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Abstract: To study the effects of liquid properties and interface parameters on gas-liquid
two-phase flow in porous media. The volume flow model of gas-liquid two-phase flow in
porous media was established, and the interface of the two-phase flow was reconstructed by
tracing the phase fraction. The microscopic imbibition flow model was established, and the
accuracy of the model was verified by comparing the simulation results with the classical
capillary imbibition model. The flow characteristics in the fracturing process and backflow
process were analyzed. The influence of flow parameters and interface parameters on gas
flow was studied using the single-factor variable method. The results show that more than
90% of the flowing channels are invaded by fracturing fluid, and only about 50% of the
fluid is displaced in the flowback process. Changes in flow velocity and wetting angle
significantly affect Newtonian flow behavior, while variations in surface tension have a
pronounced effect on non-Newtonian fluid flow. The relative position of gas breakthrough
in porous media is an inherent property of porous media, which does not change with fluid
properties and flow parameters.

Keywords: porous media; volume flow model; two-phase flow; non-Newtonian
fluid; OpenFOAM

1. Introduction

With the impact of renewable resources such as wind and solar energy on conventional
fossil energy, the demand space for oil and gas as primary energy sources is further
compressed [1]. As the cost of renewable resource development and utilization technologies
continues to decline, exploring high-quality development and high return has become the
key to sustainable development of oil and gas resources. China is endowed with substantial
natural gas resources, and as a clean energy source, natural gas plays a pivotal role in
facilitating the country’s goals of carbon peaking and carbon neutrality. It also supports
the transition towards a low-carbon, high-quality national energy system [2]. The process
of oil and gas exploration is a complex systems engineering challenge, with the flow of
hydrocarbons through porous media representing one of its most intricate aspects [3]. Due
to the presence of primary water in the reservoir and the intrusion of fracturing fluid,
the gas flow in the reservoir behaves as a gas-liquid two-phase flow in a porous media.
The storage and flow spaces at the micro and nanoscale significantly enhance interphase
interactions, leading to lower gas well flowback rates and accelerated production decline
during the development of unconventional gas reservoirs [3,4]. Therefore, understanding
the characteristics of gas-liquid two-phase flow in porous media at the microscale is crucial
for enhancing the development of unconventional gas reservoirs and promoting their
comprehensive utilization.

Energies 2025, 18, 316
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For the simulation of multiphase flow in porous media, extensive research has been
conducted by researchers using both laboratory experiments and numerical simulations.
Laboratory experiments are categorized into sand-filled model experiments [5,6] and micro-
etching experiments [7,8] based on the method of experimental model construction. The
sand-filled experiment uses actual reservoir rock particles to form experimental samples
by pressing them in certain ratios. Using this method, physical models with different
parameters are constructed for flow analysis. By adjusting the mineral composition and
particle size distribution, the effect of particle composition, wetting characteristics, and
pore size distribution on the flow process can be reflected to some extent. However, this
method mainly studies the flow pattern by monitoring the pressure differences between
the inlet and outlet of the rock sample and the fluid flow rate. It does not reflect the
real flow process inside the rock sample. Micro-etching experiments combined with CT
scanning technology allow for the microscopic scanning of rock samples to obtain the
internal flow channel characteristics of rock samples. The fabrication of microscopic flow
channels on characteristic plates is achieved using etching techniques. Controlling the
injected pore volume flow rate with a microflow pump and simulating the flow processes at
the microscale can detect the fluid flow patterns within the microscale channels in real-time.
Unfortunately, this method cannot manually modify the interface parameters during the
flow process.

For unconventional gas reservoirs, the presence of ultra-low-scale flow channels poses
significant challenges for laboratory experimental studies. However, advancements in
computational fluid dynamics (CFD) technology now offer a crucial methodology for
simulating multiphase flow within porous media at the micro- and nanoscales. At present,
the numerical simulation of multiphase flow in porous media in the field of petroleum
engineering is divided into two research directions [3,9,10]: one is to study the coupling
of continuous and discrete phases between different phases, and to analyze the effects of
the boundary layer, surface tension, and wetting angle on the flow process. Secondly, this
study investigates the dynamics of particle collisions, mixing processes, and post-collision
motion in liquid—solid and gas-solid systems relevant to proppant transport. In this work,
we concentrate on gas-liquid two-phase flow within microscale flow spaces. Given the
rapid changes at the phase interface between gas and liquid phases, it is essential to
employ numerical models capable of accurately capturing these interface dynamics. Some
commonly used simulation methods include the Lattice Boltzmann Method (LBM) [11-13],
the Phase Field Method (PFM) [14,15], the Level Set Method (LSM) [16-18], the Interface
Tracking Method (FT) [19], and the Volume of Fluid (VOF) method [20,21]. The LBM
method is more effective for simulating low-velocity small-scale multiphase flow without
tracking the phase interface, but the stability is poor under high-density gas—water ratio
conditions. The PFM method has shortcomings in simulating the dissolution of small
droplets or bubbles. The LSM has a good ability to describe complex flow channel topology,
but the volume conservation on the grid is poor, and there is excessive smoothness in the
treatment of phase interfaces at the sharp points of solid particles. The LSM can be seen as
a simplification of the PFM, but the physical meaning of the phase field is lost [22]. The
FT can prevent the overly-smoothed reconstruction of interfaces at sharp features, but
its sensitivity to the topological complexity of the flow channel can lead to instability in
computational outcomes. The VOF method reconstructs the phase interface for simulation
purposes, allowing it to manage the complex topologies of porous media while maintaining
superior volume conservation [23,24].

The simulation dimensions of porous media are typically small, with pore-throat sizes
generally in the micron to nanometer range. Unlike at the macroscopic scale, this small size
amplifies the influence of factors such as the wettability, flow velocity, and viscosity ratio



Energies 2025, 18, 316

on flow morphology. Porous media models can be categorized into two-dimensional (2D)
and three-dimensional (3D) models. Two-dimensional models, due to their lesser number
of computational grids, are convenient for studying flow patterns. In contrast, 3D models
have significantly larger computational dimensions and a greater number of discrete grid
elements compared to 2D models; their spatial attributes make them more suitable for
analyzing the spatial aggregation distribution characteristics of fluids [25,26]. Various
numerical simulation methods for multiphase flow have been applied to both types of
models. The choice of model does not affect the analysis of microscale flow characteristics,
although the selection of the numerical simulation method and the setting of computational
parameters are critical [10].

In our study, based on the VOF model in computational fluid dynamics combined with
the modeling method of porous media at the microscale, a numerical simulation research
method of gas-liquid two-phase flow in porous media is formed. On this basis, the flow
differences between gas-driven water and water-driven gas processes were studied. The
influence of liquid properties on the flow process was discussed, and the effects of flow
rate, wetting angle, and surface tension on the gas-liquid flow shape were analyzed.

2. Two-Phase Flow Simulation Method
2.1. VOF Model

Based on the conventional flow equation, VOF introduces the concept of phase fraction
to form a phase fraction equation. During the solution process, pressure, velocity, and phase
fraction are solved, and the phase interface shape is reconstructed using the numerical
value of the phase fraction. The numerical value of the phase fraction is related to the
proportion of fluid in the grid. The defined phase fraction is represented by the symbol «.
The value range of « is between [0, 1]; when a = 0, it indicates that the cell is all gas phase,
when a = 1, it indicates that the cell is all liquid phase. When the value of « ranges from 0
to 1 it indicates the presence of gas and water phases in the cell, as shown in Figure 1.

Gas a=0

Phase interface 0<a<1

W\/\_ N [ Gas cell

(b)

O Liquid cell

] Phase interface
Liquid o=1 cell

Figure 1. (a) Phase fraction interface in the VOF model; (b) cell type of the computational region.

The equation of continuity for the flow of a mutually immiscible two-phase fluid in a
porous media and the equation of momentum considering the effect of gravity is expressed
as follows:

V-(U)=0 1)
opU

where U represents the velocity tensor, m/s; p represents the pressure in the grid, Pa; p
represents the average density of phases in the grid, kg/m?3; T represents the shear stress at
the two-phase interface, Pa~!; F represents the surface tension of the two-phase interface,
N/m; g represents the acceleration of gravity, taken as 9.8 m/ s2.



Energies 2025, 18, 316

The average density is defined as follows:

p=ap;+(1—a)pg 3)

Regarding the shear stress at the interface between two phases, when the wetting
phase fluid is a Newtonian fluid

=1 (VU + VUT) @)

where y represents the average viscosity in a grid, Pa-s.
The calculation formula for the average viscosity in the cell is as follows:

U=+ aglg )

where y represents the viscosity of the liquid phase in the grid, Pa-s; ji represents the
viscosity of the gas phase in the grid, Pa-s.

When the wetting phase fluid is a non-Newtonian fluid, the shear stress and fluid
viscosity are related to the shear rate. The power rate model is used to calculate the
non-Newtonian fluid viscosity [27,28]:

T =y (6)
H=k(y)"! @
1
v = \/ 5(VU+ vUT), (VU+VUT), (8)

where k represents the power coefficient, dimensionless; n represents parameters related to
fluid properties, dimensionless; - represents the shear rate, s~ the subscript i represents
the i-th column in the x-axis direction; the subscript j represents the j-th row in the y-axis
direction.

Any cell for the computational region satisfies Xa = a; + ag = 1.

The surface tension in Equation (2) is defined by the continuous surface force
model [29] as follows:

- 0‘[1 PrN VA )
2 (g +pw)

where k) represents the curvature at the two-phase interface, m~

Lo represents the interfa-

cial tension coefficient, N/m; p, represents the liquid phase density in the grid, kg/m?; pg
represents the gas phase density in the grid, kg/m?3.
The value of «y is related to the divergence of the unit normal vector n at the phase

interface [25]:
Va

The value of the phase fraction « is related to the fluid properties, independent of the
flow process. The phase fraction field equation for incompressible two-phase flow can be

expressed as follows:

ox
g—i-U-Vuc—O (11)

Equation (11) is the phase equation of the VOF model.
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For incompressible systems, where pressure acts as a relative value and the differential
pressure serves as the primary driving force, the cell pressure is defined to simplify the
momentum equation, Equation (2), as follows:

Preh =P —pg-h (12)

where h represents the center position vector of a grid.
Gradient calculation for Equation (12):

Virgn =Vp —g-hVp—pg (13)
Bringing Equation (13) to Equation (2) for simplification:

)
g—? +V - (pUU) =V - (uVU) = VU - Vyu = —Vp,, —g-hVp+oxyVa  (14)
Equations (1), (11), and (14) together form the mathematical model for the VOF model

of the two-phase flow system.

2.2. Numerical Method

The VOF model is implemented using the open-source CFD toolkit OpenFOAM-11,
and the VOF model is solved using the interFoam solver. OpenFOAM uses the finite
volume method to discretize the VOF model, the second-order upstream interpolation
function to discretize the spatial terms, and the first-order Eulerian format to discretize
the time terms. The phase equations are solved utilizing the Multi-Dimensional Universal
Limiter with Explicit Solution (MULES) algorithm. For the coupled pressure-velocity field,
the solution procedure employs the Pressure-Implicit with Splitting of Operators (PISO)
method.

Berea sandstone and Fontainebleau sandstone serve as two frequently adopted mod-
els in the field of porous media and are extensively utilized for investigating fluid flow
behaviors within such media. The primary differentiations between these models reside in
their respective porosities and permeabilities. Tailored to specific research goals, the Berea
sandstone model is predominantly employed to examine the flow dynamics of hydrocar-
bons within porous media. Conversely, the Fontainebleau sandstone model is favored
for studies concerning carbon dioxide sequestration and nuclear waste disposal. For the
purposes of this study, data from the standard Berea sandstone model have been selected;
CINEMA 4D-R17 professional modeling software was used to build a 10 mm X 3 mm
model of porous media, as shown in Figure 2a. The gray areas depict solid particles and the
white areas depict flow channels. A structured hexahedral mesh is generated for the pore
medium model using the snappyHexMesh toolbox in OpenFOAM, as shown in Figure 2b.
The left side of the model is designated as the inlet, the right side is the outlet, and the solid
particles are the walls. The inlet and outlet and wall boundary conditions are set as shown
in Table 1. The pore walls were subjected to complete wetting conditions, and the Coulomb
number Cy was set to 0.3 with a fixed time step. The values of the fluid parameters and
computational parameters in the model are listed in Table 2, and the gas phase properties
use the same parameters as for methane gas.



Energies 2025, 18, 316

Table 1. Boundary condition settings in OpenFOAM.

Boundary Type Velocity Boundary Condition Pressure Boundary Condition
inlet fixed Value zeroGradient
outlet zeroGradient fixedValue
wall noSlip zeroGradient
Table 2. Fluid parameters and calculation parameters.
Fluid Parameters Value Fluid Parameters Value
Gas density pg (kg/ m?) 0.67 Wetting angle 6 (°) 0
Water density p; (kg/ m?) 1000 Interfacial tension o (N/m) 0.032
Slickwater density p; (kg/ m?) 1020 Calculation duration ¢ (s) 1
Gas viscosity jig (Pa-s) 1.11 x 1075 Time step At (s) 1x10°°
Water viscosity uw (Pa-s) 1x1073 Iterative residual € (-) 1x107°
Flow index n (-) 0.8 Outlet pressure pout (Pa) 100
Consistency coefficient k (Pa-s™) 1x107° Inlet velocity v (m/s) 0.01
(a) solid grain void space (b)
, —— - / \/-‘-/ K¥ = L \.’ L
I PO
g s ( ( K (
E | p— apt
: » ) ) \ ‘ = C ( ‘/
\ ) ] e f \ ( (
) 10 mm g

Figure 2. (a) Porous media model; (b) generation of hexahedral mesh (16,100 cells).

2.3. Model Validation

To validate the accuracy of the VOF model calculations, a microscale capillary model,
as depicted in Figure 3, was established to simulate the position of the gas-liquid interface
during the capillary action. The accuracy and applicability of the numerical simulation
method were verified by comparing the simulation results with the theoretical solutions of
classical capillary. Neglecting gravity and inertia forces, the two-phase interface position is
determined by the capillary force and viscous force, and its mathematical expression is as

follows [25]:
dx

dt

where o represents the interfacial tension, N/m; 6 represents the wetting angle, °; r rep-

ocos(f) = g[ywx + pn(L — x)] (15)

resents the capillary radius, m; u. represents the viscosity of the wetting phase, Pa-s; jin
represents the non-wetting phase viscosity, Pa-s; L represents the length of the capillary,
m; x represents the position of the interface between the two phases, m; ¢ represents the
capillary action time, s.

As depicted in Figure 3, the capillary model features a fluid inlet on the left and a
fluid outlet on the right. At the initial moment, the capillary is entirely filled with the
non-wetting phase fluid. Subsequently, driven by capillary forces, the wetting phase fluid
intrudes from the left-hand side, progressively displacing the non-wetting phase fluid. A
critical aspect of this process is the dynamic movement of the contact interface separating
the two phases. The capillary length on the right side L is 1000 um and the capillary
diameter r is 30 um. The boundary conditions are set to no-slip boundary conditions and
wetting boundary conditions, and the sides are set to periodic boundary conditions. The
wetting phase fluid density is 1000 kg/m?3, viscosity 1000 mPa-s. The non-wetting phase
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fluid density is 0.7 kg/m?, viscosity 10 mPa-s. The surface tension is 0.03 N/m and the
wall is set to be fully wetted. The Canny algorithm in MATLAB R2018b software was used
to batch process the obtained flow pictures in the capillary at different flow times to obtain
the contour lines of the non-wetting phase and to measure the change in the position of the
interface between the two phases using the relative size of the pixels.

r L
A —_
X |

- - outlet
\"Q E — Nl no —
Q@ =

_' r
_y —

Figure 3. Capillary percolation model (blue is the wetting phase, yellow is the non-wetting phase).

Figure 4 presents a comparison between the simulation results for the two-phase
interface displacement obtained from the capillary percolation model and the theoretical
values derived using Equation (15). The data indicate a substantial agreement between
the simulation outcomes and the theoretical predictions, validating the applicability of the
VOF model for simulating two-phase flow processes at the pore scale.
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Figure 4. Comparison of the simulation results of the two-phase interface displacement of the
capillary percolation model with the theoretical values.

3. Fracturing and Rejection Process

Fracturing horizontal wells for the hydraulic fracturing and rejection process is a
typical gas-liquid two-phase flow process, as shown in Figure 5. The fracturing fluid is
pumped into the horizontal well through the surface high-pressure sink and filtered out to
the reservoir through the hydraulic fracture; the fluid invades the reservoir matrix pore
space under the actions of pumping pressure and capillary force to drive out the gas stored
in the pore space. After hydraulic fracturing, the well is opened and the fracturing fluid
is returned to the reservoir; the gas in the reservoir repels the fluid due to the production
pressure difference, forming a gas flow channel and replacing some of the intruded fluid in
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the matrix pores. Using the porous media model established in Figure 2, the microscopic
flow characteristics of the two stages of fracturing and re-discharge are simulated with
the calculated parameters in Tables 1 and 2 to study the effects of two types of fluids,
Newtonian fluid water and non-Newtonian fluid slickwater, on gas flow.

Fracturing process
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Figure 5. Schematic diagram of the fracturing and rejection process of a multi-stage fractured
horizontal well.

3.1. Fracturing Process Simulation

Figure 6 illustrates the evolution of liquid-phase saturation as water intrudes into
the porous medium, displacing the gas. With the injection of water, due to the additional
capillary force, the water phase breaks through the small pore size preferentially, and
the liquid-phase saturation in the porous medium gradually increases; the increasing
relationship between saturation and time is nearly linear. When the water phase breaks
through, the liquid-phase saturation reaches a maximum value of 90.42% and remains
stable. The gas that could not be displaced becomes primarily concentrated in the dead-end
regions of the porous medium. During the simulation, large bubbles were also observed
splitting into two small bubbles.

Figure 7 illustrates the variation in liquid-phase saturation during slickwater intrusion
into the porous medium to repel the gas. With the injection of slickwater, the liquid-phase
saturation increases linearly and reaches a maximum saturation of 91.47% by the time
the liquid phase breaks through and remains stable. Comparing the simulation results
depicted in Figures 6 and 7, it is observed that within the time interval of 0-0.002 s, the
saturation of slickwater in porous media is slightly higher than that of water, indicating that
slickwater more readily enters dead-end positions during the initial stages of flow. Within
the subsequent time interval of 0.002-0.005 s, the water occupies a greater proportion of
the larger pores, while the slickwater displaces more gas from the dead-end regions of the
porous medium. The displacement velocity of the water is marginally faster than that of
the slickwater, resulting in a higher water saturation within the porous medium. The water
achieves a stable flow earlier than the slickwater. Given that slickwater has a propensity
to enter dead-end locations more easily, it exhibits a higher degree of gas displacement
compared to water. Ultimately, upon reaching stable flow conditions, the saturation of
slickwater in the porous medium is slightly higher than that of water.
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Figure 6. Simulation of liquid phase saturation changes during water intrusion into porous media.
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Figure 7. Simulation of liquid-phase saturation changes during slickwater intrusion into porous media.

In simulations of fracturing fluid intrusion into porous media, the liquid phase acts as
the wetting phase, repelling the gas phase along the pore walls and displacing more than
90% of the gas while occupying a larger percolation area. Non-Newtonian fluids are more
likely to penetrate the porous medium compared to Newtonian fluids. For non-Newtonian
fluids, due to the high initial flow velocity, shear thinning occurs. However, due to complete
wetting of the walls, there is little difference in the final liquid-phase saturation between
the two types of fluids, as shown in Figure 8. The variation in liquid-phase saturation over
time is approximately linear, and the process of liquid-phase intrusion into the porous
medium is characterized by “stable displacement” at the microscopic scale.

The research phenomenon mentioned above occurs mainly because water is a pres-
surized fluid, which causes a significant difference in the microscopic flow of water and
gas. The liquid as a carrier has a pressure-bearing role; when the liquid percolation is
blocked, the agitated pressure will propagate throughout the water column, seeking a
breakthrough to form a new percolation channel under the action of the agitated pressure,
or break through the narrow throat bundle under the action of the pressure difference,
which will appear as an unstable displacement leading edge in the microscopic flow [26].
The liquid phase as the wetting phase is more likely to infiltrate the pore wall to form a
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water film; the presence of the water film weakens the adsorption of gas molecules onto the
wall and increases the content of free gas in the pore [30]. The intrusion of the liquid phase
into the formation accelerates the desorption of gas to a certain extent; however, with an
increase in liquid-phase saturation in the pore, the thickness of the water film gradually
increases, which can lead to the appearance of the gas phase in the liquid-phase trapped
pore [31].
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Figure 8. Comparison of liquid saturation in porous media at different time.

3.2. Simulation of the Return Process

Figure 9 shows the variation in the gas saturation when gas breaks through the water
phase blockage during the rejection stage. With the injection of gas, the gas saturation in the
porous medium increases linearly; the gas phase breaks through the water phase blockade
to form a dominant seepage channel when the gas saturation reaches 50.26%. Unlike the
fracturing process where the liquid phase intrudes into the porous medium, the gas phase
preferentially breaks through in the large-pore diameter pore channel due to the additional
capillary force acting as a resistance.
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Figure 9. Simulation of gas saturation changes during gas displacement water.

Figure 10 shows the change in gas saturation during the gas breakthrough of the
slickwater closure. With the injection of gas, the gas saturation in the porous medium
shows a linear increase; the gas saturation reaches 48.54% when the gas breaks through
the slickwater closure to form a dominant seepage channel. The gas-liquid interface of
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the rejection process shows an obvious fingering phenomenon, and this instability in the
flow significantly reduces the rejection efficiency of the fracturing fluid [32]. Without
considering the reservoir matrix subjected to compression pore closure, about 50% of the
fluid is retained in the porous medium and cannot be discharged; this part of the fluid is
retained in the pore space and cannot be discharged, which is the main reason for the low
rejection rate of the fracturing fluid. In both fluids with liquid phase properties, the gas
breakthrough point is at a high level due to gravity and the breakthrough location is the
same in both cases, indicating that the gas will automatically choose the direction of least

seepage resistance to flow; this optimal path selection process is not affected by the nature
of the fluid [14].
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Figure 10. Simulation of gas saturation changes during gas displacement of slickwater.

Comparing the fracturing process and the rejection process, the time required for
gas breakthrough to form a stable seepage flow is half that required for the liquid phase
intrusion to form a stable seepage flow, and it therefore takes longer for liquid to enter the
porous medium. If we want to improve the efficiency of liquid percolation to replace the
gas, we need to consider a reasonable soak time [33].

4. Gas-Liquid Two-Phase Flow Characteristics

Fluid flow in porous media is a complex interaction process; fluid flow velocity affects
the flow pattern, wetting angle affects the interface relationship between the fluid and
solids, and surface tension affects the interaction between different fluids. In this section
the values of flow velocity, wetting angle, and surface tension are varied to study the flow
characteristics of gas in Newtonian and non-Newtonian fluids; the porous medium model
and simulation parameters are referred to in Figure 2 and Table 2.

4.1. Flow Rate

Gas wells experience frequent changes in their production regime during production,
resulting in changes in fluid flow rates which are ultimately reflected as changes in the
daily gas production in the gas well. In simulating the effect of gas flow rate changes, three
different flow rates are set, as shown in Figure 11. As the percolation velocity increases,
the time for the gas to break through the porous medium decreases. Within the porous
medium, the gas breaks through in the direction of the minimum seepage resistance, and
after breaking through the seepage channel the gas will expand the previous seepage

11
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channel and turn to strengthen the already formed seepage channel when a new one cannot
be formed.

The variation in gas saturation as the gas breaks through the porous medium at
different flow rates is presented in Figure 12. As the flow rate increases, gas saturation
within the porous medium gradually rises, with this trend being particularly pronounced in
the water phase. However, the final gas saturation in the slickwater shows little change [34].
Given that most gas wells in the field are fractured using non-Newtonian fracturing
fluids, the increase in the fracturing fluid rejection rate achieved by raising the production
pressure differential after re-establishing gas flow following a shut-in is not significantly
noticeable [4,35,36].
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Figure 11. Effect of flow rate on gas flow pattern in liquid phase fluids of different nature.
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Figure 12. Variation in gas saturation at different flow rates during gas breakthrough in porous media.
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4.2. Wetting Angle

The wetting angle changes the spreading state of the wetting phase on the solid surface
in porous media. From the simulation results in Figure 13, it can be seen that a change
in the wetting angle has a large effect on the flow pattern of the gas. As the wetting
angle increases, the porous medium changes from strongly hydrophilic to neutral wetting,
reducing the instability of the leading edge of the gas flow; the pore wall has a weaker
ability to adsorb the wetting fluid, enhancing the gas repellent effect and increasing the
relative permeability of the gas phase. Similar flow pattern characteristics are shown in
both Newtonian and non-Newtonian fluids.
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Figure 13. Effect of wetting angle on gas flow pattern in liquid phase fluids of different nature.

The change in gas saturation within the porous medium at the moment of gas break-
through for various wetting angle values is presented in Figure 14. It can be seen that, with
an increase in the wetting angle, the change in gas saturation in the water phase is larger;
the gas-containing saturation increases by 12.01% during the process of changing the water
phase from the wetting phase to the non-wetting phase. However, with an increase in the
wetting angle, the change in gas saturation in slickwater is not obvious. As the pore radius
of an unconventional reservoir is small, it is easy to form a “water lock effect” after contact
with the liquid phase. When using a wetting reversal agent to release a water lock, we
should consider the nature of the liquid phase that produces the water lock and choose an
appropriate wetting reversal agent [37].

4.3. Surface Tension

There is a role for surface tension between the interface of two immiscible fluids,
the liquid phase and the gas phase. Figure 15 illustrates the flow state of a gas inside a
porous medium as the surface tension increases. As the surface tension increases, the liquid
becomes more capable of contracting between the phase interfaces; the force required to
change the liquid phase morphology is greater, and the flow of the gas at the phase interface
is more biased towards being compressed, and therefore the flow pattern is more regular;
this change is more pronounced at the gas edges [38]. In slippery water, as the surface
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tension decreases, the Haynes step phenomenon is evident [39,40], and the gas phase is
more likely to form small bubbles that snap off. A comparison of the change in the wetting
angle reveals that changing the gas-liquid interaction or the solid-liquid interaction has a
greater effect on the choice of gas percolation path, with the gas flowing in the aqueous
phase shifting from low to high breakthrough, but preferring high for breakthrough in
slippery water, a feature that does not appear in the flow velocity change study.
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Figure 14. Variation in gas saturation during gas breakthrough in porous media at different wet-
ting angles.
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Figure 15. Effect of surface tension on gas flow patterns in liquid phase fluids of different nature.
Figure 16 shows the variation in gas saturation at the moment of gas breakthrough for
different surface tensions. As the surface tension decreases, the gas saturation increases

in both liquid-phase fluids, but the increase in the gas saturation in slickwater is more
pronounced. Since the lower the surface tension the lower the force required for the gas
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to repel the liquid phase, the amount of fluid repelled under the same conditions is larger.
Selecting fracturing fluids with lower surface tensions is more conducive to fracturing fluid
rejection.
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Figure 16. Variation in gas saturation at different surface tensions during gas breakthrough in porous
media.

5. Conclusions

This paper develops a gas-liquid two-phase analysis methodology for microscale
fractures, employing fracture modeling and numerical simulations to investigate the be-
havior of gas-phase flow under various conditions. The key conclusions in this study are
summarized as follows:

1.  The VOF model and porous media modeling techniques can realize the dynamic
simulation of gas-liquid two-phase flow at the microscale, and the accuracy of the
simulation results is verified using the classical percolation model.

2. Liquid-driven gas processes preferentially break through small-pore channels in
porous media, occupying more than 90% of the percolation channels in the wetting
phase. The gas-driven liquid process preferentially breaks through large-pore channels
in porous media and occupy about 50% of the seepage channels after gas breakthrough.
The effect of wettability is the main reason for the lower fracturing fluid rejection rate.

3. The impact of the flow velocity and wetting angle on gas saturation is pronounced
in gas-driven Newtonian fluid flow processes, while surface tension significantly
affects gas saturation in gas-driven non-Newtonian fluid flow processes. Gas flow
within the porous medium follows the path of least resistance, which is determined
by the internal structure of the porous medium and remains unchanged regardless of
variations in flow parameters and fluid properties.

This study significantly enhances our understanding of the microscale characteristics
of gas-liquid flow and fracturing fluid flowback. By providing novel insights into these
phenomena, this research establishes a foundational reference for future investigations into
gas-liquid flow dynamics within complex porous media.
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Abstract: Enhancing oil recovery efficiency is vital in the energy industry. This study
investigates magnesium oxide (MgO) nanoparticles combined with sodium dodecyl sulfate
(SDS) surfactants to reduce interfacial tension (IFT) and improve oil recovery. Pendant drop
method measurements revealed a 70% IFT reduction, significantly improving nanoparticle
dispersion stability due to SDS. Alterations in Zeta Potential and viscosity, indicating
enhanced colloidal stability under reservoir conditions, were key findings. These re-
sults suggest that the MgO-SDS system offers a promising and sustainable alternative to
conventional methods, although challenges such as scaling up and managing nanoparticle—
surfactant dynamics remain. The preparation of MgO nanofluids involved magnetic stirring
and ultrasonic homogenization to ensure thorough mixing. Characterization techniques
included density, viscosity, pH, Zeta Potential, electric conductivity, and electrophoretic
mobility assessments for the nanofluid and surfactant-nanofluid systems. Paraffin oil
was used as the oil phase, with MgO nanoparticle concentrations ranging from 0.01 to
0.5 wt% and a constant SDS concentration of 0.5 wt%. IFT reduction was significant, from
479 to 26.9 mN/m with 0.1 wt% MgO nanofluid. Even 0.01 wt% MgO nanoparticles
reduced the IFT to 41.8 mN/m. Combining MgO nanoparticles with SDS achieved up
to 70% IFT reduction, enhancing oil mobility. Changes in Zeta Potential (from —2.54 to
3.45 mV) and pH (from 8.4 to 10.8) indicated improved MgO nanoparticle dispersion and
stability, further boosting oil displacement efficiency under experimental conditions. The
MgO-SDS system shows promise as a cleaner, cost-effective Enhanced Oil Recovery (EOR)
method. However, challenges such as nanoparticle stability under diverse conditions,
surfactant adsorption management, and scaling up require further research, emphasizing
interdisciplinary approaches and rigorous field studies.

Keywords: MgO nanoparticles; interfacial tension reduction; enhanced oil recovery;
sustainable nanotechnology

1. Introduction

Enhanced Oil Recovery (EOR) techniques are increasingly critical as conventional
oil extraction methods, including primary and secondary recovery, near their operational
limits in terms of efficiency [1,2]. These methods leave a substantial proportion of oil
unrecovered within reservoirs, posing significant challenges for meeting rising global
energy demands [3]. Consequently, the petroleum industry has prioritized the development
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of advanced methods to access and extract this remaining trapped oil. EOR serves as a
pivotal phase in this pursuit by employing various strategies to modify the physical and
chemical properties of reservoir fluids and rocks, thereby mobilizing residual oil [4].

Among the most prevalent EOR methods are chemical injection, thermal recovery, and
gas-based techniques, each with distinct mechanisms and applications [5]. However, these
methods face challenges concerning environmental sustainability and economic feasibility.
For instance, the use of surfactants and polymers has been associated with environmental
degradation and elevated operational costs [6,7]. These limitations highlight the pressing
need for innovative and efficient EOR solutions that are both economically viable and
environmentally friendly [8].

A critical factor in many EOR processes involves reducing the interfacial tension (IFT)
between the displacing fluid and the trapped oil. By lowering the IFT, the capillary forces
that trap oil within reservoir pores can be mitigated, thereby enhancing oil mobility. In
particular, the following aspects are considered:

Capillary Forces: The interfacial tension (IFT) between the displacing fluid and the oil
strongly influences the capillary forces that trap the oil in the pores of the reservoir rock.
Mobilization of Trapped Oil: Reducing the IFT lowers the capillary forces, which in turn
enhances the mobility of the trapped oil. This reduction in IFT promotes the coalescence of
oil droplets and allows the displacing fluid to sweep more oil toward the production well.
Improved Sweep Efficiency: By improving the fluid’s ability to displace oil, the overall
sweep efficiency is increased, leading to higher oil recovery factors.

Nanotechnology has emerged as a promising solution to overcome these limitations
in EOR applications [9]. Nanoparticles, characterized by their high surface-area-to-volume
ratio, exhibit unique physical and chemical properties that enable superior interactions
with reservoir fluids and rock surfaces [10]. Additionally, their nanoscale dimensions allow
them to traverse the porous structures of reservoirs, potentially accessing regions that are
inaccessible to conventional agents [11]. Over the past decade, silica-based nanoparticles
have received significant attention for EOR applications, demonstrating promising results
in altering the wettability of reservoir rocks and reducing interfacial tension (IFT) [12,13].

Despite these advancements, diverging hypotheses exist regarding the effectiveness of
different nanoparticle types. While silica nanoparticles have shown success, some studies
suggest that metal oxide nanoparticles, such as magnesium oxide (MgO) and aluminum
oxide (Al,O3), may offer superior results [14-16]. Other metal oxide nanoparticles, such as
zirconium dioxide (ZrO,), cerium oxide (CeO,), titanium dioxide (TiO,), zinc oxide (ZnO),
and iron oxide (FeyO3), exhibit unique properties that make them excellent candidates for
EOR [17,18].

Recent studies have highlighted the potential of these metal oxide nanoparticles to
enhance oil recovery via multiple mechanisms and formulations [19,20]. For example,
MgO nanoparticles have demonstrated particular efficacy in reducing fine migration by
modifying surface properties, a critical factor in maintaining reservoir permeability and
oil flow [21,22]. Similarly, Ogolo et al. [23] explored the role of metal oxide nanoparticles
in mitigating clayey fines migration, reporting that aluminum oxide nanoparticles could
immobilize migrating fines by influencing reservoir pH levels. Nonetheless, challenges
persist, including nanoparticle agglomeration, which can lead to pore blockage and com-
promise permeability, as observed by [9]. This finding, however, contrasts with evidence
suggesting challenges in the stability and dispersion of such nanoparticles under reservoir
conditions [18].

Building upon this context, this study aims to evaluate the potential of MgO nanopar-
ticles, both independently and in conjunction with an SDS surfactant, to reduce IFT and
improve oil recovery. SDS is hypothesized to enhance nanoparticle dispersion stability,
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enabling uniform distribution at the oil-water interface. By combining MgO nanoparticles
with SDS, this study explores a synergistic approach to optimizing nanoparticle perfor-
mance, increasing stability, and maximizing oil recovery under reservoir conditions. This
investigation seeks to address critical knowledge gaps in the field, offering insights that
contribute to the broader goal of achieving sustainable and efficient EOR technologies.

2. Materials and Methods
2.1. Nanoparticles and Base Fluids

This study employed high-purity MgO nanoparticles, supplied by MKnano (MK
Impex Corp., Mississauga, ON, Canada), characterized by its specific surface area, bulk
density, and purity (Table 1). To verify the characteristics of the MgO nanoparticles used
in this study in terms of the purity and nanoscale size, additional characterization was
performed. Dynamic Light Scattering (DLS) was employed to determine the particle size
distribution, while X-ray Diffraction (XRD) analysis verified the crystalline structure and
composition. The results demonstrated that the MgO nanoparticles are within the expected
size range and exhibit high purity, as illustrated in Figure 1. These findings validate the
suitability of the nanoparticles for the intended applications. Synthetic brine was prepared
by dissolving 3.0 wt.% sodium chloride (NaCl) in deionized water, simulating reservoir
salinity (approximately 30,000 ppm). The oil phase used in all experiments was paraffin
oil, selected for its stable and reproducible properties. SDS, sourced from Sigma Aldrich
(St. Louis, MO, USA), was used as a stabilizing agent in nanofluid preparations.

Table 1. Properties of used materials.

Properties MgO Nanopowder SDS
Specific surface area (m?/g) 90 N.A
Bulk density (g/L) 100-150 490-560
Average molecular weight (g/mol) 40.3 288.38
Chemical formula MgO CHj3(CH>)110S0O3Na
Purity >99.9% >99.9%
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Figure 1. MgO nanoparticle characterization using DLS (left) and XRD (right).

2.2. Instrumentation and Characterization Methods
2.2.1. Density and pH Measurements

Density was measured using ISOLAB 50 mL pycnometers (ISOLAB Laborgerate
GmbH, Eschau, Bavaria, Germany), ensuring high precision in mass-to-volume calculations.
The pH and surface conductivity of the prepared systems, including brine, nanofluids, and
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surfactant-enhanced nanofluids, were measured with a Hach 1Q240 digital pH meter (Hach
Company, Loveland, CO, USA) under ambient conditions.

2.2.2. Ultrasonic Mixing

Consistent nanoparticle mixing and dispersion were achieved using the Sonics Vi-
bracell VCX 750 Ultrasonic Homogenizer (Sonics & Materials, Inc., Newtown, CT, USA),
operated at 50-80% amplitude with a power output of 750 watts. Additional mixing during
preparation was facilitated by an IKA RCT Basic magnetic hot plate stirrer (IKA-Werke
GmbH & Co. KG, Staufen, Germany).

2.2.3. Zeta Potential Analysis

The Malvern Zetasizer Nano ZS (Malvern Panalytical Ltd., Worcestershire, UK) was
employed to evaluate nanofluid stability. This instrument measures Zeta Potential, electric
conductivity, and electrophoretic mobility, providing insights into nanoparticle interactions
and dispersion stability. High absolute Zeta Potential values signify greater nanoparticle
stability due to strong electrostatic repulsion.

2.3. IFT Measurements

IFT was measured using the Core Lab (Tulsa, OK, USA) “Temco” Pendant Drop
IFT-10-P system, capable of replicating reservoir conditions at pressures up to 10,000 psi
and temperatures up to 350 °F. Pendant drop formation was captured using an 8§ MP HD
CCD camera, and IFT values were calculated using Axisymmetric Drop Shape Analysis
(ADSA) software (https:/ /www.ramehart.com/diadv.htm accessed on 6 January 2025).
This system ensures precise measurements (uncertainty: £0.2-0.5 mN/m), validated in
prior studies [24]. This approach enables accurate characterization of fluid interactions
(IFT) under reservoir conditions. Figures 2 and 3 show the schematic of the IFT system and

measurements using the Pendant drop method, respectively.

Figure 2. IFT Cell System scheme: (1) injecting/or filling fluid; (2) Prep HPLC Pump 0.1-24.0 mL/min;
(3) pressure gauge, with 6000 psi and 300 °F; (4) three-way valve; (5) top cell attachment; (6) bottom
cell attachment (including needle); (7) IFT cell; (8) light source; (9) light control unit; (10) camera;
(11) computer containing software; (12) valve; (13) transducer, with pressure of 6000 psi and temp. of
300 °F; (14) back pressure regulator with 6000 psi and 300 °F; (15) collecting beaker.
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Figure 3. IFT measurement using Pendant drop method.

2.4. Research Method

A comprehensive overview of the experimental procedure followed in this study is
summarized in Figure 4. The experimental procedure flowchart systematically outlines the
preparation, characterization, and IFT measurements of the fluids investigated, including
the base fluid (synthetic brine), nanofluids, and surfactant nanofluids. The figure highlights
the critical steps in the process, such as the assessment of fluid density, viscosity, pH,
Zeta Potential, and electrophoretic mobility, which are key parameters for evaluating the
physical and chemical behavior of fluids. Additionally, it illustrates the focus areas of the
IFT measurements, emphasizing the effects of nanofluid concentrations and the surfactant

(SDS) on IFT reduction.
Preparation of
e Fluids
Base Fluid
(Synthetic Nanofluids Surfactant
i Nanofluid
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Y on IFT Reduction

Figure 4. Flowchart of experimental procedure.
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2.4.1. Nanofluid Preparation and Characterization

Nanofluid Synthesis: MgO nanofluids were synthesized at varying concentrations
(0.01, 0.03, 0.05, 0.1, and 0.5 wt.%) in synthetic brine solution following a two-step protocol:

1.  High-speed magnetic stirring for 15 min.
2. Ultrasonic homogenization for 30 min at 50-80% amplitude to ensure uniform
nanoparticle dispersion.

SDS was incorporated at a constant concentration of 0.5 wt.% across all nanofluid com-
positions. An additional 15 min of sonication was performed after SDS addition to further
stabilize the nanofluids. Figure 4 shows the workflow of the experimental procedure.

2.4.2. Nanofluid Stability Analysis
Theoretical Background

Stability is critical in EOR applications, as particle aggregation can alter fluid properties
and reservoir performance. Electrostatic repulsion between nanoparticles, quantified by
Zeta Potential, governs this stability [25].

Stabilization Techniques
To mitigate particle aggregation, the following techniques were employed:

Surfactant Addition: SDS acts as a surfactant, creating electrostatic and steric barriers to
prevent aggregation [26].

pH Control: Adjusting pH optimizes nanoparticle surface charges, enhancing repulsion
forces and reducing aggregation risks [27].

Ultrasonic Vibration: High-frequency sound waves break up particle clusters and improve
dispersion uniformity [28].

Surface Modification: Chemical treatment of nanoparticle surfaces can introduce func-
tional groups that enhance stability by creating additional repulsive mechanisms between
particles [29].

Stability Assessment

Zeta Potential serves as a critical indicator of nanofluid stability in this experimental
study Figure 5.

A high absolute Zeta Potential value (positive or negative) signifies strong repulsive
forces between particles, resulting in a well-dispersed and stable nanofluid that is critical
for EOR applications. Conversely, low Zeta Potential values indicate weak inter-particle
repulsion, which increases the risk of aggregation and potential system destabilization.

Multiple techniques have been developed to assess nanofluid stability, each offering
unique insights into particle behavior:

1.  Sedimentation Balance Method: This tracks particle settling rates and suspension
stability over time [30].

2. UV-Vis Spectrophotometry: This monitors particle concentration and dispersion
through light absorption [31].

3. Zeta Potential Analysis: This measures the electrical charge at particle interfaces [32].

4.  Light Scattering Method: This evaluates particle size distribution and aggregation [33].

5. Direct Observation: This provides visual confirmation of nanofluid stability [34].

In this study, the Malvern Zetasizer Nano ZS was employed to comprehensively
characterize the fluid systems by measuring the following:

Zeta Potential (mV);
Electric conductivity (mS/cm);
Electrophoretic mobility (umcm/Vs).
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By systematically measuring these parameters, researchers can optimize nanofluid for-
mulations, evaluate nano-surfactant effectiveness, and ensure stable suspension properties
critical for EOR applications.

Zeta Potential Stability

Unstable Stable

Indicates a condition Describes a situation where
where particles may not particles are likely to remain
remain cvenly dispersed. cvenly distributed.

Highly Unstable Highly Stable

R‘I‘”T’L“I" N ’\l‘”“l.;\‘lll‘“ Denotes a condition where
particles are very likely to
1

aggregate or settle. @

Figure 5. Zeta Potential as a function of fluid stability (data from [30]).

particles arc very unlikely

to aggregate or settle.

2.4.3. Fluid Characterization

Comprehensive Characterization: Fluid properties were measured using standardized
laboratory techniques:

1.  Density was determined using ISOLAB 50 mL calibrated pycnometers.

2. Viscosity was measured with the Brookfield KF30 Falling Ball Viscometer (Brookfield
Engineering Laboratories, Inc., Middleborough, MA, USA).

3. pH and Surface Conductivity were measured using a digital pH meter (Hach 10240,
Hach Company, Loveland, CO, USA).

The results for each fluid system, including brine, nanofluids, and SDS-enhanced
nanofluids, are summarized in Table 2, offering a detailed overview of density, viscosity,
pH, and conductivity for all compositions.

Table 2. Fluid properties of all fluids at ambient temperature.

Fluid Density, (g/cc) wﬁiﬁi’?ﬁip) Visgf)lsrilfyn;:rﬁrclzls) pH condiiﬁfvﬁ (mV)
Paraffin Oil 0.85 2.03 2.01 N.A N.A
Brine (3 wt% NaCl) 1.014 0.75 0.74 8.4 —83.05
MgO 0.01 wit% 1015 0.70 0.69 10 ~176.85
MgO 0.03 Wt 1015 0.83 0.82 10.3 194
MgO 0.05 wit% 1015 0.83 0.82 1022 1867
MgO 0.1 wt% 1.016 0.85 0.84 10.4 —199.4
MgO 0.5 wt% 1.019 0.92 0.90 10.8 —223.05
MgO 0.01 wit% + SDS 1.018 0.76 0.75 9.7 1637
MgO 0.03 wit% + SDS 1.018 0.82 0.80 9.9 ~172.9
MgO 0.05 wit% + SDS 1017 0.82 0.80 10.2 1896
MgO 0.1 wt% + SDS 1017 0.83 0.81 103 ~1926
MgO 0.5 wt% + SDS 1.017 0.88 0.86 10.4 ~199
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Sum of pH

m Sum of Electric Conductivity (mS/cm)

= Sum of ZP (mV)

PH, ZP (MV) AND ELECTRIC CONDUCTIVITY (MS/CM)

3. Results
3.1. Stability

The stability assessment of MgO nanofluids highlighted notable disparities between
the brine-based and SDS-based systems across varying nanoparticle concentrations. In
brine-based fluids, Zeta Potential values ranged from —12.35 mV at 0.01 wt% MgO to
3.45 mV at 0.5 wt% MgO, as depicted in Figure 5. These values fall within the unstable
range (—30 mV to +30 mV), signifying inadequate colloidal stability. Conversely, the
SDS-based fluids exhibited a marked improvement in stability, with Zeta Potential values
spanning from —28.75 mV to —39.7 mV over the same concentration range (Figure 5). The
increasingly negative Zeta Potential values in the SDS-enhanced system suggest stronger
electrostatic stabilization.

Additionally, the pH of both systems increased with rising MgO concentration, ranging
from 8.4 to 10.8 in brine and from 9.7 to 10.4 in SDS-based fluids, consistent with the basicity
of MgO (Figure 6). A slight decrease in electric conductivity was observed with increasing
MgO concentrations in both systems, declining from 60.95 mS/cm to 50.9 mS/cm (Figure 6).
This reduction likely results from ion adsorption onto the nanoparticle surfaces. Overall,
the inclusion of SDS significantly improved the stability of MgO nanofluids, likely due to a
combination of steric and electrostatic stabilization mechanisms. Dynamic and kinematic
viscosities followed a similar trend, increasing from 0.75 cP to 0.92 cP in brine and from
0.76 cP to 0.88 cP in SDS systems (Figure 7).
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Figure 6. pH, Zeta Potential, and electric conductivity as a function of concentration for both systems.
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Figure 7. Dynamic and kinematic viscosity for nanofluid and surfactant-nanofluid systems.

3.2. IFT Reduction

The IFT behavior of MgO nanofluids revealed distinct differences between brine-based
and SDS-based systems, with significant implications for EOR. In the brine-based system,
IFT values ranged inconsistently from 26.9 mN/m to 47.9 mN/m, showing no definitive
trend (Figure 8). This variability suggests that MgO nanoparticles alone, when dispersed in
brine, are insufficient to achieve substantial IFT reduction, potentially due to inadequate
stabilization or ineffective interaction at the oil-water interface.

