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Mureşan, C. Congruence Extensions

in Congruence–Modular Varieties.

Axioms 2024, 13, 824. https://

doi.org/10.3390/axioms13120824

Academic Editors: Cristina Flaut,

Dana Piciu and Murat Tosun

Received: 2 September 2024

Revised: 20 October 2024

Accepted: 21 October 2024

Published: 25 November 2024

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Congruence Extensions in Congruence–Modular Varieties
George Georgescu 1 , Leonard Kwuida 2 and Claudia Mureşan 1,*

1 Faculty of Mathematics and Computer Science, University of Bucharest, 010014 Bucharest, Romania;
georgescu.capreni@yahoo.com

2 School of Business, Bern University of Applied Sciences, 3005 Bern, Switzerland; leonard.kwuida@bfh.ch
* Correspondence: cmuresan@fmi.unibuc.ro

Abstract: We investigate from an algebraic and topological point of view the minimal prime spec-
trum of a universal algebra, considering the prime congruences with respect to the term condition
commutator. Then we use the topological structure of the minimal prime spectrum to study ex-
tensions of universal algebras that generalize certain types of ring extensions. Our results hold for
semiprime members of semidegenerate congruence–modular varieties, as well as semiprime alge-
bras whose term condition commutators are commutative and distributive with respect to arbitrary
joins and satisfy certain conditions on compact congruences, even if those algebras do not generate
congruence–modular varieties.

Keywords: (modular) commutator; (minimal) prime congruence; (Stone, Zariski, flat) topology; (ring)
extension

MSC: 08A30; 08B10; 06B10; 13B99; 06F35; 03G25

1. Introduction

Inspired by group theory and initially developped in [1] for congruence–modular va-
rieties, commutator theory has led to the solving of many deep universal algebra problems;
it has subsequently been extended by adopting various definitions for the commutator, all
of which collapse to the modular commutator in this congruence–modular case.

The congruence lattices of members of congruence–modular varieties, endowed with
the modular commutator, form commutator lattices, in which we can introduce the prime
elements with respect to the commutator operation. For the purpose of not restricting to
this congruence–modular setting, we have introduced the notion of a prime congruence
through the term condition commutator. Under certain conditions for this commutator
operation which do not have to be satisfied throughout a whole variety, the thus defined
set of the prime congruences of an algebra becomes a topological space when endowed
with a generalization of the Zariski topology from commutative rings [2,3]. For mem-
bers of semidegenerate congruence–modular varieties, this topological space has strong
properties [4], some of which extend to more general cases.

The first goal of this paper is to study the topology this generalization induces on
the antichain of the minimal prime congruences of an algebra whose term condition com-
mutator satisfies certain conditions, all of which hold in any member of a semidegenerate
congruence–modular variety.

The second goal of our present work is the study of certain types of extensions of
algebras with “well–behaved” commutators, meaning term condition commutators that
behave like the modular commutator, generalizing results on ring extensions from [5,6].

In Section 2 we recall some results on congruence lattices and the term condition
commutator, as well as the particular case of the modular commutator, along with the prime
and minimal prime spectra of congruences of an algebra with ”well–behaved” commutators,
where the prime congruences are defined with respect to the commutator operation, as well

Axioms 2024, 13, 824. https://doi.org/10.3390/axioms13120824 https://www.mdpi.com/journal/axioms1
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as the prime and minimal spectra of ideals of a bounded distributive lattice. The following
sections are dedicated to our new results.

Section 3 contains arithmetical properties of commutator lattices of congruences and
annihilators with respect to the commutator in such lattices, derived from the residuation
operation and its associated negation introduced through these annihilators.

In Section 4 we obtain several algebraic properties of the minimal prime spectrum
of congruences, including a characterization of minimal prime congruences through their
behavior with respect to the negations of congruences, obtained in two different cases from
a corresponding characterization of minimal prime ideals of bounded distributive lattices.

In Section 5 we study the Stone (also called spectral) and the flat (also called inverse)
topology on the minimal prime spectrum of congruences of an algebra, establish homeomor-
phisms between these and the corresponding topologies on the minimal prime spectrum of
ideals of the reticulation of that algebra (see [7] for the construction of the reticulation in
the universal algebra setting) and obtain necessary and sufficient conditions for these two
topologies to coincide.

In Section 6, starting from the study of ring extensions in [5,6], we define certain
classes of extensions of universal algebras that generalize corresponding classes of ring
extensions: m–extensions, rigid, quasirigid and weak rigid extensions, r–extensions and
quasi/weak r–extensions, r∗–extensions and quasi/weak r∗–extensions, and, generalizing
results from [5,6], we obtain relations between these types of extensions, characterizations
for these kinds of extensions and topological properties of the minimal prime spectra of the
universal algebras that form such extensions.

2. Preliminaries

We refer the reader to [4,8–10] for a further study of the following notions from
universal algebra, to [11–14] for the lattice–theoretical ones, to [1,4,10,15] for the results on
commutators and to [4,16–20] for the Stone topologies.

All algebras will be nonempty and they will be designated by their underlying sets.
By trivial algebra we mean one–element algebra.

N denotes the set of the natural numbers, N∗= N \ {0}, and, for any a, b ∈ N, we
denote by a, b= {n ∈ N | a ≤ n ≤ b} the interval in the lattice (N,≤) bounded by a and b,
where ≤ is the natural order (this is to differentiate from the notation for commutators).
Let M, N be sets and S ⊆ M. Then we denote by P(M) the set of the subsets of M,
by ∆M= {(x, x) | x ∈ M} and ∇M= M2 the smallest and the largest equivalence on M,
respectively, and by iS,M : S → M the inclusion map. For any function f : M → N, we
denote by Ker( f ) the kernel of f , by f the direct image of f 2 = f × f and by f ∗ the inverse
image of f 2.

For any poset P, Max(P) and Min(P) will denote the set of the maximal elements and
that of the minimal elements of P, respectively. The order on congruences of an algebra or
ideals or filters of a lattice will always be the set inclusion.

Let L be a lattice. Then Cp(L) and Mi(L) denote the set of the compact elements and
that of the meet–irreducible elements of L, respectively. Filt(L), Id(L), PId(L) and SpecId(L)
denote the sets of the filters, ideals, principal ideals and prime ideals of L, respectively. We
denote by MinId(L)= Min(SpecId(L)): the set of the minimal prime ideals of L. Let U ⊆ L
and u ∈ L. Then [U)L and [u)L denote the filters of L generated by U and by u, respectively,
while (U]L and (u]L denote the ideals of L generated by U and by u, respectively. If L has a
0, then AnnL(U)= {a ∈ L | (∀ x ∈ U) (a ∧ x = 0)} is the annihilator of U and we denote
by AnnL(u)= AnnL({u}) the annihilator of u. The subscript L will be eliminated from
these notations when the lattice L is clear from the context. Note that, if L has a 0 and it
is distributive, then all annihilators in L are ideals of L. If L is a bounded lattice, then we
denote by B(L) the set of the complemented elements of L, which, of course, is a Boolean
sublattice of L if L is distributive.
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Recall that a frame is a complete lattice with the meet distributive with respect to
arbitrary joins.

H⃝ Throughout the rest of this paper: τ will be a universal algebras signature, V a variety
of τ–algebras and A an arbitrary member of V .

Everywhere in this paper, we will mark global assumptions as above, for better
visibility.

Unless mentioned otherwise, by morphism we mean τ–morphism.
Con(A), Max(A), PCon(A) and K(A) denote the sets of the congruences, maximal

(proper) congruences, principal congruences and finitely generated congruences of A,
respectively; note that K(A) = Cp(Con(A)). Max(A) is called the maximal spectrum of A.
For any X ⊆ A2 and any a, b ∈ A, CgA(X) will be the congruence of A generated by X and
we shall denote by CgA(a, b)= CgA({(a, b)}).

For any θ ∈ Con(A), pθ : A → A/θ will be the canonical surjective morphism; given
any X ∈ A ∪ A2 ∪ P(A) ∪ P(A2), we denote by X/θ= pθ(X). Note that Ker(pθ) = θ for
any θ ∈ Con(A), and that CgA(CgS(X)) = CgA(X) for any subalgebra S of A and any
X ⊆ S2.

H⃝ Throughout the rest of this paper, B will be a member of V and f : A → B a morphism.

Recall that, for any α ∈ Con(A) and any β ∈ Con(B), we have f ∗(β) ∈ [Ker( f )) ⊆ Con(A),
f ( f ∗(β)) = β ∩ f (A2) ⊆ β and α ⊆ f ∗( f (α)); if α ∈ [Ker( f )), then f (α) ∈ Con( f (A))
and f ∗( f (α)) = α. Hence θ 7→ f (θ) is a lattice isomorphism from [Ker( f )) to Con( f (A)),
having f ∗ as inverse, and thus it sets an order isomorphism from Max(A) ∩ [Ker( f )) to
Max( f (A)). In particular, for any θ ∈ Con(A), the map α 7→ α/θ is an order isomorphism
from [θ) to Con(A/θ).

Lemma 1 ([21] (Lemma 1.11), [22] (Proposition 1.2)). For any X ⊆ A2 and any α, θ ∈ Con(A):

• f (CgA(X) ∨ Ker( f )) = Cg f (A)( f (X)), so CgB( f (CgA(X))) = CgB( f (X)) and
(CgA(X) ∨ θ)/θ = CgA/θ(X/θ);

• in particular, f (α ∨ Ker( f )) = Cg f (A)( f (α)), so (α ∨ θ)/θ = CgA/θ(α/θ).

For any nonempty family (αi)i∈I ⊆ [Ker( f )), we have, in Con( f (A)): f (
∨

i∈I
αi) =

∨

i∈I
f (αi).

Indeed, by Lemma 1,

f (
∨

i∈I
αi) = f (CgA(

⋃

i∈I
αi)) = Cg f (A)( f (

⋃

i∈I
αi)) = Cg f (A)(

⋃
i∈I f (αi)) =

∨
i∈I f (αi).

We denote by f •: Con(A) → Con(B) the map defined by f •(α) = CgB( f (α)) for all
α ∈ Con(A). By the above, if f is surjective, then f • |[Ker( f )): [Ker( f )) → Con(B) is the
inverse of the lattice isomorphism f ∗ |Con(B): Con(B) → [Ker( f )).

We use the following definition from [23] for the term condition commutator: let
α, β ∈ Con(A). For any µ ∈ Con(A), by C(α, β; µ) we denote the fact that the following con-
dition holds: for all n, k ∈ N and any term t over τ of arity n + k, if (ai, bi) ∈ α for all i ∈ 1, n
and (cj, dj) ∈ β for all j ∈ 1, k, then (tA(a1, . . . , an, c1, . . . , ck), tA(a1, . . . , an, d1, . . . , dk)) ∈ µ

if and only if (tA(b1, . . . , bn, c1, . . . , ck), tA(b1, . . . , bn, d1, . . . , dk)) ∈ µ. We denote by [α, β]A
the commutator of α and β in A, defined by [α, β]A :=

⋂{µ ∈ Con(A) | C(α, β; µ)}. The
operation [·, ·]A: Con(A)× Con(A) → Con(A) is called the commutator of A.

By [1], if V is congruence–modular, then, for each member M of V , [·, ·]M
is the unique binary operation on Con(M) such that, for all α, β ∈ Con(M),
[α, β]M = min{µ ∈ Con(M) | µ ⊆ α ∩ β and, for any member N of V and any sur-
jective morphism h : M → N in V , µ ∨ Ker(h) = h∗([h(α ∨ Ker(h)), h(β ∨ Ker(h))]N)}.
Therefore, if V is congruence–modular, α, β, θ ∈ Con(A) and f is surjective, then

[ f (α ∨ Ker( f )), f (β ∨ Ker( f ))]B = f ([α, β]A ∨ Ker( f )).

3
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In particular, [(α ∨ θ)/θ, (β ∨ θ)/θ]A/θ = ([α, β]A ∨ θ)/θ, thus, if θ ⊆ α ∩ β, then
[α/θ, β/θ]A/θ = ([α, β]A ∨ θ)/θ; if, moreover, θ ⊆ [α, β]A, then [α/θ, β/θ]A/θ = [α, β]A/θ.

By [23] [Lemma 4.6, Lemma 4.7, Theorem 8.3], the commutator is smaller than the inter-
section and increasing in both arguments; if V is congruence–modular, then the commutator
is also commutative and distributive in both arguments with respect to arbitrary joins.

Hence, if V is congruence–modular and the commutator of A coincides to the inter-
section of congruences, then Con(A) is a frame, in particular it is distributive. Therefore,
if V is congruence–modular and the commutator coincides to the intersection in each
member of V , then V is congruence–distributive. By [24], the converse holds, as well: if V
is congruence–distributive, then, in each member of V , the commutator coincides to the
intersection of congruences.

For any α, β ∈ Con(A), we denote by [α, β]1A = [α, β]A and, for any n ∈ N∗, by
[α, β]n+1

A = [[α, β]nA,[α, β]nA]A.
Recall that V is said to be semidegenerate if and only if no nontrivial algebra in V has

one–element subalgebras. Recall from [10] that, if V is congruence–modular, then the
following are equivalent:

• V is semidegenerate;
• for all members M of V , ∇M ∈ K(M).

If [·, ·]A is distributive with respect to the join, in particular if V is congruence–modular,
then, if A has principal commutators, that is its set PCon(A) of principal congruences is closed
with respect to the commutator, then its set K(A) of compact congruences is closed with
respect to the commutator.

Recall that a prime congruence of A is a proper congruence ϕ of A such that, for any
α, β ∈ Con(A), if [α, β]A ⊆ ϕ, then α ⊆ ϕ or β ⊆ ϕ [1]. It actually suffices that we enforce
this condition for principal congruences α, β of A:

Lemma 2 ([7,18]). A proper congruence ϕ of A is prime if and only if for any α, β ∈ PCon(A), if
[α, β]A ⊆ ϕ, then α ⊆ ϕ or β ⊆ ϕ.

We denote by Spec(A) the (prime) spectrum of A, that is the set of the prime congruences
of A. Recall that Spec(A) is not necessarily nonempty. However, by [4] [Theorem 5.3], if
the commutator of A is distributive with respect to the join of congruences, ∇A ∈ K(A)
and [∇A,∇A]A = ∇A, in particular if V is congruence–modular and semidegenerate, then:

• Max(A) ⊆ Spec(A);
• any proper congruence of A is included in a maximal, thus prime congruence of A;
• hence Max(A) and thus Spec(A) is nonempty whenever A is nontrivial.

For all θ ∈ Con(A), we set VA(θ) := Spec(A) ∩ [θ) and DA(θ) := Spec(A) \ VA(θ) =
Spec(A) \ [θ).

For all X ⊆ A2 and a, b ∈ A, we set VA(X) := VA(CgA(X)), DA(X) := DA(CgA(X)),
VA(a, b) := VA(CgA(a, b)) and DA(a, b) := DA(CgA(a, b)).

For any θ ∈ Con(A), we set ρA(θ) :=
⋂

VA(θ) and call this congruence the radical of θ.
We denote by RCon(A)= {ρA(θ) | θ ∈ Con(A)} = {θ ∈ Con(A) | ρA(θ) = θ}. We call the
elements of RCon(A) the radical congruences of A. Obviously, any prime congruence of A is
radical.

By [4] [Lemma 1.6, Proposition 1.2], if the commutator of A is commutative and
distributive with respect to arbitrary joins, in particular if V is congruence–modular, then:

(i) a congruence θ of A is radical if and only if it is semiprime, that is, for any
α ∈ Con(A), if [α, α]A ⊆ θ, then α ⊆ θ;

(ii) hence Spec(A) = Mi(Con(A)) ∩ RCon(A).

A is called a semiprime algebra if and only if ρA(∆A) = ∆A. By statement (i) above, if
the commutator of A equals the intersection, in particular if V is congruence–distributive,
then RCon(A) = Con(A), thus A is semiprime.

4
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Let us denote by SSpec(A)= {DA(θ) | θ ∈ Con(A)}. If the commutator of A is
commutative and distributive with respect to arbitrary joins, in particular if V is congruence–
modular, then, by [4,7,18], SSpec(A) is a topology on Spec(A), called the Stone topology or
the spectral topology, which satisfies, for all α, β ∈ Con(A) and any family (αi)i∈I ⊆ Con(A):

• DA(α) ⊆ DA(β) if and only if VA(α) ⊇ VA(β) if and only if ρA(α) ⊆ ρA(β);
• thus DA(α) = DA(β) if and only if VA(α) = VA(β) if and only if ρA(α) = ρA(β);
• clearly, α ⊆ β implies ρA(α) ⊆ ρA(β);
• clearly, α ⊆ ρA(α), thus ρA(α) = ∆A implies α = ∆A;
• DA(∇A) = Spec(A) = VA(∆A) and DA(∆A) = ∅ = VA(∇A);
• if A is semiprime, then: DA(α) = ∅ if and only if VA(α) = Spec(A) if and only if

ρA(α) = ∆A if and only if α = ∆A;
• if ∇A ∈ K(A) and [∇A,∇A]A = ∇A, in particular if V is congruence–modular and

semidegenerate, then: DA(α) = Spec(A) if and only if VA(α) = ∅ if and only if
ρA(α) = ∇A if and only if α = ∇A;

• DA([α, β]A) = DA(α ∩ β) = DA(α) ∩ DA(β) and DA(α ∨ β) = DA(α) ∪ DA(β); thus
VA([α, β]A) = VA(α ∩ β) = VA(α) ∪ VA(β), VA(α ∨ β) = VA(α) ∩ VA(β),
ρA([α, β]A) = ρA(α ∩ β) = ρA(α) ∩ ρA(β) and ρA(α ∨ β) = ρA(ρA(α) ∨ ρA(β));

• DA(
∨

i∈I
αi) = DA(

⋃

i∈I
αi) =

⋃

i∈I
DA(αi), thus VA(

∨

i∈I
αi) = VA(

⋃

i∈I
αi) =

⋂

i∈I
VA(αi) and

ρA(
∨

i∈I
αi) = ρA(

⋃

i∈I
αi) = ρA(

⋃

i∈I
ρA(αi)) = ρA(

∨

i∈I
ρA(αi));

• hence, for any θ ∈ Con(A), VA(θ) =
⋂

(a,b)∈θ

VA(a, b) and DA(θ) =
⋃

(a,b)∈θ

DA(a, b),

therefore the Stone topology SSpec(A) has {DA(a, b) | a, b ∈ A} as a basis.

If [·, ·]A is commutative and distributive with respect to arbitrary joins and Max(A) ⊆
Spec(A), in particular if V is congruence–modular and semidegenerate, then the Stone
topology SSpec(A) on Spec(A) induces the Stone or spectral topology on Max(A): SMax(A) =
{DA(θ) ∩ Max(A) | θ ∈ Con(A)}, having {DA(a, b) ∩ Max(A) | a, b ∈ A} as a basis. Note
that Max(A) ⊆ Spec(A) if [·, ·]A is commutative and distributive with respect to arbitrary
joins, ∇A ∈ K(A) and [∇A,∇A]A = ∇A.

In the same way, but replacing congruences with ideals, one defines the Stone topology
on the set of prime ideals and that of maximal ideals of a bounded distributive lattice.

We call f an admissible morphism if and only if f ∗(Spec(B)) ⊆ Spec(A) [18,19]. Recall
from [4] that, if V is congruence–modular, then the map α 7→ f (α) is an order isomorphism
from Spec(A) ∩ [Ker( f )) to Spec( f (A)), thus to Spec(B) if f is surjective, case in which
this map coincides with f • and f ∗ is its inverse, hence f is admissible.

Remark 1. By the above, if V is congruence–modular and f is surjective, then:

• for all α ∈ Con(A), f (VA(α)) = VB( f (α)) and f (DA(α)) = DB( f (α)); in particular:
• for all a, b ∈ A, f (VA(a, b)) = VB( f (a), f (b)) and f (DA(a, b)) = DB( f (a), f (b));

thus, since f = f • = ( f ∗)−1, the map f ∗ |Spec(B): Spec(B) → Spec(A) is continuous with
respect to the Stone topologies.

A subset S of A2 is called an m–system for A if and only if, for all a, b, c, d ∈ A, if
(a, b), (c, d) ∈ S, then [CgA(a, b), CgA(c, d)]A ∩ S ̸= ∅. For instance, any congruence of A is
an m–system. Also:

Remark 2 ([7,18]). If ϕ ∈ Spec(A), then ∇A \ ϕ is an m–system in A.

Lemma 3 ([4]). Let S be an m–system in A and α ∈ Con(A) such that α ∩ S = ∅. If the
commutator of A is distributive with respect to the join, in particular if V is congruence–modular,
then:

• Max{θ ∈ Con(A) | α ⊆ θ, θ ∩ S = ∅} ⊆ Spec(A), in particular, for the case α = ∆A,
Max{θ ∈ Con(A) | θ ∩ S = ∅} ⊆ Spec(A);
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• if ∇A ∈ K(A), in particular if V is congruence–modular and semidegenerate, then the set
Max{θ ∈ Con(A) | α ⊆ θ, θ ∩ S = ∅} is nonempty; thus Max{θ ∈ Con(A) | θ ∩ S = ∅}
is nonempty.

We denote by Min(A) = Min(Spec(A),⊆). Recall that Min(A) is called the minimal
prime spectrum of A and its elements are called minimal prime congruences of A.

Now assume that the commutator of A is commutative and distributive with respect
to arbitrary joins, which holds if V is congruence–modular. Then, by [25] [Proposition 5.9],
if we define a binary relation ≡A on Con(A) by: for any α, β ∈ Con(A), α ≡A β if and only
if ρA(α) = ρA(β), then ≡A is a lattice congruence of Con(A) that preserves arbitrary joins
such that Con(A)/≡A is a frame; see also [7].

Following the notations from [25], if (L, [·, ·]) is a commutator lattice, that is a complete
lattice L endowed with a binary operation [·, ·] which is commutative, smaller than the
meet and distributive with respect to arbitrary joins [16,26], then we denote by SpecL the
set of the prime elements of L with respect to the commutator [·, ·], by MinL= Min(SpecL)
the set of the minimal prime elements of L and by R(L) the set of the radical elements of L,
that is the meets of subsets of SpecL.

Let (L, [·, ·]) be a commutator lattice, u ∈ L and U ⊆ L. The annihilators with re-
spect to the commutator are defined by Ann(L,[·,·])(U) := {a ∈ L | (∀ x ∈ U) ([a, x] = 0)}
and Ann(L,[·,·])(u) := Ann(L,[·,·])({u}). Recall from [25] that ≡A also preserves the commu-
tator and the quotient algebra of (Con(A), [·, ·]A) through ≡A is the commutator lattice
(Con(A)/ ≡A,∧). Note that L is a frame if its commutator [·, ·] equals the meet, case in
which the annihilators in (L, [·, ·]) coincide with those with respect to the meet and SpecL is
exactly the set of the meet–prime elements of L, thus SpecL = Mi(L) since L is distributive.

3. On the Residuated Structure of the Lattice of Congruences

Condition 1. Let M be an arbitrary member of the variety V . We will say that M satisfies
condition:

(i) iff the commutator of M is commutative and distributive with respect to arbitrary joins;
(ii) iff [θ,∇M]M = θ for all θ ∈ Con(M);
(iii) iff, for all α, β, θ ∈ Con(M), ([α, β]M ∨ θ)/θ = [(α ∨ θ)/θ, (β ∨ θ)/θ]M/θ ;
(iv) iff ∇M ∈ K(M) and K(M) is closed with respect to the commutator of M;
(v) iff all principal ideals of Con(M)/ ≡M generated by minimal prime elements

are minimal prime ideals, that is: for any p ∈ MinCon(M)/≡M
, we have

(p] ∈ MinId(Con(M)/≡M);
(vi) iff α⊥ ∈ K(M) for any α ∈ K(M).

Recall from Section 2 and [1,10] that:

• if V is congruence–modular, then A satisfies (i) and (iii) from Condition 1;
• if V is congruence–modular and semidegenerate, then ∇A ∈ K(A) and A satisfies

Condition 1.(ii);
• if V is congruence–distributive, then A satisfies Condition 1.(ii).

Recall that K(A) = Cp(Con(A)). If the lattice Con(A) is compact, i.e., Con(A) = K(A),
then A trivially satisfies (iv) and (vi) from Condition 1. Recall from [7] that, if A satisfies
Condition 1.(iv), then the reticulation L(A) of A can be constructed as L(A) = K(A)/≡A,
which is a bounded sublattice of the frame Con(A)/ ≡A and thus L(A) is a bounded
distributive lattice.

Since an element of a lattice is prime if and only if the principal ideal it generates is
prime, we have that, whenever a principal ideal of a lattice is a minimal prime ideal, it
follows that its generator is a minimal prime element of that lattice. Hence Condition 1.(v)
for a member M of V is equivalent to:

• for any p ∈ Con(M)/≡M, p ∈ MinCon(M)/≡M
if and only if (p] ∈ MinId(Con(M)/≡M).
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Note that A satisfies Condition 1.(v) if all prime ideals of Con(A)/≡A are principal,
in particular if all ideals of Con(A)/≡A are principal, that is if Con(A)/≡A is compact,
in particular if Con(A)/≡A= K(A)/≡A, that is if Con(A)/≡A= L(A) in the case when
K(A) is closed with respect to the commutator of A, in particular if Con(A) is compact,
that is if Con(A) = K(A).
H⃝ Throughout this section, we will assume that A satisfies Condition 1.(i), which holds
in the particular case when V is congruence–modular.

See [7] for the next results. Until mentioned otherwise, let α, β, γ, θ ∈ Con(A) and
n ∈ N∗, arbitrary. An induction argument shows that:

• [α, β]n+1
A = [[α, β]A, [α, β]A]

n
A;

• ρA([α, β]nA) = ρA([α, β]A) = ρA(α ∩ β) = ρA(α) ∩ ρA(β).

If A is semiprime, then ρA(θ) = ∆A if and only if θ = ∆A, hence, by the above:
[α, β]nA = ∆A if and only if [α, β]A = ∆A if and only if α ∩ β = ∆A, so AnnCon(A)(α) =
Ann(Con(A),[·,·]A)(α) and thus, for any S ⊆ Con(A), AnnCon(A)(S) = Ann(Con(A),[·,·]A)(S).

If V is congruence–modular and f is surjective, then, for any X, Y ∈ P(A2) and any
a, b, c, d ∈ A:

• [ f (α ∨ Ker( f )), f (β ∨ Ker( f ))]nB = f ([α, β]nA ∨ Ker( f )), thus [(α ∨ θ)/θ, (β ∨ θ)/θ]nA/θ
= ([α, β]nA ∨ θ)/θ;

• hence [CgA/θ(X/θ), CgA/θ(Y/θ)]nA/θ = ([CgA(X), CgA(Y)]nA ∨ θ)/θ, in particular
[CgA/θ(a/θ, b/θ), CgA/θ(c/θ, d/θ)]nA/θ = ([CgA(a, b), CgA(c, d)]nA ∨ θ)/θ;

• Spec(B) = {ϕ/Ker( f ) | ϕ ∈ VA(Ker( f ))}, thus Spec(A/θ) = {ϕ/θ | ϕ ∈ VA(θ)}.

We denote by β → γ=
∨{δ ∈ Con(A) | [δ, β]A ⊆ γ} and β⊥= β → ∆A.

Since θ =
∨

(a,b)∈θ

CgA(a, b) =
∨
{ζ ∈ PCon(A) | ζ ⊆ θ} =

∨
{ζ ∈ K(A) | ζ ⊆ θ}, it

follows that:

β → γ =
∨
{ζ ∈ K(A) | [ζ, β]A ⊆ γ} =

∨
{ζ ∈ PCon(A) | [ζ, β]A ⊆ γ},

in particular β⊥ =
∨
{ζ ∈ K(A) | [ζ, β]A = ∆A} =

∨
{ζ ∈ PCon(A) | [ζ, β]A = ∆A}.

Let us note that, for all a, b ∈ A, we have (a, b) ∈ β⊥ if and only if CgA(a, b) ⊆ β⊥ if and
only if [CgA(a, b), β]A = ∆A, hence β⊥ = {(a, b) ∈ A2 | [CgA(a, b), β]A = ∆A}.

Note that these operations can be defined for any commutator lattice (L, [·, ·]) by:
b → c =

∨{a ∈ L | [a, b] ≤ c} and b⊥ = b → 0 =
∨{a ∈ L | [a, b] = 0} for any b, c ∈ L and,

if L is algebraic, that is compactly generated, then we also have equalities similar to the
above.

Since [∆A, β]A = ∆A ⊆ γ and, for any non–empty family (αi)i∈I , [αi, β]A ⊆ γ for all
i ∈ I implies [

∨

i∈I
αi, β]A =

∨

i∈I
[αi, β]A ⊆ γ, it follows that:

β → γ = max{δ ∈ Con(A) | [δ, β]A ⊆ γ},

in particular β⊥ = max{δ ∈ Con(A) | [δ, β]A = ∆A},

hence β⊥= max(Ann(Con(A),[·,·]A)(β)) and thus Ann(Con(A),[·,·]A)(β) = (β⊥]∈PId(Con(A)).
Note that [β, β → γ]A ⊆ γ, in particular [β, β⊥]A = ∆A; moreover, for all δ ∈ Con(A):

[δ, β]A ⊆ γ if and only if δ ⊆ β → γ, in particular: [δ, β]A = ∆A if and only if δ ⊆ β⊥.

Therefore, in the particular case when the commutator of A is associative,
(Con(A),∩,∨,→, ∆A,∇A) is a (bounded commutative integral) residuated lattice, in which
·⊥ is the negation.

Lemma 4. If the algebra A is semiprime, then θ⊥ ∈ RCon(A) for any θ ∈ Con(A).
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Proof. Let α, θ ∈ Con(A) such that [α, α]A ⊆ θ⊥. Then, by the above and the fact that
A is semiprime, [[α, α]A, θ]A = ∆A, which is equivalent to ρA([[α, α]A, θ]A) = ∆A, that is
ρA(α ∩ θ) = ∆A, that is ρA([α, θ]A) = ∆A, which means that [α, θ]A = ∆A, which in turn is
equivalent to α ⊆ θ⊥. Hence θ⊥ is a semiprime and thus a radical congruence of A.

For any X ⊆ A2, we set

X⊥ := {(a, b) ∈ A2 | (∀ (x, y) ∈ X) ([CgA(a, b), CgA(x, y)]A = ∆A)}.

Thus:

X⊥ = {(a, b) ∈ A2 | [CgA(a, b),
∨

(x,y)∈X

CgA(x, y)]A = ∆A}

= {(a, b) ∈ A2 | [CgA(a, b), CgA(X)]A = ∆A}
=
∨
{CgA(a, b) | (a, b) ∈ A2, [CgA(a, b), CgA(X)]A = ∆A}

=
∨
{α ∈ Con(A) | [α, CgA(X)]A = ∆A}

= max{α ∈ Con(A) | [α, CgA(X)]A = ∆A} = CgA(X)⊥.

So this more general notation is consistent with the notation above for the particular case
when X ∈ Con(A).

Lemma 5. For any α, β, θ ∈ Con(A):

(i) β ⊆ α → β;
(ii) (α ∨ θ) → (β ∨ θ) = α → (β ∨ θ).

Proof. (i) [β, α]A ⊆ β ∩ α ⊆ β, thus β ⊆ max{ζ ∈ K(A) | [ζ, α]A ⊆ β} = α → β.
(ii) For all γ ∈ Con(A), we have, since [γ, θ]A ⊆ θ ⊆ β ∨ θ: γ ⊆ (α ∨ θ) → (β ∨ θ) if and
only if [γ, α∨ θ]A ⊆ β∨ θ if and only if [γ, α]A ∨ [γ, θ]A ⊆ β∨ θ if and only if [γ, α]A ⊆ β∨ θ
if and only if γ ⊆ α → (β ∨ θ). By taking γ = (α ∨ θ) → (β ∨ θ) and then γ = α → (β ∨ θ)
in the previous equivalences, we get: α → (β ∨ θ) = (α ∨ θ) → (β ∨ θ).

Proposition 1. If A satisfies Condition 1.(iii), in particular if V is congruence–modular, then, for
any α, β, θ ∈ Con(A):

(i) (α ∨ θ)/θ → (β ∨ θ)/θ = ((α ∨ θ) → (β ∨ θ))/θ = (α → (β ∨ θ))/θ;
(ii) ((α ∨ θ)/θ)⊥ = (α → θ)/θ.

Proof. By Lemma 5.(i), α → (β ∨ θ) ⊇ β ∨ θ ⊇ θ and (α ∨ θ) → (β ∨ θ) ⊇ β ∨ θ ⊇ θ.
(i) For any γ ∈ [θ), by the inclusions above, the definition of the binary operation → on
Con(A) and the assumption that A satisfies Condition 1.(iii), we have:

γ/θ ⊆ (α ∨ θ)/θ → (β ∨ θ)/θ ⇐⇒ [γ/θ, (α ∨ θ)/θ]A/θ ⊆ (β ∨ θ)/θ

⇐⇒ ([γ, α ∨ θ]A ∨ θ)/θ ⊆ (β ∨ θ)/θ

⇐⇒ [γ, α ∨ θ]A ∨ θ ⊆ β ∨ θ

⇐⇒ [γ, α ∨ θ]A ⊆ β ∨ θ

⇐⇒ γ ⊆ (α ∨ θ) → (β ∨ θ)

⇐⇒ γ/θ ⊆ ((α ∨ θ) → (β ∨ θ))/θ.

Since (α ∨ θ)/θ → (β ∨ θ)/θ, ((α ∨ θ) → (β ∨ θ))/θ ∈ Con(A/θ) = {ζ/θ | ζ ∈ [θ)},
we may take γ/θ = (α ∨ θ)/θ → (β ∨ θ)/θ and then γ/θ = ((α ∨ θ) → (β ∨ θ))/θ in
the equivalences above and obtain the first equality in the enunciation through double
inclusion. The second equality follows from Lemma 5.(ii).
(ii) Take β = ∆A in (i).
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Lemma 6. Let α, β ∈ Con(A). Then:

(i) ∆⊥
A = ∇A and, if A satisfies Condition 1.(ii), in particular if V is either congruence–

distributive or both congruence–modular and semidegenerate, then ∇⊥
A = ∆A;

(ii) α ⊆ β implies β⊥ ⊆ α⊥, and: β⊥ ⊆ α⊥ if and only if α⊥⊥ ⊆ β⊥⊥, in particular
α⊥ = β⊥ if and only if α⊥⊥ = β⊥⊥;

(iii) α ⊆ α⊥⊥ and α⊥⊥⊥ = α⊥;
(iv) (α ∨ β)⊥ = α⊥ ∩ β⊥ = (α⊥ ∩ β⊥)⊥⊥;
(v) if A is semiprime, then [α, β]⊥A = (α ∩ β)⊥ and (α ∩ β)⊥⊥ = α⊥⊥ ∩ β⊥⊥;
(vi) if A is semiprime, then: α⊥ ⊆ β⊥ if and only if [α, β]⊥A = β⊥;
(vii) if A is semiprime, then: α ⊆ α⊥ if and only if α = ∆A.

Proof. (i) ∆⊥
A = max{θ ∈ Con(A) | [θ, ∆A] = ∆A} = max(Con(A)) = ∇A.

If [θ,∇A]A = θ for all θ ∈ Con(A), then:
∇⊥

A = max{θ ∈ Con(A) | [θ,∇A] = ∆A} = max{θ ∈ Con(A) | θ = ∆A} = ∆A.
(ii), (iii) If α ⊆ β, then {θ ∈ Con(A) | [α, θ]A = ∆A} ⊇ {θ ∈ Con(A) | [β, θ]A = ∆A}, hence
β⊥ ⊆ α⊥, which thus, in turn, implies α⊥⊥ ⊆ β⊥⊥.

Since [α, α⊥]A = ∆A, it follows that α ⊆ α⊥⊥, hence α⊥ ⊆ α⊥⊥⊥ if we replace α by α⊥

in this inclusion, but also α⊥⊥⊥ ⊆ α⊥ by the above, therefore α⊥ = α⊥⊥⊥.
Hence α⊥⊥ ⊆ β⊥⊥ implies β⊥ = β⊥⊥⊥ ⊆ α⊥⊥⊥ = α⊥.

(iv) For any θ ∈ Con(A), we have: [θ, α]A = [θ, β]A = ∆A if and only if [θ, α ∨ β]A = ∆A,
hence: θ ⊆ α⊥ ∩ β⊥ if and only if θ ⊆ (α ∨ β)⊥, thus: α⊥ ∩ β⊥ = (α ∨ β)⊥. By (iii),
(α ∨ β)⊥ = (α ∨ β)⊥⊥⊥ = (α⊥ ∩ β⊥)⊥⊥.
(v) If A is semiprime, then, for any θ, ζ ∈ Con(A), we have: θ ⊆ ζ⊥ if and only if
[θ, ζ]A = ∆A if and only if θ ∩ ζ = ∆A.

Hence, for θ ∈ Con(A): θ ⊆ [α, β]⊥A if and only if [θ, [α, β]A]A = ∆A if and only if
θ ∩ α∩ β = ∆A if and only if [θ, α∩ β]A = ∆A if and only if θ ⊆ (α∩ β)⊥. Taking θ = [α, β]⊥A
and then θ = (α ∩ β)⊥ in the previous equivalences, we obtain [α, β]⊥A = (α ∩ β)⊥.

If we denote by γ = α⊥⊥ ∩ β⊥⊥ and δ = (α ∩ β)⊥ = [α, β]⊥A , then:
γ ⊆ α⊥⊥ and γ ⊆ β⊥⊥, thus [γ, α⊥]A = ∆A and [γ, β⊥]A = ∆A;
[δ, α ∩ β]A = ∆A, so δ ∩ α ∩ β = ∆A, thus [α ∩ δ, β]A = ∆A, hence α ∩ δ ⊆ β⊥;
therefore [γ, α ∩ δ]A = ∆A, so γ ∩ α ∩ δ = ∆A, thus [γ ∩ δ, α]A = ∆A, so γ ∩ δ ⊆ α⊥;
hence [γ, γ ∩ δ]A = ∆A, so γ ∩ δ = γ ∩ γ ∩ δ = ∆A, thus [γ, δ]A = ∆A, hence

α⊥⊥ ∩ β⊥⊥ = γ ⊆ δ⊥ = [α, β]⊥⊥
A = (α ∩ β)⊥⊥ by the above.

But (α ∩ β)⊥⊥ ⊆ α⊥⊥ ∩ β⊥⊥ by (ii). Therefore (α ∩ β)⊥⊥ = α⊥⊥ ∩ β⊥⊥.
(vi) By (v), [α, β]⊥⊥

A = (α ∩ β)⊥⊥ = α⊥⊥ ∩ β⊥⊥, thus, according to (ii) and (iii): α⊥ ⊆ β⊥

if and only if β⊥⊥ ⊆ α⊥⊥ if and only if α⊥⊥ ∩ β⊥⊥ = β⊥⊥ if and only if [α, β]⊥⊥
A = β⊥⊥ if

and only if [α, β]⊥A = β⊥.
(vii) If A is semiprime, then: α ⊆ α⊥ if and only if [α, α]A = ∆A if and only if α ∩ α = ∆A if
and only if α = ∆A.

Lemma 7 ([4] (Proposition 4.(1)), [7] (Proposition 18, Corollary 2)). For any θ ∈ Con(A):

• ρA(θ) = max{α ∈ Con(A) | (∃ n ∈ N∗) ([α, α]nA ⊆ θ)}
=
∨
{α ∈ Con(A) | (∃ n ∈ N∗) ([α, α]nA ⊆ θ)}

=
∨
{α ∈ K(A) | (∃ n ∈ N∗) ([α, α]nA ⊆ θ)}

=
∨
{α ∈ PCon(A) |(∃ n ∈ N∗) ([α, α]nA ⊆ θ)}

= {(a, b) ∈ A2 | (∃ n ∈ N∗) ([CgA(a, b), CgA(a, b)]nA ⊆ θ)};
• for any α ∈ Con(A), α ⊆ ρA(θ) if and only if there exists an n ∈ N∗ such that [α, α]nA ⊆ θ;
• A is semiprime if and only if, for any α ∈ PCon(A) and any n ∈ N∗, [α, α]nA = ∆A implies

α = ∆A.
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Proposition 2. If A satisfies Condition 1.(ii), in particular if V is either congruence–distributive
or both congruence–modular and semidegenerate, then: A/θ⊥ is semiprime for all θ ∈ Con(A) if
and only if A is semiprime.

Proof. By [27] (Proposition 5.22) and Lemma 4, if A is semiprime, then A/ζ is semiprime
for all ζ ∈ RCon(A), in particular A/θ⊥ is semiprime for all θ ∈ Con(A).

Conversely, if A/θ⊥ is semiprime for all θ ∈ Con(A), then A/∇⊥
A is semiprime; but

∇⊥
A = ∆A by Lemma 6.(i), and A/∇⊥

A = A/∆A, which is isomorphic to A, thus A is
semiprime.

See also [7] for the following properties. By [25] [Proposition 6.7], if A satisfies
Condition 1.(ii), in particular if V is either congruence–distributive or both congruence–
modular and semidegenerate, then:

• for any ε ∈ B(Con(A)) and any α ∈ Con(A), [ε, α]A = ε ∩ α;
• B(Con(A)) is a Boolean sublattice of Con(A) whose complementation is ·⊥ and in

which, by the above, the commutator equals the intersection.

By [25] (Proposition 6.11), if ∇A ∈ K(A) and A satisfies Condition 1.(ii), in particular
if V is congruence–modular and semidegenerate, then B(Con(A)) ⊆ K(A).

Let us also note that, if the commutator of A equals the intersection, in particular
if V is congruence–distributive, then Con(A) is a frame, hence B(Con(A)) is a complete
Boolean sublattice of Con(A).

Following [8], we say that an algebra A is hyperarchimedean if and only if, for all
θ ∈ PCon(A), there exists an n ∈ N∗ such that [θ, θ]nA ∈ B(Con(A)).

By the above, if the commutator of A equals the intersection, in particular if V is
congruence–distributive, then A is hyperarchimedean if and only if PCon(A) ⊆ B(Con(A))
if and only if Con(A) ⊆ B(Con(A)) if and only if B(Con(A)) = Con(A); furthermore,
if the commutator of A equals the intersection and ∇A ∈ K(A), in particular if V is
congruence–distributive and semidegenerate, then A is hyperarchimedean if and only if
B(Con(A)) = K(A) = Con(A). Thus the hyperarchimedean members of a congruence–
distributive variety are those with Boolean lattices of congruences and, if the variety is also
semidegenerate, then all congruences of its hyperarchimedean members are compact.

Extending the terminology used for rings in [25], we call A a strongly Baer, respectively
Baer algebra if and only if, for all θ ∈ Con(A), respectively all θ ∈ PCon(A), we have
θ⊥ ∈ B(Con(A)), that is if and only if the commutator lattice (Con(A), [·, ·]A) is strongly
Stone, respectively Stone.

Lemma 8. If A satisfies Condition 1.(ii), in particular if V is either congruence–distributive or
both congruence–modular and semidegenerate, then: A is Baer if and only if, for all θ ∈ K(A), we
have θ⊥ ∈ B(Con(A)).

Proof. The converse implication is trivial.

If A is Baer and θ ∈ K(A), so that θ =
n∨

i=1

θi for some n ∈ N∗ and θ1, . . . , θn ∈ PCon(A),

then θ⊥1 , . . . , θ⊥n ∈ B(Con(A)), hence θ⊥ = (θ1 ∨ . . . ∨ θn)⊥ = θ⊥1 ∩ . . . ∩ θ⊥n ∈ B(Con(A))
by Lemma 6.(iv).

Proposition 3. If A satisfies Condition 1.(ii), in particular if V is either congruence–distributive
or both congruence–modular and semidegenerate, then:

(i) if A is hyperarchimedean, then A is strongly Baer;
(ii) if A is strongly Baer, then A is semiprime;
(iii) if A is Baer and has principal commutators, then A is semiprime.

Proof. (i) By the above, if A is hyperarchimedean, then B(Con(A)) = Con(A), thus A is
strongly Baer.

10
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(ii) Assume that A is strongly Baer and let θ ∈ Con(A) such that [θ, θ]nA = ∆A for some n ∈
N∗. If n ≥ 2, then [θ, θ]nA = [[θ, θ]n−1

A , [θ, θ]n−1
A ]A, hence [θ, θ]n−1

A ⊆ ([θ, θ]n−1
A )⊥ by the prop-

erties of the implication. But, since A is strongly Baer, ([θ, θ]n−1
A )⊥ ∈ B(Con(A)), thus its

commutator with any congruence of A equals the intersection, hence
[θ, θ]n−1

A = [θ, θ]n−1
A ∩ ([θ, θ]n−1

A )⊥ = [[θ, θ]n−1
A , ([θ, θ]n−1

A )⊥]A = ∆A. By turning the above
into a recursive argument we get that [θ, θ]A = ∆A and then that θ = ∆A. By Lemma 7, it
follows that A is semiprime.
(iii) By an analogous argument to that of (ii), taking θ ∈ PCon(A), so that [θ, θ]nA ∈ PCon(A)
for any n ∈ N∗ since A has principal commutators.

4. The Minimal Prime Spectrum

H⃝ Throughout this section, we will assume that A satisfies Condition 1.(i), which holds if
V is congruence–modular.

By an argument based on Zorn’s Lemma, it follows that:

• any prime congruence of A includes a minimal prime congruence, hence ρA(∆A) =⋂
Spec(A) =

⋂
Min(A);

• moreover, for any θ ∈ Con(A) and any ψ ∈ VA(θ) = [θ) ∩ Spec(A), there exists a
ϕ ∈ Min(VA(θ)) = Min([θ) ∩ Spec(A)) such that ϕ ⊆ ψ, hence:

Remark 3. For any θ ∈ Con(A), we have:

• ρA(θ) =
⋂

Min(VA(θ)) =
⋂

Min([θ) ∩ Spec(A));
• DA(θ) ∩ Min(A) = ∅ if and only if VA(θ) ∩ Min(A) = Min(A) if and only if

[θ) ∩ Min(A) = Min(A) if and only if Min(A) ⊆ [θ) if and only if θ ⊆ ⋂
Min(A) if

and only if θ ⊆ ρA(∆A) if and only if ρA(θ) = ρA(∆A);
• DA(θ) ∩ Min(A) = Min(A) if and only if VA(θ) ∩ Min(A) = ∅. VA(θ) = ∅ if and

only if ρA(θ) = ∇A, which holds if θ = ∇A; recall from [7] that, if ∇A ∈ K(A) and
[∇A,∇A]A = ∇A, then ∇A/ ≡A= {∇A}, so: ρA(θ) = ∇A if and only if θ = ∇A.
Clearly, VA(θ) = ∅ implies VA(θ) ∩ Min(A) = ∅; the converse implication holds if and
only if Min(A) = Spec(A) if and only if Spec(A) is an antichain.

Indeed, Spec(A) is an antichain if and only if Min(A) = Spec(A), case in which VA(θ) =
VA(θ) ∩ Min(A).

Now, if VA(θ) ∩ Min(A) = ∅ implies VA(θ) = ∅, then let us assume by absurdum that
Min(A) ̸= Spec(A), that is Spec(A) ⊈ Min(A), so that there exists ϕ ∈ Spec(A) \ Min(A).
But then VA(ϕ) ∩ Min(A) = ∅, while VA(ϕ) ̸= ∅ since ϕ ∈ VA(ϕ); a contradiction.

Proposition 4. If ∇A ∈ K(A), in particular if V is congruence–modular and semidegenerate,
then, for any θ ∈ Con(A) and any ϕ ∈ VA(θ), the following are equivalent:

(i) ϕ ∈ Min(VA(θ));
(ii) ∇A \ ϕ is a maximal element of the set of m–systems of A which are disjoint from θ.

Proof. By Remark 2, ∇A \ ϕ is an m–system, which is, of course, disjoint from θ since
(∇A \ ϕ) ∩ θ ⊆ (∇A \ ϕ) ∩ ϕ = ∅.
(i)⇒(ii): By an application of Zorn’s Lemma, it follows that there exists a maximal element
M of the set of m–systems of A which include ∇A \ ϕ and are disjoint from θ, so that
∇A \ ϕ ⊆ M ⊆ ∇A \ θ and, furthermore, M is a maximal element of the set of m–systems
of A which are disjoint from θ.

By Lemma 3, there is ψ ∈ Max{α ∈ Con(A) | θ ⊆ α, M ∩ α = ∅} ⊆ Spec(A), so that
ψ ∈ VA(θ) and (∇A \ ϕ) ∩ ψ ⊆ M ∩ ψ = ∅, thus ∇A \ ϕ ⊆ M ⊆ ∇A \ ψ, hence ψ ⊆ ϕ.

Since ϕ ∈ Min(VA(θ)), it follows that ϕ = ψ, thus ∇A \ ϕ = M, which is a maximal
element of the set of m–systems of A disjoint from θ.
(ii)⇒(i): Let µ be a minimal element of VA(θ) with µ ⊆ ϕ.

11
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By Remark 2, ∇A \ µ is an m–system, disjoint from θ since (∇A \ µ) ∩ θ ⊆ (∇A \ µ) ∩
µ = ∅, and ∇A \ ϕ ⊆ ∇A \ µ. Since ∇A \ ϕ is a maximal element of the set of m–systems of
A which are disjoint from θ, it follows that ∇A \ϕ = ∇A \µ, thus ϕ = µ ∈ Min(VA(θ)).

Corollary 1. If ∇A ∈ K(A), in particular if V is congruence–modular and semidegenerate, then,
for any ϕ ∈ Spec(A), the following are equivalent:

• ϕ ∈ Min(A);
• ∇A \ ϕ is a maximal element of the set of m–systems of A which are disjoint from ∆A.

Proof. By Proposition 4 for θ = ∆A.

Lemma 9 ([28]). If L is a bounded distributive lattice and P ∈ SpecId(L), then the following are
equivalent:

• P ∈ MinId(L);
• for any x ∈ P, AnnL(x) ⊈ P.

Recall from Section 2 that Spec(A) = Mi(Con(A)) ∩ RCon(A). By [25] (Proposition
4.4), if A is semiprime, then all annihilators in (Con(A), [·, ·]A) are lattice ideals of Con(A).

Remember that, in the commutator lattice (Con(A), [·, ·]A), R(Con(A)) = RCon(A)
and SpecCon(A) = Spec(A), and that, since Con(A)/ ≡A is a frame, the elements of
SpecCon(A)/≡A

are exactly the meet–prime elements of Con(A)/ ≡A, thus, by the dis-
tributivity of Con(A)/≡A, SpecCon(A)/≡A

= Mi(Con(A)/≡A).

Lemma 10. If A is semiprime, then:

(i) for any U ⊆ Con(A), AnnCon(A)/≡A
(U/≡A) = Ann(Con(A),[·,·]A)(U)/≡A;

(ii) SpecCon(A)/≡A
= {ϕ/≡A | ϕ ∈ Spec(A)};

(iii) for all θ ∈ RCon(A), θ/≡A ∩RCon(A) = {θ} and θ = max(θ/≡A);
(iv) ϕ 7→ ϕ/≡A is an order isomorphism from Spec(A) to SpecCon(A)/≡A

;
(v) R(Con(A)/≡A) = {ϕ/≡A | ϕ ∈ RCon(A)}; moreover, for any ϕ ∈ Con(A), we have:

ϕ ∈ RCon(A) if and only if ϕ/ ≡A∈ R(Con(A)/ ≡A); thus ϕ 7→ ϕ/ ≡A is an order
isomorphism from RCon(A) to R(Con(A)/≡A).

Proof. (i) By [25] (Lemma 4.2).
(ii) By [25] (Proposition 6.2).
(iii) By [25] (Remark 5.11).
(iv) By (ii),(iii) and the fact that Spec(A)⊆RCon(A) and SpecCon(A)/≡A

⊆R(Con(A)/≡A).
(v) The equality follows from (ii) and the definition of radical elements; by (iii), we also
obtain the equivalence and the order isomorphism.

Remark 4. For any α, β ∈ Con(A), we have α/ ≡A≤ β/ ≡A if and only if ρA(α) ⊆ ρA(β).
Indeed, α/ ≡A≤ β/ ≡A if and only if α/ ≡A ∧β/ ≡A= α/ ≡A if and only if (α ∩ β)/ ≡A=
α/ ≡A if and only if ρA(α ∩ β) = ρA(α) if and only if ρA(α) ∩ ρA(β) = ρA(α) if and only if
ρA(α) ⊆ ρA(β).

Proposition 5. Assume that A is semiprime and let ϕ ∈ Spec(A). Let us consider the following
statements:

(i) ϕ ∈ Min(A);
(ii) for any α ∈ K(A), α ⊆ ϕ implies α⊥ ⊈ ϕ;
(iii) for any α ∈ K(A), α ⊆ ϕ if and only if α⊥ ⊈ ϕ;
(iv) for any α ∈ Con(A), α ⊆ ϕ implies α⊥ ⊈ ϕ;
(v) for any α ∈ Con(A), α ⊆ ϕ if and only if α⊥ ⊈ ϕ.

If A satisfies Condition 1.(iv), then statements (i), (ii) and (iii) are equivalent.

12
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If A satisfies Condition 1.(v), then statements (i), (iv) and (v) are equivalent.

Proof. Case 1: Assume that A satisfies Condition 1.(iv).
(i)⇔(ii): Recall from [7] [Lemma 11.(i)] that we have the following order–preserving maps:
θ 7→ θ∗ from Con(A) to Id(L(A)), defined by: θ∗= ((θ] ∩K(A))/≡A for all θ ∈ Con(A);
I 7→ I∗ from Id(L(A)) to Con(A), defined by: I∗=

∨{γ ∈ K(A) | γ/ ≡A∈ I} for all
I ∈ Id(L(A)).

By [7] [Proposition 11], these maps restrict to order isomorphisms between Spec(A)
and SpecId(L(A)), inverses of each other, thus they further restrict to mutually inverse
order isomorphisms between Min(A) and MinId(L(A)).

Let β ∈ K(A) and ψ ∈ Spec(A), arbitrary. By the above, (ψ∗)∗ = ψ. Since β ∈ K(A),

(β/≡A]L(A) = (β/≡A]Con(A)/≡A
∩ L(A) =

(β]Con(A)/≡A ∩K(A)/≡A= ((β]Con(A) ∩K(A))/≡A= β∗,

hence AnnL(A)(β/ ≡A) = AnnL(A)((β/ ≡A]L(A)) = AnnL(A)(β∗). By [7] [Lemma 27],
since A is semiprime, we have: AnnL(A)(β∗) ⊆ ψ∗ if and only if β⊥ ⊆ (ψ∗)∗, that is
β⊥ ⊆ ψ.

Hence: ϕ ∈ Min(A) if and only if ϕ∗ ∈ MinId(L(A)). By Lemma 9, the latter is
equivalent to (∀ x ∈ ϕ∗)(AnnL(A)(x) ⊈ ϕ∗), i.e., (∀ α ∈ (ϕ]∩K(A))(AnnL(A)(α/ ≡A) ⊈
ϕ∗), which means that (∀ α ∈ (ϕ] ∩ K(A)) (AnnL(A)(α

∗) ⊈ ϕ∗), which is equivalent to
(∀ α ∈ (ϕ] ∩K(A)) (α⊥ ⊈ ϕ), that is (∀ α ∈ K(A)) (α ⊆ ϕ ⇒ α⊥ ⊈ ϕ).
(iii)⇒(ii): Trivial.
(ii)⇒(iii): If α ∈ K(A) is such that α⊥ ⊈ ϕ, then, since [α, α⊥]A = ∆A ⊆ ϕ ∈ Spec(A), it
follows that α ⊆ ϕ.
Case 2: Now assume that A satisfies Condition 1.(v).
(v)⇒(iv): Trivial.
(iv)⇒(v): Analogous to the proof of (ii)⇒(iii).
(i)⇔(iv): By Lemma 10.(iv), the condition that ϕ ∈ Spec(A) is equivalent to
ϕ/≡A∈ SpecCon(A)/≡A

, which is equivalent to (ϕ/≡A] ∈ SpecId(Con(A)/≡A).
Again by Lemma 10.(iv), ϕ ∈ Min(A) if and only if ϕ/≡A∈ MinCon(A)/≡A

, which is
equivalent to (ϕ/≡A] ∈ MinId(Con(A)/≡A). By Lemma 9 and Lemma 10.(i), the latter is
equivalent to the fact that, for any α ∈ (ϕ], (α⊥/≡A]=(α⊥]/≡A=Ann(Con(A),[·,·]A)(α)/≡A

= AnnCon(A)/≡A
(α/ ≡A) ⊈ (ϕ/ ≡A] = (ϕ]/ ≡A, that is α⊥/ ≡A /∈ (ϕ/ ≡A] = (ϕ]/ ≡A.

Since ϕ ∈ Spec(A) ⊆ RCon(A) and thus ϕ = max(ϕ/≡A) by Lemma 10.(iii), this condition
is equivalent to α⊥ /∈ (ϕ], that is α⊥ ⊈ ϕ.

Example 1. Note that the equivalence in Proposition 5 for the case when A satisfies Condition 1.(iv)
does not hold for α ∈ Con(A), arbitrary. Indeed, if we let A be the Boolean subalgebra of the
power set P(N) of the set N of natural numbers formed of the finite and the cofinite subsets
of N: A = {S | S ⊆ N, |S| < ℵ0 or |N \ S| < ℵ0}, then, since A is a Boolean algebra, its
lattice of congruences is isomorphic to its lattice of filters, and obviously this lattice isomorphism φ :
Filt(A) → Con(A) takes the set SpecFilt(A) of the prime elements of the lattice Filt(A) of the filters
of A, which equals the set SpecFilt(A) = MaxFilt(A) of the prime and thus maximal filters of A by
a routine proof, to SpecCon(A) = Spec(A) = Max(A) = Min(A) since A is a Boolean algebra,
therefore MinFilt(A) := Min(SpecFilt(A)) = SpecFilt(A) = MaxFilt(A) = Max(Filt(A) \
{A}). Now let us consider the filter P := {S | S ⊆ N, |N \ S| < ℵ0}. It is well known that
SpecFilt(A) = Max(Filt(A) \ {A}) = {M ∩ A | M ∈ Max(Filt(P(N)) \ {P(N)})} ∪ {P} =
{[{a})P(N) ∩ A | a ∈ N} ∪ {P}, in particular P is a prime and thus a minimal prime filter of A.
P is clearly not a principal, thus not a compact filter of A. Since Boolean algebras are congruence–
distributive, the commutator [·, ·]A of A equals the intersection, thus the commutator lattice
(Con(A), [·, ·]A = ∩) is isomorphic to the commutator lattice (Filt(A),∩), also endowed with the
commutator operation equalling the intersection, in which P⊥ = max{F ∈ Filt(A) | P ∩ F =
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{N}} = max{{N}} = {N}, since any nontrivial filter F of A contains a proper subset S of N,
which must thus be such that an a ∈ N does not belong to S, hence S is included in the proper cofinite
subset N \ {a} of N, so N \ {a} ∈ P ∩ F, which means that no nontrivial filter F of A satisfies P ∩
F = {N}. So P⊥ = {N} ⊂ P; of course, P ⊆ P. Therefore, φ(P) ∈ Spec(A) = Min(A), and
φ(P) ∈ Con(A) \ Cp(Con(A)) = Con(A) \ K(A); thus φ(P)⊥ = φ(P⊥) = φ({N}) =
∆A ⊂ φ(P) and φ(P) ⊆ φ(P), hence φ(P) ⊆ φ(P) does not imply φ(P)⊥ ⊈ φ(P).

Corollary 2. Assume that A satisfies Condition 1.(iii), let ϕ ∈ Spec(A) and let us consider the
following statements:

(i) ϕ ∈ Min(A);
(ii) for any α ∈ K(A), α ⊆ ϕ implies α → ρA(∆A) ⊈ ϕ;
(iii) for any α ∈ Con(A), α ⊆ ϕ implies α → ρA(∆A) ⊈ ϕ.

If A satisfies Condition 1.(iv), then (i) is equivalent to (ii).
If A satisfies Condition 1.(v), then (i) is equivalent to (iii).

Proof. Case 1: Assume that A satisfies Condition 1.(iv). Then we have the following
equivalences: ϕ ∈ Min(A) if and only if ϕ/ρA(∆A) ∈ Min(A/ρA(∆A)), which, by Propo-
sition 5, since A/ρA(∆A) is semiprime, is equivalent to the fact that, for any α ∈ K(A),
(α ∨ ρA(∆A))/ρA(∆A) ⊆ ϕ/ρA(∆A) implies ((α ∨ ρA(∆A))/ρA(∆A))

⊥ ⊈ ϕ/ρA(∆A), that
is α ∨ ρA(∆A) ⊆ ϕ implies (α → ρA(∆A))/ρA(∆A) ⊈ ϕ/ρA(∆A) according to Proposition
1.(ii), that is α ⊆ ϕ implies α → ρA(∆A) ⊈ ϕ since ϕ is prime and thus ρA(∆A) ⊆ ϕ.
Case 2: Assume that A satisfies Condition 1.(v). Then the proof goes the same as above,
but for all α ∈ Con(A).

5. Two Topologies on the Minimal Prime Spectrum
H⃝ Throughout this section, we will assume that A satisfies Condition 1.(i), which holds
in the particular case when V is congruence–modular.

Clearly, the Stone topology SSpec(A) of Spec(A) induces the topology SMin(A) =
{DA(θ)∩ Min(A) | θ ∈ Con(A)} on Min(A), which has {DA(a, b)∩ Min(A) | a, b ∈ A} as
a basis and {VA(θ) ∩ Min(A) | θ ∈ Con(A)} as the family of closed sets. SMin(A) is called
the Stone or spectral topology on Min(A).

H⃝ Throughout the rest of this section, we will also assume that A is semiprime.

Lemma 11. θ⊥ =
⋂
(VA(θ

⊥) ∩ Min(A)) for every θ ∈ Con(A).

Proof. Let θ ∈ Con(A). Clearly, θ⊥ ⊆ ⋂
(VA(θ

⊥) ∩ Min(A)).
Let us denote by α =

⋂
(VA(θ

⊥) ∩ Min(A)), so that α ⊆ µ for any µ ∈ VA(θ
⊥) ∩

Min(A). Assume by absurdum that α ⊈ θ⊥, so that [α, θ]A ̸= ∆A = ρA(∆A) =
⋂

Min(A)
since A is semiprime, therefore [α, θ]A ⊈ ϕ for some ϕ ∈ Min(A), which implies that
θ ⊈ ϕ and α ⊈ ϕ, hence ϕ /∈ VA(θ

⊥), that is θ⊥ ⊈ ϕ. So θ ⊈ ϕ and θ⊥ ⊈ ϕ, while
[θ, θ⊥]A = ∆A ⊆ ϕ, which contradicts the fact that ϕ ∈ Min(A) ⊆ Spec(A). Therefore⋂
(VA(θ

⊥) ∩ Min(A)) = α ⊆ θ⊥, hence the equality.

Remark 5. By Lemma 11, for any α, β ∈ Con(A), we have: α⊥ = β⊥ if and only if VA(α
⊥) ∩

Min(A) = VA(β⊥) ∩ Min(A) if and only if DA(α
⊥) ∩ Min(A) = DA(β⊥) ∩ Min(A).

Proposition 6. For any α, β, γ ∈ Con(A), we consider the following statements:

(i) VA(α) ∩ Min(A) = VA(α
⊥⊥) ∩ Min(A) = DA(α

⊥) ∩ Min(A) and DA(α) ∩ Min(A)

= DA(α
⊥⊥) ∩ Min(A) = VA(α

⊥) ∩ Min(A);
(ii) α⊥ ∩ β⊥ = γ⊥ if and only if VA(α) ∩ VA(β) ∩ Min(A) = VA(γ) ∩ Min(A);
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(iii) α⊥⊥ = β⊥ if and only if α⊥ = β⊥⊥ if and only if VA(α) ∩ Min(A) =

VA(β⊥) ∩ Min(A) if and only if VA(α) ∩ Min(A) = DA(β) ∩ Min(A) if and only if
DA(α

⊥) ∩ Min(A) = DA(β) ∩ Min(A).

If A satisfies Condition 1.(iv), then the statements above hold for all α, β, γ ∈ K(A).
If A satisfies Condition 1.(v), then the statements above hold for all α, β, γ ∈ Con(A).

Proof. Let ϕ ∈ Min(A).
Case 1: Assume that A satisfies Condition 1.(iv) and let α, β, γ ∈ K(A).
(i) By Proposition 5, ϕ ∈ VA(α) if and only if ϕ ∈ DA(α

⊥), hence also ϕ /∈ VA(α) if
and only if ϕ /∈ DA(α

⊥), that is ϕ ∈ DA(α) if and only if ϕ ∈ VA(α
⊥). Therefore

VA(α) ∩ Min(A) = DA(α
⊥) ∩ Min(A) and DA(α) ∩ Min(A) = VA(α

⊥) ∩ Min(A), hence
also VA(α

⊥⊥) ∩ Min(A) = DA(α
⊥⊥⊥) ∩ Min(A) = DA(α

⊥) ∩ Min(A) and DA(α
⊥⊥) ∩

Min(A) = VA(α
⊥⊥⊥) ∩ Min(A) = VA(α

⊥) ∩ Min(A) by Lemma 6.(iii).
(ii) By (i), along with Proposition 6.(iv), and Remark 5, α⊥ ∩ β⊥ = γ⊥ if and only if
(α ∨ β)⊥ = γ⊥ if and only if VA((α ∨ β)⊥) ∩ Min(A) = VA(γ

⊥) ∩ Min(A) if and only if
(DA(α) ∩ Min(A)) ∪ (DA(β) ∩ Min(A)) = (DA(α) ∪ DA(β)) ∩ Min(A) = DA(α ∨ β) ∩
Min(A) = DA(γ) ∩ Min(A) if and only if Min(A) \ ((DA(α) ∩ Min(A)) ∪ (DA(β) ∩
Min(A))) = Min(A) \ (DA(γ) ∩ Min(A)) if and only if VA(α) ∩ VA(β) ∩ Min(A) =
(VA(α) ∩ Min(A)) ∩ (VA(β) ∩ Min(A)) = VA(γ) ∩ Min(A).
(iii) By (i) and Remark 5, α⊥⊥ = β⊥ if and only if VA(α

⊥⊥) ∩ Min(A) = VA(β⊥) ∩ Min(A)
if and only if DA(α

⊥)∩Min(A)=VA(α)∩Min(A)=VA(β⊥)∩Min(A)=DA(β)∩Min(A).
By Lemma 6.(iii), α⊥⊥ = β⊥ implies α⊥ = α⊥⊥⊥ = β⊥⊥, which also proves the converse.
Case 2: The proof goes similarly in the case when A satisfies Condition 1.(v), but for all
α, β, γ ∈ Con(A).

Let us denote by FMin(A) the topology on Min(A) generated by {VA(a, b)∩ Min(A) |
a, b ∈ A}, called the flat topology or the inverse topology on Min(A). Also, we denote by
Min(A), respectively Min(A)−1 the minimal prime spectrum of A endowed with the
Stone, respectively the flat topology: Min(A) = (Min(A),SMin(A)) and Min(A)−1 =
(Min(A),FMin(A)).

Remark 6. FMin(A) has {VA(α)∩Min(A) | α ∈ K(A)} as a basis, since VA(∆A)∩Min(A)=
Min(A) and, for α, β ∈ K(A), α ∨ β ∈ K(A) and VA(α) ∩ Min(A) ∩ VA(β) ∩ Min(A) =
VA(α ∨ β) ∩ Min(A).

Recall that, for any α ∈ Con(A), α⊥ generates the annihilator of α in the commutator
lattice (Con(A), [·, ·]A) as a principal ideal.

Proposition 7.

(i) The flat topology on Min(A) is coarser than the Stone topology: FMin(A) ⊆ SMin(A).
(ii) If A satisfies Condition 1.(vi), in particular if Con(A) is compact, then the two topologies

coincide: FMin(A) = SMin(A), that is Min(A) = Min(A)−1.

Proof. (i) By Proposition 6.(i), VA(α) ∩ Min(A) = DA(α
⊥) ∩ Min(A) ∈ SMin(A), for any

α ∈ K(A).
(ii) Again by Proposition 6.(i), for any α ∈ K(A), DA(α) ∩ Min(A) = VA(α

⊥) ∩ Min(A),
which belongs to FMin(A) if α⊥ ∈ K(A).

Now let L be a bounded distributive lattice. Following [7], we denote, for any I ∈ Id(L)
and a ∈ L, by VId,L(I)= SpecId(L) ∩ [I)Id(L), DId,L(I)= SpecId(L) \ VId,L(I), VId,L(a)=
VId,L((a]L) and DId,L(a)= DId,L((a]L).

Let us denote by SSpec,Id(L) the Stone topology on SpecId(L) and by SMin,Id(L) the
Stone topology on MinId(L): SSpec,Id(L) = {DId,L(I) | I ∈ Id(L)}, with {DId,L(a) | a ∈ L}
as a basis; SMin,Id(L) = {DId,L(I) ∩ MinId(L) | I ∈ Id(L)}, with {DId,L(a) ∩ MinId(L) |
a ∈ L} as a basis.
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And let FMin,Id(L) be the flat topology on MinId(L), which has {VId,L(a) ∩ MinId(L) |
a ∈ L} as a basis. Let MinId(L), respectively MinId(L)−1 be the minimal prime
spectrum of ideals of L endowed with the Stone, respectively the flat topology:
MinId(L) = (MinId(L),SMin,Id(L)) and MinId(L)−1 = (MinId(L),FMin,Id(L)).

Lemma 12. If A satisfies Condition 1.(iv), then:

(i) Min(A) is homeomorphic to MinId(L(A));
(ii) Min(A)−1 is homeomorphic to MinId(L(A))−1.

Proof. Assume that A satisfies Condition 1.(iv), so that its reticulation can be constructed
as: L(A)= K(A)/ ≡A. As in [7], let us denote by u : Spec(A) → SpecId(L(A)) and
v : SpecId(L(A)) → Spec(A) the mutually inverse homeomorphisms with respect to the
Stone topologies mentioned in the proof of Proposition 5: u(ϕ) = ϕ∗ for all ϕ ∈ Spec(A)
and v(P) = P∗ for all P ∈ SpecId(L(A)).
(i) u and v obviously restrict to homeomorphisms between Min(A) and MinId(L(A)).
(ii) Recall that the flat topology FMin(A) has {VA(α)∩Min(A) | α ∈ K(A)} as a basis, while
the flat topology on FMin,Id(L(A)) has {VId,L(A)((a]L(A)) ∩ MinId(L(A)) | a ∈ L(A)} =
{VId,L(A)((α/≡A]L(A)) ∩ MinId(L(A)) | α ∈ K(A)} as a basis.

In the proof of [7] [Proposition 11] we have obtained that u(VA(α)) = VId,L(A)(α
∗)

for all α ∈ Con(A). Note that, if α ∈ K(A), then α∗ = (α/ ≡A]L(A), thus u(VA(α)) =
VId,L(A)((α/≡A]L(A)), hence u is open with respect to the flat topologies on the minimal
prime spectra.

Consequently, for all α ∈ K(A), v(VId,L(A)((α/ ≡A]L(A))) = v(u(VA(α))) = VA(α),
hence v is open with respect to the flat topologies on the minimal prime spectra.

Therefore u and v are mutually inverse homeomorphisms between Min(A)−1 and
MinId(L(A))−1.

Proposition 8. If A satisfies Condition 1.(iv), then Min(A)−1 is a compact T1 topological space.

Proof. Assume that A satisfies Condition 1.(iv), and let us consider the reticulation of A:
L(A) = K(A)/≡A.

By Hochster’s theorem [20] [Proposition 3.13], there exists a commutative unitary ring
R such that the reticulation L(R) of R is lattice isomorphic to L(A). Recall that the com-
mutator lattice of the ideals of R endowed with the multiplication of ideals as commutator
operation is isomorphic to the commutator lattice of its congruences, (Con(R), [·, ·]R).

By Lemma 12.(ii), the minimal prime spectrum of R endowed with the flat topology,
Min(R)−1, is homeomorphic to MinId(L(R))−1 and thus to MinId(L(A))−1, which in
turn is homeomorphic to Min(A)−1, thus Min(R)−1 is homeomorphic to Min(A)−1.

By [29] [Theorem 3.1], Min(R)−1 is compact and T1. Therefore Min(A)−1 is compact
and T1.

Following [7], whenever A satisfies Condition 1.(iv), we will denote the lattice bounds
of L(A) by 0 and 1, so 0 = ∆A/≡A and 1 = ∇A/≡A.

Theorem 1. If A satisfies Condition 1.(iv), then the following are equivalent:

(i) Min(A) = Min(A)−1;
(ii) Min(A) is compact;
(iii) for any α ∈ K(A), there exists β ∈ K(A) such that β ⊆ α⊥ and (α ∨ β)⊥ = ∆A.

Proof. Assume that A satisfies Condition 1.(iv). Then the reticulation L(A) of A is a
bounded distributive lattice and thus a distributive lattice with zero, hence, according to
[30] (Proposition 5.1), the following are equivalent:

(a) MinId(L(A)) = MinId(L(A))−1;
(b) MinId(L(A)) is compact;
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(c) for any x ∈ L(A), there exists y ∈ L(A) such that x ∧ y = 0 and AnnL(A)(x ∨ y) =
{0}.

By Lemma 12, (i) is equivalent to (a). By Lemma 12.(i), (ii) is equivalent to (b).
To prove that (iii) is equivalent to (c), let α, β ∈ K(A), arbitrary, so that α/ ≡A and

β/≡A are arbitrary elements of L(A).
A is semiprime, that is ρA(∆A) = ∆A, which is equivalent to ∆A/≡A= {∆A} accord-

ing to [25] (Remark 5.10), hence, for any θ ∈ Con(A), θ = ∆A if and only if θ ∈ ∆A/≡A if
and only if θ/≡A= ∆A/≡A, that is θ/≡A= 0.

Recall that β ⊆ α⊥ is equivalent to [α, β]A = ∆A and thus to [α, β]A/ ≡A= 0 by the
above, that is α/≡A ∧β/≡A= 0.

Furthermore, since A is semiprime, we have, for all θ∈Con(A): by [25] (Lemma 5.18.(ii)),
Ann(Con(A),[·,·]A)(θ) = AnnCon(A)(θ), and, by Lemma 10.(i), AnnCon(A)(θ) = {∆A} if and only
if AnnCon(A)/≡A

(θ/≡A) = {0}.
(α ∨ β)⊥ = ∆A means that Ann(Con(A),[·,·]A)(α ∨ β) = {∆A}, that is

AnnCon(A)(α ∨ β) = {∆A}, which is equivalent to AnnCon(A)/≡A
(α/≡A ∨β/≡A) = {0},

which in turn is equivalent to AnnL(A)(α/≡A ∨β/≡A) = {0}, because, if we denote by
θ = α ∨ β, so that θ ∈ K(A) and θ/≡A= α/≡A ∨β/≡A∈ L(A), we have:

since L(A) is a bounded sublattice of Con(A)/ ≡A, AnnCon(A)/≡A
(θ/ ≡A) = {0}

implies AnnL(A)(θ/≡A) = AnnCon(A)/≡A
(θ/≡A) ∩ L(A) = {0};

for the converse, recall that:

max AnnCon(A)(θ) = max Ann(Con(A),[·,·]A)(θ) =
∨
{γ ∈ K(A) | [θ, γ]A = ∆A} =

∨
{γ ∈ K(A) | [θ, γ]A/≡A= 0} =

∨
{γ ∈ K(A) | θ/≡A ∧γ/≡A= 0},

thus, if θ ∈ K(A), so that θ/≡A∈ L(A), then

max AnnCon(A)(θ) =
∨
{γ ∈ K(A) | γ/≡A∈ AnnL(A)(θ/≡A)};

hence, if AnnL(A)(θ/≡A) = {0}, then

max AnnCon(A)(θ) =
∨
{γ ∈ K(A) | γ/≡A∈ {0}} =

∨
{γ ∈ K(A) | γ/≡A= 0} =

∨
{γ ∈ K(A) | γ = ∆A} = ∆A,

thus AnnCon(A)(θ) = {∆A}, which is equivalent to AnnCon(A)/≡A
(θ/≡A) = {0}.

Proposition 9. If ∇A ∈ K(A) and Spec(A) is unordered, then Min(A) is compact.

Proof. Assume that ∇A ∈ K(A) and Spec(A) is unordered, that is Spec(A) = Min(A), and
let Min(A) =

⋃

i∈I
(DA(αi) ∩ Min(A)) for some nonempty family {αi | i ∈ I} of congruences

of A. Then Min(A) = (
⋃

i∈I
DA(αi)) ∩ Min(A) = DA(

∨

i∈I
αi) ∩ Min(A), thus VA(

∨
i∈I αi) ∩

Min(A) = ∅. By Remark 3, this implies that
∨

i∈I
αi = ∇A ∈ K(A), so that ∇A =

∨

i∈F
αi

for some finite subset F of I, hence Min(A) = DA(
∨

i∈F
αi) ∩ Min(A) = (

⋃

i∈F
DA(αi)) ∩

Min(A) =
⋃

i∈F
(DA(αi) ∩ Min(A)), therefore Min(A) is compact.

Remark 7. Clearly, if Con(A) is finite, in particular if A is finite, then Min(A) is compact.
Of course, if Con(A) is finite, then Con(A) = Cp(Con(A)) = K(A), thus ∇A ∈ K(A).
However, even if A is finite, its prime spectrum of congruences is not necessarily unordered.

For instance, the five–element non–modular lattice N5 has Con(N5) isomorphic to the ordinal sum
L2 ⊕L2

2 of the two–element chain with the four–element Boolean algebra, so, if we let Con(N5) =
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{∆N5 , α, β, γ,∇N5}, where Max(N5) = {α, β} and γ = α∩ β, then Spec(N5) = {∆N5 , α, β} =
{∆N5} ∪ Max(N5), which is obviously not unordered.

Therefore the converse of the implication in Proposition 9 does not hold.

Theorem 2. If A satisfies (iv) and (vi) from Condition 1, in particular if the lattice Con(A) is
compact, then Min(A) is a Hausdorff topological space consisting solely of clopen sets, thus the
Stone topology SMin(A) is a complete Boolean sublattice of P(Min(A)). If, moreover, Spec(A) is
unordered, then Min(A) is also compact.

Proof. By Proposition 6.(i), the Stone topology SMin(A) on Min(A) consists entirely of
clopen sets.

Let µ, ν be distinct minimal prime congruences of A. Then there exist a, b ∈ A such
that (a, b) ∈ µ \ ν, so that CgA(a, b) ⊆ µ and CgA(a, b) ⊈ ν, so that CgA(a, b)⊥ ⊈ µ
by Proposition 5, so µ ∈ DA(CgA(a, b)⊥) ∩ Min(A) and ν ∈ DA(CgA(a, b)) ∩ Min(A).
DA(CgA(a, b))∩Min(A)∩ DA(CgA(a, b)⊥)∩Min(A) = DA(CgA(a, b))∩ DA(CgA(a, b)⊥)∩
Min(A) = DA([CgA(a, b), CgA(a, b)⊥]A) ∩ Min(A) = DA(∆A) ∩ Min(A) = ∅ ∩ Min(A) =
∅, therefore the topological space (Min(A), {DA(θ)∩Min(A) | θ ∈ Con(A)}) is Hausdorff.

By Proposition 9, if Spec(A) is an antichain, then Min(A) is also compact.

6. m–Extensions
H⃝ Throughout this section, we will assume that A is a subalgebra of B and that the
algebras A and B are semiprime and they both satisfy Condition 1.(i).

In particular, the following results hold for extensions of semiprime algebras in
congruence–modular varieties.

To avoid any danger of confusion, we will denote by α⊥A = α → ∆A and X⊥A =
CgA(X)⊥A for any α ∈ Con(A) and any X ⊆ A2 and by β⊥B = β → ∆B and Y⊥B =
CgB(Y)⊥B for any β ∈ Con(B) and any Y ⊆ B2. See this notation for arbitrary subsets in
Section 3.

We call the extension A ⊆ B:

• admissible if and only if the map iA,B : A → B is admissible, that is if and only if
i∗A,B(ϕ) = ϕ ∩∇A ∈ Spec(A) for all ϕ ∈ Spec(B);

• Min–admissible or an m–extension if and only if i∗A,B(µ) = µ ∩ ∇A ∈ Min(A) for all
µ ∈ Min(B).

Lemma 13. Assume that the extension A ⊆ B is admissible and let us consider the following
statements:

(i) A ⊆ B is an m–extension;
(ii) for any α ∈ K(A) and any µ ∈ Min(B), if α ⊆ µ, then α⊥A ⊈ µ;
(iii) for any α ∈ K(A) and any µ ∈ Min(B), α ⊆ µ if and only if α⊥A ⊈ µ;
(iv) for any α ∈ Con(A) and any µ ∈ Min(B), if α ⊆ µ, then α⊥A ⊈ µ;
(v) for any α ∈ Con(A) and any µ ∈ Min(B), α ⊆ µ if and only if α⊥A ⊈ µ.

If A satisfies Condition 1.(iv), then (i), (ii) and (iii) are equivalent.
If A satisfies Condition 1.(v), then (i), (iv) and (v) are equivalent.

Proof. For any α ∈ Con(A) and µ ∈ Con(B), we obviously have: α ⊆ µ if and only if
α ⊆ µ ∩∇A, and α⊥A ⊈ µ if and only if α⊥A ⊈ µ ∩∇A.

Now assume that A satisfies (iv) or (v) from Condition 1, and let: M = K(A) if A
satisfies (iv), and M = Con(A) if A satisfies (v).

Since the extension A ⊆ B is admissible, µ ∩ ∇A ∈ Spec(A) for any µ ∈ Spec(B).
A ⊆ B is an m–extension if and only if µ ∩∇A ∈ Min(A) for any µ ∈ Min(B), hence, by
Proposition 5: A ⊆ B is an m–extension if and only if, for all µ ∈ Min(B) and all α ∈ M,
the following equivalence holds: α ⊆ µ ∩∇A if and only if α⊥A ⊈ µ ∩∇A; by the above,
this is equivalent to: α ⊆ µ if and only if α⊥A ⊈ µ.
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If A ⊆ B is an m–extension, then the function Γ= i∗A,B |Min(B): Min(B) → Min(A),
Γ(µ) = µ ∩∇A for all µ ∈ Min(B), is well defined.

Proposition 10. If the extension A ⊆ B is admissible, then, for every ψ ∈ Spec(A), there exists a
µ ∈ Min(B) such that µ ∩∇A ⊆ ψ.

Proof. Since ψ ∈ Spec(A), ∇A \ ψ is an m–system in A, thus also in B, according to
[18] [Lemma 4.18]. Hence there exists a ν ∈ Max{γ ∈ Con(B) | γ ∩ (∇A \ ψ) = ∅}, so
that ν ∈ Spec(B) by Lemma 3, and thus there exists a µ ∈ Min(B) with µ ⊆ ν, so that
µ ∩ (∇A \ ψ) ⊆ ν ∩ (∇A \ ψ) = ∅ and thus (µ ∩∇A) \ ψ = ∅, so µ ∩∇A ⊆ ψ.

Corollary 3. • If the extension A ⊆ B is admissible, then, for every ψ ∈ Min(A), there exists
a µ ∈ Min(B) such that µ ∩∇A = ψ.

• If A ⊆ B is an admissible m–extension, then Γ : Min(B) → Min(A) is surjective.

Lemma 14. If A ⊆ B is an admissible m–extension, then, for any θ, ζ ∈ Con(A): [θ, ζ]A = ∆A
if and only if [CgB(θ), CgB(ζ)]B = ∆B.

Proof. Since A and B are semiprime, we have ∆A = ρA(∆A) =
⋂

Min(A) and ∆B =
ρB(∆B) =

⋂
Min(B), therefore: [CgB(θ), CgB(ζ)]B = ∆B if and only if [CgB(θ), CgB(ζ)]B ⊆

ν for all ν ∈ Min(B) if and only if, for all ν ∈ Min(B), CgB(θ) ⊆ ν or CgB(ζ) ⊆ ν if and
only if, for all ν ∈ Min(B), θ ⊆ ν or ζ ⊆ ν if and only if, for all ν ∈ Min(B), θ ⊆ ν ∩∇A
or ζ ⊆ ν ∩ ∇A; by Corollary 3, the latter is equivalent to: for all µ ∈ Min(A), θ ⊆ µ or
ζ ⊆ µ, which in turn is equivalent to the fact that [θ, ζ]A ⊆ µ for all µ ∈ Min(A), that is
[θ, ζ]A = ∆A.

Recall from [1] that, if A ⊆ B is an extension of algebras from a congruence–modular
variety, then, for all α, β ∈ Con(B), [α ∩∇A, β ∩∇A]A ⊆ [α, β]B ∩∇A. So, in this case, the
right-to-left implication in Lemma 14 holds without admissibility or Min–admissibility:

Remark 8. If the extension A ⊆ B satisfies [α ∩ ∇A, β ∩ ∇A]A ⊆ [α, β]B ∩ ∇A for all
α, β ∈ Con(B), in particular if the variety V is congruence–modular, then, for any
θ, ζ ∈ Con(A): [CgB(θ), CgB(ζ)]B = ∆B implies [θ, ζ]A = ∆A.

Indeed, since θ ⊆ CgB(θ) ∩∇A for all θ ∈ Con(A) and the commutator is increasing in
both arguments, it follows that, for all θ, ζ ∈ Con(A):

[θ, ζ]A ⊆ [CgB(θ) ∩∇A, CgB(ζ) ∩∇A]A ⊆ [CgB(θ), CgB(ζ)]B ∩∇A.
Thus, if [CgB(θ), CgB(ζ)]B = ∆B, then [θ, ζ]A ⊆ ∆B ∩∇A = ∆A, so [θ, ζ]A = ∆A.

Proposition 11. If A ⊆ B is an admissible m–extension, then, for any θ ∈ Con(A):

(i) θ⊥A = θ⊥B ∩∇A and CgB(θ
⊥A) ⊆ θ⊥B;

(ii) if, furthermore, θ⊥B ∈ {CgB(α) | α ∈ Con(A)}, then θ⊥B = CgB(θ
⊥A).

Proof. (i) By Lemma 14 we have, for any u, v ∈ A: (u, v) ∈ θ⊥A if and only if [CgA(u, v), θ]A
= ∆A if and only if [CgB(CgA(u, v)), CgB(θ)]B = [CgB(u, v), CgB(θ)]B = ∆B if and only
if (u, v) ∈ θ⊥B if and only if (u, v) ∈ θ⊥B ∩ ∇A. Therefore θ⊥A = θ⊥B ∩ ∇A, hence
CgB(θ

⊥A) = CgB(θ
⊥B ∩∇A) ⊆ θ⊥B.

