.
Furthermore, the thickness of coatings can be precisely controlled at a nanometer level by
modifying the sputtering power and deposition time. Therefore, sputtered GBD sources is
also promising to treat Nd-Fe-B films for micromechanical devices and magnetic recording
media. A sputtered 50-nm thick Dy film can enhance the coercivity from 963 for a 120-nm
thick Nd-Dy-Fe-B layer to 1552 kA/m, obtaining an increase of 61% [73]. However, the
sputtering targets are consumable items, and in particular, the effective availability of
targets are of <30%, which increase the processing cost to a certain extent.
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Ion plating is a method which integrates the evaporation and the sputtering, i.e., the
evaporated GBD sources can be partially ionized by gas discharge, and the ions can be
accelerated by an electric field to reach the surface of the magnet substrates. This leads to
a significantly improved ionization rate and, therefore, the deposition rate of ion plating
is generally higher than that of the sputtering. In addition, the high ionization rate is
beneficial to treat profiled magnets because the ions can move along the electric field,
wrapping around the substrate and forming uniform coatings. However, the ion plating
has not been widely used for depositing GBD sources, mostly due to the high evaporation
temperatures of the RE metals and the caused difficulty in the equipment manufacture.

Table 2 summarizes the advantages, disadvantages, and application ranges of different
coating approaches for diffusion sources. Among the mentioned coating methods, the
vapor deposition has an overwhelming advantage regarding environmental protection.
Meanwhile, it can precisely control the consumption of GBD sources, which is beneficial
for saving the critical RE resources and improving the stability of the product. However,
owing to the necessary vacuum environment and the relatively low deposition rate, the
production efficiency is lower than those of the adhesive coating and the electrodeposition.
Furthermore, the vapor deposition still exhibits high costs from equipment and processing.
Therefore, this approach applies to small quantities of products.

Table 2. Advantages, disadvantages, and application ranges of various coating methods for depositing GBD sources.

Coating Method Subdivision of
Coating Method

Costs Advantage
from Process and

Equipment
Production
Efficiency

Level for
Materials

Saving
Quality of

Coating
Level of
“Green” Applicable GBD Source

Adhesive coating
Dipping

High High
Low Low Moderate Inorganic compounds

Spraying Low Moderate Low Inorganic compounds

Roller coating Moderate Low Moderate Inorganic compounds and
metals/alloys

Electrodeposition
Electroplating

Moderate Moderate
Moderate High Low Metals/alloys

Electrophoresis Moderate Moderate Moderate Inorganic compounds

Vapor deposition
Evaporation

Low Low
High High High Metals/alloys

Sputtering High High High Inorganic compounds and
metals/alloys

Ion plating High High High Inorganic compounds and
metals/alloys

4. Summary and Future Prospect

With the R&D of GBD process for over 20 years, the diffusion sources for Nd-Fe-B
magnets have been developed for three generations of HRE, LRE, and non-RE based
compounds or metals/alloys, in order to reduce the use critical RE elements and cost. At
present, the GBD process can be employed to enhance not only the magnetic properties,
but also other service performance such as corrosion resistance. Since the permanent
magnets with less critical RE elements emerge rapidly in recent years, such as multi-main
phase (MMP) magnets [54,74] and (La,Ce,Y)-Fe-B magnets [75,76], the non-RE diffusion
sources are competitive to treat these cost-effective magnets. With the industrialization of
GBD, various coating approaches for diffusion sources have been employed, including
adhesive coating, electrodeposition, and vapor deposition. These methods have their
own advantages, disadvantages, and application ranges. Since the Nd-Fe-B products are
mainly fabricated under customization, the different diffusion sources and the various
coating methods will be selected to meet specific applications. GBD is still in its rapid
development and is far from mature. For the future investigations, more attention should
be paid to develop not only efficient yet cheap diffusion sources, but also cost-effective
coating methods.
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Abstract: The inevitable thermal demagnetization of magnets at high-temperatures is a key issue for
Nd-Fe-B based permanent magnetic materials, especially for electric motors. Here, we report the effect
of partially substituting the element Holmium (Ho) on the magnetic properties and microstructure of
nanocrystalline melt-spun [(NdPr)1−xHox]14.3Fe76.9B5.9M2.9 (x = 0–0.6; M = Co, Cu, Al and Ga) alloys.
It shows that Ho can enter into the main phase and significantly enhance the coercivity (Hcj). A large
coercivity of 23.9 kOe is achieved in the x = 0.3 alloy, and the remanent magnetization (Mr) remains
in balance. The abnormal elevated temperature behavior of Mr is observed in the alloys with a high
amount of Ho substitution, in which the Mr of the x = 0.6 alloy increases with rising temperature
from 300 K to 375 K owing to the antiparallel coupling between Ho and Fe moments. As a result, the
positive value (0.050%/K) of temperature coefficient α of Mr is achieved in the x = 0.6 alloy within
the temperature range of 300–400 K, in excess of that of existing Nd-Fe-B magnets. The temperature
coefficient β of Hcj is also improved by Ho substitution, indicating the introduction of Ho in Nd-Fe-B
magnets is beneficial for thermal stability. The microstructure observation of x = 0, 0.3 and 0.6 alloys
confirmed the grain refinement by Ho substitution, and Ho prefers to remain in the 2:14:1 phase than
Nd and Pr. The present finding provides an important reference for the efficient improvement of the
thermal stability of Nd-Fe-B-type materials.

Keywords: Nd-Fe-B ribbons; Ho-substituted; coercivity; remanent magnetization; thermal stability

1. Introduction

Nd-Fe-B-based magnets have been employed as the high-performance permanent
magnetic material for numerous applications, such as in traction motors and generators,
due to their excellent hard magnetic properties [1,2]. As required for the developing motor
market, Nd-Fe-B magnets with superior thermal stability are seriously needed to maintain
performance in high temperatures [3]. Enhancing coercivity is considered to be an effective
way of withstanding the demagnetizing field at high service temperatures [4,5]. The heavy
rare earth (RE) elements Dy and Tb are generally added to Nd-Fe-B magnets to improve
their coercivity by the alloying or grain boundary diffusion method, since Dy2Fe14B and
Tb2Fe14B exhibit higher anisotropy fields (HA) than that of the Nd2Fe14B compound [6].
However, the addition of Dy or Tb causes a problem regarding the price of the magnets,
due to the limited natural abundance and the high cost of Dy/Tb. In the last few years,
many efforts have been dedicated to the development of Dy/Tb-free Nd-Fe-B magnets
with high coercivity to resist thermal demagnetization [3,7,8]. However, the outcomes are
still insufficient.
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Holmium (Ho) is one of the less-abundant heavy RE elements in the earth’s crust,
but its price is relatively low because it is also one of the less-frequently used. Although
Ho2Fe14B only presents a slightly higher HA (75 kOe) than 73 kOe of Nd2Fe14B, several
researchers have indicated that introducing Ho into Nd-Fe-B magnets can dramatically
improve the coercivity [9]. A high coercivity of 18 kOe was realized in Dy-free sintered
Nd-Fe-B magnets by the intergranular addition of Ho-Fe powder [10]. In addition, the
Ho2Fe14B compound shows a different temperature-dependence behavior of magnetization
(Ms) from Nd2Fe14B, in which the Ms decreases with decreasing temperature, owing to
the antiparallel coupling between Ho and Fe moments [11]. Therefore, the Ho-containing
sintered Nd-Fe-B magnets exhibit superior thermal stability to that of Ho-free magnets. For
nanocrystalline melt-spun Nd-Fe-B alloys, it is found that 20% Ho substitution can signifi-
cantly improve both coercivity and high-temperature performance [12]. Recent work on
high-abundance Ce-based melt-spun alloys shows that the coercivity of (Ce1-xHox)14Fe80B6
can be dramatically improved from 5 kOe to 17 kOe with 50% Ho addition; meanwhile
the Curie temperature Tc and thermal stability are also greatly improved [13]. In addi-
tion, the introduction of trace elements has a positive effect on the magnetic properties of
Nd-Fe-B magnets. Substituting the element Co for Fe can significantly increase the Curie
temperature (Tc) of the Nd2Fe14B phase; thus, Co is usually employed to improve the
thermal stability of Nd-Fe-B magnets [14]. Although Al is not favorable to Tc, it is found
to be beneficial for coercivity by partially substituting Fe for a decrease in domain wall
thickness [15]. Adding Ga and Cu can regulate the grain boundary, and results in coercivity
enhancement [16,17].

Therefore, Ho has the potential to improve the magnetic properties of Nd-Fe-B magnets.
However, until now, there has been no systematic report about the effect of Ho substitution
on melt-spun Nd-Fe-B alloys. In this study, the effects of Ho substitution on the phase
constitution, magnetic properties and microstructure of the melt-spun (Nd,Pr)-Fe-B alloys were
systematically investigated. The magnetic properties at room and high temperature instances
of the alloys after Ho addition were discussed in detail. This work provides useful guidelines
for enhancing the hard magnetic properties of (Nd,Pr)-Fe-B magnets. More importantly, it
offers a practical roadmap for reducing thermal demagnetization.

2. Experimental

A series of Ho-added alloy ingots with nominal compositions of [(Nd0.8Pr0.2)1−xHox]
14.3Fe76.9B5.9M2.9 (M = Co, Cu, Al and Ga) (at. %; x = 0–0.6) were prepared by induction
melting technique under Ar atmosphere. The starting materials were Nd-Pr, Ho, Fe, Fe-B,
Co, Cu, Al and Ga metals with purities higher than 99.9%. Hereafter, the samples are
simply labeled as NPHFBM. The nanocrystalline melt-spun ribbons were prepared by melt
spinning. The alloys with a total mass of 100 g were melted by induction melting, and
the general steps of alloy melting were as follows: alloys were subjected to 1 kW heat
preservation for 1 min for preheating, then the power was increased to 7 kW for melting;
after an alloy had completely melted into alloy liquid, it was subject to heat preservation
for 2 min, and then ejected onto the copper roller. The quenching rate of melt spinning was
controlled by the linear speed of the copper wheel. A wheel speed of 20 m/s was applied
in this work, to prepare melt-spun ribbons with a nanocrystalline structure.

The phase constitution of the samples in powder form was characterized by X-ray
diffraction (XRD, D8 Advance, BRUKER, Karlsruhe, Germany) with Cu Kα radiation
(λ = 1.5418 Å, 40 kV, 40 mA). The phase analysis was performed using the Rietveld refine-
ment with GSAS software. The magnetic properties of the ribbons were measured by a
Physical Property Measurement System (PPMS, EC-II, Quantum Design, San Diego, CA,
USA) equipped with a vibrating sample magnetometer (VSM) at a maximum magnetic
field of 50 kOe. For the magnetic measurements, the melt-spun ribbons were cut into small
pieces with a length of ∼5 mm and a width of ∼2 mm and measured in-plane to eliminate
the demagnetization effect. The microstructures were characterized by transmission elec-
tron microscopy (TEM, Tecnai G2 F20 S-TWIN, Thermo Fisher Scientific Inc., Waltham, MA,
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USA) equipped with an energy dispersive spectrometer (EDS), and the specimens for TEM
observation were prepared by ion milling (691, Gatan, Philadelphia, PA, USA). Ion-beam
thinning was carried out from the two sides of the ribbons at an inclination angle of 8◦

between the beam and the specimen surface. The Nd-Lα, Pr-Lα, Ho-Mα and Fe-Kα in the
EDS spectrum were selected for mapping. Average grain size and grain-size distributions
were calculated by measuring the maximum diameter with the software (Nano Measurer
1.2) for N grains (N typically in the range of 100–200).

3. Results and discussion
3.1. Phase Constitution

The XRD patterns of the melt-spun NPHFBM alloys are presented in Figure 1a. The
alloys with x = 0–0.3 are only composed of hard magnetic RE2Fe14B (i.e., 2:14:1) phases
with the tetragonal structure (space group P42/mnm). However, an additional REFe2 (i.e.,
1:2) Laves phase with the Cubic structure (space group Fd3m) was detected with further
increasing Ho substitution (x ≥ 0.4). HoFe2 phase exhibits a Curie temperature Tc of
612 K, and thus it is ferromagnetic at room temperature. It can be speculated that the
formation of this 1:2 phase would not affect the magnetization and remanence. However,
the precipitation of the 1:2 phase would consume excess rare earth, resulting in the reduction
of the non-magnetic RE-rich grain boundary phase. The RE-rich phase, such as Nd(dhcp),
Nd2O3(P3m1), may exist in these alloys, but it is very difficult to distinguish by XRD, due
to its low content and/or its diffraction peaks overlapping. The enlarged XRD patterns
(Figure 1b) within the 2θ range of 40–44◦ show that the characteristic diffraction peaks
of the 2:14:1 phase monotonically shift to the higher angle with increasing Ho content,
indicating the lattice contraction of the 2:14:1 phase. The refined lattice parameters a and c
of the 2:14:1 phase are shown in Figure 1c. The a and c of the 2:14:1 phase for the Ho-free
(x = 0) alloy are 8.78(9) Å and 12.22(6) Å, respectively, which monotonically decrease to
8.73(6) Å and 12.05(2) Å, respectively, with increasing x to 0.6. Ho exhibits a smaller atomic
radius of 1.77 Å than that of Nd (1.83Å) and Pr (1.82 Å). Therefore, the introduction of
Ho atoms into the 2:14:1 lattice would lead to a decrease in lattice parameters, resulting in
lattice contraction. In addition, the diffraction peaks of the 1:2 phase also shift to a higher
angle with increasing Ho content (see Figure 1b), indicating an excess of Ho atoms have
entered the 1:2 lattice, which is not beneficial for the coercivity of the alloy, and also worsens
the remanence. For the x = 0.4, 0.5 and 0.6 alloys, the proportion of 1:2 phase is 2.77 wt.%,
11.09 wt.% and 22.27 wt.%, respectively.

Figure 1. Phase structures of the NPHFBM alloys. (a) XRD patterns. (b) The enlarged XRD patterns
within the 2θ range of 40–44◦. (c) The refined lattice parameters of 2:14:1 phase.

3.2. Magnetic Properties

Figure 2 shows the second quadrant demagnetization curves and magnetic properties
of NPHFBM alloys at 300 K. As shown in Figure 2a, the demagnetization curves of all
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samples present relatively good loop squareness, indicating that uniform microstructures
were obtained in all alloys. No other soft magnetic phases are presented, which is also
consistent with the XRD results. The intrinsic coercivity Hcj greatly increases from 21.1 kOe
to 26.7 kOe as the doping amount (x) of Ho increases from 0 to 0.6. For the x ≥ 0.4
alloys, the precipitation of ferromagnetic 1:2 phase is generally considered not conducive
to the magnetic decoupling of the 2:14:1 main phase. However, the coercivity presents a
monotonically increasing trend, which should be attributed to the higher anisotropy field
HA of the Ho2Fe14B compound than that of Nd2Fe14B. The remanent magnetization Mr
dramatically decreases from 80.7 emu/g to 29.0 emu/g with increasing x from 0 to 0.6,
which could be explained by the antiferromagnetic coupling between Ho and Fe atoms. In
addition, the increasing Ho content reduces the total magnetic moment per unit volume
of the 2:14:1 phase, resulting in the decreasing of both saturation magnetization Ms and
Mr. Here, it should be noted that the gradual growth of the coercivity shows a slowing
trend compared to the linear variation of the remanence. Combined with the XRD results,
it could be concluded that it is the result of the formation of the 1:2 phase instead of the
2:14:1 phase. This means that a reasonable control of Ho doping is essential to improve
the overall performance of the alloy. Remarkably, the x = 0.3 alloy shows a relatively high
Hcj of 23.9 kOe with an acceptable Mr of 55.45 emu/g, which can realize the admirable
maximum magnetic energy product (BH)max of 48 kJ/m3.

Figure 2. (a) Demagnetization curves and (b) the corresponding magnetic properties of the NPHFBM
alloys at 300 K.

To fully understand the elevated temperature behavior of Ho-substituted NPHFBM
alloys, the demagnetization curves of selected three alloys (x = 0, 0.3, 0.6) measured at
different temperatures from 300 K to 400 K are shown in Figure 3a. The corresponding
magnetic properties are presented in Figure 3b,c, respectively. As shown in Figure 3b,
all selected samples show a monotonous decreasing trend of coercivity with increasing
temperature from 300 K to 400 K. For the RE2Fe14B compound, the exchange interaction of
both RE-Fe and Fe-Fe becomes weaker with rising temperature, especially approaching
the Curie temperature Tc, which also results in the decrease of HA. Consequently, the Hcj
decreases with increasing temperature. In addition, the x = 0.6 alloy retains 15.5 kOe of Hcj
at 400 K, which is much higher than 11.1 kOe of the Ho-free (x = 0) alloy. It indicates that
the Ho-substituted samples present higher resistance to thermal demagnetization.
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Figure 3. Temperature-dependent magnetic properties of NPHFBM alloys with x = 0, 0.3 and 0.6.
(a) Demagnetization curves. (b) Coercivity. (c) Remanence.

Figure 3c shows the temperature dependences of Mr for x = 0, 0.3 and 0.6 alloys,
respectively. The Mr for the Ho-free (x = 0) alloy decreases with increasing temperature,
while the x = 0.3 alloy presents a slower downward trend. Interestingly, the Mr for the
x = 0.6 alloy with high Ho content slightly increases from 28.7 emu/g to 30.4 emu/g as
the temperature rises from 300 K to 375 K, and then decreases to 30.2 emu/g at 400 K.
This abnormal behavior is related to the temperature-dependent magnetization Ms of the
Ho2Fe14B compound. As reported, the total magnetic moment (Mtot) of RE2Fe14B is related
to the coupled mode between the total RE moment (µRE) and Fe moment (µFe) [18]. For
RE2Fe14B based on light RE elements, in which the RE moment is coupled parallel to the Fe
moment, the total magnetic moment of RE2Fe14B can be ascribed as Mtot = 14µFe + 2µRE.
However, for the heavy RE-based compound, antiparallel coupling occurs between the RE
moment and Fe moment, which can be expressed as Mtot = 14µFe − 2µRE. The spin order
decreases with increasing temperature, resulting in the decrease of both µFe and µRE. Since
the reduction of the total RE moment exceeds the Fe moment, the total magnetic moment
enhancement with increasing temperature can be expected, thus resulting in a slower
decrease in the remanence of the alloy, or even an unexpected increase in the remanent
magnetization of the alloy in a certain temperature range. However, the remanence still
appears to inevitably deteriorate as the temperature increases to 400 K. This is due to the
sharp decrease of the spin order at higher temperatures, resulting in the decrease of the
total magnetic moment of RE2Fe14B.

Generally, the temperature coefficients α of remanence and β of coercivity are em-
ployed to describe the thermal stability of permanent magnetic materials, which can be
defined as follows:

α =
Mr(T2)− Mr(T1)

Mr(T1)× (T2 − T1)
(1)

β =
Hcj(T2)− Hcj(T1)

Hcj(T1)× (T2 − T1)
(2)
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where T1 is the initial temperature and T2 is the final temperature [19]. In this work, 300 K
and 400 K have been chosen as initial and final temperatures, respectively. Figure 4 presents
the comparison of temperature coefficients α and β for the Ho-substituted Nd-Pr-Fe-B
alloys obtained in the current work with a variety of previously reported nanocrystalline
melt-spun Nd-Fe-B based alloys and commercial sintered magnets at 300–400 K. As shown
by the arrow, both α and β values of the alloys obtained in this work are improved with
increasing Ho doping, indicating the enhanced thermal stability of alloys with Ho substi-
tuting. Remarkably, a positive α value of 0.050 %/K is achieved in the x = 0.6 alloy. As
is well known, the α value of Nd2Fe14B-type magnets is always negative, caused by the
inverse relationship between Ms and temperature. For commercial low-end and high-end
sintered Nd-Fe-B magnets, the α range is from −0.125 %/K to −0.75%/K at 300–400 K,
which is slightly higher the than −0.15 ~ −0.1 %/K of reported nanocrystalline melt-spun
Nd-Fe-B ribbons [12,16–18]. In addition, the Ho-substituted Nd-Fe-B alloys obtained in this
work exhibit slightly higher α and β values compared with sintered Nd-Fe-B magnets, even
the EH grade magnets (operating below 200 ◦C) with a coercivity of 30 kOe. Therefore,
it suggests that the introduction of Ho into Nd2Fe14B-type magnets is beneficial for the
magnetic properties at high temperature, especially for the Mr. This also provides a novel
approach to improve the thermal stability of Nd2Fe14B-type magnets.

Figure 4. The comparison of temperature coefficients α and β for the Ho-substituted Nd-Fe-B alloys
obtained in the current work with a variety of previously reported nanocrystalline melt-spun (ref.
from [12,20,21]) and sintered Nd-Fe-B magnets (ref. from [22]) at 300–400 K. The N-, M-, H-, SH-,
UH- and EH- stand for commercial sintered magnets with different coercivity (≥12 kOe, ≥14 kOe,
≥17 kOe, ≥20 kOe, ≥25 kOe and ≥30 kOe), which is suitable for different operating temperatures.

3.3. Microstructure

Figure 5a–c shows the bright-field TEM images for the selected three alloys, i.e., x = 0,
0.3 and 0.6 alloys, respectively. The corresponding grain size distributions are presented in
the inset. The well-crystallized grains have been observed in all samples. It is interesting to
note that the grain sizes obtained at the same speed decrease as the amount of Ho doping
increases. The Ho-free sample shows a larger mean grain size of ~72.79 nm compared with
x = 0.3 alloy (~46.31 nm) and x = 0.6 alloy (~33.66 nm), which implies that Ho substitution
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modifies the crystallization process, which in turn affects the grain size of the alloy. As
is well known, the Hcj for Nd-Fe-B type magnets is closely related to the grain size, and
higher Hcj can be achieved with smaller grains [3]. The substitution of Ho for Nd/Pr
can effectively refine the grains, which is beneficial for the Hcj. This means that the large
enhancement of the coercivity is not only due to the improvement of the anisotropic field
of Ho2Fe14B, but is also influenced by the grain size.

Figure 5. Microstructure characterization of NPHFBM alloys. Bright field TEM images and grain size
distribution of the x = 0 (a), 0.3 (b) and 0.6 (c) alloys. The HRTEM image of the typical grain obtained
from (b) for x = 0.3 alloy is shown in (d), and the corresponding FFT pattern is presented in the inset.
The HAADF image obtained from (b) and corresponding EDS elemental mapping are shown in (e)
and (f), respectively.

Figure 5d shows a high-resolution TEM (HRTEM) image of selected grains in Figure 5b
for x = 0.3 alloy, and the corresponding fast Fourier transformation (FFT) pattern is shown
as an inset in Figure 5d, confirming the grain is the 2:14:1 phase. A high-angle annular
dark-field (HAADF) image obtained from Figure 5b is presented in Figure 5e, and the thin
grain boundary layer with 1–2 nm is observed clearly. The GB layer plays an important role
in Hcj improvement, in which the GB layer can isolate the magnetic coupling between the
neighboring ferromagnetic 2:14:1 grains. Figure 5f presents the EDS elemental mappings
taken from Figure 5e. It shows that all the RE elements are enriched in the GB layer, and
Fe is mainly distributed in the 2:14:1 grains. In addition, the distribution of Ho in the GB
layer is not as obvious as that of Nd and Pr, indicating the weak segregation of Ho. This is
consistent with previous results, which indicated that the light RE prefers to enter into the
GB compared with the heavy RE [23,24].

4. Conclusions

In this work, we systematically studied the effects of Ho addition on the phase constitu-
tion, magnetic properties and microstructures of nanocrystalline melt-spun [(Nd0.8Pr0.2)1-xHox]
14.3Fe76.9B5.9M2.9 (M=Co, Cu, Al and Ga) (at. %; x = 0–0.6) alloys. The REFe2 phase is formed
at high amounts of Ho substitution (x ≥ 0.4). At room temperature, the coercivity greatly
improved from 21 kOe to 27 kOe with increasing Ho substitution from 0 to 60%, while the
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remanent magnetization deteriorated from 80.7 emu/g to 29.0 emu/g accordingly. For the
elevated temperature behavior, the Mr of the x = 0.6 alloy increases with rising temperature
from 300 K to 375 K, which is attributed to the antiparallel coupling between Ho and Fe
moments. Both the temperature coefficient α of Mr and β of Hcj are improved by Ho substi-
tution, indicating the enhanced thermal stability by Ho addition. Remarkably, the positive
value of α = 0.050%/K is achieved in x = 0.6 alloy (300–400 K), which is superior to that of
Nd-Fe-B magnets. The TEM results have revealed that Ho substitution can refine the size of
the 2:14:1 grain. The EDS elemental mapping shows the RE segregation, in which Nd and Pr
are more likely to segregate in the grain boundary phase than Ho. The present work provides
a practical road map for enhancing the coercivity and thermal stability of Nd-Fe-B permanent
magnetic materials simultaneously.
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Abstract: FeSiCr soft magnetic composites (SMCs) were fabricated by the sol-gel method, and
an Al2O3/resin composite layer was employed as the insulation coating. By the decomposition
of boehmite (AlOOH) gel into Al2O3 in the temperature range of 606–707 ◦C, a uniform Al2O3

layer could be formed on the FeSiCr powder surface. The Al2O3 insulation coating not only effec-
tively reduced the core loss, increased the resistivity, and improved the quality factor, but it also
increased the thermal conductivity of SMCs. The best overall properties with saturation magnetiza-
tion Ms = 188 emu/g, effective permeability µe = 39, resistivity ρ = 8.28 × 105 Ω·cm, quality factor
Q = 94 at 1 MHz, and core loss = 1173 mW/cm3 at 200 kHz and 50 mT were obtained when the SMC
was prepared with powders coated by 0.5 wt.% Al2O3 and resin. The optimized SMC exhibited the
lowest core loss with 27% reduction compared to the resin only-insulated sample and 71% reduction
compared to the sample without insulation treatment. Importantly, the thermal conductivity of the
SMCs is 5.3 W/m·K at room temperature, which is higher than that of the samples prepared by
phosphating and SiO2 coating owing to the presence of a high thermal conductive Al2O3 layer. The
high thermal conductivity is beneficial to enhancing the high temperature performance, lifetime, and
reliability of SMCs. This work is expected to be a valuable reference for the design and fabrication of
SMCs to be applied in high-temperature and high-frequency environments.

Keywords: soft magnetic composites; sol-gel; magnetic properties; core loss; thermal conductivity

1. Introduction

As we transition to a more electrified and sustainable world, efficient power conver-
sion requires magnetic passive devices to achieve high power density [1]. Soft magnetic
materials play an important role in the field of power electronics, and they have been widely
used in transformers, inductors, capacitors, etc. Soft magnetic composites (SMCs) are the
newest class of soft magnetic materials, consisting of micron-sized particles pressed after
insulation treatment [2]. The unique properties of SMCs include isotropic magnetic and
thermal properties, high magnetic permeability, low coercivity, a high Curie temperature,
reduced weight and size, and low core loss [3,4]. Hence, SMCs are capturing the attention of
a growing number of researchers due to these improved electromagnetic properties [5–10].

FeSiCr alloy powder, as one of the most promising soft magnetic materials, has been
employed for the preparation of SMCs [11–15]. The addition of Cr to Fe-Si alloys reduces
their magnetic anisotropy and improves their corrosion resistance [16]. Insulation coatings
are utilized to form the isolation network between ferrous particles so that the core loss
generated by eddy currents can be reduced. The coating technology is one of the key factors
for fabricating high-performance FeSiCr SMCs [17]. Both organic and inorganic materials
have been used for insulation. Although the organic coatings provide satisfactory adhesion
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and flexibility, most of them exhibit poor resistance against high-temperature treatment [18].
Inorganic coatings usually exhibit higher thermal stability compared to organic insulations,
such as epoxy and phenolic resins [19]. The latest investigations showed that the organic-
inorganic composite insulation layers for FeSiCr exhibit the advantages of good adhesion
and high resistivity. Guo et al. [10] improved the permeability and resistivity of FeSiCr
powder by coating it with different concentrations of NiZn ferrite. Wang et al. [12] provided
a new nano-CaCO3/epoxy nanocomposites insulating layer on FeSiCr and carbonyl iron
powder, which effectively reduced high-frequency losses. Xia et al. [17] explored the
phosphating process for FeSiCr powders to improve the resistivity of SMCs. However,
these studies stopped at the insulation effects, and almost no research related to the thermal
conductivity of SMCs has been conducted. In fact, the SMC devices applied in AC fields are
accompanied by heat generation. Excessive temperature of the magnetic core will cause a
reduction in the performance of the devices or even overheating damage to the core. A high
thermal conductivity of SMCs can quickly release the heat produced by magnetic losses
and thus enhance the performance, lifetime, and reliability of SMCs and devices [20]. As
we all know, Al2O3 is a metal oxide with high resistivity and temperature resistance, which
is also widely used as a thermal transfer filler in polymer composites owing to its high
thermal conductivity [21,22]. The thermal conductivities of typical inorganic coatings at
room temperature for iron phosphate, SiO2, Al2O3, and soft ferrites are 0.8–2 W/m·K [23],
0.27 W/m·K, 30 W/m·K [24], and 0.1–0.3 W/m·K [25], respectively. Al2O3, as an easily
prepared metal oxide with both high thermal conductivity and high resistivity, is thus
a good insulation layer material for SMCs. Therefore, it is expected that the magnetic
performance and thermal stability of SMCs can be enhanced by an Al2O3 inorganic layer.

In this work, an Al2O3 insulation layer was successfully prepared on the surface of
FeSiCr powders using the sol-gel method. The thickness of the Al2O3 insulation layer was
controlled by the solid content of boehmite (AlOOH) sol. The microstructure and magnetic
properties of the SMCs with insulation layers containing different Al2O3 contents were
investigated. The results showed that the SMCs insulated by Al2O3/resin composites have
significantly improved resistivity, frequency stability of permeability, core loss, and thermal
conductivity. This work provides a viable solution for the fabrication of high magnetic
performance and temperature-resistant SMCs.

2. Experimental Methods
2.1. SMC Preparation

The raw FeSiCr powders with a mean particle size of 10 µm were commercially
purchased from Antai Technology Co., Ltd (Beijing, China)., and they had the composition
of 88.5–90.5 wt.% Fe, 4.5–5.5 wt.% Si, and 5–6 wt.% Cr. Al(OPri)3 (Macklin) was used as
the precursor for the hydrolysis reaction to obtain the Al2O3. Silicone (KR5235) and epoxy
resin (AFG90H) supplied by Shin-Etsu Chemical Co., Ltd (Tokyo, Japan). and Tiantai New
Materials Co., Ltd (Guangzhou, China)., respectively, were used as the binder to improve
the moldability and strength of the powders. KH550 (Usolf) silane coupling agent was
used to improve the binding between the organic and inorganic composite coatings. All
chemicals used were of an analytical grade and could be used without further purification
in this work.