Conversely, the SDS-based system exhibited a consistent and pronounced reduction in
IFT with increasing MgO concentration. Specifically, the IFT decreased from 15.66 mN/m
at 0.01 wt% MgO to an exceptionally low 5.6 mN/m at 0.5 wt% MgO, representing a
64.2% reduction (Figure 8). This dramatic improvement strongly indicates a synergistic
interaction between the SDS surfactant and MgO nanoparticles.

The synergism is hypothesized to arise from the adsorption of SDS molecules onto
the surface of MgO nanoparticles, which enhances their dispersibility and stability at
the oil-water interface. This adsorption modifies the surface energy of the nanoparticles,
enabling their alignment and effective participation in forming a robust interfacial barrier.
The SDS molecules further stabilize the nanoparticles in the aqueous phase, preventing
aggregation and ensuring their active involvement in reducing capillary forces. These
combined effects result in a significant decrease in IFT, which is particularly advantageous
for EOR processes.

Such low IFT values are instrumental in reducing capillary forces, enhancing oil
mobilization, and improving sweep efficiency during oil recovery operations. The revised
understanding of this interaction mechanism underscores its practical implications and
highlights the potential of MgO nanoparticles in SDS-based systems as effective agents for
improving EOR performance.
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Figure 8. IFT as a function of nanoparticle concentration.

4. Discussion
4.1. Significance of Results

The findings emphasize the critical role of surfactants in enhancing the stability and
IFT-reducing performance of MgO nanofluids. The enhanced Zeta Potential values in the
SDS-based system reflect strong electrostatic repulsion, preventing nanoparticle agglom-
eration and ensuring colloidal stability. This observation supports the compatibility of
MgO-SDS nanofluids for reservoir conditions. Coupled with the observed pH and viscosity
trends, this stability underscores the potential of these nanofluids in EOR applications.
The observed 64.2% IFT reduction achieved with the SDS-MgO system corroborates the
findings of [35], which demonstrated similar concentration-dependent reductions in IFT.

Compared to traditional EOR techniques, this study highlights a promising pathway
for achieving significant oil displacement with nanoparticle-surfactant systems. The MgO-
SDS combination not only matches but potentially enhances the IFT-lowering capabilities
of previously studied surfactant-based EOR methods as shown in Table 3. This result aligns
with the findings of [5,35] which demonstrate the importance of ultra-low IFT values in
boosting recovery rates. While ultra-low IFTs (103 mN/m) were not achieved here, the
reduction to 5.6 mN/m still represents a significant advancement for EOR technology.

Table 3. Comparative analysis with other chemical EOR technologies.

Criteria

Alternative Nanoparticles Alternative Surfactants

MgO-SDS Combination (e.g., ZnO, SiOy) (e.g., CTAB, Triton X-100)

IFT Reduction Efficiency

Moderate, often requires Moderate, depending on

Superior due to synergy surface modification salinity and temperature

Cost

Moderate to high due to
Low synthesis and Moderate
functionalization
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Table 3. Cont.

Alternative Nanoparticles  Alternative Surfactants

Criteria MgO-SDS Combination (e.g., ZnO, SiO) (e.g., CTAB, Triton X-100)
. . Potentially harmful Variable, some are
Environmental Impact Low, biodegradable depending on the material non-biodegradable
Thermal/Salinity High High (Varl.es by Moderate
Tolerance nanoparticle)
Scalability High Moderate (complex High

preparation)

4.2. Implications

The ability to achieve IFT values as low as 5.6 mN/m with MgO-SDS nanofluids
highlights their potential for efficient oil displacement. This result suggests that such sys-
tems can effectively mobilize trapped oil, leading to improved recovery rates. Importantly,
the synergistic interaction between MgO nanoparticles and the SDS surfactant reflects the
broader potential of integrating nanotechnology with chemical EOR techniques [36,37].

These findings also indicate that nanofluid-based EOR methods could offer an al-
ternative to conventional methods with higher economic and environmental feasibility.
While challenges remain, the observed compatibility of MgO-SDS nanofluids with reservoir
conditions points to their potential scalability for industrial applications.

4.3. Limitations

While the results demonstrate the potential of MgO-SDS nanofluids, several chal-
lenges remain:

1.  Testing Conditions: This study was conducted under ambient conditions, whereas
reservoir environments exhibit higher temperatures and pressures that may alter
fluid behavior.

2. Long-Term Stability: The durability of nanofluid stability under prolonged storage or
operational conditions remains unclear.

3. Conductivity Trends: The observed decline in electrical conductivity with increas-
ing MgO concentration warrants further investigation into its implications for ionic
interactions in reservoirs.

Additionally, potential environmental and economic concerns, such as the scalability
of SDS-based nanofluids and the impact of surfactant degradation, should be considered in
future studies.

4.4. Future Directions
Future research should focus on the following areas to build upon the current findings:

1.  Reservoir Conditions: Evaluate the performance of MgO-SDS nanofluids under ele-
vated pressures and temperatures to replicate realistic reservoir environments.

2. Surfactant Alternatives: Investigate the effects of alternative surfactants or co-
surfactant systems to optimize IFT reduction and stability.

3. Field-Scale Validation: Conduct field-scale tests to validate laboratory findings and
assess the economic viability of MgO-5DS nanofluids for EOR applications.

4. Sustainability Studies: Explore the environmental impact and potential biodegrad-
ability of MgO-SDS nanofluids to ensure sustainable deployment in oil recovery
operations [38,39].
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References

Finally, interdisciplinary collaborations could explore integrating nanofluid EOR
systems with other advanced recovery technologies, such as CO; injection or thermal
recovery, to achieve synergistic benefits.

5. Conclusions

The evaluation of MgO nanofluids demonstrates that incorporating the SDS surfactant
significantly enhances their performance for EOR applications. The SDS-MgO nanofluid
system exhibited a pronounced synergistic effect, achieving a substantial reduction in
IFT from 15.66 mN/m to 5.6 mN/m as the MgO concentration increased from 0.01 wt%
to 0.5 wt%. This 64.2% reduction in IFT is critical for EOR, as it directly improves oil
mobilization and sweep efficiency by reducing capillary forces.

Stability analysis further validated the effectiveness of the SDS-based system. Zeta
Potential values became increasingly negative (—28.75 mV to —39.7 mV) with rising MgO
concentrations, reflecting enhanced electrostatic stabilization and superior colloidal stability.
Additionally, the modest increases in viscosity (from 0.76 cP to 0.88 cP) and pH (from 9.7 to
10.4) indicate a stable and well-dispersed nanofluid system without the excessive thickening
that could hinder flow in reservoir conditions. The slight reduction in electric conductivity
(from 60.95 mS/cm to 56.5 mS/cm) likely results from ion adsorption onto nanoparticle
surfaces, contributing to the system’s improved interfacial and stability characteristics.

In contrast, the brine-based MgO nanofluid displayed inconsistent IFT values and
significantly poorer stability, underscoring its limited applicability for EOR purposes. The
combined advantages of substantial IFT reduction and enhanced stability in the SDS-MgO
system highlight its potential as a promising formulation for EOR applications. These
findings emphasize the critical role of surfactant-nanoparticle interactions in optimizing
nanofluids for advanced oil recovery processes. Future work should focus on refining
this formulation, exploring its performance under reservoir conditions, and conducting
field-scale tests to assess its practical viability in improving oil recovery rates.
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Abstract: Acid fracturing is a crucial stimulation technique to enhance hydrocarbon recovery in
carbonate reservoirs. However, the interaction between acid fractures and natural fractures remains
complex due to the combined effects of mechanical, chemical, and fluid flow processes. This study
extends a previously developed hydro-mechano-reactive flow coupled model to analyze these inter-
actions, focusing on the influence of acid dissolution. The model incorporates reservoir heterogeneity
and simulates various scenarios, including different stress differences, approaching angles, injection
rates, and acid concentrations. Numerical simulations reveal distinct propagation modes for acid and
hydraulic fractures, highlighting the significant influence of acid dissolution on fracture behavior.
Results show that hydraulic fractures are more likely to cross natural fractures, whereas acid fractures
tend to be arrested due to wormhole formation. Increasing stress differences and approaching angles
promote fracture crossing, while lower angles favor diversion into natural fractures. Higher injection
rates facilitate fracture crossing by increasing pressure accumulation, but excessive acid concentra-
tions hinder fracture initiation due to enhanced wormhole formation. The study demonstrates the
importance of tailoring fracturing treatments to specific reservoir conditions, optimizing parameters
to enhance fracture propagation and reservoir stimulation. These findings contribute to a deeper
understanding of fracture mechanics in heterogeneous reservoirs and offer practical implications for
improving the efficiency of hydraulic fracturing operations in unconventional reservoirs.

Keywords: acid fracturing; natural fracture; hydro-mechano-reactive flow model; phase field method;
fracture propagation modes

1. Introduction

By injecting acidic solutions at high pressures, acid fracturing creates and propagates
fractures while simultaneously dissolving the carbonate rock, resulting in increased perme-
ability and improved connectivity within the reservoir. The presence of natural fractures
adds complexity to this process, as the interaction between induced acid fractures and
pre-existing natural fractures can significantly influence fracture propagation paths and,
consequently, the efficiency of the stimulation, as shown in Figure 1. A comprehensive
understanding of the factors affecting acid fracture propagation in naturally fractured
reservoirs is essential for optimizing treatment designs and maximizing production.

Numerical studies have investigated the interactions between induced fractures and
natural fractures in the context of hydraulic fracturing [1-4]. Yi et al. [5] proposed a cou-
pled fluid flow and fracture phase field evolution model to simulate hydraulic fracture
propagation in porous media with natural fractures. Their results demonstrated that
smaller approaching angles, lower natural fracture strength, and smaller in situ stress
differences make natural fractures more likely to initiate and propagate. Zhou et al. [6]
advanced this understanding by developing a fully coupled hydro-mechanical model based
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on the extended finite element method (XFEM) to handle different fracture interaction
behaviors. Introducing a new weakly discontinuous junction enrichment function and
adopting a tensile stress criterion for new fracture initiation, they investigated the effects of
natural fracture properties, treatment parameters, matrix permeability, anisotropic stress,
and intersection angle on fracture interaction. Xiong and Ma [7] developed a hydraulic
fracture random propagation method using mesh node splitting and zero-thickness co-
hesive elements. Their study demonstrated that natural fractures could open and slip
even without direct contact with hydraulic fractures, highlighting the influence of stress
shadow effects and the importance of formation properties and injection rates on fracture
complexity. Sun et al. [8] proposed a quantitative model to predict hydraulic fracture prop-
agation across cemented natural fractures based on numerical simulation and developed a
probability function to predict crossing behavior using logistic regression.

Figure 1. Schematic diagram of acid fracturing in naturally fractured reservoirs.

Experimental investigations have provided valuable insights into fracture propagation
behavior in naturally fractured reservoirs [9-11]. Zhou et al. [12] conducted experimental
studies using a tri-axial fracturing system, revealing complex interactions under various
stress conditions and rock properties. Zhang et al. [13] performed experiments on hydraulic
fracture propagation in tight sandstone formations with closed cemented natural fractures.
By creating artificial tight sandstone specimens with controlled properties and embedded
natural fractures, they showed that factors such as approach angle, in situ stress state, and
natural fracture properties significantly influence the interaction between hydraulic and
natural fractures. Qiu et al. [14] conducted laboratory tests to investigate the interaction
between hydraulic fractures and natural fractures in deep unconventional reservoirs under
high stress conditions and identified various interaction modes between hydraulic and
natural fractures.

The topology and characteristics of natural fractures play a significant role in fracture
network development. Wang et al. [15] investigated the role of natural fractures with differ-
ent topology structures on hydraulic fracture propagation in continental shale reservoirs.
Utilizing data from the Yanchang Formation, they classified natural fractures into three
types based on node structures. Their study found that natural fractures with Type Il nodes
had the most substantial effect on inducing hydraulic fracture propagation and creating
complex fracture networks. Injection parameters and fluid properties also critically impact
fracture propagation. Li et al. [16] conducted a sensitivity analysis using a discrete fracture
network (DFN) model based on outcrop data from the Ordos Basin, China. Their findings
indicated that increasing natural fracture aperture decreased fracture complexity, while
higher friction coefficients improved hydraulic fracturing efficiency. Higher injection rates
led to more complex fracture networks, whereas higher fluid viscosity reduced fracturing
efficiency. Tong et al. [17] proposed a new criterion for predicting the interaction between
hydraulic fractures and natural fractures at non-orthogonal angles. Considering fluid flow,
stress shadow effects, and poroelastic responses, they revealed that hydraulic fractures are
more likely to cross natural fractures under conditions of short fracture half-length, high
friction coefficient, high fluid viscosity, and high fracture toughness.

While significant progress has been made in understanding hydraulic fracture propa-
gation, there is a relative paucity of studies specifically addressing acid fracture propagation
in the presence of natural fractures. Acid fracturing introduces additional complexities
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due to chemical reactions between the acid and the rock, which can alter fracture sur-
faces, change rock mechanical properties, and influence fracture propagation paths [18-20].
Dai et al. [21] conducted true triaxial acid fracturing experiments to study steering acid
fracturing in carbonate reservoir and found that the complexity of fractures is influenced by
natural fracture and the fluid viscosity. Chen et al. [22] addressed some of these complexi-
ties by simulating acid transport and dissolution in fracture networks using a 3D unified
pipe-network method, allowing for the modeling of complex fracture geometries and their
evolution due to acid dissolution. Zhu et al. [23] presented a discretized virtual internal
bond approach for acid fracturing in complex fractured-vuggy carbonate reservoirs. By
considering full hydro-mechanical-chemical coupling effects in large fractures and partial
coupling in small fractures, their method could simulate large fracture propagation, inter-
actions with natural fractures and cavities, and the activation of inactive natural fractures.
Recently, we developed a hydro-mechano-reactive flow coupled model to simulate acid
fracturing in heterogeneous reservoirs [24]. Despite these advancements, a comprehensive
investigation integrating the various factors affecting acid fracture propagation with natural
fractures remains lacking. Therefore, this study aims to fill this gap by conducting a com-
prehensive investigation into the factors affecting acid fracture propagation in the presence
of natural fractures by extending the previously developed hydro-mechano-reactive flow
coupled model.

This paper is structured as follows: Section 2 outlines the primary governing equation
of the model, while Section 3 presents the numerical solution. Section 4 validates the model
and provides an in-depth analysis of acid fracture propagation in conjunction with natural
fractures. Finally, Section 5 offers some conclusions.

2. Governing Equations

Consider the scenario of an acid fracture approaching a natural fracture at an angle f3,
as illustrated in Figure 2. Acid fracture propagation encompasses acid transport, fluid flow,
rock deformation, and fracture propagation. We present a hydro-mechano-reactive flow
coupled model previously developed in [24]. This model is now extended to analyze the
interaction between acid fractures and natural fractures. The study is based on the following
assumptions: the fracturing process occurs under quasi-static and isothermal conditions;
the reservoir is heterogeneous and saturated, accounting for variations in porosity, mineral
inclusions, and elastic modulus; the fluid is compressible, and acid dissolution occurs
instantaneously, following a first-order kinetic mechanism; principal stresses are considered.
Limitations of the model include the following: it is a two-dimensional representation;
the size of the research domain is constrained due to the small mesh scale required for
accurate acid dissolution modeling. The main governing equations are provided for model
completeness as follows.

O,
IR AR AR AR IR A 2 A 2 2R A
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Figure 2. Schematic of interaction between acid fracture and natural fracture.

2.1. Reservoir Heterogeneity Characterization

Reservoir rock, at the microscopic level, comprises a solid matrix, pores, and mineral
inclusions. Due to the random distribution of pores and minerals, the rock exhibits inherent
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heterogeneity, affecting its macroscopic mechanical properties. Two scales are considered:
the micro-scale, where pores disperse in the solid matrix forming a porous matrix, and the
meso-scale, where mineral inclusions are distributed. A two-step linear homogenization
approach, based on the Mori-Tanaka scheme [25,26], estimates the macroscopic mechan-
ical parameters. This approach accounts for the heterogeneity of Young’s modulus and
Poisson’s ratio of the rock. The acid dissolution modeling necessarily considers the het-
erogeneity of porosity, which in turn influences the heterogeneity of the rock’s mechanical
parameters. Furthermore, acid dissolution degrades the rock’s mechanical modulus, sig-
nificantly affecting fracture propagation. Therefore, it is crucial to account for the initial
heterogeneity of the rock’s mechanical parameters.

The first homogenization step accounts for the micro-scale pore effect, estimating the
effective elastic stiffness of the porous medium as follows [27]:

C" = C": (I f,AF) @

where C™ is the elastic stiffness tensor of the solid matrix. I denotes the four-order unit
tensor. Fp is the pores to matrix volume ratio, and Ap is the strain concentration tensor
relating uniform strain to local strain:

-1 1171
AP = (I—PP:c™) ' [(1—fp)1+f,,(1—PP:cm) } @)

where P, represents the porous matrix’s Hill tensor, determined by integrating the Green
function [25,27].

The second homogenization step considers mineral inclusions, simplifying them into
an equivalent phase to estimate rock’s macroscopic effective elastic stiffness:

Cchm ="+ fi(C' = C") : A (3)
where A; links macroscopic strain to local strain in inclusions:
. S -1 S -1771
Al = [1+P1 L (C— cmr’)] : [(1 — )+ fi (1+ P (C - cmP)) } (4)
where P; is the macroscopic medium’s Hill tensor, calculated similarly to P, with C"F.

2.2. Fluid Flow and Acid Transport

As fractures initiate and propagate, the properties of the damaged reservoir area
change including compressibility, permeability, and Biot’s coefficient. These are updated
using Lee et al.’s linear interpolation approach [5]. Considering porosity alterations due to
mineral dissolution, the fluid flow continuity equation is as follows:

874) aj _& _ . asvol
at+5tat+v ( pr)—QO ot ot (5)

where Sy, ki, and a; are the medium’s equivalent compressibility, permeability, and Biot’s
coefficient, calculated via interpolation [28]. @ symbolizes porosity, y is the fluid viscosity,
and Q) is the source term.

Acid transport involves convection, dispersion, and transfer. The transfer term, de-
scribing acid flow to the fluid-solid interface, is a first-order kinetic reaction [29]:

kcks
kc + ks

R(Cr) =ke(Cr—C) =kiCs = o ©)

where k. is the transfer coefficient, and ks is the surface reaction rate. Cf and C; are acid
concentrations in the fluid phase and at the fluid-solid interface.
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¥(uT,p) =

Acid transport’s continuity equation is as follows:

2(9Cr)
ot

+V- (vcf) V. (che : vcf) - avR(cf) )
where v is the fluid velocity. D, denotes the effective dispersion tensor. Av denotes the
specific surface area.

The transfer term changes porosity:

9 (P R (C f) aplkg g
i (®)
where «; is the dissolving coefficient, and p; is the rock’s density.

Based on the two-scale continuum model [29], the pore structural parameters and
related transfer coefficient and dispersion tensor are analyzed at the pore scale. Semi-
empirical relations estimate the pore radius, permeability, and surface area due to
porosity change:

"p _ |kepo
ro \ kog ®)
h_¢wrwwy7
ko ¢o <<Po(1 - ) {10
4 _ P10
a0 $orp ()

where 1, ko, and ay denote initial average pore radius, permeability and surface area when
porosity equals ¢g. I is the pore broadening parameter.
The transfer coefficient kc is derived via the Sherwood number:

B 2keryp

m

Sh

= Sheo + 0.7Re;/25c!/3 (12)
where Dy, is molecular diffusivity, and She, is the asymptotic Sherwood number. Rep
is the Reynold’s number, and Sc is the Schmidt number (Sc = v /D)), where vy is the
kinetic velocity.
The dispersion tensor is characterized by longitudinal and transverse dispersion
coefficients [29]:
D,x = (0605 + /\Xp(i‘p>Dm

(13)
(14)

where X and T denote acid injection and perpendicular directions. a,s, Ax, and At are
pore-structure constants. Pep is the Peclet number, defined as Pep = |v|d},/(¢D;;), where
dy, is the pore’s diameter.

2.3. Rock Deformation and Fracture Propagation

Considering elastic strain energy, crack surface energy, and fluid pressure dissipation
energy, the porous medium’s total energy functional is as follows:

./ng(e)d0+/l;GCdF—/Qoqp-(V-u)de./Qb-ude‘/a.Qf-udaQt (15)

where u and p are displacement tensor and fluid pressure. ¢ represents elastic strain energy,
and ¢ is the strain tensor. G, is the critical energy release rate. b is the body force, and # is
the traction on the boundary 0Qt.
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Acid dissolution degrades the rock’s elastic modulus [30,31], with Young’s modulus
exhibiting exponential decline with increasing dissolution-induced porosity. It is used to a
chemical damage variable [32,33]:

dchem = 6—1’|A¢\ (16)

where r is a degradation coefficient, derived by fitting experimental results [24,34].
Using the phase field method, the total energy functional is as follows [24]:

d?
¥, p) = Jo g denem) P (€) 4 - (€0 + Jo 5 [0va- v+ T
—Jqap- (V- -u)dQ— [b-udQ — fBQf t-udoQy

where g is the degradation function. ¥+ and ¢— are tensile and compressive elastic strain
energies. d denotes the phase field, and [ is a characteristic length parameter.

Integrating crack phase field and chemical damage field influences, the degradation
function is as follows:

g(dr dchem) = (1 - kO) [dchem(l - d)]z + kO (18)

where kg ensures the stiffness matrix remains well conditioned as the phase field approaches 1.
Using the variational approach, the governing equations for rock deformation are

as follows:
V-(c—apl)+b=0 (19)

Similarly, the phase field governing equation, with local history variable H is as follows:

20(1 —ko)d%.. H

210(1 kO) chemlp-‘r chem
20
Gc ( )

Ge

+1|d—13(Vd-Vd) =

Initial and natural fractures are modeled by prescribing strain field history, as proposed
by Borden et al. [35]:

" li% (1 — (lol)), s(x, 1) <y "
olx) = 0, s(x,1) > Io @)

where B is a constant. s(x,[) represents the distance of point x to line L.

3. Numerical Methods

The governing equations are highly nonlinear, necessitating an iterative algorithm
for solutions. A hybrid method utilizes the finite element method for stress and phase
field discretization and the finite volume method for fluid pressure and acid concentration
discretization. The fixed stress split method accelerates convergence due to stress and
pressure coupling.

Within the finite element framework, weak formulations of stress and phase field
equations are obtained by applying the virtual work principle:

/ (U—apl):s(éu)d():/ b-aud0+/ 7. 5udd0y 22)
Q Q 00

/Q {2(1 — ko)A H + }d&ddﬂ n / GelgVd - V(5d)dQ = 2 / ko) 42 o HOAAO) 23)

where Ju denotes the virtual displacement tensor, and dd represents the virtual phase
field variable.
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Within the finite volume framework, the fluid pressure integration equation over
elements yields the following:

ap " k¢ R(Cs)av“d aevol
S—dV—/ V|-V dV:/ —7(:1‘/—/ dv 24
/ne for Qe (# p) Ja, Qo o 0. ot )

S

The flow flux between elements relies on the flow conductivity at the interaction
boundary, calculated by the harmonic mean.
Similarly, the acid concentration integration equation is as follows:

9P 4y V. (0C)dV = | V- (¢De-VC;)dV o o qv (25
/Qe ot +/Qe (06) _/Q@ (#De VCp) 7/0€kc+ks v 25

Using the upwind scheme for advection flux and harmonic mean for diffusion flux,
time derivation is generally estimated by the backward scheme.

Discretized field equations are solved using an efficient iterative algorithm. At each
new time step, fluid pressure, displacement, and phase field are iterated using staggered
manner until convergence, and then acid concentration is solved based on fluid pressure
updates in a decoupled manner. Porosity and property parameters are updated for the
next time step. Detailed methods can be found in the previous study [24].

4. Simulation Results

The hydro-mechano-reactive flow coupled model for simulating acid fracture prop-
agation has been validated in a previous study [24], including the calculations of acid
dissolution and crack propagation. To further verify its applicability to fracture interaction
problems, we examined the scenario of a hydraulic fracture approaching a natural fracture,
as this configuration has been extensively studied both experimentally and theoretically.
Subsequently, we employed the model to investigate the interaction modes between acid
fractures and natural fractures, followed by a comparative analysis of the propagation
patterns of acid fractures and hydraulic fractures. Finally, we conducted a comprehensive
analysis of the combined effects of acid dissolution and other factors (including stress
differential, approach angle, injection rate, and acid concentration) on fracture propagation.

4.1. Verification of Interaction Between Hydraulic Fracture and Natural Fracture

The interaction between hydraulic fractures and pre-existing natural fractures has
been a subject of significant research in the field of hydraulic fracturing. Blanton’s seminal
work [36], which involved experimental studies, led to the development of an interaction
criterion that examines the effects of approaching angle and stress difference on fracture
behavior. To validate our numerical model against Blanton’s established criterion, we
simplified our hydro-mechano-reactive flow coupled model to simulate hydraulic fracture
propagation by omitting acid transport processes. This allows for a direct comparison
between our numerical solutions and Blanton’s experimental criterion, thereby providing a
robust verification of our model’s capability to accurately simulate fracture interactions in
the absence of chemical reactions.

Our simulation setup comprises a square sample containing an initial hydraulic
fracture and an inclined natural fracture, similar to the configuration illustrated in Figure 2.
The domain is discretized into a uniform grid of square elements, with 100 elements along
each axis, resulting in a 100 x 100 mesh. The key distinction in this verification study is the
absence of acid in the fracturing fluid. By systematically varying the approaching angle and
stress difference in our simulations, we aim to reproduce the interaction behaviors observed
in Blanton’s experiments. Table 1 presents the model parameters used in these simulations.

Numerical solutions reveal two primary modes when a hydraulic fracture approaches
a natural fracture: crossing and diversion. We obtained propagation modes under vari-
ous scenarios with different approaching angles and stress differences, comparing them
with Blanton’s criterion as illustrated in Figure 3. In this figure, the region to the right
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of Blanton’s criterion represents crossing, while the left represents no crossing. Our so-
lution demonstrates consistency with Blanton’s criterion, thereby validating the model’s
application for hydraulic fracture and natural fracture interaction.

Table 1. Input parameters for hydraulic fracture propagation with natural fracture.

Parameter Symbol Value Unit
Length of domain L 0.5 m
Height of domain H 0.5 m
Length of initial hydraulic fracture Inf 0.15 m
Length of natural fracture Ly 0.1 m
Young’s modulus E 25 GPa
Poisson’s ratio v 0.25 -
Characteristic length parameter Iy 0.01 -
Critical energy release rate Ge 50 Pa-m
Maximum principal stress oy 8 MPa
Minimum principal stress oy, 5 MPa
Matrix permeability ky 1.0 x 1071 m?
Fracture permeability ke 1.0 x 1078 m?
Injection rate % 7.5 x 10~% m?/s
Fluid viscosity U 1.0 x 1073 Pa-s
6
5 [e]
z 4 o o
g 3 o o
5 X Crossing
“T O  Diversion
Blanton's criterion
. . ‘ ‘ .
20 30 40 50 60

Approaching angle
Figure 3. Comparison of fracture propagation mode between our solution and Blanton’s criterion.
The phase field method employed in our model automatically determines the hy-
draulic fracture propagation direction without additional criteria. The fracture always

propagates along the path of least energy dissipation. Figure 4 illustrates fracture propaga-
tion paths under different approaching angles with a stress difference of 3 MPa.

—— B—"

=

(a) (b) ()

Figure 4. Fracture propagation paths under different approaching angles: (a) § = 45°; (b) B = 60°;
(c) p=90°.
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When the approaching angle is 45°, the hydraulic fracture exhibits minimal diversion
before contacting the natural fracture (denoted by the black line). It then diverts into the
natural fracture, ultimately reinitiating from the tip of the natural fracture and continuing
to extend. At a 60° approaching angle, the hydraulic fracture propagates towards the
natural fracture and diverts into it. When the approaching angle is 90°, the hydraulic
fracture crosses the natural fracture without diversion. These results can be explained by
the principle of least energy dissipation. Two main energies are dissipated during fracture
propagation: fracture surface energy and elastic strain energy. When a hydraulic fracture
approaches a natural fracture at a small angle, it diverts into the natural fracture due to
significantly lower fracture surface energy, despite potentially increased dissipated elastic
strain energy compared to crossing the natural fracture. However, as the approaching angle
increases, the dissipated elastic strain energy along the natural fracture direction increases,
making fracture crossing the path of least total energy dissipation.

Figure 5 presents the injection pressures for different approaching angles. The injection
pressure for the 45° approaching angle increases first due to hydraulic fracture diversion
before contacting the natural fracture. Injection pressures for 60° and 90° approaching an-
gles increase simultaneously. When the hydraulic fracture diverts into the natural fracture,
the dissipated energy is less than that of crossing the natural fracture. Consequently, the
peak injection pressure is highest when the hydraulic fracture crosses the natural fracture
at a 90° approaching angle.

9 T T T T T T

[3=45°
8- 560" |
3=90°

S [ =) -
T T T T
I I

v
T

Injection pressure/MPa

0 L L L L L
0 0.5 1 1.5 2 25 3 35

Injection time/s

Figure 5. Evolution of injection pressures for different approaching angles.

4.2. Interaction Mode Between Acid Fracture and Natural Fracture

To investigate the interaction mode between acid fractures and natural fractures, we
employ a model comprising a square sample with an initial acid fracture and an inclined
fracture, as illustrated in Figure 2. It takes approximately 30 min of computation time on
an Intel Core i7-6700 CPU.

Our model incorporates reservoir heterogeneity by describing porosity and mineral
inclusions using the Weibull distribution. We estimate the macroscopic mechanical parame-
ters using a two-step homogenization method. Table 2 provides the model parameters used
in the simulation. Figure 6 presents the distribution of porosity, the volume fraction of min-
eral inclusions, and the resulting elastic modulus. The heterogeneity in porosity influences
acid dissolution and wormhole formation, which, in combination with the heterogeneity in
elastic modulus, significantly affects fracture propagation.
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Table 2. Input parameters for acid fracture propagation with natural fracture.

Parameter Symbol Value Unit
Length of domain L 0.5 m
Height of domain H 0.5 m
Length of initial hydraulic fracture Inf 0.15 m
Length of natural fracture Luf 0.1 m
Approaching angle B 90 °
Characteristic length parameter Io 0.01
Critical energy release rate Ge 50 Pa-m
Elastic modulus of solid matrix En 12 GPa
Poisson’s ratio of solid matrix Um 0.25 -
Elastic modulus of mineral inclusion E; 98 GPa
Poisson’s ratio of mineral inclusion v; 0.15 -
Scale parameter of f, 0.12 -
Shape parameter of f, 10 -
Scale parameter of f; 04 -
Shape parameter of f; 10 -
Maximum principal stress oy 8 MPa
Minimum principal stress oy, 5 MPa
Acid concentration Cro 0.15 -
Acid injection rate vy 1.05 x 1073 m?/s
Acid surface reaction rate ks 2.0x 1073 m/s
Molecular diffusion coefficient Dy, 3.6 x 107° m?/s
Asymptotic Sherwood number Shoo 3.66 -
Constants Qos, Ax, AT 0.5,05,0.1 -
Initial average permeability kr 1.0 x 10715 m?
Initial specific surface area %) 5.0 x 10% m~!
Initial pore diameter do 1.0 x 107° M
Pore broadening parameter B 1 -
Chemical degradation coefficient r 5 -
Fluid viscosity i 1.0 x 1073 Pa's
Rock density 0Os 2.71 x 103 kg/m?

Figure 6. Distribution of reservoir parameters: (a) porosity; (b) volume fraction of mineral inclusion;
(c) elastic modulus (GPa).

The acid fracture propagation path, determined using the input data from Table 2,
is illustrated in Figure 7a. In this scenario, the acid fracture crosses the natural fracture.
To explore additional interaction modes between acid fractures and natural fractures, we
adjusted certain parameters. When the stress difference is reduced to 0, the acid fracture
diverts into the natural fracture, as shown in Figure 7b. When the injection rate is decreased
to 0.75 x 1073 m?2/s, the acid fracture is arrested by the natural fracture, as depicted in
Figure 7c.
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(a) (b) (©)

Figure 7. Interaction modes between acid fracture and natural fracture: (a) crossing; (b) diversion;

(c) arresting.

Figure 8 presents the porosity distributions under different modes. When the hydraulic
fracture contacts the natural fracture, fluid rapidly flows into the natural fracture due
to its high permeability. This leads to wormhole formation around both the acid and
natural fractures. The distribution of porosity is similar to the previous solution present
by Zhu et al. [37]. Comparing Figure 8a,b, we observe that decreasing the stress difference
causes the hydraulic fracture to divert into the natural fracture. This phenomenon can be
explained by the principle of least energy dissipation. The injection pressures for these two
scenarios are similar, as shown in Figure 9. In the arresting mode (Figure 8c), the reduced
injection rate results in the formation of numerous wormholes propagating towards the
outer boundaries. This causes rapid pressure dissipation, preventing the accumulation of
high pressure necessary for the hydraulic fracture to reinitiate from the natural fracture, as
evident in Figure 9.

Figure 8. Porosity distributions under different modes: (a) crossing; (b) diversion; (c) arresting.

Crossing
Diversion
Arresting |

Injection pressure/MPa

8]
T

0 5 10 15 20 25 30 35 40 45
Injection time/s

Figure 9. Injection pressure evolution for different modes.
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Figure 10 displays the pressure distributions under different modes. The high-pressure
area expands as the interaction mode changes from crossing to diversion and then to
arresting. In the former modes, especially the crossing mode, pressure dissipation is
primarily used to extend fractures. The pressure distribution is also closely related to the
wormhole distribution.

x10° x10° w108

(@) (b) (c)

Figure 10. Pressure distributions under different modes: (a) crossing; (b) diversion; (c) arresting.

4.3. Comparison of Propagation Modes: Acid Fracture vs. Hydraulic Fracture

Acid fracturing involves acid transport and dissolution, which significantly influences
the interaction process between acid fractures and natural fractures. This leads to distinct
propagation modes for acid fractures compared to hydraulic fractures. To investigate the
effect of acid dissolution on fracture propagation modes, we conducted several case studies.

Initially, we simulated hydraulic fracture propagations under stress differences of
0 MPa and 3 MPa, with an injection rate of 0.75 x 1073 m?/s. Other model parameters
remained consistent with those in Table 2. These simulations resulted in diversion and
crossing modes, as illustrated in Figures 10b and 11a, respectively.

(a) (b) (©)

=

(d)

Figure 11. Fracture propagation modes for different cases: (a) Ac = 0 MPa, hydraulic fracture;
(b) Ao = 3 MPa, hydraulic fracture; (c) Ac = 0 MPa, acid fracture; (d) Ac = 3 MPa, acid fracture.

Using the same injection rate, we then calculated acid fracture propagations under the
two stress differences. Contrary to hydraulic fractures, acid fractures were arrested by the
natural fracture in both cases, as shown in Figures 10d and 11c. The arrest mode of acid
fracture is similar to the results presented by Guo et al. [34].
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We compared the injection pressure evolutions for these scenarios, as depicted in
Figure 12. For hydraulic fracturing, the fluid pressure rises rapidly, enabling the hydraulic
fracture to either cross the natural fracture or reinitiate after diversion. In contrast, dur-
ing acid fracturing, the fluid pressure increases more slowly, and the peak pressure is
insufficient for fracture initiation from the natural fracture. This difference is attributed to
acid dissolution leading to the formation of numerous wormholes. Fluid flows into these
high-permeability channels, preventing the accumulation of high pressure necessary for
acid fracture re-initiation.

10

A =0 MPa, hydraulic fracture

A =3 MPa, hydraulic fracture -
A 0=0 MPa, acid fracture

sk A 0=3 MPa, acid fracture

9t

Injection pressure/MPa
[

0 5 10 15 20 25 30 35 40 45
Injection time/s

Figure 12. Injection pressure evolution for hydraulic fracture and acid fracture.

These results indicate that the hydraulic fracture is more likely to cross natural frac-
tures, whereas acid fractures tend to become arrested or diverted. This behavior primarily
results from wormhole formation due to acid dissolution, which impedes the buildup of
high fluid pressure required for fracture initiation and extension.

4.4. Comprehensive Influences of Acid Dissolution with Other Factors

The interaction between acid fractures and natural fractures results from a complex
interplay of acid dissolution and other factors, including stress difference, approaching
angle, and treatment parameters. To investigate these effects, several scenarios were
simulated for acid fracture propagation with natural fractures. Unless otherwise stated,
model parameters are as provided in Table 2.

Acid fracture propagations under varying stress differences (0 MPa, 3 MPa, and 5 MPa)
are illustrated in Figure 13. At a stress difference of 0 MPa, the acid fracture diverts into the
natural fracture and reinitiates from the tip, extending along an arc-shaped path rather than
following its initial direction. As the stress difference increases, the fracture propagation
mode transitions from diversion to crossing because more strain energy is required for
fracture diversion when increasing the principal stress perpendicular to the natural fracture.

__'-—__}._

(a) (b) (c)

Figure 13. Fracture propagation paths under different stress differences: (a) Ac = 0 MPa;
(b) Ao =3 MPa; (c) Ao =5 MPa.
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Acid fracture approaches to natural fractures at different angles (30°, 60°, and 90°) are
illustrated in Figure 14. At angles of 30° and 60°, the acid fracture diverts into the natural
fracture. However, with a 30° approach angle, the fracture alters its trajectory before contact
and reinitiates at the natural fracture tip. At 60°, the direction remains unchanged until
contact and then reinitiates near the tip. At lower approach angles (30° and 60°), the stress
concentration at the tip of the natural fracture tends to attract and redirect the approaching
acid fracture. This redirection is more pronounced at 30° due to the greater alignment
with the natural fracture’s orientation. The stress field perturbation becomes significant
enough to alter the acid fracture’s trajectory even before direct contact. In contrast, at 90°,
the acid fracture crosses the natural fracture. This phenomenon is similar to hydraulic
fracture propagation. These insights highlight the critical importance of understanding
the geometric relationship between induced fractures and the natural fracture network for
effective subsurface engineering applications.

(a) (b) ()

Figure 14. Fracture propagation paths with different approaching angles: (a) g = 30°; (b) g = 60°;
(c) p=90°.

Acid fracture propagation under varying injection rates is presented in Figure 15. At a
low injection rate, the acid fracture is arrested by the natural fracture. This behavior can
be attributed to insufficient pressure buildup within the fracture. The slower rate allows
more time for acid-rock interaction, potentially leading to excessive etching and wormhole
formation near the natural fracture interface. This increased permeability can dissipate fluid
pressure, preventing the necessary stress concentration for fracture propagation beyond
the natural fracture.

(@) (b)

Figure 15. Fracture propagation paths under different injection rates: (a) vy = 0.75 x 1073 m?/s;
(b) vp = 1.05 x 1073 m?/s; (c) vy = 1.35 x 1073 m?/s.

=

(c)

Increasing the injection rate leads to the acid fracture crossing the natural fracture.
Higher injection rates facilitate high-pressure accumulation in the fracture, promoting
fracture re-initiation from the natural fracture. This can be attributed to reduced acid-rock
interaction time and enhanced pressure accumulation within the fracture. This scenario
closely resembles hydraulic fracturing behavior, where the dominant mechanism shifts
from chemical dissolution to mechanical breakdown of the rock formation.
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Acid fracture propagations using different acid concentrations are presented in
Figure 16. As acid concentration increases, the propagation mode shifts from crossing to
arresting or even failure to initiate. While adding acid to the fracturing fluid can reduce
breakdown pressure, excessively high concentrations can prevent fracture initiation. This
phenomenon is explained by the acid dissolution effect shown in Figure 17.

(a) (b) (c)

Figure 16. Fracture propagation paths with different acid concentrations: (a) Cfo =0.1; (b) Cfo =0.15;
(C) Cfo =0.2.

Figure 17. Porosity distributions with different acid concentrations: (a) Cfo =0.1; (b) Cfo =0.15;
(C) CfO =0.2.

The process of acid fracture propagation depends on the dissolution capabilities of
the acid used in fracturing fluids. At lower concentrations, the acid efficiently reduces
the breakdown pressure by weakening the rock matrix, facilitating fracture initiation and
propagation. However, as the concentration increases, the aggressive dissolution forms
enhanced permeability channels known as wormholes. These wormholes significantly alter
the fluid dynamics within the fracture, allowing hydraulic pressure to dissipate rapidly.
Consequently, the pressure necessary for further fracture propagation cannot be sustained,
leading to arrest or failure to initiate the fracture. This relationship highlights the dual role
of acid as both an enabler and a potential inhibitor of fracture growth, depending on its
concentration. To deepen the understanding of this complex interaction, future work could
focus on performing experimental validation that varies acid concentration and assessing
its effect on fracture propagation.

5. Conclusions

The hydro-mechano-reactive flow coupled model effectively simulates the interaction
between acid fractures and natural fractures. It has been validated against established
criteria for hydraulic fracturing and successfully extended to acid fracturing scenarios. The
following key conclusions are obtained:

(1) Acid fractures exhibit different propagation modes compared to hydraulic fractures
when interacting with natural fractures. While hydraulic fractures are more likely to
cross natural fractures, acid fractures tend to be arrested due to wormhole formation and
pressure dissipation.
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(2) Increasing stress differences and approaching angles significantly affect fracture
behavior. Higher stress differences promote fracture crossing, while smaller approaching
angles favor diversion into natural fractures for both hydraulic and acid fractures.

(3) Injection rate and acid concentration play crucial roles in fracture propagation.
Higher injection rates facilitate fracture crossing by increasing pressure accumulation, while
excessive acid concentrations can hinder fracture initiation due to enhanced wormhole
formation and pressure dissipation.

(4) The model incorporates reservoir heterogeneity, demonstrating that variations
in porosity and mineral inclusions significantly influence acid dissolution, wormhole
formation, and subsequent fracture propagation patterns. This highlights the importance
of considering reservoir heterogeneity in fracture stimulation design.
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Abstract: The CO, sequestration capacity evaluation of reservoirs is a critical procedure for carbon
capture, utilization, and storage (CCUS) techniques. However, calculating the sequestration amount
for CO; flooding in low-permeability reservoirs is challenging. Herein, a method combining numeri-
cal simulation technology with artificial intelligence is proposed. Based on the typical geological and
fluid characteristics of low-permeability oil reservoirs in the Liaohe oilfield, the CMG 2020 version
software GEM module is used to establish a model for CO; flooding and sequestration. Meanwhile, a
calculation method for the effective sequestration coefficient of CO, is established. We systematically
study the sequestration rules in low-permeability reservoirs under varying conditions of permeability,
reservoir temperature, and initial reservoir pressure. The results indicate that, as the permeability
and sequestration pressure of the reservoir increase, oil recovery gradually increases. The proportion
of structurally bound sequestration volume increases from 55% to 60%. Reservoir temperature has
minimal impact on both the recovery rate and the improvement in sequestration efficiency. Sequestra-
tion pressure primarily improves sequestration efficiency by increasing the dissolution of CO, in the
remaining oil and water. The calculation chart for the effective sequestration coefficient, developed
using artificial intelligence algorithms under multi-factor conditions, enables accurate and rapid
evaluation of the sequestration potential and the identification of favorable sequestration areas in
low-permeability reservoirs. This approach provides valuable technical support for CO, flooding
and sequestration in pilot applications.

Keywords: effective burial coefficient; CCUS; numerical simulation; artificial intelligence

1. Introduction

In recent years, with the rapid development of the global economy and the improve-
ment of living standards, global oil consumption has been rising. Since 2019, China has
relied on foreign crude oil for over 70% of its needs for six consecutive years [1-3]. The
main section of aging oilfields developed through water injection has reached the “double
high” stage, characterized by a high water cut and high recovery rates. Stabilizing and
increasing crude oil production has become challenging, making it urgent to identify new
growth points for resources [4-6]. Direct emissions of CO,, the by-product of burning
fossil fuels, will pollute the atmosphere, causing the greenhouse effect [7,8]. As the world’s
second largest economic entity and a responsible nation, China has taken the initiative to
shoulder the responsibility of tackling global climate change. It has set the ambitious targets
of reaching peak carbon emissions by 2030 and achieving carbon neutrality by 2060 [9-11].
In the background of “energy independence” and “carbon peak and carbon neutrality”,
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CCUS (carbon capture, utilization, and storage) have received increasing attention in the
field of petroleum production [12,13].

Low-permeability reservoirs face challenges such as strong reservoir heterogeneity,
a complex pore structure, rapid energy depletion in depleted production formations, dif-
ficulties in replenishing energy through water injection, and low recovery rates [14,15].
In 2014, the United States was responsible for about 93% of global CO; flooding-enhanced
oil recovery (EOR) production. About 80% of the CO, flooding reservoirs had perme-
abilities of less than 50 x 1073 pum, demonstrating considerable economic and social
benefits [16-19]. Injecting CO;, into a reservoir can lead to the dissolution, expansion,
and viscosity reduction of crude oil. Miscible flooding can significantly enhance both
sweep efficiency and flooding efficiency [20,21]. However, the varying characteristics of
reservoirs—including physical properties, oil quality, temperature, pressure, fluid dis-
tribution, and trap storage capacity—affect the impact of CO; flooding on enhanced oil
recovery and burial effects [22-24]. Currently, CO, storage capacity assessment studies
mostly focus on specific physical properties of oil reservoirs [25-27]. There is a lack of
research on the changes and potential assessment of CO, burial amounts under varying
reservoir conditions.

The calculation of CO; storage capacity is primarily determined by the method used
to calculate effective storage capacity. Effective storage capacity considers factors such as
buoyancy, overburden pressure, fluid dynamics, heterogeneity, water saturation, and others.
Its value aligns more closely with actual storage capacity than theoretical estimates [28-30].
Existing method mainly use analogy or numerical simulation techniques to calculate
effective CO, storage capacity. However, pilot test projects for CO, storage sites are
limited, leading to restricted available parameters and reliability issues in analog-based
CO, storage calculations [31]. The process of calculating the effective storage coefficient by
numerical simulation method is complex and lacks the capability for rapid and convenient
calculations, which imposes application limitations [32,33]. To address these issues, a
numerical simulation model of CO, flooding was developed based on the geological
and fluid characteristics of typical low-permeability oil reservoirs in the Liaohe oilfield.
This model aims to systematically study the effects of enhanced oil recovery and CO,
burial behavior, establish a calculation framework for the effective storage coefficient using
artificial intelligence methods, and provide technical support and theoretical guidance for
assessing CO; burial potential and identifying favorable burial areas in the study area.

