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DenseTextPVT: Pyramid Vision Transformer with Deep
Multi-Scale Feature Refinement Network for Dense
Text Detection

My-Tham Dinh, Deok-Jai Choi and Guee-Sang Lee *

Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbong-ro,
Gwangju 500-757, Republic of Korea; thamdinh.dmt@gmail.com (M.-T.D.)
* Correspondence: gslee@jnu.ac.kr

Abstract: Detecting dense text in scene images is a challenging task due to the high variability,
complexity, and overlapping of text areas. To adequately distinguish text instances with high density
in scenes, we propose an efficient approach called DenseTextPVT. We first generated high-resolution
features at different levels to enable accurate dense text detection, which is essential for dense
prediction tasks. Additionally, to enhance the feature representation, we designed the Deep Multi-
scale Feature Refinement Network (DMFRN), which effectively detects texts of varying sizes, shapes,
and fonts, including small-scale texts. DenseTextPVT, then, is inspired by Pixel Aggregation (PA)
similarity vector algorithms to cluster text pixels into correct text kernels in the post-processing step.
In this way, our proposed method enhances the precision of text detection and effectively reduces
overlapping between text regions under dense adjacent text in natural images. The comprehensive
experiments indicate the effectiveness of our method on the TotalText, CTW1500, and ICDAR-2015
benchmark datasets in comparison to existing methods.

Keywords: scene text detection; pyramid vision transformer; dense adjacent text

1. Introduction

Scene text detection has made significant progress in computer vision and plays a cru-
cial role in various practical applications such as scene understanding, scene reading, and
autonomous driving. The application of deep learning has led to remarkable achievements
in detecting text in natural scenes [1–15].

Recent methods in scene text detection have extensively utilized deep neural networks
(DNNs) to extract features and achieve impressive performance on benchmark datasets [16–18].
Despite these advancements, scene text detection remains a challenging task, primarily due to
the irregular shapes, diverse scales, and high density of text instances in scenes (as illustrated
in Figure 1). Existing methods like SegLink++ [13] and MSR [19] have shown effectiveness
in handling text lines and accommodating variations in text line length. However, they have
still faced difficulties in dealing with overlapping dense text regions, especially in small-scale
texts. Following that, methods like PAN [1], TextSnake [20], and CT [12] aim to address overlap
phenomena by expanding text regions from text kernels, but they fall short in achieving
competitive results in scene text detection.

To overcome these challenges, our approach explores a multi-scale strategy with
three different kernel filters and attention mechanisms, namely, Deep Multi-scale Feature
Refinement Network (DMFRN). This method generates and fuses the multi-level features
that provide comprehensive representations for scene text instances.

Moreover, this study is inspired by the merits of Transformer [21–26], which has been
employed to eliminate the complex and understand spatial arrangement and contextual
information in manually designed procedures of object detection. Transformer models like
DETR [22] tackle the object detection task in a fully end-to-end manner, eliminating the need

Sensors 2023, 23, 5889. https://doi.org/10.3390/s23135889 https://www.mdpi.com/journal/sensors1
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for complex handcrafted components such as anchor generation, region proposal networks,
and non-maximum suppression. However, they are not capable of effectively extracting
low-level visual features at a local level effectively, and they also struggle to detect small
objects. Although ViT [24] employs a self-attention mechanism within Transformer to
model the interactions between patches, enabling the model to capture both local and
global contextual information, ViT has struggled to achieve pixel-level dense prediction.

Figure 1. Sample of inaccurate dense predictions in previous works.

In this work, we propose a solution to accurately predict dense text by employing the
PvTv2 versatile backbone [26], which is designed to achieve high output resolution for
dense prediction tasks in object detection while reducing resource consumption through a
progressive shrinking pyramid. Unlike the original backbone, we added a channel attention
module (CAM) and spatial attention module (SAM) between feature levels to effectively
capture and leverage informative features in both the channel-wise and spatial dimensions.
This work leads to enlarging the receptive fields and preserving high-resolution features,
which is crucial for the dense prediction task.

To further enhance the quality of the feature representation, we incorporated a post-
processing step based on PAN [1]. This step is designed to reduce the overlap between
text regions. By applying this post-processing technique, we can improve the accuracy and
clarity of the detected text regions, leading to more reliable results.

Our core contributions are as follows:

1. We propose an effective approach, called DenseTextPVT, which incorporates the
advantages of dense prediction backbone in object detection tasks, Pyramid Vision
Transformer (PvTv2) [26], with a channel attention module (CAM) [27] and spatial
attention module (SAM) [27] to obtain high-resolution features that make our model
well suited for dense text prediction in natural scene images.

2. We employed a Deep Multi-scale Feature Refinement Network (DMFRN) using three
kernel filters simultaneously (3× 3, 5× 5, 7× 7) with CBAM [27] at each feature.
This allows for adaptive feature refinement, enabling our model to enrich feature
representations with different scales, including small representations.

The paper consists of the following sections: Section 2 provides a summary of related
works in scene text detection and Transformer. Section 3 describes the architecture of the
proposed method in detail. Section 4 presents experimental results. Finally, Section 5
concludes the paper and discusses future work.

2. Related Work

2.1. Scene Text Detection

The regression-based method [8–11,15,28] directly adopts bounding boxes annotation
regarding text as an object. He et al. [15] proposed a method for detecting multi-oriented
text in scene images using a deep regression network. They utilized semantic segmentation
at the pixel level to classify the text and directly calculated offsets between a pixel point
and the corresponding box vertices to determine the text quadrangle. SegLink++ [13]
presented an approach to detect dense and arbitrarily shaped text in scene images using a
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network that leverages instance-aware component grouping (ICG). EAST [8] predicted the
multi-orientation of text lines or words within the full image directly by employing a fully
convolutional network (FCN). FCE [28] formulated text contours in the Fourier domain
and represented these arbitrarily shaped texts as compact signatures. Despite their ability
to handle text instances with arbitrary shapes, they may struggle with text lines that are
challenging to orient and tiny texts.

The segmentation-based method [1–3,6,7] mainly focuses on pixel-level feature rep-
resentations [1–3,7,29], or segment-level [11,20] or contour-level segmentation [9,30,31].
Typically, these methods usually first segment text kernels and then cluster them into
text instances via post-processing. For instance, PSENet [7] utilized a progressive scale
algorithm to create a variety of kernels for each text instance and expand, bit by bit, the
kernel to cover the entire text instance. Similarly, CT [12] predicted text instances by using
text kernels and centripetal shifts, which were used to aggregate pixels, and then directing
external text pixels towards the internal text kernels. PAN [1] implemented a clustering
approach to precisely aggregate text pixels to exact text kernels based on the similarity vec-
tors. DB++ [2] is an extension of the previous work on differentiable binarization (DB) [29],
which incorporated the binarization process into a segmentation network for more accurate
results. [32] employed an effective central text region mask and adjusted the expanding
ratio from the central text region to the full text instance. However, the performance of
these methods is heavily influenced by the quality of the segmentation accuracy.

2.2. Transformer

Transformer has become an increasingly popular topic of research in computer vision.
Ref. [21] was the accredited father of Transformer, which was based solely on attention
modules. Inspired by this architecture, refs. [21–26,33–35] utilized Transformer-based archi-
tecture to approach object detection as a problem of predicting sets. Transformer introduced
a simple end-to-end framework that eliminated the need for intricate, hand-crafted anchor
generation and post-processing steps. ViT [24] is a Transformer architecture specifically
designed for computer vision tasks, and has demonstrated outstanding performance on
image classification tasks by directly applying the Transformer to sequences of image
patches. DeiT [25] was an extension of ViT that used a new distillation approach to train
transformers more efficiently for image classification tasks. It required less data and com-
puting resources than the original ViT model. PvTv2 [26], which was expanded from
PVT [35], proposed a flexible backbone that could achieve high output resolution for vari-
ous vision tasks, particularly dense prediction tasks, while also reducing time consumption
by inheriting the advantages of both CNNs and Transformers.

In addition, ref. [33] utilized a Transformer-based architecture to address the problem
of detecting multi-oriented texts in images using rotated bounding boxes, but it does not
work well in curved text cases. Ref. [34] proposed an end-to-end trainable framework using
Transformers (DETR) to predict polygon points or Bezier control points for determining
the localization of text instances. Additionally, in [36], point coordinates were directly
utilized to generate position queries and progressively updated while also enhancing
the spatial awareness of non-local self-attention in the Transformer. Despite significant
advancements, methods utilizing the Transformer approach have still faced challenges in
accurately detecting small and dense adjacent texts.

Developing robust representations is crucial for a successful scene text detector, as it
necessitates the learning of discriminative features that can detect accurately text regions.
As previously noted, PvTv2 [26] has demonstrated great potential as a representation of
dense prediction tasks in various image applications, such as image classification, object
detection, and also semantic segmentation. In this study, we introduce DenseTextPVT,
which employs the PvTv2 architecture to generate improved features for dense text in scene
text detection.
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3. Methodology

3.1. Overall Architecture

The overall framework of our proposed method is illustrated in Figure 2. Given a scene
image I (HxWx3), we utilized a PvTv2 backbone to extract pyramid features according
to four stages, F1, F2, F3, and F4, whose strides are 4, 8, 16, and 32 pixels following the
input image I. To refine the feature information with high resolution, we used channel
attention module (CAM) and spatial attention module (SAM) approaches at F1, F2 and
F3, F4 features, respectively. Then, we employed a Deep Multi-scale Feature Refinement
Network (DMFRN) with three irregular kernel filters, 3× 3, 5× 5, and 7× 7, and applied
CBAM [27] at each output feature to produce multi-level features, Fn

1 , Fn
2 , Fn

3 , and Fn
4

(n = 3, 5, 7), with rich information on text contents of various sizes. Afterward, to prepare
for the prediction stage, we scaled up Fn

2 , Fn
3 , and Fn

4 features into Fn
1 size and concatenated

them into a single robust feature map F, as shown in Figure 3. Finally, our detection stage
was inspired by PAN post-processing [1], which is depicted in Figure 4. In this way, our
method can determine which text pixels belong to the correct text kernels, helping us
accurately discriminate and mitigate the overlap phenomena between dense text regions.

Figure 2. The overall framework of our DenseTextPVT approach.

Figure 3. The detail of Deep Multi-scale Feature Refinement Network (DMFRN). The detail of
each upsampling and downsampling feature pyramid enhancement (left), the overall DMFRN
architecture (right).
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Figure 4. Pixel aggregation detection head.

3.2. PvTv2 Backbone

Different from convolutional neural networks such as ResNet or VGG, PvTv2 [26]
serves as a versatile backbone specifically designed for various dense prediction tasks.
This approach adopts the Transformer architecture and incorporates a progressive shrink-
ing algorithm to generate feature maps of different scales using patch-embedding layers.
Following the structure of [26], the algorithm consists of four pyramid stages, each com-
prising an overlapping patch-embedding layer and Transformer encoder layers Li (where i
represents the stage of the process).

In each stage, the input image I is divided into patches of size H
j × W

j (where j denotes
the stride sizes: 4, 8, 16, and 32 pixels), as illustrated in Figure 5. These patches are then
flattened and passed through a linear projection, resulting in embedded patches of size
H
j × W

j × Ci. PvTv2 employs an Overlapping Patch-Embedding technique by enlarging
the patch window size by half of its area and utilizing convolution with zero paddings
to preserve resolution. In the Transformer encoder layer, to address the computational
cost associated with the attention mechanism, the authors introduced a linear shifted row
attention (linearSRA) as a replacement for the traditional multi-head attention. The SRA
utilizes average pooling to reduce the spatial dimensions (H, W) to a fixed size (P, P). The
linearSRA can be defined as follows, with P set to 7:

linearSRA = 2× H ×W × P× P× C (1)

In addition, PvTv2 introduces a 3× 3 depth-wise convolution layer with a padding
size of 1 between the first fully connected (FC) and GELU layer in the feed-forward network,
as shown in Figure 5. This is to eliminate the fixed-size position encoding.

The construction of feature maps with different resolutions usually loses some de-
tails of context and texture structures. To make robust our algorithm, we used channel
and spatial attention modules (CAM and SAM). In general, CAM [27] captures the most
meaningful and relevant information for the extracted features Fi (i = 1, 2, 3, 4) through the
following process: first, it performs average pooling and max pooling on the global context;
next, it applies them to shared MLP; and finally, it merges feature vectors element-wise to
generate a 1× 1× C feature map MCAM.

MCAM = θ(MLP(AvgPool(Fi)) + MLP(MaxPool(Fi))) (2)

where θ represents the Sigmoid function.

5
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Similarly, SAM [27] is also designed to extract global contextual information. It first
applies average pooling and max pooling operations along the channel axis, and then it
concatenates the resulting feature maps to generate a 1× H ×W feature map MSAM using
a conv7×7 convolutional filter.

MSAM = θ(conv7×7(AvgPool(Fi), MaxPool(Fi))) (3)

Figure 5. The details of PvTv2 Block. There are two main parts: overlapping patch embedding and
Transformer encoder.

3.3. Deep Multi-Scale Feature Refinement Network

Typically, in a pyramid structure, high-level features contain rich semantic information
but lack precise location details, while low-level features have more details but are filled
with background noise. Combining multi-level features can lead to better feature maps. To
do that, we exploit a DMFRN with different receptive fields to detect effectively small-scale
and dense adjacent texts in images. The features extracted from PvTv2, denoted as F1, F2,
F3, and F4, are fed as inputs to our DMFRN stage, which consists of three convolutional
kernel filters with different sizes (3× 3, 5× 5, and 7× 7). Each block in our DMFRN stage
is a U-shaped module comprising two phases: upsampling and downsampling feature
pyramids, which enhances the depth of the network. By simultaneously learning the
irregular kernel sizes, our model can not only enlarge receptive fields but also capture
multi-level information at varying levels of text in scene images. Fn

1 , Fn
2 , Fn

3 , and Fn
4

(n = 3, 5, 7) are generated by this process. Specifically, to enable the learning of relevant
information in both the channel and spatial dimensions of the extracted features at each
stage in the multi-scale process, we incorporate a convolutional block attention module
(CBAM) [27] at each output feature, which is different from MFEN [36]. This work can
boost the accuracy of the detection of dense and small text in images. Afterwards, we
fuse features {F3

1 , F3
2 , F3

3 , F3
4 }, {F5

1 , F5
2 , F5

3 , F5
4 }, and {F7

1 , F7
2 , F7

3 , F7
4 } via an element-wise sum
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operation, respectively, to generate F f
1 , F f

2 , F f
3 , and F f

4 . Finally, we use upsampling and a
concatenating algorithm to fuse these features into a final enrich feature F.

F = Concate(F f
1 , F f

2 , F f
3 , F f

4 ) (4)

Then, we use F to make predictions by applying PAN [1] post-processing as in Figure 4.
In this stage, we predict text instances by using similarity vectors to cluster correct text
pixels with adequate text kernels.

3.4. Loss Function

The training loss L is the weighted sum of loss segmentation Lseg and loss detection
Ldet. To keep the weights among these losses balanced, we set it to 0.25 experimentally.

L = Lseg + 0.25× Ldet (5)

In detail, we adopt dice loss [37] to classify text/non-text in segmentation, which can
be formulated as:

Lseg =
1
N

N

∑
k=1

(1− 2× (Pk ∩ Gk)

P2
k + G2

k
) (6)

where N denotes the number of text instance samples. Pi and Gi represent the prediction
and ground truth of the kth text instances. The object containing text is labeled as 1 and
non-text is labeled as 0.

Additionally, Ldet represents the loss function of pixel aggregation (PA) in [1] that is
applied to ensure that the text pixels are correctly associated with the appropriate text
regions. This means that the distance between a text pixel and the kernel Dpixl ,Kerl of the
same lth text instance should be minimized.

Dpixl ,Kerl =

{
≤ 6, if pix ∈ (Gl − Kerl)

> 6, otherwise
(7)

where pixl and Kerl define the text pixel and text kernel of lth text sample. Gl is the
ground truth of the lth text instance. The threshold of distance is set to 6 based on the
PAN experiment.

4. Experiments and Results

4.1. Dataset

TotalText [16] comprises 1555 images, divided into 1255 training images and 300 test-
ing images. It contains 11,459 text-bounding boxes, with 3936 and 971 instances of curved
text in the training and testing sets, respectively. The number of annotated clockwise points
varies for each text instance and is not fixed.

CTW1500 [17] contains 1000 training images and 500 testing images, each with long,
dense, and curved text instances. There are 10,751 text instances in total. The scenes in the
dataset are challenging and diverse, and environmental factors such as blur, low resolution,
and perspective distortion are present in the images.

ICDAR 2015 [18] is a collection of incidental scene texts used in Challenge 4 on
the website https://rrc.cvc.uab.es/ (accessed on 12 May 2023). The dataset contains
1000 natural images for the training process and 500 images for the testing set. It is a
popular dataset for scene text detection and includes word-level text instances with multi-
oriented texts, making it a useful resource for researchers in this field.

4.2. Implementations

During the pre-processing step, data augmentation techniques are applied for the
training phase such as random crop, random rotation, random horizontal flip, and random
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scale, which help our model learn different scales and densities of features, leading to a
better generalization ability during training and inference.

In the training phase, we only utilize the original training images of each dataset, as
well as TotalText, CTW1500, and ICDAR 2015. The short side of the images is set to 640,
640, and 736 in the three datasets above, respectively. We use the PvTv2 backbone, which is
a backbone for dense prediction, with strides of 4, 8, 16, and 32 pixels in input images. All
the networks are optimized by the AdamW, https://pytorch.org/docs/stable/generated/
torch.optim, accessed on 10 May 2023 [37] optimizer. Dice loss [38] and loss function in
post-processing of PAN [1] are applied for optimization. Our model is implemented in
Pytorch and trained scratch with a batch size of 4 on 1 GPU 2080Ti in 600 epochs for 150 k
iterations. We use the “poly” learning rate strategy where the initial learning rate and
power are set to 1× 10−4 and 0.9, respectively.

During the inference stage, we set the batch size to 1 on 1 GPU and maintain the aspect
ratio of the test images as in training phase. This ensures that the images are standardized
and allows for consistent processing.

In scene text detection, regions of blurred text that are labeled as “DO NOT CARE”
(###) in all datasets are commonly ignored. To address hard examples during training,
online hard example mining (OHEM) [39] is utilized, with a negative–positive ratio typically
set to 3. For ICDAR 2015, a minimal-area rectangle and polygon are fitted for each predicted
text instance. The shrink ratio of the kernels is set to 0.7 on TotalText and CTW1500, and 0.5
on ICDAR 2015 to better fit the predicted text instance to the actual text region.

4.3. Evaluation Metrics

To assess the effectiveness of our proposed approach, we utilize standard metrics
such as Precision (P), Recall (R), and F-measure (F). For this purpose, we consider a
rectangular box containing text with a closed bounding box as True Positive (TP), while a
rectangular box without any text inside is considered False Positive (FP). If there is text but
no rectangular box, it is labeled as True Negative (TN), since our method failed to detect it.

In detail, Precision (P) is calculated as the ratio of the correctly identified words by our
proposed method to the sum of correctly and incorrectly recognized words. It assesses the
accuracy of the detected text regions. Recall (R) measures the ratio of the correct recognition
to the total possible recognition at the word level. Briefly, it evaluates the ability of the
method to identify all the text instances in the scene. We calculate these metrics both before
and after restoration to showcase the effectiveness of our proposed approach in terms of
restoring missing information, called F-measure (F). The higher the F-measure, the better
the performance.

Moreover, we apply the Intersection over Union (IoU) ratio, which is used as a thresh-
old for determining whether a predicted outcome is a True Positive (TP) or a False Positive
(FP). In this paper, we set it to 0.5.

The equations of Precision, Recall, and F-measure are described below:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F =
2× (P× R)
(P + R)

(10)

4.4. Results

As presented in Tables 1–3, we compare our proposed DenseTextPVT approach with
existing methods using three benchmark datasets: TotalText [16], CTW1500 [17], and
ICDAR 2015 [18]. To evaluate the effectiveness of our method, we utilize the F-measure
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metric as in Equation (10). The results demonstrate the superior performance of our
DenseTextPVT method when compared to previous algorithms.

Table 1. Quantitative detection results on TotalText. “-”/ “�” means without/within training data.
“P”, “R”, and “F” represent the Precision, Recall, and F-measure, respectively.

Method Ext P R F

EAST [8] - 80.9 76.2 78.5
TextSnake [20] � 82.7 74.5 78.4
MSC [19] � 83.8 74.8 79.0
PSENet [7] - 84.0 78.0 80.9
PAN [1] - 88.0 79.4 83.5
TextRay [30] - 83.5 77.9 80.6
SegLink++ [13] � 82.1 80.9 81.5
LOMO [14] � 87.6 79.3 83.3
SPCNet [40] � 83.0 82.8 82.9
PCR [10] - 86.4 81.5 83.9
CRAFT [27] � 87.6 79.9 83.6
Ours_DenseTextPVT - 89.4 80.1 84.7

Table 2. Quantitative detection results on CTW1500. “-”/ “�” means without/within training data.
“P”, “R”, and “F” represent the Precision, Recall, and F-measure, respectively.

Method Ext P R F

EAST [8] - 78.7 49.1 60.4
PSENet [7] - 80.6 75.6 78.0
PAN [1] - 84.6 77.7 81.0
SegLink++ [13] � 82.8 79.8 81.3
LOMO [14] � 85.7 76.5 80.8
CT [12] - 85.5 79.2 82.2
MSC [19] � 85.0 78.3 81.5
PCE [10] - 85.3 79.8 82.4
TextRay [30] - 82.8 80.4 81.6
DB [29] � 86.9 80.2 83.4
PAN [1] � 86.4 81.2 83.7
CRAFT [27] � 86.0 81.1 83.5
Xiufeng et al. [32] � 84.9 80.3 82.5
Ours_DenseTextPVT - 88.3 79.8 83.9

Table 3. Quantitative detection results on ICDAR 2015. “-”/ “�” means without/within training
data. “P”, “R”, and “F” represent the Precision, Recall, and F-measure, respectively.

Method Ext P R F

EAST [8] - 83.6 73.5 78.2
PSENet [7] - 81.5 79.7 80.6
DPTNet-Tiny [41] � 90.3 77.4 83.3
LOMO [14] � 83.7 80.3 82.0
TextSnake [20] � 84.9 80.4 82.6
Xiufeng et al. [32] - 85.8 79.7 82.6
MFEN [38] - 84.5 79.7 82.0
SegLink++ [13] � 83.7 80.3 82.0
MSC [19] � 86.6 78.4 82.3
PAN [1] - 82.9 77.8 80.3
PAN [1] � 84.0 81.9 82.9
Ours_DenseTextPVT - 87.8 79.4 83.4

Our proposed method’s effectiveness is demonstrated on the curved TotalText dataset
(as shown in Table 1). Although the Recall (R) is lower compared to SegLink++ [13] and
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SPCNet [40], our DenseTextPVT achieves significantly higher Precision (P) and F-measure
(F) scores, 89.4% and 84.7%, respectively, without relying on any external dataset. The
visualization in Figure 6 clearly illustrates that our DenseTextPVT is capable of accurately
detecting dense curved texts.

Figure 6. The visualization samples on TotalText [16]. It is shown that our DenseTextPVT is capable
of accurately detecting dense curved texts.

Similarly, our approach demonstrates strong performance on the long curved CTW1500
benchmark, achieving Precision (P) and F-measure (F) scores of 88.3% and 83.9%, respec-
tively (as depicted in Table 2). While some algorithms, such as TextRay [30], DB [29],
PAN [1], CRAFT [27], and Xiufeng et al. [32], have slightly higher Recall (R) scores, our ap-
proach outperforms the existing algorithms in terms of overall performance. Additionally,
Figure 7 provides visual evidence that our proposed method accurately locates not only
long curved texts but also dense adjacent text instances.

When examining the results on the ICDAR 2015 dataset (as presented in Table 3), it
is observed that our DenseTextPVT does not achieve the highest Precision score, such as
DPTNet-Tiny [41,42] with a score of 90.3%. There is also a slight variation in the Recall score
compared to algorithms like LOMO [14], MFEN [36], TextSnake [20], Xiufeng et al. [32],
SegLink++ [13], and PAN [1]. However, our proposed algorithm demonstrates an impres-
sive overall performance with an F-measure of 83.4% when trained from scratch. The
visualization in Figure 8 demonstrates the effectiveness of our method in detecting dense
adjacent scene texts with multiple orientations.
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Figure 7. Several visualization results on long curved text lines on CTW1500 [17]. It demonstrates the
accurate localization of long curved texts with dense adjacent information by our proposed method.

Figure 8. Samples demonstrate that our DenseTextPVT algorithm is capable of effectively detecting
dense multi-oriented text in scene images on ICDAR 2015 [18].

5. Conclusions

In this study, we introduced a new method, namely, DenseTextPVT, for detecting dense
adjacent scene text. Our method manipulates the PvTv2 backbone with the combination
of channel and spatial attention module for dense prediction, and exploits a Deep Multi-
scale Feature Refinement Network to efficiently learn multi-level feature information.
Afterwards, we inherit a post-processing technique in PAN to reduce overlap phenomena
among text regions. Our results outperform state-of-the-art methods on several popular
benchmark datasets, achieving superior F-measure scores of 84.7% on TotalText, 83.9% on
CTW1500, and 83.4% on ICDAR 2015.

In the future, we plan to explore the possibility of an end-to-end framework for
dense adjacent text detection. Moreover, we aim to investigate the potential of using the
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progressive scale expansion algorithm for segmentation mask in detection tasks, especially
in benchmarks with a high density of object instances.
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Abstract: This study proposes a method for detecting and tracking traversable regions in off-road
conditions for unmanned ground vehicles (UGVs). Off-road conditions, such as rough terrain or
fields, present significant challenges for UGV navigation, and detecting and tracking traversable
regions is essential to ensure safe and efficient operation. Using a 3D laser scanner and range-image-
based approach, a method is proposed for detecting traversable regions under off-road conditions;
this is followed by a Bayesian fusion algorithm for tracking the traversable regions in consecutive
frames. Our range-image-based traversable-region-detection approach enables efficient processing
of point cloud data from a 3D laser scanner, allowing the identification of traversable areas that are
safe for the unmanned ground vehicle to drive on. The effectiveness of the proposed method was
demonstrated using real-world data collected during UGV operations on rough terrain, highlighting
its potential as a solution for improving UGV navigation capabilities in challenging environments.

Keywords: 3D; laser scanner; LIDAR; traversability; traversable region; detection; tracking;
autonomous driving; unmanned ground vehicle (UGV); off-road; range image; Bayesian fusion

1. Introduction

Unmanned ground vehicles (UGVs) are mission-critical assets designed to operate
in hazardous or harsh environments, where human intervention may be impractical, too
dangerous, or infeasible, such as complex and hostile environments, characterized by
rugged terrain, extreme weather conditions, or enemy threats. They are essential for
various military operations, including reconnaissance, surveillance, target acquisition,
and weapon delivery.

The detection of clear road boundaries and relatively flat surfaces is critical for commer-
cial autonomous vehicles, which primarily operate on roads. Road curbs, lanes, and other
structures are typically used to determine traversable areas [1–7]. Elevation mapping
is also used to detect flat surfaces and estimate the location of vehicles relative to the
ground [8–17]. Obstacle detection is another critical aspect, and previous methods have
focused on identifying obstacles, to determine free spaces that are suitable for vehicle
traversal [18–22]. These methods identify the areas where no physical obstacles directly
impede the progress of the ego vehicle as traversable [23–30].

As noted in [31], the operating environment of a UGV is significantly different from
that of a commercial autonomous vehicle. In such an environment, road boundaries are not
always clear, and surfaces are often uneven under off-road conditions, making determining
traversable regions challenging. In addition, the terrain is not paved, and road elevations
can vary significantly. In contrast to the case in commercial autonomous driving, detecting
structures such as road boundaries or relatively flat terrain to identify traversable regions
is not always possible for a UGV. For a UGV, traversable areas refer to locations where the
vehicle can move from any starting point to a target destination, without encountering
obstacles or topographical restrictions. Therefore, a different approach is required to detect
traversable regions for UGVs compared to that for commercial autonomous vehicles.
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Traditionally, image sensors have been the primary type of sensor used to detect
traversable regions. However, with the recent development of deep learning models,
recognizing various scenes based on texture and other features has become possible [32–37].
These methods are a type of image analysis in which pixels corresponding to a particular
object are classified into classes of objects and the target object is divided into meaningful
units. In this approach, ground areas are classified based on their texture, such as mud,
grass, or bushes. Traversable regions are then recognized as specific classes, based on
the results of the classification process. However, these methods only identify areas that
contrast with the surrounding environment in color images and ground texture. They do
not provide information about whether driving in these areas is possible. In addition, this
is limited in natural environments, where the illumination intensity changes rapidly due to
the limitations of image sensors.

To address the limitations of current approaches to determining traversable regions,
an alternative methodology employing 3D laser scanner technology has been proposed [38–40].
The use of 3D laser scanners enables highly precise and accurate measurements of the
surrounding environment, including the ground surface, without being affected by texture
or color. By analyzing the resulting point cloud data, specific criteria such as surface
roughness, slope, or height differences can be utilized to identify traversable regions.
This approach provides a reliable and efficient means of determining traversable regions,
particularly in off-road conditions where road boundaries are not clearly defined and
surfaces are uneven.

Therefore, this paper proposes a real-time traversable region-detection method using a
3D laser scanner. For real-time processing, a method for converting the 3D point cloud data
into 2D images is used [12,13]. Previous studies have demonstrated the effectiveness of
these approaches for accurately detecting traversable regions for paved roads in real-time
processing. However, for unpaved and rough terrain, a different approach is necessary [41].
In this context, [41] processed point cloud data into a 2D range image and generated, not
only vertical angle images, but also horizontal angle images, to detect the traversable
regions for ego vehicles. Consequently, this method exhibited a commendable performance
even in open-field environments. However, in environments where the vehicle’s pose
undergoes significant changes due to the terrain, relying on a single frame for detecting
traversable regions is inadequate. To overcome this challenge, a traversable region track-
ing method is proposed, which accumulates the detection results from previous frames.
The confidence value of each pixel in the range image is leveraged to model its traversability.
These confidences are then accumulated over consecutive frames using the Bayesian fusion
method [42,43]. The contributions of this work can be summarized as follows:

• An effective traversable-region-detection method using a 3D laser scanner is proposed.
To deal with a large amount of 3D point-cloud data, we used range images with
each pixel indicating the range data of a specific space. Then, each pixel and the
adjacent pixels are searched based on the vertical and horizontal inclination angles of
the ground;

• A traversable-region-tracking algorithm was developed to integrate the previous
detection results, to prevent detrimental effects from an unexpected pose of the vehicle.
By modeling the range data of each pixel as a probability value, the traversability of
the previous and current pixels in the traversable region detection results can be fused
using the Bayesian fusion method.

The rest of this paper is structured as follows: In Section 2, we discuss related works in
the field. Section 3 outlines the theoretical formulation of the proposed method. Moving on
to Section 4, we describe the dataset configuration and the data logging system, and present
the experimental results. Finally, in Section 5, we provide a summary of the paper.
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2. Related Work

Three-dimensional laser scanner technology has been the subject of considerable atten-
tion in relation to autonomous vehicles. These scanners are widely used for environmental
recognition purposes, such as object detection, map building, and route finding. In partic-
ular, the problems associated with map building can be divided into structure detection
problems, such as surrounding buildings, and traversable region detection problems. When
a 3D laser scanner is used for traversable region detection, many methods are available,
depending on how the raw data are processed.

Thrun et al. [44] introduced a grid-based approach that divides grid cells into the
ground and non-ground cells based on the height differences between points inside the
cell. Moosmann et al. [8] used raw data to create a graph obtained from triangulation
and utilized the concept of local convexity between two neighboring nodes in the graph.
If the center point of the two connected nodes lies below the surface of the points, these
points are clustered on the same ground. Himmelsbach et al. [9] represented all raw point-
cloud data in a 2D x-y plane and divided this into discrete pieces of a circle. They then
created each piece as a bin and identified inliers as traversable regions. Douillard et al. [45]
proposed GP-INSAC, a Gaussian-process-based iterative method that classifies all raw
points as the ground, with small variations in height relative to the mean of the Gaussian
distribution. Chen et al. [11] presented individual raw scan data instances as a circular
polar grid divided into segments. To distinguish the ground points, Chen applied a 1D
Gaussian-process-based regression method for each segment, similarly to with a 1D bin.
Babahajiani et al. [15] and Lai and Fox [46] used prior ground knowledge to dictate a set
of all points and applied common plane fitting techniques, such as the random sample
consensus (RANSAC) algorithm. Zermas et al. [16] proposed a multi-model plane fitting
algorithm that divides raw data into a number of segments along the horizontal direction.
The performances of these methods in terms of detecting traversable regions using all points
have been verified for various specializations over many years. In addition, for improved
time efficiency, computational optimization has been performed, according to the driving
environment. However, searching for all the points remains inefficient with regard to
time. In addition, certain model-based regression methods cannot sufficiently represent the
actual surface, because the ground point does not form a perfect plane, and significant noise
is generated over long distances because of raw data from 3D laser scanner measurements.

Alternatively, the raw 3D point data of the laser scanner can be projected onto a cylin-
der whose axis is the scanner’s axis of rotation, as opposed to using the raw data in isolation.
This projection creates a range image in which the pixel value corresponds to the distance
measurement. Basic research work on this aspect was conducted by Hoover et al. [47],
and subsequent key approaches to local surface fitting and clustering are still being applied
today. Based on this method, Bogoslavsky and Stachniss [12,13] proposed an efficient
ground-search method based on range images. The ground slope is calculated using the
distance between each pixel in the range image. If there is a similar slope between each
pixel, the pixel is detected as the ground. However, this method assumes that the ground is
a well-paved flat area in a city and it employs a means of fixing changes in the slope values.
In addition, because detection is performed every moment, the information detected in the
previous frame is not used.

In addition, image sensors are commonly used for detecting traversable regions.
Recent advancements in deep learning models have made it possible to recognize different
scenes based on texture and other features [32–37]. These methods involve image analysis
techniques that classify pixels into object classes and the target objects into meaningful
units. S. Palazzo et al. [35] introduced a deep-learning-based approach that estimates and
predicts the traversability score of different routes captured by an onboard RGB camera. S.
Hosseinpoor et al. [36] presented a method based on semantic segmentation, where they
adapted Deeplabv3+ using only an RGB camera. They fine-tuned a pretrained network
originally trained on Cityscapes with their own dataset. T. Leung et al. [37] proposed a
hybrid framework for analyzing traversability that utilizes both RGB cameras and LiDAR.
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An RGB camera is used to gather semantic information, identifying different types of terrain,
such as concrete or grass. Meanwhile, the LiDAR sensor provides geometric information,
by creating an elevation map of the surrounding terrain.

3. Proposed Method

The term “traversable regions” refers to ground areas that allow a specific vehicle to
move toward a target point without any obstacles. However, unmanned ground vehicles
(UGVs) face more complex challenges. These include navigating through plants and grassy
areas that can obstruct their movement, as well as the absence of clear structures that
help distinguish between drivable and non-drivable terrain. Additionally, the presence of
varying slopes makes it difficult to visually identify traversable areas. Hence, it is crucial to
develop a new method for identifying traversable areas that are specifically tailored for
UGVs, distinctly from the approaches used for commercial vehicles. Therefore, this paper
presents a new method that uses a 3D laser scanner as the primary sensor for detecting and
tracking traversable regions, as shown in Figure 1.

Figure 1. Illustration of the proposed method. In the first step, vertical and horizontal angle images
are generated from the range image. Subsequently, the traversable region is detected, and the pixel-
wise confidence is calculated based on this. Using this information, the traversable region is tracked
using the proposed Bayesian fusion method.

3.1. Range-Image-Based Traversable Region Detection
3.1.1. Range Image

A 3D laser scanner is a device that measures the spatial information of objects or
environments using laser beams, while rotating 360 degrees. It emits laser beams onto the
target surfaces and measures the time it takes for the laser to bounce back to the scanner,
allowing for the calculation of distances. Moreover, by maintaining a consistent vertical
angle, the scanner ensures that the measurements are taken from the same reference plane
throughout the entire rotation, as shown in Figure 2. These planes are called layers, i.e., 16,
32, 64, or 128 for Ouster scanners. As the scanner rotates, it emits laser beams and records
the reflections from the surrounding objects at various angles. Therefore, the point cloud
set Zt measured at time t is defined as follows:

Zt =
{

z1
t , z2

t , z3
t . . . zP

t

}
(1)

zk
t =

(
rk

t , θk
t , �k

t

)
(2)

18



Sensors 2023, 23, 5898

where the total number of measurement points is denoted by P; and rk
t , θk

t , and �k
t denote the

kth distance, bearing, and layer at time t of the measurements, respectively. As such, a laser
scanner provides individual layers per laser beam as raw data, along with timestamps and
bearings. This facilitates the direct conversion of the raw point cloud into range images.
Therefore, the range image I is a function.

I : UI → [0, rmax] (3)

UI = [[0; m− 1]× [0; n− 1]] (4)

are the pixels of the range image, where m is the number of rows in the range image defined
by the number of layers in the vertical direction and n is the number of columns given by
the range readings per 360-degree revolution of the scanner, i.e., n = 360/Δθh respectively.
Δθh is the horizontal resolution of the laser scanner. Therefore, a specific pixel I(i, j) has a
distance value ri,j corresponding to the space. Therefore, the amount of data to be processed
is reduced by the resolution of the range image in the form of millions of point clouds.

Figure 2. Schematic of a mechanical pulsed-time-of-flight (ToF) laser scanner.

3.1.2. Traversable Region Detection

Using the range image, we detect traversable regions by considering the vertical and
horizontal inclinations of the ground. Vertical inclination refers to the slope of a path that
enables the ego vehicle to move in its direction of travel, whereas horizontal inclination
refers to the slope of a path that allows lateral movement based on the vehicle’s direction
of travel. This enables the identification of flat ground suitable for vehicle movement.
To achieve this, we first calculate the angles between consecutive rows in the range image,
as follows:

αr,c = atan2(Δxα, Δzα), (5)

where
Δxα = |Ir−1,c sin θr−1 − Ir,c sin θr|,
Δzα = |Ir−1,c cos θr−1 − Ir,c cos θr|. (6)

Additionally, to determine the horizontal inclination of the ground, the angles between
consecutive columns are calculated using the range image, as follows:

βr,c = atan2
(
Δxβ, Δyβ

)
, (7)

where
Δxβ = |Ir,c cos Δθc − Ir,c−1|,

Δyβ = |Ir,c sin Δθc|. (8)

Consequently, we can treat all stacks of vertical and horizontal inclination angles as
range images, so we define them as angle images Mα and Mβ:

M : UM →
[
− pi

2
,+

pi
2

]
, (9)
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where
UMα = [[0; m− 2]× [0; n− 1]], (10)

UMβ
= [[0; m− 1]× [0; n− 2]]. (11)

Hence, Figure 3 illustrates the alpha angle and beta angle used for calculating the
vertical and horizontal angle images. However, a mechanically rotating-type 3D laser
scanner generates a significant number of outliers in the range measurements, which can
affect the calculation of the angle α. The alpha angle represents the slope of the ground at
the sensor’s location in the direction of the vehicle’s movement. As a result, it is heavily
influenced by the vehicle’s attitude. This is discussed in more detail in the work by
Leonard et al. [48]. To address this issue, Bogoslavsky et al. applied a Savitzky–Golay filter
to every column of the vertical angle range images, to fit a local polynomial of a given
window size to the data [13]. This filter is a smoothing method that constructs a polynomial
regression model for a short signal interval within a window, as applied to a continuous
signal [49]. However, column-wise smoothing using a Savitzky–Golay filter is only suitable
for flat paved roads and not unpaved roads with varying heights and curves. Therefore,
as shown in Figure 4, the angle image exhibits salt-and-pepper noise owing to the condition
of unspecified road surfaces.

Figure 3. This figure illustrates the α and β angles used to compute the vertical and horizontal
angle images. The red lines represent adjacent laser beams. The x-axis denotes the vehicle’s forward
direction, and the z-axis represents the vertical direction perpendicular to the ground.

In order to remove outliers from the range measurements obtained by the 3D laser,
a median filter was employed, as depicted in Figure 4. To account for a specific pixel and its
surrounding pixels in the vertical and horizontal directions, a 5 × 5 kernel was used. The
actual and range images are shown in the first row, while the second row shows the vertical
and horizontal angle images calculated based on the angle difference between consecutive
range images in the same frame, respectively. The images obtained after noise removal
using a median filter are shown in the third row. Vertical angle images highlight vertical
obstacles, such as vehicles, whereas horizontal angle images provide details regarding the
road surface conditions, for distinguishing horizontal obstacles, such as curbs.

Finally, we propose the detection of traversable regions using the noise-removed
vertical and horizontal angle images. To achieve this, the breadth-first search (BFS) method
is employed from the lowest row of the range image, which is considered the ground
closest to the ego vehicle, and the adjacent pixels near the four neighborhood pixels are
searched. However, when calculating the angle difference between a specific pixel (i, j) and
its adjacent pixel (i± 1, j± 1), both the vertical angle image Mα within a difference Δα and
horizontal angle image Mβ within a difference Δβ are considered, to determine if they fall
within a specific angle range. Using this process, the pixels with small differences between
the vertical and horizontal angles are identified as the traversable regions. Therefore,
the result of traversable region detection is MT .
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Figure 4. Outlier removal results in the range measurements of a 3D laser using a median filter. the
second row shows the vertical and horizontal angle images, respectively. The images obtained after
noise removal using a median filter are shown in the third row.

3.2. Probabilistic Traversable Region Tracking

In this section, we propose a probabilistic traversable region tracking method that
utilizes Bayesian fusion. First, the confidence of the traversable region detected in the
current frame is calculated in pixel units of the range image. Then, the confidence of each
pixel is converted into class information, indicating whether the traverse is possible or not;
this is also calculated in the pixel units of the range image. Finally, by applying Bayesian
fusion to the accumulated class information, the traversable area can be tracked for each
individual pixel within the range image, as shown in Figure 5.

Figure 5. This figure presents an illustration of the pixel−wise tracking of the traversable region
based on Bayesian fusion. It showcases the updated result of C1:t

i,j for the pixel (i, j) over time. C1:t
i,j

denotes the sequence of the traversable region tracking results in a range image up to time t.

3.2.1. Confidence of Traversability

In the previous section, we detected the traversable region based on an angle image.
However, to convert a traversable region in a single frame into a binary class of pixel
units, the region must be converted into a probabilistic expression based on a specific
value. The probability that a pixel belongs to a traversable region depends on the slope
of the ground. The higher the slope of the ground, the lower the probability that it is a
traversable region, and vice versa. Therefore, the confidence that a traverse is possible is
calculated based on the difference in the height of the ground between a specific pixel and
its surrounding pixels. To calculate the confidence of the traversable region for each pixel
in the range image in the current frame, the following steps are performed:

p(M(i, j)) = 1− 1
1 + e−k(x−ϕ)

, (12)

where x denotes the average angular difference between a particular pixel i, j in the range
image and an adjacent pixel i± 1, j± 1. In addition, ϕ and k are hyperparameters, where
ϕ is the midpoint for slope determination and k is the logistic growth rate of the range of
drivable inclination. Therefore, when the difference between a specific pixel (i, j) and its
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adjacent pixels (i± 1, j± 1) in the vertical and horizontal angle image Mα, Mβ is within
a certain angle range Δα and Δβ, the ground confidence is modeled as increasing. In this
study, all the pixels in the range images were defined as binary classes, i.e., either traversable
or non-traversable regions.

ci,j = {T, NT}. (13)

Therefore, the class confidence of the traversable region predicted by the current range
image can be expressed as

p(c = k|M(i, j)) = pk, where ∑
k∈{T,NT}

pk = 1, (14)

where c denotes the class of traversability, k is one of the possible classes that c can take,
and M(i, j) is a specific pixel in the range image. Finally, the class is predicted using

class(M(i, j)) = arg max pk
k∈{T,NT}

. (15)

3.2.2. Bayesian Fusion in a Sequence

In this section, we propose a Bayesian fusion method for tracking the class information
in a sequence of range images. C1:t

i,j is a sequence of the traversable region classes detected
in a range image at the time up to t. We determine the class of the traversability sequence
of the specific pixel of C1:t

i,j using maximum a posteriori (MAP) estimation. That is, the class
of the sequence of the traversability is predicted using

class
(

C1:t
i,j

)
= arg max

k∈{T,N}
p
(

ci,j = k
∣∣∣C1:t

i,j

)
. (16)

Assuming that t denotes the current time, C1:t
i,j is divided into the current measurement

Ct
i,j and all previous measurements C1:t−1

i,j based on the Markov property,

p
(

c = k|C1:t
)
= p

(
c = k|Ct, C1:t−1

)
. (17)

This indicates that the measurements up to time t− 1 have no impact on the measure-
ments at time t. This is because the traversability has been accumulated for each individual
pixel within the range image using the data up to time t− 1. However, it is important to
consider that when the traversable probability from time t− 1 is propagated to time t, it
influences the pixel-level probability values. Therefore, the probability of a traversable
region in a specific pixel of a range image can be rewritten as follows using the Bayes rule:

p
(

c = k|C1:t
)
=

p
(
Ct|c = k, C1:t−1)p

(
c = k|C1:t−1)

p(Ct|C1:t−1)
. (18)

This is based on the Bayes rule, p(x|y) = p(y|x) · p(x)/P(y). As the previous mea-
surements C1:t−1 do not affect the current measurement Ct and the current measurement
is conditioned on c = k, we can obtain p

(
Ct|c = k, C1:t−1) as p

(
Ct|c = k

)
. For the sake

of simplicity, the subscripts i and j, which indicate the coordinates of a specific pixel, are
omitted in the following formulas. Subsequently, by applying the Bayes rule,

p
(

c = k|C1:t
)
=

p
(
c = k|Ct)p

(
Ct)

p(c = k)
p
(
c = k|C1:t−1)

p(Ct|C1:t−1)
. (19)

22



Sensors 2023, 23, 5898

At this time, the sum of the class confidence values of a sequence for the binary class
is 1; thus, dividing Equation (19) by the sum of the class confidence values of a sequence is
mathematically equivalent to

p
(

c = k|C1:t
)
=

p
(
c = k|C1:t)

∑
k′∈{T,N}

p(c = k′|C1:t)
. (20)

Substituting Equation (19) into Equation (20) yields

p
(

c = k|C1:t
)
=

p(c=k|Ct)p(Ct)
p(c=k)

p(c=k|C1:t−1)
p(Ct |C1:t−1)

∑
k′∈{T,N}

p(c=k′ |Ct)p(Ct)
p(c=k′)

p(c=k′ |C1:t−1)
p(Ct |C1:t−1)

. (21)

By canceling each term, we obtain the following equation:

p
(

c = k|C1:t
)
=

p
(
c = k|C1:t−1)p

(
c = k|Ct)p(c = k′)

∑
k′∈{T,N}

{p(c = k′|C1:t−1)p(c = k′|Ct)p(c = k)} . (22)

From Equation (22), we can update the sequence confidence p
(
c = k|C1:t) at time

t from the previous sequence confidence p
(
c = k|C1:t−1) at time t − 1, and the current

confidence of traversability p
(
c = k|Ct) directly. Thus, we do not need to retain all previous

frames. Additionally, p(c = k) is the initial confidence of traversability. The overall process
of traversable region detection and tracking is summarized in Algorithm 1.

Algorithm 1 Traversable Region Detection and Tracking

Input: 3D point cloud Zt and previous Traverable Region C1:t−1

Output:Traversable Region Probability C1:t

for every frame t do
01: It ←Make Range Image(Zt)
02: Mα ←Make Vertical Angle Image (It)
03: Mβ ←Make Horizontal Angle Image(It)

04: MT ← Traversable Region Detection
(

Mα, Mβ

)
05: Ct ← Traversable Confidence (It, MT)
06: C1:t ← Tracking Traversable Region

(
Ct, C1:t−1)

end for

4. Experiment

4.1. Experiment Environment

We collected a unique dataset by conducting experiments on actual terrain. The total
length of the track was approximately 1.2 km, and it contained numerous irregular slopes,
thus providing a suitable environment for verifying the reliability of the proposed algorithm
under various slopes and road surface conditions for a UGV. The maximum difference
in the pitch angle was approximately 20 degrees, and the maximum difference in the roll
angle was approximately 10 degrees, as shown in Figure 6. Based on these pitch and roll
angle differences, we prepared three scenarios (routes A, B, and C) to evaluate the proposed
method, using 1500 frames.
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Figure 6. Experimental environment with actual rough terrain. (Left) Satellite image of the experi-
mental route. (Top) Pitch angle variation with the frame number. (Bottom) Roll angle variation with
the frame number.

Our experimental driving platform was equipped with a 3D laser scanner, Velodyne
HDL-64E sensor, and high-precision positioning system, NovAtel OEMV-2 receiver, with
a Honeywell HMR3500, as shown in Figure 7. Additionally, experimental data for per-
formance evaluation were collected by measuring a 3D point cloud using LiDAR, while
simultaneously recording the vehicle’s motion information with GPS. This enabled us to
collect precise route information for the driving platform in the rough terrain considered in
this study.

Figure 7. Our experimental driving platform was equipped with a high-end 3D laser scanner,
a high-precision positioning system, and a front camera.

4.2. Data Annotation

Defining traversable areas in places without road structures, such as road boundaries
or lanes, can be challenging. In addition, even under similar road conditions, certain areas
may prove difficult for vehicles to traverse. Consequently, there may be variations in the
definition of traversable areas in such locations. However, annotating the ground truth
based on multiple criteria may not result in good data, and evaluating the algorithm’s
performance may prove difficult. To ensure consistency in annotation, this study established
a unified definition of a traversable area, as an area where other vehicles have traveled or
where there are visible traces of such movement that differentiate it from other areas. Data
were collected by multiple annotators using this definition, although different preferences
might have resulted in different traversable regions.

To collect data in point units, over 100,000 points per frame must be collected. However,
the manual labeling of each point is time-consuming. Hence, in this study, a pixel-wise an-
notation was conducted on the range image derived from the raw 3D point cloud, as shown
in Figure 8. To label the traversable regions, the annotators needed to observe the varia-
tions in the range image across consecutive frames, while referring to the corresponding
actual driving images. The identified traversable areas were then represented by polygons,
as shown in the figure. To ensure accuracy, data were collected by multiple personnel in
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the same frame, and the intersection of the areas designated by each annotator was used as
the final ground-truth dataset of the traversable areas.

Figure 8. This figure shows the data annotation method. The data annotation is performed at the
pixel level, marking traversable and non-traversable regions. The gray area represents the traversable
region, while the black area indicates the non-traversable region.

4.3. Evaluation Metrics

Labeling every point to evaluate an algorithm is time-consuming, and visualizing
the traversable region in the form of a point cloud is challenging. Therefore, in this study,
the ground-truth data were collected in a pixel-wise manner in the range image, as shown in
Figure 8. At this point, the balance between traversable and non-traversable regions within
a single-range image may vary depending on the scenario. However, these imbalanced
issues in a single-range image are common in real-world situations. Figure 9 illustrates that
the traversable region (represented by the gray color) occupies a smaller proportion in the
range image compared to the non-traversable region (depicted in black color). To address
this issue and properly evaluate both the proposed and previous methods, two evaluation
metrics were used: the Jaccard index (also known as intersection-over-union (IOU)) and
the Dice coefficient (also known as F1 score).

Figure 9. The range image, converted from a raw 3D point cloud, was annotated pixel-wise to
distinguish between traversable and non-traversable regions. The images on the left show the actual
environment of the rough terrain, while those on the right represent the annotation results for the
traversable regions.

The Jaccard index is one of the most commonly used metrics in semantic segmentation
and is an effective indicator. It can be calculated as the area of overlap between the predicted
union of the predicted segmentation and the ground truth:

IoU =
TP

TP + FP + FN
. (23)
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The Dice coefficient is a statistical measure employed to assess the similarity between
two samples. It is commonly used as a metric to quantify the overlap between the predicted
and ground-truth segmentations.

Dice =
2TP

2TP + FP + FN
. (24)

4.4. Quantitative Result

To evaluate the performance of the proposed method in detecting and tracking
traversable regions, we conducted a comparative evaluation with three real-time com-
putational methods using the entire dataset. The first method detects drivable areas using
an elevation-based grid map [38], in which the slopes between cells are computed using
height information from a 3D laser scanner. This approach is similar to the proposed
method, as it projects 3D spatial information onto a 2D grid map. The second method
detects drivable areas using a range image [13], which is more effective for dealing with
sparse 3D laser scanner measurements, and contains 2.5D information. This method detects
traversable regions by calculating the slope of the pixels in the column direction of the
range image. The third method, based on the author’s previous research, is a specialized
approach designed solely for detecting traversable regions in challenging and uneven
terrains [41].

The comparison results are presented in Figure 10 in the form of a range image. In the
range image, each color represents an object perpendicular to the ground in different
successive shades of red, with objects parallel to the ground shown in successive shades of
blue. Therefore, blue indicates flat ground over which the UGV can be driven. Conversely,
red indicates an impassable obstacle or non-flat ground over which the UGV cannot be
driven, while gray indicates areas judged to be drivable or ground truths collected manually.
The results presented in Table 1 correspond to the experiments conducted on datasets where
data collection and ground truth annotation were performed. We established three types
of driving paths along an approximately 1.2 km route and organized the experimental
findings accordingly. Table 1 provides the conclusions in terms of the IOU and Dice values
between the ground truth and predictions for each of the three path types.

Table 1. Quantitative Results of Traversable Region Detection.

Route A Route B Route C
Method

Iou Dice Iou Dice Iou Dice

Elevation Map [38] 0.5090 0.6726 0.2004 0.3291 0.1610 0.2765
Range Image [13] 0.5617 0.7165 0.2069 0.3399 0.2997 0.4563

Detection only [41] 0.6509 0.7870 0.2773 0.4259 0.4816 0.6461
Proposed method 0.6701 0.7971 0.2871 0.4269 0.4826 0.6471

The top row of the figure presents the ground truth, which was obtained by manually
collecting pixel-wise images for each frame along different routes. The leftmost image
corresponds to route A, and it can be observed that this route offers a relatively wide
traversable area with minimal changes in the pitch angle. Most areas in this route are
deemed traversable, with only a few bushes on the left and right sides serving as obstacles.
The middle image corresponds to route B, which has a gentle and flat slope on the left side
of the route. In the ground truth, the flat land on the left side is labeled as non-traversable,
because the annotator has prior information. In fields or rough terrain, areas that are likely
to be traversable often exhibit traces of previous vehicle paths, which the annotator can
identify. Based on this information, only the central areas were labeled as traversable
regions, while the flat land on the left side was labeled as non-traversable. However, some
methods detected the flat left side of the route as a traversable region, as shown by the
results. Finally, the rightmost image represents a narrow mountain road bordered by trees
on both sides. Despite significant variations in pitch and roll angles, there is no vegetation
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present for this terrain, except for the trees. This terrain can be traversed by pedestrians,
but the areas where vehicles can travel are extremely limited.

Figure 10. This figure showcases the experimental results. The first row exhibits the actual images,
while the second row presents the labeled ground truth (GT). The experimental results are displayed
as range images obtained from the raw 3D point cloud. The third row illustrates the approach
proposed in this paper. Furthermore, from left to right in each column, they respectively represent
the route segments A, B, and C. A comparative analysis with the other results demonstrated that the
method proposed in this paper delivered improved outcomes.

The results figure shows the outcomes for each method in the third row to the sixth
row. The third row presents the results of our proposed method. The fourth row displays
the results of a previous study that focused on detection without tracking. The fifth row
represents the results of an elevation-map-based approach, while the sixth row shows the
results of a range-image-based approach. As we can see from the experimental results,
our proposed method performed the best. It achieved the most accurate detection of
traversable regions for route A, which had minimal changes in vehicle pitch and roll angles
and a wide traversable area. Specifically, our proposed method achieved an IoU score
of 0.6701 and a Dice coefficient of 0.7971, indicating its superior performance. However,
the other methods also exhibited a similar performance. In particular, for route A, which
had a relatively flat terrain and minimal variations in slope, all methods demonstrated
a comparable performance. The range-image-based approach, in particular, achieved a
relatively high performance, with an IoU score of 0.5617 and a Dice coefficient of 0.7165.
This was because the range-image-based approach assumed that the traversable areas
were relatively flat. However, this method tended to mistakenly identify gentle slopes as
traversable areas, which could pose a risk to the vehicle.

For route B, all methods had a lower performance overall. The other methods achieved
IoU scores in the range of 0.2 and Dice coefficients around 0.3 to 0.4. However, our
proposed method in this study showed an improved performance by approximately 20–30%
compared to the other algorithms, with IoU and Dice coefficients of 0.2871 and 0.4269,
respectively. The lower performance of all methods can be attributed to the discrepancy
between the region labeled as traversable in the ground truth and the region identified
as traversable based on the algorithms. This inconsistency arose because the flat land on
the left side was labeled as non-traversable in the ground truth by the annotators, due
to the given information that other vehicles had already passed through. Despite this
discrepancy, our proposed method demonstrated a better performance than the other
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algorithms, because it tracked the drivable areas based on the vehicle’s trajectory. This
allowed it to achieve a superior performance, as shown in the figures.

For route C, which had a narrow traversable area and many trees, the proposed
method demonstrated a superior performance, with an IoU score of 0.4826 and Dice
coefficient of 0.6471, compared to the other methods. Unlike routes A and B, the terrain
characteristics of this route allowed us to visually identify areas that were passable. As a
result, the traversable detection results of the algorithm were closer to the ground truth
compared to the other routes. However, there was a potential misinterpretation of the grass
existing among the trees as traversable. This was because the grass appears relatively flat
compared to the trees, leading the algorithm to incorrectly detect some areas as passable.
This problem was particularly pronounced with the range image-based method, which
detected the entire range image as traversable.

4.5. Computation Time

In a subsequent experiment, we compared the real-time performance of each algo-
rithm, considering both detection performance and operational speed as crucial factors.
The run times of the algorithms were evaluated for all frames on a desktop computer
with an i8-8700 3.20 GHz CPU, using only a single core of the CPU. The processing time
was measured from the input of the raw point cloud data until the determination of the
traversable region. As shown in Figure 11, the proposed method, the elevation-map-based
method, the detection-only method, and the range-image-based method exhibited average
calculation times of 2.106 ms, 19.445 ms, 2.316 ms, and 2.028 ms, respectively, for all frames.
Both the range-image-based method and the detection-only method used range images,
resulting in a calculation time of approximately 2 ms, since not all laser points were directly
utilized. However, the proposed method required slightly more computation time com-
pared to the range-image-based method, due to conducting searches in both the column
and row directions within the range images. On the other hand, the elevation-map-based
method searched through all points and required more time compared to the proposed
method. Overall, these results indicated that the proposed method operated faster than the
sensor’s measurement period, ensuring a real-time performance capability.

Figure 11. This figure represents the comparison results for computation time. The method proposed
in this paper is indicated by the red line. It required a similar computation time as the other methods
that utilized range images, but demonstrated a significantly higher efficiency compared to the
methods using elevation maps.

5. Conclusions

In conclusion, this paper presents a novel approach for detecting and tracking traversable
regions using 3D laser scanners in off-road conditions. To enhance the computational effi-
ciency, the raw data from the laser scanner, which consists of millions of data points, are
processed as range images that contain distance information. Unlike previous methods
that primarily focused on flat roads, our proposed approach leverages both vertical and
horizontal information from range images, to robustly detect traversable regions on uneven
off-road terrain. Additionally, we introduced a sequence tracking method that incorporates
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Bayesian fusion to integrate detection results from previous frames, ensuring resilience
against abrupt changes in vehicle posture. To assess the performance of our method, we col-
lected data while driving on an actual mountain road and obtained multiple annotations of
the traversable regions in the range images. The experimental results provided compelling
evidence of the effectiveness of our proposed method in real-world driving scenarios.
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Abstract: Salient object-detection models attempt to mimic the human visual system’s ability to
select relevant objects in images. To this end, the development of deep neural networks on high-end
computers has recently achieved high performance. However, developing deep neural network
models with the same performance for resource-limited vision sensors or mobile devices remains a
challenge. In this work, we propose CoSOV1net, a novel lightweight salient object-detection neural
network model, inspired by the cone- and spatial-opponent processes of the primary visual cortex
(V1), which inextricably link color and shape in human color perception. Our proposed model is
trained from scratch, without using backbones from image classification or other tasks. Experiments
on the most widely used and challenging datasets for salient object detection show that CoSOV1Net
achieves competitive performance (i.e., Fβ = 0.931 on the ECSSD dataset) with state-of-the-art salient
object-detection models while having a low number of parameters (1.14 M), low FLOPS (1.4 G)
and high FPS (211.2) on GPU (Nvidia GeForce RTX 3090 Ti) compared to the state of the art in
lightweight or nonlightweight salient object-detection tasks. Thus, CoSOV1net has turned out to
be a lightweight salient object-detection model that can be adapted to mobile environments and
resource-constrained devices.

Keywords: lightweight salient object detection; salient object detection; object detection; lightweight
neural network; color opponent; cone-opponent; double-opponent; vision sensing

1. Introduction

The human visual system (HVS) has the ability to select and process relevant infor-
mation from among the large amount that is received. This relevant information in an
image is called salient objects [1]. Salient object-detection models in computer vision try
to mimic this phenomenon by detecting and segmenting salient objects in images. This is
an important task, given its many applications in computer vision, such as object tracking,
recognition and detection [2], advertisement optimization [3], image/video compression [4],
image correction [5], analysis of iconographic illustrations [6], image retrieval [7], aesthetic
evaluation [8], image quality evaluation [9], image retargeting [10], image editing [11] and
image collages [12], to name a few. Thus, it has been the subject of intensive research in
recent years and is still being investigated [13]. Salient object-detection models generally
fall into two categories, namely conventional and deep learning-based models, which differ
by their feature extraction process. The former use hand-crafted features, while the latter
use features learned from a neural network. Thanks to powerful representation learning
methods, deep learning-based salient object-detection models have recently shown superior
performance over conventional models [13,14]. The high performance of these models is un-
deniable; however, generally, they are also heavy if we consider their number of parameters
and the amount of memory occupied, in addition to their high computational cost and slow
detection speed. This makes these models less practical for resource-limited vision sensors
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or mobile devices that have many constraints on their memory and computational capa-
bilities, as well as for real-time applications [15,16]. Hence, there is a need for lightweight
salient object-detection models whose performance is comparable to state-of-the-art models,
with the advantages of being deployed on resource-limited vision sensors or mobile devices
and having a detection speed that allows them to be used in real-time applications. Exist-
ing lightweight salient object-detection models have used different methodologies, such
as backbones from nonlightweight classification models [17,18], the imitation of primate
hierarchical visual perception [19], human attention mechanisms [16,19], etc.

In this work, we propose an original approach for a new lightweight neural network
model, namely CoSOV1Net, for salient object detection, that can therefore be adapted to
mobile environments and resource-limited or -constrained devices, with the additional
properties of being able to be trained from scratch without having to use backbones
developed from image-classification tasks and having few parameters, but with comparable
performance with state-of-the-art models.

Given that detecting salient objects is a capability of the human visual system and
that a normal human visual system performs this quickly and correctly, we used images
or scenes encoding mechanism research advances in neuroscience, especially for the early
stage of the human visual system [20–22]. Our strategy in this model is therefore inspired
by two neuroscience discoveries in human color perception, namely:

1. The color-opponent encoding in the early stage of the HVS (human visual sys-
tem) [23–26];

2. The fact that color and pattern are linked inextricably in human color perception [20,27].

Inspired by these neuroscience discoveries, we propose a cone- and spatial-opponent
primary visual cortex (CoSOV1) module that extracts features at the spatial level and
between color channels at the same time to integrate color in the patterns. This process
is applied first on opposing color pair channels two by two and then to grouped feature
maps through our deep neural network. Thus, based on the CoSOV1 module, we build
a novel lightweight encoder–decoder deep neural network for salient object detection:
CoSOV1Net, which has only 1.14 M parameters but comparable performance with state-
of-the-art salient object-detection models. CoSOV1Net predicts salient maps at a speed
of 4.4 FPS on an Intel CPU, i7-11700F and 211.2 FPS on a Nvidia GeForce RTX 3090 Ti
GPU for 384× 384 images and it has a low FLOPS = 1.4 G. Therefore, CoSOV1net is a
lightweight salient object-detection model that can be adapted for mobile environments
and limited-resource devices.