The Al(OPri)3, ground into powder, was added to deionized water and heated to 85 ◦C
with mechanical stirring. After 30 min, nitric acid was added as a precipitating solubilizer
and catalyst. Afterward, stable and transparent AlOOH sol was obtained by continuous
mechanical stirring at 85 ◦C for 5 h. The molar ratio of Al(OPri)3, deionized water, and
nitric acid was 1:90:0.3. AlOOH sols with different solid contents (0.5–2.0 wt.%) were mixed
and coated with FeSiCr powders under 105 ◦C until the solvent was evaporated. The
mixed powders were subsequently calcined at 700 ◦C under a high vacuum pure argon
atmosphere for 1 h to obtain the Al2O3 layer. Phosphated and SiO2-coated samples with
similar resin bonding were fabricated by the conventional phosphating process [26] and
TEOS hydrolysis [5], respectively, to compare the thermal conductivity.
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The organic coating solution was prepared by dissolving 1 wt.% epoxy-modified sili-
cone resin and 0.5 wt.% KH550 in acetone. The previously obtained powders were dipped
into the organic coating solution and stirred until the acetone evaporated. Subsequently,
the composite powders and 0.5 wt.% of the lubricant barium stearate were compacted at
1200 MPa into toroidal-shaped SMCs with the dimensions of Φ20 × Φ12 × 4.6 mm. It
should be mentioned that the size of our tested samples was not based on the international
standards but on the technique requirements of Mentech Optical & Magnetic Co., Ltd
(Dongguan, China). Similar sample dimensions have also been used in some studies of
FeSiCr SMCs from other research groups [12,13,15]. Finally, the SMCs were heated to
180 ◦C for 2 h to cure the resin. A schematic diagram of the preparation process of FeSiCr
SMCs is presented in Figure 1.
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Figure 1. Schematic diagram of the preparation process of FeSiCr SMCs.

2.2. Characterizations

The surface morphologies of the powders and a cross-section of the SMCs were
observed by scanning electron microscopy (SEM, FEI Quanta 200, Hillsboro, OR, USA)
with energy dispersive X-ray spectroscopy (EDS, EDAX Genesis Xm 2, Pleasanton, USA).
Differential thermal analysis (DSC, STA449C, Netzsch, Bavaria, Germany) was used to scan
the thermal variation of the FeSiCr coated by AlOOH gel in an argon atmosphere heated
to 900 ◦C at a heating rate of 10 K/min. Fourier transform infrared spectroscopy (FTIR,
VERTEX 70, Bruker, Billerica, MA, USA) was used to investigate the chemical structure
and state of the coatings at 400–4000 cm−1 transmittance. The phase structures of powders
before and after insulation treatment were confirmed by X-ray diffraction (XRD, Philips X’
Pert, PANalytical, Almelo, The Netherlands) using Cu Kα radiation at room temperature.
The electrical resistivity was measured by a high resistance weak current tester (ST2643,
Jingge, Suzhou, China). The density was calculated based on the weight and size of the
SMC core. The hysteresis loops were measured at room temperature using a Vibrating
Sample Magnetometer (VSM-3105, East Changing, Beijing, China). An impedance analyzer
(Agilent E4990A, Keysight, Beijing, China) was used to measure the permeability µe and
quality factor Q of SMCs from 20 kHz to 10 MHz, with contact electrodes in a double-ended
configuration. µe can be defined as follows:

µe =
L

2h × ln(D/d) × N2 × 10−10 (1)

where L is the effective self-inductance, N is the number of copper wire turns, h is the height
of the sample, and D and d are the outer and inner diameters of the sample, respectively.
The core losses were measured using a soft magnetic AC test set (MATS-3010SA, Linkjoin,
Loudi, China) at Bm = 50 mT, 20–200 kHz. The thermal conductivity of strip block-pressed
SMCs was measured using a physical property measurement system (PPMS-9).

32



Metals 2023, 13, 813

3. Results and Discussion
3.1. Structure Analysis

By the hydrolysis of Al(OPri)3, the Al2O3 insulating layer was coated on the FeSiCr
powders [27]. The main hydrolysis process can be described with the following three equations:

Al(C3H7O)3+H2O→ Al(C3H7O)2(OH)+C3H7OH (2)

2Al(C3H7O)2(OH)+H2O→ Al2O(C3H7O)2OH2+2C3H7OH (3)

Al2O(C3H7O)2OH2+H2O→ 2AlOOH + 2C3H7OH (4)

The total reaction is:

Al(C3H7O)3+2H2O→ AlOOH + 3C3H7OH (5)

Since the whole hydrolysis reaction is conducted in solution, the resulting product
of boehmite (AlOOH) particles is easily and uniformly dispersed in the solution at the
molecular level. During preparation, these particles cover the powders as an insulating
layer, which will be pyrolyzed into Al2O3 by subsequent annealing. The by-product of
propyl alcohol has a low boiling point and thus mostly evaporates during the heating.

During the sol-gel process, the solute is aged, and the colloidal pellets slowly poly-
merize to form a gel with a three-dimensional spatial network structure. After drying,
sintering, and curing the gel, a molecular and even nanostructured coating layer could be
formed on the powders. To explore the dehydration temperature of the AlOOH gel, the
DSC curve of the FeSiCr powders coated by AlOOH gel was tested, as shown in Figure 2.
Although the insulation layer is thin, there is still an obvious heat absorption peak with an
area of ∆H = 1.47 J/g of heat absorption per unit, which is obtained by calculating the peak
area on the baseline based on the integration. The decomposition of boehmite gel begins at
660 ◦C, and this reaction is practically complete by 707 ◦C. This reaction can be described
by the following equation [28]:

2α−AlOOH→ γ−Al2O3+H2O (6)
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Figure 2. The DSC curve of the FeSiCr powder coated by AlOOH gel. Figure 2. The DSC curve of the FeSiCr powder coated by AlOOH gel.
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A lower annealing temperature is needed not only for the consideration of energy
savings but also to minimize partial oxidation, which may deteriorate the magnetic per-
meability. The peak point of the DSC curve corresponds to the fastest energy change,
which is 688 ◦C, as shown in Figure 2. In this work, a temperature of 700 ◦C, slightly
higher than 688 ◦C, was chosen as the heating temperature to obtain more physically stable
Al2O3 coating.

FTIR analysis was performed on the FeSiCr powders coated by AlOOH gel before
and after heating at 700 ◦C to understand the evolution of the insulating coatings during
the heating process, as shown in Figure 3. The FTIR spectrum, taken from the uncoated
powders, is also shown in Figure 3 for comparison. The broad absorption bands around
3430 cm−1 and 1630 cm−1 are attributed to the stretching of -OH [29], while the weakening
of the -OH vibration of the coated powders is due to the formation of Al-O-Al metal
bonds by dehydration of the solute with the surface -OH sites. The absorption bands
at 490 cm−1 and 435 cm−1 are attributed to the Si-O and Fe-O vibrations due to trace
oxidation appearing on all sample surfaces [5,30]. Compared to uncoated powder, the
new 1060 cm−1 and 1160 cm−1 absorption bands correspond to the Al-OH vibration of
the boehmite AlOOH [19,31], and the absorption band around 609 cm−1 corresponds
to Al-O-Al [32,33]. It indicates that an insulating layer of AlOOH gel and Al2O3 has
been formed on the powder surface [31,33]. Due to the high-temperature pyrolysis that
converts the AlOOH gel into alumina, the sample after heating at 700 ◦C for 1 h showed a
significantly enhanced Al-O-Al vibration at 609 cm−1 compared to the untreated sample.
At the same time, the bands around 1380 cm−1 and 887 cm−1 originating from Fe-OH and
Fe-O were observed due to a small amount of oxidation of the powder after heating [34].
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Figure 3. FTIR spectra of the raw FeSiCr powders and the powders insulated by AlOOH gel before 

and after annealing at 700 °C for 1 h. 
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prove that there is an alumina insulation layer generated on the powder surface. 

Figure 3. FTIR spectra of the raw FeSiCr powders and the powders insulated by AlOOH gel before
and after annealing at 700 ◦C for 1 h.

The phase structures of powders before and after insulation treatment are shown in
Figure 4. The uncoated FeSiCr powder and all Al2O3 coated composite powders exhibited
sharp crystallization peaks at 44.8◦, 65.2◦, and 82.6◦ with crystallographic indices of (110),
(200), and (211), respectively, which are typical of the characteristic peaks of α-Fe(Si,Cr). The
obvious Al2O3 diffraction peaks were not clearly detected. The reasons can be attributed to
the content of the formed Al2O3 being very low or the heating temperature not reaching
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the crystallization temperature of Al2O3. Nevertheless, this outcome does not disprove
that there is an alumina insulation layer generated on the powder surface.
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Figure 4. X-ray diffraction (XRD) of uncoated and different Al2O3-coated FeSiCr powders.

Figure 5 shows the morphologies and EDS elemental distribution of the FeSiCr pow-
ders insulated by different concentrations of the Al2O3 layer. The 0.5 wt.% Al2O3-coated
powder showed a slight, rough surface, and no significant change could be observed
compared to the raw powders in Figure 5a because the thickness of the layer is very thin.
In Figure 5b, the detected Fe, Si, and Cr elements came from the initial powder. The Al
and O elements exhibited the same uniform distribution. The mass ratio of the Al element
increased with the gradual increase in the solid content of Al2O3 in the boehmite sols. At the
same time, a thicker surface insulation layer is clearly revealed in Figure 5c,d. The 1.5 wt.%
Al2O3-coated powder became rough, and a few visible flocs gathering appeared on the
powder surface, as shown in Figure 5d. The mass ratio of the Al element is significantly
increased compared to the low concentration of the Al2O3-coated powder. According to the
SEM results, there is a thin Al2O3 insulation layer covering the powder, and the thickness
was affected by the Al2O3 concentration. To provide maximum permeability and density,
the amount of interparticle insulation should be minimized. A thin and uniform insulation
layer is generally required to minimize the eddy current in high-frequency applications.

The polished cross-section of the SMCs is shown in Figure 6. The EDS result of line
scanning crossing the powder interface indicates that the Al and O elements appear at
the interface of particles containing Fe elements. The elemental distribution on particle
boundaries indicates that the particles are isolated by the alumina insulating layer. The
coating layer forms the isolation network between ferrous particles, which can reduce the
powder contact and even act as a heat conduction channel. In addition, air gaps can still be
found between the particles under pressure of 1200 MPa. Partial extrusion deformation
can also be observed. Partial deformation can reduce the porosity and increase the density,
but this additional deformation induces high stress and thus may increase the hysteresis
loss [35]. The internal stress introduced during compaction can often be relaxed in the
post-annealing process.
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3.2. Magnetic Performance

Figure 7 illustrates the magnetic hysteresis loops of FeSiCr powders coated with differ-
ent Al2O3 contents. The enlarged image shows the saturation magnetization Ms. Compared
to the uncoated powders, as the content of Al2O3 increases to 2.0 wt.%, the Ms value de-
creases monotonically from 193 emu/g to 177 emu/g due to the magnetic dilution effect of
the non-magnetic substance Al2O3. This result indicates that the introduction of inorganic
insulation coating does not significantly reduce the Ms of the magnetic powder, and Ms
remains in the normal level of FeSiCr powder (130–200 emu/g) [12]. Combined with the
content and morphology of the insulating layer within Figure 5, the introduced Al2O3
insulating layer is thin, with less influence on the deterioration of the original powder Ms.
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Figure 7. The magnetic hysteresis loops for different Al2O3-coated FeSiCr powders.

The effective permeability µe variation with the frequency for different contents of
Al2O3 coatings are shown in Figure 8. The samples fabricated by raw powders exhibit
poor frequency stability of µe, and as the frequency increases to 5 MHz, the µe decrease
monotonically drops from 55 to 21 (a decrease of 62%) subjected to the deteriorating effect
of eddy currents. All the Al2O3/resin-coated SMCs have almost constant permeability from
20 kHz to 5 MHz, due to the good insulation between the magnetic powders. After a 1 wt.%
resin coating, the µe decreases from 55 to 40 (a decrease of 28%), while a further reduction
from 40 to 34 (a decrease of 15%) appears with the increasing concentration (0–2 wt.%) of
Al2O3. This decrease is due to the magnetic dilution effect of Al2O3 and resin, as well as
the introduction of more air gaps and cracks into the insulation layer. It can be concluded
from the reduction percentage of µe that the addition of resin has a greater effect on the
decrease in magnetic permeability than the Al2O3 layer. Thus, the 0.5 wt.% Al2O3/resin
coating sample causes a minor decrease in µe compared to the resin-only coating sample,
whereas the µe decreased only from 40 to 39.
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The core loss is the dissipating part of energy that is converted irreversibly into heat
through the periodically magnetized process. In the current application frequency field,
the total loss mainly consists of hysteresis loss, eddy current loss, and anomalous loss.
Hysteresis loss is due to the irreversible domain wall displacement and magnetization
vector rotation. The AC magnetic process generates eddy currents, which depend on
the inductive magnetic field and frequency in working conditions. Anomalous loss is a
combination of relaxation and resonant losses. According to the classical loss theory, the
total loss (Wt) is mainly determined by hysteresis loss (Wh), eddy current loss (We), and
anomalous loss (Wa) according to the following formula [36,37]:

Wt= Wh+We+Wa ≈
∮

HdB+
CeB2d2

æ
f + Caf 1/2 (7)

where f is the frequency, H is the magnetic field strength, B is the magnetic induction, Ce
and Ca are the proportionality constants, ρ is the resistivity, and d is the thickness of the
material. Figure 9 shows the variation of core loss versus frequencies from 20 to 200 kHz
at Bm = 50 mT for FeSiCr SMCs with 0–2 wt.% Al2O3/resin coatings. The anomalous loss
calculated by fitting the experimental results is very small and neglected, which is only
important at very low induction levels and very high frequencies [2]. The raw powder
pressed sample exhibits the highest total loss, which severely worsens to 4050 kW/m3

with the increase in frequency to 200 kHz. The presence of a large, nonlinear eddy current
loss fraction indicates a large heat generation effect of inter-particle eddy currents without
insulation treatment. Compared to the 1 wt.% resin only-coated SMC sample, the SMCs
with (0.5–2 wt.%) Al2O3/resin showed a significant reduction in core loss. The minimum
value of 1173 mW/cm3 corresponds to the sample with 0.5 wt.% Al2O3/resin, which
exhibited a 27% reduction compared to the resin only-coated sample and a 71% reduction
compared to an uncoated powder sample. This reduction in loss is due to the suppression
of eddy currents by the insulation layer. With the increase in Al2O3 concentration, the core
loss grows gradually because of the increase in hysteresis loss in part. In a ferromagnetic
pressing material, Al2O3 impurities between the particles and stressed regions give rise to
pinning sites that can hinder domain wall motion [38,39], increasing the coercive force and
directly increasing the hysteresis loss.
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Figure 9. Core losses of FeSiCr SMCs with different contents of Al2O3 insulation in the frequency
range from 20 kHz to 200 kHz.

Table 1 lists the density, electric resistivity ρ, effective permeability µe, and core losses
of FeSiCr SMCs insulated with different contents of Al2O3. The standard deviations are
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calculated by five samples from the same group. The density of SMCs monotonically
decreases from 6.31 g/cm3 of the raw powder to 5.97 g/cm3 with 2 wt.% Al2O3/resin.
The reduction is due to the relatively lower-density insulation layer. The resistivity of the
samples after resin-only and 2 wt.% Al2O3/resin coatings increases by nearly 4700 and
1,300,000 times, respectively, compared with the uncoated sample, indicating an increasing
trend with the Al2O3 addition. The increasing resistivity can reduce the eddy current
between the particles, decreasing the heat dissipation and ensuring the soft magnetic
performance of SMCs at high frequencies. In fact, for a test frequency not higher than
200 kHz, an appropriately increased resistivity is able to limit the eddy current loss to a
low value, but excessive insulation may increase the hysteresis loss and the total losses.
Specifically, as the insulation layer content increases, some properties are optimized with
sacrifice of other properties. As shown in Table 1, the resistivity and core losses can
be improved, but the permeability and saturation magnetization show some reduction
as the Al2O3 content increases. The sample with 0.5% Al2O3-resin showed relatively
good properties.

Table 1. The density, resistivity ρ, effective permeability µe, and core losses of FeSiCr SMCs insulated
with different contents of Al2O3.

Sample
(Powder Treatment)

Density
(g/cm3)

Resistivity ρ
(Ω·cm)

Permeability
(µe/200 kHz)

Ps@50 mT/mW/cm3

100 kHz 200 kHz

Uncoated FeSiCr 6.31 ± 0.03 58 ± 9 55.5 ± 1.6 1283 ± 8 4015 ± 26
0% Al2O3-resin 6.23 ± 0.03 (2.8 ± 0.1) × 105 39.9 ± 1.2 783 ± 3 1584 ± 11

0.5% Al2O3-resin 6.19 ± 0.02 (8.3 ± 0.5) × 105 39.3 ± 1.3 589 ± 3 1173 ± 8
1.0% Al2O3-resin 6.10 ± 0.02 (2.1 ± 0.2) × 106 37.8 ± 1.1 620 ± 5 1239 ± 10
1.5% Al2O3-resin 5.98 ± 0.02 (1.9 ± 0.1) × 107 34.2 ± 0.9 701 ± 2 1385 ± 5
2.0% Al2O3-resin 5.97 ± 0.02 (7.8 ± 0.2) × 107 33.7 ± 0.9 712 ± 5 1420 ± 9

With the demand for high energy storage and low energy dissipation at high frequen-
cies in industrialization, the conversion efficiency is an important characteristic of SMCs.
Quality factor Q is a vital parameter for the electric component in the circuit. It represents
the ratio of energy storage to energy dissipation in inductor devices: a higher quality
factor implies better high-frequency soft magnetic performance, which can be understood
as follows [40]:

Q =
µ′

µ′′
(8)

where µ′ and µ′′ are the real and imaginary parts of complex permeability, respectively.
Figure 10 shows that the uncoated powder reaches the peak Q = 10.3 point at a low
frequency (80 kHz) and continuously decreases as the frequency increases. The sample
without insulation treatment is only suitable for power conversion at lower frequencies
with a lower efficiency. In contrast, the Q value of the composite insulated SMCs maintains
a high level up to 2~3 MHz, indicating good performance for high-frequency applications.
The variation of the Q value with Al2O3 content shows the same trend as the core loss
(Figure 9), indicating the important, positive effect of insulation treatment for SMCs. The
highest quality factor of 94 at 1 MHz also indicates that the 0.5 wt.% Al2O3/resin coating
has the best insulation effect.

3.3. Thermal Conductivity

Soft magnetic devices are increasingly required to be used under high electrical cur-
rent. The thermal stresses due to joule heating and magnetic losses can be damaging.
A higher thermal conductivity might improve the thermal performance of the device
by increasing the ability to dissipate heat. From the Maxwell–Eucken mixture equation,
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an effective thermal conductivity of the composite core material was determined by the
following parameters [41]:

ke = kl ·
[

kp +2·kl +2·Vf ·
(
kp−kl

)

kp+2·kl −Vf ·
(
kp−kl

)
]

(9)

where kp and kl represent the thermal conductivity of the iron powder and layer, whereas
ke and Vf represent the effective thermal conductivity and volume fraction of the filling,
respectively. It can be concluded that ke is mainly dependent on the layer material. The
choice of a higher thermal conductivity coating layer can effectively improve its ke.
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Figure 10. Quality factor Q of FeSiCr SMCs with different contents of Al2O3 insulation at the
frequency range of 20 kHz to 10 MHz.

The thermal conductivities of FeSiCr-based SMCs with different inorganic layers and
similar resin bindings are shown in Figure 11, and they were tested at near room tempera-
ture. The thermal conductivity showed a slow decrease with increasing temperature. The
conduction of heat within a metal material is mainly achieved by collisions between free
electrons. When the temperature increases, the speed of the thermal motion of electrons
accelerates, and collisions with lattice dots are more frequent. As a result, the average
free range is shortened, and the thermal conductivity decreases. The Al2O3-coated sample
maintained a higher thermal conductivity, which was ~5.3 W/m·K at room temperature.
Using the Maxwell mixture relationship to estimate the thermal conductivity of composites
layer kl, the two parameters were fixed at: Vf = 0.637, the maximum fraction to which
a volume can be filled with randomly packed spheres; and kp = 74 W/m·K, the thermal
conductivity of FeSiCr powders. The calculated thermal conductivity of the Al2O3/resin
composites layer kl is 0.92 W/m·K, which is much higher than the thermal conductivity of
general resins (0.11–0.53 W/m·K) [25]. As for the two types of inorganic insulation most
commonly used in industrial manufacturing, the phosphating process exhibited higher
thermal conductivity than the SiO2 coating method. This finding is consistent with the
trends of the thermal conductivity of these two inorganic insulations themselves. Al2O3
insulation layer exhibits the best thermal conducting for the SMCs. It is believed that, as an
easily prepared metal oxide with high thermal conductivity, Al2O3 insulation treatment
will have promising applications for SMC inductor production.
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4. Conclusions

FeSiCr soft magnetic composites (SMCs) based on powder coated with an Al2O3/resin
insulation layer by the sol-gel method were fabricated. Al2O3/resin insulation treatment
not only effectively optimized the core loss, resistivity, and quality factor Q of SMCs, but it
also improved their thermal conductivity. The sample with 0.5 wt.% Al2O3/resin exhibited
the optimum comprehensive properties with saturation magnetization Ms = 188 emu/g,
effective permeability µe = 39, resistivity ρ = 8.28 × 105 Ω·cm, quality factor Q = 94 (at
1 MHz), and core losses = 1173 kW/m3 (at 200 kHz, 50 mT). The thermal conductivity
of SMCs is ~5.3 W/m·K at room temperature, which is higher than that of conventional
inorganic coating layers, such as phosphate and SiO2. The use of inorganic insulating layer
techniques allows for stability of µe and loss reduction at high frequencies, but it inevitably
leads to reductions in µe and Ms. The low core loss and high stability of µe and high thermal
conductivity of SMCs constitute considerable improvements for SMC-based devices to be
used in high-frequency and high-temperature environments. This work provides a new
strategy for developing SMCs that can work at relatively high temperatures with high
reliability, which could be beneficial to high frequencies, miniaturization, and integration
of electronic components.
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Abstract: Fe-based amorphous powder cores (AMPCs) were prepared from FeSiBCr amorphous
powders with phosphate–resin hybrid coating. The high-frequency magnetic properties of AMPCs
annealed at different temperatures were systematically studied. After annealing at low temperatures,
the effective permeability and core loss improved due to the internal stress of the powder cores being
released. The sample annealed at 480 ◦C exhibits the lowest hysteresis loss of about 29.6 mW/cm3 at
800 kHz as well as a maximum effective permeability of 36.4, remaining stable until 3 MHz, which
could be useful for high-frequency applications.

Keywords: amorphous powder cores; high frequency; internal stress; annealing

1. Introduction

Soft magnetic composites (SMCs) are widely used in electronic devices and compo-
nents in the field of energy conversions, such as transformers, inductors and electrical
motors [1–3]. They are key to the efficient operation of the next generation of electrical
machines due to their characteristics, such as magnetic and thermal isotropy, high resistivity
and high saturation magnetization [2,4]. In order to be used in high-frequency ranges,
SMCs require excellent electromagnetic properties, such as high-frequency stability, low
core loss and usability with high currents [5]. The frequency characteristics of permeability
and total core loss can be significantly affected by structure, density, non-magnetic insula-
tion coatings, internal stress and so on [6]. Generally, insulation coatings can improve the
resistivity of powders and insulate the particles, which can reduce the eddy current loss at
high frequency. Meanwhile, the non-magnetic insulation coatings will dilute saturation
magnetization and decrease permeability. Furthermore, the internal stress generated during
the pressing process will hinder domain walls’ motion, resulting in the deterioration of
coercivity and hysteresis loss [7–9].

There are many types of SMCs, such as ferrites, FeSi, Sendust (FeSiAl) and Fe-based
amorphous cores. Compared with traditional soft magnetic alloys, Fe-based amorphous
materials have low coercivity, high resistivity and high saturation magnetization [10]. Fe-
based amorphous bulks have been used in transformers and are estimated to be able to
save approximately 30% of electrical energy. Therefore, Fe-based amorphous materials
have attracted widespread attention and are recommended as ideal soft materials for high-
frequency applications. However, due to the poor plastic deformation ability of amorphous
powders, they require higher pressure during pressing than compared to traditional SMCs.
The internal stress generated during the pressing process leads to low permeability and
high core loss. In this research, FeSiBCr amorphous magnetic powder cores (AMPCs) with
phosphate–resin hybrid insulation coating were fabricated. The annealing effects on the
microstructure and magnetic properties of the powder cores were studied systematically.
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2. Experimental Procedure

The FeSiBCr gas-atomized amorphous powders with a median particle size of 11 µm
were first mixed with phosphoric acid diluted in ethanol with a concentration of 0.6 wt.%.
The powders were stirred in the solution at 55 ◦C for 30 min to obtain the phosphate
coating. Then, the coated powders were dried at 120 ◦C for 30 min. After drying, the
coated powders were mixed with 3 wt.% epoxy-modified silicone resin acetone solution
to obtain inorganic–organic core–shell composite powders. The composite powders were
then compacted into toroidal cores with dimensions of Φ20 mm × Φ12 mm × 5 mm at
1800 MPa. The coated amorphous powder and the powder cores were annealed at 440 ◦C,
480 ◦C and 520 ◦C under the protection of argon for 1 h.

The morphology of the coated powders was characterized by a scanning electron
microscope (SEM). The phase identifications for all powders were conducted by an X-
ray diffractometer using Cu Kα radiation over the 2θ range of 10◦–90◦. The saturation
magnetizations of all samples were measured with a Physical Property Measurement
System (PPMS) equipped with a vibrating sample magnetometer (VSM). The DC hysteresis
loops of all powder cores were collected by a soft magnetic direct current test system.
The effective permeabilities and quality factors of the powder cores were measured by
an impedance analyzer. The core losses of all samples were measured using an AC B-H
loop tracer.

3. Results and Discussion

Figure 1 shows SEM images of the raw amorphous powder, the phosphated powder
and the phosphated powders after annealing at different temperatures. After phosphating,
the surfaces of the powders became rougher than that of the raw powders. However, the
morphology of the phosphated powders annealed below 480 ◦C did not reflect significant
changes. In particular, it can be seen in Figure 1e that the surface morphology of the powder
annealed at 520 ◦C shows a number of pits due to degradation of phosphate [11].
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Figure 1. (a) SEM images of raw amorphous powder, (b) phosphated amorphous powder, (c–e) the
phosphated powder after annealing at 440 ◦C, 440 ◦C and 520 ◦C, respectively.

The thermal stability of the amorphous powder was investigated. Figure 2 shows
the DSC curve where only one exothermic peak at Tx = 548 ◦C was observed, which may
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correspond to the crystallization of α-Fe (Si). Details of the crystallization will be discussed
in the following section.
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Figure 3. The XRD patterns of raw powders, phosphated powders and powders annealed at 440 °C, 
480 °C and 520 °C. 

Figure 4a shows the magnetization of the raw amorphous powder, phosphated pow-
der and the powders after annealing at different temperatures. Compared with the raw 
powder, the saturation magnetization of phosphated powders is lower, which is at-
tributed to the magnetic dilution of non-magnetic phosphate on the surface of the amor-
phous powders after phosphating [12,13]. After annealing at 440 °C, 480 °C and 520 °C, 
the saturation magnetizations of the composite powders are 147 emu/g, 150 emu/g and 
151 emu/g. This is due to the formation of α-Fe in the amorphous matrix and the degra-
dation of the phosphate coating, which increases saturation magnetization [11,14]. The 
DC magnetic hysteresis loops of the amorphous powder cores before and after annealing 

Figure 2. DSC curve of the raw FeSiBCr amorphous powder with a heating rate of 10 K/min.

The XRD patterns of phosphated powders after annealing at different temperatures for
1 h are shown in Figure 3. The patterns of the raw powder and phosphate powders are also
presented for a comparison shown in Figure 3. Owing to the low concentration of phos-
phate, the pattern of the phosphated amorphous powders presents the same amorphous
peak as the raw amorphous powders. For phosphated powders annealed at temperatures
below 480 ◦C, no crystallization peaks can be observed. However, the crystallization peaks
of the α-Fe (Si) phase appeared after annealing at 520 ◦C, indicating that the α-Fe (Si) phase
precipitated from the amorphous matrix. Additional peaks of Fe3B were also detected for
the sample annealed at 520 ◦C.
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Figure 3. The XRD patterns of raw powders, phosphated powders and powders annealed at 440 ◦C,
480 ◦C and 520 ◦C.