2. The Establishment of a Numerical Model of CO; Flooding and Burial

To investigate the CO, flooding and burial behavior in low-permeability reservoirs,
a numerical simulation component model of CO, flooding and burial was developed
using CMG reservoir numerical simulation software. This model was calibrated based
on the phase behavior of original formation fluids and the geological characteristics and
production data of the study area. A mature reservoir engineering calculation model was
employed to compute the theoretical CO, storage capacity. The solubility of CO, measured
in the laboratory was used to adjust the theoretical storage estimates. Subsequently, the CO,
effective storage coefficient was determined, forming the foundation for investigating CO,
storage mechanisms and developing a predictive model for effective storage coefficients.

2.1. The Fitting of the Phase of Fluids

Based on chromatographic measurements of degassed oils and associated gasses in the
study area, simulations were conducted using the Winprop module of the phase behavior
simulation CMG 2020 version software under an original reservoir pressure of 30.24 MPa, a
reservoir temperature of 88 °C, and a gas-oil ratio of 91.5 m3/m? to configure the live oil in
the study area and reconstruct the underground fluid composition. The phase equilibrium
calculations primarily utilized the PR state equation, obtaining the pseudo-component
composition of the model (Table 1). The experimental data of multistage degassing and
reservoir fluid property parameters were obtained from oilfield reservoir fluid testing
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information. The saturation pressure, viscosity, gas—oil ratio, and multi-stage degassing
experiments of underground crude oil were fitted, and the results are shown below (Table 2
and Figure 1), and the equation of state parameters that can reflect the reservoir fluid was
obtained (Table 3).

Table 1. Pseudo-component composition of live oil in model.

Component Molar Component Molar
Composition/% Composition/%
N 0.02 Ce—C12 10.46
CO, 0.36 C13-Cn1 15.07
CHy4 48.67 Cy—Cy9 12.47
Cyr-Csy 9.58 C30—C3s 3.37

Table 2. Fitting results of fluid phase features.

Saturation Pressure/MPa Viscosity/(mPa-s) Gas-0il Ratio/(m3/m?)
Experimental  Simulation o Experimental  Simulation o Experimental ~ Simulation o
Value Value Error/% Value Value Error/% Value Value Error/%
15.6 16.2 3.84% 3.2 3.1 3.2% 91.5 89.2 2.5%
1.6 A 1.0
14+ e - ;/!egsurgd data A  Measured data
' % ~ Fitting data . 09} - o— Fitting data
12F A & 5. a
B YV SETE S Zosf “e._. A a
5 1.0 - % bl * AN @-._. A A
& - Te-.. o
2 0.8} =0.7F
5 o
S0.6+ 3
> S06+
04+
0.5
0.2
00 1 1 1 1 1 1 1 1 0 4 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Saturation pressure (MPa) Saturation pressure (MPa)
(a) (b)
Figure 1. Fitting results of the multi-stage degassing experiment of formation fluid. (a) Fitting results
of volume factor. (b) Fitting results of crude oil density.
Table 3. Characteristic parameters of the equation of state after fluid phase fitting in low-permeability
thin oil reservoirs.
Component Critical Critical Critical Acentric Molecular Qa Qb

P Pressure/MPa Temperature/K  Volume/(L-mol—1) Factor Weight/(g-mol—1)

N, 3.39 126.2 0.09 0.04 28.01 0.46 0.08
CO, 7.38 304.2 0.094 0.23 44.01 0.46 0.08
CH, 4.6 190.6 0.099 0.01 16.04 0.46 0.08

Cy—Cs 3.76 422.54 0.257 0.19 59.37 0.46 0.08
Ce—C12 2.32 562.96 0.422 0.35 129.25 0.46 0.09
C13-Cp1 2.26 800 0.875 0.72 300.62 0.55 0.09
C2—Cy9 0.79 778.85 1.215 0.97 430.22 0.41 0.07
C30—Csg 0.66 680.06 1.482 1.12 499.32 0.37 0.06

2.2. The Establishment of the Low-Permeability Reservoir Model

Based on the geological model of the study area, a representative well group (Figure 2)
was selected, and production history matching was performed to enhance the reliability
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and accuracy of the model simulation results. Subsequently, numerical simulations were
conducted to study CO,; flooding and burial. The total number of grids of the model
is 31,050 grids. The initial average formation pressure is 30.24 MPa, with an average
permeability of 21 mD; average porosity is 16.3%, initial oil saturation is 0.55, and the rock
compressibility coefficient is 4.5 x 107° 1/kPa. A three-dimensional schematic diagram of
the model is shown below (Figure 2a). Historical production data of the study area were
fitted to obtain the current distribution of the remaining oil (Figure 2b) and the relative
permeability curves of the oil-water and gas-liquid phases (Figure 3).
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Figure 2. The established well group model and the current remaining oil distribution after his-
torical fitting. (a) A typical well group model for low-permeability reservoirs in the study area.
(b) Distribution of remaining oil after historical fitting.
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Figure 3. Relative permeability curves after historical fitting. (a) Oil-water relative permeability
curve. (b) Gas-liquid relative permeability curve.

2.3. The Solution of Effective Buried Storage Coefficient

Numerical simulation is the most effective method for calculating oil recovery and
effective storage coefficient [34]. CO; is influenced by factors such as differences in fluid
viscosity and density, formation heterogeneity, water saturation, and strong water bodies.
Therefore, it is more reliable to determine key parameters using “numerical simulation
technology + experimental measurements” for calculating the correlation coefficient, com-
pared to the empirical method. The solubility of CO; in the crude oil and water from
the study area was determined through solubility measurement experiments (Figure 4).
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This approach calculates the actual CO, storage considering various factors, followed by
computation of the effective storage coefficient (Equation (1)) [35].

_ M.

Ce= 31 )

where C, is the effective storage coefficient of the comprehensive influence of various
factors, M, is the effective burial amount of CO, in the reservoir, 10° t; M is the theoretical
buried amount of COj in the reservoir, 10° t.

(0.4Egp + 0.6Egn) Ahg(1 — Syi) — Vi + Vypw + Cus X (Ah¢Syi + Vi — Vyw) @)
+Cos(1 — 0.4Egy — 0.6Egn) Ahg(1 — Sy0)

where M is the theoretical buried amount of CO in the reservoir, 10° t; p; is the density of
CO; in the reservoir, kg/ m3; A is the reservoir area, m%; h is the reservoir thickness, m; @ is
the porosity of the reservoir; Sy; is the reservoir bound water saturation; Vj,, is the amount
of water injected into the reservoir, m3; Vpw is the water produced from the reservoir, m3;
Cuws is the CO;, solubility coefficient in water, m3/m3; Cys is the CO, solubility coefficient in
oil, m®/m3; Eg,, is the oil recovery factor before CO, breakthrough; Egy, is the oil recovery
factor when a certain volume of CO; is injected.
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Figure 4. The results of CO; solubility determination in oil and water in the study area. (a) Solubility
determination results in water. (b) Solubility determination results in oil.

The actual burial amount of CO; is obtained by numerical simulations to calculate
the difference between the actual CO, injection and the CO, output, and the actual model
considers the diffusion coefficient of CO5 in oil and water, and the diffusion coefficient is
measured by the pressure drop method experimentally [36]. The measurement method
involves connecting a CO,-filled container of constant volume to a core holder saturated
with crude oil. At the beginning of the experiment, the valve is opened to allow communi-
cation between the container and the core holder, which proceeds at constant temperature.
As CO; continues to diffuse into the core, the system pressure gradually decreases until
it reaches equilibrium. Pressure changes during the experiment are recorded, and Fick’s
second law is applied to calculate the gas diffusion coefficient.

Me = Minj - Mprd (3)

where: M, is the effective burial amount of CO, in the reservoir, 10° t; Miy; is the amount of
CO; injected,10° t; Mp.q is the amount of CO; produced, 10 t.
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3. Numerical Simulation Study of CO; Flooding and Storage

Based on the historical fitting model, wells were arranged according to the current
distribution of remaining oil. CO, injection was prioritized for wells with low oil saturation
in the vicinity, while high-pressure gas injection was employed to maximize gravity-driven
oil displacement. In Figure 2b, the injection well is highlighted by a red box, with the
remaining wells designated as production wells. The single-variable method was employed
to simulate CO, flooding and storage across varying permeability, temperature, and original
reservoir pressure, based on the component model. Temperature and pressure tests are
conducted via a gas injection well. The current gas injection capacity is calculated based on
the principle that the bottomhole pressure should not exceed 90% of the rupture pressure,
with a designed gas injection rate of 15,000 m3/d (at standard conditions). The production
wells adopt constant-pressure production, with the pressure set to the reservoir pressure in
each well’s grid cell after historical fitting. During the injection process, the well is shut
down when the production gas-oil ratio reaches 2000 m®/m3. All wells are then switched
to CO, until the formation pressure equals the original formation pressure (i.e., the final
storage pressure). The CO, flooding and storage simulation is completed, yielding CO,
storage results under different conditions, and calculating the contribution rate of various
storage mechanisms for CO; storage. Several methods are employed to compute storage
volumes for various sequestration mechanisms: the total storage volume is derived from
the difference between the CO, injected at the injection well and the CO, produced at the
production well; the dissolved storage volume in oil and water is determined using CMG
2020 version software, which calculates the CO, mole fraction in the oil-water phase using
an equation of state. This calculation is then combined with the post-sequestration volumes
of oil and water in the reservoir to ascertain the dissolved storage volume. The residual
storage volume is computed by subtracting the dissolved storage volume in oil and water
from the total storage volume. Temperature and pressure tests are conducted via a gas
injection well. The current gas injection capacity is determined based on ensuring that the
bottom pressure of the injection rate does not exceed 90% of the rupture pressure. The
designed injection rate is 15,000 m>/d under standard conditions. During the injection
process, wells are closed when the gas-to-oil ratio reaches 2000 m®/m>. Subsequently,
all wells are switched to CO, injection until the formation pressure is restored to the
original level (i.e., the final storage pressure). This process completes the simulation of
CO;,-enhanced oil recovery and storage, producing calculated results for CO, storage under
varying conditions. Consequently, the contribution rates of different storage mechanisms
for CO; storage are calculated.

3.1. Effect of Permeability on CO; Flooding and Storage

Keeping all other model parameters constant, the permeability was set to 21.53 mD,
26.53 mD, and 31.53 mD, respectively, to investigate the effects of varying permeability
on CO; flooding and storage. In low permeability oil reservoirs, with the increase in
permeability, the degree of crude oil recovery improves. Figure 5 illustrates the molar
fraction of CO; in the oil phase under varying permeability conditions. As permeability
increases, the sweep range of CO; in the crude oil widens, facilitating contact with the crude
oil and enhancing processes such as extraction, expansion, and dissolution. This effect is
more beneficial for crude oil recovery in low-permeability reservoirs. Figure 6 illustrates
that an increase in permeability enhances the contribution rate of structural and adsorptive
storage, which represents approximately 55% to 60% of the total storage. As permeability
increases, oil and water can be extracted more easily, thereby reducing the proportion
of storage in the oil-water mixture. The effective storage coefficient also increases from
0.67 to 0.71, indicating that higher permeability is advantageous for CO; storage. This is
because higher permeability facilitates greater oil extraction and provides more space in
low-permeability zones for CO, storage. Increasing permeability significantly enhances
the oil recovery and storage efficiency of CO; in low-permeability reservoirs.
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Figure 5. Mole fraction of CO, in the oil phase under different permeability conditions.
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Figure 6. Effect of permeability on CO, storage in oil reservoirs with low permeability.

3.2. Effect of Reservoir Temperature on CO; Flooding and Storage

With all other model parameters held constant, reservoir temperatures were set to
83.1 °C, 88.1 °C, and 93.1 °C to investigate the effects of varying temperatures on CO,
flooding and storage. The simulation results indicate that under temperature conditions
of 83.1 °C, 88.1 °C, and 93.1 °C, the recovery rates during the depletion stage were 10.9%,
10.88%, and 10.89%, respectively. The production period during the depletion stage was
19 years. Figure 7 shows that temperature has minimal impact on the recovery rate of low-
permeability oil reservoirs and the proportion of each storage mechanism. The effective
storage coefficient increases with temperature because the actual amount of CO, stored
remains relatively stable while the CO, density decreases with rising temperature, leading
to a decrease in theoretical storage capacity and thus increasing the effective storage
coefficient. The proportion of dissolved storage in oil and water decreases slightly because
CO; becomes less soluble in o0il and water at higher temperatures, reducing its dissolution.
Figure 8 illustrates that as temperature increases, the average molar fraction of CO; in the
oil phase decreases, but this decrease occurs at a slower rate.
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Figure 7. Effect of temperature on CO; storage in thin oil reservoirs with low permeability.
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Figure 8. Effect of temperature on the average molar fraction of CO; in the oil phase.

3.3. Effect of Original Reservoir Pressure on CO; Flooding and Storage

Keeping other model parameters unchanged, the original reservoir pressures were
adjusted to 28.95 MPa, 30.24 MPa, and 31.49 MPa to investigate their impacts on CO,
flooding and storage. Simulation results indicate that as reservoir pressure increases,
crude oil recovery initially increases significantly before slightly decreasing, as depicted
in Figure 9. At an original formation pressure of 31.49 MPa, recovery decreases due to
excessive initial formation pressure, resulting in early recovery of most crude oil from pore
spaces compared to lower pressure reservoirs. Additionally, gas channeling during later
stages of gas injection exacerbates this trend, reducing overall recovery efficiency. Increasing
formation pressure decreases the proportion of structurally stored CO, while increasing
the dissolved CO; fraction in oil and water. This relationship arises because burial upper
limits are governed by original formation pressures, with higher pressures enhancing
CO; solubility in oil and water post-burial. Consequently, dissolved CO, fractions rise
accordingly. Figure 10 illustrates the distribution of residual oil following CO; flooding
at various formation pressures. It is evident that as the pressure increases, the residual oil
first decreases significantly before slightly increasing. Therefore, in CO; storage processes,
a higher storage pressure is not always beneficial. An optimal storage pressure can help
prevent gas channeling, thereby improving both oil recovery and storage efficiency.
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Figure 10. Distribution of residual oil after CO; flooding under different original formation pressures.

4. Prediction Model for the Effective Storage Coefficient Using Artificial Intelligence
4.1. Prediction Model for Effective Burial Coefficient

Building on the results of numerical simulations and utilizing the regression learner in
MATLAB 2022 version software, we employed a supervised machine learning approach
to develop regression models. The input variables included layer permeability, reservoir
temperature, and initial formation pressure, with the effective storage coefficient as the
target variable. We allocated 80% of the data to the training set and 20% to the test
set for regression analysis. The regression algorithms comprised six main categories:
support vector regression, Gaussian process regression (GPR), tree ensembles, neural
networks, linear regression, and regression trees. The model with the lowest regression
error was chosen as the surrogate model. To eliminate the influence of dimensionality,
index values were standardized using the z-score method, which is based on the mean
and standard deviation of the raw data. The R-square coefficient, mean square error
(MSE), root mean squared error (RMSE), and mean absolute error (MAE) were used as the
basis for evaluating the performance of the machine learning models. The coefficient of
determination, also know as R?, is a numerical measure that represents the relationship
between a dependent variable and multiple independent variables. It reflects the reliability
of the regression model in explaining variations in the dependent variable, similar to the
multiple correlation coefficient.

The GPR using the quadratic rational kernel function and the exponential kernel
exhibits the highest fitting accuracy for the block model of the low-permeability thin oil
reservoir. The model training results are shown in Table 4. Models with a fitting accuracy
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greater than 0.8 include quadratic rational GPR, exponential GPR, and square exponential
GPR, among others. The GPR demonstrates superior adaptability to the studied block.

Table 4. Training results of a single model in a thin oil reservoir with low permeability.

Model Fine Model RMSE MSE R? MAE
Quadratic rational GPR 0.032237 0.001039 0.919931 0.023666
Gaussian process Square exponential GPR 0.036601 0.00134 0.844762 0.027608
regression model Matern 5/2 0.051279 0.00263 0.521953 0.039756
Exponent GPR 0.032237 0.001039 0.919934 0.023666

Temperature/°C

4.2. Establishment and Application of Effective Storage Coefficient Plates

Using the constructed proxy model, predictions were made for the effective storage
coefficient under different storage conditions (permeability, original reservoir pressure,
reservoir temperature). A computational graph (Figure 11) illustrating the effective storage
coefficient was established. Referring to the graph allows one to obtain the effective storage
coefficient under various storage conditions and calculate the corresponding effective
burial volume accordingly. Regions on the graph closer to red indicate larger effective
burial coefficients, suggesting reservoir conditions more favorable for burial, facilitating
the determination of favorable burial reservoir conditions. In the favorable burial area, the
permeability ranges from 26 to 32 mD, and the temperature ranges from 86 °C to 98 °C. The
permeability in this area increases significantly with pressure, leading to an expansion of
the favorable burial zone into higher temperature and lower permeability regions. Under a
pressure of 31 MPa, the effective storage coefficient increases to approximately 0.746.
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Figure 11. Calculation graph of the effective storage coefficient of a low-permeability reservoir in the
study area. (a) 28 MPa. (b) 31 MPa.

Using the parameters provided, the effective buried stock was calculated. The basic
reservoir parameters are listed in Table 5. The values of recovery before CO, breakout
refers to the oil recovery from the start of CO; flooding to just before gas breakout occurs.
The values of recovery after CO, breakout refers to the oil recovery from the start of CO,
flooding to a specific moment after gas breakout occurs. The CO, density is 737.06 kg/m?
at the reservoir’s temperature and pressure. The solubility of COj, is 207.86 m3/m? in crude
oil and 27.63 m>/m? in water under standard conditions, as measured in the study area.
According to the effective storage coefficient calculation, with a permeability of 22 mD and
an initial formation pressure of 31 MPa, the effective storage coefficient is 0.5981 at 82 °C.
The theoretical amount of CO, burial, calculated using Equation (2), is 700,400 tons, while
the effective CO, burial amount, calculated using Equation (3), is 418,900 tons.
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Table 5. The basic parameters of the reservoir of the well group of the low-permeability reservoir in
the block are studied.

Recovery Rate/%
Initial Formation Aver.age Perme- Reservoir i Bound Water Pore Volume/m? Before CO After CO
Pressure/MPa ability/mD Temperature/°C Saturation etore L0, er L0z
Breakout Breakout
31 22 88 0.3 6,108,620 2.54 20.01

5. Conclusions

(1) Inlow-permeability oil reservoirs, an increase in permeability results in a decrease in
the contribution rate of CO; dissolution and sequestration in oil and water, while the
proportion of structurally bound sequestration increases from 55% to 60%.

(2) Temperature has little impact on the contribution rate of different CO, sequestration
mechanisms. The proportion of CO, sequestration through dissolution in oil and
water decreases slightly due to the reduced solubility coefficient of CO; in oil and
water at higher temperatures.

(3) Higher initial reservoir pressure improves the effectiveness of CO, enhanced oil
recovery. However, when the pressure surpasses a certain threshold, gas channeling
may occur during the later stages of injection, which can lead to decreased recovery
and storage efficiency. During field implementation, it is crucial to ensure that the
reservoir pressure exceeds the minimum miscibility pressure of CO; and crude oil,
while also maintaining it below the maximum allowable pressure of the injection
equipment and pipelines.

(4) A method was established using supervised machine learning to train regression
models—with permeability, reservoir temperature, and initial reservoir pressure as
the input variables, and the effective storage coefficient as the target function—to de-
termine CO, effective sequestration coefficients through artificial intelligence training
models. Charts depicting effective sequestration coefficients under various conditions
(permeability, reservoir pressure, temperature) enable accurate and rapid calculation
of effective sequestration volumes and identification of favorable sequestration areas.
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Abstract: Tight reservoirs characterized by complex physical properties pose significant challenges for
extraction. CO, flooding, as an EOR technique, offers both economic and environmental advantages.
Accurate prediction of recovery rate plays a crucial role in the development of tight oil and gas
reservoirs. But the recovery rate is influenced by a complex array of factors. Traditional methods are
time-consuming and costly and cannot predict the recovery rate quickly and accurately, necessitating
advanced multi-factor analysis-based prediction models. This study uses machine learning models
to rapidly predict the recovery of CO; flooding for tight oil reservoir development, establishes
a numerical model for CO, flooding for low-permeability tight reservoir development based on
actual blocks, studies the effects of reservoir parameters, horizontal well parameters, and injection-
production parameters on CO, flooding recovery rate, and constructs a prediction model based
on machine learning for the recovery. Using simulated datasets, three models, random forest (RF),
extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM), were trained
and tested for accuracy evaluation. Different levels of noise were added to the dataset and denoised,
and the effects of data noise and denoising techniques on oil recovery factor prediction were studied.
The results showed that the LightGBM model was superior to other models, with R? values of 0.995,
0.961, 0.921, and 0.877 for predicting EOR for the original dataset, 5% noise dataset, 10% noise dataset,
and 15% noise dataset, respectively. Finally, based on the optimized model, the key control factors for
CO;, flooding for tight oil reservoirs to enhance oil recovery were analyzed. The novelty of this study
is the development of a machine-learning-based method that can provide accurate and cost-effective
OREF predictions for CO, flooding for tight oil reservoir development, optimize the development
process in a timely manner, significantly reduce the required costs, and make it a more feasible carbon
utilization and EOR strategy.

Keywords: CO,-EOR; CO, flooding; machine learning; oil recovery prediction; tight oil reservoirs

1. Introduction

There has been a growing emphasis on exploring and developing unconventional
oil and gas resources worldwide. But extracting residual oil from tight reservoirs in
complex geological formations remains a significant challenge [1]. Numerous studies have
demonstrated the significant impact of CO, flooding on enhancing oil recovery (EOR) in
low-permeability reservoirs [2-5]. CO; flooding holds the potential for achieving high
efficiency in extracting oil from reservoirs. However, the development of CO; flooding in
tight reservoirs is affected by various factors, such as geology, fluid properties, CO, phase
transition, and fracture structure modification, which pose challenges for predicting oil
recovery factors for CO; flooding [6].

Energies 2024, 17, 1303. https:/ /doi.org/10.3390/en17061303 62

https://www.mdpi.com/journal/energies



Energies 2024, 17, 1303

Additionally, different oil recovery factors can characterize the different development
stages of the current oil and gas field [7]. Through the prediction of recovery, real-time
production control can be achieved, production measures can be adjusted in a timely
manner, and reservoir development can be optimized. Therefore, accurate prediction of
recovery rate plays a crucial role in the development of oil and gas fields.

Currently, oil recovery factor prediction in tight oil reservoirs mainly revolves around
water-driven development. The prediction methods can be broadly categorized into three
main approaches: macro-equilibrium analysis, micro-experimental mechanistic analysis,
and numerical simulation method [8-15]. Sun et al. [16] developed a power-function-based
material balance equation for high-pressure and ultrahigh-pressure gas reservoirs and
investigated the impact of reservoir pressure depletion and recovery degree on reserve
estimation reliability. Cheng et al. [17] proposed a synchronization iterative oilfield oil
recovery factor prediction method by combining water content curves with the exponential
decline method, which is based on statistical regression experiments and field data through
Buckley-Leverett theory, and these approaches have improved accuracy of oilfield recov-
ery factor prediction. Hadia et al. [18] conducted core drive experiments to analyze the
relationship between relative permeability and water saturation and predicted the recovery
degree through a numerical simulation model based on the dimensionless Buckley-Leverett
equation. Zhong et al. [19] studied the recovery efficiency of CO; flooding timing and dif-
ferent injection methods based on the reservoir conditions of a block in Jilin Oilfield using
Eclipse 3.0. Nevertheless, the main factors affecting the recovery of CO,; flooding in tight
oil reservoirs are complex and diverse. The Macroscopic Balance Analysis and Microscopic
Experimental Mechanics Analysis methods can only provide rough estimates of recovery
rates, lacking precision and incurring high costs. Numerical simulation techniques require
individual modeling for different reservoirs, with prediction accuracy dependent on field
data, and involve lengthy simulation times. Their accuracy hinges on the availability of
accurate field data, and these simulations typically require extended periods to complete.
Therefore, further research is needed on the recovery prediction model for CO; flooding in
fractured tight oil reservoirs.

In contrast, machine learning (ML) methods offer a distinct advantage. They can
create unique predictive models that consider various reservoir characteristics, uncover
hidden data relationships, and accurately predict production outcomes at a lower cost.
In the petroleum industry, ML models have been widely applied and achieved good
application results. In the petroleum industry and underground gas storage, machine
learning has found application in a myriad of areas, including the evaluation of reserves
in both conventional and unconventional reservoirs [20-23], the automated interpretation
of well tests [24-27], forecasting production from oil and shale gas [28-31], as well as in
predicting the lithology of reservoirs [32-34]. ML models have also been utilized in research
for enhanced oil recovery (EOR). Van Si et al. [35] developed an artificial neural network
(ANN) model designed to forecast the oil recovery factor (ORF) specific to CO,-enhanced oil
recovery (EOR) processes. Cheraghi et al. [36] suggested employing deep ANN and random
forest (RF) models for identifying the most appropriate EOR techniques, leveraging data
sourced from oil and gas publications. Esene et al. [37] conducted predictions of the ORF
using ANN, least-squares support vector machines, and gene expression programing for
carbonate water-injection processes. In another study, Pan et al. [38] constructed a machine
learning model utilizing extreme gradient boosting (XGBoost) to infer reservoir porosity
from well log data. They enhanced the XGBoost model’s accuracy through a combination
of grid search and nature-inspired optimization methods, achieving a root mean square
error (RMSE) of 0.527. Further extending the exploration of machine learning applications,
Huang et al. [39] evaluated the performance of ANNS, light gradient boosting machine
(LightGBM), and XGBoost models in forecasting production from steam-assisted gravity
drainage processes. Collectively, these investigations underscore the significant capabilities
of machine learning models in forecasting the oil recovery factor and enhancing oil recovery
methodologies. Compared to traditional methods of predicting recovery rates, ML can
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deeply mine the relationship between complex data and recovery, extract data features to
identify the main controlling factors affecting recovery rates, and efficiently, accurately, and
cost-effectively predict the recovery rates of reservoirs under different geological conditions.
While previous research has explored machine learning (ML) models, their application in
the rapid prediction of CO, flooding systems in tight oil reservoirs has not been extensively
studied. Given the difficulty of accurately simulating underground fracturing conditions
in laboratory settings and the associated high costs, the majority of recent studies have
turned to numerical simulations to gather data. However, these studies frequently neglect
the effect of data noise on their outcomes, potentially leading to variances between the
research conclusions and real-world scenarios.

Therefore, the study is dedicated to crafting and evaluating a range of ML models
to find the optimal one for application. The goal is to identify a model that significantly
reduces both the time and financial costs associated with experiments while ensuring
the precision of predictions regarding the ORF in the context of CO; flooding through
horizontal wells in tight oil reservoirs, thereby providing valuable insights for future gas
injection strategies in these reservoirs. For testing these models, we considered a wide
array of production and geological parameters, compiling a comprehensive dataset. To
more accurately reflect real-world conditions, we introduced noise into the dataset and
then applied denoising techniques. This approach allows us to assess the impact of noise
and denoising on our research outcomes. The findings of our study present an effective
solution for swiftly predicting the ORF of CO, flooding in tight oil reservoirs and have
potential applications in other EOR methods.

2. Methodology

This section outlines the core workflow of a novel prediction method for CO, Enhanced
Oil Recovery (CO,-EOR) rates. Initially, a numerical model is developed, drawing on real-
world development scenarios. Key factors that influence CO,-EOR rates are determined
from prior studies. Then, using Latin hypercube sampling (LHS), a dataset for numerical
simulation is created. To enhance the dataset’s realism and quality, it is further processed
through noise addition and denoising techniques. A general workflow for ML-based
prediction of recovery degree is illustrated in Figure 1. The specific steps of the work are
described in detail in the following subsections.

Uncertainty Variables

Injection rate of CO2
Accumulated injection
volume of CO2

CO2-EOR Simulation Model Actual Reservoir Data

Permeability

Bottom hole flowi Eority
ottom hole Tlowing pressure Bottom hole flowing pressure “
Reservoir temperature

Rock Compressibility

Latin Hypercube Design

CMG-GEM Simulation

Recovery Prediction Model

XGBOOST

. Select the optimal machine
_ Original Training set | Testing set learning model and
Simulation Date (80%) (20%) Sensitivity analysis

Adding Noi —— Statistical indicators
ate with noise
ing Molse Mean Absolute Error

Coefficient Of Determination

Root Mean Square Error
Wavelet Denoising Denoised Data

Figure 1. Workflow of ORF prediction using three ML models.
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2.1. Data Preparation
2.1.1. Reservoir Model Description

Changqing tight reservoir, ideal for CO, miscible flooding due to its vast area and
access to substantial gas resources, is the chosen site for CO, injection. The project is further
supported by favorable on-site road conditions. To model the CO; injection process accu-
rately without the influence of reservoir boundaries, we employed CMG-GEM numerical
simulation software to create a simulation model. This model features a single-well radial
grid layout measuring 2440 m x 1640 m x 26 m, covering 4 km?. Utilizing the Cartesian
grid system, the formation is divided into regular grids: 61 in the I direction, 41 in the J
direction, and 13 in the K direction, with standard grid sizes of 40 m x 40 m x 2 m. The
central encrypted grid is finer, with dimensions of 8 m x 8 m x 2 m. Figure 2 showcases
the model’s 3D distribution and grid layout.
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Figure 2. CMG reservoir geological model.

The original reservoir pressure is 20.9 MPa, the saturation pressure is 10.18 MPa, and
the reservoir temperature is 84 °C. The porosity and permeability of the matrix are assumed
to be uniformly distributed in this model. The boundary conditions, initial conditions, and
specific parameters are presented in Table 1.
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Table 1. Reservoir parameter settings.

Parameters Value Units
Reservoir depth 2126 m
Reservoir pressure 20.9 MPa
Saturation pressure 10.18 MPa
Reservoir temperature 84 °C
Rock Compressibility 1x10°8 1/kPa
Permeability 0.39 mD
Porosity 0.071 -
Fracture conductivity 30 mD-m
Horizontal well length 1020 m
Fracture half-length 120 m
The maximum COj injection volume 1500 t
Injection rate of CO, 50 t/day
Minimum bottomhole flow pressure 11 MPa
Maximum surface oil rate 50 m3/d
Soaking time 20 d

The fluid phase data were fitted using the results of the formation fluid phase sim-
ulation and the fluid phase permeation curves were taken from phase permeation data
derived from laboratory long-core testing experiments, as shown in Figure 3.
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Figure 3. Oil-water relative permeability curves.

2.1.2. Obtaining Numerical Simulation Data

In the simulation process, continuous CO; injection into fractured horizontal wells
was modeled over an 18-year period, with daily oil production rates varying between
1 m?/d and 2 m®/d. Following the screening criteria for CO, flooding as outlined by
Carcoana et al. [21,40,41], this study aimed to refine ORF prediction accuracy and model
applicability by considering a broader spectrum of factors and incorporating more detailed
characteristic parameters.

To achieve this, the study gathered a large dataset through the definition of uncertainty
variables and the application of Latin hypercube sampling, guided by previous sensitivity
analyses that highlighted key factors in the EOR-CO, process [1,42-45]. Consequently, nine
parameters were selected for detailed analysis: porosity (Por), permeability (Perm), reser-
voir thickness (Thickness), fracture half-length (FHL), bottom hole flowing pressure (BHP),
injection rate of CO; (CO;-IN]J), cumulative injected CO; mass (CO,-CMASS), soaking
time (SOAK-T), and number of fractures (Numfrac). Based on the nine selected influential
factors and using the parameter ranges provided in Table 2, Latin hypercube sampling
(LHS) was applied to sample these nine parameters, resulting in 4090 data samples. And a
new reservoir model was generated based on these 9 parameters. The CMOST optimization
tool facilitated parallel computing to calculate the reservoir recovery rate 10 years later.
It will take 16,360 min to obtain the calculation results of these 4090 models in this study.
The integration of Builder and CMOST allows for the simulation of different geological
implementations, as illustrated in Figure 4.
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Table 2. The range of values for the model parameters in the Latin hypercube experimental design.

Parameter Symbol Minimum Maximum Base Case  Units
Porosity Por 0.03 0.12 0.071 -
Permeability Per 0.05 1.05 0.39 mD
Reservior thickness Thickness 6.5 35 26 m
Fracture half-length FHL 60 120 100 m
Bottom hole flowing pressure BHP 11 14 12 MPa
Injection rate of CO, CO,-INJR 30 150 100 t/day
Accumulated injection mass of CO; CO,-Mass 750 3500 1500 t
Soaking time SOAK-T 5 50 20 day
Number of fractures Numfrac 5 10 7 -
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Figure 4. The integrated process Petrel and CMOST optimizer for considering geological realizations
to generate the training samples.

2.1.3. Data Preprocessing

In this study, the impact of noise addition and denoising on the dataset’s predictive
results was investigated. Adding noise to the dataset aimed to improve the machine learn-
ing model’s generalization capacity, mitigating the risk of overfitting and accommodating
wider data variability, thereby aligning the simulation more closely with real-world data.
To further enhance the model’s performance and the precision of CO,-EOR rate predic-
tions, the study employed wavelet denoising techniques on the dataset with added noise,
followed by a standardization process.

Obtaining Data with Noise

The dataset used in this section is derived from the reservoir numerical simulation
model constructed in Section 2.1.2. It consists of a total of 4090 groups of data. Each group
of models calculates the ORF for the corresponding model. The dataset includes the ORF
and nine parameters mentioned in the previous section, namely Por, Per, Thickness, FHL,
BHP, CO,-MASS, CO,-INJR, SOAK-T, and Numfrac, forming a set of data for each model.

In order to enhance the resemblance of the simulated data to the actual data collected
in the field, we introduced different levels of noise to the simulated data. We added noise
with the same noise ratio to all 4090 datasets, creating a noise dataset with the same noise
level. Subsequently, we will assess the impact of noise corruption on the data.
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The formula to add noise is represented by the following:
Dypise =D +a-D - ¢ 1

where D is the original numerical simulation data, « is the noise level, and ¢ is the ran-
dom number.

Three datasets were generated, each containing 4090 data points, with noise levels set
at 0.05, 0.1, and 0.15, respectively. This study then examined how the predictive accuracy
of machine learning models was impacted by these varying degrees of noise.

Obtaining Denoised Data

In practical applications, noise can interfere with the accurate analysis and processing
of signals, leading to challenges in making precise judgments. In our previous section, we
intentionally introduced random noise to analog data to simulate real-world conditions.
Therefore, it becomes crucial to denoise the signal in order to enhance the quality of analysis
and facilitate subsequent processing at various levels. To boost the model’s accuracy and
refine our dataset, we employed an efficient and widely applicable wavelet denoising
technique. This method was used to clean the datasets that had noise ratios of 0.05, 0.10,
and 0.15, as identified in the earlier section of our study, The principle of wavelet denoising
is as follows:

Assuming there is a noisy signal of length N:

Dnoise(”) = D(”) +a- e(”) (2)

where D(n) is the truth data and e(n) is the noise.

The WT involves concentrating the energy of a noisy signal in some of the larger
wavelet coefficients after wavelet decomposition. In contrast, noise energy is spread
throughout the wavelet domain, leading to smaller wavelet coefficients being predomi-
nantly influenced by noise. This property allows us to consider larger wavelet coefficients
as the signal and smaller ones as the noise. Wavelets, with their decorrelation feature, play
a crucial role in signal processing, image processing, data analysis, and prediction [46—48].

The continuous WT of a one-dimensional continuous function D(n) is given by:

Wola,b):= [ D(n)gos(n)in = ﬁ [ Dy (" )an ®

where W, (a, b) is the corresponding wavelet coefficient, ¢, (1) is the wavelet function,
{(n) is the fundamental wavelet, 4 is the scaling factor, and b is the translation factor.
On the other hand, the wavelet inversion is given by:

D)= [ [T Wla b)an () e @)
o=/ ‘lﬁﬁ)‘dww 6)

lm is the Fourier transform of ¢(n).

In the experiment, we utilized WT technology to filter the analog datasets with four
different noise levels. Taking the example of cumulative injected CO, data with 15% noise,
the comparison before and after filtering is depicted in Figure 5.
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Figure 5. The comparison of data with 15% noise before and after denoising.

Data Normalization

To improve model generalization and accuracy, the original dataset from the simula-
tion, the noisy dataset with added noise at different ratios, and the denoised dataset using
WT are all normalized. This normalization removes the influence of scale and reduces
data fluctuation interference, facilitating more reliable and meaningful comparisons and
predictions. The normalization equation is as follows:

X — Xpmj
X — min (6)
Xmax — X¥min
where X is the normalized data, xmip, is the minimum value of this type of data, and xmax is
the maximum value of this type of data.

2.2. Theory of Machine Learning Techniques
2.2.1. Random Forest

Random Forest (RF) serves as a multifunctional algorithm for both classification and
regression, employing an ensemble approach to enhance prediction accuracy and stability.
It constructs numerous regression trees from randomly selected subsets of the training data
and predictors. Training each tree with bootstrap samples and applying binary splits on a
chosen subset of predictors at every node, RF effectively selects features and grows trees.
This methodology ensures the RF model’s effectiveness in diverse prediction scenarios by
leveraging the collective strength of multiple trees for more reliable outcomes [49].

2.2.2. XGBoost

XGBoost is an advanced boosting ensemble method applied to both regression and
classification, aimed at reducing training error by assembling weak learners into a robust
combined model [50-53]. It begins with training an initial model on a randomly chosen data
sample and employs incremental boosting to correct previous models” errors. XGBoost’s
distinctiveness lies in its objective function, which blends a loss function—to minimize the
gap between predicted and actual values—with a regularization term to deter overfitting,
ensuring a balance between accuracy and model simplicity.

2.2.3. Light Gradient Boosting Machine (LightGBM)

The LightGBM model, a recent advancement leveraging the gradient boosting tree
technique, was selected for this study for its precision and scalability [54]. Its effectiveness is
largely owed to its enhanced loss function, which builds upon the Taylor objective function
with a second-order extension. This method captures more detailed information about
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the objective function, significantly improving model performance. The following is the
mathematical form of the loss function:

J 1
=
Gj= ), gwHj= ), ha ®)
XieRt'j XieRtj

where Gy and Hy represent the first and second derivatives of the objective function for
each sample within a leaf-node area, respectively, wy; is the optimal value assigned to the
Jth leaf node of each decision tree, | refers to the total count of leaf nodes, and 7y and A are
user-defined values.

The information gain employed in the segmentation of each leaf node is:

2 2
Gain'= 1[G 4 Gk (GLiGr ) 9)
2/HL+A Hr+A Hp+Hr+A

Additionally, LightGBM shifts away from XGBoost’s level-wise approach to adopt
a leaf-wise growth strategy with depth limitations, significantly boosting its efficiency. It
selects the leaf with the highest splitting gain from all the existing leaves and performs
splitting and cycling, achieving higher accuracy. However, it is important to note that this
approach may occasionally result in overfitting. To mitigate this issue, the max_depth
parameter can be set to control the depth of the tree and prevent excessive complexity.

Figure 6 illustrates the architecture of LightGBM. The LightGBM network model is
built on the gradient-boosted decision tree (GBDT) algorithm framework and incorporates
several techniques to enhance efficiency and accuracy. It utilizes Gradient-Based One-Side
Sampling (GOSS) for sampling, reducing computational and time costs by focusing on
relevant samples. The model also employs a histogram algorithm to find the best data
segmentation points, reducing memory usage and segmentation complexity. Additionally,
it uses a leaf node growth algorithm with a depth limit to improve accuracy and prevent
overfitting. By leveraging these techniques, LightGBM achieves a balance between ef-
ficiency and accuracy, making it well suited for handling large datasets and delivering
high-performance results.

Compared to XGBoost’s presorting algorithm, LightGBM optimizes time complexity
from O (Data * features) to O (Bins * features). Additionally, the histogram-based algorithm
consumes approximately seven times less memory than the presorting algorithm.

The EFB algorithm plays a role in reducing feature dimensions by converting nu-
merous mutually exclusive features into low-dimensional dense features. This effectively
avoids unnecessary calculations involving redundant features with zero values.

Overall, LightGBM offers the benefits of scalability and high accuracy. With the contin-
uous expansion of oilfield datasets, LightGBM holds potential for applications in predicting
the ORF for CO,-EOR and even in practical field operations within the petroleum industry.

2.3. Workflow

The ML models were trained using the input variables: Por, Perm, Thickness, FHL,
BHP, CO,-CMASS, CO,-INJR, SOAK-T, and Numfrac. Figure 1 illustrates the key processes
involved in the proposed methodology.

2.3.1. Dataset Partitioning

In this study, as outlined in Section 2.1, we generated three datasets: original, noise-
added, and denoised. We allocated 80% of each dataset for training the models, with the
balance 20% reserved for performance evaluation. To ensure robust model validation, we
employed 10-fold cross-validation, dividing the training segment into ten parts—nine for
training and one for validation in turn. This technique allowed for the comprehensive
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utilization of data for training while preserving the integrity of the test set, thus yielding a
more reliable measure of the model’s true accuracy.
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2.3.2. ML Model Development

The random search method (Figure 7) is employed to identify hyperparameters using
RMSE as the evaluation metric, aiming to enhance the model’s accuracy. Table 3 shows
the search range of selected hyperparameters of the three regression models based on RF,
XGboost, and LightGBM at different noise levels.

Random Search

Unimportant parameter

Important parameter

Figure 7. Schematic diagram of random search method.
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Table 3. Search range of selected hyperparameters.

Model Hyperparameter Range
n_estimators 10, 50, 100, 300, 500
max_depth 10, 20, 40, 70, 100
min_samples_leaf 1,2,4,6,8
RF max_features 0.2,04,0.7,08,1
learning_rate 0.001, 0.01, 0.05,0.1, 1
min_samples_split 1,2,4,6,8
n_estimators 10, 50, 80, 100, 200
max_depth 1,2,4,6,8
num_leaves 8, 16,32, 64,128
learning_rate 0.001, 0.01, 0.05,0.1, 1
XGboost randamg_state 0,6,12,20,30
min_child_weight 0.1,0.2,04,0.6,0.8
subsample 0.5,0.6,0.7,0.8,1
colsample_bytree 0.5,0.6,0.7,0.8,1
n_estimators 50, 100, 300, 500, 800
max_depth 3,4,5,6,7
num_leaves 8, 16,32, 64,128
learning_rate 0.01,0.05,0.1,0.5,1
LightGBM max_bin 10, 30, 50, 60, 70
bagging_fraction 0,0.1,04,0.7,1
bagging_freg 10, 40, 50, 60, 80
bagging_seed 10, 20, 40, 60, 80
Feature_fraction 0.5,0.6,0.7,0.8,0.9

2.3.3. Model Performance Evaluation

The evaluation indicators of the ORF prediction regression model were set as fol-
lows [55]: correlation factor (R?), root mean square error (RMSE), and mean absolute
percentage error (MAE).

Z,l\il (ypre - ytru)z

RZ=1- (10)
Yy (Feru — ytru)z
1 2
RMSE = %Z (]/tru - ]/pre) (11)
i=1
1 N
MAE = ﬁZh/tru - ]/pre| (12)
i=1

3. Results and Discussion

This section focuses on assessing the proposed RF, XGBoost, and LightGBM models’
effectiveness in forecasting CO,-EOR. We also examine how data noise and subsequent
denoising actions affect the accuracy of model predictions. By analyzing data through
these models, we have pinpointed critical factors that impact the CO, recovery in tight oil
reservoirs, providing valuable insights for optimizing CO,-EOR strategies in oilfields.

3.1. Evaluation of Model Performance

Hyperparameter tuning plays a crucial role in achieving optimal ML model perfor-
mance. Consequently, for all types of ML models, the tuning process should be prioritized
to guarantee the precision of the prediction model. As illustrated in Table 4, we identified
optimal parameters for RF, XGBoost, and LightGBM models across different noise levels by
the random search method outlined in Section 2.3.2.
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Table 4. Optimal parameters for different models.

Model Hyperparameter Optimal Value Optimal Value Optimal Value Optimal Value
(Original Data) (5% Noise) (10% Noise) (15% Noise)
n_estimators 100 200 200 100
max_depth 70 70 70 20
min_samples_leaf 2 2 2 1
RF max_features 0.7 0.7 0.8 0.8
learning_rate 0.1 0.1 0.1 0.05
min_samples_split 4 4 2 5
n_estimators 80 80 100 100
max_depth 4 4 6 6
num_leaves 16 32 32 16
learning_rate 0.1 0.1 0.1 0.05
XGboost randamg_state 9 12 20 20
min_child_weight 0.6 0.8 0.8 0.8
subsample 1 1 1 0.8
colsample_bytree 1 1 1 0.8
n_estimators 300 300 500 300
max_depth 5 5 5 5
num_leaves 32 32 32 32
learning_rate 0.05 0.01 0.01 0.05
Lightbgm max_bin 50 50 60 60
bagging_fraction 0.6 0.7 0.6 0.4
bagging_freg 40 40 50 80
bagging_seed 40 40 60 60
Feature_fraction 0.8 0.8 0.8 0.8

Table 5 illustrates the performance metrics (Rz, RMSE, and MAE) of each ML model
based on the aforementioned hyperparameters and in predicting ORF using the original
dataset. Generally, a higher R?> and lower values of MAE and RMSE indicate better
predictive accuracy. In the training phase, all models showed excellent results, with R?
values exceeding 0.99. LightGBM was the standout, achieving an R? of 0.996, RMSE of
0.008, and MAE of 0.009. Its dominance extended to the testing phase, where it maintained
high accuracy (R2 =0.995, RMSE = 0.009, and MAE = 0.010).

Table 5. Prediction accuracy of training and testing sets.

Data Indicator RF XGboost LightGBM
Training R? 0.992 0.995 0.996
RMSE 0.017 0.013 0.008
MAE 0.011 0.010 0.009
Testing R? 0.959 0.985 0.995
RMSE 0.031 0.023 0.009
MAE 0.018 0.014 0.010

The data obtained from numerical simulations are typically free from noise interfer-
ence but, in real-world measurements, data noise is unavoidable. Previous studies, Sun
and Thanh et al. [7,52], have used numerical simulation data for machine learning models
to evaluate CO, storage capacity and effectiveness. However, they did not consider the
presence of noise in on-site data. To simulate the presence of noise in on-site data and
enhance the generalization of the trained machine learning model in this study, we intro-
duced different levels of noise using the method described in Section 2.1.3. Subsequently,
we performed the denoising processing (Section 2.1.3) to investigate the impact of noisy
data and denoised data on the prediction results of ORF.
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3.2. Effect of Noise on the ML Model Oil Recovery Factor Predictions

After adjusting the hyperparameters of the three machine learning models for ORF
prediction (as presented in Table 4), we evaluated each model’s performance across di-
verse noise levels. Figure 8 shows that an increase in the noise ratio is associated with a
discernible decline in the accuracy of the machine learning model’s predictions for recov-
ery. Figure 8a demonstrates that, at a 5% noise level, the correlation coefficient between
predicted and measured ORFs from test data predominantly aligns with the fitted line
(slope = 1), indicating accurate predictions by RF, XGBoost, and LightGBM (R? > 0.95).
In Figure 8b, the RF model’s R? significantly drops to 0.891 at a 10% noise level from
0.954 at 5% noise. However, XGBoost and LightGBM maintain strong accuracy (R? > 0.91).
Figure 8c depicts that, at a 15% noise level, all models exhibit R? values below 0.87, RMSE
values exceeding 0.055, and MAE values surpassing 0.043.
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Figure 8. Cross correlation between ORF predicted by LightGBM model and ORF obtained from
numerical simulation under different noise levels (a) prediction result of original dataset (b) prediction
result at the 5% noise level (c) prediction result at the 10% noise level (d) prediction result at the 15%

noise level.