Our contribution is threefold:

• We propose a novel approach to extract features from opposing color pairs in a neural
network to exploit the strength of the color-opponent principle from human color
perception. This approach permits the acceleration of neural network learning;

• We propose a novel strategy to integrate color in patterns in a neural network by
extracting features locally and between color channels at the same time in successively
grouped feature maps, which results in a reduction in the number of parameters and
the depth of the neural network, while keeping good performance;

• We propose—for the first time, to our knowledge—a novel lightweight salient object-
detection neural network architecture based on the proposed approach for learning
opposing color pairs along with the strategy of integrating color in patterns. This model
has few parameters, but its performance is comparable to state-of-the-art methods.

The rest of this work is organized as follows: Section 2 presents some lightweight
models related to this approach; Section 3 presents our proposed lightweight salient object-
detection model; Section 4 describes the datasets used, evaluation metrics, our experimental
results and the comparison of our model with state-of-the-art models; Section 5 discusses
our results; Section 6 concludes this work.

33



Sensors 2023, 23, 6450

2. Related Work

Many salient object-detection models have been proposed and most of the influential
advances in image-based salient object detection have been reviewed by Gupta et al. [13].
Herein, we present some conventional models and lightweight neural network models
related to this approach.

2.1. Lightweight Salient Object Detection

In recent years, lightweight salient object-detection models have been proposed with
different strategies and architectures. Qin et al. [28] designed U2net, a lightweight salient
object-detection model with a two-level nested Unet [29] neural network able to capture
more contextual information from different scales, thanks to the mixture of receptive
fields of different sizes. Its advantages are threefold: first, it increases the depth of the
whole architecture without increasing the computational cost; second, it is trained from
scratch without using pretrained backbones, thus being able to keep feature maps high-
resolution; third, it has high accuracy. Its disadvantage is its number of parameters. Other
models are based on streamlined architecture to build lightweight deep neural networks.
MobileNets [30,31] and ShuffleNets [32,33], along with their variants, are among the latter
models. MobileNets [30] uses architecture based on depthwise separable convolution.
ShuffleNets [32] uses architecture based on pointwise group convolution and channel
shuffle, as well as depthwise convolution, to greatly reduce computational cost while
maintaining accuracy. Their advantages are their computational cost, accuracy and speed,
while their disadvantages are their number of parameters and their input resolution.
Other authors have been inspired by primate or human visual system processes. Thus,
Liu et al. [19] designed HVPNet, a lightweight salient object-detection network based on
a hierarchical visual perception (HVP) module that mimics the primate visual cortex for
hierarchical perception learning, whereas Liu et al. [16] were inspired by human perception
attention mechanisms in designing SAMNet, another lightweight salient object-detection
network, based on a stereoscopically attentive multiscale (SAM) module that adopts a
stereoscopic attention mechanism for effective and efficient multiscale learning. Their
advantages are their computational cost and accuracy, while their disadvantages are their
number of parameters and their input resolution.

2.2. Color-Opponent Models

Color opponency, which is a human color perception propriety, has inspired many
authors who have defined channels or feature maps to tackle their image-processing tasks.
Frintrop et al. [34] used three opponent channels—RG, BY and I—to extract features for
their salient object-detection model.

To extract features for salient object detection, Ndayikengurukiye and Mignotte [1]
used nine (9) opponent channels for RGB color space (RR: red–red; RG: red–green; RB: red–
blue; GR: green–red; GG: green–green; GB: green–blue; BR: blue–red; BG: blue–green; BB:
blue–blue) with a nonlinear combination, thanks to the OCLTP (opponent color local ternary
pattern) texture descriptor, which is an extension of the OCLBP (opponent color local binary
pattern) [35,36] and Fastmap [37], which is a fast version of MDS (multidimensional scaling).

Most authors apply the opponent color mechanism to the input image color space
channels and not on the resulting feature maps. However, Jain and Healey [38] used
opponent features computed from Gabor filter outputs. They computed opponent features
by combining information across different spectral bands at different scales obtained via
Gabor filters for color texture recognition [38]. Yang et al. [39] proposed a framework based
on the color-opponent mechanisms of color-sensitive double-opponent (DO) cells in the
human visual system’s primary visual cortex (V1) in order to combine brightness and
color to maximize the boundary-detection reliability in natural scenes. The advantages of
hand-crafted models are their computational cost, number of parameters, speed and input
resolution, while their disadvantage is accuracy.
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In this work, we propose a model inspired by the human visual system but different
from other models, because our model uses the primary visual cortex (V1) cone- and spatial-
opponent principle to extract features at channels’ spatial levels and between color channels
at the same time to integrate color into patterns in a manner allowing for a lightweight
deep neural network design with performance comparable with state-of-the-art lightweight
salient object-detection models.

3. Materials and Methods

3.1. Introduction

Our model for tackling the challenge of lightweight salient object detection is inspired
by the human visual system (HVS)’s early visual color process, especially its cone oppo-
nency and spatial opponency in the primary visual cortex (V1). The human retina (located
in the inner surface of the eye) has two types of photoreceptors, namely rods and cones.
Rods are responsible for monochromatic vision under low levels of illumination, while
cones are responsible for color vision at normal levels of illumination. There are three
classes of cones: L, M and S. When light is absorbed by cone photoreceptors, the L, M and
S cones absorb long-, middle- and short-wavelength visible light, respectively [24,25,27].

The cone signals are then processed by single-opponent retina ganglion cells. The
single opponent operates an antagonistic comparison of the cone signals [23,25,26,40]:

• L −M opponent for red–green;
• S − (L + M) opponent for blue–yellow.

The red–green and blue–yellow signals are carried by specific cells (different cells
each for red–green and blue–yellow) through the lateral geniculate nucleus (LGN) to the
primary visual cortex (V1).

Shapley [27] and Shapley and Hawken [20] showed that the primary visual cortex
(V1) plays an important role in color perception through the combined activity of two
kinds of color-sensitive cortical neurons, namely single-opponent and double-opponent
cells. Single-opponent cells in V1 operate in the same manner as those of retina ganglion
cells and provide neuronal signals that can be used for estimating the color of the illumi-
nation [27]. Double-opponent cells in V1 compare cone signals across space as well as
between cones [21,22,24,27]. Double-opponent cells thus have two opponencies: spatial
opponency and cone opponency. These properties permit them to be sensitive to color
edges and spatial patterns. They are thus able to inextricably link color and pattern in
human color perception [20,27].

As the primary visual cortex (V1) is known to play a major role in visual color percep-
tion, as highlighted above, in this work, we propose a deep neural network based on the
primary visual cortex (V1) to tackle the challenge of lightweight salient object detection. In
particular, we use two neuroscience discoveries in human color perception, namely:

1. The color-opponent encoding in the early stage of the HVS;
2. The fact that color and pattern are inextricably linked in human color perception

These two discoveries in neuroscience inspired us to design a neural network archi-
tecture for lightweight salient object detection, which hinges on two main ideas. First, at
the beginning of the neural network, our model opposes color channels two by two by
grouping them (R-R, R-G, R-B, G-G, G-B, B-B) then extracting the features at the channels’
spatial levels and between the color channels from each channel pair at the same time, to
integrate color into patterns. Therefore, instead of performing a subtractive comparison or
an OCLTP (opponent color linear ternary pattern) like Ndayikengurukiye and Mignotte [1],
we let the neural network learn the features that represent the comparison of the two color
pairs. Second, this idea of grouping and then extracting the features at the channels’ spatial
levels and between the color channels at the same time is applied on feature maps at each
neural network level until the saliency maps are obtained. This process allows the proposed
model to mimic the human visual system’s capability of inextricably linking color and
pattern in color perception [20,27].
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It is this idea that differentiates our model from other models that use depthwise
convolution followed by pointwise convolution [30,31] to extract features at each individual
color channel level (or feature map) first, not through a group of color channels (or feature
maps) at the same time, as our model does. This idea also differentiates our model from
models that combine a group of color channels (or feature maps) pixel by pixel first and
apply depthwise convolution afterwards [32,33]. The idea of grouping color channels in
pairs (or feature map groups) differentiates our model from models that consider all color
channels (or feature maps) as a single group while extracting features at color channels’
spatial levels and between color channels at the same time.

Our model takes into account nonlinearities in the image at the beginning as well as
through our neural network. For this purpose, we use an encoder–decoder neural network
type whose core is a module that we call CoSOV1 (cone- and spatial-opponent primary
visual cortex).

3.2. CoSOV1 : Cone- and Spatial-Opponent Primary Visual Cortex Module

The CoSOV1 (cone- and spatial-opponent primary visual cortex) module is composed
of two parts (see Figure 1).

Figure 1. The CoSOV1 (cone- and spatial-opponent primary visual cortex) module is the core of our
neural network model.

In the first part, input color channels (or input feature maps) are split into groups of
equal depth. Convolution (3× 3) operations are then applied to each group of channels (or
feature maps) in order to extract features from each group as opposing color channels (or
opposing feature maps). This is performed thanks to a set of filters that convolve the group
of color channels (or feature maps). Each filter is applied to the color channels (or input
feature maps) through a convolution operation that detects local features at all locations on
the input. Let I g ∈ RW×H×S be an input group of feature maps, whereW andH are the
width and the height of each group’s feature map, respectively, and W ∈ R3×3×S, a filter
with learned weights, with S being the depth of each group or the number of the channels
in each group g, with g ∈ {1, . . . ,G} (where G is the number of groups). The output feature
mapOg ∈ RW×H for this group g has a pixel value in the (k, l) position, defined as follows:

Og
k,l =

S

∑
s=1

2

∑
i=0

2

∑
j=0

Wi,j,sI g
k+i−1,l+j−1,s (1)

The weight matrix W ∈ R3×3×S is the same across the whole group of channels
or feature maps. Therefore, each resulting output feature map represents a particular
feature at all locations in the input color channels (or input feature maps) [41]. We
call the 3 × 3 convolution on grouped channels (or grouped feature maps) groupwise
convolution. The zero padding is applied during the convolution process to keep the input
channel size for the output feature maps. After groupwise convolution, we apply the batch
normalization transform, which is known to enable faster and more stable training of deep
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neural networks [42,43]. Let B = {X1, . . . , XK} be a minibatch that contains K examples
from a dataset. The minibatch mean is

μB =
1
K

K

∑
k=1

Xk (2)

and the minibatch variance is

σ2
B =

1
K

K

∑
k=1

(Xk − μB)2 (3)

The batch normalization transform BNγ,β : {X1, . . . , XK} −→ {Y1, . . . , YK} (γ and β
are parameters to be learned):

Yk = γX̂k + β (4)

where k ∈ {1, . . . , K} and

X̂k =
Xk − μB√

σ2
B + ε

(5)

and ε is a very small constant to avoid division by zero.
In order to take into account the nonlinearities present in the color channel input (or

feature map input), given that groupwise convolution is a linear transformation, batch
normalization is followed by a nonlinear function, exponential linear unit (ELU), defined
as follows:

ELU(x) =

{
x if x ≥ 0,
α× (exp(x)− 1) otherwise

(6)

where α = 1 by default.
The nonlinear function, which is the activation function, is placed after batch normal-

ization, as recommended by Chollet [44].
The second part of the module searches for the best representation of the obtained

feature maps. It is similar to the first part of the module, except for the groupwise convolu-
tion, which is replaced by point-wise convolution, but the input feature maps for pointwise
convolution in this model are not grouped. Pointwise convolution allows us to learn the
filters’ weights and thus obtain feature maps that best represent the input channels (or
input feature maps) for the salient object-detection task, while having few parameters.

Let O ∈ RW×H×M be the output of the first part of the module, with M being the
number of feature maps in this output and W and H being the width and the height,
respectively. Let a filter of the learned weights V ∈ RM and FM ∈ RW×H be its output
feature map by pointwise convolution. Its pixel value FMk,l in (k, l) position is:

FMk,l =
M

∑
m=1

VmOk,l,m (7)

Thus, V ∈ RM is a vector of learned weights that associates the input feature maps
O ∈ RW×H×M to the feature map FM ∈ RW×H, which is the best representation of the
latter-mentioned input feature maps. The pointwise convolution in this module uses many
filters and thus it outputs many feature maps that are the best representation of the input
feature map O. As pointwise convolution is a linear combination, we again apply batch
normalization followed by a exponential linear unit function (ELU) on the feature map
FM to obtain the best representation of the input feature maps for the learned weights
V ∈ RM, which takes into account nonlinearities in the feature maps O ∈ RW×H×M.

Our scheme is different from depthwise separable convolution in that it uses the
convolution of a group of channels instead of each channel individually [30,45].
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In addition, after the nonlinear function, noise is injected in the resulting feature maps
during the neural network learning stage thanks to the dropout process (but not in the
prediction stage) to facilitate the learning process. In this model, we use DropBlock [46] if
the width of the feature map is greater than 5; otherwise, we use the common dropout [47].

The CoSOV1 module allows our neural network to have few parameters but
good performance.

3.3. CoSOV1Net Neural Network Model Architecture

Our proposed model is built on the CoSOV1 module (see Figure 1). It is a neural
network of the U-net encoder–decoder type [29] and is illustrated in Figure 2. Thus, our
model consists of three main blocks:

1. The input RGB color channel pairing;
2. The encoder;
3. The decoder.

Figure 2. Our model CoSOV1 neural network architecture consisting of 5 blocks : Pairing_Color_Unit,
Encoder_Unit, Middle_Unit, Dec_Res_Block and Dec_Dconv_Block.

3.3.1. Input RGB Color Channel Pairing

At this stage, through Pairing_Color_Unit, the input RGB image is paired in six
opposing color channel pairs: R-R, R-G, R-B, G-G, G-B and B-B [1,35,48]. These pairs are
then concatenated, which gives 12 channels, R, R, R, G, R, B, G, G, G, B, B, B, as illustrated in
Figure 3. This is the step for choosing the color channels to oppose. The set of concatenated
color channels is then fed to the encoder.
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Figure 3. Pairing_Color_Unit: input RGB color image is transformed in 6 opposing color channel
pairs; these are then concatenated to obtain 12 color channels.

3.3.2. Encoder

The encoder, in our proposed neural network model, is a convolutional neural network
(CNN) [49] where an encoder unit (see Figure 2) is repeated eight times. Each encoder unit
is followed by a max pooling (2× 2) with strides = 2, except for the eighth neural network
level, where the max pooling is 3× 3 with strides = 3 (the max pooling is a downsampling
operation, like a filtering with a maximum filter). While the size of each feature map is
reduced by half, the depth of the feature maps is doubled, except for the first level, where it
is kept at 12 and the last two levels, where it is kept at 128 to have few parameters.

The encoder unit (see Figure 4a) is composed of a residual block (Figure 4b) repeated
three (3) times.

We used the residual block because this kind of block is known to improve the training
of deeper neural networks [50]. The residual block consists of two CoSOV1 modules with a
residual link. The reason for all these repetitions is to encode more information and thus
allow our network performance to increase.

In the encoder, schematically, as explained above (Section 3.2), the CoSOV1 mod-
ule (Figure 4c) splits the input channels into groups and applies groupwise convolution
(3× 3 convolution). Then, pointwise convolution is applied to the outputs of the concate-
nated groups (see Figure 5 for the first-level input illustration). Each of these convolutions
is followed by batch normalization and a nonlinear function (ELU: exponential linear unit
activation). After these layers, during the model training, regularization is performed in
the CoSOV1 module using the dropout [47] method for small feature maps (dimensions
smaller than 5× 5) and DropBlock [46]—which is a variant of dropout that zeroes a block
instead of pixels individually as dropout does—for feature maps with dimensions greater
than 5× 5.
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Figure 4. Encoder unit: (a) encoder unit; (b) the residual block; (c) CoSOV1 module.

At its end, the encoder is followed by the middle unit (see Figure 6a), which is the
CoSOV1 module (see Figure 6b), where we remove the groupwise convolution—since at
this stage, the feature maps are 1× 1× 128 in size—and add a residual link.

3.3.3. Decoder

The decoder transforms the features from the encoder to obtain the estimate of the
salient object(s) present in the input image. This transformation is achieved through a
repeating block, namely the decoder unit (see Figure 7a). The decoder unit consists of two
parts: the decoder residual block (see Figure 7b) and the decoder deconvolution block (see
Figure 7c). The decoder residual block is a modified CoSOV1 module that allows the model
to take into account the output of the corresponding level in the encoder. The output of
the decoder residual block takes two directions. On the one hand, it is passed to the next
level of the decoder; and on the other, to the second part of the decoder unit, which is the
decoder deconvolution block. The latter deconvolves this output, obtaining two feature
maps having the size of the input image (384× 384× 2 in our case). At the last level of
the decoder, all the outputs from the deconvolution blocks are concatenated and fed to a
convolution layer followed by a softmax activation layer, which gives the estimation of the
salient object-detection map.
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Figure 5. Simplified flowchart in CoSOV1 module for processing pairs of opposing color pairs (or
group of feature maps).

Figure 6. (a) The middle unit, (b) the CoSOV1 module.
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Figure 7. (a) The decoder unit; (b) the decoder residual block; (c) the decoder deconvolution block.

4. Experimental Results

4.1. Implementation Details

For our proposed model implementation, we used the deep learning platform Tensor-
Flow with the Keras deep learning application programming interface (API) [51]. All input
images were resized to 384× 384 and pixel values were normalized (each pixel channel
value ∈ [0.0, . . . , 1.0] and ground truth pixels ∈ {0, 1}). Experiments were conducted on a
single GPU, Nvidia GeForce RTX 3090 Ti (24 GB) and an Intel CPU, i7-11700F.

4.2. Datasets

Our proposed model’s experiments were conducted on public datasets, which are
the most widely used in the field of salient object detection [52]. Thus, we used the
Extended Complex Scene Saliency dataset (ECSSD) [53] and the DUT-OMRON (Dalian
University of Technology—OMRON Corporation) [54], DUTS [55], HKU-IS [56] and
THUR15K [57] datasets.

ECSSD [53] contains 1000 natural images and their ground truths. Many of its images
are semantically meaningful but structurally complex for saliency detection [53].

DUT-OMRON [54] contains 5168 images and their binary masks, with diverse varia-
tions and complex backgrounds.
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The DUTS dataset [55] is divided into DUTS-TR (10,553 training images) and DUTS-TE
(5019 test images). We trained and validated our proposed model on the DUTS-TR and
DUTS-TE was used for tests.

HKU-IS [56] is composed of 4447 complex images, which contain many disconnected
objects with different spatial distributions. Furthermore, it is very challenging for similar
foreground/background appearances [58].

THUR15K is a dataset of images taken from the “Flickr” website, divided into five
categories (butterfly, coffee mug, dog jump, giraffe, plane), which contains 3000 images.
The images of this dataset represent real-world scenes and are considered complex for
obtaining salient objects [57] (6232 images with ground truths).

4.3. Model Training Settings

For the reproducibility of the experiments, we set the seed = 123. We trained our
proposed model on DUTS-TR (10,553 training images). We split the DUTS-TR dataset into
a train set (9472 images) and a validation set (1056 images); that is, approximately 90% of
the dataset for the training set and 10% for the validation set. We did not use 25 images
because we wanted the training set and the validation set to be divisible by batch size,
which is 32.

Our proposed model was trained on scratch without pretrained backbones from image
classification (i.e., VGG [59], etc.) or lightweight backbones (i.e., MobileNets [30,31] or
ShuffleNets [32,33]). As DUTS-TR is not a big dataset, we used data augmentation during
training and many epochs in order to overcome this problem. Indeed, the more epochs, the
more the data-augmentation process transforms data. Thus, our proposed model training
has two successive stages:

• The first stage is with data augmentation, which is applied to each batch with ran-
dom transformation (40% zoom in or horizontal flip or vertical flip). This stage has
480 epochs: 240 epochs with learning rate = 0.001 and 240 epochs with learning
rate = 0.0001;

• The second stage is without data augmentation. It has 620 epochs: 240 epochs
with learning rate = 0.001, followed by 140 epochs with learning rate = 0.0001 and
240 epochs with learning rate = 0.00005.

We also used the same initializer for all layers in the neural network: the HeUni-
form Keras initializer [60], which draws samples from a uniform distribution within

[−limit, limit], where limit =
√

6
f an_in ( f an_in is the number of input units in the weight

tensor). The dropout rate was set to 0.2. We used the RMSprop [61] Keras optimizer with
default values except for the learning rate; the centered, which was set to true; and the
clipnorm = 1. The loss function used was the “sparse_categorical_crossentropy” Keras
function; the Keras metric was “SparseCategoricalAccuracy; the Keras check point monitor
was “val_sparse_categorical_accuracy”.

4.4. Hyperparameters

Hyperparameters such as the ELU activation function, the optimizer, the batch size,
the filter size and the learning rates were chosen experimentally by observing the results.

The other hyperparameters were chosen as follows:

• Image size: The best image size was 384 × 384. We did not choose a small size
because we expected to have a small salient object. As we also wanted to have a low
computational cost, we did not go beyond this size.

• Number of levels for the encoder: We empirically obtained eight levels as the best
number. The choice of image size permitted us to have a maximum of eight levels for
the encoder part, given that 384 = 27 × 3. The size of the feature maps of each level
corresponds to the size of those of the previous level divided by 2, except the last level,
where the division is by 3.
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• Number of levels for the decoder: Eight levels. The number of levels is the same for
the encoder part and the decoder part.

• Number of layers: At each level, we chose to use an encoder unit that has an equal
number of layers for all levels and a decoder unit that has an equal number of layers
for all levels. The number of layers was obtained experimentally.

• Number of filters: We also experimentally chose the number of filters keeping in
mind the minimum parameters; the encoder’s number of filters was 12, 16, 32, 64,
128, 128, 128 and 128, respectively, for the first, second, . . ., seventh and eighth levels;
the decoder residual bloc number of filters was 128, 128, 128, 128, 64, 32, 16 and 8,
respectively, for the eighth, seventh, sixth, . . ., second and first levels. For the decoder
deconvolution blocs, at each level, the number of filters was 2.

• The use of batch normalization: Batch normalization is known to enable faster and
more stable training for deep neural networks [42,43]. So, we decided to use it.

• Use of dropout: The dropout process injects noise in the resulting feature maps during
the neural network learning stage (but not in the prediction stage) to facilitate the
learning process. In this model, we used DropBlock [46] if the width of the feature
map was greater than 5; otherwise, we used the common dropout [47]. The best
results were obtained for DropBlock size = 5× 5 and rate = 0.1 (the authors’ paper
suggested a value between 0.05 and 0.25). For the common dropout, the best rate was
0.2, obtained experimentally.

As our proposed model, CoSOV1Net does not use pretrained backbones and the input
image is resized to 384× 384; it has the advantage of good resolution.

4.5. Evaluation Metrics
4.5.1. Accuracy

The metrics used to evaluate our proposed model accuracy were Fβ measure, MAE
(mean absolute error) and weighted Fw

β measure [62]. We also used precision, precision–
recall and Fβ measure curves.

Let M be the binary mask obtained for the predicted saliency probability map, given a
threshold in the range of [0, 1) and with G being the corresponding ground truth:

Precision =
|M ∩ G|
|M| (8)

Recall =
|M ∩ G|
|G| (9)

∩ : set intersection symbol; |.| : the number of pixels whose values are not zeros.
The Fβ-measure (Fβ ) is the weighted harmonic mean of precision and recall:

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision + Recall
(10)

During evaluation, β2 = 0.3, as it is often suggested [16,58].
Let S be the saliency map estimation with pixel values normalized in order to be in

[0.0, . . . , 1.0] and G; its ground truth also normalized in {0; 1}. The MAE (mean absolute
error) is:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|S(x, y)− G(x, y)| (11)

where W and H are the width and the height, respectively, of the above maps (S and G).
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The Fw
β measure [62] fixes the interpolation flaw, dependence flaw and equal impor-

tance flaw in traditional evaluation metrics and its value is:

Fw
β = (1 + β2)

Precisionw × Recallw

β2 × Precisionw + Recallw (12)

Precisionw and Recallw are the weighted precision and the weighted recall, respectively.

4.5.2. Lightweight Measures

Since we propose a lightweight salient object-detection model in this work, we there-
fore also evaluate the model with lightweight measures: the number of parameters, the
saliency map estimation speed (FPS: frames per second) and the computational cost by
measuring the FLOPS (the number of floating-point operations). The FLOPS is related to the
device’s energy consumption (the higher the FLOPS, the higher the energy consumption).
The floating-point operation numbers are computed as follows [63]:

• For a convolution layer with n filters of size k× k applied to W × H × C feature maps
(W: width; H: height; C: channels), with P: number of parameters:

FLOPS = W × H × P (13)

• For a max-pooling layer or an upsampling layer with a window of size sz× sz on
W × H × C feature maps (W: width; H: height; C: channels):

FLOPS = W × H × C× sz× sz (14)

4.6. Comparison with State of the Art

We compare our proposed model with 20 state-of-the-art salient object detection
and 10 state-of-the-art lightweight salient object-detection models. We divided these
methods because the lightweight methods outperform others with respect to lightweight
measures. However, the lightweight methods’ accuracy is lower than the accuracy of
those with huge parameters. We mainly used the salient object-detection results provided
by Liu et al. [16], except for the Fβ measure and precision–recall curves, where we used
saliency maps provided by these authors. We also used saliency maps provided by the
HVPNet authors [19] to compute HVPNet Fω

β measures.
In this section, we describe the comparison with the 20 salient object-detection models,

namely DRFI [64], DCL [65], DHSNet [66], RFCN [67], NLDF [68], DSS [69], Amulet [18],
UCF [70], SRM [71], PiCANet [17], BRN [72], C2S [73], RAS [74], DNA [75], CPD [76],
BASNet [77], AFNet [78], PoolNet [79], EGNet [80] and BANet [81].

Table 1 shows that our proposed model CoSOV1Net outperforms all 20 state-of-the-art
salient object-detection models for lightweight measures (#parameters, FLOPS and FPS) by
a large margin (i.e., the best among them for FLOPS is DHSNet [66], with FLOPS = 15.8 G
and Fβ = 0.903 for ECSSD; the worst is EGNet [80], with FLOPS = 270.8 G and Fβ = 0.938
for ECSSD; meanwhile, our proposed model, CoSOV1Net, has FLOPS = 1.4 G, and its
Fβ = 0.931 for ECSSD) (see Table 1).

Table 1 also shows that CoSOV1Net is among the top 6 models for ECSSD, among
the top 7 for DUT-OMRON and around the top 10 for the other three datasets for the
F-measure. Tables 2 and 3 compare our model with the state-of-the-art models for the
MAE and Fω

β measures, respectively. From this comparison, we see that our model is
ranked around the top 10 for all four datasets and is ranked 15th for the HKU-IS dataset.
This demonstrates that our model is also competitive with respect to the performance of
state-of-the-art models.

Tables 1–3 show that our proposed model, CoSOV1Net, clearly has the advantage
of the number of parameters, computational cost and speed over salient object detection.
They also show that its performance is closer to the best among them.
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Table 1. Our proposed model F-measure (Fβ ↑, β2 = 0.3) compared with 20 state-of-the-art models
(best value in bold) [# Param: number of parameters, ↑: great is best, ↓: small is the best].

Methods
# Param

(M) ↓
FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD

DUT-
OMRON

DUTS-TE HKU-IS THUR15K

DRFI [64] - - 0.1 0.777 0.652 0.649 0.774 0.670
DCL [65] 66.24 224.9 1.4 0.895 0.733 0.785 0.892 0.747

DHSNet [66] 94.04 15.8 10.0 0.903 - 0.807 0.889 0.752
RFCN [67] 134.69 102.8 0.4 0.896 0.738 0.782 0.892 0.754
NLDF [68] 35.49 263.9 18.5 0.902 0.753 0.806 0.902 0.762
DSS [69] 62.23 114.6 7.0 0.915 0.774 0.827 0.913 0.770

Amulet [18] 33.15 45.3 9.7 0.913 0.743 0.778 0.897 0.755
UCF [70] 23.98 61.4 12.0 0.901 0.730 0.772 0.888 0.758
SRM [71] 43.74 20.3 12.3 0.914 0.769 0.826 0.906 0.778

PiCANet [17] 32.85 37.1 5.6 0.923 0.766 0.837 0.916 0.783
BRN [72] 126.35 24.1 3.6 0.919 0.774 0.827 0.910 0.769
C2S [73] 137.03 20.5 16.7 0.907 0.759 0.811 0.898 0.775
RAS [74] 20.13 35.6 20.4 0.916 0.785 0.831 0.913 0.772
DNA [75] 20.06 82.5 25.0 0.935 0.799 0.865 0.930 0.793
CPD [76] 29.23 59.5 68.0 0.930 0.794 0.861 0.924 0.795

BASNet [77] 87.06 127.3 36.2 0.938 0.805 0.859 0.928 0.783
AFNet [78] 37.11 38.4 21.6 0.930 0.784 0.857 0.921 0.791
PoolNet [79] 53.63 123.4 39.7 0.934 0.791 0.866 0.925 0.800
EGNet [80] 108.07 270.8 12.7 0.938 0.794 0.870 0.928 0.800
BANet [81] 55.90 121.6 12.5 0.940 0.803 0.872 0.932 0.796

CoSOV1Net (OURS) 1.14 1.4 211.2 0.931 0.789 0.833 0.912 0.773

Table 2. Our proposed model MAE (↓) compared with 20 state-of-the-art models (best performance
in bold) [# Param: number of parameters, ↑: great is the best, ↓: small is the best].

Methods
# Param

(M) ↓
FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD

DUT-
OMRON

DUTS-TE HKU-IS THUR15K

DRFI [64] - - 0.1 0.161 0.138 0.154 0.146 0.150
DCL [65] 66.24 224.9 1.4 0.080 0.095 0.082 0.063 0.096

DHSNet [66] 94.04 15.8 10.0 0.062 - 0.066 0.053 0.082
RFCN [67] 134.69 102.8 0.4 0.097 0.095 0.089 0.080 0.100
NLDF [68] 35.49 263.9 18.5 0.066 0.080 0.065 0.048 0.080
DSS [69] 62.23 114.6 7.0 0.056 0.066 0.056 0.041 0.074

Amulet [18] 33.15 45.3 9.7 0.061 0.098 0.085 0.051 0.094
UCF [70] 23.98 61.4 12.0 0.071 0.120 0.112 0.062 0.112
SRM [71] 43.74 20.3 12.3 0.056 0.069 0.059 0.046 0.077

PiCANet [17] 32.85 37.1 5.6 0.049 0.068 0.054 0.042 0.083
BRN [72] 126.35 24.1 3.6 0.043 0.062 0.050 0.036 0.076
C2S [73] 137.03 20.5 16.7 0.057 0.072 0.062 0.046 0.083
RAS [74] 20.13 35.6 20.4 0.058 0.063 0.059 0.045 0.075
DNA [75] 20.06 82.5 25.0 0.041 0.056 0.044 0.031 0.069
CPD [76] 29.23 59.5 68.0 0.044 0.057 0.043 0.033 0.068

BASNet [77] 87.06 127.3 36.2 0.040 0.056 0.048 0.032 0.073
AFNet [78] 37.11 38.4 21.6 0.045 0.057 0.046 0.036 0.072
PoolNet [79] 53.63 123.4 39.7 0.048 0.057 0.043 0.037 0.068
EGNet [80] 108.07 270.8 12.7 0.044 0.056 0.044 0.034 0.070
BANet [81] 55.90 121.6 12.5 0.038 0.059 0.040 0.031 0.068

CoSOV1Net (OURS) 1.14 1.4 211.2 0.051 0.064 0.057 0.045 0.076
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Table 3. Our proposed model weighted F-measure (Fω
β ↑, β2 = 1) compared with 20 state-of-the-art

models (best value in bold) [# Param: number of parameters, ↑: great is the best, ↓: small is the best].

Methods
# Param

(M) ↓
FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD

DUT-
OMRON

DUTS-TE HKU-IS THUR15K

DRFI [64] - - 0.1 0.548 0.424 0.378 0.504 0.444
DCL [65] 66.24 224.9 1.4 0.782 0.584 0.632 0.770 0.624

DHSNet [66] 94.04 15.8 10.0 0.837 - 0.705 0.816 0.666
RFCN [67] 134.69 102.8 0.4 0.725 0.562 0.586 0.707 0.591
NLDF [68] 35.49 263.9 18.5 0.835 0.634 0.710 0.838 0.676
DSS [69] 62.23 114.6 7.0 0.864 0.688 0.752 0.862 0.702

Amulet [18] 33.15 45.3 9.7 0.839 0.626 0.657 0.817 0.650
UCF [70] 23.98 61.4 12.0 0.805 0.573 0.595 0.779 0.613
SRM [71] 43.74 20.3 12.3 0.849 0.658 0.721 0.835 0.684

PiCANet [17] 32.85 37.1 5.6 0.862 0.691 0.745 0.847 0.687
BRN [72] 126.35 24.1 3.6 0.887 0.709 0.774 0.875 0.712
C2S [73] 137.03 20.5 16.7 0.849 0.663 0.717 0.835 0.685
RAS [74] 20.13 35.6 20.4 0.855 0.695 0.739 0.849 0.691
DNA [75] 20.06 82.5 25.0 0.897 0.729 0.797 0.889 0.723
CPD [76] 29.23 59.5 68.0 0.889 0.715 0.799 0.879 0.731

BASNet [77] 87.06 127.3 36.2 0.898 0.751 0.802 0.889 0.721
AFNet [78] 37.11 38.4 21.6 0.880 0.717 0.784 0.869 0.719
PoolNet [79] 53.63 123.4 39.7 0.875 0.710 0.783 0.864 0.724
EGNet [80] 108.07 270.8 12.7 0.886 0.727 0.796 0.876 0.727
BANet [81] 55.90 121.6 12.5 0.901 0.736 0.810 0.889 0.730

CoSOV1Net (OURS) 1.14 1.4 211.2 0.861 0.696 0.731 0.834 0.688

We also compared CoSOV1Net with the state-of-the-art lightweight salient object-
detection models MobileNet [30], MobileNetV2 [31], ShuffleNet [32], ShuffleNetV2 [33],
ICNet [82], BiSeNet R18 [83], BiSeNet X39 [83], DFANet [84], HVPNet [19] and SAM-
Net [16].

For the comparison with state-of-the-art lightweight models, Table 4 shows that
our proposed model outperforms these state-of-the-art lightweight models in parameter
numbers and the Fβ measure for the ECSSD dataset and is competitive for other measures
and datasets. Table 5 shows that our model outperforms these state-of-the-art lightweight
models for the MAE measure for the ECSSD and DUTS-TE datasets and is ranked first ex
aequo with HVPNet for DUT-OMRON, first ex aequo with HVPNet and SAMNet for the
HKU-IS dataset and second for the THUR15K dataset. Our model also outperforms these
state-of-the-art lightweight models for the Fω

β measure for ECSSD and DUTS-TE and is
competitive for the three other datasets (see Table 6).

Tables 4–6 show that CoSOV1Net clearly has the advantage of the number of parame-
ters over the lightweight salient object detection. They also show that its performance is
closer to the best among them. Thus, CoSOV1Net has the advantage of performance.

Regarding computational cost, CoSOV1Net has an advantage over half of the state-of-
the-art lightweight salient object-detection models. Overall, we can conclude that it has an
advantage in terms of computational cost.

4.7. Comparison with SAMNet and HVPNet State of the Art

We chose to compare our CoSOV1Net model specifically with SAMNet [16] and
HVPNet [19] because they are among the best state-of-the-art models.

Figure 8 shows that precision curves for ECSSD and HKU-IS datasets highlight that
CoSOV1Net slightly dominates the SAMNet and HVPNet state-of-the-art lightweight
salient object-detection models and that there is no clear domination for the DUT-OMRON,
DUTS-TE and THUR15K precision curves between the three models. Therefore, the pro-
posed model CoSOV1Net is competitive with these two state-of-the-art lightweight salient
object-detection models with respect to precision.
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Table 4. Our proposed model’s F-measure (Fβ ↑, β2 = 0.3) compared with state-of-the-art lightweight
salient object-detection models (best value in bold) [# Param: number of parameters, ↑: great is the
best, ↓: small is the best].

Methods
# Param

(M) ↓
FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD

DUT-
OMRON

DUTS-TE HKU-IS THUR15K

MobileNet * [30] 4.27 2.2 295.8 0.906 0.753 0.804 0.895 0.767
MobileNetV2 * [31] 2.37 0.8 446.2 0.905 0.758 0.798 0.890 0.766

ShuffleNet * [32] 1.80 0.7 406.9 0.907 0.757 0.811 0.898 0.771
ShuffleNetV2 * [33] 1.60 0.5 452.5 0.901 0.746 0.789 0.884 0.755

ICNet [82] 6.70 6.3 75.1 0.918 0.773 0.810 0.898 0.768
BiSeNet R18 [83] 13.48 25.0 120.5 0.909 0.757 0.815 0.902 0.776
BiSeNet X39 [83] 1.84 7.3 165.8 0.901 0.755 0.787 0.888 0.756

DFANet [84] 1.83 1.7 91.4 0.896 0.750 0.791 0.884 0.757
HVPNet [19] 1.23 1.1 333.2 0.925 0.799 0.839 0.915 0.787
SAMNet [16] 1.33 0.5 343.2 0.925 0.797 0.835 0.915 0.785

CoSOV1Net (OURS) 1.14 1.4 211.2 0.931 0.789 0.833 0.912 0.773

* SAMNet, where the encoder is replaced by this backbone.

Table 5. Our proposed model MAE (↓) compared with state-of-the art lightweight salient object-
detection models (best value in bold) [# Param: number of parameters, ↑: great is the best, ↓: small is
the best].

Methods
# Param

(M) ↓
FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD

DUT-
OMRON

DUTS-TE HKU-IS THUR15K

MobileNet * [30] 4.27 2.2 295.8 0.064 0.073 0.066 0.052 0.081
MobileNetV2 * [31] 2.37 0.8 446.2 0.066 0.075 0.070 0.056 0.085

ShuffleNet * [32] 1.80 0.7 406.9 0.062 0.069 0.062 0.050 0.078
ShuffleNetV2 * [33] 1.60 0.5 452.5 0.069 0.076 0.071 0.059 0.086

ICNet [82] 6.70 6.3 75.1 0.059 0.072 0.067 0.052 0.084
BiSeNet R18 [83] 13.48 25.0 120.5 0.062 0.072 0.062 0.049 0.080
BiSeNet X39 [83] 1.84 7.3 165.8 0.070 0.078 0.074 0.059 0.090

DFANet [84] 1.83 1.7 91.4 0.073 0.078 0.075 0.061 0.089
HVPNet [19] 1.23 1.1 333.2 0.055 0.064 0.058 0.045 0.076
SAMNet [16] 1.33 0.5 343.2 0.053 0.065 0.058 0.045 0.077

CoSOV1Net (OURS) 1.14 1.4 211.2 0.051 0.064 0.057 0.045 0.076

* SAMNet, where the encoder is replaced by this backbone.

Table 6. Our proposed model’s weighted F-measure (Fω
β ↑, β2 = 1) compared with lightweight

salient object-detection models (best value in bold) [# Param: number of parameters, ↑: great is the
best, ↓: small is the best].

Methods
# Param

(M) ↓
FLOPS
(G) ↓

Speed
(FPS) ↑ ECSSD

DUT-
OMRON

DUTS-TE HKU-IS THUR15K

MobileNet * [30] 4.27 2.2 295.8 0.829 0.656 0.696 0.816 0.675
MobileNetV2 * [31] 2.37 0.8 446.2 0.820 0.651 0.676 0.799 0.660

ShuffleNet * [32] 1.80 0.7 406.9 0.831 0.667 0.709 0.820 0.683
ShuffleNetV2 * [33] 1.60 0.5 452.5 0.812 0.637 0.665 0.788 0.652

ICNet [82] 6.70 6.3 75.1 0.838 0.669 0.694 0.812 0.668
BiSeNet R18 [83] 13.48 25.0 120.5 0.829 0.648 0.699 0.819 0.675
BiSeNet X39 [83] 1.84 7.3 165.8 0.802 0.632 0.652 0.784 0.641

DFANet [84] 1.83 1.7 91.4 0.799 0.627 0.652 0.778 0.639
HVPNet [19] 1.23 1.1 333.2 0.854 0.699 0.730 0.839 0.696
SAMNet [16] 1.33 0.5 343.2 0.855 0.699 0.729 0.837 0.693

CoSOV1Net (OURS) 1.14 1.4 211.2 0.861 0.696 0.731 0.834 0.688

* SAMNet, where the encoder is replaced by this backbone.
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Figure 8. Precision curves for (a) ECSSD, (b) DUT-OMRON, (c) DUTS-TE, (d) HKU-IS and
(e) THUR15K datasets.
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Figure 9 shows that the three models’ precision–recall curves (for the five datasets used:
ECSSD, DUT-OMRON, DUTS-TE, HKU-IS and THUR15K) are very close to each other.
Therefore, the proposed model is competitive with these two state-of-the-art lightweight
salient object-detection models with respect to precision–recall.

Figure 9. Precision–recall curves for (a) ECSSD, (b) DUT-OMRON, (c) DUTS-TE, (d) HKU-IS and
(e) THUR15K datasets.

Figure 10 shows that the three models’ Fβ measure curves (for the five datasets used:
ECSSD, DUT-OMRON, DUTS-TE, HKU-IS and THUR15K) are very close to each other.
The CoSOV1Net model slightly dominates the two state-of-the-art lightweight salient
object-detection models for thresholds ≤ 150 and the two state-of-the-art models slightly
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dominate for thresholds ≥ 150. Thus, there is no clear dominance for one model among
the three. This proves that our CoSOV1Net model is comparable to these state-of-the-art
lightweight salient object-detection models while having the advantage of a low number of
parameters compared to them.

Figure 10. Fβ measure curves for (a) ECSSD, (b) DUT-OMRON, (c) DUTS-TE, (d) HKU-IS and
(e) THUR15K datasets.

For qualitative comparison, Figure 11 shows some images highlighting that our pro-
posed model (CoSOV1Net) is competitive with regard to the state-of-the-art SAMNet [16]
and HVPNet [19] models, which are among the best ones.

Images from rows 1 and 2 show a big salient object on a cloudy background and a big
object on a complex background, respectively: CoSOV1Net (ours) performs better than
HVPNet on these saliency maps. Row 3 shows salient objects with the same colors and
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row 4 shows salient objects with multiple colors: the SAMNet and CoSOV1Net saliency
maps are slightly identical and the HVPNet saliency map is slightly better. Row 5 shows n
image with three salient objects with different sizes and colors: two are big and one is very
small; the CoSOV1Net saliency map is better than SAMNet’s and HVPNet’s. Row 6 shows
red salient objects on a black and yellow background; SAMNet’s saliency map is the worst,
while CoSOV1Net and HVPNet perform well on that image. Row 7 shows a complex
background and multiple salient objects with different colors: CoSOV1Net performs better
than SAMNet and HVPNet. Row 8 shows tiny salient objects: the three models perform
well. On row 9, SAMNet has the worst performance, while CoSOV1Net is the best. Row
10 shows colored glasses as salient objects: the CoSOV1Net performance is better than
SAMNet’s and HVPNet’s. On row 11, SAMNet has the worst performance. On row 12 and
13, CoSOV1Net has the best performance. Row 18 shows a submarine image: CoSOV1Net
is better than SAMNet.

No Image GT or HVS SAMNet HVPNet CoSOV1Net

1

2

3

4

5

6

Figure 11. Cont.
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No Image GT or HVS SAMNet HVPNet CoSOV1Net

7

8

9

10

11

12

13

14

15

Figure 11. Cont.
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No Image GT or HVS SAMNet HVPNet CoSOV1Net

16

17

18

Figure 11. Comparison between SAMNet [16], HVPNet [19] and our proposed model, CoSOV1Net,
on some image saliency maps: 1st column: images; 2nd column: ground truth or human visual
system saliency map; 3rd column: SAMNet; 4th column: HVPNet; 5th column: CoSOV1Net (ours).

Figures 8–11 confirm that CoSOV1Net has an advantage on performance.

5. Discussion

The results show the performance of our model, CoSOV1Net, for accuracy measures
and lightweight measures. CoSOV1Net’s rank, when compared to state-of-the-art mod-
els, shows that it behaves as a lightweight salient object-detection model by dominating
lightweight measures and having good performance for accuracy measures (see Table 7).

Table 7. Our proposed model (CoSOV1Net)’s ranking with respect to existing salient object detection
[# Param: number of parameters, ↑: great is the best, ↓: small is the best].

Measure
# Param

(M) ↓
FLOPS (G)

↓
Speed
(FPS) ↑ ECSSD

DUT-
OMRON

DUTS-TE HKU-IS THUR15K

Fβ 1st 1st 1st 6th 7th 9th 11th 11th
MAE 1st 1st 1st 10th 10th 11th 11th 10th

Fω
β 1st 1st 1st 11th 9th 11th 15th 11th

The results also show that when CoSOV1Net is compared to state-of-the-art lightweight
salient object-detection models, its measure results are generally ranked among the best
for the datasets and measures used (see Table 8). Thus, we can conclude that CoSOV1Net
behaves as a competitive lightweight salient object-detection model.

Table 8. Our proposed model (CoSOV1Net)’s ranking with respect to lightweight salient object-
detection models [# Param: number of parameters, ↑: great is the best, ↓: small is the best].

Measure
# Param

(M) ↓
FLOPS (G)

↓
Speed
(FPS) ↑ ECSSD

DUT-
OMRON

DUTS-TE HKU-IS THUR15K

Fβ 1st 6th 7th 1st 3rd 3rd 3rd 4th
MAE 1st 6th 7th 1st 1st 1st 1st 2nd

Fω
β 1st 6th 7th 1st 3rd 1st 3rd 3rd
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As we did not use backbones from image classification (i.e., VGG [59], . . .) or lightweight
backbones (i.e., MobileNets [30,31] or ShuffleNets [32,33]), we conclude that CoSOV1Net’s
performance is intrinsic to this model itself.

Finally, putting together the measures for salient object-detection models and lightweight
salient object-detection models in a graphic, we noticed that the CoSOV1Net model is located
for Fβ measures with respect to FLOPS and for the number of parameters in the top left, while
for the FPS measure, it is located in the top right, thus demonstrating its performance as a
lightweight salient object-detection model (see Figure 12). This shows that CoSOV1Net is
competitive with the best state-of-the-art models used.

Figure 12. Example of trade-off between (a) Fβ measure and #parameters; (b) Fω
β measure and

#parameters; (c) Fβ measure and FLOPS; (d ) Fβ measure and FPS, for ECSSD.

The quantitative and the qualitative comparisons with SAMNet [16] and HVPNet [19]
showed that our proposed model has good performance, given that these state-of-the-art
models are among the best ones.

6. Conclusions

In this work, we present a lightweight salient object-detection deep neural network,
CoSOV1Net, with a very low number of parameters (1.14 M), a low floating-point oper-
ations number (FLOPS = 1.4 G) and thus low computational cost and respectable speed
(FPS = 211.2 on GPU: Nvidia GeForce RTX 3090 Ti), yet with comparable performance
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with state-of-the-art salient object-detection models that use significantly more param-
eters, and other lightweight salient object-detection models such as SAMNet [16] and
HVPNet [19].

The novelty of our proposed model (CoSOV1Net) is that it uses the principle of inte-
grating color in pattern in a salient object-detection deep neural network, since according
to Shapley [27] and Shapley and Hawken [20], color and pattern are inextricably linked
in color human perception. This is implemented by taking inspiration from the primary
visual cortex (V1) cells, especially cone- and spatial-opponent cells. Thus, our method
extracts features at the color channels’ spatial level and between the color channels at the
same time on a pair of opposing color channels. The idea of grouping color pushed us to
group feature maps through the neural network and extract features at the spatial level
and between feature maps, as carried out for color channels.

Our results showed that this strategy generates a model that is very promising, com-
petitive with most state-of-the-art salient object-detection and lightweight salient object-
detection models and practical for mobile environments and limited-resource devices.

In future work, our proposed CoSOV1Net model, based on integrating color into
patterns, can be improved by coupling it with the human visual system attention mecha-
nism, which is the basis of many lightweight models, to tackle its speed limitation and thus
produce a more efficient lightweight salient object-detection model.
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Abstract: Apple is an important cash crop in China, and the prediction of its freshness can effectively
reduce its storage risk and avoid economic loss. The change in the concentration of odor information
such as ethylene, carbon dioxide, and ethanol emitted during apple storage is an important feature to
characterize the freshness of apples. In order to accurately predict the freshness level of apples, an
electronic nose system based on a gas sensor array and wireless transmission module is designed,
and a neural network prediction model using an improved Sparrow Search Algorithm (SSA) based
on chaotic sequence (Tent) to optimize Back Propagation (BP) is proposed. The odor information
emitted by apples is studied to complete an apple freshness prediction. Furthermore, by fitting the
relationship between the prediction coefficient and the input vector, the accuracy benchmark of the
prediction model is set, which further improves the prediction accuracy of apple odor information.
Compared with the traditional prediction method, the system has the characteristics of simple
operation, low cost, reliable results, mobile portability, and it avoids the damage to apples in the
process of freshness prediction to realize non-destructive testing.

Keywords: gas sensor array; freshness prediction; chaotic sequence; sparrow search

1. Introduction

1.1. Background

Apples are one of the most commonly consumed fruits by people. China’s apple
production accounts for one-seventh of the world’s output, and it is an important cash crop
in China. The freshness of apples is the most important indicator to evaluate the quality of
apples, which directly affects the sales of apples. If the shelf life of apples can be accurately
predicted, it will provide an effective guarantee for quality and output value.

Fruit and vegetable freshness prediction technology has a long history, and its fresh-
ness prediction methods [1] mainly include fuzzy sense, dielectric property, mechanical
property, acoustic property, near-infrared spectroscopy, and electronic nose detection tech-
nology. Fuzzy sense mainly relies on individuals to judge the feel, smell, and experience
of objects, which are highly subjective. The dielectric property is detected by using the
dielectric constant of the fruit, which can be used for the detection of fruit sugar content
and moisture content. Acoustic characteristics are detected using acoustic properties such
as fruit reflection, scattering, transmission, and attenuation. Kinetic modeling is a technique
that uses the relevant mechanical properties of fruits for testing. Near-infrared spectroscopy
is the use of fruit to detect the absorption, reflection, scattering, transmission, and other
characteristics of light. The above four detection methods are generally for a single detec-
tion object, which needs to be judged one by one; the detection efficiency is relatively low;
and the requirements for equipment are high.

The smell of the same fruit at different growth stages is different. The odor between
different varieties is also different, and the electronic nose is used to simulate the biological
olfactory function to analyze and identify the odor for detection. In order to meet the re-
quirements of rapid and non-destructive real-time monitoring of food freshness, electronic
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nose technology based on gas sensors has developed rapidly, and in recent years, more
and more research on the freshness prediction of food has been applied by electronic nose
technology.

In 2008, Antihus [2] used the PEN2 electronic nose, principal component analysis
method, and LDA (Linear Discriminant Analysis) algorithm to monitor the shelf life of
tomato storage, which realized the monitoring and differentiation of tomatoes with different
storage times but did not realize the freshness prediction of tomatoes.

In 2013, Hui Guohua [3] proposed a storage time prediction method for Fuji apples
based on electronic nose, which used the random resonance method to calculate the gas
concentration data collected by electronic nose and established a prediction relationship
with the storage time of apples, which detected a single apple sampling time of 3 h and a
long detection time.

In 2016, Alireza Sanaeifar [4] used a low cost electronic nose to detect bananas with
different shelf lives and used SVM (support vector machine) technology to predict various
quality indicators of bananas, which had a good prediction effect on soluble solids and
hardness but a poor prediction effect on PH and titratable acid, so that the overall freshness
prediction effect of bananas did not reach the expected level.

In 2019, Wojciech Wojnowski [5] et al. proposed a prediction method for the bioamine
index of refrigerated chicken based on an electronic nose. Using a modular electronic
nose and a special sample chamber to analyze the volatile components of chicken and a
BP neural network for data modeling, the results show that it can accurately predict the
biogenic amine index of chicken. In this experiment, the biogenic amine index of chicken
was predicted, but the quality of the chicken was not evaluated.

In 2020, Parthasarathy Srinivasan [6] used a self-designed electronic nose to predict
the quality changes of Pacific white shrimp during storage and determined its quality
by measuring PH value, determining microbial content, texture analysis, and sensory
evaluation, and the identification rate of white shrimp stored at low temperatures was as
high as 96.29% through the Soft-max algorithm.

In 2019, Feng Lei [7] from Jiangnan University applied electronic nose and low-field
nuclear magnetic resonance technology to study the freshness of cucumbers, cherries,
and tomatoes, and by monitoring their flavor characteristics and the change of moisture
status, the PLS (Partial Least-Squares) algorithm model was used to predict the hardness,
soluble solids, and color difference of cucumbers and tomatoes and the quality changes
of cucumbers during storage. In the model, the detection cost of low-field NMR (Nuclear
Magnetic Resonance) technology is high, and it is difficult to popularize and practice.

In 2020, Chen Shaoxia [8] from Nanjing Agricultural University used an electronic
nose and near-infrared spectroscopy to predict the quality loss rate, VC (vitamin C) content,
hardness, and other quality indicators of baby vegetables during storage. The results
show that the combination of the two technologies has a good predictive effect on quality
indicators. However, the combination of the two technologies increases the detection
cost and makes the experimental process too complex and cumbersome. The infrared
spectroscopy technology has high requirements for light source selection, which is not
suitable for large-scale promotion.

In 2022, Zhang Man [9] proposed a method for predicting the freshness of cold fresh
mutton based on a BP neural network using gas information and established a prediction
model for the physical and chemical indicators (hardness, pH value, color, TVB-N (total
volatile basic nitrogen) content) that characterize the freshness of mutton by detecting
the environmental gas content. The results showed that the coefficient of prediction of
physicochemical properties was above 0.9, indicating that the BP neural network has a
good prediction effect. In the implementation method, the amount of data is large, and the
training time is long.

In summary, through the analysis of the research status at home and abroad, the use
of an electronic nose to predict the freshness of vegetables and fruits is achievable, and the
detection process has the advantages of non-contact and batch detection. At present, among
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the relevant detection methods, there are problems such as a complex detection process, a
high detection cost, an excessive amount of collected data, and a long detection time.

1.2. Related Work

In recent years, our research group has completed a number of studies on electronic
nose freshness detection technology for apples. Guo et al. [10] built an apple freshness
test platform using odor recognition technology combined with fuzzy sensory algorithms
and dielectric properties to measure apple quality, and the accuracy of apple freshness
determination was 93.75%. Liu et al. [11] used a self-made odor recognition system to
complete a rapid evaluation of the classification of the freshness of Fuji apples. The principal
component analysis algorithm was used to detect the freshness features of apples within
1 min, with an accuracy of 95.33%. Yan et al. [12] connected the smell of apples with their
sweetness through the gas sensor array and realized the classification of the sweetness of
apples. The CPSO-BP (BP optimization by Chaotic Particle Swarm Optimization) neural
network algorithm was adopted with an accuracy of 83.33%, which was comparable to the
detection accuracy of commercial near-infrared spectroscopy analyzers and realized the
non-destructive testing of the sweetness of apples.

Among the existing research results [13], an odor recognition system for evaluating
the freshness of Fuji apples was designed. By collecting and detecting the aroma emitted
by apples, cluster analysis and a classification model are established using stable system
response values. The continuous projection algorithm is used to optimize the sensor array,
solve the collinearity and overlap problems, and eliminate abnormal and redundant sensors.
It uses a ZigBee wireless sensor network to send data to the upward computer and uses
a BP neural network algorithm optimized by the hybrid leapfrog algorithm to recognize
the gas data, which improves the training speed and accuracy of the neural network. The
experimental results showed that the accuracy of the method was 98.67%, and it could
identify the freshness of Fuji apples quickly and comprehensively.

Apple odor information is feasible and reliable for apple quality detection, and on
this basis, apple freshness prediction is further realized. Combined with the existing
research results, The main work of this study is as follows: (1) This study detects the
gas concentration released by apples during storage by the self-designed electronic nose
system, accurately characterizes the freshness of apples by using a sensor array composed
of ethylene, ethanol, oxygen, and carbon dioxide, and uses a WSN (wireless sensor network)
as a means of information transmission. (2) Taking the prediction of the future freshness of
apples as the starting point, the SSA optimization BP neural network added to Tent is used
to further optimize the network to complete the prediction of apple odor characteristics.
The Tent-SSA-BP model for apple freshness prediction is established, and finally, low cost,
lossless, and efficient apple freshness prediction is realized.

2. Technical Principles

2.1. Freshness Prediction System

Using a self-made dual-chip wireless acquisition and processing system, the overall
function is completed by two main chips with each other, with gas concentration collection,
data information processing, wireless transmission, processing result display, and the
ability to work with other nodes. The block diagram of the system structure is shown in
Figure 1. WSN nodes are used to realize wireless transmission during acquisition. One of
the sensor arrays is connected and placed in the container where the apple is stored, and
the other node is connected to the host computer to transmit data back and be processed by
the host computer. Then multiple nodes can be added to form a wireless acquisition and
prediction network. The actual self-made hardware is shown in Figure 2.
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Figure 1. Block diagram of acquisition system.

 

Figure 2. Information processing center module (left), Information collection (right).

The sensor array is connected to the WSN transmitter module and placed in a gas
environment containing the sample to be measured, which converts the gas concentration
into an electrical signal packaged by the transmitter module. The receiving module is
connected to the host computer, receives the data packets from the transmitting module,
and uploads the data to the host computer through the serial port output for storage. The
control chip of the whole acquisition system is Msp430F449, which has complete functions
and can complete the preliminary data processing task. The ZigBee wireless transmission
module adopts the CC2530 RF module circuit and supports the ZigBee2007Ztack protocol
stack. The wireless transmission of data has the advantages of saving costs and making the
system more convenient.

2.2. Choice of Sensor

According to the types of gases involved in the physiological action of apples after
picking, the optimal sensor combination in the actual environment is selected to ensure the
accuracy of gas concentration collection. According to the previous research and research
results [14,15], the main response gases are selected as ethylene, ethanol, oxygen, and
carbon dioxide gas sensors to form a sensor array, and the type of selection and performance
indicators of the sensors are shown in Table 1. The sensor array composed of four types of
sensors selected has a good response characteristic curve to the volatile gas of apples, and
effectively improves the cross-sensitivity characteristics between the sensors during the
detection process and the identification accuracy of apple odor in the experiment.

Table 1. Composition of sensor array.

Type of Sensor Mainly Measured Gas Measuring Range Working Voltage/V

MQ3 ethanol (25~500) × 10−6 ppm 5.0
MG811 Carbon dioxide (0~10,000) × 10−6 ppm 6.0
ME2-O2 oxygen 0~25% Vol 3.3

ME3-C2H4 ethylene (0~100) × 10−6 ppm 5.0

The advantage of using the sensor module is that after the power sensor module is
turned on and the sensor module starts to work, the communication and data transmission
between the main control chip can be realized through the general IO port, In terms of the
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collected data, the concentration value, voltage, and current value can be collected through
the program according to its own needs. In addition, the use of ready-made sensor modules
can also reduce the volume of the main circuit board, and you only need to reserve different
voltage power supply interfaces and IO ports required for communication according to
different sensor power supply needs in the design work. It also provides convenience for
replacing the sensor, as the operation of the sensor ages and different environmental needs
change, so it is necessary to detect and replace the sensor in time to ensure the stability and
correctness of the collected data.

3. Algorithm Framework and Principle

The collected apple odor data is divided into a training set and a test set and imported
into the optimized neural network for modeling and training, and the subsequent concen-
tration change is predicted according to the current gas concentration of apple samples.
The apple freshness is identified and classified by the predicted concentration, so as to
realize the prediction of apple freshness.

3.1. Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) [16] is a new type of meta-heuristic algorithm. In
the algorithm, individuals are divided into discoverers, watchers, and followers, with each
individual corresponding to a solution. In the process of algorithmic foraging, the positions
of the three are continuously updated to complete the resource acquisition. Compared with
other optimization algorithms, this one is easy to implement and has relatively few control
parameters and strong local search ability. In order to avoid falling into the local optimum,
the tent chaotic sequence is introduced for optimization, which increases the population
diversity, thereby improving the search and exploitation performance of the algorithm and
increasing its stability [17].

The specific implementation steps are shown in Table 2:

Table 2. Tent-SSA implementation steps.

Step Number Step Content

1
Set the population size N, the number of discoverers pnum, the number of reconnaissance warnings snum,
the target function dimension D, the initial values of the upper and lower bounds ub and lb, respectively,
the maximum number of iterations T, and the solution accuracy ε.

2
Tent is applied to generate N D-dimensional vectors Zi, and within the range of values of the variable by
the carrier Xd

new = dmin + (dmax − dmin)Zi, dmin and dmax are, respectively, the minimum and maximum
values of the d-dimension vector Xd

new.

3 Calculate the fitness fi and select the optimal fitness fg, the worst fitness fw, and the corresponding
positions xb and xw, respectively.

4 Select the first pnum with good fitness to be the discoverer, and the rest as joiners; update the locations of
the discoverer and joiner.

5 Randomly select snum as the vigilant and update their position.

6 One iteration was performed to calculate the fitness fi and average fitness favg for each animal.
Perform an iteration to calculate the fitness and average fitness of each animal

7 If fi ≥ favg, the individual is chaotically disturbed, if the individual’s performance is better after
disturbance, it will replace the previous individual; otherwise, it will remain unchanged.

8
If fi < favg, mutation(x) = x(1 + N(0, 1)) was used to conduct Gaussian mutations on individuals. x
represents the original parameter value, N(0,1) represents the normally distributed random number, and
mutation(x) is the value after Gaussian mutation.

9 Update the optimal position xb and its fitness and the worst position xw and its fitness in the entire
population.

10 Determine whether the maximum number of iterations or solution accuracy is reached, and if so, the
loop ends and outputs the optimal parameter result.

11 If not, go back to Step 6 and iterate again.
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3.2. Optimized BP Neural Network

According to the prediction of concentration change, the shelf life of apples is predicted,
and the sparrow search algorithm is improved by the Tent chaotic sequence. SSA is used
to optimize the BP neural network in order to complete the prediction of apple odor
characteristics. Tent-SSA optimizes BP in two aspects: one is to optimize the weight
threshold of BP by using the optimization function of the optimization algorithm; Second,
the input layer is optimized, and the structure of the input matrix is changed by setting
the expected value and the number of cycles to find the best input matrix suitable for
prediction and the number of input nodes of BP, where the setting of the expected threshold
is further calculated by the fitting function of the relationship between the coefficient of
determination and the input vector. The optimized flowchart is shown in Figure 3.

Figure 3. Flowchart of the algorithm.

The specific implementation steps are shown in Table 3.
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Table 3. Optimized BP implementation prediction steps.

Step Number Step Content

1
Initialize. According to the input matrix, determine the BP topology, initialize
the maximum number of iterations T0, and determine the coefficient of
determination ε.

2 Use an optimized sparrow search algorithm for iterative optimization through
Tent.

3 The SSA algorithm is completed, the optimal parameters are output, and the
values are assigned to the BP network for prediction and calculate ε.

4 According to ε0 = 1.396 ∗ 10−6x8 − 2.548 ∗ 10−5x7 − 0.0003126x6 + 0.01221x5

−0.1327x4 + 0.701x3 − 1.905x2 + 2.461x− 0.2368
,

calculate the quality threshold value ε0 in this prediction result.

5 Make a judgement. If ε < ε0, adjust the input matrix and return to Step 1 until
the number of iterations T0 is reached or Step 6 is satisfied.

6 Make a judgement. If ε > ε0, the loop ends, and the predicted result is output.

The pros and cons of the prediction model have a great relationship with the coefficient
of determination ε0, and according to multiple experiments and statistical analysis of data,
there is a correlation between the prediction results of the model and the arrangement of
the input matrix. After a fixed number of iterations, the fitting curve between ε0 and the
input vector obtained by multiple fitting using MATLAB is shown in Figure 4.

Figure 4. Relation diagram of fitting curve.