(ii) If θ⊥B is generated by a congruence of A, then, by Lemma 14 and the fact that the map
α 7→ CgB(α) from Con(A) to Con(B) is order–preserving, we have: θ⊥B = CgB(θ)

⊥B =
max{β ∈ Con(B) | [β, CgB(θ)]B = ∆B} = max{CgB(α) | α ∈ Con(A), [CgB(α), CgB(θ)]B =
∆B} = max{CgB(α) | α ∈ Con(A), [α, θ]A = ∆A} = CgB(max{α ∈ Con(A) | [α, θ]A =
∆A}) = CgB(θ

⊥A).

Corollary 4. If A ⊆ B is an admissible m–extension, then, for any θ, ζ ∈ Con(A):

(i) θ⊥B = ζ⊥B implies θ⊥A = ζ⊥A;
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(ii) if, furthermore, θ⊥B, ζ⊥B ∈ {CgB(α) | α ∈ Con(A)}, then: θ⊥A = ζ⊥A if and only if
θ⊥B = ζ⊥B.

Corollary 5. If A ⊆ B is an admissible m–extension such that A satisfies (v) and B satisfies
(iv) or (v) from Condition 1, then, for any ψ ∈ Spec(B), we have: ψ ∈ Min(B) if and only if
ψ ∩∇A ∈ Min(A).

Proof. We have the direct implication by the definition of an m–extension.
Now assume that ψ ∩∇A ∈ Min(A) and let β ∈ Con(B), arbitrary. Then, by Propo-

sition 5 and Proposition 11.(i): β ⊆ ψ implies β ∩ ∇A ⊆ ψ ∩ ∇A, which is equivalent
to (β ∩ ∇A)

⊥A ⊈ ψ ∩ ∇A, hence (β ∩ ∇A)
⊥A ⊈ ψ, thus β⊥B ⊇ CgB((β ∩ ∇A)

⊥A) ⊇
(β ∩∇A)

⊥A ⊈ ψ, so β⊥B ⊈ ψ. Therefore, again by Proposition 5, ψ ∈ Min(B).

Remark 9. Note from the proof of Corollary 5 that, if A ⊆ B is an admissible m–extension such
that A satisfies (v) and B satisfies (iv) from Condition 1, then B satisfies the equivalence of all
statements (i), (ii), (iii), (iv) and (v) in Proposition 5.

By extending the terminology for ring extensions from [5], we call A ⊆ B:

• a rigid, a quasirigid, respectively a weak rigid extension if and only if, for any
β ∈ PCon(B), there exists an α ∈ PCon(A), an α ∈ K(A), respectively an α ∈ Con(A)
such that α⊥B = β⊥B;

• an r–extension, a quasi r–extension, respectively a weak r–extension if and only if, for any
µ ∈ Min(B) and any β ∈ PCon(B) such that β ⊈ µ, there exists an α ∈ PCon(A), an
α ∈ K(A), respectively an α ∈ Con(A) such that α ⊈ µ and β⊥B ⊆ α⊥B;

• an r∗–extension, a quasi r∗–extension, respectively a weak r∗–extension if and only if, for
any µ ∈ Min(B) and any β ∈ PCon(B) such that β ⊆ µ, there exists an α ∈ PCon(A),
an α ∈ K(A), respectively an α ∈ Con(A) such that α ⊆ µ and α⊥B ⊆ β⊥B.

Remark 10. If A ⊆ B is admissible or an m–extension, then, since any α ∈ Con(A) and
µ ∈ Con(B) satisfy the equivalence α ⊆ µ if and only if α ⊆ µ ∩∇A, thus also the equivalence
α ⊈ µ if and only if α ⊈ µ ∩∇A, it follows that A ⊆ B is:

• an r–extension, a quasi r–extension, respectively a weak r–extension if and only if, for any β ∈
PCon(B), {µ ∩ ∇A | µ ∈ DB(β) ∩ Min(B)} ⊆ ⋃{DA(α) | α ∈ M,
β⊥B ⊆ α⊥B} = DA(

∨{α ∈ M | β⊥B ⊆ α⊥B}), where M is equal to PCon(A), K(A),
respectively Con(A);

• an r∗–extension, a quasi r∗–extension, respectively a weak r∗–extension if and only if, for any
β ∈ PCon(B), {µ ∩ ∇A | µ ∈ VB(β) ∩ Min(B)} ⊆ ⋃{VA(α) | α ∈ M,
α⊥B ⊆ β⊥B}, where M is equal to PCon(A), K(A), respectively Con(A);

thus, if A ⊆ B is an m–extension, then A ⊆ B is:

• an r–extension, a quasi r–extension, respectively a weak r–extension if and only if, for any
β ∈ PCon(B), Γ(DB(β) ∩ Min(B)) ⊆ ⋃{DA(α) | α ∈ M, β⊥B ⊆ α⊥B} = DA(

∨{α ∈
M | β⊥B ⊆ α⊥B}), where M is equal to PCon(A), K(A), respectively Con(A);

• an r∗–extension, a quasi r∗–extension, respectively a weak r∗–extension if and only if, for any
β ∈ PCon(B), Γ(VB(β) ∩ Min(B)) ⊆ ⋃{VA(α) | α ∈ M, α⊥B ⊆ β⊥B}, where M is equal
to PCon(A), K(A), respectively Con(A).

Remark 11. Note from Lemma 1 that, for any set I and any {ai, bi | i ∈ I} ⊆ A,
CgB(CgA({(ai, bi) | i ∈ I})) = CgB({(ai, bi) | i ∈ I}), hence, for any α ∈ PCon(A) and
any β ∈ K(A), it follows that CgB(α) ∈ PCon(B) and CgB(β) ∈ K(B).

Proposition 12. If A ⊆ B is an m–extension, then:

(i) if B satisfies Condition 1.(v) and A ⊆ B is a weak rigid extension, then it is both a weak
r–extension and a weak r∗–extension;
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(ii) if B satisfies (iv) or (v) from Condition 1 and A ⊆ B is a quasirigid extension, then it is both
a quasi r–extension and a quasi r∗–extension;

(iii) if B satisfies (iv) or (v) from Condition 1 and A ⊆ B is a rigid extension, then it is both an
r–extension and an r∗–extension.

Proof. (ii) Assume that A ⊆ B is a quasirigid extension and let µ ∈ Min(B) and
β ∈ PCon(B), so that CgB(α)

⊥B = β⊥B for some α ∈ K(A), hence, according to
Proposition 5 and Remark 11:

β ⊈ µ implies CgB(α)
⊥B = β⊥B ⊆ µ, thus CgB(α) ⊈ µ, hence α ⊈ µ;

β ⊆ µ implies CgB(α)
⊥B = β⊥B ⊈ µ, thus α ⊆ CgB(α) ⊆ µ.

(i) and (iii) Analogously.

Proposition 13. If A ⊆ B is an m–extension, then:

(i) Γ is continuous with respect to the Stone topologies and the inverse topologies;
(ii) if A satisfies (iv) or (v) or B satisfies (iv) or (v) from Condition 1, then

Γ : Min(B) → Min(A)−1 is continuous;
(iii) if A satisfies (vi), along with one of (iv) and (v) from Condition 1, or B satisfies (vi), along

with one of (iv) and (v) from Condition 1, then Γ : Min(B)−1 → Min(A) is continuous.

Proof. Let α ∈ Con(A), so that DA(α) ∩ Min(A) is an arbitrary open set in Min(A),
DB(CgB(α)) ∩ Min(B) is an open set in Min(B) and, if α ∈ K(A), so that CgB(α) ∈ K(B),
then VA(α)∩Min(A) is an arbitrary basic open set in Min(A)−1 and VB(CgB(α))∩Min(B)
is a basic open set in Min(B)−1.

Since A ⊆ B is an m–extension, we have, for all ν ∈ Min(B): ν ∩∇A ∈ Min(A), thus:
ν ∈ Γ−1(VA(α) ∩ Min(A)) if and only if ν ∩∇A ∈ VA(α) ∩ Min(A) = [α) ∩ Min(A)

if and only if ν ∩ ∇A ∈ [α) if and only if α ⊆ ν ∩ ∇A if and only if α ⊆ ν if and only
if CgB(α) ⊆ ν if and only if ν ∈ VB(CgB(α)) ∩ Min(B); hence Γ−1(VA(α) ∩ Min(A)) =
VB(CgB(α)) ∩ Min(B);

similarly, ν ∈ Γ−1(DA(α) ∩ Min(A)) if and only if α ⊈ ν ∩∇A if and only if α ⊈ ν if
and only if CgB(α) ⊈ ν if and only if ν ∈ DB(CgB(α)) ∩ Min(B); hence
Γ−1(DA(α) ∩ Min(A)) = DB(CgB(α)) ∩ Min(B).
(i) Hence Γ : Min(B) → Min(A) and Γ : Min(B)−1 → Min(A)−1 are continuous.
(ii) Assume that α ∈ K(A).

If A satisfies (iv) or (v) from Condition 1, then, by Proposition 5: α ⊆ ν ∩∇A if and
only if α⊥A ⊈ ν ∩ ∇A if and only if α⊥A ⊈ ν if and only if CgB(α

⊥A) ⊈ ν if and only if
ν ∈ DB(CgB(α

⊥A)) ∩ Min(B); hence Γ−1(VA(α) ∩ Min(A)) = DB(CgB(α
⊥A)) ∩ Min(B).

If B satisfies (iv) or (v) from Condition 1, then, by Proposition 5: CgB(α) ⊆ ν
if and only if CgB(α)

⊥B ⊈ ν if and only if ν ∈ DB(CgB(α)
⊥B) ∩ Min(B); hence

Γ−1(VA(α) ∩ Min(A)) = DB(CgB(α)
⊥B) ∩ Min(B).

Thus, in either of these cases, Γ : Min(B) → Min(A)−1 is continuous.
(iii) Analogous to the proof of (ii) or simply by applying (i), (ii) and Proposition 7.(ii).

Proposition 14. If A ⊆ B is an admissible quasi r–extension and B satisfies (iv) or (v) from
Condition 1, then: A ⊆ B is an m–extension and Γ is a bijection.

Proof. Assume that A ⊆ B is an admissible quasi r–extension and B satisfies (iv) or (v)
from Condition 1.

Assume by absurdum that there exists a ν ∈ Min(B) with ν ∩∇A /∈ Min(A), so that
ν ∩ ∇A ∈ Spec(A) \ Min(A) since Min(B) ⊆ Spec(B) and A ⊆ B is admissible, hence
there exists µ ∈ Min(A) such that µ ⊊ ν ∩∇A.

Since A ⊆ B is admissible, by Corollary 3 it follows that µ = ε ∩ ∇A for some
ε ∈ Min(B). Thus ε ∩ ∇A = µ ⊊ ν ∩ ∇A, therefore ε and ν are distinct minimal prime
congruences of B, hence they are incomparable, thus ε \ ν ̸= ∅, so that (x, y) ∈ ε \ ν for
some x, y ∈ B.
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Then CgB(x, y) ⊈ ν, so that, since A ⊆ B is a quasi r–extension, there exists an
α ∈ K(A) such that α ⊈ ν and CgB(x, y)⊥B ⊆ α⊥B = CgB(α)

⊥B. Then CgB(α) ∈ K(B) and
α ⊈ ν, thus CgB(α) ⊈ ν, hence CgB(α)

⊥B ⊆ ν by Proposition 5 and the fact that B satisfies
(iv) or (v) from Condition 1.

Also, CgB(x, y) ⊆ ε, thus, again by Proposition 5 and the fact that B satisfies (iv)
or (v) from Condition 1, CgB(α)

⊥B ⊇ CgB(x, y)⊥B ⊈ ε, hence α ⊆ CgB(α) ⊆ ε, thus
α ⊆ ε ∩ ∇A = µ ⊂ ν ∩ ∇A ⊆ ν, hence CgB(α) ⊆ ν, so that CgB(α)

⊥B ⊈ ν, which
contradicts the above.

Therefore A ⊆ B is an m–extension, hence Γ is surjective by Corollary 3 and the
admissibility of A ⊆ B.

Now let ϕ, ψ ∈ Min(B) such that Γ(ϕ) = Γ(ψ), that is ϕ ∩∇A = ψ ∩∇A, and assume
by absurdum that ϕ ̸= ψ, so that ϕ \ ψ ̸= ∅, that is (u, v) ∈ ϕ \ ψ for some u, v ∈ B, which
thus satisfy CgB(u, v) ⊆ ϕ and CgB(u, v) ⊈ ψ, hence CgB(u, v)⊥B ⊈ ϕ and CgB(u, v)⊥B ⊆ ψ
by Proposition 5.

As above, it follows that there exists a γ ∈ K(A) such that γ ⊈ ψ and
CgB(u, v)⊥B ⊆ γ⊥B, so that γ ⊈ ψ ∩∇A and CgB(γ)

⊥B = γ⊥B ⊈ ϕ, thus γ ⊆ CgB(γ) ⊆ ϕ
by Proposition 5, so γ ⊆ ϕ ∩ ∇A. We have obtained γ ⊆ ϕ ∩ ∇A = ψ ∩ ∇A ⊉ γ; a
contradiction. Therefore Γ is injective.

Proposition 15. If A ⊆ B is an admissible quasi r∗–extension and B satisfies (iv) or (v) from
Condition 1, then: A ⊆ B is an m–extension and Γ is a bijection.

Proof. Similar to the proof of Proposition 14.

Theorem 3. If A ⊆ B is an admissible extension such that B satisfies (iv) or (v) from Condition 1,
then the following are equivalent:

(i) A ⊆ B is an r–extension;
(ii) A ⊆ B is a quasi r–extension;
(iii) Γ : Min(B) → Min(A) is a homeomorphism.

Proof. (i)⇒(ii): Trivial.
(ii)⇒(iii): If A ⊆ B is an admissible quasi r–extension such that B satisfies (iv) or (v) from
Condition 1, then, by Propositions 14 and 13, it follows that A ⊆ B is an m–extension and
Γ : Min(B) → Min(A) is a continuous bijection.

Let β ∈ PCon(B), so that Γ(DB(β) ∩ Min(B)) = {ψ ∩∇A | ψ ∈ DB(β) ∩ Min(B)} =
{ψ∩∇A | ψ ∈ Min(B), β ⊈ ψ}. By Remark 10 and the fact that A ⊆ B is a quasi r–extension
and an m–extension, Γ(DB(β) ∩ Min(B)) ⊆ DA(

∨{α ∈ K(A) | β⊥B ⊆ α⊥B}) ∩ Min(A).
Now let ϕ ∈ DA(

∨{α ∈ K(A) | β⊥B ⊆ α⊥B}) ∩ Min(A), that is ϕ ∈
({⋃{DA(α) | α ∈ K(A), β⊥B ⊆ α⊥B})∩Min(A) =

⋃{DA(α)∩Min(A) | α ∈ K(A), β⊥B ⊆
α⊥B}}, so ϕ ∈ DA(α) ∩ Min(A) for some α ∈ K(A) such that β⊥B ⊆ α⊥B = CgB(α)

⊥B. By
Corollary 3, there exists ψ ∈ Min(B) such that Γ(ψ) = ψ ∩∇A = ϕ ⊉ α, thus ψ ⊉ CgB(α),
hence ψ ⊇ CgB(α)

⊥B = β⊥B and thus ψ ⊉ β by Proposition 5 and the fact that B satisfies
(iv) or (v) from Condition 1, so that ψ ∈ DB(β) ∩ Min(B), thus ϕ ∈ Γ(DB(β) ∩ Min(B)).

Hence we also have the converse inclusion: DA(
∨{α ∈ K(A) | β⊥B ⊆ α⊥B}) ∩

Min(A) ⊆ Γ(DB(β)∩Min(B)), so Γ(DB(β)∩Min(B))=DA(
∨{α ∈ K(A) | β⊥B ⊆ α⊥B})∩

Min(A). Therefore Γ : Min(B) → Min(A) is also open, thus it is a homeomorphism.
(iii)⇒(i): Assume that Γ is a homeomorphism with respect to the Stone topologies, so A ⊆ B
is an m–extension and Γ maps basic open sets of Min(B) to basic open sets of Min(A).

Let β ∈ PCon(B), so that DB(β) ∩ Min(B) is a basic open set of Min(B). By the
above, there exists α ∈ PCon(A) such that {µ ∩∇A | µ ∈ DB(β) ∩ Min(B)} = Γ(DB(β) ∩
Min(B)) = DA(α) ∩ Min(A). Hence, for all µ ∈ DB(β) ∩ Min(B), that is µ ∈ Min(B)
such that β ⊈ µ, we have µ ∩ ∇A ∈ DA(α) ∩ Min(A), so α ⊈ µ ∩ ∇A, that is α ⊈ µ.
Since B satisfies (iv) or (v) from Condition 1, we have, by Proposition 5: β⊥B ⊆ µ and
α⊥B = CgB(α)

⊥B ⊆ µ.
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For any γ ∈ K(B) such that γ ⊆ β⊥B, all ε ∈ Min(B) satisfy the following:

• if CgB(α) ⊆ ε, then [γ, CgB(α)]B ⊆ ε;
• if CgB(α) ⊈ ε, then α ⊈ ε ∩ ∇A, that is Γ(ε) = ε ∩ ∇A ∈ DA(α) ∩ Min(A) =

Γ(DB(β) ∩ Min(B)), hence ε ∈ DB(β) ∩ Min(B) since Γ is a bijection, thus β ⊈ ε,
so β⊥B ⊆ ε, again by Proposition 5, thus γ ⊆ ε by the above, hence [γ, CgB(α)]B ⊆ ε;

hence [γ, CgB(α)]B ⊆ ⋂
Min(B) = ∆B since B is semiprime, thus [γ, CgB(α)]B = ∆B,

that is γ ⊆ CgB(α)
⊥B = α⊥B.

Therefore β⊥B =
∨{γ ∈ K(B) | γ ⊆ β⊥B} ⊆ α⊥B. Hence A ⊆ B is an r–extension.

Proposition 16. If A ⊆ B is an admissible r–extension such that B satisfies (iv) or (v) from
Condition 1, then the following are equivalent:

(i) A ⊆ B is a rigid extension;
(ii) Γ maps basic open sets of Min(B) to basic open sets of Min(A).

Proof. By Proposition 14, A ⊆ B is an m–extension and Γ is bijective.
(i)⇒(ii): Let β ∈ PCon(B), so that there exists α ∈ PCon(A) with β⊥B = α⊥B = CgB(α)

⊥B

since A ⊆ B is rigid. By Proposition 5, for any ν ∈ Min(B), the following equivalences
hold: β ⊈ ν if and only if β⊥B ⊆ ν if and only if CgB(α)

⊥B ⊆ ν if and only if CgB(α) ⊈ ν
if and only if α ⊈ ν if and only if α ⊈ ν ∩ ∇A, therefore, since Γ is bijective, we have
Γ(DB(β) ∩ Min(B)) = {ν ∩ ∇A | ν ∈ Min(B), β ⊈ ν} = {µ ∈ Min(A) | α ⊈ µ} =
DA(α) ∩ Min(A).
(ii)⇒(i): Let β ∈ PCon(B). By the hypothesis of this implication, Γ(DB(β) ∩ Min(B)) =
DA(α) ∩ Min(A) for some α ∈ PCon(A), thus {ν ∩ ∇A | ν ∈ Min(A), β ⊈ ν} =
{µ | µ ∈ Min(A), α ⊈ µ}. By Proposition 5, it follows that any ν ∈ Min(B) satisfies:
β⊥B ⊆ ν if and only if β ⊈ ν if and only if α ⊈ ν ∩∇A if and only if α ⊈ ν if and only if
CgB(α) ⊈ ν if and only if CgB(α)

⊥B ⊆ ν.
As in the proof of the implication (iii)⇒(i) from Theorem 3, it follows that β⊥B =⋂

VB(β⊥B)=
⋂

VB(CgB(α)
⊥B)=CgB(α)

⊥B =α⊥B. Hence the extension A ⊆ B is rigid.

Proposition 17. If A ⊆ B is an admissible r∗–extension such that B satisfies (iv) or (v) from
Condition 1, then the following are equivalent:

(i) A ⊆ B is a quasirigid extension;
(ii) Γ maps basic open sets of Min(B)−1 to basic open sets of Min(A)−1.

Proof. By Proposition 15, A ⊆ B is an m–extension and Γ is bijective.
(i)⇒(ii): Let β ∈ K(B), so that β =

∨n
i=1 βi for some n ∈ N∗ and some β1, . . . , βn ∈ PCon(B).

By the hypothesis of this implication, for each i ∈ 1, n, there exists αi ∈ K(A) such that
β⊥B

i = α⊥B
i = (CgB(αi))

⊥B.
Analogously to the proof of (i)⇒(ii) from Proposition 16, it follows that

Γ(VB(βi) ∩ Min(B)) = VA(αi) ∩ Min(A) for all i ∈ 1, n, hence Γ(VB(β) ∩ Min(B)) =
Γ(
⋂n

i=1 VB(βi) ∩ Min(B)) =
⋂n

i=1 Γ(VB(βi) ∩ Min(B)) =
⋂n

i=1 VA(αi) ∩ Min(A) =
VA(α) ∩ Min(A), where α =

∨n
i=1 αi ∈ K(A).

(ii)⇒(i): Similar to the proof of (ii)⇒(i) in Proposition 16.

Corollary 6. If A ⊆ B is an admissible r–extension and r∗–extension such that B satisfies (iv) or
(v) from Condition 1, then the following are equivalent:

• A ⊆ B is a quasirigid extension;
• A ⊆ B is a rigid extension.

Proof. By Proposition 15, A ⊆ B is an m–extension and Γ is bijective.
Clearly, if the extension A ⊆ B is rigid, then it is quasirigid.
Now assume that A ⊆ B is quasirigid. Then, by Proposition 17, Γ maps basic open sets

of Min(B)−1 to basic open sets of Min(A)−1. Since Γ is bijective, it follows that Γ maps
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basic open sets of Min(B) to basic open sets of Min(A), hence A ⊆ B is rigid according to
Proposition 16.

Theorem 4. If A ⊆ B is an admissible extension such that B satisfies (iv) or (v) from Condition 1,
then the following are equivalent:

(i) A ⊆ B is a quasi r∗–extension;
(ii) Γ : Min(B)−1 → Min(A)−1 is a homeomorphism.

Proof. By adapting the proof of Theorem 3.

We say that A satisfies the annihilator condition (AC for short) if for all α, β ∈ PCon(A)
there exists γ ∈ PCon(A) such that γ⊥A = α⊥A ∩ β⊥A.

Remark 12. By Proposition 6.(ii), A satisfies AC if and only if the family
{VA(α) ∩ Min(A) | α ∈ PCon(A)} is closed under finite intersections. Thus, for any semiprime
algebra A that satisfies AC, the family {VA(α) ∩ Min(A) | α ∈ PCon(A)} is a basis for the
inverse topology FMin(A) of Min(A).

Proposition 18. Let A ⊆ B be an admissible extension such that B satisfies (iv) or (v) from
Condition 1.

(i) If A satisfies AC, then: A ⊆ B is a quasi r∗–extension if and only if A ⊆ B is an r∗–extension.
(ii) If A ⊆ B is an r–extension and both A and B satisfy AC, then: A ⊆ B is a quasirigid

extension if and only if A ⊆ B is a rigid extension.

Proof. (i) Assume that A ⊆ B is a quasi r∗–extension. Then, by Theorem 4, Γ : Min(B)−1 →
Min(A)−1 is a homeomorphism.

Let ν ∈ Min(B) and β ∈ PCon(B) such that β ⊆ ν, so that ν ∈ VB(β) ∩ Min(B), thus,
by the above, ν ∩∇A = Γ(ν) ∈ Γ(VB(β)∩ Min(B)), which, according to Remark 12, equals
VA(α) ∩ Min(A) for some α ∈ PCon(A). As in the proof of (ii)⇒(i) from Proposition 16, it
follows that α⊥B ⊆ β⊥B. Therefore A ⊆ B is an r∗–extension.

The converse implication is trivial.
(ii) By Propositions 16 and 17 and the clear fact that, in this case, condition (ii) from
Proposition 16 is equivalent to (ii) from Proposition 17.

Let us denote, for any subset X ⊆ A2, by S(X) = {ψ ∈ Min(B) | X ⊈ ψ ∩∇A}, thus
S(X) = {ψ ∈ Min(B) | ψ ∩∇A ∈ DA(CgA(X))}.

Proposition 19. Let A ⊆ B be an admissible extension such that B is hyperarchimedean and
satisfies (iv) or (v) from Condition 1. If the extension A ⊆ B has the property that, for any
θ, ζ ∈ Con(A), θ⊥A = ζ⊥A implies θ⊥B = ζ⊥B, in particular if A ⊆ B is an m–extension such
that {β⊥B | β ∈ Con(B)} ⊆ {CgB(α) | α ∈ Con(A)}, then the following are equivalent:

(i) Min(A) is a compact space;
(ii) A ⊆ B is an m–extension;
(iii) for any α ∈ PCon(A) there exists β ∈ K(A) such that S(β) = Spec(B) \ S(α);
(iv) for any α ∈ PCon(A) there exists β ∈ K(A) such that β ⊆ α⊥A and (α ∨ β)⊥A = ∆A.

Proof. First, note from Corollary 4.(ii) that, if A ⊆ B is an admissible m–extension such that
β⊥B is generated by a congruence of A for every β ∈ Con(B), then this extension satisfies
the implication: θ⊥A = ζ⊥A implies θ⊥B = ζ⊥B.

Now assume that A ⊆ B is an admissible extension such that, for any θ, ζ ∈ Con(A),
θ⊥A = ζ⊥A implies θ⊥B = ζ⊥B, and that B is hyperarchimedean and satisfies (iv) or (v)
from Condition 1.
(i)⇔(iv) By Theorem 1.
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(iv)⇒(iii): Assume that α ∈ PCon(A). By the hypothesis (iv), there exists β ∈ K(A) such
that β ⊆ α⊥A and (α ∨ β)⊥A = ∆A.

To show that Spec(B) \ S(α) = S(β), let ψ ∈ Spec(B) \ S(α), hence α ⊆ ψ ∩∇A. Since
A ⊆ B satisfies the implication in the enunciation, by Proposition 5 it follows that these
implications hold: if (α ∨ β)⊥B = ∆B, i.e., (CgB(α ∨ β))⊥B = ∆B, then (CgB(α ∨ β))⊥B ⊆ ψ,
thus CgB(α ∨ β) ⊈ ψ, so α ∨ β ⊈ ψ, thus β ⊈ ψ ∩ ∇A, so ψ ∈ S(β), which proves the
inclusion Spec(B) \ S(α) ⊆ S(β).

Conversely, let ψ ∈ S(β), so that β ⊈ ψ ∩∇A. But [α, β]A = ∆A ⊆ ψ ∩∇A ∈ Spec(A),
hence α ⊆ ψ ∩∇A, so ψ ∈ Spec(B) \ S(α). Therefore S(β) ⊆ Spec(B) \ S(α).
(iii)⇒(ii): We have to prove that ψ ∩ ∇A ∈ Min(A) for any ψ ∈ Min(B). Assume by
absurdum that there exists ψ ∈ Min(B) such that ψ∩∇A /∈ Min(A). But ψ∩∇A ∈ Spec(A)
since A ⊆ B is admissible, thus ϕ ⊊ ψ ∩ ∇A for some ϕ ∈ Min(A). By Corollary 3,
there exists ε ∈ Min(B) such that ϕ = ε ∩ ∇A. So ε ∩ ∇A ⊊ ψ ∩ ∇A, hence there exists
(a, b) ∈ (ψ ∩ ∇A) \ (ε ∩ ∇A), so that, if we denote by α = CgA(a, b) ∈ PCon(A), then
α ⊈ ε∩∇A and α ⊆ ψ∩∇A, therefore ε ∈ S(α) and ψ /∈ S(α). Since S(β) = Spec(B) \ S(α),
it follows that ε /∈ S(β) and ψ ∈ S(β), hence β ⊆ ε ∩∇A ⊆ ψ ∩∇A and β ⊈ ψ ∩∇A. We
have obtained a contradiction, thus A ⊆ B is an m–extension.
(ii)⇒(i): Assume that A ⊆ B is an m–extension, so the map Γ is surjective and continuous
with respect to the Stone topologies by Corollary 3 and Proposition 13.(i).

By [7] [Theorem 8], it follows that the reticulation L(B) of the hyperarchimedean
algebra B is a Boolean algebra. Since Min(B) and MinId(L(B)) are homeomorphic, it
follows that Min(B) is a Boolean space, hence Min(B) is a compact space, therefore
Min(A) is also a compact space.

Remark 13. Let A be a reduced (that is semiprime) commutative ring and Q(A) the complete
ring of A (see [3]). In this case, Q(A) is a regular ring [3], i.e., a hyperarchimedean ring. In
accordance with [6] [Proposition 7.2.(2)], A ⊆ Q(A) is a Baer extension of rings, so one can apply
our Proposition 6.18. Then we obtain [31] [Theorem 4.3] as a particular case. It also results that, if
A is a reduced ring, then: Min(A) is compact if and only if A ⊆ Q(A) is an m–extension.

Theorem 5. If A ⊆ B is an admissible m–extension such that {β⊥B | β ∈ Con(B)} ⊆
{CgB(α) | α ∈ Con(A)}, both A and B satisfy (v) and (vi) from Condition 1 and Γ is injec-
tive, then Γ : Min(B) → Min(A) is a homeomorphism and A ⊆ B is a weak rigid extension.

Proof. We will be using Proposition 5, Proposition 11.(ii) and Lemma 6.(ii).
Let α ∈ Con(A) and µ ∈ Min(A), so that µ = ν ∩ ∇A for some ν ∈ Min(B) by

Corollary 3. Then the fact that µ ∈ DA(α) ∩ Min(A), that is α ⊈ µ, is equivalent to
α⊥A ⊆ µ, which implies α⊥B = CgB(α)

⊥B = CgB(α
⊥A) ⊆ CgB(µ) ⊆ ν, thus CgB(α) ⊈ ν,

that is ν ∈ DB(CgB(α)) ∩ Min(B). On the other hand, ν ∈ DB(CgB(α)) ∩ Min(B) means
that CgB(α) ⊈ ν, so that α⊥B = CgB(α)

⊥B ⊆ ν, hence α⊥A = α⊥B ∩ ∇A ⊆ ν ∩ ∇A = µ,
thus α ⊈ µ, that is µ ∈ DA(α) ∩ Min(A).

Hence, ν ∈ DB(CgB(α)) ∩ Min(B) if and only if Γ(ν) = µ ∈ DA(α) ∩ Min(A) if
and only if ν ∈ Γ−1(DA(α) ∩ Min(A)), therefore Γ−1(DA(α) ∩ Min(A)) = DB(CgB(α)) ∩
Min(B). Thus Γ is continuous and, by Proposition 6.(i), for all θ ∈ Con(A), Γ−1(VA(α) ∩
Min(A)) = Γ−1(DA(α

⊥A) ∩ Min(A)) = DB(CgB(α
⊥A)) ∩ Min(B) = VB(CgB(α

⊥A)⊥B) ∩
Min(B) = VB(α

⊥B⊥B) ∩ Min(B) = VB(CgB(α)
⊥B⊥B) ∩ Min(B) = VB(CgB(α)) ∩ Min(B).

Hence, if Γ is injective and thus bijective according to Corollary 3, then Γ is a homeo-
morphism, in particular Γ is open, thus, for every β ∈ Con(B), there is α ∈ Con(A) such
that Γ(DB(β) ∩ Min(B)) = DA(α) ∩ Min(A), hence, by the above, along with
Proposition 6.(i) and Proposition 11.(ii),
VB(β⊥B) ∩ Min(B) = DB(β) ∩ Min(B) = Γ−1(DA(α) ∩ Min(A))

= Γ−1(DA(α
⊥A⊥A) ∩ Min(A)) = DB(CgB(α

⊥A⊥A)) ∩ Min(B)
= DB(CgB(α

⊥A)⊥B) ∩ Min(B) = VB(CgB(α
⊥A)) ∩ Min(B)

= VB(CgB(α)
⊥B) ∩ Min(B).
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By Lemma 11, β⊥B =
⋂
(VB(β⊥B) ∩ Min(B)) =

⋂
(VB(CgB(α)

⊥B) ∩ Min(B)) = CgB(α)
⊥B

= α⊥B, thus A ⊆ B is weak rigid.

Theorem 6. If A ⊆ B is an admissible weak r–extension such that {β⊥B | β ∈ Con(B)} ⊆
{CgB(α) | α ∈ Con(A)} and both A and B satisfy (v) and (vi) from Condition 1, then A ⊆ B is
an m–extension and an r–extension and Γ : Min(B) → Min(A) is a homeomorphism.

Proof. Assume that A ⊆ B is an admissible weak r–extension, so that Γ is surjective by
Corollary 3. We will apply Proposition 5.

Assume by absurdum that there exists a µ ∈ Min(B) such that µ ∩∇A /∈ Min(A), so
that ϕ ⊊ µ ∩∇A for some ϕ ∈ Min(A). By the above, ϕ = ε ∩∇A for some ε ∈ Min(B), so
that ε ∩∇A ⊊ µ ∩∇A, thus ε ̸= µ, hence ε \ µ ̸= ∅, that is (x, y) ∈ ε \ µ for some x, y ∈ B.

We have CgB(x, y) ⊈ µ, hence there exists an α ∈ Con(A) such that α ⊈ µ and
CgB(x, y)⊥B ⊆ α⊥B = CgB(α)

⊥B since A ⊆ B is a weak r–extension. But α ⊈ µ im-
plies CgB(α) ⊈ µ, hence CgB(α)

⊥B ⊆ µ. Since CgB(x, y) ⊆ ε, we have CgB(α)
⊥B ⊇

CgB(x, y)⊥B ⊈ ε, thus α ⊆ CgB(α) ⊆ ε, hence α ⊆ ε ∩ ∇A = ϕ ⊂ µ ∩ ∇A ⊆ µ, hence
CgB(α) ⊆ µ, thus CgB(α)

⊥B ⊈ µ, contradicting the above.
Therefore A ⊆ B is an m–extension.
Now let µ, ν ∈ Min(B) such that µ ∩ ∇A = ν ∩ ∇A. Assume by absurdum that

µ ̸= ν, so that µ \ ν ̸= ∅, that is (u, v) ∈ µ \ ν for some u, v ∈ B. Then CgB(u, v) ⊈ ν,
thus, since A ⊆ B is a weak r–extension, there exists a ξ ∈ Con(A) such that ξ ⊈ ν and
CgB(u, v)⊥B ⊆ ξ⊥B. Since CgB(u, v) ⊆ µ, CgB(u, v)⊥B ⊈ µ, hence, by Proposition 11.(ii),
CgB(ξ

⊥A) = CgB(ξ)
⊥B = ξ⊥B ⊈ µ, thus ξ ⊆ ξ⊥A⊥A ⊆ CgB(ξ

⊥A⊥A) = CgB(ξ
⊥A)⊥B ⊆ µ,

hence ξ ⊆ µ ∩∇A = ν ∩∇A ⊆ ν, contradicting the above. Therefore Γ is injective and thus
a homeomorphism by Theorem 5.

Finally, let µ ∈ Min(B) and β ∈ PCon(B) such that β ⊈ µ, so that, since A ⊆ B is
a weak r–extension, there exists a γ ∈ Con(A) such that γ ⊈ µ and β⊥B ⊆ γ⊥B. Then
(w, z) ∈ γ \ µ for some w, z ∈ A, so that CgA(w, z) ⊈ µ and CgA(w, z) ⊆ γ, so that
CgB(CgA(w, z)) ⊆ CgB(γ) and thus β⊥B ⊆ γ⊥B = CgB(γ)

⊥B ⊆ CgB(CgA(w, z))⊥B =
CgA(w, z)⊥B. Therefore A ⊆ B is an r–extension.

Theorem 7. If A ⊆ B is an admissible weak r∗–extension such that {β⊥B | β ∈ Con(B)} ⊆
{CgB(α) | α ∈ Con(A)} and both A and B satisfy (v) and (vi) from Condition 1, then A ⊆ B is an
m–extension and an r∗–extension and Γ is a homeomorphism with respect to the Stone topologies.

Proof. By adapting the proof of Theorem 6.

Corollary 7. If {β⊥B | β ∈ Con(B)} ⊆ {CgB(α) | α ∈ Con(A)}, both A and B satisfy (v) and
(vi) from Condition 1 and A ⊆ B is admissible and either a weak r–extension or a weak r∗–extension,
then A ⊆ B is a weak rigid extension.

Corollary 8. If A ⊆ B is admissible, {β⊥B | β ∈ Con(B)} ⊆ {CgB(α) | α ∈ Con(A)} and both
A and B satisfy (v) and (vi) from Condition 1, then the following are equivalent:

• A ⊆ B is a weak rigid extension;
• A ⊆ B is a weak r–extension;
• A ⊆ B is a weak r∗–extension;
• A ⊆ B is an r–extension;
• A ⊆ B is an r∗–extension.

7. Conclusions

Commutator theory, developed for different kinds of varieties, with congruence–
modular varieties as an important case [1], is a powerful tool for extending properties of
concrete algebraic structures to universal algebras. Our paper illustrates this by generalizing
some results from [5] on classes of ring extensions to universal algebras whose commutators
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satisfy certain conditions; this includes members of semidegenerate congruence–modular
varieties, but also applies to more general cases. We start by studying some algebraic and
topological properties of the minimal prime spectrum of an algebra whose commutator
operation is commutative and distributive with respect to arbitrary joins, then use these
results on the minimal prime spectrum to obtain characterizations for some classes of
extensions of such algebras. Our results can be applied to many kinds of structures, for
instance to generalize those results in [5] to non–commutative rings or semirings.

In future work we will study the preservation of these properties of extensions of
universal algebras by the reticulation, look for classes of universal algebras to which
other results from [5] can be generalized and study abstractions of our results, using
commutator lattices and lattice morphisms preserving the commutator operations, in the
manner from [25].

Author Contributions: This research was initiated by George Georgescu, who also obtained the first
form of the main results. The contributions of the three authors have been roughly equally important
for this paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the research grant number IZSEZO_186586/1, awarded
to the project Reticulations of Concept Algebras by the Swiss National Science Foundation, within the
programme Scientific Exchanges.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Acknowledgments: We thank the anonymous reviewers for making useful suggestions that helped
us improve our paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Freese, R.; McKenzie, R. Commutator Theory for Congruence–Modular Varieties; London Mathematical Society Lecture Note Series 125;

Cambridge University Press: Cambridge, UK, 1987.
2. Kaplansky, J. Commutative Rings, 1st ed.; University of Chicago Press: Chicago, IL, USA, 1974.
3. Lambek, J. Lectures on Rings and Modules, 2nd ed.; Chelsea Publishing Company: New York, NY, USA, 1976.
4. Agliano, P. Prime Spectra in Modular Varieties. Algebra Universalis 2008, 30, 142–149. [CrossRef]
5. Bhattacharjee, P.; Dress, K.M.; McGovern, W.W. Extensions of Commutative Rings. Topol. Its Appl. 2011, 158, 1802–1814. [CrossRef]
6. Picavet, G. Ultrafiltres sur un Espace Spectral—Anneaux de Baer—Anneaux à Spectre Minimal Compact. Math. Scand. 1980,

46, 23–53. [CrossRef]
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Savić, A. Modified Sweeping Surfaces

in Euclidean 3-Space. Axioms 2024, 13,

800. https://doi.org/10.3390/

axioms13110800

Academic Editors: Cristina Flaut, Dana

Piciu and Murat Tosun

Received: 3 October 2024

Revised: 14 November 2024

Accepted: 14 November 2024

Published: 18 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Modified Sweeping Surfaces in Euclidean 3-Space
Yanlin Li 1,* , Kemal Eren 2 , Soley Ersoy 2 and Ana Savić 3
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Abstract: In this study, we explore the sweeping surfaces in Euclidean 3-space, utilizing the modified
orthogonal frames with non-zero curvature and torsion, which allows us to consider the spine curves
even if their second differentiations vanish. If the curvature of the spine curve of a sweeping surface
has discrete zero points, the Frenet frame might undergo a discontinuous change in orientation.
Therefore, the conventional parametrization with the Frenet frame of such a surface cannot be given.
Thus, we introduce two types of modified sweeping surfaces by considering two types of spine
curves; the first one’s curvature is not identically zero and the second one’s torsion is not identically
zero. Then, we determine the criteria for classifying the coordinate curves of these two types of
modified sweeping surfaces as geodesic, asymptotic, or curvature lines. Additionally, we delve into
determining criteria for the modified sweeping surfaces to be minimal, developable, or Weingarten.
Through our analysis, we aim to clarify the characteristics defining these surfaces. We present
graphical representations of sample modified sweeping surfaces to enhance understanding and
provide concrete examples that showcase their properties.

Keywords: sweeping surface; modified orthogonal frame; Gaussian and mean curvature

MSC: 53A04; 53A05

1. Introduction

Sweeping is a widely used technique in geometric modeling to define the geometry
of three-dimensional objects. The geometric and computational properties of this tech-
nique have been examined via various approaches where planar curves sweep along the
trajectories called the spine curves. For instance, in the process of generating sweeping
surfaces, the superiority of using the rotation minimizing frame (RMF) with the Frenet
frame was compared in [1,2]. The sweeping surfaces are generated by a plane curve known
as a profile curve or generatrix that is continuously moving in the same direction with
the normal vector field. Strings, canal surfaces, and tubular (pipe) surfaces are prominent
varieties of sweeping surfaces that are the ultimate outcomes of this process. In [3], Xu
et al. represented the characterizations of a particular kind of sweeping surface known as
a canal surface. Ro and Yoon provided an analysis of another type of sweeping surface
called tube that satisfied particular equations based on surface curvatures in [4]. Research
findings also suggest that sweeping surfaces generated by the use of RMF can also be
categorized as developable surfaces [5]. The investigation of sweeping surfaces along a
curve based on the Darboux frame was documented in [6]. Furthermore, the properties
of right conoids hypersurfaces in Minkowski 4-space were studied in [7,8]. The theory of
singularity has been thoroughly studied in [9] and it is a vital tool in many various fields of
inquiry, including differential geometry, the field of optics, robotics, and visual computing.
The involutive sweeping surfaces were presented as a novel surface type by Köseoğlu
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and Bilici, who also explored their singularities [10]. Several scholars have examined the
singularities and characteristic features of the surfaces [11–17].

On the other hand, it is observed that at the points where a space curve’s second
derivative is zero, the Frenet frame becomes insufficient. That is, the principal normal and
binormal vector fields of such a curve are not continuous at these points. Sasai created the
modified orthogonal frame (MOF) and inferred the formulae corresponding to the Frenet
formulae in [18] to address this problem. Recently, Bükcü and Karacan described two
MOFs with non-zero curvature and non-zero torsion in Minkowski 3-space [19]. A number
of investigations [20–25] revisited some specific curves as well as surfaces such as ruled
surfaces, Hasimoto surfaces, tubular surfaces, and the evolution of curves using MOF.

In numerous above-mentioned investigations, RMF was typically utilized to generate
sweeping surfaces to correct the unwanted rotation of the Frenet frame. In fact, RMF is a
frame developed to minimize the rotation of the normal and binormal vectors as they move
along the curve. On the other hand, to preserve orthogonality without requiring minimal
rotation, the normal and binormal vectors are modified according to curvature and torsion
in the MOFs with non-zero curvature and non-zero torsion, respectively.

In this study, we modify the parametric representation of a classical sweeping surface
defined along a spine curve with non-zero curvatures everywhere. In this modification,
the spine curve may have discrete zero curvatures. This can lead to a discontinuity in the
directions of the principal normal vector, and thus, the binormal vector, when approaching
a zero-curvature point from either side. Thus, the Frenet frame may not be well-defined,
particularly because the normal and binormal directions can become ambiguous. Even if a
spine curve has discrete zero curvatures, an MOF is well-defined at any point where the
curvature is non-zero, and another MOF is also well-defined at any point where the torsion
is non-zero. Thus, two types of modified surfaces occur since there are two types of MOFs
with non-vanishing curvature and non-vanishing torsion. The novelty of our study is
generating sweeping surfaces by using two types of MOFs, which ensure the orthogonality
and continuity of the frame vectors of the spine curves. We determine the criteria for the
coordinate curves of these types of modified sweeping surfaces to be geodesic, asymptotic,
or lines of curvature. Furthermore, we derive criteria for the modified sweeping surfaces to
be developable, minimal, or Weingarten. Finally, we provide examples of these sweeping
surfaces and illustrate their graphical representations.

2. Preliminaries

Let β be a moving space curve with arc-length parameter s in E3. If the tangent,
principal normal, and binormal unit vectors of the space curve β are noted by t, n, and b,
respectively, then the moving Frenet frame of the unit speed curve β satisfies

ts = κn,

ns = −κt + τb,

bs = −τn,

where the curvature and torsion of β are κ and τ, respectively. The subscript symbol
represents differentiation with respect to the variable s. However, if the principal normal
or binormal vectors of a space curve are not continuous at the points where the curvature
function has discrete zero points, the Frenet frame cannot be defined. Then, the alternative
frame of Sasai can be used instead of the Frenet frame [18].

If κ(s0) = 0, then the Frenet frame can display a change at the points s ∈ (s0 − ε, s0 + ε)
for any ε > 0. However, a frame can be defined at the points s ∈ (s0 − ε, s0 + ε)\{s0} where
κ(s) ̸= 0 called MOF with non-vanishing curvature, and another frame can be defined for
τ(s) ̸= 0 called MOF with non-vanishing torsion as explained subsequently. Assume that
the curvature κ of a general analytic curve β is not identically zero; then, the elements of
MOF with the non-vanishing curvature of a curve are defined as

T =
dβ

ds
, N =

dT
ds

, B = T × N

30



Axioms 2024, 13, 800

where “×” represents the vector product. At non-zero curvature values of κ, the frames
{T, N, B} and {t, n, b} are related to each other as

T(s) = t(s), N(s) = κ(s)n(s), B(s) = κ(s)b(s).

Then, the derivative formulae of MOF are written in matrix form as follows:



T

N

B




s

=




0 1 0
−κ2 κs

κ τ
0 −τ κs

κ






T
N
B


 (1)

when κ ̸= 0 and

τ =
det(βs, βss, βsss)

κ2

is the torsion of the space curve β. Moreover, the MOF with non-zero curvature satisfies

⟨T, T⟩ = 1, ⟨N, N⟩ = κ2 = ⟨B, B⟩.

On the other hand, the relations between the elements of the other MOF and the Frenet
frame at non-zero torsion values of τ are

T(s) = t(s), N(s) = τ(s)n(s), B(s) = τ(s)b(s).

In this case, we obtain the following MOF with non-zero torsion hold:



T

N

B




s

=




0 κ
τ 0

−κτ τs
τ τ

0 −τ τs
τ






T
N
B


 (2)

where
⟨T, T⟩ = 1, ⟨N, N⟩ = τ2 = ⟨B, B⟩.

In the cases of κ = 1 and τ = 1, respectively, the derivative Formulas (1) and (2) are
coincident with Frenet derivative formulae.

Let φs =
∂φ
∂s and φv = ∂φ

∂v be tangent vectors of a surface M parametrized by φ(s, υ);
then, the equation of the normal vector field of the surface is

∆(s, υ) =
φs × φυ

∥φs × φυ∥
. (3)

The Gaussian and mean curvatures of M are

K =
km − l2

EG − F2 and H =
Em − 2El + Gk

2(EG − F2)
, (4)

respectively, where the elements of {E, F, G} and {k, l, m} denote the coefficients of the first
and second fundamental forms of the surface with parametrization φ(s, υ) as

E =

〈
∂φ

∂s
,

∂φ

∂s

〉
, F =

〈
∂φ

∂s
,

∂φ

∂υ

〉
, G =

〈
∂φ

∂υ
,

∂φ

∂υ

〉
(5)

and

k =

〈
∂2 φ

∂s2 , ∆
〉

, l =
〈

∂2 φ

∂s∂υ
, ∆
〉

, m =

〈
∂2 φ

∂υ2 , ∆
〉

, (6)

respectively. It is common knowledge that a surface M can be described by the following
characterizations given in [13]:

• M is a developable surface if and only if K = 0 everywhere.
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• M is a minimal surface if and only if H = 0 everywhere.
• M is a Weingarten-type surface if and only if KsHυ − KυHs = 0 everywhere.

3. Modified Sweeping Surfaces Using the MOFs

In this section, the parametric expression of sweeping surfaces along a spine curve β
is modified in order to fix the cases in which β has discrete zero curvatures. The modified
sweeping surfaces are generated with the spine curves even if κ(s0) = 0 for some s0. A
modified sweeping surface of the MOF with non-vanishing curvature κ along at least twice
continuously differentiable spine curve β is defined by the modified principal normal
and modified binormal vectors N(s) = κ(s)n(s) and B(s) = κ(s)b(s) when κ(s) ̸= 0 at
s ∈ (s0 − ε, s0 + ε)\{s0} for any ε > 0. Moreover, a modified sweeping surface of the
MOF with non-vanishing torsion τ along at least three times continuously differentiable
spine curve β is defined by the modified principal normal and modified binormal vectors
N(s) = τ(s)n(s) and B(s) = τ(s)b(s) when τ(s) ̸= 0 at s ∈ (s0 − ε, s0 + ε)\{s0} for any
ε > 0. Now, let us outline a simple method for illustrating the modified sweeping surfaces.
The parameter along the curve β is chosen as one of the variables, and the position vector
φ is established by connecting a point on the curve β to another point on the modified
sweeping surface.

The parametric equation of a modified sweeping surface M, formed by the spine curve
β and the planar profile (cross-section) curve δ(υ) = (0, r(υ), p(υ))⊥, where the symbol “⊥”
represents transpose, is

φ(s, υ) = β(s) + δ(υ)Γ(s) = β(s) + r(υ)N(s) + p(υ)B(s), (7)

where Γ(s) = (T(s), N(s), B(s)) denotes the orthogonal matrix with the elements of
MOFs with non-vanishing curvature and non-vanishing torsion along the spine curve
β(s). Thus, two types of modified sweeping surfaces exist that are investigated in the
following subsections.

3.1. Modified Sweeping Surfaces of the MOF with Non-Vanishing Curvature κ

In this subsection, the modified sweeping surface M from (7) is investigated accord-
ing to the MOF with non-vanishing curvature κ. Referring to (1), the first-order partial
differentiations of φ(s, υ) with respect to s and υ are found as

φs =
(

1 − rκ2
)

T +
( rκs

κ
− pτ

)
N +

(
rτ +

pκs

κ

)
B

and
φυ = rυN + pυB.

Thus, by a straightforward computation from the last two equations and Equation (3), the
unit normal vector field ∆ of the surface is found as

∆(s, υ) =
(λ2 pυ − λ3rυ)T − λ1 pυN + λ1rυB√
λ1

2κ2(pυ
2 + rυ

2) + (λ2 pυ − λ3rυ)
2

, (8)

where

λ1(s, υ) = 1 − rκ2, λ2(s, υ) =
rκs

κ
− pτ, and λ3(s, υ) =

pκs

κ
+ rτ. (9)

Theorem 1. Let M be a modified sweeping surface formed by the MOF with non-vanishing
curvature κ. Then, the Gaussian curvature of M is given with:

K(s, υ) =

λ1κ2η2
(

pυ
(
λ2µ1 − κ2λ1µ2

)
− rυ

(
λ1µ1 − κ2λ1µ3

))
−
(

λ1κ2(rυλ3υ − pυλ2υ)

+λ1υ(λ2 pυ − λ3rυ)

)2

∥φs × φυ∥2κ2
(

κ2(λ2 pυ − λ3rυ)
2 + λ2

1η1

) .
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The mean curvature of M is obtained as

H(s, υ) =

η1

(
µ1

−λ1κ2

)(
pυλ2

−rυλ3

)
− λ1η2




λ2
1

+κ2
(

λ2
2 + λ2

3

)

− 2

(
λ3 pυ

+λ2rυ

)


pυ

(
λ2λ1υ − κ2λ1λ2υ

)

+rυ

(
κ2λ1λ3υ − λ3λ1υ

)




2∥φs × φυ∥
(

κ2(λ2 pυ − λ3rυ)
2 + λ2

1η1

) .

Here, the following notations are employed for the sake of brevity:

∥φs × φυ∥ =

√
λ1

2κ2(pυ
2 + rυ

2) + (λ2 pυ − λ3rυ)
2,

µ1(s, υ) = λ1s − κ2λ2,

µ2(s, υ) = λ1 + λ2s − λ3τ +
λ2κs

κ
,

µ3(s, υ) = λ2τ + λ3s +
λ3κs

κ
,

η1(υ) = pυ
2 + rυ

2,

η2(υ) = rυ pυυ − pυrυυ.

Proof. Let M be a modified sweeping surface generated by the MOF with non-vanishing
curvature κ. From the Equation (5), the coefficients of the first fundamental form of M are





E(s, υ) = λ1
2 + κ2

(
λ2

2 + λ3
2
)

,

F(s, υ) = κ2(λ2rυ + λ3 pυ),

G(s, υ) = κ2
(

pυ
2 + rυ

2
)

.

By considering Equation (1), the second-order partial differentiations of φ(s, υ) given
in (7) with respect to s and υ are obtained as follows:

φss = µ1T + µ2N + µ3B,

φsυ = λ1υT + λ2υN + λ3υB,

φυυ = rυυN + pυυB.

(10)

Note that for the sake of simplicity, we use the following notations:

µ1(s, υ) = λ1s − κ2λ2,

µ2(s, υ) = λ1 + λ2s − λ3τ +
λ2κs

κ
,

µ3(s, υ) = λ2τ + λ3s +
λ3κs

κ
.

From the Equation (6), the coefficients k, l, and m for M are found as follows:




k(s, υ) =

(
µ1(λ2 pυ − λ3rυ)− κ2λ1(µ2 pυ − µ3rυ)

)

∥φs × φυ∥
,

l(s, υ) =

(
λ1υ(λ2 pυ − λ3rυ)− κ2λ1(λ2υ pυ − λ3υrυ)

)

∥φs × φυ∥
,

m(s, υ) =
κ2λ1η2

∥φs × φυ∥
.

If the magnitudes E, F, G, k, l, and m are substituted into Equation (4), the Gaussian and
mean curvatures K and H of M are obtained as in the hypothesis.
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Corollary 1. Let M be a modified sweeping surface generated by the MOF with non-vanishing
curvature κ. Then, M is developable if and only if

λ1κ2η2

(
λ2µ1 pυ − λ3µ1rυ + λ1κ2(−µ2 pυ + µ3rυ)

)
=
(

λ1κ2(−pυλ2υ + rυλ3υ) + λ1s(λ2 pυ − λ3rυ)
)2

.

M is minimal if and only if

η1

(
µ1(λ2 pυ − λ3rυ) + λ1κ2(µ3rυ − µ2 pυ)

)
+ λ1η2

(
λ2

1 + κ2
(

λ2
2 + λ2

3

))

−2(λ3 pυ + λ2rυ)
(

λ1κ2(rυλ3υ − pυλ2υ) + (λ2 pυ − λ3rυ)λ1s

)
= 0.

Theorem 2. Let M be a modified sweeping surface generated by the MOF with non-vanishing
curvature κ. Then, M is a Weingarten-type surface if and only if




κ2ε1(λ1η2υ + η2λ1υ)

+
(

λ1κ2η2 − 2ε1

)
ε1υ



(

η1δ1s − 2δ3s

−η2(δ2λ1s + λ1δ2s)

)
=

(
δ1η1υ − δ2(λ1η2υ + η2λ1υ)

+η1δ1υ − λ1η2δ2υ − 2δ3υ

)


κε1η2(2λ1κs + κλ1s)

+ε1s

(
λ1κ2η2 − 2ε1

)



where

ε1(s, υ) =
pυ

(
λ2µ1 − κ2λ1µ2

)
− rυ

(
λ1µ1 − κ2λ1µ3

)

∥φs × φυ∥2κ2
(

κ2(λ2 pυ − λ3rυ)
2 + λ2

1η1

) ,

ε2(s, υ) =
pυ

(
λ2µ1 − κ2λ1µ2

)
− rυ

(
λ1µ1 − κ2λ1µ3

)

∥φs × φυ∥κ

√(
κ2(λ2 pυ − λ3rυ)

2 + λ2
1η1

) ,

δ1(s, υ) =

(
µ1 − λ1κ2)(pυλ2 − rυλ3)

2∥φs × φυ∥
(

κ2(λ2 pυ − λ3rυ)
2 + λ2

1η1

) ,

δ2(s, υ) =
λ2

1 + κ2(λ2
2 + λ2

3
)

2∥φs × φυ∥
(

κ2(λ2 pυ − λ3rυ)
2 + λ2

1η1

) ,

δ3(s, υ) =
(λ3 pυ + λ2rυ)

(
pυ

(
λ2λ1υ − κ2λ1λ2υ

)
+ rυ

(
κ2λ1λ3υ − λ3λ1υ

))

2∥φs × φυ∥
(

κ2(λ2 pυ − λ3rυ)
2 + λ2

1η1

) .

Proof. Let M be a modified sweeping surface formed by the MOF with non-vanishing
curvature κ. If the Gaussian and mean curvatures K and H of M are differentiated in terms
of s and υ, we have





Ks = κε1η2(2λ1κs + κλ1s) +
(
−2ε1 + λ1κ2η2

)
ε1s,

Kυ = κ2ε1(λ1η2υ + η2λ1υ) +
(
−2ε1 + λ1κ2η2

)
ε1υ,

Hs = η1δ1s − η2(δ2λ1s + λ1δ2s)− 2δ3s,

Hυ = δ1η1υ − δ2(λ1η2υ + η2λ1υ) + η1δ1υ − λ1η2δ2υ − 2δ3υ.

By considering these equalities, the condition specified in the hypothesis is satisfied if and
only if KsHυ − Kυ Hs = 0, which requires M to be a Weingarten-type surface.

Theorem 3. If M is a modified sweeping surface generated by the MOF with non-vanishing
curvature κ, then, the s−coordinate curves of M are geodesic if and only if

pυ

rυ
=

λ1(µ1 − µ2) + λ3(µ3 − µ2)

λ1(µ3 − µ1) + λ2(µ3 − µ2)
.

The s−coordinate curves of M are asymptotic if and only if

pυ

rυ
=

µ1λ3 − κ2µ3λ1

µ1λ2 − κ2µ2λ1
.
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Proof. To ensure that the coordinate curves meet the criteria for being geodesic curves,
the acceleration vector of the coordinate curve must be perpendicular to the surface, and,
thereby, parallel to the surface’s normal vector.

From the equation of the normal vector field given in (8) and the first equality of (10),
the following equation is obtained:

∆ × φss = λ1(µ3 pυ + µ2rυ)T + (µ3λ2 pυ − (µ3λ3 + µ1λ1)rυ)N

+(µ2λ3rυ − (µ2λ2 + µ1λ1)pυ)B.

By the fact that the vectors T, N, and B are linearly independent, if ∆ × φss = 0, then the
last equation requires

λ1(µ3 pυ + µ2rυ) = 0,

µ3λ2 pυ − (µ3λ3 + µ1λ1)rυ = 0,

µ2λ3rυ − (µ2λ2 + µ1λ1)pυ = 0.

Thus, the criterion in the hypothesis is verified by the common solution of these equali-
ties. It is a fact that the s−coordinate curves are geodesics under the criterion stated in
the hypothesis.

Moreover, a curve on a surface is classified as asymptotic if the acceleration vector
of the curve lies entirely in the tangent plane of the surface, which means that the inner
product of the second derivative of the curve and the normal vector field of the surface
must be zero. To check the condition for the s−coordinate curves of M to be asymptotic,
we take the Equation (8) and the first equality in (10) for ∆ and φss, respectively. Then,
we obtain

⟨∆, φss⟩ =
(

µ1λ2 − κ2µ2λ1

)
pυ +

(
κ2µ3λ1 − µ1λ3

)
rυ.

Thus,
(
µ1λ2 − κ2µ2λ1

)
pυ =

(
µ1λ3 − κ2µ3λ1

)
rυ if and only if ⟨∆, φss⟩ = 0, and we can state

that the s−coordinate curves are asymptotic under the criterion stated in the hypothesis.

Theorem 4. Let M be a modified sweeping surface generated by the MOF with non-vanishing
curvature κ. Then, the υ−coordinate curves of M are geodesic if and only if

λ2 pυ − λ3rυ = 0, pυυ + rυυ = 0, and λ1(pυ pυυ + rυrυυ) = 0.

Also, the υ−coordinate curves of M are asymptotic if and only if

rκ2 = 1 or rυ pυυ − pυrυυ = 0.

Proof. From the equation of the normal vector field given by (8) and the third equality
of (10), the following equation is obtained:

∆ × φυυ = λ1(pυ pυυ + rυrυυ)T + pυυ(λ2 pυ − λ3rυ)N − rυυ(λ2 pυ − λ3rυ)B.

Since the vectors T, N, and B are linearly independent, if ∆ × φυυ = 0, we have

(pυ pυυ + rυrυυ)λ1 = 0,

(λ2 pυ − λ3rυ)pυυ = 0,

(λ2 pυ − λ3rυ)rυυ = 0.

Thus, the criterion in the hypothesis is verified by these last three equations. Consequently,
we can say that the υ−coordinate curves of M are geodesics under the criterion stated in
the hypothesis.

Now, let us check whether the υ−coordinate curves of M are asymptotic. Therefore,
we take the Equation (8) and the third equality in (10) and we obtain

⟨∆, φυυ⟩ = κ2λ1(rυ pυυ − pυrυυ).
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This gives us λ1 = 0 or rυ pυυ − pυrυυ = 0 if and only if ⟨∆, φυυ⟩ = 0. Since λ1 = 1 − rκ2

from (9), it is obvious that the υ−coordinate curves of M are asymptotic under the criteria
stated in the hypothesis.

Theorem 5. Let M be a modified sweeping surface generated by the MOF with non-vanishing
curvature κ. If the s and υ−coordinate curves of M are lines of curvature, then

λ2

λ3
=

κ2λ1λ3υ − λ1υλ3

λ1υλ2 − κ2λ1λ2υ
.

Proof. It is known that the curves that are always tangent to a principal direction are
known as lines of curvature. Each coordinate curve follows one of the principal curvature
directions on the surface if and only if F = l = 0, because F = 0 ensures the orthogonality
of the coordinate curves and l = 0 ensures that each coordinate direction is independent in
terms of curvature. Let us recall the equations

F(s, υ) = κ2(λ3 pυ + λ2rυ)

and

l(s, υ) =
λ1υ(λ2 pυ − λ3rυ)− κ2λ1(λ2υ pυ − λ3υrυ)

∥φs × φυ∥
.

Then, the common solution of F = 0 and l = 0 gives us

λ2

λ3
=

κ2λ1λ3υ − λ1υλ3

λ1υλ2 − κ2λ1λ2υ
.

This completes the proof.

3.2. Modified Sweeping Surfaces of the MOF with Non-Vanishing Torsion τ

In this section, the surface given by the Equation (7) is investigated using the MOF
with non-vanishing torsion. The first order partial differentiations of φ(s, υ) with respect to
s and υ, are found as follows:

φs = (1 − rκτ)T +
( rτs

τ
− τp

)
N +

( pτs

τ
+ rτ

)
B

and
φυ = rυN + pυB.

Thus, by a straightforward computation from the last equations and the Equation (3), the
normal vector field ∆ of M is obtained as

∆(s, υ) =
( f2 pυ − f3rυ)T − f1 pυN + f1rυB√
τ2 f1

2(pυ
2 + rυ

2) + ( f2 pυ − f3rυ)
2

, (11)

where
f1(s, υ) = 1 − rκτ, f2(s, υ) =

rτs

τ
− τp, and f3(s, υ) =

pτs

τ
+ rτ.

Theorem 6. Let M be a modified sweeping surface constructed by the MOF with non-vanishing
torsion. Then, the Gaussian curvature of M is given by

K(s, υ) =
f1η2(( f2g1 − f1g2)pυ + ( f1g3 − f3g1)rυ)− (( f2 pυ − f3rυ) f1υ − f1(pυ f2υ − rυ f3υ))

2

∥φs × φυ∥2τ2
(

f1
2η1 + τ2

((
f2

2 + f3
2
)

η1 − ( f3 pυ + f2rυ)
2
)) .
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Under the same condition, the mean curvatures of M is given by

H(s, υ) =

τ2( f3rυ − f2 pυ)

(
2 f1υ( f3 pυ + f2rυ)

−η1g1

)
+ f1


 f1

2η2 + τ2



(

f2
2 + f3

2
)

η2 + η1(+g3rυ − g2 pυ)

+2( f3 pυ + f2rυ)(pυ f2υ − rυ f3υ)






2∥φx × φυ∥τ2
(

f1
2η1 + τ2

(
η1

(
f2

2 + f3
2
)
− ( f3 pυ + f2rυ)

2
))

where
∥φs × φυ∥ =

√
τ2 f1

2(pυ
2 + rυ

2) + ( f2 pυ − f3rυ)
2,

g1(s, υ) = f1s − f2κτ,

g2(s, υ) = f2s − f3τ +
f1κ

τ
+

f2τs

τ
,

g3(s, υ) = f2τ + f3s +
f3τs

τ
.

Proof. Assume that M is a modified sweeping surface generated by the MOF with non-
vanishing torsion. From the Equation (5), the coefficients of the first fundamental form of
this sweeping surface are found as follows:





E(s, υ) = f1
2 + τ2

(
f2

2 + f3
2
)

,

F(s, υ) = τ2( f2rυ + f3 pυ),

G(s, υ) = τ2
(

pυ
2 + rυ

2
)

,

where f1(s, v), f2(s, v), and f3(s, v) are as mentioned above. The second-order partial
differentiations of φ(s, υ) with respect to s and υ are as follows:

φss = g1T + g2N + g3B,

φsυ = f1υT + f2υN + f3υB,

φυυ = rυυN + pυυB,

(12)

where
g1(s, υ) = f1s − f2κτ,

g2(s, υ) = f2s − f3τ +
f1κ

τ
+

f2τs

τ
,

g3(s, υ) = f2τ + f3s +
f3τs

τ
.

By Equations (6) and (12), the second fundamental form coefficients of M are found as
follows: 




k(s, υ) =
g1( f2 pυ − f3rυ) + τ2 f1(g3rυ − g2 pυ)

∥φs × φυ∥
,

l(s, υ) =
f1υ( f2 pυ − f3rυ) + τ2 f1( f3υrυ − f2υ pυ)

∥φs × φυ∥
,

m(s, υ) =
τ2 f1η2

∥φs × φυ∥
.

If the coefficients of the first and second fundamental forms of this type of modified
sweeping surface are substituted into Equation (4), the Gaussian and mean curvatures K
and H of M are obtained as in the hypothesis.

Corollary 2. If M is a modified sweeping surface generated by the MOF with non-vanishing
torsion, then, M is developable if and only if

f1η2(( f2g1 − f1g2)pυ + ( f1g3 − f3g1)rυ) = (( f2 pυ − f3rυ) f1υ − f1(pυ f2υ − rυ f3υ))
2.
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The modified sweeping surface generated by the MOF with non-vanishing torsion is the minimal
surface if and only if

τ2( f3rυ − f2 pυ)(2 f1υ( f3 pυ + f2rυ)− η1g1) = f1


 f1

2η2 + τ2


η2

(
f2

2 + f3
2
)
+ η1(g3rυ − g2 pυ)

+2( f3 pυ + f2rυ)(pυ f2υ − rυ f3υ)




.

Theorem 7. Let M be a modified sweeping surface generated by the MOF with non-vanishing
torsion. M is a Weingarten-type surface if and only if

(
ξ1( f1η2υ + η2 f1υ)

+( f1η2 − 2ξ1)ξ1υ

)(
ζ3 f1s + f1ζ3s

+τ(τζ2ζ1s + ζ1(2ζ2τs + τζ2s))

)
=

(
ζ3 f1υ + f1ζ3υ

+τ2(ζ2ζ1υ + ζ1ζ2υ)

)(
η2ξ1 f1s

+( f1η2 − 2ξ1)ξ1s

)

where

ξ1(s, υ) =
( f2g1 − f1g2)pυ + ( f1g3 − f3g1)rυ

∥φs × φυ∥2τ2
(

f1
2η1 + τ2

((
f2

2 + f3
2
)

η1 − ( f3 pυ + f2rυ)
2
)) ,

ξ2(s, υ) =
( f2 pυ − f3rυ) f1υ − f1(pυ f2υ − rυ f3υ)

∥φs × φυ∥τ

√(
f1

2η1 + τ2
((

f2
2 + f3

2
)

η1 − ( f3 pυ + f2rυ)
2
)) ,

ζ1(s, υ) =
f3rυ − f2 pυ

2∥φs × φυ∥τ2
(

f1
2η1 + τ2

(
η1

(
f2

2 + f3
2
)
− ( f3 pυ + f2rυ)

2
)) ,

ζ2(s, υ) =
2 f1υ( f3 pυ + f2rυ)− η1g1

2∥φs × φυ∥τ2
(

f1
2η1 + τ2

(
η1

(
f2

2 + f3
2
)
− ( f3 pυ + f2rυ)

2
)) ,

ζ3(s, υ) =
f1

2η2 + τ2
((

f2
2 + f3

2
)

η2 + η1(+g3rυ − g2 pυ) + 2( f3 pυ + f2rυ)(pυ f2υ − rυ f3υ)
)

2∥φs × φυ∥τ2
(

f1
2η1 + τ2

(
η1

(
f2

2 + f3
2
)
− ( f3 pυ + f2rυ)

2
)) .

Proof. Let M be a modified sweeping surface generated by the MOF with non-vanishing
torsion. By differentiating the curvatures K and H of M in terms of s and υ, we obtain





Ks = η2ξ1 f1s + ( f1η2 − 2ξ1)ξ1s,

Kυ = ξ1( f1η2υ + η2 f1υ) + ( f1η2 − 2ξ1)ξ1υ,

Hs = ζ3 f1s + τ(τζ2ζ1s + ζ1(2ζ2τs + τζ2s)) + f1ζ3s,

Hυ = ζ3 f1υ + τ2(ζ2ζ1υ + ζ1ζ2υ) + f1ζ3υ.

From here, the condition specified in the hypothesis is met if and only if KsHυ − Kυ Hs = 0.
So, one can say that M generated by the MOF with non-vanishing torsion is a Weingarten-
type surface under this condition.

Theorem 8. Let M be a modified sweeping surface generated by the MOF with non-vanishing
torsion. Then, the s−coordinate curves of M are geodesic if and only if

pυ

rυ
=

f3(g3 − g2) + f1g1

f2(g3 − g2)− f1g1
.

Also, the s−coordinate curves of M are asymptotic if and only if

pυ

rυ
=

g1 f3 − τ2g3 f1

g1 f2 − τ2g2 f1
.

Proof. Let M be a modified sweeping surface generated by the MOF with non-vanishing
torsion. From (11) and the first equality in (12), the following equation is obtained:

∆ × φss = f1(g3 pυ + g2rυ)T + (g3 f2 pυ − (g1 f1 + g3 f3)rυ)N

+(g2 f3rυ − (g1 f1 + g2 f2)pυ)B.

By the linear independence of the elements of MOF, ∆ × φss = 0 requires
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f1(g3 pυ + g2rυ) = 0,

g3 f2 pυ − (g1 f1 + g3 f3)rυ = 0,

g2 f3rυ − (g1 f1 + g2 f2)pυ = 0.

Thus, the criterion in the hypothesis is obtained by these last three equations. One can say
that the s−coordinate curves of the modified sweeping surface are geodesics under the
criterion stated in the hypothesis.

From Equations (11) and (12), we have

⟨∆, φss⟩ =
(

g1 f2 − τ2g2 f1

)
pυ +

(
τ2g3 f1 − g1 f3

)
rυ.

Thus,
(

g1 f2 − τ2g2 f1
)

pυ =
(

g1 f3 − τ2g3 f1
)
rυ if and only if ⟨∆, φss⟩ = 0. Consequently, it

is proved that the s−coordinate curves of M are asymptotic under the criterion stated in
the hypothesis.

Theorem 9. Let M be a modified sweeping surface generated by the MOF with non-vanishing
torsion. Then, the υ−coordinate curves of M are geodesic if and only if

f2 pυ − f3rυ = 0, pυυ − rυυ = 0 and f1(pυ pυυ + rυrυυ) = 0.

Also, the υ−coordinate curves of M are asymptotic if and only if

rκτ = 1 or rυ pυυ − pυrυυ = 0.

Proof. The vector product of the normal vector ∆ given by (11) and φυυ given in the third
equation of (12) is found as follows:

∆ × φυυ = f1(pυ pυυ + rυrυυ)T + pυυ( f2 pυ − f3rυ)N + rυυ( f3rυ − f2 pυ)B.

The condition for υ−curve to be geodesic is ∆ × φυυ = 0, which requires

f1(pυ pυυ + rυrυυ) = 0,

pυυ( f2 pυ − f3rυ) = 0,

rυυ( f3rυ − f2 pυ) = 0.

Thus, for ∆ × φυυ = 0, the criterion in the hypothesis must be verified. It is obvious that
the υ−coordinate curves of M are geodesics under the criterion stated in the hypothesis.
From Equation (11) and the third equality in (12), we have

⟨∆, φυυ⟩ = τ2 f1(rυ pυυ − pυrυυ).

Then, f1 = 0 or rυ pυυ − pυrυυ = 0 if and only if ⟨∆, φυυ⟩ = 0. Since f1 = 1 − rκτ, it
is seen that the υ−coordinate curves of M are asymptotic under the criteria stated in
the hypothesis.

Theorem 10. Let M be a modified sweeping surface generated by the MOF with non-vanishing
torsion τ. Then, the s and υ−coordinate curves of M are lines of curvature if and only if

pυ

rυ
=

τ2 f1 f3υ − f1υ f3

f1υ f2 − τ2 f1 f2υ
.

Proof. Let M be a modified sweeping surface generated by the MOF with non-vanishing
torsion. Then, F = l = 0 provided that the coordinate curves of M are lines of curvature.
Taking into consideration τ ̸= 0 and the equations

F = τ2( f3 pυ + f2rυ) and l =
f1υ( f2 pυ − f3rυ) + τ2 f1( f3υrυ − f2υ pυ)

∥φs × φυ∥
,
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the common solution of F = 0 and l = 0 gives us

pυ

rυ
=

τ2 f1 f3υ − f1υ f3

f1υ f2 − τ2 f1 f2υ
.

The last is the condition for the s and υ−coordinate curves of M generated by the MOF
with non-vanishing torsion to be the lines of curvature.

Example 1. Let us consider a curve β defined by the parametric equation

β(s) = (sin s, sin s cos s, s).

The Frenet apparatuses of β are found as {t, n, b, κ, τ} where s ∈ (2kπ, (2k + 1)π) and
{t, −n, −b, −κ, τ} where s ∈ ((2k + 1)π, (2k + 2)π) for k ∈ Z, such that

t =

( √
2 cos s√

4 + cos 2s + cos 4s
,

√
2 cos 2s√

4 + cos 2s + cos 4s
,

√
2√

4 + cos 2s + cos 4s

)
,

n =




(4 cos 2s + cos 4s − 1)√
(4 + cos 2s + cos 4s)(27 + 24 cos 2s + cos 4s)

,

−2 cos s(6 + cos 2s)√
(4 + cos 2s + cos 4s)(27 + 24 cos 2s + cos 4s)

,

2 cos s(1 + 4 cos 2s)√
(4 + cos 2s + cos 4s)(27 + 24 cos 2s + cos 4s)




,

b =

(
4
√

2 cos s√
27 + 24 cos 2s + cos 4s

,
−
√

2√
27 + 24 cos 2s + cos 4s

,
−4 − 2 cos 2s√

27 + 24 cos 2s + cos 4s

)
,

and

κ =
2 sin s

√
27 + 24 cos 2s + cos 4s

(4 + cos 2s + cos 4s)3/2 , τ = − 8 sin s
27 + 24 cos 2s + cos 4s

.

Moreover, at s = kπ for each k ∈ Z, the curvature and torsion of β are zero. In addition, the Frenet
frame cannot be constituted at these points since normal and binormal vectors are discontinuous,
and it is impossible to refer to the Frenet frame in a unique way. So, this problem is solved via the
MOF. Here, we express the elements of the MOF with non-zero curvatures for all s as follows:

T =

( √
2 cos s√

4 + cos 2s + cos 4s
,

√
2 cos 2s√

4 + cos 2s + cos 4s
,

√
2√

4 + cos 2s + cos 4s

)
,

N =

(
2 sin s(4 cos 2s + cos 4s − 1)

(4 + cos 2s + cos 4s)2 ,
−2 sin 2s(6 + cos 2s)

(4 + cos 2s + cos 4s)2 ,
2(sin 2s + 2 sin 4s)

(4 + cos 2s + cos 4s)2

)
,

B =

(
4
√

2 sin 2s

(4 + cos 2s + cos 4s)3/2 ,
−2

√
2 sin s

(4 + cos 2s + cos 4s)3/2 ,
−
√

2(3 sin s + sin 3s)

(4 + cos 2s + cos 4s)3/2

)
.

If we take the planar profile (cross-section) curve δ(υ) = (0, cos υ, sin υ), the equation of the
modified sweeping surface (see Figure 1) generated by the MOF with non-vanishing curvature κ is
represented by

φ(s, υ) =




sin s +
2 sin s cos υ(4 cos 2s + cos 4s − 1)

(4 + cos 2s + cos 4s)2 +
4
√

2 sin 2s sin υ

(4 + cos 2s + cos 4s)3/2 ,

sin s cos s +−2 sin 2s cos υ(6 + cos 2s)

(4 + cos 2s + cos 4s)2 − 2
√

2 sin s sin υ

(4 + cos 2s + cos 4s)3/2 ,

s +
2 cos υ(sin 2s + 2 sin 4s)

(4 + cos 2s + cos 4s)2 −
√

2(3 sin s + sin 3s) sin υ

(4 + cos 2s + cos 4s)3/2




. (13)
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Figure 1. The sweeping surface modified by MOF in non-vanishing curvature case presented by (13),
with the tangent (green), principal normal (blue), binormal (cyan) vectors of spine curve β(s) (red) in
front view with s ∈ (−π/2, π/2) and υ ∈ (−2, 2).

Example 2. Let us consider the Euler (Cornu) spiral parameterized by

β(s) =


 1√

2

s∫

0

cos
πt2

2
dt,

1√
2

s∫

0

sin
πt2

2
dt,

s√
2


,

where the components
s∫

0
cos πt2

2 dt and
s∫

0
sin πt2

2 dt of this curve are known as Fresnel integrals [21].

The Frenet apparatus of β are found as {t, n, b, κ, τ} for s ∈ R+ and {t,−n,−b,−κ, τ} for s ∈ R−

such that

t =
(

1√
2

cos
πs2

2
,

1√
2

sin
πs2

2
,

1√
2

)
, n =

(
− sin

πs2

2
, cos

πs2

2
, 0
)

,

b =

(
− 1√

2
cos

πs2

2
,− 1√

2
sin

πs2

2
,

1√
2

)
, κ =

πs√
2

, τ =
πs√

2
.

Here, the Frenet frame does not occur at s = 0, since the second derivative of β(s) is zero. To fix this
problem, we can refer to any MOF. The elements of MOF with non-zero torsion are obtained as

T =

(
1√
2

cos
πs2

2
,

1√
2

sin
πs2

2
,

1√
2

)
,

N =

(
− πs√

2
sin

πs2

2
,

πs√
2

cos
πs2

2
, 0
)

,

B =

(
−πs

2
cos

πs2

2
,−πs

2
sin

πs2

2
,

πs
2

)
.

By taking spine curve β and the planar profile curve δ(υ) = (0, cos υ, sin υ), a modified sweep-
ing surface (see Figure 2) generated by the MOF with non-vanishing torsion is given with the
following equation:
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φ(s, υ) =




1√
2

s∫

0

cos
πt2

2
dt − πs cos υ√

2
sin

πs2

2
− πs sin υ

2
cos

πs2

2
,

1√
2

s∫

0

sin
πt2

2
dt +

πs cos υ√
2

cos
πs2

2
− πs sin υ

2
sin

πs2

2
,

s√
2
+

πs sin υ

2




. (14)

Figure 2. The sweeping surface modified by MOF in non-vanishing torsion case presented by (14),
with the tangent (green), principal normal (blue), binormal (cyan) vectors of spine curve β(s) (red) in
front view with s ∈ (−π/2, π/2) and υ ∈ (−1, 1).

4. Conclusions

This study explores the application of modified orthogonal frames with non-vanishing
curvature and non-vanishing torsion, enabling the generation of two types of modified
sweeping surfaces, even when the second derivative of the spine curve is zero. The research
involves the following processes:

• Deriving criteria for each type of modified sweeping surface with non-vanishing cur-
vature and non-vanishing torsion to be minimal, developable, or Weingarten surfaces.

• Conducting a comprehensive analysis of the coordinate curves of these modified
sweeping surfaces to determine criteria for geodesic, asymptotic, and curvature lines.

• Providing examples of the modified sweeping surfaces along with illustrated graphics.
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10. Köseoğlu, G.; Bilici, M. Involutive sweeping surfaces with Frenet frame in Euclidean 3-space. Heliyon 2023, 9, e18822. [CrossRef]
11. Maekawa, T.; Patrikalakis, N.M.; Sakkalis, T.; Yu, G. Analysis and applications of pipe surfaces. Comput. Aided Geom. Des. 1998,

15, 437–458. [CrossRef]
12. Blaga, P.A. On tubular surfaces in computer graphics. Stud. Univ. Babeş-Bolyai Inform. 2005, 50, 81–90.
13. Kızıltuğ, S.; Kaya, S.; Tarakçı, Ö. Tube surfaces with type-2 Bishop frame of Weingarten types in E3. Int. J. Math. Anal. 2013,

7, 9–18. [CrossRef]
14. Moraffeh, F.; Abdel-Baky, R.; Alluhall, N. Spacelike sweeping surfaces and singularities in Minkowski 3-space. Math. Probl. Eng.

2021, 3, 5130941. [CrossRef]
15. Li, Y.; Bouleryah, M.L.H.; Ali, A. On Convergence of Toeplitz Quantization of the Sphere. Mathematics 2024, 12, 3565. [CrossRef]
16. Li, Y.; Abdel-Aziz, H.; Serry, H.; El-Adawy, F.; Saad, M. Geometric visualization of evolved ruled surfaces via alternative frame in

Lorentz-Minkowski 3-space. AIMS Math. 2024, 9, 25619–25635. [CrossRef]
17. Li, Y.; Turki, N.; Deshmukh, S.; Belova, O. Euclidean hypersurfaces isometric to spheres. AIMS Math. 2024, 9, 28306–28319.

[CrossRef]
18. Sasai, T. The fundamental theorem of analytic space curves and apparent singularities of Fuchsian differential equations. Tohoku

Math. J. 1984, 36, 17–24. [CrossRef]
19. Karacan, M.K.; Bükçü, B. On the modified orthogonal frame with curvature and torsion in 3-space. Math. Sci. Appl. E-Notes 2016,

4, 184–188.
20. Lone, M.S.; Hasan, E.S.; Karacan, M.K.; Bükçü, B. On some curves with modified orthogonal frame in Euclidean 3-space. Iran J.

Sci. Technol. Trans. A Sci. 2019, 43, 1905–1916. [CrossRef]
21. Eren, K.; Kösal, H.H. Evolution of space curves and the special ruled surfaces with modified orthogonal frame. AIMS Math. 2020,

5, 2027–2039. [CrossRef]
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Abstract: In this study, we developed a MATLAB 2024a toolbox that performs advanced algebraic
calculations in the algebra of elliptic numbers and elliptic quaternions. Additionally, we introduce
color image processing methods, such as principal component analysis, image compression, image
restoration, and watermarking, based on singular-value decomposition theory for elliptic quaternion
matrices; we added these to the newly developed toolbox. The experimental results demonstrate that
elliptic quaternionic methods yield better image analysis and processing performance compared to
other hypercomplex number-based methods.

Keywords: elliptic quaternion matrices; MATLAB toolbox; optimal p-value; singular value decomposition;
least minimum error; image processing

MSC: 11R52; 15A60; 15A18

1. Introduction

In 1843, Hamilton introduced the concept of real quaternions, expressed as

q(R) = q(R),r + q(R),ii + q(R),j j + q(R),kk,

where q(R),r, q(R),i, q(R),j, and q(R),k are real-valued components, and the imaginary units i,
j, and k satisfy the relations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

The absence of the commutative property in quaternion multiplication classifies real
quaternions as a division ring or, more specifically, a skew field [1]. This mathematical
structure finds its application across a broad spectrum of disciplines, including but not
limited to quantum mechanics [2], computer graphics [3], signal and image processing [4],
and the study of neural networks [5]. In 2005, Sangwine and Bihan introduced a MATLAB
toolbox designed to facilitate the computational demands associated with real quaternions
and their matrices. This toolbox, notable for its inclusion of image processing functionalities,
has been subject to continuous refinement, with its most recent update occurring in February
2024 [6]. MATLAB introduced quaternion support in the R2018b release as part of the
Aerospace Toolbox and, after that, incorporated it into several pivotal MATLAB toolboxes
such as the Sensor Fusion and Tracking Toolbox, the Robotics System Toolbox, and the
Navigation Toolbox. This expansion highlights the importance and applicability of real
quaternions in various technological and scientific areas. However, the noncommutative
nature of real quaternion multiplication not only introduces certain constraints in various
applications but also causes difficulties in calculations. For instance, the inherent complexity
in performing the singular-value decomposition of a real quaternion matrix is notably high,
registering a computational complexity of O(8n3) for an n × n real quaternion matrix,
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considering that its complex representation is of size 2n × 2n. Additionally, the convolution
theorem does not hold for real quaternion-valued signals; that is, the Fourier transform
of the convolution products of two such signals does not equate to the dot products of
their respective Fourier transforms. This deviation from the convolution theorem implies
that the fast Fourier transform algorithm remains undeveloped for real quaternion-valued
linear time-invariant systems, presenting challenges in their analysis [7].

As the need for more efficient and versatile algebraic structures grew, researchers
sought alternatives to real quaternions that retained the benefits of hypercomplex numbers
while mitigating some of the associated limitations. This search led to the development of
generalized Segre quaternions, a class of four-dimensional commutative hypercomplex num-
bers. These quaternions have been gaining attention due to their ability to extend method-
ologies from the real and complex number domains to more versatile four-dimensional
counterparts [8,9]. The definition of generalized Segre quaternions is as follows:

q(GS) = q(GS),r + q(GS),ii + q(GS),j j + q(GS),kk,

where q(GS),r, q(GS),i, q(GS),j, q(GS),k ∈ R and i, j, k /∈ R. The multiplication rules for the units
i, j, k are given by

i2 = k2 = p, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = pj,

where p ∈ R. Based on the value of p, generalized Segre quaternions are classified into
three categories: hyperbolic quaternions (p > 0), parabolic quaternions (p = 0), and elliptic
quaternions (p < 0) [9]. Each of these systems has specific scientific and technological
applications. For example, hyperbolic quaternions are used to solve problems in non-
Euclidean geometry [10,11], while parabolic quaternions are applied in robotic control and
spatial mechanics [10,12]. Due to the elliptic behavior of many physical systems, elliptic
quaternions have significant practical applications in applied science. Additionally, ellip-
tic quaternions offer a notable improvement over real quaternions, especially with their
commutative multiplication and enhanced generalization capability [9,10,13,14]. These
properties result in reduced computational complexity and improved performance across
a range of computational tasks. Specifically, the process of singular-value decomposition
within the context of elliptic quaternion matrices is characterized by an algorithmic com-
plexity of O(2n3), as detailed in [15]. Furthermore, the applicability of the convolution
theorem within this mathematical framework enables the formulation of a fast Fourier
transform algorithm specifically designed for elliptic quaternion spaces. Consequently,
recent developments in elliptic quaternion-valued methodologies have demonstrated their
superiority over conventional real quaternion approaches in critical fields such as image
processing, signal processing, and deep learning, as evidenced by [7,14–17].