Figure 4a shows the magnetization of the raw amorphous powder, phosphated powder
and the powders after annealing at different temperatures. Compared with the raw powder,
the saturation magnetization of phosphated powders is lower, which is attributed to the
magnetic dilution of non-magnetic phosphate on the surface of the amorphous powders
after phosphating [12,13]. After annealing at 440 ◦C, 480 ◦C and 520 ◦C, the saturation
magnetizations of the composite powders are 147 emu/g, 150 emu/g and 151 emu/g.
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This is due to the formation of α-Fe in the amorphous matrix and the degradation of the
phosphate coating, which increases saturation magnetization [11,14]. The DC magnetic
hysteresis loops of the amorphous powder cores before and after annealing at 440 ◦C,
480 ◦C and 520 ◦C are shown in Figure 4b. After annealing at temperatures below 480 ◦C,
the slope of the DC hysteresis loop increases, and the area of the loop becomes smaller.
As can be seen in Figure 4c, the loops in external magnetic fields of H = −40 to 40 Oe
demonstrate that the coercivity of the unannealed amorphous powder core is 520 A/m.
Meanwhile, the coercivities of the powder cores annealed at 440 ◦C and 480 ◦C are 39.3 A/m
and 39.6 A/m, respectively. This is because the internal stress of the amorphous powder
cores generated during cold pressing was released due to the annealing heat treatment [15].
With an increase in annealing temperature to 520 ◦C, the slope of the DC hysteresis loop
decreases, and the loop area becomes wider than the loop of the unannealed powder cores.
Combined with the results of XRD in Figure 3, after annealing at 520 ◦C, α-Fe and Fe3B
phases appear in the amorphous matrix. The grain boundaries generated by these crystals
will hinder the movement of domain walls, which will result in a deterioration of coercivity.
The corresponding saturation magnetizations and coercivities of the powder cores are
shown in Figure 4d.
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Figure 4. (a) M-H curves of the raw powders, coated powders and powders annealed at different 
temperatures; (b) and (c) show the DC magnetic hysteresis loop and the partial loops of the AMPCs 
in field H = ± 150 Oe; (d) saturation magnetization Ms and coercivity Hc of AMPCs before and after 
being annealed at different temperatures. 
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Figure 4. (a) M-H curves of the raw powders, coated powders and powders annealed at different
temperatures; (b,c) show the DC magnetic hysteresis loop and the partial loops of the AMPCs in field
H = ± 150 Oe; (d) saturation magnetization Ms and coercivity Hc of AMPCs before and after being
annealed at different temperatures.
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Within the frequency range from 10 kHz to 110 MHz, the relationship between the
effective permeability and frequency is illustrated in Figure 5a for the powder cores before
and after annealing at different temperatures. As observed in Figure 5a, for the unan-
nealed amorphous powder core, the effective permeability is 20.4 at low frequencies. With
an increase in frequency, effective permeability presents a dispersion phenomenon [16],
meaning that the effective permeability remains stable until 17 MHz. After annealing at
440 ◦C, the effective permeability increases to 34.3 at low frequency. With an increase in
annealing temperature to 480 ◦C, effective permeability slightly increases to 36.4 at low
frequencies. At low frequencies, the reversible magnetic domain wall movement and
the reversible magnetic moment rotation contribute to effective permeability [2,7,17]. As
shown in Figure 4, after annealing at 440 ◦C and 480 ◦C, the internal stress within the
particles was almost all removed, which is attributed to the markedly increasing effective
permeability. Although effective permeability was greatly improved, the frequency stability
of effective permeability was greatly reduced. Compared with the unannealed powder
core, the frequency of the effective permeability stability for powder cores annealed at
440 ◦C and 480 ◦C deteriorated to 3.2 MHz. After further increaseing the annealing tem-
perature to 520 ◦C, effective permeability decreased dramatically to 20.8 and remained
stable until 110 MHz. The grain boundaries within the particles annealed at 520 ◦C will
hinder the movement of magnetic domain walls, such as internal stress, resulting in a
decline in effective permeability. Figure 5b shows the frequency dependence of the quality
factor Q for the powder cores after annealing at different temperatures. Usually, quality
factor Q represents the efficiency of energy utilization. The Q values for the powder cores
annealed at 440 ◦C and 480 ◦C have peaks of about 45.5 and 44, respectively, at 2 MHz.
With an increase in annealing temperature to 520 ◦C, the peak value of Q decreases to
40.3, but the corresponding frequency moves to 8.5 MHz. Compared with the unannealed
powder core, the powder cores annealed at 440 ◦C and 480 ◦C have larger peak values of Q,
indicating that they have better energy utilization [18]. In addition, the lower the effective
permeability falls, the larger the frequency corresponding to the peak value of Q, indicating
that the Q-f curve shifts to the right. The overall shift of Q to the right indicates that the
powder cores annealed at 440 ◦C and 480 ◦C have better frequency stability [19].
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Figure 5. The magnetic properties of the AMPCs: (a) effective permeability μe versus frequency for 
amorphous powder cores before and after annealing at different temperatures; (b) quality factor Q. 
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Figure 6a shows core loss versus the induction of unannealed powder cores and after
annealing at different temperatures at a frequency of 50 kHz. With elevating Bm, the core
loss of all powder cores increased gradually, and the minimum core loss was obtained
for the samples annealed at 440 ◦C and 480 ◦C. As the temperature increases to 520 ◦C,
the core loss for the powder cores shows a noticeably higher value because it has greater
coercivity due to the crystallization behavior, which hinders the movement of domain
walls. Figure 6b shows the core loss in 20 kHz–800 kHz at 10 mT for all samples. With
increasing annealing temperature, core losses for all powder cores decreased and then
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increased dramatically. The samples annealed at 440 ◦C and 480 ◦C exhibited the lowest
core losses of about 55.6 mW/cm3 and 51 mW/cm3, respectively, at 800 kHz. In order to
analyze the effect of annealing on core loss, loss separation was performed. The total core
loss can be presented as follows [16,20,21]:

Pt = Ph + Pc = Kh × f + Ke × f 2 (1)

where Kh and Ke are the coefficients for hysteresis loss Ph and eddy current loss Pe, and f is
the frequency. The total core loss has been separated and plotted in Figure 6c,d, respectively.
Figure 6c shows the variation in hysteresis loss with frequency for all samples. Obviously,
the hysteresis loss of all samples first decreased and then increased dramatically with
increasing annealing temperature, which has the same trend as the total loss. The sample
annealed at 480 ◦C exhibits the lowest hysteresis loss of about 29.6 mW/cm3 at 800 kHz,
and the highest hysteresis loss (approximately 213 mW/cm3 at 800 kHz) was obtained
by the sample annealed at 520 ◦C. Figure 6d shows the frequency dependence of eddy
current loss for all powder cores. The eddy current loss for all powder cores increases with
frequency in a nonlinear fashion. The unannealed sample has the highest eddy current
loss of about 32 mW/cm3 at 800 kHz, while the eddy current loss for the samples annealed
at different temperatures is lower. It can be seen from Figure 6c,d that the total core
loss of the unannealed sample and the sample annealed at 520 ◦C is dominated by the
hysteresis component (213 mW/cm3 at 800 kHz and 146 mW/cm3 at 800 kHz, respectively)
within the measurement frequency range. Owing to hysteresis loss induced by irreversible
domain wall movement, internal stress and the grain boundaries generated during high-
temperature annealing will hinder the motion of domain walls. Therefore, after annealing,
the magnetic performance of the amorphous powder core improved.
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Figure 6. (a) Core loss versus induction of powder cores after annealing at different temperatures; 
(b) core loss versus frequency of powder cores before and after annealing at 440 °C, 480 °C and 520 
°C in 20–800 kHz, at 10 mT; (c) hysteresis loss at 10 mT; (d) eddy current loss at 10 mT. 
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Table 1 summarizes the soft magnetic properties of the AMPCs in this paper and the
typical SMCs previously reported in the literature [16,18,22–25]. It can be seen that the
AMPCs in this paper maintained a relatively lower core loss of 29.6 mW/cm3 at 800 kHz
and 10 mT than the other SMCs in Table 1. Furthermore, the effective permeability of the
AMPCs is about 36.4 and remains stable until 3 MHz. The improvements in permeability
and core loss can expand the usage of AMPCs for high-frequency power applications.

Table 1. The core loss of the samples and other research in the literature.

Sample µe Qmax
Pc (mW/cm3)

References
0.01 T/800 kHz 0.05 T/100 kHz 0.1 T/100 kHz

FeSiBCr@Phosphate 36.4 44 51.3 152 530.4 This work
FeSiBPC@Fe3O4@EP 49.5 160 - 187 630 [15]

FeSiBCCr@TiO2 81.5 102 - 275 900 [19]
FeSiBP@(NiZn)Fe2O4 70 - - - 1000 [20]
FeSiBPNbCr@PPX 48 - - 220 770 [21]

FeSiBP 86 - - 200 780 [22]
FeSiCr@MnZn 48 - 45 - - [13]

4. Conclusions

The magnetic performance of FeSiBCr amorphous powder cores with phosphate–resin
hybrid coating was significantly improved by annealing. After annealing at 440 ◦C and
480 ◦C, the internal stress within the particles was almost all released. Coercivity decreases
markedly, and effective permeability increases significantly and remains stable until 3 MHz.
The samples have excellent core loss at 800 kHz due to the significant reduction in hysteresis
core loss, while eddy current loss remains very low after annealing below 480 ◦C. When the
temperature increases to 520 ◦C, the powder cores crystallize, resulting in a deterioration
of coercivity, effective permeability and core loss. The low core loss and good frequency
stability of the amorphous powder cores provide broad prospects for their application in
electronic components at high frequencies.
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Abstract: Core-shell structured amorphous FeSiBCr@phosphate/silica powders were prepared by
phosphating and sodium silicate treatment. The soft magnetic composites (SMCs) were fabricated
based on these powders. The effects of phosphoric acid (H3PO4) concentration and annealing
temperature on their properties were investigated. During the phosphating process, the powder
coated with a low concentration of H3PO4-ethanol solution leads to uneven phosphate coating, while
the peeling of phosphate coating occurs for the high H3PO4 concentration. Using 0.5 wt.% phosphoric
solution, a uniform and dense insulation layer can be formed on the surface of the powder, resulting
in increased resistivity and the reduced eddy current loss of the amorphous soft magnetic composites
(ASMCs). This insulation layer can increase the roughness of the powder surface, which is beneficial
to the subsequent coating of sodium silicate. By optimizing sodium silicate treatment, a complete
and uniform SiO2 layer can be formed on the phosphated powders well, leading to double layer
core-shell structure and excellent soft magnetic properties. The magnetic properties of amorphous
SMCs can be further improved by post annealing due to the effectively released residual stress. The
enhanced permeability and greatly reduced core loss can be achieved by annealing at 773 K, but the
deterioration of magnetic properties occurs as the annealing temperature over 798 K, mainly due to
the increase of α-Fe(Si) and Fe3B phases, which hinder the domain wall displacement and magnetic
moment rotation. The excellent soft magnetic properties with permeability µe = 35 and core loss
Ps = 368 kW/m3 at 50 mT/200 kHz have been obtained when the SMCs prepared with the powders
coated by 0.5 wt.% H3PO4 and 2 wt.% sodium silicate were annealed at 773 K.

Keywords: soft magnetic composites; amorphous powder; phosphating; sodium silicate; annealing;
magnetic properties

1. Introduction

Soft magnetic composites (SMCs), consisting of soft magnetic powders and insulation
binder, have found increasing applications in various electronic and electrical components
due to their stable permeability and low core loss at high frequency [1–4]. With the
development of magnetic devices towards miniaturization, high frequency, and high
efficiency, SMCs with high magnetic saturation, stable permeability, and low core loss are
urgently required [5–7]. Currently, there are various types of magnetic powders for SMCs,
including pure iron (Fe), Fe-Si, Sendust (Fe-Si-Al), Flux (Fe-Ni), MPP (Fe-Ni-Mo), Fe-based
amorphous, and nanocrystalline alloys. The Fe-based amorphous alloys such as FeSiBCr
prepared by gas atomization exhibit high potential to work as the ideal core materials due
to their good sphericity, low coercivity, and high saturation magnetization.

The preparation of SMCs involves coating an insulation layer on the metallic powders
followed by powder forming and curing. Both inorganic coatings and organic coatings
are employed. Inorganic coatings including oxides (SiO2 [8–10], MgO [11], TiO2 [12],
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Al2O3 [13], ZrO2 [14]), ferrites (MnZn ferrite [15], NiZn ferrite [16]) and inorganic salts
exhibit high temperature resistance and high electric resistivity. They are generally prepared
by in-situ chemical synthesis or coating a mixture of inorganic nanoparticles and organic
resin on the powder. However, it was found that, for the oxide coating, a uniform and
dense layer tightly bound to the magnetic powder is difficult to prepare. Soft magnetic
ferrites can be used for coating, which exhibits high resistivity and high magnetization,
but the brittle ferrite layer is easy to break during the pressing process. The inorganic
salt layer can be prepared by direct reaction of the acid with the magnetic powder [15].
These coatings have the advantages of high density, high uniformity, high resistivity, and
strong bonding with the magnetic powder. The common acids include HNO3 [17,18] and
H3PO4 [19,20], among which H3PO4 is frequently used for industrial production. However,
for the amorphous Fe-based alloy powders, it is difficult to prepare an insulating layer on
their surfaces by H3PO4 treatment [21] since amorphous alloys generally show excellent
corrosion resistance [22].

It has been reported [8] that silica (SiO2) coating can work as effective high-resistive
thin layer for the magnetic powders. Sol-gel method is generally employed for preparing
SiO2 coating on Fe-based powder, but this process is complicated since four kinds of
chemicals including tetraethoxysilane (TEOS) are needed [23]. Recently, FeSiCr powder
was coated with a SiO2 layer by reacting carbon dioxide with sodium silicate, which
indicates that sodium silicate (Na2SiO3) can be used as a silicon source [24]. However, the
insulating layer prepared by sodium silicate is not dense (in particular for the atomized
amorphous powder with the smooth surface).

In this work, in order to obtain a uniform and dense insulation layer on the amorphous
Fe-based alloy powder, an inorganic double layer coating is proposed, which was prepared
by phosphating followed by SiO2 coating. The phosphating layer by H3PO4 treatment
is employed to increase the surface roughness of the powder, which is beneficial for
depositing a uniform and dense insulation SiO2 layer. By this approach, we prepared
core-shell structured amorphous FeSiBCr@phosphate/SiO2 powders, which then were
made into magnetic cores. The effects of H3PO4 concentration and annealing temperature
on the soft magnetic properties of SMCs were investigated. This method is suitable for the
industrial production of amorphous SMCs with stable permeability and low core loss.

2. Experimental Procedures

Commercial gas atomized Fe87Si5.5B4Cr3.5 amorphous powders were supplied by
Tiz-Advanced Alloy Technology Co., Ltd (Quanzhou, China). The average particle size
D50 of the raw powders is approximately 20 µm and the apparent density of powders is
3.5–4.0 g/cm3. The saturation magnetization (Ms) of the raw powders is 148 Am2/kg.
Sodium silicate (Na2SiO3) with modulus of 1 is purchased from Guangzhou Chemical
Reagent Factory (Guangzhou, China). To prepare SMCs, the FeSiBCr powders (30 g) were
first dispersed in H3PO4-ethanol solution (30 g) with various H3PO4 concentrations (0 wt.%,
0.25 wt.%, 0. 5 wt.%, 0.75 wt.%, 1.0 wt.%) under constant stirring at 55 ◦C until the ethanol
solvent was completely evaporated for surface passivation. After washing and drying, the
phosphated powders were obtained. The phosphatized powders were then dispersed in
2 wt.% sodium silicate aqueous solution (15 g) and stirred at 328 K for 20 min. The obtained
magnetic powders were filtered and washed with deionized water for three times. The
treated powders were mixed with 2.5 wt.% silicone resin and 0.5 wt.% epoxy resin-acetone
solution and stirred at room temperature until the acetone solvent evaporated completely
for binding. The bonded powders were compacted into toroidal-shaped amorphous SMCs
with the dimensions of Φ20 × Φ12 × 4 mm under 1200 MPa for 5.5 s. The SMCs were
cured at 453 K for 1 h. For annealing treatment, the selected amorphous SMCs were heated
at different temperatures (748, 773, 798 K) for 1 h under Ar atmosphere.

The surface morphologies of the powders were observed by scanning electron mi-
croscopy (SEM, FEI Quanta 200, Hillsboro, OR, USA). Fourier transform infrared spec-
trometer (FTIR, VERTEX 70, Bruker, Billerica, MA, USA) was used to investigate the
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phase constitution of the insulation layer. The soft magnetic properties were obtained by
LCR meter (IM3536, Hioki, Nagano, Japan) and soft magnetic AC measurement device
(MATS-3010SA, Linkjoin, Loudi, China). The electrical resistivity was measured by a high
resistance weak current tester (ST2643, Jingge, SuZhou, China). The phase structures of
powders were confirmed by X-ray diffraction (XRD, Philips X’ Pert, PANalytical, Almelo,
The Netherlands) using Cu Kα radiation at room temperature in the range of 20–80◦. The
magnetic hysteresis loops were measured at room temperature using a vibrating sam-
ple magnetometer (VSM, East Changing, Beijing, China). The radial crush strength was
measured by core rupture test machine (FL-8621, Feiling, Dongguan, China).

3. Results and Discussion
3.1. The Formation of Double Layer Structure on the Powder

Figure 1 shows the SEM images of the amorphous FeSiBCr powders before and after
different treatments. In Figure 1a, the original powder shows smooth surface, which is
unfavorable for the coating of sodium silicate through physical contact. The surface of
the powder after phosphatized in a 0.5 wt.% H3PO4-ethanol solution becomes rough, as
shown in Figure 1b. The rough phosphate structure can improve the adhesion of sodium
silicate. After treated only by sodium silicate, the powder surface exhibits loose and porous
structure (Figure 1c). A dense insulating layer can be formed on the surface of the powder
after two-step treatment by both H3PO4 and sodium silicate, as shown in Figure 1d. As
we know, the uniform and dense insulation layer on the powders is beneficial to the soft
magnetic properties of SMCs.
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FTIR analysis results for the amorphous FeSiBCr powder and the powders after
different treatments are shown in Figure 2. FTIR Curve (a) for the original powders shows
no distinct band. Bands of 2915 cm−1 (Curve (b) and (c)) are attributed to the-CH3 group
from residual C2H5OH. The characteristic peaks of phosphate are observed at the band of
1065 cm−1and 540 cm−1 for the powders treated by H3PO4-ethanol solution (Curve (b)).
The bands at 1640 cm−1and 1065 cm−1 are assigned to the bending mode of P-OH bonds
and the symmetric stretching vibrations of P-O bonds [25], respectively. The results indicate
that the phosphate has been formed on the surface of the magnetic powder after H3PO4
treatment. On Curve (c) for the powders coated by sodium silicate-aqueous solution, the
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broad absorption band at 1038 cm−1 originates from the symmetric vibration absorption
of Si-O-Si [26], which confirms that the obtained coating layer on the powders is SiO2.
On Curve (d) for the powders treated with H3PO4-ethanol followed by sodium silicate
solution, the characteristic bonds of both phosphate and SiO2 can be detected, indicating
that both phosphate and SiO2 layers are formed on the powders. Compared with phosphate
and SiO2 coating alone, the hybrid phosphate-SiO2 layer exhibits significantly decreased
intensity of the absorption peak corresponding to -OH at 3450 cm−1, indicating that the
-OH of phosphate binds to the -OH of sodium silicate. The results thus suggest that the
P-O-Si bond may be formed on the powder, which can enhance the binding of SiO2 and
magnetic powder.
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The evolution of the core-shell structure on the magnetic powder can be illustrated
in Figure 3. In the first step 1, H3PO4 reacts with the FeSiBCr powder according to
Equation (1), and the first layer of phosphate can be formed on the powder [27,28]. In the
second step, Si(OH)4 dehydrates and condenses with the -OH on the phosphated powder
surface to form a networked SiO2, and the second shell on the powder is formed. Hydrolysis
reaction and condensation reaction can be expressed by Equations (2) and (3) [29]. As a
result, the core-shell structured FeSiBCr@phosphate/SiO2 powders can be prepared.
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3.2. Effects of Phosphated by Various H3PO4 Concentrations

Figure 4a–d show the SEM images of the powders phosphated by the H3PO4 with
different concentrations (0.25 wt.%, 0.5 wt.%, 0.75 wt.%, 1.0 wt.%). For the powder phos-
phated with 0.25 wt.% H3PO4, P and O elements are evenly distributed on the powder
surface, as shown in Figure 4a with EDS result. It is believed that a phosphating layer is
formed. Comparing the morphologies in Figure 4a–d, the higher concentration of H3PO4
leads to the rougher surface of the powder. When the H3PO4 concentration increases to
1 wt.%, a large amount of sheet structures appears. EDS testing shows that these sheet
structures contain abundant P, O, and Fe elements, presumably phosphate, as shown in
Figure 4d. The appearance of the sheet structured phosphate may destroy the integrity of
the layer and reduce the density of the SMCs. Thus, it is necessary to control the nucleation
and precipitation of the flaky phosphate to make the phosphate coating strong and dense.

Table 1 shows the effective permeability µe, quality factor Q and core loss Ps of the
magnetic cores prepared from the powders treated with 0.5 wt.% H3PO4-ethanol solution
followed by different concentrations of sodium silicate solution. All cores were annealed at
773 K for 1 h. It was found that an appropriate amount of SiO2 can help to form a uniform
and complete insulation layer on the powders, which will not completely break during the
pressing process. However, more SiO2 with high hardness may result in decreased density
and deteriorated magnetic properties [30]. The core based on powders experienced 2 wt.%
sodium silicate solution offer the optimal performance with high permeability, high Q,
and low magnetic loss. Therefore, in the following experiments, for studying the effects of
H3PO4 concentration on the properties of SMCs, 2 wt.% sodium silicate-aqueous solution
were selected for coating SiO2.
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Table 1. Effective permeability µe, Q and core loss Ps of the SMCs with 0.5 wt.% H3PO4-ethanol
solution and different concentration of sodium silicate-aqueous solution.

Sample (Powder Treatment) Effective
Permeability (µe) Q

Ps (kW/m3)

50 mT/100 kHz 50 mT/200 kHz

Phosphatized 0.5 wt.% 37.8 42 301.0 703.6
Phosphatized 0.5 wt.% + Sodium silicate 1 wt.% 36.4 35 243.6 576.3
Phosphatized 0.5 wt.% + Sodium silicate 2 wt.% 33.4 50 136.4 368.0
Phosphatized 0.5 wt.% + Sodium silicate 3 wt.% 32.0 45 187.1 490.3
Phosphatized 0.5 wt.% + Sodium silicate 4 wt.% 29.0 35 194.3 564.6

Figure 5 shows the magnetic properties of SMCs fabricated by the amorphous FeSiBCr
powders treated with various H3PO4-ethanol solutions followed by 2 wt.% sodium silicate-
aqueous solution and annealed at 773 K. For all samples, the permeability decreases as the
frequency increases, mainly due to the weakening effect of eddy currents generated by
induced electromotive force on the applied magnetic field at high frequencies (Figure 5a).
It decreases from ~37.8 to ~29.0 with increasing H3PO4 concentration from 0 to 1 wt.%.
Increasing H3PO4 concentration leads to more non-magnetic material, resulting in lower
permeability. When the H3PO4 concentration is 0.5 wt.%, the SMCs has the beat frequency
stability, as shown in Figure 2. The insulating layer prepared by 0.5 wt.% H3PO4 concentra-
tion followed by 2 wt.%Na2SiO3 has the beat coating effect and can effectively isolate eddy
currents between powders.
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Q value is the quality factor, which is an important indicator to measure the high-
frequency performance of soft magnetic composites. The Q value can be expressed by the
ratio of the real permeability µ of the soft magnetic composite to the imaginary permeability
µ’, as well as the ratio of the inductance and the equivalent loss resistance, expressed as
Equation (4):

Q =
µ′
µ′′

= (
2π f Ls

Rs
) (4)

where Ls is the inductance and Rs is the equivalent loss resistance. In general, the higher
the Q value on behalf of powder cores, the lower the rate of energy loss. The Q value
of the sample first increases then decreases with increasing frequency (Figure 5b). The
SMCs treated with 0.5 wt.% H3PO4 concentration exhibits a maximum peak value of
50, which shows a significant performance improvement compared to those without
H3PO4 treatment.

The frequency dependence of core loss (Ps) for the SMCs prepared with different
H3PO4 concentrations in the range of 20 kHz to 200 kHz at Bm = 50 mT are shown in
Figure 5c. The Ps of all samples increase rapidly with increasing frequency. The lowest
Ps of 368 kW/m3 at 200 kHz is obtained for the SMC with 0.5 wt.% H3PO4 concentra-
tion, decreased by 41% compared to that without phosphating. Ps decreases from 628 to
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368 kW/m3 until the H3PO4 concentration increases from 0 to 0.5 wt.%. As the concentra-
tion of H3PO4 exceeds 0.5 wt.%, the Ps shows a rapid increase. As we know, Ps is mainly
determined by the hysteresis loss (Ph), the eddy loss (Pe) and residual loss (Pr), which can
be expressed by Equation (5) [31]:

Ps (total) = Ph + Pe + Pr ≈ f
∮

HdB +
CB2d2 f 2

ρ
+ KrBxf1.5 (5)

Pe = Pe
Intra + Pe

Inter =
(πdpowderBm)

2

20ρpowderRpowder
f 2+

(πdeffBm)
2

βρsRs
f 2 (6)

where H is the magnetic field, B is the magnetic flux density, f is the frequency, C is the
constant, d is the effective diameter of powders and ρ is the resistivity. Kr is residual loss
coefficient related to the material, and x is the coefficient related to the magnitude and fre-
quency of the applied magnetic field. Pr is a combination of relaxation and resonant losses.
These losses are only important at very low induction levels and very high frequencies and
can be ignored in power applications [1,32,33]. Eddy current losses include intra-particle
and inter-particle eddy current losses, as shown in Equation (6), dpowder is the effective size
of the powder, ρpowder is the density of the powder, and Rpowder is the resistivity of the
powder. deff is the effective size of the eddy current, ρs is the density of the SMCs, and Rs is
the resistivity of the SMCs. Pe

Intra is mainly related to the resistivity and particle size of the
powder. Pe

Inter is mainly related to the degree of insulation between powder particles, that
is, the resistivity of SMCs. In this paper, by using different insulation coating processes, the
Rs of the SMCs can be effectively improved, thereby reducing the Pe

Inter.
Ps can be separated into Ph and Pe based on above equation and the results are pre-

sented in Figures 5d and 5e, respectively. When the H3PO4 concentration exceeds 0.5 wt.%,
Ph and Pe increase with the increase of H3PO4 concentration. This can be understood since
the excess iron phosphate precipitates between the soft magnetic composite particles [34].
Sodium silicate can react with dehydration and condensation on the detached phosphate
layer, which worsens the coating effect of the magnetic powder, leading to the increase of
Ph and Pe. The reduced Pe is mainly due to the electrical resistivity reduction resulting
from the destruction of the layer, as shown in Figure 6.
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The magnetic composite consists of core and surface layer. For a spherical mag-
netic particle coated with a layer, the saturation magnetization (MS) can be expressed as
Equation (7),

MS =
MSP·VP + MSL·VL

VP + VL
= MSP−

6t
d
(MSP −MSL) (7)

where d and t represent the diameter of magnetic particle and the thickness of surface
layer, respectively. MSP and MSL are the saturation magnetizations of the particle and
layer, respectively. V corresponds to the volume [35]. The hysteresis loops of FeSiBCr
powders treated by different processes are recorded in Figure 7. The powders show a
typical characteristic of soft magnetic material, including a high saturated magnetization
and a low coercivity. The maximum Ms of raw FeSiBCr powders is 148 Am2/kg. After
treated by H3PO4 (0.5 wt.%) and sodium silicate (2 wt.%), the Ms decreases to 145 Am2/kg
and to 137 Am2/kg, respectively. However, when coated with phosphate followed by
SiO2, Ms is 143 Am2/kg, and this value is somewhere between the phosphate and SiO2
coating alone. Compared with the layer of SiO2, the layer of hybrid phosphate and SiO2
has a lower MSL due to the increase of non-magnetic substances. The increased MS value
for the powders coated with phosphate and SiO2 indicated that the thickness t of the
phosphate-SiO2 layer is less than that of SiO2 layer according to Equation (5). The results
show that the double layer coating has a higher density, which gives a smaller thickness. As
a result, the SMC prepared with core-shell structured FeSiBCr@phosphate/SiO2 powders
exhibits the best soft magnetic properties.
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3.3. Effects of Annealing Treatment

Figure 8a shows the variation of the effective permeability (µe) with frequency for
SMCs treated by H3PO4 (0.5 wt.%) and sodium silicate (2 wt.%) followed by annealing
at different temperatures. With the increasing annealing temperature from 748 to 773 K,
the µe increases from 28.1 to 33.4. In general, the increased annealing temperature can
decrease the internal stress of magnetic powder core, thereby reducing the difficulty of
magnetic domain reversal and increasing the permeability [36]. The internal stress for
SMCs after annealing at 748 K is released incompletely. With further elevating the annealing
temperature to 773 K, the internal stress within the particles was almost removed, leading
to the increase of µe. When the annealing temperature increases to 798 K, the µe of the
SMCs decreases sharply to 28.0. For the SMCs annealed at 773 K, the µe reaches the highest
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value of 33.4, increased by 43%, compared with the µe of 18.9 for that without annealing
treatment. Similarly, due to the stress release, the quality factor (Q) shows a peak value of
50 at a frequency of 3 MHz after annealing at 773 K (Figure 8b). The minimum core loss is
also obtained for the SMC annealed at 773 K (Figure 8c).
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To illustrate the reasons for the deterioration of magnetic properties after annealing
above 798 K, the magnetic powders were tested for XRD, as shown in Figure 7. For the origi-
nal powders without annealing, only one broad diffraction peak can be observed, indicating
a typical amorphous structure [37]. For the powders annealed at the temperatures below
748 K, a slightly intense α-Fe (Si) phase begins to appear. The crystallization occurred after
the sample annealed at 773 K, with the precipitation of α-Fe(Si) and Fe3B phases. When
the annealed temperature rises to 798 K, the intensity of Fe3B phase increases. Compared
with the soft magnetic phase of α-Fe(Si). the Fe3B phase has a higher anisotropic field,
resulting in decreased soft magnetic properties of the SMCs [38]. The average grain size D
of α-Fe(Si) annealed at 773 K is approximately 18 nm calculated by the Scherrer formula.
These nano-sized grains are randomly dispersed in the residual amorphous matrix. When
D < Lex (Lex is value of ferromagnetic exchange length, about 30~40 nm for α-Fe), with
the reduction of grain size, the effective anisotropy shows a sharp decrease and the impact
is negligible. The magnetic domain structure exhibits a vortex structure determined by
the exchange coupling energy and demagnetization energy jointly, the coercive force and
residual magnetism are close to zero. Therefore, the magnetic powders after annealing at
773 K have excellent soft magnetic properties [39,40].

3.4. DC-Bias Properties

The presence of DC current or voltage components in an AC power system is called
DC bias. The DC-bias property is important for SMC since almost all of the powder cores
are used in a DC-bias field. Figure 9 shows the percentage of permeability as a function
of the DC-bias field for SMC cores, which were made from the powders coated with
different H3PO4 concentrations followed by 2 wt.% sodium silicate solution and annealed
at 773 K. The permeability decreases with the increase of the bias field for all cores, since
the SMCs approach to magnetic saturation at high DC field. In addition, with the increase
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of H3PO4 concentrations from 0 to 0.75 wt.%, the DC-bias performance of the core, defined
by the percentage of reduced permeability, increased from 75.3 to 88.2% at 4000 A/m. The
results indicate that the H3PO4 and sodium silicate double-layer coating can significantly
improve the DC bias performance of SMCs. In particular, the SMCs prepared with H3PO4
concentrations of 0.5 and 0.75 wt.% exhibit relatively superior DC-bias performances (over
80%). The reason is that the voids and gaps in the powder cores can pin the domain wall
in the magnetizing process and prevent the propagation of domain movement between
particles, then suppressing the decrease of permeability, which is beneficial in achieving a
stable percent permeability [41].
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3.5. Radial Crushing Properties

The SMCs based on powders coated by different H3PO4 concentrations and 2 wt.%
sodium silicate-aqueous solution followed by annealed at 773 K is employed for radial
crush testing. The test method is shown in Figure 10a, where the radial crush strength
of a ring shape specimen is determined by applying radial pressure. Figure 10b shows
the radial crush strength of various SMCs. The strength first increases then decreases
with the increasing concentration. The Si(OH)4 produced by hydrolysis of sodium silicate,
through dehydration and condensation between -OH can form networked SiO2 between
the magnetic powders, which can increase the binding force between the magnetic pow-
ders. When the powders coated by 2 wt.% sodium silicate-aqueous solution alone, the
binding force between the powder is poor due to the weak binding force between SiO2
and powders, which is manifested by the low radial crush strength of the SMCs. As the
H3PO4 concentration increases, the radial crush strength increases since the rough surface
of the phosphate can increase the binding force with SiO2, while the binding force between
the powders also increases. However, when the H3PO4 concentration exceeds 0.5 wt.%,
the radial crush strength of the sample decreases, since part of the SiO2 forms on sheets
detached from phosphate layer.
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Abstract: The microstructure, phase formation, thermal stability and soft magnetic properties of
melt-spun high entropy alloys (HEAs) Fe27Co27Ni27Si10−xB9Lax with various La substitutions for Si
(x = 0, 0.2, 0.4, 0.6, 0.8, and 1) were investigated in this work. The Fe27Co27Ni27Si10−xB9La0.6 alloy
shows superior soft magnetic properties with low coercivity Hc of ~7.1 A/m and high saturation
magnetization Bs of 1.07 T. The content of La has an important effect on the primary crystallization
temperature (Tx1) and the secondary crystallization temperature (Tx2) of the alloys. After annealing at
relatively low temperature, the saturation magnetization of the alloy increases and the microstructure
with a small amount of body-centered cubic (BCC) phase embedded in amorphous matrix is observed.
Increasing the annealing temperature reduces the magnetization due to the transformation of BCC
phase into face-centered cubic (FCC) phase.