It can be seen from the figure that ε0 shows a wave upward trend with the increase in
the number of input vectors. Freshness prediction is the analysis of concentration change
in days, and the number of input vectors should not be too large. The relationship between
derived ε0 and input vectors is shown in the following Equation (1), where x represents the
number of input vectors.

ε0 = 1.396× 10−6x8 − 2.548× 10−5x7 − 0.0003126x6 + 0.01221x5

−0.1327x4 + 0.701x3 − 1.905x2 + 2.461x− 0.2368
(1)

The goodness-of-fit degree verified by the results is above 0.96, and ε0 is used as
the key parameter for model prediction. Through experimental testing, under indoor
conditions of room temperature of 20 degrees Celsius and humidity of 50% RH, apples go
from fresh to rotten in about 40 days. Each apple sample in the 800 mL container has a gas
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emission stability value as the characteristic value of the sample. By detecting the change
in the characteristic value of apples within 40 days, a prediction model is established.

4. Freshness Classification Basis

In the process of storage, the physical and chemical changes of apples will lead to
changes in the water content, freshness, and content and arrangement of some organic
substances. The physiological tissue components inside apples can be regarded as an un-
conventional dielectric, and these physical and chemical changes will be further manifested
in the internal biomolecules of apples in the change of charge arrangement response char-
acteristics. Their macroscopic manifestation is the change of dielectric characteristics and
its parameters, so the dielectric constant can be used to express the state of apple freshness.

Apple freshness feature detection technology based on dielectric properties has been
relatively mature. In this experiment, a TH2822A handheld LCR instrument combined
with a computer and a shielded box with plates was used to complete the detection of the
dielectric constant of Fuji apples and classify the freshness of apples, and the relationship
between the dielectric characteristics of Fuji apples and freshness is shown in the following
table [10,11]. Among them, apples are divided into three categories: Fresh (apples without
any wrinkles or shrinkage phenomena, not rotten); Not freshness (apples shrink after a
period of time and do not decay); Decay (apples appear rotten).

5. Results and Analysis

5.1. Materials and Methods

Since the apples are picked, the cells in the fruit continue to respire, consuming oxygen
while producing ethanol and carbon dioxide. In addition, ethylene is closely related to the
ripeness of apples. Four gases: ethanol, ethylene, oxygen, and carbon dioxide, are selected
to establish the apple freshness model. A number of Fuji apples picked from the same batch
and purchased at the same time in the same market are selected and stored at 20 degrees
Celsius indoors, and the volatile gas of each sample is sampled every 24 h to record the gas
concentration change in the process from freshness to rot.

Based on the odor characteristics of apples, a BP neural network classification model
was established. The eigenvalues of each apple sample were taken from the stable response
values of the four sensors; the eigen input signal of the apple was four dimensions, and
the result to be classified was three types, according to the Kolmogorov theorem combined
with multiple experiments to verify that the number of optimal hidden layer nodes was 9,
so the structure of the neural network was 4-9-3.

A total of 180 groups of pre-processed sample feature signals were selected, and
144 groups were randomly selected for network training. And it defined the expected
output of each type of apple. For example, the expected output of a fresh apple sample is
[1, 0, 0]; Not fresh is [0, 1, 0]; Decay is [0, 0, 1].

5.2. The Data Collection

Apples of varying degrees of freshness, from fresh to rotten, are tested separately.
During the detection process, apple samples and fully preheated gas sensor arrays are put
into the container, one sample at a time. The odor information concentration change of
each sample in the container for 15 min is collected, and the relevant gas concentration
change curve detected is shown in Figure 5.
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(a) (b) 

 
(c) (d) 

Figure 5. Comparison of gas concentrations of apples with different freshness: (a) ethylene;
(b) ethanol; (c) oxygen; (d) carbon dioxide.

5.3. Data Pre-Processing

As can be seen from the data in the above figure, the concentration packets of ethylene
and oxygen in the collected data contain a lot of noise and need to be filtered. Linear least
squares filtering is selected, and the filtering effect is shown in Figure 6.

The characteristic values of the filtered noise data are extracted, and when the gas
emitted by the apple tends to be stable, the stable, average, and maximum values are taken
as the characteristic signal values for statistical analysis.

 
(a) (b) 

Figure 6. Cont.
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(c) (d) 

Figure 6. Gas concentration of apples with different freshness after filtering: (a) ethylene; (b) ethanol;
(c) oxygen; (d) carbon dioxide.

5.4. Predicted Results

Figures 7 and 8 show the comparison of training errors before and after BP neural
network optimization.

Figure 7. Training error before optimization (left), Training error after optimization (right).

As shown in Figure 7, the optimized neural network has a smaller prediction error.
The 40-day concentration change curve of an apple sample during the detection process
and the stable value concentration prediction curve of the apple sample before and after
the optimization of the BP neural network are shown in Figure 8.

Based on the comparison of the above figures, it can be seen that the prediction errors
of the prediction model before and after optimization are 0.002 and 0.0002, respectively,
and the error after optimization is significantly reduced. The coefficient of determination is
a key parameter used to reflect the reliability of model variables, and in order to evaluate
the stability and reliability of the model more intuitively, the coefficient of determination is
used as the evaluation index of the predictive model. Firstly, the sum of squares and total
squares of the residuals are calculated according to Formulas (2) and (3), SSres is the sum of
residual squares, SStot is the total sum of squares, yi represents the real data, y represents
the average, and fi is the predicted data. Then the determination coefficient is calculated
according to Formula (4).

SSres = Σ(yi − fi)
2 (2)

SStot = Σ(yi − y)2 (3)
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R2 = 1− SSres/SStot (4)

 
(a) (b) 

 
(c) (d) 

Figure 8. Comparison between the predicted value and the measured value of a sample before and
after optimization: (a) ethylene; (b) ethanol; (c) oxygen; (d) carbon dioxide.

Finally, the coefficient of determination before optimization is 0.80057 and the coeffi-
cient of determination R2 after optimization is 0.95851, which shows that the prediction
stability of the optimized model is better than that before optimization, the prediction error
is smaller, and the performance is stable.

5.5. The Classification Results

Through the pre-processed 180 sets of data, the ratio of training set to test set is 8:2
to divide, of which 144 groups are used to train the classification model and the other
36 groups are shuffled and sorted for recognition verification. We obtained some specific
detection results as shown in both Tables 4 and 5, and the result change of the neural
network for the freshness classification output of an apple sample within 30 days is shown
in Figure 9, where the maximum value of the three types of output values on the same day
is the predicted freshness result of the apple.

Table 4. The relationship between the dielectric properties and the freshness of Fuji apples [10,11].

Improvement of
Characteristics

The Equivalent
Capacitance CS/e−10F

Loss Factor
D/e−2

Relative Dielectric
Constant ε/e−1

fresh 2.0–2.5 6.1–6.8 5.0–5.5
not fresh 1.2–2.0 4.5–5.8 3.5–5.0

decay >0.8 >2.8 >2.8
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Table 5. Partial prediction results of an apple.

Time/d
The Actual
Freshness

The Classification Results of Neural Network Output Predicted
ResultsFresh Not Fresh Decay

6 Fresh 0.8272 0.1970 −0.0242 Fresh
10 Fresh 0.6521 0.4064 −0.0585 Fresh
15 Not fresh 0.2219 0.8077 −0.0297 Not fresh
20 Not fresh −0.0814 0.7105 0.3708 Not fresh
30 Decay 0.1381 0.1651 0.6967 Decay

Figure 9. Freshness prediction output of a single apple.

According to the predicted concentration, the freshness of the apples was classified
and identified. By comparing the recognition results, it was found that the accuracy rate of
the sixth day was the highest, and the accuracy rate was 100%. The lowest accuracy rate
was 80 percent on day 30. In practical application, the prediction days can be determined
according to the accuracy requirements of the freshness prediction, and the accuracy of the
freshness prediction will decrease with the increase in the number of days.

According to the predicted concentration, the freshness of apples was classified and
identified. Then the identification results are compared, and the accuracy rate is the highest
on the sixth day, which was 100%, and the lowest on the 30th day, which was 80%. In
practical applications, the number of predicted days can be determined according to the
requirements for freshness prediction accuracy, and the freshness prediction accuracy will
decrease as the time goes on.

6. Conclusions

In this paper, a gas sensor array based on a wireless transmission module is used to
collect the odor information of apples with different degrees of freshness, and a system
model for apple odor information prediction is established by combining deep learning
algorithms and intelligent senses by using the Tent-SSA-BP neural network prediction
model. Compared with existing prediction models, the experimental results show that
the model has strong optimization ability, high prediction accuracy, good stability, and
a coefficient of determination of more than 0.95. Combined with the apple freshness
classification system based on the gas sensor array, a complete apple freshness prediction
system is formed that can accurately predict the freshness of apples in the next 30 days
or so with the advantages of high accuracy, low cost, a small amount of data, convenient
detection, and non-destructive testing. In the next phase of research, further research will be
carried out on apples under practical application conditions, such as the shelf life of apples
under refrigerated conditions and the change in shelf life of apples during transportation.
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Abstract: Salient object detection (SOD), which is used to identify the most distinctive object in a given
scene, plays an important role in computer vision tasks. Most existing RGB-D SOD methods employ
a CNN-based network as the backbone to extract features from RGB and depth images; however,
the inherent locality of a CNN-based network limits the performance of CNN-based methods. To
tackle this issue, we propose a novel Swin Transformer-based edge guidance network (SwinEGNet)
for RGB-D SOD in which the Swin Transformer is employed as a powerful feature extractor to
capture the global context. An edge-guided cross-modal interaction module is proposed to effectively
enhance and fuse features. In particular, we employed the Swin Transformer as the backbone to
extract features from RGB images and depth maps. Then, we introduced the edge extraction module
(EEM) to extract edge features and the depth enhancement module (DEM) to enhance depth features.
Additionally, a cross-modal interaction module (CIM) was used to integrate cross-modal features
from global and local contexts. Finally, we employed a cascaded decoder to refine the prediction
map in a coarse-to-fine manner. Extensive experiments demonstrated that our SwinEGNet achieved
the best performance on the LFSD, NLPR, DES, and NJU2K datasets and achieved comparable
performance on the STEREO dataset compared to 14 state-of-the-art methods. Our model achieved
better performance compared to SwinNet, with 88.4% parameters and 77.2% FLOPs. Our code will
be publicly available.

Keywords: RGB-D salient object detection; edge guidance; transformer; cross-modal interaction

1. Introduction

Salient object detection (SOD) is an important preprocessing method in computer
vision tasks, with applications in video detection and segmentation [1], semantic segmenta-
tion [2], object tracking [3], etc.

CNN-based models for RGB SOD have yielded great performance in localizing salient
objects [4–8]. However, it is still difficult to localize the salient object accurately in scenes
such as those with low contrast or objects with a cluttered background. CNN-based RGB-D
SOD models, which employ features from RGB images and depth maps, have attracted
growing interest and presented promising performance [9–23]. However, some issues still
limit the performance of existing CNN-based RGB-D SOD models.

The first issue is that CNN-based models cannot effectively capture long-range de-
pendencies. Long-range semantic information plays an important role in identifying
and locating salient objects [24]. Due to the intrinsic locality of convolution operations,
CNN-based models cannot effectively extract global context information. In addition,
the empirical receptive field of CNN is much smaller than the theoretical receptive field,
especially on high-level layers [25].

The second issue is that depth maps are often noisy. The performance of RGB-D SOD
models relies on reliable RGB images and depth maps. Misleading information in depth
maps degrades the performance of RGB-D SOD models.

Sensors 2023, 23, 8802. https://doi.org/10.3390/s23218802 https://www.mdpi.com/journal/sensors73
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Global context information helps reduce errors created via poor depth maps. Trans-
formers can extract features and model long-range dependencies, and Transformer-based
methods have achieved outstanding performance in various computer vision tasks [26–29].
However, Transformers are less effective in capturing local features. The Swin Trans-
former [29], combining the advantages of Transformers and CNN, has been shown to
have a powerful feature extraction ability. Considering the above challenges, the Swin
Transformer is suitable as a feature extractor for RGB-D SOD tasks.

Swin Transformer-based models are relatively weak in their ability to model local
context information. Therefore, Swin Transformer-based models should pay more attention
to local feature information.

Based on the investigation above, we propose a novel Swin Transformer-based edge
guidance network (SwinEGNet) that enhances feature locality to boost the performance of
RGB-D SOD. We employed the Swin Transformer as the backbone to extract features from
RGB images and depth maps for capturing long-range dependencies. We introduced a
depth enhancement module (DEM) and a cross-modal interaction module to enhance local
features. Unlike other methods, we employed edge clues to enhance depth features rather
than edge clues as decoder guidance to directly refine the final prediction map. We designed
the edge extraction module (EEM) to extract edge information and the depth enhancement
module (DEM) to enhance depth features. Furthermore, we used a cross-modal interaction
module to effectively integrate information from global and local contexts. To effectively
explore the features of each layer, we employed a cascaded decoder to progressively refine
our saliency maps.

Our main contributions are summarized as follows:

• A novel edge extraction module (EEM) is proposed, which generates edge features
from the depth features.

• A newly designed edge-guided cross-modal interaction was employed to effectively
integrate cross-modal features, where the depth enhancement module was employed
to enhance the depth feature and the cross-modal interaction module was employed
to encourage cross-modal interaction from global and local aspects.

• A novel Swin Transformer-based edge guidance network (SwinEGNet) for RGB-D
SOD is proposed. The proposed SwinEGNet was evaluated with four evaluation
metrics and compared to 14 state-of-the-art (SOTA) RGB-D SOD methods on six
public datasets. Our model achieved better performance with less parameters and
FLOPs than SwinNet, as shown in Figure 1. In addition, a comprehensive ablation
experiment was also conducted to verify the effectiveness of the proposed modules.
The experiment results showed the outstanding performance of our proposed method.

Figure 1. Max F-measure, MAE, and model size of different methods on the NLPR dataset. Our
model achieves better performance with a smaller model size.

The remainder of this paper is structured as follows: The current status of RGB-D
salient object detection is presented in Section 2. The overall architecture, detailed structure,
and loss function of the proposed network are outlined in Section 3. The results of our
experiments are provided in Section 4. Finally, our conclusions are presented in Section 5.
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2. Related Work

CNN-based RGB-D salient object detection: Benefitting from the development of deep
learning and depth sensors, many CNN-based RGB-D SOD methods have recently been
proposed. Compared to RGB SOD methods, RGB-D SOD models employ depth clues as
complementary information and have shown outstanding performance in salient object
detection. Most RGB-D SOD models adopt CNN-based networks to extract features and
focus on cross-modal fusion strategies to improve salient object detection performance.
Various frameworks and fusion strategies have been proposed to effectively merge cross-
modal cross-scale features [14,17,21–23,30,31]. Zhang et al. [30] designed an asymmetric
two-stream network, where a flow ladder module is introduced to the RGB stream to capture
global context information and DepthNet for the depth stream. Zhang et al. [17] proposed a
multistage cascaded learning framework for RGB-D saliency detection, which minimizes
the mutual information between RGB images and depth maps to model complementary
information. Chen et al. [22] designed a triplet encoder network that processes RGB, depth,
and fused features separately to suppress the background noise in the depth map and
sharpen the boundaries of high-level features. Li et al. [14] designed a hierarchical alternate
interaction module that progressively and hierarchically integrates local and global contexts.
Wu et al. [21] proposed layer-wise, trident spatial, and attention mechanisms to fuse robust
RGB and depth features against low-quality depths. Wu et al. [23] employed a granularity-
based attention module to leverage the details of salient objects and introduced a dual-
attention module to fuse the cross-modal cross-scale features in a coarse-to-fine manner.

To address the insufficiency of obtaining global semantic information of CNN-based
networks, Liu et al. [7] proposed using a receptive field block to enhance feature discrim-
inability and robustness by enlarging the receptive field. Dilated convolutions can enlarge
the receptive field of CNN without loss of resolution. As a result, Yu et al. [32] presented
modules based on dilated convolutions to aggregate multiscale information. Liu et al. [8]
designed a global guidance module for RGB SOD that utilizes the revised pyramid pooling
module to capture global semantic information.

Transformer-based RGB-D salient object detection: The Transformer was first em-
ployed for machine translation and gradually introduced in computer vision tasks. Doso-
vitskiy et al. [26] proposed the first Vision Transformer (ViT), Wang et al. [28] proposed a
progressive shrinking pyramid Transformer (PVT), and Liu et al. [29] designed the Swin
Transformer. Subsequently, researchers employed the Transformer as the backbone net-
work to improve the detection performance of RGB-D SOD. Liu et al. [33] developed a
unified model based on ViT for both RGB and RGB-D SOD. Zeng et al. [34] employed
the Swin Transformer as the encoding backbone to extract features from RGB images and
depth maps. Liu et al. [35] employed PVT as a powerful feature extractor to extract global
context information and designed a lightweight CNN-based backbone to extract spatial
structure information in depth maps. Pang et al. [36] proposed using a novel top-down
information propagation path based on the Transformer to capture important global clues
to promote cross-modal feature fusion. Liu et al. [37] proposed using a cross-modal fusion
network based on SwinNet for RGB-D and RGB-T SOD. Roy et al. [38] employed the Swin
Transformer as the encoder block to detect multiscale objects.

3. Methodologies

In this section, we present the proposed Swin Transformer-based edge guidance
network (SwinEGNet). We provide an overview of our method and describe its main
components in detail, including the feature encoder, edge extraction module, edge-guided
cross-modal interaction module, cascaded decoder, and loss function.

3.1. The Overall Architecture

As illustrated in Figure 2, we present a Swin Transformer-based edge guidance network
(SwinEGNet). Inspired by [37], we employed edge clues to guide salient object detection.
However, unlike [37], edge clues were incorporated into cross-modal interaction blocks
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to enhance depth features rather than being employed as decoder guidance to refine the
final prediction map. The proposed SwinEGNet adopts the encoder–decoder structure. As
shown in Figure 2, SwinEGNet consists of a feature encoder, edge extraction module (EEM),
edge-guided cross-modal interaction module (EGCIM), and cascaded decoder. Firstly,
RGB images and depth maps are fed into two independent Swin Transformers for feature
extraction, and an EEM is proposed to extract edge features. Then, these features are fed into
EGCIM for depth feature enhancement and feature fusion, where the depth enhancement
module (DEM) is responsible for depth feature enhancement and the cross-modal interaction
module (CIM) is responsible for feature fusion. Finally, the fused features are fed into the
decoder block for saliency maps. The cascaded decoder was employed to effectively explore
the features of the four layers and progressively refine the saliency maps.

 

Figure 2. An overview of the proposed SwinEGNet. It consists of a feature encoder, an edge extraction
module (EEM), an edge-guided cross-modal interaction module (EGCIM), and a cascaded decoder.

3.2. Feature Encoder

In contrast to other Transformers, the Swin Transformer computes multihead self-
attention within a local window instead of the whole input to model locality relationships.
Furthermore, it employs a shifted window operation to model long-range dependence
across windows. Therefore, the Swin Transformer is suitable for feature extraction because
it incorporates the merits of the Transformer and CNN. Considering the performance and
computational complexity, we adopted the Swin-B Transformer as the backbone to extract
features from RGB images and depth maps, which accept an input size of 384 × 384.

RGB images and depth maps are fed into two independent Swin Transformers for
feature extraction. Considering the first layer contains redundant noisy information, the
extracted features of the last four layers are employed for feature fusion. The features can
be expressed as follows:

FR
i = trans(IR), i = 1, 2, 3, 4 (1)

FD
i = trans(ID), i = 1, 2, 3, 4 (2)

where FR
i denotes the RGB feature; FD

i denotes the depth feature, trans(·) denotes the
Transformer; and IR and ID denote the input RGB image and depth image, respectively.
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3.3. Edge Extraction Module

To extract edge features, we propose an edge extraction module (EEM). The extracted
edge features are fed into EGCIM to enhance the depth feature. The details of the proposed
EEM are illustrated in Figure 3.

Figure 3. Details of the proposed edge-guided cross-modal interaction module (EGCIM).

Shallow layers contain low-level information such as structure clues, while deep layers
contain global semantic information. They are all helpful in extracting edge information. In
contrast to other methods that employ parts of the depth features for edge prediction, we
employed all depth features for edge extraction, and the edge features were progressively
refined in a coarse-to-fine manner.

In particular, the depth features FD
i (i = 1, 2, 3, 4) are fed into a 1 × 1 convolutional

layer for channel reduction. Then, features FD
i (i = 2, 3, 4) perform the upsample operation

to generate the same size features as FD
i+1. The edge feature Fe

4 can be expressed as follows:

Fe
4 = Up

(
Conv1(FD

4 )
)

(3)

where Up(·) denotes the upsample operation.
Next, the edge feature performs a concatenation operation and a 3 × 3 convolutional

layer with a BatchNorm and a ReLU function to generate the edge feature Fe
i−1, which can

be expressed as follows:

Fe
i = C3BR

(
Cat

(
Conv1(FD

i ), Fe
i+1

))
, i = 1, 2, 3 (4)

where C3BR(·) denotes a 3× 3 convolutional layer with a BatchNorm and a ReLU function,
and Cat(·) denotes concatenation operation. The edge feature Fe

1 is the final edge feature
Fe. The final edge feature Fe will be fed into EGCIM for depth enhancement.

3.4. Edge-Guided Cross-modal Interaction Module

To enhance depth features and encourage cross-modal feature interaction, we designed
an edge-guided cross-modal interaction module (EGCIM) to integrate features from both
modalities, including a depth enhancement module (DEM) and a cross-modal interaction
module (CIM).

Depth enhancement module: Though Transformer-based methods sufficiently capture
global context information, they are relatively weak at capturing local context information
compared to CNN-based methods. Therefore, it is necessary to utilize local clues like edge
information to enhance the depth features. We designed a depth enhancement module
(DEM) to enhance the depth features, which introduces edge information extracted from
the depth features to these features for depth enhancement. The detailed structure of DEM
is shown in Figure 3.

The depth features FD
i and edge features Fe at a certain hierarchy i = 1, 2, 3, 4, FD

i
performs the convolution operation with a BatchNorm and a ReLU function for channel
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reduction, and Fe performs the downsample operation to gain the same size as FD
i . Then,

the depth features FD
i and edge features of the same size are fused using multiplication

and addition operations. The enhanced depth features can be expressed as follows:

FDE
i = C3BR

(
C3BR(FD

i ) + C3BR(FD
i )× Down(Fe)

)
(5)

where + denotes the addition operation, and Down(·) denotes the downsample operation.
The enhanced depth features FDE

i will be fed into CIM for feature fusion.
Cross-modal interaction module: We used a cross-modal interaction module (CIM)

to effectively combine RGB and depth modalities. The CIM contains a global attention
branch and a local attention branch to enhance globality and locality. In addition, a residual
connection is adopted to combine the fused features with RGB features for the preservation
of the RGB images’ original information. The local information of the depth features
enhances the RGB features to sharpen the details of salient objects, and the global context
information of the depth features enhances the RGB features to locate the salient object.

As shown in Figure 3, the RGB features are fed into a 3 × 3 convolutional layer with a
BatchNorm and a ReLU activation function for channel reduction. There are three branches
for feature fusion: the first branch employs global average pooling (GAP) to capture
global context information, the second branch employs 1 × 1 convolution to obtain local
information, and the third branch aims to keep the original information of RGB features.
Then, we carry out multiplication, concatenation, and addition operations for fusion. The
fused features can be expressed as follows:

FFuse
i = C3BR

(
C3BR

(
Cat

(
C3BR(FR

i ), Fg
i , Fl

i , Fo
i

))
+ Fo

i

)
(6)

FFuse
i = C3BR(FR

i )× FDE
i (7)

Fg
i = C3BR(FR

i )× C1B
(

C1BR
(

GAP(FDE
i )

))
(8)

Fl
i = C3BR(FR

i )× C1B
(

C1BR(FDE
i )

)
(9)

where GAP(·) represents the global average pooling operation, C1B represents a convolu-
tion operation with a BatchNorm function, C1BR represents a convolution operation with a
BatchNorm function and a ReLU function, and FFuse

i represents the fused features.

3.5. Cascaded Decoder

The cascaded encoder can effectively leverage the multilevel features and eliminate the
noise in low-level features, which improves the accuracy of salient maps. Moreover, deep-
layer supervision performs better than single supervision [13]. Therefore, we employed
a cascaded decoder for the final prediction map, as shown in Figure 3. The decoder
has four decoding levels corresponding to the four-level cross-modal feature interaction.
Consequently, the prediction map is refined progressively. Each decoder contains two
3× 3 convolution layers with a BatchNorm and a ReLU function, a dropout layer, and an
upsample layer. The initial prediction map S4 is fed into the decoder and concatenates with
the previous prediction map Sn−1 for refinement. The prediction features Si can be donated
as follows:

Si =

{
C3BR(Up(Si+1), Si), i = 1, 2, 3
C3BR(FFuse

i ), i = 4
(10)

where D(·) represents the decoder operation, Sn represents the prediction map, and Up(·)
represents the upsample operation. Next, features Si perform convolution operations to
obtain the prediction map, and S1 is the final prediction map.
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3.6. Loss Function

Detection loss is composed of the weighted binary cross-entropy (BCE) loss Lω
BCE and

the weighted intersection-over-union (IOU) loss Lω
IoU [39], which has been invalidated in

salient object detection. The detection loss can be formulated as follows:

Ld = Lω
BCE + Lω

IoU (11)

Lω
IoU and Lω

BCE pay more attention to the structure of SOD and the hard pixels to
highlight the importance of the hard pixel. As illustrated in Figure 2, four-level supervisions
are applied to supervise the four side-output maps. Each map Si is upsampled to the same
size as the ground truth map. Thus, the total loss function L can be expressed as follows:

L =
4

∑
i=1

(Li
d(Si, G) (12)

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets: We evaluated the proposed method on six widely used benchmark datasets:
STEREO (1000 image pairs) [40], NJU2K (2003 image pairs) [41], NLPR (1000 image pairs) [42],
LFSD (100 image pairs) [43], SIP (929 image pairs) [44], and DES (135 image pairs) [45]. For
a fair comparison, our training settings were the same as the existing works [12], which
consisted of 1485 samples from the NJU2K dataset and 700 samples from the NLPR dataset.
The remaining images from NLPR, DES, and NJU2K, and the whole SIP, STEREO, and LFSD
were used for testing.

Evaluation metrics: We adopted four widely used evaluation metrics for quantitative
evaluation, including S-measure (Sα, α = 0.5) [46], maximum F-measure (Fm) [47], maxi-
mum E-measure (Em) [48], and mean absolute error (MAE, M) [49]. S-measure evaluates
the structural similarity between the saliency map and ground truth, which is defined as
follows:

S = αSo + (1− α)Sr (13)

where α is a trade-off parameter set to 0.5, So represents the object perception, and Sr
represents the regional perception. F-measure focuses on region-based similarity that
considers precision and recall, which is defined as follows:

Fβ =
(

1 + β2
) P× R

β2 × P + R
(14)

where P denotes precision, R denotes recall, and β2 is a trade-off parameter set to 0.3. We
used the maximum F-measure as the evaluation metric. MAE assesses the average absolute
error at the pixel level, which is defined as follows:

MAE =
1

W × H

W

∑
i=1

H

∑
j=1
|S(i, j)− G(i, j)| (15)

where W and H represent the width and height of the image, respectively. S represents
the saliency maps, and G represents the ground truth. E-measure is employed to capture
image-level statistics and local pixel matching, which is defined as follows:

Em =
1

W × H

W

∑
i=1

H

∑
j=1

φFM(i, j) (16)

where φFM represents the enhanced alignment matrix. For a fair comparison, we used the
evaluation tools provided by [15].

79



Sensors 2023, 23, 8802

4.2. Implementation Details

We implemented our model on PyTorch with one NVIDIA A4000 GPU. The Swin
Transformer that has been pretrained on ImageNet was employed as our backbone network.
The parameters of the Swin-B model were initialized with the pretrained parameters, and
the remaining parameters were initialized with PyTorch default settings. The Adam
optimizer was employed to train the proposed model with a batch size of 5, a momentum
of 0.9, and a weight decay of 0.1. The initial learning rate was 1 × 10−4, which was then
divided by 10 for every 60 epochs. All images were resized to 384 × 384 for training and
testing. The single-channel depth image was replicated to a three-channel image, which
was the same as the RGB image. Data augment strategies, including random flipping,
rotating, and border clipping, were employed to augment the training data. The model
was trained for 120 epochs.

4.3. Comparison with SOTAs

Quantitative comparison: We compared the proposed network with 14 SOTA CNN-
based methods and Transformer-based methods, which were CMW [13], JLDCF [50],
HINet [51], DSA2F [20], CFIDNet [52], C2DFNet [53], SPSNet [19], AFNet [22], HiDANet [23],
MTFormer [54], VST [43], TANet [35], and SwinNet [37]. The compared saliency maps were
directly provided by the authors or generated via their released codes. The quantitative
comparison under four evaluation metrics on six datasets is shown in Table 1. As shown
in Table 1, our SwinEGNet performed the best on LFSD, NLPR, and DES datasets and
competitively performed on NJU2K, STEREO, and SIP datasets. In particular, SwinEGNet
performed outstandingly on the LFSD dataset, which is considered a challenging dataset.
Compared to the second model DSA2F, the improvements of S-measure, F-measure, E-
measure, and MAE were about 0.011, 0.006, 0.005, and 0.002, respectively. On the NJU2K
dataset, the performance of our method was comparable with SwinNet. On the STEREO
dataset, our method performed the best in Em.

Table 1. Quantitative comparison of SOTA methods under four evaluation metrics: S-measure (Sa),
max F-measure (Fm), max E-measure (Em), and MAE (M). ↑ denotes that higher is better, and ↓
denotes that lower is better. The best two results are shown in red and green fonts, respectively.

Metric CMW JLDCF HINet HAINet DSA2F CFIDNet C2DFNet SPSNet AFNet HiDANet MTFormer VST TANet SwinNet Our

LF
SD

Sm↑ 0.876 0.854 0.852 0.854 0.882 0.869 0.863 - 0.89 - 0.872 0.89 0.875 0.886 0.893
Fm↑ 0.899 0.862 0.872 0.877 0.903 0.883 0.89 - 0.9 - 0.879 0.903 0.892 0.903 0.909
Em↑ 0.901 0.893 0.88 0.882 0.920 0.897 0.899 - 0.917 - 0.911 0.918 - 0.914 0.925
M↓ 0.067 0.078 0.076 0.08 0.054 0.07 0.065 - 0.056 - 0.062 0.054 0.059 0.059 0.052

N
LP

R

Sm↑ 0.917 0.925 0.922 0.924 0.918 0.922 0.928 0.923 0.936 0.93 0.932 0.931 0.935 0.941 0.941
Fm↑ 0.912 0.916 0.915 0.922 0.917 0.914 0.926 0.918 0.93 0.929 0.925 0.927 0.943 0.94 0.941
Em↑ 0.94 0.962 0.949 0.956 0.95 0.95 0.957 0.956 0.961 0.961 0.965 0.954 - 0.968 0.969
M↓ 0.03 0.022 0.026 0.024 0.024 0.026 0.021 0.024 0.02 0.021 0.021 A0.024 0.018 0.018 0.017

N
JU

2K

Sm↑ 0.903 0.903 0.915 0.912 0.904 0.914 0.908 0.918 0.926 0.926 0.922 0.922 0.927 0.935 0.931
Fm↑ 0.913 0.903 0.925 0.925 0.916 0.923 0.918 0.927 0.933 0.939 0.923 0.926 0.941 0.943 0.938
Em↑ 0.925 0.944 0.936 0.94 0.935 0.938 0.937 0.949 0.95 0.954 0.954 0.942 - 0.957 0.958
M↓ 0.046 0.043 0.038 0.038 0.039 0.038 0.039 0.033 0.032 0.029 0.032 0.036 0.027 0.027 0.026

ST
ER

EO

Sm↑ 0.913 0.903 0.892 0.915 0.898 0.91 0.911 0.914 0.918 0.911 0.908 0.913 0.923 0.919 0.919
Fm↑ 0.909 0.903 0.897 0.914 0.91 0.906 0.91 0.908 0.923 0.921 0.908 0.915 0.934 0.926 0.926
Em↑ 0.93 0.944 0.92 0.938 0.939 0.935 0.938 0.941 0.949 0.946 0.947 0.939 - 0.947 0.951
M↓ 0.042 0.043 0.048 0.039 0.039 0.042 0.037 0.035 0.034 0.035 0.038 0.038 0.027 0.033 0.031

D
ES

Sm↑ 0.937 0.929 0.927 0.939 0.917 0.92 0.924 0.94 0.925 0.946 - 0.946 - 0.945 0.947
Fm↑ 0.943 0.919 0.937 0.949 0.929 0.937 0.937 0.944 0.938 0.952 - 0.949 - 0.952 0.956
Em↑ 0.961 0.968 0.953 0.971 0.955 0.938 0.953 0.974 0.946 0.98 - 0.971 - 0.973 0.98
M↓ 0.021 0.022 0.22 0.017 0.023 0.022 0.018 0.015 0.022 0.013 - 0.017 - 0.016 0.014

SI
P

Sm↑ 0.867 0.879 0.856 0.879 0.861 0.881 0.871 0.892 0.896 0.892 0.894 0.903 0.893 0.911 0.9
Fm↑ 0.889 0.885 0.88 0.906 0.891 0.9 0.895 0.91 0.919 0.919 0.902 0.924 0.922 0.936 0.93
Em↑ 0.9 0.923 0.888 0.916 0.909 0.918 0.913 0.931 0.931 0.927 0.932 0.935 - 0.944 0.935
M↓ 0.063 0.051 0.066 0.053 0.057 0.051 0.052 0.044 0.043 0.043 0.043 0.041 0.041 0.035 0.04

Qualitative comparison: We qualitatively compared seven representative methods
on challenging scenes. The first scene had a similar foreground and background (first
row), the second scene had poor depth map (second row and third row), the third scene
had a complex background (fourth row and fifth row), the fourth scene had a small object
(sixth row), the fifth scene had multiple objects (seventh row and eighth row), and the sixth
scene had a fine structure (ninth row). As shown in Figure 4, our method obtained the best
detection results. For the first scene, the foreground and background of the RGB image
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were similar, but the depth map provided correct information. Our method located salient
objects better than other methods thanks to the power of EEM and EGCIM. For the second
scene, though the depth map provided incorrect information, our method successfully
located salient objects by eliminating misleading information of the poor depth map. For
the fourth scene, our method fused the RGB feature and depth feature the best. For the
fifth scene, our method not only located the salient objects but also maintained the sharp
boundaries. These all indicate the effectiveness of our model.

 

Figure 4. Visual comparison of our method and seven SOTAS, including CMW, DSA2F, CFIDNet,
C2DFNet, AFNet, VST, and SwinNet.

4.4. Ablation Study

We conducted comprehensive ablation studies on LFSD and STEREO datasets to
evaluate the effectiveness of the proposed modules in our proposed model.

Effectiveness of Swin Transformer backbone: We replaced the feature encoder with
ResNet50 to verify the effectiveness of the Swin Transformer backbone. As shown in Table 2,
the Transformer-based model showed better performance in all the evaluation benchmarks
and metrics, especially on the LFSD dataset. We show the visual comparison of ResNet50
and Swin Transformer in Figure 5. The ResNet50 was inferior to the Swin Transformer.
This validates the effectiveness of the Swin Transformer backbone for the RGB-D SOD.

Table 2. Effective analysis of the proposed modules on two datasets. The best results are shown in bold.

Models
LFSD STEREO

M↓ Sm↑ Fm↑ Em↑ M↓ Sm↑ Fm↑ Em↑
Ours 0.052 0.893 0.909 0.925 0.031 0.919 0.926 0.951

ResNet50 0.084 0.835 0.864 0.868 0.044 0.893 0.0.9 0.927
w/o EGCIM 0.067 0.87 0.887 0.902 0.035 0.913 0.922 0.946

w/o DEM 0.064 0.875 0.893 0.906 0.032 0.917 0.925 0.949
w/o CIM 0.066 0.869 0.887 0.901 0.033 0.914 0.923 0.947
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Figure 5. Visual comparison of the ablation study.

Effectiveness of EGCIM: To explore the effectiveness of EGCIM, we replaced EGCIM
with a multiplication operation. In Table 2, we quantitatively demonstrate the contribution
of the EGCIM. The performance of our model degraded without the help of EGCIM. This
validates the effectiveness of the edge-guided cross-modal interaction module.

Effectiveness of DEM in EGCIM: To verify the effectiveness of DEM in EGCIM, we
removed DEM from our full model. In Table 2, we quantitatively demonstrate the con-
tribution of DEM. As shown in Table 2, the depth enhancement module improved the
performance of the proposed model, especially on the LFSD dataset. The MAE, S-measure,
F-measure, and E-measure are improved by about 0.012, 0.018, 0.013, and 0.009 in the LFSD
dataset, respectively.

Effectiveness of CIM in EGCIM: We replaced CIM with a multiplication operation
to verify the effectiveness of CIM in EGCIM. In Table 2, we quantitatively demonstrate
the contribution of CIM. As shown in Table 2, the performance degradation caused by
removing CIM supports our claim that the cross-modal interaction module can effectively
fuse the RGB and depth features.

4.5. Complexity Analysis

We conducted a complexity comparison with the other five models on the number of
parameters and FLOPs, as shown in Table 3. The performance of the CNN-based models was
relatively poor compared to the Transformer-based models. Our model performed better with
fewer parameters and lower computational costs compared to SwinNet. The parameters and
FLOPs of our model were 175.6 M and 96 G, respectively. Our model achieved comparable
performance to SwinNet, yielding 88.4% parameters and 77.2% FLOPs.

Table 3. Complexity comparison and performance on LFSD and NLPR datasets. The best two results
are shown in red and green fonts, respectively.

Backbone Model Num_Parameters ↓ FLOPs ↓ LFSD
Fm ↑

NLPR
Fm ↑

CNN

CMW 85.7 M 208 G 0.899 0.912
HiDANet 59.8 M 73.6 G 0.877 0.922

JLDCF 143.5 M 211.1 G 0.862 0.916
AFNet 242 M 128 G 0.902 0.93

Transformer
SwinNet 198.7 M 124.3 G 0.903 0.94

Ours 175.6 M 96 G 0.909 0.941

4.6. Failure Cases

We show some failure cases on the challenging scenes in Figure 6: the first scene
with multiple objects (first row and second column), and the second scene with poor
depth map (third row and fourth row). As shown in the first scene, our model could not
accurately locate multiple objects with complex backgrounds. Global feature relations
are important for locating multiple salient objects. Multihead self-attention within a local
window enhanced the locality, but it also limited the long-range model ability of the Swin
Transformer. The second scene indicates that our model could not locate salient objects
well in some scenes with poor depth maps. In addition to the low quality of depth maps,

82



Sensors 2023, 23, 8802

there were misalignments between RGB images and depth maps at the pixel level. It is
difficult to effectively fuse features for direct pixel-wise fusion. We will conduct further
research in the future.

 
Figure 6. Visualization of failure cases in challenging scenes.

5. Conclusions

In this paper, we propose a novel Swin Transformer-based edge guidance network for
RGB-D SOD. We employed the Swin Transformer as the backbone to extract features from
RGB images and depth maps for capturing the long-range dependencies. Additionally, we
proposed using the edge extraction module (EEM), the depth enhancement module, and
the cross-modal interaction module (CIM) to enhance the local features. The EEM extracts
edge features from the depth features, and the DEM employs edge information to enhance
the depth features. The CIM effectively fuses RGB features and depth features from global
and local contexts. With all these modules working together, our SwinEGNet model can
accurately localize salient objects in various complex scenarios with sharp boundaries.
Countless comparison studies and ablation experiments demonstrated that the proposed
SwinEGNet showed outstanding performance on six widely used RGB-D SOD benchmark
datasets. As an independent module, EEM can be applied to related tasks. In the future,
we will extend our model to RGB-T salient object detection.
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Abstract: The accurate and efficient detection of defective insulators is an essential prerequisite
for ensuring the safety of the power grid in the new generation of intelligent electrical system
inspections. Currently, traditional object detection algorithms for detecting defective insulators in
images face issues such as excessive parameter size, low accuracy, and slow detection speed. To
address the aforementioned issues, this article proposes an insulator defect detection model based on
the lightweight Faster R-CNN (Faster Region-based Convolutional Network) model (Faster R-CNN-
tiny). First, the Faster R-CNN model’s backbone network is turned into a lightweight version of it by
substituting EfficientNet for ResNet (Residual Network), greatly decreasing the model parameters
while increasing its detection accuracy. The second step is to employ a feature pyramid to build
feature maps with various resolutions for feature fusion, which enables the detection of objects
at various scales. In addition, replacing ordinary convolutions in the network model with more
efficient depth-wise separable convolutions increases detection speed while slightly reducing network
detection accuracy. Transfer learning is introduced, and a training method involving freezing and
unfreezing the model is employed to enhance the network’s ability to detect small target defects.
The proposed model is validated using the insulator self-exploding defect dataset. The experimental
results show that Faster R-CNN-tiny significantly outperforms the Faster R-CNN (ResNet) model in
terms of mean average precision (mAP), frames per second (FPS), and number of parameters.

Keywords: target detection; lightweight; self-explosion defects in insulators; EfficientNet; small
target defects

1. Introduction

Insulators, as important components of high-voltage transmission lines, serve the
functions of electrical separation and support for conductors [1]. Due to their long-term
outdoor exposure to sunlight, rain, climate changes, and chemical corrosion, insulators
often suffer from self-exploding defects, causing the disconnection of insulator strings
and interfering with their performance, thus affecting the safety and stability of power
systems [2]. Insulator detection methods are generally divided into two types. The first is
manual inspection, where workers directly observe insulators to identify defective parts.
However, this method is time-consuming and not safe. The second is intelligent inspection,
which can effectively locate defective parts by carrying edge detection equipment on drones
for regular inspection of insulators. This is also the current mainstream inspection method.

Currently, the implementation of insulator defect detection mainly relies on traditional
methods and deep learning methods. Traditional detection methods primarily differentiate
insulators from the background based on features such as size, texture, and color of the
images [3]. For example, Tan et al. [4] takes a fusion algorithm based on insulator contour
features and grayscale similarity matching. It can extract the contours of insulator pieces,
accurately separate them, and construct a defect detection model based on the spacing
between insulator pieces and grayscale similarity matching. Liu et al. [5] proposed an
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edge-based segmentation method for insulator strings. It uses a multi-scale morphological
gradient algorithm to extract the edges of insulator strings, determine the largest connected
region, and provide guidance for addressing the problem of mis-segmentation of iron caps
and umbrella discs caused by edge loss in infrared images of insulator strings. However,
these traditional detection methods have low efficiency in feature extraction, poor general-
ization capabilities, and difficulty in recognizing small-scale and high-likelihood objects
in images [6].

To enhance the feature extraction capability and anti-interference ability of insulator
detection, traditional detection methods are no longer able to meet modern needs. Many
scholars have turned their attention to deep learning methods. For example, Guo et al. [7]
used a lightweight target detection network called CenterNet-GhostNet to address the issue
of the large number of parameters in the insulator defect detection model, which makes it
difficult for unmanned aerial vehicles to deploy on the edge. This network significantly
reduces the number of network parameters while achieving a slight increase in detection
accuracy, thereby improving the detection speed of the network. Jia et al. [8] considered a
lightweight detection method called MDD-YOLOv3. The improved YOLOv3 can quickly
and accurately recognize and locate insulator defects in complex backgrounds. Li et al. [9]
proposed a method that utilizes multiple-scale feature encoding and dual attention fusion
to improve the accuracy and speed of detecting insulator defects in transmission lines. It
has a certain reference value for accurate insulator defect detection by unmanned aerial
vehicles. In summary, compared with the traditional manual feature extraction of insulators,
deep learning-based detection methods can automatically and accurately extract target
features and have stronger generalization capabilities.

In recent years, due to the development of “Intelligentization” in the power system,
the combination of using drones to collect insulator defect data and computer vision
technology has become a popular method for intelligent inspection [10,11]. However, deep
learning-based object detection networks usually require a large number of computational
resources and parameters for training and inference, which limits their deployment and
usage in practical applications. Therefore, the construction of lightweight detection models
has become crucial [12–14].

The existing deep learning detection methods can be mainly divided into two cate-
gories. One is the two-stage detection model represented by R-CNN, Faster R-CNN, and
Mask R-CNN. These algorithms require two-stage processing: (1) candidate region acquisi-
tion and (2) classification and regression of candidate regions. The other is the single-stage
detection model represented by the YOLO series, which simultaneously obtains candidate
regions and categories through joint decoding. Among them, the Faster R-CNN model, as
a representative of two-stage networks, exhibits a more pronounced advantage when it
comes to handling high-precision, multi-scale, and small object detection tasks. However,
the original Faster R-CNN (ResNet) model suffers from significant drawbacks in terms of
detection speed performance. Firstly, its feature extraction capability is relatively poor. This
is because the original ResNet cannot effectively extract high-level semantic information
and low-level fine-grained features from images, making it difficult for deeper feature
maps to learn information about small objects. Secondly, the network’s inference speed
is slow. The original model contains a lot of redundant information, resulting in a slow
detection speed. Finally, the network parameters are not well optimized. For instance, the
original model’s learning rate can easily get stuck in local optima, leading to a decline in
the overall model performance.

In this paper, we have lightweighted the original Faster R-CNN (ResNet) and con-
structed a new detection model (Faster R-CNN-tiny), as shown below:

(1) We use the lightweight EfficientNet [15] as the backbone network to capture multi-
scale detailed features of faulty object. These features serve as inputs to the Feature
Pyramid Network (FPN) [16], enhancing the network’s capability to extract character-
istics from defects of various scales.
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(2) A feature fusion module is added to effectively combine high-level semantic infor-
mation with low-level detail information, enhancing the accuracy of defect detection.
Ordinary convolutions in the network are replaced with depth-wise separable convo-
lutions (DSConv), which improve the detection speed to some extent.

(3) Transfer learning methods [17] are employed in the network training process, com-
bining freezing and unfreezing training strategies to enhance the network’s detection
performance for defects in complex environments.

(4) The proposed lightweight Faster R-CNN-tiny object detection model can effectively
locate the defects of insulators by learning a large number of features from self-made
defect images of insulators. This is a crucial step towards the edge detection of
defects in the next step. We have also introduced a new dataset for insulator defects
called Tiny-Insulator.

The rest of this paper is structured as follows: In Section 2, we introduce the structure
and principles of the original Faster R-CNN model. In Section 3, we provide a detailed
description of the target model, Faster R-CNN-tiny, analyzing the functionality and flow of
each component. In Section 4, we validate the impact of different network structures on
experimental performance using the insulator defect dataset. In Section 5, we summarize
this research and discuss future work.

2. Related Works

2.1. Faster R-CNN

Defect detection involves the following two tasks: defect classification and localization.
This paper chooses two-stage Faster R-CNN [18] as the lightweight base network structure,
which exhibits a high accuracy in object detection tasks. Its working principle is to first
identify and locate defective insulators in an image, then select them with rectangles, and,
finally, mark their belonging categories near the rectangles.

Faster R-CNN is a two-stage object detection network proposed by Ross B. Girshick,
building upon the foundations of R-CNN and Fast R-CNN. As shown in Figure 1, the
Faster R-CNN network structure consists of four parts: the backbone network, the Region
Proposal Network (RPN), the Region of Interest (RoI) pooling, and the detection network.
The backbone network is a ResNet network stacked with multiple 7 × 7 convolutions of
stride 2 and 3 × 3 convolutions of stride 2. The RPN is a feature-processing part composed
of two parallel 1 × 1 convolutions by 3 × 3 deep separable convolutions (DWConv). The
detection network consists of two parallel fully connected layers (FC).
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Figure 1. The original Faster R-CNN network structure.

The entire algorithm process is divided into several parts. First, the backbone network
extracts features from preprocessed images by capturing multi-scale information with
inter-channel interactions. Then, these features are used as input for the RPN, which
generates candidate boxes. The candidate boxes are mapped to the feature map output by
the backbone network. The obtained feature matrix is passed through the RoI Pooling layer,
resulting in a 7 × 7 feature map. Finally, the detection network utilizes the feature map to
obtain class information and bounding box regression parameters. The candidate boxes are
adjusted using the bounding box regression parameters to obtain the final target position.

To address the low accuracy and slow speed issues of the original model in insulator
defect detection, we propose a lightweight defect detection model based on Faster R-
CNN-tiny. The aim is to make the original detection model more suitable for future edge
deployment requirements.

2.2. ResNet

ResNet, which stands for Deep Residual Network, is a landmark convolutional neural
network (CNN) that uniquely solves the problems of gradient disappearance and explosion
in deep neural networks.

In 2015, ResNet won the ILSVRC (ImageNet Large Scale Visual Recognition Challenge)
championship and significantly improved error accuracy in the ImageNet classification task.
This is mainly due to ResNet’s “shortcut connections”, also known as “skip connections”.
Through this connection method, the output of the deep network can be directly added to
some layers of the shallow network, which helps the gradient to be directly transmitted to
the shallow network. This design allows the network to train deep networks with dozens
or even hundreds of layers.

2.3. EfficientNet

EfficientNet, proposed by Google in 2019, constructs models through compound
scaling to improve model efficiency. It is composed of one ordinary convolutional layer
and sixteen mobile inverted bottleneck convolution modules (MBConv). Among them, the
MBConv module is its core component, which mainly draws inspiration from the residual
structure of MobileNetv3 [19]. As shown in Figure 2, it has the following functional features:
firstly, a Swish activation function [20] is used instead of a ReLU activation function, and
Swish performs better on deep models. Secondly, a squeeze-and-excitation networks
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(SENet) [21] attention mechanism is added to each MBConv module to strengthen the
extraction of small-scale target features and suppress useless feature information. Thirdly,
dropout layers are introduced. When there are shortcut branches (shortcuts), the main
branch of the whole module will be randomly dropped, leaving only the shortcut branch,
making the network lighter and improving the detection speed of the model.

Figure 2. The MBConv module in the EfficientNet network.

The main difference between the two lies in their network structure and optimiza-
tion strategies. EfficientNet adopts a deeper and wider network structure, while using
compound scaling to adjust the depth, width, and resolution of the network. This makes
EfficientNet reduce the number of parameters and computations, thereby improving the
efficiency of the model. On the other hand, ResNet mainly solves the vanishing and explod-
ing gradient problems using residual blocks, with a relatively simple network structure.

3. Methodology

In order to make the model more suitable for the detection of small targets and reduce
the number of model parameters, this paper proposes a new object detection model called
Faster R-CNN-tiny. The Faster R-CNN-tiny model only improves the backbone part of the
original Faster R-CNN model, as shown in Figure 3. The input image first goes through a
feature extraction layer (EfficientNetB0) to obtain feature maps at different resolutions (C2,
C3, C4, C5), then enters a feature fusion layer (Feature Pyramid Network), and, finally, the
resulting different feature maps (P2, P3, P4, P5) are further processed in the RPN.

 

Figure 3. The backbone of the Faster R-CNN-tiny model.

To enable Faster R-CNN-tiny to detect more small object features, we have added a D2
object detection layer to detect shallower features. This can be specified as follows: First,
the use of EfficientNet with attention mechanisms as the backbone network for feature
extraction from input images, addressing the issue of partial feature information loss in the

90



Sensors 2024, 24, 290

generation of multi-resolution feature maps by the backbone network [22]. After that, a
lightweight feature fusion module is proposed and added to the backbone network. This
module effectively integrates low-level positional information with high-level semantic
information, ensuring that the fused feature maps retain sufficient detailed information.
Finally, DSConv are employed to replace regular convolutions in the FPN and RPN. This
not only reduces the network’s parameter count but also enhances its detection speed.

To ensure that the target detection algorithm has a good scale invariance, the original
Faster-RCNN algorithm generates anchor boxes with ratios of (1:1, 1:2, 2:1) and sizes of (64,
128, 256) when traversing the feature map. However, the original Faster-RCNN algorithm’s
anchor boxes are not suitable for detecting small targets or actual-scale defective insulator
targets. To obtain better anchor box ratios, this paper statistically analyzes the length-to-
width ratios of the defective insulators in the dataset. The length-to-width ratio of the
insulators is approximately 60% for 1:1, 26% for 2:1, 11% for 3:1, and 3% for 4:1. Therefore,
in this paper, the anchor box ratios are set as (1:1, 2:1, 3:1) with sizes of (16, 32, 64, 128, 256).

After a series of consecutive convolutional and pooling operations on the input image,
the information on the feature map gradually diminishes. In Figure 3, the C2 feature map
layer contains more object information than the C3 feature map layer. Therefore, this paper
introduces detection in the C2 feature layer, which contains more feature information. In the
original Faster R-CNN algorithm, the feature extraction part only utilized ResNet, whereas
the new model incorporates EfficientNet and FPN. When the input image size is 640 × 640,
the detection layer corresponding to C3 has a size of 80 × 80, suitable for detecting objects
larger than 8 × 8; the detection layer corresponding to C4 has a size of 40 × 40, suitable for
detecting objects larger than 16 × 16, and the detection layer corresponding to C5 has a
size of 20 × 20, suitable for detecting objects larger than 32 × 32.

3.1. Feature Extraction Layer

Traditional object detection algorithms have many similarities between the feature
layers in their feature extraction networks. While these similar feature layers improve accu-
racy, they also introduce a lot of redundant information, making the network models large
and difficult to deploy on small mobile devices [23,24]. Therefore, research on lightweight
networks has become a hot topic. Currently, the mainstream lightweight networks include
SqueezeNet, ShuffleNet, EfficientNet, RegNet, and MobileNet. Considering that the detec-
tion targets are small objects and that the purpose is to build a lightweight and efficient
feature extraction network, EfficientNetB0 is chosen as the backbone network. EfficientNet
is a network model obtained through Neural Architecture Search (NAS), and it achieves
EfficientNet B0~B7 network models by rationalizing the configuration of the following
three parameters: image input resolution (r), network depth (d), and network width (w), as
shown in Figure 4.
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Figure 4. Illustrates the NAS search process within EfficientNet. (a) baseline and (b) compound scaling.

Then, the NAS search is used to obtain the best r, d, and w factors for the Efficient-
Net network.

s.t : N(d, w, r) = �
i=1...s F̂d·L̂i

i

(
X〈r·Ĥi ,r·Ŵi ,w·Ĉi〉

)
(1)

MAX
d,w,r [Accuracy(N(d, w, r))] (2)

Memory(N) ≤ Target_memory (3)

FLOPs(N) ≤ Target_flops (4)

In Equations (1)–(4),
�

i = 1 . . . s
represents the multiplication operation. F̂d·L̂i

i represents

that the F̂i operation is repeated d·L̂i times in the i-th stage. F̂i represents an operation.
Here, X<r·Ĥi ,r·Ŵi ,w·Ĉi>

represents the feature matrix of the i-th stage’s input; < Ĥi, Ŵi, Ĉi >
represents the height, width, and number of channels of X. Moreover, d, r, and w are used

92



Sensors 2024, 24, 290

for scaling, respectively, L̂i, Ĥi, and Ĉi. Memory and FLOPs represent the limitations of the
hardware’s memory and maximum computational load.

By utilizing the MBConv module mentioned above (Figure 2), a lightweight network
structure called EfficientNet can be constructed. Depending on the network’s different
stages, the MBConv structure can be modified in various ways. Firstly, the number of
channels in the input features is expanded through 1 × 1 convolutions. Depending on the
needs of each stage, DSConv can be selected in either a 3 × 3 or 5 × 5 size to integrate
the extracted features and reduce noise. Then, SENet modules are used to enhance the
ability to extract features at small target scales, followed by dimensionality reduction using
1 × 1 convolutions. Finally, shortcut connections only exist when the shape of the input fea-
ture matrix and the final output feature matrix are the same, allowing for the superposition
of two types of features to enhance the network’s feature extraction capabilities.

3.2. Feature Fusion Layer

The original Faster-RCNN object detection network only uses a single feature layer
with high-order semantic information to predict target information. For small object
detection, the high-order semantic feature maps lack the underlying information about
details and have an impact on the accuracy of the detection results [25,26]. The new model
leverages the multi-resolution feature maps from the feature extraction layer; these are
merged through the feature fusion layer to retain the panoramic information on the targets.

To provide a more intuitive understanding of the principle behind the feature fu-
sion layer, we have separately illustrated the feature fusion layer in Figure 5, as shown.
Different resolution feature maps of 20 × 20, 40 × 40, 80 × 80, and 160 × 160 obtained
from the feature extraction layer serve as inputs to the feature fusion layer. These four
feature maps of varying scales contain rich semantic and positional information, and their
effective fusion results in the final full-sized feature map, greatly enhancing the network’s
detection performance. Firstly, a step-1 1 × 1 convolution operation is applied to the four
feature layers—L2, L3, L4, and L5—obtained from the feature extraction layer, resulting
in dimensions of 112 and providing the necessary conditions for the subsequent feature
fusion. Then, the higher-level feature maps are upsampled using bicubic interpolation and
are pixel-wise added to the corresponding lower-level feature maps from the next layer to
produce the initial feature fusion map. Finally, a DSConv operation is performed on the
initial feature fusion map to integrate the extracted features and reduce noise interference
on the detection results.
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Figure 5. Feature fusion layer construction.

3.3. Depth-Wise Separable Convolution

Addressing the issues of large network size and slow detection speed, a lightweight
network structure is proposed. The common convolutions in the FPN and RPN are replaced
with DSConv [27], which reduces network parameters and computation while increasing
detection speed.

As shown in Figure 6, DSConv consists of two main steps: channel-wise convolution
(DWConv) and point-wise convolution (PoConv). DWConv produces feature maps with the
same number of channels as the input by applying a convolutional kernel to each channel in the
feature map after the convolution procedure. PoConv establishes dimensional links between
the feature maps created by DWConv by further convolving them using a 1 × 1 convolution.

The parameter volume of a normal convolution is Dw × Dh × M× N, while that of
a channel−wise convolution is Dw × Dh × M × 1 and that of point−wise convolution
is Dw × Dh × 1× 1. The ratio of the parameter volume of DSConv to that of a normal
convolution is the following:

Dw × Dh ×M× 1 + 1× 1×M× N
Dw × Dh ×M× N

=
1
N

+
1

Dw × Dh
(5)

For feature maps in which the scale does not change after processing, the calculation
volume of a normal convolution is Dw × Dh × Fw × Fh ×M× N. The calculation volume
of DWConv is Dw ×Dh × Fw × Fh ×M× 1 and that of PoConv is 1× 1× Fw × Fh ×M× N.
The ratio of the calculation volume of DSConv to that of a normal convolution is as follows:

Dw × Dh × Fw × Fh ×M× 1 + 1× 1× Fw × Fh ×M× N
Dw × Dh × Fw × Fh ×M× N

=
1
N

+
1

Dw × Dh
(6)

Among them, Dw and Dh represent the width and height of the convolution ker-
nel; M represents the dimension of the input feature map; N represents the number of
convolutional kernels; Fw and Fh represent the width and height of the feature map.

94



Sensors 2024, 24, 290

Figure 6. Structure of DSConv: (A) the process of DWConv and (B) the process of PoConv.

Due to the fact that, in normal circumstances, the number of convolutional kernels (N)
is much greater than the size of the convolution kernel Dw ×Dh, when the depth-separable
convolution kernel size is 3 × 3 ×M, Equations (1) and (2) are approximately equal to 1/9.
Therefore, it can be seen that depth-separable convolution greatly reduces the parameter
and computation amount of network models, thereby improving the detection speed of the
network models.

3.4. Training Network Models with Transfer Learning

ImageNet [28] is an authoritative benchmark for evaluating network performance,
with more than 1.2 million images which are finely classified into 1000 categories. In
addition, ImageNet provides a large number of pre-trained weights that can be used in
current object detection tasks, while revealing key features such as edges, corners, textures,
and other characteristics in natural images, laying the foundation for visual tasks.

Due to safety concerns in power systems, it is difficult for drones to obtain data
on defective insulators in transmission lines, and using small datasets to train models
can easily lead to the slow or non-convergence of networks, resulting in poor detection
performance [29,30]. To improve the detection performance of networks, transfer learning
methods are introduced into the model training process, combining common feature
knowledge of objects with the target object, thereby improving the detection performance
of the target object.

This paper first uses the ImageNet dataset to pre-train the main network EfficientNet
and obtain new model weights for the main network. Then, in order to save hardware costs,
a combined model training strategy of freezing and unfreezing is used, using a homemade
small dataset of insulator defects to re-fine-tune the network so that the network model can
quickly adapt to small sample insulator defect datasets [31].
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4. Experimental Results and Additional Requirements of the Analysis

4.1. Experimental Setup and Evaluation Metrics

The software environment used in all the experiments in this paper includes Python 3.6,
Pycharm Community Edition 2022.2.1, and the Pytorch (1.10.2) deep learning framework.
The CPU model is an Intel Core i7-12700H @ 2.30 GHz; the GPU model is an NVIDIA
GeForce RTX 3070 with 8GB of memory and 16 GB of RAM, and the experiments were
conducted on a PC. The detection performance of the model on self-exploding insulators
was measured using the following three evaluation metrics: mean average precision (AP),
frames per second (FPS), and parameters (Para).

4.2. Dataset

Since there is currently no publicly available insulator defect dataset, this paper
proposes a new Tiny-Insulator dataset consisting of 400 insulator defect images and 400 an-
notation files. The initial dataset is divided into a 3:1 ratio for obtaining training and
validation sets, with the training set being used for augmentation and network training and
the validation set being used to evaluate network performance. These images are primarily
sourced from a well-known power station in the region. To enhance the model’s general-
ization and prevent overfitting, data augmentation techniques are applied to the training
dataset, including the addition of noise and image transformations like flips. Brightness
and contrast adjustments are also employed to simulate various insulator environments,
thereby improving the robustness of model training. As depicted in Figure 7, the final
training dataset is augmented to include 600 images and 600 annotation files.

Figure 7. Data augmentation.

To address the significant differences in resolution among the self-made insulator
images, all images were resized to 640 × 640 pixels to create the final dataset. The defects
on the insulators were labeled using the Labelimg (1.8.6) image annotation software, and
all label files were organized in the PASCAL VOC dataset format.

4.3. Network Training

The batch size was set to four, and Adam was selected as the optimizer. The number
of iterations for model training was 300, measured in epochs, and there were two categories
(one background). In order to prevent the neural network model from getting stuck in
local optima, a cosine annealing learning rate decay is used, with an initial learning rate
set to 10 × 10−2 and a decay multiplier factor of 10 × 10−3. To avoid a drop in model
performance when training on a self-made small dataset, a transfer learning approach is
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employed. First, the backbone network is pretrained on a large-scale dataset like ImageNet,
and its pretrained weights are used as the initial weights for the entire network. The model
is trained using a combination of frozen and unfrozen layers to prevent issues arising from
large discrepancies between the initial network weights and the actual data distribution.
This approach also saves hardware resources and speeds up network convergence. During
training, the weights of the backbone network are frozen for the first 30 epochs, and the
remaining network structure is fine-tuned. The remaining 210 epochs involve unfreezing
and training the entire network, resulting in increased GPU memory usage and changes to
all model parameters. The loss and learning rate change process of the lightweight network
model is shown in Figure 8.

Figure 8. Change in training loss and learning rate curve.

As shown in Figure 8, transfer learning can significantly improve the convergence
speed of the network.

There are three stages in the change in model loss. Firstly, the loss value decreases
rapidly during the first 50 steps. Then, when training is between 50 and 150 steps, the loss
decreases slowly. Finally, after the training iterations reach 150 steps, the loss gradually
tends to be stable around 0.015. The learning rate decreases gradually along with the
increase in iteration steps and, eventually, drops to a level close to the loss value.

4.4. Performance Analysis of Faster R-CNN-Tiny Models
4.4.1. Main Network Selection

According to the evaluation results generated using the Faster R-CNN target detection
framework and by combining it with five different lightweight backbone networks in
Table 1, the following points can be seen. The mean average precision (mAP) metric
using EfficientNetB0 as the backbone network reaches 85.1%, which is 22.7% higher than
ShuffleNetV2, 9.6% higher than SqueezeNet, 6.2% higher than MobileNetV3, and 5.6%
higher than RegNetY800MF. In addition, the parameter count (Params) of EfficientNetB0 as
the backbone network is lower or equal to that of the other four backbone networks, which
is only 5.3M.

Table 1. Experimental results of different backbone networks.