In this paper, we present a MATLAB toolbox that we developed for performing ad-
vanced calculations in elliptic numbers and elliptic quaternions. The aim of this toolbox
is to address and provide solutions to the computational challenges associated with these
algebraic structures, thereby facilitating further scientific and technological research in this
field. This development is fundamentally rooted in the theoretical framework and algo-
rithms delineated in references [9,15,18]. Furthermore, by leveraging mathematical theory
and algorithms elucidated in [15], we have enriched this toolbox with advanced color image
processing methodologies, including but not limited to principal component analysis, image
compression, image restoration, and watermarking techniques. We have observed that the
proposed methods for image compression, image restoration, and watermarking exhibit
better performance than existing techniques based on separable, real quaternions and re-
duced biquaternions (for comparison results, see Tables 4–8). Moreover, our performance
analyses reveal that the p-value of elliptic quaternions directly affects the solution of the
problem, with better results obtained by adjusting this p-value (for optimal p-value results,
see Figures 11, 13 and 19.

45



Axioms 2024, 13, 771

Within the context of this paper, the following notations are employed. Let R, C, Cp,
and Hp denote the sets of real numbers, complex numbers, elliptic numbers, and elliptic
quaternions, respectively. Rm×n, Cm×n, Cm×n

p , and Hm×n
p denote the set of all m× n matrices

on R, C, Cp, and Hp, respectively. Throughout the study, we use the following notations:
q(□) represents a complex number when □ = c, an elliptic number when □ = e, and an
elliptic quaternion when □ = E. Similarly, Q(□) denotes a complex matrix when □ = c, an
elliptic matrix when □ = e, and an elliptic quaternion matrix when □ = E. This study was
conducted using MATLAB 2024a (64-bit) on a system equipped with an Intel® Raptor Lake
Core™ i7-13700H 14C/20T, NVIDIA® GeForce® RTX4060 and 32 GB of DDR5 RAM.

2. Mathematical Preliminaries

This section establishes the fundamental algebraic properties and the notations for
elliptic numbers and elliptic quaternions.

2.1. Elliptic Numbers

An elliptic number q(e) is denoted by q(e) = q(e),r + q(e),ii, where i2 = p < 0 and
q(e),r, q(e),i, p ∈ R. The conjugate and norm of q(e) ∈ Cp are defined as q(e) = q(e),r −
q(e),ii and

∥∥∥q(e)
∥∥∥

p
=
√

q2
(e),r − pq2

(e),i, respectively [19]. The multiplication of the elliptic

numbers q1,(e) = q1,(e),r + q1,(e),ii and q2,(e) = q2,(e),r + q2,(e),ii is defined as

q1,(e)q2,(e) =
(

q1,(e),rq2,(e),r + pq1,(e),iq2,(e),i

)
+ i
(

q1,(e),rq2,(e),i + q2,(e),rq1,(e),i

)
.

An elliptic matrix Q(e) is denoted as Q(e) = Q(e),r + Q(e),ii, where i2 = p < 0, p ∈ R,
and Q(e),r, Q(e),i ∈ Rm×n. The conjugate, transpose, conjugate transpose, and Frobenius
norm of Q(e) ∈ Cm×n

p are defined by Q(e) = Q(e),r − Q(e),ii, QT
(e) = QT

(e),r + QT
(e),ii, Q∗

(e) =

QT
(e),r − QT

(e),ii, and ∥Q(e)∥p =
√
∥Q(e),r∥2 − p∥Q(e),i∥2, respectively [15,19]. The multipli-

cation of two elliptic matrices Q1,(e) = Q1,(e),r + Q1,(e),ii and Q2,(e) = Q2,(e),r + Q2,(e),ii is
defined as

Q1,(e)Q2,(e) =
(

Q1,(e),rQ2,(e),r + pQ1,(e),iQ2,(e),i

)
+ i
(

Q1,(e),rQ2,(e),i + Q2,(e),rQ1,(e),i

)
.

There exists an isomorphism between elliptic matrices and complex matrices, as
depicted in the following:

Hp : Cm×n
p → Cm×n

Q(e) = Q(e),r + Q(e),ii → Hp

(
Q(e)

)
= Q(c) = Q(e),r + I

√−pQ(e),i,

where I represents the complex unit (I2 = −1) [15].

Lemma 1 ([15]). Let the eigenvalues of a complex matrix Hp

(
Q(e)

)
be denoted by λ

Hp

(
Q(e)

), and

let the corresponding eigenvectors be represented by x
Hp

(
Q(e)

). Then, the eigenvalues of the elliptic

matrix Q(e) ∈ Cn×n
p are given by

λ(e) = Re(λHp(Q(e))
) +

i√−p
Im(λHp(Q(e))

)

and the corresponding eigenvectors are given by

x(e) = Re(xHp(Q(e))
) +

i√−p
Im(xHp(Q(e))

).
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Lemma 2 ([15]). Let Q(e) ∈ Cm×n
p . The pseudoinverse of Q(e) is given by

(
Q(e)

)†
= Re

((
Hp

(
Q(e)

))†
)
+

i√−p
Im

((
Hp

(
Q(e)

))†
)

,

where
(

Hp

(
Q(e)

))†
is the pseudoinverse of the complex matrix Hp

(
Q(e)

)
.

Lemma 3 ([15]). Let Q(e) ∈ Cm×n
p . Suppose that the singular-value decomposition of the complex

matrix Hp

(
Q(e)

)
is given by Hp

(
Q(e)

)
= U(c)ΣV∗

(c). Then, the singular-value decomposition of
the elliptic matrix Q(e) is Q(e) = U(e)ΣV∗

(e), where

U(e) =

(
Re
(

U(c)

)
+

i√−p
Im
(

U(c)

))
and V(e) =

(
Re
(

U(c)

)
+

i√−p
Im
(

U(c)

))
.

Lemma 4 ([15]). Let Q1,(e) ∈ Cm×n
p and Q2,(e) ∈ Cm×q

p . Suppose that Hp

(
Q1,(e)

)
= U(c)ΣV∗

(c).
In this case, the least squares solution with the minimum norm X(e) of the elliptic matrix equation
Q1,(e)X(e) = Q2,(e) is given by

X(e) =

(
Re
(

V(e)

)
+

i√−p
Im
(

V(e)

))
Σ†

(
Re
(

U(e)

)
+

i√−p
Im
(

U(e)

))∗
Q2,(e).

2.2. Elliptic Quaternions

An elliptic quaternion q(E) is denoted as q(E) = q(E),r + q(E),ii + q(E),j j + q(E),kk,
where i2 = k2 = p < 0, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = pj, and
q(E),r, q(E),i, q(E),j, q(E),k, p ∈ R. An elliptic quaternion q(E) is denoted in the following forms:

q(E) =
(

q(E),r + iq(E),i

)
+
(

q(E),j + iq(E),k

)
j = q(e),1e1 + q(e),2e2,

where
q(e),1 =

(
q(E),r + q(E),j

)
+
(

q(E),i + q(E),k

)
i

and
q(e),2 =

(
q(E),r − q(E),j

)
+
(

q(E),i − q(E),k

)
i

are elliptic numbers and e1 = 1+j
2 and e2 = 1−j

2 . Clearly, e1e2 = 0, e1 + e2 = 1, e1 − e2 = j
and e2

1 = e1, e2
2 = e2. As a result, e1 and e2 are disjoint idempotent units.

The multiplication of the two elliptic quaternions q1,(E) = q1,(e),1e1 + q1,(e),2e2 and
q2,(E) = q2,(e),1e1 + q2,(e),2e2 is defined by

q1,(E)q2,(E) =
(

q1,(e),1q2,(e),1

)
e1 +

(
q1,(e),2q2,(e),2

)
e2.

The conjugate and norm of the elliptic quaternion q(E) = q(e),1e1 + q(e),2e2 are defined

by q(E) = q(e),1e1 + q(e),2e2 and
∥∥∥q(E)

∥∥∥
p
= 1√

2

√(∥∥∥q(e),1
∥∥∥

2

p
+
∥∥∥q(e),2

∥∥∥
2

p

)
, respectively [10].

An elliptic quaternion matrix Q(E) is represented

Q(E) = Q(E),r + Q(E),ii + Q(E),j j + Q(E),kk =
(

Q(E),r + Q(E),ii
)
+
(

Q(E),j + Q(E),ki
)

j

= Q(e),1e1 + Q(e),2e2,
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where
Q(e),1 =

(
Q(E),r + Q(E),j

)
+
(

Q(E),i + Q(E),k

)
i

and
Q(e),2 =

(
Q(E),r − Q(E),j

)
+
(

Q(E),i − Q(E),k

)
i

are elliptic matrices, and Q(E),r, Q(E),i, Q(E),j, Q(E),k ∈ Rm×n. The multiplication of the two
elliptic quaternion matrices Q1,(E) = Q1,(e),1e1 +Q1,(e),2e2 and Q2,(E) = Q2,(e),1e1 +Q2,(e),2e2
is defined by

Q1,(E)Q2,(E) =
(

Q1,(e),1Q2,(e),1

)
e1 +

(
Q1,(e),2Q2,(e),2

)
e2.

The conjugate, transpose, conjugate transpose, and Frobenius norm of elliptic quater-
nion matrix Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n

p are defined by Q(E) = Q(e),1e1 + Q(e),2e2,

QT
(E) = QT

(e),1e1 + QT
(e),2e2, Q∗

(E) = QT
(e),1e1 + QT

(e),2e2 and
∥∥∥Q(E)

∥∥∥
p
= 1√

2

√∥∥∥Q(e),1

∥∥∥
2

p
+
∥∥∥Q(e),2

∥∥∥
2

p
,

respectively [18,20].

Theorem 1 ([15]). Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p . Suppose that λ(e),1 and λ(e),2

are eigenvalues of elliptic matrices Q(e),1 and Q(e),2 corresponding to the eigenvectors x(e),1 and
x(e),2, respectively. Then, λ(E) = λ(e),1e1 + λ(e),2e2 is an eigenvalue of Q(E) corresponding to the
eigenvector x(E) = x(e),1e1 + x(e),2e2.

Theorem 2 ([15]). Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n
p . Suppose that singular-value de-

compositions of Q(e),1 and Q(e),2 are Q(e),1 = U(e),1Σ1V∗
(e),1 and Q(e),2 = U(e),2Σ2V∗

(e),2, respec-
tively. Then, the singular-value decomposition of the elliptic quaternion matrix Q(E) is given by
Q(E) = U(E)Σ(E)V∗

(E), where Σ(E) = Σ1e1 + Σ2e2 is hyperbolic matrix since Σ1 and Σ2 are real
matrices (Σ(E) is real matrix if and only if Σ1 = Σ2). Moreover U(E) = U(e),1e1 + U(e),2e2 and
V(E) = V(e),1e1 + V(e),2e2 are unitary matrices.

Corollary 1 ([15]). Let Q(E) = Q(e),1e1 +Q(e),2e2 ∈ Hm×n
p and Q(E) = U(E)Σ(E)V∗

(E). Then, the

pseudoinverse of Q(E) is Q†
(E) = V(E)Σ†

(E)U
∗
(E), where Σ†

(E) = Σ†
1e1 + Σ†

2e2 and Σ1, Σ2 ∈ Rm×n.

Theorem 3 ([15]). The least squares solution with the minimum norm of the elliptic quaternion
matrix equation Q1,(E)X(E) = Q2,(E) is X(E) = Q†

1,(E)Q2,(E) = V(E)Σ†
(E)U

∗
(E)Q2,(E), where

Q1,(E) ∈ Hm×n
p and Q2,(E) ∈ Hm×q

p .

3. MATLAB Toolbox for Elliptic Numbers and Elliptic Quaternions

Elliptic numbers and elliptic quaternions are number systems that confer significant
advantages in solving certain mathematical and physical problems. In this section, we intro-
duce a MATLAB toolbox (version 0.1) developed to facilitate computations involving these
systems. As illustrated in Figure 1, elliptic quaternions generalize elliptic numbers, reduced
biquaternions (commutative quaternions), complex numbers, and real numbers, thereby
providing a more expansive computational framework. This generalization enhances the
versatility and applicability of the developed toolbox.
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Figure 1. The set of elliptic quaternions and the number sets it contains.

Tables 1 and 2 show the signatures and their descriptions of the functions of the elliptic
numbers and elliptic quaternions, respectively, in the toolbox.

Table 1. Key functions of the elliptic numbers.

Function Name Description

ellipticcomplex2complexnumber(q(e))
Returns the complex number (or matrix) to which the elliptic number
(or matrix) is isomorphic.

complexnumber2ellipticcomplex(p-value, complex)
Returns the elliptic number (or matrix) to which the complex number
(or matrix) is isomorphic.

elliptic_n_addition(q(e),p(e)) Returns the sum of two elliptic numbers (or matrices).

elliptic_n_subtraction(q(e),p(e)) Returns the difference of two elliptic numbers (or matrices).

elliptic_n_product(q(e),p(e)) Returns the product of two elliptic numbers (or matrices).

elliptic_n_transpose(Q(e)) Returns the transpose of the elliptic matrix Q(e).

elliptic_n_conjugate(Q(e)) Returns the conjugate of the elliptic matrix Q(e).

elliptic_n_hermitianconjugate(Q(e)) Returns the Hermitian conjugate of the elliptic matrix Q(e).

elliptic_n_eig(Q(e))
[D(e),V(e)] = elliptic_n_eig(Q(e)) returns diagonal matrix D(e) of
eigenvalues and matrix V(e) whose columns are the corresponding
eigenvectors, so that Q(e)V(e) = V(e)D(e).

elliptic_n_svd(Q(e))
[Ue,Se,Ve] = elliptic_n_svd(Q(e)) performs a singular-value
decomposition of elliptic matrix Q(e), such that Q(e) = U(e)S(e)V

∗
(e).

elliptic_n_pinv(Q(e)) Returns the pseudoinverse of the elliptic matrix Q(e).

elliptic_n_rank(Q(e)) Returns the rank of the elliptic matrix Q(e).

elliptic_n_lss(Q(e), P(e))
Returns the least squares solution of the elliptic matrix equation
Q(e)X(e) = P(e) and the least squares error.
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Table 2. Key functions of the elliptic quaternions.

Function Name Description

e1e2form(q(E)) Returns the elliptic quaternion (or elliptic quaternion matrix) given in ijk-form in e1-e2 form.

ijkform(e1_part,e2_part) Returns the elliptic quaternion (or elliptic quaternion matrix) given in e1-e2 form in ijk form.

elliptic_q_conjugate_1(q(E)) Returns the 1st conjugate of the elliptic quaternion (or elliptic quaternion matrix).

elliptic_q_conjugate_2(q(E)) Returns the 2nd conjugate of the elliptic quaternion (or elliptic quaternion matrix).

elliptic_q_conjugate_3(q(E)) Returns the 3rd conjugate of the elliptic quaternion (or elliptic quaternion matrix).

elliptic_q_addition(q(E),p(E)) Returns the sum of two elliptic quaternions (or elliptic quaternion matrices).

elliptic_q_subtraction(q(E),p(E)) Returns the difference of two elliptic quaternions (or elliptic quaternion matrices).

elliptic_q_product(q(E),p(E)) Returns the product of two elliptic quaternions (or elliptic quaternion matrices).

elliptic_q_scalar(lamda,q(E)) Returns the lambda scalar multiple of the elliptic quaternion (or elliptic quaternion matrix).

elliptic_q_norm(q(E)) Returns the norm of the elliptic quaternion (or elliptic quaternion matrix).

elliptic_q_transpose(Q(E)) Returns the transpose of the elliptic quaternion matrix.

elliptic_q_hermitianconjugate(Q(E)) Returns the conjugate transpose of the elliptic quaternion matrix.

elliptic_q_eig(Q(E))
[D(E),V(E)] = elliptic_q_eig(Q(E)) returns diagonal matrix D(E) of eigenvalues and matrix V(E)
whose columns are the corresponding eigenvectors, so that Q(E)V(E) = V(E)D(E).

elliptic_q_svd(Q(E))
[U(E),S(E),V(E)] = elliptic_q_svd(Q(E)) performs a singular-value decomposition of elliptic
quaternion matrix Q(E), such that Q(E) = U(E)S(E)V∗

(E).

elliptic_q_pseudoinverse(Q(E)) Returns the pseudoinverse of the elliptic quaternion matrix.

elliptic_q_lss(Q(E),P(E))
Returns the least squares solution of the elliptic quaternion matrix equation Q(E)X(E) = P(E) and
the least squares error.

elliptic_q_qrank(Q(E)) Returns the rank of the elliptic matrix.

To enable the toolbox to process any elliptic number, the user must specify its real part,
imaginary part, and the associated p-value. For example, to initialize the elliptic number
q(e) = 1 + 2i and the elliptic matrix Q(e) ∈ C3×3

−5 (initialized with random numbers) for
p = −5, the functions in the Listing 1 should be invoke.

Listing 1. MATLAB console output of the function elliptic_number().

>> q_e=elliptic_number (1,2,−5)
q_e =

elliptic_number with properties:
r_part: 1
i_part: 2
j_part: 0
k_part: 0

p: −5
>> Q_e=elliptic_number(rand (3),rand (3),−5);
>> Q_e.r_part
ans =

0.8147 0.9134 0.2785
0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

>> Q_e.i_part
ans =

0.9649 0.9572 0.1419
0.1576 0.4854 0.4218
0.9706 0.8003 0.9157
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Initializing the elliptic quaternions q(E) = 1+ 2i+ 3j+ 4k and p(E) = −1+ 3i+ 2j+ 5k
for p = −3 and their multiplication is carried out as in the Listing 2:

Listing 2. MATLAB console output of the functions elliptic_quaternion() and elliptic_q_product().

>> q_E=elliptic_quaternion (1,2,3,4,−3)
q_E =

elliptic_quaternion with properties:
r_part: 1
i_part: 2
j_part: 3
k_part: 4

p: −3
>> p_E=elliptic_quaternion(−1,3,2,5,−3)
p_E =

elliptic_quaternion with properties:
r_part: −1
i_part: 3
j_part: 2
k_part: 5

p: −3
>> elliptic_q_product(q_E ,p_E)
ans =

elliptic_quaternion with properties:
r_part: −73
i_part: 24
j_part: −67
k_part: 14

p: −3

The singular-value decomposition of the elliptic quaternion matrix Q(E) ∈ H3×3
−3 ,

initialized with random numbers for p = −3, is conducted as in the Listing 3:

Listing 3. MATLAB console output of the functions elliptic_quaternion() and elliptic_q_svd().

>> Q_E=elliptic_quaternion(rand (3),rand (3),rand (3),rand (3),−3);
>> Q_E.r_part
ans =

0.7094 0.6797 0.1190
0.7547 0.6551 0.4984
0.2760 0.1626 0.9597

>> Q_E.i_part
ans =

0.3404 0.7513 0.6991
0.5853 0.2551 0.8909
0.2238 0.5060 0.9593

>> Q_E.j_part
ans =

0.5472 0.2575 0.8143
0.1386 0.8407 0.2435
0.1493 0.2543 0.9293

>> Q_E.k_part
ans =

0.3500 0.6160 0.8308
0.1966 0.4733 0.5853
0.2511 0.3517 0.5497
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>> [U_E ,S_E ,V_E]= elliptic_q_svd(Q_E);
>> U_E.r_part
ans =

0.0688 0.3288 −0.0097
−0.4539 0.4338 0.2619
−0.3010 −0.3188 0.0270

>> U_E.i_part
ans =

−0.1527 0.0660 0.1851
−0.2815 0.1238 −0.1460
−0.1981 −0.2507 0.2152

>> U_E.j_part
ans =

−0.4307 −0.2540 −0.5746
0.1073 0.1145 0.0292

−0.0673 −0.3711 0.3302
>> U_E.k_part
ans =

−0.1469 0.1349 0.0244
0.0346 −0.1510 −0.1751

−0.0337 0.0732 −0.1741
>> S_E.r_part
ans =

3.9299 0 0
0 1.0719 0
0 0 0.5868

>> S_E.j_part
ans =

2.5800 0 0
0 0.2531 0
0 0 0.0769

>> V_E.r_part
ans =

−0.4288 0.5420 −0.2491
−0.0871 0.2363 0.6669
−0.7349 −0.5820 0.1505

>> V_E.i_part
ans =

0 0 0
−0.0063 0.0205 0.0573
0.1485 0.0211 0.0042

>> V_E.j_part
ans =

0.0523 −0.2479 −0.6294
−0.4315 0.4510 −0.2146
−0.0037 −0.0433 −0.0434

>> V_E.k_part
ans =

0 0 0
0.0549 0.1030 −0.0367

−0.0378 −0.0593 −0.0644
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The minimum error and least squares solution of the matrix equation Q(E)X(E) = P(E),
where P(E) ∈ H3×5

−3 is initialized with random numbers for p = −3, are carried out as in the
Listing 4:

Listing 4. MATLAB console output of the functions elliptic_quaternion() and elliptic_q_lss().

>> P_E=elliptic_quaternion(rand (3,5),rand (3,5),rand (3,5),rand (3,5),−
3);

>> P_E.r_part
ans =

0.1524 0.9961 0.1067 0.7749 0.0844
0.8258 0.0782 0.9619 0.8173 0.3998
0.5383 0.4427 0.0046 0.8687 0.2599

>> P_E.i_part
ans =

0.8001 0.1818 0.1361 0.5499 0.6221
0.4314 0.2638 0.8693 0.1450 0.3510
0.9106 0.1455 0.5797 0.8530 0.5132

>> P_E.j_part
ans =

0.4018 0.1233 0.4173 0.9448 0.3377
0.0760 0.1839 0.0497 0.4909 0.9001
0.2399 0.2400 0.9027 0.4893 0.3692

>> P_E.k_part
ans =

0.1112 0.2417 0.1320 0.5752 0.3532
0.7803 0.4039 0.9421 0.0598 0.8212
0.3897 0.0965 0.9561 0.2348 0.0154

>> [Solution , e_error ]= elliptic_q_lss(Q_E ,P_E);
>> e_error=

5.3613e−15
>> Solution.r_part
ans =

0.2340 0.7035 0.8838 −0.1262 −0.2939
0.8401 0.2717 −0.8857 0.9705 0.7762
0.7036 −0.0697 0.3243 0.7171 0.4535

>> Solution.i_part
ans =

−0.2895 0.0276 −0.8655 −0.0185 −0.0841
0.3573 −0.2956 0.8372 −0.4357 0.3067

−0.1816 −0.0402 0.3593 −0.0443 −0.1579
>> Solution.j_part
ans =

0.1977 0.2637 0.5569 −0.3424 0.7052
−0.8351 −0.7083 −0.0969 −0.1652 −0.4677
−0.0960 0.2117 0.6330 −0.3586 −0.2543

>> Solution.k_part
ans =

−0.2619 0.1894 −0.5397 0.1359 −0.1520
−0.1278 0.2092 −0.1541 −0.0603 0.1394
0.3473 −0.0198 −0.0614 0.1691 −0.0101

In the example above, the obtained minimum error value is 5.3613 × 10−15 for p = −3.
However, changing the value of p can further reduce the minimum error. Figure 2 shows
the minimum errors corresponding to p-values of the range −5 ≤ p ≤ −0.1 with a step size
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0.2. The graph demonstrates that the minimum error 1.2057 × 10−15 obtained for p = −0.8
is smaller than the minimum error obtained for p = −3.

Figure 2. Minimum errors of least squares solution of the matrix equation Q(E)X(E) = P(E) according
to p-values.

In conclusion, the value of p in the elliptic quaternion space emerges as a critical
hyperparameter that directly affects the solution to a problem addressed in this space. This
finding highlights the significant role of selecting the appropriate p-value in solving any
problem and emphasizes that it is a key factor in reducing the error rate. Therefore, optimizing
the p-value is important in enhancing solution quality and achieving lower error rates.

4. Color Image Processing Using Singular-Value Decomposition of Elliptic
Quaternion Matrices

Elliptic quaternions are distinguished by their composition, comprising one real part
alongside three imaginary counterparts. Within the realm of color imagery, particularly in
the RGB color space framework, each pixel is constituted by three primary color compo-
nents, namely red, green, and blue. By drawing an analogy from this, it can be postulated
that each pixel within a color image can be analogously represented as a purely imaginary
elliptic quaternion, wherein the real component is nullified. In such a representational
schema, the red, green, and blue color components are analogically mapped to the i, j, and
k components of the purely imaginary elliptic quaternions, respectively. By following this
premise, it is possible to articulate that a color image, defined by a dimensional matrix of
m × n pixels, can be succinctly expressed through an elliptic quaternion matrix:

f(E) = R(E),ii + G(E),j j + B(E),kk,

where the matrices R(E),i, G(E),j, and B(E),k ∈ Rm×n represent the red, green, and blue
component matrices of a color image, respectively. This representation is visually illustrated
in Figure 3 [18].

Figure 3. Elliptic quaternion matrix representation of the color image airplane.png.
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The signatures and descriptions of the image processing functions in the Toolbox
are presented in Table 3. The experimental results in this work demonstrate that elliptic
quaternion methods outperform other hypercomplex number-based approaches in image
analysis and processing (Tables 4–8). The test images used in the experiments of the
developed techniques are given in Figure 4. On the other hand, the p-value in the algebra of
elliptic quaternions directly affects the performance of the problem modeled in this space
(see Figures 11, 13 and 19). As a result, choosing the most appropriate elliptic quaternion
space for the problem under consideration (choosing the p-value that gives the most
optimal solution to the problem) and the elliptical behavior of many physical systems make
this number system more advantageous in image processing. Therefore, incorporating
the elliptic quaternion number system into image processing may solve various problems
related to time, memory, and performance.

Table 3. Key image processing functions in the toolbox.

Function Name Description

image2elliptic_q(I,p -value)
Returns the elliptic quaternion matrix representation of the image.
I (Type: uint8, array): The input image in RGB color space
p-value (Type: negative double)

elliptic_q2image( f(E))
Returns the RGB space representation of an image represented by an
elliptical quaternion matrix.
f(E) (Type: Object): The elliptic quaternion matrix representation of the
image.

elliptic_q_eigenimage( f(E),h)
Returns the desired eigenimages of the image in the elliptic quaternion
matrix space.
h (Type: integer): Specifies the index of the eigenimage to be computed.

elliptic_q_singularvalues( f(E))
It shows the change of singular values of the image in the elliptical
quaternion matrix space.

elliptic_q_image_reconstruction( f(E),k)
It compresses the image according to the desired k value in the elliptical
quaternion matrix space.
k (Type: integer): The number of singular values to retain for the
reconstruction.

elliptic_q_optimal_p_for_psnr( f(E))
Returns the optimal p (for psnr) value for image compression performed
in elliptic quaternion matrix space.

elliptic_q_optimal_p_for_mse( f(E))
Returns the optimal p (for mse) value for image compression performed
in elliptic quaternion matrix space.

elliptic_q_embedding_watermarking( f(E),g(E),alpha)

The embedding_elliptic_watermarking function embeds a watermark into
an object using elliptic quaternion matrix algebra.
f(E) (Type: Object): The primary object to be watermarked.
g(E) (Type: Object): The watermark object to be embedded.
alpha (Type: Double): The embedding strength parameter.

elliptic_q_extraction_watermarking( f(E),g(E),U_w,V_w,alpha)

The extraction_elliptic_watermarking function extracts a watermark from
a watermarked object using the elliptic quaternion matrix algebra.
f(E) (Type: Object): The watermarked object from which the watermark is
to be extracted.
g(E) (Type: Object): The original, unwatermarked object.
U_w (Type: Object): The U component of the watermark’s singular-value
decomposition.
V_w (Type: Object): The V component of the watermark’s singular-value
decomposition.

elliptic_q_watermarking_optimal_p_for_psnr( f(E),g(E),alpha)

Finds the optimal p (for psnr) for watermarking using the elliptic
quaternion matrix algebra
f(E) (Type: Object): The primary object to be watermarked.
g(E) (Type: Object): The watermark object to be embedded.

elliptic_q_watermarking_optimal_p_for_mse( f(E),g(E),alpha)

Finds the optimal p (for mse) for watermarking using the elliptic
quaternion matrix algebra.
f(E) (Type: Object): The primary object to be watermarked.
g(E) (Type: Object): The watermark object to be embedded.
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(a) (b) (c)

(d) (e) (f)

Figure 4. All experimental test images: (a) airplane.png (512 × 512), (b) baboon.png (512 × 512),
(c) baby.png (512× 512), (d) Barbara.png (576× 720), (e) monarch.png (512× 768), and (f) peppers.png
(512 × 512).

For p = −0.5, the elliptic quaternion matrix representation of the test image air-
plane.png with a resolution of 512 × 512 pixels is obtained as in the Listing 5:

Listing 5. MATLAB console output of the function image2elliptic().

>> f_E=image2elliptic (" test_images/airplane.png",−0.5)
f_E =

elliptic_quaternion with properties:
r_part: [512 x512 double]
i_part: [512 x512 double]
j_part: [512 x512 double]
k_part: [512 x512 double]

p: −0.5

On the other hand, a color image can also be represented using elliptic quaternionic
singular-value decomposition (ESVD) as

f(E) = U(E)Σ(E)V
∗
(E),

where the matrices U(E) and V(E) are unitary matrices and Σ(E) is a hyperbolic matrix.
Various image processing techniques can be applied to a color image after applying ESVD
without decomposing it into three-channel images. In the subsequent section, principal
component analysis, image compression, image restoration, and watermarking techniques
were applied to a color image using ESVD.

4.1. Eigenimages of Color Images

The ESVD of any color image can be expressed as

f(E) = U(E)Σ(E)V
∗
(E) =

R

∑
i=1

σi(E)

(
ui(E) ⊗ v∗i(E)

)
, (1)

where ui(E) ∈ Hm×1
p and vi(E) ∈ Hn×1

p are elliptic quaternionic vectors, and R represents
the rank of the elliptic quaternion matrix f(E). Each term ui(E) ⊗ v∗i(E) is called an elliptic
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quaternion-valued eigenimage of the image. Consequently, the color image f(E) can be
thought of as a linear combination of R eigenimages. The first eigenimage, shown in
Figure 5, of the test image baby.png is obtained with the function in Listing 6:

Listing 6. MATLAB console output of the functions image2elliptic() and elliptic_q_eigenimage().

>> f_E=image2elliptic (" test_images/baby.png",−0.5)
>> elliptic_q_eigenimage(f_E ,1)

Figure 5. The first eigenimage of the test image baby.png.

Moreover, normalized absolute versions of the third, tenth, and twenty-fifth eigenim-
ages of the test image baby.png are also given in Figure 6.

(a) (b) (c)

Figure 6. Third, tenth, and twenty-fifth eigenimages of the test image baby.png. (a) u3(E) ⊗ v∗3(E).
(b) u10(E) ⊗ v∗10(E). (c) u25(E) ⊗ v∗25(E).

As seen in Figure 6, the initial eigenimages correspond to the low-frequency compo-
nents of the original image, capturing the broad, smooth variations and overall structure.
In contrast, the subsequent eigenimages represent the high-frequency components, which
detail the finer, more intricate features and textures. This distinction between low- and
high-frequency components allows for a more subtle analysis and manipulation of the
image data.

4.2. Color Image Compression with ESVD

When color images are represented as illustrated in Equation (1), the variation in
their singular values can be examined using the function provided in Listing 7. The graph
depicted in Figure 7, generated by the function elliptic_q_singularvalues(), demonstrates
the variation of the singular values for the test image airplane.png:

Listing 7. MATLAB console output of the functions image2elliptic() and elliptic_q_singularvalues().

>> f_E=image2elliptic (" test_images/airplane.png",−0.5);
>> elliptic_q_singularvalues(f_E);
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Figure 7. Graphs of singular values of the test images airplane.png.

The graphs of singular values of other test images for p = −0.5 are shown in Figure 8:

(a) (b)

(c) (d)

(e)

Figure 8. Graphs of singular values of test images: (a) baboon.png, (b) baby.png, (c) Barbara.png,
(d) monarch.png, and (e) pepper.png.
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As seen in Figures 7 and 8, the singular values of test images decrease very rapidly.
Therefore, even for small values of K satisfying K < R, a good approximation of a color image
can be achieved. To approximate the matrix f(E) in Equation (1) for K < R, the equation

f(E) =
K

∑
i=1

σi(E)

(
ui(E) ⊗ v∗i(E)

)

can be used. In this case, the storage space required to store a color image reduces from 3mn
to K(m + n + 2). The steps for image compression with ESVD are provided in Figure 9:

Figure 9. Flowchart of image compression using ESVD.

The function in Listing 8 reconstructs the test image airplane.png for p = −0.5 and
K = 50. Figure 10 shows the original image airplane.png and the compressed version
side-by-side.

Listing 8. MATLAB console output of the function elliptic_q_image_reconstruction().

>> [I_c ,I_o ,E_c ,E_o]= elliptic_q_image_reconstruction(f_E ,50);

Figure 10. PSNR and MSE results of the reconstruction of the test image airplane.png for p = −0.5
and K = 50: PSNR = 30.4527; MSE = 9.0100 × 10−4.

The functions in Listing 9 draw surfaces, which are represented in Figure 11, showing
the PSNR (peak signal-to-noise ratio) and MSE (mean squared error) values corresponding
to each K and p-value of the test image airplane.png for K = 10 : 20 : 150 and p = −5 : 0.1 :
−0.1. The red dots indicate optimal p-values.
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Listing 9. MATLAB console output of the functions elliptic_q_optimal_p_for_psnr() and opti-
mal_p_for_mse().

>> elliptic_q_optimal_p_for_psnr(f_E);
>> optimal_p_for_mse(f_E);

Figure 11. Optimal p-values for PSNR and MSE for the test image aiplane.png.

The run time comparison of the proposed ESVD compression method along with
the Separable method (compression method obtained by applying singular-value decom-
position separately to R, G, and B components) and hypercomplex-based compression
methods, such as QSVD (performs singular-value decomposition on real quaternion ma-
trices [21]) and RBSVD (performs singular-value decomposition on reduced biquaternion
matrices [22]), on the test images are provided in Figure 12.

Figure 12. Run time comparison of the methods: Separable, QSVD, RBSVD, and ESVD (proposed
method) on the test image airplane.png.

The PSNR and MSE values of all other test images according to the given K and
p-values are given in Figure 13.
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(a) (b)

(c) (d)

(e)

Figure 13. Optimal p-values for the PSNR and MSE values of the test images: (a) baboon.png,
(b) baby.png, (c) Barbara.png, (d) monarch.png, and (e) pepper.png.

The PSNR and MSE values of the proposed ESVD compression method, along with
the Separable method and hypercomplex-based compression methods, such as QSVD and
RBSVD, on the test images are provided in Tables 4 and 5.
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Table 4. Compression results (PSNR) of Separable, QSVD, RBSVD, and ESVD (proposed method)
methods on the test images.

Methods K airplane.png baboon.png baby.png Barbara.png monarch.png peppers.png

Seperable 10 22.47626 19.22365 23.97807 20.17889 19.47392 21.49341

QSVD 10 22.4593 19.2345 23.9613 20.1977 19.4925 21.4130

RBSVD 10 22.5009 19.3129 24.0043 20.2469 19.561 21.4875

ESVD (Proposed Method) 10 22.5705
(p = −4.6)

19.3139
(p = −1.2)

24.0406
(p = −3.2)

20.2534
(p = −1.4)

19.5665
(p = −1.4)

21.5484
(p = −1.8)

Seperable 50 30.53264 22.36072 32.18642 25.47954 27.17356 29.93859

QSVD 50 30.5012 22.3650 32.2036 25.5249 27.1818 29.9245

RBSVD 50 30.5456 22.504 32.2748 25.6348 27.2814 30.0184

ESVD (Proposed Method) 50 30.6426
(p = −4.5)

22.5321
(p = −1.7)

32.3295
(p = −3)

25.6730
(p = −2.4)

27.2899
(p = −1.5)

30.0510
(p = −1.5)

Seperable 90 35.29278 24.87109 36.67848 28.73954 31.59597 33.3296

QSVD 90 35.2712 24.8850 36.7164 28.7752 31.6127 33.3777

RBSVD 90 35.3386 25.0464 36.8034 28.9119 31.7219 33.4616

ESVD (Proposed Method) 90 35.4537
(p = −3.8)

25.0826
(p = −1.7)

36.8688
(p = −2.9)

28.9695
(p = −2.8)

31.7322
(p = −1.6)

33.4848
(p = −1.5)

Seperable 130 38.97289 27.25229 40.30344 31.8519 35.26918 35.70147

QSVD 130 38.9621 27.2877 40.3574 31.8910 35.3170 35.8012

RBSVD 130 39.0576 27.4817 40.4524 32.0467 35.4109 35.891

ESVD (Proposed Method) 130 39.1724
(p = −2.9)

27.5193
(p = −1.6)

40.5347
(p = −4.7)

32.1148
(p = −2.5)

35.4245
(p = −1.6)

35.9194
(p = −1.4)

Table 5. Compression results (MSE) of Separable, QSVD, RBSVD, and ESVD (proposed method)
methods on the test images.

Methods K airplane.png baboon.png baby.png Barbara.png monarch.png peppers.png

Seperable 10 0.00565 0.01196 0.004 0.0096 0.01129 0.00709

QSVD 10 0.0057 0.0119 0.0040 0.0096 0.0112 0.0072

RBSVD 10 0.0056 0.011714 0.004 0.00944 0.0111 0.0071

ESVD (Proposed Method) 10 0.00553
(p = −4.6)

0.011711
(p = −1.2)

0.00394
(p = −3.2)

0.00943
(p = −1.4)

0.01104
(p = −1.4)

0.00700
(p = −1.8)

Seperable 50 0.00088 0.00581 0.0006 0.00283 0.00192 0.00101

QSVD 50 0.00089 0.0058 0.000602 0.0028 0.0019 0.0010

RBSVD 50 0.00088 0.0056 0.00059 0.00273 0.0019 0.00099

ESVD (Proposed Method) 50 0.00086
(p = −4.5)

0.0055
(p = −1.7)

0.00058
(p = −3)

0.00270
(p = −2.4)

0.00186
(p = −1.5)

0.00098
(p = −1.5)

Seperable 90 0.0003 0.00326 0.00021 0.00134 0.00069 0.00046

QSVD 90 0.000297 0.0032 0.000212 0.0013 0.00068 0.000459

RBSVD 90 0.00029 0.00312 0.000208 0.0013 0.000672 0.00045

ESVD (Proposed Method) 90 0.00028
(p = −3.8)

0.00310
(p = −1.7)

0.000205
(p = −2.9)

0.00126
(p = −2.8)

0.000671
(p = −1.6)

0.00044
(p = −1.5)

Seperable 130 0.00013 0.00188 0.00009 0.00065 0.0003 0.0003

QSVD 130 0.000127 0.0019 0.000092 0.00064 0.000293 0.00026

RBSVD 130 0.000124 0.0018 0.00009 0.00062 0.000287 0.000257

ESVD (Proposed Method) 130 0.00012
(p = −2.9)

0.0017
(p = −1.6)

0.00008
(p = −4.7)

0.00061
(p = −2.5)

0.000286
(p = −1.6)

0.000256
(p = −1.4)
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4.3. Color Image Restoration with ESVD

Image restoration is a significant concept in the field of image processing. It entails
the estimation of a desired, enhanced image from its degraded version. By utilizing prior
knowledge of the degradation phenomena, image restoration techniques aim to remove
or reduce degradations introduced during image acquisition—such as noise, pixel value
errors, out-of-focus blurring, or camera motion blurring. Generally, the degradation process
of an image is nonlinear and spatially variant. However, in applied sciences, this process is
often considered linear and spatially invariant, allowing it to be examined using the linear
shift invariant (LSI) image restoration model [23].

For an LSI system, f is the original image, g is the observed image, H is the point
spread function (PSF) of the imaging system, and n is the additional noise; the following
matrix-vector formula expresses the process of image degradation: g = H f + n. Image
restoration methods attempt to construct an approximation to f from the observation
g = H f . The method of least squares estimator minimizes the sum of squared differences
between the real observation g and the predicted observation H f . The function to be
minimized can be equivalently written as

∥∥g − H f
∥∥2 in matrix-vector notation [23].

Since the color image can be represented by the elliptic quaternion matrix, the image
restoration problem is transformed into the elliptic least squares problem of the elliptic
quaternion matrix equation g(E) = H(E) f(E). As a result, this subsection will present an im-
age restoration model, referred to as ESVD-LSI, based on the singular-value decomposition
theory of elliptic quaternion matrices.

In our simulation, Gaussian blur PSFs are employed. Gaussian blur is one of the most
prevalent types of blurring that degrades images. It depends on two parameters: the kernel
size (hsize) and the standard deviation sigma (σ) of the Gaussian function in MATLAB. The
kernel size determines the dimensions of the pixel area considered during the application
of the filter, while the sigma value dictates the amount of blurring; higher sigma values
produce a more pronounced blurring effect. These parameters are utilized to simulate the
effect of an out-of-focus image or to smooth fine details. The simulation steps are as follows:

Step 1: An experimental test image is acquired for the ESVD-LSI image restoration method.
Step 2: PSF is selected manually.
Step 3: The range of p and step size are selected.
Step 4: A degraded image is obtained.

In the backend coding, we denote the image matrix of the input image as f . In this case,
the elliptic quaternion matrix representation matrix of f is f(E) = R(E),ii + G(E),j j + B(E),kk.
The image matrix R(E),i was degraded with the 2-D Gaussian blur (hsize = 15, σ = 1) PSF H

to obtain the degraded image matrix R′
(E),i. Let H(E) = R′

(E),i

(
R(E),i

)†
. In this case, with

the help of H(E), we obtain the elliptic quaternion representation of the degraded image in
the form of g(E) = H(E) f(E).

Step 5: According to Theorem 3, the least squares solution with the minimum norm of the
elliptic quaternion matrix equation H(E) f(E) = g(E) is

f ′(E) = H†
(E)g(E) = V(E)Σ

†
(E)U

∗
(E)Q2,(E),

where H(E) = U(E)Σ(E)V∗
(E).

Step 6: By using the step size and the range of p, the optimal p-value is obtained.
Step 7: Finally, the enhanced image is obtained by reverse sampling from the elliptic
quaternion matrices, which will be obtained by choosing the optimal p-value that makes

the least squares error the smallest for
∥∥∥g(E) − H(E) f(E)

∥∥∥
2
.

For the results of the simulation system, the test images are degraded according to the
instructions in Step 4 for 2-D Gaussian blur (hsize = 15 and σ = 1). The degraded images
are shown in Figure 14.
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(a) (b) (c)

(d) (e) (f)

Figure 14. Degraded Images: (a) airplane.png, (b) baboon.png, (c) baby.png, (d) Barbara.png,
(e) monarch.png, and (f) peppers.png.

After steps 5, 6, and 7, the restored test images according to optimal p-values are given
in Figure 15.

(a) (b) (c)

(d) (e) (f)

Figure 15. Restored images: (a) airplane.png, (b) baboon.png, (c) baby.png, (d) Barbara.png,
(e) monarch.png, and (f) peppers.png.

The least squares errors of the QSVD-LSI and RBSVD-LSI restoration methods using
the ESVD-LSI restoration method on the test images are provided in Table 6.

Table 6. Comparison of the least squares errors of QSVD-LSI, RBSVD-LSI, and ESVD-LSI (proposed
method) on test images.

Methods airplane.png baboon.png baby.png Barbara.png monarch.png peppers.png

QSVD-LSI 4.1089 × 10−8 5.6875 × 10−8 8.9857 × 10−6 5.5693 × 10−10 1.7255 × 10−10 1.1666 × 10−8

RBSVD-LSI 4.1351 × 10−8 4.4554 × 10−8 8.6843 × 10−6 6.6432 × 10−10 1.4722 × 10−10 8.7254 × 10−9

ESVD-LSI (Proposed Method) 2.9479 × 10−8 2.9227 × 10−8 5.6462 × 10−6 4.0293 × 10−16 8.3596 × 10−11 6.2201 × 10−9

64



Axioms 2024, 13, 771

4.4. Color Image Watermarking with ESVD

Watermarking is a crucial technique in the field of digital image processing, used
extensively for copyright protection, authentication, and data integrity verification. By em-
bedding a watermark into a digital image, one can ensure the traceability and rightful
ownership of the content. This technique finds applications in various domains, including
media, healthcare, and secure communications. According to the algorithm in [24], we
can give a similar algorithm for color image watermarking by using elliptic quaternion
matrix algebra. The flowcharts in Figures 16 and 17 illustrate the elliptical quaternion
matrix-based color image watermark embedding and extraction procedures, respectively.

Figure 16. The flowchart of watermark embedding.

Figure 17. The flowchart of watermark extracting.

The watermark image sau.png in Figure 18b is embedded in the host image air-
plane.png via the function elliptic_q_embedding_watermarking() as represented in
Listing 10.

Listing 10. MATLAB console output of the functions image2elliptic() and elliptic_q_embedding_
watermarking().

>> f_E=image2elliptic (" test_images/airplane.png",−0.5);
>> g_E=image2elliptic (" test_images/sau.png",−0.5);
>> elliptic_q_embedding_watermarking(f_E ,g_E ,0.05);

With the parameters p = −0.5 and α = 0.05. The watermarked image is as in Figure 18c.
The PSNR and MSE values between the host and the watermarked images are 59.4340 and
1.1392 × 10−6, respectively.
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(a) (b) (c)

Figure 18. (a) Host image; (b) watermark image; (c) watermarked image.

Figure 19 shows the MSE and PSNR values between the host image and a watermarked
image corresponding to p-values given in the range of −1 ≤ p ≤ −0.001 with a step size
of 0.001 (α = 0.05). According to the graphs, the least MSE is 7.03352 × 10−7, and the
maximum PSNR is 61.5283 for the optimal p = −0.059.

(a)

(b)

Figure 19. Change in the MSE (a) and PSNR (b) values between the host image and a watermarked
image according to p-values.

A comparison of the watermarking methods based on Separable, QSVD, RBSVD, and
ESVD in terms of PSNR and MSE on test images are given in Tables 7 and 8. The proposed
method demonstrates better performance than the other approaches.

66



Axioms 2024, 13, 771

Table 7. PSNR comparison for the watermarking methods based on Separable, QSVD, RBSVD, and
ESVD on the test images.

Methods α airplane.png baboon.png baby.png Barbara.png monarch.png peppers.png

Seperable 0.05 56.9556 62.3572 56.5094 59.5572 58.6407 57.7683

QSVD 0.05 58.3759 65.2280 57.4869 60.8656 59.3973 59.7142

RBSVD 0.05 58.3989 64.8821 57.3881 60.6836 59.2756 59.7100

ESVD
(Proposed
Method)

0.05
61.5283
optimal

p = −0.059

66.2703
optimal

p = −0.199

58.9558
optimal

p = −0.075

61.5525
optimal

p = −0.093

60.9556
optimal

p = −0.099

61.8606
optimal

p = −0.116

Table 8. MSE comparison for the watermarking methods based on Separable, QSVD, RBSVD, and
ESVD on the test images.

Methods α airplane.png baboon.png baby.png Barbara.png monarch.png peppers.png

Separable 0.05 2.0158 × 10−6 5.8114 × 10−7 2.2339 × 10−6 1.1073 × 10−6 1.3675 × 10−6 1.6717 × 10−6

QSVD 0.05 1.4534 × 10−6 3.0005 × 10−7 1.7836 × 10−6 8.1929 × 10−7 1.1488 × 10−6 1.0680 × 10−6

RBSVD 0.05 1.4458 × 10−6 3.2493 × 10−7 1.8247 × 10−6 8.5435 × 10−7 1.1815 × 10−6 1.0691 × 10−6

ESVD
(Proposed
Method)

0.05
7.0335 × 10−7

optimal
p = −0.059

2.3603 × 10−7

optimal
p = −0.199

1.2718 × 10−6

optimal
p = −0.075

6.9945 × 10−7

optimal
p = −0.093

8.0249 × 10−7

optimal
p = −0.099

6.5154 × 10−7

optimal
p = −0.116

To evaluate the robustness of the proposed watermarking scheme, several attacks,
including adding 2% Gaussian noise, cropping one-fourth of the upper-left area of the
watermarked image, sharpening, and their sequential application, were performed. The
robustness of the watermarking scheme was evaluated using the MSE between the extracted
and original watermarks. Table 9 shows the results of the watermarked images for the test
images after different attacks. From Table 9, it can be seen that the MSE error values are
very small. This result demonstrates the robustness of the proposed scheme against attacks.
The watermarks shown in Figure 20 were obtained from the test image airplane.png as a
result of the attacks we considered.

(a) (b) (c)

(d) (e) (f)

Figure 20. The extracted watermarks from the test image airplane.png: (a) Noise, (b) Cropping,
(c) Noise + Cropping, (d) Sharpening, (e) Noise + Sharpening, and (f) Noise + Cropping + Sharpening.
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Table 9. Results of the MSE of the extracted watermark after different attacks.

Test Images α
Noise 2%
Gaussian

Cropping
25%

Noise +
Cropping Sharpening Noise +

Sharpening
Noise + Cropping +

Sharpening

airplane.png 0.5 0.0142 0.0010 0.0086 0.0007 0.0396 0.0250

baby.png 0.5 0.0027 0.0017 0.0022 0.0018 0.0123 0.0071

baboon.png 0.5 0.0167 0.0005 0.0099 0.0006 0.0448 0.0281

Barbara.png 0.5 0.0104 0.0015 0.0072 0.0015 0.0313 0.0202

monarch.png 0.5 0.0131 0.0010 0.0077 0.0009 0.0354 0.0214

peppers.png 0.5 0.0088 0.0017 0.0066 0.0005 0.0256 0.0174

5. Conclusions

In color image processing, conventional sparse matrix models employed for repre-
senting color images often neglect the interdependencies among the three distinct color
channels RGB. Consequently, in numerous image processing tasks, these channels are
either processed separately, or the image is converted to grayscale. Such an approach can
significantly limit the effectiveness of various image processing techniques, particularly
those that rely on the complex interactions of color data. In this study, we applied various
color image processing techniques—including principal component analysis, image com-
pression, image restoration, and watermarking—directly to color images represented in the
elliptic quaternion algebra without decomposing them into separate RGB channels. These
methods were integrated into the MATLAB toolbox developed for this purpose. Extensive
experiments were conducted on image compression, reconstruction, image restoration,
and watermarking. A comparative performance analysis between the proposed method
and other hypercomplex-based compression techniques demonstrated that our method
outperformed existing approaches. The experiments also revealed that the choice of the
p-value in the algebra of elliptic quaternions directly affects the performance of the solution
of the problem under consideration. Selecting an optimal p-value for problem-solving,
combined with the elliptic characteristics exhibited by many physical systems, renders
this number system advantageous in image processing and other applied fields. Therefore,
integrating the elliptic quaternions system into the image processing process can effectively
address various challenges related to computational time, memory usage, and overall
performance in fields such as machine learning, convolutional neural networks, etc.

On the other hand, the optimal p-values for the problems considered were selected via
a brute-force approach by searching in a specific range with a certain step size. It was ob-
served that, in certain cases, the optimal p-values clustered at specific points. Investigating
the underlying reasons for this clustering, elucidating the relationship between the optimal
p-values and the problems discussed, and developing analytical methods for determining
the optimal p-values are proposed as subjects for future research in this article.
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Abstract: Hypergroups represent a generalization of groups, introduced by Marty, that are rich in
applications in several sectors of mathematics and in other fields. An important class of hypergroups
called join spaces is presented in this paper, along with some connections to lattice theory, in particular,
to modular and to distributive lattices. In particular, we study join spaces associated with chains
through functions and we analyze when such join spaces are isomorphic. Moreover, a combinatorial
problem is presented for a finite context, focusing on calculating the number of isomorphisms classes
of join spaces.
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1. Introduction

The composition of two elements is an element in groups, while in an algebraic
hypergroup, the composition of two elements is a nonempty subset. F. Marty observed that
the elements of a factor group are subsets and this was the starting point for hypergroup
theory, see [1].

He introduced the hypergroup concept in 1934 at the 8th Congress of the mathe-
maticians from the Scandinavian countries. Over time, new results have also appeared
interesting, but especially since the 1970s, this theory developed a lot in Europe, the United
States, Asia, and Australia. Some sound names in this field such as Dresher, Ore, Koskas,
and Krasner made contributions in the field of homomorphisms of hypergroups and in the
theory of subhypergroups.

Hypergroups have applications in several sectors of mathematics and in other fields,
see [2]. Complete parts were studied by Koskas, then by Corsini, Leoreanu, Davvaz,
Vougiouklis, and Freni.

Fundamental equivalence relations are important in algebraic hyperstructures be-
cause they establish a natural connection between algebraic hyperstructures and classical
algebraic structures. The relation β connects the class of hypergroups to the class of
groups. More exactly, the quotient of a hypergroup has a group structure. Using relation β,
Migliorato defines the notion of an n-complete hypergroup.

In [3], basic notions and results about algebraic hypergroups are presented, in par-
ticular about semihypergroups, hypergroups, subhypergroups, homomorphisms and iso-
morphisms, fundamental relations and the corresponding quotient structures, join spaces,
canonical hypergroups, Rosenberg hypergroups, topological hypergroups, and also con-
nections with hypergraphs and n-ary relations, while in [4] hyperstructures and their
representations are studied.

Hyperlattices were introduced in 1994 by Mittas and Konstantinidou, see [5], and
later on they were studied by many mathematicians, see, e.g., [6,7]. Connections be-
tween hypergroups and lattices or hyperlattices have been considered and analyzed by
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Nakano [8] and Varlet [9], then by Comer [10] and later by Kehagias, Konstantinidou,
and Serafimidis [11,12], Călugăreanu and Leoreanu [13], Tofan and Volf [14], and Njionou,
Ngapeya and Leoreanu-Fotea [15].

2. Join Spaces and Connections with Lattices

In this section, we present the join space notion and we analyze some connections
with lattice theory.

Let H ̸= ∅. A function ◦ : H × H → P∗(H) is called a hyperoperation, where P∗(H)
denotes the set of nonempty subsets of H.

If S, T are subsets of H, then S ◦ T =
⋃

s∈S;t∈T s ◦ t.
The structure (H, ◦) is a hypergroup if for all u, v, w of H we have

(u ◦ v) ◦ w = u ◦ (v ◦ w) and u ◦ H = H ◦ u = H.

For all elements a, b ∈ H, denote a/b = {u ∈ H | a ∈ u ◦ b}.

Definition 1. A hypergroup (H, ◦) is called a join space if it is commutative and for all a, b, c, d of
H, we have

a/b ∩ c/d ̸= ∅ ⇒ a ◦ d ∩ b ◦ c ̸= ∅. (1)

In other words, a ∈ u ◦ b, c ∈ u ◦ d ⇒ a ◦ d ∩ b ◦ c ̸= ∅.
The condition (1) is often called the join space condition.
Join spaces were defined by W. Prenowitz. He and J. Jantosciak applied them in both

Euclidean and non-Euclidean geometry, see [16]. Using join spaces, descriptive, projective,
and spherical geometry were subsequently rebuilt.

Join spaces can be also studied in connections with binary relations, fuzzy sets, or
rough sets, see [2,17].

We present here some examples of join spaces:

Example 1. Let H be a non-empty set. If R is an equivalence relation on it, then denote the
equivalence class of a ∈ H by [a] and define the next hyperoperation on H:

∀a, b ∈ H, a ◦ b = [a] ∪ [b].

Then, (H, ◦) is a join space.

For all a, b, c ∈ H we have a ◦ H = H, a ◦ (b ◦ c) = (a ◦ b) ◦ c = [a] ∪ [b] ∪ [c], whence
(H, ◦) is a commutative hypergroup. Moreover, if a, b, c, d ∈ H and there is u ∈ H such
that a ∈ u ◦ b, c ∈ u ◦ d then a ∈ [u] ∪ [b], c ∈ [u] ∪ [d].

If a ∈ [b], then a ∈ a ◦ d ∩ b ◦ d. Similarly, if c ∈ [d], then c ∈ a ◦ d ∩ b ◦ c.
If a ̸∈ [b] and c ̸∈ [d], then a ∈ [u] and c ∈ [u], whence [a] = [u] = [c], hence

u ∈ a ◦ d ∩ b ◦ c. Therefore, (H, ◦) is a join space.

Example 2. Let (G, ·) be a commutative group. For all x ∈ G, consider a nonempty set A(x),
such that if x, y ∈ G, x ̸= y, then A(x) ∩ A(y) = ∅.

Set HG = ∪x∈G A(x) and f : KG → G, f (a) = x ⇔ a ∈ A(x).
For all a, b ∈ HG we define a □ b = A( f (a) f (b)). Then, (HG, □) is a join space.

Indeed, it can be checked that ∀a ∈ HG, a □ HG = HG and ∀a, b, c ∈ HG, (a □ b)□ c =
a □ (b □ c) = A( f (a) f (b) f (c)).

Now, if a, b, c, d, u ∈ HG are such that a ∈ u □ b, c ∈ u □ d then a ∈ A( f (u) f (b)) and
c ∈ A( f (u) f (d)), whence f (a) = f (u) f (b) and f (c) = f (u) f (d).

Hence, f (a) f (d) = f (c) f (b), so a □ d ∩ b □ c ̸= ∅. Thus, (HG, □) is a join space.
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Example 3. Consider (H, ◦) a hypergroup and (G, ·) a commutative group. Consider a family
{Ai}i∈G of nonempty sets, such that A1 = H and for i, j ∈ G, i ̸= j, Ai ∩ Aj = ∅. We define the
next hyperoperation on T = ∪i∈G Ai :

∀a, b ∈ H, a □ b = a ◦ b; ∀a ∈ Ai, b ∈ Aj, (i, j) ̸= (1, 1), ij = k, a □ b = Ak.

Then, (T, □) is a join space if and only if (H, ◦) is a join space.

Let (H, ◦) be a join space.
We have a □ T = T, since (G, ·) is a group. The associativity law holds.
Moreover, if a ∈ v □ b, a ∈ Ai, b ∈ Aj, then v ∈ Aij−1 .
Similarly, if c ∈ v □ d, c ∈ Ak, d ∈ As, then v ∈ Aks−1 . Thus, ij−1 = ks−1, whence

is = kj.
If (i, j, k, s) ̸= (1, 1, 1, 1), then a □ d ∩ c □ b ̸= ∅.
If (i, j, k, s) = (1, 1, 1, 1), then we use the fact (H, ◦) is a join space.
Therefore, (T, □) is a join space.
Conversely, suppose that (T, □) is a join space. If u ∈ H and a ∈ u ◦ b, c ∈ u ◦ d, then

a ∈ u □ b, c ∈ u □ d, whence a □ d ∩ c □ b ̸= ∅, which means that a ◦ d ∩ c ◦ b ̸= ∅. Thus,
(H, ◦) is a join space.

The study of algebraic hypergroups and connections with lattices and ordered sets was
initiated by J. Mittas and then by M. Konstantinidou and K. Serafimidis, Ch. Massouros,
G. Massouros, and later by Ath. Kehagias. Connections between ordered sets, quasi-orders,
and hypergroups were also studied by Chvalina.

In what follows, we present some connections with lattice theory, see [18]. Two
important classes of lattices are characterized using hypergroups: distributive and modular
lattices, see [9,10,19].

Connection 1. In [9], J.Varlet provided the following characterization of distributive lattices:
Consider the next hyperoperation on a lattice L = (L,∨,∧):
∀a, b ∈ L we set

a ⋄ b = [a ∧ b, a ∨ b] = {x ∈ L : a ∧ b ≤ x ≤ a ∨ b}.

Theorem 1. L is a distributive lattice if and only if (L, ⋄) is a join space.

In [19], we considered and analyzed a family of hyperoperations {⋄pq}p,q∈L defined
as follows.

Let p, q ∈ L be arbitrary. For all a, b ∈ L set

a ⋄pq b = [a ∧ b ∧ p, a ∨ b ∨ q].

Theorem 2. If the lattice L is distributive and p, q ∈ L, then (L, ⋄pq) is a join space.

We mention some important steps from the proof of this theorem:
First, check that

(a ⋄pq b) ⋄pq c = [a ∧ b ∧ c ∧ p, a ∨ b ∨ c ∨ q].

In order to prove “⊇”, we consider t ∈ [a ∧ b ∧ c ∧ p, a ∨ b ∨ c ∨ q] an arbitrary element
and we set s = (a ∧ b) ∨ (a ∧ t) ∨ (b ∧ t). Thus, s ∈ a ⋄pq b whence t ∈ s ⋄pq c.

Now, we consider a, b, c, d, u ∈ L that satisfy a ∈ b ⋄pq u and c ∈ d ⋄pq u.
Set z = (a ∧ d ∧ p) ∨ (b ∧ c ∧ p). We obtain z ∈ b ⋄pq c.
Hence, z ∈ (a ⋄pq d) ∩ (b ⋄pq c) and so (L, ⋄pq) is a join space.

Connection 2. The next example of a join space is useful to characterize modular lattices.
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Let L = (L,∨,∧) be a lattice. In [8] H. Nakano introduced the following hyperoperation on L:

a ◦ b = {u ∈ H | a ∨ b = a ∨ u = b ∨ u}.

Later, S. Comer [10] showed that:

Theorem 3. L is a modular lattice if and only if (L, ◦) is a join space.

Another interesting proof of the above theorem is given in [2]. Several properties of
this join space were presented in [13].

In [19], a new family of hyperoperations determined by a lattice is analyzed. For all
p ∈ L set

a ◦p b = {u ∈ L | a ∨ b ∨ p = a ∨ u ∨ p = b ∨ u ∨ p}.

Notice that a ◦p b ̸= ∅, since a ∨ b ∈ a ◦p b.
For p ∈ L set Lp = {x ∈ L | x ≥ p} and denote by Lp the restriction of L to Lp.

Theorem 4. Let p ∈ L. If Lp is modular, then (L, ◦p) is a join space.

Similar results can be obtained by considering the hyperoperation:

a□p b = {u ∈ L | a ∧ b ∧ p = a ∧ u ∧ p = b ∧ u ∧ p}.

The hyperproduct is not empty since a ∧ b ∈ a□pb.

Connection 3. Another connection between join spaces and lattices was highlighted by Tofan and
Volf [14], as follows:

If (L,∨,∧) is a lattice and f : H → L is a function, such that f (L) is a distributive sublattice
of (L,∨,∧), then define

∀a, b ∈ H, a ⋄ f b = {c ∈ H | inf { f (a), f (b)} ≤ f (c) ≤ sup{ f (a), f (b)}}.

We obtain a commutative hypergroup (H, ⋄ f ).

Indeed, in the above conditions, the next equality is checked:

(a ⋄ f b) ⋄ f c = {u ∈ H | inf { f (a), f (b), f (c)} ≤ f (u) ≤ sup{ f (a), f (b), f (b)}} =

= a ⋄ f (b ⋄ f c), ∀a, b, c ∈ H.

Moreover, we shall prove here the next result, as follows:

Theorem 5. The next statements are equivalent:

• f (L) is a distributive sublattice.
• ⋄ f satisfies the join space condition.

Proof. First, let us check that the join space condition is satisfied for a distributive sublattice
f (L). Let u ∈ H: a ∈ u ⋄ f b, c ∈ u ⋄ f d.

Then, we shall check that there is v ∈ a ⋄ f d ∩ b ⋄ f c.
Since {inf{ f (b), f (u)} ≤ f (a) ≤ sup{ f (b), f (u)} and

{inf{ f (d), f (u)} ≤ f (c) ≤ sup{ f (d), f (u)}, according to the distributivity, it follows that

inf{ f (a), f (d)} ≤ inf{sup{ f (b), f (u)}, f (d)} ≤ sup{inf{ f (b), f (d)}, f (c)} ≤ sup{ f (b), f (c)}.

From here we obtain s = sup{inf{ f (a), f (d)}, inf{ f (b), f (c)}} ≤ sup{ f (b), f (c)}.
Similarly, we have s ≤ sup{ f (a), f (d)}.
Hence, sup{inf{ f (a), f (d)}, inf{ f (b), f (c)}} ≤ inf{sup{ f (a), f (d)}, sup{ f (b), f (c)}.
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Therefore, (a ⋄ f d) ∩ (b ⋄ f c) ̸= ∅.
Now, let us note that the reciprocal statement also holds: if the join space condition is

satisfied, then f (L) is a distributive sublattice.
Indeed, if f (L) is not distributive, then it will contain a sublattice

{ f (u), f (v), f (w), f (t), f (s)} with sup{ f (u), f (w)} = sup{ f (v), f (w)} = f (t),

inf{ f (u), f (w)} = inf{ f (v), f (w)} = f (s) and f (u) > f (v) of f (u), f (v), f (w) are not
comparable two by two.

In both situations, w ∈ u/v ∩ v/u, since

inf{ f (v), f (w)} = f (s) ≤ f (u) ≤ sup{ f (v), f (w)} = f (t)

and
inf{ f (u), f (w)} = f (s) ≤ f (v) ≤ sup{ f (u), f (w)} = f (t).

Thus, w ∈ u/v ∩ v/u, and u ⋄ f u = {u} ̸= {v} = v ⋄ f v, a contradiction. Thus, the
sublattice f (L) is distributive.

Canonical hypergroups are an important class of join spaces and were introduced by
J. Mittas [20]. They are the additive structures of Krasner hyperrings and were used by
R. Roth to obtain results in the finite group character theory, see [21]. McMullen and Price
studied finite abelian hypergroups over splitting fields [22].

More recent studies of canonical hypergroups were conducted by C and G. Massouros
(in connection with automata), P. Corsini (sd-hypergroups), and K. Serafimidis, M. Kon-
stantinidou, and J. Mittas, while feebly canonical hypergroups were analyzed by P. Corsini
and M. De Salvo.

Canonical hypergroups are exactly join spaces with a scalar identity e, which means
that ∀u, u ◦ e = e ◦ u = u. Obviously, commutative groups are canonical hypergroups.
Other examples of canonical hypergroups are given in [3].

More general structures were also considered, namely polygroups, also called quasi-
canonical hypergroups, by Bonansinga, Corsini, and Ch. Massouros. Comer analyzed the
applications of polygroups in the theory of graphs, relations, Boolean, and cylindrical algebras.

A particular type of polygroup, namely the hypergroup of bilateral classes, was
investigated by Drbohlav, Harrison. and Comer. Polygroups satisfy the same conditions as
canonical hypergroups, with the exception of commutativity.

In the next two sections, we associate join spaces with chains and we analyze when
they are isomorphic. Moreover, a combinatorial problem is presented: we calculate how
many isomorphism classes of join spaces are.

3. Join Spaces Associated with a Chain: The Finite Case

In what follows, we associate a join space structure with a chain, through a function.
We then study under what conditions such join spaces, considered for different functions,
are isomorphic, for the finite case.

Let H be finite and f : H → C where C is a chain. Consider the next hyperoperation
on H:

∀a, b ∈ H, a ⋄ f b = {c ∈ H | f (a) ∧ f (b) ≤ f (c) ≤ f (a) ∨ f (b)}.

We have f (a) ∧ f (b) = min{ f (a), f (b)}, f (a) ∨ f (b) = max{ f (a), f (b)}.
According to Theorem 5 or by a direct check, we then utilize the following theorem.

Theorem 6. The structure (H, ⋄ f ) is a join space.

Set |H| = n. We define the next equivalence relation on H:

h ∼ f k ⇔ f (h) = f (k).
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Denote s = |H/∼| and order H/∼ as follows: h̄ ≤ k̄ ⇔ f (h) ≤ f (k), for h, k ∈ H.
We denote H/∼ = {h̄1, h̄2, . . . , h̄s} where f (h1) < f (h2) < . . . < f (hs).

For all i ∈ {1, . . . , s} set ai = | f−1( f (hi))|. We have ai ≥ 1, ∑s
i=1 ai = n.

Denote λ( f ) = (a1, a2, . . . , as) the ordered partition of n into s parts and τ(a1, a2, . . . , as) =
(b1, b2, . . . , bs) where ∀i, bi = as−i+1.

Theorem 7. If f , g : H → C are two maps, then (H, ⋄ f ) ∼= (H, ⋄g) ⇔ λ( f ) = λ(g) or
λ(g) = τ(λ( f )).

Proof. “⇐”
Suppose λ( f ) = λ(g) = (a1, a2, . . . , as). Set H = ∪s

j=1 Aj = ∪s
j=1 A′

j, where for all

j ∈ {1, 2, . . . , s}, Aj = f−1( f (hj)
)
, A′

j = g−1(g(hj)
)
.

Set Aj = {h1,j, h2,j, . . . , haj ,j}, A′
j = {h′1,j, h′2,j, . . . , h′aj ,j

}.
We order H as follows:
∀j ∈ {1, 2, . . . , s}, ∀k, k′ ∈ {1, 2, . . . , aj}, hk,j < hk′ ,j ⇔ k < k′,
∀j, j′ ∈ {1, 2, . . . , s}, j ̸= j′, ∀k ∈ {1, 2, . . . , aj}, ∀k′ ∈ {1, 2, . . . , a′j}, hk,j < hk′ ,j′ ⇔ j < j′.
For i, j ∈ {1, 2, . . . , s}, k ∈ {1, 2, . . . , ai}, l ∈ {1, 2, . . . , aj} we have

hk,i ⋄ f hl,j = ∪t∈[i∧j,i∨j]At,

hk,i ⋄g hl,j = ∪t∈[i∧j,i∨j]A
′
t.

Consider the map: ϕ : (H, ⋄ f ) → (H, ⋄g), ϕ(hk,i) = h′k,i.
We have

ϕ(hk,i ⋄ f hl,j) = h′k,i ⋄g h′l,j = ϕ
(
hk,i
)
⋄g ϕ(hl,j),

which means that (H, ⋄ f ) ∼= (H, ⋄g).
Suppose now that λ(g) = τ(λ( f )).
We have H = ∪s

j=1 Aj = ∪s
j′=1 A′

j′ where j′ = τ(j) = s − j + 1.

Moreover, Aj = {h1,j, h2,j, . . . , haj ,j}, A′
j′ = {h′1,j, h′2,j, . . . , h′a′

j′ ,j
′} and Aj = f−1( f (hj)

)
,

A′
j′ = g−1(g(hj′)

)
with a′j′ = aj.

Consider the function: ϕ : (H, ⋄ f ) → (H, ⋄g), ϕ(hk,j) = h′k,j′ . We obtain
ϕ(hk,i ⋄ f hl,j) = ϕ(∪i∧j≤t≤i∨j At) = ∪τ(i∧j)≤τ(t)≤τ(i∨j)A′

τ(t) = h′k,i′ ⋄g h′l,j′ =
ϕ(hk,i) ⋄g ϕ(hl,j).

Therefore, (H, ⋄ f ) ∼= (H, ⋄g).
“⇒”
Let p : H → {1, 2, . . . , s} be defined as follows: p(h) = j such that h ∈ Aj. Similarly,

p′ : H → {1, 2, . . . , s′} is defined, where s′ = |H/∼g |.
Denote the isomorphism by ϕ : (H, ⋄ f ) → (H, ⋄g).
Denote the set {t | u ∧ v ≤ t ≤ u ∨ v} by I(u, v). For all h, k ∈ H we have

ϕ(h ⋄ f k) = ϕ(∪
j∈I
(

p(h),p(k)
)Aj) = ∪

j∈I
(

p(h),p(k)
)ϕ(Aj).

On the other hand, ϕ(h) ⋄g ϕ(k) = ∪
j∈I
(

p′(ϕ(h)),p′(ϕ(k))
)A′

j.

For every j ∈ {1, 2, . . . , s} and every h ∈ Aj we have
ϕ(Aj) = ϕ(h ⋄ f h) = ϕ(h) ⋄g ϕ(h) = A′

p′(ϕ(h)).
Consider the function α : {1, 2, . . . , s} → {1, 2, . . . , s′}, α(p(h)) = p′(ϕ(h)). We obtain

α : I
(

p(h), p(k)
)
→ I

(
p′
(
ϕ(h)

)
, p′
(
ϕ(k)

))
.
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α is injective:
Indeed, if α(j1) = α(j2) then ϕ(Aj1) = ϕ(Aj2). Hence, for every n ∈ {1, 2, . . . aj1} there

exists t ∈ {1, 2, . . . aj2} such that ϕ(hn,j1) = ϕ(ht,j2) whence j1 = j2, which means that α
is injective.

α is surjective:
Indeed, for each t ∈ I

(
α(i), α(j)

)
, there is u ∈ I(i, j) for which α(u) = t since

p′(ϕ(Ai)) = α(i).
Therefore, α is a bijective function from I(i, j) to I(α(i), α(j)).
Particularly, α : I(1, s) → I(α(1), α(s)). We have

ϕ(H) = H = ∪j∈{1, ..., s}ϕ(Aj) = ∪j∈{1, ..., s}A′
α(j) = ∪

t∈I
(

α(1),α(s)
)A′

t.

So, I
(
α(1), α(s)

)
= I(1, s′), whence it follows that {α(1), α(s)} = {1, s′}. We have

s′ = |H/ ∼g | = |α(p(H))| = |p(H)| = s.

Hence, {α(1), α(s)} = {1, s}.
Moreover, for all j ∈ {1, . . . , s}, we have aj = |Aj| = |ϕ(Aj)| = |A′

α(j)| = a′
α(j).

From {α(1), α(s)} = {1, s} it follows that

I(2, s − 1) = I(α(1), α(s))− {α(1), α(s)}
= α(I(1, s))− {α(1), α(s)}
= I(α(2), α(s − 1)),

so {α(2), α(s − 1)} = {2, s − 1}.
Hence,

∀k, α(k) = {k, s − k + 1}. (2)

Denote by B the set of bijections of I(1, s) defined to itself.
We show that ∀k, α(k) = k or ∀k, α(k) = s − k + 1. Denote s − k + 1 by τ(k).
For s ≤ 3, we have B = {idI(1,s), τ}.
If s > 3 and we suppose that α(1) = 1, α(2) = τ(2) = s − 1, then

α(I(1, 2)) = I(1, s − 1), so 2 = |α(I(1, 2))| ̸= |I(1, s − 1)| ≥ 3, which is a contradiction.
Similarly, for α(1) = s, α(2) = 2, we obtain a contradiction.
Suppose now that there is k ∈ I(1, s) such that

α(I(1, k)) = idI(1,k) and α(k + 1) = τ(k + 1).

We obtain

k + 1 = |I(1, k + 1)|
= |α(I(1, k + 1))|
= k + s − 2k,

whence s = 2k + 1.
Therefore, α(k + 1) = k + 1, which means that

α(I(1, k + 1)) = idI(1,k+1).

If α(I(1, k)) = τ(I(1, k)), α(k + 1) = k + 1, then

k + 1 = |α(I(1, k + 1))| = k + s − 2k,

whence s = 2k + 1. Thus, τ(k + 1) = k + 1, that is α(I(1, s + 1)) = τ(I(1, k + 1)).
Hence, λ( f ) = λ(g) or λ(g) = τ(λ( f )).
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Now we calculate how many isomorphism classes for join spaces can be constructed
in this way.

Denote by Q f (n) the quotient set which contains classes of join spaces (H, ⋄ f ) associa-
ted with maps f : H → C.

Theorem 8. (i) If n = 2k + 1 then |Q f (n)| = 2k−1(2k + 1).
(ii) If n = 2k then |Q f (n)| = 2k−1(2k−1 + 1).

Proof. Denote by (o.p.)(n) the set of ordered partitions of n.
According to [23], we have |(o.p.)(n)| = 2n−1.
Let us number the symmetrical ordered partitions of n, that is partitions (a1, a2, . . . , as)

for which τ(a1, a2, . . . , as) = (a1, a2, . . . , as).
Set (s.o.p.)(n) the set of all symmetrical ordered partitions of n.
We have the two cases:
Case 1.
If n = 2k+ 1 and if p ∈ (s.o.p.)(n), then p = (2k+ 1) or p = (i1, . . . , is, 2t+ 1, is, . . . , i1),

where t ∈ {0, 1, . . . , k − 1} and s ∈ {k − t, k − t − 1, . . . , 1}.
We have

2
s

∑
j=1

ij + 2t + 1 = 2k + 1 whence
s

∑
j=1

ij = k − t.

According to [23], for all t we have |(s.o.p.)(k − t)| = 2k−t−1. Hence,

|(s.o.p.)(n)| =
k−1

∑
t=0

2k−t−1 + 1 = 2(k−1)+1 = 2k.

Case 2.
If n = 2k and if p ∈ (s.o.p.)(n), then p = (2k) or p = (i1, . . . , is, 2t, is, . . . , i1), where

t ∈ {0, 1, . . . , k − 1} and s ∈ {k − t, k − t − 1, . . . , 1}.
We obtain ∑s

j=1 ij = k − t.
According to [23], for all t we have |(s.o.p.)(k − t)| = 2k−t−1.
Hence,

|(s.o.p.)(n)| =
k−1

∑
t=0

2k−t−1 + 1 = 2k.

Therefore, we can conclude:

• If n = 2k + 1 then |Q f (n)| = 2k + 1/2(2n−1 − 2k) = 2k−1(2k + 1);
• If n = 2k then |Q f (n)| = 2k + 1/2(2n−1 − 2k) = 2k−1(2k−1 + 1).

4. Join Spaces Associated with a Chain: The General Case

In this section, we consider an arbitrary set H and we analyze when the join spaces
associated with a chain are isomorphic.

Let us present first the context:
Let f : H → C and consider the equivalence relation on H:

h ∼ f k ⇔ f (h) = f (k).

We order H/∼ f as follows: [h] f ≤ [k] f ⇔ f (h) ≤ f (k), for h, k ∈ H.
Denote H/∼ f = {[hi] f | i ∈ I} and [hi] f by Hi, for all i ∈ I.
We order I as follows:

i ≤ j ⇔ ∀h ∈ Hi, ∀k ∈ Hj, f (h) ≤ f (k).

Since C is a chain, it follows that (I,≤) is a chain, too.
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Moreover, for all i ∈ I denote |Hi| = αi.
If g : H → C , then H/∼g = {H′

i′ | i′ ∈ I′}. Similarly,

i′ ≤ j′ ⇔ ∀h′ ∈ H′
i′ , ∀k′ ∈ H′

j′ , g(h′) ≤ g(k′)

and for all i′ ∈ I′ denote |H′
i′ | = αi′ . We have that (I′,≤) is a chain, too.

Theorem 9. If f , g : H → C are two functions, then (H, ⋄ f ) ∼= (H, ⋄g) if and only if there exists
a strictly monotonous bijection φ : I → I′ : ∀i ∈ I, αi = α′

φ(i).

Proof. “⇐”
For all i ∈ I, |Hi| = αi = α′

φ(i) = |H′
φ(i)|. Define

ϕ : (H, ⋄ f ) → (H, ⋄g) as follows: ∀i ∈ I, ∀hi ∈ Hi, ϕ(hi) = h′
φ(i) where we choose

h′
φ(i) ∈ H′

φ(i). Now, ∀i, j ∈ I , ∀hi ∈ Hi, hj ∈ Hj we have

ϕ(hi) ⋄g ϕ(hj) = h′φ(i) ⋄g h′φ(j) = ∪t∈[φ(i)∧φ(j),φ(i)∨φ(j)]H
′
t ,

ϕ(hi ⋄ f ϕhj) = ∪k∈[i∧j,i∨jH
′
φ(k)].

If φ is strictly increasing, then φ(i ∧ j) = φ(i) ∧ φ(j), φ(i ∨ j) = φ(i) ∨ φ(j).
Since φ is a bijective function, we have

ϕ(hi ⋄ f hj) = ∪t′∈[φ(i)∧φ(j),φ(i)∨φ(j)]H
′
t′ .

Hence, ϕ(hi ⋄ f hj) = ϕ(hi) ⋄g ϕ(hj).
If φ is strictly decreasing, then φ(i ∧ j) = φ(i) ∨ φ(j), φ(i ∨ j) = φ(i) ∧ φ(j).
Since φ is a bijection, we have

ϕ(hi ⋄ f hj) = ∪t′∈[φ(i)∧φ(j),φ(i)∨φ(j)]H
′
t′ .

Hence, ϕ(hi ⋄ f hj) = ϕ(hi) ⋄g ϕ(hj).
Therefore, ϕ is an isomorphism.
“⇒”
Denote by ϕ the isomorphism from (H, ⋄ f ) to (H, ⋄g). Set p : H → I and p′ : H → I′,

where for all hi ∈ Hi, h′i′ ∈ H′
i′ , we obtain p(hi) = i and p′(h′i′) = i′.

For h, k ∈ Hi we obtain h ⋄ f h = h ⋄ f k = Hi, whence

ϕ(h) ⋄g ϕ(k) = ϕ(h ⋄ f k) = ϕ(h) ⋄g ϕ(k) = H′
φ(i).

Hence, p′(ϕ(h)) = p′(ϕ(k)).
Define φ : I → I′ by : φ(i) = p′(ϕ(x)) where p(x) = i.
We check that φ is a bijective function.
Suppose that there are i1, i2 ∈ I, i1 ̸= i2 such that φ(i1) = φ(i2).
Thus, ϕ(H11) = ϕ(Hi2), which is a contradiction with Hi1 ∩ Hi2 = ∅.
On the other hand, since ϕ(H) = H we obtain

H = ∪i′∈I′ H
′
i′ = ϕ(∪i∈I Hi) = ∪i∈Iϕ(Hi) = ∪i∈I H′

φ(i) = ∪i∈Imφ H′
φ(i),

whence I′ = Imφ. Hence, φ is bijective and |I| = |I′|.
Thus, ∀i ∈ I, |Hφ(i)| = |ϕ(Hi)| = |Hi|.
Hence, ∀i ∈ I, α′

φ(i) = αi. Let us prove now that φ is strictly monotonous.
If i ≤ j are elements of I, then we denote [i, j] = {t ∈ I|i ∧ j ≤ t ≤ i ∨ j} and for

i′, j′ ∈ I, i ≤ j′ then [i′, j′] = {t′ ∈ I′|i′ ∧ j′ ≤ t′ ≤ i′ ∨ j′}.
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If i, j ∈ I, i ≤ j and h ∈ Hi, k ∈ Hj, then ϕ(h ⋄ f k) = ϕ(h) ⋄g ϕ(k) whence

ϕ(∪t∈[i,j]Ht) = ∪t∈[i∧j,i∨j]H
′
φ(t).

We obtain that

∀i ≤ j, φ([i, j]) = [φ(i) ∧ φ(j), φ(i) ∨ φ(j)]. (3)

For i ̸= j we have φ(i) < φ(j) or φ(j) < φ(i).
If φ(i) < φ(j), then φ is strictly increasing on I. Indeed, it follows from (3).
Similarly, if φ(j) < φ(i), then φ is strictly decreasing on I.
Therefore, we obtain the thesis.

Let us present some examples.

Example 4. If f , g : H → [a, b], where [a, b] is a real interval and g(h) = a + b − f (h), then
[h] f = [h]g, whence I = I′ and φ is the identity function. Hence, (H, ⋄ f ) ∼= (H, ⋄g).

Example 5. If f , g : H → R, where R is the real number set and g(h) = − f (h), then [h] f = [h]g,
and again I = I′, φ is the identity function and (H, ⋄ f ) ∼= (H, ⋄g).

Example 6. If f , g : H → C are such that |H/ ∼ f | = |H/ ∼g | = n, H/ ∼ f= {H1, H2, . . . , Hn},
H/ ∼g= {H′

1, H′
2, . . . , H′

n} such that |H1| = |H′
n| = 1, |H2| = |H′

n−1| = 2, and so on.
In general, |Hi| = |H′

n−i+1| = i for all i ∈ {1, 2, . . . , n}.
Then, I = I′ = {1, 2, . . . , n} and φ(i) = n − i + 1 is a strictly decreasing function. Hence,

(H, ⋄ f ) ∼= (H, ⋄g).

5. Conclusions

We study classes of isomorphism for join spaces associated with chains and a combi-
natorial problem is analyzed for the finite case, which is to determine the number of the
classes of isomorphism.

As a future problem, we can study classes of isomorphism for join spaces associated
with lattices. For two maps f , g : H → L, where (L,∨,∧) is a lattice, we intend to determine
when (H, ⋄ f ) ∼= (H, ⋄g), to consider the corresponding equivalence classes and examine
the finite case.

Another study problem would be to determine hypergroups/join spaces associated
with other classes of lattices, such as Boolean lattices and to obtain characterizations of
these classes of lattices. In this way, some results of the lattice theory could be demonstrated
with the help of the hypergroup theory. For example, in a modular lattice, the ideals are
exactly the subhypergroups of the associated join space structure.
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Abstract: In this study, we obtained results for the computation of eigen-pairs, singular value decom-
position, pseudoinverse, and the least squares problem for elliptic quaternion matrices. Moreover,
we established algorithms based on these results and provided illustrative numerical experiments to
substantiate the accuracy of our conclusions. In the experiments, it was observed that the p-value in
the algebra of elliptic quaternions directly affects the performance of the problem under consideration.
Selecting the optimal p-value for problem-solving and the elliptic behavior of many physical systems
make this number system advantageous in applied sciences.

Keywords: elliptic quaternion matrix; optimal p-value; eigen-pairs; singular value decomposition;
pseudoinverse; least squares solution

MSC: 11R52; 15A60; 15A18

1. Introduction

Eigenvalues and eigenvectors, singular value decomposition, the pseudoinverse, and
the least squares solution form the foundational pillars of matrix theory, with significant
applications in diverse fields such as theoretical and computational mathematics, image
and signal processing, principal component analysis, data compression, machine learning,
deep learning, etc. For example, Israel and Greville comprehensively treated eigenvalues,
eigenvectors, singular value decomposition, the pseudoinverse, and the least squares so-
lution. The book explores the interconnections between these concepts, presenting both
their underlying theories and practical applications across various fields [1]. Samar et al.
presented a K-weighted pseudoinverse and gave results for condition numbers for the
solution of the least squares problem with equality constraint [2]. Samar et al. explored
the conditioning theory of the ML-weighted least squares and ML-weighted pseudoin-
verse problems [3]. Simsek focused on obtaining least-squares solutions for generalized
Sylvester-type quaternion matrix equations using pseudoinverses and applied these solu-
tions to color image restoration processes [4]. Dian et al. presented a novel hyperspectral
image and multispectral image fusion method based on the subspace representation and
convolutional neural network denoiser. They obtained the subspaces via singular value
decomposition of a high-resolution hyperspectral image [5]. Hashemipour et al. proposed a
new lossy data compression framework centered on optimal singular value decomposition
for big data compression [6]. Wang and Zhu focused on the implementation of data re-
duction algorithms in machine learning by using eigenvalues-eigenvectors, singular value
decomposition, and principal component analysis [7].