Figure 9 presents the relationship between predicted and simulated ORFs for CO,
flooding in tight oil reservoir and offers a comparative view of R?, RMSE, and MAE among
the three ML models. LightGBM excels in training and testing, while the RF model performs
best in training with added noise but yields the poorest test results, potentially indicating
overfitting in noisy scenarios.

To summarize, all three ML models exhibit commendable ORF prediction capabilities.
Nevertheless, the LightGBM model stands out due to its enhanced robustness, stability, and
resistance to interference. It consistently delivers superior results across various conditions.
As a result, this paper conducts an in-depth analysis of the LightGBM model, aiming to
assess its potential applicability in CO,-EOR scenarios.
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Figure 9. The statistical performance of the ML models under different noise levels: (a) RZ, (b) RMSE,
and (c) MAE.

3.3. Model Analysis after Data Denoising

To enhance the prediction accuracy of the LightGBM model for oil recovery, we
employed the WT method to denoise datasets with varying noise levels. Initially, we
identified the optimal decomposition level for wavelet threshold denoising.

We opted for bdN and symN wavelet bases due to their robust orthogonality, precise
positioning, and superior localization capabilities. Specifically, we randomly chose the bd6
and sym10 wavelet bases for denoising, ensuring parameter consistency. The threshold
was determined using a unified global threshold, heuristic principles, and a soft threshold
function. After denoising, the datasets were used to train the LightGBM model. The
optimal decomposition level was assessed using RMSE, MAE, and R? metrics. The test
set’s denoising quality evaluation results are presented in Table 6.

From the denoising results using the two wavelet bases, the noisy datasets achieved
the lowest RMSE, lowest MAE, and highest R? at a decomposition level of 1. Over-
decomposition can occur with too many filtering layers, leading to a loss of signal details.
Thus, the optimal decomposition level for wavelet threshold denoising of noisy data is
1. After setting this level, we used 13 wavelet basis functions from four wavelet families
to decompose the noisy data. We evaluated the model training outcomes using the same
metrics, and the test set’s denoising quality results are presented in Table 7.
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Table 6. Prediction results after denoising of the test set.

Type of Wavelet Bases Level 5% Noise 10% Noise 15% Noise
RMSE  MAE  R? RMSE  MAE  R? RMSE MAE R?
J=1 0.032 0.019  0.966 0.044 0.032  0.921 0.055 0.046  0.864
Bd6 J=2 0.069 0.054 0.787 0.076 0.062  0.725 0.083 0.068  0.682
J=3 0.104 0.077  0.570 0.106 0.084  0.529 0.109 0.091  0.500
J=1 0.039 0.029  0.924 0.049 0.039  0.904 0.063 0.051  0.827
Sym10 J=2 0.072 0.056 0.771 0.079 0.064 0.712 0.086 0.068  0.698
J=3 0.102 0.078  0.512 0.107 0.086  0.493 0.110 0.092  0.461
Table 7. Prediction results after denoising of the test set.
Type of Wavelet Bases 5% Noise 10% Noise 15% Noise
RMSE MAE R? RMSE MAE R? RMSE MAE R2
Haar 0.054 0.043 0.891 0.059 0.045 0.865 0.077 0.064 0.783
Bd4 0.49 0.038 0.905 0.056 0.046 0.848 0.068 0.057 0.791
Bd6 0.032 0.019 0.956 0.044 0.032 0.921 0.055 0.046 0.864
Bds 0.027 0.015 0.969 0.037 0.027 0.939 0.045 0.033 0.912
Bd9 0.033 0.021 0.955 0.050 0.041 0.896 0.064 0.051 0.831
Sym?7 0.059 0.045 0.855 0.063 0.051 0.827 0.069 0.060 0.797
Syms8 0.044 0.033 0.915 0.058 0.046 0.853 0.065 0.052 0.836
Sym9 0.037 0.028 0.931 0.045 0.33 0.911 0.061 0.050 0.843
Sym10 0.039 0.029 0.924 0.049 0.039 0.904 0.063 0.051 0.827
Coifl 0.108 0.081 0.471 0.117 0.095 0.431 0.124 0.101 0.327
Coif2 0.087 0.069 0.685 0.101 0.085 0.507 0.108 0.088 0.513
Coif3 0.072 0.061 0.803 0.077 0.065 0.765 0.083 0.069 0.692
Coif4 0.069 0.058 0.793 0.073 0.064 0.727 0.079 0.068 0.688

Table 7 shows that using the Bd8 wavelet base for broadband denoising on datasets
with varying noise levels yields the lowest RMSE, minimum MAE, and highest correlation
coefficient. The DB8 wavelet base has been chosen for denoising the noisy dataset.

Figure 10 provides a comparative analysis of test set prediction results before and after
denoising the dataset. Utilizing the Bd8 wavelet for denoising brought the predicted and
simulated ORF data points in the cross-plot closer to the fit line (slope = 1), signifying an
improvement in the model’s predictive accuracy.

In Figure 10a, the dataset with a 5% noise level displays a slight enhancement in
prediction accuracy post-denoising. The R? value increases by a mere 0.08, while both
RMSE and MAE decrease by 0.06. In contrast, Figure 10c highlights that the dataset with
15% noise sees a notable uptick in prediction accuracy after denoising: R? rises by 0.35 and
RMSE and MAE drop by 0.011 and 0.010, respectively. A key observation from Figure 10 is
that wavelet denoising appears more beneficial for datasets with pronounced noise levels.
For datasets with minimal noise, the impact of denoising is subdued. This phenomenon can
be linked to the LightGBM model’s inherent resilience to noise, as it retains high predictive
accuracy (R > 0.96), even when faced with an added 5% noise. However, for datasets with
low noise, denoising could inadvertently strip away valuable information that might seem
noisy, potentially compromising the model’s predictive capability.

3.4. Screening and Evaluation of Main Control Factors

Figure 11 presents the ranking results based on the feature selection method of the
LightGBM model. LightGBM ranks each feature based on both average information gain
and total information gain, resulting in a comprehensive ranking of influential factors. As
evident from Figure 11, permeability stands out as the most influential factor, ranking first.
Porosity and reservoir thickness are also significantly affected, ranking second and third,
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respectively. Following these, the factors of fracture count, CO, mass, BHP, half-length of
fracture, soak time, and carbon dioxide injection rate are less influential.
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Figure 10. The statistical performance of the LightGBM model under different noise levels: (a) R?,
(b) RMSE, and (c¢) MAE.
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Permeability, porosity, reservoir pressure, and permeability have long been used as
screening criteria for evaluating CO,-EOR. In this study, we incorporated CO, accumu-
lation, injection rate, and soak time to investigate the impact of these factors on the CO,
flooding efficiency. Although CO; has a significant diluting effect and can theoretically
enhance oil recovery to a greater extent, as seen in Figure 11, the influence of CO, accumu-
lation on the injection volume only ranks fifth. This suggests that the effectiveness of CO,
flooding is significantly influenced by permeability and porosity. For low-permeability
and tight reservoirs, conducting CO,-EOR operations may require a screening of the
reservoir conditions.
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4. Conclusions

This article introduces a novel approach for the rapid and precise prediction of recovery
in CO; flooding operations within tight oil reservoirs through the use of ML models. By
conducting thorough data mining on the collected data, this study develops an ML model
specifically tailored for assessing CO; flooding efficiency in such reservoirs. The key
findings are summarized as follows:

(1) By considering actual blocks as examples, a numerical simulation model for CO,
flooding in low-permeability tight oil reservoirs has been developed. Utilizing the
Latin hypercube design method, a comprehensive dataset comprising 4090 numer-
ical simulations is generated, providing a robust foundation for the ML model to
analyze ORFE.

(2) The study examines the impact of introducing varying levels of noise (5%, 10%, and
15%) to the simulation data on the predictive accuracy of LightGBM, XGBoost, and
RF models regarding ORF. Findings reveal that the LightGBM model outperforms
the others, demonstrating superior predictive capabilities for CO, flooding recovery
efficiency in tight oil reservoirs, with R? values of 0.995, 0.961, 0.921, and 0.877 for the
original, 5% noise, 10% noise, and 15% noise datasets, respectively.

(3) This research identifies the primary factors influencing CO,-enhanced oil recovery,
ranked as follows: permeability, porosity, reservoir thickness, number of fracturing
fractures, CO, mass, BHP, fracture half-length, soak time, and CO, injection rate.

(4) The method proposed here stands as a promising alternative to conventional CO;-
ORF prediction techniques. Embracing ML for supplementary decision making
offers a more adaptable and accurate framework for evaluations, reducing the risk of
misjudgments associated with static indicator ranges.

Employing ML as proxies for predicting recovery presents distinct challenges. To guar-
antee the universality of the models, extensive and high-quality geological and production
data from diverse reservoirs are essential for training. Moreover, the increased volume
and complexity of data necessitate substantial investment in rapidly optimizing model
parameters to boost accuracy.

Moving forward, our focus will shift to analyzing the impact of various petroleum
component parameters on CO, flooding. It aims to refine our model’s adaptability and
to elevate the precision of CO,-EOR predictions across diverse reservoir conditions. Fur-
thermore, the model will be applied to some actual reservoirs. This expansion entails
blending geological and production data from actual reservoirs with simulated datasets,
then conducting preprocessing on this amalgamated dataset. Training the model with this
refined data will verify its feasibility in real-world conditions.
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Nomenclature

EOR

enhancing oil recovery

ORF oil recovery factor

R? correlation factor

RMSE root mean square error

MAE mean absolute percentage error

ML machine learning

RFE random forest

XGBoost extreme gradient boosting

LightGBM light gradient boosting machine

ANN artificial neural network

Por porosity

Perm permeability

Thickness reservoir thickness

FHL fracture half-length

BHP bottom hole flowing pressure

CO,-INJ injection rate of CO,

CO,-CMASS  cumulative injected CO, mass

SOAK-T soaking time

Numfrac number of fractures

D original numerical simulation data

o noise level

€ random number

D(n) truth data

e(n) noise data

W;(a,b) corresponding wavelet coefficient

P, p(n) wavelet function

P(n) fundamental wavelet

a scaling factor

b translation factor

¥(w) Fourier transform of ¢(n)

X normalized data

Xmin minimum value of this type of data

Xmax maximum value of this type of data

G the first derivatives of the objective function for each sample within a
4 leaf-node area

H. the second derivatives of the objective function for each sample within a
Y leaf-node area

] the total count of leaf nodes

Wy the optimal value assigned to the Jth leaf node of each decision tree

Y user-defined values

A user-defined values
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Abstract: Hydraulic fracturing is the main means for developing low-permeability shale reservoirs.
Whether to produce artificial fractures with sufficient conductivity is an important criterion for
hydraulic fracturing evaluation. The presence of clay and organic matter in the shale gives the shale
creep, which makes the shale reservoir deform with time and reduces the conductivity of the fracture.
In the past, the influence of shale creep was ignored in the study of artificial fracture conductivity, or
the viscoelastic model was used to predict the conductivity, which represents an inaccuracy compared
to the actual situation. Based on the classical Perzyna viscoplastic model, the elasto-viscoplastic
constitutive model was obtained by introducing isotropic hardening, and the model parameters
were obtained by fitting the triaxial compression creep experimental data under different differential
stresses. Then, the constitutive model was programmed in a software platform using the return
mapping algorithm, and the model was verified through the numerical simulation of the triaxial creep
experiment. Then, the creep calculation results of the viscoplastic constitutive model and the power
law model were compared. Finally, the viscoplastic constitutive model was applied to the simulation
of the long-term conductivity of the fracture to study the influence of creep on the fracture width,
and sensitivity analysis of the influencing factors of the fracture width was carried out. The results
show that the numerical calculation results of the viscoplastic model were in agreement with the
experimental data. The decrease in fracture width caused by pore pressure dissipation and reservoir
creep after 72 h accounts for 32.07% of the total fracture width decrease.

Keywords: viscoplasticity; creep behavior; fracture closure

1. Introduction

In the current context of “carbon peak” and “carbon neutrality”, the demand for
natural gas as a clean and low-carbon fossil fuel is gradually increasing [1]. As an important
source of natural gas, shale has attracted increasing attention [2], and pores and natural
micro-fractures of shale are the main reservoir space of shale gas. However, shale has
extremely low porosity and permeability [3], usually ranging from millidarcy to nanodarcy,
and must be fractured to create complex artificial fracture networks to form effective
productivity. The key to hydraulic fracturing is determining whether a fracture with high
conductivity can be formed. The presence of clay and organic matter in the shale gives the
shale creep [4,5]. The proppants in the fracture are embedded in the shale reservoirs due
to shale elastic and creep deformation during the production of shale gas, which causes
fracture closure and long-term conductivity loss [6-8].
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A large number of creep experiment results using shale show that the majority of
the creep deformation is unrecoverable plastic deformation [9-11]. For example, Sone
and Zoback conducted a creep experiment with unloading/reloading differential stress
paths using a Haynesville shale sample, and the results showed that there is a significant
plastic component in the strain response [11]. Chang and Zoback conducted a laboratory
experiment on room-dried unconsolidated GOM shale under hydrostatic pressure and
triaxial compressive stress, and the results showed that shale exhibits negligible creep strain
accompanying unloading [9]. Therefore, it is appropriate to use the viscoplastic model to
describe shale creep.

There are two commonly used viscoplastic theories. One is the Perzyna model, and
the other is the Duvaut-Lions model. In 2020, Borja pointed out that the two models
can obtain similar creep results when the two models” material parameters are selected
appropriately [12]. Figure 1 shows the creep strain responses calculated by the Perzyna
and Duvaut-Lions model when adjusting the ratio 77/ 7,  is the viscosity of the shale rock
and 7 is the relaxation time. Since Perzyna proposed the elastic—viscoplastic theoretical
framework in 1963, many scholars have extended it to form their constitutive models and
applied them to engineering practice. In 2010, Chang combined the Perzyna viscoplastic
constitutive law with a modified Cambridge clay plastic yield model to describe the
viscoplastic behavior of room-dried shale [13]. In 2012, Darabi used the classical Perzyna
viscoplastic model to predict the mechanical response of asphalt concrete under cyclic
loading and unloading creep test and found that with the increase in the number of
cycles, the predicted value of the model significantly deviated from the experimental
data, so the viscoplastic-softening model was proposed [14]. In 2020, Kabwe replaced the
Newtonian element with a spring-pot in the Maxwell and VP components and obtained
the fraction-order derivative viscoelastic viscoplastic (FDVP) model to estimate the delayed
deformation characterized by squeezing [15]. In 2020, Haghighat developed a viscoplastic
model to reproduce creep behavior and inelastic deformation by combining the Perzyna-
type viscoplastic model and the modified Cam-clay model [16].

1.2
inviscid solution
1.0 —*::’_f_-*_f—;— 77777777 =
:); R Y A Duvaut-Lions
g — Perzyna
£ 06
17}
? 7 T
S 0.4 A | 1000 [ 0.0057
B 2000 | 0.0114
02/ C | 3000 | 0.0170
i;‘"
0.0

o
N
(o)}

8 10 12 14 16
time x 1072

Figure 1. Comparison of axial creep strain with time—two viscoplastic models. Units: 7 is in MPa3-h;
T and time are in hours [12].

However, the effect of reservoir creep is rarely considered in fracture conductivity
modeling. Meanwhile, several scholars have applied viscoelastic models to account for
the creep embedments [17-20]. For example, [19] introduced the modified Burgers creep
model into the discontinuous embedment model for multiple-particle-size proppants. They
combined it with the KC equation to develop a conductivity prediction model. The results
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show that with an increase in rock viscosity, the fracture conductivity decreased to the same
level at approximately 300 days. Ref. [18] applied the Burgers model to investigate the role
of shale creep on proppant embedment and fracture conductivity. Ref. [17] utilized the
fractional Maxwell model to characterize the viscoelastic deformation of tight sandstones.
Combining the fractional Maxwell model with Hertz contact theory, an analytical model
of fracture width was established. Therefore, based on the classical Perzyna viscoplastic
model, the elasto-viscoplastic constitutive model is obtained by introducing isotropic
hardening. The constitutive model is programmed in a software platform using the return
mapping algorithm, and the model is verified. Then, the elasto-viscoplastic constitutive
model is applied to the simulation of the long-term conductivity of the fracture to study
the influence of creep on the fracture width.

2. Constitutive Formulation
2.1. Elastic-Viscoplastic Constitutive Formulation

The bedding planes and the fractures within them are the main sources of creep
anisotropy [10], and the results of many shale creep experiments show that the strain
of shale in the horizontal bedding sample is larger than that in the vertical bedding
sample [4,21]. Shale comprises hard materials (quartz, feldspar, and pyrite) and soft ma-
terials (clay, kerogen, etc.). The creep is mainly caused by clay and organics. Ref. [22]
conducted nanoindentation tests on hard frames (quartz and pyrite), clay, and kerogen in
shale. Experimental results showed that the hard frame exhibited anisotropic responses,
whereas the responses of clay and kerogen were isotropic [23-25]. Therefore, we assume
that the creep behavior of shale is isotropic, and that the anisotropy of shale is mainly re-
flected in elastic deformation. Since we focus on the creep properties of shale, the anisotropy
of shale elasticity is not considered, and a linear elastic constitutive formulation is adopted.

We assumed that the total strain ¢;; can be decomposed into elastic strain efj and

viscoplastic strain sz.p

81']' = 8% + 8;(-;p (1)
The linear elastic constitutive equation is as follows [26]:
cij = Cijki€g )

where o7;; is the stress tensor, and Cjjy; is the fourth-order elasticity tensor. Cjji can be
expressed as
Cijki = A6ijok1 + 21k dji 3)

where A and u are Lame constants, which can be expressed by the elastic modulus E and
Poisson’s ratio v. djj, Jki, dik, and Jj; are Kronicker symbols.

According to the Perzyna-type viscoplastic model [27-29], the viscoplastic strain rate
op

81]

can be expressed as
op_ 08 o _ ()
F=p— = 2L 4
g =P 30, P=y (4)
where p is the viscoplastic multiplier, which determines the magnitude of the viscoplastic

strain rate, and the unit is s !

. % determines the direction of the viscoplastic strain rate. 7
is the viscosity constant, and the unit is MPa-s. f and g are the yield function and plastic
potential function, respectively. The associated viscoplastic flow rule is adopted, Therefore,

f equals g. (f) is defined as follows:

n={%454 ©)

The von Mises yield function considering isotropic hardening can be expressed as
follows:
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f=0e—0y—hp (6)
where o,(0, = @) is the von Mises equivalent stress, s;;(s;; = ¢ — %51-]-) is the stress
deviator tensor, 0y is the initial yield stress, and / is the hardening material parameter. oy
determines the size of the initial yield surface.

When the von Mises equivalent stress is less than or equal to the initial yield stress
(0e < oy, f < 0), the viscoplastic strain rate p is 0, and accordingly, the viscoplastic
strain p is also 0. When the von Mises equivalent stress is greater than the initial yield
stress (0, > 00, f > 0), viscoplastic strain rate p is generated, and viscoplastic strain
p accumulates accordingly (the yield surface expands due to isotropic hardening). The

magnitude of the viscoplastic strain rate is %, substituting (6) into

i o, —hp — oy
p=i- 25 ?

By solving this differential Equation (7), the viscoplastic strain p can be written as

_h O — 0,
p=Ce'+ L ®)
When t = 0, the viscoplastic strain p is po.
T — O0y0
p= C+ % = po 9)

It can be seen that C can be obtained from Equation (9). Therefore, C is not an
independent material constant but depends on von Mises equivalent stress o, the hardening
material parameter /1, and the initial yield stress oy0.

When t — oo, the viscoplastic strain p tends to a fixed value. Figure 2 shows a
schematic of the elastic—viscoplastic model.

Initial yield surface

T+ Viscoplastic limit

Yield surface expands due to ...
isotropic hardening

02 03

Figure 2. Schematic illustration of elastic-viscoplastic model.

2.2. Power Law Model

The power law model is introduced here only for comparison creep calculation results
with the elastic—viscoplastic model.
The creep strain rate of the power law model of time hardening form can be expressed
in Equation (10):
e = Ac)'t" (10)
where ;" is the von Mises equivalent stress, and ¢ is the time. A, m, and n are material
constants. A and m must be positive and —1 < n <0.
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3. Modeling Creep in Shale
3.1. Triaxial Creep Experiment

The shale samples used in the experiment come from the Chang 7 reservoir in Ordos
Basin, with a depth of about 3000-4000 m. We conducted three creep experiments on
three cylindrical samples with a diameter of 25 mm and a height of 50 mm in a servo-
controlled triaxial apparatus at a temperature of 110 °C. The specimen wrapped in the
heat-shrink jacket was placed in the confining cell. Hydrostatic confining pressure was
applied to the specimen to 5 MPa and then held constant. Next, the axial differential stress
was increased to a fixed value and kept constant for 8 h. Figure 3 shows the axial strain

data of three shale samples under a confining pressure of 5 MPa and differential stresses of
10 MPa, 15 MPa, and 20 MPa.

0.14
| —— 10MPa
——15MPa
012 F __ 20MPa
0.10

o
o
(9]
T

axial strain (%)
o
o
[o5]
\

0 1 2 3 4 5 6 7 8 9
time (h)

Figure 3. Axial strain data when the differential stress is 10MPa, 15 MPa, and 20 MPa.

The core samples do not enter the tertiary creep stage when differential stress is 10 MPa
or 15 MPa, and only show primary and secondary creep, in which the creep strain rate
decreases with time and remains constant. When differential stress is 20 MPa, the shale
sample exhibits all three stages of creep. A comparison of axial strain data under different
differential stresses shows that the shale sample enters the steady-state creep phase faster
with increase in differential stress. For example, when the differential stress is 15 MPa,
the time from primary creep to steady-state creep is about half that when the differential
stress is 10 MPa. When the differential stress is 20 MPa, the time from primary creep to
steady-state creep is shortened, and primary creep is hardly observed.

3.2. Parameter Identification

The elastic parameters in the elastic—viscoplastic constitutive model are calculated as
follows. We take the ratio of stress to strain of the elastic stage of the axial strain data as the
elastic modulus E, and Poisson’s ratio v is assumed to be 0.3. Equation (8) is used to fit the
creep strain experimental data to obtain viscoplastic model parameters. Uniaxial or triaxial
compression tests must be performed to determine the initial yield stress 0y, and 1 MPa is
assumed here. The fitting results are shown in Figure 4.

86



Energies 2024, 17, 1122

0.05

experimental data
——— perzyna viscoplasticity model

0.04

0.03

0.02

creep strain (%)

0.01

0 1 2 3 4 5 6 7 8 9
time (h)

experimental data
— perzyna viscoplasticity model

0.020

It
o
=
o

creep strain (%)
o
=
o

(=]
-
N
w

4 5 6 7 8 9
time (h)

0.035 | experimental data

- perzyna viscoplasticity model ;
0.030

0.025
0.020

0.015

creep strain (%)

0.010

0.005

0.000
0

time (h)

Figure 4. Viscoplastic model fitting experimental data: (a) differential stress is 10 MPa; (b) differential
stress is 15 MPa; (c) differential stress is 20 MPa.

Table 1 lists the viscoplastic model parameters obtained by fitting experimental data.
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Table 1. Material parameters obtained by fitting.

Differential Stress (MPa) c 7 (MPa-h) h (MPa)
10 —3.51 x 1074 47,598.67 21,174.86
15 —1.85 x 1074 264,287.20 65,884.27
20 —0.00137 464,192 13,708

3.3. Algorithm Implementation

The elastic-viscoplastic constitutive model is programmed into the software platform
using the return mapping algorithm [30]. The algorithm is divided into two steps: the first
step is elastic prediction, and the second step is inelastic correction [26].

Elastic prediction refers to the update of stress calculated according to Equation (11).
The stress obtained at this point is called the probing stress ¢j; .

oij tr:U’iin+AU=0'iin+Ciik1:A£ (11)

In the formula, Ac is the stress increment, Cjjy; represents the fourth-order elastic
tensor, and Ace is the strain increment. We set the magnitude of the viscoplastic strain p as
the state variable and keep it constant at this step, i.e., p"*! = p", with the initial p = 0.

We can substitute Equation (11) into the expression of the yield function to obtain
Equation (12) and check if it is greater than 0.

f(o'ij tr) =0, tr o0 — hpi’l+1 (12)

In the formula, o, I is the von Mises equivalent stress calculated from Oij i If the
yield function f < 0 is used, the material exhibits elasticity, and the stress tensor oij n+l i
step n + 1 is the probing stress.

If the yield function f > 0, the material has entered the viscoplastic stage; subsequently,
it enters the second step of inelastic correction. The stress derivation for step n + 1 is
as follows:

Oij n+l oij "L Ao = oij my Cijkl : (AS — ASUP) = 0jj " Cijkl : Ae — Cijkl : AS-UP (13)

In the formula, Agy) is the increment in viscoplastic strain. Substituting Equation (11)
into Equation (13) yields

+1 t )
0ii " = 03 7" — Cijp : Degp (14)

Substituting the expression Aey), into Equation (14) yields

i = oy — Cir t oy (15)

1] 1] 1] pao.l]

.t
In the formula, At is the time increment. Substituting % = ?;Z # into Equation (15)
yields

n+1 tr ; SSij i

o’ =0 — Cijit : o A (16)
e

Considering Cji; : 54 ™ = 2Gs;j ' + As;;6;; = 2Gs;; I, substituting it into Equation (16)
yields

35 o 17
20,1 (17)

O_ijn+1 — o,ijtr _ ZGP

According to Equation (17), the stress o; m+1 at step n + 1 depends on the value of p.
The following solution process of p is provided.
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f.
7] 7
Ap = pAt = %At and solve it through Newton's iteration. The specific derivation process

We can satisfy the equation p = for ease of calculation, we can rewrite it as

is as follows:

f fap
Ap = A+ (1= = ANdAp =0 (18)

In the formula, f, AP is the derivative of the yield function f to Ap. Substituting the
expression of the yield function into Equation (18) yields the following:

00 L — gy — hpt+] A+ (1— o(oe " — g9 — hp"t1) g)dAp . (19)
n

Ap- 1 dAp

Considering that o, "1 = ¢, ' — 3GAp, substituting it into Equation (19) yields
the following:

7, n+l 0 — hpn—H 8(0} tr_ 3GAp — 0y — hpn—H) g

Ap — At+ (1 — )dAp =0 (20)
b U dAp T
Solution: ;
LAt — (Ap)"
Ap)"T = (ap) + 21
(Ap) (Ap) T+ (3G + W (21)
The increment in viscoplastic strain is calculated based on Ap, i.e.,
of
Aeyy = A 22
fop = AP 5 (22)
The increment in elastic strain is
Age = Ae — Aeyy (23)
The stress at step n + 1 is
oij n+l — O'i]'n-i-AU': O'i]'n—l—Ci]'kl : Ag, (24)

The initial elastic stiffness matrix is still used here. The flowchart of the entire algorithm
is shown in Figure 5.

3.4. Elastic-Viscoplastic Model Validation

In this study, we simulate numerical creep experiments under triaxial loading to
verify the correctness of the viscoplastic constitutive relationship. Using the axisymmetric
model shown in Figure 6, the leftmost dashed line in the figure represents the axis of
symmetry. In order to compare with the experimental data, the geometric dimensions,
loads, and boundary conditions were set the same as those of the shale sample creep
experiment. The elastic parameters are taken as Young’s modulus E = 25 GPa and Poisson’s
ratio v = 0.3. The parameters of the viscoplastic material are determined by fitting the
viscoplastic constitutive model to the first set of experimental data and the third set of
experimental data.

In order to improve the accuracy of the calculation, the unit type used is CAX4. We
use structured grid partitioning technology to divide the model into 1000 units. We set
two static analysis steps. In the first analysis step, confining pressure and axial pressure
are applied, and the load increases linearly with time, with a loading time of 90 s. In the
second analysis step, the load remains unchanged, with a total time of 7.995 h. In order to
obtain the same number of data points as the experiment, a fixed step size of 10 s is used.
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Figure 5. Return mapping algorithm for elasto-viscoplastic constitutive model.

Y &

X
Figure 6. Numerical creep experimental model under triaxial compression (The arrow represents
pressure loading and the triangle represents support).

Figure 7 shows a comparison between simulation results and experimental data.

As shown in Figure 7a, during the decay creep stage, there is a gap between the numer-
ical calculation results of the viscoplastic model and the experimental data. After entering
the steady-state creep stage (about 3 h), the simulation results agree with the experimental
data. As shown in Figure 7b, the numerical calculation results of the viscoplastic model are
in good agreement with the experimental data.
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Figure 7. Comparison between simulation results and experimental data. (a) differential stress is
10 MPa; (b) differential stress is 20 MPa.

There may be two possible reasons for the discrepancy between the numerical calcula-
tion results of the viscoplastic model during the attenuation creep stage in Figure 7a and
the experimental data. The first is the influence of shale anisotropy: compared to sandstone,
shale exhibits significant anisotropy due to bedding planes. The viscoplastic model itself is
an ideal model that does not consider the presence of internal pores, fractures, and defects
in the rock core. However, there are many natural original fractures within the actual shale
core itself. These original fractures may close in the early stage of creep, and over time,
they may expand and even cause creep fractures (Wang, 2012) [31]. Therefore, the rate of
decay creep is relatively high in the early creep stage.

Figure 8 compares the simulation results of the viscoplastic model and the power law
model inherent in the software platform and the third set of experimental data. As shown
in the figure, both the viscoplastic model and the power law model are in good agreement
with the creep experimental results.
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Figure 8. Comparison of simulation results of viscoplastic model and power law model with
experimental data.

3.5. Parameter Analysis of Elastic—Viscoplastic Model

This section conducts sensitivity analysis on the viscosity parameters, initial yield
stress, and strengthening material parameters in the elasto-viscoplastic constitutive model
to understand their impact on creep strain.

Figure 9 shows the variation curve of creep strain over time under different viscosity
parameters. Figure 10 shows the time-dependent curves of creep strain at initial yield
stresses of 0.3 MPa, 0.8 MPa, and 1.3 MPa. Figure 11 shows the time-dependent creep

strain curves of reinforced materials with parameters of 11,210.76 MPa, 21,210.76 MPa, and
31,210.76 MPa.
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Figure 9. Influence of different viscous parameters on creep curve.

In Figure 9, under certain other conditions, as the viscosity parameter increases, the
creep strain rate decreases, and the time to reach the “limit” of creep strain extends. That is,
the viscosity parameter only affects the time to reach the maximum creep strain and does
not affect the final creep strain. When the viscosity parameter is set, the creep strain limit is
closer to the initial yield surface—that is, the viscoplastic solution is closer to the “pure”
plastic solution [29]. As shown in Figure 10, under certain other conditions, the larger the
initial yield stress, the smaller the creep strain rate and creep strain. For every 0.5 MPa
increase in initial stress, the creep strain decreases by approximately 0.23 x 104, As shown
in Figure 11, under certain other conditions, as the strengthening material parameters
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increase, the creep strain decreases. Furthermore, there is a non-linear relationship between
creep strain and strengthening material parameters.
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Figure 10. Effect of initial yield stress on creep strain.
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Figure 11. Creep strain versus time for different strengthening material parameters.

4. Fracture Conductivity Simulation

We use finite element analysis software to apply the elasto-viscoplastic constitutive
model to the analysis of fracture conductivity, study the influence of creep on fracture
width, and analyze the factors influencing fracture width.

4.1. Fracture Conductivity Model Setup

We can simplify the plane strain problem of the rock fracture system and adopt the
following assumptions in modeling:

1.  We do not consider the poro-elastic characteristics of shale;

2. The permeability of the fracture remains constant; it does not take into account the
changes in fracture permeability caused by the decrease in pore pressure, the increase
in effective stress on the proppant, and the detachment of the reservoir caused by the
embedding of the proppant, leading to the migration of debris and proppant;

3. Thereis an intermediate layer in the middle of the fracture, in addition to the relatively

large size of the proppant, which is believed to be composed of relatively small
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proppant particles, pores, and rock debris, and crystallization and clay-like minerals
formed by pressure solution diagenesis in the proppant [20];
4. We can ignore the influence of proppant gravity and fracture surface roughness.

Figure 12 shows the geometric model of the rock fracture system. Shale reservoirs are
located above and below, with proppant-filled layers between the reservoirs. The circular
particles in the middle are relatively larger proppant particles (double-layer proppant is
used here). The intermediate layer is in contact with the relatively larger proppants of
the upper and lower reservoirs (the following proppants refer to larger proppants). The
reservoir is 1.5 cm thick, with a fracture length of 5 cm, a width of 2 cm, and a proppant
radius of 5 mm. Except for the CPE4P element, which is a seepage displacement coupling
element with pore pressure degrees of freedom, all other components use the CPE4 element.

Y
1—» X
Figure 12. Geometry model of rock fracture system.

The material parameters are shown in Table 2.

Table 2. Material parameters.

Model Material Parameter Specific Value
Elastic modulus of proppant (GPa) 30
Proppant Poisson’s ratio 0.3
Elastic modulus of shale reservoirs (GPa) 20
Poisson’s ratio of shale 0.25
Initial yield strength (MPa) 1
Strengthening material parameters (MPa) 14,276.18
Viscosity parameter (MPa-h) 461,543.53
Elastic modulus of intermediate layer (MPa) 100
Intermediate Poisson’s ratio 0.3
Liquid gravity (kN/m?) 10
Permeability coefficient (m/s) 10-10
Fluid bulk modulus (GPa) 2

Figure 13 shows the setting of boundary conditions for the model. We can fix the
horizontal and vertical displacement of the bottom surface. The horizontal displacement
of all components is limited, and only a vertical pressure of 85 MPa is applied on the top
surface. Considering that the pore fluid in the middle layer flows toward the wellbore
under closed pressure, we set the right boundary of the middle layer to have a pore pressure
of 0. The initial porosity ratio of the intermediate layer is set to 0.67. The decrease in pore
fluid pressure causes an increase in the effective stress on the proppant, and the compaction
process of the proppant is achieved through the contact between the larger proppant and
the upper and lower reservoirs, as well as between the intermediate layer and the upper
and lower reservoirs.
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Figure 13. Load and boundary condition settings (The arrow represents pressure loading and the
triangle represents support).

The specific settings for contact are as follows. Each proppant is set as the contact
surface, the upper and lower surfaces of the reservoir are set as the contact surface, the
upper and lower surfaces of the intermediate layer are set as the contact surface, and the
entire intermediate layer is set as the contact surface. A contact pair is set between each
proppant in the first layer and the lower surface of the reservoir. Usually, the surface with
high stiffness is chosen as the main surface, so the proppant is the main surface, and the
lower surface of the reservoir is the secondary surface. A contact pair is set between each
proppant in the second layer and the upper surface of the reservoir, with the proppant as
the main surface and the upper surface of the reservoir as the secondary surface. A contact
pair is set between the upper surface of the intermediate layer and the lower surface of
the reservoir, with the lower surface of the reservoir being the main surface and the upper
surface of the intermediate layer being the secondary surface. A contact pair is set between
the lower surface of the intermediate layer and the upper surface of the reservoir, with
the upper surface of the reservoir being the main surface and the lower surface of the
intermediate layer being the secondary surface. The contact properties are set to normal
hard contact, and the penalty friction formula with a friction coefficient of 0.5 is used for
tangential contact. We can set binding constraints between the entire intermediate layer
and each proppant, with the proppant as the main surface and the intermediate layer as
the secondary surface.

4.2. Results

Figures 14 and 15, respectively, show the overall stress distribution cloud maps of the
model at 0.3 h and 72 h, as well as the stress distribution cloud maps of the support agent.
Figure 16 shows the overall vertical displacement cloud maps of the model at 0.3 h and 72 h.

Based on Figures 14 and 15, it can be seen that the von Mises stress in the contact area
between the upper and lower layers of the proppant is the highest, with a maximum von
Mises stress of 1151.19 MPa. The von Mises stress in the contact area between the proppant
and the upper and lower reservoir rocks is secondary, with a maximum von Mises stress
of 854.54 MPa. This is mainly because the elastic moduli of the upper and lower layers of
proppants are equal, and they are less prone to deformation when in contact. The elastic
modulus of the proppant is slightly higher than that of shale, and the contact between the
two is relatively prone to deformation. Moreover, as the closing pressure increases and
time passes, the proppant is more likely to be embedded into shale reservoirs.
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Figure 14. von Mises stress of conductivity model (a) at 0.3 h; (b) at 72 h. (The scientific notation e+03
means x 103).
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Figure 16. Vertical displacement of conductivity model (a) at 0.3 h; (b) at 72 h. (The scientific notation
e+03 means x 10%).

Comparing the overall von Mises stress cloud maps of the 0.3 h and 72 h models with
the von Mises stress cloud maps of the proppant, it is easy to find that the von Mises stress
at 0.3 h is lower than that at 72 h, especially in the contact area between the proppant
and the upper and lower shale reservoir rocks, indicating stress relaxation at the fracture
surface, which is caused by the dissipation of pore pressure in the intermediate layer.

As shown in Figure 16, the vertical displacement decreases sequentially from the top
to the bottom. When the calculation is terminated, the proppant is slightly embedded in
the formation, and the amount of proppant embedded in the middle is about 0.0488 mm.
The variation in fracture width (referring to the minimum fracture width here) is 0.352 mm.
The embedding amount accounts for 27.7% of the half fracture width variation, and the
seam width variation rate, which is the ratio of fracture width variation to the original
fracture width, is 1.76%.

We defined a path along the exit direction of the fracture surface. Figure 17 shows
the distribution pattern of pore pressure in the middle layer along the outlet direction of
the fracture surface at different times. Obviously, the pore pressure gradually decreases
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along the direction of the fracture surface outlet, reflecting the process of pore pressure
dissipation. Figure 18 shows the distribution pattern of flow velocity along the outlet
direction of the fracture surface at the end of the calculation. It is easy to see that the
flow velocity gradually increases along the direction of the fracture surface outlet, and
the flow velocity at the insertion point of the support agent significantly decreases, which

indirectly reflects the decrease in permeability in the embedding area and the decrease in
diversion capacity.
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Figure 17. Pore pressure versus distance.
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Figure 18. Flow velocity versus distance.

Figure 19 shows the variation in fracture width over time. As shown in the figure,
the instantaneous change in fracture width caused by closed stress is about 0.239 mm,
accounting for 67.93% of the total fracture width change. Subsequently, the change in
fracture width caused by pore pressure dissipation and rock creep accounts for about
32.07%. It can be seen that the changes in fracture width caused by the decrease in pore

pressure of the proppant filling layer and the changes in fracture width caused by rock
creep cannot be ignored.

4.3. Analysis of Factors Influencing Fracture Width

This section investigates the effects of physical quantities such as the closure pressure,
elastic modulus and Poisson’s ratio of proppants, the elastic modulus and Poisson’s ratio

of rocks, viscosity parameters, the strengthening material parameters, and the initial yield
stress on the fracture width.
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Figure 19. Change in fracture width versus time.

Figure 20 shows the variation in fracture width over time at closure pressures of
45 MPa, 65 MPa, 85 MPa, and 105 MPa. As shown in Figure 20, under certain other
conditions, as the closure stress increases, the fracture width gradually decreases. For
every 20 MPa increase in closure stress, the fracture width decreases by approximately
0.07 mm. As the closure pressure increases, the time for the fracture width to reach stability
is extended. The variation in fracture width can be divided into three stages. At the
moment of loading, due to the lack of time for pore pressure to dissipate, the reduction in
fracture width is mainly caused by the elastic deformation of the reservoir and proppant.
Subsequently, as the pore pressure dissipates, the effective stress on the proppant increases,
causing further deformation of the proppant and reservoir, resulting in a decrease in
fracture width. After the dissipation of pore pressure, due to the creep properties of the
reservoir rock, the reservoir continues to deform, and the fracture width further decreases.
As the viscoplastic model of the reservoir is an “upper limit” model, the fracture width will
gradually approach a fixed value over time. When the closure stress is increased, it impacts
all three stages.
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Figure 20. Fracture width versus time for different closing pressures.

Figure 21 shows the variation in fracture width with time when the elastic moduli of
the proppant are 30 GPa, 40 GPa, 50 GPa, and 60 GPa. When other conditions are constant,
the larger the elastic modulus of the proppant, the wider the fracture width. This is because
the larger the elastic modulus of the proppant, the more effectively it can play its role; that
is, the proppant is less likely to deform and embed, and fractures are less likely to close.
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When the elastic modulus of the proppant increases from 30 GPa to 40 GPa, the decrease
in fracture width is greater than when the elastic modulus of the proppant increases from
40 GPa to 50 GPa. This indicates that when the elastic modulus of the proppant increases
to a value of around 40 GPa, it can better support fractures. If the elastic modulus of the
proppant continues to increase, it cannot significantly reduce the fracture width. When
comparing the time-varying curves of the fracture width with different elastic moduli of
proppants, the curves are parallel to each other, indicating that the elastic modulus of
proppants mainly affects the instantaneous application of closing stress and the early stage
of pore pressure dissipation. For the time period after small changes in pore pressure,
changes in the elastic modulus of proppants have almost no effect on the fracture width.
This is because the change in elastic deformation caused by the change in elastic modulus
is not related to the length of time but only to stress.
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Figure 21. Fracture width versus time for different elastic moduli of proppant.

Figure 22 shows the variation in fracture width with time when the Poisson’s ratio of
the proppant is taken as 0.2, 0.3, 0.4, and 0.45. As shown in the figure, when other conditions
are constant, the larger the Poisson’s ratio, the wider the gap. Due to the limitation of all
lateral displacements in the diversion capacity evaluation model, deformation can only
occur in the vertical direction. The larger the Poisson’s ratio of the proppant, the stronger
its ability to resist vertical deformation, and the less likely it is to reduce the fracture width.
Similarly to Figure 21, the time-dependent curves of fracture width under the influence of
different proppant Poisson’s ratios are parallel to each other, indicating that the proppant
Poisson’s ratio mainly affects the instantaneous application of closure stress and the early
stage of pore pressure dissipation. For the later stage of pore pressure dissipation, the
proppant Poisson’s ratio has almost no effect on fracture width. This is because the change
in elastic deformation caused by Poisson’s ratio is not related to the length of time but only
to the change in stress.

Figure 23 shows the variation in fracture width over time for shale reservoirs with
elastic moduli of 10 GPa, 15 GPa, 20 GPa, and 30 GPa. As shown in the figure, when
other conditions are constant, the larger the elastic modulus of shale reservoirs, the wider
the fracture width. The elastic modulus reflects the ability of a reservoir to resist elastic
deformation. The larger the elastic modulus, the stronger the resistance to deformation,
and the less likely the fracture width is to decrease. The reduction in fracture width caused
by the change in elastic modulus from 10 GPa to 20 GPa is 2.61 times that caused by the
change in elastic modulus from 20 GPa to 30 GPa. This is because the elastic modulus of the
proppant is 30 GPa. As the elastic modulus of the reservoir approaches 30 GPa, the two are
evenly matched, making the proppant less likely to deform and the fracture width less
likely to decrease. When the elastic modulus of the reservoir and the elastic modulus of the
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proppant differ significantly, the proppant is prone to embedding and cannot effectively
support the fractures.
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Figure 22. Fracture width versus time for different Poisson’s ratios of proppant.
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Figure 23. Fracture width versus time for different elastic moduli of reservoir.

Figure 24 shows the variation in fracture width over time for shale reservoirs with
Poisson’s ratios of 0.2, 0.25, 0.3, and 0.35. As shown in the figure, when other conditions
are constant, the larger the Poisson’s ratio of the reservoir, the wider the fracture width.
The reason for this is the same as the effect of the Poisson’s ratio of the proppant on the
fracture width, so it will not be repeated here. The width of the fracture is not linearly
proportional to the Poisson’s ratio of the reservoir. When the reservoir Poisson’s ratio
increased from 0.2 to 0.25, the fracture width increased by 0.0087 mm; when the reservoir
Poisson’s ratio increased from 0.25 to 0.3, the fracture width increased by 0.0111 mm; and
when the reservoir Poisson’s ratio increased from 0.3 to 0.35, the fracture width increased
by 0.0144 mm. Similarly to Figure 22, the Poisson’s ratio of the reservoir mainly affects
the instantaneous application of closure pressure and the early stage of pore pressure
dissipation. For the later stage of pore pressure dissipation, the Poisson’s ratio of the
reservoir has almost no effect on fracture width.
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Figure 24. Fracture width versus time for different Poisson’s ratios of reservoir.

Figure 25 shows the viscosity parameters of shale reservoirs, which are 1 =
661,543.53 MPa-h, n = 561,543.53 MPa-h, and n = 461,543.53 MPa-h. The variation law of
fracture width with time at 361,543.53 MPa-h. As shown in the figure, for the 72 h diversion
capacity evaluation model, changes in viscosity parameters have almost no effect on the
final fracture width.
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Figure 25. Fracture width versus time for different viscous parameters of reservoir.

Figure 26 shows the variation in fracture width over time at initial yield stresses of
1 MPa, 21 MPa, 41 MPa, and 61 MPa. As shown in the figure, under certain other conditions,
as the initial yield stress of the reservoir increases, the fracture width increases. For every
10 MPa increase in initial yield stress, the fracture width increases by approximately
0.01 mm. Although this value is small, it cannot be ignored when measuring the effect of
initial yield stress on fracture width on a longer time scale, such as 10 years, given a creep
time of 72 h.

Figure 27 shows the variation in fracture width over time when the strengthening
material parameters are h = 14,276.18 MPa, h = 24,276.18 MPa, h = 34,276.18 MPa, and
h = 44,276.18 MPa. As shown in the figure, when other conditions are constant, as the
strengthening material parameters increase, the fracture width increases. The parameters of
strengthening materials mainly affect the process of stress, which no longer changes after the
dissipation of pore pressure. Increasing the parameters of strengthening materials is equiv-
alent to increasing the subsequent yield stress, resulting in a decrease in creep strain rate, a
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decrease in creep strain, and an increase in fracture width. As the variation in pore pressure
is small, the variation curves of fracture width with time corresponding to different strength-
ening materials are not parallel, indicating that the strengthening material parameters are
not linearly related to fracture width. This is consistent with the influence of strengthening
material parameters on creep strain in Figure 11. Comparing Figures 26 and 27, the influ-
ence of strengthening material parameters on seam width is greater than that of initial yield
stress on seam width. This is because the initial yield stress is only the “threshold value”
for entering viscoplasticity, while the strengthening material parameters affect the entire
creep process.
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Figure 26. Fracture width versus time for different initial yield stresses of reservoir.
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Figure 27. Fracture width versus time for different hardening material parameters of reservoir.