Keywords: magnetic materials; high entropy alloys; thermal stability; phase transformation

1. Introduction

High entropy alloys (HEAs), defined as the alloys consisting of at least five principal
elements without obvious base element, have been proposed by Cantor et al. [1] and Yeh
et al. [2] in 2004, independently. Up to now, there are two commonly used definitions of
HEAs. One is the composition-based concept, i.e., the alloys composed of five or more
principal elements in equal or near equal molar ratio between 5 atom percent (at.%) and
35 atom percent (at.%). The other definition is based on total configurational molar entropy
(Smix). The alloys with Smix < 1 R, 1 R < Smix < 1.5 R, and Smix >1.5 R, where R is the gas
constant, are defined as low entropy alloys, medium entropy alloys, and high entropy
alloys, respectively [3,4]. As a new type of alloys with unique properties of high strength,
hardness, corrosion resistance, abrasion resistance and high fatigue resistance, HEAs have
received extensive attention. Instead of forming a complex crystal structure, HEAs usually
tend to form a solid solution with a face-centered cubic (FCC) or body-centered cubic (BCC)
structure, or a mixture thereof [5,6], although a hexagonal close-packed (HCP) structure
may be found in a few of HEAs [7].

Studying the compositions, microstructure and their fundamental properties to es-
tablish a fundamental database is currently the most essential work for HEAs [8,9]. Up to
now, a series of HEAs have been prepared, including Fe-based, Co-based [10], Fe–Co–Ni-
based [11] and rare earth-based high-entropy alloys [12,13]. However, most of the previous
work focused on their mechanical properties and microstructure [9,14], and their physical
properties have not been fully investigated. As Fe, Co and Ni are common constituent
elements used in HEAs [15], it is very interesting to explore the magnetic properties of the
HEAs. As we know, the soft magnetic materials are developing towards low coercivity (Hc)
and high magnetization (Ms), which are essential for promoting the energy conservation
efficiency and miniaturization of the electromagnetic device. However, some existing
reports on the high-entropy soft magnetic alloys indicate that the saturation induction Bs
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Metals 2021, 11, 1907

of the HEAs is still low, typically less than 1 T and their crystallization temperature (Tx) is
also less than 670 K [16–19], which are both less than what we expected.

On the other hand, the rare earth elements (RE) have been frequently employed in
the soft magnetic alloys [20,21], and the results showed that the addition of RE elements
such as Gd and Tb can increase the curie temperature [20], and modify the crystallization
temperature of the alloy. The addition of RE can also decrease the magnetic permeability.
However, the influence of trace rare earth elements on HEAs has rarely been studied. In
this work, La is selected to substitute Si for improving the performance of Fe–Co–Ni–Si–B
HEAs. La exhibits low solubility with Fe, Co, and Ni elements, and it may play a role of
micro-alloying. The thermodynamic properties, glass-forming ability (GFA) and magnetic
properties of Fe–Co–Ni–Si–B–La HEAs are studied in detail.

2. Experimental

The alloy ingots of Fe27Co27Ni27Si10−xB9Lax with x = 0, 0.2, 0.4, 0.6, 0.8, and 1 (atomic
ratio), denoted as La0, La0.2, La0.4, La0.6, La0.8, and La1, respectively, were prepared by
arc-melting pure Fe (99.5 wt.%), Co (99.9 wt.%), Ni (99.96 wt.%), La (99.9 wt.%) metals, FeB
(with Fe 83.78 wt.% and B 16.22 wt.%) and Si (99.99 wt.%) crystals under argon atmosphere.
The ingots were melted 5 times to ensure chemical homogeneity. The ribbons with width of
~1.2 mm and thickness of ~0.025 mm were prepared by single-roller melt spinning method
with the wheel speeds of 45 m/s. The phase structures of the alloys were characterized by
X-ray diffraction (XRD) with Cu Kα radiation. Thermal stability was studied by differential
scanning calorimetry (DSC) at a heating rate of 10 K/min and under argon atmosphere.
The saturation magnetization (Bs) of ribbons were measured under an applied field of
250 kA/m with a vibrating sample magnetometer (VSM). The coercive force (Hc) was
measured with a MATS-2010SD hysteresis curve (DC) test system using ribbons about
50 mm in length.

3. Results and Discussion

It is reported that HEAs trend to form simple fcc and/or bcc solid solution structure
or metallic glass. Figure 1 shows the XRD pattern of arc melt Fe27Co27Ni27Si10−xB9Lax
(x = 0, 0.6, and 1) ingots. In all the ingots, the fcc phase, (FeCoNi)2B and Ni31Si12 phases
were detected [18,19].
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According to prior research [22], there are many phases in high entropy alloys, includ-
ing solid solutions, intermetallic compounds, and amorphous phases. The phase evolution
in HEAs can be predicted mainly by three parameters, namely atomic size difference
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(∆), mixing enthalpy (∆Hmix), mixing entropy (∆Smix) and valence electron concentration
(VEC) [23,24]. The ∆, ∆Hmix, ∆Smix, and VEC are defined as:

δ = 100

√√√√ N

∑
i=1

ci(1−
ri
r
)

2
(1)

∆Hmix =
N

∑
i=1,i 6=j

Ωijcicj (2)

∆Smix = −R
N

∑
i=1

ci ln ci (3)

VEC =
N

∑
i=1

ci(VEC)i (4)

where N is the number of the components in HEAs, R is gas constant, ci is the atomic

fraction of i-th component, and
−
r is the average atomic radius. ri is the atomic radius,

which can be obtained from References [15,24]. VEC, ∆Hmix, and ∆Smix between atomic
pairs also be obtained in References [15,24]. The values of ∆, ∆Hmix, ∆Smix, and VEC
for Fe27Co27Ni27Si10-xB9Lax alloys are summarized in Table 1. It is clear that all VEC
values are near 8.0. Guo et al. [25] pointed out that fcc phase forms in the alloy with
VEC ≥ 8.0, bcc phase forms at VEC ≤ 6.87, and a mixture of fcc and bcc phases at
6.87 ≤ VEC ≤ 8.0. Hence, these Fe27Co27Ni27Si10−xB9Lax alloys trend to form fcc solid
solution and intermetallic compounds.

Table 1. The atomic radius difference (∆), valence electron concentration (VEC), mixing enthalpy
(∆Hmix), mixing entropy (∆Smix) and structure of the Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, 1) alloy
systems (atomic percent).

Sample ∆ (%) ∆S (kJ/mol) ∆H (kJ/mol) VEC Structure

Fe27Co27Ni27Si10B9 10.2 12.615 −20.42 7.96 FCC + IM
Fe27Co27Ni27Si9B9La0.6 11.06 12.722 −19.31 7.954 FCC + IM
Fe27Co27Ni27Si9B9La1 11.58 12.804 −18.66 7.95 FCC + IM

Figure 2a shows the XRD patterns of as-spun Fe27Co27Ni27Si10−xB9Lax alloys. Only
a broad diffraction peak appears at near 45◦ without any detectable crystalline peaks
for all alloys, indicating fully amorphous structure. Figure 2b shows the DSC curves of
the as-spun Fe27Co27Ni27Si10−xB9Lax ribbons. All curves have two distinct exothermic
peaks and one endothermic peak, giving two-stage crystallization and melting processes.
The glass transition temperature (Tg), phase transition temperature (Tp) [16], liquidus
temperature (Tl), primary crystallization temperature (Tx1), and secondary crystallization
temperature (Tx2) are marked by arrows. As shown in Figure 2b, The Tg of amorphous
ribbons range from 642 to 694 K. The Tx1 and Tx2 for the alloys with different La contents
are in the region of 707–743 K and 802–839 K, respectively. The Tx1 initially increases
from 722 to 743 K with increasing La content from 0 to 0.2 at.%, and then decreases to
707 K with increasing La to 1 at.%. The largest Tx1 of 743 K is obtained in the alloy with
0.2 at.% La substitution. Similarly, Tx2 increase from 802 to 839 K with further increase
of La. At 1 at.% La substitution, Tx2 reaches the largest value of about 839 K. The value
of ∆Tx (= Tx − Tg) of these alloys are in the region of 43–65 K, and it becomes large as
x increases up to 1, which indicates that less than 1 at.% La substitution is beneficial to
forming amorphous structure and hindering crystallization process [26]. The large ∆Tx up
to 65 K for Fe27Co27Ni27Si9B9La1 alloy shows good thermal stability of the supercooled
liquid. In addition, Tl of alloys increases from 1318 to 1439 K as x increase from 0 to 0.6 at.%,
then decreases to 1324 K with x increases to 1 at.%. The Tg, Tx, Tl, ∆Tx, reduced glass
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transition temperature Trg (= Tg/Tl) [27], and S (= ∆Tx/(Tl − Tg) [28] are listed in Table 2.
The S values and Trg values exhibit good correlation with ∆Tx, and the largest S value of
0.096 is obtained at x = 1.
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Table 2. Thermal parameters of Fe27Co27Ni27Si10−xB9Lax amorphous ribbons.

Composition (at.%) Tg (K) Tx1 (K) Tx2 (K) ∆Tx (K) Tl (K) Trg S

Fe27Co27Ni27Si10B9 667 722 802 55 1318 0.506 0.084
Fe27Co27Ni27Si9.8B9La0.2 694 743 806 49 1324 0.524 0.078
Fe27Co27Ni27Si9.8B9La0.4 - 710 823 - 1407 - -
Fe27Co27Ni27Si9.8B9La0.6 680 723 830 43 1439 0.473 0.057
Fe27Co27Ni27Si9.8B9La0.8 - 713 832 - 1327 - -
Fe27Co27Ni27Si9.8B9La1 642 707 839 65 1321 0.486 0.096

To further study the crystallization behavior of Fe27Co27Ni27Si10−xB9Lax ribbons with
different La contents, the Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, 1) ribbons were annealed
at different temperatures. Figure 2c shows the XRD patterns of Fe27Co27Ni27Si10−xB9Lax
(x = 0, 0.6, 1) alloys after annealing at 853 and 973 K (above Tp) for 5 min. After annealing
at 853 K, between Tx1 and Tx2, a bcc phase precipitates in the amorphous matrix. With
the annealing temperature increased to 973 K, the bcc phase disappeared and fcc crystals
formed. The transformation of bcc phase to fcc phase can also be observed in Fe–Co–Ni–
Si–B HEAs at high temperature [29]. Combined with the DSC analysis results, the first
exothermic peak is due to the precipitation of bcc phase and the second peak originates
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from bcc phase and Ni31Si12 phases, and Tp represents the transformation of bcc phase
to fcc phase. For the alloy without La-substitution, after annealing at 973 K, a small
amount of intermetallic compounds was detected, indexed as Ni31Si12 phase. Previous
research has demonstrated that the Ni element is easy to segregate from Fe-rich bcc phases,
resulting in the formation of fcc phase, and the over-saturated Si in Ni may form the
Ni-Si intermetallic compounds [29,30]. However, after La addition, no Ni31Si12 phase was
detected in annealed samples. Previous study [29] also showed that in Fe–Co–Ni–Si–B
HEAs, Ni31Si12 phase could exist in high temperature. Thus, in the present alloys, the
addition of La can suppress the formation of Ni31Si12 phase. Based on above discussion,
the phase transition in Fe27Co27Ni27Si10−xB9Lax amorphous alloys after annealing occurs
through the process of amorphous→ amorphous’ + bcc phase + Ni31Si12→ fcc phase.

Figure 3a shows the magnetic hysteresis loops (M–H curves) of as-spun Fe27Co27Ni27-
Si10−xB9Lax (x = 0 to 1) alloys. All alloys show soft magnetic behavior. The saturation
magnetization Ms of these alloys increases from 0.86 T to 1.01 T as x increases from 0
to 0.4, and then decreases to 0.88 T with x increasing to 1. Figure 3b shows the M–H
curves of the Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, 1) alloys after annealing at 573 K (below
glass transition temperature) and 703 K (below crystallization temperature) for 5 min. The
saturation magnetization Ms increases with the increasing annealing temperature. The Ms
values of the alloys with x = 0, 0.6 and 1 annealed at 703 K is about 0.96 T, 0.99 T and 0.97 T,
respectively. The coercivity Hc values were measured as 10.3, 7.1, and 8.5 A/m at 573 K,
respectively. As the heat treatment temperature increased to 703 K, the coercivity values were
obtained as 18.4, 22.6 and 12.6 A/m for Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, and 1) alloys.
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As the annealing temperature rises above the crystallization temperature, the solid so-
lution phase or other phases precipitate in the alloy. It is important to confirm the influence
of the precipitation of the solid solution phase on the soft magnetic properties of HEAs. The
magnetization curves of the annealing Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, and 1) ribbons
are shown in Figure 4. After annealing at 853 K, the saturation magnetization of the HEAs
ribbons is increased. The Ms values of the alloys with x = 0, 0.6 and 1 annealed at 853 K
is about 1.05 T, 1.06 T and 1.07 T, respectively. With increasing annealing temperature to
973 K, Ms and Hc decrease simultaneously. The Ms values of the alloys with x = 0, 0.6 and 1
is about 0.93 T, 0.89 T and 1.0 T, respectively. After annealing at higher temperature, the val-
ues of Ms increased, but the coercivity was deteriorated dramatically. As shown in Figure 5,
the coercivity Hc, after crystallization annealing is greatly increased. This phenomenon
may be related to the fine grains precipitated in the amorphous matrix. Small crystal grains
hinder the movement of magnetic domains and play a pinning role. According to the
current experimental data, the addition of La element can increase the recrystallization
temperature, so an appropriate amount of La can reduce the effect of heat treatment on
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the reduction of saturation magnetization (sample La1 have highest Bs after annealing at
973 K). At the same time, the coercivity of the alloys with La element after annealing is
relatively small.

Metals 2021, 11, x FOR PEER REVIEW  6  of  8 
 

 

   

Figure  3.  (a)  The  M–H  curves  of  as‐spun  Fe27Co27Ni27Si10−xB9Lax  (x  =  0  to  1)  alloys,  and  (b)  the  M–H  curves  of 

Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, 1) alloys after heat treatment at different temperatures for 5 min. 

 

Figure 4. The M–H curves of Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, 1) alloys annealed above the crystal‐

lization temperature. 
Figure 4. The M–H curves of Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, 1) alloys annealed above the
crystallization temperature.

Metals 2021, 11, x FOR PEER REVIEW  7  of  8 
 

 

 

Figure 5. Changes in saturation magnetization (Bs), coercivity (Hc) with different annealing temper‐

ature for Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, 1) alloys. 

The current results thus show that La element substitution for Si has a great influence 

on the crystallization temperature of the alloy, and it is interesting that La can inhibit the 

formation of intermetallic compounds. Furthermore, under the same heat treatment con‐

ditions, the saturation magnetization of the strip with a certain La content is higher, while 

the coercivity is relatively lower. 

4. Conclusions 

A new  type of  soft magnetic Fe27Co27Ni27Si10−xB9Lax HEAs were developed  in  this 

work. The effects of La on the phase stability, amorphous forming ability and magnetic 

properties of Fe–Co–Ni–Si–B HE‐MGs were investigated. It was found that the soft mag‐

netic properties of Fe27Co27Ni27Si10−xB9Lax HEAs can be effectively  tailored by adjusting 

their phase structure by annealing treatment. These alloys exhibit a low Hc and a high Bs, 

in which the values are less than 25 A/m and higher than 1.0 T, respectively. The La con‐

tent has an important effect on the values of Tx1 and Tx2 of the alloys. By increasing the 

annealing temperature, these alloys precipitated the BCC phase at the first crystallization 

temperature and transformed into the FCC phase at the phase transition temperature. In 

additionally, La can inhibit the formation of  intermetallic compounds at high tempera‐

tures. This work suggests that an optimized annealing temperature is required to obtain 

good combination of the soft magnetic properties for HEAS. 

Author Contributions: Conceptualization, J.L. and J.Z.; methodology and data curation, J.L.; writ‐

ing‐original draft preparation, J.L.; supervision, H.Y. All authors have read and agreed to the pub‐

lished version of the manuscript. 

Funding: This work was supported by Guangdong Provincial Natural Science Foundation of China 

(No. 2021A1515010642). 

Acknowledgments: All  individuals  included  in this section have consented to the acknowledge‐

ment. 

Figure 5. Changes in saturation magnetization (Bs), coercivity (Hc) with different annealing tempera-
ture for Fe27Co27Ni27Si10−xB9Lax (x = 0, 0.6, 1) alloys.

The current results thus show that La element substitution for Si has a great influence
on the crystallization temperature of the alloy, and it is interesting that La can inhibit
the formation of intermetallic compounds. Furthermore, under the same heat treatment
conditions, the saturation magnetization of the strip with a certain La content is higher,
while the coercivity is relatively lower.
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4. Conclusions

A new type of soft magnetic Fe27Co27Ni27Si10−xB9Lax HEAs were developed in this
work. The effects of La on the phase stability, amorphous forming ability and magnetic
properties of Fe–Co–Ni–Si–B HE-MGs were investigated. It was found that the soft mag-
netic properties of Fe27Co27Ni27Si10−xB9Lax HEAs can be effectively tailored by adjusting
their phase structure by annealing treatment. These alloys exhibit a low Hc and a high
Bs, in which the values are less than 25 A/m and higher than 1.0 T, respectively. The La
content has an important effect on the values of Tx1 and Tx2 of the alloys. By increasing the
annealing temperature, these alloys precipitated the BCC phase at the first crystallization
temperature and transformed into the FCC phase at the phase transition temperature. In
additionally, La can inhibit the formation of intermetallic compounds at high temperatures.
This work suggests that an optimized annealing temperature is required to obtain good
combination of the soft magnetic properties for HEAS.
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Abstract: This work demonstrates the dependence between magnetic properties and the thickness
of NiFe thin films. More importantly, a quantitative study of the surface composition of NiFe
thin film exposed to atmospheric conditions has been carried out employing angle-resolved X-ray
photoelectron spectroscopy (ARXPS). In this study, we fabricated Ni81Fe19 (NiFe) thin films on
Si (100) substrate using electron beam evaporation and investigated their surface morphologies,
magnetic properties, and the thickness of the surface oxide layer. The coexistence of metallic and
oxidized species on the surface are suggested by the depth profile of ARXPS spectra. The thickness
of the oxidized species, including NiO, Ni(OH)2, Fe2O3, and Fe3O4, are also estimated based on the
ARXPS results. This work provides an effective approach to clarify the surface composition, as well
as the thickness of the oxide layer of the thin films.

Keywords: permalloy; magnetic thin films; ARXPS; magnetic property; oxidation layer

1. Introduction

Microwave magnetic devices, such as circulators, filters, and phase shifters are in-
dispensable components in satellite and mobile communications systems [1–3]. Recently,
the rapid development in the electronic communication industry has proposed higher
requirements for microwave devices including higher operating frequency, lower loss,
and higher integration level. As magnetoelectronic devices are the core components of
microwave devices [4–6], there is an urgent demand to improve their magnetic proper-
ties at the high-frequency range. However, most microwave/radio-frequency magnetic
components are discrete devices based on bulk materials, and directly reducing the size
of high integration often leads to degradation in performance. The progress of chip-type
technology is still behind for the perfect integration of magnetic components with exist-
ing semiconductor devices. Given the above context, ferromagnetic/anti-ferromagnetic
(FM/AF) thin films with a multilayer structure are considered as ideal candidates. The
higher saturation magnetization (Ms), permeability (µ), and self-biased ferromagnetic reso-
nance (FMR) frequency of the magnetic thin film make them suitable for high-frequency
applications as nanostructured magnetic media and magnetic sensors [7–13]. Meanwhile,
the multilayer structure has been widely used in giant magnetoresistance spin valves based
on the exchange bias phenomenon.

The operating frequency, FMR linewidth and the resonance field of periodically
arranged FM/AF multilayer structure can easily be affected by the change in thickness
of each single layer, as well as the surface morphology. Especially, when the thickness of
individual layers falls below the critical thickness, the states and properties of surface and
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interface dominate the magnetic properties. In the multilayer structure of thin films, the
thickness of each single layer can reach down to the level of several nanometers. However,
such high accuracy is often susceptible to environmental oxidation, which leads to the
change in the effective thickness, as well as the change in composition.

To study the composition of surface and interface as well as the thickness distribution
in multilayer structures, atomic force microscopy (AFM) and angle resolved X-ray photo-
electron spectroscopy (ARXPS) are commonly applied. Among the previous studies, Yu
G.H. et al. [14] studied the relationship between the oxidation states of Ni in NiOx and
the exchange bias field Hex of the NiFe film by ARXPS, but the critical thickness of the
pinning of NiFe film was not studied. S.S. Sakhonenkov et al. [15] presented an in-depth
study of Mo/Si multilayer systems using ARXPS. They reported that a MoSi2 interlayer
with a thickness of 0.19 ± 0.05 nm was identified on the Si-on-Mo interface. J. Zemek
et al. [16] investigated the surface and in-depth distribution of sp2 and sp3 coordinated
carbon atoms in modified diamond-like carbon films. A. Sanchez-Martinez et al. [17]
discovered that small amounts of oxidized gallium and metallic arsenic are located at the
HfO2/InGaAs interface. Meanwhile, they studied the structure of TiN/HfO2 nanofilms
grown on InGaAs substrates by ARXPS. The above evidences have shown ARXPS as a
useful tool in characterizing the surface/interface of the thin films. In this study, AFM and
ARXPS are used to characterize the surface oxidation layers of the NiFe thin film, which
is known for its high permeability while having a relatively high Ms. More importantly,
the thickness of each oxidation layer is estimated based on the ARXPS results. The static
magnetic properties of the NiFe thin films were also investigated.

2. Experimental Details

In this experiment, Ni81Fe19 thin films were deposited on 5 mm × 5 mm Si (100)
substrates by electron beam evaporation (EB-500) in vacuum (≤5.0 × 10−5 Pa) at 25 ◦C.
The thicknesses of the Ni81Fe19 films are 90, 100, 110, and 120 nm. The growth rate of the
film is 0.03 nm/s. The Si (100) substrates were preliminarily cleaned in a sequential bath of
acetone, alcohol, and deionized water and dried with ionized dry N2 flux. Once prepared,
the samples were stored at room temperature to be oxidized under ambient environment.

The surface morphologies of the NiFe thin films were investigated using an atomic
force microscope (AFM, Bruker MultiMode8) with a scanned area of 2 µm × 2 µm. Static
magnetic properties of NiFe films were measured using a vibrating sample magnetometer
(VSM, Lake Shore 8604) at room temperature. The samples were analyzed using ARXPS
(ULVAC-PHI5000 Veraprobe III) with an Al Kα emission source (1486.6 eV). The XPS
measurements were conducted at a base pressure of 8 × 10−10 Pa. The pass energy of the
spectrometer was set to 69 eV. The energy was calibrated by setting the adventitious C 1s
binding energy to 284.8 eV. The chemical depth profile was acquired at six angles (α) of
20◦, 35◦, 45◦, 60◦, 75◦, and 90◦.

3. Results and Discussion
3.1. AFM Analysis and Surface Roughness

Figure 1 illustrates the AFM surface morphology and roughness of the NiFe thin films
with a NiFe thicknesses of 100 nm. The surface roughness of the films with different NiFe
thicknesses from 90 to 120 nm was 1.31 nm, 1.27 nm, 1.45nm, and 1.67 nm, respectively.
The minimum roughness of 1.27 nm is seen for the sample with a thickness of 100 nm,
whose average grain size also appears to be the smallest among the samples (see Figure 3a).
The experimental results are in good correspondence with a previous report [18], which
shows the positive correlation between the average grain size and surface roughness.
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Figure 1. AFM images of NiFe films with a thickness of 100 nm.

3.2. Magnetic Properties of NiFe Films

Figure 2a,b shows the in-plane and out-of-plane magnetic hysteresis loops of NiFe thin
films with the thicknesses from 90 to 120 nm. The samples with thickness of 90–110 nm
show narrow M-H loops, while the 120-nm-thick sample shows a much wider curve,
suggesting a higher coercivity (Hc) [19]. Figure 3 shows the static magnetic properties of
the NiFe thin films, including the saturation magnetization (4πMs) and Hc. According to
Figure 3a, as the thickness of NiFe thin film increases, the 4πMs is increased. Concomitantly,
in-plane (Hc//) and out-of-plane (Hc⊥) coercivity are displayed in Figure 3b. Both Hc// and
Hc⊥ exhibit a similar trend, which shows a slight reduction upon the increase of thickness
from 90 to 110 nm, followed by a dramatic increase as the thickness is further increased to
120 nm. As the Hc is dependent on the quality and defects of the film [20], the dramatic
increase of Hc observed in Figure 3b can be attributed to the high roughness of the 120 nm
thick sample.

3.3. Oxidation Thickness of NiFe Films

Figure 4 shows the ARXPS spectra of Ni in the NiFe thin film with a thickness of 100
nm from various take-off angles. For clear identification of each peak, as well as to obtain
the peak intensity, fitted results for each spectrum are obtained (examples of α = 20◦ and
90◦ are shown in Figure 5). The relationship between the detection depth (d), photoelectron
take-off grazing angle, and the mean free path of inelastic scattering (λ), is as follows [21].

d = 3λ sin α (1)
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As can be seen in Figure 5, there are several noticeable peaks representing the signals
from Ni 2p3/2 (852.3 eV), NiO 2p3/2 (853.3 eV), Ni(OH)2 2p3/2 (856.6 eV), as well as
their satellite peaks [22–24]. The coexistence of metallic and oxide components is further
confirmed by the spectra from O 1s photoemission, which is shown in Figure 6a. The
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thickness of the oxide film (do) can be calculated according to the ARXPS results through
the following equations [25]:

ln
(

1 +
R

R∞

)
=

do

λ
· 1

sin α
(2)

where α is different take-off angles: 20◦, 35◦, 45◦, 60◦, 75◦, and 90◦, and R is the ratio of
photoelectron peak intensity from the oxides (Io) to that from nickel (Is):

R =
Io

Is
(3)
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In Equation (2), R∞ can be calculated as follows:

R∞ =
Mo

Ms
· ρs

ρo
· λs

λo
(4)

where the values of M are the molecular weight of nickel oxides (Mo) and nickel (Ms),
values of ρ are the density of nickel oxides (ρo) and nickel (ρs), and values of λ are the
mean free path of inelastic scattering for nickel oxides (λo) and nickel (λs). Because the
photoelectron kinetic energy of nickel and its oxides are almost the same, thus λo and λs
are approximately equal [21]. Table 1 shows the values of density, molecular weight for Ni,
NiO, and Ni(OH)2, as well as the calculated R∞ for both nickel oxides.

Table 1. The values of density, molecular weight, and kinetic energy for Ni, NiO, and Ni(OH)2, as
well as R∞ for both nickel oxides.

Material ρ (g/cm3) M (g/mol) R∞ Kinetic Energy (eV)

Ni 8.9 59 - 853.3
NiO 6.84 75 0.6 853.6

Ni(OH)2 4.15 93 0.3 855.0

Table 2 shows the relative peak intensities of nickel (Is) and nickel oxides (Io) at
different take-off angles based on the fitting results shown in Figure 5, as well as the
calculated ratios between them (R). As α is increased from 20 to 90◦, Is(Ni) is seen to
increase from ~20 to ~43%, while both Io(NiO) and Io(Ni(OH)2) are reduced from ~46 to
~32% and from ~33 to ~26%, respectively. As the oxidation reactions take place at the top
surface of the metal substrate, with a limited traveling distance of photoemission signal, it
is natural that the detection depth becomes deeper as the take-off angle becomes closer to
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90◦. Therefore, one can observe the obvious enhancement in Is(Ni), and slight reduction in
Io(NiO) and Io(Ni(OH)2).

Table 2. Relative peak intensities (Is and Io) and the Io/Is ratios for both nickel oxides in the NiFe
(100 nm) thin film.

α

(◦)
Is(Ni)
(%)

Io(NiO)
(%)

Io(Ni(OH)2)
(%) R(NiO) = Io(NiO)/Is R(Ni(OH)2) = Io/Is

20 20.38 46.18 33.44 2.27 1.64
35 32.50 37.95 29.55 1.17 0.91
45 36.73 35.37 27.90 0.96 0.76
60 40.32 33.27 26.41 0.83 0.66
75 42.05 32.29 25.66 0.77 0.61
90 42.57 32.00 25.44 0.75 0.60

According to Equation (2), to calculate the thickness of the oxidation layer, one can
plot the results of ln(1 + R/R∞) against 1/sinα, the slope of which indicates the thickness
divided by the mean free path of inelastic scattering (do/λ). Figure 6b shows the results of
ln(1 + R/R∞) against 1/sinα for Ni(OH)2 and NiO. Given that λ = 6 Å [26], the thickness of
NiO in NiFe thin film is determined to be 0.2 nm, the thickness of Ni(OH)2 is determined
to be 0.3 nm.

As with nickel oxides, the composition and thickness of iron oxides can also be
determined. Figure 7 shows the Fe 2p photoemission spectra of partially oxidized NiFe
thin film. The signals from each take-off angle can be fitted with Fe 2p3/2 (706.8 eV), Fe2O3
2p3/2 (710.7 eV), and Fe3O4 2p3/2 (709.3 eV) [27–29], the results of which are shown in
Figure 8. Figure 9a shows the fitted O 1s spectra to further confirm the existence of iron
oxides. Table 3 shows the relevant parameters including Is(Fe), Io(Fe2O3), Io(Fe3O4), and
the intensity ratios between iron and its oxides. For the same reason mentioned above,
Is(Fe) is increased with increasing α, as higher take-off angle results in deeper detection
depth.
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Table 3. Relative peak intensities (Is and Io) and the Io/Is ratios for both iron oxides in the NiFe (100 nm) thin film.

α (◦) Is(Fe) (%) Io(Fe3O4) (%) Io(Fe2O3) (%) R(Fe3O4) = Io(Fe3O4)/Is R(Fe2O3) = Io(Fe2O3)/Is

20 2.11 7.85 90.04 3.72 42.67
35 8.59 8.01 83.41 0.93 9.71
45 12.49 7.92 79.58 0.63 6.37
60 16.63 7.75 75.61 0.47 4.55
75 18.91 7.63 73.46 0.40 3.88
90 19.63 7.59 72.78 0.39 3.71

Table 4 shows the values of density, molecular weight for Fe, Fe3O4, and Fe2O3, as well
as the calculated R∞ for both iron oxides. The values in Tables 3 and 4 are integrated into
Equations (2)–(4), and the results of ln(1 + R/R∞) against 1/sinα for Fe 2p photoemission
in the NiFe thin film are shown in Figure 9b. As λ = 7.5 Å [26], the thickness of Fe2O3 layer
determined is 0.9 nm and that of Fe3O4 is 0.7 nm. It means that oxidation in the natural
environment occurs only in the extreme depth of the surface. To summarize, a schematic
illustration is shown in Figure 10 to better demonstrate the multilayer structure of the
oxidized NiFe.
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Table 4. The values of density, molecular weight, and kinetic energy for Fe, Fe2O3, and Fe3O4, as
well as R∞ for both iron oxides.