Object Detection Framework Backbone Network mAP0.5 (%) Params (M)

ShuffleNetV2 62.4 5.3
SqueezeNet 75.5 6.9

Faster R-CNN MobileNetV3 78.9 5.8
RegNetY800MF 79.5 6.3
EfficientNetB0 85.1 5.3
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These results show that EfficientNetB0 not only has stronger feature extraction capa-
bilities for defective insulators but also requires fewer parameters. Therefore, this research
selects EfficientNetB0 as the feature extraction network.

4.4.2. Ablation Experiment

To verify the effectiveness of the proposed lightweight network structure, we con-
ducted an ablation experiment in the same experimental environment to evaluate the
impact of the improved modules on target detection. We chose the original Faster R-CNN
with ResNet50 as the backbone network and trained it for 240 epochs. The results are
shown in Table 2. The main evaluation metrics used were mAP0.5 (which measures the
target detection accuracy at an IoU threshold of 0.5), Params (which represents the size of
the network), GFLOPs (which represents the model’s computational complexity), and the
symbol “�” represents the use of this network structure.

Table 2. Evaluation results of ablation experiments.

Network Framework Improvement Evaluation Results

Feature Processing mAP0.5 Params GFLOPs

EfficientNetB0 Feature Fusion DSConv New Anchor Box (%) (M) (G)

83.0 70.5 88.8
� 85.1 7.6 6.3

Faster R-CNN � � 90.4 10.9 19.8
� � � 90.0 10.4 11.8
� � � � 90.3 10.4 11.8

As shown in Table 2, the first row shows the original Faster_rcnn algorithm without
any detection results from any improved modules. Each subsequent row gradually adds
different improved modules. The last row of the table shows the proposed Faster R-CNN-
tiny model.

The following conclusions can be drawn. Firstly, when comparing the original target
detection network Faster R-CNN with the replaced lightweight backbone network Effi-
cientNetB0, the network parameters are reduced by 62.9 M and GFLOPs by 82.5 G, while
the detection accuracy is improved, indicating that replacing the backbone network with
EfficientNetB0 significantly improves the detection performance of the network. Secondly,
the addition of the feature fusion module (FPN) leads to a significant improvement in
model mAP0.5 but also results in an increase in parameters, proving that fully integrating
high-level semantic information and low-level position information into the model is in-
deed useful for improving its detection accuracy. Thirdly, replacing ordinary convolutional
layers with DSConv makes the model lighter and more complex, resulting in a slight
increase in detection speed under slightly lower detection accuracy, demonstrating the
effectiveness of DSConv. And, finally, adding new anchor boxes on top of these experiments
results in a slight increase in the model’s detection accuracy, as adding small-scale detection
anchor boxes better adapts to insulator defect detection in this paper. To sum up, this
paper performs lightweight improvements on the Faster R-CNN algorithm, which not only
greatly improve the detection accuracy of the model but also ensure real-time detection,
demonstrating the effectiveness of the improved modules on model performance.

4.4.3. Detection Result Visualization

To further verify the detection effectiveness of the improved algorithm on self-exploding
insulator defects in practical power inspection, the detection results are visualized and com-
pared. As shown in Figure 9, Line a represents the real inspection chart; Line b represents
the original Faster R-CNN detection result, and Line c represents the Faster R-CNN model
detection result after the lightweight optimization outlined in this paper.
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Figure 9. Visualization results of model improvement before and after.

As can be seen from the visualization results in Figure 9, for the detection of normal
small targets, as shown in the first column, both the original Faster R-CNN algorithm and
the improved algorithm can be recognized. For the detection of multiple targets in complex
environments, as shown in the second column, the original algorithm has false positives,
while the improved algorithm can accurately detect them. In the third column, although
both algorithms can be recognized, the improved algorithm has a higher confidence.
Based on the comprehensive evaluation metrics and image visualization results, the model
proposed in this paper can effectively locate defective insulators in different environments.

4.4.4. Comparison Experiment on Different Object Detection Algorithms

To further validate the superiority of the algorithm proposed in this paper, a com-
parative experiment is conducted on the same hardware environment setup and power
transmission line self-destructing insulator dataset with current mainstream object de-
tection algorithms, including Faster R-CNN, RetinaNet, YOLOv5s, and YOLOv6s. The
evaluation metrics used in the experiment are the number of parameters (Params), the
average precision (AP), and the frames per second (FPS). The FPS metric represents the
number of images the detection model can process per second and is commonly used to
assess the detection speed of object detection networks. The experimental results are shown
in Table 3.

Table 3. Comparison of different models.

Network Model Backbone Network Params (M) mAP0.5 (%) FPS (F/S)

Faster R-CNN ResNet50 70.5 83.0 21.8
RetinaNet ResNet50 + FPN 32.2 86.5 22.3
YOLOv5s CSPDarknet 7.0 87.3 50.0
YOLOV6s EfficientRep 17.1 87.7 63.6

Ours EfficientNetB0 10.4 90.3 35.2

As can be seen from Table 3, with a certain level of detection speed, the detection
accuracy of Faster R-CNN-tiny algorithm surpasses the other algorithms. Compared with

99



Sensors 2024, 24, 290

the original Faster R-CNN and RetinaNet, the average precision (mAP0.5) is improved by
7.3% and 12.9%, respectively. The frames per second (FPS) are also increased by 13.4 and
12.9, indicating that this algorithm exhibits high detection efficiency for self-destructing
insulator defects. Moreover, the parameter count of this paper’s algorithm is significantly
smaller than those of the other two algorithms, indicating a smaller model size. Compared
to the YOLO algorithm, although the detection speed of this paper’s algorithm is slower
than YOLOv5s and YOLOv6s by 50.0 frames per second and 63.6 frames per second,
respectively, it possesses certain advantages in terms of detection accuracy and model
size. In summary, this paper’s algorithm enhances network detection accuracy while
considering network detection speed and model size, meeting the real-time and efficient
detection requirements for defective insulators.

5. Conclusions

To address the issues of large volume and slow detection speed of the original Faster R-
CNN model, an insulator defect detection model based on Faster R-CNN-tiny is proposed.
The experimental results show that, compared with the original algorithm, the AP and
FPS of this algorithm have improved by 7.3% and 13.4 frames/second, respectively, and
the model parameter has decreased from 70.5 M to 10.4 M. This model can effectively
identify insulator defects in transmission lines and has a certain reference significance for
maintaining national line safety.

In the next stage of research, we will attempt to combine the new model with an
embedded platform to prepare for future edge detection of the model. At the same time,
we will also use other datasets in the power grid for testing. This will enable the model to
have a better network structure and a higher detection accuracy.
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Abstract: The application of deep learning to image and video processing has become increasingly
popular nowadays. Employing well-known pre-trained neural networks for detecting and classifying
objects in images is beneficial in a wide range of application fields. However, diverse impediments
may degrade the performance achieved by those neural networks. Particularly, Gaussian noise and
brightness, among others, may be presented on images as sensor noise due to the limitations of image
acquisition devices. In this work, we study the effect of the most representative noise types and
brightness alterations on images in the performance of several state-of-the-art object detectors, such
as YOLO or Faster-RCNN. Different experiments have been carried out and the results demonstrate
how these adversities deteriorate their performance. Moreover, it is found that the size of objects to
be detected is a factor that, together with noise and brightness factors, has a considerable impact on
their performance.

Keywords: deep learning; object detection; noise; brightness

1. Introduction

The constant presence of Gaussian noise, among other noises, in data processed by
electronic devices is a phenomenon inherent to our highly technological society. This noise,
closely linked to electromagnetic radiation, inevitably infiltrates any device that requires
electrical communication, posing a constant challenge to the integrity of the data we process.
In particular, image processing is significantly affected by this type of noise, since the vast
majority of sensors used in this field are exposed to its influence. These sensors play a
crucial role in a wide range of applications, especially in the life sciences. From dental
imaging to digital mammography and ophthalmological examinations to assess eye health
and analyze pathologies, electronic sensors are essential. However, the real problem arises
when the images captured by these sensors are affected by Gaussian Noise, which can lead
to alterations in the conclusions drawn from their processing [1].

This challenge is compounded in the field of Deep Learning, a discipline that has
gained increasing prominence in the field of Artificial Intelligence. In this context, neural
networks emerge as the fundamental pillars of this technological revolution. These net-
works appear as powerful tools that allow complex tasks to be tackled more efficiently in
terms of time and resources, offering highly accurate results. Their application is diverse,
ranging from event prediction to the simulation of complex systems, pattern recognition
and classification, and system monitoring [2].

Among the rich variety of neural network models available, Convolutional Neural
Networks (CNNs) stand out for their effectiveness in detecting objects in images and videos,
analyzing medical images, processing natural language and creating recommendation
systems, among other applications. These networks, specifically designed to process data
in image format, are an essential tool in fields as diverse as medical diagnosis, autonomous
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driving and traffic management [3]. In particular, the object detection problem is a field
where many applications are being developed [4,5].

However, the relationship between images processed by electronic sensors and neural
networks brings with it a major challenge: the introduction of noise in the data, which can
affect the quality of the inferences and results obtained by the networks. This interference
may have critical implications in a wide range of applications, from medical misdiagnosis
to safety decisions in autonomous vehicles, for example. Understanding and addressing
this issue is critical to ensure the reliability of these technologies in real-world situations.

The specific problem to be addressed in this study concerns understanding the impact
of certain factors on the performance of neural networks based on convolutional models.
As mentioned above, when information is acquired from an electronic sensor to digitize
an image, this image is inevitably affected to a greater or lesser extent by noise, such as
Gaussian noise. This interference, combined with the actual lighting conditions in which
the image was captured, can have a more significant impact than might be imagined on the
performance of various neural network models. This can lead to the networks generating
incorrect or insufficiently accurate results [6].

In addition to exploring the implications of noise on the performance of CNNs, this
study aims to closely analyze the impact that different lighting conditions can have on
their performance. In fact, illumination variability is a critical factor in many real-world
applications, where images may be captured in environments with varying or insufficient
illumination [7].

Through the evaluation of the networks under various brightness conditions, solid
conclusions can be drawn about their ability to adapt and produce accurate results in
challenging lighting situations. This information will be essential to understanding how
these network models can be used effectively in real-world applications where lighting
conditions can vary considerably. By considering both noise and lighting conditions in this
study, we seek to provide a comprehensive view of the robustness and versatility of these
CNNs in various circumstances.

Despite the growing presence of CNNs in our daily lives, there is a surprising paucity
of studies that thoroughly analyze the impact of factors such as noise and others on
their performance and efficiency. This underscores the pressing need to investigate and
better understand how these systems respond under adverse conditions. Improving the
robustness of neural networks in the presence of adverse conditions would not only be
beneficial from an academic point of view, but could also have a significant impact in critical
sectors such as healthcare and the automotive industry, where accuracy and reliability are
imperative [8].

The main contribution of this work is to analyze the impact of noise and changes in
the brightness of images on the object detection performance of deep convolutional neural
networks. This analysis is based on an accurate physical model of noise and brightness
for imaging CMOS sensors. Qualitative and quantitative assessments of the relative object
detection performance of the deep networks are carried out, along with a discussion of
the results.

The remainder of this paper is organized as follows. Related works are considered
in Section 2. After that, Section 3 describes the physical model of noise and brightness
for imaging CMOS sensors. The experiments that have been carried out are presented in
Section 4. Finally, the conclusions of this work are detailed in Section 5.

2. Related Works

The images can be hindered by several factors, particularly by the influence of varied
types of sensor noise. One of the possible reasons can be found in the constraints that image
obtainment devices manifest [9–11]. Consequently, the input pixel values may be altered,
and this behaviour may have an impact on the performance achieved by those methods
that accomplish different tasks, such as background segmentation or classification. In order
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to analyze the impact of these noises on the performance of methods of different kinds,
several studies have been carried out.

For example, the performance of different foreground object detection methods was
studied when the input images were affected under diverse quantities of Gaussian and
uniform noise [12]. Moreover, a certain number of situations were stated where the addition
of noise to the input image might be beneficial in order to alleviate the constraints of a
method. The performance yielded by a total of nine methods from the state-of-the-art
where the input images were corrupted with both noises were analyzed in that paper.

Several factors may hinder the result of the classification provided by a CNN. In partic-
ular, one of these drawbacks is the sensor noise. An analysis of the effects of noise in these
kinds of neural networks was presented in [7]. The methodology detailed two noise models
for current CMOS vision sensors that allow entering Poisson, Gaussian, salt-and-pepper,
speckle and uniform noise as an origin of imperfections in the image acquisition devices.
This way, synthetic noise can be added to an image by using the proposed methodological
framework to imitate usual sources of image distortion. With that suggested framework,
each kind of noise type was combined with a bright scale factor to simulate images with
low lighting conditions, and their impact on the classification performance of several state-
of-the-art CNNs pretrained models was studied. The results showed that Gaussian and
uniform noise have a moderate effect; speckle and salt-and-pepper noise, together with
the level of brightness, could significantly decrease the classification performance; while
Poisson noise did not have a substantial impact on the performance.

Another of the possible noises is the linear motion blur. Its impact in the performance
of CNNs was evaluated by proposing a realistic vision sensor model to generate a linear
motion blur effect in raw input images. By using this methodology, the classification per-
formance of different pretrained CNNs was studied and the obtained results demonstrated
that the more the displacement the more the degradation of the performance as expected.
However, although the angle of displacement does not have as much impact as the length,
the performance is slightly deteriorated. It is interesting to observe how higher values of
motion length produce a higher drop in CNNs performances and make it more sensitive to
the motion angle. Moreover, angles close to odd multiples of 45º imply a more relevant
drop of the performance. Regarding opposite angles, they achieve the same performance;
however, conjugate angles do not provide the same performance [13].

3. Methodology

This section outlines the methodology developed for this study. It involves the creation
of an accurate model for an imaging CMOS sensor (Section 3.1), the process for introducing
synthetic noise into digital images based on this model (Section 3.2), and the description
of how the performance of an object detection deep neural network degrades as the noise
level increases (Section 3.3).

3.1. Sensor Noise Model

We have defined two realistic noise models for a CMOS vision sensor, drawing inspi-
ration from the European Machine Vision Association (EMVA) Standard 1288, which char-
acterizes image sensors and cameras [14]. These models serve as the foundation for subse-
quent experiments to assess the performance of Convolutional Neural Networks (CNNs)
under different noise sources. Figures 1 and 2 represent these models, known as Model A
and Model B, respectively:

• Model A simulates an imaging CMOS sensor with a single source of noise, namely
Poisson type.

• Model B accounts for additional noise types, including Gaussian, speckle, salt-and-
pepper, and uniform noises.
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Figure 1. Model A. A conceptual model of a CMOS vision sensor, comprising a photodiode (PD)
followed by a Poisson noise source (illustrated as a circular element). Subsequently, a conversion
gain is represented as a triangular element. This model exclusively accounts for Poisson noise.
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Iin I3
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Figure 2. Model B. A conceptual model of a CMOS vision sensor, where a photodiode (PD) is
succeeded by a conversion gain, represented as a triangular element, and followed by the introduction
of a specific type of noise Ix (depicted as a circular element).

Both models are employed to maintain a realistic image creation process while isolating
the sources of noise. The operation of the sensor, common to both models, is described
based on Figures 1 and 2. Images enter the device associated to a given amount of photons
(ph) and interact with the photodiode (PD), which transforms the photons to electrons with
a quantum efficiency factor (η (e−/ph)). The result of this transformation carried out by
the photodiode can be quantified as accumulated electrons. The Full Well Capacity (FWC)
is defined as the maximum accumulation capacity for any given pixel. The equation that
governs the transformation of photons into pixels reads:

I1 = I3 = η Iin (1)

where Iin is in photons (ph), and I1 is in electrons (e−).
Shot noise, associated with photon counting errors, is assumed to distribute according

to the Poisson distribution, and it is only considered by Model B. The signal corrupted
by Poisson type noise (measured in electrons) features a mean parameter of the Poisson
distribution equal to the noiseless signal I1:

I2 ∼ Poisson(λ = I1) (2)

The subsequent steps include conversion gain, presented in both Model A and Model B,
where accumulated electrons are converted to voltage (in microvolts, μV). In this step, the
gain factor is noted χ (μV/e−). The conversion from analog information to digital data
converts the voltage signal into digital numbers (DN). This time the gain factor is noted ξ
(DN/μV). These two gains are merged into an overall gain factor (K = χξ). Therefore, the
computation of the theoretical result of the conversion from analog information to digital
data reads as follows:

I4 = KI3 (3)

IoutA = KI2 (4)

However, the two conversions from electrons to a voltage signal, and then from analog
information to digital data, are subject to additive noise, which is only considered in
Model B. A signal level (Ix) is added before the output. If Ix is measured in digital numbers
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(DN), then Model B indicates that the observed image can be expressed (in digital numbers
DN) as follows:

IoutB = I4 + Ix (5)

3.2. Synthetic Noise Emulation

This subsection outlines a procedure for obtaining a noisy digital image based on the
accurate models of noise discussed in Section 3.1. The noiseless pixel value in a digital
image will be noted ϕ, measured in digital numbers (DN).

The simulation of Poisson noise is carried out by application of Model A. This involves
the modification of the original noiseless signal by Poisson noise, where the signal is
expressed in electrons (6). To achieve this, a division of the pixel value expressed in digital
numbers by the overall gain K must be carried out, in order to yield the pixel value
expressed in electrons. Moreover, low illumination situations may be modeled by applying
a brightness scale factor b. Afterwards, a subsequent conversion to digital numbers is
performed. The noisy pixel value obtained by the imaging device (ϕ̂Poisson) can be calculated
considering the original pixel value ϕ, as indicated next:

ϕ̂p = K Poisson
(

bϕ

K

)
(6)

Model B is utilized to generate synthetic noise. Various types of synthetic noise rep-
resenting common degradation mechanisms in digital images, including Gaussian (g),
salt-and-pepper (sp), and uniform (u) noise, are considered. The resulting noisy pixel value
ϕ̃ is determined based on the type of synthetic noise introduced.

Gaussian noise is expressed as:

ϕ̃g = bϕ + Gauss
(

0, σ′g
)

(7)

where b stands for the brightness scale, while σ′g denotes the standard deviation.
Common sources of Gaussian noise include intrinsic circuit noise and an elevated op-
erating temperature.

A probability mass function is employed to model salt-and-pepper noise:

P(ϕ̃sp) =

⎧⎪⎨⎪⎩
p0 if ϕ̃sp = 0
p1 if ϕ̃sp = 255
1− p0 − p1 if ϕ̃sp = bϕ

(8)

with probabilities p0 for black pixels and p1 for saturated pixels, respectively. The function
can be simplified by assuming that p0 and p1 are equal, i.e., p0 = p1.

Uniform noise is defined as:

ϕ̃u = bϕ + Uniform(−Δ, Δ) (9)

where Δ specifies the extremes of the valid values for the corrupted image, drawn uniformly
at random from the interval [−Δ,+Δ].

These Equations (6)–(9) must be employed for each channel (red, green, and blue) of
the original image in order to obtain its corrupted version.

3.3. Object Detection Performance Degradation

Here, we describe how the performance of an object detection deep neural network
degrades as the amount of noise present in the input image increases. Let us note ζ
the noise level. This corresponds to a different parameter depending on the noise type,
ζ ∈

{
K, σ′g, p0, Δ

}
for Poisson, Gaussian, salt-and-pepper, and uniform noise, respectively.

Also, let us remember that the brightness scale factor is noted b.
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Then the performance of an object detection neural network can be expressed as a func-
tion of the noise level ζ and the brightness scale factor b, A(ζ, b). Maximum performance
should be attained for zero noise:

A(0, b) ≥ A(ζ, b), ∀ζ ≥ 0 (10)

Moreover, the performance should decrease as the noise level increases:

ζ0 ≤ ζ1 ⇒ A(ζ0, b) ≥ A(ζ1, b) (11)

The specific characteristics of the performance function A must be determined by
experimentation for various object detection networks.

4. Experimental Results

Figure 3 offers a graphical abstract of how the study proposed in this work was
conducted. First, the raw image is contaminated with a source of noise. Additionally, a
brightness scale factor is applied to emulate low-illumination conditions. Therefore, after
both noise and brightness processes, a noisy image is obtained. Next, that image is supplied
to a detector method in order to locate and classify the objects presented in that image.
Once the detections of all tuned configurations have been performed, a fair comparison
has been carried out by using different well-known metrics. Finally, the obtained results
from that comparison can be discussed.

Figure 3. Schema of the proposed methodology. A raw image is contaminated with a source of noise
and low illumination conditions are applied. The obtained noisy image from that process is supplied
to a detector method in order to locate and classify the objects presented in that image.

This study aims to analyze the effect of the most relevant sources of sensor noises.
With this intent, a set of experiments was carried out, and the obtained results are shown in
this section. First of all, the considered methods are described in Section 4.1. Next, the se-
lected dataset is detailed in Section 4.2. Then, the parameter configuration is presented in
Section 4.3. At last, results are depicted in Sections 4.4 and 4.5.

4.1. Methods

YOLO (You Only Look Once) and Faster R-CNN (Faster Region-based Convolutional
Neural Network) are the neural network models that we will use for the battery of experi-
ments. These architectures excel in their ability to identify and locate objects in a variety of
scenarios, even in situations with brightness variations and Gaussian noise.

However, it is critical to understand that YOLO and Faster R-CNN, while sharing the
purpose of object detection, differ in their approach and operation [15]. While YOLO excels
in speed and efficiency in addressing real-time detection, Faster R-CNN offers a higher
level of accuracy at the cost of greater computational complexity [16]. This distinction in
performance and efficiency will be a key element in our evaluation, as it will determine
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which of the two architectures is more suitable for object detection in images with variations
in brightness and Gaussian noise.

For the different experiments, different versions of these models have been used.
As for YOLO, the pre-trained versions of YOLOv5nu, YOLOv5mu, YOLOv5xu [17], as well
as other more current versions such as YOLOv8n, YOLOv8m, and YOLOv8x [18] have been
used. Among these versioned versions of the YOLO model, YOLOv8 outperforms YOLOv5
in accuracy, achieving 54.2% average accuracy on the COCO dataset compared to 50.5%
for YOLOv5. Both are suitable for real-time applications, with YOLOv5 offering higher
FPS on the CPU, but YOLOv8 being preferable on some GPUs. The ‘n’ version of YOLOv8
is optimal for embedded devices such as Jetson Nano. In summary, YOLOv8 is more
accurate, while YOLOv5 is faster on the CPU and YOLOv8 is preferable on some GPUs and
embedded devices. Both mentioned YOLO versions v5 (https://github.com/ultralytics/
yolov5, accessed on 11 December 2023) and v8 (https://github.com/ultralytics/ultralytics,
accessed on 11 December 2023) are extracted from the Ultralytics library (https://github.
com/ultralytics, accessed on 11 December 2023).

For the Faster R-CNN [19] models we have used the Pytorch-Torchvision library (https:
//pytorch.org/vision/main/models/faster_rcnn.html, accessed on 11 December 2023),
making use of the Faster R-CNN ResNet50 FPN V2 (https://pytorch.org/vision/main/
models/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn_v2.html, accessed
on 11 December 2023) and Faster R-CNN Mobilenet V3 Large FPN (https://pytorch.org/vision/
main/models/generated/torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn.html, ac-
cessed on 11 December 2023) versions, both with pre-trained weights. As for the differences
between these versions, Faster R-CNN ResNet50 FPN V2 stands out for its high accuracy
in object detection, thanks to the complex ResNet50 FPN architecture. However, it requires
more computational resources, which may affect its speed. On the other hand, Faster
R-CNN MobileNet V3 Large FPN focuses on speed and is ideal for real-time applications
on resource-constrained devices, although its accuracy may be slightly lower due to its
lighter architecture. In summary, ResNet50 offers accuracy, while MobileNet V3 is fast and
efficient on resource-constrained devices.

4.2. Dataset

The COCO dataset, with its diversity of natural scenarios, detailed labels, and divisions
for detection tasks, represents an essential resource in our computer vision research. COCO
contains an extensive collection of about 300,000 images, meticulously selected to represent
diverse and realistic natural settings. Of the more than 200,000 images available, more
than 80 different object categories have been thoroughly labeled. This accurate labeling
allows for detailed analysis of a wide range of objects, improving the robustness of our
experiment. This provides a rich and varied dataset for our research. COCO dataset offers
different versions of the dataset [20] and it has been divided into essential subsets for
detection tasks. These subsets include training, validation, and test sets, each accompanied
by corresponding annotations.

In this work, we have used the 2017 Val images dataset (http://images.cocodataset.
org/zips/val2017.zip, accessed on 11 December 2023), which is composed of 5000 images
with a size of approximately 1 GB, and their annotations (http://images.cocodataset.org/
annotations/annotations_trainval2017.zip, accessed on 11 December 2023).

4.3. Parameter Selection

In order to establish a fair comparison between YOLO and Faster R-CNN models,
their parameters were fixed to the same values. This way, the parameter object confidence
threshold for detection con f for YOLO models and boxscorethresh for Faster R-CNN models
were fixed to 0.5.

Regarding the images, each color channel of each pixel will have a value within the
interval [0, 255], so 8-bit encoded images are assumed.
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Respecting the source of noise and brightness, the number of possible tuned configu-
rations is enormous, as can be deduced from Section 3. This way, a parameter analysis has
been established to obtain realistic results and a set of enough experiments that allow us to
deduce solid conclusions. The tuned parameters and their description are as follow:

• b: The brightness scale factor emulates illumination conditions by controlling the
minimum and maximum values of the image. The tuned values for this parameter b
have been selected from the interval 0.1 to 1.0 with a step of 0.1. With this configuration,
the lower the value of b, the darker the noisy image.

• K: The image sensor gain that converts electrons into digit values is represented by this
parameter, which is exclusively dependent on the sensor performance. With the aim
of analysing realistic scenarios, different commercial vision sensor data-sheets have
been collected [21–24], where K goes from 0.01 to 0.1 DN/e−. Furthermore, in order
to study those more complex situations, higher values for K have been considered.

• σ′g: The standard deviation modulates the quantity of Gaussian noise. The higher the
value of σ′g, the noisier the image. While the read-out noise of most commercial vision
sensors is less than 1 DN when 8-bit encoding is used, values from 0 to 22.5 DN with
a step of 2.5 DN have been considered.

• Δ: The limit range value establishes the minimum and maximum values that define
the uniform noise that can be reached. The parameter Δ manages both values by
considering the range [−Δ,Δ] to introduce additive noise. The chosen values for this
parameter are in the interval from 0 to 22.5 DN with a step of 2.5 DN.

• p: This parameter represents the probability of having a pixel affected by salt-and-
pepper noise. It has been considered that the likelihood for salt is precisely the same for
pepper, so that, p0 = p1 = p (see Section 3.2). The selected values for this parameter
go from 0.00 to 0.27 with a step of 0.03.

Table 1 summarizes the parameter values which form the set of tuned configurations.

Table 1. Considered parameters and their possible values to study the performance of the different
selected methods for diverse noises and illumination conditions.

Parameter Value

Bright scale factor, b = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Image sensor gain, Poisson noise, K = {0.01, 0.03, 0.05, 0.07, 0.09, 0.2, 0.4, 0.6, 0.8, 1.0}
Standard deviation, Gaussian noise, σ′g = {0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5}
Probability salt and pepper noise, p = {0.00, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27}
Limit range, uniform noise, Δ = {0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5}

4.4. Qualitative Results

The different types of noise considered in this work have their nature. In order to
provide a better comprehension of their incidence and low illumination conditions on the
images, Figure 4 details an example of the effect they produce on an input raw image.

The performances yielded by the considered methods are compared from a qualitative
point of view in this subsection. It aims to better comprehend the performance deterioration
of the selected approaches. Without loss of generality, YOLOv5nu detector and Gaussian
noise have been chosen for this purpose. The image selected is shown in Figure 5. It exhibits
a room with plenty of objects that the methods may detect. The objects presented in the
image are varied, such as chairs, tables, televisions, vases, potted plants, or people. As can
be demonstrated, a noisier image does not have to provide a worse detection. In fact,
a low quantity of noise can even be beneficial to enhance the detection. This remark can be
observed with the clock: it is not detected in the raw image, but it is well detected when
low-illumination conditions are applied.

However, in general, a more noisy image produces fewer detections and lower confi-
dence in the model. As shown, the television is well detected in all images; nevertheless,
the higher the quantity of noise, the lower the confidence of the method in that detection.
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This effect is more visible in the case of the vase, which is recognized in the absence of noise
or with a low quantity of noise, but it is not detected when the noise is much higher.

This same behavior of the detections occurs when low illumination conditions are
presented in the image. As can be observed, the person is better detected when brightness
has not been modified.

These observations are presented similarly for the rest of the different considered
models. Depending on the intrinsic characteristics of the selected model, the noise and
the brightness of the input image, the model can detect a specific object in that image well
or not.
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Noise Original brightness
(b = 1.0)

Modified brightness
(b = 0.4)

Raw

Poisson
(K = 1.0)

Gaussian
(σ′g = 22.5)

Salt & Pepper
(p = 0.27)

Uniform
(Δ = 22.5)

Figure 4. Image 139 without and with several quantities of different noises and bright scale configurations.
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Gaussian
noise

Original brightness
(b = 1.0)

Modified brightness
(b = 0.4)

Raw
(σ′g = 0)

σ′g = 12.5

σ′g = 22.5

Figure 5. Image 139 without and with several quantities of Gaussian noise and bright scale configu-
rations. Bounding boxes represent the object detections that the YOLOv5nu method has predicted.
Each bounding box shows the class of the object and the confidence that the method has performed
in that detection.

4.5. Quantitative Results

In order to measure the performance of each method and establish a fair comparison
between them, several well-known metrics have been considered for that purpose. In the
context of the detection of objects presented in images, the utilization of Average Precision
(AP) metric is useful to evaluate the effectiveness of the predictions.

Before going into the details of the evaluation, it must be highlighted what AP entails.
In the field of object detection. AP is a performance metric used to measure the ability of a
model to detect and locate objects in an image [25] and it considers two crucial aspects:

• Detection accuracy: This component evaluates how many of the detected objects are
actually relevant. It is essential to determine the model’s ability to identify objects of
interest under varying conditions, such as noise and brightness.

• Location accuracy: Accuracy in the location and size of detected objects is another
essential element of the AP calculation. This is crucial to evaluate the ability of the
model to not only detect objects but also to accurately localize them.

The AP metric provides a complete and detailed view of the model’s performance
in terms of object detection and localization, which is essential to understanding how it
performs against modifications introduced in the experiments.

Within the field of object detection, in addition to the AP metric, the mean Average
Precision (mAP) metric is frequently used, which is a well-known metric that provides a
more comprehensive evaluation by averaging the AP values obtained on different classes
or categories of objects. The behaviour of mAP can be defined as:
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• Calculation of AP by class: First, the AP value is calculated for each class of object
being detected. This involves measuring the detection and localization accuracy
specifically for that category.

• Average AP: Once the AP has been calculated for each class, these values are averaged
to obtain the mAP. This average takes into account the detection and localization
efficiency across all object categories, providing an overall assessment of the model.

The results obtained in the different experiments of this work are based on these
metrics AP and mAP mentioned.

The AP measures the accuracy of the model by calculating the average accuracy value
for the recovery value from 0 to 1, based on the Intersection over Union (IoU), which is
a measure that evaluates the overlap between the predicted area and the true annotation
area, i.e., how much the boundary predicted by our model overlaps with the boundary of
the real object in the image.

Another concept that we should comment on, and to which we have made reference,
is the accuracy itself. The accuracy simply measures how accurate the predictions made
by our model are based on the IoU obtained from our detection, i.e., the percentage of
predictions on object detections that are correct. In this work, the percentage of detections
whose IoUs are 50% (0.5) or higher have been considered. This IoU threshold can be varied
according to how strict we want the evaluation of the detections of our model to be, since
all the detections that have an IoU lower than the established threshold will be discarded
as possible true predictions.

Our evaluation code disaggregates between true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) cases. Then, for each object category, we calculate
the precision at different IoU thresholds as mentioned above and average it based on the
number of thresholds, obtaining the AP.

Precision =
TP

TP + FP
(12)

The advantage of using mAP lies in its ability to evaluate an object detection model
more comprehensively, taking into account performance on multiple classes of objects rather
than considering only one. This is especially relevant in practical applications where it is
common to detect and locate various objects in an image. The use of mAP provides a global
assessment of how the model performs in both conditions (detection accuracy and localization
accuracy) across multiple object categories. This further enriches the understanding of the
effectiveness of the model. Additionally, ground-truth objects are categorized into small, medium,
and large according to their area measured as the number of pixels in the segmentation
mask. In this way, a better understanding of the performance detection may be reported.
More details about detection evaluation can be found in the COCO dataset website (https:
//cocodataset.org/#detection-eval, accessed on 11 December 2023).

Next, an analysis and comparison have been performed for each type of considered
noises. For each type of noise, the performance of each detector (methods are detailed in
Section 4.1) is shown according to the quantity of noise and the brightness of the image
(considered values are described in Section 4.3). The performance is reported in terms of
mAP, which is considered the primary challenge metric by the COCO dataset. This measure
provides values between 0 and 1, where higher is better. To better understand the effect
of noise and brightness, the performance yielded by each method for each kind of noise
is reported using a heatmap, where the performance for each configuration of noise and
brightness is detailed. Two figures each from Figures 6–13 show the results for Poisson,
Gaussian, salt-and-pepper, and uniform noises, respectively. For each type of noise, the
first figure describes the performance of the methods by considering the overall size of the
ground-truth objects, while the second one details the performance of a selected method
across small, medium, and large sizes. With the aim of not overcharging this study with
the performance across scales small, medium, and large sizes for all selected methods, only
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the most significant method for each noise is exhibited. Note that the configuration with
b = 1.0 corresponds with no synthetic low-illumination conditions.

(a) YOLOv5nu (b) YOLOv8n

(c) YOLOv5mu (d) YOLOv8m

(e) YOLOv5xu (f) YOLOv8x

(g) Faster-RCNN MobileNet (h) Faster-RCNN ResNet

Figure 6. Heatmap of mAP for considered detectors where images have been degraded introducing
different levels of bright scale and Poisson noise.

It must be highlighted that the first row, from bottom to top of each heatmap, shows
the performance of that method when no noise is introduced, except for Poisson noise.
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This way, this row will be the same for each analyzed noise. Moreover, note that the
configuration with b = 1.0 (no synthetic low illumination conditions) and no noise matches
the configuration where the raw original images are supplied to the detectors. In the case
of Poisson noise, there is no raw without noise because this noise is multiplicative, not
additive like the remaining noises.

In general terms, the results from Figures 6–13 demonstrate, as expected, the lower the
illumination conditions (bright scale factor), the lower the performance. Also predictable
is that the performance deterioration is proportional to the addition of noise for every
bright scale value. Regarding the performance according to the size of the ground-truth
objects, the size influences the efficiency of the methods: the larger the size of the objects,
the better they are detected and well-classified. The difficulty detecting small objects must
be highlighted, where the detector methods do not yield properly even in the absence of
noise and adequate illumination conditions.

(a) Overall (b) Large

(c) Medium (d) Small

Figure 7. Heatmap of mAP for Faster-RCNN ResNet according to the size of the ground-truth objects
where images have been degraded introducing different levels of bright scale and Poisson noise.
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(a) YOLOv5nu (b) YOLOv8n

(c) YOLOv5mu (d) YOLOv8m

(e) YOLOv5xu (f) YOLOv8x

(g) Faster-RCNN MobileNet (h) Faster-RCNN ResNet

Figure 8. Heatmap of mAP for considered detectors where images have been degraded introducing
different levels of bright scale and Gaussian noise.
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(a) Overall (b) Large

(c) Medium (d) Small

Figure 9. Heatmap of mAP for YOLOv8x according to the size of the ground-truth objects where
images have been degraded introducing different levels of bright scale and Gaussian noise.

4.5.1. Poisson Noise

The overall results for Poisson noise are shown in Figure 6. From this figure, it can be
deduced that the Faster-RCNN ResNet model achieves the best performance. Furthermore,
this degradation is more perceptible for the lowest values of the bright scale. In these cases,
YOLOv5xu performs better.

The performance of the Faster-RCNN ResNet model, taking into account the catego-
rization of the objects by their size, can be observed in Figure 7.

4.5.2. Gaussian Noise

Figure 8 shows the results for Gaussian noise. As can be observed, YOLOv8x has the
best performance. The performance degradation is proportional to the standard deviation
σ′g for every bright scale value. Moreover, this deterioration is more noticeable in the
lowest-illumination conditions. This is because the quantity of noise introduced for each
pixel is comparable with the maximum pixel value of the input image.

Regarding the performance according to the size of the ground-truth objects, the
size influences the efficiency of the methods, as can be observed in Figure 9, where the
performance of YOLOv8x is shown.

4.5.3. Salt & Pepper Noise

Figure 10 exhibits the performances yielded by the methods for salt-and-pepper
noise. It is interesting to observe the great impact that this noise has on the detections:
from a certain value of p, depending on the method, the performance of the detectors
drops drastically. The impact of this noise on the performance surpasses the effect of the
brightness, which is practically non-existent.
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(a) YOLOv5nu (b) YOLOv8n

(c) YOLOv5mu (d) YOLOv8m

(e) YOLOv5xu (f) YOLOv8x

(g) Faster-RCNN MobileNet (h) Faster-RCNN ResNet

Figure 10. Heatmap of mAP for considered detectors where images have been degraded introducing
different levels of bright scale and salt-and-pepper noise.
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(a) Overall (b) Large

(c) Medium (d) Small

Figure 11. Heatmap of mAP for YOLOv8x according to the size of the ground-truth objects where
images have been degraded introducing different levels of bright scale and salt-and-pepper noise.

YOLOv8x achieves the highest scores, and Figure 11 reports the results by size.
As shown, the largest objects are well-detected for a considerable amount of salt-and-
pepper noise, even under low illumination conditions; however, detecting the smallest
objects involves serious difficulties.

4.5.4. Uniform Noise

The results for uniform noise are shown in Figure 12. The results are similar to those
obtained for Gaussian noise, although the impact of the uniform noise is lesser than the
Gaussian noise. Again, YOLOv8x has the best performance.

Figure 13 exhibits the performance of YOLOv5xu according to the size of the ground-
truth objects.
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(a) YOLOv5nu (b) YOLOv8n

(c) YOLOv5mu (d) YOLOv8m

(e) YOLOv5xu (f) YOLOv8x

(g) Faster-RCNN MobileNet (h) Faster-RCNN ResNet

Figure 12. Heatmap of mAP for considered detectors where images have been degraded introducing
different levels of bright scale and uniform noise.
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(a) Overall (b) Large

(c) Medium (d) Small

Figure 13. Heatmap of mAP for YOLOv8x according to the size of the ground-truth objects where
images have been degraded introducing different levels of bright scale and uniform noise.

5. Conclusions

This paper presents a study of the impact of the most prevalent noise types and
brightness alterations in images on the performance of object detectors. The exposed
methodology proposes an accurate model of vision sensor noise in order to carry out the
analysis of the noise types considered in this work: Poisson, Gaussian, salt-and-pepper,
and uniform noise. The influence of the low illumination conditions accompanying each
type of noise has also been studied. Several object detection methods have been selected
such as different versions of YOLO v5 and v8, and Faster-RCNN.

Qualitative results demonstrate the need for a more comprehensive analysis due to the
disparity of the predictions supplied by the detectors. This way, different configurations of
noise and brightness have been tuned in conjunction with a set of 5,000 images to form an
exhaustive set of experiments. From a quantitative point of view, the experimental results
conclude that, in general, the insertion of noise and/or a reduction of the brightness of the
image has a negative incidence on the performance of the detector methods. However, there
are situations where adding a small quantity of noise and/or reducing the illumination
conditions may be beneficial to detect objects that are not detected in the raw input image.

This analysis might be helpful when designing systems composed of any object detector.
In particular, the knowledge leveraged by this work could be most beneficial for systems
dealing with environments featuring the presence of noise and/or low-illumination conditions.
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Abstract: In the Chinese character writing task performed by robotic arms, the stroke category and
position information should be extracted through object detection. Detection algorithms based on
predefined anchor frames have difficulty resolving the differences among the many different styles
of Chinese character strokes. Deformable detection transformer (deformable DETR) algorithms
without predefined anchor frames result in some invalid sampling points with no contribution to
the feature update of the current reference point due to the random sampling of sampling points
in the deformable attention module. These processes cause a reduction in the speed of the vector
learning stroke features in the detection head. In view of this problem, a new detection method for
multi-style strokes of Chinese characters, called the simple conditional spatial query mask deformable
DETR (SCSQ-MDD), is proposed in this paper. Firstly, a mask prediction layer is jointly determined
using the shallow feature map of the Chinese character image and the query vector of the trans-
former encoder, which is used to filter the points with actual contributions and resample the points
without contributions to address the randomness of the correlation calculation among the reference
points. Secondly, by separating the content query and spatial query of the transformer decoder,
the dependence of the prediction task on the content embedding is relaxed. Finally, the detection
model without predefined anchor frames based on the SCSQ-MDD is constructed. Experiments are
conducted using a multi-style Chinese character stroke dataset to evaluate the performance of the
SCSQ-MDD. The mean average precision (mAP) value is improved by 3.8% and the mean average
recall (mAR) value is improved by 1.1% compared with the deformable DETR in the testing stage,
illustrating the effectiveness of the proposed method.

Keywords: object detection; Chinese character stroke; transformer; deformable DETR; SCSQ-MDD

1. Introduction

With the rapid integration of artificial intelligence into the mechanical industry, the
use of industrial robotic arms has increased [1–3]. However, at present, there are few
robotic arms that can write good Chinese calligraphy characters on a flat surface. On
the one hand, this is because the robotic arm does not have the same precise control of
each stroke trajectory as the human arm. On the other hand, it is because the extent of
processing of Chinese characters is not fine enough. Currently, there is no appropriate
algorithm that can be used to perfectly predict the trajectory point of each stroke in every
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Chinese character, so the input parameters of the robotic arm cannot enable it to make
a complete trajectory movement. The three elements of Chinese images include stroke,
position, and sequence, i.e., each stroke of a Chinese character, the corresponding position
of each stroke in the image, and the sequence of each stroke. Chao et al. [4] proposed the
use of a corner point detection technique to decompose Chinese characters into a set of
strokes, subsequently using the operator’s gestures to recognize the decomposed strokes as
the robot’s writing trajectory to complete the robot’s Chinese character writing task. Wang
et al. [5] proposed the use of a full convolutional network to extract the stroke skeleton and
intersection region and track the whole stroke extraction process based on the pixels in the
non-intersection region, finally using the tree search method to match the candidate strokes
with the standard strokes to obtain the correct strokes. Although these methods have been
successfully used to extract the strokes of Chinese characters and obtain the trajectory of
the robot arm by processing the strokes, they are based on manual predefined rules to split
the strokes, making them not truly unsupervised stroke extraction methods. Each stroke of
a Chinese character and the specific position of each stroke are acquired in our work using
object detection techniques in the field of image recognition.

Most previous object detection approaches aimed at improving the generation of
proposal boxes and optimizing the filtering of proposal boxes by generating a series of
sample candidate boxes using two-stage methods to classify the samples with convolutional
neural networks (CNNs). These methods focused on improving detection accuracy and
positioning precision, but the models’ detection speeds slowed down due to the use of
two-stage detection methods [6–11] to map the candidate boxes to the corresponding area
of the feature maps after generating them. The generation of sample candidate boxes was
removed, and the problem of the localization of target boxes was directly transformed
into a regression prediction problem using one-stage methods. These methods focused on
addressing the problem of slow detection speeds, but they are inferior to the two-stage
methods as far as detection accuracy and positioning precision are concerned. Redmon et
al. [12] proposed the You Only Look Once (YOLO) model to predict two bounding boxes
and multiple category scores for each grid cell on the feature map and continuously update
the values of the bounding boxes and category scores through a loss function. The average
precision (AP) value on the Pascal VOC 2007 test dataset reached 63.4%, yet YOLO has
the limitation of poor detection on small targets in groups. Therefore, Redmon et al. [13]
proposed YOLOv3, which integrated low-level and high-level features by adding a feature
pyramid network (FPN) structure and predicted three different feature layers, enabling
the model to detect objects of different scales. The AP value on the COCO dataset reached
33.0%, but YOLOv3 has limitations such as imbalanced positive and negative samples and
sensitivity to grid boundary values. Bochkovskiy et al. [14] proposed YOLOv4 based on
this problem to redesign the sample matching criterion to reduce the impact of the positive
and negative sample imbalance. YOLOv4 eliminated the grid sensitivity problem through
the design of an activation function, and the AP value on the COCO dataset reached 41.2%.
But YOLOv4 still has the problem of poor matching of manually designed anchor boxes
on different tasks. Due to the excessive number of candidate boxes generated during
the prediction process of one-stage methods [15–20], non-maximum suppression (NMS)
processes are required to filter out a large number of candidate boxes, which not only
reduces the inference speed but also fails to achieve truly end-to-end prediction, as shown
in [21,22], due to the incorporation of a supervisory mechanism.

With transformer methods achieving good results in the natural language processing
(NLP) field, researchers have also attempted to introduce transformers into the computer
vision (CV) field. Bello et al. [23] proposed adopting self-attention as an alternative ap-
proach to convolutional neural networks for discriminating visual tasks to address the
limitation of convolutional blocks only being calculated with local neighborhoods, resulting
in a lack of global information. Because the traditional CNN model structure can only
be utilized to model local information, it is difficult to model long-period information.
The attention model has a strong periodic modeling ability, so self-attention can make
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up for the deficiency of CNNs in ultra-long-period modeling. To compensate for the lack
of spatial position information in the transformer, Shaw et al. [24] proposed combining
relative position encoding and a self-attention mechanism for modeling position informa-
tion in images. Furthermore, Ramachandran et al. [25] proposed the use of only attention
and relative position encoding instead of the convolutional module in a deep residual
network (Resnet) to achieve an image model with full attention. Dosovitskiy et al. [26]
presented a vision transformer (ViT) and converted images into token sequences that can
be received by the transformer encoder through patch embedding, allowing the operation
processes of multi-head self-attention to be performed on the image feature map. Mean-
while, Carion et al. [27] proposed a detection transformer (DETR) that flattens the feature
map obtained from the images through the backbone. The feature map is converted into
a token sequence, allowing it to be processed by the transformer encoder. The memory
vector obtained from the encoder and the 100 object queries obtained from the decoder,
after self-attention updating, are subjected to a cross-attention operation. Finally, the classi-
fication and regression values of the 100 queries are predicted. Using this method, many
manual design components, such as the generation of sample candidate boxes and NMS
processing, are effectively eliminated. Wu et al. [28] proposed improved relative position
encoding (iRPE) and combined relative position encoding and absolute position encoding
in a DETR, resulting in a 1.3% increase in the AP value compared with only using abso-
lute position encoding. Chen et al. [29] proposed a group DETR by employing multiple
groups of object queries and performing one-to-one label assignments for each group to
support grouped one-to-many assignments, addressing the limitations of DETR, which
relies on one-to-one assignments and lacks the ability to utilize multiple positive object
queries. Bar et al. [30] presented an unsupervised pretraining method with region priors
for object detection, known as DETReg, to pretrain the entire DETR detection network by
extracting the proposal box and predicting the self-supervised image coding of regions
through an object localization task and an object embedding task during pretraining. The
corresponding feature embedding with the self-supervised image coding embedding is
aligned to achieve the goal of pretraining the whole DETR detection network.

However, since every point needs to be calculated with all other points in the attention
computing module of the DETR, the convergence is slow, and the image resolution is
limited. Li et al. [31] attributed the slow convergence of the DETR to the discreteness
of the Hungarian matching algorithm and the randomness of model training, leading to
ground-truth (GT) box matching becoming a dynamic and unstable process. The DN-DETR
(DeNoising DETR) was proposed to reconstruct the GT box by feeding the GT box with
noise into the transformer decoder and training the model. Since this process does not
require Hungarian matching, the difficulty of binary graph matching is effectively reduced,
and the convergence speed is accelerated. Zhang et al. [32] attributed the slow convergence
speed of the DETR to the complexity of matching object queries with target object features
in different feature embedding spaces. They proposed the SAM-DETR (semantic-aligned
matching DETR), wherein object queries are projected into the same embedding space
as encoded image features, and then semantic alignment matching is performed, thereby
improving detection accuracy and speeding up convergence. Gao et al. [33] argued that
the reason for the slow convergence of the DETR is that the object query vector of the
DETR needs to interact with the global features of the image so the decoder needs a long
training time for the object query to accurately locate the object. The SMCA (Spatially
Modulated Co-Attention) mechanism was proposed to improve the convergence speed
of the DETR by introducing the Gaussian distribution model of objects into the common
attention mechanism and adjusting the search range of each object query vector in the
common attention mechanism within a certain distance near the object center.

Kitaev et al. [34] analyzed the traditional transformer and emphasized that the dis-
tribution of long sequences is almost always sparse, which indicates that a feature point
in a sequence is usually highly correlated with only a few other points. Therefore, only
the connections between a subset of points and the current point need to be focused on
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during the computation of the attention module, which avoids the need for correlation
calculations with all points when calculating attention in the transformer, thereby reducing
the overall model computation. Zhu et al. [35] proposed the deformable DETR by incor-
porating deformable attention into the DETR, which requires calculating the connections
of each sampling point and its surrounding key points, thereby addressing the problem
of the excessive attention computation of DETR. Meanwhile, the multiscale feature map
concatenating is used in deformable DETR to solve the problem of slow accuracy in de-
tecting small objects in DETR. Experiments showed that the deformable DETR improved
convergence speed and accuracy compared to the ordinary DETR; however, the deformable
attention module should focus more on key sampling points with important features when
sampling key points is not considered in the deformable DETR. Meng et al. [36] proposed
the conditional DETR and also analyzed the reason for the slow convergence speed of the
DETR. They found that cross-attention highly relies on content embedding to locate the
position of the prediction box, so the demand for high-quality content embedding increases
along with the training difficulty. Therefore, the decoupling of the content query and spatial
query was proposed, and a learnable conditional spatial query module was introduced to
enable the model to learn conditional spatial queries from the decoder embedding. This
allows each cross-attention head to focus on different areas, narrowing the spatial range for
object classification and prediction box regression in different regional positions.

The goal of the method proposed in this paper is to discard all hyperparameters
associated with the anchor frame, enabling the use of the deformable DETR without a
predefined anchor frame. The sampling points that do not contribute features during the
deformable attention module sampling are resampled so that these points provide feature
contributions to the reference points. It is found through experiments that setting the
offset of certain sampling points to 0, i.e., discarding some sampling points, leads to a
small performance improvement. The reason for this phenomenon is that some points in
the random sampling process are repeatedly sampled. When these duplicate sampling
points are removed, the computational efficiency of the model is superior to the model with
duplicate sampling points, making it easier to converge. Our proposed mask deformable
DETR is an improved end-to-end stroke detection method via a deformable DETR with
a sampling region prediction mechanism. Figure 1 shows the difference between the
deformable attention with the addition of the mask mechanism and the original deformable
attention. A mask mechanism is introduced in our method to predict which sampling points
are the likely regions of interest for the current reference point and to recalculate and adjust
the sampling points in non-important areas. By removing the attention calculation for
invalid sampling points, the computational efficiency of the deformable attention module is
increased. The convergence speed of the model is accelerated and preferable performance
is achieved in a short period of time.

Figure 1. (a) The simple process of the deformable attention used in existing methods. (b) The
simple process of the proposed deformable attention with a mask mechanism. The proposed mask
mechanism determines whether a sampling point has a contribution value to the current reference
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point by predicting the mask layer and discards the sampling points that do not have a contribution
value. The gray block represents the query vector, while the yellow block represents the mask vector
corresponding to the query vector, and the green block represents query vector after filtering and
resampling. The red box represents the current reference point and the green boxes represent the
random sampling points.

The most primitive feature map extracted from the backbone and the updated query
vector of each encoder layer are jointly utilized to sample, concatenate, and fuse by the
deformable DETR based on the mask mechanism. This is done to predict which sampling
points in the query vector are candidate points with contribution values for the current ref-
erence point. Resampling is used to assign values to candidate points without contribution.
Moreover, the mask prediction layer can be simply embedded into the encoder layer of the
transformer without the need to modify complex logical structures. Excellent performance
improvements are achieved while reducing computational costs. The main contributions
of this study can be summarized as follows:

(1) A multiscale deformable attention module based on a mask mechanism is pro-
posed to improve computational efficiency and speed up the convergence of the model
by predicting the key sampling points around each reference point in the query vector. In
addition, the points that contribute features to the current reference point are filtered out,
whereas points that do not contribute features are resampled.

(2) A simple conditional spatial query structure is introduced. By processing the
content query vector and the spatial query vector and performing simple linear fusion, the
separation of the content query and spatial query is accomplished without introducing
additional parametric quantities. The model can be used to focus on not only the content
embedding but also the spatial embedding when performing cross-attention calculations.
The dependence of the prediction task on content embedding is relaxed, and the training
process is simplified.

(3) A splitting feedforward network (SFN) structure is proposed to perform split and
cross-fusion calculations on the output vectors from the transformer decoder. To the best of
our knowledge, this is the first work to apply the simple conditional spatial query mask
deformable DETR (SCSQ-MMD) with an SFN module in the field of deformable DETR.
Then, classification and regression predictions are performed in the SFN to enhance the
focus on different features for classification and regression tasks.

In short, for the Chinese character writing task performed by robotic arms, an accurate
and efficient algorithm is needed to support the detection of Chinese character strokes,
especially the implementation of a complete end-to-end stroke detection method. In this
paper, the deformable DETR model is improved by enhancing stroke detection accuracy
through the above three novel contributions. Experimental results show that the stroke
detection method proposed in this paper is superior to the traditional deformable DETR
detection method, which can assist robotic arms in completing the Chinese character
writing process.

2. Related Works

The network model in this study is improved using the deformable DETR and further
extended through the use of the conditional DETR. The deformable DETR is introduced
briefly in Section 2.1, and the idea of the conditional DETR is introduced in Section 2.2.

2.1. Deformable DETR and Multiscale Deformable Attention Mechanism

The deformable DETR [35] incorporates a multiscale deformable attention mechanism
based on the DETR. First, a query vector is obtained by concatenating the input feature
maps of multiple scales, which is fed into the encoder. Each reference point in this vector
directly predicts k random offsets around the current point. Second, these k offsets are
mapped to the query vector for sampling, and then the final value obtained by linearly
interpolating the features of these k points is used to update the features of the current
reference point.
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The self-attention mechanism obtains the weight coefficients for each value by calcu-
lating the correlation between each query and the other keys in this vector. The weight
coefficients and the corresponding value are then weighted and summed to obtain the final
attention value. In this way, the connections between each point in the vector and the other
points can be obtained by the attention module, and the interdependent features in the
vector can be captured.

In the multi-head attention mechanism, the self-attention module is used to calculate
for each head, without sharing parameters between each head. The final result is obtained
by concatenating and fusing the results of the self-attention computed by multiple heads.
The formula for calculating the multi-head attention mechanism is as follows:

MultiHeadAttn(zq, x) =
M

∑
m=1

Wm[ ∑
k∈Ω

Amqk ·W ′
mxk] (1)

where q indexes a query element with the representation feature zq, k indexes a key element
with the representation feature xk, and m indexes the attention head. Wm and W

′
m are

the trainable weights. Amqk represents the attention weights of the k-th point in the m-th
attention head.

The multiscale deformable attention mechanism is based on the common multi-head
attention mechanism and adds sampling offsets to each attention head of each scale. The
mechanism involves sampling the key of the local position in the global position for each
query to obtain the value of the corresponding local position. Finally, the local attention
weight and the local value are calculated to reduce the computation of attention, thereby
accelerating the convergence speed of the model. The formula is as follows:

MSDeformAttn(zq, pq, x) =
M

∑
m=1

Wm[
K

∑
k=1

Amqk ·W ′
mx(pq + Δpmqk)] (2)

where m indexes the attention head, k indexes the sampled key, K is the total number
of sampled keys (k � HW), and Δpmqk and Amqk are the sampling offsets and attention
weights of the k-th sampling point in the m-th attention head, respectively.

2.2. Conditional DETR and Conditional Spatial Query Module

The reasons for the slow convergence of the DETR were analyzed in [36]. The spatial
query only utilizes the common attention weight information and not the specific image
information. The content query has to match both the spatial keys and content keys,
meaning there is no way for it to learn good features in a short time. The attention weights
for the cross-attention mechanism in the DETR are calculated based on the dot product
between the query and the key. The formula is as follows:

(cq + pq)
T · (ck + pk) = cT

q ck + cT
q pk + pT

q ck + pT
q pk (3)

where cq is the content query, ck is the content key, pq is the spatial query, and pk is the
spatial key.

By forcing the separation of content queries and spatial queries in the conditional cross-
attention mechanism, content queries and spatial queries can focus on content attention
weights and spatial attention weights, respectively. The content attention weights and
spatial attention weights are derived from the content dot product and the spatial dot
product, respectively. The formula is as follows:

cT
q ck + pT

q pk (4)

A learnable conditional spatial query strategy is introduced in the conditional DETR
to learn the conditional spatial query vectors from decoder embeddings for decoding
multi-head cross-attention. Specifically, the conditional space query pq is obtained by
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dot-producting the sine and cosine encoding results ps of the reference point s with the
linear mapping result T of the embedding f output by the decoder at the previous layer.

pq = T · ps = FFN( f ) · (sinusoidal(sigmoid(s))) (5)

The input query vector of the cross-attention module is obtained by concatenating the
conditional spatial query pq and the encoding cq obtained by the self-attention module.

In this approach, the high dependence on content embedding is reduced by separating
the spatial queries and content queries, allowing them to focus on spatial attention weights
and content attention weights, respectively.

3. Methods

3.1. Mask Deformable Attention in the Multiscale Deformable Attention Module

The core of the deformable DETR model with the mask attention mechanism is the
multiscale deformable attention module with the mask mechanism. Figure 2 shows the
complete structure of this deformable attention module. The feature map obtained by the
backbone contains the most accurate foreground location information from the original
image, reflecting the location of the object and the size of the region in the original image. In
order to use the mask to accurately predict whether each sampling point in the query vector
contributes features to other reference points, the foreground position information from
the feature map of the original image is needed. The same operation used in the original
deformable DETR is adopted to concatenate the multiscale feature map into a query vector,
which is then fed into the multiscale deformable attention module for computation. The
generation process of the mask prediction layer and the filtering process of the sampling
points are as follows: (1) The upper-layer feature map with the least missing information
undergoes convolution to obtain object region position information, which is then fused
with the features processed by the channel mapper. (2) The feature maps from several other
levels are sampled to obtain information from the feature map of each level corresponding
to the object region position. (3) The position information of object regions from multiple
levels is fused and concatenated to generate a mask prediction layer. This mask layer is
used to predict whether k key sampling points of each reference point zq, obtained from the
query vector through linear mapping, have contributed features to the current reference
point. k is the number of sampled points. Since the query vector updated by each encoder
layer contains the latest information of the current reference point, the mask prediction
layer needs to be updated by each encoder layer to ensure that the mask always learns the
crucial predicted features.

The deformable multi-head attention module with the mask mechanism is used not
only to sample the key of the local position in the global position for each query vector
but also to filter the local sampling points according to the value predicted by the mask.
Sampling points without feature contributions are resampled to obtain new keys, and the
updated local attention weights are then multiplied by local values. This process reduces
the computation in the attention module. Sampling points without feature contributions are
filtered out to avoid useless computation on points without contributions. The convergence
speed of the model is further accelerated, and higher detection accuracy is achieved in a
short period of time. The calculation formula for the deformable attention module with the
mask mechanism is as follows:

MMSDeformAttn(zq, pq, x) =
M

∑
m=1

Wm[
K

∑
k=1

Amqk ·W ′
mx(pq + maskmqk · func(Δpmqk))] (6)

where m indexes the attention head, k indexes the sampled keys, K is the total number
of sampled keys (k � HW), and Δpmqk and Amqk are the sampling offsets and attention
weights of the k-th sampling point in the m-th attention head, respectively. maskmqk is the
mask value corresponding to the k-th sampling point in the m-th attention head (maskmqk ∈
[True, False]), which determines whether the current point needs to be resampled for
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calculation. The symbol func is the resampling function with two strategies: non-sampling
and value decay.

Figure 2. The proposed deformable attention module based on the mask mechanism. The purpose of
the proposed mask mechanism is to generate a mask prediction layer that predicts which random
sampling points have not contributed to the current reference point and discards these points. The
random sampling process is accomplished by adding random integer offsets to the current reference
point to obtain the exact position of the sampling points. Blocks of different colors represent different
vectors, and blocks of different sizes represent different sized feature maps. The dotted lines represent
the correspondences between the different blocks.

The difference between the proposed mask deformable attention mechanism and
the attention weights in the original DETR is that although the original DETR can adjust
the importance of different contributing points through attention weights, it computes
the query vectors of each point with the key vectors of all other points. Although the
importance of different contributing points can be adjusted using this approach, there is no
way to reduce the number of computations. Even when the attention weight of a point is
0, the query, key, and value of that point still participate in the self-attention calculation
process. In the mask deformable attention mechanism, each query vector is computed
only with the key and value of the random sampling set of points around it. A resampling
strategy is adopted in this mechanism to address the problem of non-contributing sampling
points caused by random sampling, which replaces non-contributing points with other
points close to the current reference point. This makes the model carry out a more effective
attention computation process, thereby accelerating its convergence speed.

The resampling strategy of the F function is shown in Figure 3, with the direction-
invariant and value-nonlinear decay strategy on the left, and the non-sampling strategy on
the right. The non-sampling strategy sets the sampling offset value of the k-th sampling
point in the m-th attention head to 0, indicating that the point corresponding to the predicted
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offset does not have a contribution value and is directly discarded. The strategy of direction-
invariant and value-nonlinear decay is formulated as follows:

F(Δpx, Δpy) = (
Δpx

Δpx
×

√
|Δpx|, Δpy

Δpy
×

√
|Δpy|) (7)

where Δpx and Δpy are the predicted x offset and y offset, respectively. |Δpx| and |Δpy|
represent the absolute values of Δpx and Δpy respectively. When a certain point is predicted
to be a non-critical point, the points of all regions with increasing values in this direction are
also non-critical points. So, the offset needs to be updated using a constant direction and
nonlinear decay of value. Specifically, the random sampling process involves adding an
integer-valued random offset to the current reference point to obtain the specific position of
the sampling point. If a point at a certain location is predicted to be a non-contributing point
by the mask layer, the value of the random offset nonlinearly shrinks in the current direction
to become closer to the position of the reference point using the linear decay strategy
in Equation (7). With this strategy, non-contributing points can be replaced with other
points around the reference point, thus leading to more efficient attention computations by
the model.

Figure 3. The resampling strategy of sampling points in the deformable attention module based on
the mask mechanism. The offset in the same direction for a sample point that does not contribute
to the current reference point is decreased, and this invalid reference point is replaced with another
sample point in that direction that is closer to the reference point. Arrows of different colors represent
different sampling points, and the coordinates where the arrows are located represent the offsets
from the current reference point. Dashed arrows represent the original sampling point, solid arrows
in that direction represent a reassignment of the sampling offset, and the dot represents discarding
the current offset.

3.2. The Simple Conditional Spatial Query Strategy

The conditional DETR can be used to speed up the convergence of the model and
improve detection accuracy. But, owing to the multiscale concatenating mode used in the
deformable DETR, the size of the query vector of the input encoder is too long. The direct
incorporation of the conditional spatial query module not only significantly increases the
number of computations but also compromises the generality of the deformable attention
module. Specifically, too many linear mappings are used in the conditional spatial query
module in the original conditional DETR, which increases the number of computations and
contrasts with the original intention of the design of this study—to reduce the number of
computations. Moreover, the implementation of the original conditional DETR conflicts
with that of the deformable DETR, which means the conditional spatial query module of
the conditional DETR cannot be used directly in the proposed mask deformable DETR. In
this study, the experiments prove that the detection performance of the deformable DETR
is instead reduced by using the complex sub-module structure.
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Therefore, the separation operation of the content queries and spatial queries in the
self-attention module is discarded through the proposed simple conditional spatial query
(SCSQ) strategy in this study. The strategy of the original conditional spatial query in the
cross-attention module is simplified. In order to reduce the number of additional parame-
ters introduced and preserve the generality of the deformable attention module, some of
the linear mapping processes are omitted in the decoder in the simple conditional spatial
query. After the query vector and the conditional spatial query vector are concatenated,
feature fusion is performed through a linear layer to restore the dimensionality of the
feature vector to its original length. These modification processes allow the application of
the deformable DETR using the mask mechanism to the simple conditional spatial query
module in the decoder. The separation of content queries and spatial queries is achieved by
introducing a small number of additional parameters. Therefore, the model can focus on
content embeddings and spatial embeddings separately when cross-attention computation
is performed. Thus, the dependence of the prediction task on the content embeddings is
relaxed, and the training processes are simplified.