5. Conclusions

This study introduces isotropic strengthening based on the classic Perzyna viscoplastic
model to obtain an elastic—viscoplastic constitutive model. The model was used to fit
triaxial compression creep experimental data under different differential stresses, obtain
model parameters, and program the model in the UMAT subroutine interface for model
validation. Finally, the viscoplastic model was applied to the calculation and simulation
of long-term fracture conductivity to study the effect of creep on fracture width and to
analyze the factors affecting fracture width. The conclusions drawn are as follows:
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(1) According to the 8 h high-temperature creep test results of shale with confining
pressure of 5 MPa and differential stresses of 10 MPa, 15 MPa, and 20 MPa, shale
mainly exhibits characteristics of attenuation creep and steady-state creep.

(2) The verification results of the viscoplastic model indicate that, during the attenuation
creep stage at a differential stress of 10 MPa, there is a gap between the numerical
calculation results of the viscoplastic model and the experimental data. After entering
the steady-state creep stage, the simulation results agree with the experimental data.
When the differential stress is 20 MPa, the overall agreement between the viscoplastic
model and experimental data is good.

(38) The sensitivity analysis of material parameters in the viscoplastic model shows that
the viscosity parameters only affect the time to reach the final creep strain and do not
affect the final creep. There is a linear inverse relationship between creep strain and
initial yield stress. There is a non-linear inverse relationship between creep strain and
strengthening material parameters.

(4) The simulation results of the artificial fracture diversion capacity evaluation model
show that, after 72 h, the reduction in fracture width caused by pore pressure dissipa-
tion and reservoir creep accounts for 32.07% of the total reduction in fracture width.
Further, the viscoplastic deformation of reservoirs cannot be ignored in predicting the
hydraulic conductivity of artificial fractures.

(5) The process of fracture width variation can be divided into three stages. The instanta-
neous application of closed stress, due to the lack of time for pore pressure to dissipate,
results in a decrease in fracture width mainly caused by the elastic deformation of
the reservoir and proppant. Then, as the pore pressure dissipates, the effective stress
on the proppant increases and is transmitted to the reservoir through contact, and
the fracture width continues to decrease. When the pore pressure has dissipated and
the effective stress on the proppant no longer changes due to the creep properties
of the reservoir, the strain will still gradually increase over time until it reaches the
maximum value of creep strain, and the fracture width will no longer change.

Author Contributions: Conceptualization, S.L.; Methodology, S.L.; Software, ].Z.; Validation, M.L.
(Mengjie Li) and J.L.; Formal analysis, M.L. (Mengjie Li); Investigation, ].L.; Writing—original draft,
J.Z.; Writing—review & editing, J.F,; Supervision, S.L.; Project administration, H.G., HW. and M.L.
(Muzi Li); Funding acquisition, H.G., H-W. and M.L. (Muzi Li). All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Open Fund of Hebei Cangzhou Groundwater and Land
Subsidence National Observation and Research Station (CGLOS-2023-09) and the National Natural
Science Foundation of China (No. 52174011). We also thank the following partners at China University
of Petroleum (Beijing) for their contributions: Min Zhang and Houze Chen.

Data Availability Statement: All relevant data are within the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Zhong, C.; Hou, D,; Liu, B.; Zhu, S.; Wei, T.; Gehman, J.; Alessi, D.S.; Qian, P--Y. Water footprint of shale gas development in china
in the carbon neutral era. J. Environ. Manag. 2023, 331, 117238. [CrossRef]

Ma, Z.; Pi, G.; Dong, X.; Chen, C. The situation analysis of shale gas development in China-based on Structural Equation Modeling.
Renew. Sustain. Energy Rev. 2017, 67, 1300-1307. [CrossRef]

Mastowski, M.; Labus, M. Preliminary Studies on the Proppant Embedment in Baltic Basin Shale Rock. Rock Mech. Rock Eng. 2021,
54, 2233-2248. [CrossRef]

Sone, H.; Zoback, M.D. Mechanical properties of shale-gas reservoir rocks—Part 2: Ductile creep, brittle strength, and their
relation to the elastic modulus. Geophysics 2013, 78, D390-D399. [CrossRef]

Zheng, D.; Miska, S.; Ozbayoglu, E. The Influence of Formation Creeping on Wellbore Integrity. In Proceedings of the SPE 2021
Symposium Compilation, Virtual, 26 November 2021. [CrossRef]

Guo, J; Liu, Y. Modeling of Proppant Embedment: Elastic Deformation and Creep Deformation. In Proceedings of the SPE
International Production and Operations Conference & Exhibition, SPE-157449-MS, Doha, Qatar, 14-16 May 2012.

103



Energies 2024, 17, 1122

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

31.

Katende, A.; Allen, C.; Rutqvist, J.; Nakagawa, S.; Radonjic, M. Experimental and numerical investigation of proppant embedment
and conductivity reduction within a fracture in the Caney Shale, Southern Oklahoma, USA. Fuel 2023, 341, 127571. [CrossRef]
Katende, A.; O’Connell, L.; Rich, A.; Rutqvist, J.; Radonjic, M. A comprehensive review of proppant embedment in shale
reservoirs: Experimentation, modeling and future prospects. J. Nat. Gas Sci. Eng. 2021, 95, 104143. [CrossRef]

Chang, C.; Zoback, M.D. Viscous creep in room-dried unconsolidated Gulf of Mexico shale (I): Experimental results. J. Pet. Sci.
Eng. 2009, 69, 239-246. [CrossRef]

Rassouli, F.S.; Zoback, M.D. Comparison of Short-Term and Long-Term Creep Experiments in Shales and Carbonates from
Unconventional Gas Reservoirs. Rock Mech. Rock Eng. 2018, 51, 1995-2014. [CrossRef]

Sone, H.; Zoback, M.D. Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of
stress. Int. . Rock Mech. Min. Sci. 2014, 69, 120-132. [CrossRef]

Borja, R.I; Yin, Q.; Zhao, Y. Cam-Clay plasticity. Part IX: On the anisotropy, heterogeneity, and viscoplasticity of shale. Comput.
Methods Appl. Mech. Eng. 2020, 360, 112695. [CrossRef]

Chang, C.; Zoback, M.D. Viscous creep in room-dried unconsolidated Gulf of Mexico shale (II): Development of a viscoplasticity
model. J. Pet. Sci. Eng. 2010, 72, 50-55. [CrossRef]

Darabi, M.K.; Abu Al-Rub, RK; Masad, E.A.; Huang, C.-W.; Little, D.N. A modified viscoplastic model to predict the permanent
deformation of asphaltic materials under cyclic-compression loading at high temperatures. Int. J. Plast. 2012, 35, 100-134.
[CrossRef]

Kabwe, E.; Karakus, M.; Chanda, E.K. Creep constitutive model considering the overstress theory with an associative viscoplastic
flow rule. Comput. Geotech. 2020, 124, 103629. [CrossRef]

Haghighat, E.; Rassouli, ES.; Zoback, M.D.; Juanes, R. A viscoplastic model of creep in shale. Geophysics 2020, 85, MR155-MR166.
[CrossRef]

Ding, X.; Zhang, F.; Zhang, G. Modelling of time-dependent proppant embedment and its influence on tight gas production.
J. Nat. Gas Sci. Eng. 2020, 82, 103519. [CrossRef]

Fan, M.; Han, Y.; Chen, C. Thermal-Mechanical Modeling of a Rock/Proppant System to Investigate the Role of Shale Creep on
Proppant Embedment and Fracture Conductivity. Rock Mech. Rock Eng. 2021, 54, 6495-6510. [CrossRef]

Liu, Y;; My, S.; Guo, J.; Yang, X.; Chen, C.; Liu, H. Analytical model for fracture conductivity with multiple particle sizes and
creep deformation. J. Nat. Gas Sci. Eng. 2022, 102, 104607. [CrossRef]

Luo, Z.; Zhang, N.; Zhao, L.; Liu, F,; Liu, P.; Li, N. Modeling of pressure dissolution, proppant embedment, and the impact on
long-term conductivity of propped fractures. J. Pet. Sci. Eng. 2020, 186, 106693. [CrossRef]

Geng, Z.; Bonnelye, A.; David, C.; Dick, P.; Wang, Y.; Schubnel, A. Pressure Solution Compaction during Creep Deformation of
Tournemire Shale: Implications for Temporal Sealing in Shales. ]. Geophys. Res. Solid Earth 2021, 126, €2020]JB021370. [CrossRef]
Yin, Q.; Liu, Y.; Borja, R.I. Mechanisms of creep in shale from nanoscale to specimen scale. Comput. Geotech. 2021, 136, 104138.
[CrossRef]

Rafieepour, S.; Zheng, D.; Miska, S.; Ozbayoglu, E.; Takach, N.; Yu, M.; Zhang, ]. Combined Experimental and Well Log Evaluation
of Anisotropic Mechanical Properties of Shales: An Application to Wellbore Stability in Bakken Formation. In Proceedings of the
SPE Annual Technical Conference and Exhibition, Virtual, 21-22 October 2020. [CrossRef]

Zheng, D.; Ozbayoglu, E.; Miska, S.; Zhang, J. Combined Experimental and Well Log Study of Anisotropic Strength of Shale. In
Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 16-18 October 2023. [CrossRef]
Zheng, D.; Ozbayoglu, E.; Miska, S.; Zhang, J. Experimental Study of Anisotropic Strength Properties of Shale. In Proceedings of
the 57th U.S. Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 15-28 June 2023. [CrossRef]

Hartley, P. Introduction to Computational Plasticity. J. Phys. A Math. Gen. 2006, 39, 3850. [CrossRef]

Lazari, M.; Sanavia, L.; di Prisco, C.; Pisano, F. Predictive potential of Perzyna viscoplastic modelling for granular geomaterials.
Int. |. Numer. Anal. Methods Geomech. 2019, 43, 544-567. [CrossRef]

Perzyna, P. Fundamental Problems in Viscoplasticity. Adv. Appl. Mech. 1966, 9, 243-377. [CrossRef]

Song, F.; Rodriguez-Dono, A.; Olivella, S. Hydro-mechanical modelling and analysis of multi-stage tunnel excavations using a
smoothed excavation method. Comput. Geotech. 2021, 135, 104150. [CrossRef]

Wang, X.; Wang, L.B.; Xu, L.M. Formulation of the return mapping algorithm for elastoplastic soil models. Comput. Geotech. 2004,
31, 315-338. [CrossRef]

Wang, ]. Mechanical Properties and Researches of Roadway Supporting Technology of Oil Shale Under the Action of Water. Ph.D.
Thsis, Liaoning University of Technology, Jinzhou, China, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

104



energies

Article

Experimental Study of the Fluid Contents and Organic/Inorganic
Hydrocarbon Saturations, Porosities,
and Permeabilities of Clay-Rich Shale

Fenglan Wang "2, Binhui Li 234, Sheng Cao 234, Jiang Zhang 234, Quan Xu 2% and Qian Sang >*

check for
updates

Citation: Wang, F; Li, B.; Cao, S.;
Zhang, J.; Xu, Q.; Sang, Q.
Experimental Study of the Fluid
Contents and Organic/Inorganic
Hydrocarbon Saturations, Porosities,
and Permeabilities of Clay-Rich Shale.
Energies 2024, 17, 524. https://
doi.org/10.3390/en17020524

Academic Editor: Reza Rezaee

Received: 15 December 2023
Revised: 18 January 2024
Accepted: 20 January 2024
Published: 22 January 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Dagqing Oilfield Co., Ltd., Daging 163002, China

National Key Laboratory for Multi-Resources Collaborative Green Production of Continental Shale Oil,
Dagqing 163712, China; libinhui@petrochina.com.cn (B.L.); zhangjiangl@petrochina.com.cn (J.Z.);
xuquanl@petrochina.com.cn (Q.X.)

Exploration and Development Research Institute of Daging Oilfield Co., Ltd., Daqing 163712, China
Heilongjiang Provincial Key Laboratory of Reservoir Physics & Fluid Mechanics in Porous Medium,
Dagqing 163712, China

School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
*  Correspondence: 20190005@upc.edu.cn

Abstract: Unlike conventional reservoirs, shale is particularly complex in its mineral composition. As
typical components in shale reservoirs, clay and organic matter have different pore structures and
strong interactions with fluids, resulting in complex fluid occurrence-states in shale. For example,
there are both free water and adsorbed water in clay, and both free oil and ad/absorbed oil in
organic matter. Key properties such as fluid content, organic/inorganic porosity, and permeability
in clay-rich shale have been poorly characterized in previous studies. In this paper, we used a
vacuum-imbibition experimental method combined with nuclear magnetic resonance technique and
mathematical modeling to characterize the fluid content, organic/inorganic porosity, saturation,
and permeability of clay-rich shale. We conducted vacuum-imbibition experiments on both shale
samples and pure clay samples to distinguish the adsorbed oil and water in clay and organic matter.
The effects of clay content and total organic matter content (TOC) on porosity and adsorbed-fluid
content are then discussed. Our results show that, for the tested samples, organic porosity accounts
for 26-76% of total porosity. The oil content in organic matter ranges from 29% to 69% of the total
oil content, and 2% to 58% of the organic oil content is ad/absorbed in kerogen. The inorganic
porosity has a weak positive correlation with clay content, and organic porosity increases with rising
levels of organic matter content. The organic permeability is 1-3 orders of magnitude lower than the
inorganic permeability.

Keywords: vacuum-imbibition; clay; shale; organic saturation; inorganic saturation; organic permeability;
inorganic permeability

1. Introduction

With the maturity of horizontal well drilling technology and large-scale volume frac-
turing technology, the commercial development of shale oil has gradually been realized.
Compared with conventional reservoirs, shale oil reservoirs are rich in organic matter and
have high clay mineral content, diverse pore types, and complex spatial structures. Shale
oil reservoirs have the characteristics of low porosity, low permeability, and high specific
surface area. The presence of clay minerals can lead to severe water sensitivity effects, while
significant capillary phenomena can cause water-locking phenomena. Depositional envi-
ronments can significantly impact the components, contents, structures, and distribution of
clay in shale oil layers. These factors of clay minerals in shale reservoirs have two aspects in
their influence on the reservoir’s physical properties and rock-mechanical properties: one
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is the influence on the mechanical properties of shale rocks; the increased amounts of clay
minerals will reduce natural fractures and reduce the “fracturability” of rock layers. The
second is the influence on fluid continuity and flow characteristics, because the distribution
of clay in shale will influence the continuity of organic matter, fluid distributions, and rela-
tionship between the two phases of permeability. The interactions between clay minerals
and fluids can significantly affect the flow capacity of fluids [1,2]. Clay minerals will swell
when they encounter water. The mechanism of clay swelling has been well studied, and the
main understanding achieved describes the formation of hydrogen bonds on the surface
of clay minerals which results in the adsorption of water [3,4], and the hydration of ions
in clay minerals to form a diffuse double layer, which increases the inter-crystal distance
of clay crystals [5]. The swelled clay will disperse and produce precipitation, blocking
flow channels, resulting in reduced permeability [6,7]. The interaction between oil and
clay minerals mainly focuses on the characterization of the occurrence-state of oil. The
polar part of oil adsorbs to clay minerals due to hydrogen bonding [8]. When the water
content increases, the proportion of adsorbed oil decreases and the proportion of free oil
increases [9], thereby increasing the mobility of oil. However, due to the effect of clay
swelling, the increase in flow ability is limited [10]. The above studies reveal the storage
and flow characteristics of oil and water in clay minerals, but they do not systematically
characterize the content and distribution characteristics of fluids in shale samples with
complex mineral compositions.

The shale oil reservoir is rich in organic matter. The oil in shale reservoirs with high
oil content and oil of medium to high maturity is of good quality, has low viscosity, and
is mainly stored in the pores and kerogen. The occurrence-states of continental shale oil
are diverse, mainly including free oil, oil adsorbed on the surface of minerals, and oil
absorbed in the organic matter [11,12]. The free oil is mainly composed of small molecular
components and is mainly found in micro-fractures, fractures between layers, and large-
sized pores in the mudstone matrix [13,14]. The adsorbed oil is mainly composed of
medium to large molecular components and is mainly adsorbed onto the surface of rock
minerals and kerogen macromolecule skeletons through physical adsorption and non-
covalent chemical adsorption [15,16]. The absorbed oil is mainly composed of medium
to small molecular components, which are mainly small molecules entrapped within the
internal network structure of kerogen or dissolved in asphaltene and residual water [17,18].
Two types of experimental characterization methods have been developed for studying
the occurrence-state of shale oil: one is the solvent extraction method [18], and the other is
the pyrolysis method [19]. Some scholars have also used molecular simulation technology
to quantitatively evaluate the adsorption and free-oil content of either single-component
hydrocarbons or mixed hydrocarbons in pores with different properties (type, size, shape,
wettability, etc.) and under different conditions (temperature, pressure) [20]. The thickness
and density-distribution of the adsorption layer were described in their studies.

Based on the wettability and occurrence characteristics of oil/water in organic/inorganic
pores, through the fluid imbibition experimental method, Sang et al. [21] determined the
inorganic porosity, organic porosity, maximum organic saturation, maximum inorganic
saturation, and adsorption-relative miscible-fluid saturation of continental shale rock
samples from the Jiyang Depression in eastern China. The oil content in organic matter
(including free oil, adsorbed oil, and adsorbed oil) accounted for 6% to 55% of the total
saturated oil content, of which 50% to 90% was ad- or absorbed oil. The inorganic and
organic permeability of the measured shale samples were obtained by fitting the imbibition
curves of the oil and water. The organic permeability was approximately one to two orders
of magnitude lower than the inorganic permeability [22]. The above experiments and
fitting processes did not consider the influence of clay on the contents of ad- and adsorbed
fluid. The content levels of ad- and adsorbed fluid in the organic matter and clay minerals
were not separated.

The objectives of this study are to characterize the fluids in different occurrence-states
of shale rock samples rich in organic matter and clay minerals, and to obtain key parameters
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that are important in fluid-flow studies by considering the adsorbed fluid in organic matter
and clay minerals. In this paper, a total of eight shale samples and two types of clay
minerals were selected to conduct vacuum-imbibition tests in order to separately consider
the organic porosity, inorganic porosity, organic saturation, and inorganic saturation of the
shale samples. The experimental results were fitted to obtain the organic permeability and
inorganic permeability of the tested samples. The clay contents and organic-matter contents
of the samples were characterized to analyze the factors affecting the organic/inorganic
saturation and the fluid content in different occurrence-states.

2. Experimental Methods
2.1. Rock Samples

Shale rock samples were collected from Well GY 7, Well GY 10HC, Well GY 4HC, Well
GY 9HC, and Well GY 16 in the Songliao Basin, which is located in Daqing, Heilongjiang
Province, in northern China. The mineralogy of the core samples was characterized by
X-ray diffraction, and the TOC of core samples was characterized by the high-temperature
pyrolysis method. The mineralogy and TOC of all samples are shown in Table 1. The shale
samples have high content levels of clay minerals, mostly ranging from 30% to 50%. The
TOC of samples are in the range of 1-3%.

Table 1. Mineralogy data and TOC of samples (wt.%).

Number Samples Clay Quartz  Feldspar  Calcite  Dolomite  Pyrite Ankerite Barite TOC
#1 GY7 50.1 32.7 9.0 7.4 6.2 1.9 54 - 2.5
#2 GY 10HC-1 42.6 37.0 9.4 - 8.5 2.5 - - 2.0
#3 GY 10HC-2 8.8 6.1 - - 81.3 - - 3.8 0.4
#4 GY 4HC-189 16.4 19.6 2.7 1.7 58.2 1.4 - - 24
#5 GY 9HC-208 37.4 354 16.5 0.7 6.4 3.6 - - 21
#6 GY 9HC-210 41.5 37.8 16.7 - - 4.0 - - 2.9
#7 GY 16-24 41.3 31.7 14.8 - 6.1 6.1 - - 1.3
#8 GY 16-32 39.3 33.6 18.9 4.3 - 3.9 - - 1.0

2.2. Pore-Structure Characterization

Shale matrix has a complex pore structure, with pore sizes ranging from nanometers
to micrometers. In this work, the morphology of the sample surface was observed using
an SEM with argon ion-beam milling. Pore-size distribution was measured by the N,
adsorption method and the high-pressure mercury injection method. The N; adsorption
method was conducted at 77 K, using a Micromeritics ASAP 2020 surface-area and porosity
analyzer. Pore-size distribution was calculated using the Barret-Joyner—-Halenda (BJH)
method [23]. An AutoPore IV 9500 was used to measure the pore throat sizes in the
high-pressure mercury injection test.

2.3. Vacuum-Imbibition Tests

In this study, vacuum-imbibition tests were conducted to determine the organic and
inorganic porosity, organic and inorganic saturation, and content of ad/absorbed oil of the
shale rock samples. The helium was saturated to obtain the volume of the total pore space,
and the oil and water imbibition tests were performed to obtain the volumes of the organic
and inorganic pores.

An apparatus for vacuum-imbibition tests is shown in Figure 1. The experimental
set-up consists of a gas cylinder, vacuum pump, pressure sensors, sealed test cells, and high-
precision burettes. Each burette was sealed with plastic wrap and aluminum foil to prevent
evaporation of the liquid. Due to the low amount of imbibed liquid in this experiment,
we chose burettes with graduations at every 0.01 mL to ensure accurate measurement
of the imbibed contents. The apparatus for the oil and water vacuum-imbibition test is
divided into two parts; the upper part includes the valve V-2 and a high-precision burette,
and the lower part includes the valve V-1 and the sealed cell. The role of the V-1 is to
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connect to the vacuum pump for vacuuming, and after the vacuuming is completed, the
V-1 is closed to maintain the vacuum of the cell. The V-2 is the valve for the high-precision
burette, preventing the liquid from leaking out from the bottom when the high-precision
burette is filled with liquid. The upper and lower parts are assembled together for the
imbibition experiment.

oil

V-2

Vacuum pump
il V-1

P

He

Figure 1. Schematic of the vacuum-imbibition test.

Due to the significant impact on volume accuracy made by the container’s volume in
the experimental results, it is necessary to accurately measure the internal-space volume of
the sealed cell. The internal volume of the sealed cell refers to all the volume below the
valve V-1. First, the sealed cell was vacuumed for at least 4 h; then, it was connected to the
burette filled with distilled water, and the volume of water imbibed was recorded. The
internal volume was calibrated, at least three times, until the volume error of the three
calibrations was less than 0.1 mL. The calibrated volumes were then averaged to calculate
the accurate volume of the sealed cell.

The sealed cell was connected to the high-precision burette filled with oil or water.
The valve V-2 was opened, and the initial position of the liquid was recorded. Then, the
valve V-1 was opened, and the level of the liquid in the burette at first rapidly dropped to
fill the space in the sealed cell not occupied by the rock sample. Then, the level of the liquid
dropped slowly. The liquid position Vi and the corresponding time t were recorded until
the liquid level no longer dropped.

The procedure of the vacuum-imbibition test is as follows:

(1) The shale samples were broken into blocks of approximately 1 cm X 1 cm x 0.5 cm
and extracted with CH,Cl, for 15 days, and then dried for 48 h at 100 °C.

(2) The processed rock-samples were divided into two parts of equal weight and placed in
two sealed cells for water and oil imbibition tests. An air tightness test was conducted.

(38) The samples were vacuumed, and then saturated with helium gas. The saturated gas
content was obtained according to Boyle’s law to calculate the total pore volumes and
porosities of the shale rock samples.

(4) The samples were then vacuumed again, and oil and water were imbibed into the
2 cells. The imbibed volumes of oil and water were recorded, along with the time.
The entire experimental process was conducted at a constant temperature of 25 °C.
The n-dodecane (n-Cj,) was used as the oil phase, and the KCl solution with 8% mass
concentration was used as the water phase.

2.4. Two-Dimensional Nuclear Magnetic Resonance Characterization

In this study, the nuclear magnetic resonance (NMR) technique is used to characterize
the oil and water in different occurrence-states. In order to distinguish different hydrogen-
bearing components in shale, we obtained the transverse relaxation (T,) and its relationship
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with the longitudinal relaxation time (T;) for the shale samples. The dry samples and the
samples after the oil and water had been imbibed were subjected to NMR tests, and the
components of kerogen, structural water, free water, adsorbed water, free oil, and adsorbed
oil were identified from the T1-T, maps.

The NMR tests were carried out on a MacroMR12-150H-VTHP instrument (Shanghai
Niumag, Shanghai, China) operated at 12 MHz. The measurement parameters of the NMR
were set as follows: waiting time, 4000 ms; number of echoes, 10,000; regulate first data,
0.08 ms; sampling frequency, 250 kHz; pulse 90, 20 ps.

3. Results and Discussion
3.1. Microstructure of Pore-Space and Pore Size Distribution

Combined with the argon ion-beam milling technique, scanning electron microscopy
(SEM) was used to characterize the pores at nanometer resolution. Nano- and micro-scale
pores were identified and analyzed based on SEM images. Some representative images are
shown in Figure 2. Various minerals such as quartz, clay, kerogen, dolomite, and pyrite were
observed from the SEM images. The pore type includes intergranular pores, intragranular
dissolution pores, clay mineral pores, organic matter pores, and micro-fractures. It can be
seen from the images that the organic matter and clay minerals are mixed, and there are
large pores or micro-fractures on the edge of the kerogen. Some of the kerogen has a certain
degree of pore development inside.

\ e | : erogen

" Glay pore

Kerogen

tragranular

pore -
\ Intergranular

pore

Figure 2. SEM images of shale samples: (a,b) sample #1, Well GY 7, 2406.02 m; (c,d) sample #2, Well
GY 10HC, 2588.58 m; (e) sample #4, Well GY 4HC, 2478.2 m; (f,g) sample #5, Well GY 9HC, 2353.9 m;
(h,i) sample #7, Well GY 16, 2350.17 m.
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Due to the inconsistencies between resolution and field range, the SEM technique can
only provide local pore structure information of rock samples, and cannot fully characterize
the pore-size distribution of rock samples. Combined with high-pressure mercury injection
and N adsorption testing, the full pore-size range of shale samples was characterized.

As shown in Figure 3a, the shale samples have a large number of pores with sizes
of less than 100 nanometers. The pores with sizes of 2-100 nanometers and 10-200 um
account for the largest proportion of the pore volume and contribute to the main storage
capacity. The pores with sizes of 2-100 nanometers mainly exist in the shale matrix, and
are manifested as intergranular pores, intragranular pores, and intercrystalline pores. The
pores with sizes of 10-200 pm are mainly micro-fractures.

0.008
. —a— sample #1
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g .
£ I
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Figure 3. Pore-size distribution of tested samples: (a) Pore throat radius distribution measured by the
mercury injection test. (b) Pore diameter distribution measured by the N, adsorption test.

Figure 3b shows that the nanopores with pore diameters of less than 10 nanometers
occupy the majority of the pore space. Its characteristics are related to the high clay content,
which develops a large number of nanopores, mainly in the form of sheet pores or slit pores.
Combined with high-pressure mercury porosimetry results, we can conclude that for shale
samples, the pore size of nanoscale pores is generally less than 100 nanometers.

3.2. Inorganic and Organic Saturations and Porosities

In shale reservoirs, shale oil exists in various forms of occurrence, including free oil
in inorganic pores and fractures, adsorbed oil in clay minerals, organic free-oil in organic
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pores, and ad- and adsorbed oil in the kerogen matrix. The inorganic minerals in shale
reservoirs are mostly water-wet surfaces with relatively large pore sizes compared to
organic pores. Organic pores have hydrophobic surfaces and are mostly nano-scale pores.
For the vacuum-imbibition process, the single-phase flow occurs, and the surface energy of
the oil is greater than that of water; therefore, oil can enter both the organic and inorganic
pores, while water can only enter the hydrophilic inorganic pores and cannot enter the
hydrophobic organic matter [21].

The vacuum-imbibition results of the shale samples are shown in Figure 4. The
vacuum-imbibition curves of the oil and water show the following characteristics: (1) The
imbibition of oil and water can be divided into two stages. At the early stage, the imbibition
rate of oil and water is fast, and the imbibition volume rises rapidly. At the later stage,
the imbibition rate gradually slows down, and the imbibition volume slowly rises until
reaching a state of equilibrium at which the imbibition volume no longer changes. (2) The
final imbibed volume of water is smaller than the final imbibed volume of oil. (3) It takes
longer for oil to reach equilibrium than for water. For example, sample #6 took about 100 h
to imbibe 0.029 mL/g of water, while the imbibition time and volume of oil were 730 h and
0.054 mL/g, respectively. The oil imbibition volume was 0.025 mL/g more than that of
water. The final imbibed water volume of sample #1 was 0.024 mL /g, reaching equilibrium
in approximately 4.2 days, while the final imbibed oil volume was 0.10 mL/g (4.17 times
of the imbibed water volume), and took 66.2 days to reach equilibrium (15.8 times of the
equilibrium time for water imbibition).

The imbibition time of oil is longer than that of water, which can be explained in
following aspects. First, the overall pore size of organic pores is smaller than that of
inorganic pores, resulting in lower permeability and poorer flow capacity of organic pores.
Therefore, the flow of oil in organic pores is slower (as shown in Figure 5). Second, the
viscosity of oil is higher than that of water, resulting in greater flow resistance, slowing
down the flow velocity of oil. Furthermore, oil migrates in the organic matter by molecular
diffusion, and the speed of diffusion movement is very slow, resulting in the continuous
imbibition of oil into the sample at a lower speed in the later stage.

Based on the imbibed volumes of oil and water, we can distinguish organic and
inorganic porosity and organic and inorganic saturation in shale and calculate the amount
of ad/absorbed oil in kerogen. For example, the inorganic pore volume is equal to the
imbibed water volume, because the imbibed water occupies all the inorganic pores. The
gas-measured pore volume is the sum of the inorganic and organic pore volumes, so the
organic pore volume is the gas-measured volume minus the imbibed-water volume. The
imbibed oil is composed of the o0il occupying pore space and the oil adsorbing or dissolving
in kerogen, so the amount of ad/absorbed oil in kerogen is the imbibed oil volume minus
the gas-measured pore volume.

In shale, besides organic matter, clay minerals also have adsorption effects on fluids
due to the large specific surface area of the mineral. For shale samples with low levels of
clay content, the analysis of vacuum-imbibition experimental data can ignore the influence
of clay [21]. However, in this study, the samples from the Gulong shale have high levels of
clay content, and clay has adsorption effects on both water and oil, so both water and oil
can exist in an adsorbed state in the clay. The water imbibed into shale pores includes two
parts: free water in inorganic pores, and adsorbed water in clay. The oil imbibed into shale
pores includes four parts: free oil in inorganic pores, adsorbed oil in clay, free oil in organic
pores, and ad/absorbed oil in kerogen.

The adsorption effect of clay on oil and water cannot be ignored for the determination
of inorganic/organic porosity and saturation. For example, due to the large amount of
adsorbed water in clay, if the influence of clay is not considered, the imbibed water volume
is equal to the inorganic pore volume, resulting in an overestimation of the inorganic pore
volume. Therefore, when analyzing the vacuum-imbibition data, it is necessary to further
consider the adsorption effects of clay on oil and water.
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Figure 4. Vacuum-imbibition curves of water and oil in eight shale samples. The characteristics of
the oil and water vacuum-imbibition curves show significant differences, indicating that the flow
space and flow capacity of the oil and water are different. Water can only enter inorganic pores,
while oil can enter both inorganic pores and organic pores, so oil eventually occupies more pore
space than does water. In addition, due to the strong interaction between organic matter and oil, oil
molecules can diffuse into the organic matter and combine with the molecular skeleton of kerogen to
form ad/absorbed oil. This further increases the imbibition volume of oil, resulting in a significantly
higher imbibed volume of oil than water.
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Figure 5. Vacuum-imbibition rate curves of water and oil in eight shale samples.
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The clay composition of the selected shale samples is shown in Table 2. The clay compo-
nents are dominated by illite, chlorite, and illite—chlorite mixed layers, with illite and chlorite
accounting for the majority. Therefore, we selected pure samples of illite and chlorite to
analyze the adsorption of clay on oil and water. The samples of illite and chlorite are shown in
Figure 6. The experimental method and process were the same as those for the shale samples.

Figure 7 shows the vacuum-imbibition curves of water and oil in chlorite and illite
samples. The vacuum-imbibition curve characteristics of illite and chlorite are similar to
those of shale samples, with higher imbibition rates of oil and water in the early stage,
followed by a decrease in the imbibition rate in the later stage. The final level of imbibed
oil is higher than that of water, and the time for oil imbibition is longer than that for water.
The time for oil and water imbibition to reach equilibrium in clay samples is shorter than
that in shale samples, which is due to the lower mass of clay samples in the experiment,
resulting in a reduced time for oil and water imbibition to reach equilibrium.

Table 2. Clay compositions of shale samples (wt.%).

Sample Number Illite Kaolinite Chlorite Illite/Smectite

#1 41 - 20 39
#2 66 - 7 27
#3 42 31 27 -

#4 39 - 37 24
#5 64 - 10 26
#6 68 - 9 23
#7 44 - 18 38
#8 60 - 7 33
#1 41 - 20 39

Figure 6. Samples of chlorite and illite.
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Figure 7. Vacuum-imbibition curves of water and oil in chlorite and illite samples: (a) Chlorite; (b) Illite.

The imbibition curves of illite and chlorite show a difference in the imbibed volumes of oil
and water. The final imbibed oil and imbibed water volumes of chlorite are higher than those of
illite, indicating that the adsorption capacity of chlorite is stronger than that of illite. Through the
vacuum-imbibition experiment, we determined that the adsorbed water volume and adsorbed
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oil volume in chlorite are 0.41 mL/g and 0.63 mL/g, respectively, and the adsorbed water
volume and adsorbed oil volume in illite are 0.34 mL/g and 0.36 mL/g, respectively.

The oil and water imbibed volumes of the shale rock samples were calculated by
removing the volumes adsorbed in chlorite and illite; the inorganic/organic porosity and
saturation can then be calculated, and is shown in Table 3:

(1) Inorganic porosity: The ratio of the inorganic pore volume to the apparent volume
of the crushed sample. The inorganic pore volume is calculated by subtracting the
adsorbed water volume in clay from the gas-measured pore volume.

(2) Organic porosity: The ratio of the organic pore volume to the apparent volume of the
crushed sample. The organic pore volume is the gas-measured pore volume minus
the inorganic pore volume.

(3) Inorganic saturation: The ratio of the volume of oil imbibed into the inorganic material
to the total volume of imbibed oil. The oil imbibed into the inorganic material is the sum
of the free 0il in the inorganic pores (inorganic pore volume) and the clay-adsorbed oil.

(4) Organic saturation: The ratio of the volume of oil imbibed into the organic matter to
the total volume of imbibed oil. The oil imbibed into the organic matter is the sum of
the free oil in organic pores and the ad/absorbed oil in the organic matter.

(5) The percentage of adsorbed water in clay: The ratio of the clay-adsorbed water volume
to the water volume within the inorganic matter.

(6) The percentages of ad/absorbed oil in organic matter: The ratio of the volume of
ad/absorbed oil in the organic matter to the volume of oil within the organic matter.

Table 3. Organic oil saturation, inorganic oil saturation, organic porosity, and inorganic porosity of
different shale samples.

0Oil QOil Helium

s Bulk . . . Organic Inorganic Organic Inorganic Percentage of
ample Vol Volume in Volume in Saturation S . S . P . P . o ic P
Number olume Oreanic Pores Inorganic Pores Volume aturation aturation orosity orosity rganic Pores
(em®) it 4 (%) (%) (%) (%) (%)
(mL/g) (mL/g) (mL/g)

#1 20.434 0.101 0.024 0.048 47.59 5241 8.86 2.82 75.87

#2 18.502 0.092 0.025 0.048 66.09 33.91 6.81 5.72 54.36

#3 21.818 0.034 0.017 0.019 34.62 65.38 1.41 3.94 26.27

#4 20.708 0.045 0.017 0.025 32.80 67.20 3.72 2.79 57.13

#5 19.689 0.056 0.031 0.040 29.85 70.15 3.11 6.72 31.63

#6 18.220 0.054 0.029 0.037 32.16 67.84 3.06 6.22 33.00

#7 19.591 0.080 0.018 0.040 56.75 43.25 7.33 2.77 72.59

#8 18.984 0.066 0.015 0.035 68.65 31.35 5.71 3.01 65.46

As typical components in shale, clay and organic matter control the pore spaces.
Additionally, clay and organic matter have adsorption and dissolution effects on the oil and
water, affecting the fluid content of shale. In this study, by combining mineral composition
analysis and vacuum-imbibition experimental data, the effects of clay content and TOC on
the inorganic/organic porosity and saturation were investigated.

Figure 8 shows the trends of inorganic porosity (a), inorganic saturation (b), and
adsorbed water in clay (c), together with the clay content levels of the shale samples.
Figure 8a shows that the inorganic porosity has a weak growth trend with increases in clay
content, which is related to the pore structure of clay in the shale samples. According to
previous SEM scanning results, the pores in clay minerals are relatively developed, while the
number of pores in other inorganic minerals is relatively low. In this case, as the clay content
increases, the number and volume of inorganic pores increase, resulting in an increase in
inorganic porosity. The relationship between inorganic saturation and clay content is not
clear (as shown in Figure 8b). This is because the rock samples also contain other types of
inorganic minerals besides clay, and the degree of their pore space development also affects
inorganic saturation. Figure 8c shows that the content of adsorbed water in clay has a weak
correlation with the clay content levels. The higher the level of clay content, the greater the
specific surface area of pores, resulting in a stronger adsorption capacity.

Figure 9 shows the trends of organic porosity (a), organic saturation (b), and ad/absorbed
oil (c) with the TOC of the shale samples. There are a large number of pores in organic matter,
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and the higher the organic matter content level, the more the organic pore space should be.
However, the results showed that the organic porosity has a weak growth trend with increases
in the TOC. More test results are still needed to obtain a more obvious correlation. Figure 9b,c
indicate that the relationships between both organic saturation and the amount of ad /absorbed
oil in kerogen and the TOC are not clear. The adsorption capacity of organic matter is not only
related to its content, but also affected by thermal maturity and kerogen type. The organic-
matter properties of the shale samples tested are complex, so the organic saturation and the
ad/absorbed oil content in kerogen do not show strong correlations with organic matter content.
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Figure 8. Relationships between (a) inorganic porosity and clay content; (b) inorganic saturation and
clay content; (c) adsorbed water in clay and clay content.
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3.3. NMR Spectrum of Fluid in Different States

Li et al. [24] established an NMR T;-T, map division method for distinguishing each
hydrogen-bearing component. According to the T;—T, map proposed by Li et al. [24], we
identify the signals corresponding to different components. Figure 10 shows the T1-T,
map of shale samples before and after imbibition experiments. It can be seen that water
is dominated by free water and structural water, while oil is dominated by free oil and
adsorbed oil. The signal intensity of oil is significantly greater than that of water, which is
consistent with the vacuum-imbibition experimental results.
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= e
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Figure 10. T;-T, map of shale samples: (a) sample #2, dry sample; (b) sample #2, after imbibition
of water; (c) sample #2, after imbibition of water; (d) sample #8, dry sample; (e) sample #8, after
imbibition of water; (f) sample #8, after imbibition of water.

3.4. Mathematical Model Coupling Organic and Inorganic Pores Considering Ad/Absorbed Fluid
in Organic Matter and Clay

The continuous dual-porosity method is applied to simulate the oil-water imbibition
process, in which the water phase flows only into the inorganic pores, while the oil phase
flows into both inorganic and organic pores. The oil-water imbibition curve is fitted to
solve for the permeabilities of inorganic and organic pores.

Shale reservoirs are composed of two continuous media systems: inorganic pores and
organic pores. The two systems are coupled, and there is fluid exchange, forming a complex
multi-scale coupled-flow system. Due to the different mineral compositions and pore-size
distributions of inorganic and organic pores, there are differences in the permeabilities of
the two systems. Considering the above factors, mathematical models for oil and water
vacuum-imbibition are established. The basic assumptions of the model are as follows:

(1) Oil exists in the form of a free state in inorganic pores, in the form of a free state and
an adsorbed state in clay pores, and in the forms of an adsorbed state and a free state
in organic pores.

(2) Water only flows into inorganic pores. Oil can enter both organic and inorganic pores.

(3) The matrix and the fluid are slightly compressible, and the influence of gravity is ne-
glected.

(4) The shale sample is spherical and isotropic.

(5) During the experiment, the temperature and boundary pressure remained constant.
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(6) The adsorption of clay and kerogen on oil is considered. The adsorption amount is
not a function of time, which means that the adsorption process is instantaneous.

The organic—inorganic dual-medium model is shown in Figure 11, and the flow
equations for inorganic pores and organic pores are shown in Equations (1) and (2).

kim ) . ) apjm E)Cs .

V. (plmvle> —q= plct_1m7 + Rmﬁ(l = O,W) (1)

kom 0 om
& (pzWom) 4+ Bgm = pot_omgi(l =0) (2)

iz t
& kim
g =" (i~ Pom) 3)
Mi

where g is the cross-flow between inorganic and organic pores, kg/(m?>-s); Cs is adsorption
mass per unit volume of clay, kg/m?; Ry, is the percentage of clay mass, Fraction; 7; is the
density of liquid, kg/m?3; kin, is the permeability of inorganic pores, m?; uL is the viscosity
of liquid, Pa-s; Pj, is the pressure of inorganic pores, Pa; ¢ i, is the compression coefficient
of inorganic pores, 1/Pa; t is the time, s; kom is the permeability of organic pores, m?; Pop, is
the pressure of organic pores, Pa; ¢t om is the compression coefficient of organic pores, 1/Pa;
gm is the flow of ad/absorbed oil per unit volume, kg/(m3-s); B is proportion of organic
matter, Fraction; « is cross flow coefficient, 1/m?.

mom W
Organic matter
/.

Inorganic pores

Figure 11. Organic-inorganic dual medium model.

The finite-difference method is used to solve the mathematical model of water imbibi-
tion, and the numerical solution is fitted to the experimental results. The fitting accuracy
is improved by adjusting the inorganic permeability, and the cumulative flow curve with
the best fitting-effect is obtained, thus determining the inorganic permeability. The de-
termined inorganic permeability is then substituted into the oil imbibition equation, and
the organic permeability is obtained by changing the organic permeability under the
best-fitting accuracy.

The fitted results of the shale samples are shown in Figure 12. The oil vacuum-
imbibition process of all eight samples can be well fitted. With the increase of time, the
fitting values have a slight deviation. This is because the slow diffusion of oil molecules
into organic matter and clay minerals is the main process at this stage. In the tests, the oil
variation caused by diffusion is very small and the measurement error is relatively large,
which may lead to a slight deviation between the fitting results and the test results. For
the water vacuum-imbibition process of samples #2, #5, and #6, the fitting results are quite
different from the test results. The discrepancies between the water imbibition equation
and the behavior of Samples #2, #5, and #6 may be due to the following two reasons:
(1) The samples used in the vacuum imbibition tests and the mineral tests were selected
from different positions of the same layer sample. The heterogeneity of the samples caused
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Imbibition volume (mL) Imbibition volume (mL)

Imbibition volume (mL)

differences between the mineral composition of the vacuum imbibition test samples and
the mineralogy test samples. The mineral content (R ) in the model was input based on the
test results, and the inaccuracy of the input parameters may have led to large differences
between the fitting results and the test results. (2) The water adsorption capacity of clay
minerals (Cs) input in the model is derived from the average value of vacuum imbibition
test results (as shown in Figure 6). The types of clay minerals in rock samples are not limited
to chlorite and illite, which may cause the input water absorption capacity parameters (C)
to be inconsistent with the actual ones. This may also lead to a large difference between
the fitting results and the test results. The inorganic and organic permeabilities fitted
from oil- and water-imbibition experiments are shown in Table 4. The order of magnitude
of the inorganic permeability is 1073 to 1072 mD, and the order of magnitude of the
organic permeability is 107> to 10~# mD. The organic permeability is one to three orders of
magnitude lower than the inorganic permeability.
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Figure 12. Fitting results of oil- and water-imbibition curves for the shale samples.

Table 4. Inorganic and organic permeability of the shale samples.

Inorganic Permeability Organic Permeability
Sample Number (mD) (mD)
#1 4.00 x 1072 6.00 x 107°
#2 2.38 x 1072 1.19 x 107>
#3 1.33 x 1073 133 x 1074
#4 4.00 x 1072 1.00 x 105
#5 435 x 1072 1.74 x 107>
#6 5.71 x 1072 476 x 1074
#7 4.55 x 102 212 x 104
#8 3.08 x 1072 115 x 1074

4. Conclusions

In this study, eight sets of shale samples and two types of clay minerals were selected

to conduct oil and water vacuum-imbibition experiments. The organic and inorganic
saturations, porosities, and permeabilities, as well as the content levels of fluids in different
occurrence-states were determined.

)

@)

®)

Based on the different interactions between oil, water, and gas and the organic and
inorganic pores in shale, a fluid saturation method was established to distinguish
the contents of each fluid phase. For the shale samples tested, the organic porosities
are 1-9%, the inorganic porosities are 2-7%, the organic saturations are 29-69%, and
the inorganic saturations are 31-71%. The oil in shale can be divided into inorganic
free-oil, organic free-oil, and oil ad/absorbed in the kerogen. A total of 2% to 58% of
the organic oil content is ad/absorbed in the kerogen.

A two-dimensional nuclear magnetic resonance method was used to characterize the
occurrence-states of the oil and water in the shale samples. Water was mainly in the
forms of free water and structural water, while oil was mainly in the forms of free oil
and adsorbed oil. The signal intensity of oil is significantly higher than that of water,
indicating that the imbibed oil volume is higher than the imbibed water volume.
Based on the inorganic—organic coupling mathematical model, by considering ad/
absorbed fluid, the organic and inorganic permeabilities of the shale samples were
determined. The organic permeability is one to three orders of magnitude lower than
that of the inorganic permeability.

Author Contributions: Methodology, ].Z. and Q.X.; resources, EW. and ].Z.; software, J.Z.; vali-
dation, Q.X,; investigation, B.L., S.C., J.Z., Q.X. and Q.S.; writing—original draft preparation, Q.S.;
writing—review and editing, EW. and S.C.; supervision, Q.S.; project administration, B.L.; funding
acquisition, Q.S. and B.L. All authors have read and agreed to the published version of the manuscript.