These mathematical concepts not only form the basis of numerous applications but
also extend to n-dimensional hypercomplex number systems. There is a generalization
involving 2-dimensional hypercomplex numbers [8]. The following is the definition of
these numbers, known as generalized complex numbers:

q(g) = q(g),r + q(g),ii,
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Axioms 2024, 13, 656

where q(g),r, q(g),i ∈ R, i ̸∈ R and i2 = p (p ∈ R). Generalized Segre quaternions are
generalized complex numbers extended to 4 dimensions. Generalized Segre quaternions
are defined as follows:

q(GS) = q(GS),r + q(GS),ii + q(GS),j j + q(GS),kk,

where q(GS),r, q(GS),i, q(GS),j, q(GS),k ∈ R, i, j, k /∈ R. The multiplication rules for units i, j
and k are given below:

i2 = k2 = p, j2 = 1, ij = ji = k, jk = kj = i, ki = ik = pj, p ∈ R.

Based on the value of p, generalized complex numbers and Segre quaternions are
classified into three categories: they are referred to as hyperbolic complex numbers and
hyperbolic quaternions when p > 0, parabolic complex numbers and parabolic quaternions
when p = 0, and elliptic complex numbers and elliptic quaternions when p < 0, [8,9].
Each number system has various scientific and technological applications. For example,
some problemsin non-Euclidean geometries can be solved by hyperbolic complex numbers
and hyperbolic quaternions [10]. In domains like robotic control and spatial mechanics,
parabolic complex (dual) numbers and parabolic quaternions are employed [11]. On the
other hand, as numerous physical systems demonstrate elliptical behavior, the practical
applications of elliptic complex numbers and elliptic quaternions in applied science are
noteworthy. One of the examples is that, Ozdemir defined elliptic quaternions (non-
commutative) and generated an elliptical rotation matrix for the motion of a point on an
ellipse through some angle about a vector using those quaternions [12]. Dundar et al.
studied elliptical harmonic motion, which is the superposition of two simple harmonic
motions in perpendicular directions with the same angular frequency and phase difference
of π

2 using elliptic complex numbers [13]. Derin and Gungor proposed the generalization
of gravity, including the Proca-type and gravitomagnetic monopole by means of elliptic
biquaternions [14]. Catoni et al. introduced algebraic properties and the differential
conditions of elliptic quaternionic systems [9]. Additionally, Catoni et al. studied the
constant curvature spaces associated with the geometry generated by elliptic quaternions.
They formulated geodesic equations within the context of Riemann geometry [15]. Gua
et al. defined the elliptic quaternionic canonical transform and investigated Parseval’s
theorem with the help of this transform [16]. Yuan et al. obtained the Hermitian solutions
of the elliptic quaternion matrix equation (AXB, CXD) = (E, G) [17]. Tosun and Kosal
characterized the existence of the solution to Sylvester s-conjugate elliptic quaternion matrix
equations. They obtained the solution explicitly using a real representation of an elliptic
quaternion matrix [18]. Gai and Huang developed a new convolutional neural network
with elliptic quaternion values. They conducted extensive experiments on colour image
classification and colour image denoising to evaluate the performance of the proposed
convolutional neural network [19]. Guo et al. studied the problem of solutions to Maxwell’s
equations of elliptic quaternions using a real representation of elliptic quaternion matrices
[20]. Atali et al. obtained the elliptic quaternionic least-squares solution with the minimum
norm of the elliptic quaternion matrix equation AX = B. Furthermore, leveraging the
insights derived from their theories, they developed a novel color image restoration model
known as the elliptical quaternionic least squares restoration filter [21].

As observed, the elliptic quaternions and their matrices find numerous practical ap-
plications in various branches of applied sciences. Thus, further study of the theoretical
properties and numerical computations of elliptic quaternions and their matrices is becom-
ing increasingly necessary. In this regard, we derive outcomes concerning the computation
of eigen-pairs, singular value decomposition, pseudoinverse, and least squares solutions
with the minimum norm for elliptic quaternion matrices. Additionally, algorithms are
formulated based on these results, accompanied by illustrative numerical experiments to
validate our findings’ precision empirically. Within the context of this paper, the following
notations are employed. Let R, C, Cp, and Hp denote the sets of real numbers, complex
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numbers, elliptic complex numbers, and elliptic quaternions, respectively. Rm×n, Cm×n,
Cm×n

p , and Hm×n
p denote the set of all m × n matrices on R, C, Cp and Hp, respectively.

Throughout the study, we will also denote elliptic complex numbers as EC numbers and
elliptic quaternions as EQs for short. Also, we use the following notations: q(□) represents
a complex number when □ = c, an EC number when □ = e, and an EQ when □ = E.
Similarly, Q(□) denotes a complex matrix when □ = c, an EC matrix when □ = e, and an
EQ matrix when □ = E.

2. Preliminaries

In this section, some basic algebraic properties and notations for EC numbers and EQs
are given. This section provides the basis for further operations, which are discussedin the
following sections.

An EC number q(e) is denoted by q(e) = q(e),r + q(e),ii, where i2 = p < 0 and

q(e),r, q(e),i, p ∈ R. The real and imaginary parts of q(e) are denoted by Re
(

q(e)
)
= q(e),r

and Im
(

q(e)
)
= q(e),i, respectively. The conjugate and norm of q(e) ∈ Cp are defined as

q(e) = q(e),r − q(e),ii and
∥∥∥q(e)

∥∥∥
p
=
√

q2
(e),r − pq2

(e),i, respectively [22]. The multiplication of

two EC numbers q1,(e) = q1,(e),r + q1,(e),ii and q2,(e) = q2,(e),r + q2,(e),ii is defined as

q1,(e)q2,(e) =
(

q1,(e),rq2,(e),r + pq1,(e),iq2,(e),i

)
+ i
(

q1,(e),rq2,(e),i + q2,(e),rq1,(e),i

)
.

An EC matrix Q(e) is denoted as Q(e) = Q(e),r + Q(e),ii, where i2 = p < 0, p ∈ R,
and Q(e),r, Q(e),i ∈ Rm×n. The conjugate, transpose, conjugate transpose and Frobenius
norm of Q(e) ∈ Cm×n

p are defined by Q(e) = Q(e),r − Q(e),ii, QT
(e) = QT

(e),r + QT
(e),ii, Q∗

(e) =

QT
(e),r − QT

(e),ii, and ∥Q(e)∥p =
√
∥Q(e),r∥2 − p∥Q(e),i∥2, respectively. The multiplication of

two EC matrices Q1,(e) = Q1,(e),r + Q1,(e),ii and Q2,(e) = Q2,(e),r + Q2,(e),ii is defined as

Q1,(e)Q2,(e) =
(

Q1,(e),rQ2,(e),r + pQ1,(e),iQ2,(e),i

)
+ i
(

Q1,(e),rQ2,(e),i + Q2,(e),rQ1,(e),i

)
.

There exists an isomorphism between EC matrices and complex matrices, as depicted
in the following:

Hp : Cm×n
p → Cm×n

Q(e) = Q(e),r + Q(e),ii → Hp

(
Q(e)

)
= Q(c) = Q(e),r + I

√−pQ(e),i,

where I represents the complex unit (I2 = −1). Some algebraic operations of this isomor-
phism are listed below, where Q(e),1 and Q(e),2 are EC matrices of appropriate sizes:

(a) Hp

(
Q(e),1Q(e),2

)
= Hp

(
Q(e),1

)
Hp

(
Q(e),2

)
,

(b)
(

Hp

(
Q(e),1

))T
= Hp

(
QT

(e),1

)
,

(c)
(

Hp

(
Q(e),1

))∗
= Hp

(
Q∗

(e),1

)
,

(d)
(

Hp

(
Q(e),1

))
= Hp

(
Q(e),1

)
.

Many algebraic properties of EC numbers (or matrices) can be derived from their
corresponding complex counterparts using this isomorphism [8,23].

An EQ q(E) is denoted as q(E) = q(E),r + q(E),ii+ q(E),j j+ q(E),kk, where i2 = k2 = p < 0,
j2 = 1, ij = ji = k, jk = kj = i, ki = ik = pj, and q(E),r, q(E),i, q(E),j, q(E),k, p ∈ R [9,22]. An
EQ q(E) is denoted in the forms:

q(E) =
(

q(E),r + iq(E),i

)
+
(

q(E),j + iq(E),k

)
j = q(e),1e1 + q(e),2e2,
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where

q(e),1 =
(

q(E),r + q(E),j

)
+
(

q(E),i + q(E),k

)
i

and
q(e),2 =

(
q(E),r − q(E),j

)
+
(

q(E),i − q(E),k

)
i,

are EC numbers and e1 = 1+j
2 , e2 = 1−j

2 . Clearly, e1e2 = 0, e1 + e2 = 1, e2
1 = e1 and

e2
2 = e2. As a result, e1 and e2 are disjoint idempotent units. The multiplication of two EQs

q1,(E) = q1,(e),1e1 + q1,(e),2e2 and q2,(E) = q2,(e),1e1 + q2,(e),2e2 is defined by

q1,(E)q2,(E) =
(

q1,(e),1q2,(e),1

)
e1 +

(
q1,(e),2q2,(e),2

)
e2.

The conjugate and norm of the EQ q(E) = q(e),1e1 + q(e),2e2 are defined by

q(E) = q(e),1e1 + q(e),2e2 and
∥∥∥q(E)

∥∥∥
p
= 1√

2

√(∥∥∥q(e),1
∥∥∥

2

p
+
∥∥∥q(e),2

∥∥∥
2

p

)
, respectively.

An EQ matrix Q(E) is represented as

Q(E) = Q(E),r + Q(E),ii + Q(E),j j + Q(E),kk =
(

Q(E),r + Q(E),ii
)
+ j
(

Q(E),j + Q(E),ki
)

= Q(e),1e1 + Q(e),2e2,
(1)

where
Q(e),1 =

(
Q(E),r + Q(E),j

)
+
(

Q(E),i + Q(E),k

)
i

and
Q(e),2 =

(
Q(E),r − Q(E),j

)
+
(

Q(E),i − Q(E),k

)
i

are EC matrices and Q(E),r, Q(E),i, Q(E),j, Q(E),k ∈ Rm×n [18,21]. The multiplication of two
EQ matrices Q1,(E) = Q1,(e),1e1 + Q1,(e),2e2 and Q2,(E) = Q2,(e),1e1 + Q2,(e),2e2 is defined by

Q1,(E)Q2,(E) =
(

Q1,(e),1Q2,(e),1

)
e1 +

(
Q1,(e),2Q2,(e),2

)
e2.

The conjugate, transpose, conjugate transpose, and Frobenius norm of EQ matrix
Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n

p are defined by Q(E) = Q(e),1e1 + Q(e),2e2, QT
(E) =

QT
(e),1e1 + QT

(e),2e2, Q∗
(E) = QT

(e),1e1 + QT
(e),2e2 and

∥∥∥Q(E)

∥∥∥
p
= 1√

2

√(∥∥∥Q(e),1

∥∥∥
2

p
+
∥∥∥Q(e),2

∥∥∥
2

p

)
.

3. Eigenvalues and Eigenvectors, Singular Value Decomposition, Pseudoinverse, and
Least Squares Problem for EQ Matrices

In the ensuing discourse, we delineate a series of lemmas pivotal for the computation
of eigen-pairs, singular value decomposition, pseudoinverse, and the resolution of the
least squares problem specifically tailored for EC matrices. Subsequently, leveraging these
foundational lemmas, we derive the pertinent theoretical framework associated with elliptic
quaternion matrices.

3.1. EC Matrices

Lemma 1. A polynomial function of degree N with EC number coefficients presented by

fp(x(e)) = xN
(e) + q(e),N−1xN−1

(e) + . . . + q(e),1x(e) + q(e),0

has exactly N zeros in the set of EC numbers.

Proof. Let
fp(x(e)) = xN

(e) + q(e),N−1xN−1
(e) + . . . + q(e),1x(e) + q(e),0
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be a polynomial of degree N with EC coefficients and values. Its complex representation is
as follows:

Hp

(
fp(x(e))

)
= Hp

(
x(e)
)N

+ Hp

(
q(e),N−1

)
Hp

(
x(e)
)N−1

+ . . . + Hp

(
q(e),1

)
Hp

(
x(e)
)
+ Hp

(
q(e),0

)
.

Since this representation is a polynomial of degree N with complex coefficients and
values, the fundamental theorem of algebra tells us that it has exactly N roots. Suppose that
the complex number x(c) = x(c),r + x(c),i I is a root of the polynomial Hp

(
fp(x(e))

)
. Then,

we have:

Hp

(
fp(x(e))

)
=
(

x(c)
)N

+ Hp

(
q(e),N−1

)(
x(c)
)N−1

+ . . . + Hp

(
q(e),1

)(
x(c)
)
+ Hp

(
q(e),0

)
= 0.

Applying the inverse of the isomorphism Hp to both sides of the above equation,
we get:

fp(x(e)) = H−1
p

(
x(c)
)N

+ q(e),N−1H−1
p

(
x(c)
)N−1

+ . . . + q(e),1H−1
p

(
x(c)
)
+ q(e),0.

This simplifies to:

fp(x(e)) =
(

x(c),r +
i√−p

x(c),i

)N

+ q(e),N−1

(
x(c),r +

i√−p
x(c),i

)N−1

+ . . . + q(e),1

(
x(c),r +

i√−p
x(c),i

)
+ q(e),0 = 0.

Therefore, if x(c) = x(c),r + x(c),i I is a root of the polynomial Hp

(
fp(x(e))

)
, then the

EC number x(e) = x(c),r +
i√−p x(c),i is a root of the polynomial fp(x(e)). As a result, fp(x(e))

has exactly N roots.

Lemma 2. An EC matrix Q(e) ∈ Cn×n
p has at most n elliptic eigenvalues.

Proof. Since the characteristic polynomial fp(λ(e)) = det(Q(e) − λ(e) In) of the matrix
Q(e) ∈ Cn×n

p is an n-th order polynomial with EC coefficients and values, by Lemma 1, the
EC matrix Q(e) has at most n eigenvalues.

Lemma 3. Let the eigenvalues of an complex matrix Hp

(
Q(e)

)
be denoted by λHp(Q(e))

, and let
the corresponding eigenvectors be represented by xHp(Q(e))

. Then, the eigenvalues of the EC matrix

Q(e) ∈ Cn×n
p are given by

λ(e) = Re(λHp(Q(e))
) +

i√−p
Im(λHp(Q(e))

)

and the corresponding eigenvectors are given by

x(e) = Re(xHp(Q(e))
) +

i√−p
Im(xHp(Q(e))

).

The converse of this lemma is also true.

Proof. Let Q(e) ∈ Cn×n
p be an EC matrix, and the eigenvalues of an complex matrix

Hp

(
Q(e)

)
be denoted by λHp(Q(e))

, and let the corresponding eigenvectors be represented

by xHp(Q(e))
. Then, we have Hp

(
Q(e)

)
xHp(Q(e))

= λHp(Q(e))
xHp(Q(e))

. Applying the inverse

of the isomorphism Hp to both sides of the last equation, we get:

Q(e)H
−1
p

(
xHp(Q(e))

)
= H−1

p

(
λHp(Q(e))

)
H−1

p

(
xHp(Q(e))

)
.
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Thus, we get

λ(e) = Re
(

λHp(Q(e))

)
+

i√−p
Im
(

λHp(Q(e))

)
,

and
x(e) = Re

(
xHp(Q(e))

)
+

i√−p
Im
(

xHp(Q(e))

)
.

Lemma 4. Let Q(e) ∈ Cn×n
p . An EC matrix Q(e) is nonsingular if and only if the complex matrix

Hp(Q(e)) is nonsingular. If Hp(Q(e)) is nonsingular, then

Q−1
(e) = Re

((
Hp

(
Q(e)

))−1
)
+

i√−p
Im
((

Hp

(
Q(e)

))−1
)

.

Proof. Let the EC matrix Q(e) = Q(e),r +Q(e),ii be nonsingular. Then, there exists an inverse
matrix Q−1

(e) ∈ Cn×n
p such that Q(e)Q

−1
(e) = Q−1

(e)Q(e) = In. If we apply the isomorphism Hp

to both sides of the last equation, we obtain:

Hp

(
Q(e)

)
Hp

(
Q−1

(e)

)
= Hp

(
Q−1

(e)

)
Hp

(
Q(e)

)
= In.

Hence, we conclude that
(

Hp

(
Q(e)

))−1
= Hp

(
Q−1

(e)

)
. On the other hand, since

Hp

(
Q−1

(e)

)
= Re

((
Hp

(
Q(e)

))−1
)
+ I Im

((
Hp

(
Q(e)

))−1
)

,

we can apply the inverse of the isomorphism Hp to this equation, yielding:

Q−1
(e) = Re

((
Hp

(
Q(e)

))−1
)
+

i√−p
Im
((

Hp

(
Q(e)

))−1
)

.

Lemma 5. Let Q(e) ∈ Cm×n
p be an EC matrix. The pseudoinverse of Q(e), denoted by

(
Q(e)

)†
, is

given by

(
Q(e)

)†
= Re

((
Hp

(
Q(e)

))†
)
+

i√−p
Im
((

Hp

(
Q(e)

))†
)

,

where
(

Hp

(
Q(e)

))†
is the pseudoinverse of the complex matrix Hp

(
Q(e)

)
.

Proof. Suppose that Q†
(e) is the pseudoinverse of the matrix Q(e). In that case, the following

equations hold:
Q(e)Q

†
(e)Q(e) = Q(e), Q†

(e)Q(e)Q
†
(e) = Q†

(e),
(

Q(e)Q
†
(e)

)∗
= Q(e)Q

†
(e),

(
Q†

(e)Q(e)

)∗
= Q†

(e)Q(e).
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Applying the isomorphism Hp to the above equations, we get the following results:

Hp

(
Q(e)

)
Hp

(
Q†

(e)

)
Hp

(
Q(e)

)
= Hp

(
Q(e)

)
,

Hp

(
Q†

(e)

)
Hp

(
Q(e)

)
Hp

(
Q†

(e)

)
= Hp

(
Q†

(e)

)
,(

Hp

(
Q(e)

)
Hp

(
Q†

(e)

))∗
= Hp

(
Q(e)

)
Hp

(
Q†

(e)

)
,(

Hp

(
Q†

(e)

)
Hp

(
Q(e)

))∗
= Hp

(
Q†

(e)

)
Hp

(
Q(e)

)
.

As a result, we obtain the following pseudoinverse transformation under the isomor-
phism Hp: (

Hp

(
Q(e)

))†
= Hp

(
Q†

(e)

)
,

and (
Q(e)

)†
= Re

((
Hp

(
Q(e)

))†
)
+

i√−p
Im
((

Hp

(
Q(e)

))†
)

.

Lemma 6. Let Q(e) ∈ Cm×n
p . Suppose that the singular value decomposition of the complex matrix

Hp

(
Q(e)

)
is given by Hp

(
Q(e)

)
= U(c)ΣV∗

(c). Then, the singular value decomposition of the EC
matrix Q(e) is

Q(e) = U(e)ΣV∗
(e),

where

U(e) =

(
Re
(

U(c)

)
+

i√−p
Im
(

U(c)

))
and V(e) =

(
Re
(

U(c)

)
+

i√−p
Im
(

U(c)

))
.

The converse of this statement is also true.

Proof. Suppose that the singular value decomposition of the complex representation
Hp

(
Q(e)

)
is given by:

Hp

(
Q(e)

)
= U(c)ΣV∗

(c).

Now, using the expansion of the real and imaginary parts of the unitary matrices, we
have:

Hp

(
Q(e)

)
=
(

Re
(

U(c)

)
+ i Im

(
U(c)

))
Σ
(

Re
(

V∗
(c)

)
+ i Im

(
V∗
(c)

))
.

Applying the inverse of the isomorphism Hp to both sides of the last equation, we
obtain:

Q(e) =

(
Re
(

U(c)

)
+

i√−p
Im
(

U(c)

))
Σ
(

Re
(

V∗
(c)

)
+

i√−p
Im
(

V∗
(c)

))
.

On the other hand, since U(c) and V(c) are unitary matrices, we have

U(e)U
∗
(e) =

(
Re
(

U(c)

)
+

i√−p
Im
(

U(c)

))(
Re
(

UT
(c)

)
− i√−p

Im
(

UT
(c)

))

= In

and
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V(e)V
∗
(e) =

(
Re
(

V(c)

)
+

i√−p
Im
(

V(c)

))(
Re
(

VT
(c)

)
− i√−p

Im
(

VT
(c)

))

= In.

Corollary 1. Let Q(e) ∈ Cm×n
p . Then rank

(
Q(e)

)
= rank

(
Hp

(
Q(e)

))
.

Proof. Since matrices Q(e) and Hp

(
Q(e)

)
have the same number of nonzero singular values,

we have rank
(

Q(e)

)
= rank

(
Hp

(
Q(e)

))
.

Lemma 7. Let Q(e) ∈ Cm×n
p . Suppose that Hp

(
Q(e)

)
= U(c)ΣV∗

(c). In this case, the pseudoin-
verse of EC matrix Q(e) is given by

(
Q(e)

)†
=

(
Re
(

V(c)

)
+

i√−p
Im
(

V(c)

))
Σ†
(

Re
(

U(c)

)
+

i√−p
Im
(

U(c)

))∗
.

Proof. Let Hp

(
Q(e)

)
= U(c)ΣV∗

(c). Then the pseudoinverse of the complex matrix Hp

(
Q(e)

)

is
(

Hp(Q(e))
)†

= V(c)Σ†U∗
(c). From Lemma 5, we have

(
Hp(Q(e))

)†
= Hp(Q†

(e)). Substi-

tuting this into the previous equation, we have: Hp(Q†
(e)) = V(c)Σ†U∗

(c). Applying the
inverse of the isomorphism Hp to both sides, we conclude that

Q†
(e) =

(
Re(V(c)) +

i√−p
Im(V(c))

)
Σ†
(

Re(U(c)) +
i√−p

Im(U(c))

)∗
.

Lemma 8. Let Q1,(e) ∈ Cm×n
p and Q2,(e) ∈ Cm×q

p . Suppose that Hp

(
Q1,(e)

)
= U(c)ΣV∗

(c).
In this case, the least squares solution with the minimum norm X(e) of the EC matrix equation
Q1,(e)X(e) = Q2,(e) is given by

X(e) =

(
Re
(

V(e)

)
+

i√−p
Im
(

V(e)

))
Σ†
(

Re
(

U(e)

)
+

i√−p
Im
(

U(e)

))∗
Q2,(e).

Proof. Let Q1,(e) ∈ Cm×n
p and Q2,(e) ∈ Cm×q

p , and suppose that Hp

(
Q1,(e)

)
= U(c)ΣV∗

(c).
Given the EC matrix equation Q1,(e)X(e) = Q2,(e), the complex representation of this

equation is Hp

(
Q1,(e)

)
Hp

(
X(e)

)
= Hp

(
Q2,(e)

)
. The least-norm least-squares solution to

this complex matrix equation is given by Hp

(
X(e)

)
= V(c)Σ†U∗

(c)Hp

(
Q2,(e)

)
. If we apply

the inverse of the isomorphism Hp to above equation, we get

X(e) =

(
Re
(

V(e)

)
+

i√−p
Im
(

V(e)

))
Σ†
(

Re
(

U(e)

)
+

i√−p
Im
(

U(e)

))∗
Q2,(e).

3.2. EQ Matrices

Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n
p . Since e1 and e2 are disjoint idempotent units,

the mathematical properties associated with EQ matrices are closely related to EC matrices
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Q(e),1, Q(e),2. In this subsection, results related to eigen-pairs, singular value decomposi-
tion, pseudoinverse, and least squares solution with the minimum norm for EQ matrices
have been derived from this fact.

Theorem 1. A polynomial function of degree N with EQ number coefficients presented by

fp

(
x(E)

)
= xN

(E) + q(N−1),(E)x
N−1
(E) + . . . + q1,(E)x(E) + q0,(E)

has exactly N2 zeros in the set of EQs.

Proof. The polynomial fp

(
x(E)

)
can be written in the form

fp

(
x(E)

)
=

(
x(e),1e1 + x(e),2e2

)N
+
(

q(N−1),(e),1e1 + q(N−1),(e),2e2

)(
x(e),1e1 + x(e),2e2

)N−1

+ · · ·+
(

q1,(e),1e1 + q1,(e),2e2

)(
x(e),1e1 + x(e),2e2

)
+
(

q0,(e),1e1 + q0,(e),2e2

)

=

((
x(e),1

)N
+
(

q(N−1),(e),1

)(
x(e),1

)N−1
+ . . . +

(
q1,(e),1

)(
x(e),1

)
+ q0,(e),1

)
e1

+

((
x(e),2

)N
+
(

q(N−1),(e),2

)(
x(e),2

)N−1
+ . . . +

(
q1,(e),2

)(
x(e),2

)
+ q0,(e),2

)
e2

= fp

(
x(e),1

)
e1 + fp

(
x(e),2

)
e2,

where fp

(
x(e),1

)
and fp

(
x(e),2

)
are polynomials of degree N with EC number coefficients

and values. Then, these polynomials have exactly N zeros each from Lemma 1. Sup-
pose that the roots of fp

(
x(e),1

)
are xα,(e),1 and the roots of fp

(
x(e),2

)
are xβ,(e),1, where

α, β ∈ {1, 2, 3, . . . , N}. From the last equation, we deduce that the roots of the polyno-
mial fp

(
x(E),1

)
are x(E) = xα,(e),1e1 + xβ,(e),2e2. Since the number of possible different

(
xα,(e),1, xβ,(e),2

)
pairs is N2, the polynomial fp

(
x(E),1

)
has exactly N2 zeros in the set of

EQs.

Theorem 2. An EQ matrix Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p is nonsingular if and only if the

EC matrices Q(e),1, Q(e),2 ∈ Cn×n
p are nonsingular. If Q(e),1, Q(e),2 ∈ Cn×n

p are nonsingular, then

Q−1
(E) = Q−1

(e),1e1 + Q−1
(e),2e2.

Proof. Suppose that Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p is nonsingular and Q−1

(E) = P(e),1e1 +

P(e),2e2 is inverse of Q(E). In this case,

Q(E)Q
−1
(E) =

(
Q(e),1P(e),1e1 + Q(e),2P(e),2e2

)
= Ine1 + Ine2

holds. By this fact,
Q(e),1P(e),1 = In and Q(e),2P(e),2 = In

are obtained. Then, we get

Q−1
(e),1 = P(e),1 and Q−1

(e),2 = P(e),2.

Conversely, let’s assume that Q(e),1, Q(e),2 ∈ Cn×n
p are nonsingular EC matrices. In

this case,
(

Q(e),1e1 + Q(e),2e2

)(
Q−1

(e),1e1 + Q−1
(e),2e2

)
= Ine1 + Ine2

89



Axioms 2024, 13, 656

holds. Consequently, Q(E) = Q(e),1e1 + A(e),2e2 ∈ Hn×n
p is nonsingular and

Q−1
(E) = Q−1

(e),1e1 + Q−1
(e),2e2

is valid.

Theorem 3. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p . Suppose that λ(e),1 and λ(e),2 are eigen-

values of EC matrices Q(e),1 and Q(e),2 corresponding to the eigenvectors x(e),1 and x(e),2, respec-
tively. Then λ(E) = λ(e),1e1 + λ(e),2e2 is an eigenvalue of Q(E) corresponding to the eigenvector
x(E) = x(e),1e1 + x(e),2e2 and its converse is also true.

Proof. Suppose
(

λ(e),1, x(e),1
)

and
(

λ(e),2, x(e),2
)

are the eigen-pairs of EC matrices Q(e),1

and Q(e),2, respectively. Then,

Q(E)x(E) = Q(E)

(
x(e),1e1 + x(2),2e2

)
=

(
Q(e),1e1 + Q(e),2e2

)(
x(e),1e1 + x(e),2e2

)

= Q(e),1x(e),1e1 + Q(e),2x(e),2e2

= λ(e),1x(e),1e1 + λ(e),2x(e),2e2

=
(

λ(e),1e1 + λ(e),2e2

)(
x(e),1e1 + x(e),2e2

)
= λ(E)x(E).

Thus,
(

λ(E), x(E)

)
is an eigen-pair of Q(E). Conversely, assume that

(
λ(E), x(E)

)
is an

eigen-pair of Q(E). Then, we get Q(E)x(E) = λ(E)x(E) and

Q(e),1x(e),1e1 + Q(e),2x(e),2e2 = λ(e),1x(e),1e1 + λ(e),2x(e),2e2

which implies
Q(e),1x(e),1 = λ(e),1x(e),1 and Q(e),2x(e),2 = λ(e),2x(e),2.

Corollary 2. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p . Then, the EQ matrix Q(E) has at most

n2 eigenvalues.

Proof. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p . Then, EC matrices Q(e),1 and Q(e),2 have

at most n eigenvalues from Lemma 2. Suppose that eigenvalues of Q(e),1 are λα,(e),1 and
eigenvalues of Q(e),2 are λβ,(e),1, where α, β ∈ {1, 2, 3, . . . , n}. From Theorem 3, we deduce
that eigenvalues of EQ matrix Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n

p are λ(E) = λα,(e),1e1 +

λβ,(e),2e2. Since the number of possible different
(

λα,(e),1, λβ,(e),2

)
pairs is n2, EQ matrix

Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hn×n
p has at most n2 eigenvalues.

Theorem 4. Let Q(E) = Q(e),1e1 +Q(e),2e2 ∈ Hm×n
p . Suppose that singular value decompositions

of Q(e),1 and Q(e),2 are Q(e),1 = U(e),1Σ1V∗
(e),1 and Q(e),2 = U(e),2Σ2V∗

(e),2, respectively. Then,
the singular value decomposition of EQ matrix Q(E) is given by

Q(E) = U(E)Σ(E)V
∗
(E),

where Σ(E) = Σ1e1 + Σ2e2, U(E) = U(e),1e1 + U(e),2e2 and V(E) = V(e),1e1 + V(e),2e2 such that
U(E) and V(E) are unitary matrices.
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Proof. Let the singular value decompositions of Q(e),1 and Q(e),2 be Q(e),1 = U(e),1Σ1V∗
(e),1

and Q(e),2 = U(e),2Σ2V∗
(e),2, respectively. Then, the singular value decomposition of Q(E) is

as follows:

Q(E) = Q(e),1e1 + Q(e),2e2 =
(

U(e),1Σ1V∗
(e),1

)
e1 +

(
U(e),2Σ2V∗

(e),2

)
e2

=
(

U(e),1e1 + U(e),2e2

)
(Σ1e1 + Σ2e2)

(
V(e),1e1 + V(e),2e2

)∗

= U(E)Σ(E)V∗
(E),

where

U(E)U∗
(E) =

(
U(e),1e1 + U(e),2e2

)(
U(e),1e1 + U(e),2e2

)∗

= U(e),1U∗
(e),1e1 + U(e),2U∗

(e),2e2

= Ine1 + Ine2 = In,

V(E)V∗
(E) =

(
V(e),1e1 + V(e),2e2

)(
V(e),1e1 + V(e),2e2

)∗

= V(e),1V∗
(e),1e1 + V(e),2V∗

(e),2e2

= Ine1 + Ine2 = In,

and Σ(E) is hyperbolic matrix. (Σ(E) is real matrix if and only if Σ1 = Σ2.)

Corollary 3. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n
p . Then

rank
(

Q(E)

)
= max

(
rank

(
Q(e),1

)
, rank

(
Q(e),2

))
.

Proof. Let Q(E) = U(E)Σ(E)V∗
(E), Q(e),1 = U(e),1Σ1V∗

(e),1 and Q(e),2 = U(e),2Σ2V∗
(e),2. In this

case, the ranks of matrices Q(E), Q(e),1, and Q(e),2, are equal to the rank of matrix Σ(E), Σ1,
and Σ2, respectively. Since Σ(E) = Σ1e1 + Σ2e2, we get

rank
(

Σ(E)

)
= max(rank(Σ1), rank(Σ2)) = max

(
rank

(
Q(e),1

)
, rank

(
Q(e),2

))
.

Thus, we have

rank
(

Q(E)

)
= max

(
rank

(
Q(e),1

)
, rank

(
Q(e),2

))
.

Corollary 4. Let Q(E) = Q(e),1e1 + Q(e),2e2 ∈ Hm×n
p and Q(E) = U(E)Σ(E)V∗

(E). Then, the

pseudoinverse of Q(E) is Q†
(E) = V(E)Σ†

(E)U
∗
(E), where Σ† = Σ†

1e1 + Σ†
2e2 and Σ1, Σ2 ∈ Rm×n.

Proof. Since the units e1 and e2 are adjoint idempotent, we get Q†
(E) = Q†

(e),1e1 + Q†
(e),2e2.

Then, the pseudoinverse of Q(E) is as follows:
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Q†
(E) = Q†

(e),1e1 + Q†
(e),2e2 =

(
V(e),1Σ†

1U∗
(e),1

)
e1 +

(
V(e),2Σ†

2U∗
(e),2

)
e2

=
(

V(e),1e1 + V(e),2e2

)(
Σ†

1e1 + Σ†
2e2
)(

U(e),1e1 + U(e),2e2

)∗

= V(E)Σ†
(E)U

∗
(E).

Theorem 5. The least squares solution with the minimum norm of the EQ matrix equation
Q1,(E)X(E) = Q2,(E) is

X(E) = Q†
1,(E)Q2,(E) = V(E)Σ

†
(E)U

∗
(E)Q2,(E),

where Q1,(E) ∈ Hm×n
p and Q2,(E) ∈ Hm×q

p .

Proof. Let the least squares solution with the minimum norm of the EQ matrix equation
Q1,(E)X(E) = Q2,(E) be X(E). Then we get

∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥
p
= min and

∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥
2

p
=

∥∥∥
(

Q1,(e),1e1 + Q1,(e),2e2

)(
X(e),1e1 + X(e),2e2

)
−
(

Q2,(e),1e1 + Q2,(e),2e2

)∥∥∥
2

p

=
∥∥∥
(

Q1,(e),1X(e),1e1 + Q1,(e),2X(e),2e2

)
−
(

Q2,(e),1e1 + Q2,(e),2e2

)∥∥∥
2

p

=
∥∥∥
(

Q1,(e),1X(e),1 − Q2,(e),1

)
e1 +

(
Q1,(e),2X(e),2 − Q2,(e),2

)
e2

∥∥∥
2

p
.

From the definition of the Frobenius norm of EQ matrices, we have

∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥
2

p
=

1
2

(∥∥∥Q(e),1X(e),1 − Q2,(e),1

∥∥∥
2

p
+
∥∥∥Q1,(e),2X(e),2 − Q2,(e),2

∥∥∥
2

p

)
.

Hence,
∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥
p
= min if and only if

∥∥∥Q1,(e),1X(e),1 − Q2,(e),1

∥∥∥
p
= min, and

∥∥∥Q1,(e),2X(e),2 − Q2,(e),2

∥∥∥
p
= min .

If
∥∥∥Q1,(e),1X(e),1 − Q2,(e),1

∥∥∥
p

= min, then X(e),1 = Q†
1,(e),1Q2,(e),1 and similarly,

X(e),2 = Q†
1,(e),2Q2,(e),2, where Q†

1,(e),1 = V(e),1Σ1U∗
(e),1 and Q†

1,(e),2 = V(e),2Σ2U∗
(e),2. There-

fore, the least squares solution of the equation Q1,(E)X(E) = Q2,(E) is

X(E) =
(

V(e),1Σ1U∗
(e),1Q2,(e),1

)
e1 +

(
V(e),2Σ2U∗

(e),2Q2,(e),2

)
e2

=
((

V(e),1Σ1U∗
(e),1

)
e1 +

(
V(e),2Σ2U∗

(e),2

)
e2

)(
Q2,(e),1e1 + Q2,(e),2e2

)

=
(

V(e),1e1 + V(e),2e2

)
(Σ1e1 + Σ2e2)

(
U∗
(e),1e1 + U∗

(e),2e2

)(
Q2,(e),1e1 + Q2,(e),2e2

)

= V(E)Σ†
(E)U

∗
(E)Q2,(E) = Q†

1,(E)Q2,(E)

which completes the proof.
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3.2.1. Algorithms

The following algorithms delineate the computational procedures for determining
eigen-pairs, singular value decomposition, pseudoinverse computation, and the derivation
of least squares solution with the minimum norm for EQ matrices.

Algorithm 1 This algorithm calculates the eigenvalues and eigenvectors of the EQ matrix
Q(E) ∈ Hn×n

p .

1: Start
2: Input Q(E),r, Q(E),i, Q(E),j, Q(E),k and p
3: Form Q(e),1 and Q(e),2 according to Equation (1)
4: Compute λ(e),1 and λ(e),2 according to Lemma 3 and Theorem 3
5: Compute x(e),1 and x(e),2 according to Lemma 3 and Theorem 3
6: Form λ(E) = λ(e),1e1 + λ(e),2e2 according to Theorem 3
7: Form x(E) = x(e),1e1 + x(e),2e2 according to Theorem 3
8: Output λ(E) and x(E)
9: End

Algorithm 2 This algorithm performs the singular value decomposition of the EQ matrix
Q(E) ∈ Hm×n

p .

1: Start
2: Input Q(E),r, Q(E),i, Q(E),j, Q(E),k and p
3: Form Q(e),1 and Q(e),2 according to Equation (1)
4: Compute Q(e),1 = U(e),1Σ1V∗

(e),1 and Q(e),2 = U(e),2Σ2V∗
(e),2 according to Lemma 6

5: Form U(E) =
(

U(e),1e1 + U(e),2e2

)
, Σ(E) = (Σ1e1 + Σ2e2), and V(E) =

(
V(e),1e1 + V(e),2e2

)
according to Theorem 4

6: Output U(E), Σ(E), V(E)
7: End

Algorithm 3 This algorithm calculates the pseudoinverse of the EQ matrix Q(E) ∈ Hm×n
p .

1: Start
2: Run the Algorithm 2 for EQ matrix Q(E)
3: Form Q(E) = U(E)Σ(E)V∗

(E)

4: Compute Q†
(E) = V(E)Σ†

(E)U
∗
(E)

5: Output Q†
(E)

6: End

Algorithm 4 This algorithm calculates the minimum norm least squares solution of the EQ
matrix equation Q1,(E)X(E) = Q2,(E).

1: Start
2: Input Q1,(E),r, Q1,(E),i, Q1,(E),j, Q1,(E),k, Q2,(E),r, Q2,(E),i, Q2,(E),j, Q2,(E),k and p
3: Run the Algorithm 3 for EQ matrix Q1,(E)

4: Compute X(E) = Q†
1,(E)Q2,(E) = V(E)Σ†

(E)U
∗
(E)Q2,(E)

5: Output X(E)
6: End

The fact that EQs are commutative with respect to multiplication, can be written as
a linear combination of two adjoint idempotent units, can choose the most appropriate
p-value for the solution of the problem under consideration, and many physical systems
exhibit elliptical behavior make this number system advantageous in applied sciences.
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Therefore, using the algorithms given above in applied sciences will solve many problems
related to time, memory, and performance in the problem-solving processes.

3.2.2. Numerical Examples

In this subsection, some illustrative examples are given to prove the authenticity of our
results and distinguish them from existing ones. Moreover, all computations are performed
using the MATLAB® 2024a (64 bit) on an Intel(R) Xeon(R) CPU E5-1650 v4 @3.60 GHz
(12 CPUs)/16 GB (DDR3) RAM computer.

Example 1. Given the EQ matrices Q1,(E) and Q2,(E) as follows:

Q1,(E) =




9 + i − 7j + 2k 2 − 7i + j + 5k 8 − 4i + 7j − 4k
5 + 8i − j + 4k 4 + 7i + j − k 9 − 6i − 3j + 8k

8 + 9i + 3j − 4k 9 − 2i + 8j + 2k 6 − 5i + 9j − 6k


 ∈ H3×3

−0.5,

and

Q2,(E) =




7 + 2i + 3j + k
7 − 6i + j + 4k

3 + 3i − 5j − 8k


 ∈ H3×1

−0.5.

Let’s find the least squares solution with the minimum norm by using Algorithms 2–4 for p = −0.5.
By the Algorithm 2, we get the singular value decomposition of EQ matrix Q1,(E) as follows:

Σ =




27.1507 + 5.1850j 0 0
0 13.3956 − 3.6604j 0
0 0 3.5511 + 0.0727j


,

U =




−0.5887 − 0.0895i + 0.1905j − 0.1797k 0.5737 + 0.2198i + 0.2880j − 0.0213k −0.1504 − 0.0811i + 0.3531j + 0.1408k
−0.2573 − 0.4628i + 0.0895j − 0.0090k −0.2014 − 0.8270i + 0.0050j + 0.3648k 0.1490 + 0.6752i + 0.1013j + 0.4671k
−0.4969 − 0.4443i − 0.2639j + 0.0273k −0.1356 + 0.2676i − 0.1680j − 0.2529k −0.1172 + 0.4220i − 0.326j − 0.7217k


,

and

V =




−0.6674 + 0.2309j −0.1204 − 0.3768j 0.5534 + 0.1965j
−0.3280 − 0.3659i − 0.1703j + 0.0553k −0.4857 + 0.1440i − 0.0426j + 0.0036k −0.3596 − 0.6220i − 0.2807j + 0.5391k
−0.2692 − 0.5713i − 0.2100j − 0.1815k 0.4859 − 0.3190i + 0.1157j + 0.7682k −0.1476 − 0.1702i + 0.2676j + 0.0299k


.

By Algorithms 3 and 4, the least squares solution and minimum norm are found as

X(E) =Q†
1,(E)Q2,(E) = V(E)Σ

†
(E)U

∗
(E)Q2,(E)

=




0.7612 − 1.5582i − 0.1979j − 0.5332k
−1.4757 − 0.2366i + 0.1496j + 1.2282k
0.0461 + 0.2919i + 0.4652j − 0.0282k




and ∥∥∥Q1,(E)X(E) − Q2,(E)

∥∥∥
p
= 1.1801 × 10−14,

respectively.

Example 2. Let’s define the dimensions of the EQ matrices Q1,(E) and Q2,(E) given by:

m = 50 : 50 : 1000,
Q1,(E) = rand(m, m) + rand(m, m)i + rand(m, m)j + rand(m, m)k,
Q2,(E) = rand(m, 1) + rand(m, 1)i + rand(m, 1)j + rand(m, 1)k.
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Then, the errors (or minimum norms) corresponding p and m-values are shown in Figure 1. Here,
Algorithm 4 was executed for each m-value, iterating over each p-value in the range −1 ≤ p ≤ −0.1
with a step size of 0.1. The minimal errors were identified and highlighted on the surface plot with
red dots. Also, we compare our new proposed Algorithm 4 and the Algorithm documented by Atali
et al. in [21], focusing on CPU time and error metrics. The experimental results of this comparison
are depicted in Figure 2 (CPU times) and Figure 3 (Errors). Figures 2 and 3 show that our proposed
algorithm outperforms the algorithm presented by Atali et al. in [21] regarding computational
efficiency and accuracy.

Figure 1. Errors corresponding p and m-values.

Figure 2. CPU times comparison proposed algorithm with the algorithm in [21].
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Figure 3. Errors comparison proposed algorithm with the algorithm in [21].

4. Conclusions

In this study, we derived outcomes for determining eigen-pairs, performing singular
value decomposition, obtaining pseudoinverse, and finding the least squares solution with
the minimum norm for EQ matrices. Additionally, we developed algorithms grounded
on these outcomes and presented illustrative numerical instances to validate our results.
This number system is more useful in applied sciences since it allows one to select the ideal
p-value suited for the type of problem, considering the elliptical behavior of many physical
systems. As a result, the use of EQs in today’s critical technology fields—information secu-
rity, data analytics, simulation technologies, robotics, signal processing, image processing,
artificial intelligence, and machine learning—may effectively solve many problems related
to time, memory, and performance.
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Abstract: In this paper, we investigate the spatial quaternionic expressions of partner-ruled surfaces.
Moreover, we formulate the striction curves and dralls of these surfaces by use of the quaternionic
product. Furthermore, the pitches and angles of pitches are interpreted for the spatial quaternionic
ruled surfaces that are closed. Additionally, we calculate the integral invariants of these surfaces
using quaternionic formulas. Finally, the partner-ruled surfaces of a given spatial quaternionic ruled
surface are demonstrated as an example, and their graphics are drawn.

Keywords: spatial quaternion; quaternionic curve; partner-ruled surface; striction curves; pitches
and angle of pitches

MSC: 53A04; 53A05

1. Introduction

In 1843, William Rowan Hamilton, an Irish mathematician, first introduced the concept
of quaternions [1]. Quaternions have since found numerous applications across a wide
range of disciplines, including computer graphics, vision device development, animation
representations, control theory, molecular dynamics, quantum theory, robot kinematics, and
navigation devices. These applications have been extensively considered and documented
in various sources, including references [2–5]. Quaternions have also been applied to the
theory of curves and surfaces, leading to new interpretations and results. In 1987, Bharathi
and Nagaraj demonstrated the use of quaternions to express the Serret–Frenet invariants
of any curve [6]. Subsequently, as well as quaternionic curves, rectifying and osculating
quaternionic curves were given the attention of various researchers [7–13]. Furthermore,
modified Korteweg-de Vries equations were used to describe the motions of inextensible
quaternionic curves, and these findings were presented in a research article that outlines
the evolutions of inextensible quaternionic curves based on the Frenet formulae [14].

Additionally, in 2005, Chen and Li established new correlations between quaternionic
transformations and minimal surfaces, resulting in novel findings [15]. Hoffman and Wang
introduced a new technique that uses dual-quaternion multiplication to describe rigid
transformations with dual quaternions, resulting in a family of rational surfaces in an
affine 3-space. They specifically employed an approach to calculate all base points of the
homogeneous tensor product parameterization of the resultant surfaces, together with
three rational space curves [16].

These examples highlight the versatility and utility of quaternions in diverse areas of
mathematics and beyond. Ruled surfaces are structures that can be generated by moving a
straight line along a curve. There have been numerous studies conducted in various spaces
and frames. The concept of partner-ruled surfaces based on the Flc frame on a polynomial
curve was introduced in [17]. They investigated the requirements for two of these surfaces
to be simultaneously developable and minimal. Şenyurt and Çalışkan investigated the
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ruled surface with the theory of quaternions and dual quaternions. They expressed integral
invariants and obtained the ruled surfaces drawn by spatial quaternionic curves [18,19].
In [20], the quaternionic ruled surfaces were analyzed according to the alternative frame.
During this process, some noteworthy studies on quaternions and surfaces have been
presented in [21–24].

In Section 2, we present the geometric concepts regarding the basic structures of the
paper mentioned in the introduction. In Section 3, we investigate the spatial quaternionic
expressions of partner-ruled surfaces. Moreover, we determine the striction curves, dralls,
pitches, and angles of pitches for these surfaces. Section 4 consists of a special example of
the findings with graphical representations. The last section provides a summary of the
article and highlights its main contributions and implications.

2. Preliminaries

In this section, we recall the concepts of quaternions [1] and spatial quaternionic
curves [6]. We then explain some of the properties of spatial quaternionic ruled surfaces [18].
Understanding these preliminary concepts is crucial for comprehending the subsequent
discussions on the subject.

A real quaternion can be described as the sum of a scalar Sq = q0 and a vector
Vq = q1e1 + q2e2 + q3e3 such that

q = q0 + q1e1 + q2e2 + q3e3,

where the components q0, q1, q2, q3 are real numbers, and 1, e1, e2, e3 are quaternionic units
that satisfy the multiplication rules given in Table 1.

Table 1. Multiplication table.

× 1 e1 e2 e3

1 1 e1 e2 e3
e1 e1 −1 e3 −e2
e2 e2 −e3 −1 e1
e3 e3 e2 −e1 −1

Here, the left column displays the left factor, and the top row displays the right factor.
The complex conjugate q̄ is defined by

q̄ = Sq − Vq = q0 − q1e1 − q2e2 − q3e3.

Let Q denote the set of quaternions. The quaternion inner product is presented by the
following real-valued, symmetric, and bilinear form:

h : Q × Q → R

(p, q) → h(p, q) =
1
2
(p × q̄ + q × p̄).

For p = Sp + Vp and q = Sq + Vq, the quaternionic product is given by

p × q = SpSq + SpVq + SqVp −
〈
Vp, Vq

〉
+ Vp ∧ Vq,

where ⟨, ⟩ and ∧ denote the inner product and cross-product in R3. Thus, the quaternionic
product satisfies

p × q = −
〈
Vp, Vq

〉
+ Vp ∧ Vq.

The square of the norm of a quaternion q is

ρ(q)2 = h(q, q) = q × q̄ = q̄ × q = q0
2 + q1

2 + q2
2 + q3

2.
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Provided that ρ(q) = 1, the quaternion q is called the unit quaternion. The inverse of
the quaternion q is given by q−1 = q̄

ρ(q) where ρ(q) ̸= 0.
The space of the spatial quaternions is classified by { q ∈ Q|q + q = 0} where Q de-

notes the set of quaternions [6].

Definition 1. A spatial quaternionic curve α is defined by

α : I → Q

s → α(s) =
3

∑
i=1

αi(s)ei

where I is an interval in real line R and s ∈ I is the arc-length parameter [6].

Theorem 1. Let α be a spatial quaternionic curve with the arc-length parameter s. Then, the
Serret–Frenet formulae of the spatial quaternionic curve α at any point α(s) are




T
N
B




s

=




0 κ 0
−κ 0 τ
0 −τ 0






T
N
B


 (1)

such that

T(s) = α′(s), N(s) =
α′′(s)

∥α′′(s)∥ , B(s) = T(s)× N(s),

where the spatial quaternions T, N, and B are the unit tangent, unit principal normal, and unit
binormal of the spatial quaternionic curve α, respectively. Moreover, the scalar functions κ and τ
are the curvature and torsion of α, respectively [6].

The spatial quaternion w = N × N′ = τT + κB is called the instantaneous Pfaffian
quaternion along the motion of the Frenet frame {T, N, B} of a spatial quaternionic curve
α [18].

Definition 2. A spatial quaternionic ruled surface is represented by

φ : I ×R → Q
(s, u) → φ(s, u) = α(s) + uX(s)

where α is a spatial quaternionic curve and X is a spatial quaternion [18].

Lemma 1. The drall and the striction curve of a spatial quaternionic ruled surface φ are given by

P =
1
2
(X × X′)× α′ + α′ × (X × X′)

ρ(X′)2 (2)

and

r(s) = α(s)− 1
2

X′ × α′ + α′ × X′

ρ(X′)2 X, (3)

respectively [18].

It is known that if a ruled surface satisfies φ(s + 2π, u) = φ(s, u) for all s ∈ I, then the
ruled surface is called closed.

Definition 3. For a given closed spatial quaternionic ruled surface, the magnitude lx =
∮
α

h(dα, X)ds is

called the pitch of this surface [18].
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Definition 4. The spatial quaternions D and V defined by

D =
∮

α

wds =
∮

α

(τT + κB)ds (4)

and
V =

∮

α

dα (5)

are called the Steiner rotation quaternion and Steiner translation quaternion of the closed motion of
the Frenet frame of a closed spatial quaternionic curve α, respectively. Here, w is the instantaneous
Pfaffian quaternion [18].

Theorem 2. The angle of pitch and the pitch of a closed spatial quaternionic ruled surface λx and
lx are equal to

λx = h(D, X) (6)

and
lx = h(V, X) (7)

where D and V are the Steiner rotation and translation quaternions, respectively [18].

3. Characterizations of the Spatial Quaternionic Partner-Ruled Surfaces

In this section, we examine the spatial quaternionic expressions of partner-ruled
surfaces. Then, we calculate the striction curves and dralls of these surfaces. Finally, our
investigation focuses on closed quaternionic ruled surfaces. We analyze their pitches and
pitch angles and interpret these properties. Additionally, we use quaternionic formulas to
calculate the integral invariants of these surfaces.

3.1. TN-Spatial Quaternionic Partner-Ruled Surfaces

Definition 5. Consider a differentiable spatial quaternionic curve α = α(s) that moves with a unit
speed for its parameter s, and let {T, N, B} denote the Frenet frame of this curve. The two spatial
quaternionic ruled surfaces defined by

{
φT

N(s, u) = T(s) + uN(s),
φN

T (s, u) = N(s) + uT(s),

are called TN-spatial quaternionic partner-ruled surfaces.

Theorem 3. Let rTN and rNT be the striction curves of any TN-spatial quaternionic partner-ruled
surfaces φT

N and φN
T . Then, the position vector of the striction curve on surface φT

N is equal to the
tangent of the curve, and the position vector of the striction curve on surface φN

T is equal to the
principal normal of the spatial quaternionic curve α = α(s).

Proof. Let α = α(s) be a unit-speed spatial quaternionic curve with the Frenet frame
{T, N, B}. If we consider Equation (3) and employ the quaternionic inner product, we find
the equation of the striction curve of a spatial quaternionic ruled surface φT

N as follows:

rTN = T − h(N′, T′)

ρ(N′)2 N = T − 1
2

(
N′ × T′ + T′ × N′

)

√
h(N′, N′)

N.

By taking the complex conjugate of a quaternion and applying Equation (1), we
arrive at

rTN = T +
1
2
(−κT + τB)× κN + κN × (−κT + τB)√

κ2 + τ2
N.

If we take the quaternionic product of the spatial quaternions, we obtain that the
position vector of the striction curve corresponds to the tangent of the curve α.
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Again, we calculate the position vector of the striction curve

rNT = N − h(T′, N′)

ρ(T′)2 T.

By a similar method, the striction curve of φN
T is found to be equal to the principal

normal vector of the curve α, and this completes the proof.

Theorem 4. Let φT
N and φN

T be TN-spatial quaternionic partner-ruled surfaces; then, the dralls of
the closed spatial quaternionic partner-ruled surfaces φT

N and φN
T are

PTN = 0, PNT = τ,

respectively.

Proof. Assuming α = α(s) is a unit-speed spatial quaternionic curve with the Frenet frame
{T, N, B}, the drall of the closed spatial quaternionic ruled surface φT

N can be obtained by
considering Equation (2) and utilizing the quaternionic inner product. Specifically, the drall
can be expressed as

PTN =
1
2
(N × N′)× T′ + T′ × (N × N′)

ρ(N′)2 .

We obtain the drall of the surface φT
N by utilizing the quaternionic product of the

spatial quaternions and the Frenet invariants. The computation is carried out as follows:

PTN = −1
2
(κB + τT)× N + N × (κB + τT)√

κ2 + τ2
= 0.

In a similar way, the drall of the surface φN
T is determined by

PNT =
1
2
(T × T′)× N′ + N′ × (T × T′)

ρ(T′)2

=
κ

2
(κB × (−κT + τB) + (−κT + τB)× κB)

κ

= τ.

Corollary 1. Let φT
N and φN

T be TN-spatial quaternionic partner-ruled surfaces; then, the TN-
spatial quaternionic partner-ruled surfaces are developable surfaces if and only if the spatial quater-
nionic curve α = α(s) is planar.

Proof. The proof is obvious by the fact that the necessary and sufficient condition for a
ruled surface to be developable is having a vanishing drall at each point of the surface, and
the necessary and sufficient condition for a curve to be planar is having vanishing torsion
at each point of the curve.

Theorem 5. Let φT
N and φN

T be TN-spatial quaternionic partner-ruled surfaces; then, the angles of
the pitch of the closed spatial quaternionic partner-ruled surfaces are

λTN = 0, λNT =
∮

τds,

respectively.
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Proof. Assume α = α(s) is a unit-speed spatial quaternionic curve with the Frenet frame
{T, N, B}. By taking into consideration Equation (6), we can express the angle of the pitch
of the closed spatial quaternionic ruled surface φT

N as

λTN = h(D, N) =
1
2
(

D × N + N × D
)
= −1

2
(D × N + N × D).

Using the quaternionic product of the spatial quaternions and Equation (4), we calcu-
late the angle of the pitch as follows:

λTN = h(D, N) = h
(∮

(τT + κB)ds, N
)
= 0.

On the other hand, the angle of the pitch λNT of the ruled surface φN
T is maintained:

λNT = h(D, T) =
1
2
(

D × T + T × D
)

= h
(∮

(τT + κB)ds, T
)

=
∮

τds.

Theorem 6. Let φT
N and φN

T be TN-spatial quaternionic partner-ruled surfaces; then, the pitches
of the closed spatial quaternionic partner-ruled surfaces φT

N and φN
T are

lTN =
∮

κds, lNT = −
∮

κds,

respectively.

Proof. Assume that α = α(s) is a unit-speed spatial quaternionic curve with the Frenet
frame {T, N, B}. From Equation (5) we obtain V =

∮
dT =

∮
κNds, and from Equation (7),

the pitch lTN of the closed spatial quaternionic ruled surface φT
N is written by

lTN = h(V, N) = h
(∮

κNds, N
)

.

By referring to the definition of the quaternion inner product, we find

lTN =
1
2

(∮
κNds × N + N ×

∮
κNds

)
.

Hence, using the quaternionic product and the conjugate of a quaternion, we obtain

lTN =
∮

κds.

By making similar calculations, the pitch lNT of the closed spatial quaternionic ruled
surface φN

T is found:

lNT = h(V, T) = −
∮

κds.
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3.2. TB-Spatial Quaternionic Partner-Ruled Surfaces

Definition 6. Consider a spatial quaternionic curve α = α(s) that is differentiable and moves at a
unit speed for its parameter s, and let {T, N, B} be the Frenet frame of the curve. The two spatial
quaternionic ruled surfaces defined by

{
φT

B(s, u) = T(s) + uB(s),
φB

T(s, u) = B(s) + uT(s),

are called TB-spatial quaternionic partner-ruled surfaces.

Theorem 7. Let the surfaces φT
B and φB

T be spatial quaternionic partner-ruled surfaces; then, the
striction curves rTB and rBT of the surfaces φT

B and φB
T are





rTB = T(s) +
κ

τ
B(s),

rBT = B(s) +
τ

κ
T(s),

where κ ̸= 0 and τ ̸= 0, respectively.

Proof. Let α = α(s) be a unit-speed spatial quaternionic curve with the Frenet frame
{T, N, B}. By referring to Equation (3) and using the quaternionic inner product, the
striction curve of the spatial quaternionic ruled surface φT

B can be written by

rTB = T − h(B′, T′)

ρ(B′)2 B = T − 1
2

(
B′ × T′ + T′ × B′

)

√
h(B′, B′)

B.

Using the complex conjugate of a quaternion and Equation (1), we arrive at

rTB = T +
1
2
(−τN)× κN + κN × (−τN)

τ
B.

Considering the quaternionic product of the spatial quaternions, the striction curve of
φT

B is

rTB = T(s) +
κ

τ
B(s).

Similarly, from the equation rBT = B − h(T′ ,B′)
ρ(T′)2 T, one can easily find that the striction

curve of φB
T is

rBT = B(s) +
τ

κ
T(s).

Theorem 8. Let φT
B and φB

T be any TB-spatial quaternionic partner-ruled surfaces; then, the dralls
of the closed spatial quaternionic partner-ruled surfaces φT

B and φB
T are

PTB = PBT = 0,

respectively.

Proof. Let α = α(s) be a unit-speed spatial quaternionic curve with the Frenet frame
{T, N, B}. The drall of the closed spatial quaternionic ruled surface φT

B can be obtained by
considering Equation (2) and utilizing the quaternionic inner product. Specifically, the drall
is expressed as

PTB =
1
2
(B × B′)× T′ + T′ × (B × B′)

ρ(B′)2 .
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We compute the drall of the surface φT
B by utilizing the quaternionic product of the

spatial quaternions and the Frenet invariants. The computation is carried out as follows:

PTB =
1
2
(τT × κN) + (κN × τT)

τ
= 0.

In a similar way, the drall of the surface φB
T is determined by

PBT = −1
2
(T × T′)× B′ + B′ × (T × T′)

ρ(T′)2

= −1
2
(κB × τN) + (τN × κB)

κ

= 0.

Corollary 2. Let φT
B and φB

T be any TB-spatial quaternionic partner-ruled surfaces; then, the
TB-spatial quaternionic partner-ruled surfaces are developable surfaces.

Proof. The proof is obvious by virtue that the necessary and sufficient condition for a ruled
surface to be developable is having zero drall at each point of the surface.

Theorem 9. Let φT
B and φB

T be any TB-spatial quaternionic partner-ruled surfaces; the angles of
the pitch of the closed spatial quaternionic partner-ruled surfaces are

λTB =
∮

κds, λBT =
∮

τds,

respectively.

Proof. Assume α = α(s) is a unit-speed spatial quaternionic curve with the Frenet frame
{T, N, B}. Taking into consideration Equation (6), the angle of pitch of the closed spatial
quaternionic ruled surface φT

B is written by

λTB = h(D, B) =
1
2
(

D × B + B × D
)
= −1

2
(D × B + B × D).

By referring to Equation (4) and the definition of the quaternion inner product,
we obtain

λTB = h(D, B⟩ =
〈∮

(τT + κB)ds, B
)
=
∮

κds.

In a similar manner, the angle of the pitch λBT of the closed spatial quaternionic ruled
surface φB

T is calculated

λBT = h(D, T) =
〈∮

(τT + κB)ds, T
〉

=
∮

τds.

Theorem 10. Let φT
B and φB

T be TB-spatial quaternionic partner-ruled surfaces; then, the pitches
of the closed spatial quaternionic partner-ruled surfaces φT

B and φB
T are

lTB = 0, lBT = 0,

respectively.
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Proof. Let α = α(s) be a unit-speed spatial quaternionic curve with the Frenet frame
{T, N, B}. From Equation (5), V =

∮
dT =

∮
κNds is found, and from Equation (7), the

pitch lTB of the closed spatial quaternionic ruled surface φT
B is written by

lTB = h(V, B) = h
(∮

κNds, B
)

.

From the definition of the quaternion inner product, it is found as

lTB =
1
2

(∮
κNds × B + B ×

∮
κNds

)
.

So, using the cross-product and the conjugate of a quaternion, we obtain

lTB = 0.

By making similar calculations, the pitch lBT of the closed spatial quaternionic ruled
surface φB

T is determined as
lBT = h(V, T) = 0,

where V =
∮

dB = −
∮

τNds.

Corollary 3. Let φT
B and φB

T be any TB-spatial quaternionic partner-ruled surfaces. The TB-spatial
quaternionic partner-ruled surfaces represent cones.

Proof. The proof is obvious by virtue that the necessary and sufficient condition for a
developable ruled surface to be a cone is having zero pitch at each point of the surface.

3.3. NB-Spatial Quaternionic Partner-Ruled Surfaces

Definition 7. Consider a spatial quaternionic curve α = α(s) that is differentiable and moves at
a unit speed for its parameter s, and let {T, N, B} be Frenet frame of the curve. The two spatial
quaternionic ruled surfaces defined by

{
φN

B (s, u) = N(s) + uB(s),
φB

N(s, u) = B(s) + uN(s),

are called NB-spatial quaternionic partner-ruled surfaces.

Theorem 11. Let the surfaces φN
B and φB

N be spatial quaternionic partner-ruled surfaces; then, the
striction curves rNB and rBN of the surfaces φN

B and φB
N are

rNB = N, rBN = B,

respectively.

Proof. Let α = α(s) be a unit-speed spatial quaternionic curve with the Frenet frame
{T, N, B}. By considering Equation (3) and using the quaternionic inner product, the
striction curve of the spatial quaternionic ruled surface φN

B can be written by

rNB = N − h(B′, N′)

ρ(B′)2 B = N − 1
2

(
B′ × N′ + N′ × B′

)

√
h(B′, B′)

B.

If we consider Equations (1) and (3), we can prove using similar methods of Theorem 3.

Theorem 12. Let φN
B and φB

N be NB-spatial quaternionic partner-ruled surfaces; then, the dralls
of the closed spatial quaternionic partner-ruled surfaces φN

B and φB
N are PNB = −κ and PBN = 0,

respectively.
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Proof. By considering Equation (2), the proof is completed in a similar way to the proof of
Theorem 4.

Corollary 4. Let φN
B and φB

N be any NB-spatial quaternionic partner-ruled surfaces; then, the spa-
tial quaternionic partner-ruled surfaces are developable surfaces if and only if the spatial quaternionic
curve α = α(s) is a straight line.

Proof. The necessary and sufficient condition for a ruled surface to be developable is
having zero drall at each point of the surface, and the necessary and sufficient condition for
a curve to be a straight line is having zero curvature at each point of the curve. These prove
the corollary.

Theorem 13. Let φN
B and φB

N be any NB-spatial quaternionic partner-ruled surfaces; then, the
angles of the pitch of the closed spatial quaternionic partner-ruled surfaces are λNB =

∮
κds and

λBN = 0, respectively.

Proof. By considering Equations (4) and (6), the proof is completed similarly to the proof
of Theorem 5.

Theorem 14. Let φN
B and φB

N be NB-spatial quaternionic partner-ruled surfaces; then, the pitches
of the closed spatial quaternionic partner-ruled surfaces φN

B and φB
N are lNB = 0, lBN = −

∮
τds,

respectively.

Proof. By considering Equations (5) and (7), the proof is completed similarly to the proof
of Theorem 6.

Corollary 5. Let φN
B and φB

N be NB-spatial quaternionic partner-ruled surfaces. Then, the follow-
ing expressions are satisfied:

i. The surface φN
B is a cone if and only if the curve α = α(s) is a straight line.

ii. The surface φB
N is a cone if and only if the curve α = α(s) is a planar curve.

Proof. The necessary and sufficient condition for a developable ruled surface to be a cone
is having zero pitch at each point of the surface, and the necessary and sufficient condition
a curve to be a straight line (planar) is having zero curvature (torsion) at each point of the
curve. These prove the corollary.

4. A Particular Example for Spatial Quaternionic Partner-Ruled Surfaces

Let us consider a spatial quaternionic curve given by the parametric equation

α(s) =
3
4

(
cos s +

cos 3s
9

, sin s +
sin 3s

9
,
−2 cos s√

3

)
.

The Frenet elements of the spatial quaternionic curves α are

T(s) =

(
−3 sin s − sin 3s

4
, cos3s,

√
3 sin s

2

)
,

N(s) =

(
−
√

3 cos 2s
2

,−
√

3 sin 2s
2

,
1
2

)
,

B(s) =

(
3 cos s − cos 3s

4
, sin3s,

√
3 cos s

2

)
,

κ =
√

3 cos s, τ = −
√

3 sin s.
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and the TN-spatial quaternionic partner-ruled surfaces are found as





φT
N =

(
−2

√
3u cos 2s − 3 sin s − sin 3s

4
, cos3s −

√
3u sin s cos s,

u +
√

3 sin s
2

)
,

φN
T =

(
−2

√
3 cos 2s − u(3 sin s + sin 3s)

4
, ucos3s −

√
3 sin 2s

2
,

1 +
√

3u sin s
2

)
.

Obviously, the striction curves of these TN-spatial quaternionic partner-ruled surfaces are





rTN =

(
−3 sin s − sin 3s

4
, cos3s,

√
3 sin s

2

)

rNT =

(
−
√

3 cos 2s
2

,−
√

3 sin 2s
2

,
1
2

)
,

respectively; see Figure 1.

(a) (b)

(c)
Figure 1. TN-spatial quaternionic partner-ruled surfaces for s ∈

(
−π

2 , π
2
)

and u ∈ (−1, 1). (a) φT
N

and its striction curve (black). (b) φN
T and its striction curve (black). (c) The surfaces φT

N (red) and
φT

N (green).

In a similar manner, the parametric forms of the TB-spatial quaternionic partner-ruled
surfaces and their striction curves are found as
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



φT
B =

(
u(3 cos s − cos 3s)− 3 sin s − sin 3s

4
, cos3s + usin3s,

√
3(u cos s + sin s)

2

)
,

φB
T =

(
3 cos s − cos 3s − u(3 sin s + sin 3s)

4
, ucos3s + sin3s,

√
3(cos s + u sin s)

2

)
,





rTB =

(
(−3 + cos 4s) csc s

4
,

cos s + cos 3s
2

,−
√

3 cos 2s csc s
2

)
,

rBT =

(
(3 − cos 4s) sec s

4
,

sin s − sin 3s
2

,

√
3 cos 2s sec s

2

)
,

respectively; see Figure 2.

(a) (b)

(c)
Figure 2. TB-spatial quaternionic partner-ruled surfaces for s ∈

(
π
10 , π

3
)

and u ∈ (−4, 4). (a) φT
B

and its striction curve (black). (b) φB
T and its striction curve (black). (c) The surfaces φT

B (red) and
φB

T (blue).

Similarly, the parametric forms for the NB-spatial quaternionic partner-ruled surfaces
and their striction curves are found as





φN
B =

(
u(3 cos s − cos 3s)− 2

√
3 cos 2s

4
,
−
√

3 sin 2s
2

+ usin3s,
1 +

√
3u cos s
2

)
,

φB
N =

(
3 cos s − cos 3s − 2

√
3u cos 2s

4
,
−
√

3u sin 2s
2

+ sin3s,
u +

√
3 cos s

2

)
,
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



rNB =

(
−
√

3 cos 2s
2

,−
√

3 sin 2s
2

,
1
2

)
,

rBN =

(
3 cos s − cos 3s

4
, sin3s,

√
3 cos s

2

)
,

respectively; see Figure 3.

(a) (b)

(c)
Figure 3. The NB-spatial quaternionic partner-ruled surfaces for s ∈

(
−π

2 , π
2
)

and u ∈ (−1, 1). (a) φN
B

and its striction curve (black). (b) φB
N and its striction curve (black). (c) The surfaces φN

B (red) and
φB

N (green).

5. Conclusions

In this paper, we derived the spatial quaternionic partner-ruled surfaces formed by
spatial quaternions, which are Frenet elements of a spatial quaternionic base curve. Then,
we determined the striction curves and dralls of these surfaces. Additionally, the conditions
of these partner-ruled surfaces to be developable were investigated. Under consideration,
the quaternionic partner-ruled surfaces were closed, and the pitches and angles of pitches
of them were found. The integral invariants of these partner surfaces were calculated by
using quaternionic products.
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19. Çalışkan, A.; Şenyurt, S. The dual spatial quaternionic expression of ruled surfaces. Therm. Sci. 2019, 23, 403–411. [CrossRef]
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Abstract: In this paper, we implement the finite detail technique primarily based on T-Splines for
approximating solutions to the linear elasticity equations in the connected and bounded Lipschitz
domain. Both theoretical and numerical analyses of the Dirichlet and Neumann boundary problems
are presented. The Reissner–Mindlin (RM) hypothesis is considered for the investigation of the me-
chanical performance of a 3D cylindrical shell pipe without and with preformed hole problems under
concentrated and compression loading in the linear elastic behavior for trimmed and untrimmed
surfaces in structural engineering problems. Bézier extraction from T-Splines is integrated for an iso-
geometric analysis (IGA) approach. The numerical results obtained, particularly for the displacement
and von Mises stress, are compared with and validated against the literature results, particularly with
those for Non-Uniform Rational B-Spline (NURBS) IGA and the finite element method (FEM) Abaqus
methods. The obtained results show that the computation time of the IGA based on the T-Spline
method is shorter than that of the IGA NURBS and FEM Abaqus/CAE (computer-aided engineering)
methods. Furthermore, the highlighted results confirm that the IGA approach based on the T-Spline
method shows more success than numerical reference methods. We observed that the NURBS IGA
method is very limited for studying trimmed surfaces. The T-Spline method shows its power and
capability in computing trimmed and untrimmed surfaces.

Keywords: isogeometric analysis; Reissner–Mindlin theory; NURBS; T-splines; Bézier extraction;
linear elasticity; Abaqus/computer-aided engineering; MATLAB

MSC: 82C27; 65K15

1. Introduction

Isogeometric analysis (IGA) is a recently developed computational technique. This
approach was supported by a study conducted by Hughes et al. [1] aiming to link computer-
aided design (CAD) and finite element analysis (FEA). The IGA approach is primarily
based on the isogeometric paradigm, approximating the unknown response of the partial
differential equation using equal foundation features to symbolize the considered geometry.
The IGA approach has been used to numerically approximate quite a few problems and
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has proved to be correct and environmentally friendly. A detailed discussion of the use
of the IGA approach to solve linear and nonlinear equations for elastic or hydrodynamic
problems can be found in [2,3].

In addition, the IGA approach optionally allows for the use of globally smooth basis
functions. This gives benefits in the numerical approximation of higher-order PDEs inside
the widespread Galerkin formulation. Due to the extensive use of NURBSs (Non-Uniform
Rational B-Splines) [4] in CAD technology, we explicitly point out that IGA is primarily
based on NURBSs, considering the mathematical properties of these basis functions.

One of the major capabilities of NURBSs that enables the numerical approximation of
higher-order partial differential equations in the context of the Galerkin approach is the fact
that the basic capability of NURBSs can be globally Ck non-stopping for k ≥ 0 inside the
computational domain. This property makes it possible to solve the problem with a weak
form of direct discretization without resorting to mixed formulations, such as FEA [5,6].
In [7], the hull structure problem was solved using IGA, especially the Kirchhoff–Love
model. In [8], a high-order formula, the stream function, was used to solve the plane
elasticity problem in the IGA context, and an estimation of the error convergence rate with
respect to the spot size was performed numerically.

T-Splines were developed by Sederberg et al. Introduced in [9] (2004), they have
been extensively studied over the last decade by Y. Bazilevs et al. (2010) [1]. T-Splines
are generalizations of NURBS surfaces, of which their mesh management permits for T-
connections. T-Splines substantially lessen the range of needless manage factors in NURBS
surfaces, permitting treasured operations that are inclusive of neighborhood refinement
and merge a couple of B-Spline surfaces into a steady framework [10].

CAD-derived T-Splines triumph over the restrictions of tensor products inherent in
NURBSs [11]. In fact, NURBSs shape a constrained subset of T-Splines. Additionally,
T-Splines may be regionally refined [12] to generate fashions appropriate for studying
topological complexity [13]. This makes T-Splines an excellent foundation for isogeometric
evaluations. The extension of the isogeometric framework to superior T-Spline configura-
tions was initiated in [14,15]. T-Spline discretization has been correctly implemented for
fractures and injuries [16]. Efficient nearby refinement performs a key function in such
applications. Early paintings extending the use of T-Splines have been primarily based
on the isogeometric evaluation of arbitrary topological frameworks associated with hull
structures and have been promising.

The widespread concept of Bézier extraction involves the creation of a linear map of
the T-Spline foundation features and nearby Bernstein foundation features based on Bézier
elements. Using Bézier extraction operators, preferred FEA applications may be reused in
IGA by editing the most effective form feature subroutine [17].

IGA based on NUBRSs is limited to the evaluation of trimmed surfaces; it requires
specific adjustments in terms of the interpolation domain, especially the B-Spline or NUBRS
interpolation functions in order to consider the trimmed geometry [18]. Alternatively,
MultiPatch specifically relies on Kirchhoff–Love shell theory for trimmed surfaces, as
outlined by Reichle et al. [19]. The isogeometric analysis approach based on the use of
T-Splines is designed to mitigate the limitations of NURBSs. T-Splines provide a high
level of flexibility in 3D surface shaping, and they are often used in conjunction with
subdivision surfaces. This combination allows for the creation of highly detailed models
with smooth surfaces.

According to the literature review, several researchers are interested in investigating
cylindrical shell structures (for example, aircraft fuselages, cooling towers, and reactor
vessels) in the field of linear elasticity and elastoplastic behavior. These studies are based
on experimental and numerical analyses employing the finite element method or the IGA
approach, which are appropriate choices for modeling curved structures. One of the
advantages of the IGA approach is that it allows us to approximate the exact geometry
using NURBS functions. This provides better displacement and stress calculation results
when compared to the finite element method. Du et al. [20] employed an IGA approach
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within MATLAB to investigate several benchmark examples in both 2D and 3D cases. In
another work [21], the author developed the IGA method for thin-walled structures based
on Bézier extraction in linear and nonlinear frameworks.

Pipes have been integrated into cylindrical shell structures. Used in various fields
(naval, aeronautical, and mechanical structures), these structures are subjected to many
mechanical [22,23], thermal [24], and earthquake [25] loads. These loadings reduce their
performance. Due to the importance of these structures, several researchers and engineers
have studied them in order to preserve their integrity and understand their mechanical
behavior under various loads. Zhang et al. [26] studied the mechanical behavior of a
pipeline buried under soil under traffic loads generated by the movement of vehicles
above. The findings showed that the effects and impacts of vehicles are reduced when
increasing the thickness and diameter of the pipelines. On the other hand, EL Fakkoussi
et al. [27,28] investigated a cracked pipeline using the FEM and eXtended Finite Element
Method (XFEM) to calculate the stress intensity factor (KI) in mode I. They also developed
a method to calculate KI according to extended isogeometric analysis (XIGA), which is
based on exact geometric modeling. Hussain et al. [29] predicted stress corrosion cracking
in gas transportation pipelines using artificial intelligence, especially machine learning.
These methods are based on several input data such as corrosion, cracking mechanisms,
mechanical damage, and maintenance activities. These works contribute to investigating
pipelines for potential issues and provide valuable input data for future studies utilizing
machine learning and artificial intelligence methodologies.

The new IGA approach has become the most powerful numerical method in the
field of computational modeling and simulation. Unlike the finite element method, the
results of the IGA approach are not sensitive to mesh quality or local refinement. This
gives us some confidence in terms of numerical stability and convergence. The mechanical
performance analysis of 3D cylindrical shell pipes with and without preformed holes using
the T-Spline approach for isogeometric analysis has been investigated little, as evidenced
in the literature review.

This study investigated 3D cylindrical shell pipes with and without preformed holes
under concentrated compression loading in relation to their linear elastic behavior, while
also using the T-Spline approach for isogeometric analysis in the case of trimmed surfaces.
Problems relating to cylinders that have preformed holes have never been studied using
the T-Spline method, and this work will provide additional theoretical and numerical value
to the literature, especially in terms of evaluating the mechanical performance of cylindrical
shell pipes as well as evaluating and exploiting the robustness of the T-Spline method for
the study of curved structures with untrimmed and trimmed surfaces. The results obtained
were compared and validated with results found in the literature, especially those relating
to the use of the NURBS IGA and Abaqus methods.

This paper is organized into three parts. The first section examines the mathematical
equations, including the modified linear elasticity equation, the weak formulation, the
Bézier extraction of T-Splines, and the parameters of the mechanical damage criterion. The
following section explains the steps used to model a 3D cylindrical shell pipe subjected to a
concentrated compressive load using the FEM based on Abaqus/computer-aided engineer-
ing (CAE), the IGA approach based on NURBS, and the T-Spline methods implemented
in the MATLAB R2021a environment. The last section presents the results, focusing on
the numerical results of displacement and stress in the cylindrical shell pipe subjected to a
concentered compressive elastic load benchmark. The obtained results were compared and
validated with the literature results, especially those relating to the use of NURBS IGA and
FEM Abaqus/CAE methods. Additionally, we evaluated issues concerning a 3D cylindrical
shell or pipe that has preformed holes.
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2. Materials and Methods

In this paper, we present a comprehensive investigation of the Dirichlet boundary prob-
lem for linear elasticity systems in bounded Lipschitz domains with connected boundaries.
This leads to the formulation of the following model:





−µdiv(
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condition, 𝛤ே  represents the Neumann boundary condition, 𝜇 represents a material 
property, and 𝜆 represents a material parameter. 

The solid body is under the small deformation assumption. The displacement field 
u is, therefore, the solution of the following system [30]:  

Find 𝑢 ∶ 𝛺  →   ℝ௡  

where n is the normal vector directed toward the outside of the solid body, and t is the 
traction force applied to the surface of the solid body.  
Weak formulation 

We assume that we have 𝑢 = 𝑔 and that it represents non-homogeneous Dirichlet 
boundary conditions for the displacement field. Then, we look for weak solutions to the 
Navier Lamé equation in the space 𝐻 = ሾ𝐻ଵ(𝛺)  ሿ௡   𝑀 = 𝐿ଶ(𝛺). (2)

Then, we look to the solution in the space 𝐻 ଴ if 𝑢 = 0:  𝐻 ଴ ≔ ሾ𝐻଴ଵ (𝛺)  ሿ௡, with: 𝑛 =  2 𝑜𝑟 3. (3)

For all 𝑣 ∈  𝐻, −𝜇 ׬ 𝑑𝑖𝑣(𝛻𝑢). 𝑣𝑑𝑣 − (𝜇 + 𝜆) ׬ 𝛻൫𝑑𝑖𝑣(𝑢)൯. 𝑣 𝑑𝑣 Ω Ω ׬ =  𝑓. 𝑣 𝑑𝑣 Ω . (4)

We obtain that for all ∀ 𝑣 ∈  𝐻, μ ׬ 𝛻(𝑢): 𝛻𝑣 𝑑𝑣 + (𝜇 + 𝜆) ׬ 𝛻. 𝑢 𝛻. 𝑣  Ω  𝑑𝑣 − 𝜇 ׬ (𝛻. 𝑢)𝑛. 𝑣 𝑑𝛤 ௰ಿ = ׬  𝑓. 𝑣 Ω  𝑑𝑣 ׬ + 𝑡. 𝑣 𝑑𝛤 ௰ಿ Ω . (5)

Bilinear and linear forms:  
Let us introduce the following bilinear forms: 

u)− (µ + λ)
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∂n + λ
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Let us introduce the following bilinear forms: 

·un = t on ΓN .
(1)

Let Ω → Rn, n = 2, 3 represent an elastic solid subjected to a surface or volume
force f . Denote its boundary by Γ = ∂Ω = ΓD ∪ ΓN . ΓD represents the Dirichlet bound-
ary condition, ΓN represents the Neumann boundary condition, µ represents a material
property, and λ represents a material parameter.

The solid body is under the small deformation assumption. The displacement field u
is, therefore, the solution of the following system [30]:

Find u : Ω → Rn

where n is the normal vector directed toward the outside of the solid body, and t is the
traction force applied to the surface of the solid body.

Weak formulation

We assume that we have u = g and that it represents non-homogeneous Dirichlet
boundary conditions for the displacement field. Then, we look for weak solutions to the
Navier Lamé equation in the space

H =
[

H1(Ω)
]n

M = L2(Ω). (2)

Then, we look to the solution in the space H0 if u = 0:

H 0
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Applying non-homogeneous Dirichlet boundary conditions in the weak formulation 
of a problem using Lagrange multipliers is an elegant technique for systematically inte-
grating these conditions. We construct an augmented formulation by adding a Lagrange 
term to impose 𝑢 = 𝑢௚ on 𝛤஽; the formulation (10) become: 

[
H1

0 (Ω)
]n

, with : n = 2 or 3. (3)

For all v ∈ H,

−µ
∫

Ω
div(
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∫

Ω
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(div(u))·v dv=
∫

Ω
f ·v dv. (4)

We obtain that for all ∀v ∈ H,

µ
∫

Ω
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(
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Bilinear and linear forms:  
Let us introduce the following bilinear forms: 

·u)n·v dΓ =
∫

Ω
f ·v dv +

∫

ΓN

t·v dΓ. (5)

Bilinear and linear forms:

Let us introduce the following bilinear forms:

a1 : X 0 × X 0 → R , a(u, v) = µ
∫

Ω
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a2 : X 0 × X 0 → R , b(u, v) = (µ + λ)
∫

Ω
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Bilinear and linear forms:  
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·v dv; (7)

Λ : X 0 × X 0 → R , Λ(u, v) = a1(u, v) + a2(u, v). (8)

Furthermore, we define the following linear form:

F : X 0 → R, F(v) =
∫

Ω
f ·v dv +

∫

ΓN

t·v dΓ. (9)

115



Axioms 2024, 13, 529

Given f , find u ∈ H such that u = g:

∀ v ∈ H, Λ(u, v) = F(v). (10)

Applying non-homogeneous Dirichlet boundary conditions in the weak formulation of
a problem using Lagrange multipliers is an elegant technique for systematically integrating
these conditions. We construct an augmented formulation by adding a Lagrange term to
impose u = ug on ΓD; the Formulation (10) become:

{
Λ + Lt λ = F

Lu = µ
(11)

where L is the matrix associated with the Lagrange multipliers, and µ imposes Dirichlet
conditions. The solution of this system allows us to find the displacements. u and the
multipliers λ ensure that the boundary conditions are respected.

2.1. Bézier Extraction of T-Spline Basis

Like conventional finite detail analysis, the extracted Bezier factors of T-Splines are
described as shown in Figure 1. A set of constant phrases in a polynomial foundation
feature are referred to as a Bernstein foundation. Bezier factors may be processed in
an identical manner as applied to widespread finite detail computer programs using
identical information processing tables. In fact, it is convenient that only the form feature
subprogram requires a change, as all of the different components relevant to the application
of finite detail remain identical. A by-product of the extraction method is a detail extraction
operator. This operator identifies detail-stage topology facts and worldwide smoothing
facts and represents the canonical processing of T-joints. T-joints, referred to as “placing
nodes” in finite detail analysis, are an essential characteristic of T-Splines.
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Figure 1. See [31] for a Bézier extraction diagram of the B-Spline curve. The basic capabilities and
control points of the B-Spline are denoted as N and P, respectively. The Bernstein polynomial and the
control points are denoted as B and Q, respectively.

The idea of Bezier extraction is to reduce the number of control points while respecting
the geometry without modifying the domain we would like to study. Further, Bezier
extraction applies a local refinement to some parts of the domain (in which there will be
major displacements). This technique improves the resolution of the FEM and generates
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precise results since the number of degrees of freedom is reduced. Note that the geometry
must not change when inserting nodes.

Bezier extraction is fundamentally based on knot insertion, which will be briefly out-
lined for the univariate case below. A new knot ξ ∈ [ξi, ξi+1] can be inserted into the open
node vector, resulting in the modified knot vector Ψ =

{
ξ1, ξ2, . . . ·ξi, ξ, ξi+1 . . . ξn+p+1

}
,

and n is the number of the basis function of order p, where p < i < n + 1.
This insertion produces a new set of basis functions. To preserve the geometry or ap-

proximation while altering the parametrization of the basis, new control point values,
{

Qj
}

,
j = 1 . . . m, must be calculated from the original control points,

{
Pj
}

, j = 1 . . . m, accord-
ing to

Qj =





P1 , j = 1
δjPj + (1−
Pn , j = n.