The conditional cross-attention is formed by connecting the content query, the output
of the self-attention in the decoder, and the spatial query. The keys consist of the con-
tent keys and spatial keys. The formula for calculating the conditional cross-attention is
as follows:

CondCrossAttn(k, kpos, q, qpos, v) =proj([SelfAttn(q, k, v, qpos), CondSpatial(q, qpos)]) · proj([k, kpos])
T · v (8)

where k and v are the memory vectors output by the encoder, kpos is the 2D spatial position
information input by the encoder, q is the query input by the decoder, qpos is the 2D
spatial position information corresponding to the query input of the decoder, and [, ] is
the concatenation operation. The proj symbol is the simple linear mapping function. The
SelfAttn function is a common self-attention mechanism calculation process. The formula
for SelfAttn is as follows:

SelfAttn(q, k, v, qpos) = (q + qpos) · (k + kpos) · v (9)

where qpos is the spatial embedding of the q vector, as shown in Formula (8). CondSpatial
is the calculation process of the conditional spatial query, and the formula is as follows:

CondSpatial(q, qpos) = FFN(q) · Ps(qpos) (10)

where FFN is the multiple linear mapping layers, and Ps is the projection process of position
encoding. The formula for Ps is as follows:

Ps(qpos) = sinusoidal(sigmoid(qpos)) (11)

where sinusoidal represents a sine and cosine positional encoding function.

3.3. SFN Structure and Cross-Fused Module
The traditional feedforward network (FFN) structure consists of a stack of multiple

linear layers. The query vector is obtained through cross-attention computation using the
memory obtained by the encoder after self-attention and the object queries of the decoder.
This query vector is used to predict both the classification task and the regression task.
Since the focuses of the classification task and regression task are different, the features they
focus on should also differ. The classification task should focus more on stroke category
information in the query vector, whereas the regression task should focus more on stroke
position information. Therefore, a channel-splitting FFN structure is proposed in this
study, called the splitting feedforward network (SFN) structure, which is shown in Figure 4.
This structure initially splits the query vector output by the decoder into two different
vectors, which are each used to predict different tasks. The problem caused by simple
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splitting is that the former and latter parts of features only focus on their own prediction
tasks, resulting in the loss of correlations between the two parts. Considering that features
important for classification may be potentially useful for the regression task, and features
important for regression may be equally useful for the classification task, an alternative
approach is considered. This approach involves cross-computing the former and latter
parts of features, so a cross-fused module is proposed in this paper. This module facilitates
the interaction between the corresponding weights of the features in the first part of the
SFN and the features in the second part of the SFN. Similarly, it allows the corresponding
weights of the features in the second part of the SFN to influence the first part of the SFN.
In this way, both independence and correlation can be simultaneously emphasized by
the former and latter parts of features. The resulting output features for the former part
of the SFN are used for predicting the classification task, whereas the resulting output
features for the latter part are used for predicting the regression task, thereby enhancing
the independence of different prediction tasks. Specifically, the classification features are
utilized to obtain a weight matrix through the linear layer, which is then applied to the
regression task. The regression features are utilized to influence the classification task
through a weight matrix obtained from the linear layer. In this way, the correlation between
the classification task and the regression task can be strengthened. The class vector for the
classification task and the bounding box vector for the regression task are obtained using
the following equations:

Vectorcls = FFN(σ(Linear(reg)) · cls) (12)

Vectorbbox = FFN(σ(Linear(cls)) · reg) (13)

Figure 4. The structure of the proposed SFN module. The corresponding weight matrices are obtained
from the vectors after linear and sigmoid computations. The weight matrices of the classification
features are used as the weight coefficients of the regression task, and the weight matrices of the
regression features are used as the weight coefficients of the classification task.
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The difference between the SFN module proposed in this paper and the decoupled
detector head in YOLO is that the decoupled detector head in YOLO ensures that the
classification and regression tasks focus more on their features of interest by introducing
classification and regression branches, allowing the detector head to converge faster and
reducing latency while maintaining accuracy. However, the number of channels is reduced
by slicing the channel of the query vector in the SFN module proposed in this paper to halve
the computation of the detection head. At the same time, there is an intrinsic connection
between the classification task and the regression task, e.g., the feature regions that are
concerned with the classification features are also concerned with the regression task, and
therefore cross-weights are used to strengthen the connection between the classification
task and the regression task.

3.4. SCSQ-MDD Pipeline

The overall structure of the SCSQ-MDD (simple conditional spatial query mask de-
formable DETR) is shown in Figure 5. The overall process of the model can be described as
follows: (1) The input image is fed into the Resnet feature extraction network to obtain three
feature maps of different scales, and the number of channels of feature maps of the three
scales is then unified by the channel mapper, followed by a convolution operation to obtain
the feature map of the fourth scale. (2) The feature maps of four scales are concatenated to
obtain the feature vector (encoder embeddings), which contains image information from
four different scales. The absolute position encoding of encoder embeddings is obtained
using the sine and cosine position encoding methods. The query, key, value, unprocessed
three-layer feature maps, and absolute position encoding obtained from encoder embed-
dings are input into the encoder. The mask layer is predicted in each encoder layer using the
query and the unprocessed three-layer feature maps. In the deformable attention module,
the mask layer specifies which sampling offsets need to be updated. The updated query
vector is obtained in each encoder layer, and the model predicts a new mask layer based
on the updated query vector, ensuring that the latest features can always be learned by
the mask. The query, updated after six encoder layers, serves as a memory vector and
undergoes cross-attention calculations with the object queries of the decoder. (3) By initial-
izing the object queries and their corresponding positional encoding, the object queries,
positional encoding, and memory vector obtained from the encoder can be input into the
decoder. Initially, the calculations for the query positions and object queries are performed
using a simple conditional spatial query to obtain the vectors (query embedding) of the
conditional spatial query in each layer of the decoder. Then, calculations of the query, key,
and value from the object queries are carried out with self-attentions to obtain the updated
query vectors. The query vectors and the conditional spatial query vectors are concatenated
and linearly fused to obtain new queries, which are vectors calculated and fused separately
after isolating the content query and spatial query. At the same time, the memory vector
serves as the key and value in the encoder used for cross-attention calculations with the
new query, and the updated query is obtained through the deformable attention module. (4)
After six decoder layer updates, the final query vector is obtained, which is then segmented
and cross-fused. The first part of the features is used for predicting classification tasks,
whereas the latter part is used for predicting regression tasks.
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Figure 5. The overall network structure of the proposed SCSQ-MDD (simple conditional spatial
query mask deformable DETR). The mask deformable attention mechanism proposed in this paper
is incorporated into the improved multiscale deformable self-attention module. The purpose of the
SCSQ is to obtain a spatial query vector, which is spliced and fused with the content query vector
and used for cross-attention computations).

3.5. Chinese Stroke Detection Method Based on the SCSQ-MDD

Figure 6 shows the overall flow of the Chinese character stroke detection method based
on the SCSQ-MDD. The inputs are images of Chinese characters with five different stroke
styles: “SimKai”, “SimHei”, “SimSun”, “MSYH”, and “Deng”. First, the sample data are
processed using data augmentation methods, such as random flip, resize, and random crop,
to improve the model’s detection generalization ability. Second, the sample data are fed
into the Resnet network to extract features from both the Chinese character images and the
Chinese character strokes. Third, since the original Chinese character images contain direct
connections between strokes, the original three-layer feature maps extracted by Resnet and
the current query vector are used to jointly predict the mask layer. Then, this mask layer is
used to filter valid reference points in the query vector, discarding invalid reference points
or resampling them as valid reference points using Equation (7). The attention is calculated
only for the valid reference points using Equation (6), reducing the attention calculation
process for the invalid reference points. This accelerates the learning of stroke feature
information in the Chinese character image by the query vector. Fourth, the query vector of
the decoder is obtained by performing simple conditional spatial query calculations using
the object queries of the decoder and the 2D positional embedding vector. By separating
the content query and the spatial query, the representation features of the detection boxes
for the strokes can be learned faster by the query vector. Cross-attention calculations are
performed between the memory vector updated by the encoder and the query vector of
the decoder. The components of each query vector focus on the feature information of a
stroke in the Chinese character image. The query vector obtained after six updates contains
both the stroke feature information and the stroke position information. Finally, separate
classification and regression predictions on query vectors are performed through the SFN
module. The stroke detection results are visualized based on the category scores and the
parameters of the regression detection box.
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Figure 6. The overall flow of the Chinese character stroke detection network. Each Chinese character
image consists of one style of stroke, and there are a total of 5 stroke styles of Chinese character
images as input. The purpose of the backbone is to obtain the basic features of the image. The
proposed SCSQ-MDD method is used to generate a high-level representation containing information
about the location of the strokes and the category of the strokes of the Chinese characters, which is
ultimately used in the head detector.

3.6. Application of the SCSQ-MDD to Robotic Arms

The method proposed in this study can be applied to robotic arms for Chinese character
writing tasks. Figure 7 shows the process of applying the SCSQ-MDD stroke detection
method to robotic arms. First, the images of Chinese characters captured by the camera
were recognized, and standard Chinese character images were generated based on the
recognition results. Second, the SCSQ-MDD stroke detection method was used to detect
all the strokes of the standard Chinese characters. Then, the reduction rules of the strokes
were defined, and the pixel points of each stroke were reduced using the detected stroke
categories and stroke positions. Finally, a set of pixel points was passed as a parameter to
the listening program of the robotic arms, and the operating system of the robotic arms was
used to complete the writing task of Chinese characters.

Figure 7. The process of applying the SCSQ-MDD method to robotic arms. A Chinese character consists
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of multiple strokes, and the position and category information of all the strokes are obtained by stroke
detection.

4. Experiments and Results

Since there is no publicly available Chinese character stroke dataset, the experimental
data used in this paper were from a self-labeled standard Chinese character stroke dataset
containing 1200 standard Chinese character images with five different styles and 52 stroke
categories. Details of the 52 stroke categories are shown in Table 1. This dataset was
divided into three sub-datasets for different tasks, where the training sets were used for
model training, the validation sets were used to evaluate the detection metrics, and the
test sets were used to test the model. The Pytorch framework was used to deploy the
entire SCSQ-MDD model. In total, 800 standard Chinese character stroke images were used
for model training, 200 standard Chinese character stroke images were used for model
validation, and 200 standard Chinese character stroke images were utilized to test the
model. The training platform used was a Quadro RTX 5000 graphics card with a batch size
of 2. After 200 epochs of training, a total of more than 80,000 iterations were performed.

Table 1. The 52 stroke categories for standard Chinese character images based on Chinese Pinyin.

dian fandian duanheng heng changheng
shu zuoxieshu youxieshu pie shupie

fanpie na ti piedian shuti
hengzheti wangou shugou shuwangou xiegou

wogou henggou hengzhegou hengzhexiegou tizhegou
hengzhewangou hengzuozhewangou hengpiewangoungzhegou hengpiewanwan hengzhezhezhegou

hengzuozhezhezhegou shuzhezhegou shuwan hengzhewan hengzhe
hengzuozhe xieshuzhe shuzhe shutizhe piezhe
banpiezhe hengpie hengxiaopie tixiaopie banhengpie

hengna hengzhezhepie shuzhepie hengxiegou shuzhezhe
hengzhezhe hengzhezhezhe

4.1. Implementation Details

The proposed SCSQ-MDD method used Resnet50/Resnet101 as the backbone to ex-
tract the basic features of Chinese character images. Six layers of transformer encoder layers
were used on the transformer encoder side, and a mask multiscale deformable attention
module with eight heads, embedding dimensions of 256, and four sample points was
applied at each layer. Six layers of transformer decoder layers were used on the transformer
decoder side, and a multi-head attention module with eight heads and embedding dimen-
sions of 256 was applied at each layer. The classification loss used the FocalLoss function,
with gamma set to 2.0 and alpha set to 0.25. The bounding box regression loss used the
L1Loss function. The intersection over union (IOU) loss used the GIOULoss function. The
Adam optimizer with a learning rate of 0.0002 was used.

4.2. Comparison between the SCSQ-MDD and the Deformable DETR

Figure 8 shows the trends in the loss function during network training for the de-
formable DETR and the SCSQ-MDD. The loss curves of both the deformable DETR and the
SCSQ-MDD converged at the 50th epoch, with the loss curve of the SCSQ-MDD converging
slightly faster than the loss curve of the ordinary deformable DETR.

Figure 9 shows the trends in the accuracies of the deformable DETR and SCSQ-MDD
networks during training/validation. It can be seen that the accuracy curve of the SCSQ-
MDD lies slightly above the accuracy curve of the deformable DETR, demonstrating that
the detection accuracy of the SCSQ-MDD method proposed in this paper is superior to that
of the deformable DETR.
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Figure 8. Trends in the loss function for the deformable DETR and the SCSQ-MDD during network
training. The training loss of the proposed SCSQ-MDD decreased faster compared to the deformable
DETR.

Figure 9. Trends in the accuracies of the deformable DETR and the SCSQ-MDD during the train-
ing/validation stage. The proposed SCSQ-MDD method performed significantly better compared to
the deformable DETR method in terms of detection accuracy.

Table 2 shows the results of the comparison experiments using the deformable DETR
and the SCSQ-MDD. It was found that our model resulted in substantial improvements
in accuracy with only a slight increase in the number of parameters. Compared with
the deformable DETR, the use of the mask deformable DETR increased the number of
parameters by 1M, FLOPS by 41G, AP by 1.5%, AP50 by 2.0%, and AR by 0.8%. The use
of the SCSQ-MDD increased the number of parameters by 6M, FLOPS by 41G, AP by
3.8%, AP50 by 3.1%, and AR by 1.1%. The FLOPS of the SCSQ-MDD exhibited almost no
improvement compared to the mask deformable DETR, with increases in the AP of 2.3%,
AP50 of 1.1%, and AR of 0.3%.

Table 2. The comparative detection results of the deformable DETR and the SCSQ-MDD (simple
conditional spatial query mask deformable DETR) on the test set. The metrics used to evaluate
detection accuracy include the AP, AR, params, FLOPS, and FPS.

Method Epochs AP AP50 AP75 APM APL AR Params FLOPS FPS

Deformable DETR [35] 150 79.8 90.5 89.1 71.8 79.8 90.6 40M 144G 5
Mask Deformable DETR 150 81.3 92.5 91.7 71.7 81.3 91.4 41M 185G 4
SCSQ-MDD 150 83.6 93.6 93.0 71.7 81.7 91.7 46M 185G 4
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4.3. Comparison between the SCSQ Mask Deformable DETR and Mainstream Detection Methods

Table 3 shows the comparison results between the proposed SCSQ-MDD and main-
stream detection methods. The AP of the method proposed in this paper was 88.1%, the
AP50 was 95.6%, the AP75 was 95.5%, and the AR was 93.5%. Compared with Faster RCNN,
the proposed method improved the AP by 9.6%, the AP50 by 0.5%, the AP75 by 1.6%, and
the AR by 0.9%. Compared with ATSS, the proposed method improved the AP by 16.3%,
the AP50 by 5.8%, the AP75 by 12.4%, and the AR by 14.5%. Compared with YOLOv5 with
1500 training epochs, the AP of our method with 500 epochs increased by 4% and the AP50
increased by 1.5%.

Table 3. The comparative detection results of the SCSQ-MDD and mainstream methods on the test
set. The metrics used to evaluate detection accuracy include the AP, AP50, AP75, and AR. A check
mark (

√
) indicates whether to enable the SFN module.

Method Backbone SFN AP AP50 AP75 APM APL AR

Faster RCNN [8] ResNet50 78.5 96.4 94.4 68.9 78.5 82.6
ATSS [37] ResNet50 71.8 89.8 83.1 79.6 71.7 79.0
YOLOv5 ResNet50 84.1 94.1 – – – –
YOLOv5 ResNet50

√
84.9 94.9 – – – –

YOLOv7 [17] ResNet50 87.9 95.0 – – – –
SCSQ-MDD ResNet50

√
88.1 95.6 95.5 72.1 88.2 92.9

SCSQ-MDD ResNet101
√

88.6 96.9 96.0 75.1 88.6 93.5

4.4. Ablation Study on Improved Mask Deformation Attention

Detailed ablation experiments were conducted for the SCSQ-MDD network structure
design and the embedding of the mask deformable attention, SCSQ, and SFN modules. The
performance of the network model was evaluated by comparing the prediction accuracy
during the testing phase. The designs of the SCSQ, mask deformable attention, and
SFN modules were explored for their usefulness in training the Chinese character stroke
detection network, with a check mark (

√
) indicating whether the specific technique or

module was used.
Table 4 shows the ablation results of various options of the proposed deformable

attention module based on the mask mechanism. Using the mask mechanism to resample
the offset of deformable attention effectively improved detection accuracy, with a 1.5%
increase in the AP. Adding the simple conditional spatial query module further improved
the AP value by 1.1%. Using the proposed SFN module in this paper to split channels
further improved the AP by 1.2%. Overall, using both the simple conditional spatial query
module and the SFN module improved the AP value in this experiment. It can be seen that
when either the SCSQ module or the SFN module was added alone, the SFN module led to
more improvements than the SCSQ module.

Table 4. Ablation results of the SCSQ-MDD network structure on the test set. “Mask Deformable Attn.”
refers to the deformable attention module based on the mask mechanism and “Simple Conditional
Spatial Query (SCSQ)” refers to the simple conditional spatial query strategy. A check mark (

√
)

indicates whether to enable the specified module.

Deformable DETR Mask Deformable Attn SCSQ SFN AP AP50 AP75 AR
√

79.8 90.5 89.1 90.6√ √
81.3 92.5 91.7 91.4√ √ √
82.4 92.4 92.0 91.3√ √ √
82.5 93.1 92.6 90.7√ √ √
81.5 91.1 89.7 92.1√ √ √ √
83.6 93.6 93.3 91.7

In this paper, a mask mechanism is used to filter the sampled reference points and
resample the invalid reference points to reduce the randomness of reference points during
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the feature updating processes. This enables the model to converge faster compared to
not using a mask mechanism. Therefore, better detection performance can be achieved
by a model with a mask mechanism in the same cycle compared to a model without it.
Moreover, a simple conditional spatial query strategy is used in this paper to separate the
content query and spatial query, reducing the dependence of the prediction task on the
content embedding and accelerating the convergence of our model compared to models
that do not use a simple conditional spatial query. Finally, a channel-splitting FFN network
is adopted in this paper as the prediction head. The classification and regression tasks can
focus on their respective features and interconnections, thereby improving the model’s
detection accuracy rate. However, since a mask prediction branch, as well as a resampling
strategy, are introduced in this study, and a conditional spatial query strategy is used to
compute the conditional spatial query vector, additional computations are needed, and the
runtime of the model is longer compared to the original deformable DETR.

5. Conclusions

In this study, a deformable DETR method based on a mask mechanism with a simple
conditional spatial query for detecting Chinese character strokes is proposed. This method
is utilized to address the problem of random sampling in the deformable attention module
in the original deformable DETR, to further accelerate convergence speed, and to improve
accuracy. The mask mechanism designed in this study can be used to effectively reduce the
uncertainty of deformable attention in sampling, thus reducing unnecessary computational
costs. The simple conditional spatial query module is added to significantly improve the
detection performance of the model with only a small increase in the number of parameters.
Moreover, for the transformer task, the final query vector output of the decoder is split to
specify the specific predictions for different tasks, which can be used to slightly improve
the model’s performance without any increase in the computational cost and number
of parameters.

This method provides a new solution for Chinese character stroke detection tasks with
an improved detection paradigm. Moreover, as a method capable of handling Chinese
character strokes, this method can accomplish the Chinese character writing task using
robotic arms at the stroke level. Meanwhile, in addition to detecting strokes, a library for
stroke order also needs to be built. The rules are established for each stroke of each Chinese
character in order to complete the process of Chinese character reduction.

Although we have completed the task of detecting the strokes of standard Chinese
characters, the task of detecting the strokes of handwritten Chinese characters is still
difficult due to their irregularity and stylistic heterogeneity. In the future, we will focus on
stroke detection and the restoration of handwritten Chinese characters. Meanwhile, this
work has important implications for early education in Chinese character calligraphy, the
dissemination of multi-font Chinese character graphics on social networks, and writing
using industrial robotic arms.
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Abstract: The identification and classification of traditional Chinese herbal medicines demand
significant time and expertise. We propose the dual-teacher supervised decay (DTSD) approach,
an enhancement for Chinese herbal medicine recognition utilizing a refined knowledge distillation
model. The DTSD method refines output soft labels, adapts attenuation parameters, and employs
a dynamic combination loss in the teacher model. Implemented on the lightweight MobileNet_v3
network, the methodology is deployed successfully in a mobile application. Experimental results
reveal that incorporating the exponential warmup learning rate reduction strategy during training
optimizes the knowledge distillation model, achieving an average classification accuracy of 98.60% for
10 types of Chinese herbal medicine images. The model boasts an average detection time of 0.0172 s
per image, with a compressed size of 10 MB. Comparative experiments demonstrate the superior
performance of our refined model over DenseNet121, ResNet50_vd, Xception65, and EfficientNetB1.
This refined model not only introduces an approach to Chinese herbal medicine image recognition
but also provides a practical solution for lightweight models in mobile applications.

Keywords: Chinese herbal medicine; knowledge distillation; dual-teacher supervision; adaptive
attenuation; portable application

1. Introduction

Chinese herbal medicine stands as a distinctive therapeutic approach within tradi-
tional Chinese medicine (TCM), offering a diverse range of remedies for various ailments.
However, the expansive array of Chinese herbal medicines used across different regions
has given rise to a concerning trend: the proliferation of counterfeit and substandard
substitutes on the market. This poses significant risks as ordinary consumers, lacking
in-depth knowledge, often inadvertently consume these falsified products. The complexity
of Chinese herbal medicine compounds this issue, making it challenging for laypersons to
accurately identify genuine herbs. As a consequence, mistaken ingestion remains a frequent
occurrence among consumers. Presently, the identification and classification of these herbs
heavily rely on individuals with specialized expertise in this field. To address these chal-
lenges, the integration of deep learning technology into the recognition and classification
of Chinese herbal medicine becomes imperative. The remarkable advancements in image
recognition offered by deep learning present a promising solution. This integration holds
immense potential in revolutionizing traditional Chinese medicine (TCM) by providing
a systematic approach to identifying and authenticating herbal medicines. The applica-
tion of deep learning in research aimed at recognizing and categorizing Chinese herbal
medicine marks a crucial step forward in preserving and advancing the legacy of TCM. Its
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incorporation promises to empower both practitioners and consumers by enhancing the
authentication and classification of these invaluable remedies.

In recent studies, deep learning technologies have been harnessed for advancing
Chinese herbal medicine identification. Huang et al. [1] proposed a Chinese herb image
classification method based on AlexNet. Through meticulous data augmentation and
parameter fine-tuning, they achieved an impressive classification accuracy of 87.5% after
300 epochs. Gao et al. [2] introduced a recognition approach for natural grassland plant
species using Inception_V3 with Tensorflow, achieving a peak accuracy of 89.41% in the
model’s validation dataset’s Top1 error. Zhang et al. [3] contributed by classifying 17 types
of Chinese herbs through a VGG network, attaining an outstanding average recognition
accuracy of 96% in the validation dataset. Their model was further deployed on mobile
devices, demonstrating practical application. Wang et al. [4] proposed an image recognition
method for Chinese herbal plants based on the AlexNet network. Utilizing a deep coding
and decoding network, they successfully trained the model to classify 15 types of Chinese
herbal images, achieving an impressive average classification accuracy of 99.38%, but the
large model parameter amount led to large training and inference computation, requiring
more memory and computing resources, which was not suitable for mobile deployment.
Hu et al. [5] introduced a dual-channel U-shaped convolutional neural network with fea-
ture calibration. They generated a training model for single-view fritillaria image data,
surpassing the classification results of traditional machine learning methods. Moreover,
by incorporating multi-view fritillaria images and employing a three-dimensional con-
volutional neural network, they developed a more precise fritillaria classification model.
While these scholars have conducted profound research in Chinese herbal medicine image
recognition, there is still room for improvement in model accuracy. An improved model
has to not only maintain high classification accuracy but also focus on reducing the model
parameter amount to improve performance. Moreover, concerns arise regarding the redun-
dancy of model parameters, hindering deployment on mobile devices due to inadequate
detection speed.

To address the aforementioned challenges, this paper proposes an approach called
dual-teacher supervised decay (DTSD) for adaptive-decay knowledge distillation, which
aims to enhance the performance of the standard model. By enhancing the output soft
label, adapting decay parameters, and dynamically combining loss functions from the
teacher model, DTSD is employed in the MobileNet_v3_Small network to enable accurate
predictions despite its smaller size. Consequently, the accuracy of the MobileNet_v3_Small
network is elevated to match that of more complex networks. The proposed model is
then integrated into an intelligent Chinese herbal medicine recognition system for mobile
devices, facilitating the efficient recognition and classification of Chinese herbal medicine.

The main contributions of our work include:

1. Proposing a dual-teacher supervised model to reorganize the predictive distribution
of dual teachers to achieve more accurate and robust soft labeling, which improves
the performance of the model.

2. Dynamically adjusting the temperature parameter T and the weight distribution value
λ between the teacher model and the real label to gradually reduce the influence of
the teacher model in the training process, so that the student model can more flexibly
balance the complexity and the model’s generalization ability in the training process.

3. Adopting JS scatter with symmetry to replace the cross-entropy loss of the predicted
values of the soft label and the student model to better capture the similarity between
the distributions and prompt the student model to better inherit the knowledge of the
tutor model.

4. A lightweight MobileNet_v3 network-based herbal medicine recognition system is im-
plemented, and by applying our proposed DTSD method to the MobileNet_v3_Small
network, we improve the accuracy and robustness of herbal medicine recognition
while maintaining a small model size.
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The rest of this paper is organized as follows: The preliminaries and dataset collection
are presented in the first half of Section 2. Also in that section, the dataset augmentation
strategies are described. Then, we introduce the knowledge distillation model with dual-
teacher supervised decay in the second half of Section 2. Comparative experiment results
and analysis are given in Section 3 to verify the effectiveness of the proposed methods,
followed by a short conclusion in Section 4.

2. Materials and Methods

2.1. Dataset Collection

The dataset utilized in this study consists of images depicting 10 distinct types of
Chinese herbal medicine. These images were gathered from the Internet using a Web
crawling technique and subsequently underwent a meticulous process of curation and
filtration. A Web crawler first needs to determine the initial URL to be crawled and then
builds a queue of URLs by parsing links on the page. The crawler accesses the web pages
one by one according to the URLs in the queue. The page is requested from the server
via an HTTP request, and then the HTML data returned by the server are downloaded
locally. The downloaded pages are usually in HTML format, and the crawler needs to
parse the HTML to extract useful information. The parsed data were the herbal images.
This process resulted in a total of 1000 images of Chinese herbal medicines being compiled.
The dataset, as illustrated in Figure 1, encompassed 10 specific types of Chinese herbal
medicines, namely Radix paeoniaealba, Radix stemoonae, Fructus aurantia tablets, Polygon atum,
turmeric, Pollen typhae, Cnidium monnieri, motherwort, Chinese wolfberry, and curcuma. By
cropping and compression, each category comprised 100 images, all of which sized at
320 pixels by 320 pixels and possessing a resolution of 96 dots per inch. During the training
of the teacher network, the dataset was partitioned into a 7:2:1 ratio, with 700 images (70%)
allocated to the training dataset, 200 images (20%) to the validation dataset, and 100 images
(10%) to the test dataset. The dataset was divided into datasets according to the 7:2:1 ratio
for each category. The authors labeled various types of herbs.

Figure 1. Sample of the Chinese herbal medicine dataset: (a) Radix paeoniae; (b) Radix stemonae;
(c) Fructus aurantia tablets; (d) Polygonatum; (e) turmeric; (f) Pollen typhae; (g) Cnidium monnieri;
(h) motherwort; (i) Chinese wolfberry; (j) curcuma.

2.2. Data Enhancement

The performance and recognition ability of the model during training are influenced
by the generalization and quantity of data. When the available data are limited, overfitting
becomes a more prominent issue in deep learning models. To address this challenge
and improve the model’s generalization capabilities, data augmentation techniques are
employed prior to training. These techniques enable the generation of more diverse data
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representations, as depicted in Figure 2. In order to preserve the original data features,
the dataset was expanded to a size of 10,000 through generalization under simulated real
conditions. The augmentation strategies [6] primarily included an image transformation
class and an image cropping class.

Figure 2. Data augmentation: (a) original image; (b) random augmentation strategy; (c) cutout
strategy; (d) random erasing strategy; (e) hide-and-seek strategy.

2.2.1. Image Transformation Class

For the rand augmentation strategy, specific probability distributions were set for
each sub-strategy. The transformations included rotation (±30 degrees), flipping (50%
probability of a horizontal flip), cropping (up to 20% crop of the original image size),
contrast adjustment (±10%), and other sub-strategies. Each sub-strategy was randomly
applied with a uniform probability distribution, reducing the need for manual selection.
Moreover, all sub-strategies were also applied with equal probabilities, resulting in mul-
tiple augmentation sub-strategies being concurrently applied to a single image through
probability combination. This approach allowed for the adjustment of image brightness,
contrast, saturation, and hue simultaneously, simulating variations in shooting angles and
actual lighting conditions. The probability of applying each sub-strategy was set at 10%,
ensuring a balanced augmentation without overpowering the original image characteristics.
By incorporating random factors to mimic real-world lighting differences, the parame-
ters aligned more closely with reality, reducing the impact of image angle and lighting
variations, and enhancing the model’s robustness.

2.2.2. Image Cropping

In the cropping class, cut out, random erasing, and hide-and-seek strategies were
employed, each with a distinct probability of application: 15% for cut out, 10% for random
erasing, and 5% for hide and seek. The main objective of these strategies is to imitate
classification scenarios where the subject is partially occluded in real-world situations. The
size of the cropped area ranged from 10% to 20% of the original image, randomly chosen
for each application. This helped prevent the model from becoming overly sensitive to
salient regions of the image, thus avoiding overfitting.

2.3. Teacher Model: ResNet_vd

ResNet, introduced by Kaiming [7], aimed primarily to reduce the computational
expense during network training and address issues related to diminishing or amplify-
ing gradients leading to performance degradation with increasing network depth. This
architecture employs stacked nonlinear layers to accommodate skip connections, thereby
establishing an identity mapping. This ensures that deeper layers perform as effectively as
shallower networks [8].

The ResNet_vd model, an enhancement of ResNet by Tong et al., introduces various
versions of residual modules [9]. Experiments conducted by He et al. demonstrate that
ResNet_vd achieves significantly higher accuracy compared to other structural variations,
leading to an approximate 0.85% increase in the top-1 accuracy on ImageNet. The network’s
structure is illustrated in Figure 3.
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Figure 3. Resnet_vd model structure diagram.

2.4. Teacher Model: DenseNet

DenseNet, proposed by Gao [10] et al., emerged subsequent to an analysis of ResNets,
highway networks, FractalNets, and other models. These authors highlighted a crucial
attribute shared by these models: the construction of shortcuts between preceding and
succeeding network layers, ensuring an identity mapping between them. Leveraging
this characteristic, they developed an enhanced connection mode: each layer receives the
feature maps from all preceding layers as input, as depicted in Figure 4. Research indicates
that this connection method notably enhances the transfer of features and gradients within
the network.

Compared to the residual network (ResNet), DenseNet achieves equivalent accuracy
on the ImageNet dataset while utilizing less than half the number of parameters and
computational resources [11]. Simultaneously, it demonstrates robust resistance to overfit-
ting and displays strong generalization performance [12].

2.5. Student Model: MobileNet_v3_Small

In the realm of deep convolutional network models, achieving high accuracy often
comes at the cost of increased model size and slower prediction speeds due to the incor-
poration of various techniques. The choice of MobileNet_v3 as the student model in our
study over other lightweight models was motivated by its unique balance of efficiency
and performance. Compared to other lightweight architectures, MobileNet_v3 offers an
optimal trade-off between accuracy and speed, crucial for real-time applications on embed-
ded devices. This balance is achieved through its advanced architectural innovations that
reduce computational demand without significant loss in accuracy [13,14].

MobileNet_v3 represents the next evolutionary step: a lightweight network that amal-
gamates the essence of MobileNet_v1 and MobileNet_v2 while introducing enhancements.
It was selected for its superior efficiency in processing speed and reduced parameter count,
critical for deployment in resource-constrained environments. This iteration revolves
around four core blocks: (1) a depthwise-separable convolution; (2) an inverted residual
structure with linear bottleneck; (3) a lightweight attention block; (4) the utilization of h-
swish as an activation function, replacing the conventional swish [15–18]. The architecture
of MobileNet_v3, depicted in Figure 5, demonstrates these key components.

148



Sensors 2024, 24, 1559

Figure 4. Densenet121 model structure diagram.

Figure 5. MobileNet_v3 model structure diagram.

2.6. Knowledge Distillation Model with Dual-Teacher Supervised Decay

In deep neural networks, the presence of a large number of parameters leads to
redundancy. Knowledge distillation, as proposed by Hinton et al. [19], emerges as a
technique to address this issue by compressing the model and reducing the parameter
count [20–24]. The fundamental idea behind knowledge distillation involves incorporating
soft labels associated with the teacher network into the total loss. This integration guides the
training of the student network, facilitating knowledge transfer. The improvement in the
performance of the student network is achieved while keeping the number of parameters
constant. The resulting performance metrics closely align with those of the larger model.
The detailed process is illustrated in Figure 6, and it unfolds as follows:
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1. The teacher network initially trains on hard targets. Once the model is trained, just
before the network performs softmax normalization on the output, each term is
divided by a fixed temperature, T. This process yields the soft targets used to guide
the learning of the student network.

2. During the training of the student network, the loss value employed for updating
parameter weights during backpropagation is divided into two components. One
part represents the cross-entropy loss computed on the true labels of the training
dataset. The other part corresponds to the loss calculated on the soft output of
the teacher network. Ultimately, these two losses are weighted and combined to
generate the overall loss, which is then applied to the training of the student network
model [25–28].

Figure 6. Flow chart of knowledge distillation.

The standard knowledge distillation process has shown its innovative aspects, but it
still faces the following issues, leading to a decrease in the accuracy of the student model
compared to the general model in certain training scenarios:

1. Quality of guidance from the teacher model: Sometimes, the complex model might
not predict perfectly. This is like a chef giving slightly incorrect cooking instructions
to an apprentice. When these predictions, or guidance, are enhanced to make them
more detailed for the student model (akin to increasing the “temperature” to make the
lessons more intense), it can introduce errors or “noise”. This may lead the student
model to learn incorrectly, like an apprentice learning flawed cooking techniques.

2. Adjusting the intensity of teaching (temperature): In past research, the intensity
or detail in the teacher’s guidance was often set at a fixed level, usually moderate.
But it is now understood that this should vary throughout the training, much like
adjusting teaching methods for students as they progress. The “temperature”, or level
of detail and complexity in the teacher’s guidance, needs to be adaptable, increasing
or decreasing at different stages of the student model’s learning.

3. Balancing real data vs. teacher’s predictions (loss weighting λ): In traditional teaching
methods, the balance between real-world data (hard labels) and the teacher’s predic-
tions (soft labels) is constant. However, it is more effective if this balance changes over
time. As the student model learns, the emphasis should gradually shift from what the
teacher model predicts to what is actually observed in real-world data, allowing the
student model to become more adept at handling real situations independently.

Based on these issues, an improved model of adaptive-decay knowledge distillation
with dual-teacher supervision is proposed, with specific improvements as follows:

1. The combination of soft labels: In standard knowledge distillation, we expand the
teacher model from a single teacher to dual teachers to obtain multiple prediction

150



Sensors 2024, 24, 1559

distributions. To maintain the accuracy of the prediction distributions while acquiring
more dark knowledge, we recombine the prediction distributions of the two teacher
models. This is done by taking the maximum value of the predictions from the
two teacher models in each dimension as the category classification result for that
dimension, thereby obtaining a soft label with greater accuracy and richer dark
knowledge. The formula is shown as Formula (1). Here, p and q represent the
predicted labels given by the two teacher models, respectively. Through this formula,
we generate a new probability distribution composed of the maximum values from
two different probability distributions in each dimension.

Max_out(p, q) = [Max(p_1, q_1), Max(p_2, q_2), . . . Max(p_n, q_n)] (1)

2. Selection of T: By analyzing the distillation distribution of the model output probabil-
ity for different T cases, as shown in Figure 7, the different types are 10 classifications
for herbal recognition, and the standard output is the blue solid line. When the value
of T is smaller than 1 (the red dotted line), the gap between the true prediction value
and the dark knowledge is enlarged, that is, the proportion of the true prediction
increases. When the value of T is greater than 1 (green dotted line), the total prediction
distribution is smoother, which means the proportion of dark knowledge is increased.
Therefore, in the early stage of training, T is set to a value smaller than 1, so that the
student model can quickly find the basic proper parameters in the early stage. With
the deepening of training and the expansion of the proportion of dark knowledge,
the student model with high accuracy further learns the dark knowledge part of
the correct prediction distribution given by the teacher model, so as to improve its
accuracy. Thus, the value of T is set to the value of the function that grows with the
training epochs. As illustrated in Formula (2) x is the training metric; through this
function, the temperature T changes with the x in an S-shaped curve and is defined as
the deepening of the experiment (step/epochs), increasing in an S-shaped curve, and
the main value range is [0–3], so that the student model can learn different degrees of
dark knowledge in different epochs. This is shown in Figure 8. The student model in
the early stage as a low weight; as the model training process continues to rise, the
relationship is well reflected as a sigmoid function, that is, an “S” curve. We have
adjusted the parameters of the sigmoid function so as to be more in line with the
whole training process of the model.

T_ f unction(x) = 3× Sigmoid(10× (x− 0.5)) (2)

3. Selection of λ: In knowledge distillation, when the student model is at distinct training
phases, the combined weights of the teacher model and the true label are likewise
diverse. In the early stage of training, transfer learning and real labels are mainly
mixed for learning and fitting, which guarantees that the high accuracy based on the
pretrained model can be acquired in the whole model training. Nevertheless, with the
deepening of the training epochs, since the student model has reached a successful
convergence situation through self-study, the accuracy cannot be further improved.
Therefore, by increasing the proportion of the teacher model on and on, the student
model learns the dark knowledge distribution from the teacher model prediction
distribution, thereby improving the model performance. The change in λ is shown
in Figure 8 and Formula (3), where x indicates the training times. By this function, λ
decreases in an S-curve with the deepening of the training process.

λ_ f unction(x) = 1− Sigmoid(10× (x− 0.5)) (3)

4. Calculation of the loss:

(a) In the loss calculation of the soft label and the student model, the Jensen–
Shannon divergence with symmetry is utilized to replace the cross-entropy
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loss as the similarity measure metrics of two prediction distributions, as shown
in Formula (5).

(b) In view of the one-hot characteristic of the hard label, the loss between the
hard label and the student model is still computed via the cross-entropy loss,
as shown in Formula (6).

(c) The total loss is derived from Formulas (7)–(12).

KL(P, Q) = ∑ p(x)log
p(x)
q(x)

(4)

JS(P1, P2) =
1
2

KL(P1,
P1 + P2

2
) +

1
2

KL(P2,
P1 + P2

2
) (5)

CE(Lable, Predict) = −
N

∑
j=1

Labelj·log
(

Predictj
)

(6)

T = T_ f unction(step/epochs) (7)

λ = λ_ f unciton(step/epochs) (8)

Outteacher = Max_out(Outteacher1, Outteacher2) (9)

Lso f t = JS(Outteacher/T, Outstudent/T) (10)

Lhard = CE(Hardlabel , Outstudent) (11)

Loss = (1− λ) ∗ Lso f t + λ ∗ Lhard (12)

Figure 7. Distillation distribution of model output probabilities for different T cases.
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Figure 8. The distribution of T/λ.

In Formula (4), KL represents the relative entropy formula, P and Q represent two
probability distributions, respectively, and p(x) and q(x) are the specific probabilities in a
certain dimension. In Formula (5), JS is the loss function for calculating the two proba-
bility distributions, P1 and P2 are two distinct probability distributions, and the function
returns the JS divergence loss between these two distributions. In Formula (6), CE is the
cross-entropy function of two probability distributions, Label and Predict are usually the
prediction probability distributions given by the true label and the student model, respec-
tively. In Formulas (7)–(12), the above formulae are called. T represents the temperature
metric during distillation, λ represents the combination weight between two different
losses, where the quotient of step (current training number) and epochs (total training
number) is used as the training progress index. Outx reflects the probability distribution
given by model x. L represents the two losses computed by different calculation methods,
and eventually they are merged by the λ weight to synthesize the final loss.

The improved dual-teacher supervised decay (DTSD) has two teacher models selected
as the complicated and high-accuracy models ResNet50_vd and DenseNet121, respectively.
The student model chosen for this paper was MobileNet_v3_Small, which is known for its
lightweight design. The model’s structure is depicted in Figure 9.

Figure 9. Flow chart of DTSD distillation.

153



Sensors 2024, 24, 1559

3. Results and Discussion

3.1. Experimental Setting

The primary experimental setup for this paper consisted of: (1) A desktop computer
operating on Windows 10, equipped with an Intel Xeon E5-2630 v4 processor at 2.2 GHz,
64 GB of RAM, a 1.5 TB mechanical hard drive, and an NVIDIA Tesla P4 graphics card
with 32 GB of video memory. This setup leveraged GPU acceleration for computations
and was configured with the Paddle deep learning framework within a programming
language environment. (2) Baidu’s open platform, Ai Studio, featuring an NVIDIA Tesla
V100 graphics card, utilizing GPU computing power and acceleration, with the Paddle
deep learning framework also implemented in a programming language environment.

3.2. Experimental Design

First, we pretrained the ResNet50_vd, DenseNet121, and MobileNet_v3_Small net-
work models on the public dataset ImageNet2012 [29], mainly fine-tuning the models to
verify that pretraining could improve the model performance. Subsequently, we trained
the student model MobileNet_v3_Small under the guidance of the dual teacher models
ResNet50_vd and DenseNet121, to validate the DTSD model and perform optimal parame-
ter tuning. Furthermore, to verify the trained MobileNet_v3_Small_DTSD, we compared it
with the similar MobileNet_v3_Small and other classic models in comparative experiments.
To minimize the randomness of training, the data presented in the table are average values
obtained from multiple measurements. Moreover, the dataset used was an augmented
dataset of 10 types of Chinese herbal medicines.

3.3. Experiments on Boosting Training with Pretrained Models

To verify the impact of the pretrained models on the training process and the final
model performance, comparative experiments were conducted for the two teacher models,
ResNet50_vd and DenseNet121, as well as the student model MobileNet_v3_Small, using
pretrained models. All the mentioned models were first pretrained on the public dataset
ImageNet2012, followed by transfer learning on a Chinese herbal medicine dataset.

Taking MobileNet_v3_Small as an example, the comparison of pretrained models is
illustrated in Figure 10. The loss values of the models using pretraining converged more
quickly than those of the normally trained models (as shown in Figure 10a), reaching a
desirable convergence state in the early stages of training. Consequently, under the same
number of training epochs, models trained with pretraining exhibited higher performance.
Furthermore, the accuracy (Acc) of the models using pretrained models maintained a
higher precision compared to those without pretraining, achieving high performance from
the early stages of training (as depicted in Figure 10b).

Figure 10. Comparison of the effects of pretrained models on model training: (a) loss value figure;
(b) accurate figure.
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As shown in Table 1, the final accuracies of the three models that underwent pretrain-
ing through transfer learning all showed improvements, with increases of 12.40%, 7.35%,
and 9.5%, respectively. Therefore, it can be concluded that pretrained models played a
significant role in enhancing the performance of the models. Moreover, with the demonstra-
tion of the superiority of the DTSD technique, all subsequent experiments utilized transfer
learning for pretraining.

3.4. Improved Model Verification

The above experiments provide evidence that the use of a pretrained model contributes
to an improvement in the performance of the model. To further verify the effect of the DTSD
model on MobileNet_v3_Small, the high-precision teacher models ResNet50_vd (98.9%)
and DenseNet121 (98.7%) were trained on the 10 Chinese herbal medicine augmented
datasets in advance.

Table 1. Accuracy of the models with of pretraining.

Network Pretraining Model Accuracy (%)

ResNet50_vd
× 86.10
√

98.50

DenseNet121
× 91.05
√

98.40

MobileNet_v3_Small
× 88.35
√

97.85
“×” indicates that the model has not been pre-trained. “

√
“ indicates that the model has been pre-trained.

In order to obtain optimal performance for MobileNet_v3_Small_DTSD, three learn-
ing rate decline strategies were implemented while applying the improved knowledge
distillation DTSD. These strategies were exponential warmup, piecewise and cosine. When
the other experimental parameters were the same, the DTSD distillation model using the
exponential warmup learning rate decline strategy had the highest accuracy of 98.60%.
Consequently, as shown in Table 2, it can be inferred that the learning rate decline strategy
of exponential warmup conferred advantages to the DTSD training model.

Table 2. Comparison of parameter combination results of MobileNet_v3_Small_DTSD.

Student Model
Teacher
Model

Acc Of Teacher
Model (%)

Learning Rate
Decline
Strategy

Accuracy (%)

MobileNet_v3_Small
ResNet50_vd 98.90

Piecewise 97.80
DensNet121 98.70

MobileNet_v3_Small
ReNet50_vd 98.90

Cosine 98.15
DenseNet121 98.70

MobileNet_v3_Small
ResNet50_vd 98.90 Exponential

warmup 98.60
DenseNet121 98.70

The parameter and metric changes of the whole training process of MobileNet_v3_Small_DTSD
are shown in Figure 11, where variables 11a, 11b, and 11c denote the changes in total loss,
soft loss and hard loss, respectively. The total loss is the overall loss of the model during
the training process, which is usually a combination of multiple loss functions. When
training a neural network, there are usually multiple tasks or multiple loss metrics, and
each loss function corresponds to one task or one metric. The total loss is the weighted
sum or average of these loss functions and is used to measure the performance of the entire
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model. Soft loss is a technique used in training, mainly to help the model learn better.
Soft loss is usually achieved by introducing some extra penalty or regularization terms
in the loss function, which can help the model generalize better to new data and avoid
overfitting. The introduction of a soft loss can help to adjust the learning direction of the
model to better fit the training data. Hard loss usually refers to the loss calculated in the
inference stage of the model, which is the performance of the model on the test data. Hard
loss is the difference between the true label and the predicted label of the model, which is
used to measure the prediction accuracy or performance of the model. During training,
the model usually adjusts its own parameters by optimizing the total loss to minimize the
hard loss. It is evident from the figure that the model achieved satisfactory convergence
during the initial phase of training. In Figure 11d, the λ value (lambda) is usually used
in regularization terms (e.g., L1 regularization, L2 regularization) to balance the model’s
fitting effect with the effect of the regularization terms. The λ-value change curve shows
the effect of different λ values on the model’s performance during the training process.
λ decays in an inverted S-shape, which means that the student model mainly performs
distribution fitting with the hard label through transfer learning in the early stage, and
gradually shifts the learning center to the soft label of the teacher model with the deepening
of the experiment. The T value (temperature) is usually used in temperature-regulated soft
label methods to smooth the label distribution to improve the training of the model. The
T-value variation curve shows the effect of different T values on the performance of the
model during the training process. However, the temperature T depicted in Figure 11e
exhibits a contrasting situation. During the initial phase, the correct label part of the teacher
model is mainly enlarged, so that the student model can quickly fit. In the subsequent
phase, the proportion of dark knowledge is gradually expanded, because the accuracy of
the student model can be further enhanced. The accuracy change curve shows how the
accuracy of the model changes during the training process. The accuracy on the training
set and the validation set are usually treated as two separate parts of the curve. This curve
can be used to observe whether the model is overfitting or underfitting. Figure 11f reflects
the evaluation accuracy of MobileNet_v3_Small_DTSD. Once the model quickly reaches
good performance in the early stage, it mainly focuses on acquiring the dark knowledge
from the teacher model to achieve higher accuracy in the subsequent stage.

Figure 11. Metrics of mobileNet_v3_Small_DTSD changes in training process:(a) total loss; (b) soft
loss; (c) hard loss; (d) λ value change; (e) T value change; (f) accuracy change curve.

3.5. Comparative Experiments with Similar Models

To prove the superiority of the best MobileNet_v3_Small_DTSD model, which was
achieved by the adjustment of the learning rate decline strategy, a comparative analysis was
conducted with MobileNet_v3_Small using various techniques. The comparison models
were mainly as follows: (1) MobileNet_v3_Small without a transfer learning pretrained

156



Sensors 2024, 24, 1559

model; (2) MobileNet_v3_Small_Pre with pretrained models; (3) MobileNet_v3_Small_SSLD
trained with SSLD (semi-supervised label knowledge distillation) technique.

According to the data presented in Table 3, it can be observed that the improved
DTSD technique achieved an accuracy of 98.60% under identical training parameters. This
accuracy was notably 11.15% higher than that of the original training model. Furthermore,
the improved DTSD technique outperformed the SSLD technique, which also incorporates
knowledge distillation, by 1.50%. Furthermore, the DTSD technique surpasses the PRE
model, which uses transfer learning, by 1.35%.

Table 3. Comparison results with MobileNet_v3_Small.

Learning Rate Decline Strategy Batch Size Accuracy

MobileNet_v3_Small 16 86.45
MobileNet_v3_Small_PRE 16 97.25

MobileNet_v3_Small_SSLD 16 97.10
MobileNet_v3_Small_DTSD 16 98.60

As shown in Figure 12, the normally trained model in Figure 12a performed poorly in
terms of both aspects (loss and accuracy), while the improved DTSD model maintained
the same convergence state as the other two models PRE and SSLD in terms of loss. In
Figure 12b, the circular green line (using the DTSD technique) is compared with the square
red line (using transfer learning). During the initial stage of training, the performance
of the DTSD model is inferior to that of the transfer learning model. The ongoing decay
of λ causes the student model to shift the training focus to the soft label of the teacher
model, and the constant growth of temperature T expands the proportion of dark knowl-
edge, which makes the student model learn more parameters. These two factors make
an obvious intersection point appear in the two graphs. Furthermore, DTSD successfully
achieved a leadership position after coming from behind. The confusion matrix diagram in
Figure 12c is the performance of MobileNet_v3_Small_DTSD on the test dataset under the
training parameters. Eventually, the model performed well. Therefore, the utilization of
the DTSD technique inside the same model should help to break through the limitation of
the model accuracy.

Figure 12. Performance comparison of MobileNet series: (a) loss; (b) Accuracy; (c) Confusion matrix.

3.6. Experimental Comparisons with Other Models

To further verify the performance of the DTSD technique, it was compared with other
mainstream models including EfficientNetB1, Xception65, ResNet50_vd, DenseNet121, and
others. The main evaluation criteria encompassed accuracy, model volume, and prediction
cost, where the prediction cost was the average time of predicting 500 test herbal images.
DenseNet121 is a model in the DenseNet family. Dense connections in DenseNet help alle-
viate gradient sparsity, making the model easier to train and improving its generalization
ability. Dense connections allow features to be passed through shorter paths, increasing the
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efficiency of information transfer and reducing information loss. ResNet50_vd is relatively
deep, with 50 layers, which allows the model to learn higher-level abstract features and im-
prove the ability to capture and represent complex patterns. Xception65 utilizes a structure
of depth-separable convolution, which divides standard convolution into two steps: deep
convolution and point-by-point convolution. This structure helps to reduce the number of
parameters and improve the computational efficiency of the model.

EfficientNetB1 employs a compound coefficient (composite coefficient) approach to
design an efficient model structure by scaling the depth, width, and resolution of the
network in a balanced way. This structure can achieve better performance with certain
computational resources.

The training parameter values for the experiments in this paper are set as shown in
Table 4, Batch size is 16, Basic learning rate is 0.0037, Learning rate decline strategy used is
ExponentialWarmup, Epoches is 60, and pre-training of the model is performed.

Table 4. Setting of training parameters.

Parameter Batch Size
Basic Learning

Rate
Learning Rate

Decline Strategy
Epochs

Pretraining
Model

Parameter
value 16 0.0037 Warmup 60

√

“
√

“ indicates that the model has been pre-trained.

As shown in Table 5, when comparing different models horizontally, it is evident that
MobileNet_v3_Small, which uses DTSD technology for knowledge distillation, achieved an
accuracy of 98.60%, ranking second in terms of accuracy. However, its model size (10 MB)
and prediction cost (0.0172 s) were optimal among the five models. The feasibility of the
DTSD technique was thus proved.

Table 5. Comparison of results between MobileNet_v3_Small_DTSD and other mainstream models.

Network Accuracy (%)
Model Volume

(MB)
Prediction Time (s)

DenseNet121 97.10 29.30 0.0186
ResNet50_vd 97.35 90.90 0.0237
Xception65 97.65 131 0.0198

EfficientNetB1 98.95 27.5 0.0233
MobileNet_v3_Small_DTSD 98.60 10 0.0172

3.7. Application

To validate the practical application of the model, we developed a mobile recognition
app based on it. As shown in Figure 13, the app’s main features include an input image,
a historical search, and text search capabilities. After selecting the image search function,
users can upload relevant images of Chinese herbs. The app processes these images
through cropping and utilizes the corresponding model and a backend database of Chinese
herbs to return information about the herb. The example result, shown in Figure 14,
indicates that the tested image has been classified as “aiye” with a matching true label.
The probability of correct classification is 99.76%. Practical validation confirmed that the
MobileNet_v3_DTSD model, trained using the dual-teacher adaptive-decay approach based
on improved knowledge distillation and data augmentation, maintained its lightweight
and rapid processing characteristics while also exhibiting robustness and high accuracy.
Future efforts will focus on further optimizing these improvements to enhance the model’s
performance in real-life applications.
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Figure 13. Process design of our Chinese herbal medicine identification system.

Figure 14. The system outputs the result of the test image.

4. Conclusions

In this paper, to realize lightweight Chinese herbal medicine image recognition on a
mobile terminal, a Chinese herbal medicine recognition model with dual-teacher supervised
decay based on knowledge distillation was proposed. By improving the single-teacher
model to a dual-teacher model, the output soft label, adaptive decay parameters, and
dynamic combination loss of the teacher model, it was applied to the lightweight model
network MobileNet_v3, and finally deployed into a mobile application. The experimental
results indicated that the mean classification accuracy of a set of 10 Chinese herbal medicine
images was 98.60%. Moreover, the average time taken to identify a single image was
0.0172 s, and the model size was 10 MB. Upon successful deployment of the application,
it demonstrated the capability to fulfill the speed and accuracy requirements of real-life
scenarios, hence offering valuable technical reference for mobile phone applications. De-
spite the remarkable results achieved in this paper in lightweight herbal image recognition,
there are still some shortcomings that need further consideration and improvement. The
robustness of the model in dealing with real-world challenges such as complex scenes
and lighting changes still needs to be improved to ensure high accuracy in a variety of
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environments. The next step is to expand and diversify the dataset to improve the model’s
adaptability to different herbal species and environmental conditions. Secondly, techniques
such as adversarial training should be introduced to enhance the robustness of the model
against noise and interference.
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Abstract: The acquisition of the body temperature of animals kept in captivity in biology laboratories
is crucial for several studies in the field of animal biology. Traditionally, the acquisition process was
carried out manually, which does not guarantee much accuracy or consistency in the acquired data
and was painful for the animal. The process was then switched to a semi-manual process using a
thermal camera, but it still involved manually clicking on each part of the animal’s body every 20 s of
the video to obtain temperature values, making it a time-consuming, non-automatic, and difficult
process. This project aims to automate this acquisition process through the automatic recognition
of parts of a lizard’s body, reading the temperature in these parts based on a video taken with two
cameras simultaneously: an RGB camera and a thermal camera. The first camera detects the location
of the lizard’s various body parts using artificial intelligence techniques, and the second camera
allows reading of the respective temperature of each part. Due to the lack of lizard datasets, either in
the biology laboratory or online, a dataset had to be created from scratch, containing the identification
of the lizard and six of its body parts. YOLOv5 was used to detect the lizard and its body parts in RGB
images, achieving a precision of 90.00% and a recall of 98.80%. After initial calibration, the RGB and
thermal camera images are properly localised, making it possible to know the lizard’s position, even
when the lizard is at the same temperature as its surrounding environment, through a coordinate
conversion from the RGB image to the thermal image. The thermal image has a colour temperature
scale with the respective maximum and minimum temperature values, which is used to read each
pixel of the thermal image, thus allowing the correct temperature to be read in each part of the lizard.

Keywords: artificial intelligence; body temperature acquisition; computer vision; lizards; object
detection; YOLO

1. Introduction

Lizards are ectothermic animals, which means that they do not produce enough
metabolic heat to maintain their body temperature, having to resort to the use of external
heat sources. In biology laboratories, measuring body temperature in lizards can provide
relevant information to biologists. Traditionally, the body temperature of lizards is mea-
sured using a contact thermometer. This method is extremely invasive and painful for the
animal. Also, it is impossible to obtain the temperature from different lizard body parts.

Thus, a new method emerged that consisted of filming the lizard kept in captivity
with a Forward-Looking Infrared Camera (FLIR), also known as a thermal camera. Later,
using specialised software for this type of camera (in this case, FLIR Tools), temperatures
of the body parts of the animal under study were obtained by manually clicking on each
of the body parts in the video and recording their value. This process is carried out every
20 s of the video. The entire process does not occur in real time. There is also a possible
loss of information regarding changes in the lizard’s body temperature between each
measurement process.
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This new method proved to be advantageous for the animal, as it is not an invasive
method. However, the entire procedure of obtaining temperature values in different
parts of the body follows a time-consuming, difficult, monotonous, and not very rigorous
method (for example, due to potential inaccuracies when manually clicking on parts of the
lizard’s body). Therefore, it is desirable to overcome the adversities presented by this new
measurement method. To this end, a different approach is proposed. By using artificial
intelligence and a combination of an RGB camera and a thermal camera, it is possible
to detect the lizard and its body parts automatically and obtain the respective desired
body temperature values quickly and coherently. This system can be applied to images of
previously recorded videos. In both cases, the final values are automatically saved into a
text file. In addition, a greater flow of data allows more detailed maintenance of the lizards,
and the time that was spent by biologists in manually obtaining measurements can be used
for other purposes.

The method presented in this paper provides biologists with a faster and non-intrusive
way to measure the temperatures of lizards placed in a box in a controlled laboratory
setting. In these controlled environments, different temperatures can be applied to various
sections of a box, allowing researchers to monitor the temperature preferences of lizards
as they choose where to move to get warmer. This capability is crucial for studying the
behavioural responses of lizards to temperature changes, enabling detailed observations of
their thermoregulation strategies.

The significance of this research lies in its contribution to more efficient and humane
methods of monitoring lizard body temperatures, which are essential for understanding
their behaviour and physiological needs. By automating the temperature acquisition
process, our method reduces the stress and potential harm to the animals, providing a more
ethical approach to studying their behaviour. Additionally, the insights gained from such
studies can inform broader ecological research and conservation efforts, particularly in
understanding how lizards might adapt to changing environmental conditions.

1.1. Artificial Intelligence

Artificial intelligence (AI) speeds up human tasks with a guaranteed level of precision
and accuracy. With the emergence of new algorithms, the progress in computing power and
storage, and the accessibility to a vast quantity of data, AI suffered notable breakthroughs
and is already being applied to numerous fields, such as the field of biology.

Researchers are regularly confronted with complex and time-consuming problems.
Thus, AI emerges to offer solutions to these problems and promote innovation in labo-
ratories. Biological research and artificial intelligence are becoming increasingly related.
Developing tools for the analysis and interpretation of vast amounts of data is one of the
most significant uses of artificial intelligence in biology. AI is already present in a variety of
biology research works, such as:

• Protein 3D structure prediction: AI helps predict the three-dimensional structure of
proteins and subsequently understand their function, enabling the development of
new specialised drugs [1].

• Drug development: AI helps speed up drug development [2].
• Conservation and wildlife tracking and monitoring: AI helps protect wildlife and

natural resources and helps automate wildlife tracking and monitoring [3].

1.2. Machine Learning and Deep Learning

Machine learning (ML) is a subset of AI that aims to give a computer the ability to
learn from experience, using data instead of being explicitly programmed. An ML model is
the output generated after training the ML algorithm with data [4]. Supervised learning
(SL) is one of the main ML approaches, where a set of labelled training data, sample data
(input), and associated target responses (output) are provided to the algorithm for it to
learn a function that maps an input to an output, and a predictive model is created [5]. This
model is then used to make predictions on never-seen samples.
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The SL algorithm needs to have the capability of generalising from training data to
unseen samples. The model testing should not be carried out on the training data because
it gives the false impression of success; instead, it should be carried out on new examples.

Overfitting and underfitting are two common problems in ML. Overfitting occurs
when the model can predict correctly all the labels of the training data but does not
generalise well to unseen data; in this case, the model has a low bias and a high variance
(high complexity model) [6]. On the other hand, underfitting occurs when the model
cannot generalise well to unseen data and makes mistakes trying to predict the labels of the
training data; in this case, the model has a high bias and a low variance (low complexity
model) [6]. Overfitting and underfitting can occur due to several reasons, such as an
inadequate size and quality of the training dataset.

Bias represents how closely the average prediction is to the true value, and variance
quantifies how much, on average, predictions vary for different sets of training data [7]. To
obtain the ideal model, it is essential to find the optimal balance between bias and variance.

Deep learning (DL) is a subset of ML based on neural networks. Neural networks
are inspired by the structure of the human brain and the way it works and consist of
three types of layers: the input layer, the hidden layer, and the output layer. An Artificial
Neural Network (ANN) is a type of neural network with one or two hidden layers. A
Convolutional Neural Network (CNN) is a type of ANN.

CNNs were first introduced with the design of LeNet-5 by Yann LeCun et al. [8] The
introduction of Graphics Processing Units (GPUs), faster Central Processing Units (CPUs),
and the increasing amount of training data available have driven the development of new
architectures, such as AlexNet [9], ZFNet [10], GoogLeNet [11], ResNet [12], VGGNet [13],
and EfficientNet [14], as well as several object detectors based on CNNs, including the
R-CNN (Region-Based Convolutional Neural Networks) family of two-stage detection
networks and the one-stage detection networks SSD (Single Shot MultiBox Detector) [15],
RetinaNet [16], EfficientDet [17], and the YOLO (You Only Look Once) family.

Hao et al. [18] proposed a lightweight detection algorithm based on the one-stage
detection network SSD for sheep facial identification, achieving a mAP of 83.47% and a de-
tection speed of 68.53 frames per second. Jia et al. [19] developed a marine organism object
detection model also based on a one-stage detection network, the improved EfficientDet,
obtaining a mAP of 91.67% and a processing speed of 37.5 frames per second.

Roy et al. [20] presented a comparative study between the one-stage detection net-
works RetinaNet, SSD, YOLOv3, and YOLOv4 and the two-stage detection networks Mask
R-CNN and Faster R-CNN for wildlife detection. The findings indicated that YOLO vari-
ants outperformed the other networks, with the one-stage detection network YOLOv4
achieving the best performance (mAP of 91.29%). Hu et al. [21] conducted a study utilising
Detectron2, RetinaNet, YOLOv4, and YOLOv5 models to determine the count of cattle in
satellite images, with YOLOv5 achieving the best results, producing an average precision of
91.60% and a recall of 91.20%. Both studies by Roy et al. [20] and Hu et al. [21] demonstrate
the effectiveness of the YOLO family in animal detection.