121



Energies 2024, 17, 524

Funding: The authors declare that this study received funding from the Major Project of the China
National Petroleum Corporation (20212210-02), and the Natural Science Foundation of Shandong
Province, China (No. ZR2020ME091). The funders were not involved in the study design; the
collection, analysis, or interpretation of data; the writing of this article; or the decision to submit it
for publication.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: Author Fenglan Wang was employed by the Daqing Oilfield Co., Ltd. Authors
Binhui Li, Sheng Cao, Jiang Zhang, and Quan Xu were employed by the Exploration and Development
Research Institute of Daqging Oilfield Co., Ltd. The remaining authors declare that the research was
conducted in the absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Nomenclature
Abbreviations
TOC Total organic matter content
GY Guye well
BJH Barret-Joyner-Halenda method
NMR Nuclear magnetic resonance
Ty The transverse relaxation
T The longitudinal relaxation
SEM Scanning electron microscopy
XRD X-ray diffraction
PDI Polydispersity Index
Symbols
q The cross-flow between inorganic and organic pores, kg/(m3-s)
Cs Adsorption mass per unit volume of clay, kg/m3
R The percentage of clay mass, Fraction
71 The density of liquid, kg/m3
kim The permeability of inorganic pores, m?
U The viscosity of liquid, Pa-s
Pim The pressure of inorganic pores, Pa
Ct im The compression coefficient of inorganic pores, 1/Pa
t The time, s
kom The permeability of organic pores, m?
Pom The pressure of organic pores, Pa
Ct_om The compression coefficient of organic pores, 1/Pa
Jm The flow of ad/absorbed oil per unit volume, kg/(m?3-s)
B Proportion of organic matter, Fraction
% Cross-flow coefficient, 1/m?
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Abstract: Shale oil resources are abundant, but reservoirs exhibit strong heterogeneity with extremely
low porosity and permeability, and their development is challenging. Carbon dioxide (CO,) injection
technology is crucial for efficient shale oil development. When CO; is dissolved in reservoir formation
water, it undergoes a series of physical and chemical reactions with various rock minerals present in
the reservoir. These reactions not only modify the reservoir environment but also lead to precipitation
that impacts the development of the oil reservoir. In this paper, the effects of water—rock interaction
on core porosity and permeability during CO, displacement are investigated by combining static and
dynamic tests. The results reveal that the injection of CO; into the core leads to reactions between
CO; and rock minerals upon dissolution in formation water. These reactions result in the formation
of new minerals and the obstruction of clastic particles, thereby reducing core permeability. However,
the generation of fine fractures through carbonic acid corrosion yields an increase in core permeability.
The CO,—water-rock reaction is significantly influenced by the PV number, pressure, and temperature.
As the injected PV number increases, the degree of pore throat plugging gradually increases. As the
pressure increases, the volume of larger pore spaces gradually decreases, resulting in an increase in
the degree of pore blockage. However, when the pressure exceeds 20 MPa, the degree of carbonic acid
dissolution will be enhanced, resulting in the formation of small cracks and an increase in the volume
of small pores. As the temperature reaches the critical point, the degree of blockage of macropores
gradually increases, and the blockage of small pores also occurs, which eventually leads to a decrease
in core porosity.

Keywords: shale formation; CO, flooding; CO,—water—rock reaction; blocking action; dissolution
reaction

1. Introduction

Although shale oil resources are abundant, the heterogeneity of reservoirs is significant,
with low porosity and permeability, making their development challenging and resulting in
a low degree of primary exploitation. Because of the obvious water sensitivity, waterflood
cannot be adopted. Therefore, carbon dioxide (CO,) injection technology serves as a crucial
approach to achieving the efficient development of the resource. CO; flooding has been
widely used in conventional reservoirs as an efficient oil displacement technology and a
way to reduce greenhouse gases. In recent years, field tests for CO; injection development
in shale oil reservoirs have been gradually initiated. Compared to tight oil reservoirs, shale
reservoirs typically contain abundant organic matter called kerogen. Kerogen possesses a
strong ability to adsorb and dissolve crude oil, whereas CO, exhibits a potent capability
to extract hydrocarbons from shale formations [1,2]. Laboratory experiments on CO, huff
and puff for various types of shale oil samples (Mancos and Eagle Ford core; diameter:
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1.5 inches; length: 2 inches; huff and puff pressure: 850-3500 psi) have demonstrated
ultimate recovery rates ranging from 33% to 85%. The ultimate recovery is found to be
correlated with shale properties and the operational parameters (soaking time, huff and puff
times) of multiple huff and puff cycles [3]. Simultaneously, the interaction between CO,
and kerogen can induce alterations in the specific surface area, porosity, and microstructure
of shale [4,5], while CO, can undergo adsorption and dissolution within kerogen [6].

Once CO; infiltrates the formation, it initially undergoes a reaction with the reservoir
fluid, followed by a series of diverse reactions involving CO,, reservoir fluid, and reservoir
rock minerals. CO; is dissolved in formation water under high-temperature and high-
pressure conditions to form carbonic acid, which is mainly divided into two steps of
ionization, and the main ionization equations are as follows:

H,CO3 «+» HT+HCO3~ (1)

HCO;~ +» HM+CO3%~ 2)

Shale reservoirs are rich in carbonate and silicate minerals. Carbonate minerals mainly
include dolomite, calcite, etc., which are easy to react with carbonic acid solutions and form
new secondary minerals under the conditions of high temperatures and high pressure in
the formation [7], and the reaction equations are as follows:

CaMg(CO,),+2H "= Ca?" +Mg*" +2HCO; (3)
CaMg(CO;),+2H,CO3= Ca*" +Mg?" +4HCO; ()
CaMg(CO3,),+2H,0 = Ca*" +Mg*" +2HCO; +20H " (5)

Most silicate minerals (albite, potassium feldspar, clay minerals other than quartz)
are extremely unstable under acidic environmental conditions. They are readily soluble in
water and generate secondary minerals [8]. The reaction equations are as follows:

2KAISizOg+2H' +9H,0 = Al,Si,Os5 (OH)4 +2K+ 4+4H,SiO4 (6)
2NaAlSiz0g+3H,0 + 2CO,= Al,Si;O5(OH) ,4-4Si0; +2Na* +2HCO; (7)
CaAl,Si,Og+HyCO3+H,0O = CaCO3+AlLSiO5 (OH)4 (8)
(Fe/Mg)5AlSisO10(OH)g+5CaCOs+5C0, = 5Ca[Fe/Mg] (CO )+ o)
Al»Si,Os (OH)4 +2H,0

The effects of CO, reaction with different minerals on reservoir properties have been
widely reported. Most of these studies focus on siliciclastic and carbonate formations [9-21].
Ross et al. [9] observed that CO, reacted with limestone and dolomite in the core, and
the core’s permeability increased after the dissolution of the dolomite and limestone.
Knet et al. [10] observed that the carbonate minerals and clay minerals in sandstone
were dissolved, and the fine particles were deposited into the pore throats through fluid
migration. Sayegh et al. [11] observed that detrital particles such as illite and calcite in
sandstone dissolved in large quantities and clogged in pores and throats as reservoir fluids
migrated. Minerals such as carbonate cements are dissolved, creating a large number of
micropores. Qu [12] conducted experiments on the reaction between different minerals and
CO,, and the dissolution effect of reservoir minerals (calcite, dolomite, carbonate rock, etc.)
gradually increased with the increase in temperature when the temperature conditions
changed. Shi et al. [13] analyzed the mineral composition of a sandstone core after CO,
displacement, and the results showed that the carbonate mineral composition in the core
increased significantly after CO, injection. Yu et al. [14] carried out CO, displacement
experiments on a core of saturated formation water under the temperature and pressure
conditions of the reservoir, and the experimental results showed that the dissolution
reaction of carbonate minerals was the most violent, and the most obvious reaction was
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calcite among carbonate minerals, followed by flake aluminite minerals and iron dolomite
with the lowest degree of dissolution. Wang et al. [15] found that after the temperature
rises to a critical temperature, CO; changes from a gaseous state to a supercritical state, and
the minerals in the core are violently dissolved. Secondary minerals are formed on the pore
surface inside the core. Xiao et al. [16] evaluated the effect of CO,—~water-rock interactions
on the characteristics of a carbonate reservoir at high pressure and temperature. With the
increase in CO; pressure, the surface dissolution of calcite appeared more obvious. With
the increase in the reaction temperature, the surface dissolution of calcite also appeared
more obvious. Liu and Cheng [19] revealed the possible geochemical effects of cement
mineral variations on water-rock—CQO, interactions at 180 °C and 18 MPa. The sensitive
orders of cement mineral variations due to water—-rock—CO, interactions are carbonates,
argillaceous, and siliceous minerals.

The reported results [16-21] show that the effects of temperature and pressure on
the dissolution reaction and clogging are important. Different temperature and pressure
conditions will result in different changes in porosity and permeability. At present, there is
no systematic study on the influence of CO,-water-rock reaction on core permeability and
porosity under different temperature and pressure conditions. Shale reservoirs are more
complex than sandstone and carbonate reservoirs due to their diverse and complex mineral
types and strong heterogeneity. Shale reservoirs often comprise organic-rich mudstone
layers, carbonate rocks, and sandstone interlayers, which all have diverse mineral types and
a higher mineral content compared to sandstone reservoirs. In shale reservoirs, feldspar
minerals and carbonate minerals, which are prone to dissolution reactions, coexist with
detrital minerals that are prone to migration and clogging. While dissolution reactions can
enhance the porosity and permeability of shale reservoirs to some extent, the sediments
produced during the reaction are more likely to further clog the already fine pores. There-
fore, it is urgent to study the dissolution and scaling laws of CO, on shale reservoirs and
evaluate the effects of dissolution and scaling on the pore structure and porosity parameters
of reservoirs, so as to provide reference data for formulating CO, development plans.

The aim of this paper is to study the impact of CO,—water-rock reactions on the
physical properties of shale cores during CO; displacement. Firstly, a static experiment of
CO,—-water-rock reaction was carried out by using a high-temperature and high-pressure
reactor. By analyzing the changes of different ion concentrations in formation water before
and after CO; injection, the effects of temperature and pressure on precipitation formation
were obtained. Additionally, scanning electron microscopy (SEM) was used to observe the
dissolution of the pore structure of the rock samples after static experiments. Secondly,
dynamic CO, displacement experiments were carried out. The T, spectra of the core before
and after displacement was obtained using nuclear magnetic resonance technology, and
the change in porosity was analyzed. By measuring the changes in permeability before
and after core displacement, the influence of inorganic salt precipitation generated by CO,—
water—rock reaction on the physical properties of shale cores under different conditions
was comprehensively evaluated.

2. Experimental
2.1. Experimental Material

The main mineral composition of the shale rock samples is shown in Table 1. The
porosity and permeability of all samples are shown in Table 2. The ion contents of the

formation water samples are shown in Table 3. The purity of CO, used in the tests is greater
than 99.8%.
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Table 1. Main mineral types and contents of shale cores.

Number  Plagioclase Calcite Quartz Clay Feldspar Dolomite
#1 24.0 2.1 44.7 10.7 11.9 6.6
#2 15.0 6.0 48.0 9.7 12.3 9.0
#3 5.0 13.0 33.0 34.0 9.0 6.0
#4 24.0 6.0 24.0 18.0 16.0 12.0
#5 26.7 23 44.0 9.0 10.0 8.0
#6 19.0 6.8 48.1 12.0 9.1 5.0
#7 23.2 3.0 32.0 15.0 6.8 20.0
#8 18.6 9.2 42.7 14.0 8.7 7.0
#9 10.4 74 442 18.0 4.0 16.0

#10 215 7.7 41.8 16.0 4.0 9.0
#11 219 8.7 37.4 15.0 9.0 8.0
#12 28.0 6.1 45.6 8.2 6.1 6.0
#13 16.9 13.0 46.1 5.0 12.0 7.0
#14 23.3 54 38.4 10.0 13.9 9.0
#15 225 59 43.4 9.0 11.2 8.0

Table 2. Porosity and permeability parameters of cores.

Number Length/cm Diameter/cm Porosity/% Permeability/mD
#1 478 248 13.55 5.40 x 1072
#2 474 2.48 7.73 1.60 x 1072
#3 477 248 10.25 230 x 1072
#4 4.79 246 9.81 3.30 x 1072
#5 486 2.49 15.34 1.17 x 1071
#6 476 2.48 12.34 112 x 1071
#7 475 2.47 12.66 540 x 1072
#8 5.75 247 8.14 3.30 x 1072
#9 5.29 2.48 553 3.00 x 1073
#10 5.14 248 11.34 1.17 x 1071
#11 3.81 248 11.67 112 x 1071
#12 477 247 12.89 8.82 x 1071
#13 3.56 248 5.53 3.00 x 1073
#14 5.04 2.47 11.34 1.70 x 102
#15 432 247 12.89 8.82 x 1071

Table 3. Ion contents of formation water.

Ion Species Ion Content/(mg/L)
CaZ* 5683.46
Mg2* 421.803
BaZ* 169.06
Na* 15,030.60
Sr2t 443.25
K* 292.26
CO52~ -
HCO;~ 252

2.2. CO,—Water—Rock Static Reaction

The experimental equipment is shown in Figure 1, including the CO, cylinder, the
CO,—water reaction cylinder, the vacuum pump, the hand pump, and the oven.
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Figure 1. CO,-water reaction: installation diagram of high-temperature and -pressure cylinder.

Prior to conducting the experiment, the leakage of the reactor was tested and the
main ions present in the formation water were determined through an ICP-MS (inductively
coupled plasma-mass spectrometry) analysis. Formation water and core samples were
added to the reactor. CO, was injected after evacuation and a hand hump was used to raise
the pressure of the entire system to a specified level. The reactor was subsequently placed
inside a constant-temperature oven for a defined duration. After the experiment, the gas
was slowly released and left undisturbed for a specified duration. Subsequently, the pH
meter was employed to measure the variation in the pH value of the formation water prior
to and after the CO,—formation water reaction. The concentrations of cations, HCO3~, and
CO3%~ in the formation water were determined using the titration and ICP-MS methods.
Moreover, the alterations observed in the mineral composition of the core, and the extent of
core porosity dissolution subsequent to the reaction, were investigated utilizing the ICP-MS
and electron microscopy scanning techniques. We studied the influence of different factors
on the amount of precipitation by changing the experimental temperature and pressure.

2.3. CO,—Water—Rock Dynamic Displacement Experiment

The experimental equipment is shown in Figure 2, including the high-pressure micro-
metering pump, core holder, pressure gauge, electronic balance, thermostat, and nuclear
magnetic resonance (NMR) instrument.

CcO, +— Gas flowmeter

back-pressure

Gas-liquid
separation
device

Figure 2. Image of CO, displacement experimental device based on NMR technology.

The air tightness of the core holder was tested. Through the analysis of the main
ions in the formation water before the experiment using the ICP-MS method, it was clear
that the cations which are easy to react with CO, form precipitated cations. After 48 h
of drying, the dry weight was weighed and the formation water was saturated through
pressure saturation. The porosity was calculated by comparing the mass difference before
and after saturation with the total volume of the core, and transverse relaxation time (T5)
spectrum sampling was carried out using NMR. The saturated core was placed into the core
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holder, and the displacement pump conducted CO; displacement of the formation water
in constant-pressure mode, with the pressure difference controlled by the back pressure
valve set to 1 MPa. Based on the experimental plan, various experimental conditions were
established for displacement, aiming to investigate the influence of CO, flooding water
on reservoir pore physical properties, under varying temperatures (30 °C, 40 °C, 50 °C,
60 °C), displacement pressures (5 MPa, 10 MPa, 15 MPa, 20 MPa), and displacement PV
values (25 PV, 50 PV, 75 PV, 100 PV). After completing the displacement, the T, spectrum
of the core’s re-saturated formation water was sampled and the core permeability was
tested. The T, spectrum difference of the saturated water before and after displacement
was compared to analyze the changes in the core’s physical properties following the CO,—
water-rock reaction.

3. Results and Discussion
3.1. Influence of Pressure and Temperature Conditions on Formation Water pH Value

Figure 3 shows the influence of different temperatures on the pH value of the produced
liquid at 20 MPa. As the solubility of CO; in the formation water decreases due to the rise
in temperature, the CO; dissolved in the formation water also decreases. The reduction in
CO, results in a decrease in carbonic acid and a subsequent reduction in H* in the formation
water. Simultaneously, elevated temperatures promote the ionization reaction of carbonic
acid toward the product, leading to an increase in H* in the formation water. Consequently,
the pH of the resulting liquid increases after the CO,—formation water reaction takes place.

473
472 /-
471

4.70
o 469

“4.68
4.67 - /
4.66 -

4.65 -/.

464 1 1 1 1 1 1 1
20 25 30 35 40 45 50 535 60 65

temperature/°C

Figure 3. The pH of the system after the reaction of 25% CO, at 20 MPa.

Figure 4 demonstrates the impact of varying pressures on the pH value of the resulting
liquid at 60 °C. When pressurizing the high-temperature and high-pressure reactor at a
specific temperature, the solubility of CO; in formation water increases correspondingly,
resulting in an elevation in carbonic acid due to the increased dissolution of CO; in the
formation water. The rise in CO, levels facilitates the ionization reaction towards the
product direction, resulting in an increase in the ionized H* concentration and consequently
leading to a decrease in the pH of the formation water. Additionally, the increase in pressure
accelerates the rate of the ionization reaction, thus promoting the continuous ionization of
H,CO; and HCO; ™ into H* ions and leading to a decrease in the pH value of the formation
water. The H* concentration of the formation water increases under the combined action
of the two effects, and the pH value of the formation water enhances towards acidity,
gradually decreasing with the increase in pressure.
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Figure 4. The pH of the system after 5% CO, reaction at 60 °C under different pressures.

3.2. Change in lon Concentration in Formation Water during Static Reaction

Based on the X-ray diffraction (XRD) analysis of the core, it was found that the core
contains a higher concentration of minerals such as plagioclase, potassium feldspar, and
dolomite, which are more susceptible to reacting with CO, during injection. In order to
verify the reaction of the core under the influence of carbonic acid, the formation water in
the original static experiment was replaced with distilled water, the core fragments were
placed in a high-temperature and high-pressure reactor, the distilled water was saturated
after a vacuum, and the CO; was injected and left to stand for 40 h. Subsequent to the
completion of the experiment, the resulting liquid was collected for ion detection. The
changes in ion content within the produced liquid were then analyzed under different
influencing factors, as presented in Table 4.

Table 4. Ion content of produced liquid.

Experiment Number

Pressure/MPa  Temperature/°C p(K*)/(mg-L—1) p(Na*)/(mg-L-1) p(Ca®")/(mg-L-1)

O IO U= WN -~

5 60 2.34 17.64 80.32

10 60 4.67 21.56 115.68
15 60 6.23 27.83 174.36
20 60 7.68 37.97 220.71
20 30 3.31 16.51 100.03
20 40 4.37 24.88 167.28
20 50 5.96 30.45 190.33
20 60 7.68 37.97 220.71

Following the completion of the experiment, the concentration of common cations
within the resulting solution was determined utilizing the ICP-MS method. K*, Na*
and Ca?* could be detected in the produced liquid after the reaction by passing CO,
into the high-temperature and high-pressure reactor. Since the distilled water in the
reactor did not contain the above ions, the ions detected in the produced liquid were all
generated through the dissolution of reservoir minerals. The presence of Na* and K* can
primarily be attributed to the dissolution of plagioclase and potassium feldspar, respectively,
indicating varying degrees of dissolution for these minerals within the core. Because the
mineral content of plagioclase in the core is relatively high, the Na* concentration in the
produced solution increases significantly, while the K* concentration in the produced
solution increases due to the dissolution of potassium feldspar under the action of the
acid solution. However, due to the low content of potassium feldspar in the core, the
concentration only increases slightly. The presence of Ca?* in the solution primarily
originates from the dissolution of carbonate minerals like dolomite and calcite. Due to
the reactivity of carbonate minerals with H*, the concentration of Ca?* in the resulting
solution tends to increase more significantly compared to other ions. Simultaneously, it can

130



Energies 2024, 17, 477

be observed that as the pressure increases, the concentrations of Na*, K*, and CaZ* in the
resulting liquid gradually elevate. Under the influence of pressure, the dissolution capacity
of rocks gradually amplifies as the pressure increases. When the pressure exceeds the critical
level, the dissolution degree further increases. The elevation of temperature additionally
serves to stimulate the dissolution of core minerals, particularly after surpassing the critical
pressure. High temperatures continue to advance the dissolution reaction within the core.
Therefore, the formation’s high-temperature and -pressure conditions are conducive to the
dissolution of rock minerals.

The alterations in particle size and PDI (polydispersity index) of formation water
before and after the CO,—water—rock static tests were analyzed using a Malvern laser
particle size analyzer. The PDI represents whether the particle size distribution is uniform,
and the smaller the PDI value, the more uniform the particle size distribution and the more
uniform the particle size. On the contrary, the larger the PDI value, the wider the particle
size distribution and the more uneven the particle size. The alterations in the particle size
and PDI of the formation water were compared before adding core fragment samples and
after the formation water reacted with the core samples and supercritical CO; at a pressure
of 20 MPa and temperature of 60 °C. The results are presented in Table 5.

Table 5. Particle size and PDI before and after reaction.

Particle Size/nm PDI

1377 0.296

Pre-reaction 1081 0.284
1130 0.296

2500 0.362

Post-reaction 2854 0.423
2971 0.534

As depicted in Table 5, the average particle size of the formation water prior to the
reaction is recorded as 1196 nm, with a PDI of 0.292. Conversely, after the reaction, the
average particle size of the formation water increases to 2775 nm, accompanied by a
raised PDI of 0.439. Following the reaction, the average particle size of the formation water
experienced a significant increase of 1579 nm, while the PDI witnessed a noticeable elevation
of 0.147. The uniformity of mineral particles on the surface of rock samples is rather
inadequate, rendering them susceptible to dissolution and reaction when exposed to high-
temperature and -pressure conditions. Carbonate minerals such as dolomite and calcite
exhibit instability under acidic conditions, leading to the release of secondary minerals
and crystalline substances from reacting salts into the formation water. Consequently,
this process contributes to the increase in particle size in the formation water. After the
dissolution of clay cements and other minerals, the cementation weakens and dislodges into
the formation water, contributing to an increase in the average particle size and enhancing
the particle size heterogeneity in the water.

After conducting the CO,—water-rock static experiment, SEM was utilized to observe
the microscopic changes on the core’s surface and the dissolution state. The surface of the
core sample was smoothed and then scanned with an electron microscope. The specific
results are shown in Figures 5 and 6. Figure 5 clearly illustrates that, prior to the reaction,
the surface of the core was smooth and even, devoid of any fine particles. Once the
pressure increased to 5 MPa, the rock surface underwent a transformation, becoming
rough and experiencing slight acidic corrosion from the carbonic acid. This lead to the
emergence of minute pores at the marked locations in the figure. As the pressure increases,
mineral dissolution becomes more intense and results in the emergence of more and more
micro pores. In addition, the dissolution of minerals causes cemented clay minerals to
disintegrate, leading to an increase in debris, as depicted in Figure 5c. When CO; reaches
the supercritical state, the reaction becomes highly efficient. In Figure 5d,e, numerous
small irregular particles are observed adhering to the surface of the rock. These particles
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may be derived from newly formed mineral particles resulting from the reaction between
CO,, water, and minerals, or they could be fine particles produced after the dissolution
of initially larger minerals. Under intensified dissolution, the small pores formed due
to the initial dissolution process also enlarge, forming solution pores with a larger size.
However, the surfaces of these solution pores may be partially obstructed by clay particles
and newly formed fine particles. At varying temperatures, Figure 6 demonstrates that as
the temperature increases, the dissolution process becomes more pronounced. This leads to
a gradual augmentation in the number of small pores. After the critical condition of CO, is
reached, the particles on the core surface increase in number, the small pores become larger,
large pores such as solution pits appear, and the dissolution effect on the minerals on the
rock surface is strong.

3.3. Changes in Core Physical Properties after CO, Displacement
3.3.1. Effect of Injection PV Number

Table 6 shows core flooding information and displacement conditions. Samples of
saturated water, both before and after displacement, were collected and compared by
analyzing their respective T, spectra.

Table 6. CO, flooding conditions.

. Displacement Displacement Pressure Experimental
Experiment Number Pressure/MPa PV Number Difference/MPa Temperature/°C
1 10 25 1 60
2 10 50 1 60
3 10 75 1 60
4 10 100 1 60

Figure 5. SEM diagram of core dissolution under different pressures: (a) 0 MPa; (b) 5 MPa; (c) 10 MPa;
(d) 15 MPa; (e) 20 MPa. Red box denotes the change on the sample.
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(d)

(e)

Figure 6. SEM diagram of core dissolution under different temperatures: (a) 20 °C; (b) 30 °C; (c) 40 °C;
(d) 50 °C; (e) 60 °C. Red box denotes the change on the sample.

Figure 7 shows the T, spectra of saturated water before and after 25 PV flooding.
From Figure 7, it can be observed that after CO, flooding of 25 PV in saturated water—rock
cores, the quantity of secondary saturated water is significantly lower than that of the
initial saturated water. This indicates that, following the 25 PV flooding, the pore throat
becomes obstructed by the newly formed minerals resulting from the water—rock reaction
of CO, and the debris generated by the mineral corrosion from carbonic acid formation.
The saturation of water before and after CO, flooding undergoes a significant change
between 1 ms to 100 ms, implying that the water-rock reaction of CO, primarily impacts

the intermediate and larger-sized pores during the initial stages of CO, flooding.
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Figure 7. Saturated water T, spectra before and after 25 PV flooding.

Figure 8 shows the T, spectra of saturated water before and after 50 PV flooding. After
the 50 PV injection, it can be seen from the figure that the pore water saturation at 0.1-1 ms
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is reduced to a certain extent, which indicates that blockage occurs in the small hole. The
saturation of water also exhibited a certain level of change before and after displacement
between 10 and 100 ms. This implies that, as the reaction time increased, the debris created
through the dissolution process following CO; injection gradually accumulated in the
larger-sized pores, leading to the formation of partial blockages.
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Figure 8. Saturated water T, spectra before and after 50 PV flooding.

Figure 9 shows the T, spectra of saturated water before and after 75 PV flooding. After
injecting 75 PV of fluid, the saturated water volume in the small pores (represented by
1-10 ms) and the saturated water volume in the larger pores (represented by 10-100 ms)
decreased significantly. This suggests a more severe pore blockage and a reduction in the
pore throat volume. However, the saturated water volume of the small pores (represented
by 0.1-1 ms) only decreased slightly, indicating that, with the increasing reaction time, the
plugging at mesopores and larger pores decreased, resulting in an increase in pore volume.
Nonetheless, CO, still reacted with water in the small pores, resulting in a certain degree

of plugging.
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Figure 9. Saturated water T, spectra before and after 75 PV flooding.

Figure 10 shows the T, spectra of saturated water before and after 100 PV flooding.
As the CO, flooding time increased, the signal volume after CO, flooding decreased
significantly, revealing a more severe degree of plugging. The most significant change
occurred in the region of mesopores and larger pores (represented by 10-100 ms), indicating
that rock debris particles generated by CO,-water—rock dissolution were concentrated in
the area of larger pores. Conversely, the signal volume in the small and medium pores
(represented by 0.1-10 ms) increased, indicating an increase in the saturated water volume.
Therefore, it can be inferred that the dissolution caused small cracks in the pore channels,
leading to an increase in pore volume in the small and medium pores.
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Figure 10. Saturated water T, spectra before and after 100 PV flooding.

After the reaction between CO,, water, and rock, secondary minerals and stripped
particles are formed and migrate with the fluid, blocking the pores and reducing the overall
pore volume of the core. Utilizing the principle of nuclear magnetic resonance, the peak
area of the T curve reflects the signal quantity emitted by hydrogen in the entire core,
which corresponds to the amount of saturated water in the core. The T, spectra of saturated
water are measured before and after CO; flooding to characterize these changes. Figure 11
shows the schematic diagram for calculating the degree of pore plugging.
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Figure 11. Schematic diagram of core pore-plugging calculation.

The figure illustrates the schematic diagram of the degree of core pore plugging.
Assuming that the peak area of the T, spectrum of saturated water before CO, flooding
is represented by S1, and the peak area of the T, spectrum of saturated water after CO,
flooding is represented by S; the pore plugging rate (B) can be obtained by comparing the
difference in the T, spectrum before and after saturation, as shown in Equation (10).

51 -5

B= 5 (10)
where B is the pore plugging rate; S; is the peak area value of saturated water before CO,
flooding; and S is the peak area value of saturated water after flooding. Table 7 shows
the pore permeability changes of the core before and after CO, displacement. From the
table, it is evident that the permeability of the core decreases after CO; flooding compared
to its initial value, with a reduction ranging from 9% to 18%. Similarly, the porosity of
the core also decreases after CO, flooding, with a reduction ranging from 6% to 17%.
With the increase in the PV number, the pore permeability change rate and pore plugging
rate still increased significantly, indicating that with the continuous injection of CO,, the
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precipitation plugging effect generated by the CO,-water—rock reaction was greater than

the dissolution effect of CO, on different minerals.

Table 7. Table of changes of porosity and permeability before and after CO, flooding.

Core Permeability Permeability Rate of Porosity Porosity Rate of Pore Throat
Number (before) (after) Change (before) (after) Change Blockage
/ mD / mD / 0/0 / o/o / 0/0 / O/o Rate/ 0/0
#1 3.30 x 102 490 x 1072 9.26 13.55 12.66 6.56 7.21
#2 3.30 x 1072 1.40 x 1072 12.50 7.73 7.12 7.89 8.42
#3 230 x 1072 2.00 x 1072 13.04 10.25 8.84 13.75 11.66
#4 3.30 x 1072 2.70 x 1072 18.18 9.81 8.14 17.06 17.94

3.3.2. Effect of Pressure

In this experiment, the CO, flooding pressure conditions were modified while keeping
other conditions constant, as depicted in Table 8. Figure 12 shows the T, spectra of saturated
formation water before and after CO; flooding under different pressures. It is apparent in
Figure 12a that the larger pores are the first to experience blockage, leading to a significant
decrease in secondary saturation flag; the smaller and medium-sized pores of the core
(0.1~10 ms) show little change in their secondary saturation flag. Figure 12b shows the
T, spectra of saturated formation water before and after CO, flooding at a pressure of
10 MPa. As the CO; flooding pressure increased, both the temperature and pressure were
higher than the critical conditions of CO; (31.6 °C, 7.39 MPa). CO; transitioned from a
gaseous state to a supercritical state. In the larger pores, represented by 10-100 ms, the
semaphore of the T, spectrum exhibited a significant reduction following the CO; flooding.
This suggests that the blockage resulting from the water-rock reaction was intensified in
these larger pores. As the CO, flooding pressure increased, the amount of debris generated
by dissolution also increased and began to gradually accumulate within the micropores.
At the same time, the change rate of the core porosity and permeability also indicates that
the CO,—water—rock reaction intensifies with the increase in the CO; flooding pressure.
Figure 12c shows the T spectra of saturated formation water before and after CO; flooding
under a pressure of 15 MPa. As the CO, flooding pressure increases, the peak value of
the T, spectrum measured with saturated water after CO; flooding shifts towards the
left. This shift indicates a reduction in the overall pore diameter of the core, in which the
pores become blocked due to the CO,—water-rock reaction. The amount of saturated water
in larger pores decreases, which suggests the gradual accumulation of debris generated
by dissolution or the formation of new minerals. This accumulation ultimately leads to
a decrease in secondary saturated water. The semaphore of small and medium pores
increased slightly after displacement, indicating that small fractures were produced by
dissolution, the pore volume of small pores increased, and the change rate of the pore
permeability did not continue to increase. After the injection pressure rises to 20 MPa, it is
obvious from Figure 12d that the CO,—water-rock reaction becomes more and more intense
under the influence of the rising pressure, and the signal volume of the T, spectrum of the
core after CO, flooding becomes less and less, but the secondary saturated water in small
and medium pores increases. The observed trend indicates that as the pressure rises, the
dissolution process becomes more pronounced, leading to the formation and connection
of small fractures with larger pores. Dissolution plays a predominant role in driving the

water—-rock reaction.
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Table 8. Core displacement conditions.

. . Displ t .
Experiment Displacement 1splacemen Experimental
Number Pressure/MPa PV Number Pressure Temperature/°C
Difference/MPa P
1 5 50 1 60
2 10 50 1 60
3 15 50 1 60
4 20 50 1 60
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Figure 12. Saturated water T, spectra before and after CO, flooding at different pressures: (a) 5 MPa;
(b) 10 MPa; (c) 15 MPa; (d) 20 MPa.

Table 9 shows the pore permeability changes of the core before and after CO, flooding
under different pressure conditions. The table illustrates that the permeability of the core
after CO; flooding was lower than that of the core before CO; flooding, with a reduction
of approximately 10-15%. The porosity of the core after CO, flooding also exhibited a
decrease of around 11-17% when compared to the initial porosity before CO;, flooding.
When CO, was injected into the core, the CO,—water—rock reaction caused the dissolution
of some minerals, resulting in the generation of new small pores. During the continuous
flooding, the dissolved minerals were transported to the macropores, and some of the

pores were blocked. With the increase in the injection pressure, the amount of injected
CO; increases, and the CO,—water—rock reaction becomes more violent, which will lead
to more minerals shedding, and there is a greater probability that the macropores will be
blocked during the migration process. As the CO; flooding pressure increases, the rate
of change in pore permeability and pore throat plugging initially rises and then declines.
This trend suggests that at low pressures, the plugging effect of the CO,—water—rock
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reaction in larger pores is predominant. However, at high pressures, the CO,—water—rock
reaction leads to the generation of new small pores, indicating that dissolution becomes the
dominant mechanism.

Table 9. Changes in porosity and permeability before and after CO, flooding under different

pressures.
Core Displacement Permeability Permeability = Rate of Porosity ~ Porosity Rate of Pore Throat
Number Pressure (before) (after) Change (before) (after) Change Blockage
/MPa /mD /mD 1% 1% 1% 1% Rate/%
#5 5 117 x 1071 1.05 x 1071 10.26 15.34 13.51 11.93 8.21
#6 10 112 x 1071 095 x 107! 15.20 12.34 10.16 17.67 8.74
#7 15 540 x 1072 4.60 x 1072 14.81 12.66 10.46 17.37 13.41
#3 20 330 x 1072 290 x 102 12.12 8.14 6.78 16.71 13.27

3.3.3. Effect of Temperature

In this group of experiments, temperature conditions were changed, and other condi-
tions remained the same, as shown in Table 10.

Table 10. Core information and displacement conditions.

. Displacement Displacement Pressure Experimental
Experiment Number Pressure/Mpa PV Number Difference/Mpa Temperature/°C
1 10 50 1 30
2 10 50 1 40
3 10 50 1 50
4 10 50 1 60

Figure 13 shows the T, spectra of saturated formation water before and after CO,
flooding at different temperatures. Table 11 shows the pore permeability changes of the
core before and after CO; flooding under different temperature conditions. Figure 13a
shows the Ty spectra of saturated formation water before and after CO; flooding at 30 °C
(before reaching the critical temperature of CO,). The reaction between CO, and forma-
tion water rocks in the gas state is still weak, and the water quantity before and after
saturation is only slightly decreased, with the change rate of porosity decreasing at 4.58%
and permeability decreasing at 5.22%. Only a slight blockage occurs in the larger pores
represented by 10-100 ms, resulting in a decrease in the secondary saturated water quantity
after displacement. Figure 13b shows the T spectra measured for the saturated formation
water before and after the core reaction at 40 °C. Compared with 30 °C, the critical tem-
perature of CO, was reached when the experimental temperature reached 40 °C, and CO,
was in a supercritical state, which intensified the water—rock reaction of CO,. The larger
pores represented by 10-100 ms have a certain degree of blockage. Figure 13c shows the
T, spectra measured for the saturated formation water before and after the core reaction
at 50 °C. As the temperature increases, the interaction between CO, and the water-rock
reaction is further intensified. Consequently, the secondary saturation of water in small
and medium pores decreases significantly, indicating a more severe blockage compared
to that at 40 °C. The overall porosity of the core shows a change rate of 12.86%, with
a corresponding decrease in permeability of 10.48%. Figure 13d shows the T, spectra
measured for the saturated formation water before and after the core reaction at 60 °C. At
60 °C, the degree of the CO,—water—rock reaction further intensifies, leading to the disso-
lution of minerals within the core. During the migration, the dissolved particles become
lodged in various pore throats, causing a reduction in the secondary water saturation after
displacement. This blockage affects both large and small pores to varying degrees. As a
result, the overall porosity of the core decreases by 15.2%, with a corresponding decrease in
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permeability of 15.88%. It is evident that an increase in temperature facilitates and enhances

the CO,—water-rock reaction.
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Figure 13. Saturated water T, spectra before and after CO, flooding at different temperatures:
(a) 30 °C; (b) 40 °C; (¢) 50 °C; (d) 60 °C.
Table 11. Changes in porosity and permeability before and after CO; flooding under different
temperatures.
Experimental = Permeability Permeability Porosity =~ Porosity Rate of Pore Throat
Core Rate of
Number Temperature (before) (after) Change/% (before) (after) Change Blockage
I /mD /mD BT 1% 1% Rate/%
#9 30 3.00 x 1073 290 x 1073 5.22 5.53 5.28 4.58 2.78
#10 40 117 x 1071 1.05 x 1071 10.21 11.34 10.28 9.34 7.84
#11 50 112 x 1071 1.00 x 107! 10.48 11.67 9.94 12.86 10.22
#12 60 882 x 1071 7.42 x 1071 15.88 12.89 12.12 15.20 14.78

3.3.4. Effect of Core Permeability

For cores with different permeability, the experimental temperature is 60 °C, the CO,
flooding pressure is 10 MPa, the pressure difference is controlled at 1 MPa, and the injection
PV number is 50. Figure 14 shows the T, spectra of saturated formation water before and
after CO; flooding with different permeability. It can be seen from the comparison that the
core with low permeability is greatly affected by the water-rock reaction, and the secondary
saturated water volume decreases more than before the experiment. Considering the small
pore radius of cores with low permeability, the migration of secondary minerals formed
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by the CO,-water—rock reaction and shed clay particles tends to accumulate in these tiny
pores, resulting in significantly stronger plugging effects compared to the other two cores.
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Figure 14. Saturated water T, spectra before and after CO, flooding with different permeability:
(@) k=103 mD; (b) k=10"2 mD; (c) k =101 mD.

Table 12 shows the pore permeability changes of the cores with different permeability
before and after CO, flooding. The data presented in the table illustrate that the perme-
ability of the cores decreases after displacement, with a reduction ranging from 2.11% to
10.78%. Similarly, the porosity of the cores also experiences a decrease after CO; flooding,
ranging from 2.74% to 8.84%. As the core permeability decreases, there is a gradual increase
in both the pore permeability change rate and pore throat plugging rate, indicating that the
plugging effects resulting from the CO,-water—rock reaction’s precipitation have a more
significant impact on cores with lower permeability.

Table 12. Changes in porosity and permeability of different core samples before and after

CO; flooding.
Core Permeability Permeability Rate of Porosity Porosity Rate of Pore Throat
Number (before) (after) Change (before) (after) Change Blockage
b /mD /mD 1% 1% 1% 1% Rate /%
#13 3.00 x 1073 2.60 x 1073 10.78 5.53 4.79 8.84 9.02
#14 1.70 x 102 1.60 x 1072 5.66 11.34 10.77 5.02 6.84
#15 8.82 x 107! 8.64 x 1071 211 2.89 12.56 2.74 2.07
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4. Conclusions

This paper explores the water—rock reaction conditions and their influence on the core
physical properties of continental shale reservoirs through static CO,—water-rock reactions
and dynamic CO, flooding experiments. The main conclusions are as follows:

(1) COx; has a notable effect on the pH value of the formation water. To mitigate this
influence during CO; injection for reservoir development purposes, it is necessary
to increase the injection pressure to reduce the pH value of the reservoir. By creating
an acidic environment, some minerals in the reservoir can be dissolved, and the
reservoir’s permeability can be enhanced to some extent.

(2) As the temperature increased, the solubility of CO, in the formation water decreased.
Consequently, the concentration of CO32~ ions decreased, and the amount of carbon-
ate precipitation gradually decreased. Conversely, increasing the pressure promoted
the ionization of carbonic acid and bicarbonate, leading to an increase in CO; solubil-
ity. Upon pressure release, the CO; concentration decreased, resulting in an increase
in formation water precipitation.

(38) The average particle size of the produced liquid increased by 1579 nm, and the PDI
increased by 0.147. It is important to note that the core is susceptible to corrosion
under high-temperature and -pressure conditions. As the temperature and pressure
increased, the degree of dissolution gradually intensified. The concentration of Na*
and K* ions primarily increased due to the dissolution of plagioclase and potassium
feldspar minerals. Furthermore, the concentration of Ca®* ions primarily increased as
a result of the dissolution of dolomite and calcite carbonate minerals.

(4) As the injected PV increased, CO, first entered the macropores, resulting in a decrease
in the amount of secondary saturated water within the macropores and an increas-
ing degree of pore throat blockage. As the injected PV continued to increase, the
dissolution process led to the formation of small cracks, resulting in an increased
amount of secondary saturated water compared to the initial stage, and the volume
of small pores increased. Pressure plays a significant role in the CO,—water-rock
reaction. When the pressure reaches the supercritical state, the dissolution process
intensifies at the pore throat. The resulting debris from dissolution can then block
the flow path, leading to a significant reduction in signal within larger pores and
causing severe blockage. Temperature also has an effect on the water-rock reaction.
As the temperature increases to the critical temperature, the macropores are the first
to become blocked, and the degree of blockage in the macropores gradually increases.
The small pores are also blocked, leading to a decrease in the porosity of the core.

In this study, the influence of CO,—water—rock reaction on the porosity and permeabil-
ity of shale cores under different temperature and pressure conditions was quantitatively
characterized. The results show that the blockage caused by CO,—-water-rock reflection
mainly occurs in macropores, and the degree of blockage is higher than that of small pores.
Under high-temperature and -pressure conditions, due to the intensification of dissolution,
some new small pores can also be generated. These results provide a basic understanding of
the development plan and clarify the degree of formation damage caused by CO; injection
in shale reservoirs at different stages of development, which is helpful to determine the
CO; injection pressure and temperature. In addition, the results can also be used to predict
the content and stability of CO; stored in such reservoirs. Shale reservoirs have complex
lithologies, and not all samples of lithology are tested due to the long experimental period.
Other types of shale core testing require further conduct. The results do not take into
account the CO;,—crude oil interaction and its effect on porosity and permeability. The
above contents will be systematically studied in future studies.
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Nomenclature

Abbreviations

SEM scanning electron microscopy

ICP-MS inductively coupled plasma-mass spectrometry

T, transverse relaxation time

NMR nuclear magnetic resonance

XRD X-ray diffraction

PDI polydispersity index

Symbols

PV the pore volume, dimensionless

B the pore plugging rate, fraction

S1 the peak area value of saturated water before flooding
Sy the peak area value of saturated water after flooding
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Abstract: Reef reservoirs are characterised by a complex structure of void space, which is a combi-
nation of intergranular porosity, fractures, and vuggy voids distributed chaotically in the carbonate
body in different proportions. This causes great uncertainty in the distribution of porosity and perme-
ability properties in the reservoir volume, making field development a complex and unpredictable
process associated with many risks. High densities of carbonate secondary alterations can lead to the
formation of zones with abnormally high porosity and permeability—high permeability streaks or
super-reservoirs. Taking into account super-reservoirs in the bulk of the deposit is necessary in the
dynamic modelling of complex-structure reservoirs because it affects the redistribution of filtration
flows and is crucial for reservoir management. This paper proposes a method for identifying super-
reservoirs by identifying enormously high values of porosity and permeability from different-scale
study results, followed by the combination and construction of probabilistic curves of superreservoirs.
Based on the obtained curves, three probabilistic models of the existence of a superreservoir were
identified: P10, P50, and P90, which were further distributed in the volume of the reservoir and on
the basis of which new permeability arrays were calculated. Permeability arrays were simulated in a
dynamic model of the Alpha field. The P50 probabilistic model showed the best history matching
after one iteration.

Keywords: porosity; permeability; reef; complex carbonate reservoir; super-reservoir; dynamic
modelling

1. Introduction

Management of carbonate reservoirs with complex structures is complicated by many
reasons associated with high heterogeneity and anisotropy of properties, cyclic sedimen-
tation, facies variability, and extensive propagation of secondary processes. These factors
combine to introduce a high degree of uncertainty in the geological structure, which must
be taken into account during static and dynamic reservoir model preparation [1,2]. Distin-
guishing zones with different secondary changes, and hence different reservoir properties,
is an important task for understanding the reservoir structure. Reservoir properties can
change dramatically both vertically and horizontally; therefore, the task of predicting
properties in the interwell space of the reservoir has to be addressed [3].

Rational management of carbonate reservoirs requires preparation models that take
into account all features of the reservoir structure. Description and modelling of carbonate
reservoirs have become the focus of various studies [4-7]. There are different approaches
to creating static and dynamic models of carbonate reservoirs. Rock typing and facies
modelling approaches, in conjunction with seismic trends, are often used to model reservoir
properties. When creating a dynamic model, studies at various scales are taken into account,
such as thin sections, core, well logging, well tests, and seismic attributes, to best reflect the
complex structure of the reservoir [8-12].
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Reservoir permeability is the main property that determines fluid filtration in the
reservoir rocks. For carbonate reservoirs, standard petrophysical dependence (permeability-
porosity) often does not reflect the heterogeneity of properties [13,14]. A number of methods
describe the separation of rock types in the reservoir volume and set separate dependencies
for each rock type [15]. Another classical method for creating a fractured reservoir model is
dual media modelling, which reflects both the matrix and the fractured components of the
rock [16-18].

Modern approaches to permeability prediction in the interwell space are based on
consideration of seismic trends using machine learning and statistical methods [19-22].

Approaches taking into account uncertainty and diversity are common in studying
highly heterogeneous reservoirs [23,24]. Multivariate modelling allows one to go through
a range of basic reservoir parameters (porosity, permeability, aquifer, etc.), perform more
justified history matching, obtain several model implementations, and make optimistic,
pessimistic, and realistic forecasts of technological performance. The methodology is well-
proven in uncertainty assessment, but it has its own shortcomings. As a rule, the criteria of
geological realism and consistency of parameters are not established, resulting in physically
unfeasible model implementations [25,26].

An important factor influencing permeability heterogeneity is the presence of sec-
ondary reservoir processes. Calcitization, dolomitization, recrystallization, leaching, and
fracturing are widespread in carbonate sediments of different strata [27,28].

Secondary processes can also have a major influence on changing the structure of
the reservoir void space. Intervals with abnormally high permeability may form during
rock leaching. Modelling of highly permeable streaks in carbonate reservoirs is an existing
problem that should be taken into account when designing a reservoir management system,
mostly in organising a waterflooding system, as there is a high risk of premature flooding
and fingering water breakthrough [29-31].

Different conditions are associated with different genesis of highly permeable streaks
in the volume of the reservoir. Some works describe the influence of karst formation
processes on the occurrence of highly permeable streaks [32-35]. Other works describe the
genesis of highly permeable streaks in the process of primary sedimentation caused by the
peculiarities of the reef structure and the presence of spill channels [36].

The aim of this study is to develop a methodology for the identification and modelling
of highly permeable streaks to create a dynamic reservoir model and optimise the history
matching process. The resulting model will ensure reliable forecasting of oil production
and injection control.