δj)Pj−1, 1 < j < m (12)

δj =





1 , 1 ≤ j ≤ i − p
ξ−ξ j

ξ j+p−ξp

0 , j ≥ i·
i − p + 1 < j < i (13)

If we are able to convert the T-Spline basis functions of N to Bernstein polynomials B,
this permits the replacement of the T-Spline surface with a series of Bézier patches utilizing
the conventional parametric domain. According to the Cox–de Boor formula, this can be
expressed as follows.

The new set of so-called Bézier control points Q is computed from B-Spline control
points, resulting in the following: Q = CtP. In remembering that the geometry must
remain unchanged during the insertion of the nodes,

T(ξ) = QT B(ξ) = PT N(ξ) = PTCB(ξ) (14)

where ξ is the coordinate in the standard domain of an individual Bézier patch, and N(ξ) is
a T-Spline vector of the basis functions that are non-zero over the Bézier surface. However,
B(ξ) is a vector of the tensor product of the basis functions of Bernstein polynomials
associated with the Bézier surface. C is the extraction operator.

For each localized T-Spline over an element, it can be explained as a linear combination
of these Bernstein polynomials. In fact, there exists a coefficient ci, such that T(ξ) =

∑N
i=0 ciBi(ξ), where the convention N = (p + 1)d is typical in finite element analysis, p is

the degree of the Bernstein polynomial, and d is the dimension of the domain; for example,
for the surfaces, d = 2.

We propose that univariate Bernstein polynomials form the basis of the Bézier surface,
which are defined over the biunit interval [−1, 1], Bi,p(ξ)=Cp

i−1(1 − ξ)p−i+1(1 + ξ)i−1, with
1 ≤ i ≤ p + 1, and Cp

i−1: binomial coefficient.
We can define the multivariate Bernstein basis functions of degree p as Ba(i,j),p(ξ) =

Bi,p(ξ1)Bj,p(ξ2), with (ξ) = (ξ1, ξ2) representing a pair of variables, and a(i, j) is a mapping
from a pair of indices (i,j) to a single index. a(i, j) = (p + 1)(j − 1) + i·.

The calculation of the element extraction operators is conducted function-by-function,
each basis function adding a line to each extraction operator corresponding to the Bézier
elements in its support.

In 3D cases, the T-Spline volume in the parametric domain can be defined as follows:

T(ξ, ζ,η) =
∑n

i=0 Ni(ξ, ζ,η)ωiPi

∑n
j=0 Nj(ξ, ζ,η)ωj

. (15)

Weightsωi are scalar weights associated with each control point Pi and T-Spline basis
functions corresponding to control point Pi:

Ni(ξ, ζ, η) = Ni,ξ(ξ)Ni,ζ(ζ)Ni,η(η). (16)
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2.2. Incorporating Bézier Extraction of T-Splines into Finite Element Method

The Bezier extraction of T-Splines produces a fixed set of Bezier elements (defined
using Bernstein terminology) and the corresponding element extraction operators C and
IEN (index element node) arrays. This shape is equivalent to that derived for NURBSs
in [31] and can be incorporated into the finite detail components in a similar way. We
construct the functional subspace of finite dim Hh ⊂ H from the T-Spline functions, forming
the specified geometry. From problem (14), the approximate problem is written as follows:
given fh, find uh ∈ Hh such that uh = gh:

∀ vh ∈ Hh, Λ(uh, vh) = F(vh) (17)

where uh = ∑n
i=1 αiTi, vh = ∑n

j=1 β jTj, and Λ(uh, vh) is a bilinear form that often arises from
integrating the product of the derivatives of the trial function uh and the test function vh
over the domain. F(vh) represents the right-hand side of the weak formulation.

With these combinations, problem (14) can be written in the form of a matrix problem:

Au = F. (18)

We proceed as in the case of classical finite elements, with the global stiffness matrix
A and the force vector F, which can be produced by performing an integration of the
Bézier elements.

On each Bézier element, b, we have Ab, such as in the following:
(

Ab
)

ij
= Λ

(
Tb

i , Tb
j

)
,

where the elementary stiffness matrix and the vector force Fb
i = F

(
Tb

i

)
are assembled in

the global matrix A and the vector F, respectively.
By taking into consideration the non-homogeneous Dirichlet boundary conditions

and with the insertion of the Lagrange parameter, we obtain the following matrix problem

that we wish to solve:
(

A Lt

L 0

)
(u

λ)=(
F
µ).

We use the element extraction operators, and the T-Spline function is defined as follows:

Tb
i (ξ) = WbCb Bi(ξ)

Ψi(ξ)
, (19)

where Ψi(ξ) =
(

ωb
)T

CbBi(ξ), and ωb represents the weight vector corresponding to the

T-Spline control points. Wb is the diagonal matrix form of vector ωb.
We calculate the derivatives of the T-Splines with respect to the coordinates of the

physical domain (x1, x2, x3):

∂Tb
i (ξ)

∂xk
= ∑3

j=1
∂Tb

i (ξ)

∂ξj

∂ξj

∂xk
, for all k = 1, 2, 3 (20)

∂Tb
i (ξ)

∂ξ j
= WbCb ∂

∂ξ j

(
Bi(ξ)(

ωb
)TCbBi(ξ)

)
= (21)

WbCb

(
1

Ψi(ξ)

∂Bi(ξ)

∂ξ j
− ∂Ψ(ξ)

∂ξ j

Bi(ξ)

(Ψi(ξ))
2

)
. (22)

The approximation of the Bezier element is defined using a transformation to a refer-
ence element, which is the e [0, 1]× [0, 1]× [0, 1]· The Jacobian determinant is defined as

|J| =
∣∣∣ ∂x

∂ξ

∣∣∣.
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To solve linear system (18), we must calculate the elements of the rigidity matrix
corresponding to any Bezier element in order to assemble them in a global matrix.

(Ab)ij = (Ab
1 + Ab

2)ij,

such as:
(Ab

1) ij =
t 1

0 µ
(

WbCbMi J−1
)(

WbCbMj J−1
)T

|J|dξ1dξ2dξ3−

µ
s 1

0

(
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traction force applied to the surface of the solid body.  
Weak formulation 

We assume that we have 𝑢 = 𝑔 and that it represents non-homogeneous Dirichlet 
boundary conditions for the displacement field. Then, we look for weak solutions to the 
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Then, we look to the solution in the space 𝐻 ଴ if 𝑢 = 0:  𝐻 ଴ ≔ ሾ𝐻଴ଵ (𝛺)  ሿ௡, with: 𝑛 =  2 𝑜𝑟 3. (3)
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Bilinear and linear forms:  
Let us introduce the following bilinear forms: 

·WbCb Bi(ξ)
Ψi(ξ)

)
n·WbCb Bj(ξ)

Ψj(ξ)
|j|dξ1dξ2

(23)

n is the unit vector directed toward the outside of the domain, with the vector Mi written
as follows:

(M i)
T =

1
Ψi(ξ)

∂Bi(ξ)
∂ξ1

− ∂Ψ(ξ)
∂ξ1

Bi(ξ)

(Ψi(ξ))
2

1
Ψi(ξ)

∂Bi(ξ)
∂ξ2

− ∂Ψ(ξ)
∂ξ2

Bi(ξ)

(Ψi(ξ))
2

1
Ψi(ξ)

∂Bi(ξ)
∂ξ3

− ∂Ψ(ξ)
∂ξ3

Bi(ξ)

(Ψi(ξ))
2

(24)

(Ab
2) ij == (µ + λ)

y 1

0
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·(W bCb Bj(ξ)

Ψj(ξ)
)|J|dξ1dξ2dξ3 (25)

F =
y 1

0
f ·(W bCb Bi(ξ)

Ψi(ξ)
)|J|dξ1dξ2dξ3 +

x 1

0
t·(W bCb Bi(ξ)

Ψi(ξ)
)|j|dξ1dξ2. (26)

The matrix j transforms the surface of the lateral domain to the reference surface
[0, 1]× [0, 1].

To calculate all the elements of matrices, we use Gaussian quadrature.

2.3. Theoretically Stress Lateral Loading

The FEM analysis results are confirmed via comparison with the theoretically predicted
tensile stress results and are presented according to the following equation [32,33]:

σtheo =
Px
2S

, (27)

with

S =
π(D4

e −D4
i )

32De
;

P: the concentered load (N);
X: the impact position;
S: the section modulus of a circular hollow section;
De: the outer diameter;
Di: the inner diameters of the pipe.

2.4. Mechanical Failure Criteria

In the literature, several failure criteria can be found that are used to analyze the
performance of structures. The von Mises stress criterion is more commonly used in the
field of linear elasticity to determine whether failure will occur by comparing the failure
limits of materials. Due to this criterion, it is possible to know whether the structure under
study can function normally under load. The equation is expressed as follows:

σMises =
1√
2

√(
σx − σy

)2
+ (σx − σz)

2 +
(
σy − σz

)2, (28)

where σx, σy, and σz are the first, second, and third principal stresses.
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3. Computational Modeling and Simulation

This section explains the steps used to model a 3D cylindrical shell pipe subjected
to a concentrated and compressive load using the classic finite element method based on
Abaqus/CAE and the IGA approach based on the NURBS and the T-Spline methods.

3.1. Cylindrical Shell 3D Pipe Geometry

The geometry of the 3D cylindrical shell pipe studied is shown in Figure 2.
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Figure 2. The geometry of the 3D cylindrical shell pipe.

3.2. Material

P264GH steel material [34] (Table 1) was used in this study. The stress–strain curve
of the mechanical test is shown in Figure 3. The behavior of this material follows the
Ramberg–Osgood law, which is described as follows:

ε =
σ

E
+
(σ

k

)1/n
, (29)

where k = 494.54 MPa, and n = 0.068

Table 1. Mechanical properties of P264GH steel.

Young’s modulus E = 207 GPa

Poisson’s ration v = 0.3

Yield stress Re = 340 MPa

Ultimate tensile strength Rm = 440 MPa

Elongation to fracture A = 35%

The stress–strain curve of the P264GH steel is illustrated in Figure 3:
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3.3. Meshing, Loadings, and Boundary Conditions

To ensure a robust convergence of results in Abaqus/CAE and facilitate pertinent com-
parisons with the IGA approach based on the NURBS and T-Spline results, we performed a
mesh convergence study for the proposed refinements. We established that a mesh size
ranging from 0.15 mm to 0.09 mm for the calculation of stress is robust and consistent
(Figure 4). Additionally, for an efficient computation time ratio, we used a mesh size of
0.15 mm for this investigation.
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In this study, we employed the IGA approach based on the T-Spline method to resolve
industrial mechanical issues, particularly the failure of pipelines due to the side impact of
excavation machines during installation, pipe–soil interactions, and preformed holes. The
impact was modeled using an applied load (F) and a line compression load (Figure 5). It is
important to note that this investigation was carried out in the linear elasticity domain.
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Considering geometric symmetry and to enable an efficient computation time ratio,
we used half of a 3D cylindrical shell pipe (Figure 6) to model the impact for both numerical
investigation methods, the finite element method (FEM) according to Abaqus/CAE and
the IGA approach based on NURBSs and T-Splines.
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In the IGA approach, we used an exact mesh generated using NURBS functions 
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troducing additional control points only in areas where higher resolution is required 
(Figure 9d). This feature enhances the efficiency of capturing details during analysis. 

Figure 6. The boundary conditions for half of a cylindrical shell pipe.

After obtaining the efficient convergence of the numerical results in Abaqus/CAE, we
locally refined the mesh where we applied the load, as shown in Figure 7. We used linear
quadrilateral elements of type S4 to model the 3D cylindrical shell pipe case. This element
is characterized by good computational time savings, is easier to mesh, and is less prone to
negative Jacobian errors than 3D solid elements.
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In the IGA approach, we used an exact mesh generated using NURBS functions
(Figure 9a), and we took advantage of Bézier extraction for the T-Spline surfaces (Figure 8).
Contrary to NURBS functions, T-Splines enable local adjustments by introducing additional
control points only in areas where higher resolution is required (Figure 9d). This feature
enhances the efficiency of capturing details during analysis.
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50, and 215 T mesh elements.

4. Numerical Results and Discussion

In this section, three numerical evaluations are introduced to highlight the primary
advantages of employing the T-Spline approach for isogeometric analysis relating to 3D
cylindrical shell pipe mechanical computation issues. Firstly, a 3D cylindrical shell pipe
subjected to concentered elastic load and compressive load benchmarks was analyzed to
verify the capability of the adaptive T-Spline approach for isogeometric analysis and to
study the robustness of the 3D mechanical cylindrical shell pipe. The obtained results were
compared and validated with results found in the literature, particularly those concerning
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the use of NURBS IGA and FEM Abaqus/CAE methods. In the final analysis, we will evalu-
ate a 3D cylindrical shell involving the preformed hole issue. The goal is to provide further
analysis evaluating the performance and robustness of T-Splines for the computational
modeling of trimmed surfaces.

4.1. Cylindrical Shell 3D Pipe under Concentrated Load

We will study a cylindrical shell pipe without internal pressure subjected to compres-
sive load in order to model impact machine excavation.

We performed a comparative study of the computation time between the different
methods used in this investigation. The results show that the computation time (Table 2)
of IGA based on the T-Spline method is shorter than that of IGA based on NURBS and
FEM Abaqus/CAE. This confirms the results of Du et al. [20] and Guo et al. [35]. The better
computation time of the T-Spline method is due to the use of fewer control points (Figure 10)
compared to the NURBS method. Furthermore, T-Splines combine the advantages of
NURBSs and polygonal modeling techniques, leading to better convergence of the results.

Table 2. Time calculation comparison for FEM, IGA NURBS, and IGA T-Splines carried out using
Intel® Core ™ i5-8250U CPU 1.60 GHz (4 CPUs).

Method FEM (Abaqus/CAE) IGA NURBS IGA T-Splines

Time Calculation (s) 3.30 0.99 0.42
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Figure 10. Boundary conditions and T-Spline surface with 326 control points and 215 T mesh elements.

Figure 11 illustrates a comparison of the displacement magnitude of a 3D cylindrical
shell pipe subjected to a force of 1.6 kN computed using the FEM (Abaqus/CAE) (umax =
1.45 × 10−3 mm), IGA NURBS (umax = 1.49 × 10−3 mm), and IGA T-Spline (umax =
1.58 × 10−3 mm) methods. The results show that the IGA T-Spline method yields better
results than the IGA NURBS method, which is also a robust method. These results lead
to the same conclusion reached by Du et al. [21]. The disparity between the T-Spline
and NURBS methods is that the IGA approach based on T-Splines provides a high level
of flexibility in 3D surface shaping, and T-Splines allow for the local refinement of the
mesh (Figure 12). T-Splines are often used in conjunction with subdivision surfaces. This
combination allows for the creation of highly detailed models with smooth surfaces.
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To complete the previously highlighted results and apply them to the study of the
mechanical behavior and strength of a 3D pipe, we analyzed the load variation applied
to the 3D cylindrical shell pipe as a function of displacement using the different FEM
Abaqus/CAE, IGA NURBS, and T-Spline methods, as illustrated in Figure 13. Load
magnitudes varying from 0 N to 1600 N were used to maintain linear elasticity and predict
the impact of the excavator during work not subjected to internal pressure. The results
show linearity between the load and displacement curves. Furthermore, it is important to
point out that, after 1200 N, there is some variation in the results between the three methods.
The divergence of the numerical results is explained by the influence of the proximity of
the plastic zone.
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Figure 13. Load–displacement curves of the 3D cylindrical shell pipe.

Figure 14 illustrates the von Mises stress distribution around an applied radial load
of 1.6 kN. Evaluations were performed for two numerical references methods, FEM
Abaqus/CAE, IGA NURB and IGA T-Splines. The results confirm that the IGA approach
based on the T-Spline method is successful compared to the numerical references methods.
We conclude that, thanks to the T-Spline method, we obtain higher values of σvm = 348 MPa
around the impact region than those found using FEM Abaqus/CAE (σvm = 341 MPa)
and IGA NURBS (σvm = 342 MPa). The value found using the T-Splines method is in
close proximity to the yield strength of the material. This allows us to provide pertinent
information on fracture prediction and the robust convergence of the results that were
undetected when using the FEM Abaqus/CAE and IGA NURBS methods. The robustness
of the T-Spline method relates to its capability to introduce local control points, allowing
for more detailed information to be obtained in certain regions without compromising the
overall simplicity of the model. The local refinement feature of T-Splines is particularly
useful for efficiently capturing geometric details in specific areas of a model.
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imum values (denoted as 348 MPa) of the von Mises stress around the force impact region 
for various methods, especially using FEM Abaqus/CAE, IGA NURBSs, and IGA 
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Figure 14. von Mises stress of 3D cylindrical pipe: (a) result of NURBS; (b) result of T-Splines;
(c) result of Abaqus/CAE FEA.

On the other hand, we evaluated the structural integrity of the 3D cylindrical shell pipe
by applying various load values (from 0 N to 1600 N). We extracted different maximum
values (denoted as 348 MPa) of the von Mises stress around the force impact region for
various methods, especially using FEM Abaqus/CAE, IGA NURBSs, and IGA T-Splines
(Figure 15). The results indicate that the stress curves converge closely with minor disparity.
The value of 348 MPa obtained through the use of IGA T-Splines is higher than that of FEM
Abaqus/CAE and IGA NURBSs.
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In addition, it was observed that the curve diverges from linearity when it exceeds
the value of 340 MPa above 1200 N, suggesting a transition to the plastic region. This
nonlinearity in the curve indicates a change in material behavior and signifies that the
structural response is moving beyond the linear elastic domain.

4.2. Cylindrical 3D Shell Pipe under Compressive Loading

We studied a cylindrical shell pipe subjected to compressive load, modeling the
pipe–soil interaction. The predicted load of this interaction between the pipe and the soil is
1.9 kN (Figure 16).
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T-Splines enable the addition of some local refinement control points in the area
where good convergence is required (Figure 17), which is not available in IGA based on
NURBS functions.
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We compared the results found using T-Splines for different proposals for the local
refinement of control points in a 3D cylinder (Figure 18). The obtained results show a
dependence on the number of refinement control points. With 122 control points, the
maximum displacement on the cylinder is 0.0728 mm, and when we refine up to 361 control
points, the maximum displacement on the cylinder is reduced to 0.0693 mm.
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using the T-Spline method.

Further, we performed a comparative study using a T-Spline for comparison and
validation with results found in the literature, especially those relating to the use of the
NURBS IGA and FEM Abaqus/CAE methods (Figure 19). The amount of displacement
calculated using the T-Spline method is 0.0728 mm, which is slightly higher than that found
when using IGA NURBSs and FEM Abaqus at 0.0531 mm and 0.0626 mm, respectively.
Note that in T-Splines with 361 control points, the maximum displacement per cylinder is
reduced to 0.0693 mm. We conclude from all these results that we are confident in using
the T-Spline method as an alternative method to investigate the mechanical performance of
cylindrical shell structures.
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4.3. Three-Dimensional Cylindrical Shell Pipe with Preformed Holes and Pipe Junction under
Compressive Loading

In this section, we evaluated a 3D cylindrical shell pipe with a preformed hole under a
compressive load (Figure 20) in relation to structural engineering problems. The objective
is to evaluate the efficiency and robustness of the T-Spline method in the field of trimmed
surfaces. In this study, we compared the results found when using the T-Spline method with
the Abaqus/CAE finite element method because IGA based on NUBRSs is too limited for
the evaluation of the trimmed surfaces; it requires a specific adjustment of the interpolation
domain, especially the B-Spline or NUBRS interpolation functions, when considering a
trimmed geometry. A 3D cylindrical shell pipe (r = 300 mm; L = 600 mm; thickness = 3 mm)
with nine holes with a 2.5 mm diameter was evaluated with the objective of assessing the
mechanical robustness and structural integrity of pipes with preformed holes in cases of
severe mechanical and chemical damage. This recent investigation completes the research
conducted in [36–38].

In Figure 21, we compare the numerical results of the displacement between the
T-Spline and FEM Abaqus methods, and in noting that the NURBS IGA method is very
limited in terms of studying trimmed surfaces, it was not considered for comparison in
this study. The maximum displacement value was found to be 7.7 × 10−2 mm higher than
the FEM Abaqus displacement value 5.53 × 10−2 mm, and we concluded that, in the case
of preformed holes, the displacement value increased by 7.7 × 10−3 mm; this suggests
the performance degradation of a cylindrical shell pipe with preformed holes, leading to
integrity issues.
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Figure 21. The displacement magnitude results of a 3D cylindrical pipe with holes calculated using
the T-Spline method.

In addition, the T-Spline method once again shows its power and capability in terms
of computing trimmed and untrimmed surfaces.

5. Conclusions

An investigation of the mechanical performance of a 3D cylindrical shell pipe with
and without preformed holes under concentrated and compressive loading in terms of
the linear elastic behavior in the cases of trimmed and untrimmed surfaces using the IGA
method based on the T-Spline technique was successfully conducted. The numerical results
obtained, especially relating to displacement and von Mises stress, were compared and
validated with results found in the literature, particularly concerning the NURBS IGA
and FEM Abaqus methods. The results show that the computation time of IGA based on
T-Splines is shorter than the IGA NURBS and FEM Abaqus/CAE methods. Moreover, the
results confirm that the IGA approach based on the T-Spline method shows successful
achievements compared to numerical references found in the literature review.

The numerical results of von Mises stress found, through the use of the T-Spline
method, are in close proximity to the yield strength of the material. This allows us to
provide pertinent information on fracture prediction and the robust convergence of the
results that were undetected when using the FEM Abaqus/CAE and the IGA NURBS
methods. The robustness of the T-Spline method is based on its ability to introduce local
control points in the area where robust convergence is required, which is too limited in IGA
based on NURBS functions. In addition, through the use of T-Splines, we will end up with
a linear system with a slightly lower degree of freedom with a stiffness matrix that is less
full compared to the one obtained when using the NURBS method. This makes it easy to
invert this matrix with a fairly small inversion error.
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On the other hand, a 3D cylindrical shell pipe with a preformed hole under compres-
sive load was studied as a structural engineering problem with the objective of evaluating
the efficiency and robustness of the T-Spline method in the field of trimmed surfaces. We
noticed that the NURBS IGA method is very limited when evaluating trimmed surfaces.
The maximum displacement value was found to be higher than the FEM Abaqus displace-
ment value; thus, we conclude that, in the case of preformed holes, the displacement value
increased, which suggests the performance degradation of a cylindrical shell pipe with
preformed holes, leading to integrity issues.

Future research work will involve the integration of a complementary investigation
on the impact of machine excavation on pipes under internal pressure. This study will
consider scenarios both with and without the presence of cracks using the IGA approach
based on T-Splines. The aim is to evaluate the mechanical behavior and performance of
cylindrical shell pipelines, addressing problems in both linear elastic and dynamic studies.
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Abstract: Graham and Pollack in 1971 presented applications of eigenvalues of the distance matrix
in addressing problems in data communication systems. Spectral graph theory employs tools from
linear algebra to retrieve the properties of a graph from the spectrum of graph-theoretic matrices. The
study of graphs with “few eigenvalues” is a contemporary problem in spectral graph theory. This
paper studies graphs with few distinct distance eigenvalues. After mentioning the classification of
graphs with one and two distinct distance eigenvalues, we mainly focus on graphs with three distinct
distance eigenvalues. Characterizing graphs with three distinct distance eigenvalues is “highly”
non-trivial. In this paper, we classify all trees whose distance matrix has precisely three distinct
eigenvalues. Our proof is different from earlier existing proof of the result as our proof is extendable
to other similar families such as unicyclic and bicyclic graphs. The main tools which we employ
include interlacing and equitable partitions. We also list all the connected graphs on ν ≤ 6 vertices
and compute their distance spectra. Importantly, all these graphs on ν ≤ 6 vertices are determined
from their distance spectra. We deliver a distance cospectral pair of order 7, thus making it a distance
cospectral pair of the smallest order. This paper is concluded with some future directions.

Keywords: graph; distance matrix; distance eigenvalues; interlacing; few eigenvalues

MSC: 05C12; 05C50

1. Introduction

All graphs in this article are undirected, finite, connected, and simple.
Spectral graph theory [1] employs tools from linear algebra to retrieve the properties of

a graph from the spectrum of graph-theoretic matrices such as the adjacency, the distance,
and the Laplacians, among others. In 1970, Doob [2] suggested the study of graphs with
a few eigenvalues and proposed, at most, five. A connected regular graph with, at most,
three distinct eigenvalues is known to be strongly regular; see, for example [3] for a
survey on strongly regular graphs. Connected non-regular graphs with three distinct
eigenvalues have been studied by, for example, De Caen, Van Dam and Spence [4], Bridges
and Mena [5], Muzychuk and Klin [6], and Van Dam [7].Connected regular graphs with
four distinct eigenvalues were studied by Van Dam [8], Van Dam and Spence [9] and
Huang and Huang [10], among others. Cioabă et al. [11] (resp. Cioabă et al. [12]) studied
connected graphs with, at most, two eigenvalues not equal to 1 and −1 (resp. 0 and
−2). Haemers and Omidi [13] studied generalized adjacency matrices and characterized
the graphs admitting two generalized adjacency eigenvalues. In this paper, we study
graphs with three distinct generalized adjacency eigenvalues. For applications of graphical
and, in general, mathematical models in machine learning and energy research, we refer
to [14–17].
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In case of connected graphs, the distance matrix [18] generalizes the adjacency matrix
naturally as it delivers more information about pairs of vertices. Graham and Pollack [19],
in 1971, put forward a relationship between the problem of addressing in systems of data
communications and the number of negative eigenvalues of the distance matrix. In 1978,
Graham and Lovász [20] precisely determined the characteristic polynomial of the distance
matrix of a graph by providing explicit formulas for its coefficients. Merris [21] used the
interlacing theorem to study properties of the distance eigenvalues of trees and their line
graphs. The survey by Aouchiche and Hansen [22] covers the known results on the distance
matrix and its spectrum till 2014.

The cospectrality of graphs with respect to the distance matrix has received researchers’
attention recently. Lin et al. [23] showed that complete bipartite graphs are determined
by their distance spectra and conjectured the same for complete multipartite graphs. Jin
and Zhang [24] provided a proof for this conjecture. Heysse [25] proposed a method
of constructing distance cospectral graphs. Aouchiche and Hansen [26] generated the
distance, Laplacian distance, and signless Laplacian distance spectra of all the graphs up to
10 vertices and identified the ones which are distance cospectral. Zhang [27] investigated
graphs with, at most, three distance eigenvalues, of which two are different from −1 and
−2. Moreover, he identified all distance cospectral graphs among this class and showed
the remaining can uniquely be determined from their distance spectra. Pokorný et al. [28]
showed that non-trivial non-isomorphic trees are never distance integral. They also identify
distance integral graphs among the class of complete split graphs.

Research on the study of graphs with few different eigenvalues corresponding to the
distance matrix has been initiated recently. Lin et al. [23] classified graphs having three
different distance eigenvalues and non-integral distance spectral radius. Aalipour et al. [29]
constructed examples of non-regular graphs having a small number of different eigenvalues,
showing that not all graphs with few distinct eigenvalues for the distance matrix are regular.
Zhang et al. [30] proved some extremal results on the distance spectrum of graphs. They
also delivered the first proof for the classification of trees with three distinct distance
eigenvalues. In addition, Aalipour et al. [29] precisely determined the spectrum of the
distance matrix of all the distance-regular graphs whose positive inertia is exactly one.
For each 2 ≤ k ≤ 11, Atik and Panigrahi [31] constructed infinite families of graphs with
diameter of at least k and precisely k distinct distance eigenvalues. Lu et al. [32] classified
graphs with exactly two distance eigenvalues different from −1 and −3.

In continuation of the study of graphs whose distance matrix has few distinct eigenval-
ues, in this note, we characterize trees having precisely three different distance eigenvalues.
This paper studies the contemporary problem of “few eigenvalues” for the distance matrix
of trees. The classification of general graphs with three distinct distance eigenvalues is
highly non-trivial. In light of this, we solve this problem for the case of trees. Our proof
is extendable to other families of graphs such as unicyclic and bicyclic graphs. The main
result of this study is as follows:

Theorem 1. Let T be a tree on ν ≥ 2 vertices. Then, T has three distinct distance eigenvalues if
and only if T is a star graph.

The organization of the note goes like this: In Section 2, we define all the necessary
terminologies and present preliminary results needed in the subsequent section. Section 3
then provides a proof to Theorem 1.

2. Preliminaries

For standard notations and terminologies, the reader is referred to the standard graph
theory textbook by West [33].
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Let Γ = (VΓ, EΓ) be a ν-vertex graph with VΓ as its vertex set and EΓ ⊆ (VΓ
2 ) as its edge

set. The adjacency matrix A = AΓ of a graph Γ is defined as

(A)xy =

{
1, xy ∈ E;
0, Otherwise.

Similarly, the distance matrix D = D(Γ) of an ν-vertex graph Γ is defined as vertices of Γ
and defined as

(D)xy =

{
k, d(x, y) = k;
0, x = y.

Let θ0 ≥ . . . ≥ θt (resp. µ0 ≥ . . . ≥ µt) be the eigenvalues of A (resp. D) called A-
eigenvalues (resp. D-eigenvalues) of Γ. Note that both of the adjacency and distance
matrices are nonnegative irreducible real symmetric matrices.

Next, we present some tools from linear algebra which we use later on. The following
is the so-called Perron–Frobenius Theorem.

Theorem 2. ([1], Theorem 2.2.1) Let M be a nonnegative irreducible matrix of order ν × ν. Let
ρ(M) be the largest eigenvalue of M such that Mx = ρx. Then,

(i) Both geometric and algebraic multiplicity of ρ(M) is one. Moreover, x is a strictly positive
real vector.

(ii) For each eigenvalue θ of M, we have ρ ≥ |θ|. If M is primitive, then ρ = |θ| implies ρ = θ.
(iii) Assume M1 is a nonnegative ν × ν real matrix such that M − M1 is nonnegative. Then,

ρ(M) ≥ ρ(M1) with ρ(M) = ρ(M1) if and only if M = M1.

The following is the so-called Cauchy Interlacing Theorem of real symmetric matrices.

Theorem 3. ([34], Theorem 9.3.3) Let M be an m × m principle submatrix of an ν × ν real
symmetric matrix N. Assume that θi(N) (1 ≤ i ≤ ν) (resp. µi(M) (1 ≤ i ≤ m) be a non-
increasing sequence of the eigenvalues of N (resp. M). Then,

θν−m+i(N) ≤ µi(M) ≤ θi(N) for i = 1, 2, . . . , m.

Let χA(x) be the characteristic polynomial of a matrix A. The proof of the following
result is a merely a modification of [34], Theorem 9.1.1.

Theorem 4. ([34], Theorem 9.1.1) Assume π is an equitable partition for a Hermitian matrix M.
Let Q be the quotient matrix of M corresponding to π. Then, we have χQ(x) | χM(x).

In 1971, Graham and Pollack [19] calculated the determinant of D(T) of a ν-vertex tree
T as follows:

Theorem 5. ([19]) If D = D(T) is the distance matrix of a ν-vertex tree T, where ν ≥ 2. Then,

det(D) = (−1)ν−1(ν − 1)2ν−2.

Let A be a real symmetric matrix. Then, the eigenvalues of A are all real. Assume
ν+(A) (resp. ν−(A)) is the number of positive (resp. negative) eigenvalues of A. If ν0(A)
is the dimension of the null space of A i.e., the number of zero eigenvalues of A, then,
(ν+(A), ν0(A), ν−(A)) is said to be the inertia of the matrix A.

Theorem 5 immediately implies that the inertia of D(T) of a ν-vertex tree T is inde-
pendent of the structural of T, i.e., only depends on ν.

Corollary 1. ([19]) Let D = D(T) be the distance matrix of a ν-vertex tree T, where ν ≥ 2. Then,
the inertia of D is (1, 0, ν − 1).
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3. Main Results

For a graph Γ, let δΓ(D) be the number of distinct distance eigenvalues of Γ. Note that
the distance matrix D is an irreducible nonnegative integer symmetric (and thus Hermitian)
matrix. Thus, if D has one distinct eigenvalue µ, then, its minimal polynomial m(x) = x− µ.
This implies that D = µI, and since the main diagonal of D is zero, we obtain that µ = 0
and D = 0. This shows that Γ is an isolated vertex, as Γ is connected. Thus, we have the
following lemma.

Lemma 1. Let Γ be a connected graph. Then, δΓ(D) = 1 if and only if Γ = K1.

Stevanović and Indulal [35] calculated the distance spectra of the combination of
two regular graphs and, as its application, computed the distance spectra of the complete
bipartite graphs. Here, we provide a different proof of this result using equitable partitions
of the distance matrix.

Lemma 2. Let Ks,t be the complete bipartite graph. Then, the distance spectrum of Ks,t is as follows:

{
[s + t − 2 +

√
s2 − st + t2]1, [−2]s+t−2, [s + t − 2 −

√
s2 − st + t2]1

}
.

Proof. Consider the equitable partition π = {V1, V2}, where V1 and V2 are the partite sets
of Ks,t. The quotient matrix Q of π is

Q =

(
2(s − 1) t

s 2(t − 1)

)
.

The eigenvalues of Q are s+ t− 2±
√

s2 − st + t2. By Theorem 4, these are also the distance
eigenvalues of Ks,t each with multiplicity 1. By Lemma 3.4 in [23], Ks,t has three distinct
eigenvalues. By using the trace of the distance matrix of Ks,t, we obtain that −2 with
multiplicity s + t − 2 is the other distinct distance eigenvalue of Ks,t.

Indulal [36] characterized graphs with two distinct distance eigenvalues. We provide
a short proof of this characterization.

Lemma 3. ([36]) A graph Γ has δΓ(D) = 2 if and only if Γ = Kν, ν ≥ 2.

Proof. If Γ = Kν, then D(Γ) = A(Γ) where A(Γ) is the adjacency matrix of Γ. Thus, Γ has
two distinct distance eigenvalues i.e., ν − 1 and −1.

For the converse, assume that Γ has two distinct distance eigenvalues, say, µ0 > µ1.
Let mi be the multiplicity of µi. By Theorem 2, m1 = 1, and thus, m2 = ν − 1. We show
that Γ does not contain K1,2 as an induced subgraph. On the contrary, we assume that it is
true. Let P be the principle submatrix of D(Γ) induced by K1,2. Then, by Theorem 3, we
obtain that P has only two distinct distance eigenvalues. However, by Lemma 2, D(K1,2)
has precisely three distinct distance eigenvalues. This implies that K1,2 is not an induced
subgraph of Γ. And thus, D(Γ) = 1 and Γ = Kν, ν ≥ 2.

The problem of characterizing graphs with three distinct distance eigenvalues is,
in fact, very hard. This problem was solved for trees by Zhang and Lin [30] in 2023. Here,
we deliver an alternative proof which is extendable to other families of graphs such as
unicyclic and bicyclic graphs.

Proof of Theorem 1. The ‘only if part’ of the statement follows from Lemma 2 by consider-
ing either s = 1 or t = 1.

For the ‘if part’ of the statement, we assume T to be a tree with three distinct distance
eigenvalues. Let D (resp. D) be the diameter (resp. distance matrix) of T. Since T is
non-complete, we obtain that T is non-regular. Let µ0 > µ1 > µ2 be the distinct eigenvalues
of T with respective multiplicities m0, m1, m2. By the Perron–Frobenius Theorem 2, we
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have m0 = 1. Moreover, by Corollary 1, we have µ0 > 0 and µ1 < 0. Let x > 0 be the
Perron–Frobenius eigenvector of D, then

(J − I)x ≤ Dx ≤ D(J − I)x,

and Dx = D(J − I)x if and only if D = 1. This implies that µ0 ≤ D(ν − 1). We discuss the
following two possible cases:

Case 1 . µ0 is not an integer.

Since µ0 is simple and non-integral, one of µi (1 ≤ i ≤ 2) is also simple. Let
{µ, µ′} = {µ1, µ2}, and assume µ is the simple eigenvalue. This implies that µ′ ∈ Z
and has multiplicity ν − 2. Since (D) = 0, we obtain that µ0 + µ1 = −µ′(ν − 2). Note that
rank(D − µ′ I) = 2. Moreover, K1,2 is an induced subgraph of T as it is non-regular and
non-complete. This implies that

rank
(

D(K1,2)− µ′ I
)
≤ 2,

where D(K1,2) is a principle submatrix of D(T). Therefore, by interlacing, µ′ ∈ {1 ±
√

3,−2}
since SpecD(K1,2) = {1 ±

√
3,−2}. However, since µ′ ∈ Z, we obtain that µ′ = −2. By

Theorem 2.6 from [23], T is a complete multipartite graph. Since T is a non-regular graph
having three distinct distance eigenvalues, by Lemma 3.4 from [23], T = Ks,t, s, t ≥ 2
is complete bipartite. By Lemma 2 and Corollary 1, we obtain that µ1 = s + t − 2 −√

s2 − st + t2 < 0 and µ2 = s + t − 2 +
√

s2 − st + t2 > 0. By solving these inequalities, we
obtain that either s = 1 or t = 1. This implies that T is the star graph.

Case 2. µ0 is an integer.

In this case, we may assume that mi ≥ 2 for i = 1, 2. Based on mi, we consider the
following subcases.

Subcase 2.1. Assume that m1 ̸= m2.

In this case, the corresponding distance eigenvalues µ1 and µ2 are integral such that
µ1 ≥ 0 and µ2 ≤ −2. If µ2 = −2, then, by Theorem 2.6 from [23], T is a complete multipar-
tite graph. Since T is a non-regular graph having three distinct distance eigenvalues, by
Lemma 3.4 from [23], T = Ks,t, s, t ≥ 2 is complete bipartite. By Lemma 2 and Corollary 1,
we obtain that µ1 = s + t − 2 −

√
s2 − st + t2 < 0 and µ2 = s + t − 2 +

√
s2 − st + t2 > 0.

By solving these inequalities, we obtain that either s = 1 or t = 1. This implies that T is a
star graph.

Thus, we have µ1 ≥ 0 and µ2 ≤ −3. By Corollary 1, this is not possible, as the graph is
a tree.

Subcase 2.2. Assume that m1 = m2 ≥ 2.

Then, m1 = m2 = m = 1
2 (ν − 1), and hence, ν = 2m + 1 is odd. Note that (D) = 0

implies that
ν

∑
i=1

µi = 0. This gives us

µ0 +
1
2
(ν − 1)(µ1 + µ2) = 0. (1)

As µ1 + µ2 ∈ Z−, we obtain µ0 = c 1
2 (ν − 1), where c is a positive integer by Equation (1).

Since T is non-complete, there exist vertices x, y, and z in T such that x ∼ y ∼ z. Note that
the set S = {x, y, z} induces a path of length two in T. This implies that, by interlacing,
we obtain −1 < µ1 < 0, as SpecD(K1,2) = {1 ±

√
3,−2}. Moreover, since ν is odd and

m1 = m2 = m = 1
2 (ν − 1), by Theorem 5, we obtain

22m = −(µ1µ2)
m(µ1 + µ2). (2)

By Equation (2), we obtain that µ1µ2 ∈ {1, 2, 4} as µ1 + µ2 ∈ Z−. Next, we discuss all these
possibilities one by one:
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Subsubcase 2.2.1. µ1µ2 = 4.

By Equation (2), we obtain that µ1 + µ2 = −1, which is not possible as µ1 > −1 and
µ2 ≤ −2.

Subsubcase 2.2.2. µ1µ2 = 1.

In this case, by Equation (2), we obtain µ1 + µ2 = −22m. As a consequence of Theo-
rem 5, one could show that T has

⌈D
2
⌉

distinct distance eigenvalues. Using this fact with
µ0 ≤ D(ν − 1), we find that µ0 ≤ D(ν − 1) ≤ 12m. By using µ0 ≤ 12m and Theorem 2,
we obtain

12m ≥ |µ2| > 22m − 1

This implies that m ≤ 3 and, thus, ν ≤ 7. Tables 1 and 2 present all the trees on ν ≤ 7
vertices and their distance spectra. It is easy to check that this case is not possible.

Subsubcase 2.2.3. µ1µ2 = 2.

In this case, we obtain that µ1 + µ2 = −2m. By using a similar argument as in Subcase
2.1, we find that, in this case, we have m ≤ 6. Note that µ1 and µ2 are the roots of

x2 − (µ1 + µ2)x + µ1µ2 = 0. (3)

From (3), we obtain µ1, µ2 = −2m±
√

22m−8
2 . For m ≤ 6, the number 22m − 8 is not a perfect

square. Thus, µi (i = 1, 2) is not integral which is a contradiction to the fact that all µi’s are
integral. This shows that µ0 is not integral which completes the proof.

Table 1. Trees on ν ≤ 7 vertices and their distance spectra.

ν Tree Distance Spectrum

2 {[1]1, [−1]1}
3 {[2.7320]1, [−0.7320]1, [−2]1}

4 {[4.6457]1, [−0.6457]1, [−2]2, }

4 {[5.1623]1, [−0.5858]1, [−1.1623]1, [−3.41421]1, }

5 {[6.60555]1, [−0.60555]1, [−2]3}

5 {[7.45929]1, [−0.51198]1, [−1.0846]1, [−2]1, [−3.8627]1}

5 {[8.2882]1, [−0.5578]1, [−0.7639]1, [−1.7304]1, [−5.2361]1}

6 {[8.5826]1, [−0.5826]1, [−2]4}

6 {[9.6702]1, [−0.4727]1[−1.0566]1, [−2]2, [−4.1409]1}

6 {[11.0588]1, [−0.5114]1, [−0.67301]1, [−1.7026]1[−2]1, [−6.1717]1}
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Table 1. Cont.

ν Tree Distance Spectrum

6 {[10]1, [−0.4384]1, [−1]1, [−2]2, [−4.5615]1}

6 {[10.7424]1, [−0.4754]1, [−0.7639]1, [−1.3363]1, [−5.2360]1}

6 {[12.1093]1, [−0.5358]1, [−0.6798]1, [−1]1, [−2.4295]1, [−7.4641]1}

7 {[10.5678]1, [−0.5678]1, [−2]5}

7 {[11.8281]1, [−0.4488]1, [−1.0423]1, [−2]3, [−4.3368]1}

7 {[13.6353]1, [−0.4703]1, [−0.6481]1, [−1.6923]1, [−2]2, [−6.8245]1}

7 {[12.3945]1, [−0.3973]1, [−0.9692]1, [−2]3, [−5.02789]1}

Table 2. Trees on ν ≤ 7 vertices and their distance spectra.

ν Tree Distance Spectrum

7 {[14.1759]1, [−0.5073]1, [−0.5359]1, [−1.6687]1, [−2]2, [−7.464]1}

7 {[13.0698]1, [−0.4307]1, [−0.7639]1, [−1.2626]1, [−2]1, [−3.3764]1, [−5.2360]1}

7 {[15.4048]1, [−0.4943]1, [−0.62420]1, [−0.9174]1, [−2]1, [−2.4757]1, [−8.8932]1}

7 {[14.863]1, [−0.4749]1, [−0.6461]1, [−0.9171]1, [−1.7796]1, [−3.3529]1, [−7.6929]1}

7 {[13.6346]1, [−0.43245]1, [−0.6651]1, [−1.3089]1, [−2]1, [−3.0055]1, [−6.223]1}

7 {[14.2969]1, [−0.4559]1, [−0.76393]2, [−1.8410]1, [−5.2361]2}

7 {[16.6253]1, [−0.52720]1, [−0.6159]1, [−0.8405]1, [−1.2862]1, [−3.2576]1, [−10.0978]1}
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4. Distance Spectra of Small Graphs

In this section, we deliver all the connected graphs (excluding trees) on ν ≤ 6 vertices
and their distance spectra. For trees, we refer to Tables 1 and 2. Tables 3–16 comprise
these data. Note that these data are generated by using nauty-geng generators on Sage [37]
software. The first column depicts their unique graph6 string. Researchers may use these
data for their research on spectral graph theory of the distance matrix.

There are some interesting observations which we make based on the data in Tables 3–16.
Before we elaborate these observations, we note some necessary definitions. Two non-
isomorphic connected graphs Γ and Ω are said to be distance cospectral (or distance cospectral
mates), if both Γ and Ω have the same multiset of distance eigenvalues. A graph Γ is said to
be determined from its distance spectrum, if it has no distance cospectral mates.

From Tables 1–16, we notice that all the connected graphs on ν ≤ 6 vertices are
determined from their distance spectra. We also deliver a distance cospectral pair on ν = 7
vertices, making a distance cospectral pair of the smallest possible order. Figure 1 depicts
that distance cospectral pair on ν = 7 vertices.

Figure 1. A distance cospectral pair of smallest order.

Table 3. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

Bw 3 {[2]1, [−1]2}

CV 4 {[4.0996]1, [−0.7165]1, [−1]1, [−2.3832]1}

C] 4 {[4.0]1, [0.0]1, [−2.0]2, }

C^ 4 {[3.5616]1, [−0.5616]1, [−1.0]1, [−2.0]1, }

C~ 4 {[3.0]1, [−1.0]3}
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Table 4. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

DC{ 5 {[6.1764]1, [−0.6378]1, [−1.0]1, [−2.0]1, [−2.5387]1}

DEw 5 {[6.5381]1, [0.0]1, [−1.0534]1, [−2.0]1, [−3.4847]1}

DEk 5 {[6.6375]1, [−0.5858]1, [−0.8365]1, [−1.801]1, [−3.4142]1}

DE{ 5 {[5.7596]1, [−0.558]1, [−0.7667]1, [−2.0]1, [−2.4348]1}

DFw 5 {[5.6458]1, [0.3542]1, [−2.0]3}

DF{ 5 {[5.3723]1, [−0.3723]1, [−1.0]1, [−2.0]2}

DQw 5 {[7.0086]1, [−0.5686]1, [−1.0]1, [−1.1774]1, [−4.2626]1}

DQ{ 5 {[5.7016]1, [−0.7016]1, [−1.0]2, [3.0]1}
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Table 5. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

DUW 5 {[6.0]1, [−0.382]2, [−0.618]2}

DUw 5 {[5.6351]1, [0.0]1, [−0.9125]1, [−2.0]1, [−2.7226]1}

DU{ 5 {[5.2926]1, [−0.382]1, [−0.7217]1, [−1.5709]1, [−2.618]1}

DTW 5 {[6.2161]1, [−0.4521]1, [−1.0]1, [−1.1971]1, [−3.5669]1}

DT{ 5 {[5.3441]1, [−0.7105]1, [−1.0]2, [−2.6336]1}

DV{ 5 {[4.9018]1, [−0.5122]1, [−1.0]2, [−2.3896]1}

D}w 5 {[[5.2239]1, [0.1606]1, [−1.0]1, [−2.0]1, [−2.3844]1}

D}{ 5 {[4.8284]1, [0.0]1, [−0.8284]1, [−2.0]2}

D^{ 5 {[4.4495]1, [−0.4495]1, [−1.0]2, [−2.0]1}
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Table 6. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

D~{ 5 {[4.0]1, [−1.0]4}

E?bw 6 {[8.2297]1, [−0.6009]1, [−1.0]1, [−2.0]2, [−2.6288]1}

E?ro 6 {[8.899]1, [0.0]1, [−0.899]1, [−2.0]2, [−4.0]1}

E?qw 6 {[8.9909]1, [−0.512]1, [−0.8175]1, [−1.7801]1, [−2.0]1, [−3.8813]1}

E?rw 6 {[7.8888]1, [−0.5542]1, [−0.6926]1, [−2.0]2, [−2.642]1}

E?zO 6 {[9.6569]1, [0.0]1, [−0.7639]1, [−1.6569]1, [−2.0]1, [−5.2361]1}

E?zo 6 {[8.1468]1, [0.4057]1, [−1.0308]1, [−2.0]2, [−3.5217]1}

E?zW 6 {[8.2882]1, [−0.5578]1, [−0.5858]1, [−1.7304]1, [−2.0]1, [−3.4142]1}

E?zw 6 {[7.5673]1, [−0.358]1, [−0.7507]1, [−2.0]2, [−2.4586]1}

E?~o 6 {[7.4641]1, [0.5359]1, [−2.0]4}
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Table 7. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

E?~w 6 {[7.2749]1, [−0.2749]1, [−1.0]1, [−2.0]3}

ECRo 6 {[9.3154]1, [−0.5023]1, [−1.0]1, [−1.0865]1, [−2.3224]1, [−4.4042]1}

ECRw 6 {[7.8526]1, [−0.6303]1, [−1.0]2, [−2.2223]1, [−3.0]1}

ECr_ 6 {[9.2606]1, [0.0]1, [−1.0]1, [−1.0898]1, [−3.1708]1, [−4.0]1}

ECpo 6 {[8.8219]1, [−0.3559]1, [−0.382]1, [−1.2995]1, [−2.618]1, [−4.1664]1}

ECqg 6 {[9.3852]1, [−0.5858]2, [−1.3852]1, [−3.4142]2}

ECro 6 {[8.1822]1, [0.0]1, [−0.8303]1, [−1.3401]1, [−2.5075]1, [−3.5042]1}

ECrg 6 {[8.6632]1, [−0.4351]1, [−0.7665]1, [−1.1966]1, [−2.3862]1, [−3.8789]1}

ECrw 6 {[7.5222]1, [−0.382]1, [−0.6395]1, [−1.4565]1, [−2.4261]1, [−2.618]1}

ECZ_ 6 {[9.9713]1, [0.0]1, [−0.6685]1, [−1.7199]1, [−2.0]1, [−5.5829]1}
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Table 8. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

ECZO 6 {[10.668]1, [−0.5501]1, [−0.7462]1, [−1.0]1, [−1.8096]1, [−6.562]1}

ECZG 6 {[10.0548]1, [−0.552]1, [−0.6878]1, [−1.1178]1, [−2.2283]1, [−5.4689]1}

ECYW 6 {[9.6088]1, [−0.4931]1, [−1.0]1, [−1.0924]1, [−2.0]1, [−5.0233]1}

ECZo 6 {[8.497]1, [0.0]1, [−1.0]1, [−1.0613]1, [−2.0]1, [−4.4357]1}

ECZg 6 {[8.9694]1, [−0.4807]1, [−0.6851]1, [−1.1687]1, [−2.0]1, [−4.6349]1}

ECZW 6 {[8.5936]1, [−0.5686]1, [−0.8339]1, [−1.0]1, [−1.8778]1, [−4.3134]1}

ECZw 6 {[7.4864]1, [−0.5574]1, [−0.7551]1, [−1.0]1, [−2.0]1, [−3.1739]1}

ECfo 6 {[8.6378]1, [−0.4043]1, [−1.0]1, [−1.1116]1, [−2.0]1, [−4.1219]1}
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Table 9. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

ECfw 6 {[7.5546]1, [−0.6347]1, [−1.0]2, [−2.0]1, [−2.9199]1}

ECxo 6 {[7.6952]1, [0.0932]1, [−0.382]1, [−2.0]1, [−2.618]1, [−2.7884]1}

ECzo 6 {[7.4058]1, [0.3642]1, [−0.9064]1, [−2.0]2, [−2.8636]1}

ECzg 6 {[8.3569]1, [−0.2733]1, [−1.0]1, [−1.0985]1, [−2.0]1, [−3.985]1}

ECzW 6 {[7.9151]1, [−0.3566]1, [−0.6712]1, [−1.1846]1, [−2.1064]1, [−3.5963]1}

ECxw 6 {[7.4417]1, [0.0]1, [−0.5595]1, [−2.0]2, [−2.8823]1}

ECzw 6 {[7.1742]1, [−0.1943]1, [−0.6764]1, [−1.5289]1, [−2.0]1, [−2.7745]1}

ECvo 6 {[7.837]1, [0.1708]1, [−1.0]1, [−1.0545]1, [−2.377]1, [−3.5763]1}

ECuw 6 {[7.9777]1, [−0.5858]1, [−0.8093]1, [−1.0]1, [−2.1683]1, [−3.4142]1}

ECvw 6 {[7.2057]1, [−0.5121]1, [−0.763]1, [−1.0]1, [−2.2667]1, [−2.6639]1}
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Table 10. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EC~o 6 {[7.0959]1, [0.4439]1, [−1.0]1, [−2.0]2, [−2.5398]1}

EC~w 6 {[6.8858]1, [−0.3426]1, [−1.0]2, [−2.0]1, [−2.5432]1}

EEr_ 6 {[8.5704]1, [0.3566]1, [−1.0]1, [−2.0]2, [−3.927]1}

EEro 6 {[7.8759]1, [0.1611]1, [−0.7551]1, [−1.7972]1, [−2.0]1, [−3.4847]1}

EErw 6 {[7.1648]1, [0.0]1, [−0.6718]1, [−2.0]2, [−2.4929]1}

EEh_ 6 {[9.0]1, [0.0]2, [−1.0]1, [−4.0]2}

EEj_ 6 {[8.4244]1, [0.0]2, [−1.4244]1, [−3.0]1, [−4.0]1}

EEio 6 {[8.5543]1, [0.0]1, [−0.6439]1, [−1.7422]1, [−2.0]1, [−4.1682]1}

EEho 6 {[8.0741]1, [−0.3258]1, [−0.382]1, [−0.8858]1, [−2.618]1, [−3.8625]1}
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Table 11. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EEiW 6 {[9.4244]1, [−0.4244]1, [−0.7639]1, [−1.0]1, [−2.0]1, [−5.2361]1}

EEhW 6 {[8.5237]1, [0.0]1, [−0.8401]1, [−1.1598]1, [−2.2582]1, [−4.2656]1}

EEjo 6 {[7.8043]1, [0.0]1, [−0.6535]1, [−1.0921]1, [−2.2817]1, [−3.7771]1}

EEjW 6 {[8.2723]1, [−0.3698]1, [−0.601]1, [−1.1477]1, [−1.8894]1, [−4.2644]1}

EEhw 6 {[7.4002]1, [0.0]1, [−0.8467]1, [−1.0]1, [−2.5535]1, [−3.0]1}

EEjw 6 {[7.1287]1, [−0.279]1, [−0.7025]1, [−1.0]1, [−2.1472]1, [−3.0]1}

EEz_ 6 {[7.772]1, [0.5616]1, [−0.772]1, [−2.0]2, [−3.5616]1}

EEzO 6 {[8.2037]1, [0.1607]1, [−1.0]1, [−1.0566]1, [−2.0]1, [−4.3078]1}

EEzo 6 {[7.0425]1, [0.4744]1, [−0.76]1, [−2.0]2, [−2.7569]1}

EEzg 6 {[7.5169]1, [0.2038]1, [−1.0]1, [−1.0737]1, [−2.0]1, [−3.6471]1}
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Table 12. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EEzw 6 {[6.7884]1, [0.1022]1, [−0.7201]1, [−1.4974]1, [−2.0]1, [−2.6732]1}

EEvo 6 {[7.5455]1, [0.0]1, [−0.7465]1, [−1.176]1, [−2.0]1, [−3.6229]1}

EEuw 6 {[7.6235]1, [−0.4235]1, [−0.8097]1, [−1.0]1, [−1.8233]1, [−3.567]1}

EEvw 6 {[6.8601]1, [−0.4485]1, [−0.7263]1, [−1.0]1, [−2.0]1, [−2.6853]1}

EEno 6 {[7.0835]1, [0.1639]1, [−0.5993]1, [−1.5688]1, [−2.3433]1, [−2.7361]1}

EElw 6 {[7.1231]1, [−0.382]1, [−0.382]1, [−1.1231]1, [−2.618]1, [−2.618]1}

EEnw 6 {[6.8289]1, [−0.382]1, [−0.5882]1, [−1.0]1, [−2.2407]1, [−2.618]1}

EEnw 6 {[6.8289]1, [−0.382]1, [−0.5882]1, [−1.0]1, [−2.2407]1, [−2.618]1}

EE~w 6 {[6.5109]1, [−0.3512]1, [−0.7158]1, [−1.0]1, [−2.0]1, [−2.4439]1}
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Table 13. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EFz_ 6 {[7.0]1, [1.0]1, [−2.0]4}

EFzo 6 {[6.6961]1, [0.6888]1, [−1.0]1, [−2.0]2, [−2.3849]1}

EFzW 6 {[6.744]1, [0.3631]1, [−0.6703]1, [−2.0]2, [−2.4368]1}

EFzw 6 {[6.4188]1, [0.3868]1, [−0.8056]1, [−2.0]3}

EF~w 6 {[6.1623]1, [−0.1623]1, [−1.0]2, [−2.0]2}

EQj_ 6 {[9.6964]1, [−0.4484]1, [−0.7224]1, [−1.0]1, [−1.7703]1, [−5.7553]1}

EQjO 6 {[9.1962]1, [−0.5505]1, [−1.0]2, [−1.1962]1, [−5.4495]1}

EQjo 6 {[8.217]1, [−0.4384]1, [−1.0]2, [−1.217]1, [−4.5616]1}

EQjg 6 {[8.6279]1, [−0.5617]1, [−1.0]2, [−1.1831]1, [−4.883]1}
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Table 14. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EQjw 6 {[7.1246]1, [−0.6959]1, [−1.0]3, [−3.4287]1}

EQZo 6 {[7.772]1, [0.0]1, [−0.772]1, [−1.0]1, [−2.0]1, [−4.0]1}

EQzo 6 {[7.0418]1, [0.1621]1, [−0.912]1, [−1.0]1, [−2.1204]1, [−3.1715]1}

EQzg 6 {[7.9676]1, [−0.4017]1, [−1.0]1, [−1.223]1, [−4.3429]1}

EQzW 6 {[7.5165]1, [−0.3389]1, [−0.4679]1, [−1.1776]1, [−1.6527]1, [−3.8794]1}

EQyw 6 {[7.0747]1, [0.0]1, [−0.8868]1, [−1.0]1, [−2.0]1, [−3.1879]1}

EQzw 6 {[6.783]1, [−0.3274]1, [−0.711]1, [−1.0]1, [−1.6232]1, [−3.1214]1}

EQ~o 6 {[6.7016]1, [0.2984]1, [−1.0]2, [−2.0]1, [−3.0]1}

EQ~w 6 {[6.4641]1, [−0.4641]1, [−1.0]3, [−3.0]1}

EUZ_ 6 {[7.3594]1, [0.1919]1, [−0.382]1, [−1.8043]1, [−2.618]1, [−2.7471]1}

EUZO 6 {[7.3554]1, [−0.2166]1, [−0.382]1, [−1.0]1, [−2.618]1, [−3.1388]1}

152



Axioms 2024, 13, 494

Table 15. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

EUZo 6 {[7.0372]1, [0.0]1, [−0.382]1, [−1.2036]1, [−2.618]1, [−2.8336]1}

EUZw 6 {[6.7417]1, [−0.382]1, [−0.382]1, [−0.7417]1, [−2.618]1, [−2.618]1}

EUxo 6 {[7.0]1, [0.0]2, [−2.0]2, [−3.0]1}

EUzo 6 {[6.6953]1, [0.247]1, [−0.4698]1, [−1.445]1, [−2.2255]1, [−2.8019]1}

EUzW 6 {[6.7363]1, [0.0]1, [−0.4464]1, [−1.3637]1, [−2.0]1, [−2.9263]1}

EUzw 6 {[6.4114]1, [0.0]1, [−0.687]1, [−1.0]1, [−2.0]1, [−2.7244]1}

EU~w 6 {[6.1012]1, [−0.382]1, [−0.5175]1, [−1.0]1, [−1.5837]1, [−2.618]1}

ETzo 6 {[6.7321]1, [0.187]1, [−0.8992]1, [−1.0]1, [−2.1674]1, [−2.8525]1}

ETzg 6 {[7.2426]1, [−0.2679]1, [−1.0]2, [−1.2426]1, [−3.7321]1}
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Table 16. Distance spectra of small graphs.

Graph6 String ν Graph Distance Spectrum

ETzw 6 {[6.4523]1, [−0.2263]1, [−0.7212]1, [−1.0]1, [−1.6828]1, [−2.8221]1}

ETno 6 {[7.2675]1, [−0.3691]1, [−1.0]2, [−1.2143]1, [−3.6841]1}

ETnw 6 {[6.5242]1, [−0.7074]1, [−1.0]3, [−2.8168]1}

ET~w 6 {[6.1425]1, [−0.4913]1, [−1.0]3, [−2.6512]1}

EV~w 6 {[5.7566]1, [−0.3629]1, [−1.0]3, [−2.3937]1}

E]zo 6 {[6.3647]1, [0.2007]1, [−0.382]1, [−1.5654]1, [−2.0]1, [−2.618]1}

E]zg 6 {[6.4017]1, [0.2368]1, [−1.0]2, [−2.0]1, [−2.6385]1}

E]yw 6 {[6.3589]1, [0.4142]1, [−1.0]2, [−2.3589]1, [−2.4142]1}

E]zw 6 {[6.0479]1, [0.1676]1, [−0.8252]1, [−1.0]1, [−2.0]1, [−2.3904]1}
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Table 16. Cont.

Graph6 String ν Graph Distance Spectrum

E]~o 6 {[6.0]1, [0.0]2, [−2.0]3}

E]~w 6 {[5.7016]1, [0.0]1, [−0.7016]1, [−1.0]1, [−2.0]2}

E^~w 6 {[5.3723]1, [−0.3723]1, [−1.0]3, [−2.0]1}

E^~w 6 {[5.3723]1, [−0.3723]1, [−1.0]3, [−2.0]1}

E~~w 6 {[5.0]1, [−1.0]5}

5. Conclusions

The “few eigenvalues” problem is one of the contemporary problems in spectral graph
theory. This paper investigates certain mathematical characteristics of the distance matrix
of trees. In particular, this paper studies the “few eigenvalues” problem regarding the
distance matrix. The main result of this paper classifies all the trees having precisely three
distinct eigenvalues of their distance matrix. Our proof is different from the one delivered
by Zhang and Lin [30]. Our proof employs interlacing and equitable partitions and can
be extended to other families such as unicyclic and bicyclic graphs. We also list all the
connected graphs on ν ≤ 6 vertices and compute their distance spectra. Some important
observations on distance cospectrality are made based on these numerical data.

Based on these remarks, we propose the following open problems for future studies:

Problem 1. Characterize all unicyclic graphs having precisely three distinct distance eigenvalues.

Problem 2. Solve Problem 1 for the case of bicyclic graphs.

Problem 3. Construct an infinite family of non-regular non-bipartite graphs with exactly three
distance eigenvalues.
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Abstract: The possible positions of an equilateral triangle whose vertices are located on the support
sides of a generic triangle are studied. Using complex coordinates, we show that there are infinitely
many such configurations, then we prove that the centroids of these equilateral triangles are collinear,
defining two lines perpendicular to the Euler’s line of the original triangle. Finally, we obtain the
complex coordinates of the intersection points and study some particular cases.
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1. Introduction

Let ∆ABC be a triangle in the Euclidean plane, and denote the complex coordinates of
the vertices A, B, and C by a, b, and c, respectively. We examine some geometric properties
of the equilateral triangles ∆MNP whose vertices are located on the support sides of ∆ABC,
that is, M ∈ BC, N ∈ AC, and P ∈ AB.

The problem studied in this paper is related to a known general topological property.
The polygon P is said to be inscribed in the Jordan curve γ (not necessarily contained
in the interior of γ) if all the vertices of P are located on γ [1]. While Jordan curves
can be complicated, they satisfy certain regular properties in this respect. For example,
Meyerson [2] showed that an equilateral triangle can be inscribed in every Jordan curve, as
illustrated in Figure 1. Later on, Nielsen proved the following result ([3], [Theorem 1.1]):
Let J ⊂ R2 be a Jordan curve and let ∆ be any triangle. Then infinitely many triangles similar to ∆
can be inscribed in γ. Similar results exist for Jordan curves in Rn [4]. Interestingly, Toeplitz’s
statement from 1911 that every Jordan curve admits an inscribed square is still a conjecture in
the general case. Just recently, it was proved for convex or piecewise smooth curves, while
extensions exist for rectangles, curves, and Klein bottles (see, e.g., [5,6]).

Figure 1. Inscribed equilateral triangle in a Jordan curve.
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The triangle is the simplest example of a non-smooth and piecewise linear Jordan
curve; while the equilateral triangle appears to be a simple configuration, it can generate
very interesting properties and applications [7]. In the sense of the above definition for
polygons, an equilateral triangle MNP inscribed in a given triangle ABC can have two
vertices on the same side, a situation that does not present much interest from the geometric
point of view. This is why in the present paper we consider the case M ∈ BC, N ∈ CA, and
P ∈ AB, as seen in Figures 2 and 3 for an acute triangle ABC and in Figure 4 for an obtuse
triangle, respectively. Similar to Nielsen’s result, there are infinitely many such triangles,
generating interesting properties in the triangle geometry [8–11]. Recently, in [12], we
studied the equilateral triangles inscribed in the interior of arbitrary triangles, describing
them by a single parameter and examining some extremal properties (e.g., the angles for
which the minimum inscribed equilateral triangles are obtained). A summary of the results
obtained in [12] is presented in Section 2.

Figure 2. Equilateral triangle MNP inscribed in the triangle ABC. In our example, the initial triangle
has the coordinates A(0, 7), B(−3, 0), C(7, 0), for which the angles in degrees measure Â = 68.1986◦,
B̂ = 66.8014◦, and Ĉ = 45◦, while M̂ = N̂ = P̂ = 60◦.

(a) (b)

(c) (d)

Figure 3. Figures corresponding to equilateral triangles ∆MNP with vertices on the lines BC, CA,
and AB. (a) λ = −0.5; (b) λ = 0; (c) λ = 0.5; (d) λ = 1.5.
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(a) (b)

(c) (d)

Figure 4. Figures corresponding to equilateral triangles ∆MNP with vertices on the lines BC, CA,
and AB of an obtuse triangle ∆ABC for (a) λ = −0.5; (b) λ = 0; (c) λ = 0.5; (d) λ = 1.5.

In this paper, we explore the equilateral triangles whose vertices are located on the
support lines of the sides of an arbitrary triangle. While this configuration does not
represent a Jordan curve, this presents interesting geometric properties. We prove that the
centers of these triangles are situated on two parallel lines, which are perpendicular to the
Euler’s line of the original triangle.

The structure of this paper is as follows. In Section 2, we review some results obtained
in [12], devoted to exact formulas for the lengths of the sides of inscribed equilateral

triangles as a function of a unique parameter and to extremal properties of the side length.
In Section 3, we obtain the complex coordinates of the centroids of the equilateral triangles
having vertices on the support lines of a given triangle. The main result concerning the
locus of these centroids is presented in Section 4. Furthermore, in Section 5 we prove that
the locus of centroids consists of two parallel lines perpendicular to the Euler’s line of the
original triangle. Alternative derivations and particular cases are provided in Section 6,
while conclusions are formulated in Section 7.

The adoption of complex coordinates instead of Cartesian coordinates considerably
simplifies the computations.

2. Inscribed Equilateral Triangles

The particular case when the inscribed equilateral triangle MNP is nested, i.e.,
M ∈ (BC), N ∈ (CA), and P ∈ (AB), was studied in [12] by a trigonometric approach.
Related investigations by other means can be consulted in [8,10,11,13].

Let ∆ABC be a triangle in the Euclidean plane, and denote by A, B, and C the measures
of the angles from vertices A, B, and C, respectively. Without loss of generality, one may
assume that A ≥ B ≥ C; therefore, C ≤ 60◦ ≤ A. In the notation of Figure 2, one obtains
the system
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



α1 + α2 = 2π
3

β1 + β2 = 2π
3

γ1 + γ2 = 2π
3

β1 + γ2 = π − A
γ1 + α2 = π − B
α1 + β2 = π − C.

(1)

The system can be written in matrix form as




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 1 1 0
1 0 0 0 0 1
0 1 1 0 0 0







α1
α2
β1
β2
γ1
γ2




=




2π
3

2π
3

2π
3

π − A
π − B
π − C




. (2)

By simple calculation, one can show that the system (2) is compatible and it has
infinitely many solutions. Moreover, since the rank of the matrix is 5, the solutions are fully
determined by a single variable chosen as the parameter. From the first three equations,
one can substitute α2, β2, and γ2 into the last three and obtain the reduced system





γ1 − β1 = π
3 − A

α1 − γ1 = π
3 − B

β1 − α1 = π
3 − C,

(3)

which can be written in matrix form as



0 −1 1
1 0 −1
−1 1 0






α1
β1
γ1


 =




π
3 − A
π
3 − B
π
3 − C


. (4)

Fixing the parameter α1 = α ∈ [0, 120◦] = m(∠NMC), the system (3) has the solution

β1 = α + C − 60◦, γ1 = α + 60◦ − B.

From the conditions 0 ≤ β1, γ1 ≤ 120◦ one obtains α + 60◦ − B ≤ 120◦. The geometric
constraints illustrated in Figure 2

60◦ − C ≤ α ≤ min{60◦ + B, 120◦}, (5)

show that there are infinitely many possible configurations.
In our recent paper [12], we obtained the following explicit formula for the side length

of the inscribed equilateral triangle as a function of the parameter α:

l(α) =
2R · sin A · sin B · sin C

sin C · sin(α + 60◦ − B) + sin B · sin(α + C)

=
2R · sin A · sin B · sin C

sin A · sin α + sin C · sin(60◦ + B − α)

=
2R · sin A · sin B · sin C

sin B · sin(α + C − 60◦) + sin A · sin(α + 60◦)
,

where R is the circumradius of triangle ABC. Denote K[ABC] as the area of triangle ABC,
and from the relation K[ABC] = AB·BC·CA

4R2 and the Law of Sines, one obtains
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l(α) =
2K[ABC]

AB · sin(α + 60◦ − B) + AC · sin(α + C)
(6)

=
2K[ABC]

BC · sin α + AB · sin(60◦ + B − α)

=
2K[ABC]

AC · sin(α + C − 60◦) + BC · sin(α + 60◦)
.

Furthermore, we showed in [12] that the minimal triangle MNP is obtained for

α∗ = arctan

√
3

2 sin B · sin C + 1
2 cos B sin C + sin B cos C

√
3

2 cos B sin C + 1
2 sin B sin C

.

Numerous illustrative examples are also provided in [12].

3. Coordinates of the Centroids of the Triangle MNP

The complex coordinates of the vertices of ∆MNP are denoted by m, n, and p. As seen
in Figure 3 for an acute triangle and in Figure 4 for an obtuse triangle, such triangles can be
constructed starting from the points N on AC and P on the side AB, with the condition that
the third point M on BC is obtained by a rotation of angle π/3, which in complex numbers
can be performed by multiplying with (see, for example, [14]):

ω = cos
π

3
+ i sin

π

3
=

1
2
+

√
3

2
i.

Clearly, if N ∈ AC and P ∈ AB, there exist the scalars λ and µ such that

n = a + λ(c − a), p = a + µ(b − a), λ, µ ∈ R.

In this notation, note that, as seen in Figure 3, we have

1. If λ < 0, then A ∈ (NC);
2. If λ = 0, then A = N;
3. If 0 < λ < 1, then N ∈ (AC) (the case presented in Section 2);
4. If λ = 1, then N = C;
5. If λ > 1, then C ∈ (AN).

Then, the point M of the equilateral triangle MNP is obtained by rotating segment
(PN) around point N through an angle of π/3, clockwise or anticlockwise.

3.1. First Orientation of Triangle MNP: Anticlockwise Rotation

For anticlockwise rotation, we obtain the complex coordinate

m = n + (p − n)ω

= [(1 − µ)a + µb]ω + [(1 − λ)a + λc]ω

= a + µω(b − a) + λω(c − a) = c + s(b − c),

where we use the relation ω + ω = 1. Since M ∈ (BC), one must have s ∈ R, hence s = s.
From here it follows that

s =
a − c + µω(b − a) + λω(c − a)

b − c

=
a − c + µω

(
b − a

)
+ λω(c − a)

b − c
= s.
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This condition can be written as

[(a − c) + µω(b − a) + λω(c − a)]
(

b − c
)
=
[
(a − c) + µω

(
b − a

)
+ λω(c − a)

]
(b − c),

which reduces to

µ =
y
x

λ +
z
x
= kλ + l, (7)

where x, y, and z are given by

x = ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c) ∈ i ·R, (8)

y = ω(b − c)(c − a)− ω
(

b − c
)
(c − a) ∈ i ·R,

z = (b − c)(a − c)−
(

b − c
)
(a − c) ∈ i ·R.

Clearly, this shows that the coordinates m, n, p depend linearly on λ ∈ R, as

n(λ) = a + λ(c − a),

p(λ) = a + (kλ + l)(b − a),

m(λ) = a + (kλ + l)ω(b − a) + λω(c − a), λ ∈ R,

where the values k and l are real numbers obtained from (7) and (8), as

k =
ω(b − c)(c − a)− ω

(
b − c

)
(c − a)

ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c)

, (9)

l =
(b − c)(a − c)−

(
b − c

)
(a − c)

ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c)

,

which are ratios of purely imaginary numbers.

3.2. Second Orientation of Triangle MNP: Clockwise Rotation

An alternative configuration is obtained when the rotation of P around N is taken
with an angle of 60◦ clockwise. Similar to Section 3.1, we obtain

m2 = n + (p2 − n)ω

= [(1 − µ)a + µb]ω + [(1 − λ)a + λc]ω

= a + µω(b − a) + λω(c − a) = c + s(b − c),

where we use the fact that ω + ω = 1. Imposing the condition s = s, for λ ∈ R, the
coordinates of the vertices of ∆MNP can be written explicitly

n(λ) = a + λ(c − a),

p2(λ) = a + (k2λ + l2)(b − a),

m2(λ) = a + (k2λ + l2)ω(b − a) + λω(c − a). (10)

The coefficients are related through the formula

µ2 =
y2

x2
λ +

z2

x2
= k2λ + l2, (11)
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where x2, y2, and z2 are obtained from

x2 = ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c) ∈ i ·R, (12)

y2 = ω(b − c)(c − a)− ω
(

b − c
)
(c − a) ∈ i ·R,

z2 = (b − c)(a − c)−
(

b − c
)
(a − c) = z.

Using (11) and (12), the values k2 and l2 are the real numbers given by

k2 =
ω(b − c)(c − a)− ω

(
b − c

)
(c − a)

ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c)

, (13)

l2 =
(b − c)(a − c)−

(
b − c

)
(a − c)

ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c)

.

These formulas allow a convenient calculation for the coordinates of the centroids.
For a given point N ∈ AC, the possible equilateral triangles are shown in Figure 5.

Figure 5. Inscribed equilateral triangles with distinct orientations.

4. The Collinearity of the Centroids of Triangle MNP

In this section, we show that for each orientation of the triangles MNP (clockwise and
anticlockwise), the corresponding centroids are collinear.

4.1. The First Line of Centroids

As a function of λ, the coordinate of the centroid of triangle ∆MNP is given by

g1(λ) =
m + n + p

3

=
[a + µω(b − a) + λω(c − a)] + [a + λ(c − a)] + [a + µ(b − a)]

3

= a +
µ(1 + ω)(b − a) + λ(1 + ω)(c − a)

3

= [k(1 + ω)(b − a) + (1 + ω)(c − a)] · λ

3
+

l(1 + ω)(b − a)
3

+ a, (14)

where we use (7) for k and l. By this formula, it follows that the centroids of the equilateral
triangles ∆MNP situated on the support lines BC, CA, and AB, are collinear, as depicted
in Figures 6 and 7, for a specified range of values λ.
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(a) (b)

Figure 6. Equilateral triangles ∆MNP with the vertices on the lines BC, CA, and AB, with centroids
represented by red “x” symbols. (a) λ = −0.5, 0, 0.5, 1, 1.5; (b) λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5. Also plotted
are the centroid G and orthocenter H of ∆ABC.

(a) (b)

Figure 7. Equilateral triangles ∆MNP with the vertices on the lines BC, CA, and AB, with centroids
represented by red “x” symbols. (a) λ = −0.5, 0, 0.5, 1, 1.5; (b) λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5. Also plotted
are the centroid G and orthocenter H of ∆ABC.

4.2. The Second Line of Centroids

For the second line, using (10), we have the formula

g2(λ) =
m2 + n + p2

3

=
[a + µ2ω(b − a) + λω(c − a)] + [a + λ(c − a)] + [a + µ2(b − a)]

3

= a +
µ2(1 + ω)(b − a) + λ(1 + ω)(c − a)

3

= [k2(1 + ω)(b − a) + (1 + ω)(c − a)] · λ

3
+

l2(1 + ω)(b − a)
3

+ a, (15)

where we use (11) and the coefficients k2 and l2 given by (13).

5. Perpendicularity and Intersection with Euler’s Line

The following auxiliary result is useful in proving the main results of this section.

Lemma 1. Let u1, u2, v1, and v2 be complex numbers and consider the lines (α1) and (α2) given
in parametric form by z = u1t + v1, t ∈ R and ζ = u2s + v2, s ∈ R, respectively. The following
properties hold:

(1) If u1u2 + u1u2 = 0, then (α1) and (α2) are perpendicular.
(2) If u1u2 − u1u2 ̸= 0, then (α1) and (α2) intersect at the point

Z =
u1(u2v2 − u2v2)− u2(u1v1 − u1v1)

u1u2 − u1u2
. (16)

Proof. (1) Let us consider the points z′ = u1t1 + v1 and z′′ = u1t2 + v1 on (α1) and the
points ζ ′ = u2s1 + v2 and ζ ′′ = u2s2 + v2 on (α2). The lines are perpendicular if and only if
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ζ ′′ − ζ ′

z′′ − z′
=

(u2s2 + v2)− (u2s1 + v2)

(u1t2 + v1)− (u1t1 + v1)
=

u2(s2 − s1)

u1(t2 − t1)
∈ i ·R,

which reduces to u2
u1

∈ i ·R. Therefore,

0 =
u2

u1
+

(
u2

u1

)
=

u2

u1
+

u2

u1
=

u1u2 + u1u2

|u1|2
= 0,

from where the conclusion follows.
(2) If the point of coordinate Z is located on both lines, it means that there exist

real numbers t and s such that Z = u1t + v1 = u2s + v2. By conjugation, one obtains
u1t + v1 = u2s + v2, from where we can solve for t and s the system

{
u2s − u1t = v1 − v2

u2s − u1t = v1 − v2.
(17)

The system (17) has the solution

s =
u1(v1 − v2)− u1(v1 − v2)

(u1u2 − u1u2)
, t =

u2(v1 − v2)− u2(v1 − v2)

(u1u2 − u1u2)
,

and by substitution, one obtains

Z = u1t + v1 = u1 ·
u2(v1 − v2)− u2(v1 − v2)

(u1u2 − u1u2)
+ v1,

which after simplifications recovers formula (16).

A special case is when (α2) passes through the origin.
Recall that in every triangle ABC, the circumcenter O, the centroid G, and the or-

thocenter H are collinear on the Euler line of the triangle. Without loss of generality, we
can choose the circumcenter O of ∆ABC as the origin of the complex plane. Under this
assumption, we obtain the coordinates o = 0, g = a+b+c

3 , and h = a + b + c; hence, Euler’s
line is defined by the formula u(a + b + c), u ∈ R. Furthermore, the circumradius of the
triangle ABC can be set to 1, in which case we have |a| = |b| = |c| = 1, or

a =
1
a

, b =
1
b

, c =
1
c

.

5.1. The First Line of Centroids

For the first centroid line, by substituting, we obtain

x = ω(b − a)
(

1
b
− 1

c

)
− ω

(
1
b
− 1

a

)
(b − c)

=
1

abc
(b − a)(c − b)(ωa − ωc)

y = ω(b − c)
(

1
c
− 1

a

)
− ω

(
1
b
− 1

c

)
(c − a)

=
1

abc
(b − c)(a − c)(ωb − ωa) =

1
abc

(c − b)(c − a)(ωb − ωa)

z = (b − c)
(

1
a
− 1

c

)
−
(

1
b
− 1

c

)
(a − c)

=
1

abc
(b − a)(b − c)(c − a) =

1
abc

(b − a)(c − b)(a − c).
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Substituting in (7), we obtain

k =
y
x
=

c − a
b − a

· ωb − ωa
ωa − ωc

, (18)

l =
z
x
=

a − c
ωa − ωc

. (19)

Therefore, the first line of centroids depicted in Figure 8 has the equation

g1(λ) =
c − a

ωa − ωc
· (a + b + c) ·

√
3i · λ

3
+

a − c
ωa − ωc

· (1 + ω)(b − a)
3

+ a

= −(a + b + c) · λ
√

3i · l
3
+

l(1 + ω)(b − a)
3

+ a = u1λ + v1, (20)

while Euler’s line is given by

E(s) = (a + b + c)s = u2s + v2. (21)

(a) (b)

Figure 8. First line of centroids g1(λ) given by (14), represented by red “x” symbols. (a) Acute
triangle; (b) obtuse triangle. Also plotted are the centroid G, orthocenter H, and centre O of ∆ABC.

By Formulas (20) and (21) for the line of centroids and Euler’s line, we obtain

u1 = −(a + b + c) ·
√

3i · l
3

,

v1 =
l(1 + ω)(b − a)

3
+ a,

u2 = a + b + c,

v2 = 0,

where l ∈ R is given by (19). First, notice that

u1 = −
√

3l
3

i · u2, u1 =

√
3l

3
i · u2. (22)

By Lemma 1, we obtain the following result.

Theorem 1. (1) The first line of centroids g1(λ) is perpendicular to Euler’s line.
(2) The intersection point between the line g1(λ), λ ∈ R and Euler’s line is

Z = ℜ
(

v1

u2

)
· u2,

where ℜ(z) denotes the real part of the complex number z.
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Proof. (1) Substituting (22) in Lemma 1 (1), one obtains

u1u2 + u1u2 =

√
3l

3
i · u2 · u2 +

(
−
√

3l
3

i · u2u2

)
= 0.

(2) Since v2 = 0, the formula (16) reduces to

Z = −u2(u1v1 − u1v1)

(u1u2 − u1u2)
. (23)

Therefore, we obtain

u1u2 − u1u2 =
2
√

3l
3

i · u2 · u2 =
2
√

3l
3

i · |u2|2. (24)

After simplifications, one obtains

Z = u2 ·
v1
u2

+ v1
u2

2
= ℜ

[
v1

u2

]
· u2. (25)

This ends the proof.

5.2. The Second Line of Centroids

For the second centroid line, similar calculations show that

x2 =
1

abc
(b − a)(c − b)(ωa − ωc),

y2 =
1

abc
(c − b)(c − a)(ωb − ωa),

z2 = z =
1

abc
(b − a)(c − b)(a − c),

from where, through (11), we have

k2 =
y2

x2
=

c − a
b − a

· ωb − ωa
ωa − ωc

, (26)

l2 =
z2

x2
=

a − c
ωa − ωc

. (27)

The second line of centroids has the equation

g2(λ) =
c − a

ωa − ωc
· (a + b + c) ·

√
3i · λ

3
+

a − c
ωa − ωc

· (1 + ω)(b − a)
3

+ a

= −(a + b + c) · λ
√

3i · l2
3
+

l2(1 + ω)(b − a)
3

+ a = u3λ + v3, (28)

where the coefficients are

u3 = −(a + b + c) ·
√

3i · l2
3

, v3 =
l2(1 + ω)(b − a)

3
+ a,

where l2 ∈ R is given by (27). Again, one may notice that

u3 = −
√

3l2
3

i · u2, u3 =

√
3l2
3

i · u2, (29)

168



Axioms 2024, 13, 478

so by Lemma 1, the perpendicularity follows from the relation

u3u2 + u3u2 =

√
3l2
3

i · u2 · u2 +

(
−
√

3l2
3

i · u2u2

)
= 0.

The two parallel lines of centroids g1(λ) and g2(λ) are shown in Figure 9.

(a) (b)

Figure 9. First and second lines of centroids g1(λ) and g2(λ) given by (14) and (28), respectively,
represented by red “x” symbols. (a) Acute triangle; (b) obtuse triangle. Also plotted are the centroid
G, orthocenter H, and centre O of ∆ABC.

The coordinates of this intersection point are given by

Z2 = u2 ·
v3
u2

+ v3
u2

2
= ℜ

(
v3

u2

)
· u2. (30)

We have an analogous result to Theorem 1, for the second line of centroids.

Theorem 2. (1) The second line of centroids g2(λ) is perpendicular to Euler’s line.
(2) The intersection point between the line g2(λ), λ ∈ R and Euler’s line is

Z2 = ℜ
(

v3

u2

)
· u2.

6. Alternative Approaches and Particular Examples

This section presents alternative proofs of the results.

6.1. Perpendicularity to Euler’s Line

For a direct proof of the result in Theorem 1 (1), without using Lemma 1, it suffices to
show that for λ1 ̸= λ2 we obtain

g1(λ1)− g1(λ2)

a + b + c
∈ i ·R.

Indeed, by formula (14), one obtains

g1(λ1)− g1(λ2) = [k(1 + ω)(b − a) + (1 + ω)(c − a)] · λ1 − λ2

3
.

Furthermore, one can write
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k(1 + ω)(b − a) + (1 + ω)(c − a) = (c − a) ·
[

ωb − ωa
ωa − ωc

(1 + ω) + (1 + ω)

]

=
c − a

ωa − ωc
· [(ωb − ωa)(1 + ω) + (ωa − ωc)(1 + ω)]

=
c − a

ωa − ωc
·
[
(ω − ω)a +

(
ω + ω2

)
b +

(
−ω − ω2

)
c
]

=
c − a

ωa − ωc
· (a + b + c) ·

√
3i,

where for ω = 1
2 +

√
3

2 i, we use the identities

ω − ω = ω + ω2 = −ω − ω2 =
√

3i.

Clearly, this shows that

g1(λ1)− g1(λ2)

a + b + c
=

λ1 − λ2

3
· c − a

ωa − ωc
·
√

3i,

which is purely imaginary since

c − a
ωa − ωc

=
1
c − 1

a
ω
a − ω

c
=

c − a
ωa − ωc

.

This ends the proof. A proof based on trilinear coordinates was provided in [8].
Similarly, one can prove the result for the second line of centroids.

6.2. Intersection Points

From the condition s ∈ R (i.e., s = s), we obtain

s =
g1(λ)

a + b + c
=

g1(λ)

a + b + c
= s.

This condition reduces to

l(1 + ω)(b − a) + 3a
a + b + c

−
l(1 + ω)

(
b − a

)
+ 3a

a + b + c
= 2l

√
3i · λ,

which gives (using that l ∈ R)

[l(1 + ω)(b − a) + 3a]
(

a + b + c
)
−
[
l(1 + ω)

(
b − a

)
+ 3a

]
(a + b + c)

= 2l | a + b + c |2
√

3i · λ,

or

2 · λ
√

3i =
(1 + ω)(b − a)

a + b + c
−

(1 + ω)
(

b − a
)

a + b + c
+

1
l

[
3a

a + b + c
− 3a

a + b + c

]
.

By substituting λ
√

3i in (20) and dividing by a + b + c, one obtains

s = ℜ
[

l(1 + ω)(b − a) + 3a
3(a + b + c)

]
,

from where we deduce the following result.
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Theorem 3. The intersection point between the first line of centroids g1(λ), λ ∈ R and Euler’s
line of ∆ABC has the complex coordinates

Z = ℜ
[

l(1 + ω)(b − a) + 3a
3(a + b + c)

]
· (a + b + c)

= ℜ
[

a−c
ωa−ωc (1 + ω)(b − a) + 3a

3(a + b + c)

]
· (a + b + c).