Material ρ (g/cm3) M (g/mol) R∞ Kinetic Energy (eV)

Fe 7.86 56 - 710.7
Fe2O3 5.24 160 0.23 710.4
Fe3O4 5.18 232 0.16 710.8
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4. Conclusions

In summary, NiFe thin films with thickness from 90 to 120 nm were fabricated by
electron beam evaporation. The sample with a thickness of 100 nm shows the lowest
surface roughness and the smallest grain size. The saturation magnetization of the films is
increased from 9891 to 10,300 Gs as the thickness of film increases. The optimum magnetic
properties (4πMs = 9930 Gs, Hc = 1.37 Oe) are obtained when the thickness of film is 100 nm.
In addition, the coexistence of NiFe and its oxides on the top surface is observed along the
probing depth of ARXPS. By fitting the ARXPS spectra and obtaining the relative intensity
of each peak, the thickness of NiO, Ni(OH)2, Fe2O3, and Fe3O4, which are 0.3 nm, 0.2 nm,
0.9 nm, and 0.7 nm, respectively, are determined. This work demonstrates the beneficial
application of ARXPS in characterizing the oxide layers including their compositions and
thicknesses as a quick and damage-free approach, especially for future investigations with
even lower film thickness.
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Abstract: A one-step sintering process was developed to produce magnetocaloric La(Fe,Si)13/Ce-
Co composites. The effects of Ce2Co7 content and sintering time on the relevant phase trans-
formations were determined. Following sintering at 1373 K/30 MPa for 1–6 h, the NaZn13-type
(La,Ce)(Fe,Co,Si)13 phase formed, the mass fraction of α-Fe phase reduced and the CeFe7-type
(La,Ce)(Fe,Co,Si)7 phase appeared. The mass fraction of the (La,Ce)(Fe,Co,Si)7 phase increased, and
the α-Fe phase content decreased with increasing Ce2Co7 content. However, the mass fraction of
the (La,Ce)(Fe,Co,Si)7 phase reduced with increasing sintering time. The EDS results showed a
difference in concentration between Co and Ce at the interphase boundary between the 1:13 phase
and the 1:7 phase, indicating that the diffusion mode of Ce is reaction diffusion, while that of Co
is the usual vacancy mechanism. Interestingly, almost 100% single phase (La,Ce)(Fe,Co,Si)13 was
obtained by appropriate Ce2Co7 addition. After 6 h sintering at 1373 K, the Ce and Co content in
the (La,Ce)(Fe,Co,Si)13 phase increased for larger Ce2Co7 content. Therefore, the Curie temperature
increased from 212 K (binder-free sample) to 331 K (15 wt.% Ce2Co7 sample). The maximum magnetic
entropy change (−∆SM)max decreased from 8.8 (binder-free sample) to 6.0 J/kg·K (15 wt.% Ce2Co7

sample) under 5 T field. High values of compressive strength (σbc)max of up to 450 MPa and high
thermal conductivity (λ) of up to 7.5 W/m·K were obtained. A feasible route to produce high quality
La(Fe,Si)13 based magnetocaloric composites with large MCE, good mechanical properties, attractive
thermal conductivity and tunable TC by a one-step sintering process has been demonstrated.

Keywords: La(Fe,Si)13 based composites; sintering; grain boundary diffusion; magnetocaloric effect

1. Introduction

Climate change is of high global significance, resulting in high interest in more ef-
ficient cooling systems. Therefore, there is considerable research interest in the emerg-
ing attractive topic of magnetic refrigeration (MR) [1,2]. Advances in magnetocaloric
materials (MCMs) are urgently needed to realize the promise of MR. MCMs which ex-
hibit a giant magnetocaloric effect (MCE) include Gd5(SixGe1−x)4 [3,4], MnFe(P,As) [5],
Mn(Fe,Co)Ge [6], LaFe13−xSix [7,8], and Heusler alloys [9], which undergo a first-order
magnetic transition (FOMT) near their Curie temperatures (TCs). Recently, other materials,
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such as RE2ZnMnO6 (RE = Gd, Dy, and Ho) perovskites [10], RE2FeAlO6 (RE = Gd, Dy,
Ho) oxides [11], RE60Co20Ni20 (RE = Ho and Er) amorphous ribbons [12], LaFe12B6-based
materials [13], and rare earth-based intermetallic compounds [14], were found to exhibit
outstanding magnetocaloric performance at cryogenic temperatures. The development of
these materials can promote the development of magnetic refrigeration technology.

NaZn13-type La(Fe,Si)13 compounds have attracted considerable attention as magne-
tocaloric materials due to their large magnetocaloric effect (MCE) values, relatively low
cost, tunable Curie temperature (TC), and environmental friendliness [1,7,15]. However,
these compounds have some disadvantages [16–18]: First, it is difficult to form single-
phase La(Fe,Si)13 material. An ingot of La(Fe,Si)13 has to be annealed above 1273 K for
several days or even a month to obtain a single phase [18]. Second, the TC of LaFe13−xSix
(1.0 ≤ x ≤ 1.6) compounds is less than 210 K, which is too low for near room temperature
magnetic cooling. Third, these compounds show a first-order magnetic transition (FOMT),
which has a desirable large magnetic entropy change, but is accompanied by thermal and
magnetic hysteresis and relatively large undesirable changes in crystal symmetry and/or
volume [17]. The magneto-volume effect can lead to pulverization of bulk LaFe13−xSix
magnetocaloric materials when the magnetic field is varied during the MR process [17].
The brittleness and magnetic volume change reduce formability, limiting the progress of
this material for commercial applications.

Considerable research has been performed to overcome these shortcomings. Short
time annealing produced a single phase material in melt-spun samples [19]. Combining
kilogram-scale strip-casting with short time annealing has been deployed for mass produc-
tion of LaFe13−xSix-based magnetic cooling materials [20]. Elemental substitution of Fe (by
Co [18,21,22], Si [23], etc.) or La (by Ce [24]) can improve magnetocaloric performance. TC
can be raised from ~200 K to room temperature or even higher by addition of interstitial
atoms like H [23,25–27]. Hydrogenation of LaFe13−xSix is the most effective method to
shift TC to room temperature while maintaining a large magnetocaloric effect [28]. Quater-
nary La(Fe,Co,Si)13 compounds can increase TC and change the magnetic transition from
first-order to second-order, accompanied by lower MCE.

LaFe13−xSix bulk composites can be prepared through powder metallurgy technology
using LaFe13−xSix particles and binder powder as raw materials. Although LaFe13−xSix is
hard and brittle, particle fracture can be avoided by adding low hardness binders during
the powder metallurgy process. Additionally, the magneto-volume effect can be reduced
by pulverization of the material [29]. Various binder materials, such as polymers [30], high
thermal conductivity metals [31], and low melting alloys [32,33], have been studied to
obtain high performance using relatively low sintering temperatures. High-temperature
sintering will lead to metallurgical reactions between the binder and the particles, it will
also significantly decrease the mass fraction of the 1:13 phase and lower the MCE of the
composites [31]. The magnetocaloric properties of the composites arise from the La-Fe-Si
based alloy. Addition of binder material reduces the mass fraction of magnetocaloric
material and decreases the MCE of the composites.

La-Co alloys [34,35] have been used as binder due to the low enthalpy of formation of
the LaCo13 phase (–5.79 kJ/mol) [36], lower La-Fe binary phase content and the low melting
point of a La-based eutectic alloy [37]. Based on grain boundary diffusion (GBD) theory [38],
Co diffusion occurs through annealing after hot pressing [34,39]. During annealing, Co can
diffuse into the 1:13 matrix, influencing the magnetic and magnetocaloric properties and
promoting the formation of the 1:13 phase. The binder content and annealing parameters
play an important role in the phase formation process. For example, addition of more
than 5 wt.% of La-Al alloy was detrimental to 1:13 phase formation in La-Fe-Si/La-Al
composites [40]. Our previous work [41] showed that excess addition of Ce-Co alloy binder
would result in the formation of a new phase, which disappeared with increasing heat
treatment time. However, the sintering temperature is below the melting point of Ce40Co60
(1323 K), resulting in a porous structure and insufficient mechanical properties. The large
pressure of hot pressing (600 MPa) and long diffusion annealing times (up to 24 h) are

84



Metals 2022, 12, 112

unfavorable for industrial production. To overcome these limitations, we combined the
advantages of hot pressing and diffusion annealing in this work. We developed a novel
process to prepare La-Fe-Si-based composites by sintering to shorten the processing time
and improve the compressive properties. The effect of Ce2Co7 binder on the formation of
the 1:13 phase, thermal conductivity, mechanical, magnetic and magnetocaloric properties
of LaFe11.6Si1.4/Ce2Co7 composites was studied. The diffusion mechanism of Ce and Co
was also investigated. The TC increased from ~200 K to near room temperature. High values
of the compressive strength (σbc)max of up to 450 MPa and of the thermal conductivity (λ)
of up to 7.5 W/m·K were successfully obtained.

2. Experimental Section

Annealed LaFe11.6Si1.4 flakes were prepared following the procedure described in our
previous work [41]. The Ce2Co7 compounds were prepared by an arc melting process
with pure Ce (≥99.5 wt.%) and Co (≥99.9 wt.%). The annealed LaFe11.6Si1.4 flakes were
mechanically milled to powders with a particle size in the range of 45 to 100 µm. Ce2Co7
fine powders were prepared with a particle size smaller than 30 µm. The LaFe11.6Si1.4
and Ce2Co7 powders were homogenously mixed with 0, 5, 10, and 15 wt.% content of
Ce2Co7 powder, followed by sintering under uniaxial stress of 30 MPa at 1373 K to produce
cylindrical samples with 15 mm in diameter and 5 mm in height.

XRD characterization was carried out using X-ray diffractometer (Rigaku D/max-
2200/PC, Tokyo, Japan) with Cu-Kα1 radiation (λ = 1.54056 Å) at a scan rate of 2◦/min.
The phase compositions and microstructures were analyzed by a thermal field emission
scanning electron microscope (SEM, FEI Nova Nano SEM 430, Davis, CA, USA) equipped
with an energy-dispersive spectrometer (EDS) attachment. Measurements of thermal con-
ductivity and magnetic properties were carried out using a Physical Property Measurement
System (PPMS-9, Quantum Design, San Diego, CA, USA)). The compressive strengths of
the samples were measured by a mechanical testing system (Shimadzu AG-100NX, Kyoto,
Japan). The porosity (P) of the composites were determined by the following equation:
P = 1 − ρ/ρ0, where ρ is the effective density and ρ0 is the theoretical density. The effective
density (ρ) of each sample was tested by the Archimedes method. The theoretical density
(ρ0) of each sample was calculated by the following equation: ρ0 = 100

∑i
mi
ρi

, where mi was

the mass of the corresponding phase in the 100 g sample and the ρi was the density of the
specific phase.

3. Results and Discussion
3.1. Phase Analysis

Figure 1a shows the Rietveld refined X-ray diffraction (XRD) patterns of LaFe11.6Si1.4/x
wt.%Ce2Co7 (x = 0, 5, 10, and 15) composites sintered at 1373 K for 6 h. LaFe11.6Si1.4/x wt.%
Ce2Co7 (x = 5, 10, and 15) sintered composites exhibited a majority 1:13 phase. The α-Fe
phase content decreased, corresponding to the appearance of a CeFe7-type phase (1:7 phase)
and a La2O3 phase. For composites sintered at 1373 K for 6 h, higher Ce2Co7 binder content
(less than 15 wt.%) can promote formation of the 1:13 phase and decrease the α-Fe phase
content (Figure 1a and Table 1).

For example, LaFe11.6Si1.4/5wt.%Ce2Co7 composites contained 93.21 wt.% 1:13 phase,
5.90 wt.% α-Fe phase and a small amount of 1:7 phase (0.89 wt.%). However, when the
addition of Ce2Co7 binder rose to 10 wt.% or more, the mass fraction of 1:7 phase increased.
Moreover, the mass fraction of 1:7 phase in the LaFe11.6Si1.4/10 wt.%Ce2Co7 composites
decreased with an increase in sintering time. As reported earlier [41], the 1:7 phase occurred
at grain boundaries after annealing for a short time. Clearly, the 1:7 phase content after
short time annealing increased for larger binder content.
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Figure 1. (a) XRD patterns for LaFe11.6Si1.4/xwt.%Ce2Co7 (x = 0, 5, 10 and 15) composites sintered at
1373 K for 6 h; (b) XRD patterns for binder-free LaFe11.6Si1.4 composites sintered at 1373 K for 1, 3
and 6 h, respectively; (c) XRD patterns for LaFe11.6Si1.4/10wt.%Ce2Co7 composites sintered at 1373 K
for 1, 3 and 6 h, respectively.

Table 1. The weight percentages of phases in the LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5, 10 and 15)
sintered composites and fit coefficient.

Sample
Sintering@1373 K

Weight Percentage (wt.%) Fit Coefficient

1:13 phase α-Fe Phase
1:7 Phase

Rp Rwp Rexp χ2

Annealed
LaFe11.6Si1.4 flakes 84.69(5) 15.31(2) 0.95 1.62 0.80 4.16

LaFe11.6Si1.4/x wt.%Ce2Co7
composites

x = 0
1 h 89.36(5) 10.64(2) / 0.95 1.44 1.10 1.71
3 h 87.74(5) 12.26(2) / 1.28 1.73 1.42 1.49
6 h 89.26(5) 10.82(2) / 0.87 1.36 1.01 1.80

x = 5 6 h 93.21(5) 5.90(1) 0.89 0.87 1.20 1.01 1.43

x = 10
1 h 87.28(5) 4.72(1) 8.00 1.08 1.46 1.26 1.33
3 h 87.02(5) 6.28(1) 6.70 0.98 1.27 1.23 1.07
6 h 93.93(5) 3.30(1) 2.77 0.90 1.19 0.98 1.46

x = 15 6 h 88.29(5) 4.96(1) 6.75 1.19 1.53 1.09 1.98

To investigate the kinetics of diffusion mode of Ce and Co, binder-free and 10 wt.%
Ce2Co7 composites sintered at 1373 K for 1, 3 and 6 h were prepared. The Rietveld refined.
XRD patterns are shown in Figure 1b,c, respectively. The weight percentages of the phases
obtained from the Rietveld refined XRD data are listed in Table 1. The phase composition
of annealed LaFe11.6Si1.4 flakes was 84.69(5) wt.% 1:13 phase, and 15.31(2) wt.% α-Fe phase.
There were no peaks of the La2O3, LaFeSi (1:1:1), and (La,Ce)2(Fe,Co,Si)17 (2:17) phases
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(Figure 1) in the XRD patterns due to the limitation of the resolution of normal XRD,
indicating the low content of these phases in the sintered composites.

Compared with the annealed flakes, the 1:13 phase content in the binder-free sample
sintered at 1373 K for 1~6 h (Figure 1b) slightly increased, accompanied by a decrease in
α-Fe phase content. This indicated that additional formation of the 1:13 phase occurred
during sintering. The XRD patterns of LaFe11.6Si1.4/10 wt.%Ce2Co7 composites sintered at
1373 K for 1, 3 and 6 h are displayed in Figure 1c. When the sintering time was extended
from 1 h to 6 h, the 1:7 phase content reduced from 8.00 wt.% to 2.77 wt.% (Table 1),
indicating that increased high-temperature sintering time can significantly reduce the 1:7
phase content.

3.2. Microstructure Evolution

The microstructure of the composites sintered at 1373 K for 6 h is shown in Figure 2
for various values of Ce2Co7 binder content. For the binder-free sample, the black area
is the α-Fe phase, the dark gray area is the 1:13 phase (matrix phase), and white grains
consist of the La2O3 phase (not detected in the XRD results owing to its low mass fraction).
After sintering at 1373 K for 6 h, a high mass fraction of the 1:13 phase and a small α-Fe
phase content (Table 1) were obtained. It was reported that the temperature range for ther-
mal decomposition (TD) reaction for La(Fe,Si,Co)13 based compounds is 873–1173 K [42].
A lamellar structure, usually observed upon decomposition of the 1:13 phase was not seen,
indicating no decomposition of the 1:13 phase occurred during sintering of the binder-free
LaFe11.6Si1.4 composites [43]. The sintering temperature was near the formation tempera-
ture of the 1:13 phase, thus, a large amount of precipitation was observed (Figure 2b). The
α-Fe phase (black areas), the LaFeSi (1:1:1) phase (white grains inside the 1:13 particles) and
the La2O3 phase (white grains besides the α-Fe phase), shown in Figure 2b, were observed.
As previously reported [42,43], the white phase at the particle interfaces (Figure 2a) is
believed to be a La- and Si-rich phase.

From the Ce-Co binary phase diagram [44], the melting point of Ce2Co7 alloy is 1418 K,
which is 45 K higher than the sintering temperature (1373 K). Therefore, the soft Ce2Co7
alloy binder and LaFe11.6Si1.4 particles could be bonded by solid phase sintering to obtain a
highly dense microstructure under a pressure of 30 MPa [45,46].

For the LaFe11.6Si1.4/5 wt.%Ce2Co7 sintered composites (Figure 2c,d), the fraction of
α-Fe phase (black area), La- and Si-rich boundary phase and La2O3 phase (white area)
decreased markedly. A small amount of CeFe7-type phase (light grey) appeared in the
binder bonded composites. The formation enthalpy of CeCo7 (−10.704 kJ/mol calcu-
lated by the modified Miedema (ZSL’s Model) [36] is more negative than that of LaCo13
(−5.79 kJ/mol) [34], favoring the formation of the 1:7 phase. The EDS map results of
the LaFe11.6Si1.4/5 wt.%Ce2Co7 sintered composites are shown in the inset of Figure 2c,
uniform diffusion of Co occurred in the 1:13 phase. However, there are some regions of La
and Ce enrichment, accompanied by up to ~68 at.% for oxygen (Figure 2d). Owing to the
limitation of EDS in quantifying the concentration of light elements, this value for oxygen
must be regarded as a rough estimate. These La- and Ce-rich regions can correspond to the
(La,Ce)2O3 phase. Ce is mainly found in the 1:7 phase, a small amount of Ce is found in
the 1:13 phase. Sintering at 1373 K for 6 h cannot produce a uniform distribution of Ce or
eliminate the 1:7 phase.

Interestingly, the LaFeSi (1:1:1), La-, and Si-rich phases are virtually absent in LaFe11.6Si1.4/
x wt.%Ce2Co7 (x = 5, 10, 15) composites sintered at 1373 K for 6 h. The chemical composi-
tions of the 1:7 and 1:13 phases and lattice constant (a) of 1:13 phase for the sintered compos-
ites are listed in Table 2. The 1:13 phase, with a composition of La0.87Ce0.13Fe9.70Co0.56Si1.35,
La0.82Ce0.18Fe9.24Co0.91Si1.34, and La0.75Ce0.25Fe9.10Co1.30Si1.28 was obtained in sintered
composites with 5 wt.%, 10 wt.%, and 15 wt.% Ce2Co7, respectively.
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Figure 2. Backscattered SEM micrographs of LaFe11.6Si1.4/x wt.%Ce2Co7 composites with x = 0 (a,b),
5 (c,d), 10 (e,f), and 15 (g,h) sintered at 1373 K for 6 h, respectively. The inset of (c)shows the mapping
results of La, Ce, Fe and Co elements for LaFe11.6Si1.4/5 wt.%Ce2Co7 composites sintered at 1373 K
for 6 h, respectively.
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Table 2. Lattice constant (a), phase composition, Curie temperature (TC), maximum magnetic entropy
change ((−∆SM)max), and relative cooling power (RCP) of LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5, 10
and 15) composites sintered at 1373 K for 1~6 h.

LaFe11.6Si1.4/Ce2Co7
Composites

1:13 Phase a (Å)

Phase Composition
TC (K)

(−∆SM)max

J/(kg·K)
∆H = 2 T (5 T)

RCP J/kg
∆H = 2 T (5 T)Binder

Content Sintering 1:7 Phase 1:13 Phase

Binder- free
1373 K/1 h 11.49282(6) —— LaFe10.95Si1.59 206 7.5 (/) 122.4 (/)
1373 K/3 h 11.49015(9) —— LaFe10.73Si1.57 210 5.0 (/) 106.6 (/)
1373 K/6 h 11.49209(9) —— LaFe10.53Si1.60 212 5.2 (8.8) 146.7 (339.0)

5 wt.% 1373 K/6 h 11.49190(0) La0.26Ce0.74Fe6.02Co0.56Si0.93 La0.87Ce0.13Fe9.70Co0.56Si1.35 247 4.0 (8.6) 158.4 (428.7)

10 wt.%
1373 K/1 h 11.49271(9) La0.28Ce0.72Fe5.75Co1.27Si0.87 La0.89Ce0.11Fe9.71Co0.91Si1.35 275 0.9 (/) ——
1373 K/3 h 11.49559(8) La0.27Ce0.73Fe6.14Co0.82Si0.90 La0.83Ce0.17Fe9.82Co0.95Si1.29 296 2.2 (/) 185.2 (/)
1373 K/6 h 11.49301(7) La0.27Ce0.73Fe6.32Co0.72Si1.04 La0.82Ce0.18Fe9.24Co0.91Si1.34 291 3.9 (7.6) 209.2 (457.7)

15 wt.% 1373 K/6 h 11.51400(9) La0.28Ce0.72Fe5.71Co0.98Si0.91 La0.75Ce0.25Fe9.10Co1.30Si1.28 331 3.2 (6.0) 178.3 (399.2)

On the other hand, in sintered composites with 10 wt.% and 15 wt.% Ce2Co7, the
fraction of 1:7 phase (light gray) increased remarkably, accompanied by a decrease in the
α-Fe phase content. With 10 wt.% Ce2Co7, the content of Ce and Co in the 1:13 phase
reached 1.34 at.% and 7.51 at.%, respectively. With 15 wt.% Ce2Co7, the values of Ce and
Co content in the 1:13 phase matrix were 1.89 at.% and 10.26 at.%, respectively. This change
in the composition of the 1:13 phase illustrates that diffusion of Ce and Co increased for
larger Ce2Co7 binder content. The lattice parameter a of the 1:13 phase is similar in the
sintered samples with 0–10 wt.% Ce2Co7. However, the a of the 1:13 phase increased for
15 wt.% Ce2Co7 samples. For the 1:7 phase, the Co content increased while the Ce fraction
in the 1:7 phase was almost unchanged with increasing Ce2Co7 content. The 1:7 phase is an
iron-poor type 2:17 phase, these two phases have the same crystal structure [47]. For the
2:17 phase in the composite, the atom ratio of (Fe + Co + Si) to (La + Ce) is 8.5. The EDS
results of the 1:7 phase include the contribution from the 2:17 phase, thus the ratio is not
always equal to 7 (Table 2).

3.3. Kinetics of Diffusion of Ce and Co

To understand the diffusion of Ce and Co, the binder-free and 10 wt.% Ce2Co7 com-
posites were studied. Backscattered SEM micrographs of the composites with and without
10 wt.% Ce2Co7 sintered at 1373 K for 1, 3, and 6 h are shown in Figure 3. For the binder-free
samples (Figure 3a–c), with increasing sintering time from 1 to 6 h, the grain boundaries
(white phase) are more obvious. It is likely that a La- and Si-rich phase formed at the
particle boundaries of the 1:13 phase during sintering [43], similar to the microstructure of
Nd2Fe14B magnets produced by liquid phase sintering (LPS). Sintering occurred at approx-
imately the temperature of 1:13 phase formation, resulting in 1:13 phase formation [20].
The La- and Si-rich phases were distributed at particles boundaries while the α-Fe phase
was inside the 1:13 particles [42]. The fraction of α-Fe phase in the 1:13 particles decreased,
while the size of the α-Fe phase grains increased. The EDS results show that the content
of Fe in the 1:13 phase matrix decreased, indicating that the 1:13 phase formed in the
binder-free samples by the following reaction [48]:

α-Fe + LaFeSi→ La(Fe,Si)13 (1)

For the 10 wt.% Ce2Co7 samples (Figure 3d–f), the content of the 1:7 and α-Fe phases
reduced with increasing sintering time, which is consistent with the results in Figure 1
and Table 1. The α-Fe phase in the 1:13 phase reduced and eventually disappeared with
increasing sintering time. The increase of Ce, Co content in the 1:13 phase (Table 2) indicated
that Ce, Co diffusion increased for larger sintering time. As sintering time increased, the
α-Fe phase content decreased while the content of Fe in the 1:7 phase increased. In sintered
composites with 10 wt.% Ce2Co7 binder, the ratio of (La,Ce) to (Fe,Co,Si) in the 1:13 phase
was higher than that of binder-free samples.
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Figure 3. Backscattered SEM micrographs of binder-free LaFe11.6Si1.4 composites (a–c) and
LaFe11.6Si1.4/10 wt.%Ce2Co7 composites (d–f) sintered at 1373 K for 1, 3 and 6 h, respectively.
The inset of Fig.3(f) shows the line scan results of the interphase boundary between the 1:13 phase
and the 1:7 phase for LaFe11.6Si1.4/10wt.%Ce2Co7 composites sintered at 1373 K for 6 h.

In the La(Fe,Si)13 unit cell, La atoms occupy 8a sites, Fe atoms occupy 8b (FeI) and
96i (FeII) positions in the ratio of 1:12. Si atoms occupy Fe positions [49,50]. The similar
electronic structure of Co and Fe atoms or Ce and La atoms implies that Co atoms will
occupy the position of FeII atoms, and Ce atoms will substitute the position of La atoms.
In all Ce2Co7 bonded sintered composites, the relative atomic content of La and Ce atoms
for the 1:7 phase remains unchanged at ~27:73, but the relative content of Co, Fe, and Si is
changed (Table 2). The SEM micrographs of composites with 10 wt.% Ce2Co7 sintered at
1373 K for 6 h is shown in the inset of Figure 3f. The line scan of the interphase boundary
between the 1:13 phase and the 1:7 phase showed a sudden change in Ce content and little
change in Co concentration. Thus, the diffusion of Ce and Co in the 1:13 phase occurs by
different mechanisms. Co diffuses by the usual vacancy diffusion mechanism in the 1:13
phase. On the other hand, Ce diffusion is by reaction diffusion. The Ce content in the 1:13
phase is mainly due to the reaction between the Ce-rich (La,Ce)(Fe,Co,Si)7 phase and the
La(Fe,Co,Si)13 phase, resulting in the formation of (La,Ce)(Fe,Co,Si)13 phase. Therefore, Ce
is mainly enriched in 1:7 phase but Co is uniformly distributed.

3.4. Thermal Conductivity, Mechanical and Magnetic Properties

The thermal conductivity of the studied samples in this work was measured at room
temperature. The porosity, thermal conductivity, and mechanical properties (Figure 4)
of the LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5, 10, and 15) composites sintered at 1373 K
for 6 h are listed in Table 3. For the LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5, 10, and 15)
composites, structures with density up to 95% were successfully obtained. This high
density resulted in a high value of compressive strength (σbc)max of up to 450 MPa and high
thermal conductivity of up to 7.5 W/m·K. These composites exhibited markedly higher
(σbc)max value than those of low melting point alloy bonded composites fabricated by low
temperature hot pressing (200 MPa) [32].
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Figure 4. Stress–strain curves for the LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5, 10 and 15) composites
sintered at 1373 K for 6 h.

Table 3. Porosity, thermal conductivity, and mechanical properties of LaFe11.6Si1.4/x wt.%Ce2Co7

(x = 0, 5, 10 and 15) composites sintered at 1373 K for 6 h.

Sample Porosity (%) λ (W/m·K) (σbc)max (MPa) Strain (%)

Binder free 5.14 13.71 458 5.0
5 wt.% 4.02 7.81 474 4.7
10 wt.% 4.78 8.21 530 6.1
15 wt.% 4.56 7.50 457 4.7

The thermal conductivity of these composites are comparable or larger than the values
for hot-pressed La0.7Ce0.3Fe11.45Mn0.15Si1.4/13.5%Fe (7.5 W/m·K) [51] and LaFe11.6Si1.4Hy/
Sn (7.9 W/m·K) [32], but smaller than those of hot-pressed La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2/
Sn42Bi58 (10.72–19.64 W/m·K) [33], LaFe11Co0.8Si1.2/Al (9.9~17.0 W/m·K) [52], and
La0.7Ce0.3Fe11.48Mn0.12Si1.4H1.8/20 wt.%In (11.5 W/m·K) [53]. As La(Fe,Si)13 and residual
Ce-Co phase possess different thermal conductivities, thermal conductivity of sintered
composites may be improved by even longer sintering time. The strain values are larger
than 4.7%, which is about 4.5 times the values of sintered LaFe11.7Co1.3Si composites [42].
Thus, the ductility of the LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5, 10 and 15) composites
sintered at 1373 K for 6 h is markedly improved. These improved properties are mainly
due to the stress distribution in the α-Fe and 1:7 phases and the improved quality of the
sintered compacts during high temperature sintering. High ultimate compressive stress
and better elongation can lead to better machinability.

The normalized Mnorm–T (M/Mmax–T) curves upon cooling process under 0.05 T,
normalized magnetization temperature derivative curves (dMnorm/dT–T) measured during
cooling under an applied field of 0.05 T and the (−∆SM)–T curves measured under applied
field changes of 0–2 and 0–5 T for the LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5, 10 and 15)
composites sintered at 1373 K for 6 h are shown in Figures 5 and 6, respectively. The
isothermal magnetization curves for the LaFe11.6Si1.4/x wt.%Ce2Co7 were measured with
an increasing magnetic field in a wide temperature range. The sweep rate of the field was
slow enough to ensure that the data were recorded in an isothermal process. The value of
the isothermal magnetic entropy change −∆SM(T, H) is given by the Maxwell relationship:

− ∆SM(T, H) =
∫ H

0
(∂M/∂T)dH (2)
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Figure 5. Normalized M/Mmax–T and dMnorm/dT–T curves of LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5,
10, and 15) composites sintered at 1373 K for 6 h upon cooling under an applied field of 0.05 T.

Another parameter called RCP (Relative Cooling Power) can be employed to evaluate
the refrigeration efficiency. RCP was defined as the product of (−∆SM)max times the full
temperature width at half maximum of the peak (RCR = (−∆SM)max × δTFWHM) [54]. The
values of TC, (−∆SM)max and RCP of the studied composites are presented in Table 2.

Figure 6. Magnetic entropy change (−∆SM) as function of temperature for the LaFe11.6Si1.4/x
wt.%Ce2Co7 (x = 0, 5, 10 and 15) composites sintered at 1373 K for 6 h.