In the scope of this study, the Geological Settings section will describe the geological
structure of the field and the main features of the area and present the concept of karst
formation. The Materials and Methods section reflects the main methods for identifying
highly permeable streaks along the wellbore and modelling them in the volume of the
deposit, as well as the materials on the basis of which this study was conducted—the results
of core studies; well logging; well testing; etc. The Results and Discussion section presents
the main results of modelling highly permeable streaks in the volume of the reservoir,
as well as the results of verification of the obtained models through comparison with
actual field data. The Conclusion presents the main conclusions and recommendations on
modelling highly permeable streaks.

2. Geological Settings

The object of this study is the Alpha field located within the Denisov depression
(Figure 1). The sediments of the Alpha field are composed of reefs formed in the Early
Famennian age. The process of reef structure formation in the territory under study includes
four consecutive reef-building cycles: one Zadonian and three Yeletsian. The reservoir is
composed of sediments from the reef itself and the backreef shelf.
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Figure 1. Extract from the tectonic map of this study area.

The lithological description of oil-saturated rocks is based on the results of core
sampling taken during the drilling of nine wells. The sediments are represented by detrital-
algal, spherical-patterned, organogenic-clastic, grey, grey-brown, irregularly dolomitized,
and recrystallized limestones. Carbonates formed in the backreef shelf conditions are
characterised by a more uniform distribution of porosity and permeability (standard
deviation-349 mD), while rocks of the reef facies are characterised by a higher dispersion
(standard deviation-846 mD) caused by an increased extent of secondary alterations of
carbonates (Figure 2).
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Figure 2. Histogram of the distribution of absolute permeability (a) and porosity (b) values based on
core test data.
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The carbonate reservoir is characterised by a complex type of void space. It is a
complex configuration consisting of fractures, vuggy pores, and intergranular porosity
unevenly distributed in the rock body. Increased zonal concentration of fractures and vuggy
pores leads to the formation of zones with abnormally high porosity and permeability,
which, in turn, leads to the formation of super-reservoirs. Core porosity and permeability
characteristics of sediments in the Alpha field are presented in Table 1.

Table 1. Porosity and permeability characterisation of the Alpha deposit.

Number of Number of Poll;osity, Ij/eef Perr;lea'bility,DReef Po;:osi.ty, S‘;lelf Pern}ljea!)ility,ghelf
Plugs Core Full-Size Core acies, % acies, m acies, % acies, m
Samples, pcs. Samples, pcs. Range Average Range Average Range Average Range Average
2547 300 0.1-24.2 6.77 0.001-18,143 124.29 0.1-29.6 8.43 0.001-4439 49.87

In the Famennian sediments of the field under study, there are both open and closed
fractures, as well as mineralised fractures (with calcite, dolomite, and sulphate group
minerals) and fractures filled with bituminous and clayey matter (Figure 3). According
to the core, the fractures are scant and/or occur as series-inclined, vertical, subhorizontal,
and multidirectional rectilinear, curved, and branched, with lengths ranging from a few
centimetres to 1.2 m. According to the classification of fracture openness, the rocks of
the Famennian age contain fractures ranging from very narrow (from a few fractions of a
millimetre) to very wide (up to 7.00 mm and more) (Figure 4). The fractures cut through
and go around formational elements, fenestrae, and fragments of stylolites in the rocks,
often connecting fenestral cavities, etc. The fractures are especially developed in lithotypes
of limestones (boundstones, rudstones, packstones, and grainstones) and are less present
in secondary dolomites.

b @

Figure 3. Fractures by openness and filling: (a)—open (core photo, arrows indicate open fractures);
(b)—closed (core photo, arrow indicates closed fracture); (c)—mineralized (thin section photo, arrow
indicates fracture mineralized with dolomite and sulphates); (d)—filled with bituminous and clayey
matter (thin section photo, arrow indicates fracture filled with bituminous organic matter).
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Figure 4. Fractures by size: (a)—short (core photo, arrows indicate fractures up to 10 cm long);
(b)—long (core photo, arrow indicates fracture over 70 cm long); (¢)—very small (thin section photo,
arrows indicate fractures 0.02 mm wide); (d)—macro-fracture (thin section photo, arrow indicates
fracture 2 mm wide).

Based on the geological peculiarities of the structure and formation conditions of the
Timan-Pechora region, there can be two hypotheses of karst formation in the reef sediments
of the Famennian age of the Denisov trough. The first mechanism of karst formation in
the sediments is related to sea level fluctuations. During the periods of regressive phases
of sedimentation, the reefs rose above sea level and were thus exposed to karst formation
under the influence of the sun, wind, and fresh water (Figure 5a). The second concept
of karst formation in reefs is related to the active tectonic regime of the basin, where
younger rocks undergo erosion under the influence of inversion movements. Together,
active tectonics and erosion events bring older rocks to the earth’s surface, where they are
exposed to atmogenic waters, causing karst formation (Figure 5b).
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Figure 5. Mechanisms of karst formation in reef sediments: (a)—first stage, regression of the sea;
(b)—second stage, erosion of sediments on the earth’s surface.

The study of the core material revealed that reef rocks of the Zadonian-Yeletsian
age have a complex structure of void space in both lateral and vertical directions. The
complexity is caused by a significant propagation of vuggy pores (Figure 6) and karst
fractures (Figure 7) in the rocks. In general, the core contains either a small or a large
number of isometric or elongated vuggy pores, isolated or communicating, in sizes ranging
from very small to very large (up to 80 mm).

(a) (b) (c)

Figure 6. Vuggy pores in Famennian reef reservoirs: (a)—small vuggy pores; (b)—medium-sized

vuggy pores; (c)—large vuggy pores.
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(b) | (©

Figure 7. Karst fractures in Famennian reef reservoirs: (a)—karst fracture; (b)—karst fracture healed
by calcite; (c)—Kkarst fracture system.

3. Materials and Methods

In this work, the identification of highly permeable streaks along the wellbore is
achieved through probabilistic methods using a combination of 10 different studies that
characterise the porosity and permeability of the reservoir. The essence of the method is to
identify intervals with abnormally high porosity and permeability for each of the studies;
hence, the more anomalies of different geological and geophysical properties are observed
in one interval, the higher the probability of the presence of a super-reservoir.

The first and foremost property that can be used to identify a super-reservoir is the
absolute permeability value determined on 2547 plug core samples. Absolute permeability
directly characterises the filtration capacity of the rock, so zones with abnormally high
permeability can, with a high degree of certainty, indicate the presence of a super-reservoir
in this interval. The approach of analysing the accumulated correlation between permeabil-
ity and porosity values was used to assess the degree of their relationship and to identify
anomalies [37,38].

Further, the values of filtration flow unit-FZI (1), which were first described by Amae-
fule et al. in 1993 [39] and are based on the Kozeny—-Carman equation, were used to identify
the super-reservoir.

RQI
Pz
where “RQI” is the reservoir quality index, mD;
“@," is the indicator of normalised porosity, unit fractions.

FZI =

)
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RQI is calculated according to Formula (2):

RQI = 0.0314

e
N

where “k” is the permeability coefficient, mD;

“@” is the porosity coefficient, unit fractions.

“@,” characterises the void ratio—the ratio of pore volume to grain volume ratio—and
is determined according to Formula (3):

©

Pz = m 3)
Thus, the calculation of the FZI coefficient is reduced to Formula (4):
0.0314,/ &
FZI = = 4)

Hence, as the FZI value increases, the permeability will increase and the porosity will
decrease as well, and it is thus possible to identify samples exposed to secondary changes
that are typical of a super-reservoir.

Differentiation of core samples into different classes according to the FZI parameter
was carried out using the DRT technique [40]. The formula for determining the DRT class
is given below (5):

DRT = 2In(FZI) + 10.6 )

At the next stage, a number of well-logging curves that characterise the reservoir
properties of the rock were used to identify zones with abnormally high porosity and
permeability, which may indicate the presence of a super-reservoir. A correlation matrix
was built to evaluate the relationship between well logging curves and porosity and
permeability based on the results of core studies. Well, logging curves that best characterise
reservoir properties were selected. These curves were:

1.  Porosity coefficient curves determined by acoustic (KPA), density (KPD), and neutron
(KPN) methods, and the effective porosity coefficient determined by nuclear magnetic
logging (CMFF);

2. Permeability coefficient curves that are determined by nuclear magnetic logging
using the SDR (KSDR) model and the permeability coefficient calculated using the
Timur-Coates (KTIM) model;

3. Fraction of oil in total void volume (FOIL) curve.

The presence of super-reservoir zones can be indicated by increased fracture density in
a particular wellbore interval, indicating the high activity of secondary rock transformations.
Formation Micro-Imager Logs (FMI) are used to identify these fractures, and, accordingly,
abnormally high fracture densities derived from FMI can indicate the presence of a super-
reservoir in a particular wellbore interval.

4. Results

The first criterion for high-permeable streak identification was the absolute value of
permeability determined on 2547 plug core samples. Relationships between cumulative
values of effective porosity and absolute permeability for the core samples were used
to estimate the reservoir property relationships. Porosity and permeability data were
sorted from minimum to maximum permeability values, and correlation coefficients were
calculated for cumulative plugs n = 3, 4,... 2547. These correlations enabled us to estimate
the relationship of parameters over the whole range of porosity values, which made it
possible to identify ranges of different types of porous space (Figure 8).
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Figure 8. The dependence of the cumulative correlation coefficient between porosity and permeability
on permeability values.

Figure 8 shows how the correlation coefficient between porosity and permeability
gradually increases once a sufficient value is reached; that is, when permeability values
increase, the relationship between porosity and permeability also becomes stronger. In
other words, the increase in rock permeability is due to the increase in effective void space.

At the level of 710 mD, an inflection point is observed, after which the curve goes
sharply down. This means that these core samples with abnormally high permeability are
outliers relative to the total sample, and the high permeability values are not due to high
values of classical intergranular porosity but to other factors, which, first of all, are fractures
and communicating vuggy pores. Consequently, the value at the inflection point, equal to
710 mD, can be chosen as a boundary value to identify a super-reservoir.

The boundary value for the super-reservoir equal to 710 mD can also be seen in the
absolute permeability distribution plot (Figure 9).

1.0 @00 00 0O 000 © - °
0.9 F\\
I
< os | 710 mD
& I
= 1
207 |
o I
o= I
- 1
g 0.6 i
SO |
205 |
= |
< |
Z 04
o] I
= 1
go3
o |
~
0.2 :
I
o1
|
I
0.0 §-
0 5000 10 000 15000 20000
Absolute permeability, mD

Figure 9. Absolute permeability distribution plot.
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Figure 9 shows that most of the samples have relatively low permeability, forming a
subvertical curve. Further, there is a sharp bend, and the curve goes to the subhorizontal
position. This part of the sample characterises abnormally high values of permeability,
which is not typical for the total number. Thus, 1.6% of samples are attributed to a super-
reservoir by the absolute permeability value.

The next method to identify the super-reservoir was the hydraulic flow unit (FZI)
calculation technique. The FZI value was calculated for each of the core samples. Further,
the FZI distribution was plotted (Figure 10), and the point of inflection and exit of the
distribution curve to a subhorizontal position was determined, reflecting abnormally high
values that are not typical for the total sample.
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Figure 10. FZI distribution plot.

The FZI value at the inflection point is 31.5 units, which corresponds to class 18
according to the DRT classification (Figure 11).
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Figure 11. Classification of DRT core samples.
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Core samples with abnormally high FZI values (>31.5), falling into DRT classes 18-24,
are characterized by filtration typical of samples with an increased degree of secondary

alterations (vuggy pores, fractures), which suggests the presence of a super-reservoir in
this part of the section. Thus, only 4.5% of samples are attributed to a super-reservoir.

Next, a database of 40 well logging curves was compiled and correlated with the poros-

ity and permeability determined in the core studies. The correlation matrix is presented in
Table 2.

Table 2. Results of the correlation between core sampling and well-logging data.

Depth AF90 AF30 AF60 AF20 AF10 AMEF BIT CFTC CNTC
Permeability 0.007 0.019 0.021 0.031 0.037 —0.013 0.0461 —0.036 —0.122 —0.091
Porosity 0.080 0.041 0.142 0.181 0.052 0.068 0.237 —0.109 —0.487 —0.317
GR HCAL HDRA HMIN HMNO HTEM PEFZ RHOZ RLA1 RLA2
Permeability —0.056 —0.070 —0.039 —0.038 —0.038 —0.052 —0.024 —0.005 —0.021 —0.028
Porosity —0.219 —0.328 —0.194 —0.153 —0.152 —0.088 —0.189 —0.067 —0.140 —0.173
RLA3 RLA4 RLA5 RT_HRLT RXOZ SP KPA DOLM Kpob KPD
Permeability —0.024 —0.022 —0.014 —0.018 —0.045 —0.003 0.2112 0.019 0.161 0.188
Porosity 0.159 0.156 —0.093 0.121 —-0.137 —0.162 0.670 0.007 0.343 0.622
KPkv KPN KSDR KTIM LIME FOIL PORW SHALE TCMR CMFF
Permeability 0.089 0.176 0.371 0.194 —0.035 0.199 —0.029 —0.015 0.042 0.254
Porosity 0.128 0.695 0.302 0.363 —0.102 0.474 0.021 0.104 0.000 0.705

! Statistically significant correlations are highlighted in red (p-value < 0.05 u.f.). 2 Methods selected for further

research are highlighted in bold font.

Out of 40 well logging curves, seven (KPA, KPD, KPN, CMFF, KSDR, KTIM, and FOIL)

were selected for further work, which inherently reflect reservoir quality and show the
highest correlation with core permeability.

To identify abnormally high values that may indicate the presence of a super-reservoir,
distribution plots were built for each of the well logging methods (Figure 12). The super-

reservoir boundary values are identified at the point of inflection and the changing
direction of the distribution curve to the sub-horizontal position that characterises the
abnormal properties.
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Figure 12. Distribution plots of well logging curves: (a) KPA, (b) KPD, (c) KPN, (d) CMFF, (e) KSDR,

(f) KTIM, and (g) FOIL.

As aresult, only 2-2.5% of the values in each of the well logging curves are attributed
to the super-reservoir.
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The next criterion for super-reservoir identification was FMI results. Using a moving
average along the wellbore, synthetic fracture density curves according to FMI were built
(Figure 13), and intervals with fracture densities above 1 fracture per metre were identified
as probable high permeable streaks.
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Figure 13. Synthetic fracture density curves identified by FMI: (a) well No. 1; (b) well No. 2; (c) well
No. 3.
At the next stage, the super-reservoir intervals identified in the set of studies of various
scales were summarised along the wellbore of each well, and synthetic curves of probability
of super-reservoir presence were obtained (Figure 14).
(a) Probability of high permeability streaks, u.f. (b) Probability of high permeability streaks, u.f. (©) Probability of high permeability streaks, u.f.
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Figure 14. Synthetic curves of probability of super-reservoir presence: (a) well No. 1; (b) well No. 2;
(c) well No. 3.
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At the next stage, the supercollector intervals for each study are given the same
weighting coefficient, which equals 0.1 units. Afterwards, all weighting coefficients were
summed up for each wellbore study. Consequently, the more studies that reveal anormous
reservoir properties intersect in one interval, the higher the probability of the presence of a
superreservoir in this interval is expected. In this way, sums of weighting coefficients for
intervals were obtained, and, as a result, synthetic curves of the probability of the presence
of a superreservoir were generated (Figure 14).

As described earlier, each of the criteria has extremely strict requirements for super-
reservoir identification (only 1-4% of maximum values), so the coincidence of at least
two various scale studies of different natures in one scale interval of a plug core sample
indicates the presence of a super-reservoir with a high degree of certainty.

To account for the uncertainties associated with the distribution of highly permeable
streaks, the obtained synthetic curves were assigned criteria with different significance
levels (P10, P50, and P90). Identification conditions at the P10 level reflect the maximum
possible number of highly permeable streaks; in this case, all intervals where at least
one of the studies indicates the presence of a highly productive interval fit the criteria
for super-reservoir identification. The P50 level reflects an intermediate distribution of
highly permeable reservoirs; only those intervals where two or more studies indicate
the presence of a super-reservoir are eligible for super-reservoir identification, which
significantly reduces the total thickness of highly productive intervals. The third level of
super-reservoir identification, P90, shows the most conservative result of all. In this case,
only those intervals where the presence of a super-reservoir is confirmed by three or more
studies are identified as a super-reservoir.

At the next stage, LAS-files were generated for the wells and loaded into the project of
the existing geological model, where the values 0 and 1 alternate along the wellbore opposite
to the depth marker, 0—absence of a super-reservoir, 1-presence of a super-reservoir.

The basic parameters of the geologic model are described below:

Number of cells—45,638,389; grid type—corner points; average layer size by
thickness—0.38 m, cell size—50 x 50 m; number of layers—1743; formations—Dsel3, Dsely,
Dsely, Dsel_trans, D3zd.

Then, using stochastic indicator modelling, the super-reservoir was distributed in the
model volume (Figure 15).

(a)

=

/ \ ; A ’
\ \\ \

|D High permeability streaks O oOther model volume

Figure 15. Distribution of the super-reservoir in the model volume: (a) P10; (b) P50; (c) P90.

Permeability arrays were built based on the distribution of highly permeable intervals.
The permeability array calculated by standard petrophysical dependence is taken as a
basis (Figures 16 and 17); further, for the intervals attributed to the super-reservoir with
probability P10, P50, and P90, the permeability is calculated on the basis of petrophysical
dependence obtained for core samples, which according to FZI are attributed to the super-
reservoir (Figures 11, 16 and 17).
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Figure 17. Comparison of obtained permeability arrays: (a) standard petrophysical dependence;
(b) P10; (c) P50; (d) P90.

Comparisons of average permeability for each permeability array are shown in Table 3.

157



Energies 2024, 1

7,236

Table 3. Comparison of average permeability for the obtained permeability arrays.

Standard Petrophysical Dependence P10 P50 P90 Well Flow Test Core

Average permeability, mD

28.5 523.9 53.6 49.8 93.5 245

After that, the obtained permeability arrays were loaded into the existing dynamic
model. In the dynamic model, a PVT model was implemented with black oil and relative
curves according to core studies (Figure 18). A high trend is used for supercollectors; a
base trend is used for Dsels, Dsely, Dsely, and D3zd; a low trend is used for Dsel_trans
and D3e12.
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Figure 18. Relative permeability: (a)—for oil, (b)—for water.

The history of oilfield development is 10 years: total wells-58, producers-43,
injectors-15. Four wells have a horizontal ending. The main completion intervals are
D3el3, D3ell, and D3zd. Fractures and karst zones were included in the modelling of
superreservoir distributions.

Further history-matching results were compared on all 4 permeability arrays by
reproducing the development history with control by actual bottom hole pressure, without
liquid flow rate limitations. To assess the history matching quality comparison of bottom
hole pressure dynamics, it is shown in Figure 19.
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Figure 19. Comparison of simulated and historical bottomhole pressures: (a) comparison of the
bottomhole pressure dynamics; (b) cross-plot between simulated and historical data.
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Figure 19 shows a high convergence of calculated and historical bottomhole pressures,
which allows us to assert that the initial conditions for carrying out calculations with
bottomhole pressure control are correct.

The comparison was carried out in equal conditions after the first iteration of his-
tory matching.

When high permeability streaks were factored into the model, in just one iteration,
it was possible to achieve better convergence with historical oil and liquid production
than when using the permeability array derived from standard petrophysical dependence

(Figure 20, Table 4).
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Figure 20. Comparison of actual and model oil and liquid production using all permeability arrays:
(a) comparison of annual liquid production; (b) comparison of annual oil production; (c) comparison
of cumulative liquid production; (d) comparison of cumulative oil production.
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Table 4. Comparison of historical and model-calculated cumulative oil and liquid production for
each permeability array.

History Petrophisics P10 P50 P90
Total liquid production, thousand m3 17,478 13,266 27,037 17,969 15,303
Total oil production, thousand m3 16,191 11,760 22,428 15,304 12,972
Deviation of the liquid from history, % 241 —54.7 -2.8 12.4
Deviation of oil from history, % 27.4 —38.5 5.5 19.9

The best convergence with historical oil and liquid production was achieved us-
ing a permeability array with a super-reservoir distributed according to the P50 proba-
bility (deviation in cumulative liquid production——2.8%, deviation in cumulative oil
production—>5.5%).

Figure 20 and Table 4 show that variants with permeability calculation according to
standard petrophysical dependence and super-reservoir distribution with probability P90
underestimate formation potential; wells produce less liquid than according to history;
hence, the productivity of wells with this permeability array is lower than real. The op-
posite is the situation with the distribution of super-reservoir with probability P10: this
permeability array significantly overestimates the formation potential and well productivity
at the peak production moment, thereby depleting the energy of the deposit. As a conse-
quence, there are sharp rates of liquid and oil production decline, as well as faster water
breakthroughs. The most favourable results are obtained in reservoir distribution with a
probability of P50. Using this version of the permeability array, it was possible to reproduce
the reservoir potential and, as a consequence, productivity in the most accurate way.

5. Conclusions

This study gives a detailed description of the geological structure of the Alpha field,
which has a carbonate reef reservoir with a complex void structure. The core was analysed,
and a detailed description was given to the nature of fractures and vuggy pores whose
high density leads to the formation of super-reservoirs.

Super-reservoirs have a huge impact on reservoir management. They both ensure
high well productivity and impose the risk of premature water breakthroughs. In order to
reduce uncertainty in the distribution of highly productive intervals in the model volume,
a methodology for probabilistic identification of super-reservoirs was proposed.

The methodology includes consideration of 10 studies of various scales. At the ini-
tial stage, possible super-reservoirs are identified for each study separately, after which
the super-reservoirs are summed to form a general probability curve of super-reservoir
distribution. The probability curve is then used to identify super-reservoir intervals with
different degrees of uncertainty: P10, P50, and P90.

In the next step, all three cases of super-reservoir identification are distributed in the
model volume, and permeability arrays are calculated for each variant; besides, a perme-
ability array is calculated through a standard petrophysical dependence for comparison.

Then, the obtained arrays were loaded into the existing dynamic model, and the
convergence of calculated and actual indicators of the Alpha field development after the
first iteration of history matching was compared. Calculations with each permeability array
were carried out in equal conditions, with control by drawdown pressure and without
control by liquid rates. The best convergence with actual oil and liquid production was
shown by the calculation using permeability array P50; deviations on accumulated liquid
and oil were only —2.8% and 5%, respectively, which indicates the most accurate and
correct distribution of permeability in the model volume.

Thus, the application of this technique reduces the uncertainty of the distribution of
highly productive intervals in the volume of the reservoir, which makes it possible to take
into account the risks of premature watering of wells as well as to predict the rate of oil
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production. Using this technique, it was possible to recreate reservoir potential and adjust
well productivity with high accuracy in the model, which increased the overall adaptability
of the model.

Author Contributions: Conceptualization, D.S. and S.K.; methodology, A.K.; software, D.S.; val-
idation, A.K., A.B. and N.K.; formal analysis, N.K. and E.O.; investigation, A.B.; resources, D.S.
and L.P; data curation, N.K.; writing—original draft preparation, D.S.; writing—review and editing,
E.O.; visualization, A.B. and E.O.; supervision, A.K. and LP; project administration, S.K.; funding
acquisition, S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This study was conducted under Russian Science Foundation grant No. 22-17-00111.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, Q;Han, Y; Liu, X.; Ansari, U.; Cheng, Y.; Yan, C. Hydrate as a by-product in CO, leakage during the long-term sub-seabed
sequestration and its role in preventing further leakage. Environ. Sci. Pollut. Res. 2022, 29, 77737-77754. [CrossRef] [PubMed]

2. Li, Q.; Wang, F; Wang, Y.; Forson, K.; Cao, L.; Zhang, C.; Zhou, C.; Zhao, B.; Chen, ]J. Experimental investigation on the
high-pressure sand suspension and adsorption capacity of guar gum fracturing fluid in low-permeability shale reservoirs: Factor
analysis and mechanism disclosure. Environ. Sci. Pollut. Res. 2022, 29, 53050-53062. [CrossRef] [PubMed]

3. Tavakoli, V. Carbonate Reservoir Heterogeneity: Overcoming the Challenges; Springer International Publishing: Tehran, Iran, 2019;
pp- 1-108.

4. Lucia, FJ.; Kerans, C.; Jennings, ].W. Carbonate reservoir characterization. J. Pet. Technol. 2003, 55, 70-72. [CrossRef]

5. Masalmeh, S.K,; Jing, X.D. Improved characterisation and modelling of carbonate reservoirs for predicting waterflood perfor-
mance. In Proceedings of the International Petroleum Technology Conference, Dubai, United Arab Emirates, 4-6 December 2007.
[CrossRef]

6.  Martin, A.]J.; Solomon, S.T.; Hartmann, D.]. Characterization of petrophysical flow units in carbonate reservoirs. AAPG Bull. 1997,
81, 734-759. [CrossRef]

7. Dominguez, G.C.; Fernando, S.V.; Chilingarian, G.V. Simulation of carbonate reservoirs. Dev. Pet. Sci. 1992, 30, 543-588. [CrossRef]

8.  Correia, M.G.; Maschio, C.; Schiozer, D.J. Integration of multiscale carbonate reservoir heterogeneities in reservoir simulation. J.
Pet. Sci. Eng. 2015, 131, 34-50. [CrossRef]

9.  Massonnat, G.J.; Michel, J.; Gatel, P.; Ruiu, J.; Danquigny, C.; Lesueur, ].L.; Borgomano, J. Multi-Scale Sedimentary forward
Reservoir Modelling: A Disruptive Solution for Simulating Heterogeneity in Carbonates. Application to the Kharaib-2 Reservoir
Unit. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 2-5
October 2023. [CrossRef]

10. Beltiukov, D.A.; Kochnev, A.A.; Galkin, S.V. The combining different-scale studies in a reservoir simulation model of a deposit
with a fractured-cavernous type of carbonate reservoir. IOP Conf. Ser. Earth Environ. Sci. 2022, 1021, 012027. [CrossRef]

11. Zhang, W.; He, Z.; Duan, T,; Li, M.; Zhao, H. Hierarchical modeling of carbonate fault-controlled Paleokarst systems: A case
study of the Ordovician reservoir in the Tahe Oilfield, Tarim Basin. Front. Earth Sci. 2022, 10, 840661. [CrossRef]

12.  Naseer, M.T. Seismic attributes and reservoir simulation” application to image the shallow-marine reservoirs of Middle-Eocene
carbonates, SW Pakistan. |. Pet. Sci. Eng. 2020, 195, 107711. [CrossRef]

13. Baker, H.A; Al-Jawad, S.N.; Murtadha, Z.I. Permeability Prediction in Carbonate Reservoir Rock Using FZI. Iragi J. Chem. Pet.
Eng. 2013, 14, 49-54. [CrossRef]

14. Babadagli, T.; Al-Salmi, S. A review of permeability-prediction methods for carbonate reservoirs using well-log data. SPE Reserv.
Eval. Eng. 2004, 7, 75-88. [CrossRef]

15. Corbett, P; Potter, D. Petrotyping: A basemap and atlas for navigating through permeability and porosity data for reservoir
comparison and permeability prediction. In Proceedings of the International Symposium of the Society of Core Analysts, Abu
Dhabi, United Arab Emirates, 5-9 September 2004.

16. Guerriero, V.; Mazzoli, S.; lannace, A.; Vitale, S.; Carravetta, A.; Strauss, C. A permeability model for naturally fractured carbonate
reservoirs. Mar. Pet. Geol. 2013, 40, 115-134. [CrossRef]

17.  Zambrano, M.; Volatili, T.; Mancini, L.; Pitts, A.; Giorgioni, M.; Tondi, E. Pore-scale dual-porosity and dual-permeability modeling
in an exposed multi-facies porous carbonate reservoir. Mar. Pet. Geol. 2021, 128, 105004. [CrossRef]

18.  Uba, H.M,; Chiffoleau, Y.; Pham, T.; Divry, V.; Kaabi, A.; Thuwaini, ]. Application of a Hybrid Dual Porosity /Dual-Permeability
Representation of Large-Scale Fractures to the Simulation of a Giant Carbonate Reservoir. In Proceedings of the SPE Middle East
QOil and Gas Show and Conference, Manama, Bahrain, 11 March 2007. [CrossRef]

19. Takougang, EM.T.; Bouzidi, Y.; Ali, M.Y. Characterization of small faults and fractures in a carbonate reservoir using waveform

inversion, reverse time migration, and seismic attributes. J. Appl. Geophys. 2019, 161, 116-123. [CrossRef]

161



Energies 2024, 17, 236

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Subasi, A.; El-Amin, M.F,; Darwich, T.; Dossary, M. Permeability prediction of petroleum reservoirs using stochastic gradient
boosting regression. J. Ambient Intell. Humaniz. Comput. 2020, 13, 3555-3564. [CrossRef]

Chen, G.; Meng, Y.; Huan, J.; Wang, Y.; Xiao, L.; Zhang, L.; Feng, D. A new predrilling reservoir permeability prediction model
and its application. J. Pet. Sci. Eng. 2022, 210, 110086. [CrossRef]

Zolotukhin, A.; Gayubov, A. Machine learning in reservoir permeability prediction and modelling of fluid flow in porous media.
IOP Conf. Ser. Mater. Sci. Eng. 2019, 700, 012023. [CrossRef]

Benetatos, C.; Giglio, G. Coping with uncertainties through an automated workflow for 3D reservoir modelling of carbonate
reservoirs. Geosci. Front. 2021, 12, 100913. [CrossRef]

Arnold, D.; Demyanov, V.; Christie, M.; Bakay, A.; Gopa, K. Optimisation of decision making under uncertainty throughout field
lifetime: A fractured reservoir example. Comput. Geosci. 2016, 95, 123-139. [CrossRef]

Arnold, D.; Demyanov, V,; Tatum, D.; Christie, M.; Rojas, T.; Geiger, S.; Corbett, P. Hierarchical benchmark case study for history
matching, uncertainty quantification and reservoir characterisation. Comput. Geosci. 2013, 50, 4-15. [CrossRef]

Matveev, I.; Shishaev, G.; Eremyan, G.; Demyanov, V.; Popova, O.; Kaygorodov, S.; Belozerov, B.; Uzhegova, I.; Konoshonkin, D.;
Korovin, M. Geology driven history matching. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow,
Russia, 22-24 October 2019. [CrossRef]

Rashid, F.; Hussein, D.; Glover, PW.J.; Lorinczi, P.; Lawrence, ].A. Quantitative diagenesis: Methods for studying the evolution of
the physical properties of tight carbonate reservoir rocks. Mar. Pet. Geol. 2022, 139, 105603. [CrossRef]

Sajed, O.K.M.; Glover, P.W. Dolomitisation, cementation and reservoir quality in three Jurassic and Cretaceous carbonate
reservoirs in north-western Iraq. Mar. Pet. Geol. 2020, 115, 104256. [CrossRef]

Shibayama, A.; Hamami, M.; Yamada, T.; Kohda, A.; Farhan, Z.; Bellah, S.; Shibasaki, T.; Jasmi, S. The Application of Geological
Concepts for Various Types of High-Permeability Streaks to the Full-Field Simulation Model History Matching of Carbonate
Reservoir, Offshore Abu Dhabi. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi,
United Arab Emirates, 13—16 November 2017. [CrossRef]

Hu, D.; Rui, G.; Songhao, H.; Yuanbing, W.; Zhaowu, Z. Integrated management and Application of Horizontal Well Water
Flooding Technology in a Large-scale Complicated Carbonate Oilfield Containing High permeability Streaks. In Proceedings of
the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Nusa Dua, Indonesia, 20-22 October 2015. [CrossRef]

Ding, S.; Jiang, H.; Wang, L.; Liu, G.; Li, N.; Liang, B. Identification and Characterization of High-permeability Zones in
Waterflooding Reservoirs With an Ensemble of Methodologies. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas
Conference and Exhibition, Nusa Dua, Indonesia, 20-22 October 2015. [CrossRef]

Correia, M.G.; Hohendorff, ].C.; Schiozer, D.J. Multiscale integration for Karst-reservoir flow-simulation models. SPE Reserv. Eval.
Eng. 2020, 23, 518-533. [CrossRef]

Pantou, L. Impact of Stratigraphic Heterogeneity on Hydrocarbon Recovery in Carbonate Reservoirs: Effect of Karst; Imperial College
London: London, UK, 2014; pp. 1-56.

Bigoni, F; Pirrone, M.; Trombin, G.; Vinci, EF.,; Raimondi Cominesi, N.; Guglielmelli, A.; Ali Hassan, A.A.; Ibrahim Uatouf, K.S,;
Bazzana, M.; Viviani, E. Middle East karst Carbonate: An Integrated Workflow for Prediction of Karst Enhancement Distribution.
In Proceedings of the SPE Reservoir Characterisation and Simulation Conference and Exhibition, Abu Dhabi, United Arab
Emirates, 17-19 September 2019. [CrossRef]

La Bruna, V.; Bezerra, F; Souza, V.; Maia, R.; Auler, A.; Aratjo, R.; Cazarin, C.; Rodrigues, M.; Vieira, L.; Sousa, M. High-
permeability zones in folded and faulted silicified carbonate rocks—Implications for karstified carbonate reservoirs. Mar. Pet.
Geol. 2021, 128, 105046. [CrossRef]

Zhang, L.; Zhang, W.; Li, Y,; Song, B.; Liu, D.; Deng, Y.; Xu, J.; Wang, Y. Sequence Stratigraphy, Sedimentology, and Reservoir
Characteristics of the Middle Cretaceous Mishrif Formation, South Iraq. J. Mar. Sci. Eng. 2023, 11, 1255. [CrossRef]

Galkin, V.I.; Ponomareva, I.N.; Repina, V.A. Study of the process of oil recovery in reservoirs of various types of voids using
multivariate statistical analysis. Bull. Perm Natl. Res. Polytech. Univ. Geol. Oil Gas Eng. Min. 2016, 15, 145-154. [CrossRef]
Putilov, I.; Kozyrev, N.; Demyanov, V.; Krivoshchekov, S.; Kochnev, A. Factoring in Scale Effect of Core Permeability at Reservoir
Simulation Modeling. SPE |. 2022, 27, 1930-1942. [CrossRef]

Amaefule, ].O.; Altunbay, M.; Tiab, D.; Kersey, D.; Keelan, D. Enhanced Reservoir Description: Using Core and Log Data to
identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. In Proceedings of the SPE Annual Technical
Conference and Exhibition, Houston, TX, USA, 3-6 October 1993. [CrossRef]

Garrouch, A.A.; Al-Sultan, A.A. Exploring the link between the flow zone indicator and key open-hole log measurements: An
application of dimensional analysis. Pet. Geosci. 2019, 25, 219-234. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

162



energies

Article

A Case Study on the CO; Sequestration in Shenhua Block
Reservoir: The Impacts of Injection Rates and Modes

Ligen Tang 12, Guosheng Ding "2, Shijie Song 3, Huimin Wang 3, Wuqiang Xie 3 and Jiulong Wang **

check for
updates

Citation: Tang, L.; Ding, G.; Song, S.;
Wang, H.; Xie, W.; Wang, J. A Case
Study on the CO; Sequestration in
Shenhua Block Reservoir: The Impacts
of Injection Rates and Modes. Energies
2024, 17,122. https://doi.org/
10.3390/en17010122

Academic Editor: Nikolaos K.

Koukouzas

Received: 10 November 2023
Revised: 19 December 2023

Accepted: 20 December 2023
Published: 25 December 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China
National Energy Underground Gas Storage R&D Center, Beijing 100083, China

Shaanxi Coal and Chemical Industry Group Co., Ltd., Xian 710100, China

Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China

*  Correspondence: jlwang@cnic.cn

e I N R e

Abstract: Carbon capture and storage (CCS) is the most promising method of curbing atmospheric
carbon dioxide levels from 2020 to 2050. Accurate predictions of geology and sealing capabilities
play a key role in the safe execution of CCS projects. However, popular forecasting methods often
oversimplify the process and fail to guide actual CCS projects in the right direction. This study takes
a specific block in Shenhua, China as an example. The relative permeability of CO; and brine is
measured experimentally, and a multi-field coupling CO, storage prediction model is constructed,
focusing on analyzing the sealing ability of the block from the perspective of injection modes. The
results show that when injected at a constant speed, the average formation pressure and wellbore
pressure are positively correlated with the CO, injection rate and time; when the injection rate is
0.5 kg/s for 50 years, the average formation pressure increases by 38% and the wellbore pressure
increases by 68%. For different injection modes, the average formation pressures of various injection
methods are similar during injection. Among them, the pressure increases around the well in the
decreasing injection mode is the smallest. The CO, concentration around the wellbore is the largest,
and the CO, diffusion range continues to expand with injection time. In summary, formation pressure
increases with the increase in injection rate and injection time, and the decreasing injection mode
has the least impact on the increase in formation pressure. The CO, concentration is the largest
around the well, and the CO, concentration gradually decreases. The conclusion helps determine the
geological carrying capacity of injection volumes and provides insights into the selection of more
appropriate injection modes. Accurate predictions of CO, storage capacity are critical to ensuring
project safety and monitoring potentially hazardous sites based on reservoir characteristics.

Keywords: Shenhua block; saline aquifer; carbon capture and storage (CCS); multi-field coupling

1. Introduction

CCS aims to mitigate human-induced carbon dioxide emissions by injecting and
storing carbon dioxide in specific geological structures [1,2]. In the pursuit of achieving
carbon neutrality by the mid-21st century, CCS stands out as a pivotal carbon-negative
technology, garnering significant attention and interest from countries globally [3,4]. Before
CO;, injection can proceed, a proper assessment of the risk of CO, leakage from injection
wells and geological storage sites must be conducted [1,5]. The Shenhua Carbon Capture
and Storage Demonstration Project in China’s Ordos Basin stands as Asia’s first and largest
full-chain saline aquifer carbon dioxide storage project. There is a lot of engineering and
research going on there. These studies include stress and deformation changes induced
by injection, potential damage modes and safety factors, interactions between coal mining
and carbon dioxide geology storage, and determination of injection pressure limits, and
the upper limit of wellhead pressure is 18 MPa, which is reliable [6,7]. Prior to project
implementation, a rigorous consideration of the impact of fluid flow in the formation and
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an accurate prediction of the formation’s storage capacity are essential to ensure the safe
development of the project [8,9]. CCS is a complex process that requires focus on its impact
on formation pressure and CO, distribution. Different injection modes have important
effects on the formation.

Geological formations such as basalts, coal seams, depleted oil reserves, soils, deep
saline aquifers, and sedimentary basins exhibit vast potential for carbon dioxide storage [10].
There is potential for carbon dioxide (CO;) recovery in ultra-deep water subsalt carbonate
reservoirs for carbon capture and storage [11]. To facilitate the geological storage of
CO,, the pressure must exceed 7.38 MPa and the temperature must surpass 31.1 °C,
indicating a theoretical storage depth exceeding 800 m. The Shenhua saline aquifer block
in China satisfies these requirements. The profound geological structure’s complexity,
exploration extent, and limitations in indoor physical simulation experimental conditions
pose challenges to reservoir characterization and geological modeling. Simultaneously,
accurately predicting CO, migration patterns and ensuring reservoir safety are critical
issues in current research. However, there is no very definite conclusion about the storage
capacity of the reservoir. In particular, the research on the storage capacity under different
injection modes is still blank.

Countries such as the United States, China, Russia, the United Kingdom, Croatia,
and India are actively accelerating the global deployment of CCS, making significant
contributions to the reduction in global greenhouse gas emissions [12-18]. Challenges
such as carbon dioxide leakage, energy inefficiency, and high implementation costs pose
significant obstacles to the development of CCS. The safety assessment of CCS represents
one of the greatest challenges; accurate predictions of geological carrying capacity and
storage capacity are essential prerequisites for formulating and implementing a viable
plan [19-24].

Berrezueta conducted laboratory studies on carbon dioxide-brine-rock interactions
and performed some sensitivity analyses [25]. Xie investigated the influence of geological
and engineering parameters on CO, migration and flow characteristics through indoor
injection experiments, supplemented by X-ray computed tomography (CT) and scanning
electron microscopy (SEM) experiments and computational fluid dynamics (CFD) numeri-
cal simulations [26]. These experimental studies did not conduct real simulations under
formation conditions and could not directly guide the project. Hu integrated CFD simu-
lation technology into the experimental study of atmospheric CO, diffusion in full-scale
blasting emission tests of high-pressure supercritical phase CO, pipelines, and quantita-
tively analyzed the relationship between supercritical CO, leakage diameter and dangerous
distance [27]. However, this study did not directly analyze the formation CO, distribution.
Tutolo used high-performance computing techniques to study the coupled effects of cold
CO, injection and background hydraulic head gradients on reservoir-scale mineral volume
changes. Research has found that the migration and flow characteristics of CO; in sand-
stone during the geological storage process have a significant impact on the physical and
mechanical properties of the rock [28]. Therefore, research on CO, storage must consider
the physical and mechanical properties of rocks and fluid flow characteristics. Yang utilized
the VOF (Volume of Fluid) method, capable of tracking dynamic changes in the two-phase
interface, to establish two-dimensional and three-dimensional models and numerically
simulate a supercritical CO,-brine two-phase flow [29]. Without considering the influence
of reservoir mechanical properties on seepage characteristics, it is inaccurate to simply
study two-phase flow. In water—-mechanical-chemical-coupled simulations, simplified flow
mechanisms can lead to significant deviations in predicted throughput and storage perfor-
mance [30]. Ratnakar and Omosebi et al. developed a machine learning-based workflow to
inject single-phase supercritical carbon dioxide into deep saline aquifers to assess leakage
risks [31-36]. The shortcoming is that these studies did not conduct sufficient and effective
analysis and research on formation pressure changes.

Given the limitations of the current body of research, this study addresses the relatively
singular factors considered and explores other issues. It entails experimental measurements
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of CO, migration and brine flow characteristics under different driving pressures. Addition-
ally, a comprehensive large-scale multi-field coupling model of the reservoir (encompassing
seepage, chemical diffusion, and solid mechanics fields) was established. Experimental
data were incorporated into the model, and the influence of formation pressure on rock
permeability characteristics was thoroughly examined. The primary focus of this study is
the innovative exploration of various CO, injection modes, with an evaluation of reservoir
storage capacity and risk conducted through the analysis of changes in pressure around the
well, average formation pressure alterations, and CO, distribution. Taking a specific CO,
geological storage project in the Shenhua saline aquifer as the research subject, the study
integrates experiments and simulations, aligning with the actual engineering background
and conditions. This approach aims to elucidate the CO, geological storage mechanism in
saline aquifers. The research methods and conclusions derived from this study provide
valuable insights into the geological storage mechanism and seepage laws of CO; in saline
aquifers, playing a pivotal role in informing the scientific and safe implementation of
storage projects.

The framework of this article is structured as follows: Section 2 delves into core
methods, including mathematical models, physical models, physical properties, seepage
characteristic parameters, introduction to injection methods, and an overview of the block.
Section 3 engages in a discussion of the results, covering model verification, reservoir
pressure comparison, and CO; distribution. Finally, the article concludes with a summary.

2. Methodology

This study fully considered the physical properties of the reservoir and fluid. Multi-
fields mainly include multiphase transfer field, Darcy seepage field, and solid mechanics
field. The coupling method is introduced in detail in the mathematical model. Figure 1 is
the flow of the process.

| Physical properties and parameters

Relative permeability of CO, and salt water

| CO, and salt water physical properties | Reservoir porosity and permeability |

| Multi-field coupling |~—‘ Mathematical governing equations |

Phase transfer field in porous media |'—'| Darcy seepage field |'—’| Solid mechanics field |

| Different injection modes |

| CO, storage capabilities and engineering guidance |

Figure 1. Flow of the process.

2.1. Mathematical Model

This study takes into account multi-field coupling (encompassing seepage, chemical
diffusion, and solid mechanics fields), diffusion effects, and effective stress. The math-
ematical model comprises the multiphase fluid flow mass conservation theory, seepage
mechanics momentum equation, solid mechanics stress balance differential equation, con-
stitutive equation, geometric equation, Terzaghi effective stress principle, and diffusion
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equation. This section primarily introduces each equation and its physical meaning, eluci-
dating how they are coupled to establish connections.

The continuity equation of multiphase seepage delineates the mass conservation of
multiphase mixed fluids. This equation is articulated in terms of the volume fraction of
each phase [37]:

J€p0s,5i
ot

Among them, €y, is the porosity, ps; is the fluid density, and s; is the volume fraction.

+V-N; =0 (1)

N; = psiu; 2)

u; is the fluid velocity.

Darcy’s seepage flux equation is a constitutive equation that characterizes the flow
of liquid through porous media. This equation finds extensive application in petroleum
engineering and groundwater engineering:

Krs;

Hs;

uj=——x(Vp—pig) (3)
i=1,2,3. 57 is brine saturation. s; is carbon dioxide saturation. s3 is bound brine

saturation.
s1+sy+s3=1 4)

If Darcy’s multiphase seepage equation considers diffusion effects, then:

Krs.
u; = ——:l k(Vp —pig) — Des; Vs; (5)
Si

Dy, is the diffusion coefficient, and the value here is 6 x 1072 m?2/s from the literature [38].

The stress balance equation of a solid elucidates the equilibrium of forces at each point
within a stationary solid. In a three-dimensional space, for a solid within a volume element and
considering three directions (x, y, and z), the stress balance equation can be expressed as [39]:

9 ’
TGS =0
a0, T ke
ottt tf=0 ©)
J0: oT; 9Tyz
TZZ + T;Z ay + f z 0

Ox, 0y, Oz, Tay, Tyz, Tzx are the stress components, and fx, fy, f; are the body force
components. Here, we only consider gravity:

fx=0
fy:O 7)
fz=pg

The relationship between the shear stress components and displacement components:

_ _ _E Ju duy
Tyx = Ty = sy oy T W)
T = Tox = 5o ( Lz 4 e (8)
xz = Tax = o)\ ox T oz

— — E a”y Juz

Ty = Tyz = )\ oz T oy

E is the elastic modulus; v is the Poisson’s ratio, and uy, uy, u, are the displacement
components.