Similarly, one can prove the coordinate of the intersection between the second line of
centroids g2(λ), λ ∈ R and Euler’s line of ∆ABC as

Z2 = ℜ
[

l2(1 + ω)(b − a) + 3a
3(a + b + c)

]
· (a + b + c)

= ℜ
[

a−c
ωa−ωc (1 + ω)(b − a) + 3a

3(a + b + c)

]
· (a + b + c).

6.3. Particular Examples and Formulas

In this section, we derive some particular formulas for the lines of centroids and their
intersection with Euler’s line obtained for a = 0. From (14), we obtain

g1(λ) =
m + n + p

3
= [k(1 + ω)b + (1 + ω)c] · λ

3
+

l(1 + ω)b
3

, (31)

where by (9) and using ω − ω =
√

3i, the values k and l are given by

k =
ω(b − c)c − ω

(
b − c

)
c

ωb
(

b − c
)
− ωb(b − c)

=
−|c|2

√
3i +

(
ωbc − ωbc

)

|b|2
√

3i −
(

ωbc − ωbc
) , (32)

l =
c
(

b − c
)
− c(b − c)

ωb
(

b − c
)
− ωb(b − c)

=
cb − bc

|b|2
√

3i −
(

ωbc − ωbc
) .

For the second line of centroids, we obtain

g2(λ) =
m2 + n + p2

3
= [k2(1 + ω)b + (1 + ω)c] · λ

3
+

l2(1 + ω)b
3

, (33)

where by (13), the coefficients k2 and l2 are given by

k2 =
ω(b − c)c − ω

(
b − c

)
c

ωb
(

b − c
)
− ωb(b − c)

=
|c|2

√
3i −

(
ωcb − ωcb

)

−|b|2
√

3i +
(

ωcb − ωcb
) , (34)

l2 =

(
b − c

)
c − (b − c)c

ωb
(

b − c
)
− ωb(b − c)

=
cb − bc

−|b|2
√

3i +
(

ωcb − ωcb
) .

We notice that these parametrizations are different from those in Section 5.

7. Conclusions

In this paper, we studied the equilateral triangles whose vertices are located on the sup-
port lines of a given arbitrary triangle. Using complex coordinates and a parametrization,
we proved that the centers of these triangles are located on two lines, which are perpen-
dicular to the Euler’s line of the given triangle, and we also computed the coordinates of
these intersections.
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It is interesting to investigate geometric properties related to triangles similar to a
prototype whose vertices are located on the support lines of a given triangle.
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Abstract: In this paper, we provide some properties of k-potent elements in algebras obtained by the
Cayley–Dickson process over Zp. Moreover, we find a structure of nonunitary ring over Fibonacci
quaternions over Z3 and we present a method to encrypt plain texts, by using invertible elements in
some of these algebras.

Keywords: k-potent elements; algebras obtained by the Cayley–Dickson process; quaternion
Fibonacci elements

MSC: 17A35; 11B39

1. Preliminaries

In [1], the authors provided some properties regarding quaternions over the field Zp.
Since quaternions are special cases of algebras obtained by the Cayley–Dickson process,
in this paper, we extend the study of k-potent elements over quaternions to an arbitrary
algebra obtained by the Cayley–Dickson process. These algebras, in general, are poor
in properties, are not commutative, starting with dimension 4 (the quaternions), are not
associative, starting with dimension 8 (the octonions) and lost alternativity, starting with
dimension 16 (the sedionions). The good news is that all algebras obtained by the Cayley–
Dickson process are power-associative and this is the property that will be used when
we study the k-potent elements in these algebras. For other details regarding the power-
associative algebras and their properties and applications, the reader is referred to [2–4].

The paper is organized as follows: in the Introduction, we present basic properties
of algebras obtained by the Cayley–Dickson process, in Section 3, we characterize the
k-potent elements in these algebras, in Section 4, we give a structure of non-unitary and
noncommutative ring over the Fibonacci quaternions over Z3, and in the last section, we
provide an encryption method by using invertible elements in some of these algebras.

2. Introduction

In the following, we consider A, a finite-dimensional unitary algebra over a field K
with charK ̸= 2.

An algebra A is called alternative if x2y = x(xy) and xy2 = (xy)y, for all x, y ∈ A,
flexible if x(yx) = (xy)x = xyx, for all x, y ∈ A and power-associative if the subalgebra < x >
of A generated by any element x ∈ A is associative. Each alternative algebra is a flexible
algebra and a power-associative algebra [3].

We consider the algebra A ̸= K such that for each element x ∈ A, the following
relation is true

x2 + txx + nx = 0,

Axioms 2024, 13, 351. https://doi.org/10.3390/axioms13060351 https://www.mdpi.com/journal/axioms173
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for all x ∈ A and tx, nx ∈ K. This algebra is called a quadratic algebra. For other details
regarding quadratic algebras, the reader is referred to [3].

It is well known that a finite-dimensional algebra A is a division algebra if and only if
A does not contain zero divisors [3].

A composition algebra A over the field K is an algebra, not necessarily associative, with a
nondegenerate quadratic form n which satisfies the relation

n(xy) = n(x)n(y), ∀x, y ∈ A.

Unital composition algebras are called Hurwitz algebras. We denote with R, C, H and
O the real field, the complex field, the real quaternion algebra and the real octonion algebra.

Hurwitz’s Theorem [5]. R, C, H and O are the only real alternative division algebras.

Theorem 1 (Theorem 2.14, [6]). A is a composition algebra if and only if A is an alternative
quadratic algebra.

An element x in a ring R is called nilpotent if we can find a positive integer n such
that xn = 0. The number n, the smallest with this property, is called the nilpotency index.
A power-associative algebra A is called a nil algebra if and only if each element of this
algebra is nilpotent. An element x in a ring R is called k-potent, for k > 1, a positive integer,
if k is the smallest number such that xk = x. The number k is called the k-potency index.
For k = 2, we have idempotent elements, and for k = 3, we have tripotent elements, etc.

Let A be an algebra over the field K and a scalar involution over A,

: A → A, a → a,

that means a linear map with the following properties

ab = ba, a = a,

and
a + a, aa ∈ K · 1, for all a, b ∈ A.

For the element a ∈ A, the element a is called the conjugate of the element a. The
linear form

t : A → K , t(a) = a + a

and the quadratic form
n : A → K, n(a) = aa

are called the trace and the norm of the element a, respectively. From here, the results show
that an algebra A with a scalar involution is a quadratic algebra. Indeed, if in the relation
n(a) = aa, we replace a = t(a)− a, we obtain

a2 − t(a)a + n(a) = 0. (1)

Let δ ∈ K be a fixed non-zero element. We define the following algebra multiplication
on the vector space A ⊕ A

(a1, a2)(b1, b2) =
(

a1b1 + δb2a2, a2b1 + b2a1

)
. (2)

The obtained algebra structure over A ⊕ A, denoted by (A, δ), is called the algebra
obtained from A by the Cayley–Dickson process. We have that dim(A, δ) = 2 dim A.

Let x ∈ (A, δ), x = (a1, a2). The map

: (A, δ) → (A, δ) , x → x̄ = (a1,−a2),
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is a scalar involution of the algebra (A, δ), extending the involution of the algebra A. We
consider the maps

t(x) = t(a1)

and
n(x) = n(a1)− δn(a2)

called the trace and the norm of the element x ∈ (A, δ),, respectively.
If we consider A = K and we apply this process t times, t ≥ 1, we obtain an algebra

over K,

At =

(
δ1, . . . , δt

K

)
. (3)

Using induction in this algebra, the set {1, f1, . . . , fn−1}, n = 2t generates a basis with
the properties:

f 2
i = δi1, i ∈ K, δi ̸= 0, i = 1, . . . , t (4)

and
fi f j = − f j fi = αij fk, αij ∈ K, αij ̸= 0, i ̸= j, i, j = 1, . . . n − 1, (5)

αij and fk being uniquely determined by fi and f j.
From [7], Lemma 4, the results show that in any algebra At with the basis {1, f1, . . . , fn−1}

satisfying relations (4) and (5), we have:

fi( fix) = δix = (x fi) fi, (6)

for all i ∈ {1, 2, . . . , n − 1} and for every x ∈ A.
The field K is the center of the algebra At ,for t ≥ 2 [7]. Algebras At of dimension

2t obtained by the Cayley–Dickson process, described above, are flexible and power-
associative, for all t ≥ 1, and, in general, are not division algebras, for all t ≥ 1.

For t = 2, we obtain the generalized quaternion algebras over the field K. If we take
K = R and δ1 = δ2 = −1, we obtain the real quaternion algebra over R. This algebra is an
associative and a noncommutative algebra and will be denoted with H.

Let H be the real quaternion algebra with basis {1, i, j, k}, where

i2 = j2 = k2 = −1, ij = −ji, ik = −ki, jk = −kj. (7)

Therefore, each element from H has the following form

q = a + bi + cj + dk, a, b, c, d ∈ R.

We remark that H is a vector space of dimension 4 over R with the addition and scalar
multiplication. Moreover, H has a ring structure with multiplication given by (7) and the
usual distributivity law.

If we consider K a finite field with charK ̸= 2, due to the Wedderburn’s Theorem,
a quaternion algebra over K is always a non division algebra or a split algebra.

For other details regarding Cayley–Dickson process and the properties of obtained
algebras, the reader is referred to [3] and to the book [4], p. 28–50.

3. Characterization of k-Potent Elements in Algebras Obtained by the Cayley–
Dickson Process

In the paper [8], the author gave several characterizations of k-potent elements in
associative rings from an algebraic point of view. In [9], the authors presented some
properties of (m, k)-type elements over the ring of integers modulo n and in [10], the author
emphasize the applications of k-potent matrices to digital image encryption.

In the following, we will study the properties of k-potent elements in a special case of
nonassociative structures, which means we characterize the k-potent elements in algebras
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obtained by the Cayley–Dickson process over the field of integers modulo p, p a prime
number greater than 2, K = Zp.

Remark 1. Since algebras obtained by the Cayley–Dickson process are power-associative, we can de-
fine the power of an element. In this paper, we consider At such an algebra, given by the relation (3),
with δi = −1, for all i, i ∈ {1, . . . , t}. We consider x ∈ At, a k-potent element, which means k is
the smallest positive integer with this property. Since At is a quadratic algebra, from relation (1),
we have that x2 − t(x)x + n(x) = 0, with t(x) ∈ K, the trace, and n(x) ∈ K. the norm of the
element x. To make calculations easier, we will denote t(x) = tx and n(x) = nx.

Remark 2. (i) In general, algebras obtained by the Cayley–Dickson process are not composition
algebras, but the following relation

n(xm) = (n(x))m

is true, for m a positive integer. Indeed, we have n(xm) = xmxm and (n(x))m = (xx)m =
xx · · · · · xx, m-times with x = tx − x, tx ∈ K. Since x and x are in the algebra generated by x, they
associate and commute, due to the power-associativity property. If x ∈ At is an invertible element,
which means nx ̸= 0, then the same remark is also true for x−1 = x

nx
, the inverse of the element x.

The element x−1 is in the algebra generated by x, therefore associate and commute with x.
(ii) We know that x2 − txx + nx = 0. If x ∈ At is a nonzero k-potent element, then, from the

above, we have nx = 0 or nx ̸= 0 and nk−1
x = 1.

(iii) Let x ∈ At be a nonzero k-potent element such that nx ̸= 0. Then, the element x is an
invertible element in At such that xk−1 = 1. Indeed, if xk = x, multiplying with x−1 we have

xk−1 = 1.
(iv) For a nilpotent element x ∈ At there is a positive integer k ≥ 2 such that xk = 0, k the

smallest with this property. From here, we have that nx = 0; therefore, x2 = txx. It results that
xk = txxk−1, then txxk−1 = 0 with xk−1 ̸= 0. We find that tx = 0 and x2 = 0. Therefore, we can
say that in an algebra At, if exist, we have only nilpotent elements of index two.

In the following, we will characterize the k-potent elements in the case when nx = 0.

Proposition 1. The element x ∈ At, x ̸= 0, with nx = 0 and tx ̸= 0 is a k-potent element in At
if and only if tx is a k-potent element in Z∗

p, 2 ≤ k ≤ p (tx has k − 1 as multiplicative order in Z∗
p).

Proof of Proposition 1. We must prove that if k is the smallest positive integer such that
xk = x, then tk

x = tx; therefore, tk−1
x = 1, with k the smallest positive integer with this

property. We have xk = xk−2x2 = xk−2txx = txxk−1 = txxk−3x2 = t2
xxk−2 = · · · = tk−1

x x.
If tk−1

x = 1, we have xk = x and if xk = x, we have x = tk−1
x x; therefore, tk−1

x = 1.
Now, we must prove that k ≤ p. We know that in Zp the multiplicative order of a

nonzero element is a divisor of p − 1. If the order is p − 1, the element is called a primitive
element. If tx ̸= 0 in Zp and tk−1

x = 1, the results show that (k − 1) | (p − 1), then
k − 1 ≤ p − 1 and k ≤ p.

Remark 3. For elements x with nx = 0 and tx ̸= 0, from the above theorem, we remark that in an
algebra At over Zp we have k ≤ p, where k is the potency index. That means the k-potency index in
these conditions does not exceed the prime number p. Since ap−1 ≡ 1 mod p, for all nonzero a ∈ Zp,
always the results show that xp = x. It is not necessary for p to be the smallest with this property.

Remark 4. If we take p = 5 and we have x ∈ At such that x38 = x, since we known that x5 = x,
we obtain x38 = x35x3 =

(
x5)7x3 = x7x3 = x10 = x5x5 = x2. Therefore, x2 = x and the

k-potency index is 2.

In the following, we will characterize the k-potent elements when nx ̸= 0 and nk−1
x = 1.

We suppose that k ≥ 3. Indeed, if k = 2, we have x2 = x, then x = 1.
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The following result it is well known from the literature. We reproduce here the proof.

Proposition 2. Each element of a finite field K can be expressed as a sum of two squares from K.

Proof of Proposition 2. If charK = 2, we have that the map f : K → K, f (x) = x2 is
an injective map; therefore, is bijective and each element from K is a square. Indeed,
if f (x) = f (y), we have that x2 = y2 and x = y or x = −y = y,since −1 = 1 in charK = 2.

Assuming that charK = p ̸= 2. We suppose that K has q = pn elements, then K∗ has
q − 1 elements. Since (K∗, ·) is a cyclic group with q − 1 elements, K∗ = {1, v, v2, . . . , vq−2},
half of them, namely the even powers are squares. The zero element is also a square, then
we have q−1

2 + 1 = q+1
2 square elements from K which are squares. We know that from

a finite group (G, ∗) if S and T are two subsets of G and |S| + |T| > |G|, we have that
each x ∈ G can be expresses as x = s ∗ t, s ∈ S, t ∈ T. For g ∈ G, we consider the set
gS−1 = {g ∗ s−1, s ∈ S}, which has the same cardinal as the set T. Since |S|+ |T| > |G|, the
results show that |T|+

∣∣gS−1
∣∣ > |G|; therefore, T ∩ gS−1 ̸= ∅. Then, there are the elements

s ∈ S and t ∈ T such that t = g ∗ s−1 and g = s ∗ t. Now, if we consider S and T two sets
equal with the multiplicative. In the group (K,+), we have that |S|+ |T| = q + 1 > |K|;
therefore, each x ∈ K can be written as x = s2 + t2, with s ∈ S, t ∈ T.

Remark 5. (i) We can find an element w ∈ At, different from elements of the base, such that
w2 = −1. Indeed, such an element has nw = 1 and tx = 0. With the above notations and from the
above Proposition 7, since 1 = a2 + b2, we can take wij = a fi + b f j, a, b ∈ Zp and fi, f j elements
from the basis in At, given by (4). Therefore, w2

ij = −1.

(ii) The group
(
Z∗

p, ·
)

is cyclic and has p − 1 elements. Elements of order p − 1 are primitive
elements. The rest of the elements have orders divisors of p − 1.

Now, we consider the equation in At

xn = 1, n a positive integer. (8)

In the following, we will find some conditions such that this equation has solutions
different from 1.

Remark 6. (i) With the above notations, we consider w ∈ At, a nilpotent element (it has the norm
and the trace zero). Therefore, the element z = 1 + w has the property that zn = 1 + nw; therefore,
if n = pr, r a positive integer, Equation (8) has solutions of the form z = 1 + w, for all nilpotent
elements w ∈ At. It is clear that z has the norm equal with 1 and zp = 1; therefore, zp+1 = z, is a
p-potent element.

(ii) If we consider η ∈ Z∗
p with the multiplicative order θ and z = η + w, w nilpotent, we

have that (η + w)p = ηp + pw = ηp and (η + w)pθ = 1. Therefore, if n = pr, r a positive
integer, Equation (8) has solutions of the form z = 1 + w, for all nilpotent elements w ∈ At. If r is
a multiplicative order of an element from Z∗

p and n = pr, r a positive integer, then Equation (8) has
solutions of the form z = η + w, for all η ∈ At, η of order r, w a nilpotent element in At.

(iii) With the above notations, we consider the element w ∈ At such that w2 = −1 and
z = 1 + w. We have that z2 = (1 + w)2 = 2w, z3 = (1 + w)3 = 2w − 2 and z4 =

(
z2)2

= −4
modulo p. Let η = −4 ∈ Z∗

p with the multiplicative order θ, θ is always an even number. We have
that z4θ = 1.

(iv) Let z = a + w ∈ At, where a ∈ Zp and w ∈ At, with tw = 0 and nw ̸= 0. We have
that w2 = α ∈ Z2

p; therefore, zr = Cr + Drw. If zs = 1, then there is a positive integer m ≤ s such
that Cm = 0 or Dm = 0. Indeed, if m = s, we have Ds = 0 and Cs = 1.

Proposition 3. By using the above notations, we consider the element z = a + w, where a ∈ Zp
and w ∈ At with the trace zero. Assuming that there is a nonnegative integer m such that Cm or
Dm is zero, then there is a positive integer k such that zk = 1 and z is (k + 1)-potent element.
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Proof of Proposition 3. Since w has the trace zero, let w2 = β, with τ the multiplicative
order of β. We have that zm = Cm + Dmw, Cm, Dm ∈ Zp. Supposing that Cm is zero, then
we have zm = Dmw, with θ the multiplicative order of Dm. Therefore zmM = 1, where
M =lcm {2τ, θ}. If Dm is zero, then we have zm = Cm with υ the multiplicative order of Cm.
It results that zυm = 1.

Now, we can say that we proved the following theorem.

Theorem 2. With the above notations, an element z ∈ At is a k-potent element, if z is of one of
the forms:

Case 1. nz ̸= 0.
(i) z = 1 + w, with w ∈ At, w is a nilpotent element. In this case, z is (p + 1)-potent;
(ii) z = 1 + w, with w ∈ At such that w2 = −1. Since z4 = −4 modulo p and θ is the

multiplicative order of −4 in Z∗
p, we have that z is (4θ + 1)-potent.

(iii) z = a + w, where a ∈ Zp, w ∈ At with tw = 0, w2 = β ∈ Z∗
p, with τ the multiplicative

order of β, and zr = Cr + Drw. Assuming that there is a nonnegative integer m such that Cm or
Dm is zero, then there is a positive integer k such that zk = 1 and z is (k + 1)-potent element. If

Cm = 0, then k = mM, where M =lcm {2τ, θ} and θ is the multiplicative order of Dm. If Dm = 0,
then we have k = υm, with υ the multiplicative order of Cm.

Case 2. nz = 0. The element z ∈ At is k-potent if and only if tz is k-potent element in Z∗
p,

which means k − 1 is a divisor of p − 1.

Example 1. In the following, we will give some examples of values of the potency index k.
(i) Case p = 5 and t = 2; therefore, we work on quaternions. We consider z = 2 + i + j + k

with the norm nx = 2 ̸= 0. We have w = i+ j+ k and z = 2+w. We have z2 = 1+ 4w, z3 = 4w;
therefore, m = 3 and Dm = 4, with θ = 4. Since w2 = 2, the results show that τ = 4 and M = 4.
We have that z24 = 1, then z25 = z and z is 25-potent element, k = 25.

(ii) Case p = 7, t = 2 and z = 2 + i + j + k. The norm is zero and the trace is 4.
Since 4 has multiplicative order equal with 3, from Proposition 4, we have z4 = z. Indeed,
z2 = 1 + 4w, z3 = 4 + 2w, z4 = 2 + w = z and k = 4.

(iii) Case p = 5 and t = 2. The element z = 1 + 3i + 4j has nz = 1, w = 3i + 4j, with
nw = tw = 0; therefore, w is a nilpotent element. We have z5 = 1, z6 = z and k = 6.

(iv) Case p = 3 and t = 2. The element z = 1 + i + j + k has nz = 1 and w = i + j + k.
We have z2 = (1 + w)2 = 1 + 2w, z3 = (1 + w)(1 + 2w) = 1 + 2w + w = 1; therefore, z4 = z
and k = 4.

(v) Case p = 5, t = 2. We consider the element z = 2 + 3i + j + 3k = 2 + 3w,
w = i + 2j + k, nz = 3, nw = 1, tw = 0, then w2 = −1. We have that τ = 2 and z2 = 2w.
Therefore m = 2, C2 = 0, D2 = 2, then θ = 4 and, therefore we work on quaternions. It results
zmM = z8 = 1, therefore z9 = z and k = 9.

(vi) Case p = 5, t = 2. We consider the element z = 2 + i + j + k = 2 + w with nz = 2,
nw = 3, tw = 0, w2 = 2 and τ = 4, the order of β = 2. We have z2 = 3 + 4w, z3 = 4 + w,
z4 = 1 + 4w, z5 = 4w; therefore, m = 5, C5 = 0, D5 = 4, θ = 2, M =lcm{2τ, θ} = 8. It results
that zmM = z40 = 1, then z41 = z and k = 42.

(vii) Case p = 11, t = 2. We consider the element z = 2i+ 7j+ 3k with nz = 7, z2 = 4; there-
fore, m = 2, D2 = 0, C2 = 4, υ = 5, the multiplicative order of C2 = 4. We have zmυ = z10 = 1
and k = 11.

(viii) Case p = 13, t = 3; therefore, we work on octonions. We consider the element
z = 3 + 2 f1 + f2 + f3 + f4 + f5 + f6 + f7 = 3 + w, w = 2 f1 + f2 + f3 + f4 + f5 + f6 + f7,
with nz = 6, nw = 10, tw = 0. We have w2 = 3 and τ = 3, the order of β = 3. It results,
z2 = 12 + 2w, z3 = 3 + 5w, z4 = 9w, then m = 4, C4 = 0.D4 = 9, θ = 3, M =lcm{2τ, θ} = 6.
We obtain zmM = z24 = 1, then z25 = z and k = 25.

(ix) Case p = 17, t = 4; therefore, we work on sedenions. The Sedenion algebra is a noncom-
mutative, nonassociative and nonalternative algebra of dimension 16. We consider the element
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z = 1 + w, w =
15
∑

i=1
fi, with w2 = 2 and τ = 8. It results z2 = 3 + 2w, z3 = 4w. Then

m = 3, C3 = 0, D3 = 4, θ = 4. We have M =lcm{2τ, θ} =lcm{16, 4} = 16 and zmM = z48 = 1.
It results z49 = z and k = 49.

Remark 7. The (m, k)-type elements in At, with m, n positive integers, are the elements x ∈ At
such that xm = xk, m ≥ k, smallest with this property. If nx ̸= 0, then xm−k = 1 and x is
an (m − k + 1)-potent element. If nx = 0 and tx ̸= 0, we have that tm−k

x = 1, then x is an
(m − k + 1)-potent element. Therefore, an (m, k)-type element in At is an (m − k + 1)-potent
element in At.

4. A nonunitary Ring Structure of Quaternion Fibonacci Elements over Zp

The Fibonacci numbers was introduced by Leonardo of Pisa (1170–1240) in his book
Liber abbaci, a book published in 1202 AD (see [11], p. 1–3). The nth term of these numbers
is given by the formula:

fn = fn−1 + fn−2, n ≥ 2,

where f0 = 0, f1 = 1.

Fibonacci numbers have many applications. One of them was when Horadam con-
nected Fibonacci numbers with real quaternions. In [12], Fibonacci quaternions over H
were defined and studied, which are defined as follows

Fn = fn1 + fn+1i + fn+2 j + fn+3k, (9)

called the nth Fibonacci quaternions.
In the same paper, the norm formula for the nth Fibonacci quaternions was found:

n(Fn) = FnFn = 3 f2n+3,

where Fn = fn · 1 − fn+1i − fn+2 j − fn+3k is the conjugate of the Fn in the algebra H.
Fibonacci sequence is also studied when it is reduced modulo m. This sequence is

periodic and this period is called Pisano’s period, π(m). In the following, we consider
m = p, a prime number and ( fn)n≥0, the Fibonacci numbers over Zp. It is clear that,
in general, the sum of two arbitrary Fibonacci numbers is not a Fibonacci numbers, but if
these numbers are consecutive Fibonacci numbers, the sentence is true. In the following,
we will find conditions when the product of two Fibonacci numbers is also a Fibonacci
number. In the following, we work on At, t = 2, over the field Zp. We denote this algebra

with Hp.
Let F1 = a + bi + (a + b)j + (a + 2b)k and F2 = c + di + (c + d)j + (c + 2d)k,

two Fibonacci quaternions in Hp. We will find conditions such that F1F2 and F2F1 are
also Fibonacci quaternion elements, which means elements of the same form:

A + Bi + (A + B)j + (A + 2B)k. (10)

We compute F1F2 and F2F1 and we obtain that

F1F2 = (−ac − 3ad − 3bc − 6bd) + 2adi + 2a(c + d)j + (2ac + ad + 3bc)k (11)

and
F2F1 = (−ac − 3ad − 3bc − 6bd) + 2bci + 2c(a + b)j + (2ac + 3ad + bc)k. (12)

By using relation (10), we obtain the following systems, with c, d as unknowns.
From relation (11), we obtain:

{
(−3a − 3b)c + (−3a − 6b)d = 0

(−6b − 3a)c + (−6b)d = 0
(13)
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From relation (12), we obtain the system:
{

(−3a + 3b)c + (−3a)d = 0
(−3a)c + (−6a − 6b)d = 0

(14)

We remark that for p = 3, the systems (13) and (14) have solutions; therefore, for p = 3,
there is a chance to obtain an algebraic structure on the set Fπ(p), the set of Fibonacci
quaternions over Zp.

For p = 3, the Pisano’s period is 8, then we have the following Fibonacci numbers:
0, 1, 1, 2, 0, 2, 2, 1. We obtain the following Fibonacci quaternion elements: F0 = i + j + 2,,
F1 = 1 + i + 2j, F2 = 1 + 2i + 2k, F3 = 2 + 2j + 2k, F4 = 2i + 2j + k, F5 = 2 + 2i + j ,
F6 = 2 + i + k, F7 = 1 + j + k; therefore, Fπ(p) = {Fi, i ∈ {0, 1, 2, 3, 4, 5, 6, 7}}. All
these elements are zero norm elements. F0 and F4 are nilpotents, F3, F5 and F6 are idem-
potent elements, F1, F2, F7 are three potent elements. By using C + + software (https:
//www.programiz.com/cpp-programming/online-compiler/, accessed on 20 May 2024),
we computed the sum and the product of these eight elements. Therefore, we have F0Fi = 0,
for i ∈ {0, 1, . . . , 7}, F4Fi = 0, for i ∈ {0, 1, . . . , 7}, F5Fi = Fi, for i ∈ {0, 1, . . . , 7}, F6Fi = Fi,
for i ∈ {0, 1, . . . , 7} and

F1F0 = F4, F2
1 = F5, F1F2 = F6, F1F3 = F7,

F1F4 = F0, F1F5 = F1, F1F6 = F2, F1F7 = F3,

F2F0 = F4, F2F1 = F5, F2
2 = F6, F2F3 = F7,

F2F4 = F0, F2F5 = F1, F2F6 = F2, F2F7 = F3,

F3F0 = F0, F3F1 = F1, F3F2 = F2, F2
3 = F3,

F3F4 = F4, F3F5 = F5, F3F6 = F6, F3F7 = F7,

F7F0 = F4, F7F1 = F5, F7F2 = F6, F7F3 = F7,

F7F4 = F0, F7F5 = F1, F7F6 = F2, F2
7 = F3.

Regarding the sum of two Fibonacci quaternions over Z3, we obtain:

2F0 = F4, F0 + F1 = F2, F0 + F2 = F7, F0 + F3 = F6, F0 + F4 = 0,

F0 + F5 = F3, F0 + F6 = F5, F0 + F7 = F1, 2F1 = F5, F1 + F2 = F3,

F1 + F3 = F0, F1 + F4 = F7, F1 + F5 = 0, F1 + F6 = F4, F1 + F7 = F6,

2F2 = F6, F2 + F3 = F4, F2 + F4 = F1, F2 + F5 = F0, F2 + F6 = 0,

F2 + F7 = F5, 2F3 = F7, F3 + F4 = F5, F3 + F5 = F2, F3 + F6 = F1,

F3 + F7 = 0, 2F4 = F0, F4 + F5 = F6, F4 + F6 = F0, F4 + F7 = F2,

2F5 = F1, F5 + F6 = F7, F5 + F7 = F4, 2F6 = F2, F6 + F7 = F0,

2F7 = F3.

From here, we have the following result.

Proposition 4.
(
Fπ(3) ∪ {0},+

)
is an abelian group of order 9, isomorphic to Z3 × Z3 and

(
Fπ(3) ∪ {0},+, ·

)
is a nonunitary and noncommutative ring.

5. An Application in Cryptography

As an application of quaternions and octonions, in the following, we present a method
to encrypt and decrypt texts by using these elements. For this purpose, we consider
an algebra At over Zp, of dimension 2t, t ∈ {2, 3}. We suppose that we have a text m
to be encrypted and the alphabet has p elements, p being a prime number. Each letter
of the alphabet will correspond a label from 0 to p − 1, which means we work on Zp.
The encryption algorithm is the following.
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1. We will split m in blocks and we will choose the length of the blocks of the form 2t.
For a fixed t, we will find an invertible element q, q ∈ At, which means nq ̸= 0. This
element will be the encryption key.

2. Supposing that m = m1m2 . . . mr is the plain text, with mi blocks of length 2t, formed
by the labels of the letters, to each mi = mi0mi1 . . . mi2t−1 we will associate an element

vi ∈ At, vi =
2t−1

∑
j=0

mij f j.

3. We compute qvi = wi , for all i ∈ {1, 2, . . . , r}. We obtain w = w1w2 . . . wr , the
encrypted text.

To decrypt the text, we use the decryption key, then we compute d = q−1 and vi = dwi,
for all i ∈ {1, 2, . . . , r}.

Example 2. We consider the word MATHEMATICS and the key SINE. We work on an alphabet
with 29 letters, including blank space, denoted with “*”, “.” and “,”. The labels of the letters are
shown in the below table

A B C D E F G H I J
0 1 2 3 4 5 6 7 8 9
K L M N O P Q R S T
10 11 12 13 14 15 16 17 18 19
U V W X Y Z * . ,
20 21 22 23 24 25 26 27 28

We consider t = 2; therefore, we work on quaternions. We will add an “A” at the end
of word “MATHEMATICS”, to have multiple of 4 length text, therefore, we will encode the
text “MATHEMATICSA”. We have the following blocks MATH, EMAT, ICSA, with the cor-
responding quaternions v1 = 12 + 19j + 7k, for MATH, v2 = 4 + 12i + 19k, for EMAT and
v3 = 8 + 2i + 18j for ICSA. The key is q = 18 + 8i + 13j + 4k, it is an invertible element, with the
nonzero norm, nq = 22. We have w1 = qv1 = 28 + 24i + 7j + 7k, corresponding to the mes-
sage, “YHH”, w2 = qv2 = 16 + 2i + 6j + 28k, corresponding to the message “QCG,” and
w3 = qv3 = 10 + 28i + j + 5k, corresponding to the message “K,BF”. Therefore, the en-
crypted message is, “YHHQCG,K,BF”. The decryption key is d = q−1 = 14 + 26i + 6j + 13k.
For decryption, we will compute dw1 = 12 + 19j + 7k = v1, dw2 = 4 + 12i + 19k = v2,
dw3 = 8 + 2i + 18j = v3, and we find the initial text “MATHEMATICSA”.

6. Conclusions

In this paper, we studied properties of some special elements in algebras obtained by
the Cayley–Dickson process and we find an algebraic structure (nonunitary and noncom-
mutative ring) for Fibonacci quaternions over Z3. Moreover, an encryption method using
these elements is also provided. As a further research, we intend to study other special
elements in the idea of finding other good properties.
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Abstract: The concept of possibility fuzzy soft sets is a step in a new direction towards a soft set
approach that can be used to solve decision-making issues. In this piece of research, an innovative
and comprehensive conceptual framework for possibility multi-fuzzy soft ordered semigroups by
making use of the notions that are associated with possibility multi-fuzzy soft sets as well as ordered
semigroups is introduced. Possibility multi-fuzzy soft ordered semigroups mark a newly developed
theoretical avenue, and the central aim of this paper is to investigate it. The focus lies on investigating
this newly developed theoretical direction, with practical examples drawn from decision-making
and diagnosis practices to enhance understanding and appeal to researchers’ interests. We strictly
build the notions of possibility multi-fuzzy soft left (right) ideals, as well as l-idealistic and r-idealistic
possibility multi-fuzzy soft ordered semigroups. Furthermore, various algebraic operations, such
as union, intersection, as well as AND and OR operations are derived, while also providing a
comprehensive discussion of their properties. To clarify these innovative ideas, the theoretical
constructs are further reinforced with a set of demonstrative examples in order to guarantee deep
and improved comprehension of the proposed framework.

Keywords: fuzzy soft sets; multi-fuzzy soft set; ordered semigroups; possibility multi-fuzzy soft
ordered semigroups; possibility multi-fuzzy soft left (resp. right) ideals

MSC: 03E72; 06F05; 90C70

1. Introduction

The concept of possibility multi-fuzzy soft ordered semigroups is emerging as a
promising avenue for addressing uncertainty in decision-making processes. The quest to
address the challenges posed by uncertainty in problem solving, traditional mathematical
methodologies have often proven insufficient as these methods do not always work in
ambiguous and unpredictable situations. Realizing this fact has led scientists to create new
approaches for dealing with uncertainty. In this context, we introduce the novel concept
of possibility multi-fuzzy soft ordered semigroups. These structures combine elements of
possibility theory, fuzzy sets and soft computing. By incorporating graded membership
and possibility measures, they provide a robust framework for handling uncertainty in
ordered semigroups.

One of the pioneers was Lotfi Zadeh, who in 1965 introduced fuzzy set theory, which
opened up many fields to new ways of thinking about them. Fuzzy logic reflects the way
that things are uncertain by allowing for degrees of membership rather than just yes/no
inclusion or exclusion [1]. Moldstov [2,3] built on Zadeh’s ideas when he put forward the
concept of soft sets in 1999; these include tools for parameterization designed to cope with
decision-making queries under conditions of limited information or lots of alternatives. Soft

Axioms 2024, 13, 340. https://doi.org/10.3390/axioms13060340 https://www.mdpi.com/journal/axioms183



Axioms 2024, 13, 340

set theory has been shown by subsequent applications to be useful practically speaking; it
can handle imprecise data and deal with incompleteness (P.K. Maji et al.) [4–6]. Alkalzaleh
et al. [7,8] extended the framework by introducing ideas like soft multisets and interval-
valued fuzzy soft sets. At the same time, fuzzy mathematics developed further and led to
fuzzy soft set theory as a better way of dealing with uncertainty.

Currently, the fuzzy soft set approach has been bolstered by relating different new
techniques such as interval-valued fuzzy soft sets, possibility intuitionistic fuzzy soft
sets, intuitionistic fuzzy soft expert sets, soft expert sets, possibility fuzzy soft expert sets,
neutrosophic sets, complex neutrosophic soft expert sets, neutrosophic vague soft expert
sets, multi-fuzzy soft sets and many more [9–29].

Multi-fuzzy sets are an extension of ordinary fuzzy set theory that provided a new
approach for certain problems that were previously unable to be resolved, such as color
pixels [30]. Later, Yang et al. [31] combined the multi-fuzzy set theory with a soft set
approach and provided its more precise applications in decision-making problems.

The concept of possibility fuzzy soft sets was broached by Alkalzaleh [32]. He also
described some of the applications of this notion in decision making. Possibility fuzzy
soft set theory states that for every element of set of parameters, there exists a degree of
membership as well as a degree of possible membership value for all the elements of the
universe U. Thus, the existence of two membership values will help the experts to choose
well in decision-making problems. Recently, a new generalization to this study known as
possibility multi-fuzzy soft sets is determined [33].

Rosenfeld in 1971 [12] was the first to study algebraic structures in terms of Zadeh’s
approach. He named these structures as fuzzy groups. One of the most adapted algebraic
structures, i.e., the ordered semigroup, has a close connection with theoretical computer
science including different code-correcting languages, sequential machines and arithmetical
study, etc. The initial concept of ordered semigroups was introduced by Kehayopulu [34].
Jun et al. [35] instigated a new generalization of ordered semigroups by relating them
with soft set theory. Kehayopulu [36] further generalized the concept of the ordered
semigroup by relating its ideals with Green’s relation. Later, the concept of fuzzy soft
ordered semigroups, fuzzy soft left (resp. right) ideals and many more were introduced,
and readers refer to [37–39]. Recently Habib et al. give the concept of possibility fuzzy soft
ordered semigroups and described their applications [40,41].

The main purpose of this paper is to introduce a new theory by compiling possibility
multi-fuzzy soft sets and ordered semigroups. For every element of a set of parameters
in a possibility multi-fuzzy soft set, there exists multiple degrees of membership as well
as multiple degrees of possible membership for all the elements of the universal set. This
quantitative analysis will lead to obtaining an appropriate value that would further help
experts in decision making. This paper is structured into multiple sections, beginning with
a preliminary segment that establishes fundamental definitions and concepts necessary
for grasping the new theory. Subsequent sections delve into the core principles and
practical applications of the proposed theory. These discussions include an exploration
of possibility multi-fuzzy soft ordered semigroups, emphasizing their significant roles
in medical diagnosis and decision-making contexts. Moreover, the paper examines the
process of homogenization of possibility multi-fuzzy soft sets and possibility multi-fuzzy
soft l-ideals (resp. r-ideals) of ordered semigroups, and the notion of l-idealistic (resp.
r-idealistic) possibility multi-fuzzy soft ordered semigroups is proposed, and some of
the related properties using these notions are determined. Each section contributes to a
comprehensive understanding of the proposed theory, elucidating its implications and
potential applications. Finally, this paper concludes with a recapitulation of key insights
and concluding remarks, providing a cohesive summary of the theory’s significance and
suggesting future research directions.
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2. Preliminaries

This section relates some important notions and definitions, in light of which some
important results are generated. An ordered semigroup is defined as a combination of
a partially ordered set (S,≤) and a semigroup (S, .) with x ≤ y (∀x, y ∈ S), implying
ax ≤ ay, xa ≤ ya, ∀a ∈ S [23]. Throughout the paper, an ordered semigroup (S, .,≤) is
denoted by S. A non-empty subset X of an ordered semigroup S is called a left (resp. right)
ideal of S [20] and is denoted by X ◁l S (resp. X ◁r S) if it satisfies the following:

a. SX ⊆ X (resp. XS ⊆ X);
b. (∀x ∈ X, y ∈ S) ( y ≤ x ⇒ y ∈ X) .

Let S and T be two ordered semigroups. Then, a mapping H : S → T is called homo-
morphism if it satisfies the following:

a. H(ab) = H(a)H(b) ∀a, b ∈ S;
b. If a ≤ b ⇒ H(a) ≤ H(b) ∀a, b ∈ S .

A set of all the elements in S which are mapped to the identity element of T un-
der a homomorphism H is known as the kernel of H, represented as ker(H). More
precisely, ker(H) = {s ∈ S|H(s) = eT}, where eT is the identity element of T.

Let U be a universal set, Q be the set of parameters and let A ⊆ Q. Then, a pair ( f , A)
is called a soft set of U if f is a mapping from A to P(U), i.e., f : A → P(U) , where P(U) is
the power set of U [5].

Let A be a non-empty subset of a universal set U. Then, the characteristic function for
A is defined as

χA(x) =
{

1
0 i f xϵA

x/∈A

Definition 1 ([6]). A pair of set (U, Q) is known as a soft universe, where U is a universal set and
Q is a set of parameters. If A ⊆ Q, f : A → F(U) , where F(U) is the power set of all fuzzy subset
of U, then ( f , A) is called a fuzzy soft set.

Definition 2 ([30]). For any universal set U, a multi-fuzzy set (ψ, A) with index n is defined
by a mapping ψ : A → MnFS(U) , where n is a positive integer and ψ is of ordered sequences,
ψ = {u

/
v1(u), v2(u), . . . , vn(u)}∀uϵU, where vi(u) is the multi-membership values of the multi-

fuzzy soft set.

Definition 3 ([11]). If U = {u1, u2, . . . , un} is the universal set and Q = {e1, e2, . . . , en} is the
set of parameters, then a mapping f v : Q → F(U)× I(U) (v is the fuzzy subset of Q) is defined by
f v(ei) = ( f (ei)(u), v(ei)(u))∀i = 1, 2, . . . , m and is known as a possibility fuzzy soft set denoted
by ( f v, Q). A possibility fuzzy soft set is used to introduce a degree of membership value coupled
with the possibility of a degree of membership of element denoted by f (ei) and v(ei), respectively.

Note that if (f, Q) is a soft set over an ordered semigroup S and f(e) is a subsemigroup
of S such that ∀e ∈ Q f(e) ̸= ∅, then (f, Q) is called a soft ordered semigroup over S [38].

Definition 4 ([35]). If ( f , Q|1) and (g, Q|2) are two soft sets over U, then their union is
represented as ( f , Q|1) ∪ (g, Q|2) = (h, Q), which satisfies the following conditions:

a. Q = Q|1 ∪ Q|2;

b. h(e) =





f (e)
g(e)

f (e) ∪ g(e)
i f

e ∈ Q|1 − Q|2
e ∈ Q|2 − Q|1
e ∈ Q|1 ∩ Q|2

∀e ∈ Q.

Definition 5 ([35]). If ( f , Q|1) and (g, Q|2) are two soft sets over U, then their intersection is
represented as ( f , Q|1) ∩ (g, Q|2) = (h, Q), which satisfies the following conditions:

a. Q = Q|1 ∩ Q|2;
b. h(e) = f (e) or h(e) = g(e) ∀e ∈ Q.
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Definition 6 ([11]). If (U, Q) is a pair of sets known as a soft universe, where U = {u1, u2, . . . , un}
is the universal set and Q = {e1, e2, . . . , em} is the set of parameters, then define a mapping
ψ f : Q → MnFS(U)× MnFS(U) , where ψ : Q → MnFS(U) and f : Q → MnFS(U) ( f
and ψ are the fuzzy subsets of Q, and MnFS(U) represents the set of all multi-fuzzy sets with
dimension n). ψ f (ei) = ( ψ(ei)(u), f (ei)(u))∀uϵU is known as a possibility multi-fuzzy soft set
denoted by (ψ f , Q) with dimension n. Note that ψ f (ei) represents the degree of multi-membership

value and f (ei) represents the possibility of a degree of multi-membership for all the elements of U.

In generalized form, a possibility multi-fuzzy soft set is represented as

ψ f (ei) =
{
(u/v ψ(ei)

(u), v f (ei)
(u)) : uϵU

}

where
vψ(ei)

(u) = (v1
ψ(ei)

(u), v2
ψ(ei)

(u), . . . ., vn
ψ(ei)

(u))

and
v f (ei)

(u) = (v1
f (ei)

(u), v2
f (ei)

(u), . . . ., vn
f (ei)

(u)) i = 1, 2, . . . ., m

The possibility multi-fuzzy soft set is called a possibility fuzzy soft set with index n = 1.

Definition 7 ([11]). If ψ f and ξg are two possibility multi-fuzzy soft sets over U, then their

union is denoted by ψ f ∪ ξ
g
= ηh, where ηh : Q → MnFS(U)× MnFS(U) is defined as

ηh(e) = η(e)(u), h(e)(u). The union must satisfy the following conditions:

a. ψ(e) ∪ ξ(e) = η(e);
b. h(e) = f (e) ∪ g(e)∀e ∈ Q.

Definition 8 ([11]). If ψ f and ξg are two possibility multi-fuzzy soft sets over U, then their

intersection is denoted as ψ f ∩ ξ
g
= ηh, where ηh : Q → MnFS(U)× MnFS(U) is defined as

ηh(e) = η(e)(u), h(e)(u). The intersection must satisfy the following:

a. ψ(e) ∩ ξ(e) = η(e);
b. h(e) = f (e) ∩ g(e)∀e ∈ Q.

Definition 9 ([11]). For two possibility multi-fuzzy soft sets (ψ f , A) and (ξg,B) over U with
index j, the similarity measure is defined as

s(ψ f , ξg) =
∑n

j=1 (φj( ψ, ξ))·(ϕj( f , g))

j

where

φj
(

ψ, ξ
)
=

∑n
i=1 maxxϵU

{
min

(
υ

j
ψ(ei)

(x), υ
j
ξ(ei)

(x)
)}

∑n
i=1 maxxϵU

{
max

(
υ

j
ψ(ei)

(x), υ
j
ξ(ei)

(x)
)} ,

ϕj( f , g) =
∑n

i=1 maxxϵU

{
min(υj

f (ei)
(x), υ

j
g(ei)

(x))
}

∑n
i=1 maxxϵU

{
max(υj

f (ei)
(x), υ

j
g(ei)

(x))
} .

For all υ
j
ψ(ei)

(x) ̸= 0, υ
j
ξ(ei)

(x) ̸= 0, υ
j
f (ei)

(x) ̸= 0 and υ
j
g(ei)

(x) ̸= 0,.

The possibility multi-fuzzy soft set is the most appropriate method used to solve
decision-making problems more efficiently.
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3. Possibility Multi-Fuzzy Soft Ordered Semigroups

This section provides an overview of possibility multi-fuzzy soft ordered semigroups.
Additionally, it introduces new generalized concepts such as homomorphism in possibility
multi-fuzzy soft ordered semigroups and possibility multi-fuzzy soft l-ideals (or r-ideals)
of ordered semigroups. These concepts will be elucidated further through algebraic results
employing fundamental operations like union, intersection, AND and OR operations.

Definition 10. Let (S, ·,≤) be an ordered semigroup and R be a set of parameters of S, then a mapping
ψ f : R → MnFS(S)× MnFS(S) is defined, where ψ : R → MnFS(S) and f : R → MnFS(S) .
Then, (ψ f , R) is called a possibility multi-fuzzy soft ordered semigroup of S if it satisfies

∀eϵR ( ψ(e) ̸= ∅, f (e) ̸= ∅) or ψ f (ei) ̸= ∅ (if ψ f (e) are fuzzy subsemigroups of S). Pos-
sibility multi-fuzzy soft ordered semigroup is represented as PMFSS unless otherwise stated.

Definition 11 . Let ψ and f be two multi-fuzzy subsets of S and ( ψ f , R) be a possibility
multi-fuzzy soft ordered semigroup over S. Then, ∀t ∈ [0, 1]; we define possibility multi-fuzzy soft
level set of ψ f as U( ψ f ; t) =

{
sϵS
∣∣∣ ψ(s) ≥ t, f (s) ≥ t

}
.

Example 1. Let S = {a1, a2, a3, a4} be an ordered semigroup under the following multiplication
table and ordered relation:

≤:= {(a1, a1), (a2, a2), (a3, a3), (a4, a4), (a1, a2)

Multiplication Table

a1 a2 a3 a4

a1 a1 a1 a1 a1
a2 a1 a1 a1 a1
a3 a1 a1 a2 a1
a4 a1 a1 a2 a2

For a set of parameters R = {e1, e2, e3}, a possibility multi-fuzzy soft set (ψf, R) is
defined by mapping

ψ : R → MnFS(S) , f : R → MnFS(S)

Here, we obtain

ψ(e) =



(0.8, 0.7, 0.5) (0.7, 0.6, 0.3) (0.6, 0.4, 0.2) (0.6, 0.5, 0.1)
(0.7, 0.7, 0.9) (0.6, 0.6, 0.8) (0.3, 0.5, 0.7) (0.4, 0.5, 0.2)
(0.9, 0.8, 0.8) (0.6, 0.7, 0.7) (0.4, 0.6, 0.2) (0.4, 0.3, 0.1)


,

f(e) =



(0.7, 0.6, 0.5) (0.6, 0.5, 0.4) (0.4, 0.3, 0.3) (0.5, 0.3, 0.2)
(0.8, 0.7, 0.8) (0.7, 0.3, 0.6) (0.5, 0.1, 0.3) (0.6, 0.2, 0.5)
(0.8, 0.8, 0.7) (0.6, 0.7, 0.5) (0.4, 0.6, 0.2) (0.2, 0.3, 0.1)


.

Thus,

ψf(e) =



(0.8, 0.7, 0.5), (0.7, 0.6, 0.5) (0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.4, 0.3, 0.3) (0.6, 0.5, 0.1), (0.5, 0.3, 0.2)
(0.7, 0.7, 0.9), (0.8, 0.7, 0.8) (0.6, 0.6, 0.8), (0.7, 0.3, 0.6) (0.3, 0.5, 0.7), (0.5, 0.1, 0.3) (0.4, 0.5, 0.2), (0.6, 0.2, 0.5)
(0.9, 0.8, 0.8), (0.8, 0.8, 0.7) (0.6, 0.7, 0.7), (0.6, 0.7, 0.5) (0.4, 0.6, 0.2), (0.4, 0.6, 0.2) (0.4, 0.3, 0.1), (0.2, 0.3, 0.1)




Here, ψ f (e) ̸= ∅ and ψ f (e)(a), ∀a ∈ S are fuzzy subsemigroups of S. Hence, by
Definition 10, (ψ f , R) is a PMFSS over S.

Theorem 1. Let ( ψ f , A) be a possibility multi-fuzzy soft ordered semigroup of S. Then, for any

subset B of A, ( ξg,B) is also a possibility multi-fuzzy soft ordered semigroup of S.

187



Axioms 2024, 13, 340

Proof. The proof follows directly from Definition 10. □

Example 2. If S is an ordered semigroup and ( ψ f , A) is a possibility multi-fuzzy soft ordered
semigroup over S as defined in Example 1, then

ψf(e) =



(0.8, 0.7, 0.5), (0.7, 0.6, 0.5) (0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.4, 0.3, 0.3) (0.6, 0.5, 0.1), (0.5, 0.3, 0.2)
(0.7, 0.7, 0.9), (0.8, 0.7, 0.8) (0.6, 0.6, 0.8), (0.7, 0.3, 0.6) (0.3, 0.5, 0.7), (0.5, 0.1, 0.3) (0.4, 0.5, 0.2), (0.6, 0.2, 0.5)
(0.9, 0.8, 0.8), (0.8, 0.8, 0.7) (0.6, 0.7, 0.7), (0.6, 0.7, 0.5) (0.4, 0.6, 0.2), (0.4, 0.6, 0.2) (0.4, 0.3, 0.1), (0.2, 0.3, 0.1)




Let B ⊆ A; then, we define another mapping ξg : B → MnFS(S)× MnFS(S) defined
as ξg(e) = ξ(e)(s), g(e)(s) for all s ∈ S.

ξ(e) =



(0.7, 0.6, 0.3) (0.6, 0.4, 0.2) (0.5, 0.3, 0.1) (0.5, 0.3, 0.1)
(0.6, 0.6, 0.7) (0.5, 0.5, 0.6) (0.2, 0.4, 0.5) (0.4, 0.4, 0.1)
(0.8, 0.7, 0.6) (0.5, 0.6, 0.5) (0.3, 0.5, 0.1) (0.3, 0.2, 0.1)




g(e) =



(0.6, 0.5, 0.4) (0.5, 0.5, 0.3) (0.4, 0.3, 0.2) (0.4, 0.2, 0.1)
(0.5, 0.4, 0.6) (0.4, 0.3, 0.5) (0.3, 0.1, 0.2) (0.5, 0.1, 0.3)
(0.7, 0.6, 0.5) (0.5, 0.5, 0.4) (0.2, 0.3, 0.1) (0.2, 0.2, 0.1)


.

Combining above two matrices we obtain

ξg(e) =



(0.7, 0.6, 0.3)(0.6, 0.5, 0.4) (0.6, 0.4, 0.2)(0.5, 0.5, 0.3) (0.5, 0.3, 0.1)(0.4, 0.3, 0.2) (0.5, 0.3, 0.1)(0.4, 0.2, 0.1)
(0.6, 0.6, 0.7)(0.5, 0.4, 0.6) (0.5, 0.5, 0.6)(0.4, 0.3, 0.5) (0.2, 0.4, 0.5)(0.3, 0.1, 0.2) (0.4, 0.4, 0.1)(0.5, 0.1, 0.3)
(0.8, 0.7, 0.6)(0.7, 0.6, 0.5) (0.5, 0.6, 0.5)(0.5, 0.5, 0.4) (0.3, 0.5, 0.1)(0.2, 0.3, 0.1) (0.3, 0.2, 0.1)(0.2, 0.2, 0.1)




Here, ξg(e) ̸= ∅ and ξg(e)(a), ∀a ∈ S are fuzzy subsemigroups of S. Hence, by
Definition 10, (ξg,B) is a PMFSS over S.

Theorem 2. Let ( ψ f , A) and ( ξg,B) be two PMFSSs over S. If A ∩ B = ϕ, then ( ψ f , A) ∪
( ξg, B) is also possibility multi-fuzzy soft ordered semigroup over S.

Proof. Union of any two possibility multi-fuzzy soft sets is denoted by ( ψ f , A) ∪ ( ξg, B).

Let ( ψ f , A) ∪ ( ξg, B) = (σ h, C) where C = A ∪B; then, ∀e ∈ C.

(
σh, C

)
=





(ψf, A)(
ξg, B

)

(ψf, A) ∪ (ξg, B)
if

e ∈ A − B,
e ∈ B − A,
e ∈ A ∩ B.

As A ∩ B = ∅⇒ either e ∈ A − B or e ∈ B − A; in other words, either σh(e) = ψf(e)
or σh(e) = ξg(e). Then, a mapping σh : C → MnFS(S)× MnFS(S) is defined as σh(e) =
σ(e)(s), h(e)(s)∀s ∈ S. Hence, σh(e) ̸= ∅ also implies σ(e)(s), and h(e)(s) is a fuzzy
subsemigroup over S. Then, using Definition 10, (σh, C) is a PMFSS over S. Thus, the union
of two PMFSSs over S is also a PMFSS over S. □

Example 3. Let ( ψ f , A) and ( ξg,B) be two possibility multi-fuzzy soft sets over S. Where S is
defined under the same ordered relation as defined in Example 1,

ψf(e) =



(0.8, 0.7, 0.5), (0.7, 0.6, 0.5) (0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.4, 0.3, 0.3) (0.6, 0.5, 0.1), (0.5, 0.3, 0.2)
(0.7, 0.7, 0.9), (0.8, 0.7, 0.8) (0.6, 0.6, 0.8), (0.7, 0.3, 0.6) (0.3, 0.5, 0.7), (0.5, 0.1, 0.3) (0.4, 0.5, 0.2), (0.6, 0.2, 0.5)
(0.9, 0.8, 0.8), (0.8, 0.8, 0.7) (0.6, 0.7, 0.7), (0.6, 0.7, 0.5) (0.4, 0.6, 0.2), (0.4, 0.6, 0.2) (0.4, 0.3, 0.1), (0.2, 0.3, 0.1)



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ξg(e) =



(0.7, 0.6, 0.3)(0.6, 0.5, 0.4) (0.6, 0.4, 0.2)(0.5, 0.5, 0.3) (0.5, 0.3, 0.1)(0.4, 0.3, 0.2) (0.5, 0.3, 0.1)(0.4, 0.2, 0.1)
(0.6, 0.6, 0.7)(0.5, 0.4, 0.6) (0.5, 0.5, 0.6)(0.4, 0.3, 0.5) (0.2, 0.4, 0.5)(0.3, 0.1, 0.2) (0.4, 0.4, 0.1)(0.5, 0.1, 0.3)
(0.8, 0.7, 0.6)(0.7, 0.6, 0.5) (0.5, 0.6, 0.5)(0.5, 0.5, 0.4) (0.3, 0.5, 0.1)(0.2, 0.3, 0.1) (0.3, 0.2, 0.1)(0.2, 0.2, 0.1)


.

Then, (ψf, A) ∪ (ξg, B) = (σh, C); using Theorem 2, we obtain

σh(e) =



(0.8, 0.7, 0.5), (0.7, 0.6, 0.5) (0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.4, 0.3, 0.3) (0.6, 0.5, 0.1), (0.5, 0.3, 0.2)
(0.7, 0.7, 0.9), (0.8, 0.7, 0.8) (0.6, 0.6, 0.8), (0.7, 0.3, 0.6) (0.3, 0.5, 0.7), (0.5, 0.1, 0.3) (0.4, 0.5, 0.2), (0.6, 0.2, 0.5)
(0.9, 0.8, 0.8), (0.8, 0.8, 0.7) (0.6, 0.7, 0.7), (0.6, 0.7, 0.5) (0.4, 0.6, 0.2), (0.4, 0.6, 0.2) (0.4, 0.3, 0.1), (0.2, 0.3, 0.1)


.

Here, it is easily notified that σh(e) ̸= ∅ also implies σ(e)(s) and h(e)(s) are fuzzy
subsemigroups over S. Then, by Definition 10, (σh, C) is a PMFSS over S. Thus, the union
of two PMFSSs over S is also a PMFSS over S.

Theorem 3. Let ( ψ f , A) and ( ξg,B) be two PMFSS over S. If A ∩ B ̸=∅, then their intersection

( ( ψ f , A) ∩ ( ξg, B)) is also possibility multi-fuzzy soft ordered semigroup over S.

Proof. Intersection of any two possibility multi-fuzzy soft set is denoted as ( ψ f , A)∩ ( ξg, B).

Let ( ψ f , A) ∩ ( ξg, B) = (σ h, C) where C = A ∩ B then ∀e ∈ C implies e ∈ A and

e ∈ B or in other words ψ f (e) ∩ ξg(e) = σ h(e) implies (σ(e), h(e)) = (ψ(e), f (e)) and

(σ(e), h(e)) = (ξ(e), g(e)). Thus, there exists a mapping σ h : C → MnFS(S)× MnFS(S)
defined as σ h(e) = σ(e)(s), h(e)(s) ∀s ∈ S. Where, σ h(e) ̸= ∅ also implies σ(e)(s) and
h(e)(s) are fuzzy subsemigroups over S then by Definition 10 (σ h, C) is a PMFSS over S.
Thus intersection of two PMFSS over S is also a PMFSS over S. □

Example 4. Let ( ψ f , A) and ( ζg,B) be two possibility multi-fuzzy soft sets over S. Where S is
defined under the same ordered relation as defined in Example 1,

ψf(e) =



(0.8, 0.7, 0.5), (0.7, 0.6, 0.5) (0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.4, 0.3, 0.3) (0.6, 0.5, 0.1), (0.5, 0.3, 0.2)
(0.7, 0.7, 0.9), (0.8, 0.7, 0.8) (0.6, 0.6, 0.8), (0.7, 0.3, 0.6) (0.3, 0.5, 0.7), (0.5, 0.1, 0.3) (0.4, 0.5, 0.2), (0.6, 0.2, 0.5)
(0.9, 0.8, 0.8), (0.8, 0.8, 0.7) (0.6, 0.7, 0.7), (0.6, 0.7, 0.5) (0.4, 0.6, 0.2), (0.4, 0.6, 0.2) (0.4, 0.3, 0.1), (0.2, 0.3, 0.1)


,

ζg(e) =



(0.7, 0.6, 0.3)(0.6, 0.5, 0.4) (0.6, 0.4, 0.2)(0.5, 0.5, 0.3) (0.5, 0.3, 0.1)(0.4, 0.3, 0.2) (0.5, 0.3, 0.1)(0.4, 0.2, 0.1)
(0.6, 0.6, 0.7)(0.5, 0.4, 0.6) (0.5, 0.5, 0.6)(0.4, 0.3, 0.5) (0.2, 0.4, 0.5)(0.3, 0.1, 0.2) (0.4, 0.4, 0.1)(0.5, 0.1, 0.3)
(0.8, 0.7, 0.6)(0.7, 0.6, 0.5) (0.5, 0.6, 0.5)(0.5, 0.5, 0.4) (0.3, 0.5, 0.1)(0.2, 0.3, 0.1) (0.3, 0.2, 0.1)(0.2, 0.2, 0.1)




Then, their intersection is denoted as (ψf, A) ∩ (ζg, B) = (σh, C).
So here,

σh(e) =



(0.7, 0.6, 0.3)(0.6, 0.5, 0.4) (0.6, 0.4, 0.2)(0.5, 0.5, 0.3) (0.5, 0.3, 0.1)(0.4, 0.3, 0.2) (0.5, 0.3, 0.1)(0.4, 0.2, 0.1)
(0.6, 0.6, 0.7)(0.5, 0.4, 0.6) (0.5, 0.5, 0.6)(0.4, 0.3, 0.5) (0.2, 0.4, 0.5)(0.3, 0.1, 0.2) (0.4, 0.4, 0.1)(0.5, 0.1, 0.3)
(0.8, 0.7, 0.6)(0.7, 0.6, 0.5) (0.5, 0.6, 0.5)(0.5, 0.5, 0.4) (0.3, 0.5, 0.1)(0.2, 0.3, 0.1) (0.3, 0.2, 0.1)(0.2, 0.2, 0.1)




As σh(e) ̸= ∅ also implies σ(e) and h(e) are fuzzy subsemigroups over S, then by
Definition 10, (σh, C) is a PMFSS over S.

Next, we discuss the logical operators, i.e., AND and OR, for possibility multi-fuzzy
soft sets and characterized possibility multi-fuzzy soft ordered semigroups by the properties
of these newly defined notions.

Theorem 4. If ( ψ f , A) and ( ζg,B) are two possibility multi-fuzzy soft ordered semigroups over S,

then ( ψ f , A) ∧ ( ζg, B) is also a PMFSS over S.
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Proof. As AND operation in possibility multi-fuzzy soft sets is defined as ( ψ f , A) ∧
( ζg, B) = (σ h, C), where C = A × B and σ(a, b) = ψ(a) ∩ ζ(b), similarly h(a, b) = f (a) ∩
g(b) ∀(a, b) ∈ A× B. Since (ψ f , A) and ( ζg,B) are PMFSSs over S, we can say that ψ f (a) and

ζg(b) are multi-fuzzy subsemigroups of S, and the intersection of (ψ f (a))∩ (ζg(b))∀(a, b) ∈
A × B is also a fuzzy subsemigroup of S. Hence, σh(a, b) = (σ(a, b)(s), h(a, b)(s))∀s ∈ S is
also a fuzzy subsemigroup of S ∀(a, b) ∈ A × B. Thus, (ψ f , A) ∧ (ζg, B) = (σh, C) is also a
PMFSS over S. □

Example 5. Let ( ψ f , A) and ( ζg,B) be two PMFSSs over S as defined in Example 2. Then, we

can define its AND operation as ( ψ f , A)∧ ( ζg, B) = (σ h, C), where σh for all pair of parameters
can be concluded, and we obtain

σh(e1, e1) =
{
( s1
(0.7,0.6,0.3) , (0.6, 0.5, 0.4)), ( s2

(0.6,0.4,0.2) , (0.5, 0.5, 0.3)), ( s3
(0.5,0.3,0.1) , (0.4, 0.3, 0.2)), ( s4

(0.5,0.3,0.1) , (0.4, 0.2, 0.1))
}

,

σh(e1, e2) =
{
( s1
(0.6,0.6,0.5) , (0.5, 0.4, 0.5)), ( s2

(0.5,0.5,0.3) , (0.4, 0.3, 0.4)), ( s3
(0.2,0.4,0.2) , (0.3, 0.1, 0.2)), ( s4

(0.4,0.4,0.1) , (0.5, 0.1, 0.2))
}

σh(e1, e3) =
{
( s1
(0.8,0.8,0.5) , (0.7, 0.6, 0.5)), ( s2

(0.5,0.6,0.3) , (0.5, 0.5, 0.4)), ( s3
(0.3,0.4,0.1) , (0.2, 0.3, 0.1)), ( s4

(0.3,0.2,0.1) , (0.2, 0.2, 0.1))
}

.

Similarly, we can calculate the values for every pair of parameters.
In matrix form,

σh =




(0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.5, 0.5, 0.3) (0.5, 0.3, 0.1), (0.4, 0.3, 0.2) (0.5, 0.3, 0.1), (0.4, 0.2, 0.1)
(0.6, 0.6, 0.5), (0.5, 0.4, 0.5) (0.5, 0.5, 0.3), (0.4, 0.3, 0.4) (0.2, 0.4, 0.2), (0.3, 0.1, 0.2) (0.4, 0.4, 0.1), (0.5, 0.1, 0.2)
(0.8, 0.7, 0.5), (0.7, 0.6, 0.5) (0.5, 0.6, 0.3), (0.5, 0.5, 0.4) (0.3, 0.4, 0.1), (0.2, 0.3, 0.1) (0.3, 0.2, 0.1), (0.2, 0.2, 0.1)
(0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.5, 0.3, 0.3) (0.3, 0.3, 0.1), (0.4, 0.1, 0.2) (0.4, 0.3, 0.1), (0.4, 0.2, 0.1)
(0.6, 0.6, 0.7), (0.5, 0.4, 0.6) (0.5, 0.5, 0.6), (0.4, 0.3, 0.5) (0.2, 0.4, 0.5), (0.3, 0.1, 0.2) (0.4, 0.4, 0.1), (0.5, 0.1, 0.3)
(0.7, 0.7, 0.6), (0.7, 0.6, 0.5) (0.5, 0.6, 0.5), (0.5, 0.3, 0.4) (0.3, 0.5, 0.1), (0.2, 0.1, 0.1) (0.3, 0.2, 0.1), (0.2, 0.2, 0.1)
(0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.5, 0.5, 0.3) (0.4, 0.3, 0.1), (0.4, 0.3, 0.2) (0.4, 0.3, 0.1), (0.2, 0.2, 0.1)
(0.6, 0.6, 0.7), (0.5, 0.4, 0.6) (0.5, 0.5, 0.6), (0.4, 0.3, 0.5) (0.2, 0.4, 0.2), (0.3, 0.1, 0.2) (0.4, 0.3, 0.1), (0.2, 0.1, 0.1)
(0.8, 0.7, 0.6), (0.7, 0.6, 0.5) (0.5, 0.6, 0.5), (0.5, 0.5, 0.4) (0.3, 0.5, 0.1), (0.2, 0.3, 0.1) (0.3, 0.2, 0.1), (0.2, 0.2, 0.1)




As σh(ei, ej) ̸= ϕ, σh(ei, ej) is a fuzzy subsemigroup of S. Thus, (ψf, A) ∧ (ζg, B) =
(σh, C) is a PMFSS over S.

Definition 12. Let ( ψ f , A) be a PMFSS over S. Then, ( ψ f , A) is said to be trivial if ψ f (e) = {T}
for all e ∈ A, where T stands for a trivial ordered semigroup.

Lemma 1. Let us define homomorphism as a mapping H : S → T from an ordered
semigroup S to a trivial ordered semigroup T. If ( ψ f , R) is a PMFSS over S, then (H(ψ f ), R)
also defines a PMFSS over T.

Proof. As the definition of homomorphism states that ∀e ∈ R, H(ψ f )(e) = H(ψ f (e)) =

H(ψ(e), f (e)) is a subsemigroup of T. If ( ψ f , R) defines a PMFSS over S, then by definition
its homomorphic image is a fuzzy subsemigroup of T. Hence, H(ψ f (e)) is a fuzzy sub-
semigroup of T. Thus, it implies that (H(ψ f ), R) is a possibility multi-fuzzy soft ordered
semigroup over T. □

Theorem 5. Let ( ψ f , R) be a PMFSS over S and H : S → T be a homomorphic image from
an ordered semigroup S to a trivial ordered semigroup T. Then, if ψ f (e) ⊆ ker(H), ∀e ∈ R, then
(H(ψ f ), R) is a trivial PMFSS over T.

Proof. As ψ f (e) ⊆ ker(H), ∀e ∈ R, also by definition of homomorphism, H(ψ f )(e) =

H(ψ f (e)) = H(ψ(e), f (e)), ∀e ∈ R. As defined earlier for a trivial PMFSS ( ψ f , R) over S,
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ψ f (e) = {T}. Thus, by using the Lemma 1, it is concluded that H(ψ f )(e) = H(ψ f (e)) =
{T}, ∀e ∈ R. Hence, (H(ψ f ), R) is a trivial PMFSS over T. □

Theorem 6. Let ( ψ f , A) and ( ζg,B) be two PMFSSs over S. Then, for all B ⊆ A, ( ζg,B)

is a multi-fuzzy subsemigroup of (ψ f , A) or (ζg, B) ≤ (ψ f , A) if and only if ζg(e) is a fuzzy
subsemigroup of ψ f (e)
∀e ∈ R.

Proof. The theorem can be directly proved by using Theorem 1. □

Example 6. Let us consider two PMFSSs ( ψ f , A) and ( ζg,B) over S (defined as in Example 1) defined as

ψ f (e) =



(0.8, 0.7, 0.5), (0.7, 0.6, 0.5) (0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.4, 0.3, 0.3) (0.6, 0.5, 0.1), (0.5, 0.3, 0.2)
(0.7, 0.7, 0.9), (0.8, 0.7, 0.8) (0.6, 0.6, 0.8), (0.7, 0.3, 0.6) (0.3, 0.5, 0.7), (0.5, 0.1, 0.3) (0.4, 0.5, 0.2), (0.6, 0.2, 0.5)
(0.9, 0.8, 0.8), (0.8, 0.8, 0.7) (0.6, 0.7, 0.7), (0.6, 0.7, 0.5) (0.4, 0.6, 0.2), (0.4, 0.6, 0.2) (0.4, 0.3, 0.1), (0.2, 0.3, 0.1)




ζg(e) =



(0.7, 0.6, 0.3), (0.6, 0.5, 0.4) (0.6, 0.4, 0.2), (0.5, 0.5, 0.3) (0.5, 0.3, 0.1), (0.4, 0.3, 0.2) (0.5, 0.3, 0.1), (0.4, 0.2, 0.1)
(0.6, 0.6, 0.7), (0.5, 0.4, 0.6) (0.5, 0.5, 0.6), (0.4, 0.3, 0.5) (0.2, 0.4, 0.5), (0.3, 0.1, 0.2) (0.4, 0.4, 0.1), (0.5, 0.1, 0.3)
(0.8, 0.7, 0.6), (0.7, 0.6, 0.5) (0.5, 0.6, 0.5), (0.5, 0.5, 0.4) (0.3, 0.5, 0.1), (0.2, 0.3, 0.1) (0.3, 0.2, 0.1), (0.2, 0.2, 0.1)




It can easily be analyzed that for each parameter, ψf(e) is multi-fuzzy subsemigroup
of ζg(e) over S. Conversely, for any two ψf(e) and ζg(e) that are multi-fuzzy subsets
of an ordered semigroup S, ζg(e) is a fuzzy subsemigroup of ψf(e), then ζ(e) ≤ ψ(e),
g(e) ≤ f(e) ∀e ∈ B. Also, (ψf, A) and (ξg,B) satisfy the definition of PMFSS. Thus, for
B ⊆ A, (ξg,B) is a fuzzy subsemigroup of (ψf, A).

Theorem 7. Suppose ( ψ f , A) is a PMFSS over S and let (ζg|1, B1) and (ζg|2, B2) be the two
possibility multi-fuzzy soft ordered subsemigroups of ( ψ f , A), then

(1) (ζg|1, B1) ∩ (ζg|2, B2) ≤ (ψ f , A);

(2) If B1 ∩ B2 = ϕ, then
(

ζg|1, B1

)
∪
(

ζg|2, B2

)
≤
(

ψ f , A
)

.

Proof. (1) The intersection of any two possibility multi-fuzzy soft sets is defined as
(ζg|1, B1) ∩ (ζg|2, B2) = (ζg, B), where B1 ∩ B2 = B,∀e ∈ B implies e ∈ B1 and e ∈ B2, or
in other words, either ζg(e) = ζg|1(e) or ζg(e) = ζg|2(e). Since (ζg|1, B1) ≤ (ψ f , A) and

(ζg|2, B2) ≤ (ψ f , A), gµ(e) is a fuzzy subsemigroup of f υ(e).

Thus, (ζg|1, B1) ∩ (ζg|2, B2) ≤ ( f υ, A)..
(2) The union of any two possibility multi-fuzzy soft sets can be defined as (ζg|1, B1)∪

(ζg|2, B2) = (ζg, B), where B1 ∪ B2 = B. As ∀e ∈ B, we obtain

ζg(e) =





ζg|1(e)ife ∈ B1 − B2,
ζg|2(e)ife ∈ B2 − B1,

ζg|1(e) ∪ ζg|2(e)ife ∈ B1 ∩ B2.

Here, if B1 ∩ B2 = ϕ, either e ∈ B1 − B2 or e ∈ B2 − B1; thus, either ζg(e) = ζg|1(e)
or ζg(e) = ζg|2(e), as (ζg|1, B1) ≤ (ψ f , A) and (ζg|2, B2) ≤ (ψ f , A), so ζg(e) is a fuzzy

subsemigroup of ψ f (e). Hence, (ζg|1, B1) ∪ (ζg|2, B2) ≤ (ψ f , A). □

Theorem 8. Let H: S→T define a homomorphic mapping of ordered semigroups. And let ( ψ f , A)

and ( ζg,B) be two PMFSSs over S. Then, if (ψ f , A) ≤ (ζg, B), this implies H(ψ f , A) ≤ H(ζg, B).
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Proof. Let (ψ f , A) ≤ (ζg, B)∀A ⊆ B, then by Theorem 6 it is clear that ψ f (e) is a fuzzy

subsemigroup of ζg(e). Also, according to the definition of homomorphism, H(ψ f (e)) is a

fuzzy subsemigroup of H(ζg(e)). Therefore, it is concluded that H(ψ f , A) ≤ H(ζg, B). □

Definition 13. Let ( ψ f , A) be a PMFSS over S. Then, a possibility multi-fuzzy soft set ( ζg,X)
over S is called a possibility multi-fuzzy soft l-ideal (resp. r-ideal) of ( ψ f , A) and is denoted

((ζg, X) ◁l (ψ f , A)) (resp. ((ζg, X) ◁r (ψ f , A))) if it follows

(1) X ⊆ A;
(2) ∀e ∈ X, ζg(e)is a fuzzy soft left ideal (resp. right ideal) of ψ f (e)⇒ ((ζg, X) ◁l (ψ f , A))

(resp.((ζg, X) ◁r (ψ f , A))).

If ( ζg,B) is both an l-ideal and r-ideal of ( ψ f , A), then we can call ( ζg,B) a possibility

multi-fuzzy soft ideal of ( ψ f , A), and it is denoted as (ζg, X) ◁ (ψ f , A).

Example 7. Suppose S = {s1,s2,s3,s4} is an ordered semigroup under the following multiplication
relation and order relation:

≤:= {(s1,s1), (s2,s2), (s3,s3), (s4,s4), (s1,s2)}.

Multiplication table

. s1 s2 s3 s4

s1 s1 s1 s1 s1
s2 s1 s1 s1 s1
s3 s1 s1 s1 s2
s4 s1 s1 s2 s3

Let (ψf, A) be a possibility multi-fuzzy soft set of S, where A = {e1, e2, e3} and
ψf : A →MnFSS(S) × MnFSS(S). Let us assume a set of parameters X, where X ⊆
A; then, a mapping ζg : X →MnFSS(S) × MnFSS(S) can be defined, where ζg(e) =

(ζ(e)(si), g(e)(si))∀si ∈ S.

ζg(e) =



(0.7, 0.6), (0.6, 0.5) (0.6, 0.4), (0.5, 0.5) (0.5, 0.3), (0.4, 0.3) (0.5, 0.3), (0.4, 0.2)
(0.6, 0.6), (0.5, 0.4) (0.5, 0.5), (0.4, 0.3) (0.2, 0.4), (0.3, 0.1) (0.1, 0.4), (0.2, 0.1)
(0.8, 0.7), (0.7, 0.6) (0.5, 0.6), (0.5, 0.5) (0.3, 0.5), (0.2, 0.3) (0.3, 0.2), (0.2, 0.2)


.

As ζg(e)(ai · aj) ≥ ζg(e)(ai) ∀ai, aj ∈ S, ζg(e) is a fuzzy soft right ideal of ψf(e).
Similarly, ζg(e)(ai · aj) ≥ ζg(e)(aj) implies ζg(e) is a fuzzy soft left ideal of ψf(e). Thus,
(ζg, X) ◁r (ψf, A) and (ζg, X) ◁l (ψf, A). Thus, (ζg, X) ◁ (ψf, A).

Theorem 9. Let ( ψ f , A) be a PMFSS over S. Then, for any two possibility multi-fuzzy soft sets

(ζg|1, X1) and (ζg|2, X2) of S, where X1 ∩ X2 ̸= ϕ, we can prove following:

(1) If (ζg|1, X1) ◁l (ψ f , A) and (ζg|2, X2) ◁l (ψ f , A), then (ζg|1, X1) ∩ (ζg|2, X2) ◁l

(ψ f , A).

(2) If (ζg|1, X1) ◁r (ψ f , A) and (ζg|2, X2) ◁r (ψ f , A), then (ζg|1, X1) ∩ (ζg|2, X2) ◁r

(ψ f , A).

Proof. (1) The intersection of any two possibility multi-fuzzy soft sets can be defined
as (ζg|1, X1) ∩ (ζg|2, X2) = (ζg, X), where X1 ∩ X2 = X. Then, ∀e ∈ X implies e ∈ X1

and e ∈ X2, so either ζg(e) = ζg|1(e) or ζg(e) = ζg|2(e), also X ⊆ A; hence, ( ξg,X) is a
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PMFSS over S. (ζg|1, X1) ◁l (ψ f , A) implies (ζg, X) ◁l (ψ f , A) as (ζg|1, X1) ∩ (ζg|2, X2) =

(ζg, X) ◁l (ψ f , A).
(2) Similarly, we can prove the second relation. □

Theorem 10. Let ( ψ f , A) be a PMFSS over S. Then, for any two possibility multi-fuzzy soft sets

( ζg,B) and (σh, C) over S, where B ∩ C = ϕ, we can prove the following:

(1) If
(

ζg, B
)
◁l

(
ψ f , A

)
and

(
σh, C

)
◁l

(
ψ f , A

)
, then

(
ζg, B

)
∪
(
σh, C

)
◁l

(
ψ f , A

)
.

(2) If
(

ζg, B
)
◁r

(
ψ f , A

)
and

(
σh, C

)
◁r

(
ψ f , A

)
, then

(
ζg, B

)
∪
(
σh, C

)
◁r

(
ψ f , A

)
.

Proof. (1) The union of any two possibility multi-fuzzy soft sets is defined as
(

ζg, B
)
∪

(
σh, C

)
=
(
ϖk, K

)
, where B ∪ C = K, ∀e ∈ K.

ϖk(e) =





ζg(e)ife ∈ B − C,
σh(e)ife ∈ C − B,

ζg(e) ∪ σh(e)ife ∈ B ∩ C.

Here, B ∩ C = ϕ, so either e ∈ B − C or e ∈ C − B. If e ∈ B − C, then ϖk€ = ζg€, where
ζg€ is a left ideal of ψf€. So, ϖk€ is also a left ideal of ψf€. Thus,

(
ϖk, K

)
◁l
(
ψf, A

)
. If

e ∈ C − B, thenϖk(e) = σh€, where σh€ is a left ideal of ψf€. So,ϖk(e) is also a left ideal
of ψf€. Thus,

(
ϖk, K

)
◁l
(
ψf, A

)
.

Hence, we have
(
ζg, B

)
∪
(
σh, C

)
◁l
(
ψf, A

)
.

(2) Similarly, we can prove (ζg, B) ∪ (σh, C) ◁r (ψf, A). □

4. Application of PMFSS in Decision Making and Medical Diagnosis

In this section, we showcase the application of PMFSSs in decision-making problems
by examining the following examples.

Example 8. Let three players give a test for their selection in a cricket team. The parameters
required for the players are e1 , which is all-rounder, consisting of batsman, bowler and fielder; e2 ,
which is age, consisting of old, medium and young; and e3, which is fitness, consisting of excellent,
good and poor. Here, U = {P1, P2, P3} and R = {e1, e2, e3}. We have defined the following
multiplication and ordered relation on the basis of their average performance in the last ten matches.

Multiplication table

. P1 P2 P3

P1 P1 P2 P1
P2 P2 P2 P3
P3 P3 P3 P3

≤:= {(P1,P1), (P2,P2), (P3,P3), (P1,P3), (P2,P3)}.

Keeping in view the order relation as shown in Figure 1, it is easily noticed that the
third player is better than first two. We consider two observations ψ f and ξg as two
committee members to decide the best player.
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And the values for all the other pairs of parameters can be evaluated in a similar 
manner. The values for all the pairs of parameters in matrix form are written as 

Figure 1. Hesse diagram for ordered relation of Z.
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Here, possibility multi-fuzzy soft set technique is applied for both the observations.
We obtain

ψ f (e1) =
{
( P1
(0.2,0.5,0.5) , (0.6, 0.9, 0.1)), ( P2

(0.9,0.8,0.3) , (0.8, 0.7, 0.4)), ( P3
(0.1,0.3,0.2) , (0.5, 0.2, 0.3))

}
,

ψ f (e2) =
{
( P1
(0.3,0.4,0.6) , (0.2, 0.3, 0.7)), ( P2

(0.3,0.4,0.7) , (0.2, 0.6, 0.7)), ( P3
(0.8,0.2,0.1) , (0.7, 0.3, 0.2))

}

and

ψ f (e3) =

{
(

P1

(0.6, 0.3, 0.2)
, (0.7, 0.4, 0.3)), (

P2

(0.9, 0.7, 0.2)
, (0.8, 0.6, 0.3)), (

P3

(0.6, 0.4, 0.1)
, (0.7, 0.5, 0.1))

}
,

In matrix form,

ψ f =



(0.2, 0.5, 0.5), (0.6, 0.9, 0.1) (0.9, 0.8, 0.3), (0.8, 0.7, 0.4) (0.1, 0.3, 0.2), (0.5, 0.2, 0.3)
(0.3, 0.4, 0.6), (0.2, 0.3, 0.7) (0.3, 0.4, 0.7), (0.2, 0.6, 0.7) (0.8, 0.2, 0.1), (0.7, 0.3, 0.2)
(0.6, 0.3, 0.2), (0.7, 0.4, 0.3) (0.9, 0.7, 0.2), (0.8, 0.6, 0.3) (0.6, 0.4, 0.1), (0.7, 0.5, 0.1)


.

Similarly, ξg can be written as

ξg =



(0.3, 0.5, 0.6), (0.7, 0.8, 0.2) (0.9, 0.9, 0.2), (0.9, 0.8, 0.4) (0.2, 0.3, 0.3), (0.6, 0.3, 0.2)
(0.2, 0.4, 0.6), (0.1, 0.5, 0.4) (0.4, 0.5, 0.6), (0.2, 0.5, 0.7) (0.7, 0.3, 0.2), (0.6, 0.4, 0.1)
(0.5, 0.3, 0.1), (0.6, 0.4, 0.1) (0.9, 0.8, 0.1), (0.7, 0.5, 0.2) (0.5, 0.6, 0.1), (0.7, 0.4, 0.3)


.

In order to calculate a mutual decision by both the members of committee, AND
operation of possibility multi-fuzzy soft sets is applied. Defined as σh= ψ f∧ξg,

σh(e1, e1) =
{
( P1
(0.2,0.5,0.5) , (0.6, 0.8, 0.1)), ( P2

(0.9,0.8,0.2) , (0.8, 0.7, 0.4)), ( P3
(0.1,0.3,0.2) , (0.5, 0.2, 0.2))

}
,

σh(e1, e2) =
{
( P1
(0.2,0.4,0.5) , (0.1, 0.5, 0.1)), ( P2

(0.4,0.5,0.3) , (0.2, 0.5, 0.4)), ( P3
(0.1,0.3,0.2) , (0.5, 0.2, 0.1))

}
,

σh(e1, e3) =
{
( P1
(0.2,0.3,0.1) , (0.6, 0.4, 0.1)), ( P2

(0.9,0.8,0.1) , (0.7, 0.5, 0.2)), ( P3
(0.1,0.3,0.1) , (0.5, 0.2, 0.3))

}
.

And the values for all the other pairs of parameters can be evaluated in a similar
manner. The values for all the pairs of parameters in matrix form are written as

σh =




(0.2, 0.5, 0.5), (0.6, 0.8, 0.1) (0.9, 0.8, 0.2), (0.8, 0.7, 0.4) (0.1, 0.3, 0.2), (0.5, 0.2, 0.2)
(0.2, 0.4, 0.5), (0.1, 0.5, 0.1) (0.4, 0.5, 0.3), (0.2, 0.5, 0.4) (0.1, 0.3, 0.2), (0.5, 0.2, 0.1)
(0.2, 0.3, 0.1), (0.6, 0.4, 0.1) (0.9, 0.8, 0.1), (0.7, 0.5, 0.2) (0.1, 0.3, 0.1), (0.5, 0.2, 0.3)
(0.3, 0.4, 0.6), (0.2, 0.3, 0.2) (0.3, 0.4, 0.2), (0.2, 0.6, 0.4) (0.2, 0.2, 0.1), (0.6, 0.3, 0.2)
(0.2, 0.4, 0.6), (0.1, 0.3, 0.4) (0.3, 0.4, 0.6), (0.2, 0.5, 0.7) (0.7, 0.2, 0.1), (0.6, 0.3, 0.1)
(0.3, 0.3, 0.1), (0.2, 0.3, 0.1) (0.3, 0.4, 0.1), (0.2, 0.5, 0.2) (0.5, 0.2, 0.1), (0.7, 0.3, 0.2)
(0.3, 0.3, 0.2), (0.7, 0.4, 0.2) (0.9, 0.7, 0.2), (0.8, 0.6, 0.3) (0.2, 0.3, 0.1), (0.6, 0.3, 0.1)
(0.2, 0.3, 0.2), (0.1, 0.4, 0.3) (0.4, 0.5, 0.2), (0.2, 0.5, 0.3) (0.6, 0.3, 0.1), (0.6, 0.4, 0.1)
(0.5, 0.3, 0.1), (0.6, 0.4, 0.1) (0.9, 0.7, 0.1), (0.7, 0.5, 0.2) (0.5, 0.4, 0.1), (0.7, 0.4, 0.1)




As we need to find the best player suitable for the team, we would compute the grades
and possibility grades by the following formulas:

rij(uk) = ∑
u∈U

((C1
k − υ1

σ(ei ,ej)
(u)) + ((C2

k − υ2
σ(ei ,ej)

(u)) + ((C3
k − υ3

σ(ei ,ej)
(u))

λij(uk) = ∑
u∈U

((C1
k − υ1

σ(ei ,ej)
(u)) + ((C2

k − υ2
σ(ei ,ej)

(u)) + ((C3
k − υ3

σ(ei ,ej)
(u))
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By using these formulas, the grades and possibility grades for all possible values can
be calculated.

r11(P1) = ∑
P1∈U

((C1
1 − υ1

σ(e1,e1)
(P1)) + ((C2

1 − υ2
σ(e1,e1)

(P1)) + ((C3
1 − υ3

σ(e1,e1)
(P1))

= (0.2 − 0.9) + (0.2 − 0.1) + (0.5 − 0.8) + (0.5 − 0.3) + (0.5 − 0.8) + (0.5 − 0.2)
= −0.7 + 0.1 − 0.3 + 0.2 + 0.3 + 0.3
= −0.1
λ11(P1) = ∑

P1∈U
((C1

1 − υ1
h(e1,e1)

(P1)) + ((C2
1 − υ2

h(e1,e1)
(P1)) + ((C3

1 − υ3
h(e1,e1)

(P1))

= (0.6 − 0.8) + (0.6 − 0.5) + (0.8 − 0.7) + (0.8 − 0.2) + (0.1 − 0.4) + (0.1 − 0.2)
= 0.2

Similarly, we can calculate the values for all the other possible points, which are given
in Table 1. Now, we mark the highest numerical grade in each row and possibility grade
related to that and then find the total score for each player by taking the sum of the product
of these numerical grades with their respective possibility grades. Here, P2 is the player
with the highest score; thus, they will select P2 for the team.