The binder-free sintered composites show higher TC (212 K) than that of the annealed
LaFe11.6Si1.4 flakes (196 K). The sintering temperature is close to the optimum formation
temperature of the 1:13 phase [55], which may bring about 1:13 phase formation and de-
crease the α-Fe phase content (Table 1), resulting in the formation of a nonstoichiometric Fe
deficient 1:13 phase (Table 2). This Fe-deficient 1:13 phase has elevated TC (Table 2), which
weakens the first order magnetic transition (FOMT) and lowers the (−∆SM)max [7,18,34].
The binder-free composites exhibited the maximum magnetic entropy change (−∆SM)max

of 5.2 and 8.8 J/kg·K under applied field changes of 0–2 and 0–5 T, respectively (Table 2).
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The TC of the LaFe11.6Si1.4/x wt.%Ce2Co7 (x= 5, 10, and 15) composites increased
linearly with larger Ce2Co7 content due to the higher Co content diffused into the 1:13
phase. Sintering caused Ce and Co to diffuse from the Ce2Co7 binder to the 1:13 particles
through the particle boundaries. It changed the chemical composition of the 1:13 phase, the
1:13 phase content, and the magnetocaloric performance. As calculated from the results in
Table 2, the content of Ce and Co in the 1:13 phase increased from 1.03 to 1.97 at.% and 4.44
to 10.25 at.%, respectively. The TC of sintered composites increased from 247 K to 331 K
due to the substitution of Fe by Co in the 1:13 phase. Under the applied field changes of 2 T
and 5 T, the (−∆SM)max values of the LaFe11.6Si1.4/x wt.%Ce2Co7 composites with x = 0, 5,
10 and 15 were 5.2, 4.0, 3.9, 3.2 J/kg·K and 8.8, 8.6, 7.6, 6.0 J/kg·K, respectively. RCP values
of these composites were 146.7, 158.4, 209.2, and 178.3 J/kg and 339.0, 428.7, 457.7, and
399.2 J/kg, respectively (Table 2).

Interestingly, the (−∆SM)max (~5.2 J/kg·K@2 T at 212 K) of the binder-free compos-
ite was larger than that of the LaFe11.6Si1.4 bulk composite with particle size smaller than
100 µm (~4.0 J/kg·K@2 T at 220 K) [56], and far larger than that of La(Fe,Co)11.4Al1.6 al-
loy (2.2 J/kg·K@2 T at 205 K) [50] in a similar temperature range. The (−∆SM)max value
(~4 J/kg·K@2 T at 247 K) of the composite with 5 wt.% Ce2Co7 binder was larger than
those of LaFe11.6Si1.4/5 wt.%Pr40Co60 (~2.9 J/kg·K@2 T at 247 K) [56] and Gd50Co48Zn2 as-
spun ribbons [57] (2.6 J/kg·K@2 T at 260 K) in a similar temperature range. Compared with
Gd [58], the values of (−∆SM)max (~3.9 J/kg·K@2 T at 291 K) and RCP (209.2 J/kg@2 T) of the
LaFe11.6Si1.4/10 wt.%Ce2Co7 composite is smaller. For an applied field change of 2 T, the val-
ues of (−∆SM)max and RCP for the LaFe11.6Si1.4/15 wt.%Ce2Co7 composite (Table 2) are much
larger than those of Fe77Ta3B10Zr9Cu1 amorphous ribbons ((−∆SM)max~1.47 J/kg·K@2 T at
336 K; RCP~123.9 J/kg) in the similar temperature [59].

The Arrott plots near TC of the LaFe11.6Si1.4/x wt.%Ce2Co7 (x = 0, 5, 10 and 15)
composites sintered at 1373 K for 6 h are shown in Figure 7. According to the Banerjee
criterion [60], the slopes of the Arrott plots for the composites sintered at 1373 K for 6 h
are all positive. The magnetic phase transition of these sintered composites near its TC is a
second-order magnetic phase transition, which is due to Co diffusion in Ce2Co7 bonded
composites and enrichment of Si in the 1:13 matrix for the binder-free composite. A similar
behavior was observed for the binder-free and 10 wt.% Ce2Co7 binder composites sintered
at 1373 K for 1~6 h, which also exhibited a second-order magnetic phase transition near
their TC.

The normalized M/Mmax–T curves upon cooling under an applied field of 0.05 T of
the binder-free and 10 wt.% Ce2Co7 binder composites sintered at 1373 K are shown in
Figure 8. The (−∆SM)–T curves (0 − 2 T) are shown in the inset of Figure 8, respectively.
For the binder-free composites, there is a composition change of the magnetocaloric phase
(1:13 phase) after sintering. Based on earlier work [61], the decrease of Fe/Si ratio in 1:13
phase results in higher TC and lower −∆SM. With increasing annealing time from 1 to 6 h,
the Fe/Si ratio in the binder-free composites decreased from ~6.89 (10.95/1.59) to ~6.58
(10.53/1.60), the TC increased from ~206 to 212 K while (−∆SM)max decreased from 7.5
to 5.2 J/kg·K (∆H = 2 T) (Table 2). The 10 wt.% Ce2Co7 binder composites also exhibited
higher (−∆SM)max due to the diffusion of Ce, which increased the Ce content in the 1:13
phase. Hence, the change of TC and magnetocaloric properties is attributed to the formation
of the 1:13 phase (Table 1) and grain boundary diffusion of Ce and Co atoms.
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Figure 7. Arrott plots (a–d) of the LaFe11.6Si1.4/xwt.%Ce2Co7 (x = 0, 5, 10, and 15) composites sintered
at 1373 K for 6 h.

Figure 8. Normalized M/Mmax–T curves of the binder-free and 10 wt.% Ce2Co7 binder composites
sintered at 1373 K for 1~6 h upon cooling under an applied field of 0.05 T. Insets in panels (a,b) are
(−∆SM) vs. T curves for the composites with and without Ce2Co7 binder under a magnetic field
change of 0–2 T, respectively.
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4. Conclusions

In summary, the diffusion of Ce and Co into the desired (La,Ce)(Fe,Co,Si)13 phase and
the partial substitution of La by Ce and Fe by Co could be realized by a one-step sintering
of La(Fe,Si)13/Ce-Co composites. The line scan of the interphase boundary between the
1:13 phase and the 1:7 phase showed a sudden change in Ce content and little change in Co
concentration. Thus, the diffusion mechanism of Ce in the 1:13 phase was different from
that of Co. Co diffused by the usual vacancy diffusion mechanism while the diffusion mode
of Ce was by reaction diffusion. After 6 h sintering at 1373 K, a high value of compressive
strength (σbc)max of up to 450 MPa and a high thermal conductivity (λ) of up to 7.5 W/m·K
were successfully obtained. The magnetocaloric properties of the composites could also be
tuned by varying the content of Ce-Co alloy binder and the sintering time. TC increased
from 212 K to 331 K with increasing Ce2Co7 from 0 to 15 wt.% in LaFe11.6Si1.4/Ce-Co bulk
composites. The magnetic entropy change decreased from 8.8 to 6.0 J/kg·K, the relative
cooling power increased from ~339 to 428, 457 J/kg and then decreases to 399 J/kg under
5 T.

Thus, a feasible route to produce high quality La(Fe,Si)13 based magnetocaloric com-
posites with large MCE, good mechanical properties and thermal conductivity and tunable
TC by a one-step sintering process has been demonstrated.
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Abstract: As giant magnetostrictive materials with low magnetocrystalline anisotropy, Tb-Dy-Fe
alloys are widely used in transducers, actuators and sensors due to the effective conversion between
magnetic energy and mechanical energy (or acoustic energy). However, the intrinsic brittleness
of intermetallic compounds leads to their poor machinability and makes them prone to fracture,
which limits their practical applications. Recently, the addition of a fourth element to Tb-Dy-Fe
alloys, such as Ho, Pr, Co, Nb, Cu and Ti, has been studied to improve their magnetostrictive
and mechanical properties. This review starts with a brief introduction to the characteristics of
Tb-Dy-Fe alloys and then focuses on the research progress in recent years. First, studies on the
crystal growth mechanism in directional solidification, process improvement by introducing a strong
magnetic field and the effects of substitute elements are described. Then, meaningful progress
in mechanical properties, composite materials, the structural origin of magnetostriction based on
ferromagnetic MPB theory and sensor applications are summarized. Furthermore, sintered composite
materials based on the reconstruction of the grain boundary phase also provide new ideas for the
development of magnetostrictive materials with excellent comprehensive properties, including high
magnetostriction, high mechanical properties, high corrosion resistance and high resistivity. Finally,
future prospects are presented. This review will be helpful for the design of novel magnetostrictive Tb-
Dy-Fe alloys, the improvement of magnetostrictive and mechanical properties and the understanding
of magnetostriction mechanisms.

Keywords: magnetostriction; Tb-Dy-Fe alloys; directional solidification; mechanical property; Tb-
Dy-Fe composites; applications

1. Introduction

The physical effect of the magnetostriction of Tb-Dy-Fe alloys is utilized to realize their
application in sensors, transducers and actuators through the conversion of magnetoelastic
properties and mechanical energy.

Clark et al. [1,2] discovered that the magnetization and magnetocrystalline anisotropy
of composite rare-earth compounds composed of R′Fe2 and R′ ′Fe2 (R′ and R′ ′ denote
different rare-earth elements) had a superposition effect. In particular, the λ111 of pseu-
dobinary TbxDy1−xFe2 compounds (0 < x < 1) could reach 1600–2400 × 10−6, and the
external magnetic field intensity required to achieve saturation magnetization was only
1.6 × 103 kA/m. Due to the large anisotropy of magnetostriction in the Tb-Dy-Fe sin-
gle crystal, the magnetostrictive strain in the <111> easy axis is the largest. However,
<111> is not the easy growth direction of the crystal. It is necessary to develop directional
solidification technology to bring the grain orientation closer to the easy magnetization
direction <111> [3]. Tb-Dy-Fe alloys in <110> and <112> orientations are usually prepared
by directional solidification [4,5].

During the last years, many efforts have been dedicated to enhancing magnetostric-
tion to reduce costs, such as alloying with other elements and improving the preparation
process [6–9]. In previous research, the partial substitution of Tb and Dy by Ho was
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investigated to reduce the magnetocrystalline anisotropy and effectively decrease the
hysteresis [10]. Some multicomponent alloys, such as (Tb0.7Dy0.3)0.7Pr0.3(Fe1−xCox)1.85
(0 ≤ x ≤ 0.6) and Tb0.3Dy0.7(Fe1−xSix)1.95 (x = 0.025), also presented good low-field magne-
tostriction performance [10–12]. However, intrinsic brittleness and large eddy-current loss
at high frequency still limit the application range of Tb-Dy-Fe alloys.

The magnetostriction of Tb-Dy-Fe alloys is related to the magnetocrystalline anisotropy
of rare-earth compounds. It is also considered to be derived from the interaction between 4f
electrons of rare-earth elements and 3d electrons of transition-metal ions [13]. Since the (Tb,
Dy)Fe2 pseudobinary alloy system was proposed, there has been little effective progress in
the understanding of its magnetostriction mechanism. To explore the great enhancement
of its properties, an in-depth understanding of its physical nature is urgently needed. In
recent years, the concept and implication of the morphotropic phase boundary (MPB) have
been introduced to the ferromagnetic material system, which provides a new perspective
for the research of the magnetostrictive effect of Tb-Dy-Fe alloys and the development of
high-performance magnetostrictive materials [14–16]. Furthermore, the emergence and
development of a new generation of synchrotron and light sources could more accurately
detect the position change of atoms in the crystal, which would be conducive to the study
of the magnetostriction mechanism of Tb-Dy-Fe alloys [17,18].

Based on previous works, this review focuses on the research progress of Tb-Dy-Fe
alloys in recent years. In Section 2, the study of the crystal growth mechanism in directional
solidification and the introduction of a strong magnetic field for process improvement are
introduced. The effects of substitute elements are discussed in Section 3, and then the
meaningful progress made in recent years in understanding the mechanical properties,
composites and ferromagnetic MPB of Tb-Dy-Fe alloys is summarized in Sections 4–6,
respectively. Finally, the latest progress in the application of high-sensitivity sensors
designed with Tb-Dy-Fe alloys is discussed.

2. Grain Orientation and Properties of Directionally Solidified Tb-Dy-Fe Alloys

In order to achieve the large magnetostriction of Tb-Dy-Fe compounds in a low mag-
netic field, directional solidification technology needs to be used to orient the grains in the
easy magnetization direction as much as possible due to the anisotropy of magnetostriction.

2.1. Grain Growth and Orientation Control during Directional Solidification Process

The growth process of crystals in directional solidification directly affects the final
orientation of grains. Therefore, it is necessary to understand the crystal growth mechanism
and orientation selection mechanism during this process; for example, the solid–liquid
interface morphology and atomic adhesion kinetics should be researched.

The solid–liquid interface morphology plays a key role in single-crystal growth.
By controlling the zone-melting length using a modified optical zone-melting method,
Kang et al. [19] obtained three forms of solid–liquid interface morphologies, namely, con-
vex, flat and concave interfaces, as shown in Figure 1. They successfully prepared an <110>
axial oriented Tb-Dy-Fe twinned single crystal without radial composition segregation.
Although the convex interface was conducive to single-crystal growth, it would produce
radial component segregation; that is, the shape of the solid–liquid interface could affect
the radial component distribution. By establishing their theoretical models, the effects
of the temperature gradient, growth rate and zone-melting length on radial component
segregation were qualitatively described.

Generally, solidification parameters, such as the temperature gradient and solidifica-
tion rate, influence the evolution of texture during the directional solidification process. By
comparing the texture at different distances from the onset of solidification, Palit et al. [20]
found that the transition in the preferred growth direction from <110> to <112> occurred
through intermediate <123> texture components. Furthermore, plane-front solidification
morphology and irregular peritectic coupled growth were observed in a wide range of
solidification rates (5–80 cm/h), while the preferred direction changed from <311> to
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<110> to <112> at 5–100 cm/h solidification rates [21]. The {111} planes in Figure 2a were
composed of two different types of atomic layers, in which one layer was all Fe, which
increased the obstacle of atomic arrangement in the growth process. At the same time, the
{311} planes could be attached to the two {111} planes, as shown in Figure 2b. Therefore,
although {111} planes had higher atomic bulk density, the preferred orientation at low
solidification rates (5–30 cm/h) was <311>. In addition, the highest magnetostriction was
achieved in the sample with a solidification rate of 100 cm/h due to the <112> preferred
orientation, as shown in Figure 2c,d.
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Figure 2. Comparison of atomic attachment kinetics at (a) (111) and (b) (311) interfaces; (c) magne-
tostriction (λ) of directionally solidified samples measured at an applied field of 5 kOe and (d) the
plot of slope (dλ/dH) of the initial λ-H plot, plotted as a function of growth rate [21] (Adapted with
permission from Ref. [21]. 2016 Springer Nature).

The growth twins of Tb-Dy-Fe alloys changed the crystal orientation, which was
related to the crystal orientation of mirror symmetry [22]. Previous studies have shown
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that different solidification rates correspond to different solidification morphologies; that
is, with the increase in the solidification rate, the preferred axial orientation changed from
<101> to <112> and was then reoriented to <101> [23]. Recently, 3D spatial extension
and transformation of the whole grain were asserted to be the key to interpreting the
transformation of the preferred axial orientation. As a polyhedral material with a face-
centered cubic structure, Tb-Dy-Fe alloy dendrites grow in the form of twin-related lamellae.
In this case, when the crystal grows in a cellular form, the initial dendritic arms of the
<110> axially oriented crystal have two extension directions, which will occupy more space
and obtain preferential growth (Figure 3). Therefore, the transformation of the preferred
axial orientation was explained by the different space-occupying capacities caused by the
different morphological configurations for <101> and <112> axially oriented grains [24].
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Figure 3. Octahedral configuration: (a) a faceted equiaxed grain m bounded by eight {111} planes;
(b) occurrence of double parallel twin boundaries on the (111) plane of the crystal; (c) twinned
lamellas grow on the (111) plane; (d) twinned lamellas grow on four different {111} planes [24].
Reprinted with permission from ref. [24]. Copyright 2018 Elsevier.

2.2. <111>-Oriented Tb-Dy-Fe Alloys Prepared by Directional Solidification in Magnetic Fields

Aiming to prepare Tb-Dy-Fe alloys with preferred orientation along <111> or close to
<111>, researchers introduced a strong magnetic field to induce the crystal orientation in a
specific direction during the directional solidification process. According to the relevant
theory of crystal orientation induced by a magnetic field [25], if there is sufficient action
time and rotation space, grains of materials with magnetocrystalline anisotropy will rotate
and be oriented under the action of a strong magnetic field through Lorentz force, magnetic
force and the magnetic moment of materials.

A high magnetic field in the horizontal direction was directly applied to the directional
solidification process [26]. Liu et al. [27–31] obtained a higher <111> orientation and
improved magnetostrictive properties by applying a constant magnetic field of 4.4 T during
the solidification process of Tb0.27Dy0.73Fe1.95 alloy, as shown in Figure 4. In addition, the
best contrast of the domain image and the widest magnetic domain were obtained in the
sample prepared under a 4.4 T magnetic field [27]. The required magnetic field in the range
of 4–10 T to achieve <111> orientation increased with the increase in the cooling rate [28].
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Recently, researchers obtained both orientation and alignment along <111> by multiple
magnetic field effects of the liquid phase and solid phase, as shown in Figure 5 [29,30].
In addition, magnetostrictive and mechanical properties were increased by adjusting the
content, morphology and distribution of the (Tb, Dy)Fe3 phase and WSP by coupling
directional solidification with a high magnetic field [31].
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Furthermore, when a gradient magnetic field strongly dependent on the cooling rate
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gradient magnetostriction and saturation magnetization was obtained, as shown in Figure 6,
which was attributed to the increase in the gradient of the orientation degree [32–34].
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3. Effects of Substitute Elements on Magnetostriction of Tb-Dy-Fe Alloys

Cubic RFe2 compounds usually have large magnetostriction at room temperature, but
their magnetocrystalline anisotropy is also large. In this case, a strong external magnetic
field is frequently required to achieve high performance in practical applications, which
hinders the application of magnetostrictive RFe2 materials. Initially, aiming to reduce
magnetocrystalline anisotropy as well as maintain large magnetostriction, pseudobinary
RR′Fe2 compounds with an anisotropy compensation function were developed, that is, by
alloying RFe2 compounds with the same magnetostriction symbol but opposite anisotropy
symbol. Furthermore, with a Laves phase structure, the magnetic properties of this alloy can
be easily changed by various substitutions in rare-earth and 3d transition-metal sublattices.

3.1. Alloy System Containing Other Rare-Earth Elements

The introduction of the third rare-earth element can provide additional degrees of
freedom for the (Tb,Dy)Fe2 system, minimizing the first-order anisotropy constant (K1) and
the second-order anisotropy constant (K2), which is considered as an approach to improve
the magnetostriction of Tb-Dy-Fe alloys.

3.1.1. Pr

PrFe2 has a very high magnetostrictive coefficient (about 5600 ppm at 0 k), and the
high Pr content is also conducive to anisotropic compensation. However, Tb1−xPrxFe2 is a
noncubic phase when the Pr content exceeds 20% due to the large Pr3+ radius, while high Pr
content is conducive to anisotropic compensation [13]. During the last years, some studies
have confirmed that (Tb, Pr, Dy) Fe2 series compounds are an anisotropic compensation
system [35–37].

One way to improve the performance of the (Tb, Pr, Dy)Fe2 system is to replace Fe by
adding Co, B and other elements. For instance, (Tb0.7Dy0.3)0.7Pr0.3(Fe1−xCox)1.85 (0 ≤ x ≤ 0.6)
was composed of a MgCu2-type C15 cubic Laves phase, with a small amount of a PuNi3-
type phase and rare-earth-rich phase [11]. The second phase of Dy1−x(Tb0.2Pr0.8)xFe1.93
(0 ≤ x ≤ 0.5) obtained by atmospheric pressure annealing appeared when x exceeded
0.3 [37]. Shi et al. successively synthesized PrxTb1−xFe1.9 (0 ≤ x ≤ 1) [38], Pr(Fe1−xCox)1.9
(0 ≤ x ≤ 0.5) [39], Dy1−xPrxFe1.9 (0≤ x≤ 1) [40] and Pr1−xDyx(Fe0.8Co0.2)1.93 (x = 0.00, 0.05,
0.10, 0.20 and 0.30) [36] single cubic Laves compounds by high-pressure annealing. The
magnetostriction of Pr0.95Dy0.05(Fe0.8Co0.2)1.93 alloy at 3kOe was 648 ppm, which is twice that
of Tb0.2Dy0.58Pr0.22(Fe0.9B0.1)1.93 (about 300 ppm) [35].
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The 440C XRD profiles and magnetostriction of (Tb0.2Pr0.8)xDy1−xFe1.93 (x = 0.00,
0.05, 0.10, 0.20 and 0.30) single Laves phase compounds synthesized by high-pressure
annealing are shown in Figure 7 [41]. Based on the consideration of anisotropy compensa-
tion and thermodynamic energy flattening, a rare-earth sublattice was designed, and the
ternary composition phase diagram and the minimum anisotropy composition are shown
in Figure 8 [42].
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3.1.2. Nd

Similar to Pr, many studies [43–52] have shown that the appropriate replacement
of heavy rare-earth Tb and Dy with light rare-earth Nd is an effective approach to de-
crease magnetocrystalline anisotropy and improve magnetostriction. For example, the
Tb0.4Dy0.5Nd0.1Fe1.93 compound possessed the large magnetostriction value of 1300 ppm at
5 kOe [47]. Pan et al. [45,48] obtained good magnetoelasticity in Tb0.3Dy0.6Nd0.1(Fe0.8Co0.2)1.93
by improving the annealing process.

Tb0.2Nd0.8(Fe0.8Co0.2)1.9 ribbons with high Nd content were prepared by melt spinning
and low-temperature annealing, which provided another effective method for the synthesis
of a C15 cubic Laves phase structure with high Nd content [49]. The results indicated that a
higher solidification rate is conducive to the elimination of the (Tb, Nd)Fe3 phase. A single
cubic Laves phase with a <111> easy magnetization direction at room temperature was
obtained at 45 m/s runner speed and 773 K annealing temperature [50]. Subsequently, a
series of Tb0.2Nd0.8(Fe1−xCox)1.9 (0 ≤ x ≤ 0.4) compounds were fabricated by rapid melt
quenching in order to study the effects of Co substitution for Fe. It was found that the
lattice parameter decreased with increasing x, and the (λ‖-λ⊥) of ribbons with x = 0.1–0.2
at 10 kOe was 306 ppm and 321 ppm, respectively [51]. That is, an appropriate amount
of Co instead of Fe could promote the formation of a single Laves phase and improve the
magnetostrictive properties of Tb0.2Nd0.8(Fe1−xCox)1.9 ribbons.

Recently, the spin configuration phase diagram (Figure 9a) of Tb0.27Dy0.73−xNdxFe2
(0 ≤ x ≤ 0.4) was designed based on the experimental results of magnetization with
varying temperature, magnetic susceptibility and XRD analysis [52]. In this case, it was
found that the Curie temperature, spin reorientation temperature, saturation magnetiza-
tion and magnetostriction (Figure 9b) of the Tb0.27Dy0.73−xNdxFe2 compound decreased
with the increase in Nd concentration. Moreover, a value of λ111 = 1700 ppm in the
Tb0.27Dy0.63Nd0.1Fe2 Laves phase compound was obtained by high-pressure annealing.
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3.1.3. Ho

Substituting a small amount of Ho for Tb and Dy in Tb0.3Dy0.7Fe2 can significantly
decrease anisotropy and hysteresis loss [53]. Moreover, the addition of Ho also narrowed
the temperature range between the liquidus temperature and the peritectic tempera-
ture, which was beneficial for reducing the pre-peritectic of the (Tb, Dy, Ho) Fe3 phase.
Tb0.26Dy0.49Ho0.25Fe1.9 had both large magnetostriction and small hysteresis under a low
magnetic field. Furthermore, it has also been found that magnetic annealing effectively
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increases magnetostriction [54]. Figure 10 shows the anisotropic compensation effects of
Ho and Pr in Tb0.1Ho0.9−xPrx(Fe0.8Co0.2)1.93 alloys and the effects of their components on
the phase structure and magnetostriction [55].
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Moreover, the addition of Ho reduced the saturated magnetic field (220 kA/m) and dy-
namic magnetic loss of Tb-Dy-Fe fiber composites [56], and the maximum magnetostriction
of the Tb-Dy-Ho-Fe/epoxy composite was 695 ppm when the Ho content x = 0.31 [57].

3.2. Alloy System Containing Other Elements

In a system containing light rare-earth elements, an appropriate amount of Co instead
of Fe promoted and stabilized the formation of the cubic Laves phase [51,58,59]. In addition,
20 at% Co instead of Fe was found to increase the Curie temperature and saturation magne-
tization and improve the magnetostriction of Tb0.2Nd0.8Fe1.9 ribbons [51]. Co substitution
for Fe was able to extend the operating temperature range for Tb0.36Dy0.64Fe2 by increasing
the Curie temperature (Tc) or decreasing the spin reorientation temperature (Tr) [60,61].
Recently, Yang et al. found a new “Griffiths-like transition” in Tb0.3Dy0.7(Co1−xFex)2 when
x < 0.8 and suggested that its disappearance was due to the interaction between Fe and
Co [62]. In addition, enhanced magnetostriction (818 ppm) and high Tc (707 K) were
obtained at x = 0.8. Theoretically, the doping of transition metals modulated the exchange
action between 3d-3d and 3d-4f atoms, and it is expected to improve the elastic energy and
magnetostatic energy.

Based on the different effects of the addition of elements on properties, Wang et al. [59]
divided different elements into two types: those that readily formed phases with rare-earth
elements and those that readily formed phases with the enthalpy of mixing between atomic
pairs. After adding Nb, Ti and V elements, the second phases NbFe2, Fe2Ti and FeV,
respectively, were dispersed in the Tb-Dy-Fe matrix alloy, as shown in Figure 11, which can
inhibit the formation of the harmful RFe3 phase.
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4. Mechanical Properties of Tb-Dy-Fe Alloys

The MgCu2-type RFe2 phase in the alloy provides a large magnetostrictive coefficient,
but at the same time, the Laves phase is brittle and fractures easily at room temperature
because of its topological close packing structure and lack of available slip system. There
are also a large number of parallel acicular Widmanstatten precipitates (WSPs) in the Laves
phase, that is, tiny (Tb, Dy)Fe3 phases [63,64]. The complex staggered distribution of WSPs
and the lamellar distribution of (Tb, Dy)Fe3 phases in the matrix will adversely affect the
mechanical properties.

As the Fe content decreases from a stoichiometric ratio of 2.0, the strength increases
significantly, because the ductile rare-earth phase serving as the skeleton network delays
crack propagation in the brittle matrix [65]. Heat treatment [6,66] can also improve the me-
chanical properties by controlling the dispersion and uniform distribution of the spherical
rare-earth-rich phase.

In studies on alloying, the NbFe2 phase [67] and (Tb, Dy)Cu phase [68] were found to
have the ability to prevent crack propagation, which was beneficial for the improvement of
the mechanical properties of the Tb-Dy-Fe alloys. It was suggested that the existence of
a soft phase in the alloy made the material exhibit inelastic strain under tensile or shear
load. For instance, the soft (Tb, Dy)Cu phase played a key role in stopping or changing
the direction of cracks, as shown in Figure 12. The addition of Cu increased the fracture
toughness by 2–3 times, and the alloy with 1 at% Cu showed the best fracture toughness
of 3.47 MPa·m1/2. With the addition of Nb, the fracture toughness was 1.5–5 times higher
than that of Nb-free alloy.

Inspired by the ductility (Tb, Dy)Cu phase, the low-melting-point Dy-Cu alloy was
introduced to the grain boundary phase of directionally solidified Tb0.3Dy0.7Fe1.95 alloy by
grain boundary diffusion [69]. The results revealed that the magnetostrictive properties
were maintained at 1021–1448 ppm, and the optimum bending strength was increased
by nearly 2.6 times (Figure 13). The large magnetostriction was attributed to the matrix
Laves phase structure and stable preferred orientation during the grain boundary diffusion
process. In addition, the grain boundary phase was mainly composed of the ductile
(Dy,Tb)Cu phase, which can retard crack propagation and improve the mechanical strength
of Tb0.3Dy0.7Fe1.95 alloy.

The content, morphology and distribution of the (Tb, Dy)Fe3 phase and WSP in
Tb0.3Dy0.7Fe1.95 alloy can be controlled by the effect of a magnetic field on grain orientation
and element diffusion during the solidification process [31]. When the angle between the
(Tb, Dy)Fe3 phase and the grain growth direction was the smallest and the WSP content
was low, the alloy had better mechanical properties. The application of a 6T magnetic field
during the solidification process improved the mechanical properties of the alloy at the
same growth rate, as shown in Figure 14.
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Figure 13. (a) SEM images and (b) bending strength and magnetostrictive properties of the
Tb0.3Dy0.7Fe1.95 alloy diffused by DyCu2 alloy at 980 ◦C for 3 h, followed by quenching to room
temperature; the inset in (a) is SAED pattern of DyCu along the [111] zone axis [69]. Reprinted with
permission from ref. [69]. Copyright 2020 Elsevier.
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5. Structural Origin and Magnetic Morphotropic Phase Boundary (MPB) of
Tb-Dy-Fe Alloys

To explore the more efficient Tb-Dy-Fe giant magnetostrictive material system, it is
necessary to understand the basic principle of magnetostriction, rather than only having a
phenomenological understanding. During the last years, with the development of high-
resolution synchrotron radiation X-ray diffraction technology, it has been increasingly
recognized that the ferromagnetic phase transition process is accompanied by a change in
structural symmetry. Significantly, in-depth research of the magnetic morphotropic phase
boundary (MPB) has been carried out. In previous research, the synchrotron radiation
X-ray diffraction data of Tb0.3Dy0.7Fe2 at 300 K revealed that the {440} and {222} reflections
were obviously split, reflecting rhombic symmetry and lattice stretching along the [111]
direction. Structurally, this was the process of spin redirection from <001> to <111>, that is,
the transition from the T phase with small lattice distortion along the <001> direction to
the R phase with large lattice elongation along the <111> direction [70].

The phase diagram of Tb1−xDyxFe2 (Figure 15) was obtained through magnetom-
etry and synchrotron XRD experiments [71–73]. It indicates that ferromagnetic MPB is
composed of two crystal structures of the parent compounds TbFe2 and DyFe2, with a
broadening MPB width at higher temperatures. Furthermore, a simulation based on the
energy model demonstrated that the exchange energy narrowed the MPB region by affect-
ing the magnetic phase transition process. This could also be used to explain the above
abnormal phenomenon [72]. The exchange interaction was weakened with the increase in
temperature, which corresponded to the broadening of the MPB region. In particular, the
best point of magnetomechanical application was not centered on MPB but on one side of
the rhombohedron. In addition, this local rhombohedral symmetry was further proved by
high-resolution transmission electron microscopy. The local nanodomains of ferromagnetic
rhombohedral and tetragonal phases coexist in Tb0.3Dy0.7Fe2, as shown in Figure 16 [74].
This is similar to the hierarchical nanodomain structure in ferroelectric materials.

The local stress environment generated by these randomly distributed tetragonal
nanodomains in the rhombohedral matrix affected the interaction between Fe1 and Fe2
atoms and caused anomalies in the lattice, as shown in Figure 17 [18]. The weak Fe1-Fe2
bond was sensitive to the environment, which played an important role in the lattice
characteristics of the rhombohedral phase. As a result, the lattice became more orderly
with the increase in Dy and more stable Dy-rich phase, which was confirmed by X-ray
absorption spectroscopy (XAS) techniques (Figure 18) [18].