Jubayer et al. [22] found that the overall performance of YOLOv5 in detecting mould
on food surfaces was superior to that of YOLOv4 and YOLOv3, achieving an average
precision of 99.6%. Long et al. [23] developed a system for fish detection, where YOLOv5
also obtained the highest mAP value of 95.95%, superior to YOLOv3 and YOLOv4. Ahmad
et al. [24] conducted a study comparing the performance of YOLO-Lite, YOLOv3, YOLOR,
and YOLOv5 in identifying insect pests, with YOLOv5 emerging once more as the most
successful, achieving an average precision of 98.3%.

1.3. Current Research Status

The automated detection of animals and the extraction of body temperature values
play critical roles in various domains within animal studies.

Advances in deep learning have stimulated the growth of studies focused on the
automatic detection of animals for various purposes, such as forest wildlife monitoring

164



Sensors 2024, 24, 4135

and conservation [25], agriculture and farming [26,27], and species identification and
classification [28,29]. While most studies on automatic animal detection predominantly
focus on mammals and birds, studies addressing reptiles, particularly lizards, are relatively
scarce. Aota et al. [30] addressed this gap by developing a deep neural network-based
system for detecting the invasive lizard species Anolis carolinensis in drone images. This
study aims to contribute to an effective and efficient approach to conserving ecosystems,
as this invasive species threatens the native insect population of the Ogasawara Islands
in Japan.

The body temperature of an animal is a crucial indicator of its health and well-being.
However, traditional methods for obtaining these values are challenging. Consequently,
there has been a notable increase in studies dedicated to developing automated methods
for temperature extraction in animals. A substantial portion of these studies focuses on
obtaining temperature data to monitor and assess the health status of pigs and cows [31,32].
Conversely, there is a notable scarcity of studies concerning the automated extraction of
body temperature in lizards.

This paper addresses this research gap by developing a system capable of automati-
cally detecting lizards and their body parts using YOLOv5s, followed by the automatic and
contactless extraction of temperature values from the detected parts. This system allows
biologists to easily obtain valuable data on the body temperature of lizards to use in their
research without causing pain or stress to the animal. Karameta et al. [33] obtained the
body temperature of insular agamid lizards by inserting a type K thermocouple directly
into the animal’s cloaca to study how seasonality impacts the thermal biology of an is-
land population of lizards, providing insights into their survival strategies and potential
adaptations to future environmental changes. The use of a non-invasive (contactless) and
automatic system to extract these temperature values, such as the one developed in this
paper, would have been a huge advantage in this study.

Furthermore, the system developed in this article offers the potential to be adapted
and adjusted to extract the body temperature of various species of lizards and other reptiles.

2. Methodologies

This work presents a system capable of detecting the entire lizard and six pre-defined
parts of its body (snout, head, back, left leg, left palm, and tail) in an image or a video and
then displaying and recording the temperature values in these regions. It consists of two
main parts: the development of a model for detecting the lizard and its body parts and the
acquisition of the temperature values of the detected parts. All algorithms were developed
in the Python language and supported with the OpenCV library.

2.1. Detection of Lizard Body Parts

Detection of lizard body parts was developed using the YOLOv5 ML algorithm.

2.1.1. YOLOv5

Object detection is a task focused on localising and classifying objects present in
images or videos.

YOLO (You Only Look Once) is a state-of-the-art, real-time object detection algorithm.
The fifth version of YOLO (YOLOv5) was proposed in 2020 by the company Ultralytics
and is the version selected to use in this project, taking into account the YOLOv5 detection
accuracy and detection speed. It is important to note that at the time of the practical
development of this paper, YOLOv5 was the current version in use; therefore, later versions
were not considered.

The YOLOv5 architecture is composed of three parts: CSP-Darknet53 as the backbone,
Spatial Pyramid Pooling Fusion (SPPF) and CSP-PAN (Path Aggregation Network) struc-
tures in the neck [34], and the same head as YOLOv3. CSP-Darknet53 is formed by applying
a Cross Stage Partial Network (CSPNet) to Darknet-53. The amount of computation may
be significantly decreased with CSPNet, and both the inference speed and accuracy can be
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improved [35]. In the neck, the SPPF is a faster variation of a Spatial Pyramid Pooling (SPP)
block. Figure 1 shows the architecture diagram of YOLOv5s.

 
Figure 1. Architecture diagram of YOLOv5s.

Contrary to previous versions, YOLOv5 uses the PyTorch framework instead of the
Darknet framework [36]. To reduce overfitting and improve the model’s ability to gener-
alise, YOLOv5 uses some data augmentation techniques, such as mosaic augmentation.

YOLOv5 is divided into five different model sizes: YOLOv5n (nano), YOLOv5s (small),
YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (extra-large). Larger models contain
more parameters, need more memory to train, require larger and well-labelled datasets,
and take longer to execute but will generally produce better results. On the other hand,
smaller models are faster but may abdicate some accuracy.

To evaluate the performance of a certain object detection model, some metrics are
used, such as intersection over union (IoU), confusion matrix, precision (P), recall (R), F1
score, average precision (AP), and mean average precision (mAP).

The intersection over union metric estimates how well a predicted bounding box
matches the ground truth bounding box and is given by a ratio between the intersection
area (area where the boxes overlap) and the union area (total area of both boxes) of the
predicted bounding box with the ground truth bounding box.

A confusion matrix is a table in which the values predicted by the classifier are
compared with the ground truth labels. This table is composed of four types of predictions:
false positive (FP), false negative (FN), true positive (TP), and true negative (TN).

Precision counts the percentage of predicted positives that are actually positive and
is calculated using Equation (1). Recall measures the percentage of positives correctly
detected and is calculated using Equation (2). The F1 score combines precision and recall
and ranges between 0 and 1. The F1 score is obtained using Equation (3).

Precision =
Correct Predictions

Total Predictions
=

TP
TP + FP

(1)

Recall =
Correct Predictions
Total Ground Truth

=
TP

TP + FN
(2)

F1score = 2× Precision× Recall
Precision + Recall

(3)
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The area under the PR curve (AUC) gives the average precision (AP) and is calculated
using Equation (4). The mean average precision (mAP) is obtained by taking the mean of
the average precision obtained in every class, as shown in Equation (5).

AP =
∫ 1

r=0
p(r)dr (4)

mAP =
1
N

N

∑
i=1

APi (5)

2.1.2. Selection of YOLOv5 Model Size

Initially, to choose the ideal YOLOv5 model size for the required application (detection
of specific body parts of a lizard), training and inference were carried out for each one of
the YOLOv5 model sizes under the same conditions.

An RGB dataset containing 10288 images was initially created from scratch to be later
used in training. For training, 100 epochs and a batch size of 16 were used.

Tables 1 and 2 show the values obtained for precision, recall, mAP, training duration,
number of parameters, GFLOPs (Giga Floating-point Operations Per Second), and inference
time (time each model took to analyse a new image and make a prediction) using YOLOv5n,
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.

Table 1. Values obtained for precision, recall, mAP, training duration, number of parameters, GFLOPs,
and inference time using YOLOv5n and YOLOv5s.

Metrics YOLOv5n YOLOv5s

Precision (%) 98.60 99.00
Recall (%) 97.60 98.40

mAP_0.5 (%) 97.90 98.40
mAP_0.5:0.95 (%) 71.50 74.30
Training Duration 2 h 18 min 22 s 3 h 22 min 34 s

Parameters (M) 1.8 7.0
GFLOPs 4.2 15.8

Inference Time (ms) 5.5 9.9

Table 2. Values obtained for precision, recall, mAP, training duration, number of parameters, GFLOPs,
and inference time using YOLOv5m, YOLOv5l, and YOLOv5x.

Metrics YOLOv5m YOLOv5l YOLOv5x

Precision (%) 99.10 99.10 99.10
Recall (%) 98.70 98.90 99.00

mAP_0.5 (%) 98.70 98.80 98.90
mAP_0.5:0.95 (%) 76.10 76.20 76.30
Training Duration 6 h 36 min 8 s 10 h 39 min 19 s 17 h 32 min 47 s

Parameters (M) 2.1 4.6 86.2
GFLOPs 47.9 107.7 203.9

Inference Time (ms) 13.1 25.0 47.8

To select the most suitable model for the application under analysis, the best balance
between speed and accuracy was sought. Although YOLOv5n was the fastest and lightest
model, its results were the lowest and, therefore, the model was disregarded (Table 1). The
heaviest models, YOLOv5l and YOLOv5x, obtained the best results for the evaluation met-
rics; however, they took a long time to complete the training (more than 10 h) and presented
a higher inference time, which is a major obstacle due to time limitations. Therefore, these
models were also disregarded (Table 2). Finally, both YOLOv5s and YOLOv5m models
obtained good results for the evaluation metrics. Since the difference between the values of
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the metrics obtained for each of these models was not very significant, the YOLOv5s model
was chosen as it is lighter, leading to faster training and shorter inference time.

2.1.3. RGB Image Dataset

An RGB image dataset was created from scratch based on custom data. All filming took
place in a controlled environment at CIBIO (Centre in Biodiversity and Genetic Resources),
University of Porto, Portugal.

Firstly, a scenario was built consisting of a cardboard box, a lamp, a camera, and some
black tape (Figure 2).

 
(a) (b) 

Figure 2. Scenario: (a) setup and (b) cardboard box used.

The lizard was placed inside the cardboard box, and the camera filmed its behaviour
for about 10 min. In total, about 10 videos were collected using animals with different body
sizes, colours, and patterns. All RGB images that compose the dataset were obtained from
those videos, making a dataset of 4306 RGB images.

The image labelling was carried out using Roboflow. For each image, bounding boxes
were drawn around each part of the lizard’s body to be identified and labelled with the
respective class. In total, seven classes were identified: “Lizard” (yellow bounding box in
Figure 3), “Snout” (red bounding box in Figure 3), “Head” (cyan bounding box in Figure 3),
“Dorsum” (blue bounding box in Figure 3), “Tail” (green bounding box in Figure 3), “Leg_L”
(purple bounding box on the left hind leg in Figure 3), and “Palm_L” (orange bounding
box on the left hind palm in Figure 3).

In Roboflow, inside the dataset, the images were split into three sets:

• “Training set”: is used to train the model.
• “Validation set”: is used during training to compute the validation mAP after each

epoch. It is also used to evaluate the performance of the trained model.
• “Test set”: is used to analyse the final performance of the model.

The “training set” contained 3014 RGB images (70%), the “validation set” contained
861 RGB images (20%), and the “test set” contained 431 RGB images (10%).

All images were resized to 640× 640 as it is YOLOv5’s default size, and some augmen-
tation techniques were applied to the “training set” images to create new examples to use
in the training of the model. The techniques used in the training images were modifications
in saturation (between −10% and +10%), brightness (between −10% and +10%), exposure
(between −10% and +10%), blur (up to 1 pixel), and noise (up to 1% of pixels). After
augmentation, the dataset went from 4306 RGB images to 10,334 RGB images.
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Figure 3. Example of a labelled dataset image in Roboflow.

2.1.4. Training and Inference

All training was carried out on Google Collaboratory, which runs in the cloud, and
the NVIDIA Tesla T4 GPU (16 GB of memory) was used. Firstly, training was performed
for the number of epochs and batch sizes represented in Table 3 to find the model with the
best training results.

Table 3. Number of epochs and batch sizes used for training.

Batch Epoch

16
100
200

20
100
200

32

100
200
300
400
500

64

100
200
300
400

Secondly, inference was run on some images, and two thresholds were defined:

• Confidence threshold: Defines the minimum score the model considers the prediction
to be correct; otherwise, it completely discards the prediction. This threshold was set
to 0.50, meaning all predicted bounding boxes with a confidence score below 50% were
discarded. This value was chosen based on a careful analysis of the results obtained
using different threshold values.

• IoU threshold: Defines the minimum overlap between the predicted bounding box
and the ground truth bounding box for the prediction to be considered correct. This
threshold was set to 0.50 after a careful analysis of the results obtained using different
threshold values.

The training and inference results are shown in Section 3.1.
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2.2. Temperature Acquisition

After detecting the lizard’s position, its temperature acquisition was then possible to
be acquired as described next.

2.2.1. Thermal and RGB Image Acquisition

To obtain the thermal images used in this work, the FLIR T335 thermal camera was
added to a scenario similar to the one described in Section 2.1.3. As shown in Figure 4, the
thermal camera was positioned above the RGB camera with a certain horizontal offset to
try to match the point of view of both cameras as much as possible.

 
Figure 4. The scenario used to obtain thermal images and their associated RGB images.

The lizard was placed inside the cardboard box, and both cameras simultaneously
filmed the animal’s behaviour for a few minutes. The RGB camera and the thermal camera
were placed side-by-side, as presented in Figure 5, and the videos were saved in the same
way (screen recording). Some videos were recorded with the heat lamp on and others with
the heat lamp off to observe more significant changes between videos in the animal’s colour
in the thermal images (change in the animal’s body temperature). Using the RGB camera
helps to determine the position of the lizard in the thermal camera, especially if the lizard
is at the same temperature as the background.
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Figure 5. RGB camera output (left side) and thermal camera output (right side).

2.2.2. YOLOv5s Model Application

To detect the lizard and its six body parts, the model analysed in Section 3.1 was
used. Since it was desirable to apply detection only to the RGB image, a region of interest
(ROI) involving only the RGB image was created. The region of interest was defined using
Equation (6).

ROI = image [y: y + height, x: x + width] (6)

where, from Figure 5’s coordinate axes:

• “image” represents the input image, with the RGB and thermal images side-by-side;
• “x” is represented by the x-coordinate of point 1 in Figure 5;
• “y” is represented by the y-coordinate of point 1 in Figure 5;
• “y + height” is represented by the y-coordinate of point 2 in Figure 5;
• “x + width” is represented by the x-coordinate of point 2 in Figure 5.

Figure 6 shows the detection of the lizard and its six body parts in the defined region
of interest.

 
Figure 6. Detection of the lizard and its six body parts on the ROI (left).
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The detections were only made for the RGB image and not for the thermal image, as
the model was trained only with RGB images and not with thermal images. Using the
model to detect the lizard and its body parts in thermal images would generate erroneous
detections. Following this, the process is described with two examples: the whole lizard
and its tail.

2.2.3. Bounding Box: Identified Class and Background

After the detection process, the bounding boxes generally involve the detected class
and part of the background. To make the distinction between the background and the
identified class clear, the following method was used, involving five sequential steps:

1. Creation of a black binary mask with the same dimensions as ROI.
2. In the black binary mask created in Step 1, all pixels within the region of each bounding

box are set to white, as shown in the examples in Figure 7.

 
(a) (b) 

Figure 7. All pixels within the (a) “Lizard” and (b) “Tail” bounding boxes are white.

3. Application of a bitwise AND operation between the ROI and the binary mask from
Step 2. This retains only the pixels that both have non-zero values (Figure 8), which
are the pixels that fall within the bounding box.

  
(a) (b) 

Figure 8. Isolation of the ROI defined by the (a) “Lizard” and (b) “Tail” bounding boxes.

4. Conversion to grayscale, as shown in Figure 9.
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(a) (b) 

Figure 9. The (a) “Lizard” and (b) “Tail” bounding boxes are in grayscale.

5. Conversion from grayscale to binary using an inverse-binary threshold (Figure 10).
This is user threshold-dependent since the threshold value must be chosen by the user.

  
(a) (b) 

Figure 10. The (a) “Lizard” and (b) “Tail” bounding boxes are in black and white (binary).

As demonstrated in Figure 10, inside each bounding box, the background pixels turned
black, and the pixels of the class to be identified turned white. This allowed us to not
only highlight the most important part within each bounding box (identified class) but
also make it possible to distinguish between the lizard (white pixels) and the background
(black pixels).

A single pixel was selected to represent each bounding box based on what was
discussed and decided by the biologists. The main requirement was that in each bounding
box, the pixel had to belong to the detected class, not the background. For this purpose, the
pixel in the centre of each bounding box was initially considered (Figure 11).

However, as can be seen in Figure 11, not all pixels in the centre of the bounding boxes
belong to the detected class, as some belong to the background. Undesirably, the pixel in
the centre of the “Lizard” and “Tail” bounding boxes belonged to the background and not
to the respective class.

To solve this problem, after using the method explained at the beginning of this
section, a condition was created in which it was determined whether the central pixel in
each bounding box was white (if center_pixel == 255) or not (else:). If it is determined that
the pixel is white, that pixel would represent the bounding box; otherwise, it would search
for the nearest white pixel to the central pixel (determined initially), and that would be the
new pixel that should represent the bounding box. To find the coordinates of the nearest
white pixel, a function called “nearest_white_pixel” was defined.
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Figure 11. Bounding boxes and their respective central pixels are represented by a blue circle (in
the ROI).

In Figure 12, the green circle represents the closest white pixel found in the bounding
box, starting from the central black pixel. These are the new pixels considered for the
thermal analysis.

 

Figure 12. The initial pixel (centre) represents the “Lizard” (blue rectangle) and “Tail” (yellow
rectangle) bounding boxes, marked with a blue dot. The final pixel representative of each bounding
box is marked with a green dot.

2.2.4. Perspective Transformation and Temperature Detection

Perspective transformation is used to establish a relationship between pixels in the
RGB image and corresponding pixels in the thermal image. In perspective transformation,
a 3x3 transformation matrix is determined by four points in the RGB image and the
corresponding four points in the thermal image.
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Using Python OpenCV’s library, Equation (7) calculates the transformation matrix.

matrix = cv2.getPerspectiveTransform(src, dst) (7)

where:

• The “src” parameter represents the coordinates of the quadrilateral vertices in the
source image (RGB image).

• The “dst” parameter represents the coordinates of the corresponding quadrilateral
vertices in the destination image (thermal image).

The parameters “src” and “dst” are defined by the function shown in Equation (8).

np.array([[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]], dtype = np.float32) (8)

According to Equation (8) and Figure 13, for the “src” parameter, [xmin, ymin] corre-
sponds to the coordinates of point 1, [xmax, ymin] corresponds to the coordinates of point 2,
[xmax, ymax] corresponds to the coordinates of point 3, and [xmin, ymax] corresponds to the
coordinates of point 4. For the “dst” parameter, [xmin, ymin] corresponds to the coordinates
of point 1′, [xmax, ymin] corresponds to the coordinates of point 2′, [xmax, ymax] corresponds
to the coordinates of point 3′, and [xmin, ymax] corresponds to the coordinates of point 4′.

 
Figure 13. The “src” parameter is represented by the coordinates of points 1, 2, 3, and 4, and the “dst”
parameter is represented by the coordinates of points 1′, 2′, 3′, and 4′.

This way, it is possible to transform any set of coordinates using the transformation
matrix. In Equation (9), the transformation matrix described in Equation (7) is applied to
the point represented as [centre_x, centre_y, 1].

transf_coord = np.dot(matrix, np.array([centre_x, centre_y, 1], dtype = np.float32)) (9)

Subsequently, the transformed coordinates obtained (“[x, y, w]”) in Equation (9) are
normalised using Equation (10). In this equation, “x” and “y” are divided by “w”.

transf_coord = transf_coord[:2]/transf_coord [2] (10)

In Equation (11), the normalised transformed coordinates are assigned to “xn” and “yn”.

xn,yn = tuple(transf_coord) (11)
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In the Equations (12) and (13), “xn” and “yn” coordinates are rounded. “xn” and “yn”
represent the final transformed coordinates in the thermal image corresponding to the
original point in the RGB image (center_x, center_y).

xn = int(xn + 0.5) (12)

yn = int(yn + 0.5) (13)

After applying the equations mentioned above to each pixel marked in the RGB image
(left side of Figure 14), it was possible to obtain the corresponding pixels in the thermal
image (right side of Figure 14).

 

Figure 14. Bounding boxes and their representative pixels marked with blue dots (RGB image) and
corresponding pixels marked with red dots in the thermal image.

For each pixel marked in the thermal image, the respective temperature value was
obtained through its colouring. It is important to highlight that the colour temperature
scale can vary between images.

To make this possible, a function was created that allows obtaining the temperature
based on a given pixel colour (input) and a set of parameters (Tmax, Tmin, Ymax, Ymin, Xmed).
The temperature value is calculated using a linear interpolation, as shown in Equation (14),
where “final” represents the row index.

T = Tmin +
(Ymax − final)
(Ymax − Ymin)

· (Tmax − Tmin) (14)

The maximum temperature (Tmax), minimum temperature (Tmin), maximum Y (Ymax),
minimum Y (Ymin), and median X (Xmed) values were defined based on the input image.
Looking at the colour temperature scale present on the right side of Figure 15 (column of
10 pixels width represents the colour scale), it can be stated that the minimum temperature
(Tmin) is 29.3 ◦C, and the maximum temperature (Tmax) is 50.5 ◦C. Also, the maximum Y
(Ymax) value corresponds to the y-coordinate of the bottom corner of the bar (for Tmin), the
minimum Y (Ymin) value corresponds to the y-coordinate of the top corner of the bar (for
Tmax), and the median X (Xmed) value corresponds to the position of the bar on the x-axis.
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Figure 15. Annotation of the maximum Y (Ymax), minimum Y (Ymin), and median X (Xmed) relative
to the coordinate axis of the input image.

The temperature values obtained for each class were automatically stored in a text file
together with the day, time of measurements, and the class name.

3. Results and Discussion

This section contains the results of the training and inferences carried out to obtain the
best model for detecting the lizard and its body parts. It also demonstrates the system’s
potential in acquiring the temperature values of the parts detected by the model.

3.1. Detection of Lizard Body Parts: Training and Inference

The best training results were obtained using a batch size of 32 and 500 epochs for the
neural network. This training took 15 h, 14 min, and 21 s.

Table 4 presents the values obtained for precision, recall, and mAP metrics for each of
the seven classes. At the end, the average values of these metrics are shown.

Table 4. Values obtained for precision, recall, and mAP after training using a batch size of 32 and a
number of epochs of 500.

Class Precision (%) Recall (%) mAP_0.5 (%)
mAP_0.5:0.95

(%)

Lizard 99.80 99.90 99.40 92.20
Snout 95.60 95.00 93.70 42.70
Head 99.50 99.60 99.40 74.50

Dorsum 99.70 99.90 99.40 78.70
Tail 99.60 99.20 99.40 94.50

Leg_L 99.50 99.20 99.40 66.80
Palm_L 99.40 98.40 99.40 78.60

AVERAGE 99.00 98.80 98.60 75.40

By analysing Table 4, it is observed that the “Snout” class was the one that presented
the lowest value in all the metrics. The reason for this may be due to the small size of
this body part of the lizard in relation to the other parts, making its correct identification
more complex.

Comparing the average values of mAP_0.5 and mAP_0.5:0.95 metrics, it is possible
to perceive that the value of mAP_0.5:0.95 is significantly lower than mAP_0.5. This is
common since, unlike mAP_0.5, mAP_0.5:0.95 evaluates the model over a wider range
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of IoU thresholds. The increasing of the IoU threshold results in stricter requirements,
causing the mAP value to decrease; therefore, obtaining a high mAP_0.5:0.95 value can
be challenging.

The average value obtained for mAP_0.5:0.95 (75.40%) can be considered good. Also,
the average precision (99.00%), recall (98.80%), and mAP_0.5 (98.60%) values obtained are
very good.

Figure 16 displays all the graphs of the average values obtained after training. Each
graph represents the change in a certain value (y-axis) as the number of epochs increases
during training (x-axis). As mentioned previously, the number of epochs used in training
was 500, so the x-axis will go up to the value of 500. The four graphs on the right side of
Figure 16 correspond to the previously mentioned metrics: precision (“metrics/precision”),
recall (“metrics/recall”), mAP_0.5 (“metrics/mAP_0.5”), and mAP_0.5:0.95 (“metrics/
mAP_0.5:0.95”).

Figure 16. Resulting graphs after training using a batch size of 32 and 500 epochs.

Observing the behaviour of the “metrics/precision”, “metrics/recall”, and “met-
rics/mAP_0.5” graphs, it is possible to understand that they begin to stabilise after
about 80 epochs. The “metrics/mAP_0.5:0.95” graph started to stabilise later, after about
400 epochs.

The stabilisation of a graph indicates that there will no longer be significant improve-
ments in the measured value. Therefore, to avoid the occurrence of overfitting and the
decrease in metric values, the training was considered completed for the number of epochs
of 500.

The remaining six graphs on the left side of Figure 16 represent the training losses
(“train/box_loss”, “train/obj_loss”, and train/cls_loss”) and the validation losses
(“val/box_loss”, “val/obj_loss”, and val/cls_loss”). Where “box_loss” is the box regression
loss, “obj_loss” is the object loss, and “cls_loss” is the class loss. In these six graphs, it is
possible to observe that, as desired, the loss values decreased as the number of epochs
increased. Furthermore, a rapid decline was observed until around epoch 10.

By analysing the loss graphs in Figure 16, it can be concluded that overfitting did
not occur.

The F1 score curve illustrates the F1 score across different thresholds, offering insights
into the model’s balance between false positives and false negatives. Figure 17 shows that
the maximum F1 value is 0.99 when the confidence score is 0.601.
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Figure 17. F1–confidence curve.

Figure 18 presents the precision–recall curve, where a larger area under the curve
indicates better overall performance. The “Snout” class has a smaller area under the
PR curve, indicating that the model has more difficulty in correctly detecting this class
compared to the others. (mAP_0.5 of 0.937).

Figure 18. Precision–recall curve.

To evaluate how well the trained model generalises to unseen images, the inference
was run on the images from the “test set”. Figure 19 shows a sample image used in the
inference. As expected, the predictions were acceptable. All classes were correctly indicated
with confidence scores ranging from 78% to 97%.
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Figure 19. Example of an image from the “test set” with predictions.

Noise was added to Figure 19, as demonstrated in Figure 20, to analyse the model’s
performance on noisy images and variations in image quality. As shown in Figure 20,
the model was able to correctly detect the lizard and its six body parts with confidence
scores ranging from 77% to 96%. However, one more bounding box corresponding to the
“Dorsum” class was incorrectly detected, with a confidence score of 60%.

 

Figure 20. Example of an image from the “test set” with noise and predictions.

When the model is faced with cases for which it was not trained, it tends to show
a decrease in the confidence score of the detected classes and may even generate false
positives.

3.2. Temperature Acquisition

Applying the methodologies presented in Section 2.2, it was possible to successfully
obtain the final temperature values in different images and videos. Figure 21 shows an
example of the temperature values obtained for the lizard and its body parts in an image
and a video.
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(a) (b) 

Figure 21. Notepad with date, hour, class, and temperature values obtained: (a) from an image and
(b) from a video.

The accuracy of temperature measurements is given by the thermal camera used; in
this case, the FLIR T335 thermal camera, which has an accuracy of ±2 ◦C of the reading.

3.3. Comparison with Other Studies for Automatic Detection and Temperature Extraction

In recent years, several studies have been carried out to develop methods for auto-
matically detecting specific body parts of animals and extracting their body temperature
values. These efforts were driven by the need to address the limitations and challenges
associated with traditional manual temperature measurement techniques.

Xie et al. [37] developed an automatic temperature detection method based on Infrared
Thermography (ITG) to overcome the challenges associated with traditional pig rectal
temperature measurement. Automatic detection of six regions on the pig body surface
(forehead, eyes, nose, ear root, back, and anus) was performed using an improved YOLOv5s
model with BiFPN. After detection, the temperature values were automatically extracted.
The proposed YOLOv5s-BiFPN model achieved optimal performance, with a mAP of
96.36%, a target detection speed of up to 100 frames per second, and a model size of 20 MB.
Additionally, the variations in maximum temperature automatically extracted from the
ear root and the forehead coincided with those obtained manually, and the temperature
accuracy was ±2 ◦C.

Wang et al. [38] proposed a method based on the detection model GG-YOLOv4 for the
automatic detection of the ocular surface temperature of dairy cows from thermal images,
with the aim of identifying health disorders. The model achieved a mAP of 96.88%, a
detection speed of 40.33 frames per second, and a model size of 44.7 M. The comparison
between the temperature values obtained with the model and the manually extracted values
showed that the average absolute temperature extraction errors in the left and right eyes
were 0.051 ◦C and 0.042 ◦C, respectively, and the average relative temperature extraction
errors in the left and right eyes were 0.14% and 0.11%, respectively. The temperature
accuracy was ±2 ◦C.

The proposed model in this paper achieved a mean average precision (mAP) of 98.60%,
outperforming the models developed by Xie et al. [37] and Wang et al. [38]. All methods
mentioned above have the same temperature accuracy value (±2 ◦C).

The algorithm proposed in this paper introduces innovative features to improve the
detection of lizards and the extraction of their body temperature in a controlled labora-
tory environment. Firstly, this study significantly contributes to filling the notable gap in
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algorithm development and research regarding automatic and non-invasive methods for
lizard detection and body temperature extraction in controlled laboratory environments.
Secondly, employing a non-invasive and automatic method for extracting the body tem-
perature of lizards in a controlled laboratory environment minimises potential harm and
stress to the animals, thereby promoting a more efficient and humane way of monitoring
lizard body temperature. Thirdly, due to the scarcity of publicly available lizard datasets, a
dataset was created from scratch, providing a valuable resource for training and potentially
benefiting future lizard-related research. Lastly, the simultaneous use of two cameras (RGB
and thermal camera) significantly enhances the accuracy of lizard detection and enables
precise temperature extraction.

In the dual-camera system, the RGB camera allows the detection of the lizard and
its body parts using YOLOv5, and the thermal camera allows reading of the respective
temperature of those parts. After calibration, the images from both cameras are properly
localised, making it possible to determine accurately the lizard’s position in the thermal
image through a coordinate conversion from the RGB image to the thermal image. Based
on the colour temperature scale present in the thermal image, the temperature values are
then extracted. Therefore, this approach enables the automated and non-invasive extraction
of the lizard’s body temperature.

4. Conclusions

The work presented in this paper concerns the development of a system capable of
detecting the lizard and its body parts, subsequently acquiring their respective temper-
ature values. This method provides biologists with a faster and non-intrusive way to
measure lizard body temperature in a controlled laboratory setting, allowing researchers
to monitor the temperature preferences of lizards and enabling detailed observations of
their thermoregulation strategies. By automating the temperature acquisition process, this
method reduces stress and potential harm to the animals, offering a more ethical approach
to studying lizards’ behaviour.

This work can be divided into two main parts: the dataset creation and the detection
of the lizard and its body parts; and the acquisition of the respective temperature values.

Since there were no datasets available online or in the Biology Laboratory, it was
necessary and challenging to create a dataset from scratch, including creating a scenario,
filming videos, obtaining frames from these videos, and labelling the images with each class.

The YOLOv5s (small) model was chosen because it is lightweight, has a fast inference
time, and offers the best balance between training duration and the quality of the results
obtained. When using the model to detect the lizard and its body parts, challenges were
encountered in more complex images (images with noise), leading to some classes being
incorrectly detected. However, the model correctly identified the lizard and its body parts
in all images from the “test set”, with confidence scores above 78% in which, in general,
the “Lizard” (average of 96%) and “Tail” (average of 94%) classes presented the highest
confidence scores, and the “Snout” class was the one with the lowest confidence score
(average of 78%). The model achieved a precision of 90.00% and a recall of 98.80%. It can
be concluded that the application of YOLOv5s for the detection of lizards and their body
parts has demonstrated overall success.

The model was used to make detections only in RGB images and not in thermal images
since it was trained only with RGB images. If the model was used in thermal images, it
would generate erroneous detections because sometimes the lizard is not visible in the
thermal image due to its temperature being equal to its background floor. The coordinate
transformation from the RGB image to the thermal image proved to be effective, allowing
the acquisition of the final temperature values of the lizard’s body parts based on the colour
temperature scale and the colour of the pixels present in the thermal image. The accuracy
in acquiring the temperature values directly relied on the precise mapping of coordinates
between the RGB and thermal images.
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Overall, the system successfully achieves the intended end goal. However, it is
important to highlight that there is still room for improvement.

Given the challenges encountered during the development of this work and the
respective results obtained, a few proposals are presented to be implemented in future
updates.

• Adaptation of the developed system to detect the body temperature of another species
of animal kept in captivity.

• RGB and thermal cameras with better resolution.
• Obtain the values of additional parameters, such as emissivity and reflective tempera-

ture, that allow acquiring new information regarding the temperature measurement
process, enabling a deeper analysis.
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Abstract: In optical remote sensing image object detection, discontinuous boundaries often limit
detection accuracy, particularly at high Intersection over Union (IoU) thresholds. This paper addresses
this issue by proposing the Spatial Adaptive Angle-Aware (SA3) Network. The SA3 Network employs
a hierarchical refinement approach, consisting of coarse regression, fine regression, and precise tuning,
to optimize the angle parameters of rotated bounding boxes. It adapts to specific task scenarios using
either class-aware or class-agnostic strategies. Experimental results demonstrate its effectiveness
in significantly improving detection accuracy at high IoU thresholds. Additionally, we introduce
a Gaussian transform-based IoU factor during angle regression loss calculation, leading to the
development of Edge-aware Skewed Bounding Box Loss (EAS Loss). The EAS loss enhances the
loss gradient at the final stage of angle regression for bounding boxes, addressing the challenge of
further learning when the predicted box angle closely aligns with the real target box angle. This
results in increased training efficiency and better alignment between training and evaluation metrics.
Experimental results show that the proposed method substantially enhances the detection accuracy
of ReDet and ReBiDet models. The SA3 Network and EAS loss not only elevate the mAP of the
ReBiDet model on DOTA-v1.5 to 78.85% but also effectively improve the model’s mAP under high
IoU threshold conditions.

Keywords: optical remote sensing; object detection; discontinuous boundary; rotation equivariant

1. Introduction

In the field of optical remote sensing image target detection, the random orientation of
almost all objects in the image often leads to horizontal bounding boxes encompassing a
significant amount of irrelevant background when annotating detected objects. In compari-
son, rotated bounding boxes can greatly improve the pixel area ratio between objects and
background within the selected region, better accommodating the annotation of targets
in arbitrary directions. They provide accurate information about the direction, position,
and size of the targets, enabling the model to perform better in target detection tasks.
Existing methods for rotated object detection are mainly built upon generic object detection
approaches. They redefine the representation of detection boxes, introduce additional
angular dimensions for rotated detection boxes, and optimize them through distance loss.
Rotated object detection methods have played a crucial role in various fields, including text
detection [1–6], face recognition [7–9], and remote sensing image target detection [10–12].

However, introducing angle parameters also introduces uncertainty into the detection
task, with the most prominent issue being the discontinuous boundary problem. Addi-
tionally, because the evaluation metric for the final model is based on IoU values rather
than angular differences, optimizing the predicted box angles through distance loss intro-
duces a mismatch between loss calculation and evaluation metrics. These two issues have
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led to suboptimal performance of existing models under high IoU threshold conditions
(IoU > 0.5). Achieving higher accuracy in rotated object detection has become a significant
research focus.

This section first introduces the discontinuous boundary problem, describing the
origins of the discontinuity in parameterized regression. It then discusses the mismatch
between the calculation of angles in the loss function and evaluation metrics. Following
that, it surveys the progress of domestic and international research and concludes by
introducing the research objectives of this paper.

1.1. Discontinuous Boundary Issue

Rotated bounding boxes are commonly represented in two ways: the five-parameter
representation [1,5,11–15] and the eight-parameter representation [2,16–18]. Both represen-
tations can describe the position, size, and rotation angle of a rotated bounding box. The
five-parameter representation is often preferred due to its simplicity, intuitive nature, and
the reduced number of parameters for computation and storage. In this representation,
scholars have devised various methods for representing rotated boxes, establishing a range
for the angle in radians, binding it closely with the height and width of the detection box to
avoid the confusion of multiple angle values caused by the angular periodicity.

Due to different definitions of the θ range, three major categories of rotated box defini-
tions have gradually emerged in rotated object detection. The OpenCV definition [5,12–15],
abbreviated as OC, sets the angle range as angle ∈ (0, 90◦], θ ∈ (0, 1

2 π], where the acute angle
between the positive x-axis and the edge defined as the width is positive. The long edge defi-
nition [5,11] defines the long edge as the width and the short edge as the height. The angle θ
is the angle between the long edge width and the x-axis. Based on the angle range, it is further
divided into le135 and le90 definitions. The angle ranges are set as angle ∈ [−45◦, 135◦) or
θ ∈ [−π

4 , 3π
4 ) for le135, and angle ∈ [−90◦, 90◦) or θ ∈ [−π

2 , π
2 ) for le90.

In parameterized regression-based rotational detection methods, as illustrated in
Figure 1, significant differences exist between the ideal regression path and the actual
regression path under the le90 definition and the counter-clockwise (CCW) representation.
When regressing candidate boxes, if the ideal regression path (indicated by the dark red
dashed arrow in Figure 1a) is followed, the candidate box rotates clockwise by 1

8 π to
approximate the true target box. Although the predicted box has an IoU ≈ 1 with the
true target box, the loss value is significantly greater than 0. This is because the angle
of the predicted box changes from − 1

2 π to − 5
8 , increasing the discrepancy with the true

target box’s angle of 3
8 π. Due to the periodic nature of angles, although the boxes are

almost coincident visually, the angle difference leads to an increase in the loss value. In this
situation, the model needs to regress along a more distant path, namely, counter-clockwise
rotation by 7

8 π (indicated by the dashed red arrow in Figure 1c), achieving an IoU ≈ 1 and
a loss value Loss ≈ 0 to generate the final predicted box.

In summary, the discontinuous boundary problem is primarily caused by the angular
periodicity and the exchangeability of the long and short sides in the five-parameter
representation. The ideal regression path exceeds the predefined range, encountering
boundary issues, leading to an increase in regression loss.

Faced with this challenge, the transformation of predicted boxes under the OpenCV
definition involves both the exchange of width and height, as well as angle transforma-
tion, resulting in an overall complexity that may lead to less accurate predictions in such
conditions [19]. In contrast, the long edge definition only necessitates considering a broad
range of angle transformations when addressing the issue of discontinuous boundaries. To
align with the module design in the subsequent sections of this article, the le90 definition is
adopted as the angle range definition for rotated bounding boxes. Even in the case of the
four-point representation method, discontinuous boundary problems may arise due to the
order of corner points, a matter which will not be further elaborated upon here.
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Figure 1. Prediction box generation method under le90 definition and CCW representation conditions.
(a) Ideal regression path for generating prediction boxes. (b) Initial position of the proposal. (c) Actual
regression path for generating prediction boxes.

1.2. Mismatch between Loss and Evaluation Metrics

Over the years, the primary approach to improving the detection accuracy of rotated
object detection models has been to propose better network architectures and more effective
strategies for extracting reliable local features. However, there is a largely overlooked
optimization path that has received limited research attention in the field: designing a novel
loss function to replace the commonly used regression loss function, aiming to enhance
the model’s detection performance. In object detection, the Intersection over Union (IoU)
between the detection boxes generated by the model and the ground truth boxes is a crucial
evaluation metric used to calculate the mAP. Therefore, in rotated object detection, special
consideration needs to be given to minimizing angle errors and maximizing IoU values.

Most existing state-of-the-art rotated object detection models largely adopt the widely
used Smooth L1 loss [20,21] as the loss function for the regression branch [22,23], following
common practice in general object detection. This loss calculates the value based on the
numerical differences between two bounding boxes to minimize coordinate, aspect ratio,
and angle deviations. As depicted in Figure 2, the curve illustrates that the angle difference
between two rectangles with an aspect ratio of 1:6 and overlapping centroids does not show
a linear relationship with IoU values. When the angle difference is less than 20°, a smaller
angle difference results in a larger change in IoU. Specifically, when the angle difference
is within 12.96°, further reduction in the angle difference leads to a sharp increase in IoU
values. However, at this point, the loss value of the model’s angle difference diminishes
linearly. This scenario causes the model to lack sufficient loss gradient when the predicted
box’s angle is close to the angle of the real target box. As a result, the model fails to learn
how to generate more accurately angled detection boxes, preventing the detection boxes
from further aligning accurately, which is clearly not an ideal outcome.

In summary, the Smooth L1 loss is not sufficiently sensitive to small angle errors, and
a good local optimum based on the Smooth L1 loss may not necessarily be a local optimum
for IoU. This makes it challenging to effectively guide the model to maximize the IoU
values between the detection boxes and the real target boxes.
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Figure 2. Relationship curve between angular difference and IoU for rectangles with a 1:6 aspect
ratio and overlapping centroids.

1.3. Related Work

Due to the complexity of scenes in remote sensing images, including small sizes, large
aspect ratios, randomly and densely distributed objects, and arbitrarily oriented objects,
rotation object detection models based on bounding box regression continue to dominate
due to their higher accuracy and robustness. Parameterized regression methods are mainly
divided into two branches.

Single-stage: DAL [24] proposes dynamic adaptive learning to dynamically select
high-quality anchor boxes for accurate object detection, significantly reducing the number
of predefined anchor boxes. R3Det [12] introduces a feature refinement module based on
RetinaNet, using a progressive regression approach for fast and accurate object detection. It
also suggests a skewed IoU (SkewIoU) loss to mitigate sensitivity to angle transformations
in targets with large aspect ratios. RSDet [17] regresses rotated bounding boxes using
four points and introduces a modulation rotation loss to address the discontinuity issue in
existing losses when facing discontinuous boundaries. S2A-Net [25] introduces a Feature
Alignment Module (FAM) for adaptive alignment with high-quality anchor boxes and
an Orientation-aware Detection Module (ODM) for encoding orientation information,
alleviating inconsistencies between the classification and regression branches. CSL [26]
transforms angle prediction from a regression problem into a classification task to address
the issue of discontinuous boundaries.

Two-stage: ICN [10] designs a joint image cascade network to extract multiscale
semantic features and optimize regression losses. RoI Transformer [11] predicts a coarse
rotated RoI based on RPN in its first stage and refines the prediction using RoI Align in
the second stage, resulting in more accurate rotated RoIs and improving both efficiency
and accuracy compared to rotated RPN. SCRDet [13] uses a sampling fusion network to
enhance sensitivity to small objects and proposes supervised pixel attention networks and
channel attention networks for joint detection of small and cluttered objects. It combines
Smooth L1 loss with IoU factors to address discontinuous boundary issues in rotated
bounding boxes. Gliding Vertex [18] accurately describes target orientation by sliding
along each corresponding edge of a horizontal bounding box, introducing an area ratio
factor between the target and its horizontal bounding box to guide the model in predicting
quadrilateral detection boxes accurately. Oriented R-CNN [22] introduces a midpoint
offset representation on Faster R-CNN, modifying the output parameters of the RPN
regression branch from 4 to 6 to achieve rotated candidate boxes, significantly improving
detection accuracy and computational efficiency. These are mainstream state-of-the-art
two-stage detection models proposed in the last three years, inheriting the architecture
of Faster R-CNN [21]. ReDet [23] introduces the concept of E(2)-Equivariant Steerable
CNNs [27] (E(2)-CNNs) into object detection based on RoI Transformer, utilizing E2-CNNs
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to rewrite ResNet50 as ReResNet50. It redesigns the Rotation-invariant Region of Interest
Align (RiRoIAlign) module, aligning in both channel and spatial dimensions to obtain
rotation-invariant features. ReBiDet [28], based on ReDet, enhances feature fusion through
the ReBiFPN module, balances the difficulty and proportion of positive samples during
training using the DPRL module, and optimizes anchor box sizes and aspect ratios to
further improve the model’s detection performance.

Existing object detection methods more or less involve the study of discontinuous
boundary issues and mismatches between loss calculation and evaluation metrics. How-
ever, researchers have primarily concentrated on improving detection accuracy at IoU = 0.5,
with limited attention to enhancing accuracy at IoU = 0.55 and above. These two issues
result in suboptimal performance of current models at high IoU thresholds (greater than
0.5). As detection accuracy at IoU = 0.5 approaches a bottleneck, achieving higher precision
in rotational object detection is poised to become a key focus of future research.

1.4. Goal of the Research

This paper addresses two primary issues: the discontinuous boundary problem and
the mismatch between loss calculation and evaluation metrics. Solutions are proposed
based on the ReBiDet model, and our work is organized into the following two aspects:

1.4.1. Discontinuous Boundary Issue

We conduct a thorough analysis of the discontinuous boundary problem, focusing
on its origins in parameterized regression. Our analysis reveals that the core issue is
the inaccurate localization of detection boxes due to large-angle variations during the
regression of rotated bounding boxes. To address this problem, we propose the Spatially
Adaptive Angle-Aware (SA3) Network, a cascaded structure designed to handle the large-
angle variations caused by discontinuous boundaries. This network enhances the model’s
ability to adapt to complex scenarios, thereby improving the accuracy of object detection.

1.4.2. Mismatch between Loss Calculation and Evaluation Metrics

To tackle the issue of traditional loss functions being insensitive to Intersection over
Union (IoU) values, we propose the Edge-aware Skewed Bounding Box Loss (EAS Loss).
This novel loss function addresses the nonlinear decay of the loss value when the predicted
box’s angle closely matches the target box’s angle. By incorporating this loss function, we
aim to improve the alignment between the loss calculation and IoU values, enhancing
overall model performance.

Additionally, we perform ablation studies and extensive comparative experiments
with state-of-the-art models on two datasets to validate the effectiveness of the proposed
modules and approaches.

2. Methods

2.1. Spatially Adaptive Angle-Aware Network
2.1.1. Spatially Adaptive Angle-Aware Network Structure

The discontinuous boundary issue fundamentally results in imprecise localization of
the final detection box due to the wide range of angle variations during rotated bounding
box regression. Initial rotated object detection models, such as those based on Faster R-
CNN [21], incorporated an angle parameter during the bounding box regression stage.
However, the precision of the prediction boxes generated by a single regression was
unsatisfactory. Even in general object detection, studies have shown that when dealing
with candidate boxes of varying quality generated by the RPN module, a single regression
function struggles to align all predicted bounding boxes accurately with the ground truth.
Subsequently, the RoI Transformer [11] proposed a two-stage regression approach to
produce more accurate prediction boxes. This strategy performed well under the condition
of IoU = 0.5 and has been widely accepted by researchers, continuing to be adopted by
state-of-the-art rotated object detection models. However, in rotated object detection, the
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introduction of the parameter θ exacerbates the discontinuous boundary issue. As a result,
even with two regression functions, it remains challenging to achieve precise regression
tasks in rotated object detection when IoU > 0.5.

Inspired by the Cascade R-CNN [29] approach, this subsubsection decomposes the
regression task for rotated bounding boxes into three stages. Specifically, three dedicated
regression functions { f1, f2, f3} are designed for each stage. These regression functions
optimize the bounding boxes generated at their respective stages. The overall regression
equation is as follows:

F(x, b) = f3 ◦ f2 ◦ f1(x, b), (1)

Here , F(x, b) represents the regression equation, x denotes the image features correspond-
ing to the candidate bounding boxes, and f1, f2, f3 represent the regression functions for
the three stages. It is important to note that each regression function ft (t = 1, 2, 3) in the
cascade is specifically trained for the optimization of the corresponding bounding box
bt (t = 1, 2, 3) at its respective stage. This approach gradually improves the generated
predicted bounding boxes through coarse regression, fine-tuning, and precision refinement.
The entire model learns automatically based on the training sample set {Gi, Bi}, requiring
no further manual intervention, achieving the goal of adaptive angle regression. The
regression process is illustrated in Figure 3. In an ideal scenario, the true target box has
an angle of θ = 7

16 π. After being filtered by the RPN module, a proposal box is generated
that overlaps the centroid of the ground truth box, matching its width and height, but with
an angle of θ = − 1

2 π. Initially, Stage 1 performs a large-angle transformation, coarsely
regressing the proposal box to the light blue Coarse Regression box. Subsequently, Stages 2
and 3 refine the regression further, resulting in the Refined Predicted box that closely aligns
with the ground truth box.

Figure 3. Process of generating predicted boxes by the Spatially Adaptive Angle-aware Network.

Based on the concept of adaptive angle-regression bounding boxes mentioned above,
we have designed the SA3 Network, as depicted in Figure 4. The input to the SA3 Network
is the candidate bounding boxes generated by RPN, and the output consists of the predicted
bounding boxes and the classification of those boxes. The processing flow of the SA3

Network is as follows: Stage One: Rotation Bounding Box Regression. The primary
function is to regress horizontal candidate bounding boxes generated by RPN into rotated
bounding boxes. The process involves filtering horizontal candidate bounding boxes
through the DPRL sampler. Subsequently, RoI Align extracts the feature maps of RoIs.

191



Sensors 2024, 24, 5342

Following the practices of many scholars in the field [11,20,21,23,30], these feature maps are
resized to 7× 7 (a compromise between computational complexity, feature expressiveness,
and simplicity of network design) to facilitate subsequent classification and bounding box
regression operations. These fixed-size feature map blocks are fed into the Rotated BBox
Head for convolution and fully connected operations, resulting in the regression-generated
rotated predicted bounding boxes and their respective classifications; Stages Two and

Three: Rotation Bounding Box Angle Fine-tuning. The main function is to fine-tune
various parameters of the rotated bounding boxes generated in the first stage. The process
is similar to the first stage, where rotated bounding boxes are filtered through the Rotated
DPRL sampler. Next, the RiRoI Align extracts feature maps corresponding to the rotated
candidate bounding boxes. These feature maps are processed through the Rotated BBox
Head for convolution and fully connected operations, producing refined rotated predicted
bounding boxes and their respective classifications.

Figure 4. Spatially Adaptive Angle-aware Network structure.

2.1.2. Boundary Box Regression Class Strategy Selection

Boundary box regression class strategies include class-agnostic and class-aware strate-
gies. Both have their advantages and disadvantages, requiring consideration of specific
application scenarios.

Class-Agnostic Boundary Box Regression Strategy. From a global perspective, in
remote sensing images, the orientation of objects of each category is randomly distributed.
Given the widely varying aspect ratios of the bounding boxes corresponding to all objects,
it is not meaningful to consider the category of objects in the feature map during the coarse
regression stage. Therefore, for the regression function f1(x, b) in the first stage, a class-
agnostic strategy is adopted for training the bounding box regression function. The network
structure is depicted in Figure 5. The class-agnostic [31] strategy regresses bounding boxes
without distinguishing specific categories during the process. This approach enhances recall
rates, particularly in cases where there is incomplete annotation in the dataset, improving
the model’s robustness. Importantly, it significantly reduces the computational parameter
volume of the bounding box regression branch. However, the drawback is that the class-
agnostic strategy regresses all objects that the network deems possibly foreground, without
determining their specific category. This can lead to multiple detection boxes corresponding
to a single complex-patterned object and inaccurate classification. To mitigate the impact
on the final detection accuracy, class-aware strategies are employed in the subsequent two
stages of regression functions.
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Figure 5. Structure diagram of the class-agnostic strategy regression function in the coarse regression
stage.

Some studies in the general object detection field have demonstrated the effective en-
hancement of model detection performance using class-agnostic strategies [31]. Experimen-
tal findings indicate that, in cases of severe dataset category imbalance, the class-agnostic
strategy effectively mitigates the impact of dataset incompleteness on the performance of
the object detection model.

Class-Aware Boundary Box Regression Strategy. Unlike images captured from a
horizontal perspective, objects of different categories in remote sensing images exhibit
significant differences in the aspect ratios of their true target boxes. For instance, the aspect
ratio of bridges and docks may exceed 1:10, while objects like planes and helicopters may
have a ratio of 1:1. Directly applying the research experience of general object detection
without considering the actual situation of optical remote sensing images may not be
wise. Therefore, in the design of the regression functions f2, f3(x, b) for the fine-tuning and
precision refinement stages, a class-aware strategy is employed. The network structure is
shown in Figure 6.

Figure 6. Structure diagram of class-aware strategy regression function in the fine-tuning and
precision refinement stages.

When using a class-aware strategy to regress bounding boxes, the regression network
individually infers each category by traversing all categories, computing bounding boxes
for each category in the feature map block, and outputting the coordinates of bounding
boxes for all categories. Then, based on the output results of the classification network
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branch, the bounding boxes corresponding to the category of the classification network
branch are indexed, labeled as detection boxes, and other irrelevant category bounding
boxes are discarded, obtaining the final detection results. The advantage of this approach
is that it allows the model to undergo fine training for each category, serving as the basis
for fine regression and refinement learning, ultimately enabling the model to generate
accurate detection boxes for each category’s object. The drawback is that for a dataset with
annotated N categories of objects, the computational complexity of the regression network
branch is N times that of the class-agnostic strategy, making it less efficient. However, for
this project, improving detection accuracy through algorithm design takes precedence,
while also considering a reduction in computational complexity. As per the empirical
knowledge of generative artificial intelligence, the size of the computed parameter quantity
is positively correlated with the actual performance of the model. In experiments, it was
observed that although the class-aware strategy incurs a higher computational cost, it does
not necessarily achieve better detection performance when the number of categories in the
dataset is imbalanced or the total number of targets is small.

In summary, when using the SA3 Network, one should consider whether the number
of targets in each category in the dataset is balanced, the total number of targets, and other
practical issues. A comprehensive judgment should be made regarding whether to adopt a
class-aware or class-agnostic strategy during the fine regression and refinement stages of
the SA3 Network. Inappropriate strategy selection may result in a significant reduction in
the model’s detection performance.

2.2. Edge-Aware Skewed Bounding Box Loss

A persistent issue in the design of regression losses for rotated object detection is the
inconsistency between model training metrics and final evaluation metrics. This inconsis-
tency acts as a bottleneck, necessitating the design of a loss function specifically tailored for
rotated object detection. Such a loss function must consider the unique characteristics of
this task, especially in terms of the Intersection over Union (IoU), to enhance the model’s
sensitivity to changes in angles.

To address this challenge, we introduce a novel regression loss, named the EAS loss.
This loss function takes into account the IoU value between the predicted bounding box
and the ground truth. The EAS loss effectively mitigates the inconsistency between training
and evaluation metrics, enabling the model to accurately regress angles, particularly when
the predicted box is close to the ground truth.

2.2.1. EAS Loss Design

To enhance the sensitivity to small angle deviations and improve metric consistency, a
natural idea is to use IoU when regressing the angle θ. In this case, the loss calculation is
defined as in Equation (2):

LossIoU = − log(eps + IoU), (2)

However, this introduces a new problem: when the centroid of the predicted box is far
from the centroid of the ground truth box, the IoU value will be very small, leading to slow
angle regression by the model. Assuming the aspect ratio of the box is 1:6, as shown in
Figure 7, even when the centroid of the predicted box and the ground truth box coincide,
the slope of the LossIoU value becomes flat when the angle difference θ exceeds 60°. This
reduces the regression efficiency of the model for larger angle differences.

To address this, we introduce an IoU factor into the angle regression loss L∗θ calculation,
as shown in Equation (3):

Lθ = L∗θ − log(eps + IoU), (3)
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Here, L∗θ adopts the calculation method of the Smooth L1 loss, leading to the ideal EAS loss
calculation Equation (4):

LossEAS(dθ , tθ , β, γ) =

⎧⎨⎩0.5 ·
( |dθ−tθ |2

β − γ · log(eps + IoU)
)

, if |dθ − tθ | < β

|dθ − tθ | − 0.5 · β− γ · log(eps + IoU), otherwise
, (4)

Here, eps = 10−6, and β and γ are adjustable variables. When β = 1 and γ = 1/9, the
relationship between LossEAS and the angle difference θ is depicted in Figure 8.

Figure 7. Curve depicting the relationship between IoU loss and angle difference.

When the centroids of the predicted box and the ground truth box do not coincide, the
EAS loss, incorporating the IoU factor in the angle regression loss component, prevents
ineffective rotations of the predicted box. When the centroids of the predicted box and the
ground truth box do coincide, the IoU factor allows the model to quickly and accurately
learn to generate more precise predicted boxes as the predicted and ground truth angles
approach each other. This makes it an ideal angle regression loss function.
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Figure 8. Curve depicting the relationship between EAS loss and angle.

The next issue is how to calculate the IoU value. Here, the IoU between the rotated
bounding boxes is termed SkewIoU to distinguish it from horizontal IoU. The definition of
SkewIoU is the same as IoU, as shown in Equation (5):

SkewIoU(P, G) =
Area(P ∩ G)

Area(P ∪ G)
, (5)

where P and G are two rotated bounding boxes. To compute their intersection and union
areas accurately, skewed bounding boxes are treated as polygons, and the convex polygon
intersection calculation method [5] is employed to precisely calculate SkewIoU. This process
involves sorting and combining the coordinates of the vertices and intersection points of
the rotated boxes, followed by the application of the triangulation method to calculate the
area of the intersection region. The overall computation is relatively complex, with sorting
and triangulation being the primary time-consuming factors. In practical applications,
libraries such as OpenCV and Shapely are often employed to calculate SkewIoU. The
specific implementation and optimizations in these libraries can impact performance, but
the fundamental principles of computational complexity remain unchanged.

In general object detection, the IoU loss has long been a focus for effectively mitigating
the inconsistency between evaluation metrics (dominated by IoU) and regression loss
calculation methods. However, in rotated object detection, due to the computationally
expensive nature of SkewIoU calculation, it is primarily used for validation and evaluation
and has not been widely adopted in loss functions.

2.2.2. Gaussian Transformation for Approximate IoU Calculation

Recent studies, such as PIoU [32], projection IoU [33], GWD [34], and KLD [35], have
explored methods to simulate the approximate SkewIoU loss. Among these, GWD and KLD
introduced a Gaussian modeling approach, simplifying the complex SkewIoU calculation
into a more efficient process. However, their methods involve nonlinear transformations
and hyperparameters in the final loss function design using Gaussian distribution distance
metrics, making them not fundamentally SkewIoU. KFIoU [36] is a loss function based
on the approximation of SkewIoU and center-point distance, but its performance in the
proposed model in this paper is not ideal. As shown in Table 1, after incorporating the
KFIoU loss, the model’s AP50, AP75, and mAP all experienced varying degrees of decline.
In the original paper, KFIoU achieved satisfactory results with backbone networks like
ResNet-152 with large parameter sizes. In contrast, the model in this paper utilizes the
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ReResNet-50 backbone network with relatively fewer computational parameters, which
might be one of the reasons for the performance degradation.

Table 1. Experimental results of the ReBiDet model and KFIoU loss on the DOTA-v1.5 dataset.

Method mAP AP50 AP75

ReBiDet [28] 41.15 69.48 42.54
ReBiDet + KFIoU 36.70 68.40 33.62

ReBiDet * [28] 49.26 77.96 52.53
ReBiDet * + KFIoU 46.09 77.06 48.14

* Indicates training and testing on DOTA-v1.5 with random rotation augmentation and offline multi-scale
augmentation.

Despite KFIoU’s poor performance in ReBiDet, a simpler and more efficient method
for approximating SkewIoU is worth considering. This method converts two rotated
bounding boxes into Gaussian distributions, representing the overlapping region with a
simpler mathematical formula and calculating the area of the minimum enclosing rectangle
of this region. This approach significantly simplifies the original geometric computation
while maintaining a high approximation to the exact IoU value [36]. This method adheres
to the SkewIoU calculation process, is mathematically rigorous, and does not introduce
additional hyperparameters. Although the accuracy of the SkewIoU values obtained is
relatively low, precise SkewIoU calculation is not strictly necessary in loss functions; minor
errors are tolerable as long as the trend of the approximated SkewIoU matches the true
value. Below are the basic steps and derivations for approximating SkewIoU using the
Gaussian transformation method [36]:

Transforming Rotated Rectangular Boxes into Gaussian Distributions. To begin,
the rotated rectangular boxes are transformed into Gaussian distributions G(μ, Σ). Each
rectangular box is represented by two parameters: the covariance matrix Σ and the center

coordinates μ. For a rotated rectangular box B(x, y, w, h, θ), μ =

[
x
y

]
, and the covariance

matrix is calculated as shown in Equation (6):

Σ = RΛRT , (6)

where R =

[
cos θ − sin θ
sin θ cos θ

]
, Λ = 1

4

[
w2 0
0 h2

]2

. The final form of the covariance matrix Σ is

given in Equation (7):

Σ =

⎡⎣w2

4 cos2 θ + h2

4 sin2 θ
(w2−h2)

4 cos θ sin θ

(w2−h2)
4 cos θ sin θ w2

4 sin2 θ + h2

4 cos2 θ

⎤⎦, (7)

The transformed Gaussian distribution is illustrated in Figure 9.

Figure 9. Transformed Gaussian distribution of rotated rectangular boxes.
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Calculating Overlapping Area of Two Gaussian Distributions. The overlapping
area of two Gaussian distributions is computed by multiplying the Gaussian distributions
of the predicted box P and the true target box G using the Kalman filter’s multiplication
rule. Specifically, the predicted box’s Gaussian distribution GP(μP, ΣP) is treated as the
predicted value, and the true target box’s Gaussian distribution GG(μG, ΣG) is treated as
the observed value. This yields the approximate Gaussian distribution GI(μI , ΣI) for the
overlapping region I, as shown in Equation (8):

αGI(μI , ΣI) = GP(μP, ΣP) · GG(μG, ΣG), (8)

Here, αGI(μI , ΣI) does not have a probability sum of 1 and is not a standard Gaussian
distribution. The coefficient α can be expressed by Equation (9):

α = Gα(μG, ΣP + ΣG) =
1√

det(2π(ΣP + ΣG))
e−

1
2 (μP−μG)

T(ΣP+ΣG)
−1(μP−μG), (9)

When μP − μG ≈ 0, α can be approximated as a constant. Since the EAS loss is computed
separately for the centroids of the bounding boxes, we can consider the scenario where
the centroids of the predicted box P and the ground truth box G coincide, i.e., μP = μG. In
this case, the parameters μI and ΣI of the Gaussian distribution GI(μI , ΣI) for the overlap
region I are calculated using Equation (10):

μI = μP + K(μG − μP), ΣI = ΣP − KΣP, (10)

where K = ΣP(ΣP + ΣG)
−1. When the central points of the predicted box P and the true

target box G are close to overlapping (μP = μG), the center point μI of the Gaussian
distribution for the overlap region I coincides with the central points of the predicted
box P and the true target box G, as shown in Figure 10. The covariance matrix ΣI of the
overlapping area I can be approximated using Equation (11):

ΣI = ΣP

(
1− ΣP

ΣP + ΣG

)
=

ΣPΣG
ΣP + ΣG

, (11)

It can be observed that the covariance ΣI of the overlapping area I is influenced by the
covariance ΣP and ΣG of the Gaussian distributions of the predicted box P and the true
target box G.

Figure 10. The overlapping area I of two Gaussian distributions.

Calculating Areas of Externally Circumscribed Rectangles. The areas of the mini-
mum enclosing rectangles for the predicted box P, the ground truth box G, and the overlap
region I are calculated using their respective Gaussian distributions. Since the dimensions
of the predicted box P and the ground truth box G are known, SP(ΣP) and SG(ΣG) can
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be directly calculated. The area SI(ΣI) can be conveniently derived from the covariance
matrix ΣI , as shown in Equation (12):

SI(ΣI) = 22
√

∏
i

eig(ΣI) = 4 ·
∣∣∣Σ1/2

I

∣∣∣ = 4 ·
√
|ΣI |, (12)

Calculating the Approximate SkewIoU. The approximate SkewIoU (SkewIoUapprox)
is calculated as follows:

SkewIoUapprox =
SI(ΣI)

SP(ΣP) + SG(ΣG)− SI(ΣI)
, (13)

However, SI(ΣI) is not the exact area of the overlap of the predicted box P and the
true target box G. Since αGI(μI , ΣI) is not a standard Gaussian distribution and α is
treated as a constant in the calculation, Xue Yang et al. derived that the upper bound of

· SI(ΣI)
SP(ΣP)+SG(ΣG)−SI(ΣI)

is
1
3

[36]. Using this upper bound, a linear transformation is applied
to expand its value range to [0, 1], resulting in the approximate SkewIoU:

SkewIoUapprox = 3 · SI(ΣI)

SP(ΣP) + SG(ΣG)− SI(ΣI)
, (14)

This approximation method for SkewIoUapprox demonstrates high consistency with the
true SkewIoUplain while being an ideal method for practical applications [36]. Despite
the complexity of the derivation, the implementation is straightforward in the EAS loss
function, where SkewIoUapprox is used as a factor for angle regression without introducing
additional hyperparameters and not participating in the backpropagation process.

The EAS loss function is given by:

LossEAS(dθ , tθ , β, γ) =

⎧⎨⎩0.5 ·
( |dθ−tθ |2

β − γ · log(ε + SkewIoUapprox)
)

if |dθ − tθ | < β

|dθ − tθ | − 0.5 · β− γ · log(ε + SkewIoUapprox) otherwise
, (15)

where ε = 10−6, and β and γ are adjustable parameters.