Table 1. Numerical and possibility grade table.

σh P1 P2 P3

(e1, e1) −0.1, 0.2 0.2, 1.4 −0.1, −0.1
(e1, e2) 0.4, −0.5 0.7, 0.7 −1.1, −0.2
(e1, e3) 0.2,0.3 0.5, 0 −0.7, −0.4
(e2, e1) 1.2, −0.9 0.0, 0.6 −1.2, 0.5
(e2, e2) 0.1, −0.6 0.4, 1.0 −0.5, −0.2
(e2, e3) 0, −0.5 0, −0.5 0, 1
(e3, e1) 0.3,0.6 0.6, 0.3 −1.6, −0.9
(e3, e2) −0.3, −0.2 0, −0.2 0.3, 0.4
(e3, e3) 1.5, 0.5 −0.9, −0.4 −0.6, −0.3

Example 9. Suppose that we have a patient who is suffering with certain problem in his health,
and he thinks that he might be suffering with hyperthyroidism or hypothyroidism. Let us consider
all the symptoms he has as set of parameters as represented in Table 2, and the universal set for this
case is yes or no. Here, R = {e 1 + e2 + e3 + e4 + e5} and U = {y, n}.

Table 2. Model table for a hyperthyroid patient.

h y fy n fn

e1 (0,0,1) (1,1,1) (1,1,0) (1,1,1)
e2 (1,0,0) (1,1,1) (0,1,1) (1,1,1)
e3 (1,1,1) (1,1,1) (0,0,0) (1,1,1)
e4 (1,1,1) (1,1,1) (0,0,0) (1,1,1)
e5 (1,1,1) (1,1,1) (0,0,0) (1,1,1)

For this case, we first have to construct a PMFSS model for a hyperthyroid and a
hypothyroid patient by consulting a physician; then, we would construct a PMFSS model
for the patient under observation.

Table 2 represents a possibility multi-fuzzy soft set model table for a hyperthyroid pa-
tient, and Table 3 represents a possibility multi-fuzzy soft set model table for a hypothyroid
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patient. Now, after constructing a model table for the patient under observation, we find
the similarity measure between Tables 2 and 3 by using the Definition 9, and we obtain

φ1( ψ, ξ) =
∑5

i=1 maxuϵU

{
min(υ1

ψ(ei)
(u),υ1

ξ(ei)
(u))

}

∑n
i=1 maxuϵU

{
max(υ1

ψ(ei)
(u),υ1

ξ(ei)
(u))

}

= 4.3/5 = 0.86

θ1( f , h) =
∑5

i=1 maxuϵU

{
min(υ1

f (ei)
(u),υ1

h(ei)
(u))

}

∑5
i=1 maxuϵU

{
max(υ1

f (ei)
(u),υ1

h(ei)
(u))

}

= 3.7/5 = 0.7

Table 3. Model table for a hypothyroid patient.

ωg y gy n gn

e1 (1,0,0) (1,1,1) (0,0,1) (1,1,1)
e2 (0,0,1) (1,1,1) (1,0,0) (1,1,1)
e3 (1,1,1) (1,1,1) (0,0,0) (1,1,1)
e4 (1,1,1) (1,1,1) (0,0,0) (1,1,1)
e5 (1,1,1) (1,1,1) (0,0,0) (1,1,1)

Similarly, φ2(ψ, ξ) = 0.62, θ2( f , h) = 0.66, φ3(ψ, ξ) = 0.7 and θ3( f , h) = 0.72. Thus,
we can obtain S(ψ f , ξh) = (0.6364, 0.4092, 0.504). Hence, s(ψ f , ξh) = 0.514 > 0.5. The result
shows that the two possibility multi-fuzzy soft set models are significantly similar; thus,
the patient is suffering with hyperthyroidism.

For the second case, we consider Figure 2 of the possibility multi-fuzzy soft set
model for a hypothyroid patient with Table 4 of the possibility multi-fuzzy soft set model
of the patient under observation. We find the similarity measure for the two models
following the same method, and we conclude that S(ωg, ξh) = (0.37, 0.4092, 0.288). Hence,
s(ωg, ξh) = 0.3557 < 0.5. The result shows that the two possibility multi-fuzzy soft set
models are not significantly similar; thus, the patient is not suffering from hypothyroidism.
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Table 4. Model table for the patient under observation.

ξh y hy n hn

e1 (0.0,0.2,0.9) (0.1,0.2,1.0) (1.0,0.5,0.2) (0.9,0.1,0.1)
e2 (0.9,0.1,0.1) (0.8,0.2,0.1) (0.1,0.6,0.9) (0.2,0.7,0.6)
e3 (0.7,0.6,0.4) (0.6,0.7,0.5) (0.1,03,0.2) (0,2,0.5,0.3)
e4 (0.9,0.7,0.8) (0,8,0.8,0,9) (0.2,0.4,0.1) (0.1,0.8,0.2)
e5 (0.8,0.7,0.5) (0.6,0.7,0.6) (0.1,0.8,0.5) (0.1,0.9,0.1)

5. Idealistic Possibility Multi-fuzzy Soft Ordered Semigroups

This section includes a new notion of idealistic possibility multi-fuzzy soft ordered
semigroups. Further, some basic results are obtained using different operations including
union, intersection, AND and OR operation with an idealistic PMFSS technique.

Definition 14. Let (ψ f , A) be a possibility multi-fuzzy soft set over S. Then, (ψ f , A) is called an
l-idealistic (resp. r-idealistic) possibility multi-fuzzy soft ordered semigroup over S if ψ f (e) is the
left (resp. right) ideal of S, ∀e ∈ A.

The example below will give a better understanding of this new concept.

Example 10. Let S be an ordered semigroup with the multiplication and ordered relation as follows:

≤:= {(s1,s1), (s2,s2), (s3,s3), (s4,s4), (s1,s2)}.

Multiplication table

. s1 s2 s3 s4

s1 s1 s1 s1 s1
s2 s1 s1 s1 s1
s3 s1 s1 s1 s2
s4 s1 s1 s2 s3

(ψ f , A) is a possibility multi-fuzzy soft set over S, where

ψ f (e) =



(0.8, 0.7), (0.7, 0.6) (0.7, 0.6), (0.6, 0.5) (0.6, 0.5), (0.4, 0.3) (0.6, 0.4), (0.3, 0.1)
(0.7, 0.7), (0.8, 0.7) (0.6, 0.5), (0.7, 0.4) (0.3, 0.5), (0.5, 0.1) (0.1, 0.4), (0.2, 0.1)
(0.9, 0.7), (0.8, 0.6) (0.7, 0.6), (0.6, 0.5) (0.4, 0.5), (0.3, 0.4) (0.4, 0.3), (0.2, 0.2)


.

As here, ψ f (e)(si.sj) ≥ ψ f (e)(si)∀e ∈ A, so ψ f (e) is the fuzzy right ideal of S by
definition. Hence, ψ f (e) is an r-idealistic possibility multi-fuzzy soft ordered semigroup
over S. Similarly, we can check it for an l-idealistic possibility multi-fuzzy soft ordered
semigroup over S.

Theorem 11. Let (ψ f , A) and (ζg,B) be l-idealistic (resp. r-idealistic) possibility multi-fuzzy

soft ordered semigroups over S. If A ∩ B ̸= ϕ, then their intersection ((ψ f , A) ∩ (ζg, B)) is also an
l-idealistic (resp. r-idealistic) possibility multi-fuzzy soft ordered semigroup over S.

Proof. As the intersection of any two possibility multi-fuzzy soft sets is defined as
(ψ f , A)∩ (ζg, B) = (σh, C), where C = A ∩ B, then ∀e ∈ C either (σ(e), h(e)) = (ψ(e), f (e))

or (σ(e), h(e)) = (ζ(e), g(e)). (σh, C) is a PMFSS over S as defined in Theorem 3. Since
( ψ f , A) and ( ξg,B) are both l-idealistic (resp. r-idealistic) PMFSSs over S, it follows that

either σh(e) = ψ f (e) or σh(e) = ζg(e); hence, σh(e) is also an l-idealistic (resp. r-idealistic)
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PMFSS over S. So, we can say that the intersection of two l-idealistic (resp. r-idealistic)
PMFSSs over S is also an l-idealistic (resp. r-idealistic) PMFSS over S. □

Theorem 12. Let (ψ f , A) and (ζg,B) be l-idealistic (resp. r-idealistic) possibility multi-fuzzy soft

ordered semigroups over S. If A ∩ B = ϕ, then their union (ψ f , A) ∪ (ζg, B) is also an l-idealistic
(resp. r-idealistic) PMFSS over S.

Proof. As the union of any two possibility multi-fuzzy soft sets is defined as (ψ f , A) ∪
(ζg, B) = (σh, C), where C = A ∪ B, then ∀e ∈ C.

(σh, C) =





(ψ f , A) i f e ∈ A − B
(ζg, B) i f e ∈ B − A,

(ψ f , A) ∪ (ζg, B) i f e ∈ A ∩ B

As A∩ B = ϕ⇒ either e ∈ A− B or e ∈ B− A. If e ∈ A− B, then σh(e) = ψ f (e), where
ψ f (e) is an l-idealistic (resp. r-idealistic) PMFSS over S, so σh(e) is also an l-idealistic (resp.

r-idealistic) PMFSS over S. Similarly, if e ∈ B − A, then σh(e) = ζg(e), where ζg(e) is an
l-idealistic (resp. r-idealistic) PMFSS over S, so σh(e) is also an l-idealistic (resp. r-idealistic)
PMFSS over S. Hence, (ψ f , A)∪ (ζg, B) = (σh, C) is an l-idealistic (resp. r-idealistic) PMFSS
over S. □

Theorem 13. Let (ψ f , A) and (ζg,B) be l-idealistic (resp. r-idealistic) possibility multi-fuzzy soft

ordered semigroups over S. Then, (ψ f , A) ∧ (ζg, B) is an l-idealistic (resp. r-idealistic) possibility
multi-fuzzy soft ordered semigroup over S.

Proof. As the AND operation is defined as (ψ f , A) ∧ (ζg, B) = (σh, C), where C = A × B,

then by definition, σh(a, b) = ψ f (a) ∩ ζg(b) ∀(a, b) ∈ A × B. Since ( ψ f , A) and ( ζg,B)

are l-idealistic (resp. r-idealistic) PMFSSs over S, we can say that ( ψ f , A) and ( ζg,B) are
possibility multi-fuzzy soft l-ideals (resp. r-ideals) over S; therefore, the intersection of
(ψ f (a)) ∩ (ζg(b))∀(a, b) ∈ A × B is a possibility multi-fuzzy soft l-ideal (resp. r-ideal) over

S. Thus, the intersection of (ψ f (a)) ∩ (ζg(b))∀(a, b) ∈ A × B is also an l-idealistic (resp.

r-idealistic) PMFSS over S. Therefore, (ψ f , A) ∧ (ζg, B) = (σh, C) is an l-idealistic (resp.
r-idealistic) PMFSS over S. □

6. Conclusions

This paper presents a comprehensive exploration of the amalgamation of possibility
multi-fuzzy soft sets with ordered semigroups. By synthesizing concepts from fuzzy
mathematics, soft set theory and algebraic structures, this theory provides a powerful tool
for addressing uncertainty in problem solving from different fields of applied sciences
including medical diagnosis and decision making. This research will further lead to
possibility multi-fuzzy soft interior ideals, possibility multi-fuzzy soft bi-ideals, possibility
multi-fuzzy soft generalized bi-ideals, possibility multi-fuzzy soft quasi-ideals and several
other algebraic structures, which will provide a platform for other researchers to further
enhance this new theory, providing valuable insights and applications for future endeavors.

Author Contributions: Conceptualization, S.H. and F.M.K.; methodology, S.H. and V.L.-F.; validation,
S.H., F.M.K. and V.L.-F.; formal analysis, S.H.; investigation, S.H.; resources, S.H.; data curation, S.H.
and F.M.K.; writing—original draft preparation, S.H.; writing—review and editing, S.H.; visualization,
S.H.; supervision, S.H.; project administration, S.H. and F.M.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

198



Axioms 2024, 13, 340

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zadeh, L.A. Fuzzy sets. Inf. Sci. Control 1965, 8, 338–353. [CrossRef]
2. Molodtsov, D. Soft set theory first results. Comput. Math. Appl. 1999, 37, 19–31. [CrossRef]
3. Molodtsov, D. The Theory of Soft Sets; URSS Publishers: Moscow, Russia, 2004. (In Russian)
4. Maji, P.K.; Roy, A.R.; Biswas, R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602.
5. Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Comput. Math. Appl. 2003, 45, 555–562. [CrossRef]
6. Maji, P.K.; Roy, A.R.; Biswas, R. An application of soft sets in a decision making problems. Comput. Math. Appl. 2002, 44,

1077–1083. [CrossRef]
7. Alkhazaleh, S.; Salleh, A.R. Soft expert sets. Adv. Decis. Sci. 2011, 2011, 757868-1. [CrossRef]
8. Alkhazaleh, S.; Salleh, A.R.; Hassan, N. Soft multisets theory. Appl. Math. Sci. 2011, 72, 3561–3573.
9. Broumi, S.; Smarandache, F. Intuitionistic fuzzy soft expert sets and its application in decision making. J. New Theory 2015, 1,

89–105.
10. Al-Quran, A.; Hassan, N. Neutrosophic vague soft expert set theory. J. Intell. Fuzzy Syst. 2016, 30, 3691–3702. [CrossRef]
11. Khalil, A.M.; Hassan, N. A note on possibility multi-fuzzy soft set and its application in decision. J. Intell. Fuzzy Syst. 2017, 32,

2309–2314. [CrossRef]
12. Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512–517. [CrossRef]
13. Smarandache, F. Neutrosophic set—A generalization of the intuitionistic fuzzy sets. Int. J. Pure Appl. Math. 2005, 24, 287–297.
14. Selvachandran, G.; Singh, P.K. Interval-valued complex fuzzy soft set and its application. Int. J. Uncertain. Quantifi. 2018, 8,

101–117. [CrossRef]
15. Garg, H.; Khan, F.M.; Ahmed, W. Fermatean Fuzzy similarity measures-based group decision-making algorithm and its

application to dengue disease. Iran. J. Sci. Technol. 2024, 1–7. [CrossRef]
16. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4,

410–413.
17. Alhazaymeh, K.; Hassan, N. Vague soft expert set and its application in decision making. Malays. J. Math. Sci. 2017, 11, 23–39.
18. Alhazaymeh, K.; Hassan, N. Interval-valued vague soft sets and its application. Adv. Fuzzy Syst. 2012, 2012, 208489. [CrossRef]
19. Arshad, M.; Saeed, M.; Rahman, A.; Khalifa, H. Modeling uncertainties associated with multi-attribute decision-making based

evaluation of cooling system using interval-valued complex intuitionistic fuzzy hypersoft settings. AIMS Math. 2024, 9,
11396–11422. [CrossRef]

20. Wang, D.; Yuan, Y.; Liu, Z. Novel Distance Measures of q-Rung Orthopair Fuzzy Sets and Their Applications. Symmetry 2024,
16, 574. [CrossRef]

21. Bashir, M.; Salleh, A.R.; Alkhazaleh, S. Possibility intuitionistic fuzzy soft set. Adv. Decis. Sci. 2012, 2012, 404325. [CrossRef]
22. Riaz, M.; Tanveer, S.; Pamucar, D.; Qin, D.S. Topological Data Analysis with Spherical Fuzzy Soft AHP-TOPSIS for Environmental

Mitigation System. MDPI Math. 2022, 10, 1826. [CrossRef]
23. Khan, M.S.A.; Abdullah, S.; Lui, P. Grey method for multi-attribute decision making with incomplete weight information under

Pythagorean fuzzy setting. J. Intell. Syst. 2018, 221, 245–252. [CrossRef]
24. Khan, M.S.A.; Ali, A.; Abdullah, S.; Amin, F.; Hussain, F. New extension of TOPSIS method based on Pythagorean hesitant fuzzy

sets with incomplete weight information. J. Intell. Fuzzy Syst. 2018, 35, 5435–5448.
25. Farman, S.; Khan, F.M.; Bibi, N. T-Spherical fuzzy soft rough aggregation operators and their applications in multi-criteria group

decision-making. Granul. Comput. 2023, 9, 6. [CrossRef]
26. Liang, R.X.; Wang, J.Q.; Zhang, H.Y. A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic

preference relations with complete weight information. Neural Comput. Appl. 2018, 30, 3383–3398. [CrossRef]
27. Yang, X.B.; Lin, T.Y.; Yang, J.Y.; Li, Y.; Yu, D. Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 2009, 58,

521–527. [CrossRef]
28. Li, Y.Y.; Zhang, H.Y.; Wang, J.Q. Linguistic neutrosophic sets and their application in multicriteria decision-making problems. Int.

J. Uncertain. Quanti. 2017, 7, 135–154. [CrossRef]
29. Broumi, S.; Smarandache, F. Single valued neutrosophic soft expert sets and their application in decision making. J. New Theory

2015, 3, 67–88.
30. Sebastian, S.; Ramakrishnan, T.V. Multi-fuzzy set: An extension of fuzzy sets. J. Fuzzy Inf. Eng. 2011, 3, 35–43. [CrossRef]
31. Yang, Y.; Tan, X.; Meng, C.C. The multi-fuzzy soft set and its application in decision making. J. Appl. Math. Model. 2013, 37,

4915–4923. [CrossRef]
32. Alkhazaleh, S.; Salleh, A.R.; Hassan, N. Possibility fuzzy soft set. Adv. Decis. Sci. 2011, 3. [CrossRef]
33. Zhang, H.D.; Shu, L. Possibility multi-fuzzy soft set and its application in decision making. J. Intell. Fuzzy Syst. 2014, 27, 2115–2125.

[CrossRef]
34. Kehayopulu, N. Ideals and Green’s relations in ordered semigroups. Int. J. Math. 2006, 61286, 1–8. [CrossRef]
35. Jun, Y.B.; Lee, K.J.; Khan, A. Soft ordered semigroups. J. Math. Log. Q. 2009, 56, 42–50. [CrossRef]

199



Axioms 2024, 13, 340

36. Kehayopulu, N. On weakly prime ideals of ordered semigroups. Jpn. J. Math. 1990, 35, 1051–1056. [CrossRef]
37. Yin, Y.; Zhan, J. The characterization of ordered semigroups in terms of fuzzy soft ideals. Bull. Malays. Math. Soc. Ser. 2012, 2, 4.
38. Yang, C.F. Fuzzy soft semigroups and fuzzy soft ideals. Comput. Math. Appl. 2011, 61, 255–261. [CrossRef]
39. Khan, F.M.; Leoreanu-Fotea, V.; Ullah, S.; Ullah, A. A Benchmark Generalization of Fuzzy Soft Ideals in Ordered Semigroups,

Analele Stiintifice ale Universitatii Ovidius Constanta. Ser. Mat. 2021, 29, 155–171.
40. Habib, S.; Khan, F.M.; Yufeng, N. A new concept of possibility fuzzy soft ordered semigroup via its application. J. Intell. Fuzzy

Syst. 2019, 36, 3685–3696. [CrossRef]
41. Habib, S.; Garg, H.; Yufeng, N.; Khan, F.M. An Innovative Approach towards Possibility Fuzzy Soft Ordered Semigroups for

Ideals and Its Application. MDPI Math. 2019, 7, 1183. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

200



Citation: Moran, T.; Pumpluen, S.

A Generalization of the First Tits

Construction. Axioms 2024, 13, 299.

https://doi.org/10.3390/

axioms13050299

Academic Editors: Dana Piciu, Murat

Tosun and Cristina Flaut

Received: 26 March 2024

Revised: 22 April 2024

Accepted: 24 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A Generalization of the First Tits Construction
Thomas Moran 1 and Susanne Pumpluen 2,*

1 Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue,
Ottawa, ON K1N 7N5, Canada; tmora083@uottawa.ca

2 School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
* Correspondence: susanne.pumpluen@nottingham.ac.uk

Abstract: Let F be a field of characteristic, not 2 or 3. The first Tits construction is a well-known
tripling process to construct separable cubic Jordan algebras, especially Albert algebras. We generalize
the first Tits construction by choosing the scalar employed in the tripling process outside of the base
field. This yields a new family of non-associative unital algebras which carry a cubic map, and maps
that can be viewed as generalized adjoint and generalized trace maps. These maps display properties
often similar to the ones in the classical setup. In particular, the cubic norm map permits some kind
of weak Jordan composition law.

Keywords: non-associative algebras; first Tits construction; Jordan algebras; generalized cubic
algebras

MSC: 17A35

1. Introduction

Let F be a field of characteristic, not 2 or 3. Separable cubic Jordan algebras over F play
an important role in Jordan theory (where separable means that their trace defines a non-
degenerate bilinear form). It is well known that every separable cubic Jordan algebra can
be obtained by either a first or a second Tits construction [1] (IX, Section 39). In particular,
exceptional simple Jordan algebras, also called Albert algebras, are separable cubic Jordan
algebras. The role of Albert algebras in the structure theory of Jordan algebras is similar to
the role of octonion algebras in the structure theory of alternative algebras. Moreover, their
automorphism group is an exceptional algebraic group of type F4, and their cubic norms
have isometry groups of type E6. For some recent developments, see [2–6].

In this paper, we canonically generalize the first Tits construction J(A, µ). The first
Tits construction starts with a separable associative cubic algebra A and uses a scalar
µ ∈ F× in its definition. Our construction also starts with A and employs the same algebra
multiplication as that used for the classical first Tits construction, but now allows also
µ ∈ A×.

We obtain a new class of non-associative unital algebras which we again denote by
J(A, µ). They carry a cubic map N : J(A, µ) → A that generalizes the classical norm, a map
T : J(A, µ) → F that generalizes the classical trace, and a map ♯ : J(A, µ) → J(A, µ) that
generalizes the classical adjoint of a Jordan algebra. Starting with a cubic étale algebra E,
the algebras obtained this way can be viewed as generalizations of special nine-dimensional
Jordan algebras. Starting with a central simple algebra A of degree three, the algebras
obtained this way can be viewed as generalizations of Albert algebras.

Cubic Jordan algebras carry a cubic norm that satisfies some Jordan composition law
involving the U-operator. Curiously, the cubic map N : J(A, µ) → A of our generalized
construction still allows some sort of generalized weak Jordan composition law, and some
of the known identities of cubic Jordan algebras involving a generalized trace map and
adjoint can be at least partially recovered.
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We point out that there already exists a canonical non-associative generalization of
associative central simple cyclic algebras of degree three, involving skew polynomials: the
non-associative cyclic algebras (K/F, σ, µ), where K/F is a cubic separable field extension
or a C3-Galois algebra, and µ ∈ K \ F, were first studied over finite fields [7], and then later
over arbitrary base fields and rings [8–11] and applied in space-time block coding [12,13].
Their “norm maps” reflect some of the properties of the non-associative cyclic algebra
(K/F, σ, µ) and are isometric to the “norm maps” N : J(K, µ) → K of the generalized Tits
construction J(K, µ). We show that these algebras are not related, however.

Some obvious questions like if and when the algebras obtained through a generalized
first Tits construction are division algebras seem to be very difficult to answer. We will not
address these here and only discuss some straightforward implications.

The contents of the paper are as follows: After introducing the terminology in Section 2
and reviewing the classical first Tits construction, we generalize the classical construction in
Section 3 and obtain unital non-associative algebras J(A, µ), where µ ∈ A×. The algebras
J(A, µ) carry maps that satisfy some of the same identities we know from the classical setup.
If A ̸= F, then Nucl(J(A, µ)) = Nucr(J(A, µ)) = F for all µ ∈ A×. If A is a central simple
associative division algebra of degree three, then Nucm(J(A, µ)) = F (Theorems 3 and 4).
Some necessary conditions on when J(A, µ) is a division algebra are listed in Theorem 6:
If J(A, µ) is a division algebra, then µ /∈ NA(A×) and A must be a division algebra. If
N is anisotropic, then A is a division algebra and µ /∈ NA(A×). If there exist elements
0 ̸= x = (x0, x1, x2) ∈ J(A, µ) such that x♯ = 0, we show that either A must have zero
divisors, or A is a division algebra and µ ∈ NA(A×). Moreover, if A is a division algebra
over F and 1, µ, and µ2 are linearly independent over F, then N must be anisotropic.

We investigate in which special cases several classical identities carry over in Section 4.
In Section 5, we compare the algebras obtained from a generalized first Tits construc-

tion starting with a cyclic field extension with the algebras (K/F, σ, µ)+, where (K/F, σ, µ)
is a non-associative cyclic algebra over F of degree three. If µ ∈ F×, then it is well known
that these algebras are isomorphic. For µ ∈ K \ F, they are not isomorphic, but their norms
are isometric.

This construction was briefly investigated for the first time in Andrew Steele’s PhD
thesis [11]. We improved and corrected most of their results, and added many new ones.

2. Preliminaries
2.1. Non-Associative Algebras

Throughout the paper, F is a field of characteristic, not 2 or 3. An algebra over F is
an F-vector space A together with an F-bilinear map A × A → A, (x, y) 7→ x · y, denoted
simply by juxtaposition of xy, the multiplication of A. An algebra A is unital if there exists
an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A.

A non-associative algebra A ̸= 0 is called a division algebra if for any a ∈ A, a ̸= 0, the
left multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are
bijective. We will only consider unital finite-dimensional algebras, which implies that A
is a division algebra if and only if A has no zero divisors. Define [x, y, z] = (xy)z − x(yz).
The subalgebras Nucl(A) = {x ∈ A | [x, A, A] = 0}, Nucm(A) = {x ∈ A | [A, x, A] = 0},
and Nucr(A) = {x ∈ A | [A, A, x] = 0} of A are called the left, middle, and right nuclei
of A, Nuc(A) = {x ∈ A | [x, A, A] = [A, x, A] = [A, A, x] = 0} is called the nucleus of A.
The center of A is defined as C(A) = {x ∈ A | xy = yx for all y ∈ A} ∩ Nuc(A) [14]. All
algebras we consider will be unital.

A non-associative unital algebra J is called a cubic Jordan algebra over F, if J is a Jordan
algebra, i.e., xy = yx and (x2y)x = x2(yx) for all x, y ∈ J, and if its generic minimal
polynomial has degree three. Given an associative algebra A over F, its multiplication
written simply by juxtaposition, we can define a Jordan algebra over F denoted by A+ on
the F-vector space underlying the algebra A via x · y = 1

2 (xy + yx). A Jordan algebra J is
called special, if it is a subalgebra of A+ for some associative algebra A over F; otherwise, J
is exceptional. An exceptional Jordan algebra is called an Albert algebra.
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The following easy observation is included for the sake of the reader:

Lemma 1. Let A be an associative algebra over F such that A+ is a division algebra. Then, A is a
divison algebra.

Proof. Suppose that xy = 0 for some x, y ∈ A. Then, (yx) · (yx) = y(xy)x = 0, and since
A+ is a division algebra, we obtain yx = 0. This implies that x · y = 1

2 (xy + yx) = 0. Using
again that A+ is a division algebra, we deduce that x = 0 or y = 0.

A non-associative cyclic algebra (K/F, σ, c) of degree m over F is an m-dimensional
K-vector space (K/F, σ, c) = K ⊕ Kz ⊕ Kz2 ⊕ · · · ⊕ Kzm−1, with multiplication given by
the relations zm = c, zl = σ(l)z for all l ∈ K. The algebra (K/F, σ, c) is a unital F-central
algebra and associative if and only if c ∈ F×. The algebra (K/F, σ, c) is a division algebra for
all c ∈ F×, such that cs ̸∈ NK/F(K×) for all s which are prime divisors of m, 1 ≤ s ≤ m − 1.
If c ∈ K \ F, then (K/F, σ, c) is a division algebra for all c ∈ K \ F such that 1, c, . . . , cm−1

are linearly independent over F [10]. If m is prime, then (K/F, σ, c) is a division algebra for
all c ∈ K \ F.

2.2. Cubic Maps

Let V and W be two finite-dimensional vector spaces over F. A trilinear map
M : V × V × V → W is called symmetric if M(x, y, z) is invariant under all permuta-
tions of its variables. A map M : V → W is called a cubic map over F, if M(ax) = a3M(x)
for all a ∈ F, x ∈ V, and if the associated map M : V × V × V → W defined by

M(x, y, z) =
1
6
(M(x + y+ z)− M(x + y)− M(x + z)− M(y+ z) + M(x) + M(y) + M(z))

is a (symmetric) F-trilinear map. We canonically identify symmetric trilinear maps
M : V × V × V → W with the corresponding cubic maps M : V → W.

A cubic map M : V → F is called a cubic form and a trilinear map M : V × V × V → F
a trilinear form over F. A cubic map is called non-degenerate if v = 0 is the only vector such
that M(v, v2, , v3) = 0 for all vi ∈ V. A cubic map M is called anisotropic if M(x) = 0 implies
that x = 0; otherwise, it is isotropic. For a non-associative algebra A over F together with a
non-degenerate cubic form M : A → F, M is called multiplicative, if M(vw) = M(v)M(w)
for all v, w ∈ A.

2.3. Associative Cubic Algebras

(cf. for Instance [1,15] (Chapter C.4)) Let A be a unital separable associative algebra
over F with cubic norm NA : A → F. Let x, y ∈ A and let Z be an indeterminate. The
linearization NA(x + Zy) = NA(x) + ZNA(x; y) + Z2NA(y; x) + Z3NA(y) of NA, i.e., the
coefficient of Z in the above expansion, is quadratic in x and linear in y, and is denoted by
NA(x; y). Indeed, we have

NA(x + Zx) = NA((1 + Z)x) = (1 + Z)3NA(x) = (1 + 3Z + 3Z2 + Z3)NA(x),

so NA(1; 1) = 3NA(1) = 3. Linearize NA(x; y) to obtain a symmetric trilinear map NA :
A × A × A → F, NA(x, y, z) = NA(x + z; y)− NA(x; y)− NA(z; y). We define

TA(x) = NA(1; x),

TA(x, y) = TA(x)TA(y)− NA(1, x, y),

SA(x) = NA(x; 1),

x♯ = x2 − TA(x)x + SA(x)1,
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for all x, y ∈ A. We call x♯ the adjoint of x, and define the sharp map ♯ : A × A → A,
x♯y = (x + y)♯ − x♯ − y♯ as the linearization of the adjoint. We observe that
TA(1) = SA(1) = 3. Since the trilinear map NA(x, y, z) is symmetric,

TA(x, y) = TA(y, x) (1)

for all x, y ∈ A.
The algebra A is called an (associative) cubic algebra (respectively, called an algebra of

degree three in [15] (p. 490)), if the following three axioms are satisfied for all x, y ∈ A:

x3 − TA(x)x2 + SA(x)x − NA(x)1 = 0 (degree 3 identity), (2)

TA(x♯, y) = NA(x; y) (trace-sharp formula), (3)

TA(x, y) = TA(xy) (trace-product formula). (4)

For the rest of Section 2.3, we assume that A is a separable cubic algebra over F with
cubic norm NA : A → F. Note that (2) is equivalent to the condition that

xx♯ = x♯x = NA(x)1, (5)

and combining (1) with (4) gives

TA(xy) = TA(yx). (6)

An element x ∈ A is invertible if and only if NA(x) ̸= 0. The inverse of x ∈ A is
x−1 = NA(x)−1x♯. It can be shown that

(xy)♯ = y♯x♯ (7)

for all x, y ∈ A. Notice that

TA(x♯) = TA(x♯, 1) = NA(x; 1) = SA(x), (8)

using (3) and (4). We also have SA(x) = TA(x♯) = TA(x2)− TA(x)2 + 3SA(x), so

2SA(x) = TA(x)2 − TA(x2). (9)

A straightforward calculation shows that

x♯y = 2(x · y)− TA(x)y − TA(y)x + (TA(x)TA(y)− TA(x · y))1 (10)

for all x, y ∈ A. In particular,

x · y =
1
2
(xy + yx) =

1
2
(x♯y + TA(x)y + TA(y)x − (TA(x)TA(y)− TA(x, y))1)

for all x, y ∈ A and by employing (5) and the adjoint identity in A, we see that the norm
NA satisfies the relation

NA(x♯) = NA(x)2. (11)

A+ satisfies the adjoint identity
(x♯)♯ = NA(x)x (12)

for all x ∈ A. By (11), we have NA(x♯)1 = x♯(x♯)♯ = x♯NA(x)x = NA(x)21. For x, y ∈ A,
we define the operators Ux : A → A, Ux(y) = TA(x, y)x − x♯♯y and Ux,y : A → A,
Ux,y(z) = Ux+y(z)− Ux(z)− Uy(z). Then, we have x · y = 1

2 Ux,y(1) for all x, y ∈ A and

xyx = TA(x, y)x − x♯♯y, (13)
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Hence, Ux(y) = xyx for all x, y ∈ A×.
Define

x × y =
1
2
(x♯y),

and
x̄ =

1
2
(TA(x)1 − x)

for x, y ∈ A. (Note that some literature does not include the factor 1
2 in the definition of ×,

e.g., [16]). By (10), we then have

x × y = x · y − 1
2

TA(x)y − 1
2

TA(y)x +
1
2
(TA(x)TA(y)− TA(x · y))1

for all x, y ∈ A; hence,

x × x = x2 − TA(x)x +
1
2
(TA(x)2 − TA(x2)) = x♯, (14)

using (9).

2.4. The First Tits Construction

Let A be a separable cubic associative algebra over F with norm NA, trace TA and
adjoint map ♯. Let µ ∈ F× and define the F-vector space J = J(A, µ) = A0 ⊕ A1 ⊕ A2,
where Ai = A for i = 0, 1, 2. Then, J(A, µ) together with the multiplication

(x0, x1, x2)(y0, y1, y2)

= (x0 · y0 + x1y2 + y1x2, x0y1 + y0x1 + µ−1(x2 × y2), x2y0 + y2x0 + µ(x1 × y1))

becomes a separable cubic Jordan algebra over F. J(A, µ) is called a first Tits construction.
A+ is a subalgebra of J(A, µ) by canonically identifying it with A0. If A is a cubic etale
algebra, then J(A, µ) ∼= D+ for with D an associative cyclic algebra D of degree three. If A
is a central simple algebra of degree three then J(A, µ) is an Albert algebra.

We define the cubic norm form N : J(A, µ) → F, the trace T : J(A, µ) → F, and the
quadratic map ♯ : J(A, µ) → J(A, µ) (the adjoint) by

N((x0, x1, x2)) = NA(x0) + µNA(x1) + µ−1NA(x2)− TA(x0x1x2)

T((x0, x1, x2)) = TA(x0),

(x0, x1, x2)
♯ = (x♯0 − x1x2, µ−1x♯2 − x0x1, µx♯1 − x2x0).

The intermediate quadratic form S : J(A, µ) → F, S(x0) = N(x; 1), linearizes to a map
S : J(A, µ)× J(A, µ) → F. The sharp map ♯ : J(A, µ)× J(A, µ) → J(A, µ) is the linearization
x♯y = (x + y)♯ − x♯ − y♯ of the adjoint. For every x = (x0, x1, x2) ∈ J(A, µ), we have
x♯1 = T(x)1 − x and

x♯y = (x0♯y0 − x1y2 − y1x2, µ−1(x2♯y2)− x0y1 − y0x1, µ(x1♯y1)− x2y0 − y2x0)

for all x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, µ). We define the trace symmetric bilinear
form T : J(A, µ)× J(A, µ) → F, T(x, y) = TA(x0y0) + TA(x1y2) + TA(x2y1). Then, for all
x, y ∈ J(A, µ), we have

T(x, y) = T(xy). (15)

Remark 1. (N, ♯, 1) is a cubic form with adjoint and base point (1, 0, 0) on J(A, µ) which makes
J(A, µ) into a cubic Jordan algebra J(N, ♯, 1).
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3. The Generalized First Tits Construction J(A, µ)

Let A be a separable associative cubic algebra over F with norm NA, trace TA and
adjoint map ♯.

We now generalize the first Tits construction by choosing the scalar µ ∈ A×. Then,
the F-vector space J(A, µ) = A0 ⊕ A1 ⊕ A2, where again Ai = A for i = 0, 1, 2, becomes a
unital non-associative algebra over F together with the multiplication given by

(x0, x1, x2)(y0, y1, y2)

= (x0 · y0 + x1y2 + y1x2, x0y1 + y0x1 + µ−1(x2 × y2), x2y0 + y2x0 + µ(x1 × y1)).

The algebra J(A, µ) is called a generalized first Tits construction. The special Jordan algebra
A+ is a subalgebra of J(A, µ) by canonically identifying it with A0. If µ ∈ F×, then J(A, µ)
is the first Tits construction from Section 2.4.

We define a (generalized) cubic norm map N : J(A, µ) → A, a (generalized) trace T :
J(A, µ) → F, and a quadratic map ♯ : J(A, µ) → J(A, µ) via

N((x0, x1, x2)) = NA(x0) + µNA(x1) + µ−1NA(x2)− TA(x0x1x2) (16)

T((x0, x1, x2)) = TA(x0), (17)

(x0, x1, x2)
♯ = (x♯0 − x1x2, µ−1x♯2 − x0x1, µx♯1 − x2x0). (18)

Put ♯ : J(A, µ)× J(A, µ) → J(A, µ), x♯y = (x + y)♯ − x♯ − y♯; then, it can be verified by a
direct computation that

x♯y = (x0♯y0 − x1y2 − y1x2, µ−1(x2♯y2)− x0y1 − y0x1, µ(x1♯y1)− x2y0 − y2x0)

for all x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, µ). We also define a symmetric F-bilinear
form T : J(A, µ)× J(A, µ) → F via T(x, y) = TA(x0y0) + TA(x1y2) + TA(x2y1).

The quadratic form SA : A → F, SA(x0) = NA(x; 1), linearizes to SA : A × A → F,
and we have SA(x0) = TA(x♯0) for all x0 ∈ A. We extend SA to J(A, µ) by defining the
quadratic map S : J(A, a) → A, S(x) = N(x; 1). As in the classical case, we obtain:

Theorem 1.

(i) [11] (Proposition 5.2.2) For all x ∈ J(A, µ), we have S(x) = T(x♯) and the linearization
S : J(A, µ)× J(A, µ) → A satisfies

S(x, y) = T(x)T(y)− T(x, y)

for all y ∈ J(A, µ).
(ii) [11] (Lemma 5.2.3) For all x, y ∈ J(A, µ), we have T(x, Y) = T(xy).
(iii) [11] (Lemma 5.2.3) For all x ∈ J(A, µ), we have x♯1 = T(x)1 − x.

Proof.

(i) Let x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, a), then

N(x; y) =NA(x0; y0) + µNA(x1; y1) + µ−1NA(x2; y2)

− TA(x0x1y2)− TA(x0y1x2)− TA(y0x1x2),

and since S(x) = N(x; 1) we obtain S(x) = NA(x0; 1) − TA(x1x2) = SA(x0) −
TA(x1x2). On the other hand,

T(x♯) = TA(x♯0 − x1x2) = TA(x♯0)− TA(x1x2) = SA(x0)− TA(x1x2) = S(x).

We have SA(x0, y0) = TA(x0)TA(y0) − TA(x0, y0) for all x0, y0 ∈ A. Linearizing
S gives S(x, y) = SA(x0, y0)− TA(x1y2)− TA(y1x2) = TA(x0)TA(y0)− TA(x0, y0)−
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TA(x1y2) − TA(y1x2) = T(x)T(y) − T(x, y) using the definitions of TA(xi) and
TA(xi, yi) and the fact that TA(x0, y0) = TA(x0y0).

(ii) Let x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, µ). Since TA is linear, we obtain

T(xy) = TA(x0 · y0) + TA(x1y2) + TA(y1x2)

=
1
2
(TA(x0y0) + TA(y0x0)) +

1
2
(TA(x1y2)TA(1)− TA(x1y2))

+
1
2
(TA(y1x2)TA(1)− TA(y1x2)).

By (6) we obtain TA(x0y0) = TA(y0x0) and TA(y1x2) = TA(x2y1). Since we have
TA(1) = 3 we obtain T(xy) = TA(x0y0) + TA(x1y2) + TA(x2y1) = T(x, y).

(iii) Let x = (x0, x1, x2) ∈ J(A, µ). By (10), we have x0♯1 = TA(x0)1 − x0. Thus, x♯1 =
(x0♯1,−x1,−x2) = T(x)1 − x.

Theorem 2. Let µ ∈ A×, and let x, y ∈ J(A, µ). Then,

(i) x♯ = x2 − T(x)x + S(x)1,
(ii) S(x) = T(x♯),
(iii) T(x × y) = 1

2 (T(x)T(y)− T(xy)).

Note that these are relations that also hold for a cubic form with adjoint and base point
(N, ♯, 1) [15,17].

Proof. Let x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(A, µ).

(i) We have that x2 − T(x)x + S(x)1 = (x0, x1, x2)
2 − TA(x0)(x0, x1, x2) + (SA(x0)1 −

TA(x1x2)1, 0, 0) = (x2
0 − TA(x0)x0 + SA(x0)1 + 2x1x2 − TA(x1x2)1,

µ−1x♯2 + 2x0x1 −TA(x0)x1, µx♯1 + 2x2x0 −TA(x0)x2) = (x♯0 − x1x2, µ−1x♯2 − x0x1, µx♯1 −
x2x0) = x♯.

(ii) As for the classical construction,

T(x♯) = TA(x♯0 − x1x2) = TA(x♯0)− TA(x1x2) = SA(x0)− TA(x1x2) = S(x).

(iii) Since x × y = 1
2 (x♯y) = 1

2 (x0♯y0 − x1y2 − y1x2, µ−1(x2♯y2)− x0y1 − y0x1, µ(x1♯y1)−
x2y0 − y2x0), we obtain T(x × y) = TA(x0 × y0) − 1

2 TA(x1y2) − 1
2 TA(y1x2)

= 1
2 (TA(x0)TA(y0)− TA(x0y0)− TA(x1y2)− TA(y1x2)) =

1
2 (T(x)T(y)− T(xy)).

Define operators Ux, Ux,y : J(A, µ) → J(A, µ) via

Ux(y) = T(x, y)x − x♯♯y, Ux,y(z) = Ux+y(z)− Ux(z)− Uy(z)

for all z ∈ J(A, µ).

Proposition 1. (cf. [11] (Proposition 5.2.4) without factor 1
2 because of slightly different terminol-

ogy) For all x, y ∈ J(A, µ), we have xy = 1
2 Ux,y(1).

This generalizes the classical setup. Our proof is different to the one of [11] (Proposi-
tion 5.2.4), which also proves this result without the factor 1

2 because of the slightly different
definition of the multiplication.
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Proof. We find that Ux(1) = T(x, 1)x − x♯♯1 = T(x)x − T(x♯)1+ x♯; in the second equality,
we have used Theorem 1 and the fact that T(x, 1) = T(x) by Theorem 1. So

Ux,y(1) = Ux+y(1)− Ux(1)− Uy(1)

= T(x + y)(x + y)− T((x + y)♯)1 + (x + y)♯ − T(x)x + T(x♯)1 − x♯

− T(y)y + T(y♯)1 − y♯

= T(x)y + T(y)x + x♯y − T(x♯y)1.

We look at the first component of xy and Ux,y(1): let x = (x0, x1, x2) and y = (y0, y1, y2).
Then, the first component of Ux,y(1) = T(x)y + T(y)x + x♯y − T(x♯y)1 is

TA(x0)y0 + TA(y0)x0 + x0♯y0 − x1y2 − y1x2 − TA(x0♯y0 − x1y2 − y1x2)1. (19)

Using (10), the linearity of TA and (6), we obtain—after some simplification—that (19) is
equal to

2(x0 · y0) + TA(x1y2)− x1y2 + TA(y1x2)− y1x2 = 2(x0 · y0) + 2 x1y2 + 2 y1x2.

This is equal to 2 times the first component of xy. Now, we look at the second component
of xy and Ux,y(1): the second component of Ux,y(1) = T(x)y + T(y)x + x♯y − T(x♯y)1 is

TA(x0)y1 + TA(y0)x1 + µ−1(x2♯y2)− x0y1 − y0x1 = 2x0y1 + 2y0x1 + 2µ−1(x2 × y2).

This is precisely equal to 2 times the second component of xy. Finally, the third component
of 2xy and Ux,y(1) are equal, too. The third component of Ux,y(1) = T(x)y+ T(y)x + x♯y−
T(x♯y)1 is

TA(x0)y2 + TA(y0)x2 + µ(x1♯y1)− x2y0 − y2x0 = 2x2y0 + 2y2x0 + 2µ(x1 × y1).

This is precisely equal to 2 times the third component of xy.

Theorem 3. If µ ∈ A× and A ̸= F, then Nucl(J(A, µ)) = Nucr(J(A, µ)) = F.

Proof. Let (x0, x1, x2) ∈ Nucl(J(A, µ)), then

(x0, x1, x2)[(0, 1, 0)(0, 0, 1)] = [(x0, x1, x2)(0, 1, 0)](0, 0, 1)

implies that
(x0, x1, x2) = (x0, µ−1(µx1), x2),

that means x0 = x0 and x2 = x2. Using the definition of x0, we obtain x0 = 1
4 (TA(x0) + x0),

so x0 = 1
4 (TA(x0) + x0). Thus, x0 = 1

3 TA(x0) ∈ F. Furthermore, since x2 = x2, we find
in a similar way that x2 = 1

3 TA(x2) ∈ F. Next, since x = (x0, x1, x2) ∈ Nucl(J(A, µ)), we
have that

(x0, x1, x2)[(0, 0, 1)(0, 1, 0)] = [(x0, x1, x2)(0, 0, 1)](0, 1, 0).

This implies that
(x0, x1, x2) = (x0, x1, µ(µ−1x2)),

and so x1 = x1. We now find in a similar way that x1 = 1
3 TA(x1) ∈ F, thus Nucl(J(A, µ)) ⊆

{(x0, x1, x2) ∈ J | x0, x1, x2 ∈ F}. Let x = (x0, x1, x2) ∈ Nucl(J(A, µ)), and let
a ∈ A \ F. Then

(x0, x1, x2)[(0, 0, 1)(0, a, 0)] = [(x0, x1, x2)(0, 0, 1)](0, a, 0)

which implies that
(x0 · a, ax1, x2a) = (ax0, x1a, µ(µ−1x2 × a)),
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and so ax1 = x1a. Assume towards a contradiction that x1 ̸= 0. Since x1 ∈ F, this implies
that x1 is invertible and x1 = x1. Thus, the condition ax1 = x1a yields a = a, and so
a = 1

3 TA(a) ∈ F which is a contradiction. Next, since (x0, x1, x2) ∈ Nucl(J(A, µ)), we
know that

(x0, x1, x2)[(0, 1, 0)(0, 0, a)] = [(x0, x1, x2)(0, 1, 0)](0, 0, a)

which implies that
(x0 · a, ax1, x2a) = (x0a, µ−1(µx1 × a), ax2),

and so x2a = ax2. Assume towards a contradiction that x2 ̸= 0. Then, since x2 ∈ F,
x2 is invertible and x2 = x2. Thus, the condition x2a = ax2 yields a = a, and so
a = 1

3 TA(a) ∈ F which is a contradiction. Therefore, x = (x0, 0, 0), x01 ∈ F which
shows that Nucl(J(A, µ)) = F.

Let (x0, x1, x2) ∈ Nucr(J(A, µ)). Then,

(0, 0, 1)[(0, 1, 0)(x0, x1, x2)] = [(0, 0, 1)(0, 1, 0)](x0, x1, x2)

implies that
(x0, µ−1(µx1), x2) = (x0, x1, x2).

Hence, x0 = x0 and x2 = x2. Using the definition of x0, we find that x0 = 1
4 (TA(x0) + x0),

so the condition x0 = x0 gives that x0 = 1
4 (TA(x0) + x0). Thus, x0 = 1

3 TA(x0) ∈ F.
Furthermore, since x2 = x2, we find in a similar way that x2 = 1

3 TA(x2) ∈ F. Next, since
x = (x0, x1, x2) ∈ Nucr(J(A, µ)), we have that

(0, 1, 0)[(0, 0, 1)(x0, x1, x2)] = [(0, 1, 0)(0, 0, 1)](x0, x1, x2).

This implies that
(x0, x1, µ(µ−1x2)) = (x0, x1, x2),

and thus x1 = x1. We find in a similar way that x1 = 1
3 TA(x1) ∈ F, i.e. Nucr(J(A, µ)) ⊆

{(x0, x1, x2) ∈ J | x0, x1, x2 ∈ F}.
Let x = (x0, x1, x2) ∈ Nucr(J(A, µ)), and let a ∈ A \ F. Then, (0, a, 0)[(0, 0, 1)(x0, x1, x2)]

= [(0, a, 0)(0, 0, 1)](x0, x1, x2) which implies that

(ax0, x1a, µ(a × µ−1x2)) = (a · x0, ax1, x2a);

therefore, ax1 = x1a. Assume towards a contradiction that x1 ̸= 0. Then, since x1 ∈ F, x1 is
invertible and x1 = x1. Thus, the condition ax1 = x1a yields a = a, and so a = 1

3 TA(a) ∈ F
which is a contradiction. Next, since (x0, x1, x2) ∈ Nucr(J(A, µ)), we know that

(0, 0, a)[(0, 1, 0)(x0, x1, x2)] = [(0, 0, a)(0, 1, 0)](x0, x1, x2)

which implies that
(x0a, µ−1(a × µx1), ax2) = (a · x0, ax1, x2a),

and so x2a = ax2. Assume towards a contradiction that x2 ̸= 0. Then, since x2 ∈ F, x2 is
invertible and x2 = x2. Thus, the condition x2a = ax2 yields a = a, and so a = 1

3 TA(a) ∈ F
which is a contradiction. Therefore, x = (x0, 0, 0) = x01 ∈ F which shows the assertion.

Theorem 4. Let A ̸= F be a central simple division algebra of degree three and µ ∈ A×. Then,
Nucm(J(A, µ)) = F.

Proof. Let x = (x0, x1, x2) ∈ Nucm(J(A, µ)), and let y0 /∈ C(A). Then, there exists z0 ∈ A
such that y0z0 ̸= z0y0. Since (x0, x1, x2) ∈ Nucm(J(A, µ)), we know that

(y0, 0, 0)[(x0, x1, x2)(z0, 0, 0)] = [(y0, 0, 0)(x0, x1, x2)](z0, 0, 0)
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which implies that

(y0 · (x0 · z0), y0(z0x1), (x2z0)y0) = ((y0 · x0) · z0, z0(y0x1), (x2y0)z0).

Comparing the second and third components yields

y0(z0x1) = z0(y0x1), (20)

(x2z0)y0 = (x2y0)z0. (21)

Now, assume towards a contradiction that x1 ̸= 0. Since A is a division algebra, x1 is
invertible. Since A is associative, (20) implies that y0 z0 = z0 y0. By definition, this yields

(TA(y0)1 − y0)(TA(z0)1 − z0) = (TA(z0)1 − z0)(TA(y0)1 − y0).

Hence, y0z0 = z0y0 which is a contradiction. Now, in a similar way we assume towards
a contradiction that x2 ̸= 0. Then, since A is a division algebra, x2 is invertible. Since
A is associative, (21) implies again that y0 z0 = z0 y0. Hence, y0z0 = z0y0 which is a
contradiction. Next, since x = (x0, 0, 0) ∈ Nucm(J(A, µ)), we also have that

(0, 1, 0)[(x0, 0, 0)(0, 0, y2)] = [(0, 1, 0)(x0, 0, 0)](0, 0, y2)

for each y2 ∈ A. This implies (y2x0, 0, 0) = (x0y2, 0, 0), and so y2x0 = x0y2. By definition,
this means that

1
2

TA(y2x0)1 −
1
2

y2x0 =
1
2

TA(x0y2)1 −
1
2

x0y2. (22)

We know that TA(y2x0) = TA(x0y2) (see (6)), and so (22) gives that y2x0 = x0y2. By
using the definition of y2, this implies that y2x0 = x0y2. Hence, x0 ∈ C(A). Therefore,
x = (x0, 0, 0) = x01 ∈ C(A). Since F ⊆ Nucm(J(A, µ)) this implies the assertion if A is a
central simple division algebra.

Theorem 5. ([18] (Chapter IX, Section 12), [15] (Chapter C.5)) For µ ∈ F×, J(A, µ) is a division
algebra if and only if µ /∈ NA(A×) and A is a division algebra, if and only if N is anisotropic.

The general situation is much harder to figure out and we were only able to obtain
some obvious necessary conditions:

Theorem 6. Let µ ∈ A×.

(i) If J(A, µ) is a division algebra, then µ /∈ NA(A×) and A is a division algebra.
(ii) Let A be a division algebra over F. If 1, µ, µ2 are linearly independent over F then N is

anisotropic.
(iii) If N is anisotropic then A is a division algebra and µ /∈ NA(A×).
(iv) Let 0 ̸= x = (x0, x1, x2) ∈ J(A, µ). Then, x♯ = 0 implies that A has zero divisors, or A is a

division algebra and µ ∈ NA(A×).

Proof.

(i) Suppose that J(A, µ) is a division algebra, then so is A+ and thus A (Lemma 1).
Assume towards a contradiction that µ = NA(x0)1 for some x0 ∈ A×. Then, µ ∈ F×

and J(A, µ) is not a division algebra by Theorem 5. Hence, µ /∈ NA(A)1.
(ii) Since A is a division algebra, NA is anisotropic. So, let N((x0, x1, x2)) = 0; then, the

assumption means that N(x0) = 0, which implies that x0 = 0. This immediately
means that x1 = x2 = 0, too.

(iii) If N is anisotropic, then so is NA; so, A is clearly a division algebra. Moreover,
µ /∈ NA(A×) by Theorem 5.
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(iv) Let 0 ̸= x = (x0, x1, x2) ∈ J(A, µ). Then, x♯ = 0 implies that

x♯0 = x1x2 (23)

µ−1x♯2 = x0x1 (24)

µx♯1 = x2x0. (25)

We can now multiply (23) (resp. (24), (25)) by x0 (resp. x2, x1) on the right and left to
obtain two new equations. Additionally, using the fact that NA(xi) = xix

♯
i = x♯i xi for

all i = 0, 1, 2, we obtain the following six equations:

NA(x0) = x1x2x0

µ−1NA(x2) = x0x1x2

µNA(x1) = x2x0x1

NA(x0) = x0x1x2

µ−1NA(x2) = x2x0x1

µNA(x1) = x1x2x0.

(26)

These imply that NA(x0) = µ−1NA(x2) = µNA(x1). This means that either NA(x0) =
µ−1NA(x2) = µNA(x1) = 0 and so NA is isotropic, or NA(x0) = µ−1NA(x2) =
µNA(x1) ̸= 0 and NA is anisotropic. In the later case, x0, x1, x2 are all invertible in
A, NA(xi) ̸= 0 for all i = 0, 1, 2 and it follows that µ ∈ NA(A×). This proves the
assertion.

In other words: If A is a division algebra and µ ̸∈ NA(A×), 0 ̸= x = (x0, x1, x2) ∈
J(A, µ), then x♯ ̸= 0. Note that (iv) was a substantial part of the classical result that if
µ ∈ F×, µ /∈ NA(A×) and A is a division algebra, then N is anisotropic. What is missing
in order to generalize this result to the generalized first Tits construction is the adjoint
identity (x♯)♯ = N(x)x. This identity only holds in very special cases—see Lemma 4
below. It would be of course desirable to have conditions on when (or if at all) J(A, µ) is a
division algebra.

4. Some More Identities

Lemma 2. Let x = (x0, x1, x2), y = (y0, y1, y2), z = (z0, z1, z2) ∈ J(A, µ) be such that one of
x1, y1, z1 is equal to zero and one of x2, y2, z2 is equal to zero. Then, T(x × y, z) = T(x, y × z).

Proof. We find that

T(x × y, z) =
1
2

TA((x0♯y0)z0 − x1y2z0 − y1x2z0)

+
1
2

TA(µ
−1(x2♯y2)z2 − x0y1z2 − y0x1z2) (27)

+
1
2

TA(µ(x1♯y1)z1 − x2y0z1 − y2x0z1)

and

T(x, y × z) =
1
2

TA(x0(y0♯z0)− x0y1z2 − x0z1y2)

+
1
2

TA(x1µ(y1♯z1)− x1y2z0 − x1z2y0) (28)

+
1
2

TA(x2µ−1(y2♯z2)− x2y0z1 − x2z0y1).

Using the definitions, we can show that TA((x0♯y0)z0) = TA(x0(y0♯z0)). Furthermore,
since one of x1, y1, z1 is equal to zero, we have that TA(µ(x1♯y1)z1) = 0 = TA(x1µ(y1♯z1)).
Finally, since one of x2, y2, z2 is equal to zero, TA(µ

−1(x2♯y2)z2) = 0 = TA(x2µ−1(y2♯z2)).
Therefore, applying these equalities and using (6), we deduce that (27) and (28) are equal,
so T(x × y, z) = T(x, y × z).
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We know that xx♯ = x♯x = N(x)1 holds for all x ∈ J(A, µ) if µ ∈ F×. We now show
for which x ∈ J(A, µ) we still obtain xx♯ = x♯x = N(x)1:

Lemma 3. Let µ ∈ A× and suppose that x ∈ J(A, µ), such that one of the following holds:

(i) x = (x0, 0, x2) ∈ J(A, µ), x0µ = µx0 and NA(x2) = 0.
(ii) x = (x0, x1, 0) ∈ J(A, µ), x1µ = µx1 and NA(x1) = 0.

Then, we have
xx♯ = x♯x = N(x)1. (29)

Moreover, assume that one of the following holds:
(iii) x = (x0, 0, x2) ∈ J(A, µ), x0µ = µx0 and NA(x2) ̸= 0.
(iv) x = (x0, x1, 0) ∈ J(A, µ), x1µ = µx1 and NA(x1) ̸= 0.

Then, xx♯ = x♯x = N(x)1 if and only if µ ∈ F×.

Proof. Let x = (x0, x1, x2) ∈ J(A, µ), and let xx♯ = (a0, a1, a2); then, x♯ = (x♯0 − x1x2, µ−1x♯2
−x0x1, µx♯1 − x2x0). Thus, we have

a0 =
1
2
(x0x♯0 − x0x1x2 + x♯0x0 − x1x2x0)

+
1
2
(TA(x1µx♯1 − x1x2x0)1 − x1µx♯1 + x1x2x0) (30)

+
1
2
(TA(µ

−1x♯2x2 − x0x1x2)1 − µ−1x♯2x2 + x0x1x2),

a1 =
1
2
(TA(x0)− x0)(µ

−1x♯2 − x0x1) +
1
2
(TA(x♯0 − x1x2)− x♯0 + x1x2)x1

+ µ−1(x2 × (µx♯1 − x2x0)), (31)

a2 =
1
2

x2(TA(x♯0 − x1x2)− x♯0 + x1x2) +
1
2
(µx♯1 − x2x0)(TA(x0)− x0)

+ µ(x1 × (µ−1x♯2 − x0x1)) (32)

by the definition of the multiplication on J(A, µ).

(i) If x1 = 0 and NA(x2) = 0, using the fact that xix
♯
i = x♯i xi = NA(xi)1 for all i = 0, 1, 2

(see (5)), (30) simplifies to a0 = NA(x0)1 = N(x). Since we have x0µ−1 = µ−1x0, (31)
gives that a1 = 1

2 µ−1(TA(x0)− x0)x♯2 − µ−1(x2 × (x2x0)). By (10),

x♯2♯x0 = x♯2x0 + x0x♯2 − TA(x♯2)x0 − TA(x0)x♯2 + (TA(x♯2)TA(x0)− TA(x♯2x0))1. (33)

Using the fact that TA(x♯2) = SA(x2) (by (8)) on the right-hand side of (33), we further
obtain after some simplification that

x♯2♯x0 = x2
2x0 − TA(x2)x2x0 + x0x♯2 − TA(x0)x♯2 − TA(x2

2x0)1 + TA(x2x0)1. (34)

Now, combining (13) with (34) yields TA(x0)x♯2 − x0x♯2 = x2
2x0 + x2x0x2 −TA(x2)x2x0 −

TA(x2x0)x2 + (TA(x2)TA(x2x0) − TA(x2
2x0))1 = 2(x2 × (x2x0)), so x2 × (x2x0)

= 1
2 (TA(x0)x♯2 − x0x♯2). Hence, (4) implies a1 = 0. For a2, (32) yields a2 = 1

2 x2(TA(x♯0)−
x♯0)− 1

2 x2(TA(x0)x0 − x2
0). Then, using the definition of x♯0 and the fact that 2SA(x0) =

TA(x0)
2 − TA(x2

0), we find that TA(x♯0)− x♯0 = TA(x0)x0 − x2
0. Therefore, a2 = 0.

(ii) In this case, we have x2 = 0, x1µ = µx1 and NA(x1) = 0. So, (30) simplifies to a0 =

NA(x0)1 = N(x). For a1, (31) simplifies to a1 = − 1
2 (TA(x0)x0 − x2

0)x1 +
1
2 (TA(x♯0)−

x♯0)x1. Then, in a similar way to how we found a2 in (i), we find here that a1 = 0.
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For a2, (32) simplifies to a2 = 1
2 µx♯1(TA(x0)− x0)− µ(x1 × (x0x1)). We now find in a

similar way to how we found a1 in (i) that a2 = 0.
To prove that the claimed equivalence holds assuming (iii) or (iv), we only need to
show the forward direction since we know from the classical first Tits construction
that the reverse direction holds:

(iii) Here, (30) yields a0 = NA(x0)1 + 1
2 (TA(µ

−1)NA(x2) − µ−1NA(x2)); thus, xx♯ =

N(x)1 = (NA(x0)1 + µ−1NA(x2))1 gives that NA(x0)1 + 1
2 (TA(µ

−1)
NA(x2) − µ−1NA(x2)) = a0 = NA(x0)1 + µ−1NA(x2). Therefore, we have µ−1 =
1
3 TA(µ

−1) ∈ F×, so µ ∈ F×.
(iv) In this case, (30) yields a0 = NA(x0)1 + 1

2 (TA(µ)NA(x1) − µNA(x1)); thus, xx♯ =

N(x)1 = (NA(x0)1 + µNA(x1))1 yields NA(x0)1 + 1
2 (TA(µ)NA(x1) − µNA(x1)) =

a0 = NA(x0)1 + µNA(x1). Therefore, we obtain µ = 1
3 TA(µ) ∈ F×. The proof that

x♯x = N(x)1 is performed similarly.

Corollary 1. Let µ ∈ A×. Suppose that x ∈ J(A, µ) satisfies N(x) ̸= 0, and assume that one of
the following holds:

(i) x = (x0, x1, 0) ∈ J(A, µ), x1µ = µx1 and NA(x1) = 0.
(ii) x = (x0, 0, x2) ∈ J(A, µ), x0µ = µx0 and NA(x2) = 0.

Then, x is invertible in J(A, µ) with x−1 = N(x)−1x♯.

Proof. Let µ ∈ A× and suppose that x ∈ J(A, µ) satisfies (i) or (ii); then, xx♯ = x♯x =
N(x)1. Since F = C(J(A, µ)) this yields the assertion.

In particular, if N is anisotropic, then every 0 ̸= xx = (x0, x1, 0) ∈ J(A, µ) in (i) or
(ii) is of the type x = (x0, 0, 0) ∈ J(A, µ), i.e., lies in A; so, this result then becomes trivial.

Corollary 2. Let µ ∈ A× and suppose that x ∈ J(A, µ), such that one of the following holds:

(i) x = (x0, 0, x2) ∈ J(A, µ), x0µ = µx0 and NA(x2) = 0.
(ii) x = (x0, x1, 0) ∈ J(A, µ), x1µ = µx1 and NA(x1) = 0.

Then, we have
x3 − T(x)x2 + S(x)x − N(x)1 = 0.

Proof. Using the fact that x♯ = x2 − T(x)x + S(x)1 from Theorem 2 (i), we have that
x3 − T(x)x2 + S(x)x − N(x)1 = 0 if and only if xx♯ = x♯x = N(x)1. Thus, the result now
follows as a consequence of Lemma 3.

Theorem 7. The identity xx♯ = x♯x = N(x)1 holds for all x ∈ J(A, µ) if and only if µ ∈ F×.

Proof. If µ ∈ F×, then xx♯ = x♯x = (N(x), 0, 0) for all x ∈ J(A, µ). Conversely, suppose
that xx♯ = x♯x = (N(x), 0, 0) holds for all x ∈ J(A, µ). Take x = (0, 1, 0). Then, x♯ =
(0, 0, µ), and so

xx♯ = (µ̄, 0, 0) = (
1
2
(TA(µ)1 − µ), 0, 0).

We also know that by definition, N(x) = µNA(1) = µ, so the condition xx♯ = (N(x), 0, 0)
gives that µ = 1

2 (TA(µ)1 − µ). Hence µ = 1
3 TA(µ)1 ∈ F×.

We know that the adjoint identity (x♯)♯ = N(x)x holds for all x ∈ J(A, µ),
if µ ∈ F× [15] (Chapter C.4). In the general construction, it holds only in very special cases:

Lemma 4. Let µ ∈ A× and suppose that x ∈ J(A, µ), such that one of the following holds:

(i) x = (0, x1, 0) ∈ J(A, µ) and NA(x1) = 0.
(ii) x = (x0, x1, 0) ∈ J(A, µ) and NA(x1) = 0 and x1µ = µx1.
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(iii) x = (x0, 0, x2) ∈ J(A, µ) and NA(x2) = 0 and x0µ = µx0.
Then, we have (x♯)♯ = N(x)x.
Moreover, if one of the following holds:

(iv) x = (x0, x1, 0) ∈ J(A, µ), NA(x1) ̸= 0, x0µ = µx0 and x1µ = µx1.
(v) x = (x0, 0, x2) ∈ J(A, µ), NA(x2) ̸= 0, x0µ = µx0 and x2µ = µx2.

Then, (x♯)♯ = N(x)x for all x ∈ J(A, µ) if and only if NA(µ) = µ3.

Proof. Let x = (x0, x1, x2) ∈ J(A, µ) and (x♯)♯ = (a0, a1, a2). By definition, x♯ = (x♯0 −
x1x2, µ−1x♯2 − x0x1, µx♯1 − x2x0), so a0 = (x♯0 − x1x2)

♯ − (µ−1x♯2 − x0x1)(µx♯1 − x2x0). Now,
using (9) and (10), it is easy to show that

(x♯0 − x1x2)
♯ = (x♯0 − x1x2)

2 − TA(x♯0 − x1x2)(x♯0 − x1x2) + SA(x♯0 − x1x2)

= (x♯0)
♯ − x♯0♯(x1x2) + (x1x2)

♯.

Hence,

a0 = (x♯0 − x1x2)
♯ − (µ−1x♯2 − x0x1)(µx♯1 − x2x0)

= (x♯0)
♯ − x♯0♯(x1x2) + (x1x2)

♯ − µ−1x♯2µx♯1 + µ−1x♯2x2x0 + x0x1µx♯1 − x0x1x2x0. (35)

Similarly, we find that

a1 = µ−1(µx♯1 − x2x0)
♯ − (x♯0 − x1x2)(µ

−1x♯2 − x0x1)

= µ−1((µx♯1)
♯ − (µx♯1)♯(x2x0) + (x2x0)

♯)

− x♯0µ−1x♯2 + x♯0x0x1 + x1x2µ−1x♯2 − x1x2x0x1 (36)

and

a2 = µ(µ−1x♯2 − x0x1)
♯ − (µx♯1 − x2x0)(x♯0 − x1x2)

= µ((µ−1x♯2)
♯ − (µ−1x♯2)♯(x0x1) + (x0x1)

♯)

− µx♯1x♯0 + µx♯1x1x2 + x2x0x♯0 − x2x0x1x2. (37)

(i) Here, x0 = x2 = 0; therefore, (35) implies a0 = 0 and (36) gives that a1 = µ−1(µx♯1)
♯ =

µ−1NA(x1)x1µ♯ = 0 = N(x)x1. Finally, (37) gives that a2 = 0 as required.
(ii) Since x2 = 0, x1µ = µx1 and NA(x1) = 0, we find by (35) that a0 = (x♯0)

♯ + x0µx1x♯1 =

NA(x0)x0 + x0µNA(x1) = N(x)x0. Now, (36) gives that a1 = µ−1(µx♯1)
♯ + x♯0x0x1 =

µ−1NA(x1)x1µ♯ + NA(x0)x1 = N(x)x1, and by (37), we obtain a2 = µ(x0x1)
♯ −

µx♯1x♯0 = 0 = N(x)0.
(iii) Since x1 = 0 and NA(x2) = 0, (35) yields a0 = (x♯0)

♯ + µ−1x♯2x2x0 = NA(x0)x0 +

µ−1NA(x2)x0 = N(x)x0. Now, since x0µ−1 = µ−1x0, we have that x♯0µ−1 = µ−1x♯0,
so (36) gives that a1 = µ−1(x2x0)

♯ − µ−1x♯0x♯2 = 0 = N(x)0. Finally, (37) gives that
a2 = µ(µ−1x♯2)

♯ + x2x0x♯0 = µNA(x2)x2(µ
−1)♯ + NA(x0)x2 = N(x)x2.

(iv) Since x2 = 0, x0µ = µx0 and x1µ = µx1, (35) yields a0 = (x♯0)
♯ + µx0x1x♯1 =

NA(x0)x0 + µNA(x1)x0 = N(x)x0. Now, (37) gives that a2 = µ(x0x1)
♯ − µx♯1x♯0 = 0.

Finally, (36) gives that a1 = µ−1(µx♯1)
♯ + x♯0x0x1 = µ−1NA(x1)x1µ♯ + NA(x0)x1. Thus,

a1 = N(x)x1 if and only if µ−1NA(x1)x1µ♯ + NA(x0)x1 = N(x)x1, which occurs if
and only if µ−1NA(x1)x1µ♯ = µNA(x1)x1. Since NA(x1) ̸= 0 and x1µ♯ = µ♯x1, this
occurs if and only if µ♯x1 = µ2x1. Finally, NA(x1) ̸= 0 implies that x1 is invertible, so
µ♯x1 = µ2x1 if and only if NA(µ) = µµ♯ = µ3.
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(v) Since x1 = 0, (35) yields a0 = (x♯0)
♯ + µ−1x♯2x2x0 = N(x)x0. Furthermore, since

x0 commutes with µ, x♯0 commutes with µ. So, x♯0µ−1 = µ−1x♯0. Hence, (36) gives
that a1 = µ−1(x2x0)

♯ − µ−1x♯0x♯2 = 0 = N(x)0. Finally, (37) yields a2 = µ(µ−1x♯2)
♯ +

x2x0x♯0 = µNA(x2)x2(µ
−1)♯ + NA(x0)x2. Thus, a2 = N(x)x2 if and only if

µNA(x2)x2(µ
−1)♯+ NA(x0)x2 = N(x)x2, which occurs if and only if µNA(x2)x2(µ

−1)♯

= µ−1NA(x2)x2. Since NA(x2) ̸= 0 and x2(µ
−1)♯ = (µ−1)♯x2, this occurs if and

only if (µ−1)♯x2 = µ−2x2. Finally, NA(x2) ̸= 0 implies that x2 is invertible, so
(µ−1)♯x2 = µ−2x2 if and only if NA(µ

−1) = µ−1(µ−1)♯ = µ−3. This is equivalent to
NA(µ) = µ3.

Proposition 2. Let A be a central simple algebra over F. Then, (x♯)♯ = N(x) for all x ∈ J(A, µ)
if and only if µ ∈ F×.

Proof. Let µ ∈ F× then by Lemma 4, the adjoint identity holds for all x ∈ J(A, µ). Suppose
now that the adjoint identity holds for all x ∈ J(A, µ). Let x = (x0, 1, 0) ∈ J(A, µ) for some
x0 ∈ A. Then, x♯ = (x♯0,−x0, µ) and so

(x♯)♯ = ((x♯0)
♯ + x0µ, µ−1µ♯ + (x♯0)

♯x0, 0). (38)

Furthermore, N(x) = NA(x0)1 + µ. Since the adjoint identity holds by assumption, we see
that by using (38),

((x♯0)
♯ + x0µ, µ−1µ♯ + (x♯0)

♯x0, 0) = (NA(x0)x0 + µx0, NA(x0) + µ, 0). (39)

We know that (x♯0)
♯ = NA(x0)x0 for all x0 ∈ A by (12), and so by comparing the first

components of (39), we find that x0µ = µx0 for all x0 ∈ A. Hence, µ ∈ C(A), and since A is
a central simple algebra by assumption, µ ∈ F×.

If µ ∈ F×, then the norm N permits Jordan composition, i.e. N(Uxy) = NA(x)2N(y) for
all x, y ∈ J(A, a). The following result is a corrected version of [11] (Theorem 5.2.5), and a
weak generalization of the Jordan composition for µ ∈ A× \ F:

Theorem 8. Let x = (x0, 0, 0) ∈ A, y = (y0, y1, y2) ∈ J(A, µ) and suppose that one of the
following holds:

(i) TA(y0y1y2) = TA(NA(y0)x♯0y1y2x♯0).
(ii) y0y1y2 = NA(y0)x♯0y1y2x♯0.
(iii) yi = 0 for some i = 0, 1, 2.

Then, N(Ux(y)) = N(x)2N(y).

Proof. Using the definitions, we see that T(x, y) = TA(x0y0) and x♯♯y = (x♯0♯y0,−x♯0y1,−y2x♯0).
So Ux(y) = T(x, y)x − x♯♯y = (Ux0(y0), x♯0y1, y2x♯0). This yields

N(Ux(y)) = NA(Ux0(y0))1 + µNA(x♯0y1) + µ−1NA(y2x♯0)− TA(Ux0(y0)x♯0y1y2x♯0)1

= NA(x0)
2(NA(y0)1 + µNA(y1) + µ−1NA(y2)− TA(NA(y0)x♯0y1y2x♯0)1)

= N(x)2(N(y) + TA(y0y1y2)1 − TA(NA(y0)x♯0y1y2x♯0)1),

where in the second equality we have used the fact that NA(x♯0) = NA(x0)
2, and that

NA(Ux0(y0)) = NA(x0)
2NA(y0). Therefore, N(Ux(y)) = N(x)2N(y), if and only if

TA(y0y1y2)1 = TA(NA(y0)x♯0y1y2x♯0).
(ii) and (iii) are examples where this is the case.
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Remark 2. Let f : J(A, µ) → J(A, µ) be an automorphism. Then,

f ((x0, x1, x2)) = f ((x0, 0, 0)) + f ((0, x1, 0)) + f ((0, 0, x2)). (40)

Now, for each x ∈ A, we have f ((0, x, 0)) = f ((x, 0, 0)) f ((0, 1, 0),
and f ((0, 0, x)) = f ((x, 0, 0)) f ((0, 0, 1)). On the other hand, by using the definition of x,

f ((0, x, 0)) =
1
2

TrA(x) f ((0, 1, 0))− 1
2

f ((0, x, 0)),

f ((0, 0, x)) =
1
2

TrA(x) f ((0, 0, 1))− 1
2

f ((0, 0, x)).

Hence,

f ((0, x, 0)) = f ((0, 1, 0))(TrA(x)− 2 f ((x, 0, 0))), (41)

f ((0, 0, x)) = f ((0, 0, 1))(TrA(x)− 2 f ((x, 0, 0))). (42)

So, by (40)–(42), we see that any automorphism of J(A, µ) is determined by its restriction on A+,
and its value on (0, 1, 0) and (0, 0, 1). Let f : J(A, µ) → J(A, µ) be an automorphism that fixes
A+; then, f |A+ = τ is either an automorphism or an anti-automorphism of A. Moreover, clearly
f ((1, 0, 0)) = (1, 0, 0), so

f ((x0, x1, x2)) = (τ(x0), 0, 0) + (τ(x1), 0, 0) f ((0, 1, 0)) + (τ(x2), 0, 0) f ((0, 0, 1)).

Calculation to try gain some deeper understanding on the automorphisms are tedious and did not
lead us anywhere so far.

5. The Nine-Dimensional Non-Associative Algebras J(K, µ)

Let K/F be a separable cubic field extension with Gal(K/F) = ⟨σ⟩, norm NK, and
trace TK. For all x0 ∈ K, we have x♯0 = σ(x0)σ

2(x0) and x0 = 1
2 (σ(x0) + σ2(x0)). Assume

µ ∈ K×.
Let us compare the first Tits construction J(K, µ) with the algebra D+ for a (perhaps

non-associative) cyclic algebra D = (K/F, σ, µ) over F of degree three. Consider D as
a left K-vector space with basis {1, z, z2}. Write Rx for the matrix of right multiplication
by x = x0 + x1z + x2z2, xi ∈ K, with respect to the basis {1, z, z2}, then the cubic map
ND : D → K, ND(x) = det(Rx) (which is the reduced norm of the central simple algebra D
if µ ∈ F×), is given by

ND(x) = NK(x0) + µNK(x1) + µ2NK(x2)− µTK(x0σ(x1)σ
2(x2)).

If ND is anisotropic then D is a division algebra over F. If µ ∈ K \ F, we obtain ND(lx) =
NK(l)ND(x) for all x ∈ D, l ∈ K [11] (Propositions 4.2.2 and 4.2.3).

On the other hand, J(K, µ) is a nine-dimensional non-associative unital algebra over F
with multiplication

xy = (x0 · y0 + x1y2 + x2y1, x0y1 + y0x1 + µ−1(x2 × y2), x0y2 + y0x2 + µ(x1 × y1))

for x = (x0, x1, x2), y = (y0, y1, y2) ∈ J(K, µ), cubic norm map

N((x0, x1, x2)) = NK(x0) + µNK(x1) + µ−1NK(x2)− TK(x0x1x2),

and trace T(x) = TK(x0). Moreover, we have

x♯ = (σ(x0)σ
2(x0)− x1x2, µ−1σ(x2)σ

2(x2)− x0x1, µσ(x1)σ
2(x1)− x2x0).
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If µ ∈ F×, then D = (K/F, σ, µ) is an associative cyclic algebra over F of degree three and
J(K, µ) ∼= D+ is a special cubic Jordan algebra. It is well known that the isomorphism
G : D+ = (K/F, σ, µ)+ → J(K, µ) is given by

x0 + x1z + x2z2 7→ (x0, σ(x1), µσ2(x2)).

However, if µ ∈ K \ F, then the map G : D+ → J(K, µ) is not an algebra isomorphism
between (K/F, σ, µ)+ and J(K, µ), where now (K/F, σ, µ) is a non-associative cyclic algebra,
since σ(µ) ̸= µ. However, for µ ∈ K \ F, the map G : D+ → J(K, µ) still yields an isometry
of norms, since

N((x0, σ(x1), µσ2(x2)) = NK(x0) + µNK(x1) + µ−1NK(x2)− µTK(x0σ(x1)σ(x2))

= ND((x0, x1, x2));

hence, the norms of the two nonisomorphic non-associative algebras D+ = (K/F, σ, µ)+

and J(K, µ) are isometric.

6. Conclusions

We looked at the following canonical question: “what happens if we choose the
element µ that is used in the first Tits construction J(A, µ) in A× instead of in F×?” We
showed that the basic ingredients for an interesting theory are in place: our new algebras
J(A, µ) carry maps that can be understood as generalizations of the classical norms and
traces, and that behave surprisingly similar to the norms and traces of their classical
counterparts; we have a function N on J(A, µ) that extends the cubic norm of A (however,
it has values in A), a trace function T : J(A, µ) → F, and a quadratic map ♯ : J(A, µ) →
J(A, µ). Operations like x♯y can easily be defined. Some of the main identities from the
classical setup hold (Theorems 1 and 2), some others hold only for some elements, e.g.,
Lemmas 2 and 3, Corollaries 1 and 2, but not in general, and some hold if—and only
if—µ ∈ F× (Proposition 2, Theorem 7), i.e., they hold only in the classical case.

It seems a hard problem to check when the algebras J(A, µ) are division algebras.
It would also be interesting to compute their automorphisms; however, we expect the
automorphism group to be “small”. Here is one indication as to why this is the case: For
Albert algebras over fields F of characteristic not 2 or 3, we know that the similarities
of their norms are given either by scalar multiplications or the U operators [4]. Using
Theorem 8 (iii), we see that for J(A, µ) with µ ∈ A× \ F, scalar multiplications still give
similarities; the U-operators, however, do not.

Even partial results on automorphisms or similarities could give an insight on what
is happening in this general context, and it would be interesting to address questions
of whether there are inner automorphisms, whether there are cubic subfields fixed by
automorphisms like in the classical case [2], etc.

The fact that two nonisomorphic algebras D+ = (K/F, σ, µ)+ and J(K, µ) have iso-
metric norms is an example of how rich the structure theory for non-associative algebras
really is (Section 4).

This is an exploratory paper, but our results show that the algebras J(A, µ) obtained
via a generalized first Tits construction merit a closer look. As one referee pointed out, they
also show the weaknesses of the language that we have at our disposal, which describes
highly non-associative structures.

7. Materials and Methods

We used classical methods from algebra.
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Abstract: Recently, Milles and Hammami presented and studied the concept of a neutrosophic
topology generated by a neutrosophic relation. As a continuation in the same direction, this paper
studies the concepts of neutrosophic ideals and neutrosophic filters on that topology. More precisely,
we offer the lattice structure of neutrosophic open sets of a neutrosophic topology generated via a
neutrosophic relation and examine its different characteristics. Furthermore, we enlarge to this lattice
structure the notions of ideals (respectively, filters) and characterize them with regard to the lattice
operations. We end this work by studying the prime neutrosophic ideal and prime neutrosophic filter
as interesting types of neutrosophic ideals and neutrosophic filters.
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1. Introduction

The concept of neutrosophic sets was introduced by Smarandache [1] as a generaliza-
tion of the concepts of fuzzy sets and intuitionistic fuzzy sets. The notion of a neutrosophic
set is described by three degrees, truth membership function (T), indeterminacy member-
ship function (I) and falsity membership function (F), in the non-standard unit interval, and
it accomplished tremendous success in various areas of applications [2–4]. In particular,
Wang et al. [5] presented the concept of a single-valued neutrosophic set as a subclass of the
neutrosophic set which can be used in the field of scientific and engineering applications.

In the literature, there are many approaches to the concept of neutrosophic topological
space. In [6], Smarandache presented neutrosophic topology on the non-standard interval.
Later, Lupiáñez [7,8] proposed some notes about the relationship between Smarandache’s
concept of neutrsophic topology and intuitionistic fuzzy topology. Others, such as Salama
and Alblowi [9,10] studied neutrosophic topological spaces with various basic properties
and characteristics. Recently, El-Gayyar [11] introduced the notion of smooth topological
space in the setting of neutrosophic sets. For more details, see [12–17].

One of the essential tools in many branches of mathematics is the concepts of ideal
and filter. For instance, ideals and filters appear in topology, boolean algebra, the extensive
theory of representation of distributive lattices and in algebraic structures. In addition to
their theoretical uses, ideals and filters are used in some branches of applied mathematics.
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In a neutrosophic setting, many researchers have examined and studied the neutrosophic
ideals and neutrosophic filters in various frameworks and structures [18–21].

In this work, we apply Smarandache’s neutrosophic set to the notion of ideals and fil-
ters in a neutrosophic open-set lattice on neutrosophic topology generated by neutrosophic
relation. We study its various properties and characterizations. We finally characterize
them with regard to this lattice of meet and join operations.

The content of the present work is structured as follows. Section 2 provides an
overview introduction to neutrosophic sets and relations. We recall the concept of a neutro-
sophic topology generated by a neutrosophic relation in Section 3, and then describe the
lattice structure of neutrosophic open sets on a topology generated by a neutrosophic rela-
tion in Section 4. In Section 5, we establish the notions of neutrosophic ideals (respectively,
neutrosophic filter) on the lattice of neutrosophic open sets, and some characterizations
in terms of this lattice of meet and join operations and in terms of the corresponding
level sets are given. In Section 6, we examine and characterize the notion of the prime
neutrosophic ideal and prime neutrosophic filter as interesting types of neutrosophic ideals
and neutrosophic filters. Section 7 concludes with some thoughts and suggestions for
future works.

2. Preliminaries

This part contains some concepts and properties of neutrosophic sets and several
related definitions that will be required throughout this work.

2.1. Neutrosophic Sets

The fuzzy set notion was defined by Zadeh [22].

Definition 1 ([22]). Assume that E is a crisp set. A fuzzy set Ω = {⟨ς,ℸΩ(ς)⟩ | ς ∈ E} is
defined by a function of membership ℸΩ : E → [0, 1], with ℸΩ(ς) as the degree of membership of
an element ς in the fuzzy subset Ω for all ς ∈ E .

As a generalization of the idea of a fuzzy set, K, Atanassov proposed the intuitionistic
fuzzy set in [23,24].

Definition 2 ([23]). Assume that E is a classical set. An intuitionistic fuzzy set (IFS) Ω of E is an
object of the model

Ω = {⟨ς,ℸΩ(ς),𭟋Ω(ς)⟩ | ς ∈ E}
defined by a membership mapping ℸΩ : E → [0, 1] and a non-membership mapping 𭟋Ω : E →
[0, 1], such that

0 ⩽ ℸΩ(ς) +𭟋Ω(ς) ⩽ 1, for all ς ∈ E .