These studies also enriched the understanding of the magnetic structure and the origin
of large magnetostriction of Tb-Dy-Fe alloys. In detail, the maximum magnetostriction was
related to the transition from the T phase with a smaller lattice along the <001> direction to
the R phase with larger lattice elongation along the <111> direction.
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direction calculated using anisotropy parameters from crystal field theory (see text) [71]. Overlayed 

Figure 15. Phase diagram of Tb1−xDyxFe2. The background shading shows the magnetic easy axis
direction calculated using anisotropy parameters from crystal field theory (see text) [71]. Overlayed
is the morphotropic phase boundary determined from our synchrotron XRD (dotted lines) and
magnetometry (solid line) measurements, as well as the easy axes reported previously on the basis of
Mössbauer spectroscopy (open symbols) [73]. A cross in a circle indicates the optimal temperature
(40 ◦C) for magnetomechanical device applications, as determined for Tb1−xDyxFe2 x = 0.73 [2].
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Figure 16. Domains of Tb0.3Dy0.7Fe2 at 293 K revealed by HRTEM [74]. (a) HRTEM image taken
along the [114]C incident direction. Upper inset is the SAED pattern, and bottom inset is the
schematic unit cell with spontaneous magnetization direction. (b) FFT of the white rectangle in (a)
shows splitting reflection spots due to rhombohedral lattice distortion. (c) IFFT image by using the
{311}C/{111}R reflections in the bottom inset of (a), corresponding to the same area in (a). The inset is
the corresponding FFT spectrum. (d) IFFT image by using the {311}C/{111}R reflections from the FFT
in (b). Adapted with permission from ref. [74]. Copyright 2014 Elsevier.
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origin of large magnetostriction of Tb-Dy-Fe alloys. In detail, the maximum magneto-
striction was related to the transition from the T phase with a smaller lattice along the 
<001> direction to the R phase with larger lattice elongation along the <111> direction. 

It was proposed that the change in the magnetization direction under the action of 
an external magnetic field could be realized by field-preferred domain growth, which 
could contribute to explaining large magnetostriction in the low field [75]. The compari-
son of the diffraction peak intensity of TbFe2 and Tb0.4Dy0.6Fe2 compounds is shown in 
Figure 19. This magnetostriction of Tb0.4Dy0.6Fe2 was considered to be related to the re-

Figure 17. (a) Temperature-dependent pair distribution function (PDF) for Tb0.4Dy0.6Fe2; (b) the
rhombohedral cell (pink solid) and cubic cell (teal dashed) for Tb1−xDyxFe2; (c) temperature-
dependent lattice constants and bond lengths for Tb0.4Dy0.6Fe2 [18]. Reprinted with permission from
ref. [18]. Copyright 2020 AIP Publishing.
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Figure 18. (a) Room temperature Fe K-edge XANES spectra for Fe foil and Tb1−xDyxFe2 samples.
(b) Room temperature Fe K-edge EXAFS spectra for Tb1−xDyxFe2 [18]. Reprinted with permission
from ref. [18]. Copyright 2020 AIP Publishing.

It was proposed that the change in the magnetization direction under the action of an
external magnetic field could be realized by field-preferred domain growth, which could
contribute to explaining large magnetostriction in the low field [75]. The comparison of the
diffraction peak intensity of TbFe2 and Tb0.4Dy0.6Fe2 compounds is shown in Figure 19.
This magnetostriction of Tb0.4Dy0.6Fe2 was considered to be related to the reduction in
rhombohedral distortion caused by replacing Tb by Dy, resulting in field-induced domain
conversion, which was more sensitive to the external field [75].

The domain structure and transition near ferromagnetic MPB are also of great sig-
nificance to understanding the large magnetostriction for Tb-Dy-Fe alloys. The micro-
mechanism of domain strain behavior near ferromagnetic MPB was intuitively illustrated
by the phase-field method, combining micromagnetic and micro-elastic theory. This large
magnetostrictive strain was considered to be due to the low-energy rotation path of the
local magnetization vector in the phase coexistence region. In particular, the tetragonal
phase as the intermediate phase provided a low-energy rotation channel for the diamond
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phase domain from other directions to the external field direction [76,77]. Similar to fer-
roelectrics, it was believed that the flattening of thermodynamic energy should lead to
the sensitive response of the ferromagnetic phase. Through the introduction of Tb0.1Pr0.9
to Co-doped Tb0.27Dy0.73Fe2 alloy, Hu et al. explored the feasibility of this assumption
through phase-field simulation [42]. They provided a feasible strategy for the design of an
ultrasensitive magnetostrictive response with minor metastable orthorhombic phases as
bridging domains, as shown in Figure 20.
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The optimum Dy content of x = 0.73 at room temperature was verified in Tb1-xDyxFe2 
by first-principles calculations [78]. Combining first-principles calculations with the 
crystal-field approach, the critical Dy concentration was 0.78, and the corresponding 
magnetostrictive coefficient λ111 was 2700 ppm. The calculated spin-orientation diagram 
reproduced the experimental results for the [111] and [100] easy directions, as shown in 
Figure 21. 

Figure 20. (a) Magnetization curves for (Tb0.27Dy0.73)1−x(Tb0.1Pr0.9)x(Fe0.9Co0.1)2 compounds
(0 ≤ x ≤ 0.2). The inset shows the absolute values of the first-order anisotropy constant |K1|
and saturation magnetization MS at room temperature. (b) The calculated average magnetization
Mxy from phase-field simulation for the corresponding experimental compositions. (c) Snapshots of
domain structures for the samples with 0.00 ≤ x ≤ 0.15. (d) Energy analysis for the samples with
0.00 ≤ x ≤ 0.20 [42]. Reprinted with permission from ref. [42]. Copyright 2020 Springer Nature.
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The optimum Dy content of x = 0.73 at room temperature was verified in Tb1−xDyxFe2
by first-principles calculations [78]. Combining first-principles calculations with the crystal-
field approach, the critical Dy concentration was 0.78, and the corresponding magnetostric-
tive coefficient λ111 was 2700 ppm. The calculated spin-orientation diagram reproduced
the experimental results for the [111] and [100] easy directions, as shown in Figure 21.
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6. Progress on Tb-Dy-Fe Giant Magnetostrictive Composites
6.1. Polymer-Banded Tb-Dy-Fe Composite

Based on the requirements of device design, in recent years, some research has focused
on giant magnetostrictive polymer composites (GMPCs) with high resistivity, a wide
frequency response range and ease of formability. In a GMPC, Tb-Dy-Fe alloy particles were
banded in the resin matrix in the form of particles or fibers. Tb-Dy-Fe alloy particles could
be randomly dispersed (0–3 type) or arranged in a chain (1–3 type or pseudo-1–3 type) by
applying different preparation methods [79]. The size, volume fraction and crystallographic
orientation [80,81] of Tb-Dy-Fe alloy particles, as well as the bond strength [82] between
the matrix and particles, will affect the magnetostrictive properties of the composite. After
compounding, the eddy current was greatly reduced [83], which was conducive to the
improvement of dynamic properties, and the mechanical properties were also greatly
improved. The main characteristics of GMPCs of several Tb-Dy-Fe systems reported in the
literature are summarized in Table 1.

114



M
et

al
s

20
22

,1
2,

34
1

Ta
bl

e
1.

Pr
op

er
ti

es
of

va
ri

ou
s

G
M

PC
s

re
po

rt
ed

in
th

e
lit

er
at

ur
e.

C
om

po
si

te
O

ri
en

ta
ti

on
Pr

ep
ar

at
io

n
M

ag
ne

to
st

ri
ct

iv
e

Pa
rt

ic
le

M
or

ph
ol

og
y

M
ag

ne
to

st
ri

ct
iv

e
Pa

rt
ic

le
Si

ze
Pa

rt
ic

le
C

on
te

nt
M

ag
ne

to
st

ri
ct

io
n

or
C

om
m

en
ts

R
ef

er
en

ce
s

Tb
0.

3D
y 0

.7
Fe

1.
9/

ep
ox

y
<1

11
>

80
00

O
e

m
ag

ne
ti

c
fie

ld
cu

ri
ng

Pa
rt

ic
le

s;
ps

eu
do

-1
–3

ch
ai

n
st

ru
ct

ur
e

>3
00
µ

m
40

vo
l%

13
58

pp
m

(a
t1

7
M

Pa
)

[8
4]

Tb
0.

3D
y 0

.7
Fe

1.
92

/e
po

xy
-

80
00

O
e

m
ag

ne
ti

c
fie

ld
cu

ri
ng

-
20

0–
30

0
µ

m
40

vo
l%

C
ut

-o
ff

fr
eq

ue
nc

y
is

68
00

kH
z;

lo
ss

fa
ct

or
is

on
ly

4.
3%

of
th

at
fo

r
th

e
m

on
ol

it
hi

c
T

b-
D

y-
Fe

al
lo

y
(a

t
10

kH
z

an
d

10
m

T)

[8
3]

Tb
0.

4D
y 0

.5
N

d 0
.1

(F
e 0

.8
C

o 0
.2

) 1
.9

3/
ep

ox
y

<1
11

>
10

kO
e

m
ag

ne
ti

c
fie

ld
cu

ri
ng

Pa
rt

ic
le

s;
ps

eu
do

-1
–3

ch
ai

n
st

ru
ct

ur
e

≤
15

0
µ

m
20

vo
l%

39
0

pp
m

(λ
a

is
65

0
pp

m
at

6
kO

e)
[4

5]

Te
rf

en
ol

-D
/e

po
xy

<1
12

>
18

85
O

e
m

ag
ne

ti
c

fie
ld

cu
ri

ng

Po
w

de
r,

pa
rt

ic
le

;
ps

eu
do

-1
–3

ch
ai

n
st

ru
ct

ur
e

5–
30

0
µ

m
70

vo
l%

72
0

pp
m

(a
t9

M
Pa

)
[8

5]

(T
b 0

.1
5H

o 0
.8

5F
e 1

.9
) 0

.3
1

+
(T

b 0
.3

D
y 0

.7
Fe

1.
9)

0.
69

/e
po

xy
Pr

es
su

re
cu

ri
ng

m
ol

di
ng

Pa
rt

ic
le

s;
ps

eu
do

-1
–3

ch
ai

n
st

ru
ct

ur
e

75
–1

80
µ

m
94

w
t%

60
5

pp
m

[5
7]

Tb
0.

25
D

y 0
.4

5H
o 0

.3
0F

e 1
.9

/e
po

xy
<1

10
>

12
0

°C
bo

nd
in

g
m

ol
di

ng
<1

10
>

st
ap

le
fib

er
0.

8
m

m
×

0.
8

m
m

×
12

m
m

90
vo

l%
22

0
kA

/M
sa

tu
ra

te
d

m
ag

ne
ti

c
fie

ld
;

5
kA

/M
co

er
ci

vi
ty

;t
he

to
ta

ll
os

s
at

20
kH

z
is

11
5

W
/m

3
[5

6]

Tb
0.

2D
y 0

.5
5P

r 0
.2

5(
Fe

0.
8C

o 0
.2

) 1
.9

3/
ep

ox
y

<1
10

>
80

42
O

e
m

ag
ne

ti
c

fie
ld

cu
ri

ng

Pa
rt

ic
le

s;
ps

eu
do

-1
–3

ch
ai

n
st

ru
ct

ur
e

75
–1

50
µ

m
30

vo
l%

11
0

pp
m

(λ
||

,a
t8

0
kA

/m
);

58
0

pp
m

(λ
a,

at
95

0
kA

/m
)

[8
6]

Tb
0.

5D
y 0

.5
Fe

1.
95

/e
po

xy
<1

11
>

Tw
o-

st
ep

m
et

ho
d

w
it

h
10

kO
e

dy
na

m
ic

m
ag

ne
ti

c
or

ie
nt

at
io

n
La

m
el

la
r

st
ru

ct
ur

e
10

0–
20

0
µ

m
57

vo
l%

15
00

pp
m

[8
7]

Tb
xD

y 0
.7
−

xP
r 0

.3
(F

e 0
.9

B 0
.1

) 1
.9

3/
ep

ox
y

<1
11

>
80

42
O

e
m

ag
ne

ti
c

fie
ld

cu
ri

ng

Pa
rt

ic
le

s;
ps

eu
do

-1
–3

ch
ai

n
st

ru
ct

ur
e

60
–1

50
µ

m
30

vo
l%

d 3
3~

2.
2

nm
/A

(H
bi

as
~8

0
kA

/m
)

[8
8]

115



Metals 2022, 12, 341

Recently, GMPCs with a layered structure were prepared by dynamic orientation
in an oscillating magnetic field [89]. Jiang et al. [87] further obtained a Tb-Dy-Fe/epoxy
particle composite with a high alloy particle volume fraction (57%) and high saturation
magnetostriction (1500 ppm) by using a two-step dynamic orientation method, as shown
in Figure 22b, and the energy density shown in Figure 22d was markedly improved.
From Figure 23, it can be seen that the Tb-Dy-Fe alloy particles were first dynamically
magnetically oriented in the liquid epoxy resin and then molded and concentrated in
the horizontal magnetic field to remove the excess resin before curing. In addition, the
defect-free matrix and anisotropic layered structure prepared by this method can effectively
transfer the strain.
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Figure 22. Magnetostriction curves of static magnetically oriented GMPCs and GMPCs subjected to
a molding procedure under (a) 0 MPa and (b) 10 MPa uniaxial pressure; (c) elastic modulus curves
and (d) energy densities of GMPC samples [87]. Reprinted with permission from ref. [87]. Copyright
2019 Elsevier.

6.2. Sintered Tb-Dy-Fe Material Composited with Dy-Cu Alloys

For Tb-Dy-Fe composites with polymers, a high orientation degree and a higher
content of particles in the composites cannot be achieved simultaneously, which limits the
further improvement of energy density.
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Recently, a new approach was proposed by Zhou et al. [90], which combined powder
metallurgy with the magnetic field orientation. As shown in Figure 24, the powder slurry
prepared with Tb0.33Dy0.67Fe1.95 single-crystal particles and low-melting-point DyCu1.6
alloy powders was wet pressed and oriented by a magnetic field. Subsequently, the
compacts covered by Dy1.2Cu alloy thin ribbons were sintered at 1000 ◦C for 2 h. In this
case, the DyCu1.6 alloy powders acted as a “binder” to wet Tb0.33Dy0.67Fe1.95 particles and
provided a liquid channel for subsequent diffusion of Dy1.2Cu alloy, leading to an increase
in the relative sintering density. Furthermore, a higher Tb-Dy-Fe particle content of above
90% was obtained in the sintered composites. Consequently, the <111> orientation and
high sintering density effectively enhanced magnetostriction, as shown in Figure 25. More
importantly, a major improvement of mechanical properties, with 176 MPa in bending
strength and 71.3 MPa in tensile strength, was realized. This was attributed to the ductile Dy-
Cu intergranular phase distributed along grain boundaries and the semicoherent interface
between the Dy-Cu grain boundary phase and the brittle (Tb,Dy)Fe2 matrix phase. The
low-melting-point Dy-Cu phase was introduced as the new grain boundary phase to the Tb-
Dy-Fe alloys using the sintering method, and the <111> orientation degree was improved
by magnetic field orientation combined with the adjustment of the Tb/Dy ratio and particle
morphology. As a result, high mechanical properties and high magnetostrictive properties
were obtained in the sintered Tb-Dy-Fe/Dy-Cu composites. Mechanically, the bending
strength, fracture toughness and tensile strength were respectively 3.67, 2.41 and 2.55 times
those of the directionally solidified polycrystalline Tb-Dy-Fe alloy [90].
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7. Progress in Application of Tb-Dy-Fe Alloys  
7.1. Tb-Dy-Fe Giant Magnetostrictive Thin Film 

The research of small-scale magnetic structures is closely related to the design of 
microdevices and has attracted extensive attention. Tb-Dy-Fe thin film has certain ap-
plications in microelectromechanical systems (MEMS), such as microactuators and force 
sensors, because of its high sensitivity and large strain. 

It was reported that films grown at higher substrate temperature have the combina-
tion of out-of-plane magnetic anisotropy and in-plane magnetic anisotropy [91]. Pan-
duranga et al. obtained high-quality magnetoelastic film using sputtered Terfenol-D film 
after substrate heating and annealing crystallization at 450 °C [92]. In addition, another 
key problem of small-scale Tb-Dy-Fe materials is oxidation. It was found that the com-
position ratio of rare-earth oxides can be determined by the anomalous X-ray scattering 
method [93]. 
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7. Progress in Application of Tb-Dy-Fe Alloys
7.1. Tb-Dy-Fe Giant Magnetostrictive Thin Film

The research of small-scale magnetic structures is closely related to the design of
microdevices and has attracted extensive attention. Tb-Dy-Fe thin film has certain applica-
tions in microelectromechanical systems (MEMS), such as microactuators and force sensors,
because of its high sensitivity and large strain.

It was reported that films grown at higher substrate temperature have the combination
of out-of-plane magnetic anisotropy and in-plane magnetic anisotropy [91]. Panduranga et al.
obtained high-quality magnetoelastic film using sputtered Terfenol-D film after substrate
heating and annealing crystallization at 450 ◦C [92]. In addition, another key problem of
small-scale Tb-Dy-Fe materials is oxidation. It was found that the composition ratio of
rare-earth oxides can be determined by the anomalous X-ray scattering method [93].

The magnetic properties of the films obtained by magnetron sputtering were similar to
those of bulk single-crystal materials [92]. The magnetic properties of the micropatterned
films obtained by photolithography and argon etching had little change relative to the
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continuous films, which was considered to be related to the oxidative passivation of the
sidewall, as well as the strong dipole pair ratio of 3µm MFM and the strong blue color in
the 20µm PEEM image in Figure 26. The results showed that it has a pseudo-single domain
structure [94].
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It was reported that the bimaterial cantilever structure of the magnetostrictive film
prepared by electrodeposition had a large magnetostrictive coefficient of about 1250 ppm
under an 11 kOe magnetic field (Figure 27), and the energy density was able to reach
100–165 kJ/m3 [95]. In microdevices with a cantilever structure, a multilayer structure was
generally used for better device performance. For instance, Tb-Dy-Fe/graphene/Tb-Dy-Fe
multilayer film was used to replace the traditional three-layer Tb-Dy-Fe film in recent
research, which resulted in a reduction in the dynamic response delay time.

7.2. Application in Microsensors and Other Devices

Magnetostrictive materials are usually used in actuators and sonar transducers. Re-
cently, Tb-Dy-Fe materials were used in various high-sensitivity magnetostrictive sensors,
such as current sensors [96,97], magnetic sensors [98] and torque sensors [99]. To explore
its application, some researchers sputtered Tb-Dy-Fe film on a Fe-Co substrate, and the
composite film was expected to be used in high-precision nondestructive testing [100]. In
recent years, an application in wireless temperature measurement was developed, in which
Terfenol-D was used to increase the temperature coefficient of resonant frequency [101].

A Tb-Dy-Fe magnetostrictive transducer combined with an optical fiber sensor is
able to improve the accuracy of magnetic field detection. A series of high-precision mag-
netic field sensors were prepared by combining them with a fiber Bragg grating (FBG)
sensor [102–104] and phase-shifted fiber Bragg grating (PS-FBG) [105]. The high-sensitivity
response of the device was improved by the design of different systems. Feng et al. prepared
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a high-finesse fiber-optic extrinsic Fabry–Perot interferometer (EFPI)-based sensor, and its
sensitivity was significantly improved based on the design of a mechanical amplification
structure [106].

Metals 2022, 12, 341 24 of 29 
 

 

 

Figure 27. Magnetostriction coefficients of the Tb0.36Dy0.64Fe1.9 film obtained from three 
cantilevers with lengths 700, 1000 and 1100 μm [95]. Reprinted from ref. [94]. 

7.2. Application in Microsensors and Other Devices 
Magnetostrictive materials are usually used in actuators and sonar transducers. 

Recently, Tb-Dy-Fe materials were used in various high-sensitivity magnetostrictive 
sensors, such as current sensors [96,97], magnetic sensors [98] and torque sensors [99]. To 
explore its application, some researchers sputtered Tb-Dy-Fe film on a Fe-Co substrate, 
and the composite film was expected to be used in high-precision nondestructive testing 
[100]. In recent years, an application in wireless temperature measurement was devel-
oped, in which Terfenol-D was used to increase the temperature coefficient of resonant 
frequency [101]. 

A Tb-Dy-Fe magnetostrictive transducer combined with an optical fiber sensor is 
able to improve the accuracy of magnetic field detection. A series of high-precision 
magnetic field sensors were prepared by combining them with a fiber Bragg grating 
(FBG) sensor [102–104] and phase-shifted fiber Bragg grating (PS-FBG) [105]. The 
high-sensitivity response of the device was improved by the design of different systems. 
Feng et al. prepared a high-finesse fiber-optic extrinsic Fabry–Perot interferometer 
(EFPI)-based sensor, and its sensitivity was significantly improved based on the design of 
a mechanical amplification structure [106]. 

8. Summary and Prospects 
Improvements in the directional solidification preparation process, such as direc-

tional solidification with a strong magnetic field, are effective ways to obtain better ori-
entation for directionally solidified Tb-Dy-Fe alloys. Tb-Dy-Fe composites prepared by 
the resin bonding method or low-melting-point alloy sintering method are more based 
on the improvement of high-frequency application properties and mechanical properties. 
At present, through the improvement of composite methods such as dynamic magnetic 
field orientation, the volume fraction and properties of Tb-Dy-Fe alloy particles have 
been greatly improved. In order to achieve better practical value, we need to constantly 
explore Tb-Dy-Fe series alloys with large magnetostriction, high mechanical properties, 
low loss and low cost. It is worth mentioning that the Dy-Cu phase was introduced as a 
new grain boundary phase to Tb-Dy-Fe alloys by the sintering method, and the <111> 

Figure 27. Magnetostriction coefficients of the Tb0.36Dy0.64Fe1.9 film obtained from three cantilevers
with lengths 700, 1000 and 1100 µm [95]. Reprinted from ref. [94].

8. Summary and Prospects

Improvements in the directional solidification preparation process, such as directional
solidification with a strong magnetic field, are effective ways to obtain better orientation
for directionally solidified Tb-Dy-Fe alloys. Tb-Dy-Fe composites prepared by the resin
bonding method or low-melting-point alloy sintering method are more based on the
improvement of high-frequency application properties and mechanical properties. At
present, through the improvement of composite methods such as dynamic magnetic field
orientation, the volume fraction and properties of Tb-Dy-Fe alloy particles have been
greatly improved. In order to achieve better practical value, we need to constantly explore
Tb-Dy-Fe series alloys with large magnetostriction, high mechanical properties, low loss
and low cost. It is worth mentioning that the Dy-Cu phase was introduced as a new grain
boundary phase to Tb-Dy-Fe alloys by the sintering method, and the <111> orientation
was improved by the magnetic field orientation combined with the adjustment of the
Tb/Dy ratio and particle morphology. High mechanical and magnetostrictive properties
were achieved in sintered Tb-Dy-Fe/Dy-Cu composites. Meanwhile, sintered composite
materials based on the reconstruction of the grain boundary phase also provide new
ideas for the development of Tb-Dy-Fe materials with excellent comprehensive properties,
including high magnetostriction, high mechanical properties, high corrosion resistance and
high resistivity.

The studies of phase structure and ferromagnetic MPB, combined with domain struc-
ture, phase-field simulation and first-principles calculations, are very helpful to deeply
understand the magnetostriction origin of Tb-Dy-Fe alloys. At the same time, such studies
also facilitate an understanding of the influence of element substitution or developing a
new alloy system. However, the mechanism and theoretical system still need more in-depth
research to provide further support.

The research progress on the application of Tb-Dy-Fe alloys is extensive, especially in
microdevices and various high-sensitivity sensors based on Tb-Dy-Fe films. However, bulk
Tb-Dy-Fe materials could play a crucial role in a broader field on the basis of the effective
improvement of comprehensive properties.
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Abstract: The ocean is a very important arena in modern warfare where all marine powers deploy
their military forces. Due to the complex environment of the ocean, underwater equipment has
become a very threatening means of surprise attack in modern warfare. Therefore, the timely and
effective detection of underwater moving targets is the key to obtaining warfare advantages and
has important strategic significance for national security. In this paper, magnetic flux induction
technology was studied with regard to the difficulty of detecting underwater concealed moving
targets. Firstly, the characteristics of a magnetic target were analyzed and an equivalent magnetic
dipole model was established. Secondly, the structure of the rectangular induction coil was designed
according to the model, and the relationship between the target’s magnetism and the detection signal
was deduced. The variation curves of the magnetic flux and the electromotive force induced in the
coil were calculated by using the numerical simulation method, and the effects of the different motion
parameters of the magnetic dipole and the size parameters of the coil on the induced electromotive
force were analyzed. Finally, combined with the wavelet threshold filter, a series of field tests were
carried out using ships of different materials in shallow water in order to verify the moving target
detection method based on magnetic flux induction technology. The results showed that this method
has an obvious response to moving targets and can effectively capture target signals, which verifies
the feasibility of the magnetic flux induction detection technology.

Keywords: moving target; magnetic dipole; magnetic flux induction; induced electromotive force;
numerical simulation; field test in shallow water

1. Introduction

The ocean is a very important stage in modern warfare where all countries deploy
various military forces [1,2]. With the development of science and technology, modern
marine warfare not only involves the competition of various advanced technologies, such
as electronic and information technologies, but has also evolved into multiple space di-
mensions, including confrontations under water, on the sea’s surface, in the air, and even
in space [3]. Among these, various types of underwater moving targets play important
roles. Underwater moving targets, which are shielded by the vast ocean, are the most
concealed equipment in the modern naval equipment system. Since the Second World
War, the research into and development of technology for detecting underwater moving
targets has progressed rapidly, especially regarding the application of nuclear technology,
which makes underwater equipment a very threatening means of surprise attack in modern
warfare. Various countries around the world, especially maritime powers, are currently de-
veloping and deploying different types of underwater targets. In modern marine warfare,
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the key to obtaining a warfare advantage is to find underwater moving targets in a timely
and effective manner.

In the development of underwater moving target detection technology, optical, elec-
trical, thermal, and other technical means have been applied [4–12]. Among these, the
acoustic signal detection of underwater man-made objects has become the most widely
used detection method. Sonar technology [13–15] was the first mature technology to be
applied to underwater detection. It uses the propagation characteristics of sound waves in
water to complete the task of detecting large underwater targets through electroacoustic
conversion and signal processing. However, sonar detection has inherent disadvantages. It
is easy for active sonar to expose its own position to the enemy, which has become its fatal
disadvantage. Passive sonar detects the target only when it emits a relatively large noise.
Due to the complex marine environment, the accuracy of the target resolution of sonar
detection is limited. In addition, sonar detection has its own limitations, such as “sound
shadow area”. With the rapid development and application of stealth technology, low noise
and high acoustic stealth have evolved into revolutionary metrics in underwater moving
target design. According to the data, the noise caused by the new underwater moving
targets that have been continuously launched by the United States, Russia, and other
countries in recent years has been lower than that of the marine background environment,
meaning that it is difficult to find, identify, and track them by sonar. Therefore, there is
an urgent need for new underwater moving target detection methods to make up for the
shortcomings of the existing detection technologies.

Based on the principle of magnetic flux induction technology, this paper proposes a
passive method that can be used to obtain and analyze the change in magnetic flux signal
caused by underwater moving targets. According to the characteristics of moving targets,
a magnetic dipole model [16–19] is established, the expressions of the magnetic flux of
moving targets passing through a rectangular coil and the change in the electromotive
force induced in the coil are deduced and calculated, and the influence of the various
characteristic parameters on the induced electromotive force is analyzed. Finally, charac-
teristic parameters such as the speed, depth, and magnetic moment of the targets can be
obtained. This method has the advantages of a short execution time, lower impact from
the complex shallow sea environment, all-weather working ability, and low cost. It is of
great significance for providing early warnings of moving targets in coastal water areas,
for island defense, and for providing early warnings in key areas.

2. Methods

When a moving target is close to a detection coil, the magnetic field of this target can
be simulated by multiple magnetic dipoles; when the distance is far—that is, when the
distance is greater than 3 times the size of the target—it can be treated as one magnetic
dipole. This paper mainly focuses on the long-distance situation, so the magnetic field of
a moving target can be simplified into one magnetic dipole model. The following is our
research on the response relationship between the detection signal and the characteristics
of the moving target based on this model.

2.1. Magnetic Flux Density of the Magnetic Dipole at Any Point in Space

In order to quantitatively analyze the change in electromotive force induced in a
magnetic moving target in a detection closed coil, the magnetic dipole was simplified as
a circular current and its coordinate system was established. As shown in Figure 1, the
origin O of the coordinate system is located in the center of the magnetic dipole, the z-axis
points in the direction of the magnetic moment vector, and the x-axis and y-axis point in
accordance with the right-hand rule. E is a point in space whose spherical coordinate is
E(r, ϕ0, θ0).
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Figure 1. The coordinate system and the magnetic dipole.

Let the intensity of the circular current be I with unit A. The radius of a circle is R with
unit m and r is the distance from the center O to a point in space with unit m. According to
the Biot–Savart law [20] and the concept of magnetic moment [21], the following equations
can be obtained: 
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This is a set of expressions of the magnetic flux density of the space point E(r, ϕ0,
θ0) in three directions. For the far field—i.e., R << r—expressions can be simplified by
eliminating R. The x and y components of the magnetic flux density at any point in space
are related to pm, r, ϕ0, and θ0, while the z component is only related to pm, r, ϕ0, and θ0.

2.2. Expression Derivation of Magnetic Flux in the Rectangular Coil at a Certain Time

For a rectangular detection coil with length a and width b whose number of turns is
N, a rectangular coordinate system is established with the center of the coil as the zero
point, as shown in Figure 2. The point Q(xq, 0, zq) in the figure is the moving target with
the magnetic moment m. The target Q passes along the positive direction of the x-axis
at a uniform speed v directly above the coil. P(xP, yP, 0) represents any point within the
rectangular coil. Since this paper focuses on the long-distance situation—that is, R << r—
the magnetic flux density of the magnetic dipole Q at point P can be calculated using
Equation (1). Since the magnetic flux passing through the rectangular coil is only related to
the magnetic flux density perpendicular to the plane where the rectangular coil is located,
it can be divided into three cases according to the different magnetic moment directions of
the magnetic dipole.
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2.2.1. The Direction of Magnetic Moment in Positive X Direction

According to the coordinate transformation relationship, the magnetic flux in the
rectangular coil was related to Bx in the magnetic dipole coordinate system shown in

Figure 2, where R = 0, r =
√
(xp − xq)

2 + yp2 + zq2. The following expression could be
obtained by substituting R and r into Equation (1):
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The magnetic flux through the rectangular coil can be obtained as follows:
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The above equation shows the magnetic flux generated in the rectangular coil by the
magnetic dipole whose magnetic moment is in the positive x direction.

2.2.2. The Magnetic Moment in Positive Y Direction

According to the coordinate transformation relationship, the magnetic flux in the
rectangular coil is related to By in the magnetic dipole coordinate system shown in Figure 2:

By =
3µm
8π

1
[√

(xp − xq)
2 + yp2 + zq2

]3 sin 2ϕ sin θ (4)
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where:
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The magnetic flux through the rectangular coil can be obtained as follows:
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It can be seen that when the magnetic moment of the magnetic dipole is in the positive
y direction, the magnetic flux generated in the rectangular coil is zero.