3. Experimental Results

3.1. Datasets
3.1.1. DOTA-v1.5 Dataset

DOTA [37,38], released by Wuhan University in January 2018, currently comprises
three versions: DOTA-v1.0, DOTA-v1.5, and DOTA-v2.0.

DOTA-v1.0 [37] includes 2806 images sourced from various platforms, such as Google
Earth, JL-1, and GF-2. This dataset contains 188,282 annotated objects across 15 different
categories: Plane (PL), Baseball Diamond (BD), Bridge (BR), Ground Track Field (GTF),
Small Vehicle (SV), Large Vehicle (LV), Ship (SH), Tennis Court (TC), Basketball Court (BC),
Storage Tank (ST), Soccer-Ball Field (SBF), Roundabout (RA), Harbor (HA), Swimming
Pool (SP), and Helicopter (HC). The annotations are quadrilaterals defined by four points
{x1, y1; x2, y2; x3, y3; x4, y4}. However, DOTA-v1.0 misses many small-sized objects (ap-
proximately 10 pixels or smaller), leading to incomplete annotations. This limitation may
result in inaccurate evaluations of object detection model performance [28].

DOTA-v1.5 [38], built upon DOTA-v1.0, expands the number of annotations to 402,089.
It also includes additional annotations for the small objects omitted in DOTA-v1.0 and
introduces a new category, Container Crane (CC), making it a more challenging dataset. The
dataset presents the following difficulties: (1) the pixel size of images varies significantly,
ranging from 800× 800 to 4000× 4000, complicating training on certain GPUs; (2) a high
proportion of objects are small, with 98% of objects being smaller than 300 pixels and 57%
smaller than 50 pixels [37], resulting in a substantial scale variation between tiny and large
objects, complicating detection.
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Due to the limited research published using DOTA-v2.0, cross-performance compar-
isons are challenging; thus, this paper does not utilize DOTA-v2.0. Instead, DOTA-v1.5 is
employed for testing and analyzing the proposed methods, as it addresses the shortcomings
of DOTA-v1.0 and remains the most commonly used public object detection dataset in the
remote sensing field. It is noteworthy that the creators of the DOTA dataset have not pub-
licly released the annotations for the test set, requiring researchers to upload their detection
results for evaluation, thereby restricting comprehensive analysis of experimental results.

3.1.2. DFShip Dataset

The DFShip dataset is a fine-grained optical remote sensing ship dataset released by
the Big Data and Decision-Making (National) Laboratory for the 2023 National Big Data
and Computational Intelligence Challenge [39]. It comprises 41,495 images, all annotated
with ship targets. The training set includes 30,285 images with corresponding target
annotation files, totaling 120,605 annotated targets across 133 fine-grained categories. This
makes DFShip the most detailed and extensive fine-grained ship dataset currently available,
posing a significant challenge to the performance of object detection models. Both the
preliminary and final test sets consist of 11,210 images, each presenting varying levels
of detection difficulty. The organizers did not provide annotation files for the test sets;
participants must test locally and upload the packaged test results to a designated server
for validation. Since the organizers did not provide a specific name for this dataset, we
refer to it as DFShip in this paper.

3.2. Setup

The experimental setup closely follows the approach described in the ReBiDet paper,
with several key upgrades. The GPU configuration has been enhanced from 2 NVIDIA GTX
3090 Ti to 2 NVIDIA GTX 4090 GPUs. Additionally, the software stack has been updated:
CUDA has been upgraded from version 11.8 to 12.0, PyTorch from version 1.11.0 to 1.13.1,
torchvision from version 0.12.0 to 0.14.1, and the MMRotate framework from version 0.3.2
to 0.3.4. These updates ensure improved compatibility and facilitate the reproducibility of
experiments across different environments.

During training, data augmentation techniques, such as horizontal and vertical flips,
were applied. The batch size per GPU was set to 2, resulting in a total batch size of 4. The
network was optimized using the Stochastic Gradient Descent (SGD) algorithm with a
momentum of 0.9 and a weight decay of 0.0001. For the Region Proposal Network (RPN),
the IoU threshold for positive samples was set to 0.7. The horizontal box Non-Maximum
Suppression (NMS) threshold was set to 0.7, while the rotation box NMS threshold was set
to 0.1.

The DOTA-v1.5 dataset consists of a total of 2806 images, with 1411 images in the
training set, 458 images in the validation set, and 937 images in the test set. To ensure
fairness in comparison experiments, we followed the practices of many scholars in the field
and processed the data accordingly. Since the images in the dataset have varying sizes, the
original images from the DOTA-v1.5 dataset were cropped to a size of 1024 × 1024 pixels
with a stride of 824 pixels. After cropping, the DOTA-v1.5 dataset contains 15,749 images
in the training set, 5297 images in the validation set, and 10,833 images in the test set. Both
the training and validation sets were used for model training. Additionally, we performed
multiple scale augmentation on the dataset, resizing the original 2806 images to three scales:
0.5, 1.0, and 1.5. These resized images were then cropped to 1024 × 1024 pixels with a stride
of 524 pixels, resulting in a final dataset of 416,651 images for training and 71,888 images
for testing. The model was trained for 12 epochs, with an initial learning rate of 0.01, and it
was divided by 10 at epochs 9 and 11.

The DOTA-v1.5 dataset consists of a total of 2806 images, with 1411 images in the
training set, 458 images in the validation set, and 937 images in the test set. To ensure
fairness in comparative experiments, we followed established practices and processed the
data accordingly. Given the varying sizes of images in the dataset, the original images
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were cropped to a size of 1024 × 1024 pixels with a stride of 824 pixels. After cropping, the
DOTA-v1.5 dataset was expanded to include 15,749 images in the training set, 5297 images
in the validation set, and 10,833 images in the test set. Both the training and validation
sets were utilized for model training. Additionally, multiple scale augmentations were
performed, resizing the original 2806 images to three scales: 0.5, 1.0, and 1.5. These resized
images were cropped to 1024 × 1024 pixels with a stride of 524 pixels, resulting in a final
dataset of 416,651 images for training and 71,888 images for testing. The model was trained
for 12 epochs, with an initial learning rate of 0.01, which was reduced by a factor of 10 at
epochs 9 and 11.

For the DFShip dataset, the original images are typically 1024 × 1024 in size and do
not require additional cropping. Since the competition organizer’s validation server only
provides mAP at an IoU threshold of 0.5, the original training set was randomly split in a 4:1
ratio for this study. This resulted in a training set with 24,228 images and 96,644 annotated
targets, and a test set with 6057 images and 23,961 annotated targets. The model was
trained for 36 epochs, with an initial learning rate of 0.01, which was reduced by a factor of
10 at epochs 24 and 33.

3.3. Results and Analysis

3.3.1. Ablation Experiments of SA3 Network

To evaluate the effectiveness of the proposed SA3 Network, ablation experiments were
conducted using ReDet and ReBiDet as baseline models. These experiments aimed to assess the
impact of incorporating class-aware and class-agnostic bounding box regression strategies.

In these ablation experiments, the SA3 Network was integrated into both ReDet and
ReBiDet models to objectively evaluate its contribution. Due to the absence of ground truth
annotations for the test set of the DOTA dataset, the trained models’ results were packaged
and uploaded. The detection metrics were then verified by the DOTA-v1.5 dataset authors
using their designated servers.

Table 2 presents a performance comparison of the ReDet and ReBiDet models with
and without the SA3 Network. The integration of the SA3 Network results in improved
detection performance for both models. The mean average precision (mAP) reported in
the table is computed using the COCO evaluation method, which averages the average
precision (AP) values across all possible IoU thresholds. AP50 and AP75 refer to the AP at
IoU thresholds of 0.5 and 0.75, respectively.

Table 2. Experimental results of the SA3 Network with two strategies on the DOTA-v1.5 dataset.

Method mAP AP50 AP75

ReDet [23] - 66.86 -
ReDet * 41.00 68.02 42.10
ReDet * + SA3 Class-aware 41.23 68.94 42.94
ReDet * + SA3 Class-agnostic 41.91 69.30 44.48

ReBiDet [28] 41.15 69.48 42.54
ReBiDet + SA3 Class-aware 41.32 70.16 42.94
ReBiDet + SA3 Class-agnostic 42.48 71.21 44.13

* Denotes the detection results reproduced on the experimental platform in this paper. Note: The training and
inference of models in this table were directly conducted using DOTA-v1.5 for both training and inference, without
applying random rotation augmentation and offline multi-scale augmentation to the dataset.

The results indicate that integrating the SA3 Network leads to improvements in mAP,
AP50, and AP75 for both the ReDet and ReBiDet models. For ReDet, the class-aware
strategy increases AP50 by 0.92% and AP75 by 0.84%. The class-agnostic strategy, however,
shows even more significant improvements, with AP50 increasing by 1.28% and AP75 by
2.38%. Similarly, for ReBiDet, the class-aware strategy results in AP50 increasing by 0.68%
and AP75 by 0.4%, while the class-agnostic strategy yields an increase of 1.33% in AP50
and 1.59% in AP75.
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These results demonstrate that the SA3 Network significantly enhances detection ac-
curacy, particularly at higher IoU thresholds. This improvement underscores the network’s
ability to optimize model precision for predicting rotated bounding boxes.

Despite the expectation that the class-aware strategy would provide more accurate
results due to its tailored approach for each object class, the experimental outcomes show
the opposite. The class-agnostic strategy performs better, which can be attributed to the
imbalanced class distribution in the DOTA-v1.5 dataset. Some classes, such as Container
Crane (CC), have very few instances compared to others like Small Vehicle (SV), which
has a large number of instances. Figure 11 illustrates this imbalance, with CC having only
283 instances and SV having 295,272 instances. In such cases, the class-agnostic strategy is
more suitable.

To further investigate the effectiveness of the SA3 Network and the rationale behind
strategy selection, we performed random rotation and offline multi-scale augmentations
on the DOTA-v1.5 dataset. The class distribution after augmentation, shown in Figure 12,
remains uneven but with an increased minimum instance count for Container Crane (CC),
which rises to 1719. This theoretically enhances training effectiveness.

Figure 11. Distribution of various object classes in the DOTA-v1.5 training and validation sets.

Figure 12. Distribution of various object classes in the augmented DOTA-v1.5 training and valida-
tion sets.

Table 3 displays the ablation experiment results using the augmented DOTA-v1.5
dataset. With the SA3 Network, the class-aware strategy shows significant improvements
over the ReDet baseline, with AP50 increasing by 1.00% and AP75 by 1.67%. The class-
agnostic strategy results in AP50 increasing by 0.68% and AP75 by 1.64%. For ReBiDet, the
class-aware SA3 Network leads to an increase of 0.54% in AP50 and 0.85% in AP75, contrast-
ing with the previous results where the class-agnostic strategy showed higher effectiveness.
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Table 3. Experimental results of the SA3 Network with two strategies on the augmented DOTA-v1.5
dataset.

Method mAP AP50 AP75

ReDet [23] - 76.80 -
ReDet * 48.13 76.95 50.99
ReDet * + SA3 Class-aware 49.38 77.95 52.66
ReDet * + SA3 Class-agnostic 49.02 77.63 52.63

ReBiDet [28] 49.26 77.96 52.53
ReBiDet + SA3 Class-aware 49.58 78.50 53.38
ReBiDet + SA3 Class-agnostic 49.07 77.84 52.11

* Denotes the detection results reproduced on the experimental platform in this paper. Note: The training and
inference of models in this table were conducted using DOTA-v1.5, with both random rotation augmentation and
offline multi-scale augmentation applied during training and inference.
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The augmented dataset, despite its imbalances, now provides sufficient instances
for each class, making the class-aware strategy more effective. Therefore, while the class-
agnostic strategy of the SA3 Network is more suitable for datasets with significant class
imbalances, the class-aware strategy proves advantageous for datasets with adequate
instances for each class, even if imbalances exist.

3.3.2. Ablation Experiments of EAS Loss

Initially, we performed ablation experiments using ReDet as the baseline model to
assess the effectiveness of the EAS loss function. Table 4 compares the performance of the
ReDet and ReDet + SA3 models, both with and without the EAS loss. This preliminary
verification indicates that the proposed EAS loss function improves the model’s detection
performance. The evaluation metrics are defined as previously described. The results reveal
that both baseline models, ReDet and ReDet + SA3, exhibit varying degrees of improvement
in mAP, AP50, and AP75 with the adoption of the EAS loss. Specifically, ReDet shows a
0.60% increase in AP50 and a 0.18% increase in AP75. For ReDet + SA3, the class-aware
strategy significantly enhances performance, with AP50 increasing by 1.10% and AP75
by 1.60%.

Table 4. EAS loss experiment results based on the ReDet model in the DOTA-v1.5 dataset.

Method mAP AP50 AP75

ReDet [23] - 66.86 -
ReDet * 41.00 68.02 42.10
ReDet * + EAS 41.27 68.62 42.28
ReDet * + SA3 Class-aware 41.23 68.94 42.94
ReDet * + SA3 Class-aware + EAS 42.34 70.04 44.54
ReDet * + SA3 Class-agnostic 41.91 69.30 44.48
ReDet * + SA3 Class-agnostic + EAS 42.32 68.91 44.81

* Indicates the detection results reproduced on the experimental platform in this paper. Note: The training and
inference of the models in this table were conducted directly using the DOTA-v1.5 dataset, without applying
random rotation augmentation or offline multi-scale enhancement. The mAP in the table follows the COCO
calculation method, representing the average AP across all possible IoU thresholds. AP50 refers to the AP when
the IoU threshold is 0.5, while AP75 denotes the average precision at an IoU threshold of 0.75.

Further ablation experiments were conducted using ReBiDet as the baseline model to
corroborate the effectiveness of the EAS loss function. Table 5 presents the performance
comparison of the ReBiDet + SA3 models with and without EAS loss. Similar to the ReDet
results, the ReBiDet + SA3 model exhibits notable improvements under the class-aware
strategy when utilizing EAS loss: AP50 increases by 1.11%, AP75 by 1.38%, and mAP
by 1.63%. The class-agnostic strategy shows smaller improvements, with AP75 and mAP
increasing by 0.80% and 0.35%, respectively, while AP50 decreases by 0.62%, consistent with
the results obtained with the ReDet model. This observed phenomenon is not coincidental.
The EAS loss function facilitates more comprehensive training of the model’s bounding
box regression branch, whereas the class-agnostic strategy treats all categories as a single
class, which can be less effective when training samples are insufficient. This fundamental
conflict between the mechanisms explains the reduced generalization capability of the SA3

Network under the class-agnostic strategy when influenced by EAS loss.
These experimental results indicate that the EAS loss function enhances the training ef-

fectiveness of the model’s bounding box regression branch and optimizes the SA3 Network,
particularly improving the learning efficiency of the class-aware strategy. This ensures that
the model can be effectively trained even with imbalanced categories and fewer samples.

We then evaluated the performance of the EAS loss function on a dataset with a
larger number of training samples by applying random rotation and offline multi-scale
augmentation to the DOTA-v1.5 dataset.
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Table 5. Experimental results of EAS loss on the ReBiDet model in the DOTA-v1.5 dataset.

Method mAP AP50 AP75

ReBiDet + SA3 Class-aware 41.32 70.16 42.94
ReBiDet + SA3 Class-aware + EAS 42.95 71.28 44.33

ReBiDet + SA3 Class-agnostic 42.48 71.21 44.13
ReBiDet + SA3 Class-agnostic + EAS 42.83 70.59 44.93

Note: The training and inference of the models in this table were conducted directly using DOTA-v1.5, without
applying random rotation augmentation or offline multi-scale enhancement.

Initially, ablation experiments were conducted using ReDet + SA3 as the baseline
model. Given that the class-agnostic strategy performs relatively poorly on the unaug-
mented DOTA-v1.5 dataset, we employed the class-aware strategy for SA3 in this case.
Table 6 compares the performance of the ReDet + SA3 models with and without EAS loss.
The results show slight improvements across all performance indicators: AP50 increased
by 0.25%, AP75 by 0.16%, and mAP by 0.36%. These improvements are significantly less
than those observed with the unaugmented DOTA-v1.5 dataset.

Table 6. Experimental results of EAS loss on the ReDet model in the augmented DOTA-v1.5 dataset.

Method mAP AP50 AP75

ReDet [23] - 76.80 -
ReDet * 48.13 76.95 50.99
ReDet * + SA3 49.38 77.95 52.66
ReDet * + SA3 + EAS 49.74 78.20 52.82

* indicates the reproduction of detection results on the experimental platform in this paper. Note: the SA3

Networks in this table adopt the class-aware strategy, and the model is trained and tested using random rotation
augmentation and offline multi-scale enhancement on the DOTA-v1.5 dataset.

Similarly, ablation experiments using ReBiDet + SA3 as the baseline model were
conducted, maintaining the class-aware strategy for SA3 as explained above. Table 7
presents a performance comparison of the ReBiDet + SA3 models with and without EAS
loss. As with the ReDet + SA3 model, the EAS loss yields minor improvements: AP50
increased by 0.35%, AP75 decreased by 0.12%, and mAP increased by 0.55%. These
improvements are again notably smaller compared to those seen with the unaugmented
DOTA-v1.5 dataset.

Table 7. Experimental results of EAS loss on the ReBiDet model in the augmented DOTA-v1.5 dataset.

Method mAP AP50 AP75

ReBiDet [28] 49.26 77.96 52.53
ReBiDet + SA3 49.58 78.50 53.38
ReBiDet + SA3 + EAS 50.13 78.85 53.26

Note: the SA3 Network in this table adopts the class-aware strategy, and the model is trained and tested using
random rotation augmentation and offline multi-scale enhancement on the DOTA-v1.5 dataset.

The diminished advantage of the EAS loss function with an increased number of
effective training samples is consistent with our previous observations. This effect is
evident in both the ReDet + SA3 and ReBiDet + SA3 models, with the latter exhibiting
stronger feature extraction capabilities. The results suggest that enhanced feature extraction
and sample selection strategies cannot maintain the significant advantage of EAS loss.
Nevertheless, the performance of both ReDet/ReBiDet + SA3 models still benefits from the
use of EAS loss.
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In summary, the EAS loss function effectively improves the learning efficiency of the
model’s regression branch for bounding box angle regression. It ensures adequate training
even with imbalanced categories and fewer samples. Specifically, the class-aware strategy
of the SA3 Network benefits significantly from the EAS loss, enhancing the performance
metrics, such as AP50, AP75, and mAP. In scenarios with insufficient training samples
for certain categories, the SA3 Network does not need to choose between class-aware and
class-agnostic strategies. As the number of effective training samples increases and each
category has sufficient instances, the advantage of the EAS loss diminishes but remains
relative to the Smooth L1 loss. These results validate the effectiveness of the EAS loss
function in various scenarios.

3.3.3. Multi-IoU Threshold Comparison Experiment on the DFShip Dataset

The DOTA series datasets, depending on the version, include 15 or 16 categories, such
as airplanes and cars, with ships being one of the categories. To further demonstrate the
effectiveness of the proposed solutions, design concepts, and research methods in address-
ing ship detection issues, we conducted validation experiments on the DFShip dataset,
which specializes in ship detection. This subsection provides a horizontal comparison of
the ReBiDet + SA3 + EAS model proposed in this paper with other state-of-the-art models
on the DFShip dataset. We selected and reproduced several leading models from the
DOTA series datasets for this comparison, including CSL [26], R3Det [12], S2A-Net [25],
Oriented R-CNN [22], and our baseline model ReDet [23]. These models are among the
most advanced in the field. Due to the unavailability of annotated test data from the official
source, we split the original training set into training and test sets in a 4:1 ratio for the
experiments, focusing on the precision of generated bounding boxes, specifically mAP at
high IoU thresholds.

Table 8 presents the experimental results. At low threshold conditions, such as
IoU = 0.5, the performance advantage of our proposed model over other advanced models
is not significant. This is partly due to the dataset characteristics, which include clear
images, accurate annotations, and a large number of training samples, all of which gen-
erally enhance the detection performance of the models. However, under high threshold
conditions, such as IoU = 0.75, our model demonstrates a clear advantage with a detection
accuracy of 98.28%, outperforming all other models in the comparison and surpassing the
baseline model ReDet by 2.22%. The detection accuracy at IoU = 0.75 is only 0.56% lower
than at IoU = 0.5.

Table 8. Horizontal comparison of model performance on the DFShip dataset at IoU thresholds from
0.5 to 0.95.

IoU CSL R3Det S2A-Net ReDet
Oriented
R-CNN

ReBiDet +
SA3 + EAS

0.50 88.14 95.94 97.72 98.76 98.52 98.81
0.55 87.33 95.61 97.59 98.73 98.52 98.81
0.60 86.06 95.17 97.38 98.62 98.41 98.76
0.65 83.63 94.35 96.96 98.32 98.31 98.68
0.70 78.96 92.22 96.07 97.89 98.04 98.56
0.75 70.99 87.60 94.27 96.06 97.56 98.22
0.80 54.92 78.25 89.01 91.45 95.79 97.20
0.85 33.81 57.78 71.88 78.58 87.30 93.18
0.90 13.10 25.62 35.37 44.43 55.52 77.05
0.95 1.89 1.73 3.18 5.44 4.66 21.30

mAP 59.88 72.43 77.94 80.83 83.26 88.06

Note: The mAP is calculated using the all-point interpolation method. The red bold font represents the highest
detection accuracy value at the same threshold in the horizontal comparison.

At an even higher threshold of IoU = 0.85, the detection accuracy of ReBiDet + SA3 + EAS
remains robust at 93.18%, while the performance of all other models significantly declines.
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At IoU = 0.95, ReBiDet + SA3 + EAS maintains a detection accuracy of 19.18%, whereas the
other models’ accuracies drop to single digits. Figure 13 visually presents the comparison
results from Table 8. These results confirm that our model not only achieves high detection
accuracy but also generates more precise bounding boxes. This validates our research ap-
proach and demonstrates the effectiveness of the design methods and strategies employed.

Figure 13. Horizontal comparison of model performance on the DFShip dataset at IoU thresholds
from 0.5 to 0.95. The mAP is calculated using the all-point interpolation method.

3.3.4. Results

This subsubsection presents a comprehensive comparison of the ReDet and ReBiDet
models, enhanced with the SA3 Network and EAS loss, against several state-of-the-art
models on the DOTA-v1.5 dataset. The objective is to evaluate the effectiveness of the
proposed methods by performing a horizontal comparison with other advanced models
published in recent years. All comparison models are sourced from reputable journals and
conferences, and their performance metrics are cited directly.

Table 9 provides a detailed comparison of the ReDet and ReBiDet models integrated
with the SA3 Network and EAS loss against other state-of-the-art models on the DOTA-v1.5
dataset. On the unaugmented DOTA-v1.5 dataset, the ReBiDet + SA3 + EAS model, using
the class-aware strategy, surpasses all compared models with a mean average precision
(mAP) of 71.28%. This is slightly higher than the ReBiDet + SA3 model utilizing the class-
agnostic strategy. Notably, ReBiDet + SA3 + EAS ranks within the top three for average
precision (AP) values across 15 subcategories and achieves first place in 10 subcategories. It
excels in categories with a high aspect ratios, such as bridges (BR) and harbors (HA), as
well as in categories with low aspect ratios, such as small vehicles (SV) and large vehicles
(LV), which share some characteristics with ships.

When evaluated on the augmented DOTA-v1.5 dataset, which includes random rota-
tion and offline multi-scale enhancements, the ReBiDet + SA3 + EAS model demonstrates
superior performance, achieving a mAP of 78.85%. It ranks in the top three for accuracy in
10 subcategories, including ships (SH). These results underscore the effectiveness of the
proposed approach in significantly enhancing the target detection performance of existing
models in optical remote sensing images.
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Table 9. Comparisons with state-of-the-art methods on DOTA-v1.5 OBB task.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC CC mAP

single-scale:
RetinaNet-O [40] 71.43 77.64 42.12 64.65 44.53 56.79 73.31 90.84 76.02 59.96 46.95 69.24 59.65 64.52 48.06 0.83 59.16
FR-O [37] 71.89 74.47 44.45 59.87 51.28 68.98 79.37 90.78 77.38 67.50 47.75 69.72 61.22 65.28 60.47 1.54 62.00
Mask R-CNN [30] 76.84 73.51 49.90 57.80 51.31 71.34 79.75 90.46 74.21 66.07 46.21 70.61 63.07 64.46 57.81 9.42 62.67
HTC [29] 77.80 73.67 51.40 63.99 51.54 73.31 80.31 90.48 75.12 67.34 48.51 70.63 64.84 64.48 55.87 5.15 63.40
CMR [29] 77.77 74.62 51.09 63.44 51.64 72.90 79.99 90.35 74.90 67.58 49.54 72.85 64.19 64.88 55.87 3.02 63.41
DAFNe [41] - - - - - - - - - - - - - - - - 64.76
FR OBB [37] + RT [11] 71.92 76.07 51.87 69.24 52.05 75.18 80.72 90.53 78.58 68.26 49.18 71.74 67.51 65.53 62.16 9.99 65.03
ReDet [23] 79.20 82.81 51.92 71.41 52.38 75.73 80.92 90.83 75.81 68.64 49.29 72.03 73.36 70.55 63.33 11.53 66.86
ReDet + SA3 80.12 83.54 54.08 72.56 52.76 77.18 87.63 90.87 84.05 74.25 62.07 73.77 75.71 65.61 67.31 7.26 69.30
ReBiDet [28] 80.54 82.90 53.62 74.55 52.55 79.65 87.53 90.84 84.57 72.93 65.02 73.05 75.87 65.56 65.18 7.32 69.48
ReDet + SA3 + EAS 80.21 84.25 53.50 72.53 52.74 77.04 87.81 90.88 83.91 69.34 64.26 73.33 75.84 66.24 64.80 9.09 70.04

ReBiDet + SA3 80.70 83.67 54.89 74.58 57.99 79.93 88.38 90.87 85.03 74.26 66.06 73.15 76.79 70.09 67.32 15.70 71.21

ReBiDet + SA3+EAS 80.12 83.79 56.21 73.10 58.27 80.52 88.09 90.89 84.12 74.00 67.20 75.04 77.04 70.72 67.98 13.33 71.28

multi-scale:
DAFNe [41] - - - - - - - - - - - - - - - - 71.99
OWSR * [42] - - - - - - - - - - - - - - - - 74.90
RTMDet-R-tiny * [43] 88.14 83.09 51.80 77.54 65.99 82.22 89.81 90.88 80.54 81.34 64.64 71.51 77.13 76.32 72.11 46.67 74.98
RTMDet-R-s * [43] 88.14 85.82 52.90 82.09 65.58 81.83 89.78 90.82 83.31 82.47 68.51 70.93 78.00 75.77 73.09 47.32 76.02
RTMDet-R-m * [43] 89.07 86.71 52.57 82.47 66.13 82.55 89.77 90.88 84.39 83.34 69.51 73.03 77.82 75.98 80.21 42.00 76.65
ReDet * [23] 88.51 86.45 61.23 81.20 67.60 83.65 90.00 90.86 84.30 75.33 71.49 72.06 78.32 74.73 76.10 46.98 76.80
ReBiDet * [28] 86.23 85.89 61.99 82.41 67.86 83.94 89.78 90.88 86.37 83.70 72.12 77.58 78.38 73.24 75.01 52.05 77.96
RTMDet-R-l * [43] 89.31 86.38 55.09 83.17 66.11 82.44 89.85 90.84 86.95 83.76 68.35 74.36 77.60 77.39 77.87 60.37 78.12

ReBiDet * + SA3 88.76 86.35 60.97 81.93 73.39 84.26 90.05 90.88 87.20 83.30 72.19 77.07 78.67 72.62 72.94 55.34 78.50

ReBiDet * + SA3 + EAS 86.84 85.58 62.23 82.60 68.05 83.92 89.83 90.90 86.91 83.23 73.62 76.64 78.54 72.12 77.53 63.05 78.85

* indicates multi-scale training and testing. Note. The RetinaNet OBB (RetinaNet-O) [40], Faster R-CNN OBB
(FR-O) [37], Mask R-CNN [30], and Hybrid Task Cascade (HTC) [29] results are based on a reproduced version
of DOTA-v1.5 [38] and have been used by some scholars [23,43]. “Single-scale” indicates the model is directly
trained and tested on the DOTA-v1.5 dataset, while “multi-scale” indicates the model is trained and tested using
random rotation and offline multi-scale enhancement on DOTA-v1.5. For ease of reading and comparison, the
first, second, and third highest values in each column are marked in red, yellow, and green, respectively, and
are bolded.

4. Discussion

The experimental results confirm that the proposed SA3 Network demonstrates ex-
cellent precision and localization performance in detecting rotated objects. The EAS loss
function, designed to enhance edge perception of inclined bounding boxes, significantly
improves the model’s learning efficiency in rotated object detection tasks. This leads to
more accurate localization of detection boxes, highlighting the effectiveness of the design
approach and methodology presented in this paper.

The SA3 Network incorporates a cascaded regression branch. Initially, a coarse regres-
sion branch converts horizontal bounding boxes generated by the Region Proposal Network
(RPN) into rotated bounding boxes based on the features of the detected objects. Depending
on the task scenario, the network employs either a class-aware or class-agnostic strategy.
Fine regression and refinement branches further optimize the angle parameters of the
rotated bounding boxes, thereby enhancing the fitting accuracy of the final detection boxes.

The inclusion of EAS loss in the angle regression branch introduces an Intersection
over Union (IoU) factor, which mitigates the mismatch between traditional loss functions
and evaluation metrics. This results in overall improvements across various detection
accuracy metrics. The EAS loss adjusts the function gradient of the angle regression branch,
addressing the issue of limited learning when the predicted box angle is close to the true
target angle. Consequently, the model becomes more sensitive towards the end of the
angle regression branch, producing more accurate predicted box angles and significantly
improving the AP75 accuracy metric.

Figure 14 illustrates the detection results for the same port remote sensing image. In
Figure 14a, the detection results of the ReBiDet model are shown. The ReBiDet model
struggles with accurate bounding box localization for elongated objects, such as ships, due
to issues with discontinuous boundaries. Figure 14b displays the results after integrating
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the SA3 Network. It is evident that ReBiDet + SA3 generates more precise bounding boxes
for ships and docks, and improves detection confidence for the ships in the upper-right
corner and the dock in the middle-lower part of the image. Additionally, the improved
localization accuracy leads to a higher detection rate and a lower false detection rate.
After incorporating the SA3 Network, the harbor in the middle-upper part of the image is
correctly detected, and previously misidentified objects on the harbor are now accurately
classified as irrelevant.

Figure 14. Detection results on an image from the DOTA-v1.5 dataset. (a) Detection result of ReBiDet.
(b) Detection result of the proposed ReBiDet + SA3.

However, the proposed method has some limitations concerning computational pa-
rameters and inference speed. The ReBiDet + SA3 + EAS model increases the number of
computational parameters by 13.99 M compared to the baseline ReBiDet model. While the
EAS loss itself does not significantly contribute to this increase, the additional parameters
primarily result from the SA3 Network. This increase in computational parameters leads
to an additional 3.5 ms per image on an RTX4090 platform, corresponding to a decrease
of 1.8 FPS. Although these computational trade-offs are acceptable in many scenarios
given the improvements in detection accuracy, reducing computational parameters and
enhancing inference speed while maintaining high detection accuracy remains a critical
area for future research.

In conclusion, the methods proposed in this paper are highly effective in improving
the detection accuracy of randomly oriented objects, particularly those with elongated
contour features, in remote sensing applications. These advancements provide valuable
insights for enhancing ship detection capabilities in optical remote sensing images.

5. Conclusions

This paper addresses the challenges associated with significant deviations in final
detection boxes due to a wide range of angles, as well as the imprecision inherent in
traditional angle regression losses. To tackle these issues, we propose the SA3 Network
and EAS loss. The SA3 Network employs a hierarchical regression structure that includes
coarse, fine, and refinement stages to progressively optimize the angle parameters of
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rotated bounding boxes. The EAS loss introduces the SkewIoU factor, calculated using
Gaussian transformation, to enhance the precision of angle regression losses. This approach
improves both training efficiency and model performance, particularly under high IoU
threshold conditions.

Experimental results validate the effectiveness of the SA3 Network and EAS loss. The
proposed methods significantly improve detection accuracy, especially for rotated objects
in optical remote sensing images.

Future work will focus on enhancing the interpretability of rotation-equivariant con-
volutional neural networks. Understanding the operational mechanisms of these networks
presents a significant research opportunity. Our goal is to gain a more intuitive under-
standing of the features extracted by these networks. We aim to explore techniques for
visualizing rotation-equivariant features, which will facilitate a deeper analysis of their
limitations and potential improvement strategies.
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Abstract: The significance of model updating methods is becoming increasingly evident as the
demand for greater precision in numerical models rises. In recent years, with the advancement of
deep learning technology, model updating methods based on various deep learning algorithms have
begun to emerge. These methods tend to be complicated in terms of methodological architectures and
mathematical processes. This paper introduces an innovative model updating approach using a deep
learning model: the deep neural network (DNN). This approach diverges from conventional methods
by streamlining the process, directly utilizing the results of modal analysis and numerical model
simulations as deep learning input, bypassing any additional complex mathematical calculations.
Moreover, with a minimalist neural network architecture, a model updating method has been
developed that achieves both accuracy and efficiency. This distinctive application of DNN has seldom
been applied previously to model updating. Furthermore, this research investigates the impact of
prefabricated partition walls on the overall stiffness of buildings, a field that has received limited
attention in the previous studies. The main finding was that the deep neural network method
achieved a Modal Assurance Criterion (MAC) value exceeding 0.99 for model updating in the
minimally disturbed 1st and 2nd order modes when compared to actual measurements. Additionally,
it was discovered that prefabricated partitions exhibited a stiffness ratio of about 0.2–0.3 compared to
shear walls of the same material and thickness, emphasizing their role in structural behavior.

Keywords: model updating; DNN; sensors; partition walls

1. Introduction

The prevalence of prefabricated construction in China has increased significantly over
the past decade. This growth can be attributed to several factors, including the rapid
construction time, eco-friendliness, industrialization, and standardization. China’s slowing
population growth and aging demographics are pushing up labor costs, particularly affect-
ing the traditional labor-intensive construction. In areas with high labor costs, prefabricated
construction is now cheaper than traditional methods. With cost-effectiveness and sus-
tainability [1–3], prefabrication is becoming a dominant trend. Structurally prefabricated
components offer rotational connections differing from traditional cast-in-place or welded
joints. Seismic performance research highlights the need for robust connection design in
prefab construction. Innovations like the new prefabricated self-centering steel frames and
modular precast shear wall systems have demonstrated superior dynamic response and
energy dissipation in tests and analyses [4–6].

A substantial body of research has emerged in recent years on the seismic performance
of prefabricated partitions in buildings. Zhai et al. [7] found that prefabricated reinforced
concrete (RC) shear walls with different infills, particularly integrated shear walls with RC
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infilling, exhibit superior shear bearing capacity, stiffness, energy dissipation, and seismic
performance. The main focus of research on partition walls is not on mechanical properties.
Many studies in this field have chosen to focus on the performance of partitions for daily
use such as sound insulation [8–10], thermal performance [11–14], and environmental
performance [15–18]. Moreover, Li et al. [19] noted that non-structural infill walls could
increase a building’s overall stiffness by 60%, suggesting a similar effect for partition walls.
Despite advances in finite element analysis, significant discrepancies remain between
model results and actual measurements, as highlighted by Yang et al. [20], who attributed
these differences to the simplification of structural behavior, discretization of continuous
systems, and physical parameter errors. Therefore, effective seismic resistance solutions,
more accurate methods to reflect dynamic characteristics, and improved monitoring and
maintenance of prefabricated structures have become key research focuses.

Since the concept of model updating for finite element models was proposed, the
earlier adopted methods have been mainly classified as a deterministic model updating
method. This type of method tries to get the calculated structural responses, modal shapes,
frequencies, and other parameters as close as possible to the measured data by adjusting the
structural parameters, as cited in the literature [21,22]. This method is usually an ill-posed
inverse problem in model updating, and the incompleteness of data and the complexity
of the structure frequently make the results of this updating method inconsistent and
incomplete, as mentioned in paper [23].

Subsequently, a model updating method based on the Bayesian formula was proposed.
Katafygiotis et al. [24] provide a comprehensive explanation of this structural model
updating method, taking the measured data of the structure as inputs to calculate the
posterior probability distribution function (PDF) in the Bayesian formula, and the maximum
value of the parameterized posterior probability distribution is then taken as the updated
parameter. In order to determine the posterior PDF in the Bayesian formula with the
parameter to be updated θ, the Markov chain Monte Carlo (MCMC) method was used
in the literature [25]. This method can be used regardless of whether the problem is
identifiable or not, and it can obtain the most likely value of the updated parameters
and quantitatively evaluate the uncertainty of this value. Boulkaibet et al. [26] employed
the mixed Markov chain theory to update the structural parameters and provide a new
evaluation formula for Markov chain convergence. In order to improve the efficiency
of this calculation method, Zhang et al. [27] incorporated the Metropolis–Hastings (MH)
algorithm. Yang et al. [20] considered and reduced the impact of white noise on the
calculated posterior probability distribution function when using this method for model
updating of the coupled plate system.

In recent years, there has been a rapid increase in the number of publications focusing
on deep learning-based methods for model updating, showcasing the potential of deep
learning in the domain of model updating. Lee et al. [28] have presented a novel method-
ology for structural damage detection, which leverages finite element model updating to
establish a reference model that encapsulates the target structure’s characteristics. This
approach addresses the limitations of traditional simulation-based damage detection by
incorporating measured responses and employing DNN to identify the extent and location
of structural damage. Utilizing an inverse eigenvalue problem approach and DNN, Gong
and Park [29] innovatively updated finite element models with high accuracy, as evidenced
by the dynamic updating of a suspension bridge model.

Employing a multi-fidelity deep neural network (MF-DNN) for surrogate model-
ing, Torzoni et al. [30] introduced a methodology-enhancing real-time structural health
monitoring by effectively locating and quantifying damage through an MCMC-informed
probability update, leveraging high- and low-fidelity simulated datasets for comprehensive
sensor data mimicry. In summary, deep learning—a swiftly evolving methodology—is
increasingly applied for various purposes within the SHM field, such as encompassing
seismic response modeling and finite element model updating [31–33].
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This study introduces a novel method for modal updating, termed Deep Neural
Network Model Updating (DNNMU), which is an algorithm that, at its core, utilizes the
DNN algorithm, and intuitively and simply uses the input and output of finite element
models as training data to achieve its model updating objective. The efficacy of the method
is demonstrated through its application in a case study involving a prefabricated dormitory,
which is located on the Shenzhen campus of the Harbin Institute of Technology.

A comprehensive ambient vibration test was conducted on this building using four
three-axial accelerometers. The Bayesian operational modal analysis method [30–36] was
utilized to identify the building’s modal parameters, which mainly included natural fre-
quency, damping ratio, and modal shape. A finite element model of the building was
established for model updating. The analysis results were compared with the calculation
results, empirical formulas, and measured results of the design institute. The stiffness of
the partition wall was updated, and the approximate ratio of the stiffness provided by the
partition wall to the partition wall’s inherent stiffness was determined. The efficacy and
accuracy of the DNNMU method in model updating were validated by comparing the
updating accuracy with that of another similar research.

2. Methodology

Deep Neural Network Model Updating is an innovative model updating method
proposed in this work. The fundamental principle of the DNNMU method involves the
systematic generation of a series of numerical simulation outcomes. These outcomes result
from the iterative computation of parameters that have been randomly modified. The gener-
ated data are then utilized to train a deep learning model, which is subsequently employed
to predict the parameters in need of adjustment, thereby facilitating the refinement of the
model. When contrasted with conventional methodologies, this strategy is characterized
by its straightforwardness, intuitiveness, and superior efficiency. It demonstrates com-
mendable adaptability across a diverse array of model updating scenarios. Moreover, the
embedded deep learning model within the DNNMU framework is designed to be modular,
allowing for substitution to meet specific user requirements without compromising the
method’s applicability.

2.1. The Compatibility of DNN with Model Updating

In numerical simulation, the process of solving and calculating correctly modeled
finite element models that accurately reflect real-world problems can be regarded as a
function. It can be treated as a function because it fits the definition: each set of inputs,
such as finite element software models and parameters, yields a unique set of solutions,
like node displacement, element internal force, and structural mode.

In the context of model updating, the function is applied to the parameters involved
in the updating process. Denoting the numerical simulation process as a function S(·), it
can be expressed as:

S(E1, E2, . . . , En ) = f , Φ (1)

where f and Φ are the analytical natural frequency and modal shape of the finite element
model, respectively. E1, E2, . . . , En stands for the elastic modulus of different structures,
which are the updating target. Note that, for the structural mass, it is commonly taken as
known since it is easier to estimate their values. When other conditions are the same, the
ratio of elastic modulus is equal to the ratio of stiffness.

The reverse process of S in Equation (1) could be written as:

E1, E2, . . . , En = R( f , Φ) (2)

R is referred to as the inverse process of S rather than the inverse function because it
cannot be rigorously demonstrated that every set of inputs to R has a unique set of outputs
corresponding to it. Although considering the practical significance of the variables around
this equation, R is likely to be a function.
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This work adopts the Modal Assurance Criterion (MAC) as the evaluation standard
for vibration modes:

macij =

(
v̂T

i vj
)2(

v̂T
i v̂i

)(
vT

j vj

) (3)

where the mode shapes under the ith mode obtained from numerical simulation are denoted
as vi, while the mode shapes under the ith mode obtained from field tests are denoted
as v̂T

i .
Assuming that the selected modal ranks are the top n ranks, then macij refers to the

element in the ith row and jth column of the square matrix MACn×n. The mac value
between two vectors is employed to gauge the approximation level between the vectors. A
mac value closer to 1 suggests a higher degree of similarity between the vectors (equal to 1
when the vectors are identical, always less than 1 otherwise). In the following discussion, a
mac mentioned without a subscript default to being the same rank, that is, macii.

Recall that the core objective of model updating is to identify an optimal set of param-
eters for adjustment, thereby aligning the results from finite element model calculations as
closely as possible with the real-world test results, f and Φ. As described in the MCMC
model updating method in reference [27], a set of parameters is generated through a pre-
defined PDF. These parameters are then input into the model, yielding a set of outputs
and an associated output distribution function. This output distribution function is then
compared to the actual values to derive the distribution function of another set of inputs.
This iterative process continues until a superior set of inputs is identified, which makes the
mac value approach 1 as closely as possible.

The DNNMU algorithm introduced in this study deviates from traditional methods,
instead opting to leverage DNN to approximate the inverse process R. The approximation
process involves the generation of sufficient training sets by the iterative invocation of
the function computed by the finite element software. Each sample within these training
sets includes features and labels. Here, the label corresponds to the input parameter
E1, E2, . . . , En for each computation, and the feature equates to the output f , Φ derived
from that computation. Evidently, as the feature corresponds to the output of the function
S and the label to the function’s input, the neural network trained using these samples will
approximate the inverse process R. Consequently, for each input set ( f , Φ), it can infer the
parameter E1, E2, . . . , En that was used in the computation beforehand.

2.2. Algorithm Architecture

The updating algorithm, depicted in Figure 1, consists of two primary components:
dataset generation and neural network training. These components can operate indepen-
dently of each other.

The first part, dataset generation, involves creating a dataset for neural network
training. This dataset is generated by continuously producing random parameters per
predefined rules. These parameters are then utilized in numerical modal analysis with
finite element software. After each calculation, the parameters, frequencies, and mode
shapes involved are stored as a set of samples. In these samples, the parameters serve as
labels, while the frequencies and mode shapes are the features. Subsequently, a subset of
these samples is later randomly selected during the training phase to act as a validation set.

The second part encompasses the training of the neural network. This phase uses
the dataset generated in the first component. While this dataset is designed with DNN
characteristics in mind, it is not the only viable option. Other feasible alternatives include
a range of deep learning and broader machine learning algorithms. The specifics of the
neural network architecture employed in this study will be discussed in detail in the
subsequent section.

216



Sensors 2024, 24, 5557

Figure 1. DNNMU algorithm architecture.

Upon conclusion of the second component, a trained DNN neural network is acquired.
The outcomes from the modal identification of measured data are also compiled in the form
of labels in the samples. These are entered into the neural network to yield the network’s
predicted parameters. These predicted parameters are then re-introduced into the finite
element model for further modal analysis. The comparison of the output results with the
measured data forms the basis for evaluating the updating effect of the neural network
using the MAC.

In summary, the DNNMU algorithm exhibits high versatility. Within the scope of
model updating, parameters that need adjustment invariably exist, serving as the labels
in the algorithm’s sample set. Moreover, parameters for assessing the updating outcomes
also exist, acting as the features within the samples. This study presents a specific instance
within this algorithmic framework, with the choice of DNN explained in Section 4.2. It is
noted that this framework retains its applicability across diverse model updating scenarios,
such as those involving bridges, geotechnical structures, or aircraft wings, and is compatible
with various updating algorithms.

2.3. Generation and Characteristic Analysis of Training Sets

The construction of a DNN requires consideration of the network’s purpose and
the characteristics of the dataset. The function of the neural network is to fit a complex
process from a one-dimensional input to a one-dimensional output. After generating
parameters using the method described in Section 4.1, which will be detailed later, each
set of parameters is inputted into a finite element model to conduct a modal analysis,
producing the following computational results: frequencies and mode shapes. Assuming
the number of modes analyzed is denoted as nm and the number of nodes involved in the
model updating is np, the calculated frequencies for each modal order are:

fi, i = 1, 2, . . . , nm (4)

The mode shape matrix for the jth node under the ith mode is:

ϕij =

⎡⎣dx
dy
dz

⎤⎦ , i = 1, 2, . . . , nm, j = 1, 2, . . . , np (5)
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The mode shape matrix for the jth node under the ith mode is written as a 3 × 1
column vector, and after concatenation end-to-end, two features for training are formed.

In the preprocessing of parameters, we first consider the mode shape Φ. This feature
reflects the relative relationships among all nodes under this mode. While its absolute size
holds no meaning, its relative ratio—which represents the shape of structural vibration—is
significant and thus should remain unchanged. This is achieved by normalization.

In contrast, the frequency f , another feature, has meaning both in its absolute magni-
tude and in the proportional relationships between different frequencies. Consequently,
it is neither subjected to relative scaling nor translation. For this project, the first-order
frequency measures approximately 0.7 Hz and the overall frequency value is close to 1.
Therefore, we did not process the frequency. However, in other projects, physical quantities
with properties like frequency may require absolute scaling, especially if their magnitudes
are significantly larger or smaller than 1.

Finally, we considered the output parameters, which represent the material’s stiffness.
Both the absolute size and relative ratio of this physical quantity hold practical significance.
As such, we performed absolute scaling, setting the scaling factor as the reciprocal of the
maximum initial value, 2× 1010.

The fitting objective should also be considered. The mode shapes calculated from the
finite element model are guaranteed to be smooth curves, while the measured data often
have obvious non-smooth points due to errors, as shown in Figures 1 and 2. Assume that
when previously generated, the set of all possible parameters is RI , and the set of all possible
output mode shapes is RO. The inverse process that needs to be fitted clearly satisfies:

R : RO → RI (6)

Figure 2. The difference between measured and numerical simulation modal shape.

Suppose the matrix composed of the true values of the parameters to be updated is
E′n×1. During the training of the neural network, the function fitting only occurs within the
ranges of these two sets, RO and RI . However, because the measured data are not smooth,
there is still an error between the finite element simulation and the actual situation. Even if
the true value E′n×1 of the parameters to be updated belongs to the set RI , the measured
result Φ of the mode shape is most likely not in the set RO, but in the interval not covered
by the training set.

Since the function f is obviously continuous, the fact that the measured result is not
in the interval will not result in the failure of function prediction, but it may cause a large
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deviation in the updating result after the neural network overfits the function, or even
be inconsistent with the reality. Moreover, the finite element model itself has various
differences from the actual building. When overfitting is performed, it is equivalent to
requiring the finite element to infinitely approximate the true value. Then, the other aspects
of the error between the finite element model and the actual building will be increasingly
reflected in the updated parameters, causing the parameters to vary greatly. Therefore,
when constructing the neural network, it is crucial to avoid overfitting and control the
degree of fitting.

3. Field Vibration Test for a Prefabricated Building

3.1. Target Building and Experimental Equipment

The Dormitory Building named Liyuan No. 6 at the Shenzhen campus of Harbin
Institute of Technology (as shown in Figure 3) has a cross shape in the horizontal direction.
The external length of the main structure is 32.1 m, and the external width is 29.8 m. The
building consists of one underground floor and thirty above-ground floors, with an eave
height of 97.80 m (measured from ±0.00). The seismic fortification intensity is 7 degrees,
and the designed earthquake group is the first group, with a structural safety level of
two. The lateral resistance components of the structure are evenly distributed, and the
dimensions in the two main axis directions are similar, which can make the modal shape
challenging to identify due to the closely spaced modes.

Figure 3. Target building. (The Chinese characters on the building are the building name “Liyuan”).

In this test, four Fortimus seismometers were used, each unit containing an accelerom-
eter, a data collector, and storage equipment, all from the seismic equipment company
Güralp (Güralp Systems Ltd. 3 Midas House, Calleva Park Aldermaston, Reading RG7
8EA United Kingdom). The instrument photo is as shown in Figure 4. According to manu-
facturer data, all four accelerometers have a sensitivity of 0.112× 10−6 m/s. The default
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sampling rate for the instruments is set at 200 Hz, significantly higher than the general
natural frequency range of 0.1 Hz. Therefore, within the potential natural frequency range
of the building, 200 Hz satisfies the Nyquist theorem. As such, the default sampling rate
was used, and the instrument time was set to Greenwich Mean Time (GMT).

Figure 4. Photo of Fortimus seismometers.

3.2. Field Testing Arrangement

The testing methodology involved using four available instruments to perform a
series of tests, aimed at obtaining the modal shapes at 30 different locations in the building.
As depicted in Figure 5, the solid dots in (a) represent the measurement points, labeled
Sn to denote the nth setup. The abbreviations TM, F, and S represent the terminal, floor,
and plane measurement positions, respectively. These measurement points are arranged
uniformly in the vertical direction; horizontally, due to the need for GPS synchronization of
the instruments, we chose to conduct tests at positions 1S and 2S, and this was done on
each floor.

(a) (b)

Figure 5. Test point locations. (a) Vertical measurement point position; (b) Vertical measurement
point position.

Due to the limited number of instruments, the plan was proposed for 10 setups. One
instrument (TM1) was always placed at a fixed point at the top of the building (30F)
as a reference channel. The remaining three instruments were alternately arranged at
other measurement points in the building to facilitate the use of old wires with GPS
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synchronization. The specific placement of each measurement point for every setup is
summarized in Table 1.

Table 1. Test plan.

SETUP
Measurement Locations

TM1 TM2 TM3 TM4

1 30F-1S 28F-1S 30F-2S 28F-2S
2 30F-1S 26F-1S 24F-1S 22F-1S
3 30F-1S 26F-2S 24F-2S 22F-2S
4 30F-1S 20F-1S 18F-1S 16F-1S
5 30F-1S 20F-2S 18F-2S 16F-2S
6 30F-1S 14F-1S 12F-1S 10F-1S
7 30F-1S 14F-2S 12F-2S 10F-2S
8 30F-1S 8F-1S 6F-1S 4F-1S
9 30F-1S 8F-2S 6F-2S 4F-2S
10 30F-1S 2F-1S 2F-2S

Prior to testing, the four instruments were placed together for a preliminary 20-min
test to ensure their timing accuracy. Each subsequent array was then tested for 25 min.
Throughout the testing process, the north direction on each instrument consistently pointed
in the same direction, perpendicular to the building axis. For data processing, the north
and east directions of each instrument were converted to x and y directions to align with
the model. This test was completed on 1 September 2023.

3.3. Modal Analysis

Due to the large amount of data collected, only two representative examples of the
acceleration time history of the building are presented in Figure 6. These data, obtained from
field tests, were analyzed using the P-EM Bayesian operational modal analysis method [30]
to identify the modal parameters of Liyuan No. 6. Compared with the conventional
Bayesian modal analysis method, the P-EM approach offers superior performance in
separating closely spaced modes and offers enhanced efficiency. It retains all the benefits
of the standard Bayesian method, such as the ability for quantitative analysis of result
uncertainty. The results of the modal analysis are presented in Figure 7 and Table 2.

Figure 6. Examples of acceleration time history data.
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Figure 7. Modal shape results, Liyuan No. 6 dormitory.

Table 2. Modal identification results, Liyuan No. 6 dormitory.

Mode

Frequency Damping Ratio Prediction Error PSD Modal Force PSD

MPV [Hz] c.o.v. [%] MPV [‰] c.o.v. [%]
MPV

[(μg)2/Hz]
c.o.v. [%]

MPV
[(μg)2/Hz]

c.o.v. [%]

1 0.702 0.17 5.622 0.21 59.956 76.20 81.364 28.52
2 0.769 0.15 6.320 0.30 59.956 76.20 83.162 23.59
3 1.430 0.35 6.468 0.29 32.186 67.60 39.935 20.68
4 2.909 0.24 15.003 0.09 92.700 47.04 34.162 32.21
5 3.002 0.28 12.471 0.06 121.079 38.32 40.833 25.36
6 4.282 0.45 14.777 0.33 52.568 38.25 20.771 42.13

3.4. Finite Element Model and Numerical Analysis Results

The numerical simulation portion of this study was performed using ANSYS 2021
due to its superior simulation performance and its flexibility in secondary development. A
finite element model of the building was established based on design drawings provided
by the design institute. Two models were constructed for this study. Model 1 includes only
structural components such as shear walls, beams, and floors. Model 2, on the other hand,
includes partition walls as shear wall units in their original positions. Model 1 was used
to compare the results of the modal analysis. Subsequent model updating was conducted
using Model 2, which was built based on Model 1 by adding the partition wall.

Given that the basement does not participate in the modal analysis of the upper part
of the building and could potentially generate local modal interference during the analysis
process, it was excluded from the modeling. Similarly, to avoid potential local modal
interference, the balcony was simplified as a beam load for modeling. This was achieved by
considering the balcony board’s thickness (120 mm) and length (1000 mm), while ignoring
the weight of the upper railing. The concrete weight was taken as 24 KN/m3, leading to a
uniformly distributed load that is applied to the beam as follows:

p = 24 × 0.12 × 1 = 2.88 KN/m (7)

Upon completion of the modeling (as shown in Figure 8), the modal analysis was
performed using the subspace iteration method in ANSYS. The frequency range was set
from 0.01 Hz to 20 Hz, and the damping ratio was 0.05.

222



Sensors 2024, 24, 5557

Figure 8. Finite element model without partition walls, Liyuan No. 6 dormitory.

The results of modal identification of Model 1 can be found in Table 3, which includes
data from field tests and the design institute. Two field test results are presented in the table:
one from Liyuan No. 6 and the other from Liyuan No. 7. Both buildings are dormitories
and were constructed using nearly identical design drawings.

Table 3. Modal identification results of Liyuan No. 6.

Mode

Frequency [Hz]

Filed Test Numerical
Numerical by

Design Institute
Filed Test of
Liyuan No. 7

Characteristics

1 0.702 0.399 0.375 0.752 BX1
2 0.769 0.435 0.393 0.822 BY1
3 1.430 0.477 0.478 1.483 T1
4 2.909 1.812 1.727 2.994 BX2
5 3.002 1.883 1.764 3.147 BY2
6 4.282 2.006 1.985 4.392 T2

As Table 3 illustrates, the two field test results are in close agreement, as are the
numerical results. However, a significant discrepancy becomes apparent when comparing
the field test results to the numerical results. The frequency of bending modes in the field
test is nearly twice that of the numerical results, while the frequency of torsional modes in
the field test is approximately one quarter that of the numerical results. In the numerical
analysis, neither model considered the stiffness provided by the partition walls. Therefore,
this study focuses on these walls for model updating. The goal was to investigate the ratio
of the stiffness they provide in the building, compared to that provided by shear walls of
the same thickness and location.
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4. Application

4.1. Random Generation of Calculation Parameters

As discussed in the comparison and analysis of results in Section 3.4, the notice-
able discrepancy between the field test modal identification results of the study’s test
subject—Liyuan No. 6—and the numerical results can be attributed to the overlooked
stiffness of the partition walls. While there has been considerable research on the inherent
stiffness and mechanical properties of precast concrete partition walls, studies on their
influence on the stiffness of a finished building have been relatively scarce. This research
seeks to identify an appropriate set of stiffness values for these partition walls through
model updating, with the goal of adapting the finite element model of Building 6. Simulta-
neously, we hope to propose a reference value for the actual stiffness of precast concrete
partition walls in high-rise buildings, extrapolated from neural network predictions of
material stiffness.

Assume that the parameter to be updated is Ei, (i = 1, 2, . . . , n), and the empirical
possible value for each parameter is Ei, (i = 1, 2, . . . , n). Assume a class of probability
density functions p that have similar property. Choose n of these p function, denoted
as pi(i = 1, 2, . . . , n). Each time a sample is selected, pick values ri(i = 1, 2, . . . , n) that
individually adhere to these n probability density functions. The parameters selected
then are:

Mn×1 =

⎡⎢⎢⎢⎣
m1 × r1
m2 × r2

...
mn × rn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
m1

m2
...

mn

⎤⎥⎥⎥⎦ (8)

In this study of the actual stiffness of partition walls in high-rise building, there was
little prior experience to draw on. Therefore, the empirical value was selected as 2/3 of the
concrete stiffness of the studied partition wall, and the probability density function was
chosen as:

p =

{
1.25, x ∈ [0.2, 1]
0, x /∈ [0.2, 1]

(9)

Obviously, when choosing parameters, the selection of the probability density function
p corresponding to each parameter is crucial. In general, the more certain the property that
the parameter represents, the more accurate the empirical estimate, and consequently, the
larger the value of p around x = 1 will be, and the opposite is true for less certain properties.
This selection is due to the uncertainty of the partition wall stiffness, and the stiffness of
the partition wall connected by splicing cannot approach its inherent stiffness. Once the
parameters to be adjusted are generated, they can be incorporated into the program to
modify the finite element model parameters and perform iterative calculations using the
finite element software. The calculated results are then saved as a training dataset.

In the modeling process of partition walls, they were treated similarly to shear walls,
modeled using shell units, with the elastic modulus of each partition wall serving as
the updating parameter. Under consistent circumstances of connections and geometric
dimensions, the stiffness contributed by the SHELL unit directly correlates with the elastic
modulus. Therefore, the ratio of the stiffness provided by the partition wall unit in the
model to that of a shear wall of identical thickness can be determined by dividing the
parameter value, derived post-updating, by the original elastic modulus of the material.
The subject of this study utilized precast concrete partition walls, of grade C30, with an
elastic modulus of 30 GPa. The targets for updating are all partition walls situated beneath
beams or between shear walls, serving as dividers. Considering the different positions and
opening situations of the partition walls, they are categorized into eight types, along with
the glass curtain wall on the first floor, resulting in a total of nine parameters to be updated,
as illustrated in Table 4.
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Table 4. Properties of partition walls to be updated.

Wall Type
Initial Elastic
Modulus [Pa]

Poisson’s
Ratio

Density (Kg/m3)

Curtain Wall 5.00 × 109 0.250 1000
Fire Wall without Openings 2.00 × 1010 0.167 2420

Elevator Partition Wall 2.00 × 1010 0.167 2420
Fire Wall with Openings 2.00 × 1010 0.167 2420
External Partition Wall 2.00 × 1010 0.167 2420

Windowed External Partition Wall 2.00 × 1010 0.167 2420
Balcony External Partition Wall 2.00 × 1010 0.167 2420

Internal Partition Wall 2.00 × 1010 0.167 2420
Internal Partition Wall with Door 2.00 × 1010 0.167 2420

In Table 4, it is not difficult to notice that the load-bearing structures of the building
were not included in the scope of model updating. The reason for this is that, in general,
the deviation of the elastic modulus of the load-bearing structures is about 5%, and in
the subject of this paper, this deviation has a significantly smaller impact on the natural
frequency of the structure compared to the partition walls. Since the error ranges of
the two are clearly different, including the main load-bearing structure in the scope of
consideration could likely lead to extremely unreasonable deviations due to the influence
of the partition walls.

In the modeling, partition walls were treated as shear walls of equivalent thickness
(without openings), with the material properties attributed to the respective wall positions.
It is important to note that as this paper categorizes variations such as openings and
construction methods, the updated elastic modulus does not truly represent a specific
property of material, but rather serves as an equivalency value for the stiffness provided
by the materials in the wall area. The updated elastic modulus will be referred to as the
equivalent elastic modulus.

Upon incorporation of the partition walls, the Partition wall model in ANSYS of the
first and second floors are shown in Figure 9. In the figure, different colors correspond
to different materials, with examples including green for curtain walls, dark blue for
external partition walls, light blue for windowed external partition walls, and yellow for
unopened firewalls.

The selection of the initial elastic modulus for the concrete partition wall, as mentioned
above, was set to two-thirds of the elastic modulus of C30 concrete, i.e., 2 × 1010 Pa. The
elastic modulus of the curtain wall was tentatively set at 5 × 109 Pa due to lack of reference.
It is worth noted that an overestimation of the elastic modulus is of little concern during
this process. This is because if such a situation arises, the updated values for each elastic
modulus will shift away from the pre-determined estimated range set by this research
significantly. At that point, the necessary adjustments are made.

4.2. DNN Structure Design

Drawing upon previous discussions, the primary aim of the neural network construc-
tion in this research is to model the inverse function of calculations performed during
modal analysis using finite element software. It is crucial that the network demonstrates a
certain level of generalization ability to avoid overfitting. The final structure of the neural
network used is shown in Figure 10.

The neural network is designed to take two distinct one-dimensional matrices as input:
the frequencies and the mode shapes. Given the unique physical implications of these
parameters, they should not be simply concatenated into a larger one-dimensional matrix.
For instance, the frequency under a specific mode embodies comprehensive information
about the integrated stiffness and shape of the entire building, while an element in the
mode shape merely represents the relative displacement of a specific node in each direction
under the corresponding mode. Therefore, a conventional deep neural network architecture
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is used to process the mode shapes, while the frequencies are processed in a shallower
neural network that merges with the former in the final layer. Notably, in contrast to the
network that processes mode shapes, the network designated for frequency processing
does not employ dropout on its neurons.

Figure 9. Partition wall model in ANSYS of the first and second floors.

Figure 10. DNN structure.
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Since all nine DNN output parameters represent the modulus of elasticity, the Mean
Square Error (MSE) function serves as the loss function. Considering the real-world
implications of the partition’s modulus of elasticity, a coefficient of variation is incorporated
as a penalty term. Notably, the first of the nine modified partitions is merely a curtain wall
positioned on a single floor, and hence is excluded from the calculation of the coefficient of
variation. The loss function is:

loss = MSEloss(target, predict) ∗
(

1 + c.o.v
(

p̂redict
))

(10)

where target and predict respectively denote the label and the DNN output, and p̂redict
signifies the parameters from the second to the ninth of the DNN output.

4.3. DNN Generalization Ability Test

As previously mentioned, the generalization capability of the DNN is crucial for
the research. The probability density function used to generate parameters is defined in
Equation (9).

With this probability density function, 5000 samples were generated. The selection of
this number was based on papers [20,25] using the MCMC method, which also requires
the comprehensiveness of samples. Sample sets of 2500, 5000, and 7500 were generated,
and the results showed a slight improvement in accuracy when the quantity increased to
5000, with almost no change beyond that.

A broader probability density function was adopted to generate another 5000 samples:

.
p =

{
1/1.4, x ∈ [0.1, 1.5]

0, x /∈ [0.1, 1.5]
(11)

These samples were used as a validation set in the tests. At this point, if the computed
loss value significantly increases after a certain number of epochs, it indicates that the
neural network is overfitting in the region covered by the original probability density. The
changes in loss after 600 epochs are displayed in Figure 11a,b. These figures use samples
from the sample set as the validation set and incorporate a training set characterized by a
wide parameter range.

(a) (b)

Figure 11. The loss curve of the DNN under the validation set of the same range (a) and a broader
range (b).