In [1], the author suggested the approach of a neutrosophic set as an extension of the
approach of the IF-set. For an applied use of neutrosophic sets, the authors of [5] proposed
a subclass of neutrosophic sets, which is the single-valued neutrosophic set (SVNS).

Definition 3 ([1]). Assume that E is a classical set. A neutrosophic set (NS) Ω of E is an object of
the model

Ω = {⟨ς,ℸΩ(ς), ⟨Ω(ς),𭟋Ω(ς)ג | ς ∈ E}
defined by a membership mapping ℸΩ from E to J :=]−0, 1+[ and an indeterminacy mapping Ωג
from E to J . Also, it is a non-membership mapping 𭟋Ω from E to J such that

−0 ⩽ ℸΩ(ς) + Ω(ς)ג +𭟋Ω(ς) ⩽ 3+, for all ς ∈ E .

Remark 1. In the literature of neutrosophic logic, different notations are used to represent the
functions introduced earlier. The most widely used symbols are µ (membership function), σ
(indeterminacy function) and ν (non-membership function). See Figure 1.
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Figure 1. Representation of a neutrosophic set.

Definition 4 ([5]). Assume that E is a classical set. Define a single-valued neutrosophic set (SVNS)
Ω of E as an object of the model

Ω = {⟨ς,ℸΩ(ς), ⟨Ω(ς),𭟋Ω(ς)ג | ς ∈ E}

defined by a truth membership mapping ℸΩ : E → [0, 1], an indeterminacy membership mapping
Ωג : E → [0, 1] and a falsity membership mapping 𭟋Ω : E → [0, 1].

Obviously, IF-set is a neutrosophic set by setting Ω(ς)ג = 1 − ℸΩ(ς)−𭟋Ω(ς). The
family of all neutrosophic sets of the set E is indicated by NS(E).

For every two neutrosophic sets Ω and ∆ of E , many operations are defined (see,
e.g., [5,25–29]). Only those relevant to the current work are presented below:

(i) Ω ⊆ ∆ if ℸΩ(ς) ⩽ ℸ∆(ς) and Ω(ς)ג ⩽ (ς)∆ג and 𭟋Ω(ς) ⩾ 𭟋∆(ς), for all ς ∈ E ;
(ii) Ω = ∆ if ℸΩ(ς) = ℸ∆(ς) and Ω(ς)ג = (ς)∆ג and 𭟋Ω(ς) = 𭟋∆(ς), for all ς ∈ E ;
(iii) Ω ∩ ∆ = {⟨ς,ℸΩ(ς)⋏ℸ∆(ς), ⋏Ω(ς)ג ⟨𭟋Ω(ς)⋎𭟋∆(ς),(ς)∆ג | ς ∈ E};
(iv) Ω ∪ ∆ = {⟨ς,ℸΩ(ς)⋎ℸ∆(ς), ⋎Ω(ς)ג ⟨𭟋Ω(ς)⋏𭟋∆(ς),(ς)∆ג | ς ∈ E};
(v) Ω = {⟨ς,𭟋Ω(ς), ⟨Ω(ς),ℸΩ(ς)ג | ς ∈ E};
(vi) [Ω] = {⟨ς,ℸΩ(ς), ,Ω(ς)ג 1 −ℸΩ(ς)⟩ | ς ∈ E};
(vii) ⟨Ω⟩ = {⟨ς, 1 −𭟋Ω(ς), ⟨Ω(ς),𭟋Ω(ς)ג | ς ∈ E}.

Additionally, we need the following concept of (α, β, γ)-cuts (which is also called
“level sets”) of a neutrosophic set.

Definition 5. Assume that Ω is a neutrosophic set of E . The (α, β, γ)-cutaof Ω is a classical subset

Ωα,β,γ = {ς ∈ E | ℸΩ(ς) ⩾ α and Ω(ς)ג ⩾ β and 𭟋Ω(ς) ⩽ γ},

for some 0 < α, β, γ ≤ 1.

Definition 6. Assume that Ω is a neutrosophic set of E . The supportaof Ω is the classical subset of
E , given by

S(Ω) := {ς ∈ E | ℸΩ(ς) ̸= 0 and Ω(ς)ג ̸= 0 and 𭟋Ω(ς) ̸= 0}.
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2.2. Neutrosophic Relations

In [30], the authors proposed the approach of neutrosophicarelation as a generalization
of fuzzy and IF-relation.

Definition 7 ([30]). A neutrosophic binary relation (or, a neutrosophic relation, for short) from a
set E to a set Z is a neutrosophic subset of E × Z , i.e., it is anaexpression N expressed by

N = {⟨(ς, σ),ℸN (ς, σ), Nג (ς, σ),𭟋N (ς, σ)⟩ | (ς, σ) ∈ E ×Z} ,

where ℸN : E × Z → [0, 1], and Nג : E × Z → [0, 1] and 𭟋Ω : E × Z → [0, 1].
For any (ς, σ) ∈ E ×Z , the value ℸN (ς, σ) is named theadegree of a membership of (ς, σ) in

N ; Nג (ς, σ) is named the degree of indeterminacy of (ς, σ) in N ; and 𭟋N (ς, σ) is said to be the
degree of non-membership of (ς, σ) in N .

Example 1. Suppose E = {ρ1, ρ2, ρ3, ρ4, ρ5}. Then, the neutrosophic relation N of E is given by

N = {⟨(ς, σ),ℸN (ς, σ), Nג (ς, σ),𭟋N (ς, σ)⟩ | ς, σ ∈ E},

such that ℸN , Nג and 𭟋N are given by the following tables.

ℸR(., .) ρ1 ρ2 ρ3 ρ4 ρ5

ρ1 3.5 × 10−1 0 0 3.5 × 10−1 3 × 10−1

ρ2 0 4 × 10−1 0 3.5 × 10−1 4.5 × 10−1

ρ3 2 × 10−1 0 6.5 × 10−1 0 7 × 10−1

ρ4 0 0 0 1 0
ρ5 2.5 × 10−1 3.5 × 10−1 0 0 6 × 10−1

,.)Rג .) ρ1 ρ2 ρ3 ρ4 ρ5

ρ1 5 × 10−1 5 × 10−1 4.2 × 10−1 2 × 10−1 0
ρ2 6 × 10−1 1.2 × 10−1 4 × 10−1 8 × 10−1 1 × 10−1

ρ3 0 1 2 × 10−2 7.5 × 10−1 1.5 × 10−1

ρ4 3.3 × 10−1 1 8.8 × 10−1 0 1 × 10−1

ρ5 2 × 10−1 5.5 × 10−1 1 5.5 × 10−1 3 × 10−1

𭟋R(., .) ρ1 ρ2 ρ3 ρ4 ρ5

ρ1 0 1 4 × 10−1 2.5 × 10−1 2.5 × 10−1

ρ2 3 × 10−1 3.5 × 10−1 2 × 10−1 3.5 × 10−1 1 × 10−1

ρ3 8 × 10−1 1 0 8.5 × 10−1 1.5 × 10−1

ρ4 1 1 1 0 1
ρ5 7 × 10−1 5.5 × 10−1 1 9 × 10−1 3 × 10−1

Next, the following notions need to be recalled.

Definition 8 ([31]). Let N and M be two neutrosophic relations from a set E to a set Z .

(i) The transposea(inverse) N t of N is the neutrosophic relation from the universe Z to the
universe E definedaby

N t = {⟨(ς, σ),ℸN t(ς, σ), Nג t(ς, σ),𭟋N t(ς, σ)⟩ | (ς, σ) ∈ E ×Z},
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where 



ℸN t(ς, σ) = ℸN (σ, ς)
and

Nג t(ς, σ) = Nג (σ, ς)
and

𭟋N t(ς, σ) = 𭟋N (σ, ς)

for every (ς, σ) ∈ E ×Z .
(ii) N isasaid to be contained in M (or we say that M contains N ) and is indicated by N ⊆ M;

if for all (ς, σ) ∈ E ×Z , it holds that

ℸN (ς, σ) ⩽ ℸM(ς, σ), Nג (ς, σ) ⩽ ,M(ςג σ) and 𭟋N (ς, σ) ⩾ 𭟋M(ς, σ).

(iii) The intersection (respectively, the union) of two neutrosophic relations N and M from a
universe E to a universe Z is a neutrosophic relation defined as

N ∩M =
{
⟨(ς, σ), min(ℸN (ς, σ),ℸM(ς, σ)), min(גN (ς, σ), ,M(ςג σ)),

max(𭟋N (ς, σ),𭟋M(ς, σ))⟩ | (ς, σ) ∈ E ×Z
}

and

N ∪M = {⟨(ς, σ), max(ℸN (ς, σ),ℸM(ς, σ))max(גN (ς, σ), ,M(ςג σ)),

min(𭟋N (ς, σ),𭟋M(ς, σ))⟩ | (ς, σ) ∈ E ×Z} .

Definition 9 ([31]). Let N be a neutrosophic relation from a set E into itself.

(i) Reflexivity: ℸN (ς, ς) = Nג (ς, ς) = 1 and 𭟋N (ς, ς) = 0, for all ς ∈ E .
(ii) Symmetry:afor all ς, σ ∈ E , then





ℸN (ς, σ) = ℸN (σ, ς)
Nג (ς, σ) = Nג (σ, ς)

𭟋N (ς, σ) = 𭟋N (σ, ς)
.

(iii) Antisymmetry:afor all ς, σ ∈ E , ς ̸= σ, then





ℸN (ς, σ) ̸= ℸN (σ, ς)
Nג (ς, σ) ̸= Nג (σ, ς)

𭟋N (ς, σ) ̸= 𭟋N (σ, ς)
.

(iv) Transitivity: N ◦N ⊂ N , i.e., N 2 ⊂ N .

3. Neutrosophic Topology Generated by Neutrosophic Relation

In this part, we will recall the concept of topology generated by relation in a neutro-
sophic setting [32] as an extension of the fuzzy topology generated by the fuzzy relation
given in [33]. Moreover, several properties of this structure are investigated.

Definition 10. Let E be a universe and N = {⟨(ς, σ),ℸN (ς, σ), Nג (ς, σ),𭟋N (ς, σ)⟩ | ς, σ ∈
E} be a neutrosophic relation of E . Then, for all ς ∈ E , the neutrosophic sets Lς and Rς are
defined by

ℸLς
(σ) = ℸN (σ, ς), Lςג

(σ) = Nג (σ, ς) and 𭟋Lς
(σ) = 𭟋N (σ, ς), for every σ ∈ E ;

ℸRς
(σ) = ℸN (ς, σ), Rςג

(σ) = Nג (ς, σ) and 𭟋Rς
(σ) = 𭟋N (ς, σ), for every σ ∈ E ;

they are named, respectively, the lower and the upperacontours of ς.

We symbolize the neutrosophic topology generated by the family of all lower contours
with τ1, and the neutrosophic topology generated by the family of all upper contours with
τ2. Therefore, we symbolize the neutrosophic topologyagenerated by S, the family of all
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lower and upper contours, with τN , and it is named the neutrosophic topology generated
by N .

Remark 2. Since the neutrosophic set Lς (respectively, Rς) is defined from the neutrosophic
relation N , then, in that case

0 ⩽ ℸLς
+ Lςג

+𭟋Lς
⩽ 3,

respectively,
0 ⩽ ℸRς

+ Rςג
+𭟋Rς

⩽ 3,

for all ς ∈ E .

Example 2. Suppose E = {ς, σ} and N is a neutrosophic relation of E , given by

ℸN (., .) ς σ

ς 0.6 0.8
σ 0.3 0.7

Nג (., .) ς σ

ς 0.3 0.1
σ 0.6 0.2

𭟋N (., .) ς σ

ς 0.3 0.1
σ 0.6 0.2

So, Lς, Lσ, Rς and Rσ are the neutrosophic sets of E given by the following values:

Lς = {⟨ς, 0.6, 0.3, 0.3⟩; ⟨σ, 0.3, 0.6, 0.6⟩};

Lσ = {⟨ς, 0.8, 0.1, 0.1⟩; ⟨σ, 0.7, 0.2, 0.2⟩};

Rς = {⟨ς, 0.6, 0.3, 0.3⟩; ⟨σ, 0.8, 0.1, 0.1⟩};

Rσ = {⟨ς, 0.3, 0.6, 0.6⟩; ⟨σ, 0.7, 0.2, 0.2⟩}.

Note that
Lς ⊂ Lσ, Lς ⊂ Rσ, Rσ ⊂ Rς and Rσ ⊂ Lσ.

Then, the neutrosophic topology τR is generatedaby

S = {Lς,Lσ} ∪ {Rς,Rσ}.

Hence,
τR = {∅, E ,Lς,Lσ,Rς,Rσ,Lς ∩Rσ,Lσ ∩Rς,Lς ∪Rσ,Lσ ∪ Rς}.

Proposition 1. Assume that E is a classical set and N is a neutrosophic symmetric relation of E .
Then, it holds that τ1 = τ2.

Proof. Assume that N is a neutrosophic symmetricarelation of E ; so for every ς, σ ∈ E , it
holds that

ℸN (ς, σ) = ℸN (σ, ς), Nג (ς, σ) = Nג (σ, ς) and 𭟋N (ς, σ) = 𭟋N (σ, ς).

Then, in such a case,

ℸLς
(σ) = ℸRς

(σ), Lςג
(σ) = Rςג

(σ) and 𭟋Lς
(σ) = 𭟋Rς

(σ).
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Therefore, Lς = Rς, for all ς ∈ E . We can determine that τ1 = τ2.

Remark 3. If N is a neutrosophic preorder relation, then the neutrosophic topologyagenerated by
N is a generalization of the Alexandrovatopology introduced in [34].

4. The Lattice of Neutrosophic Open Sets on a Topology Generated by a
Neutrosophic Relation

The purpose of this part is to study the lattice structure of neutrosophic open sets
on a topology generated by a neutrosophic relation. First, we introduce the notion of
neutrosophic intersection and union between neutrosophic open sets.

Definition 11. Let τN be the neutrosophic topology of the set E generated by the relation N and
let W1 and W2 be two neutrosophic open setsaof τN . The intersection of W1 and W2 (in symbols,
W1 ⋒W2) is a neutrosophic open set V such that

ℸV(ςi) = min(ℸW1(ςi),ℸW2(ςi)),

V(ςi)ג = min(גW1(ςi), ,(W2(ςi)ג

𭟋V(ςi) = max(𭟋W1(ςi),𭟋W2(ςi))

for all xi ∈ E . Furthermore, ⋒
i∈I

Wi is the neutrosophicaopen set of E containing all Wi.

Definition 12. Let τN be the neutrosophic topology of the set E generated by the relation N and let
W1 and W2 be two neutrosophic openasets of τN . The union of W1 and W2 (in symbols, W1 ⋓W2)
is a neutrosophic open set V such that

ℸV(ςi) = max(ℸW1(ςi),ℸW2(ςi)),

V(ςi)ג = max(גW1(ςi), ,(W2(ςi)ג

𭟋V(ςi) = min(𭟋W1(ςi),𭟋W2(ςi))

for all ςi ∈ E . Furthermore, ⋓
i∈I

Wi is a greater neutrosophic open set of E containing all Wi.

In the following theorem, we provide the lattice of neutrosophic open sets of a neutro-
sophic topology generated by neutrosophic relation.

Theorem 1. Let E be a universe, N be a neutrosophic relation of E and τN be a neutrosophic
topology generated by N . Then, theafamily

L = {Wi | Wi is a neutrosophic open set on τN }

is a lattice.

Proof. Assume that {Wi} is a set of neutrosophic open sets of τN . Definition of neutro-
sophic topology guarantees that {Wi} is a non-empty set.
Now, let W1 and W2 be two neutrosophic open sets. It is easy to check that W1 ⋐ W1, i.e.,
the neutrosophic reflexivity, and if we assume that W1 ⋐ W2 and W2 ⋐ W1, in which case,
W1 = W2, i.e., the neutrosophic antisymmetry.
To verify the neutrosophic transitivity, we assume that W1 ⋐ W2 and W2 ⋐ W3, in which
case W1 ⋐ W3, i.e., the neutrosophic transitivity. Hence, (L,⋐) is a neutrosophic poset
of E . Also, the leastaupper bound (respectively, the greatest lower bound) of W1 and
W2 coincides with the intersection of neutrosophic open sets (respectively, the union of
neutrosophic open sets), i.e.,

W1 ⋏W2 = W1 ⋒W2, (resp.W1 ⋎W2 = W1 ⋓W2).

Then, we can determine that (L,⋐) is a lattice of E .
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Hence, (L,⋐) is a neutrosophic poset of E . Also, the greatestalower bound (respec-
tively, the leastaupper bound) of W1 and W2 coincides with the union of neutrosophic
open sets (respectively, the intersection of neutrosophic open sets), i.e.,

(resp. W1 ⋎W2 = W1 ⋓W2), W1 ⋏W2 = W1 ⋒W2.

Example 3. Let E = {ς, σ} and N be a neutrosophic relation of E given by the following:

ℸN (., .) ς σ

ς 0.6 0.8
σ 0.3 0.7

Nג (., .) ς σ

ς 0.3 0.1
σ 0.6 0.2

𭟋N (., .) ς σ

ς 0.3 0.1
σ 0.6 0.2

Consider the neutrosophic topology τN of Example 2. Then, L = {Wi | Wi is a neutrosophic
open set and τN } is a lattice.

Remark 4. To avoid the confusion, we will use the symbols (⋐,⋓,⋒) to refer to the order, max,
and min on the lattice structure L and (⩽,⋎,⋏) to refer toathe usual order, max, and min on the
unit interval [0, 1].

Proposition 2. Let E be a finite universe and L = {Wi} is the lattice structure of all neutrosophic
open sets on topology τN generated by neutrosophic relation N . Then, L is complete.

Proof. Let L = {Wi} be the lattice of neutrosophic open sets on neutrosophic topology
τR generated by the neutrosophic relation N . Let Ω = {Wj} be a subset of L under the
neutrosophic inclusion between the neutrosophic open sets defined above. Since L is a
finite lattice, then ⋒Uj ∈ L, which shows that Ω has anainfimum. Thus, L is complete.

Corollary 1. Let L be the completealattice of all neutrosophic open setsaof neutrosophic topology gen-
erated by neutrosophic relation; then L is bounded. Indeed, the least element of L is 0L = ∅ = ⋒Ui
and the greatest element of L is 1L = E = ⋓Ui.

Corollary 2. Let L be the lattice of neutrosophic open sets of neutrosophic topology τR generated
by neutrosophic relation N , then L is distributive and therefore modular.

Hartmanis in 1958 proved that the lattice structure of all topologies on a finite universe
is complemented. The following proposition shows that the lattice structure of neutrosophic
open sets of a topology generated by neutrosophic relation is also complemented.

Proposition 3. Let L be the lattice of open neutrosophic sets of neutrosophic topology τN generated
by the neutrosophic relation N , then L is complemented.

Proof. Indeed, everyaelement Wi0 has a complement Wj0 such that Wi0 ⋒Wj0 = 0L and
Wi0 ⋓Wj0 = 1L. Hence, L is complemented.
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Corollary 3. The fact that L is a distributive lattice and complemented with the least element
0L = ∅ and the greatest element 1L=E , then L is a booleanaalgebra indicated by (L,⋒,⋓, 0L, 1L).

Proof. Directly from Corollary 2 and Proposition 3.

5. Ideals and Filters on the Lattice of Neutrosophic Open Sets

The study of ideals and neutrosophic filters on the lattice structure of neutrosophic
open sets is presented in this section. We describe them both in terms of the corresponding
level sets and terms of lattice structure operations.

5.1. Definitions and Properties

Definition 13. A neutrosophic set D of L is named a neutrosophic ideal if for all Φ, Ψ ∈ L,
theafollowing conditions hold:

(i) ℸD(Φ ∪ Ψ) ⩾ ℸD(Φ)⋏ℸD(Ψ);
(ii) ℸD(Φ ∩ Ψ) ⩾ ℸD(Φ)⋎ℸD(Ψ);
(iii) D(Φג ∪ Ψ) ⩾ ⋏D(Φ)ג ;D(Ψ)ג
(iv) D(Φג ∩ Ψ) ⩾ ⋎D(Φ)ג ;D(Ψ)ג
(v) 𭟋D(Φ ∪ Ψ) ⩽ 𭟋D(Φ)⋎𭟋D(Ψ);
(vi) 𭟋D(Φ ∩ Ψ) ⩽ 𭟋D(Φ)⋏𭟋D(Ψ).

Definition 14. A neutrosophic set F of L is said to be a neutrosophic filter if for all Φ, Ψ ∈ L, the
following conditions hold:

(i) ℸF(Φ ∪ Ψ) ⩾ ℸF(Φ)⋎ℸF(Ψ);
(ii) ℸF(Φ ∩ Ψ) ⩾ ℸF(Φ)⋏ℸF(Ψ);
(iii) F(Φג ∪ Ψ) ⩾ ⋎F(Φ)ג ;F(Ψ)ג
(iv) F(Φג ∩ Ψ) ⩾ ⋏F(Φ)ג ;F(Ψ)ג
(v) 𭟋F(Φ ∪ Ψ) ⩽ 𭟋F(Φ)⋏𭟋F(Ψ);
(vi) 𭟋F(Φ ∩ Ψ) ⩽ 𭟋F(Φ)⋎𭟋F(Ψ).

In the following proposition, we show the relationship between ideal and filter on a
lattice structure of neutrosophic open sets.

Proposition 4. Let L be the lattice structure of neutrosophic open sets, Ld be the dual-order lattice,
and let Φ ∈ S(L). So, it holds that Φ is a neutrosophic ideal of L ifaand only if Φ is a neutrosophic
filter of Ld and vice versa.

Proof. Let Φ be a neutrosophic ideal of L, then the six conditions of Definition 13 hold.
From the principle of duality, which we obtained by replacing each meet operation (re-
spectively, join operation) by its dual, we then obtained the six conditions of Definition 14.
Therefore, Φ becomes a neutrosophic filter of Ld.

This result will be useful in the following.

Proposition 5. Let L be the lattice structure of neutrosophic open sets, and Φ and Ψ be two
neutrosophic sets of L. Then, we have the following:

(i) If Φ and Ψ are two neutrosophic ideals of L, then Φ ⋒ Ψ is a neutrosophic ideal of L;
(ii) If Φ and Ψ are two neutrosophic filters of L, then Φ ⋒ Ψ is a neutrosophic filter of L.

5.2. Characterizations of Neutrosophic Ideals and Filters in Terms of Their Level Sets

The following result discusses the relationship between neutrosophic ideal and neu-
trosophic filter and their support on the lattice of open sets.

Proposition 6. Let D and F be two neutrosophic sets of L. Then, the following hold:

(i) If D is a neutrosophic ideal, then theasupport of D is an ideal of L.
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(ii) If F is a neutrosophic filter, then theasupport F is a filter of L.

Proof. (i) Let D be a neutrosophic ideal of L. We prove that S(D) is an ideal of L.
(a) Assume that Φ ∈ S(D) and Ψ ⋐ Φ. Therefore, it implies that

ℸD(Φ) ̸= 0, D(Φ)ג ̸= 0, 𭟋D(Φ) ̸= 0.

Because Ψ ⋐ Φ, we have Φ ⋒ Ψ = Ψ. Consequently,

ℸD(Ψ) = ℸD(Φ ⋒ Ψ) ⩾ ℸD(Φ)⋎ℸD(Ψ).

So,
ℸD(Ψ) ⩾ ℸD(Φ) ̸= 0.

Similarly, we can determine that

D(Φ)ג ̸= 0 and 𭟋D(Φ) ̸= 0.

Hence, Ψ ∈ S(D).
(b) Assume that Φ, Ψ ∈ S(D). We prove that Φ ⋓ Ψ ∈ S(D). The fact that D is a neutro-
sophic ideal, it thus holds by Definition 13 that

ℸD(Φ ⋓ Ψ) ⩾ ℸD(Φ)⋏ℸD(Ψ) ̸= 0.

Similarly, we show that

D(Φג ⋓ Ψ) ̸= 0 and 𭟋D(Φ ⋓ Ψ) ̸= 0.

Thus, Φ ⋓ Ψ ∈ S(D). Therefore, S(D) is an ideal of L.
(ii) Analogously from (i) and Proposition 4.

We establish the concept of ideal and filter on the lattice structure of open sets in terms
of its level sets in the following result.

Theorem 2. Let D and F be two neutrosophic sets of L:

(i) D is a neutrosophic ideal equivalent to that when its level sets are ideals of L;
(ii) F is a neutrosophic filter equivalent to that when its level sets are filters of L.

Proof. (i) Let Φ be a neutrosophic ideal of L and Dα,β,γ their level sets, with 0 < α, β, γ ≤ 1.
(a) Assume that Φ ∈ Dα,β,γ and Ψ ⋐ Φ. By Definition 13 of a neutrosophic ideal, it
states that

ℸD(Ψ) ⩾ ℸD(Φ), D(Ψ)ג ⩾ D(Φ)ג and 𭟋D(Ψ) ⩽ 𭟋D(Φ).

Since,
ℸD(Φ) ⩾ α, D(Φ)ג ⩾ β and 𭟋D(Φ) ⩽ γ,

we obtain
ℸD(Ψ) ⩾ α, D(Ψ)ג ⩾ β and 𭟋D(Ψ) ⩽ γ.

Hence, Ψ ∈ Dα,β,γ.
(b) Let Φ, Ψ ∈ Dα,β,γ, then itaholds that

ℸD(Φ) ⩾ α, D(Φ)ג ⩾ β, 𭟋D(Φ) ⩽ γ

and
ℸD(Ψ) ⩾ α, D(Ψ)ג ⩾ β, 𭟋D(Ψ) ⩽ γ.
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By Definition 13 of a neutrosophic ideal, it holds that

ℸD(Φ ⋓ Ψ) ⩾ℸD(Φ)⋏ℸD(Ψ) ⩾ α,

D(Φג ⋓ Ψ) ⩾ ⋏D(Φ)ג D(Ψ)ג ⩾ β,

𭟋D(Φ ⋓ Ψ) ⩽𭟋D(Φ)⋎𭟋D(Ψ) ⩽ γ.

Hence, Φ ⋓ Ψ ∈ Dα,β,γ.
Consequently, Dα,β,γ is an ideal of L, for all 0 < α, β, γ ≤ 1.

Inversely, we supposeathat all level sets of D are ideals of L. We prove that D is a
neutrosophic ideal of L. Let Φ, Ψ ∈ L with

α = ℸD(Φ)⋏ℸD(Ψ), β = ⋏D(Φ)ג D(Ψ)ג and γ = 𭟋D(Φ)⋎𭟋D(Ψ).

The fact that Dα,β,γ is an ideal of L assures that Φ ⋓ Ψ ∈ Dα,β,γ, for all 0 < α, β, γ ≤ 1. Then,
we can determine that

ℸD(Φ ⋓ Ψ) ⩾ α, D(Φג ⋓ Ψ) ⩾ β and 𭟋D(Φ ⋓ Ψ) ⩽ γ.

Thus,

ℸD(Φ ⋓ Ψ) ⩾ℸD(Φ)⋏ℸD(Ψ),

D(Φג ⋓ Ψ) ⩾ ⋏D(Φ)ג ,D(Ψ)ג

𭟋D(Φ ⋓ Ψ) ⩽𭟋D(Φ)⋎𭟋D(Ψ).

Similarly, we can prove conditions (ii), (iv) and (vi) on Definition 13. Therefore, D is a
neutrosophic ideal of L.
(ii) It follows in the sameaway by using Proposition 4 and (i).

5.3. Basic Characterizations of Neutrosophic Ideals (Respectively, Filters)

This part provides a significant characterization of neutrosophic ideals (respectively, filters).

Theorem 3. Let L be the lattice structure of neutrosophic open sets. Then, it holds that D is a
neutrosophic ideal of L if andaonlyaif the following conditions are satisfied:

(i) ℸD(Φ ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ);
(ii) D(Φג ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ);
(iii) 𭟋D(Φ ⋓ Ψ) = 𭟋D(Φ)⋎𭟋D(Ψ), for all Φ, Ψ ∈ L.

Proof. Let D be a neutrosophic ideal of L, then for all Φ, Ψ ∈ L. Then

ℸD(Φ ⋓ Ψ) ⩾ℸD(Φ)⋏ℸD(Ψ),

D(Φג ⋓ Ψ) ⩾ ⋏D(Φ)ג ,D(Ψ)ג

𭟋D(Φ ⋓ Ψ) ⩽𭟋D(Φ)⋎𭟋D(Ψ).

Since Φ ⋐ Φ ⋓ Ψ and Ψ ⋐ Φ ⋓ Ψ, it follows by the monotonicity that

ℸD(Φ) ⩾ ℸD(Φ ⋓ Ψ), D(Φ)ג ⩾ D(Φג ⋓ Ψ)

and
ℸD(Ψ) ⩾ ℸD(Φ ⋓ Ψ), D(Ψ)ג ⩾ D(Φג ⋓ Ψ).

Hence,

ℸD(Φ)⋏ℸD(Φ) ⩾ ℸD(Φ ⋓ Ψ) and ⋏D(Φ)ג D(Ψ)ג ⩾ D(Φג ⋓ Ψ).
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Thus,
ℸD(Φ ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ) and D(Φג ⋓ Ψ) = ⋏D(Φ)ג .D(Ψ)ג

Also, since
Φ ⋐ Φ ⋓ Ψ and Ψ ⋐ Φ ⋓ Ψ,

we obtain from the monotonicity that

𭟋D(Φ) ⩽ 𭟋D(Φ ⋓ Ψ) and 𭟋D(Ψ) ⩽ 𭟋D(Φ ⋓ Ψ).

Hence,
𭟋D(Φ)⋎𭟋D(∆) ⩽ 𭟋D(Φ ⋓ ∆).

Thus,
𭟋D(Φ ⋓ Ψ) = 𭟋D(Φ)⋎𭟋D(Ψ).

Inversely, assume that

ℸD(Φ ⋓ Ψ) =ℸD(Φ)⋏ℸD(Ψ),

D(Φג ⋓ Ψ) = ⋏D(Φ)ג ,(∆)Dג
𭟋D(Φ ⋓ Ψ) =𭟋D(Φ)⋎𭟋D(Ψ), for all Φ, Ψ ∈ L.

Easily, we can see that

ℸD(Φ ⋓ Ψ) ⩾ℸD(Φ)⋏ℸD(Ψ),

D(Φג ⋓ Ψ) ⩾ ⋏D(Φ)ג ,D(Ψ)ג

𭟋D(Φ ⋓ Ψ) ⩽𭟋D(Φ)⋎𭟋D(Ψ), for all Φ, Ψ ∈ L.

Now, we show that

ℸD(Φ ⋒ Ψ) ⩾ℸD(Φ)⋎ℸD(Ψ),

D(Φג ⋒ Ψ) ⩾ ⋎D(Φ)ג ,D(Ψ)ג

𭟋D(Φ ⋒ Ψ) ⩽𭟋D(Φ)⋏𭟋D(Φ), for all Φ, Ψ ∈ L.

Since
Ψ ⋓ (Φ ⋒ Ψ) = Φ and Ψ ⋓ (Φ ⋒ Ψ) = Ψ,

we can determine that

ℸD(Φ ⋓ (Φ ⋒ Ψ)) =ℸD(Φ),

D(Φג ⋓ (Φ ⋒ Ψ)) = ,D(Φ)ג

ℸD(Ψ ⋓ (Φ ⋒ Ψ)) =ℸD(Ψ),

D(Ψג ⋓ (Φ ⋒ Ψ)) = .D(Ψ)ג

From conditions (i) and (ii), we conclude that

ℸD(Φ)⋏ℸD(Φ ⋒ Ψ) =ℸD(Φ),

⋏D(Φ)ג D(Φג ⋒ Ψ) = ,D(Φ)ג

ℸD(Ψ)⋏ℸD(Φ ⋒ Ψ) =ℸD(Ψ),

⋏D(Ψ)ג D(Φג ⋒ Ψ) = .D(Ψ)ג
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Hence,

ℸD(Φ ⋒ Ψ) ⩾ℸD(Φ),

D(Φג ⋒ Ψ) ⩾ ,D(Φ)ג

ℸD(Φ ⋒ Ψ) ⩾ℸD(Ψ),

D(Φג ⋒ Ψ) ⩾ .D(Ψ)ג

Thus,

ℸD(Φ ⋒ Ψ) ⩾ℸD(Φ)⋎ℸD(Ψ),

D(Φג ⋒ Ψ) ⩾ ⋎D(Φ)ג ,D(Ψ)ג for all Φ, Ψ ∈ L.

In the same way, we obtain that

𭟋D(Φ ⋒ Ψ) ⩽ 𭟋D(Φ)⋏𭟋D(Ψ), for all Φ, Ψ ∈ L.

Therefore, D is a neutrosophic of L.

Similarly, the following result provides a characterization of neutrosophic filters of
neutrosophicaopen-set lattice in terms of its operation.

Theorem 4. Let L be the lattice of neutrosophic open sets. Then, it holds that F is a neutrosophic
filter of L if andaonly if the following conditions are satisfied:

(i) ℸF(Φ ⋒ Ψ) = ℸF(Φ)⋏ℸF(Ψ);
(ii) F(Φג ⋒ Ψ) = ⋏F(Φ)ג ;F(Ψ)ג
(iii) 𭟋F(Φ ⋒ Ψ) = 𭟋F(Φ)⋎𭟋F(Ψ) for all Φ, Ψ ∈ L.

Proof. Directly from Theorem 3 and Proposition 4.

As results of the above theorems, we can obtain the following properties of ideals and
filters on a neutrosophic open-set lattice.

Corollary 4. Let D be a neutrosophic ideal of L and Φ, Ψ ∈ L. If Φ ⊆ Ψ, then

ℸD(Φ) ⩾ ℸD(Ψ), D(Φ)ג ⩾ D(Ψ)ג and 𭟋D(Φ) ⩽ 𭟋D(Ψ),

i.e., the mappings ℸD , Dג are antitone and 𭟋D is monotone.

Corollary 5. Let F be a neutrosophic filter of L and Φ, Ψ ∈ L. If Φ ⊆ Ψ, then

ℸF(Φ) ⩽ ℸF(Ψ), F(Φ)ג ⩽ F(Ψ)ג and 𭟋F(Φ) ⩾ 𭟋F(Ψ),

i.e., the mappings ℸF, Fג are monotone and 𭟋F is antitone.

The following result characterizes fuzzy ideals (respectively, fuzzy filters) of open-
set lattice.

Corollary 6. For every fuzzy set D and F of L, the following equivalences hold:

(i) D is a fuzzy ideal of L equivalent to ℸD(Φ ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ);
(ii) F is a fuzzy filter of L equivalent to ℸF(Φ ⋒ Ψ) = ℸF(Φ)⋏ℸF(Ψ), for all Φ, Ψ ∈ L.

Proof. (i) The fact that fuzzy ideal is a neutrosophic ideal of L by setting D(Φ)ג = 0
and 𭟋D(Φ) = 1 − ℸD(Φ), Theorem 3 assures that D is a fuzzy ideal of L ifaand only if
ℸD(Φ ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ), for all Φ, Ψ ∈ L.

(ii) It followsafrom Proposition 4 and (i).
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Similarly, the following result shows a characterization of intuitionistic fuzzy ideals
and filters of the open-set lattice.

Corollary 7. For any intuitionistic fuzzy sets D and F of L, the following equivalences hold:

(i) D is an intuitionistic fuzzy ideal of L if and only if for all Φ, Ψ ∈ L, the following conditions
are satisfied:

(a) ℸD(Φ ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ);
(b) 𭟋D(Φ ⋓ Ψ) = 𭟋D(Φ)⋎𭟋D(Ψ).

(ii) F is an intuitionistic fuzzy filter of L if and only if for all Φ, Ψ ∈ L, the following conditions
are satisfied:

(a) ℸF(Φ ⋒ Ψ) = ℸF(Φ)⋏ℸF(Ψ);
(b) 𭟋F(Φ ⋒ Ψ) = 𭟋F(Φ)⋎𭟋F(Ψ).

Proof. (i) Since every intuitionistic fuzzy ideal is a neutrosophic ideal of L by putting
D(Φ)ג = 1 −ℸD(Φ)−𭟋D(Φ), it holds by Theorem 3 that D is an intuitionistic fuzzy ideal
of L ifaandaonlyaif for all Φ, Ψ ∈ L, theafollowing conditions hold:
(a) ℸD(Φ ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ);
(b) 𭟋D(Φ ⋓ Ψ) = 𭟋D(Φ)⋎𭟋D(Ψ).

(ii) Directly via (i) and Proposition 4.

6. Prime Neutrosophic Ideals and Filters of L

In this part of the paper, we study the concept of prime neutrosophic ideals (re-
spectively, prime neutrosophic filters) of L as interesting types of neutrosophic ideals
(respectively, neutrosophic filters).

6.1. Characterizations of Prime Neutrosophic Ideals and Filters

We apply the previous characterizations of neutrosophic ideals (respectively, neutro-
sophic filters) to the prime neutrosophic ideals (respectively, prime neutrosophic filters)
of L.

Definition 15. A neutrosophic ideal D of the lattice L is said to be a prime neutrosophic ideal if,
for all Φ, Ψ ∈ L, the following conditions apply:

(i) ℸD(Φ ⋒ Ψ) ⩽ ℸD(Φ)⋎ℸD(Ψ);
(ii) D(Φג ⋒ Ψ) ⩽ ⋎D(Φ)ג ;D(Ψ)ג
(iii) 𭟋D(Φ ⋒ Ψ) ⩾ 𭟋D(Φ)⋏𭟋D(Ψ) .

Definition 16. A neutrosophic filter F of the lattice L is said to be a prime neutrosophic filter if, for
all Φ, Ψ ∈ L, the following conditions apply:

(i) ℸF(Φ ⋓ Ψ) ⩽ ℸF(Φ)⋎ℸF(Ψ);
(ii) F(Φג ⋓ Ψ) ⩽ ⋎F(Φ)ג ;F(Ψ)ג
(iii) 𭟋F(Φ ⋓ Ψ) ⩾ 𭟋F(Φ)⋏𭟋F(Ψ) .

The next theorem shows a basic characterization of prime neutrosophic ideals.

Theorem 5. Let D be a neutrosophic subset of L. Then,
D is a prime neutrosophic ideal of L if and only if theafollowing conditions hold:

(i) ℸD(Φ ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ);
(ii) ℸD(Φ ⋒ Ψ) = ℸD(Φ)⋎ℸD(Ψ);
(iii) D(Φג ⋓ Ψ) = ⋏D(Φ)ג ;D(Ψ)ג
(iv) D(Φג ⋒ Ψ) = ⋎D(Φ)ג ;D(Ψ)ג
(v) 𭟋D(Φ ⋓ Ψ) = 𭟋D(Φ)⋎𭟋D(Ψ);
(vi) 𭟋D(Φ ⋒ Ψ) = 𭟋D(Φ)⋏𭟋D(Ψ), for all Φ, Ψ ∈ L.
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Proof. Let D be a prime neutrosophic ideal of L. We prove (i), as the others can be proved
similarly. By the aforementioned hypothesis, we haveathat

ℸD(Φ ⋓ Ψ) ⩾ ℸD(Φ)⋏ℸD(Ψ), for every Φ, Ψ ∈ L.

It follows by Definition 13 that

ℸD(Φ) = ℸD(Φ⋒ (Ω⋓Ψ)) ⩾ ℸD(Φ⋓Ψ) and ℸD(Ψ) = ℸD(Ψ⋒ (Φ⋓Ψ)) ⩾ ℸD(Φ⋓Ψ).

Thus,
ℸD(Φ)⋏ℸD(Ψ) ⩾ ℸD(Φ ⋓ Ψ).

Therefore,
ℸD(Φ ⋓ Ψ) = ℸD(Φ)⋏ℸD(Ψ).

Inversely, if we assume that ℸD , Dג and 𭟋D satisfy the above conditions, then it is clear
that D isaaaprime neutrosophic ideal of L.

Similarly, the following theorem shows a characterization of prime neutrosophic filters.

Theorem 6. Let D be a neutrosophic subset of L. Then, D is a prime neutrosophic filter of L if
andaonly if theafollowing conditions hold:

(i) ℸF(Φ ⋓ Ψ) = ℸF(Φ)⋎ℸF(Ψ);
(ii) ℸF(Φ ⋒ Ψ) = ℸF(Φ)⋏ℸF(Ψ);
(iii) F(Φג ⋓ Ψ) = ⋎F(Φ)ג ;F(Ψ)ג
(iv) F(Φג ⋒ Ψ) = ⋏F(Φ)ג ;F(Ψ)ג
(v) 𭟋F(Φ ⋓ Ψ) = 𭟋F(Φ)⋏𭟋F(Ψ);
(vi) 𭟋F(Φ ⋒ Ψ) = 𭟋F(Φ)⋎𭟋F(Ψ).

Proof. Direct application of Proposition 4 and Theorem 5.

Example 4. Let E = {a, b} and L = {ϕ, Φ, Ψ, E} be a lattice of E with Φ = {⟨a, 0.4, 0.3, 0.1⟩ |
a ∈ E} and Ψ = {⟨b, 0.1, 0.3, 0.4⟩ | b ∈ E}. Then, according to Definitions 15 and 16, we have
the following:

(i) D = {⟨a, 0.2, 0.3, 0.1⟩, ⟨b, 0.3, 0.4, 0.1⟩ | a, b ∈ E} is a prime neutrosophic ideal of L.
(ii) F = {⟨a, 0.5, 0.2, 0.3⟩, ⟨b, 0.4, 0.1, 0.2⟩ | a, b ∈ E} is a prime neutrosophic filter of L.

6.2. Operations of Prime Neutrosophic Ideals and Prime Neutrosophic Filters

We present some basic operations of prime neutrosophic ideals (respectively, prime
neutrosophic filters).

Proposition 7. Suppose (Φi)i∈I is a set of neutrosophic sets of L:

(i) If Φi isaa prime neutrosophic ideal of L, then ∩
i∈I

Φi isaaaprime neutrosophic ideal of L;

(ii) If Φi isaa prime neutrosophic filter of L, then ∩
i∈I

Φi isaa prime neutrosophic filter of L.

Proof. (i) Let Φi be a prime neutrosophic ideal of L. From Proposition 5, it holds that
∩

i∈I
Φi is a neutrosophic ideal of L. Now, we show that ∩

i∈I
Φi is prime. Let Φ, Ψ ∈ L

with Φ ⋒ Ψ ∈ ∩
i∈I

Φi. Then, in that case, Φ ⋒ Ψ ∈ Φi. Since for all i ∈ I, Φi isaaaprime

neutrosophic ideal, in that case

ℸΦi (Φ ⋒ Ψ) ⩽ℸΦi (Φ)⋎ℸΦi (Ψ),

Φiג (Φ ⋒ Ψ) ⩽ Φiג (Φ)⋎ Φiג (Ψ),

𭟋Φi (Φ ⋒ Ψ) ⩾𭟋Φi (Φ)⋏𭟋D(Ψ), for every i ∈ I.
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We can determine that

ℸ ∩
i∈I

Φi (Φ ⋒ Ψ) ⩽ℸΦi (Φ ⋒ Ψ) ⩽ ℸΦi (Φ)⋎ℸΦi (Ψ),

ג ∩
i∈I

Φi (Φ ⋒ Ψ) ⩽ Φiג (Φ ⋒ Ψ) ⩽ Φiג (Φ)⋎ Φiג (Ψ),

𭟋 ∩
i∈I

Φi (Φ ⋒ Ψ) ⩾𭟋Φi (Φ ⋒ ∆) ⩾ 𭟋Φi (Φ)⋏𭟋D(∆), for every i ∈ I.

Hence,

ℸ ∩
i∈I

Φi (Φ ⋒ Ψ) ⩽
∧

i∈I
(ℸΦi (Φ)⋎ℸΦi (Ψ)),

ג ∩
i∈I

Φi (Φ ⋒ Ψ) ⩽
∧

i∈I
Φiג) (Φ)⋎ Φiג (Ψ)),

𭟋 ∩
i∈I

Φi (Φ ⋒ Ψ) ⩾
∨

i∈I
(𭟋Φi (Φ)⋏𭟋D(Ψ)).

Therefore,

ℸ ∩
i∈I

Φi (Φ ⋒ Ψ) ⩽ℸ ∩
i∈I

Φi (Ω) ⋎ ℸ ∩
i∈I

Φi (Ψ),

ג ∩
i∈I

Φi (Φ ⋒ Ψ) ⩽ ג ∩
i∈I

Φi (Φ)⋎ ג ∩
i∈I

Φi (Ψ),

𭟋 ∩
i∈I

Φi (Ω ⋒ Ψ) ⩾𭟋 ∩
i∈I

Φi (Φ) ⋏ 𭟋 ∩
i∈I

Φi (Ψ).

We conclude that ∩
i∈I

Φi is a prime neutrosophic ideal of L.

(ii) Directly by Proposition 4 and (i).

Next, we study the complement property between the prime neutrosophic ideal and
prime neutrosophic filter.

Proposition 8. Let D be a neutrosophic set of L; the following equivalences hold:

(i) D is a prime neutrosophic ideal if and only if D is a prime neutrosophic filter of L;
(ii) D is a prime neutrosophic filter if and only if D is a prime neutrosophic ideal of L.

Proof. (i) Let D be a prime neutrosophic ideal, for all Φ, Ψ ∈ L, Proposition 5 provides that

ℸD(Φ ⋓ Ψ) = 𭟋D(Φ ⋓ Ψ) = 𭟋D(Φ)⋎𭟋D(Ψ) = ℸD(Φ)⋎ℸD(Ψ)

and
ℸD(Φ ⋒ Ψ) = 𭟋D(Φ ⋒ Ψ) = 𭟋D(Φ)⋏𭟋D(Ψ) = ℸD(Φ)⋏ℸD(Ψ) .

Similarly, we show that

D(Φג ⋓ Ψ) = ⋎D(Φ)ג ,D(Ψ)ג

D(Φג ⋒ Ψ) = ⋏D(Φ)ג ,D(Ψ)ג

𭟋D(Φ ⋓ Ψ) =𭟋D(Φ)⋏𭟋D(Ψ),

𭟋D(Φ ⋒ Ψ) =𭟋D(Φ)⋎𭟋D(Ψ).

By Proposition 6, D is a prime neutrosophic filter of L. The inverse follows from
Proposition 4 and the first implication.
(ii) Directly by the concerned that D = D and (i).
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Example 5. Consider the prime neutrosophic ideal D of L = {ϕ, Φ, Ψ, E} given in Example 4.
Then, according to Definition 16, the complement

D = {⟨a, 0.1, 0.3, 0.2⟩, ⟨b, 0.3, 0.4, 0.1⟩ | a, b ∈ E}

is a prime neutrosophic filter of L.

Proposition 9. Let D and F be two neutrosophic sets of L; the following equivalences hold:

(i) D is a prime neutrosophic ideal if and only if [D] is a prime neutrosophic ideal;
(ii) F is a prime neutrosophic filter if and only if [F] is a prime neutrosophic filter.

Proof. (i) Let D be a prime neutrosophic ideal of a lattice L. It is obvious that [D] =
{⟨Φ,ℸD(Φ), ,D(Φ)ג 1 −ℸD(Φ)⟩ | Φ ∈ L} is a neutrosophic ideal of L. Now, we show that
[D] is prime. We have that

ℸ[D](Φ ⋒ Ψ) = ℸD(Φ ⋒ Ψ) = ℸD(Φ)⋎ℸΦ(Ψ) = ℸ[D](Φ)⋎ℸ[D](Ψ)

and
Φ)[D]ג ⋒ Ψ) = D(Φג ⋒ Ψ) = ⋎D(Φ)ג D(Ψ)ג = ⋎(Φ)[D]ג (Ψ)[D]ג .

Also,

𭟋[D](Φ ⋒ Ψ) = 1 −ℸD(Φ ⋒ Ψ)

= 1 − (ℸD(Φ)⋎ℸD(Ψ))

= (1 −ℸD(Φ))⋏ (1 −ℸD(Ψ))

= 𭟋[D](Φ)⋏𭟋[D](Ψ).

We can determine that [D] is a prime neutrosophic ideal of L. Inversely, let [D] be a prime
neutrosophic ideal. By using the same proof, we conclude that D is a prime neutrosophic
ideal of L.
(ii) It follows from Proposition 4 and (i).

Proposition 10. Let D and F be two neutrosophic sets of L:

(i) D is a prime neutrosophic ideal if and only if ⟨D⟩ is aaprime neutrosophic ideal;
(ii) F is a prime neutrosophic filter if andaonly if ⟨F⟩ is a prime neutrosophic filter.

Proof. The proof of this property is analogous to that of Proposition 9 by using the defini-
tion of ⟨D⟩ instead of [D].

The following result discusses the relationship between the prime neutrosophic ideal
(respectively, prime neutrosophic filter) and its support of the lattice of open sets.

Proposition 11. Let D and F be two neutrosophic sets of L:

(i) If D is a prime neutrosophic ideal, then the support S(D) is a prime ideal of L.
(ii) If F is a prime neutrosophic filter, then the support S(F) is a prime filter of L.

Proof. (i) Let D be a prime neutrosophic ideal of the lattice L. Proposition 6 confirms that
S(D) is an ideal of L.

Now, we show that S(D) is prime. Let Φ, Ψ ∈ L with Φ ⋒ Ψ ∈ S(D). We have

ℸD(Φ ⋒ Ψ) ̸=0,

D(Φג ⋒ Ψ) ̸=0,

𭟋D(Φ ⋒ Ψ) ̸=0.
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Since D is a prime neutrosophic ideal of L, then

ℸD(Φ)⋎ℸD(Ψ) =ℸD(Φ ⋒ Ψ) ̸= 0,

⋎D(Φ)ג D(Ψ)ג = D(Φג ⋒ Ψ) ̸= 0,

𭟋D(Φ)⋏𭟋D(Ψ) =𭟋D(Φ ⋒ Ψ) ̸= 0.

This implies that either (ℸD(Φ) ̸= 0, D(Φ)ג ̸= 0 and 𭟋D(Φ) ̸= 0) or (ℸD(Ψ) ̸= 0, D(Ψ)ג ̸= 0
and 𭟋D(Ψ) ̸= 0). Thus, either Φ ∈ S(D) or Ψ ∈ S(D). Therefore, S(D) is a prime ideal
of L.

(ii) Directly by using Proposition 4 and (i).

Similarly, we obtain the following agreement that describes the level sets of the prime
neutrosophic ideals, (respectively, prime neutrosophic filters).

Theorem 7. Let D and F be two neutrosophic sets of L. Then, the following hold:

(i) D is a prime neutrosophic ideal if and only if its level sets are prime ideals.
(ii) F is a prime neutrosophic filter if and only if its level sets are prime filters.

Proof. (i) By Proposition 2, D is a neutrosophic ideal of L ifaand onlyaif Dα,β,γ are ideals
of L for all 0 < α, β, γ ≤ 1. We shall prove the primality property. Let D be a prime
neutrosophic ideal of L, and let Φ, Ψ ∈ L with Φ ⋒ Ψ ∈ Dα,β,γ. Then, from Theorem 5, it
holds that

(ℸD(Φ ⋒ Ψ) =ℸD(Φ)⋎ℸD(Ψ) ⩾ α,

D(Φג ⋒ Ψ) = ⋎D(Φ)ג D(Ψ)ג ⩾ β,

𭟋D(Φ ⋒ Ψ) =𭟋D(Φ)⋏𭟋D(Ψ) ⩽ γ).

This implies that either (ℸD(Φ) ⩾ α, D(Φ)ג ⩾ β and 𭟋D(Φ) ⩽ γ) or (ℸD(Ψ) ⩾ α,
D(Ψ)ג ⩾ β and 𭟋D(Ψ) ⩽ γ). Thus, either Φ ∈ Dα,β,γ or Ψ ∈ Dα,β,γ. Therefore, Dα,β,γ
are primeaideals for all 0 < α, β, γ ≤ 1. Inversely, let Dα,β,γ be prime ideals for all
0 < α, β, γ ≤ 1 where D is not a prime neutrosophic ideal of L. Then, it follows that there
exist Φ, Ψ ∈ L such that

ℸD(Φ ⋒ Ψ) >ℸD(Φ)⋎ℸD(Ψ),

D(Φג ⋒ Ψ) > ⋎D(Φ)ג ,D(Ψ)ג

𭟋D(Φ ⋒ Ψ) <𭟋D(Φ)⋏𭟋D(Ψ).

This implies that

ℸD(Φ ⋒ Ψ) >ℸD(Φ) and ℸD(Φ ⋒ Ψ) > ℸD(Ψ),

D(Φג ⋒ Ψ) > D(Φ)ג and D(Φג ⋒ Ψ) > ,D(Ψ)ג

𭟋D(Φ ⋒ Ψ) <𭟋D(Φ) and 𭟋D(Φ ⋒ Ψ) < 𭟋D(Ψ).

If we put

ℸD(Φ ⋒ Ψ) = α,

D(Φג ⋒ Ψ) = β,

𭟋D(Φ ⋒ Ψ) = γ

236



Axioms 2024, 13, 292

we obtain

ℸD(Φ) < α,

D(Φ)ג < β,

𭟋D(Φ) > γ,

and

ℸD(Ψ) < α,

D(Ψ)ג < β,

𭟋D(Ψ) > γ.

Hence,
Φ ⋒ Ψ ∈ Dα,β,γ and Φ, Ψ /∈ Dα,β,γ,

which contradicts the concerned that Dα,β,γ are prime ideals of L for all 0 < α, β, γ ≤ 1.
Consequently, D is a prime neutrosophic ideal.
(ii) Derive through Proposition 4 and (i).

Example 6. Let us consider the lattice L = {ϕ, Φ, Ψ, E} given in Example 4 and let

D = {⟨a, 0.2, 0.3, 0.1⟩, ⟨b, 0.3, 0.4, 0.1⟩ | a, b ∈ E}

be a prime neutrosophic ideal of L. Then, for any 0 < α, β, γ ≤ 1, Dα,β,γ are crisp ideals of L.

7. Conclusions

The structure of the neutrosophic open-set lattice on a topology generated by a neutro-
sophic relation is described in this study. We have defined the concepts of neutrosophic
ideals and neutrosophic filters on that lattice in terms of their level sets and meet and join
operations. In addition, we have examined and defined the concepts of prime neutro-
sophic filters and ideals as fascinating subsets of neutrosophic ideals and filters. This work
mostly discussed neutrosophic ideals and neutrosophic filters on the lattice structure of
neutrosophic open sets. However, we think that other types of neutrosophic ideals and
neutrosophic filters will also be very interesting in more general structures in future works.
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Abstract: In this paper, we introduce the concept of monotonicity according to a direction for a set
of random variables. This concept extends well-known multivariate dependence notions, such as
corner set monotonicity, and can be used to detect dependence in multivariate distributions not
detected by other known concepts of dependence. Additionally, we establish relationships with
other known multivariate dependence concepts, outline some of their salient properties, and provide
several examples.

Keywords: monotonic dependence; random variable; total positivity
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1. Introduction

There are numerous methodologies and approaches available for the exploration
and analysis of the intricate relationships of dependence among random variables. As
underscored by Jogdeo [1], this area stands as a cornerstone of extensive research within
the expansive domains of probability theory and statistics. The investigation of dependence
among variables is fundamental in understanding the underlying structure and behavior
of complex systems, making it a focal point of study across various scientific disciplines.

When delving into the examination of a multivariate model, it becomes imperative to
conduct a thorough analysis of the specific type of dependence structure it encapsulates.
This meticulous scrutiny is essential for discerning the suitability of a particular model for a
given dataset or practical application. By comprehensively understanding the nature of de-
pendence presents, researchers can make informed decisions regarding model selection and
parameter estimation, thereby enhancing the robustness and reliability of their analyses.

Within the vast landscape of studied dependence types, our attention is particularly
drawn to the nuanced distinctions between positive and negative dependence. Positive
dependence expresses a tendency for the variables to move in the same direction, exhibit-
ing a mutual influence that often reflects synergistic relationships. Conversely, negative
dependence denotes an inverse relationship, where the movement of one variable is ac-
companied by a corresponding opposite movement in another, indicative of regulatory or
inhibitory interactions.

By elucidating the intricacies of positive and negative dependence, researchers gain
valuable insights into the underlying dynamics of the systems under study. This deeper
understanding not only enriches theoretical frameworks but also has practical implications
in various fields, including finance, engineering, and epidemiology. Moreover, it under-
scores the importance of considering diverse dependence structures in statistical modeling,
ensuring that analyses accurately capture the complexities of real-world phenomena.

Positive dependence is defined by any criterion capable of mathematically characteriz-
ing the inclination of components within an n-variate random vector to assume concordant
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values [2]. As emphasized by Barlow and Proschan [3], the concepts of (positive) de-
pendence in the multivariate context are more extensive and intricate compared to the
bivariate case.

The literature contains various extensions of the bivariate dependence concepts to the
multivariate domain (we refer to [4–7] for more details). Our objective in this study is to
extend certain established notions of multivariate positive and negative dependence. This
includes the exploration of concepts such as orthant dependence and corner set monotonic-
ity, investigating their connections with other dependence concepts and presenting several
associated properties.

The paper is organized as follows. We begin with some preliminaries (Section 2)
pertaining to the properties of multivariate dependence. This section serves to lay the foun-
dation for our subsequent analyses by elucidating key concepts and frameworks, essential
for understanding the complexities of dependence structures among random variables.
Following the preliminaries, in Section 3, we delve into the concept of monotonic random
variables with respect to a given direction. This extends the notion of corner set monotonic-
ity and provides a more nuanced understanding of the directional dependence present in
multivariate systems. We further explore several properties pertaining to these monotonic
random variables and provide some examples. Finally, Section 4 is dedicated to presenting
our conclusions drawn from the analyses and discussions shown in the preceding sections.

2. Preliminaries

In the sequel, by convention, we will indistinctly use “increasing” (respectively,
“decreasing”) and “nondecreasing” (respectively, “nonincreasing”). In addition, a sub-
set A ⊆ Rd, with d ≥ 1, is an increasing set if its indicator function χA is increasing.

Let n ≥ 2 be a natural number. Let (Ω,F ,P) be a probability space, where Ω is a
nonempty set, F is a σ-algebra of subsets of Ω, and P is a probability measure on F , and
let X = (X1, X2, . . . , Xn) be an n-dimensional random vector from Ω to IRn

= [−∞, ∞]n.
The orthant dependence according to a direction is defined as follows [8]: Let

α = (α1, α2, . . . , αn) be a vector in Rn such that |αi| = 1 for all i = 1, 2, . . . , n. An n-
dimensional random vector X—or its joint distribution function—is said to be orthant
positive (respectively, negative) dependent according to direction α—written PD(α) (respectively,
ND(α))—if

P
[

n⋂

i=1

(αiXi > xi)

]
≥

n

∏
i=1

P[αiXi > xi] for all (x1, x2, . . . , xn) ∈ Rn
(1)

(respectively, with the reversed inequality in (1)).
Note that for some elections of direction α—e.g., for α = 1 = (1, 1, . . . , 1) or α =

−1 = (−1,−1, . . . ,−1)—we obtain different known (bivariate and multivariate) depen-
dence concepts in the literature, as positive quadrant dependence, positive upper orthant
dependence, etc. (we refer to [2,7,9–12] for more details).

Let X be an n-dimensional random vector. The following two multivariate positive
dependence notions—on corner set monotonicity—were introduced in [13], where the
expression “nonincreasing in x”—and similarly for nondecreasing—means that it is nonin-
creasing in each of the components of x, and X ≤ x means Xi ≤ xi for all i = 1, 2, . . . , n:

1. X is left corner set decreasing, denoted by LCSD(X), if

P[X ≤ x|X ≤ x′] is nonincreasing in x′ for all x. (2)

2. X is right corner set increasing, denoted by RCSI(X), if

P[X > x|X > x′] is nondecreasing in x′ for all x. (3)
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The corresponding negative dependence concepts LCSI(X) (left corner set increasing)
and RCSD(X) (right corner set decreasing) are defined in a similar manner by exchanging
“nondecreasing” and “nonincreasing” in (2) and (3), respectively.

Let H be the joint distribution function of X. We note that condition (2) can be written as

H(x ∧ x′)
H(x′)

is nonincreasing in x′ for all x,

where x ∧ x′ = (min{x1, x′1}, min{x2, x′2}, . . . , min{xn, x′n}). Denoting by H the survival
function of H, i.e., H(x) = P[X > x], condition (3) can be written as

H(x ∨ x′)
H(x′)

is nondecreasing in x′ for all x,

where x ∨ x′ = (max{x1, x′1}, max{x2, x′2}, . . . , max{xn, x′n}).
For properties of these notions and relationships with other multivariate dependence

concepts, see, e.g., refs. [7,14].

3. Monotonic Dependence According to a Direction

In this section, we undertake a comprehensive examination of the concepts of left-
corner set and right-corner set dependence in sequence according to a direction, delineating
their definitions within the framework of directional dependence for a set of random vari-
ables. Building upon the foundations laid out in Section 2, where the concepts of LCSD
and RCSI were recalled, we extend these notions to incorporate directional considerations,
thus offering a more nuanced understanding of dependence structures. It is worth noting
that a similar analytical approach could be applied to explore negative dependence con-
cepts, mirroring the methodology employed for positive dependence. Furthermore, we
not only define these directional dependence concepts but also delve into some of their
salient properties.

3.1. Definition

We begin with the key definition of this work, in which for a direction α and an
n-dimensional random vector X, αX denotes the vector (α1X1, α2X2, . . . , αnXn).

Definition 1. Let X be an n-dimensional random vector and α = (α1, α2, . . . , αn) ∈ Rn such that
|αi| = 1 for all i = 1, 2, . . . , n. The random vector X—or its joint distribution function—is
said to be increasing (respectively, decreasing) according to the direction α—denoted by I(α)
(respectively D(α))—if

P
[
αX > x|αX > x′

]

is nondecreasing (respectively, nonincreasing) in x′ for all x.

In the sequel, we focus on the I(α) concept. Similar results can be obtained for the D(α)
concept, so we omit them.

Observe that the I(α) concept generalizes the LCSD and RCSI concepts defined in
Section 2; that is, I(−1) (respectively, I(1)) corresponds to LCSD (respectively, RCSI).

We wish to emphasize that, in general, the I(α) concept signifies positive dependence.
This means that large values of the variables Xj, for j ∈ J, are associated with small values
of the variables Xj, for j ∈ I\J, where I = {1, 2, . . . , n} and J = {i ∈ I : αi = 1}. Therefore,
if a random vector X is I(α), then

P


⋂

j∈J

(
Xj > xj

)
,
⋂

j∈I\J

(
Xj ≤ xj

)
|
⋂

j∈J

(
Xj > x′j

)
,
⋂

j∈I\J

(
Xj ≤ x′j

)



is nondecreasing in each x′j for j ∈ J, and nonincreasing in each x′j for j ∈ I\J, for all x.
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3.2. Relationships with Other Multivariate Dependence Concepts

In this subsection, our focus lies on exploring the connections between the I(α) depen-
dence notion and several established multivariate dependence concepts within the context
of directional analysis. By examining these relationships, we aim to elucidate how the I(α)
concept aligns with or diverges from other well-known measures of dependence, thus pro-
viding a more comprehensive understanding of their interplay. Through this investigation,
we seek to uncover potential insights into the nature of multivariate dependence and its
implications in various analytical scenarios.

We begin our study by recalling the increasingness in the sequence dependence concept.

Definition 2 ([15]). Let X1, X2, . . . , Xn be n random variables and α = (α1, α2, . . . , αn) ∈ Rn

such that |αi| = 1 for all i = 1, 2, . . . , n. The random variables X1, X2, . . . , Xn are said to be
increasing in sequence according to direction α—denoted by IS(α)—if, for any xi ∈ R,

P[αiXi > xi|α1X1 > x1, . . . , αi−1Xi−1 > xi−1]

is nondecreasing in x1, x2, . . . , xi−1 ∈ R for all i = 2, 3, . . . , n.

The relationship between I(α) and IS(α) dependence concepts is given in the following result.

Proposition 1. If a random vector X is I(α), then it is IS(α).

Proof. Let x1, x2, . . . , xn, x′1, x′2, . . . , x′n ∈ R such that xi ≤ x′i for 1 ≤ i ≤ n. Since X is I(α),
for any i, 2 ≤ i ≤ n, we have

P


αiXi > xi|

i−1⋂

j=1

(αjXj > xj)


 = P




n⋂

j=1

(
αjXj > tj

)
|

n⋂

j=1

(
αjXj > sj

)



≤ P




n⋂

j=1

(
αjXj > tj

)
|

n⋂

j=1

(
αjXj > s′j

)



= P


αiXi > xi|

i−1⋂

j=1

(αjXj > x′j)




where

tj =

{
xi, j = i,

−∞, j ̸= i,

sj =

{
xj, for j = 1, 2, . . . , i − 1,

−∞, for j = i, . . . , n,

and

s′j =

{
x′j, for j = 1, 2, . . . , i − 1,

−∞, for j = i, . . . , n;

whence X is IS(α), which completes the proof.

The converse of Proposition 1 does not hold in general: see, for instance, (Ref. [16],
Exercise 5.33) for a counterexample in the bivariate case.

In [15], the authors establish a significant result demonstrating that the IS(α) condition
implies PD(α). Building upon this crucial insight, we can readily derive the following result,
thereby highlighting the logical consequence of this implication.

Corollary 1. If a random vector X is I(α), then it is PD(α).
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The next definition involves the concept of multivariate totally positive of order two.

Definition 3 ([17]). Let X be an n-dimensional random vector with joint density function f , and
α ∈ Rn, with |αi| = 1 for all i = 1, 2, . . . , n. Then, X is said to be multivariate totally positive of
order two according to direction α—denoted by MTP2(α)—if

f (α(x ∨ y)) f (α(x ∧ y)) ≥ f (αx) f (αy) (4)

for all x, y ∈ Rn
.

The relationship between the notions I(α) and MTP2(α) is given in the following result.

Proposition 2. If a random vector X is MTP2(α), then it is I(α).

Proof. Let X = (X1, X2, . . . , Xn) be an n-dimensional random vector such that X is MTP2(α).
Given xi, x′i ∈ R, for i = 1, 2, . . . , n, we consider three cases:

1. If xi > x′i for all i = 1, 2, . . . , n, we have that

P
[

n⋂

i=1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′i

)
]
=

P
[

n⋂

i=1

(αiXi > xi)

]

P
[

n⋂

i=1

(
αiXi > x′i

)
]

is nondecreasing in x′1, x′2, . . . , x′n.
2. If xi ≤ x′i for all i = 1, 2, . . . , n, we have

P
[

n⋂

i=1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′i

)
]
= 1,

and hence it is nondecreasing in x′1, x′2, . . . , x′n.
3. Given j ∈ {1, 2, . . . , n}, consider, without loss of generality, xi ≤ x′i for 1 ≤ i ≤ j and

xi > x′i for j + 1 ≤ i ≤ n. Then, we have

P
[
αX > x|αX > x′

]
=

P
[

n⋂

i=1

(αiXi > xi),
n⋂

i=1

(
αiXi > x′i

)
]

P
[

n⋂

i=1

(
αiXi > x′i

)
]

=

P




j⋂

i=1

(
αiXi > x′i

)
,

n⋂

i=j+1

(αiXi > xi)




P
[

n⋂

i=1

(
αiXi > x′i

)
] . (5)

Since

P
[

n⋂

i=1

(
αiXi > x′i

)
]
≥ P

[
n⋂

i=1

(
αiXi > x′′i

)
]

for all x′i , x′′i ∈ R such that x′i ≤ x′′i for 1 ≤ i ≤ n, we have that (5) is nondecreasing in
x′j+1, . . . , x′n. In order to prove that (5) is also nondecreasing in x′1, . . . , x′j, considering

x′′1 , . . . , x′′j ∈ R such that x′i ≤ x′′i for 1 ≤ i ≤ j, we need to verify

P




n⋂

i=j+1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′i

)

 ≤ P




n⋂

i=j+1

(αiXi > xi)|
j⋂

i=1

(
αiXi > x′′i

)
,

n⋂

i=j+1

(
αiXi > x′i

)

. (6)

243



Axioms 2024, 13, 275

For that, it suffices to show that the determinant

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P




j⋂

i=1

(
αiXi > x′i

)
,

n⋂

i=j+1

(αiXi > xi)


 P




j⋂

i=1

(
αiXi > x′′i

)
,

n⋂

i=j+1

(αiXi > xi)




P
[

n⋂

i=1

(
αiXi > x′i

)
]

P




j⋂

i=1

(
αiXi > x′′i

)
,

n⋂

i=j+1

(
αiXi > x′i

)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

is non-positive (note that, in this case, the quotient between the elements of the first
column would be less than the quotient between the elements of the second column,
obtaining (6)). First of all, if we add the second column changed of sign to the first
column, we have

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P




j⋂

i=1

(
x′i < αiXi ≤ x′′i

)
,

n⋂

i=j+1

(αiXi > xi)


 P




j⋂

i=1

(
αiXi > x′′i

)
,

n⋂

i=j+1

(αiXi > xi)




P




j⋂

i=1

(
x′i < αiXi ≤ x′′i

)
,

n⋂

i=j+1

(
αiXi > x′i

)

 P




j⋂

i=1

(
αiXi > x′′i

)
,

n⋂

i=j+1

(
αiXi > x′i

)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and now adding to the second row, the first row with a changed sign, we obtain

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P




j⋂

i=1

(
x′i < αiXi ≤ x′′i

)
,

n⋂

i=j+1

(αiXi > xi)


 P




j⋂

i=1

(
αiXi > x′′i

)
,

n⋂

i=j+1

(αiXi > xi)




P




j⋂

i=1

(
x′i < αiXi ≤ x′′i

)
,

n⋂

i=j+1

(
x′i < αiXi ≤ xi

)

 P




j⋂

i=1

(
αiXi > x′′i

)
,

n⋂

i=j+1

(
x′i < αiXi ≤ xi

)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (7)

Since X is MTP2(α), from Ref. [17] (Propositions 2 and 4), we have

h(y)h
(
y′) ≥ h

(
y′j
)

h
(

yj
)

, (8)

for any pair of vectors y, y′ ∈ Rn
such that yi ≤ y′i for all i = 1, 2, . . . , n, and for any

1 ≤ j ≤ n− 1, where y′j =
(

y′1, . . . , y′j, yj+1, . . . , yn

)
and yj =

(
y1, . . . , yj, y′j+1, . . . , y′n

)
,

and h is the joint density function of the random vector (α1X1, α2X2, . . . , αnXn). By
integrating both sides of (8) in y, y′, with x′i < yi ≤ x′′i < y′i for i = 1, 2, . . . , j and
x′i < yi ≤ xi < y′i for i = j + 1, . . . , n, we obtain

∫ x′′1

x′1
· · ·

∫ x′′j

x′j

∫ xj+1

x′j+1

· · ·
∫ xn

x′n

∫ +∞

x′′1
· · ·

∫ +∞

x′′j

∫ +∞

xj+1

· · ·
∫ +∞

xn
h(y)h

(
y′)dydy′

≥
∫ x′′1

x′1
· · ·

∫ x′′j

x′j

∫ xj+1

x′j+1

· · ·
∫ xn

x′n

∫ +∞

x′′1
· · ·

∫ +∞

x′′j

∫ +∞

xj+1

· · ·
∫ +∞

xn
h
(

y′j
)

h
(

yj
)

dydy′.

It easily follows that the determinant D in (7) is non-positive.

In the three cases, we obtain that X is I(α), which completes the proof.

In order to conclude this subsection, we summarize the relationships among the
different dependence concepts outlined above in the following scheme:

MTP2(α) ⇒ I(α) ⇒ IS(α) ⇒ PD(α).
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3.3. Properties

The subsequent results presented herein encapsulate essential properties inherent
to the I(α) families. These properties span a diverse range of scenarios, encompassing
not only the behavior of independent random variables but also extending to subsets of
the newly introduced concept IS(α), as well as the concatenation of I(α) random vectors.
Furthermore, these results touch upon topics, such as weak convergence, thereby providing
a comprehensive framework for analyzing and understanding the dynamics of multivariate
dependence within the realm of I(α) families.

Proposition 3. Every set of independent random variables is I(α) for any α ∈ Rn.

Proof. If the random variables X1, X2, . . . , Xn are independent, then for any α ∈ Rn and
for all x, x′ ∈ Rn

, we have

P
[
αX > x|αX > x′

]
=

n

∏
i=1

P
[
αiXi > xi|αiXi > x′i

]
.

Given i ∈ {1, 2, . . . , n}, consider the probability P
[
αiXi > xi|αiXi > x′i

]
. We study

two cases:

1. If xi ≤ x′i , we have
P
[
αiXi > xi|αiXi > x′i

]
= 1.

2. If xi > x′i , we have

P
[
αiXi > xi|αiXi > x′i

]
=

P[αiXi > xi]

P
[
αiXi > x′i

] .

We consider two subcases:

(a) If x′i ≤ x′′i ≤ xi, then we have

P
[
αiXi > x′i

]
≥ P

[
αiXi > x′′i

]
,

and therefore

P
[
αiXi > xi|αiXi > x′i

]
≤ P

[
αiXi > xi|αiXi > x′′i

]
.

(b) If x′i ≤ xi ≤ x′′i , then we have

P
[
αiXi > xi|αiXi > x′i

]
≤ 1 = P

[
αiXi > xi|αiXi > x′′i

]
.

In any case, we obtain that the probability P
[
αiXi > xi|αiXi > x′i

]
is nondecreasing in

x′i for any xi ∈ R and for all i = 1, 2, . . . , n, whence the result follows.

Exploring the interplay of stochastic processes, we delve into the transformation of
subsets of I(α) random variables.

Proposition 4. Every subset of I(α) random variables is I(α∗), where α∗ is the vector attained by
excluding from α the components associated with the random variables not included in the subset.

Proof. Assume that X = (X1, X2, . . . , Xn) is I(α), and let Xk = (Xi1 , Xi2 , . . . , Xik ) be a
subvector of X. Let I = {1, 2, . . . , n}. For any xi1 , xi2 , . . . , xik , x′i1 , x′i2 , . . . , x′ik ∈ R, and by
considering xi = x′i = −∞ for every i ∈ I\{i1, i2, . . . , ik}, we have

P




k⋂

j=1

(
αij Xij > xij

)
|

k⋂

j=1

(
αij Xij > x′ij

)

 = P

[
n⋂

i=1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′i

)
]

.
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Thus, given x′′ij
∈ R, 1 ≤ j ≤ k, such that x′ij

≤ x′′ij
, and taking x′′i = −∞ for every

i ∈ I\{i1, i2, . . . , ik}, we obtain

P
[

n⋂

i=1

(αiXi > xi)|
n⋂

i=1

(
αiXi > x′′i

)
]
= P




k⋂

j=1

(
αij Xij > xij

)
|

k⋂

j=1

(
αij Xij > x′′ij

)

.

Since X is I(α), we conclude that Xk is I
(
αi1 , αi2 , . . . , αik

)
, completing the proof.

Within the domain of stochastic processes, we now show that when applying strictly in-
creasing functions to the components of an I(α) random vector, the I(α) property is retained.

Proposition 5. If the random vector X = (X1, X2, . . . , Xn) is I(α), and g1, g2, . . . , gn are n real-valued
and strictly increasing functions, then the random vector (g1(X1), g2(X2), . . . , gn(Xn)) is I(α).

Proof. Let y, y′, y′′ ∈ Rn
such that y′i ≤ y′′i for all i = 1, 2, . . . , n. Since X1, X2, . . . , Xn are

I(α) and αig−1
i (αiy′i) ≤ αig−1

i (αiy′′i ) for every i = 1, 2, . . . , n, we have

P
[

n⋂

i=1

(αigi(Xi) > yi)|
n⋂

i=1

(αigi(Xi) > y′i)

]
= P

[
n⋂

i=1

(αiXi > αig−1
i (αiyi))|

n⋂

i=1

(αiXi > αig−1
i (αiy′i))

]

≤ P
[

n⋂

i=1

(αiXi > αig−1
i (αiyi))|

n⋂

i=1

(αiXi > αig−1
i (αiy′′i ))

]

= P
[

n⋂

i=1

(αigi(Xi) > yi)|
n⋂

i=1

(αigi(Xi) > y′′i )

]
,

i.e., (g1(X1), g2(X2), . . . , gn(Xn)) is I(α), which completes the proof.

For the next result, we need some additional notations. Given α = (α1, α2, . . . , αn) ∈ Rn

and β = (β1, β2, . . . , βm) ∈ Rm, (α, β) will denote concatenation, that is,
(α, β) = (α1, . . . , αn, β1, . . . , βm) ∈ IRn+m. Similar notation will be used in the case of
random vectors.

Proposition 6. If X = (X1, X2, . . . , Xn) is I(α), Y = (Y1, Y2, . . . , Ym) is I(β), and X and Y are
independent, then (X, Y) is I(α, β).

Proof. Let x, x′, x′′ ∈ Rn
and y, y′, y′′ ∈ Rm

such that x′ ≤ x′′ and y′ ≤ y′′. Since X is I(α),
Y is I(β), and X and Y are independent, then we have

P




n⋂

i=1

(αiXi > xi),
m⋂

j=1

(β jYj > yj)|
n⋂

i=1

(αiXi > x′i),
m⋂

j=1

(β jYj > y′j)




= P
[

n⋂

i=1

(αiXi > xi)|
n⋂

i=1

(αiXi > x′i)

]
· P



m⋂

j=1

(β jYj > yj)|
m⋂

j=1

(β jYj > y′j)




≤ P
[

n⋂

i=1

(αiXi > xi)|
n⋂

i=1

(αiXi > x′′i )

]
· P



m⋂

j=1

(β jYj > yj)|
m⋂

j=1

(β jYj > y′′j )




= P




n⋂

i=1

(αiXi > xi),
m⋂

j=1

(β jYj > yj)|
n⋂

i=1

(αiXi > x′′i ),
m⋂

j=1

(β jYj > y′′j )


,

whence (X, Y) is I(α, β).

The following result pertains to a closure property of the I(α) family of multivariate
distributions and, similarly, of the D(α) family.
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Proposition 7. The family of I(α) distribution functions is closed under weak convergence.

Proof. Let {Xn}n∈N be a sequence of p-dimensional random vectors such that
Xn = (X1n, X2n, . . . , Xpn) is I(α) for all n ∈ N, and{Xn}n∈N converges weakly to X. If
x, x′, x′′ ∈ Rp

are such that x′i ≤ x′′i for all i = 1, 2, . . . , p, then we have

P
[ p⋂

i=1

(αiXi > xi)|
p⋂

i=1

(αiXi > x′i)

]
= lim

n→+∞
P
[ p⋂

i=1

(αiXin > xi)|
p⋂

i=1

(αiXin > x′i)

]

≤ lim
n→+∞

P
[ p⋂

i=1

(αiXin > xi)|
p⋂

i=1

(αiXin > x′′i )

]

= P
[ p⋂

i=1

(αiXi > xi)|
p⋂

i=1

(αiXi > x′′i )

]
;

therefore, X is I(α), whence the result follows.

3.4. Examples

In this section, we delve into examples that illustrate the I(α) concept of dependence.
Through the following three examples—involving both continuous and discrete cases—,
we aim to elucidate the behavior and implications of this type of dependence in various
contexts. These examples serve to elucidate the impact on statistical analysis, decision-
making processes, and other pertinent areas of study.

Example 1. Let X = (X1, X2, . . . , Xn) be a random vector with multivariate Normal distribution
N(µ, Σ), where µ = (µ1, µ2, . . . , µn) and Σ is the covariance matrix. Let

(
rij
)
= Σ−1 such that

rij < 0 for all (i, j) with 1 ≤ i < j ≤ n—a similar study can be conducted by considering rij > 0.
The probability density function of X is given by

f (x1, x2, . . . , xn) = (2π)−n/2|Σ|−1/2exp

(
−1

2

n

∑
i=1

n

∑
j=1

rij(xi − µi)(xj − µj)

)
.

Then, for every pair (i, j) with 1 ≤ i < j ≤ n, we can express the probability density function
as follows:

f (x1, x2, . . . , xn) = f1

(
x(i)
)

f2

(
x(j)
)

exp(−rijxixj),

where x(k) = (x1, . . . , xk−1, xk+1, . . . , xn) for k = i, j and appropriate functions f1, f2. Now, given
xi, xj, x′i , x′j such that xi ≤ x′i and xj ≤ x′j, and (αi, αj) such that |αk| = 1 for k = i, j, we have

f
(
x1, . . . , αixi, . . . , αjxj, . . . , xn

)
f
(

x1, . . . , αix′i , . . . , αjx′j, . . . , xn

)

− f
(
x1, . . . , αix′i , . . . , αjxj, . . . , xn

)
f
(

x1, . . . , αixi, . . . , αjx′j, . . . , xn

)

= f1

(
x(i)
)

f1

(
x(i

′)
)

f2

(
x(j)
)

f2

(
x(j′)

)
(9)

·
[
exp(−rijαiαj(xixj + x′i x

′
j))− exp(−rijαiαj(x′i xj + xix′j))

]
.

Since
αiαj(xixj + x′i x

′
j − x′i xj − xix′j) = αiαj[(x′i − xi)(x′j − xj)] ≥ 0,

as long as αiαj > 0, then (9) is non-negative if, and only if, αiαj > 0. Then we have that, for
any α = (α1, α2, . . . , αn) ∈ Rn such that |αi| = 1 for all i = 1, 2, . . . , n, the random vector
X is MTP2(α) if, and only if, αiαj > 0 for any election of (i, j)—see Theorem 3 of [17]. From
Proposition 2, we conclude that X is I(α) for α = 1 and α = −1.
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Example 2. Let X = (X1, X2, . . . , Xn) be a random vector with Dirichlet distribution Dir(γ),
with γ = (γ1, γ2, . . . , γn; γn+1), and such that γi > 0 for all i = 1, 2, . . . , n and γn+1 ≥ 1. The
probability density function is given by

f (x1, x2, . . . , xn) =
Γ
(

∑n+1
i=1 γi

)

∏n+1
i=1 Γ(γi)

n

∏
i=1

xγi−1
i

(
1 −

n

∑
i=1

xi

)γn+1−1

,

with xi ≥ 0 and ∑n
i=1 xi ≤ 1. Given any selection of (i, j), with 1 ≤ i < j ≤ n, and any real

numbers xi, xj, x′i , x′j such that xi ≤ x′i and xj ≤ x′j, we have

f
(

x1, . . . , xi, . . . , xj, . . . , xd
)

f
(

x1, . . . , x′i , . . . , x′j, . . . , xd

)

− f (x1, . . . , x′i , . . . , xj, . . . , xd) f (x1, . . . , xi, . . . , x′j, . . . , xd)

=

[Γ
(

∑n+1
i=1 γi

)

∏n+1
i=1 Γ(γi)

]2 n

∏
k=1
k ̸=i,j

x2(γk−1)
k xγi−1

i (x′i)
γi−1x

γj−1
j (x′j)

γj−1

·
{




1 −

n

∑
k=1
k ̸=i,j

xk − xi − xj





1 −

n

∑
k=1
k ̸=i,j

xk − x′i − x′j







γn+1−1

−





1 −

n

∑
k=1
k ̸=i,j

xk − x′i − xj





1 −

n

∑
k=1
k ̸=i,j

xk − xi − x′j







γn+1−1}
. (10)

Since 
1 −

n

∑
k=1
k ̸=i,j

xk − xi − xj





1 −

n

∑
k=1
k ̸=i,j

xk − x′i − x′j




−


1 −

n

∑
k=1
k ̸=i,j

xk − x′i − xj





1 −

n

∑
k=1
k ̸=i,j

xk − xi − x′j




= xix′j + x′i xj − x′i x
′
j − xixj = −(x′i − xi)(x′j − xj) ≤ 0

and γn+1 ≥ 1, then (10) is non-positive; therefore, we have that X is MRR2(1), that is, X is
a multivariate reverse rule of order two—the corresponding negative analog to (4) by reversing
the inequality sign in (Ref. [17], Theorem 3)—according to the direction (1, 1, . . . , 1). Thus, by
applying the corresponding negative dependence concept, in a manner similar to that provided in
Proposition 2 for the corresponding positive dependence concept, we conclude that X is D(1).

Example 3. Let X = (X1, X2, . . . , Xn) be a random vector with a multinomial distribution with
parameters N (number of trials) and p = (p1, p2, . . . , pn) (event probabilities) such that pi ≥ 0 for
all i = 1, 2, . . . , n and 0 < ∑n

i=1 pi < 1. The joint probability mass function is given by

f (x1, x2, . . . , xn) =
N!

∏n
i=1 xi!(N − ∑n

i=1 xi)!

n

∏
i=1

pxi
i

(
1 −

n

∑
i=1

pi

)N−∑n
i=1 xi

,

where ∑n
i=1 xi ≤ N. The multinomial distribution function is the conditional distribution function of

independent Poisson random variables given their sum. As a consequence of (Ref. [5], Theorem 4.3)
and (Ref. [17], Theorem 3), we have that X is MRR2(1). Thus, we conclude that X is D(1).

Remark 1. We want to note that by considering a similar reasoning to that given in Example 3,
we have that any random vector with multivariate hypergeometric distribution—the conditional
distribution function of independent binomial random variables given their sum—is also D(1).
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Now we provide an illustrative example demonstrating the application of
Proposition 7 regarding weak convergence.

Example 4. Let X = (X1, X2, . . . , Xn) be a random vector with joint distribution function

Hθ(x) = exp


−
(

n

∑
i=1

e−θxi

)1/θ



for all x ∈ Rn
, and θ ≥ 1. This parametric family of distribution functions is a multivariate

generalization of the Type B bivariate extreme-value distributions (see [16,18]). By applying
(Ref. [19], Theorem 2.11)—which involves log-convex functions [20]—we have that the random
vector X is I(−1). Consider the sequence of distribution functions {Hθ}θ∈N. When θ goes to
∞, we get H∞(x) = min(F1(x1), F2(x2), . . . , Fn(xn)), where Fi, with i = 1, 2, . . . , n, are the
one-dimensional marginals of Hθ ; therefore, as a consequence of Proposition 7, we obtain that Hθ is
I(−1) as well.

4. Conclusions

In this paper, we have undertaken a significant endeavor by introducing a novel
concept of monotonicity, characterized by its directionality, for a set of random variables.
This extension of existing multivariate dependence concepts represents a substantial con-
tribution to the field, offering a more nuanced understanding of dependence structures.
Moreover, we have not only defined this directional monotonicity concept but also delved
into its implications by establishing relationships with other well-known multivariate
dependence concepts. These comparative analyses shed light on the interconnectedness
and compatibility between different analytical approaches, enriching our understanding of
multivariate dependence. The exploration of I(α) stochastic orders—closely resembling
those studied in [21]—is ongoing and represents a fertile ground for future research.
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