Terzaghi's effective stress principle asserts that while the stress in the soil is borne by

both the soil skeleton and the water vapor in the soil, only the effective stress transmitted
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Ev

(1+0)(1—20)

Ev
(14+v)(1-2v)

Ev
(14+v)(1-2v)

through the soil particles induces soil deformation. The pressure transmitted through water
vapor in the pores does not contribute to the strength of the soil [39]:

oy =0, +ap
oy =0y +ap 9)
0, =0, +ap
al, O'y, ol are the effective stress components; « is the Biot coefficient, and p is the
reservoir pressure. Equilibrium Equation (10) by bagging (7), (8), and (9) into (6):

o %y o%u E 92ty Pu\

ox +lx I 2( v) ( ayu + axa;> + 2(1+v) ( azuz + axgz) =0

aoy, 2u 92u, E Puy | Pu | _

E)y + 05 + 2( v) <822y + 8ygz) + 2(14v) < Bij + E)ygx =0 (10)

ap %u, | Puy E u, , %u _
% a3 +2( )(a:z—i_azgx)_'—Z(l—Q—v)(a;lZ—i_aza; +pg=0

And three-dimensional partial differential equilibrium equation, denoted as Equation (11):

az X a Z E X az X a U a X a Z —
< Eroas axa + axgz) + 1o au +agk+ o) ( o+ awi) + 3w ( G+ axgz> =0

Puy 2y u, E au} E 0°u Pu, 0°u azx o
(aygx + ayy + aygz) + (1+v) 9 2/ +a37 + 2(14v) (azzy + Bygz> <ax2y E}ygx) =0 (11)
%1y 0%, E 0%, ap %uy | %uy Py _
azgx+azay+azuz + w3 TR )(a;?z+az3x) 20+ )( vl j>+P8—0

We bring V2 = ax2 + W 4+ a = > into (11) and simplify the solid (stress field) Equation (12)
for carbon dioxide reservmr calculation considering the effect of effective stress:

E 2
i E T 2(1+U)V Ux Jr"‘ax =

E a
2(T+v)(I— 2u) T 2(1+u)v Uy "“"ay =0 (12)

E
2Tro)(1-20) 5+ 2(l+v) V2u, +ask +pg =0

ex, €y and ¢; are the strain components, and ey is the volume component:

3
ey =3
y (13)
_ Ouy
€& = 37

o takes 1, which is experience from the engineering site, then:

E 0 2 P _
2(T+v)(1-20) %t (1+u)v ux +5; =0
E

o)) 3 T 2(1+v) V2uy + @ =0 (14)

E d E 2 9 -
2(1+v)(1—2v) w i) ¥ Uzt g T8 =0
Subsequently, the connection between the multiphase seepage field and the solid

mechanical field can be established through Equations (5) and (14), considering both the
effective stress principle and diffusion principle.

2.2. Physical Models and Numerical Methods

This multi-field coupling model employs the finite element method (FEM, COMSOL)
to numerically solve the aforementioned equations. As illustrated in Figure 2, the geometric
model dimensions are 2400 m x 2400 m x 300 m. A 1/4 symmetrical structure was utilized
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for the study. Our research hypothesis involves incorporating roller supports around and at
the bottom of the reservoir to restrict normal movement. The upper surface of the reservoir
is free, and the outer boundary serves for outflow. No flux is present at the boundary, the
internal boundary of the reservoir, and the upper and lower boundaries. FEM calculations
were executed based on the mathematical and physical models, with grid divisions as
depicted in Figure 3. The total number of units is 242,895, and the grid around the well
is dense. The maximum element size is 31.8 m; the minimum element size is 6 m; the
maximum element growth rate is 1.13; the curvature factor is 0.5; the minimum element
quality is 0.1842; the average element quality is 0.6632; and the overall quality of the grid
is good.

Choose 1/4
1200..\ /

GO et L2 o 54
v a v S o000

L

Salt water reservoir / 300m ! - > |
L]
. : i .
2400 m
2400 m
**  Displacement boundary Inject well

Figure 2. Model establishment.

Figure 3. Mesh division.

According to engineering site data, the Young’s modulus of the entire reservoir is
1.3 GPa, the Poisson’s ratio is 0.23, and the density is 2560 kg/m?>. The salinity of brine is
23.5 g/L with a density of 0.984 g-cm 3. The main ionic components are Na* and C1~. The
relationship between porosity and permeability and reservoir pressure is as follows:

epsilon = 0.2984 x (1+ (2 x 10(—-2.5)) x p/1 [MPa])} 5)

2\ 3
kappa =1 x 10(-12) x ({f5gi ) (n12)

Epsilon is porosity, and kappa is permeability. And the empirical formula is given by
the project.
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2.3. Physical Properties and Seepage Characteristic Parameters

Figure 4 illustrates the experimental system designed for testing the relative perme-
ability of supercritical CO,-brine. The system comprises a CO, storage tank, booster pump,
pressure gauge, incubator, core holder, confining pressure pump, back pressure valve, back
pressure pump, gas-liquid separator, and gas—water metering device (Appendix A shows
the experimental equipment and procedure). The experiment simulates a temperature
of 70 °C (temperature of the reservoir), with inlet and outlet pressures set at 10 MPa and
8 MPa, respectively. Under these conditions, CO; attains a supercritical state. Figure 5
illustrates the result of relative permeability.

Incubator

5

Back pressure
valve |:|

C—
@ Core holder ° [Gasr
co, as meter
\
Pressure 2
gauge @ Back pressure pump
= e
Valve Confining pressure pump Gas-liquid separator

Figure 4. Diagram of the experimental system for supercritical CO,-brine relative permeability testing.
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Figure 5. The experimental result of relative permeability.
The relative permeability of brine and CO; is obtained:

Ko = (Con) )7.661

16)
w—0.1706 (
Krg = 01909 x (1 — L5050 )3.502

The density and viscosity change curves of supercritical carbon dioxide with pressure
at 70 °C are plotted based on the thermophysical parameters from the National Institute of
Standards and Technology (NIST) in Figures 6 and 7.
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Figure 7. Carbon dioxide viscosity changes with pressure.

A magnetic levitation balance with precision 1 ug was employed for measuring the
density of saltwater in a measuring cylinder. This electromagnetic levitation balance
utilizes a combination of an electromagnet positioned outside the measuring container
and a permanent magnet inside the measuring container to directly measure the absolute
density of the fluid within the isolated and closed measuring container.

In the investigation of the impact of injection pressure on the density of saltwater
under CO, storage conditions within the saltwater layer, the baseline temperature was
set to 70 °C. Each set of experiments was conducted over a time period of 120 h, and the
density under various pressures is illustrated in Figure 8.

Under identical conditions, the viscosity of the carbon dioxide aqueous solution, as
measured with a viscometer, is presented in Figure 9 [40].
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Figure 8. The density of carbon dioxide-brine solution changes with pressure.
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Figure 9. The viscosity of carbon dioxide-brine solution changes with pressure.

2.4. Introduction to Injection Methods

This study delves into the carbon sequestration capacity of the reservoir from the
perspectives of injection amount and injection mode.

Table 1 shows all injection modes. Five injection rates modes: 0.1, 0.2, 0.3, 0.4, and
0.5 kg/s. Seven injection modes: 10 years at intervals of 0.5-0.1 kg/s; 10 years at intervals
of 0.1-0.5 kg/s; 25 years at 0.5 kg /s, 25 years at 0.1 kg/s; 25 years at 0.4 kg/s and 25 years
at 0.2 kg/s; 0.1 kg/s in 25 years, 0.5 kg/s in 25 years; 0.2 kg /s in 25 years and 0.4 kg/s in
25 years, and Mode 3. We compared the changes in pressure over time: pressure around
the well, average formation pressure, and changes in CO, distribution over time.
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Table 1. Injection modes.

0-10 Years 10-20 Years  20-25 Years 25-30 Years 30-40 Years 40-50 Years

Mode 1 0.1 0.1 0.1 0.1 0.1 0.1
Mode 2 0.2 0.2 0.2 0.2 0.2 0.2
Mode 3 0.3 0.3 0.3 0.3 0.3 0.3
Mode 4 0.4 0.4 0.4 0.4 0.4 0.4
Mode 5 0.5 0.5 0.5 0.5 0.5 0.5
Mode 6 0.5 0.4 03 0.3 0.2 0.1
Mode 7 0.1 0.2 0.3 0.3 0.4 0.5
Mode 8 0.5 0.5 0.5 0.1 0.1 0.1
Mode 9 0.4 0.4 0.4 0.2 0.2 0.2
Mode 10 0.1 0.1 0.1 0.5 0.5 0.5
Mode 11 0.2 0.2 0.2 0.4 0.4 0.4

2.5. Block Introduction

The Shenhua Group is currently executing China’s inaugural full-chain carbon dioxide
capture and geological storage demonstration project, situated in the Ordos Basin in
the eastern part of northwest China. As depicted in Figure 10, it spans five provinces
(autonomous regions), including Shaanxi, Shanxi, and Inner Mongolia, covering a total area
of more than 27.6 x 10* km?. The Ordos Basin can be divided into six primary tectonic unit
structures based on the history of geological structural changes. These include the Yishaan
slope, the western margin thrust belt, the Shanxi burned skirt belt, the Tianhuan depression,
the Yimeng uplift in the north, and the Yimeng uplift in the south. The Ordos Basin stands
as one of the largest terrestrial sedimentary basins in China, characterized as a craton
sedimentary basin. It lacks major fault zones traversing the entire basin, exhibits geological
stability, even stress distribution, and boasts a thick sedimentary layer (with an average
thickness of about 6000 m). Given these geological characteristics, it can conservatively be

inferred that the Ordos formation possesses a significant geological storage capacity for
CO; [39].

400 800km

Figure 10. Location map of the CCS demonstration project in the Shenhua Ordos Basin.

In this project, carbon dioxide from coal tail gases is captured through liquid processing
and stored in deep brine aquifers. The primary target layer for CO; injection is the saline
aquifer beneath the mined coal seam. The formation receiving the carbon dioxide injection
is characterized by low porosity, low permeability, and high heterogeneity. The project is
currently operating successfully, with no reported CO; leaks or associated environmental
hazards, and only minor pressure build-up has been observed.
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3. Results and Discussion
3.1. Model Validation

To validate the accuracy of the multi-field coupling simulation, we conducted perme-
ability experiments and simulations on cores, comparing them based on the relationship
between permeability and reservoir pressure at the engineering site. Water injection ex-
periments were carried out using on-site provided cores, with a core length of 6 cm and a
diameter of 2.5 cm. The outlet pressure was set to 8 MPa, and the inlet pressure varied at
10 MPa, 12 MPa, 14 MPa, 16 MPa, 18 MPa, and 20 MPa.

Figure 11 illustrates the relationship between the average core flow velocity and pres-
sure for three experiment cases: one without considering solid mechanics, one considering
solid mechanics in simulation, and one with experiments. We observed that simulations
considering solid mechanics align closely with experimental results. However, simulations
neglecting solid mechanics introduce increasing errors as the pressure rises. Therefore, to
ensure simulation accuracy, accounting for the influence of rock mass solid mechanics is
essential. According to Equation (15), as the pressure increases, the permeability increases.

0.30
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025 —=e— Simulate without solid
' —4A— Simulate with solid
@
E 0.20
o
(0]
(0]
& 015
(0]
&0
s
2
& 0.10
0.05
0'008 10 12 14 16 18 20 22

Pressure (MPa)
Figure 11. Comparison between core penetration experiments and simulations.

3.2. Reservoir Pressure Comparison

In the simulations, the initial formation pressure is 8 MPa, and the temperature is 70 °C,
placing CO, in a supercritical state. Injection was conducted over 50 years at five rates
(0.1-0.5 kg/s) with intervals of 0.1 kg/s. Figure 12a,b illustrate the changes in pressure
around the well and in the formation at different injection rates. It is evident that both
the pressure around the well and the average pressure in the formation increase with CO,
injection. The higher the injection amount per unit time, the greater the pressure change.

Figure 12¢,d depict pressure cloud diagrams with injection rates of 0.1 kg/s and
0.5 kg/s, respectively. The pressure in the reservoir rises annually with injection, and the
pressure around the well is notably higher than in other locations. Due to the influence of
gravity, the pressure value in the lower layer of the reservoir is higher. Key findings for
different injection rates after 50 years include:

e 0.1kg/s: Average max formation pressure is about 8.6 MPa (7% higher), and max well-
bore pressure is about 9.1 MPa (14% higher, the average pressure value of the wellbore).

e 0.2 kg/s: Average max formation pressure is about 9.2 MPa (15% higher), and max
wellbore pressure is about 10.4 MPa (30% higher).

e 0.3 kg/s: Average max formation pressure is about 9.8 MPa (23% higher), and max
wellbore pressure is about 11.4 MPa (42% higher).
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0.4 kg/s: Average max formation pressure is about 10.6 MPa (32% higher), and max
wellbore pressure is about 12.6 MPa (57% higher).
0.5 kg/s: Average max formation pressure is about 11.0 MPa (38% higher), and max
wellbore pressure is about 13.5 MPa (68% higher).

Therefore, in CCS projects, considering the specific working conditions of the reservoir

is crucial to estimating the maximum injection rate. This consideration becomes particularly
important for controlling the injection rate and determining the appropriate injection time.
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@ Injection 0.2kg/s @ Injection 0.2kg/s
Br|—a Injection 0.3kg/s * A Injection 0.3kg/s
v Injection 0.4kg/s v 10.5} | ¥ Injection 0.4kg/s * v
—_ ¢ Injection 0.5kg/s * = ¢ Injection 0.5kg/s
< - o
a 12 4 s
=) Ppe v 2 10.0 ’ v
2 v N 2 2
E Ppe v 2 s
211 A 2995 v o
2 v A o
o A N B _
= A ° o P )
3 = v -
210 A . g 90 A °
o * ¢ e * AT o
A ®
° 8.5 = ° g
9 = e ° P
. S o -
0 10 20 30 40 50 8'00 10 20 30 40 50
Time (year) Time (year)
a

10 year 0 year 10 year
(Pa) =

50 year 30 year 50 year

d

Figure 12. Changes in pressure around the well and in the formation with different injection volumes.

(a) Pressure around the well; (b) Average pressure in the formation; (c) Pressure cloud chart at an
injection rate of 0.1 kg/s; (d) Pressure cloud chart at an injection rate of 0.5 kg/s.

Similarly, for the other six injection modes mentioned in Section 2.4, the average

injection rate is 0.3 kg/s: 10 years is an interval of 0.5-0.1 kg/s; 10 years is an interval of
0.1-0.5 kg/s; 25 years is 0.5 kg /s, 0.1 kg /s in 25 years; 0.4 kg/s in 25 years and 0.2 kg/s in
25 years; 0.1 kg/s in 25 years, 0.5 kg/s in 25 years; 0.2 kg/s in 25 years, 0.4 kg /s in 25 years.
Analysis of the results. Examining Figure 13, which shows the average pressure changes
around the well and in the formation with different injection modes, several observations
can be made:

Average Formation Pressure: It increases with injection time, peaking at 50 years for
various injection modes. The maximum values at 50 years are 9.74, 9.89, 9.73, 9.77,
9.89, and 9.86 MPa. These values are relatively close to the case of a constant injection
rate of 0.3 kg/s, which reaches 9.81 MPa after 50 years.

Wellbore Pressure: The pressure around the well does not exhibit a simple monotonic
change over time. The maximum value occurs at different times for various injection
modes, and there is a considerable gap between these maximum values. It is worth
noting that Mode 6, Mode 8, and Mode 9 each experienced a decrease in wellbore
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Well pressure (MPa)

pressure in different years, which was due to their reduced injection rates. The pressure
around the well is affected by both the injection time and injection rate. The pressure
around the well becomes higher as the injection time and injection rate increase.
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Figure 13. Changes in pressure around the well and in the formation under injection Modes 6-11.
(a) Pressure around the well; (b) Average pressure in the formation.

Considering these findings, the injection mode that decreases year by year seems to
be the most suitable for this model. This mode results in a maximum wellbore pressure
of only 10.93 MPa, making it more conducive to the safe development of the project. This
information is valuable for optimizing injection strategies and ensuring the project’s safety
and efficacy.

3.3. CO; Distribution Analysis

In this section, we discuss the CO, distribution. Figure 14 shows the distribution of
CO; injection volume and rate. Figure 14a shows the distribution of injection rate 0.1 kg/s
CO, over time. Figure 14b shows the distribution of injection rate 0.5 kg/s CO, over
time. Figure 14c shows the distribution cloud diagram of CO, with an injection volume
of 0.1 kg/s; Figure 14d is the distribution cloud diagram of CO, with an injection volume
of 0.5 kg/s. We can find that as the injection time increases, the diffusion range of CO,
becomes larger and larger, and the concentration of CO, on the diffusion path becomes
larger, and the maximum concentration is around the well. And, the greater the injection
rate, the wider the diffusion range and the higher the concentration. As the diffusion range
increases, the concentration of carbon dioxide becomes smaller and smaller. When the
volume fraction of carbon dioxide is less than 1%, we consider it to be no longer diffusing.
Due to the effect of gravity, the CO, concentration in the upper layer of the reservoir
is greater than that in the lower layer and is distributed in a circular cone. For the five
injection rates of 0.1-0.5 kg/s, the maximum diffusion ranges are 596 m, 608 m, 622 m,
621 m, and 640 m, respectively, in 50 years (The distance between the uppermost layer of
the reservoir and the well is marked by an orange double arrow). For the other six injection
modes, the CO, distribution is shown in Figure 15. As the injection time increases, the CO,
diffusion range increases year by year. The maximum concentration is also around the well
and occurs in the year of maximum injection volume. The diffusion ranges under these
six working conditions are 683 m, 576 m, 696 m, 690 m, 564 m, and 557 m.
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Figure 14. Distribution of CO, with different injection amounts. (a) Distribution of injection rate
0.1kg/s CO;, over time; (b) Injection rate 0.5 kg/s CO, distribution over time; (c) Injection rate
0.1kg/s CO, distribution cloud chart; and (d) Distribution cloud chart of CO, injection volume
0.5kg/s.

In summary, we should pay more attention to whether CO, leakage occurs around
the well, and the greater the injection rate, the higher the frequency of attention. For the
reservoir after 690 m, monitoring can be relatively reduced.

Although this study helps determine the geological carrying capacity of the injection
volume, provides insights into selecting a more appropriate injection mode, and has a
good guiding role for engineering, there are still some limitations: Failure to consider the
impact of changes in reservoir temperature. The boundary conditions and parameters
we used were all from the site and meet the engineering requirements to the greatest
extent. The calculation results have good convergence and are in line with the site’s
basic understanding of the pressure and CO, distribution around the well. It has good
engineering guidance analysis. Subsequent engineering development will also be closely
integrated with simulation.
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Figure 15. CO, distribution in different injection modes. (a) Injection Mode 6; (b) Injection Mode 7;
(c) Injection Mode 8; (d) Injection Mode 9; (e) Injection Mode 10; and (f) Injection Mode 11.
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4. Conclusions

To precisely anticipate the CO, migration pattern, assess the CO, storage capacity
and formation safety, and ensure the project’s seamless advancement, we amalgamated
experiments and simulations to formulate a multi-field coupling CO; storage prediction
model for a specific block in Shenhua. Our study focused on the carbon storage capacity of
the reservoir concerning injection volume and mode. The key findings are as follows:

The average pressure in the formation and around the well rises proportionally to
the total volume of injected CO,, with the pressure around the well within the reservoir
exhibiting the most significant increase. Additionally, higher injection rates correlate with
elevated reservoir pressures. For instance, injecting at a rate of 0.1 kg/s for 50 years
resulted in an approximately 7% increase in the average formation pressure compared to
pre-injection levels, accompanied by a 14% increase in the maximum pressure around the
well. In contrast, injecting at a rate of 0.5 kg /s for the same duration led to a roughly 38%
surge in the average maximum formation pressure and a 68% increase in the maximum
pressure around the well compared to pre-injection levels.

In the case of various injection modes, the average formation pressure rises with the
total injection volume. After 50 years of injection, the maximum average pressure values
in the formation become quite similar. Among the modes, the decreasing injection mode
with a 10-year interval results in the smallest maximum pressure value around the well,
measuring only 10.93 MPa.

The maximum concentration of CO, within the reservoir is concentrated around the
well, and the extent of CO, diffusion expands with the cumulative injection volume. Larger
injection rates per unit time led to higher maximum concentrations of CO; around the
well, increased concentrations along the diffusion path, and broader diffusion ranges. The
maximum diffusion range remains under 690 m. Enhanced CO, leakage monitoring is
recommended around the well and within a 690 m radius from the well.
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Abbreviations

The following abbreviations are used in this manuscript:
CCSs Carbon capture and storage

CO, Carbon dioxide

CT Computed tomography

SEM Scanning electron microscopy

CFD Computational fluid dynamics

VOF Volume of Fluid

FEM Finite element method

NIST National Institute of Standards and Technology
Nomenclature

The following variables are used in this manuscript:
Variable Meaning
€p porosity
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K permeability

0s; fluid density

S volume fraction

u; fluid velocity

Dgs, diffusion coefficient

o normal stress component
Tij shear stress component

fi body force component

g gravity

E elastic modulus

v Poisson’s ratio

u; displacement component
o effective stress component
p reservoir pressure

€ strain component

ey volume strain

o Biot coefficient

Kiw water relative permeability
Kyg gas relative permeability
Appendix A

Figure A1 shows the experimental equipment, and it mainly comprises a booster pump,
pressure gauges, incubator, core holder, confining pressure pump, back pressure pump,
intermediate containers, and gas—water metering device. The experimental procedure is
as below:

Measuring brine phase permeability: Put the rock sample that has been saturated
with simulated formation brine into the core holder, use a displacement pump to make the
formation brine pass through the rock sample at a certain pressure or flow rate, and wait
until the pressure difference between the inlet and outlet of the rock stabilizes. The brine
phase permeability is measured three times in a row, and the relative error is less than 3%.

Establishing bound brine: Use humidified nitrogen or compressed air to drive brine,
establish the irreducible brine saturation of the rock sample, and measure the effective
permeability of the gas phase in the bound brine state.

Inject gas and brine into the rock sample at a certain ratio, and when the flow is stable,
measure the inlet and outlet pressure difference, the gas and brine flow rates, and the
quality of the brine rock sample.

The proportion of brine gradually increases. After the experiment reaches the gas
phase relative permeability value less than 0.005, the brine phase permeability is measured
and the experiment ends.
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Figure Al. Experimental equipment. 1. Gas-water metering device; 2. Measuring cylinder; 3. Back
pressure valve; 4. Back pressure pump; 5. Pressure gauge; 6. Intermediate container; 7. Core holder;
8. Confining pressure pump; and 9. Incubator.
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Abstract: In order to improve the shale oil production rate and save fracturing costs, based on
dynamic production data, a production-oriented optimization method for fracture spacing of multi-
stage fractured horizontal wells is proposed in this study. First, M. Brown et al.’s trilinear seepage
flow models and their pressure and flow rate solutions are applied. Second, deconvolution theory is
introduced to normalize the production data. The data of variable pressure and variable flow rate are,
respectively, transformed into the pressure data under unit flow rate and the flow rate data under
unit production pressure drop; and the influence of data error is eliminated. Two kinds of typical
curve of the normalized data are analyzed using the pressure and flow rate solutions of M. Brown
et al.’s models. The two fitting methods constrain each other. Thus, reservoir and fracture parameters
are interpretated. A practical model has been established to more accurately describe the seepage
flow behavior in shale oil reservoirs. Third, using Duhamel’s principle and the rate solution, the
daily and cumulative production rate under any variable production pressure can be obtained. The
productivity can be more accurately predicted. Finally, the analysis method is applied to analyze the
actual dynamic production data. The fracture spacing of a shale oil producing well in an actual block
is optimized from the aspects of production life, cumulative production, economic benefits and other
influencing factors, and some significant conclusions are obtained. The research results show that
with the goal of maximum cumulative production, the optimal fracture spacing is 5.5 m for 5 years
and 11.4 m for 10 years. All in all, the fracture spacing optimization and design theory of multi-stage
fractured horizontal wells is enriched.

Keywords: shale oil; multi-stage fractured horizontal well; fracture spacing optimization; deconvolution;
dynamic production data analysis

1. Introduction

The global shale reservoir resources are rich and valuable to exploit [1]. However, shale
reservoirs have a low permeability, which makes crude oil flow and reservoir production
difficult [2]. Therefore, shale reservoirs are often exploited by the multi-stage fracturing of
horizontal wells [3]. Through hydraulic fracturing, the reservoir can be stimulated, several
main fractures are formed perpendicular to the horizontal wells and the fracture network
is formed around the main fractures. Therefore, the stimulated reservoir volume area is
formed. Reservoir permeability and porosity are increased, oil flows more easily and oil
recovery efficiency is improved. The higher the fracture numbers, the higher the production
rate [4], but the higher the production cost [5,6]. The fracture spacing not only needs to
meet the requirements of a high production rate, but also needs to make the production

Energies 2023, 16, 7922. https:/ /doi.org/10.3390/en16247922 182

https://www.mdpi.com/journal/energies



Energies 2023, 16, 7922

cost not too high. Therefore, it is very necessary to optimize the fracture spacing [7]. The
schematic diagram of fracture spacing optimization is shown in Figure 1. By optimizing
the fracture spacing, efficient reservoir development can be achieved.

Fracturing
fluid injection

l

| Perforation |
cluster

Figure 1. Schematic diagram of fracture spacing optimization.

In recent years, scholars have carried out a series of studies for optimizing fracture
spacing [8-15]. From 2017 to 2022, some scholars took fracture propagation in the process of
hydraulic fracturing as the research object. They presented the numerical model considering
elastic fluid mechanics and stress disturbances and different fracture flow distributions [8],
the computational model of embedded discrete fractures [9], the mathematical models of
the coupling effect of rock and fluid dynamics [10], the computational optimization model
based on intelligent variable-fidelity radial basis function [11], the mathematical model of
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fully coupled deformation and seepage flow in porous media [12], the 3D solid mechanics
model of hydraulic fracturing [13], the numerical model considering fracture geometry
and proppant flow dynamics [14] and the numerical model considering stress variation
with depth [15] in order to optimize the fracture spacing in shale reservoirs from different
research angles. However, these models involve fluid viscosity, reservoir permeability,
reservoir porosity, reservoir thickness, fracture width, fracture length, fracture number,
total stress, effective stress, rock storage coefficient and other parameters, which are difficult
to obtain in the actual production process.

With the development of field measurement technology, a large amount of on-site
pressure and production rate data can be obtained. The reservoir and fracture parameters
can be interpreted by inversion method using the dynamic production data. Then the
production rate can be calculated through the forward computation of the seepage model by
using the interpreted values of reservoir and fracture parameters. Then the fracture spacing
can be optimized. In 2006, through modeling the flow in each streamline independently in
real time, the Wang—Kovscek [16] streamline method for production data inversion had
been improved by Vegard R. Stenerud and Nut-Andreas Lie [17]. The results showed
that this method had better matching and faster convergence rate. In 2016, aiming at
the problem that nonlinearity and variable production rate should be considered when
interpreting production data of shale gas reservoirs, a classical trilinear flow model was
modified and a method for comprehensively analyzing variable production rate data was
proposed by Wu et al. [18]. In this method, considering the desorption and the nonlinearity
of compressibility, modified material balance equation and material balance time were used
to process the production data. It was proved through a field case that this method could
more accurately interpret the production data. In 2017, aiming at the problem of fracture
inversion, a fracture inversion method was proposed by using production data based on
Griffith failure criterion and ground stress correlation by Zhang et al. [19]. Theoretical
examples showed that this method was effective for the accurate inversion of fractures, but
as the fracture numbers are more, the inversion results become worse. In 2018, aiming at the
problem of the significant discontinuities in production data caused by frequent shut-ins,
a new production data analysis method for solving the discontinuous problem based on
pseudo time was proposed by Li et al. [20]. Duhamel’s principle, Laplace transform and
inversion and the Newman method were used to solve the model used for production data
analysis, and the analytical and numerical solutions were verified. The results showed
that this method had great potential in estimating formation parameters and predicting
the well production dynamics more effectively. In 2021, an improved spatial inversion
method of data was proposed by Liu et al. [21]. The reservoir state fields can be quickly
predicted by observing the production data. The method was also tested in the field. The
results showed that this method had high computational efficiency and accuracy. The
above studies [16-21] proposed some new inversion methods of dynamic production
data or improved the existing methods for interpretating reservoir parameters or fracture
parameters after fracturing, and a certain theoretical basis for the dynamic production data
inversion technology of multi-stage fractured horizontal wells was provided. However,
due to the dramatic changes in flow pressure and the production rate in unconventional oil
and gas production data with large errors [22], the normalized typical data points in the
above dynamic production data inversion method were scattered, smooth typical curves
were difficult to obtain and the data fitting effect was also poor, which resulted in great
uncertainty in the fitting results. In addition, the interpreted post-hydraulic fracturing
models of seepage flow during production in the aforementioned studies was rarely further
applied to the optimization of productivity enhancement in the oil field.

In 2020, Mohammed and Joseph combined data analysis with theoretical models
to establish a hybrid hydraulic fracturing model that combines data and theory. The
results showed that the hybrid model has higher accuracy. It is feasible to combine data
analysis with theoretical models [23]. Therefore, based on the dynamic production data
inversion, a new production-oriented optimization method for the fracture spacing of
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multi-stage fractured horizontal wells in shale oil is proposed. In particular, deconvolution
algorithm [24-31] is introduced to normalize the pressure data. Not only can the data of
variable pressure and variable flow rate be directly converted into pressure data under
unit flow, but also the regularization of deconvolution calculation can be performed,
which can eliminate the influence of data error and expand the investigation distance
of production data analysis. As a result, more information for production data analysis
can be provided, and thus the fitting effect is improved and the uncertainty of parameter
interpretation is reduced. The main research contents of this study include: first, a three-
linear seepage mathematical model for multi-stage fractured horizontal wells in shale
reservoir, the pressure solution under constant flow rate and the flow rate solution under
constant production pressure in Laplace space are introduced [32]. Second, the abundant
on-site production data are fully utilized for dynamic production data inversion, and the
deconvolution theory to normalize the production data is also introduced. By referring
to the specific algorithm of pressure deconvolution for data normalization, the data of
variable pressure and variable flow rate are converted into the pressure data under unit
flow rate, and the influence of data errors is also eliminated. According to the pressure
under unit flow rate, the typical curve analysis of the pressure data under unit flow rate is
carried out. The reservoir parameters and fracture parameters after hydraulic fracturing
are interpreted, so that the interpreted seepage model is more in line with the reality
and the seepage flow behavior can be represented more accurately. Then, the Duhamel’s
principle and the analytical solution of the interpretation model are used to calculate the
flow rate per unit production pressure drop. The daily and cumulative production rate
of horizontal wells under any production pressure system can be obtained, which can
predict the productivity more accurately and efficiently. According to the productivity
obtained, the fracture spacing can be optimized, and an optimization method for the
fracture spacing of multi-stage fractured horizontal wells is proposed. Finally, the proposed
fracture spacing optimization method was used to analyze the dynamic production data of
a shale oil production well in the actual block. The fracture spacing was optimized from
the aspects of production life, cumulative production, total economic benefit [33], balance
of payments, fracturing cost, oil price and other influential factors [34]. The optimization
method of fracture spacing proposed in this paper has its own advantages compared
with the optimization method of fracture spacing based on fracture propagation in solid
mechanics [35], and they can complement each other. By comprehensively utilizing these
two methods, better fracture spacing can be obtained. Significant reference for the design
of adjacent well fracture spacing in the same block in the future is provided. Some technical
guidance is provided for later production and secondary fracturing of reservoirs.

2. Evaluation of Optimal Fracture Spacing for Multi-Stage Fractured Horizontal Wells in
Shale Oil

2.1. Mathematical Model of Shale Oil Seepage Flow in Multi-Stage Fractured Horizontal Wells

The physical model of trilinear seepage flow in multi-stage fractured horizontal wells
in shale reservoirs [32] is shown in Figure 2. The wellbore direction of the horizontal well
is parallel to the Y-axis and the radius of the wellbore is r,. A number of equally spaced
primary fractures have been hydraulically fractured perpendicular to the wellbore (i.e.,
along the x direction). All fractures penetrate the reservoir completely. The top and bottom
of the reservoir are closed and the ambient temperature is constant. Fluid flow in the
reservoir is divided into reservoir flow area, inter-fracture flow area and main fracture flow
area. The fluid first flows from the reservoir flow area into the inter-fracture flow area,
and then flows from the inter-fracture flow area into the main fracture and finally flows
through the main fracture into the wellbore of the horizontal well. The horizontal well is in
production with constant flow rate and variable pressure. Due to geometric symmetry, the
inter-fracture interference is not considered.
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Figure 2. Physical model of trilinear seepage flow in shale oil reservoir developed by multi-stage
fractured horizontal wells.

In 2011, a mathematical model of trilinear seepage flow in multi-stage fractured
horizontal wells in shale reservoir based on the above physical model was established by
M. Brown et al. [32]. The dimensionless variables in M. Brown et al.’s model is defined
as follows:

_ kpwg. _ dE. _ 1F. _ 1o. _ x. _v. _ Xe.
Crp = 355 Ye = F5 1D = §5 110D = 12 XD = 35 YD = 55 XeD = 35
__ WE. _ 9. _ ke . _ k. _ ko . _ Ye.

WD = S A8 = qp7 ME = Grogus MU= requ 10 = Goeion’ YeD = 7
_ T 4. _ 27’[k1h L. . _ 27’[k1 L. .
tD — xT:zt/ pop = qrBu (le - Po)/ PID = W(plm - pI)r

_ 2mkh Y. _ C
PFD = qrBu (pml pF)/ Cp = 27e(ee) hxg?

where Cyo is the comprehensive compression coefficient of seepage flow in the reservoir
flow area, atm~!; Cy is the comprehensive compression coefficient of seepage flow in the
inter-fracture flow area, atm~!; Cy is the comprehensive compression coefficient of seepage
flow in the main fracture flow area, atm~!; ¢g is the porosity in the reservoir flow area;
¢1 is the porosity in the inter-fracture flow area; ¢y is the porosity in the main fracture
flow area; ko is the permeability in the reservoir flow area, D; ki is the permeability in
the inter-fracture flow area, D; kp is the permeability in the main fracture flow area, D;
np is the number of primary fractures; g is the horizontal well production, cm3/s; B is
the volume coefficient; py, is the bottom hole pressure, atm; wr is the fracture width, cm;
tp is dimensionless time; xp is the dimensionless distance in the x direction; x.p is the
dimensionless outer boundary distance; #7op is a defined dimensionless variable; yp is the
dimensionless distance in the y direction; wp is the dimensionless fracture width; yp is
the dimensionless distance at 1/2 of the fracture spacing; #7pp is a defined dimensionless
parameter; Cpp is a defined dimensionless quantity; and Cp, is the dimensionless wellbore
storage factor. The unit system of the formulas in the manuscript is the Darcy unit system.

The Laplace transformation solution of dimensionless pressure in reservoir flow area

is as follows [32]:
. COSh[\/%(xeD - xD)}

xp=1 COSh[\/%(xeD - 1)] '

where pqp is Laplace transformation of dimensionless pressure pop in the reservoir flow

~

%OD = P

1)

area; ;NﬂlD is the Laplace transformation of dimensionless pressure pp in the inter-fracture
flow area; s is the complex variable of Laplace transformation.
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The Laplace transform solution of dimensionless pressure in the inter-fracture flow

area is [32]:
5o ~ cosh[/ao(yep — yp)]
b Dy —wp /2 cosh[,/aco(yeD - %)] ’
where ;FD is Laplace transformation of dimensionless pressure pgp in main fracture flow

area; ao is a defined dimensionless parameter.
The Laplace transform solution of dimensionless pressure in main fracture flow area

is as follows [32]: h[\ﬁ 1 )
~ T ~cos ap(1 — xp
PED = Crpsyar  sinh(yap)

where ap is a defined dimensionless parameter.

()

)

According to Equation (3), the dimensionless bottom hole pressure ;WD at a constant
flow rate can be obtained as follows [32]:

~ ~ s
pWD - pFD(xD - 0) - CFDS\/@tanh(\/ﬁ),

(4)

where ;WD is the dimensionless bottom hole pressure.

The flow in the fracture of the trilinear seepage flow model is one-dimensional linear
flow. However, the fluid flow along the fracture surface into the wellbore of the horizontal
well will produce the radial flow. For solving the contradiction, a choking skin factor
for approximating the choking resistance generated by the radial flow was proposed by
Mukherjee and Economides [36]. The choking skin factor s. can be calculated as follows [36]:

_ kyh h T
= s " (z) 3 ©

According to Equations (4) and (5), the dimensionless bottom hole pressure with
constant flow rate considering the radial flow at the fracture surface can be obtained as

follows [32]:
T Sc

Pwb = Crps Jartanh(y/ar) | s’

In order to make the solution more practical, the wellbore storage effect should

(6)

be considered. ;WD in Equation (6) can be substituted into the following convolution
expression in the Laplacian domain [32]:

~ ;WD
=, 7
p wD,storage 1+ CDSZ%WD ( )

Applying Duhamel’s principle, Equation (7) can be used to obtain the dimensionless
flow rate solution per unit production pressure drop as follows [32]:

~ 1 1

gD = = 57 * PwD,const~ (8)
PwD

where ¢ is the Laplace transformation of dimensionless flow gp corresponding to fixed
bottom hole pressure; Pyp const is a fixed dimensionless bottom hole pressure.
The dimensionless variables in the above model solution are defined as follows:
27tk Ju

PwD,const = D —

qrBp’ qr

where gy, is the flow rate corresponding to the fixed bottom hole pressure, cm?/s; gp is the
dimensionless flow rate corresponding to the fixed bottom hole pressure.

187



Energies 2023, 16, 7922

Equations (7) and (8) are, respectively, the pressure under constant flow and the flow
rate under constant pressure in Laplace space, but not the solution in real space. Therefore,
the Stehfest algorithm [37,38] is introduced to invert the solution of Laplace space to obtain
the solution of the real space [39]. The calculation formula of Stehfest algorithm is as
follows [37,38]:

n2d, _/In2
F(T) = == Vz-f(i), ©)
where: Min(iN/2)
- N2 in(i, kN/2+l (Zk)!
Vi=(-1) k—[Zi“] (N/2 —k)k!(k —1)!(i — k)!(2k — i)! (10
=7

where the larger value of N is, the more accurate the calculation will be; generally, N is an
even integer between 6 and 18 [39].

2.2. Deconvolution

In the actual production process of shale oil, due to the low permeability of shale
reservoir and the change in flow dynamics in the production process, it is difficult to keep
the pressure and flow rate of dynamic production data constant in reality. However, the
mathematical model used in this article is of constant flow rate or constant pressure. The
deconvolution algorithm is introduced to normalize the bottom hole flow pressure data,
and then the data of variable pressure and variable flow rate are transformed into the
pressure data under unit flow rate; the influence of data errors can also be eliminated by
the data normalization process, so more information for production data analysis can be
provided and ultimately the fitting effect can be improved. The deconvolution principle for
well test interpretation or production dynamics data analysis is as follows:

According to Duhamel’ s principle, the pressure-flow rate convolution relation is
obtained as follows [25]:

-t
Pini — pwp () = / q(t — 1) apg(r) dr, (11)
Jo t
where p is the bottom hole pressure under variable flow rate, atm; ¢ is the production time,
s; pu is the flow response per unit flow rate, atm.
According to Duhamel’s principle, the flow rate function under variable bottom hole
pressure is obtained as follows [40]:

1) = [ Apan(t =) q'u(r)de 1)

where Apy,p is the production pressure drop, atm.

In the case of known variable flow rate g and bottom hole pressure p under the vari-
able flow g rate, Equation (11) can be used to obtain the transient pressure response py in
the oil reservoir for the whole production time [24]). It is worth noting that when using
deconvolution calculations in practical applications, it is necessary to exclude the influ-
ence of stimulation measures during production, and the changes in reservoir physical
property, fluid property and variable wellbore storage effect [25,26]. A series of studies
on the deconvolution algorithm for inversion of reservoir production data [25-31] were
carried out by many scholars. In 2004, based on Tikhonov regularization objective func-
tion [27], a new deconvolution algorithm was proposed by Schroeter et al. [28]. In 2006, the
practical application of a B-spline-based deconvolution algorithm in well test analysis was
investigated by Ilk et al. [30,31]. From 2017 to 2018, an improved B-spline deconvolution
algorithm was proposed by Liu et al. [25,26]. Adding a nonlinear regularization based on
curvature minimization, the stability of B-spline deconvolution algorithm was improved
by Liu et al. [25,26]. Some theoretical bases for the practical application of deconvolution
algorithm were provided by the above researchers. In this study, the improved B-spline
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deconvolution algorithm [25,26] is used, which has fast calculation speed and good stability.
Through this deconvolution algorithm, the variable flow rate and variable pressure data
can be transformed into the pressure data under unit flow rate and flow rate data under
unit production pressure drop, and the error can be eliminated [26].

The specific pressure deconvolution algorithm [25,26] is as follows:

(1) The pressure derivative per unit flow rate is reconstructed by employing the IIK
second-order B-spline function weight sum.

(2) The convolution integral property is adopted so that the sensitivity matrix for the
deconvolution calculation can be solved quickly and analytically.

(3) The idea of curvature minimization is introduced to increase nonlinear constraints,
which reduces errors and improves stability.

The specific algorithm can be referred to in the literature [25,26].
The deconvolution algorithm applied to production decline [26] is as follows:

(1) The flow rate derivative per unit production pressure drop is reconstructed by em-
ploying the IIK second-order B-spline function weight sum.

(2) The convolution integral property is adopted so that the sensitivity matrix for the
deconvolution calculation can be solved quickly and analytically by piecewise inte-
gration according to the pressure drop section.

The specific algorithm can be referred to in the literature [26].

2.3. Optimization Method of Fracture Spacing in Multi-Stage Fractured Horizontal Well of
Shale Oil

In the actual production process of the reservoir, the pressure and flow rate in the
formation are not constant. However, the flow model introduced in this study has a
constant flow, so a method based on deconvolution is proposed to optimize the fracture
spacing in shale oil. The operational and constant parameters are the reservoir parameters
and fracture parameters explained through production data, fracture pacing and number
of fractures, fracturing cost and oil price. The optimal fracture spacing can be determined
with production and economic benefits as the objective functions. The operational and
constant parameters can be obtained through seismic data, production data analysis and
experimental testing. Firstly, by using the actual production data in the field and Duhamel’s
principle, the deconvolution algorithm is used to normalize these actual production data
by Equations (11) and (12), so that the actual production data with variable flow rate and
variable pressure can be transformed into pressure data under unit flow rate and flow
rate data under unit production pressure drop, and the influence of data error can also
be eliminated. Then, based on the theoretical model of seepage flow and the pressure
solution under unit flow rate introduced above (i.e., Equation (7)), the pressure data
(pressure drop and pressure derivative) under unit flow rate calculated by deconvolution is
analyzed by double logarithmic typical curve fitting method, so as to interpret the reservoir
parameters and fracture parameters. At the same time, based on the theoretical model of
seepage flow and the flow rate data under unit production pressure drop introduced above
(i.e., Equation (8)), the flow rate data under unit production pressure drop calculated by
deconvolution are analyzed by Blasingame production decline typical curve fitting method,
so as to interpret the reservoir parameters and fracture parameters. The two fitting methods
can constrain each other and significantly reduce the uncertainty of model interpretation
results. In addition, during the fitting process of the feature curve, the B-spline cardinality
and smoothing factor are used as constraints, so that the normalization parameter tuning
and the theoretical model calculation parameter tuning are mutually constrained. At the
same time, seismic data and on-site data are used as conditional constraints, and through
the combined action of multiple constraints, the multiplicity of interpretation results is
greatly reduced, and the fitting degree of the double logarithmic typical curve is improved.
Therefore, the interpretation results have high accuracy. Finally, using Duhamel’s principle
(i.e., Equation (12)) and the model analytical solution (i.e., Equation (8)) to calculate the flow
rate under the unit production pressure drop, the daily production rate g and cumulative
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production rate of horizontal well under any production pressure control can be calculated.
Then productivity can be predicted more accurately and efficiently. Based on the model
productivity calculation, under different production life, fracturing cost and oil price, the
fracture spacing is optimized with the goal of maximum cumulative production and break-
even, respectively. The flow chart of fracture spacing optimization method for multi-stage
fractured horizontal wells in shale oil is shown in Figure 3.
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Figure 3. Flow chart of fracture spacing optimization method for multi-stage fractured horizontal
wells in shale oil.

There are some precautions to apply this calculation method to practical engineering.
The optimization method of fracture spacing is only applicable to single-phase flow and
cannot occur in oil gas two-phase flow. The pressure of the reservoir cannot be lower than
the bubble point pressure. The fracture spacing has little effect on the fracture propagation
ability. In addition, obtaining a certain amount of data is necessary.

3. Practical Application

In this section, the fracture spacing of a multi-stage fractured horizontal well in a shale
oil block at a China oilfield is optimized. Due to the low water production rate during
the long-time production period of this well, fluid flow is considered as single-phase oil
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flow. And due to the absence of other wells around the well, interference between wells is
not considered. Therefore, this well is suitable for the mathematical model in this article.
It is known that the initial pressure of reservoir is 12.5 MPa, the length of the horizontal
wellbore is 1740 m, the wellbore radius is 0.076 m, the number of main fractures is 60, the
width of the main fracture is 0.001 m, the effective reservoir thickness is 9.9 m, the porosity
of the shale matrix is 10%, the fluid viscosity of oil is 0.5 mPa-s, the average water cut of
the production well is 0.35, the shale oil density is 850 kg/m3, the fracture cost of hydraulic
fracturing is 160,000 Yuan per cluster and the current shale oil price is 3800 Yuan/ton. The
matrix permeability is less than 1.0 mD and the volume coefficient is 1.3. The information
can be used as constraint for dynamic production data analysis.

3.1. Dynamic Production Data Analysis

The multi-stage fractured horizontal well in Ordos Basin was tested for long-time
flowing pressure without well shut-in. The dynamic data of bottom hole pressure and daily
production rate are shown in Figure 4.
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Figure 4. Dynamic data of bottom hole pressure and daily production rate.

No other stimulation measures are implemented during the well’s production; fur-
thermore, the seepage flow process can be approximated as a single-phase oil flow. Thus,
the production data can meet the requirements for deconvolution application. The pro-
duction data were analyzed according to the aforementioned analysis method based on
deconvolution.

First of all, the dynamic data of variable pressure and variable production rate in Fig-
ure 4 can be normalized by the application of deconvolution algorithm and Equation (11).
As a result, the deconvolved bottom hole pressure data per unit flow rate are obtained,
which is shown in Figure 5. It can be seen from Figure 5 that the application of deconvolu-
tion eliminates the impact of data errors and a smooth pressure drop curve is obtained.

The typical curve analysis (pressure drop and pressure drop derivative) can be per-
formed using the unit-rate bottom hole pressure solution (i.e., Equation (7)) of the model
obtained. The analysis result is shown in Figure 6. It can be seen from the Figures 5 and 6
that the model obtained fits the normalized production data very well; the application
of deconvolution eliminates the impact of data error, and data divergence is effectively
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prevented. Smooth typical curves are obtained, and the bottom hole pressure drop behavior
in the reservoir development can be clearly reflected.
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Figure 5. Deconvolved bottom hole pressure data per unit flow rate.
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Then, normalizing the dynamic data of variable pressure and variable production
rate in Figure 4 by the application of deconvolution algorithm and Equation (12), the
deconvolved production rate data per unit production pressure drop is obtained, which is
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shown in Figure 7. It can be seen from Figure 7 that the impact of data errors is eliminated
and a smooth production decline curve is obtained.
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