The figure illustrates that within 600 epochs, the neural network progressively im-
proves its generalization ability for samples beyond the training parameter range. This
improvement is evidenced by a steady decrease in MSE loss throughout the training, sug-
gesting no overfitting within the finite element solution’s scope. However, predictably,
the equivalent elastic modulus of several partition walls exhibits increasing variability as
training progresses. As previously analyzed, this variation stems from the neural network
overly fitting the inverse process of the finite element calculation, leading to a shortfall in
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the generalization capacity for the inputted measured modes. Based on these observations,
an epoch iteration count of 200 was deemed appropriate for this case.

4.4. Model Updating of a Prefabricated Building

Upon finalizing the model using the DNNMU method, the predicted parameters were
generated, specifically the elastic modulus. These parameters were then incorporated into
the finite element model. Subsequently, a numerical modal analysis was conducted on
this updated model to yield the modal parameters. The resulting values were compared
with measured results. Table 5 illustrates the comparison between the updated calculated
frequencies and the measured frequencies, along with the MAC matrix. Figure 12 presents
the comparison of mode shapes.

Figure 12. Modal shape comparison.
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Table 5. Results comparison.

Mode 01 Mode 02 Mode 03 Mode 04 Mode 05 Mode 06

Measured f 0.7029 0.7672 1.4180 2.9080 3.0071 4.2914
Updated f 0.7097 0.7619 1.3842 2.9616 3.0840 4.1090

c.o.v 0.97% 0.68% 2.38% 1.84% 2.56% 4.25%
Characteristic BX1 BY1 T1 BX2 BY2 T2

mac

0.9932 0.0046 0.6019 0.0439 0.0220 0.1062
0.0094 0.9973 0.0766 0.0284 0.0003 0.0201
0.3986 0.0052 0.9619 0.0018 0.0216 0.0738
0.0770 0.0058 0.0396 0.9587 0.3529 0.5800
0.0095 0.0768 0.0020 0.3658 0.9709 0.1527
0.1605 0.0454 0.1274 0.2655 0.0011 0.8921

The first observation from the results is that the discrepancy between the sixth order
modal frequency prediction of this model updating method and the actual measured data
are within a 5% margin. Subsequently, the updated modal shapes results are examined.
As depicted in Figure 12, the MAC values of the updated first-order bending mode for
the building along the x and y axes are 0.993 and 0.997, respectively, while the first-order
torsional mode has a MAC value of 0.96. Clearly, the second order updating of the bending
and torsional modes are not as effective as the first order, with the bending mode at
approximately 0.95 and the torsional mode near 0.9. The rationale for this is evident: the
mode shapes derived from the finite element model are invariably smooth curves, whereas
the modal analysis results of the study’s subject, Liyuan No. 6, obviously show significant
noise interference. This issue is especially pronounced in higher-order modes, resulting in
significant non-smooth points in the measured mode shapes. Consequently, regardless of
the outstanding performance of the updating algorithm, the MAC value will inevitably be
limited under these conditions and cannot closely approach 1. Compared to the article [37]
published in 2019 using the MCMC method, the model correction results of that article also
achieve a relative frequency error of less than 5%. The MAC values for the first-order modes
(corresponding to Mode 01–Mode 03 in this paper) are generally greater than 0.93, with
the highest being 0.989. The MAC values for the second-order modes (Mode 04–Mode 06)
are around 0.9. In comparison, our method shows similar performance on the torsional
modes, specifically Mode 03 and Mode 06, but demonstrates significant advantages in the
remaining modes.

When examining the MAC values over six modal shapes, it is evident that less smooth
actual test modal shapes correspond to lower MAC values. The updated modal shapes
strike a balance, accommodating the noise of the measured modal shapes, with their overall
form reflecting the measured modal shapes after noise removal. Consequently, the author
claims that the DNNMU model updating method’s efficacy is most prominent in the two
smoothest measured modal shapes in this dataset—BX1 and BY1—where the two modal
shapes of the updated finite element model align almost perfectly with the measured results.
In comparison, articles [25–27], which also conduct model updating on buildings, generally
report a MAC value reaching 0.95 in the model updating results, with the torsional mode
having a lower MAC value. However, this method demonstrates superior accuracy in the
updating results.

To verify the robustness, 20 groups of 2500 samples were randomly selected from
a total of 7500 samples and used to perform model updating. The average coefficient
of variation for the nine parameters to be updated (elastic modulus) was 9.24%, and the
average coefficient of variation for the modal frequencies of the corrected model was 2.86%.
Considering the inevitable differences in the elastic modulus for each category, which
arise because this paper classifies the partitions within a 30-story building into only nine
categories, the coefficient of variation result is not considered high. Additionally, since the
objects of adjustment are partition walls, the variance in the degree to which they are fixed
to the main structure also affects the updated elastic modulus result.
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In terms of efficiency, compared to traditional MCMC methods or any iteration-based
methods, the greatest advantage of the method proposed in this article lies in its efficiency.
The most time-consuming step in model updating is the calculation of the numerical model,
as it often requires tens of thousands of calculations on the model. As shown in Figure 1,
part I of the DNNMU method requires thousands of calculations on each parameter
probability density function to generate and store a dataset. This process only needs to
be carried out once, rather than having to perform thousands of numerical simulations in
each iteration as traditional MCMC methods do. When part II conducts the training of the
neural network, thanks to the simple structure of the neural network itself, the training
can be completed within minutes even just using a CPU. For example, if a finite element
software simulation takes 20 s per run, an MCMC method using 2000 sample points and
iterating ten times would need approximately five and a half hours. Although our method
requires 5000 finite element simulations, it only needs half the time of the former. Once a
sufficient number of sample points are obtained, each model updating with the DNNMU
method only requires training, which takes less than 3 min due to the simplicity of the
DNN architecture used, thus making it highly efficient. Compared to article [38], which
uses an ensemble learning decision tree, the training and model adjustment time of that
research on a simple laboratory structure is 70 s, which can be said to be nearly equivalent
to the efficiency of proposed method.

The predicted elastic modulus of each partition walls is shown in Table 6. Based
on the model updating outcomes, the stiffness offered by the prefab partition within the
building approximates 25–45% of that provided by the shear wall of equivalent material
and thickness. Incorporating these partitions results in nearly doubling the first two modal
frequencies of the complete building model. This underscores the significant influence of
the stiffness provided by the partitions on the dynamic properties of the structure.

Table 6. Updated elastic modulus result.

Wall Type
Initial Elastic
Modulus [Pa]

Initial Elastic
Modulus [Pa]

Ratio (%)

Curtain Wall 5.00 × 109 2.72 × 109 54.40
Fire Wall without Openings 2.00 × 1010 9.06 × 109 45.30

Elevator Partition Wall 2.00 × 1010 6.94 × 109 34.70
Fire Wall with Openings 2.00 × 1010 8.25 × 109 41.25
External Partition Wall 2.00 × 1010 8.71 × 109 43.55

Windowed External Partition Wall 2.00 × 1010 5.46 × 109 27.30
Balcony External Partition Wall 2.00 × 1010 5.78 × 109 28.90

Internal Partition Wall 2.00 × 1010 7.33 × 109 36.65
Internal Partition Wall with Door 2.00 × 1010 6.07 × 109 30.35

5. Conclusions

This paper presents the DNNMU method, which uses environmental vibration test
data and modal analysis of a prefabricated building to improve model updating. By
analyzing the first six modal parameters and comparing them with finite element models
and design calculations, the study confirms the critical influence of partition walls on
building dynamics.

The main finding was that the DMU achieves modal frequency deviations within 5%
and mac values predominantly over 0.9; in particular, for the first two modes with minimal
noise interference, the mac values achieved were 0.993 and 0.997.

The originality of this paper lies in the distinctive application of deep neural networks
(DNN) to the field of structural model updating, resulting in a streamlined and efficient
methodology that requires very few hyperparameters to be adjusted, making it highly
adaptable. This approach requires only a single large-scale numerical simulation to generate
the dataset, followed by a relatively simple DNN architecture to implement the updates.
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In addition, the variance of 0.399 Hz and 0.702 Hz in natural frequency between
the building modeled and the actual structure in the study was higher that is commonly
found. This study found that prefabricated partitions have a stiffness ratio of about 0.2–0.3
compared to shear walls of the same material and thickness, emphasizing their role in
structural behavior.

A drawback of this method is its relative lack of interpretability compared to MCMC
or with machine learning methods more broadly. While this research focuses on a single
structure, the results lay the groundwork for future studies on the DNNMU method’s
application across diverse buildings and partition types, and to explore the utility of
different deep learning models for model updating. This opens up prospects for advancing
building design and performance. Moreover, the DNN network architecture utilized in
this study invites further exploration to identify more suitable, effective, and accurate deep
learning models for model updating.

The DNNMU has the potential to be applied to other structures. If the evaluation
metrics for the model updating results are still the modal frequencies and mode shapes
(MAC matrix) as in this paper, then the DNN architecture in the method does not need any
major modifications; simply replacing the dataset will be sufficient. If the evaluation metrics
change, it may be necessary to adjust the DNN structure to accommodate indicators with
different characteristics. Furthermore, replacing the DNN in the method with another deep
learning model is also feasible. The new model should have the capability to distinguish
between different indicators and the ability to prevent overfitting.
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Abstract: Autonomous driving systems are a rapidly evolving technology. Trajectory prediction is a
critical component of autonomous driving systems that enables safe navigation by anticipating the
movement of surrounding objects. Lidar point-cloud data provide a 3D view of solid objects sur-
rounding the ego-vehicle. Hence, trajectory prediction using Lidar point-cloud data performs better
than 2D RGB cameras due to providing the distance between the target object and the ego-vehicle.
However, processing point-cloud data is a costly and complicated process, and state-of-the-art 3D
trajectory predictions using point-cloud data suffer from slow and erroneous predictions. State-of-the-
art trajectory prediction approaches suffer from handcrafted and inefficient architectures, which can
lead to low accuracy and suboptimal inference times. Neural architecture search (NAS) is a method
proposed to optimize neural network models by using search algorithms to redesign architectures
based on their performance and runtime. This paper introduces TrajectoryNAS, a novel neural
architecture search (NAS) method designed to develop an efficient and more accurate LiDAR-based
trajectory prediction model for predicting the trajectories of objects surrounding the ego vehicle.
TrajectoryNAS systematically optimizes the architecture of an end-to-end trajectory prediction algo-
rithm, incorporating all stacked components that are prerequisites for trajectory prediction, including
object detection and object tracking, using metaheuristic algorithms. This approach addresses the
neural architecture designs in each component of trajectory prediction, considering accuracy loss and
the associated overhead latency. Our method introduces a novel multi-objective energy function that
integrates accuracy and efficiency metrics, enabling the creation of a model that significantly outper-
forms existing approaches. Through empirical studies, TrajectoryNAS demonstrates its effectiveness
in enhancing the performance of autonomous driving systems, marking a significant advancement in
the field. Experimental results reveal that TrajcetoryNAS yields a minimum of 4.8 higger accuracy
and 1.1* lower latency over competing methods on the NuScenes dataset.

Keywords: autonomous driving; neural architecture search; trajectory prediction; 3D point cloud

1. Introduction

Predicting future actions or states of objects around an intelligent system, such as an
autonomous driving (AD) vehicle, is crucial in preventing disasters or crashes. Driving in
the real world is a stochastic process due to the presence of other vehicles and pedestrians
that can take their next step, resulting in accidents or congestion. AD systems require the
crucial ability to predict the trajectory of surrounding objects [1–3]. Predicting accurately the
trajectory of surrounding objects is important in simultaneous localization and mapping
(SLAM) because it provides crucial information about static and dynamic objects and
allows for the refinement of object locations based on these predicted trajectories [4]. To
perform the task of predicting in self-driving vehicles, 2D and 3D data can be utilized.
3D data can usually be represented in different formats, including depth images, point
clouds, meshes, and volumetric grids. The optical camera is usually good for classification
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tasks such as distinguishing the type of surrounding objects or detecting lane markers
or traffic signs. While the performance of measuring distances and velocities is rather
weak, this information can be retrieved well from radars. LIDARs are complementary
to the other two sensors, showing competitive results. Distances and velocities can be
estimated with very high accuracy. Therefore, it is the preferred representation for many
scene-understanding-related applications such as autonomous driving and robotics.

Our paper presents TrajectoryNAS, an application-specific Neural Architecture Search
(NAS) that aims to create a trajectory model with high accuracy and minimum displacement
errors, both final and average (FDE and ADE (Section 4.2)). Our empirical studies reveal that
accurate object detection is crucial to achieving precise trajectory predictions. Therefore,
TrajectoryNAS is designed to localize objects with a minimum error and improve the
accuracy of final trajectory predictions. Additionally, to minimize the time required for
inference, the final objective of TrajectoryNAS is to reduce the model latency.

In conclusion, our contributions to this challenge can be summarized as follows:

• Trajectory Prediction NAS: TrajectoryNAS is a novel trajectory prediction for au-
tonomous driving, being the first to implement neural architecture search (NAS) in an
end-to-end manner. It integrates object detection, tracking, and predicting, addressing
the complex interdependencies among these tasks and the challenges of point-cloud
processing.

• Hybrid Exploration and Exploitation: We introduce a two-step process to efficiently
handle the computational demands of NAS on large datasets. This approach first
explores architectures using a mini dataset, which is 10× faster than the complete
dataset, and then trains the selected architecture on the full dataset (exploitation),
ensuring both scalability and accuracy.

• Multi-Objective Architecture Search: We introduce a multi-objective energy func-
tion to assess the proposed architecture in both an accuracy and latency manner.

2. Related Works

2.1. Trajectory Prediction

In this section, we provide a brief overview of the literature focused on predicting
trajectories using point-cloud data. We begin by exploring cascade approaches (traditional
approaches). In these approaches, the output of a detector serves as input to a tracker.
The tracker’s output is then used by a trajectory-predicting algorithm to estimate the
anticipated movements of traffic participants in the upcoming seconds as in Figure 1 (top
row). Following that, the state-of-the-art approaches that do detection, tracking, and
predicting in an end-to-end manner are reviewed, depicted in Figure 1 (bottom row).

Figure 1. (Top Row) Cascade methods that independently address detection, tracking, and predicting,
they inherently carry the risk of compounding errors throughout the pipeline. This originates from—
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each sub-module’s assumption of receiving perfect input, which rarely holds true in real-world
applications. Consequently, errors introduced in earlier stages propagate and magnify downstream,
potentially leading to inaccurate final outcomes. (Bottom Row) End-to-end methods that predict
future movement directly from raw data, enabling end-to-end training and benefiting from the joint
optimization of object detection, tracking, and prediction tasks.

2.1.1. Cascade Approaches

Traditional self-driving autonomy decomposes the problem into three subtasks (object
detection, object tracking, and motion prediction) and relies on independent components
that perform these subtasks sequentially. These modules are usually learned independently,
and uncertainty is usually propagated [1]. In these methods, it is assumed that the exact
paths taken by the agents are known. By examining the trajectory data over a short period
of time, predictions can be made for future moments. For instance, the NuScenes [5] and
Argoverse [6] datasets provide trajectories and their corresponding labels for this purpose.

Many of the approaches presented in the literature are based on neural networks
that use recurrent neural networks (RNNs), which explicitly take into account a history
composed of the past states of the agents [7]. In RNNs and their variants, memory is a
single hidden state vector that encodes all the temporal information. Thus, memory is
addressable as a whole, and it lacks the ability to address individual elements of knowl-
edge [3]. Ref. [3] presents the memory-augmented neural trajectory predictor (MANTRA).
In this model, an external, associative memory is trained to store useful and non-redundant
trajectories. Instead of a single hidden representation addressable as a whole, the memory is
element-wise addressable, permitting selective access to only relevant pieces of information
at runtime.

Spatial and temporal learning will be two key components in prediction learning.
Ignoring either information will lead to information loss and reduce the model’s capability
of context learning. Consequently, researchers are focusing on jointly learning RNN spatial
and temporal information. Ref. [8] utilize rasterization to encode both the agents and
high-definition map details, transforming corresponding elements such as lanes and cross-
walks into lines and polygons of diverse colors. However, the rasterized image is an overly
complex representation of environment and agent history and requires significantly more
computation and data to train and deploy. In an effort to address this, VectorNet [9] pro-
poses a vector representation to exploit the spatial locality of individual road components
with graph neural networks. LaneConv [10] constructs a lane graph from vectorized map
data and proposes LaneGCN to capture the topology and long dependency of the agents
and map information. Both VectorNet [9] and LaneConv [10] can be viewed as extensions
of graph neural networks in prediction with a strong capability to extract spatial locality.
Nevertheless, both works fail to fully utilize the temporal information of agents with less
focus on temporal feature extraction. In order to combine spatial and temporal learning in a
flexible and unified framework, Ref. [11] proposes temporal point-cloud networks (TPCN).
TPCN models the prediction learning task as joint learning between a spatial module and a
temporal module.

Across a range of visual benchmarks, transformer-based models exhibit comparable
or superior performance when compared to other network types like convolutional and
recurrent neural networks [12]. This trend extends to trajectory prediction as well. Ref. [13]
proposes a new transformer that simultaneously models the time and social dimensions.
Their method allows an agent’s state at one time to directly affect another agent’s state
in the future. In parallel, Ref. [14] develops an RNN-based approach for context-aware
multi-modal behavior forecasting. The model input includes both a road network at-
tention module and a dynamic interaction graph to capture interpretable geometric and
social relationships.

As mentioned, cascade approaches in order to trajectory prediction are developed
separately from their upstream perception. As a result, their performance degrades signifi-
cantly when using real-world noisy tracking results as inputs. Ref. [15] presents a novel
prediction framework that uses affinity matrices rather than tracklets as inputs, thereby
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completely removing the chances of errors occurring in data association and passing more
information to prediction. To consider this propagation of errors, Ref. [15] applies three
types of data augmentation to increase the robustness of prediction with respect to tracking
errors. They inject identity switches (IDS), fragments (FRAG), and noise.

2.1.2. End-to-End Approaches

To prevent the propagation of errors and reduce inference time in traditional methods,
as they learn independently, researchers [16–19] attempted to perform detection and track-
ing in an end-to-end manner. With the same purpose, Ref. [20] proposed a network that
parallelized tracking and prediction using a graph neural network (GNN).

To our best knowledge, Fast and Furious (FaF) [21] proposes the first deep neural
network capable of jointly performing 3D detection, tracking, and motion prediction us-
ing data captured by a 3D sensor. However, Ref. [21] limited its predictions to a mere
1 s duration. In contrast, IntentNet [22] enlarges the prediction horizon and estimates
future high-level driver behavior. Ref. [23] moved a step further and performed detection,
predicting, and motion planning jointly. Furthermore, Ref. [23] introduces an additional
perception loss that encourages the intermediate representations to generate accurate 3D
detections and motion prediction. This ensures the interoperability of these intermediate
representations and enables significantly accelerated learning. The statistical interconnec-
tions among actors are overlooked by all the previously mentioned methods, and instead,
they individually predict each trajectory using the provided features. Ref. [2] designed a
novel network that explicitly takes into account the interactions among actors. To capture
their spatial-temporal dependencies, Ref. [2] proposes a recurrent neural network with a
transformer architecture.

Ref. [24] suggests a reversing of the detect-then-forecast pipeline rather than following
the conventional sequence of detecting, tracking, and subsequently forecasting objects.
Afterward, object detection and tracking are performed on the projected point-cloud
sequences to obtain future poses. A notable advantage of this methodology lies in the
comprehensive representation of predictions, incorporating details about RNNs and the
background and foreground objects existing within the scene. Similarly, in a comparable
fashion, FutureDet [25] directly predicts the future locations of objects observed at a specific
time instead of predicting point-cloud sequences over time and then backcasting them to
determine their origin in the current frame. This allows the model to reason about multiple
possible futures by linking future and current locations in a many-to-one manner. This
approach leverages existing LiDAR detectors to predict object positions in unseen future
scans. Building upon the recently proposed CenterPoint LiDAR detector [17], FutureDet
predicts not only future locations but also velocity vectors for each object in every frame
between the current and final predicted future frame. This enables the model to estimate
consistent object trajectories throughout the entire forecasting horizon. In the process of
forecasting, it is essential to link all trajectories to the collection of object detections in
the current (observed) LiDAR scan. For each future detection i, FutureDet computes the
distance to every detection j from the previous timestep. Subsequently, for each i, FutureDet
selects the most suitable j (permitting multiple-to-one matching).

Additionally, it is argued that current evaluation metrics for predicting directly from
raw LiDAR data are inadequate as they can be manipulated by simplistic predictors,
leading to inflated performance. These metrics, originally designed for trajectory-based
prediction, do not effectively address the interconnected tasks of detection and forecasting.
To overcome these limitations, a novel evaluation procedure is proposed by FutureDet.
The new metric integrates both detection and forecasting tasks. Notably, this approach
surpasses state-of-the-art methods without the necessity of object tracks or high definition
(HD) maps as model inputs.
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2.2. Neural Architecture Search

Optimizing model hyperparameters is an effective way to improve intelligent systems
using automated machine learning (AutoML) [26]. Neural architecture search (NAS) is
a subset of AutoML that aims to create efficient neural networks for complex learning
tasks [27]. Early NAS methods used reinforcement learning (RL) [28,29] or evolutionary
algorithms [30,31]. However, evaluating 20,000 neural architectures over four days requires
remarkable computing capacity, such as 500 NVIDIA® GPUs used in this study were
sourced from NVIDIA Corporation, which is headquartered in Santa Clara, CA, USA [28].
Recently, methods for differentiable neural architecture search (NAS) have been proven
to achieve state-of-the-art results across various learning tasks [32–34]. DARTS [33] is a
differentiable NAS method that uses the gradient descent algorithm to search and train
neural architecture cells jointly. Despite the success of differentiable NAS methods in
various domains [34], they suffer from inefficient training due to interfering with the
training of different sub-networks each other [35]. Moreover, it has been proven that with
equal search spaces and training setups, differentiable NAS methods converge to similar
results [36].

Meta-heuristic-based NAS methods [37–39] benefit from fast and flexible algorithms to
search a discrete search space. FastStereoNet [39] is a state-of-the-art meta-heuristic method
that designs an accurate depth estimation pipeline. TrajectoryNAS is a fast multi-objective
meta-heuristic NAS designed to optimize trajectory prediction approaches by searching a
wider design space compared to differentiable methods or evolutionary NAS approaches.

3. TrajectoryNAS

Current trajectory prediction techniques rely on handcrafted neural network architec-
tures. These models, while effective for tasks like 3D object detection, are suboptimal for
trajectory prediction. Building on the success of neural architecture search (NAS), Trajec-
toryNAS offers an interactive approach to designing neural networks specifically for 3D
trajectory prediction. However, it is important to note that training a trajectory prediction
model is both costly and time-consuming, requiring approximately 12 GPU hours for a
single model.

As a result, the NAS procedure becomes significantly slow, requiring approximately
1200 GPU hours. To expedite the training process, we leverage state-of-the-art techniques
(e.g., [40–42]) that utilize a miniaturized NuScenes dataset to reduce the computational
demand for communication rescores. As an example, Blanch et al. [42] demonstrates the
use of a mini-dataset for hyperparameter optimization. Similarly, each model generated
by neural architecture search (NAS) is trained on a standard mini-subset of the NuScenes
dataset [5]. This technique reduces the evaluation time for each model to nearly 1 h, making
the process approximately 12 times faster.

Figure 2 elaborates the TrajectoryNAS state diagram. The TrajectoryNAS workflow
consists of three phases: Phase 1, exploration, where the metaheuristic algorithm suggests
new architectures, and each architecture is trained using a mini dataset to compare with
other suggested architectures. In Phase 2, the architecture with the highest accuracy on the
mini dataset is retrained using the full-size dataset. Finally, in Phase 3, the fully trained
model is deployed on hardware and tested with the test dataset to report the final results.

TrajectoryNAS is a one-stage trajectory prediction [21,25]. The model takes a sequence
of Lidar data captured from the scene, which integrates a robust 3D backbone with cutting-
edge neural architecture search (NAS) to refine map-view feature extraction from LiDAR
point clouds. This innovative architecture further evolves by automating the design of multi-
2D CNN detection heads, specifically tailored for future object detection and trajectory
prediction. By detecting objects across multiple future timesteps and accurately projecting
their movements back to the current moment, TrajectoryNAS stands out for its precision in
trajectory prediction. This system not only anticipates the dynamic positioning of objects
but also adjusts its computational strategies in real-time, ensuring a high degree of accuracy
and efficiency in processing. The inclusion of NAS allows for continuous improvement of
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the detection and prediction heads, making TrajectoryNAS a highly adaptive and forward-
thinking solution in the realm of autonomous navigation and surveillance technologies.
TrajectoryNAS employs a hybrid optimization strategy to minimize optimization costs.
The process is divided into two phases. The first phase, called exploration, involves the
algorithm exploring various neural architecture designs to identify the optimal design.
This phase is time-consuming as the algorithm must evaluate a wide range of parameters
within the search space elaborated in Section 3.1. During the exploration phase, it is crucial
to establish a comparative accuracy metric that can evaluate different architectures and
determine the relative optimal design. To reduce processing time, the exploration phase
utilizes a subset of the Nuscenes dataset [5], which contains significantly less data but
maintains a distribution similar to the full dataset. To ensure that the selected model
performs efficiently on the complete dataset, we use the full dataset in the second phase,
known as exploitation, where we report the final accuracy of the designed model.
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Figure 2. TrajectoryNAS state diagram. A model generated from the search space. The generated
model trains using the mini dataset. The results are sent back to search space to generate a new
model. The best final model is fully trained using the original dataset.

3.1. Search Space

TrajectoryNAS search space is demonstrated in Figure 3.
The TrajectryNAS architecture stands out as a solution for object detection and trajec-

tory prediction, particularly in scenarios like autonomous driving, where understanding
dynamic environments is paramount. It skillfully merges spatial and temporal object
analyses, predicting not only the present state but also future trajectories.
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Figure 3. The overview of TrajcetoryNAS process.

3.1.1. 3D Object Detection with VoxelNet

Modern 3D object detection methods [17,43,44] utilize a 3D encoder that converts
the point cloud into regular bins. A point-based network [45] then extracts features from
all the points within each bin. The 3D encoder subsequently pools these features to
form its primary feature representation. Most of the computational workload is handled
by the backbone network, which operates exclusively on these quantized and pooled
feature representations. The output of the backbone network is a map-view feature map

239



Sensors 2024, 24, 5696

M ∈ RW×L×F with width W, length L, and F channels in a map-view reference frame. The
width and height are directly related to the resolution of the individual voxel bins and the
stride of the backbone network. Common backbone architectures include VoxelNet [46,47]
and PointPillars [43]. This work employs VoxelNet as the backbone network.

VoxelNet is a novel approach for 3D object detection from LiDAR data and comprises
three functional blocks:

Feature Learning Network: This network processes raw LiDAR data by dividing the
point cloud into 3D voxels. A crucial component is the voxel feature encoding (VFE) layer,
which transforms each group of points within a voxel into a unified feature representation.
By stacking multiple VFE layers, the network learns complex features that capture local 3D
shape information within the point cloud.

Convolutional Middle Layers: After the feature learning network generates a vol-
umetric representation with encoded features, these features are further processed by
3D convolutional layers. These layers aggregate local voxel features, transforming the
point-cloud data into a richer and more informative high-dimensional representation.

Region Proposal Network (RPN): The final stage utilizes an RPN [48] to generate 3D
object detections. The input to the RPN is the feature map provided by the convolutional
middle layers. The network consists of three blocks of fully convolutional layers, with
batch normalization (BN) and ReLU operations applied after each layer. The output of
each block is up-sampled to a fixed size and concatenated to construct a high-resolution
feature map.

3.1.2. Trajectory Prediction

TrajectoryNAS detects objects in both the current and future frames, projecting future
detections back to the reference frame. We hypothesize that detecting objects in future
frames requires the network to learn forecasted feature representations, as suggested by
Peri et al. [25]. The network uses features extracted from the feature extraction module
(VoxelNet) to predict features for the next timestep (t+ 1). After each prediction, a detection
module refines the results. Initially, the extracted features are used for object detection
in the current frame. Simultaneously, a copy of these features is passed to the prediction
network to forecast features for the next timestep. This process is repeated iteratively, with
predicted features being used for subsequent detection modules, until both the features
and object detections are obtained for the final timestep.

Each detection module contains five parallel prediction heads, each responsible for
a specific aspect of the object’s state: velocity, rotation, dimension, regression (bounding
box refinement), and height. These heads work in concert to provide a comprehensive
description of an object’s current position and orientation at time t.

To link objects across different frames, our network detects objects in both the current
and future frames and predicts offsets to associate them back in time, assuming constant
velocity between frames. Trajectory construction involves aligning all trajectories with the
objects detected in the current LiDAR scan. Each detected object in the future frame (i)
is matched to the previous frame (j) using the constant velocity equation. The distance
between the detected object at time j and all other detected objects is calculated, and the
closest object is then selected.

Such an approach allows TrajectryNAS to not only navigate but also anticipate com-
plex dynamic behaviors, making it an invaluable asset in fields where predicting future
states is crucial for proactive decision-making. This architecture’s ability to foresee the
direction and movement of objects enriches scene understanding and enhances planning
for autonomous systems, offering a comprehensive and forward-looking perspective on
environmental dynamics.

The TrajectoryNAS system automatically designs the region proposal network (RPN)
and the prediction heads using the aforementioned layers. It explores an expansive space
of 2300 potential architectures to identify an optimal balance between speed and accuracy.
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This approach enables the selection of a highly efficient and accurate architecture tailored
for specific applications.

3.2. Search Algorithm

To improve the accuracy of trajectory prediction while reducing network inference
time, we employ the multi-objective simulated annealing (MOSA) algorithm, as described
in [49]. The search algorithm optimizes the trajectory prediction in the design time and
before training the model. The reason for using MOSA is its simplicity and its superior
ability to explore a wide range of candidates compared to gradient-based algorithms.
MOSA is also capable of finding global optima due to its effective exploration-exploitation
balance. These attributes make MOSA a robust choice for optimizing complex, multi-
objective problems such as trajectory prediction. MOSA selects candidates based on the
probability of min(1, exp(−Δ/T)), where Δ is the energy difference between present and
newly generated candidates, and T is the regulating parameter for annealing temperature.
Initially, T starts from a large value (TMax) and gradually decreases to a small value (TMin).
Setting TMax to a large value allows for exploration of non-optimal choices, while TMin
being small gives the maximum selection chance to optimal candidates (exploitation).

To achieve this optimization, we use a multi-objective energy function (Equation (1)).
The energy function (E) is the product of the network latency (t) and the weighted

mean average precision of the predicted future place of the object and its actual place (mAP),
weighted average displacement (ADE) error, and weighted final displacement error (FDE).

E = Latency×mAPα × ADEβ × FDEγ (1)

where α, β, and γ are weights of mAP, ADE, and FDE, respectively. We do not use any
proxy, such as Floating-Point-Operations-per-Second (FLOPs), for inference time estima-
tion. Instead, we run the network directly on the target hardware (NVIDIA® RTX A4000
were sourced from NVIDIA Corporation, which is headquartered in Santa Clara, CA,
USA) to measure the exact inference time. Algorithm 1 is a complete description of the
TrajectoryNAS flow.

Algorithm 1 TrajecoryNAS

1: procedure EXPLORATION
2: M ←Mini-Dataset
3: Ainit ← InitialArchitecture
4: TMax ←MaximumTemperature
5: TMin ←MinimumTemperature
6: TFactor ← −Log(TMax, TMin)
7: Abest ← AInit
8: Acurrent ← AInit
9: train(Acurrent, M)

10: for each iteration i from 1 to MaxIterations do
11: Anew ← GenerateNeighbor(Acurrent)
12: train(Anew, M)
13: ΔE ← E(Anew) - E(Acurrent)
14: if ΔE < 0 then
15: Acurrent ← Anew
16: else
17: r ← Random number in [0, 1]
18: if r < min(1, exp(−Δ/T)) then
19: Acurrent ← Anew
20: end if
21: end if
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Algorithm 1 Cont.

22: if E(Acurrent) < E(Abest) then
23: Abest ← Acurrent
24: end if
25: T ← TMax × Exp(TFactor × (i/MaxIterations))
26: end for
27: return Abest
28: end procedure
29: procedure EXPLOITATION(Abest)
30: C ← Complete-Dataset
31: train(Abest, C)
32: accuracy ← vaidate(Abest, C)
33: return accuracy
34: end procedure

4. Experimental Setup

We demonstrate the effectiveness of our approach on a large-scale real-world driving
dataset. We focus on modular metrics for detection and prediction, as well as system
metrics for end-to-end perception and prediction.

4.1. Dataset

Our experimental analysis was performed on the nuScenes [5] dataset, which contains
1000 log snippets, each lasting 20 s. We utilized two officially released divisions of the
dataset: the Mini and Trainval splits. The Mini split, which consists of 10 scenes, is a
subset of the Trainval split. The Trainval split contains 700 scenes for training purposes and
150 scenes for validation. Additionally, the test split, containing 150 scenes, is designated
for challenges and lacks object annotations.

4.2. Evaluation Metrics

We follow the detection and prediction metrics defined by [25] to have a fair compari-
son with other state-of-the-art. Specifically, we use average precision (APdet) for detection
and future average precision (AP f ) for trajectory prediction.

Detection Average Precision (APdet): APdet is defined as the area under the precision-
recall curve [50], commonly averaged over multiple spatial overlap thresholds [51]. To
compute AP, we first determine the set of true positives (TP) and false positives (FP) to
evaluate precision and recall.

Future Average Precision (AP f ): future Average Precision (AP f ) is a metric used
to evaluate the accuracy of future trajectory predictions anchored to detected objects in
the current frame (tobs). It penalizes incorrect future predictions (false predictions) and
missed detection (missed predictions). A true positive (TP) requires a positive match both
at the current timestamp (tobs) and the final timestep (tobs + T), Otherwise, a prediction is
considered to be a false positive (FP). A successful match in the current frame is determined
based on distance thresholds of 0.5, 1, 2, 4 m for the current frame and 1, 2, 4, 8 m for the
final timestep [25]. AP f considers all detections and penalizes missed predictions, typically
measured by the miss rate.

We have defined three subclasses: static cars, linearly moving cars, and non-linearly
moving cars [25], and we report AP f and APdet for these three classes. Subsequently,
we evaluate the mean average precision for the future (mAP f ) as follows: mAP f = 1/3
× (APlin.

f + APnon−lin.
f + APstat.

f ). Similarly, mAPdet is evaluated as the average APdet

over the three subclasses. Subclass labels are determined based on the trajectory (whether
ground truth or predicted). First, we calculate the intersection over union (IoU) between
the bounding boxes at the first and last timestep. If the IoU is greater than 0, the trajectory
is labeled as static. Next, we use the velocity from the first timestep to project a target box.
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If the IoU between this target box and the last timestep box is greater than 0, the trajectory
is labeled as linear. Trajectories that do not fit either category are labeled as non-linear.

mAP f and mAPdet provide a more realistic evaluation by jointly assessing detection
and prediction accuracy. They penalize both missed predictions and false predictions,
ensuring that only predictions correctly matched to detected objects are considered true
positives [25]. This joint evaluation embraces the inherent multi-future nature of prediction
and is robust against imbalanced data scenarios, such as the high proportion of stationary
cars in the nuScenes dataset.

4.3. Configuration Setup

For this study, Table 1 provides a brief overview of the configuration setup.

Table 1. Summarizing hardware specification, train, and search parameters.

Train/Test Hardware Device Specification

GPU NVIDIA® RTX A4000
GPU Compiler CUDA v11.7 & cuDNN v8.2.0
DL Framework PyTorch v1.9.1

Training and Search Parameters Value

Full-Training Epochs 20
Batch Size 1

Learning Rate 5× 10−4

Optimizer Adam
TMax/TMin 2500/2.5

5. Results

5.1. Trajectory Prediction Performance

As presented in Tables 2 and 3, the comparison of car and pedestrian trajectory
prediction results demonstrates that TrajectoryNAS outperforms other state-of-the-art
trajectory prediction methods in numerous parameters for car trajectory prediction and
the majority of parameters for pedestrian trajectory prediction. Notably, the latency of
TrajectoryNAS is comparable to that of Fast and Furious [21] and better than FutureDet [25],
while TrajectoryNAS provides superior future average precision (APf ) across all conditions
for both linear and non-linear trajectories of cars and pedestrians. Future average precision
(APf ) is a novel trajectory prediction performance metric proposed by FutureDet [25]
and proved to be more precise in demonstrating trajectory performance in comparison to
previous metrics.

For cars, while Fast and Furious and FutureDet offer a marginal improvement in
specific aspects when compared with TrajectoryNAS, TrajectoryNAS significantly surpasses
the state-of-the-art in most parameters. This is evidenced by its top performance in average
precision for static, linear, and non-linear trajectories, as well as its mean average precision
(mAP), both for single (K = 1) and multiple (K = 5) predictions. Specifically, TrajectoryNAS
achieves the highest detection accuracy and future average precision in almost all scenarios,
highlighting its robustness and efficacy in car trajectory prediction.

Similarly, for pedestrian trajectory prediction, TrajectoryNAS demonstrates outstand-
ing performance, particularly in accurately predicting linear and non-linear movements.
It not only achieves the highest average precision scores across various scenarios but also
maintains competitive latency, underscoring its effectiveness in real-time applications.

In conclusion, TrajectoryNAS advances the field of trajectory prediction by offering a
highly accurate and efficient model. Its ability to provide better future average precision
under different conditions for both cars and pedestrians, coupled with its comparable
latency to leading models, positions TrajectoryNAS as a superior choice for trajectory
prediction in dynamic environments.
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Table 2. Comparison TrajcetoryNAS and state-of-the-art trajectory prediction model on cars according
to accuracy and latency metrics.

M
eth

od

Tim
e (m

s)
K = 1 K = 5

APstat. APlin. APnon−lin. mAP APstat. APlin. APnon−lin. mAP

APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f

Detection + Constant Velocity 21 70.3 66.0 65.8 21.2 90.0 6.5 75.4 31.12 70.3 66.0 65.8 21.2 90.0 6.5 75.4 31.2

Detection + Forecast [21] 20 69.1 64.7 66.1 22.2 86.3 7.5 73.8 31.5 69.1 64.7 66.1 22.2 86.3 7.5 73.8 31.5

FutureDet [25] 24 70.0 65.5 62.9 24.9 91.8 10.1 74.9 33.5 70.1 67.3 62.9 27.7 91.7 11.7 74.9 35.6

TrajectoryNAS (ours) 22 71.0 65.6 63.8 26 91.2 10.3 75 34 71 67.4 63.8 29.2 91.1 12.1 75.3 36.2

Table 3. Comparison TrajcetoryNAS and state-of-the-art trajectory prediction model on pedestrian
according to accuracy and latency metrics.

M
eth

od

Tim
e (m

s)
K = 1 K = 5

APstat. APlin. APnon−lin. mAP APstat. APlin. APnon−lin. mAP

APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f APdet. AP f

Detection + Constant Velocity 21 55.1 33.3 73.5 27.8 96.9 12.4 75.2 25.5 55.1 33.3 73.5 27.8 96.9 12.4 75.2 24.5

Detection + Forecast [21] 20 53.7 35.0 73.9 30.8 97.2 13.3 74.9 26.4 53.7 35.0 73.9 30.8 97.2 13.3 74.9 26.4

FutureDet [25] 24 53.1 33.3 72.4 32.6 95.2 14.7 73.6 26.9 53.1 35.1 72.4 34.0 95.2 15.0 73.6 28.0

TrajectoryNAS (ours) 22 55.8 37.1 77.9 39.9 95.2 17.7 76.3 31.3 55.8 38.6 77.9 40.9 95.2 17.9 76.3 32.5

5.2. Analysing Search Methods

Figure 4 presents a detailed comparison of the energy function reduction (as defined
in Equation (1)) during the search process employed by the TrajectoryNAS algorithm
against those of random search and local search methods. This comparative analysis
clearly demonstrates the limitations of both local search and random search techniques in
effectively identifying the most optimal solution. Specifically, the best outcome identified
through Random Search, characterized by an energy value of e = 0.19 as per Equation (1),
was achieved in iteration 52. Similarly, Local Search’s most effective solution registered an
energy value of e = 0.186, and this result was obtained in iteration 50.

Despite these efforts, both methods fall significantly short when compared to the
capabilities of the TrajectoryNAS algorithm. TrajectoryNAS not only surpasses these
traditional search methodologies in efficiently navigating towards more optimal solutions
but also showcases its superiority by discovering an exceptionally lower energy value of
0.113. This landmark achievement was realized in iteration 108, underlining the algorithm’s
advanced optimization prowess. Notably, the energy value associated with the best solution
found by TrajectoryNAS is nearly half that of the best solutions unearthed by both random
search and local search. This stark contrast underscores the advanced and sophisticated
nature of TrajectoryNAS in exploring and exploiting the search space to find significantly
more efficient solutions, thereby establishing a new benchmark in the quest for optimization
within this context.

TrajectoryNAS overcomes Latent Acceptance Hill-Climbing (LAHC), a high-performance
meta-heuristic algorithm as described by [52]. Figure 4 illustrates that LAHC becomes trapped
in a local minimum and fails to escape to locate the global minimum. Consequently, the
performance of LAHC is inferior to both local search and random search algorithms.
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Figure 4. TrajectoryNAS optimization curve.

5.3. Visual Demonstration

The visual results of TrajectoryNAS are shown in Figure 5. As is evident, the results
for both linear and non-linear activities for both cars and pedestrians closely match what
occurs in the future. TrajectoryNAS is highly accurate in determining static and dynamic
objects, and it rarely draws dynamic lines for static objects.
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Figure 5. The visual demonstration of TrajectoryNAS; the first row is the trajectory prediction for
cars, and the second row is the trajectory prediction for the pedestrian. Green lines are ground-truth.
Blue lines are trajectory prediction with highest probability. Cyan lines are trajectory predictions with
the highest probability.

6. Conclusions

Trajectory prediction is one of the most important components of autonomous driving
systems. A well-designed trajectory prediction model can accurately predict the trajectories
of surrounding objects near the ego vehicle within an acceptable inference time, helping
to prevent collisions by ensuring the ego vehicle avoids crossing their paths. State-of-
the-art trajectory prediction models suffer from their handcrafted design, which leads to
suboptimal accuracy and latency.

To resolve this problem, we propose TrajectoryNAS, a neural architecture search
approach tailored for trajectory prediction applications, which designs accurate and low-
latency trajectory prediction models using metaheuristic algorithms. Our empirical studies
demonstrate that TrajectoryNAS achieves a minimum of 4.8% higher accuracy in predicting
the trajectories of objects with non-linear paths. This highlights its effectiveness in predict-
ing the trajectories of objects with more freedom of movement than vehicles, such as pedes-
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trians. Our future work involves enhancing TrajectoryNAS to support novel deep learning
approaches, such as vision transformers (ViTs), which have been well-demonstrated in
meeting autonomous driving requirements, such as long-range perception.
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Determining the Level of Threat in Maritime Navigation
Based on the Detection of Small Floating Objects with Deep
Neural Networks
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Abstract: The article describes the use of deep neural networks to detect small floating objects located
in a vessel’s path. The research aimed to evaluate the performance of deep neural networks by
classifying sea surface images and assigning the level of threat resulting from the detection of objects
floating on the water, such as fishing nets, plastic debris, or buoys. Such a solution could function
as a decision support system capable of detecting and informing the watch officer or helmsman
about possible threats and reducing the risk of overlooking them at a critical moment. Several neural
network structures were compared to find the most efficient solution, taking into account the speed
and efficiency of network training and its performance during testing. Additional time measurements
have been made to test the real-time capabilities of the system. The research results confirm that it is
possible to create a practical lightweight detection system with convolutional neural networks that
calculates safety level in real time.

Keywords: deep neural networks; detection and classification; safety of marine navigation; image
processing; object detection techniques

1. Introduction

The safety of marine navigation directly impacts the protection of human lives, the
environment, and valuable cargo. Key factors in maintaining navigational safety include
accurate positioning, effective communication, understanding of environmental conditions,
and navigational situation.

Threats to marine navigation are numerous and diverse. They range from natural
hazards like severe weather, rough seas, and poor visibility to man-made dangers such as
collisions with other vessels, grounding on reefs or sandbars, and accidents in busy ports or
narrow channels. In addition to these traditional threats, the increasing presence of floating
objects poses a significant risk. These hazards, often referred to as marine debris, include a
wide range of items such as derelict fishing gear, rubber, textiles, metal, and various types
of plastic waste. The accumulation of such debris in the oceans can lead to dangerous
situations for vessels, especially in busy shipping lanes, coastal areas, and regions prone to
natural disasters.

Plastic debris and other floating objects can cause severe damage to a vessel’s hull,
propellers, and rudders if collided with, potentially leading to accidents, grounding, or
even sinking. These hazards can also obstruct critical navigation channels, disrupt traffic,
and create challenges for search and rescue operations. Furthermore, smaller vessels and
recreational boats are particularly vulnerable to these risks, as they may lack the robust
detection and avoidance systems found on larger ships, that can integrate satellite imagery,
oceanographic models, and reports from other vessels and from citizen science programs [1].
Thus, the safety of smaller vessels depends mostly on continuous visual observation.

Constantly watching for floating obstacles in the course of a vessel is a challenging
and complex task. Several factors make this task difficult:
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1. Visibility limitations: Floating objects, especially smaller ones like plastic debris or
partially submerged containers, can be difficult to spot, particularly in poor-visibility
conditions such as fog, rain, or darkness. Even in daylight, the vastness of the open
ocean can make it nearly impossible to detect all potential hazards in a vessel’s path.

2. Human limitations: Maintaining continuous vigilance for floating obstacles requires
intense concentration and can be mentally and physically exhausting for the crew.
Human error, fatigue, and distraction are significant factors that can reduce the
effectiveness of manual monitoring.

3. Unpredictability of debris: The location and movement of floating debris are often
unpredictable. Currents, tides, and winds can disperse debris across large areas, mak-
ing it difficult to anticipate where these objects might be encountered. Additionally,
debris can move rapidly, especially in rough seas, increasing the challenge of detecting
and avoiding it.

4. Technology gaps: While radar and sonar systems can detect larger objects, they are less
effective at identifying smaller or partially submerged debris. Some modern vessels
are equipped with advanced optical sensors or infrared cameras, but these technolo-
gies also have limitations, particularly in adverse weather or lighting conditions, and
require constant attention if not integrated with an automated detection system.

Given these challenges, relying solely on human watchkeepers or traditional nav-
igation tools is not sufficient to ensure safety. This is where a system based on deep
neural network architecture (DNN) may be useful. The proposed solution can provide
automated alerts, as shown on Figure 1, and enhance a crew’s ability to detect and avoid
floating obstacles.

 
Figure 1. General proposal of a system calculating the level of safety regarding the distance from
detected floating objects with usage of deep neural network.

There are two main DNN structures considered in this study: Fully Connected (Dense)
Neural Network (NN) and Convolutional Neural Network (CNN). In Dense NN each
neuron in one layer is connected to every neuron in the subsequent layer. Dense net-works
typically require a large amount of data and computational resources to train effectively
and are sensitive to overfitting. Standalone large Dense NN is not as efficient as smaller
Dense NN combined into convolutional architecture [2].

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm that
have been widely used in image object recognition tasks [3–5]. CNNs are specifically
designed to deal with the variability of two-dimensional shapes and have shown superior
performance compared to other techniques. CNNs are a powerful tool for image object
recognition and classification. They are capable of extracting meaningful features from
images and have been successfully applied in various domains, including medical imaging,
activity recognition, real-time remote sensing monitoring, and big data analysis.
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According to reviews of deep learning (DL) methods, there are several hundred im-
portant articles describing concepts and applications [6]. An example of the successful
application of CNNs in image object recognition is the Inception architecture proposed by
Szegedy et al. [7]. This architecture achieved state-of-the-art performance in the ImageNet
Large-Scale Visual Recognition Challenge 2014 (ILSVRC14), which is a benchmark dataset
for image classification and detection tasks. Inception architecture utilizes multiple parallel
convolutional layers with different filter sizes to capture features at different scales, allow-
ing for more accurate recognition of objects in images. Another example is the use of CNNs
in medical image recognition. Here CNNs were applied to train medical images, such as
magnetic resonance imaging [8], invasive ductal carcinoma [9], and computed tomogra-
phy images [10], and achieved higher recognition rates compared to traditional methods.
Furthermore, CNNs have been applied in various fields beyond image recognition. For
example, CNNs have been used in recognizing human activity using wearable sensors [11]
or the seismic facies classification [12].

Another interesting approach to image classification solution is deep transfer learning
(DTL). This is a machine learning approach that enables models trained on one task to be
adapted and applied to a related but different task. It leverages the pre-trained knowledge
from a source domain (such as images, text, or other data) to improve performance on a
new target domain, especially when labeled data for the target domain are limited or costly
to obtain. This approach overcomes the drawbacks of traditional machine learning, in
which the training datasets are separated and used individually for each task. A complete
survey with detailed classification of DTL models has been presented in [13].

The novelty of this study is in its ability to calculate threat level for a vessel regarding
the influence of detected floating objects on the safety of navigation. The practical appli-
cation may be created in the future as a navigational support system for watch officers or
helmsmen, generating warnings easy to read as threat levels calculated by trained neural
networks. Other studies in the field of small floating object detection focus mainly on
proper and fast identification and classification [14], also in low-light conditions [15]; thus
the goals of the other studies are slightly different. The contribution of this study is in the
design and comparison of a few different network topologies and selection of the best ones
that fit the ‘lightweight’ category.

The structure of the paper is as follows: After this introduction, there is Section 2
de-scribing materials and methods used in this study. The next chapter provides simulation
results for 12 neural networks of different topologies. The results are discussed in Section 4,
and Section 5 consists of a brief summary and conclusions.

2. Materials and Methods

The architecture of a CNN consists of multiple layers, including convolutional layers,
pooling layers, and fully connected dense layers (Figure 2). Input image is divided into
three separate color channel input layers.

Figure 2. General architecture of CNN used in this study.
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Next, the filters are applied to the input layers to extract local features. These filters,
each 3 × 3 in size, are learned through the training process and can capture different
patterns and textures in the image [7]. The pooling layers, introduced in 1990 by Yamaguchi
et al. [16], downsample the feature maps to reduce the spatial dimensions and extract the
most important features. The size of the pooling layers in this study is 2 × 2. The result of
each convolutional layer is calculated by ReLu (rectified linear unit) activation function,
which replaces each negative value by zero according to Equation (1):

f(x) = max(0, x) (1)

where x is the value from neurons of convolutional layer. The fully connected dense layers
combine the extracted features and make safety calculations based on them [17]. The last
dense network output is calculated with softmax function

s(xi) =
exi

∑n
j=1 exj

(2)

which transforms a vector of real numbers into a vector of probabilities.
The images, required to train neural networks and validate them, were acquired

from the following free image and video depositories: depositphotos.com, pexels.com,
istockphoto.com, and stockvault.net. The examples of the images are shown on Figure 3.

Figure 3. Examples of input images.

The training set contains 200 images divided into two categories:

1. Clear water surface (tag: sea)—this collection contains photos of a calm and a stormy
sea, with different daylight conditions, sometimes with flying or floating birds;

2. Polluted water surface (tag: net)—this collection contains photos of different plastic
debris, fishing gear, buoys, and similar small floating objects.

The validation set was divided into the same categories as the training set. It consists
of 280 images, completely different from the training set to observe possible overfitting.
Overfitting occurs when a model learns to perform very well on the training data but fails
to generalize to new, unseen data. Overfitting often occurs when the model is too complex
relative to the amount of training data. In CNNs this could mean having too many layers,
filters, or parameters relative to the size and diversity of the training dataset. An overfitted
model fails to make correct predictions on data that it hasn’t encountered before. To prevent
overfitting, the dropout layer has been added after the dense layer. Dropout randomly
turns off neurons during training with probability 0.5 for each neuron.

Additional training parameters and limitations:

• 30 epochs of training;
• Each training batch consists of 30 input images;
• Each image is resized to 320 × 240 px
• The result is divided into two crisp categories, depending on network output value:

not safe [0–0.5) and safe [0.5–1];
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• Average accepted performance for each NN not less than 80% during training and
validation;

• Size of the network not more than 1 GB, for lightweight property requirements.

3. Results

This section provides a description of the experimental results of 12 different DNN
architectures and their interpretation.

Table 1 shows the basic parameters of each network. The numbers for the CNN layers
are the numbers of filters, and the numbers for the Dense layers are the number of neurons.

Table 1. Comparison of the size and average accuracy of the tested neural networks.

Network No. CNN1 CNN2 CNN3 Dense Size [MB]
Avg Test
Accuracy

Avg
Validation
Accuracy

1 - - - 8 21.1 0.504 0.719
2 - - - 256 664.5 0.549 0.546
3 - - - 512 1310 0.598 0.598
4 2 - - 8 3.4 0.664 0.483
5 2 4 - 16 3.34 0.648 0.727
6 2 4 8 32 3.16 0.63 0.734
7 4 8 16 64 12.5 0.816 0.778
8 8 16 32 128 49.9 0.86 0.851
9 16 32 64 256 199.8 0.881 0.818
10 16 32 64 512 399.3 0.861 0.849
11 32 64 128 512 799.1 0.859 0.759
12 64 128 256 512 1560 0.858 0.716

The basic criteria for efficient network are an accuracy of at least 0.8 in both training
and validation. The first four networks are unable to achieve good validation results and
perform very poorly during training. Dense architecture requires many more neurons to
operate effectively, which causes its size to significantly exceed the allowable limit of 1 GB.

Although network 9 achieved better average results during training, network 10 has
better results during validation and a smaller difference in values between the average
result of training and validation (Figure 4). The size of network no. 10 is also less than
400 MB; therefore in this study, network no. 10 was selected as the best candidate for
further tests and timing measurements.

Networks 11 and 12 show overfitting symptoms, and therefore are probably too big
for this task. Additionally, network 12 is more than 1 GB in size, what makes it not as
lightweight as expected.

Another important parameter that can help evaluate neural network performance is
loss value. Loss is a measure of how well the network’s predictions match the actual target
values. It quantifies the error between the predicted output and the true output during
training. The goal of training a CNN is to minimize this loss value so that the network
can make accurate predictions on new, unseen data. The loss function serves as a guide to
adjust the weights and biases of the network. By calculating the loss after each forward
pass, the network determines how far off its predictions are from the true values. Using this
information, the network updates its parameters to reduce the error in future predictions.

In this research Binary Cross-Entropy (BCE), also known as Log Loss, has been used,
with a formula as follows:

BCE = − (y × log(yp) + (1 − y) × log(1−yp)) (3)

where y is the true label, and yp is the predicted label. This formula is applied for each
training and validation step, and the total loss is usually averaged across all the examples
in a batch. BCE is a commonly used loss function for binary classification tasks, where there
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are only two possible outcomes, as in this task the system classifies images as safe empty
sea surface (labeled as “sea”) or detected floating objects (labelled as “net”). BCE measures
the difference between the true label and the predicted probability from the network.

The examples of loss values are presented on Figure 5.

  
(a) 1 (b) 2 (c) 3 

   
(d) 4 (e) 5 (f) 6 

  
(g) 7 (h) 8 (i) 9 

   
(j) 10 (k) 11 (l) 12 

Figure 4. Training (dashed) and validation (solid) results for each network: (a) Network no 1 shows
huge underfitting gap and is unable to learn effectively; (b–f) Networks 2–6 have big differences
between training and validation values (g–j) Networks 7–10 perform well in comparison to other
networks. (k,l) Networks 11 and 12 are also quite good, but due to overfitting occurrence and bigger
size, they are not as good as smaller ones.
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(a) 3 (b) 10 (c) 12 

Figure 5. Examples of loss value for chosen networks: (a) Network no. 3 generates large loss values;
(b) Network 10 has loss value about 0.5; (c) Network 12 has also values below 1, but there are some
visible differences between training and validation values.

During training, the loss value is often monitored over each epoch or batch. A
decreasing loss value typically indicates that the model is learning and improving its
performance. Overfitting can be detected if the training loss continues to decrease while the
validation loss starts to increase. A low loss does not always correspond to high accuracy,
and vice versa, as they provide different insights into the model’s performance.

Prediction examples shows that network no. 10 properly intentified clean sea surface
and images with floating objects, as presented on Figure 6.

Figure 6. Examples of prediction results of network no. 10. Values in brackets closer to 1 indicate sea
surface without floating objects.

Additional time measurements have shown that the system is capable of processing
about 20 images per second, which is sufficient and even excessive, because the expected
target refresh of the threat level value in the final application will be no more than 2 times
per second.

In this system, neural network calculations are performed entirely on the CPU. In the
future, it could be considered to compare the performance of the hardware with hardware
solutions using GPU and FPGA. At the current stage, however, the speed of the system
using only the CPU is sufficient.
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Downloading and saving images from the camera strongly depends on the hardware
and software used. Cameras connected directly to a computer by cable can generate even
several dozen images per second. The bottleneck of the transfer here may save individual
images to the disk. In the tested system, the wireless camera connected via Wi-Fi allowed
for recording 5 images per second at a resolution of 640 × 486 pixels (96 dpi). This was also
a sufficient result for the smooth operation of the system.

4. Discussion

The obtained results of the system calculations are satisfactory, although in the case of
estimating the level of safety or threat during navigation, using one strict threshold (e.g.,
value 0.5) is impractical. Classifying a given navigation situation only in two stages, as
safe (predicted tag: sea) or dangerous (predicted tag: net), as shown on Figure 7, used for
training neural networks is too restrictive. Therefore, in further studies, estimation using
fuzzy values defining the ranges of the safety level will be considered.

  
(a) (b) 

Figure 7. Examples of different prediction results of similar images: (a) A result above 0.5 indicates
relatively safe situation; (b) A result below 0.5 is treated as not safe.

Dividing the 0–1 range into several smaller intervals allows for a more accurate
estimation of the threat level at a given moment, which will mainly depend on the distance
from the detected object on the sea surface. In the current system, this can be realized at
the system output in the end user interface, and from this point of view the system works
properly.

As can be seen in Figure 8, the longer the distance to the object, the higher the level
of safety, and in Figure 8a the situation can be described as relatively safe, because the
value calculated by the system is 0.71. The second situation in Figure 8b would require the
watchman to take some action, because the detected objects are much closer and the system
calculated the level of safety at about 31%.

Three subsets of safety levels may be distinguished:

• 0.0 to 0.4—not safe, taking action required;
• 0.4 to 0.6—relatively safe, but require intensive monitoring;
• 0.6 to 1.0—safe, some small object may be floating in long distance.

The safety level (Figure 9) and the number of subsets strictly depend on the distance to
the detected floating objects, and to the type of vessels and their maneuvering characteristics.
Additionally, the environmental conditions should be taken into account, i.e., visibility,
wave height, wind, and other weather parameters.
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(a) (b) 

Figure 8. Comparison of network results depending on distance to floating objects. Range of values is
a real value from 0 (not safe) to 1 (safe). Safety level in square brackets. Longer distance (a) qualifies
situation as relatively safe (0.71). When vessel approaches a little closer (b) then safety level drops
significantly to 0.31.

Figure 9. Safety level in relation to distance to floating object.

Additionally, the system can be expanded to more precisely identify and mark objects
on the image. One of the good solutions enabling real-time identification and classification
of objects is the YOLO algorithm presented in 2015 [18]. The example of practical applica-
tion of this algorithm for small-object detection in an underwater environment is described
in [19]. The algorithm is still being developed and improved with new solutions that allow
users to cope with some of the shortcomings of previous versions [20]. It is also worth
noticing that each addition of new piece of visual or numerical information on the system
screen may reduce readability or even overwhelm the user with information. Therefore,
such auxiliary systems should be legible, and any additional elements should be optional
and can be temporarily turned off.

5. Conclusions

The safety of marine navigation relies on a combination of skilled seamanship and
technological advancements, including the effective use of decision support systems. The
proposed solution is a good candidate that meets the conditions to become an easy-to-use

257



Sensors 2024, 24, 7505

lightweight application of the decision support system. Such a system during navigation
through sea areas may help to assess safety level regarding the presence of small floating
objects on the surface, difficult to spot in time without additional sensors other than the
watchful eyes of the observer on board. Further practical research and measurements are
needed to more thoroughly verify and test different navigation scenarios, especially in
rough weather, low-light conditions, and high traffic.

Funding: This study was funded from the statutory activities of Gdynia Maritime University, grant
number WN/2024/PI/2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available at http://kpisk.umg.edu.pl/lacki/research/2024/
accessed on 21 November 2024

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Fraisl, D.; See, L.; Bowers, R.; Seidu, O.; Fredua, K.B.; Bowser, A.; Meloche, M.; Weller, S.; Amaglo-Kobla, T.; Ghafari, D.; et al.
The Contributions of Citizen Science to SDG Monitoring and Reporting on Marine Plastics. Sustain. Sci. 2023, 18, 2629–2647.
[CrossRef]

2. Huang, G.; Liu, Z.; Pleiss, G.; Van Der Maaten, L.; Weinberger, K.Q. Convolutional Networks with Dense Connectivity. IEEE
Trans. Pattern Anal. Mach. Intell. 2022, 44, 8704–8716. [CrossRef] [PubMed]

3. Moon, J.; Lim, S.; Lee, H.; Yu, S.; Lee, K.-B. Smart Count System Based on Object Detection Using Deep Learning. Remote Sens.
2022, 14, 3761. [CrossRef]

4. Bashir, S.M.A.; Wang, Y. Small Object Detection in Remote Sensing Images with Residual Feature Aggregation-Based Super-
Resolution and Object Detector Network. Remote Sens. 2021, 13, 1854. [CrossRef]

5. Coleman, S.; Kerr, D.; Zhang, Y. Image Sensing and Processing with Convolutional Neural Networks. Sensors 2022, 22, 3612.
[CrossRef] [PubMed]

6. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021,
8, 53. [CrossRef] [PubMed]

7. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with
Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

8. Zhang, H.; Zhang, W.; Shen, W.; Li, N.; Chen, Y.; Li, S.; Chen, B.; Guo, S.; Wang, Y. Automatic Segmentation of the Cardiac MR
Images Based on Nested Fully Convolutional Dense Network with Dilated Convolution. Biomed. Signal Process. Control 2021, 68,
102684. [CrossRef]

9. Kumaraswamy, E.; Kumar, S.; Sharma, M. An Invasive Ductal Carcinomas Breast Cancer Grade Classification Using an Ensemble
of Convolutional Neural Networks. Diagnostics 2023, 13, 1977. [CrossRef] [PubMed]

10. Manabe, K.; Asami, Y.; Yamada, T.; Sugimori, H. Improvement in the Convolutional Neural Network for Computed Tomography
Images. Appl. Sci. 2021, 11, 1505. [CrossRef]

11. Moya Rueda, F.; Grzeszick, R.; Fink, G.A.; Feldhorst, S.; Ten Hompel, M. Convolutional Neural Networks for Human Activity
Recognition Using Body-Worn Sensors. Informatics 2018, 5, 26. [CrossRef]

12. Abid, B.; Khan, B.M.; Memon, R.A. Seismic Facies Segmentation Using Ensemble of Convolutional Neural Networks. Wirel.
Commun. Mob. Comput. 2022, 2022, 7762543. [CrossRef]

13. Yu, F.; Xiu, X.; Li, Y. A Survey on Deep Transfer Learning and Beyond. Mathematics 2022, 10, 3619. [CrossRef]
14. Kim, J.-H.; Kim, N.; Park, Y.W.; Won, C.S. Object Detection and Classification Based on YOLO-V5 with Improved Maritime

Dataset. J. Mar. Sci. Eng. 2022, 10, 377. [CrossRef]
15. Emanuelsson, E.; Wang, L. Real-Time Characteristics of Marine Object Detection under Low Light Conditions: Marine Object

Detection Using YOLO with near Infrared Camera. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden,
2020.

16. Yamaguchi, K.; Sakamoto, K.; Akabane, T.; Fujimoto, Y. A Neural Network for Speaker-Independent Isolated Word Recognition.
In Proceedings of the First International Conference on Spoken Language Processing, Kobe, Japan, 18–22 November 1990;
pp. 1077–1080.

17. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
18. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

258



Sensors 2024, 24, 7505

19. Zhang, M.; Xu, S.; Song, W.; He, Q.; Wei, Q. Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale
Attentional Feature Fusion. Remote Sens. 2021, 13, 4706. [CrossRef]

20. Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer
Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

259





MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-3660-4