2.2.3. The Magnetic Moment in Positive Z Direction

According to the coordinate transformation relationship, the magnetic flux in the
rectangular coil is related to Bz in the magnetic dipole coordinate system shown in Figure 2:
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The magnetic flux through the rectangular coil can be calculated using the following
equation:
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(7)

The above equation is the magnetic flux generated in the rectangular coil by the
magnetic dipole whose magnetic moment is in the positive z direction.

According to Faraday’s law of electromagnetic induction, the induced electromotive
force at time t can be obtained by differentiating the magnetic flux ε= n ∆φ

∆t with respect to
time t, where n is the number of coil turns.

3. Simulation Calculation
3.1. Influence of the Target’s Magnetic Moment Direction on Induced Electromotive Force

Suppose a magnetic dipole with a magnetic moment of 50 A·m2 whose height from
the coil is h = 20 m is initially located at −100 m. This magnetic dipole moves along the
x-axis with a dynamic speed of v = 1 m/s for 200 s. The coil has a length of a = 20 m
and a width of b = 5 m, with a number of turns N = 100 and a magnetic permeability
of µ = 4π × 10−7 H/m.

When the magnetic moment of the magnetic dipole is in the positive x direction, the
simulation results are as shown in the figures below.
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It can be seen from Figure 3 that for the magnetic moment of the magnetic dipole
pointing in the positive x direction, the magnetic flux generated in the rectangular coil
first increases from zero and then decreases back to zero when the magnetic dipole is
right below the coil at 100 s. After that, it again increases and then decreases to zero in
the opposite direction. The induced electromotive force first increases in the opposite
direction from zero to a negative value, then increases in the positive direction, reaching
the maximum when the dipole is right below the coil at 100 s. After that, it decreases back
to a negative value and finally returns to zero.
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first increases a small amount from zero in the positive direction, then increases contin-
uously in the opposite direction, reaching the maximum when the magnetic dipole is 
right below the coil at 100 s. After that, it decreases to a certain positive value and finally 
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Figure 3. (a) The change of magnetic flux along the x-axis; (b) the change in induced electromotive force along the x-axis.

When the magnetic moment of the magnetic dipole is in the positive z direction, the
simulation results are as shown in the figures below.

It can be seen from Figure 4 that for the magnetic moment of the magnetic dipole
pointing in the positive z direction, the magnetic flux generated in the rectangular coil first
increases a small amount from zero in the positive direction, then increases continuously
in the opposite direction, reaching the maximum when the magnetic dipole is right below
the coil at 100 s. After that, it decreases to a certain positive value and finally returns to
zero. The induced electromotive force first increases from zero and then decreases back
to zero when the magnetic dipole is right below the coil at 100 s. After that, it again
increases and then decreases to zero in the opposite direction. For a magnetic dipole whose
magnetic moment is in an arbitrary direction, when calculating the induced electromotive
force its magnetic moment should be decomposed along the coordinate axes. Calculations
should be carried out separately and the overall induced electromotive force should be
superimposed.
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3.2. Influence of the Target’s Motion Parameters on Induced Electromotive Force

In this section, two parameters, the height h of the magnetic dipole from the coil
and its moving speed v, were selected in order to analyze their influence on the induced
electromotive force. For simplification, the magnetic moment of the magnetic dipole was
set to pointing in the positive x direction.

In four different simulation cases, the height was set to zq = 20 m, zq = 25 m, zq = 30 m,
and zq = 35 m, respectively, and other parameters were kept the same as those in Section 3.1.
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Figure 5 shows the influence of the magnetic dipole’s height on the induced electro-
motive force. It can be seen that the induced absolute value of the electromotive force
decreases with the increase in height h. There is a power exponential relationship between
the peak value of the induced electromotive force and the height, and the index is related
to the coil size.
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Figure 5. (a) The change curve of induced electromotive force at different heights; (b) the change in the curve peak at
different heights.

Then, in four other simulation cases, the speed is set to v = 2 m/s, v = 1.5 m/s,
v = 1 m/s, v = 0.5 m/s, and v = 0.25 m/s for the simulation calculations, and the other
parameters arere the same as those in Section 3.1.

Figure 6 shows the influence of velocity on the induced electromotive force. It can be
seen that the absolute value of the induced electromotive force increases with the increase in
speed v. There is a linear relationship between the peak value of the induced electromotive
force and the speed.
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3.3. Influence of the Coil’s Size Parameters on Induced Electromotive Force

According to our theoretical analysis, when the coil size and the height h from the
magnetic dipole to the coil were of the same order of magnitude, the larger the coil size,
the greater the induced electromotive force. Due to the complex influence situation, only
two cases with coil sizes of a = 20 m, b = 5 m, and a = 20 m, b = 30 m were subjected to a
comparative analysis. Other parameters were the same as those in Section 3.1.

As can be seen from Figure 7, in a certain range, when the coil size was increased, the
induced electromotive force also increased to a certain extent. Through further analysis,
it could be concluded that the coil size would affect the power exponential relationship
between the peak value of the induced electromotive force and the magnetic dipole height
h. The larger the coil size, the smaller the exponential index.
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4. Test Verification

After a field investigation, the research group selected a coastal area to carry out a
series of field tests on the sea. In the test process, targets with different magnetic character-
istics passed through the detection coil many times, and the obtained target magnetic flux
signal was processed and analyzed by the wavelet threshold filtering method [22–25] to
extract the required information.

4.1. The Detection Coil

The detection coil and data acquisition equipment used in the trials are shown in
Figure 8. The coil wound by copper wire had a thickness of 10 cm, a frame size of
100 cm × 150 cm, and 500 turns. The copper wire diameter was 0.7 mm and the length
of the conductive cable was about 150 m. An eight-channel data acquisition system with
128 Gb of memory was adopted. The coil was put into the sea at a depth of 10 m. Various
types of ships passed over the coil many times at different speeds and from different
distances so as to obtain the target flux signals under different motion states.
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4.2. Result Analysis of the Extracted Magnetic Flux Signals of the Wooden Ship

As shown in Figure 9, a wooden ship passed over the detection coil in the field tests.
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It can be seen from the figure that the curve of the target magnetic flux signal fluctuated
obviously, but some local features were covered by the background noise. The wavelet
threshold filtering method was used to process the magnetic flux signal. The low-frequency
part and the high-frequency part after thresholding were reconstructed separately. The
results are shown in Figure 10.
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Figure 10. (a) Low-frequency part of the magnetic flux signal of the wooden ship; (b) high-frequency part of the magnetic
flux signal of the wooden ship.

After analysis, it could be concluded that the low-frequency part of the magnetic
flux signal was induced by the wooden ship’s bottom magnetic field. The magnetic
characteristics of the reconstructed high-frequency part of the original signal had an
obvious periodicity, which was related to the rotation of the wooden ship’s engine.

4.3. Result Analysis of the Extracted Magnetic Flux Signal of the Speedboat

As shown in Figure 11, a speedboat passed over the detection coil in the field tests.
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Figure 11. (a) The speedboat test; (b) magnetic flux signal of the speedboat.

It can be seen from the figure that the curve of the target magnetic flux signal fluctuated
obviously, but some local features were covered by the background noise. The wavelet
threshold filtering method was used to process the magnetic flux signal. The low-frequency
part and the high-frequency part after thresholding were reconstructed separately. The
results are shown in Figure 12.

After analysis, it could be concluded that the low-frequency part of the magnetic flux
signal was induced by the speedboat’s bottom magnetic field. The signal curve of the
speedboat was quite different from the wooden ship. It was easy to distinguish these two
kinds of targets. The magnetic characteristics of the reconstructed high-frequency part
of the original signal had an obvious periodicity, which was related to the rotation of the
speedboat’s engine.
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Figure 12. (a) Low-frequency part of the magnetic flux signal of the speedboat; (b) high-frequency part of the magnetic flux
signal of the speedboat.

4.4. Result Analysis of the Extracted Magnetic Flux Signal of the Rubber Boat

As shown in Figure 13, a rubber boat was used to pass over the detection coil.
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After analysis, it could be concluded that the low-frequency part of the magnetic 
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5. Conclusions 
This paper established a magnetic dipole model and designed coil structure sizes 

according to the characteristics of hidden moving targets. The magnetic flux and elec-
tromotive force induced in the rectangular coil by the magnetic dipole were deduced in 
detail, and their variation curves were obtained using the numerical simulation method. 
The influence of the height h, the velocity V, and the detection coil size parameters on the 
induced electromotive force were analyzed. The conclusions were as follows: 

Figure 13. (a) The rubber boat test; (b) magnetic flux signal of the rubber boat.

It can be seen from the figure that the curve of the target magnetic flux signal fluctuated
obviously, but some local features were covered by the background noise. The wavelet
threshold filtering method was used to process the magnetic flux signal. The low-frequency
part and the high-frequency part after thresholding were reconstructed separately. The
results are shown in Figure 14.
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After analysis, it could be concluded that the low-frequency part of the magnetic flux
signal was induced by the rubber boat’s bottom magnetic field. The signal curve of the
rubber boat was quite different from that of the other targets. It was easy to distinguish these
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three kinds of targets. The magnetic characteristics of the reconstructed high-frequency
part of the original signal had an obvious periodicity, which was related to the rotation of
the rubber boat’s engine.

5. Conclusions

This paper established a magnetic dipole model and designed coil structure sizes
according to the characteristics of hidden moving targets. The magnetic flux and elec-
tromotive force induced in the rectangular coil by the magnetic dipole were deduced in
detail, and their variation curves were obtained using the numerical simulation method.
The influence of the height h, the velocity V, and the detection coil size parameters on the
induced electromotive force were analyzed. The conclusions were as follows:

(1) The induced electromotive force increases with the decrease in the target’s height.
There is a power exponential relationship between the peak value of the induced
electromotive force and the height.

(2) The induced electromotive force increases with the increase in the target’s velocity.
There is a linear relationship between the peak value of the induced electromotive
force and the velocity.

(3) The induced electromotive force increases with the increase in the detection coil’s size
within a certain range.

Finally, in order to verify the feasibility of the magnetic flux induction detection
technology, a series of field tests with ship targets of different materials were carried out in
the sea and the wavelet threshold filtering method was used in the test data analysis, which
provided guidance for moving target detection and coil design optimization in the future.
In addition, due to the complexity and variability of the characteristics of the moving
targets and the marine environment, this subject still needs further research regarding the
coil size, moving target characteristics, and data inversion.
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Abstract: The fluxgate magnetometer has the advantages of having a small volume and low power
consumption and being light weight and is commonly used to detect weak magnetic targets, including
ferrous metals, unexploded bombs (UXOs), and underground corrosion pipelines. However, the
detection accuracy of the fluxgate magnetometer is affected by its own error. To obtain more accurate
detection data, the sensor must be error-corrected before application. Previous researchers easily
fell into the local minimum when solving error parameters. In this paper, the error correction
method was proposed to tackle the problem, which combines the Dragonfly algorithm (DA) and
the Levenberg–Marquardt (LM) algorithm, thereby solving the problem of the LM algorithm and
improving the accuracy of solving error parameters. Firstly, we analyzed the error sources of the
three-axis magnetic sensor and established the error model. Then, the error parameters were solved
by using the LM algorithm and DA–LM algorithm, respectively. In addition, by comparing the results
of the two methods, we found that the error parameters solved by using the DA–LM algorithm
were more accurate. Finally, the magnetic measurement data were corrected. The simulation results
show that the DA–LM algorithm can accurately solve the error parameters of the triaxial magnetic
sensor, proving the effectiveness of the proposed algorithm. The experimental results show that the
difference between the corrected and the ideal total value was decreased from 300 nT to 5 nT, which
further verified the effectiveness of the DA–LM algorithm.

Keywords: three-axis magnetic sensor; weak magnetic target; DA–LM algorithm; parameter
estimation; error correction

1. Introduction

The Earth’s magnetic field is its inherent physical field. Although it cannot be seen or
felt, it is always there and closely related to human life [1].Magnetic objects or ferromagnetic
materials magnetized by the Earth’s magnetic field and moving conductors cutting through
the Earth’s magnetic field generate the eddy current magnetic field and cause disturbances
to the Earth’s magnetic field, which is called magnetic anomalies. Magnetic anomaly
detection can be used to detect and locate magnetic targets based on magnetic anomaly,
which is a passive detection method based on basic physical phenomena. It is widely used
in military antisubmarine [2], geological prospecting [3], unexploded ordnance detection [4],
underwater target detection [5], space magnetic field detection [6], and medical endoscopic
positioning [7] due to its excellent stability and versatility, which has extremely high
military significance and civilian value. A fluxgate magnetometer is the most widely-used
magnetic sensor at present, which can be used to measure a slowly moving magnetic field
with good robustness and high resolution [8,9]. The three-axis fluxgate sensor can be used
to obtain the total and the component information of the magnetic field simultaneously.
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Due to the limitation of processing and installation craft level, the three axes of the sensor
are not strictly orthogonal; the sensitivity of each axis is not exactly the same, and they
all have zero drift. Therefore, the measured values of the total and component magnetic
fields of the sensor are greatly different from the actual values. To obtain high-precision
measurements, it is necessary to correct the sensor before its application.

There are two common error correction methods for magnetic sensors, that is, the
vector correction and the scalar correction. The former is first to compare with the known
magnetic field vector [10,11] and then makes correction to the measured data. However,
it is difficult to obtain high-precision magnetic field vector in practical applications. The
scalar correction does not require a known magnetic field vector, which is performed
with a fixed value of the total magnetic field in a constant magnetic field as a constraint
condition. The scalar correction method has attracted the attention of many scholars due
to its advantage of easy operation in the actual environment. In [12,13], the least square
method was proposed to estimate the parameters that were then brought into the error
parameter model for correction. It was found that the error of the measured data was
significantly suppressed. In [14], the method of leastsquares combined with winding the
character “8” was proposed for rapid correction, which has the advantages of a small
amount of data required, simple correction process, and good correction effect. In [15], the
use of a genetic algorithm was proposed to solve the parameters in the error model, and
good results were achieved.

Although the above algorithms were able to achieve good correction effects, the least
square method for solving parameters in [12,13] had a great impact on the parameter
compensation of abnormal points in the sensor sampling process. The angle coverage of the
method of least squares combined with “8”, as shown in literature [14], must be above 1.3
to obtain more accurate correction parameters. The parameters in the error model solved by
using genetic algorithm in [15] are only in the simulation stage at present, and the setting
of the geomagnetic field range value of the algorithm has a great influence on parameter
estimation. Aiming at the shortcomings of the above error correction algorithms, this
paper proposes a correction method combining the DA algorithm and the LM algorithm.
The Dragonfly algorithm (DA) is a kind of bionics algorithm, which simulates the static
and dynamic behavior of dragonflies in nature [16]. The Levenberg–Marquardt algorithm
(LM) is an optimization method used to solve nonlinear least squares problems. It is
insensitive to the overparameterization problems and can effectively deal with redundant
parameters [17].

This paper is organized as follows. Section 1 analyzes the error sources of three-axis
sensor and gives the error correction objective function. Section 2 introduces the basic
principles of the DA algorithm and the LM algorithm and the steps of their combination.
In Section 3, the simulation results show that the algorithm is accurate in determining the
error parameters and has a good correction effect on the total magnetic field and the three
components of the magnetic field. In Section 4, experimental data are used to verify the
correction effect of the algorithm. Finally, conclusions are discussed in Section 5.

2. The Analysis of Error Model

Currently, the three-axis magnetic sensor is widely used due to its ability to obtain three
components of the magnetic field and the total magnetic field simultaneously. However,
due to the limitation of processing and installation technology, no axis of the three-axis
sensor is strictly orthogonal, and the sensitivity is not exactly the same. In addition, each
axis has zero drift [18]. Therefore, the error between the measured value and the actual one
is large.

A three-axis magnetic sensor is composed of three probes that are perpendicular to
each other, but the processing and installation technology cannot guarantee the complete
orthogonality of the probes. As shown in Figure 1, O−XYZ represents the ideal coordinate
system of the three-axis magnetic sensor, and O− X′Y′Z′ stands for the actual coordinate
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system. To simplify the calculation, it is assumed that the Z axis recombines with the Z′

axis, and Z−O−Y is coplanar with Z′ −O−Y′.
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Where α refers to the angle between the y axis and the y′ axis, β represents the angle
between the x′ axis and the xoy plan, and γ stands for the angle between the projection of
the x′ axis in the xoy plan and the x axis. If only the nonorthogonal error is considered,
then

Hm = AHe =




cos β cos γ cos β sin γ sin β
0 cos α sin α
0 0 1


He (1)

where Hm =




Hmx
Hmy
Hmz


 refers to the measured value of the three-axis magnetic sensor,

He =




Hex
Hey
Hez


 represents the actual value of the three-axis magnetic sensor, and A stands

for the nonorthogonal error matrix.
The magnetic core of the three-axis magnetic sensor is made of soft magnetic material

with high permeability and low coercivity, which reaches its saturation state under external
excitation that is then converted to the voltage value. After that, it collects the change in
the measured magnetic field. The sensor contains detector circuit, integral filter circuit, and
signal feedback circuit, etc. Different characteristics of electronic components in the circuit
lead to differences in the sensitivity of the three axes. If only the sensitivity factor error is
considered, then

Hm = LHe =




Lx 0 0
0 Ly 0
0 0 Lz


He (2)
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where Lx refers to the sensitivity factor of the x axis, Ly stands for the sensitivity factor of
the y axis, Lz represents the sensitivity factor of the z axis, and L is the error matrix of the
sensitivity factor.

Ideally, the sensor output should be zero in an absolutely zero magnetic field. However,
the output is not zero because of the conversion zero drift of the signal processing circuit
inside the sensor. If only this error is considered, then

Hm = He + h0 (3)

where h0 =




h0x
h0y
h0z


 refers to zero drift.

Considering the above three errors, the error model of the three-axis magnetic sensor
can be obtained as follows:

Hm = LAHe + h0 (4)

According to Equation (4), the comprehensive error calibration model of the three-axis
magnetic sensor can be obtained as follows:

He = A−1L−1(Hm − h0) (5)

Replacing the A−1L−1 by P, and A−1L−1h0 by Q, we can obtain:

He = PHm −Q (6)

Assumption P =




m1 m2 m3
m4 m5 m6
m7 m8 m9


, Q =




m10
m11
m12


, where





m1 = 1
Lx ·cos β·cos γ

m2 = − sin γ
Ly ·cos α·cos γ

m3 = −(cos α·sin β−cos β·sin α·sin γ)
Lz ·cos α·cos β·cos γ

m4 = 0

m5 = 1
Ly ·cos α

m6 = − sin α
Lz ·cos α

m7 = 0

m8 = 0

m9 = 1
Lz

m10 = m1 · hox + m2 · hoy + m3 · hoz

m11 = m4 · hox + m5 · hoy + m6 · hoz

m12 = m7 · hox + m8 · hoy + m9 · hoz

(7)

The total magnetic field is invariable when the three-axis magnetic sensor changes its
attitude in the uniform field. Therefore, the objective function can be expressed as

∧
y = min

N

∑
i=1

(
∣∣∣Hpredicte

∣∣∣2−
∣∣∣Htheory

∣∣∣2 )2 (8)

where Hpredicte refers to the predicted magnetic field with 9 unknowns, and Htheory rep-
resents the ideal magnetic field. The 9 unknowns are calculated by using the DA–LM
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algorithm. After that, the parameters of the nonorthogonal angle, scale factor, and zero bias
are solved according to Equation (7). Finally, the error compensation process is completed.

3. Correction Algorithm
3.1. DA Algorithm

The DA algorithm is a bionics algorithm proposed in 2016 by Mirjalili, an Australian
scholar [16].The main idea comes from the static foraging behavior and dynamic migration
behavior of dragonflies in nature. In a static group, to search for other flying prey, the
dragonflies made up of small parts fly back and forth over a small area. The local motion
during flight and the temporary mutation in the flight path are the characteristics of static
groups. In dynamic groups, for a better living environment, large groups of dragonflies
fly long distances to migrate or fly in a common direction [19]. According to dragonfly
behavior, the algorithm can be divided into: separation, queuing, alliance, hunting for
prey, and avoiding natural enemies. The separation weight, alignment weight, cohesion
weight, prey weight factor, and natural enemy weight factor in the algorithm are used as
the behavior degrees of dragonflies to update their position. The algorithm can improve
the initial random parameters of a given problem and make it converge to the global
optimum [20].

The mathematical expression of the DA algorithm is expressed as follows:

∆Xt+1 = (s · Si + a · Ai + c · Ci + f · Fi + e · Ei) + ω′ · ∆Xt (9)

where s refers to the separation weight, a represents the alignment weight, c denotes
cohesion weight, f stands for the prey weight factor, e is the natural enemy weight factor,
t refers to the current iteration number, ω′ represents the inertia weight, Si refers to the
position vector of the separated behavior between the ith dragonfly, Ai represents the
position vector of the queuing behavior of the ith dragonfly, Ci denotes the position vector
of the alignment behavior of the ith dragonfly, Fi represents the position vector of the
hunting behavior of the ith dragonfly, and Ei is the position vector of the avoidance
behavior of the ith dragonfly.

In nature, dragonflies are in motion most of the time for survival. Therefore, their
positions have to be updated in real time. Therefore, we obtain:

Xt+1 = Xt + ∆Xt+1 (10)

3.2. LM Algorithm

The LM is a modification of the Newton algorithm, which can be used to solve the
problems that the Newton algorithm cannot guarantee, namely, that the search direction is
always downward, and the Hessian matrix is always positively definite. The main idea
of the Newton method is to use the first and second derivatives of iteration at Point xk
to make a quadratic approximation to the objective function. Then, using the minimum
point as the new iterative point, the process is repeated until the approximate minimum
point satisfying the requirements of accuracy is obtained. When the objective function
f : Rn → R is second-order continuously differentiable, during the Taylor expansion of

the function f at point xk, the terms are ignored more than three times, and the quadratic
approximation function can be obtained as follows:

f (x) ≈ f (xk ) + (x− xk)g(xk) +
1
2

H(xk)(x− xk)
2 (11)

where g(xk) = ∇ f (xk) represents the first derivative of function f at point xk, and
H(xk) = ∇2 f (xk) stands for the second derivative of function f at point xk. If the first-order
necessary condition of the local minimum is applied here, then we obtain:

∇ f (x) = g(xk) + H(xk)(x− xk) = 0 (12)
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If H(xk) > 0, the minimum of function of f is

xk+1 = xk − H(xk)
−1g(xk) (13)

which is the iterative formula of the Newton method. In case of univariate, if the second
derivative of the function f ′′ < 0, the Newton method cannot converge to a minimum.
While in case of multivariate, if the Hessian matrix H(xk) of the objective function is not
positively definite, the search direction determined by using the Newton method is not
necessarily going to be the direction in which the value of the objective function decreases.
To solve this problem, the damping coefficient µ ≥ 0 is introduced, then the revised iteration
formula is expressed as follows:

xk+1 = xk − (H(xk) + µk I)−1g(xk) (14)

As long as µ is large enough, the search direction dk = −(H(xk) + µk I)−1g(xk) is
ensured to be descending. Equation (14) is the iterative equation of the LM algorithm.

The goals and steps of the Algorithm 1: LM algorithm are as follows:

Algorithm 1. LM algorithm.

Goals : based on the function relationship x = f (p), given the function f and noisy
observation vector x, p can be estimated.

Step 1 : select the initial point p0 and termination control constant ε and calculate
ε0 =||x− f (p0)||, k := 0, µ0 = 10−3, and v = 10.

Step 2 : calculate the Jacobi matrix and Nk = Jk Jk + µk I and construct incremental
normal equations Nk•dk = JT

k εk.
Step 3 : obtain the dk from the incremental normal equations.

(1) If ||x− f (pk + dk)||< εk , then let pk+1 = pk + dk if ||dk||< ε , stop iteration, and
output the result. Otherwise, go back to Step 2.

(2) If ||x− f (pk + dk)||≥ εk , then let µk+1 = µkv, obtain the dk again, and go back to
Step 3 (1).

3.3. The Combination of DA and LM Algorithm

In solving the error parameters, we found that the number of least squares solutions
were limited, while the LM algorithm can be used to solve multiple parameters simulta-
neously. However, the disadvantage of the LM algorithm is that it may fall into the local
minima if the initial value is not appropriately selected, which has a serious impact on the
accuracy of problem solving. To overcome this drawback, we used a global optimization
algorithm to find the suitable initial value for the LM algorithm. As a global optimization
algorithm, the DA algorithmhas the advantages of its strong global optimization ability.
However, it has low accuracy in local optimization. To tackle this problem, this paper
proposes to combine the DA algorithm and the LM algorithm. Firstly, this paper usedthe
DA algorithm’s global optimization ability to find the global minimum point. Then, it took
the output parameter value of the DA algorithm as the initial value of the LM algorithm
for local optimization. The Figure 2 shows the flow chart of DA–LM algorithm.
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4. Simulated Analysis

Matlab is used for data simulation to verify the correctness and effectiveness of the
proposed method based on the DA–LM algorithm in this paper. In the simulation analysis,
the total magnetic field was set as 50,000 nT. Using the random function of Matlab to
generate 96 groups of different angles, the rotation of the sensor was simulated, and then,
the 96 groups of the ideal three-axis sensor rotation data H were obtained. The measured
value was simulated by using Equation (4). The error parameter of the three-axis sensor is
shown by the preset value in Table 1. The H1 three components of the magnetic field and
the H1 total magnetic field are shown in Figure 3. The abscissa axis indicates the sampling
points. The ordinate axes of (a), (b), and (c) indicate the components of the measured
values H1 in x, y, and z, and the vertical axis of (d) represents the total magnetic field of the
measurement H1. In addition, the red line refers to the ideal total magnetic field.
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Table 1. Comparison of preset and estimate parameters.

Error Term Preset Value LM Estimated Value DA–LM Estimated
Value

Nonorthogonal
/(◦)

α 0.000622 0.031693 0.000622
β 0.000332 −0.014156 0.000332
γ −0.000076 0.035489 −0.000076

Scale Factor
Lx 1.002685 1.002685 1.002685
Ly 1.002853 1.002853 1.002853
Lz 1.002964 1.002964 1.002964

Zero Offset
/(nT)

hx −23.210025 −23.210029 −23.2100249999997
hy −44.730353 −44.744776 −44.7303529999983
hz −170.944506 −170.962902 −170.9445060000002
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By substituting, the ideal magnetic field and H1 into the objective function (Equation (8))
and using the LM and DA–LM respectively, the comprehensive parameters P and Q were
solved. According to the relations among P, Q and the error parameters of the three-axis
magnetic sensor, the error parameters were inversely solved. Table 1 shows the comparison
between the error parameters obtained by inverse solution and the preset values. Finally,
the magnetic field was corrected. The errors of the components and total magnetic field
before and after correction are shown in Figure 4 where the abscissa axis represents the
sampling point, and the ordinate axes of (a), (b), (c), and (d) stand for the errors of the
x-axis, y-axis, z-axis, and the total magnetic field, respectively. The black lines show the
errors before correction. And the blue lines represent the errors after correction.

Seen from Figure 4, the errors of the x-axis, y-axis, z-axis, and the total magnetic field
between the measured and ideal values are 200 nT, 200 nT, 350 nT, and 350 nT, respectively.
After the DA–LM algorithm correction, all the errors were reduced to 0 nT.The parameter
estimates are shown in Table 1.

It can be seen from the comparison among the preset parameter values, LM estimate
values, and DA–LM estimate values in Table 1 that the LM algorithm alone cannot ac-
curately estimate the error parameters, especially when the nonorthogonal angle is very
small. The reason is that the initial value is given empirically when the LM algorithm is
used alone. If the initial value is given improperly, the minima will be trapped in the local
minimum. The error parameters calculated by using the DA–LM algorithm were almost
the same as the preset value, with the error accuracy of estimation of 10−6 magnitude.
The simulation results show that the global optimization ability of the DA algorithm can
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help the LM algorithm find the most suitable initial value and effectively prevent the LM
algorithm from falling into the local minimum.
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5. Experimental Verification

In addition to its own error, the sensor is also susceptible to many factors, for instance,
magnetic diurnal variation. To mitigate the influence of the magnetic diurnal variation on
the magnetic field, experiments were carried out after 12 p.m. The ideal total magnetic
field H was measured by using an optical pump magnetometer with high precision, as
shown in Figure 5. The actual measurement value H1 was obtained by using the three-axis
magnetometer MAG648. The experiment platform is as shown in Figure 6. In Figure 7,
the abscissa axis represents the sampling point of the measured data, and the ordinate
axis stands for the total value of the magnetic field. The red line refers to the ideal total
magnetic field modulus, while the black line shows the measurement total magnetic field
H1 before correction. The blue line refers to the total magnetic field after LM correction,
and the green line denotes the total magnetic field after DA–LM correction. It is obvious
that the DA–LM correction effect outperforms that of LM correction.
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In Figure 8, the abscissa axis refers to the sampling point, and the ordinate axis
represents the error between the total value measured data and the ideal total value. In
addition, the value is reduced from 300 nT to 5 nT and 20 nT after DA–LM and LM
correction, respectively. We drew a conclusion that the steering error was significantly
suppressed. The parameters shown in Table 2 were solved by using the DA–LM method
and LM method, respectively. Table 3 shows the comparison between the mean value and
the root mean square error. It can be seen from the Table that the mean value and root mean
square error were reduced after DA–LM correction.
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Table 2. The parameters obtained by calculation.

Error Term LM Estimated Value DA–LM Estimated Value

Nonorthogonal
α 0.002632 −0.000478
β −0.004717 −0.000390
γ 0.019320 −0.000028

Scale Factor
Lx 1.002880 1.002692
Ly 1.003050 1.002862
Lz 1.002985 1.002974

Zero Offset
hx −23.365514 −23.382624
hy −45.282038 −45.178011
hz −171.458722 −171.802028

Table 3. Comparison of statistical characteristics before and after DA–LM correction.

Evaluation Item RMS (nT/m) RMSE (nT/m)

Before Correction −131.807381 109.523401
After Correction 0.000247 2.285982

6. Conclusions

Geomagnetic error correction is the key to obtaining high-precision geomagnetic
information and the premise of magnetic anomaly location. Error correction has always
been the focus of research on magnetic measurement, and many correction algorithms have
been proposed under different application backgrounds. This paper analyzed the error
sources of magnetic sensors, proposed a method combing the DA algorithm and the LM
algorithm to iteratively solve the parameters in the error model, and finally completed the
error compensation. The following conclusions are drawn: (1) The method combining the
DA and LM algorithms can accurately calculate the error parameters, which solves the
problem that it may easily fall into the local minimum in the iterative process by using
the LM algorithm alone; (2) The simulation results show that the proposed method can
accurately estimate the error parameters and has a good correction effect on the components
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and total magnetic field, thereby proving the effectiveness of the proposed algorithm. It can
be seen from the experimental results that this method can estimate the error parameters of
sensors well, with the RMS value reduced from −131.807381 nT/m to 0.000247 nT/m and
the RMSE value from 109.523401 nT/m to 2.285982 nT/m. The experimental data were only
calibrated for the total magnetic field due to the unavailability of the ideal three-component
values with high accuracy. In the event the ideal three-component can be obtained, this
method can also be applied to three-component correction.
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